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ABSTRACT 

The main source of electricity in South Africa is coal, which is a fossil fuel that negatively 

impacts the environment and contributes to global warming. The demand for electricity from 

various sectors of the economy, including agriculture has significantly increased over the years. 

In South Africa, irrigation consumes most freshwater in the agricultural sector. In addition, 

most irrigation systems in the country require electrical power to operate. Recently, the country 

has been experiencing load shedding, which has been affecting farming production negatively. 

Increases in electricity tariffs increased irrigation costs, thus reducing farm profitability. South 

Africa receives high levels of solar radiation which can be captured to produce solar energy. 

Solar energy is a clean renewable energy source that is used as an alternative power source. 

There is a notable increase in the development of solar powered irrigation systems in the 

country. There is a lack of research done on the integration of solar power with irrigation in 

South Africa. This study aimed to first investigate the extent of solar powered irrigation in 

South Africa and then develop a model to size solar powered irrigation systems (SPIS) for 

South Africa.  The extent of SPIS was investigated using of an online survey tool 

SurveyMonkey®. The SPIS model was developed in MS Excel and its Visual Basic 

Application (VBS). The crop water requirements were determined by the use of CropWAT. 

The climatic data were obtained using the NASA Prediction of Worldwide Energy Resource 

(POWER) database and CLIMWAT. Three SPIS configurations were implemented into the 

model for design options for the user. The model was tested for 6 climatic regions and 6 

different crops and the results were compared amongst each other.  The participants targeted 

for the survey were SPIS users, SPIS engineers, designers and installers, SPIS former users and 

SPIS potential users. The total number of respondents that participated and completed the 

questionnaires were 18 SPIS engineers, installers and designers and 13 SPIS users (farmers). 

SPIS engineers, installers and designers’ results showed that most SPIS they implemented were 

in the Western Cape and the Eastern Cape at 33 % for both provinces. SPIS engineers, installers 

and designers have also integrated SPIS mainly with drip and sprinkler irrigation at 33 % for 

both irrigation techniques. For the SPIS user results, 54 % of the respondents were commercial 

farmers. The results revealed that 92 % of the SPIS found in the survey were installed between 

2010 and 2016. The total area of SPIS found in the survey is 364.415 ha. The dominant 

irrigation system from the SPIS users is drip and sprinkler irrigation both being 38 %. The 
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implementation of SPIS reflected from the questionnaire was mainly motivated by the 

loadshedding and rise in electricity tariffs that occurred in South Africa. Most of the SPIS are 

integrated with irrigation techniques with high water use efficiency. A centre pivot irrigation 

system in the Durban region was used in the model to size the SPIS to irrigate maize. The 

components sized were for two of the three SPIS configurations, which were the direct-coupled 

system and the battery-coupled system. The performance of the battery pack and photovoltaic 

(PV) solar array were then simulated using the Photovoltaic Geographical Information System 

(PVGIS) tool. The simulated average energy output per day of the PV solar array was 0.11 % 

less than the average power required per day. The percentage of days when the battery is fully 

charged was simulated to be 61 % for the critical month of June for the power demand and 

solar power supply. The electrical power required to pump irrigation water for the six climatic 

zone scenarios was determined for the temperate coastal climatic zone. A drip irrigation system 

for grapes obtained the highest electrical power requirement for the direct-coupled system of 

0.01809 kW.mm-1.ha-1.m-1. The direct-coupled system required few components compared to 

the battery-coupled system, but the latter offers back up electrical power to operate the pump 

and SPIS has less solar panels than the direct-coupled system. A linear generic equation relating 

pump power requirements and the electrical solar power requirement was developed for the 

nine South African provinces. Of the nine provinces, the Western Cape province, showed that 

it required the highest solar panel power requirement for irrigation system with a critical month 

in the winter and with a gradient of the linear graph being 0.5366 and the least number of solar 

panels when designed for the summer with a gradient of the linear graph being 0.2381. The 

findings indicate there is SPIS in South Africa. The SPIS model was developed and can size 

the components of SPIS. The model was tested for different characteristics and a rule of thumb 

was developed to estimate the number of solar panels required for an irrigation system for a 

given pump power requirement.  
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1. INTRODUCTION 

South Africa has a total landmass of 122 million hectares and only 13 % of this area receives 

sufficient rainfall for dryland crop production (Greyling, et al., 2015).  In 2014/15, it was 

identified that 1 332 562 ha of cultivated land in South Africa is under irrigation, which equates 

to 1.1 % of South Africa’s land surface (Bonthuys, 2018).  The agricultural sector consumes 6 

% of the energy available in South Africa and electricity accounts for 13 % of this energy (DoE, 

2019). 

When it comes to electricity, irrigation consumes the largest amount of electricity at 28 % of 

the agricultural sector (DoE, 2012). Since irrigation consumes the most electricity in the 

agricultural sector, efforts to reduce the use of electricity from the grid should be considered, 

such as the use of renewable energy. Using renewable energy technologies for water services 

such as irrigation in third world countries can address both the need for energy and the need 

for water services in the most vulnerable areas. Solar PV technology promotes irrigation 

management and is, therefore, the energy technology of choice for water-scarce remote areas 

which are not connected to the national electricity grid (Prasad et al., 2012).  

With the design of a solar powered irrigation system (SPIS) model, the most important 

parameters to accurately identify are the required hydraulic head of the system and the solar 

irradiation of the location during the irrigation months. These will lead to the optimal sizing of 

an SPIS. With optimal sizing, the system will not be too costly. Most irrigation systems in 

South Africa, specifically the ones located in commercial farms are powered from the national 

electricity grid. In 2008, South Africa experienced load shedding, which was a result of the 

country’s worst ever energy crisis at the time. The agricultural sector was highly impacted by 

the 99 days of load shedding experienced in 2015 because of the drought in some parts of the 

country (Preez, 2015). Between 2014 and 2015, South Africa experienced an 8.2 % increase in 

the price of electricity, which was the second highest jump in the world (Writer, 2015a). The 

increase in electricity in South Africa from 2008 is illustrated in Figure 1.1. The use of SPIS in 

commercial farms would lead to farmers being less affected by the electricity price increases 

and load shedding. 
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Figure 1.1 Electricity price trends from 1970-2015 in South Africa (Sookdin, 2016). 

Despite the diminishing solar energy technology prices, as shown in Figure 1.2, the use of clean 

energy and having a water efficient system and no fuel and operational cost offered by SPIS in 

South Africa, there is insufficient research done on the implementation of SPIS. There is a need 

to develop a model that can assist in sizing a low-cost SPIS in South Africa. The SPIS model 

is needed to determine the technical limitations of SPIS technology in South Africa in terms of 

irrigation technique, crop type, soil characteristics and climatic conditions. 

 

Figure 1.2 Solar technology price trends over time (Fares, 2016) 
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Some off-the-shelf PV water pump kits are available for purchase in South Africa. Companies 

such as LORENTZ that have implemented photovoltaic water pumping systems (PVWPS) in 

some parts of the country, such as the Eastern Cape and Northern Cape, which range from 

small scale to large scale systems. The PVWPS are mainly integrated with stock watering and 

drinking water supply. The flow rate of these systems is between 7.3 m3.d-1 and 570 m3.d-1 

(Lorentz, 2016).  

The literature available for SPIS is mainly for small scale farmers in other countries such as 

India, Chile and Kenya not including South Africa. The large scale SPIS systems that have 

been implemented offer no design procedures for the implementation of SPIS. Drip irrigation 

has been the irrigation technology mostly integrated with solar power (Nederstigt and Bom, 

2014; Kumbhaj et al., 2017).  

When the technical feasibility is determined, the economic feasibility of the system will be 

determined to make sure the system is financially viable and of low cost. 

This project aimed to develop a model that will determine whether or not a solar powered 

irrigation system for a given irrigation technique that is located in South Africa is technically 

feasible, and identify the limitations of SPIS’s in South Africa by sizing the solar panels and 

other components and comparing them to the current power supply of the irrigation system. 

The specific objectives of the project are to: 

a)    determine the extent of SPIS implementation and the types of systems in use in South 

Africa, 

b)    develop a model to identify the most suitable or optimal low-cost SPIS, and   

c)     test the model for different climatic conditions, crop types and crop selections, soils, 

irrigation techniques and field size. 

The structure of the thesis consists of Chapter 1, which provides the background of the study, 

the aims and objectives. Chapter 2 discusses the literature review of the study. There is limited 

literature on SPIS in South Africa compared to the literature internationally. Therefore, the 

study looks at irrigation practices and techniques; solar energy and technology and the different 

configurations of SPIS commonly used globally. Chapter 3 consists of an investigation to 

determine the extent of SPIS in South Africa where a questionnaire was developed and 

distributed to SPIS users and SPIS installers, engineers and designers. In Chapter 4, a model 
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was developed to size SPIS in South Africa using MS Excel and its Visual Basic Application 

(VBA), which is used with CLIMWAT and CropWAT. Chapter 5 has the testing of the model 

using the 6 climatic zones in South Africa and the development of a rule of thumb to estimate 

the number of solar panels required for an irrigation system when given the pump power 

requirements. Chapter 6 discusses the summary, and conclusions of the study and 

recommendations for further research into solar powered irrigation. 
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2. LITERATURE REVIEW  

  Introduction   

The production of power from fossil fuels is a dominant course for carbon-based pollution and 

climate change. There has also been the rising of fossil fuel costs. As a result, the development 

of clean energy has progressed, which is in demand worldwide (Kelley et al., 2010). One 

example of such a clean energy is solar energy. There is a large quantity of solar energy that 

penetrates the earth’s atmosphere (Sontake and Kalamkar, 2016). In the last few years, solar 

energy has grown rapidly among other renewable energy sources. The solar energy sector has 

been expected to reach large scale competitiveness in less than 10 years (OECD/IEA, 2011). 

The potential of solar energy in South Africa is very high as the country receives high levels 

of solar radiation with solar insolation rates ranging between 4.5 – 6.5 kWh.m-2 (Chang et al., 

2011; FAO, 2015). The cost of solar system components has been constantly decreasing. This 

decrease has encouraged its use in various sectors.  

In South Africa, the agricultural sector consumes 60 % of the water used in the country and 

consumes about 8 % of the total electricity (DoE, 2012). The Department of Water and 

Sanitation revealed that the irrigation sector consumes 60% of the total amount of water used 

in the agricultural sector (Writer, 2015b). The operational maintenance of irrigation systems 

contributes to the agricultural sector’s energy and water consumption. The use of solar powered 

irrigation systems (SPIS) offers a chance to lower the energy and water consumption under 

irrigation systems. This is achieved using solar energy and the increased efficiency in water 

application (Williamson, 2006). The transportation of SPIS is simple compared to other types 

of renewable energy systems because the system can be transported in parts and put together 

on site. (Khatib, 2010).  

SPIS is most appropriate to use in regions where there is a lack of electricity. Since the 

invention of solar powered water pumps, there have been developed in many parts of the world 

(Yahya and Sambo, 1995; Hammad, 1998; Deveci et al., 2015). SPIS have been well studied 

and developed for very small farms. In 2003, a demonstration unit was installed by Shell and 

World Water and Power Corporation for a large scale farm (Kelley et al., 2010). Besides this, 

solar powered irrigation systems for large-scale farms have not been implemented (Kelley et 

al., 2010). 
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Unlike diesel powered irrigation systems, SPIS can provide water for irrigation without fuel 

and there are minimal maintenance and repair requirements. The installation and operation 

processes are easy. The SPIS systems are highly reliable, long lasting and modular, which 

allows the possibility for further expansion in the future. The SPIS can be assembled at the site, 

rendering long pipes unnecessary (Shrestha, 1996; Andrada and Castro, 2008). Cuadros et al. 

(2004) developed a method to size an SPIS, which is based on climatic conditions of the region, 

the geographical location, soil quality and crop water requirements, which was applied to 10 

hectares of an olive grove farm in Spain. The economic feasibility of this study was not 

evaluated.  

 Solar Energy 

The use of solar energy is growing fast and the potential it possesses is huge. In the last few 

years, the growth of the solar energy sector has been rapid compared to other renewable energy 

sectors. Solar energy is expected to reach extensive competitiveness in no more than ten years, 

although, financial incentives are required for most applications at the moment (OECD/IEA, 

2011).  

Solar radiation is the emission of electromagnetic energy from the sun. This energy is measured 

and reported as the solar irradiance, which is the solar radiation received per unit area by a 

given surface. The units for solar irradiance can be expressed as W.m-2 (Cryer, 2020). Solar 

irradiation is integrated solar irradiance over a given period with units often expressed as J.m-

2 or Wh.m-2. The factors that influence the value of the incident energy on the earth’s surface 

include location, air, pollution and cloud cover. 

When the solar radiation penetrates the earth’s atmosphere, it gets split into two types of solar 

radiation. The first is the direct solar radiation which comes directly from the sun’s surface to 

the earth’s surface. The other is a diffuse solar radiation, which is a result of solar radiation 

being scattered by substances within the atmosphere such as gases, aerosols and water vapour. 

The sum of diffuse and direct solar radiation that is captured on a horizontal surface is referred 

to as global solar radiation (Kahle et al., 2003). 
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  Solar radiation in South Africa 

In the past, there was a lack of interest in solar energy technology in South Africa. Recently, 

government and businesses have noticed and the potential of solar energy to reduce the cost of 

energy, boost job creation and promote local economies (Warner, 2014).  

South Africa is a semi-arid country with large areas of flat terrain with high levels of irradiance,  

(DoE and GIZ, 2015). The climate in South Africa also makes it ideal for solar energy 

generation, as most of the areas in the country have 2500 hours of sunshine a year (Walker, 

2003). The country has one of the world’s highest solar irradiation rates in the world, with 

some provinces having solar irradiation rates ranging from 4.5 – 6.5 kWh.m-2 (Chang et al., 

2011). South Africa is a country that has a high level of direct normal irradiation (FAO, 2015). 

According to Bugaje (2006), when compared to other countries in Africa, the accessibility of 

solar radiation data in South Africa is considered to be extensive. The sources from which data 

on the solar radiation obtained in South Africa can be acquired for any location, are as follows 

(Bekker, 2007): 

i)       Ground station measurements pyranometers 

The precision of the device, its fine-tuning and its spectral sensitivity are functions of 

the accuracy of the resulting global and diffuse irradiation data. 

ii)    Ground station measurements of sunshine hours 

To estimate the global irradiation at any given area, the percentage of sunshine is used 

where it is measured for an hour. Diffuse radiation needs more estimation, such as sky 

clearness indices, with a high potential for errors. 

iii) Satellite irradiation measurements 

This method of measurement is chosen when there is little to no ground station data 

available in an area. The observations taken by the satellite do not consider the effects 

of microclimate and location. 

In 2013, the South African Weather Services re-established the national solar radiometric 

network which consists of 13 new stations within the six climatic zones in South Africa. This 

was done to meet the demand for reliable and accurate solar radiation data from the 

development of solar based renewable energy technology and projects (Ntsangwane et al., 

2018). 
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 Photovoltaic technology 

Photovoltaic (PV) cells are semiconductor devices that generate electrical power by enabling 

photons to remove electrons from a molecular lattice, leaving a freed electron and a ‘hole’ pair 

that diffuse in an electric field to separate contacts (OECD/IEA, 2011). The materials presently 

used for PV cells are mono-crystalline silicon, poly-crystalline silicon, amorphous silicon, 

cadmium telluride and copper indium gallium selenide/sulphide (Chu, 2011). The most 

common types of PV systems are mono or poly-crystalline silicon cells and thin film solar 

cells. Pure silicon is used to produce mono- or poly-crystalline systems and the price of the 

system is higher than thin-film systems. This leads to the thin-film system being utilised more 

often than mono and poly-crystalline systems (Niekerk, 2013). 

The electrical power output of a PV system is usually expressed in terms of peak power, such 

as peak watts (Wp). Peak power is the amount of power generated by the PV system at standard 

reporting conditions (SRC). SRC is when the temperature of the PV solar panels and the solar 

radiance of the area is 25 °C and 1000 W.m-2, respectively. Since the peak power represents a 

single value of the rate, a more satisfactory measure is the amount of electrical energy produced 

over a specific time interval of interest such as kilowatt-hours per day (kWh.d-1) or megawatt-

hours per year (MWh.y-1). This measure, therefore, corresponds to the variability of solar 

energy daily, seasonally and annually (Stout, 1991). To produce alternating current (AC), an 

inverter is needed, which will change the direct current (DC) to AC.  

In South Africa, small scale embedded generation of electricity for individual use at a location 

is taken by Eskom and the National Energy Regulator of South Africa as a measure to reduce 

the demand for electricity on the grid (Knox et al., 2012). Solar Portal is a website used to 

monitor PV installations worldwide (Portal, 2016). Users of the site can upload the outputs of 

their systems onto the site. Based on the data on the website, it shows that there are currently 

no less than 200 installed PV systems ranging from small scale to large scale applications in 

South Africa (Portal, 2016). 

The dominant areas of PV installation are Cape Town, Johannesburg, Durban and Stellenbosch. 

The users of these PV systems vary from schools, private residences, farms, small businesses 

and large businesses (Niekerk, 2013). 
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 PV System Primary Components and Cost 

Depending on the type of solar powered PV system that generates power to operate irrigation 

systems, PV system primary components consist of PV panels, a controller, an inverter, battery 

storage or a water tank, and control switches. These systems are environmentally friendly, 

minimal maintenance is needed, they have a long operational lifespan, they require no fuel and 

the installation of the system is easy (Cuadros et al., 2004). PV solar technology has some 

restrictions, namely, low efficiency, which ranges between 10 – 23 %, high investment cost 

and complex electronic requirements when controllers and batteries are utilised. The estimated 

costs of different PV systems in 2013 are presented in Table 2.1. 

Table 2.1 Estimated costs for different types of PV systems (Ahlfeldt and Economics, 2013) 

PV System  Installed Cost (R/W) 

Utility scale fixed tilt  22.47 

Utility scale fixed tracking system  24.51 

Commercial/industrial scale  20.00 

Residential grid-supported  27.50 

Residential off-grid  47.00 

 PV solar panels 

PV solar panels are devices that convert solar radiation into electrical energy (Huang et al., 

2013). PV solar panels are made up of PV cells. PV solar panels are either linked in series or 

parallel, forming a PV solar array, to deliver a specific voltage and current under a certain level 

of irradiance (Helikson et al., 1991). Figure 2.1 illustrates the interconnection of PV solar cells 

and PV solar modules which lead to the formation of an array. PV solar cells consist of 

semiconductor material that comes with either two or more layers and produces direct current 

when exposed to sunlight. The semiconductor layers can be made from two materials which 

are crystalline or thin film (Morales, 2010). The three common types of PV modules currently 

used include the following: amorphous, polycrystalline and mono-crystalline. 
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Figure 2.1 Interconnection of a solar cell, module, and array (Solar, 2004) 

2.3.1.1 PV technology efficiency 

Over the operating life of a PV solar panel, the efficiency will change. The power produced by 

the PV solar panels will decrease with age over the operating life. What also affects the 

efficiency of the power produced by the PV solar panels is the ambient temperature of the PV 

solar panels. Through research, it has been shown that high ambient temperature results in a 

decline in the energy output of the PV solar panels (Hamrouni et al., 2008; Dubey et al., 2013). 

The efficiency of the PV solar panels can also be affected by poor maintenance such as the 

presence of surface contamination on the solar panels and vegetation growth leading to shading 

of the PV panels thus, reducing the energy output (Hamrouni et al., 2008; Pillay et al., 2016). 

Crystalline PV solar cells are made out of silicon, while thin-film semiconductors are made out 

of either cadmium telluride, amorphous silicon or copper indium gallium diselenide. Thin-film 

cells have an efficiency that ranges between 8 % and 12 % (Niekerk, 2013). Silicon PV solar 

panels have an efficiency that ranges between 13 % and 18 % (Wasfi, 2011). Calculations 

indicate that, at best, a mono-crystalline pure silicon solar cell can convert 22% of terrestrial 

sunlight into electricity, which makes it the most efficient PV solar panel, while the least 

efficient PV panel is the amorphous silicon type (Stout, 1991; Meah et al., 2008; Saleem et al., 

2016).  

2.3.1.2 PV technology solar collectors 

There are two types of solar collectors for PV systems, namely, flat-plate and concentrator. A 

flat-plate solar collector has electrically interconnected and packaged PV solar cells in planar 

panels. Flat-plate collectors are generally non-tracking of the sun, but the inclination tilt can be 
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adjusted seasonally, while a concentrator solar collector may be sun tracking on one or two 

axes. The shape of the solar collector promotes the sunlight to be concentrated and focused on 

solar cells that are either actively or passively cooled (Stout, 1991). According to Dickensen 

(1978), there is an issue with concentrator systems only making use of direct solar radiation. 

Therefore, for areas that experience many cloudy days during the year, the system will not be 

suitable.  

 Inverter 

It would be ideal if solar powered systems operated directly on DC power. The problem is that 

there are limited DC devices available, or if available, they are often more expensive than AC 

devices (Monsour and Burton, 2002). PV solar panels produce DC power and, commonly, 

motors that are joined with a pump need AC power so, inverters are used to change DC 

electricity to AC electricity. The conversion efficiency of inverters when converting electricity 

from DC to AC is 80 – 90 % (Vignola et al., 2008).  

 Grid-Connected and Off Grid PV System (Energy Storage) 

PV systems can be grid connected, which allows the electricity produced to be fed into the 

utility mains and using it as a storage volume. The other alternative is the energy can be stored 

in batteries or excess water stored in elevated water tanks. 

 Grid-connected PV systems 

The concept behind the grid-connected system is to lower the additional cost of installing 

batteries to the PV system and avoid lost excess electricity that is being produced but unused 

due to low demand. In solar pumping applications, when the grid is available, some systems 

are connected to the grid allowing for the two-way exchange of power. The different ways a 

grid-connected system can be used include the following: 

(i) When solar energy is available, and the system needs water, water is directly pumped to 

the system using solar power.  

(ii) When solar energy is available, and water is required by the system, the system does 

not use all the electricity produced, excess electricity is fed into the grid. 
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(iii) When solar energy is available, and water is required by the system, but the system 

requires more electricity, the remaining amount of electricity required by the system will 

be obtained from the grid.  

(iv) When solar energy is available, and the system does not require any water, electricity 

is fed into the grid. 

(v) When solar energy is not available, and the system requires water, water is directly 

pumped to the system using grid electricity.  

For systems where the utility grid is not available, mainly inaccessible and not 

electrified regions, the PV system is installed as a stand-alone system or can be connected to a 

private generator. 

The private generator plays roles ((ii)), (iii)), and (v) of the grid, as mentioned above. 

It provides electricity when needed unless there is a storage system in place. This 

storage system allows storing electricity or water to offer availability during night times and 

winter seasons (CSC, 2016). 

 Battery storage and water tank 

Off-grid PV systems are either battery storage or water tank storage. Some solar system 

applications require storage due to solar energy being available only during the day and can 

sometimes be absent during the winter season. The most commonly used method for storing 

electricity is the use of batteries. The use of batteries comes with disadvantages such as 

increased cost and high maintenance requirements of the system (CSC, 2016). 

The excess electrical energy produced by the PV solar panels can be stored in two different 

ways. When the PV solar panel produces more electrical energy than the pumping system 

requires, the excess electrical power is stored in the battery. The types of batteries used for PV 

systems are namely: lead-acid, lithium ion and nickel-iron batteries. The very deep discharge 

rate, high cost, and environmental concerns limit the PV application of nickel-iron batteries. 

Lead-acid batteries, on the other hand, are the most commonly used batteries due to the 

moderate cost, good energy efficiency and ease of recyclability of the lead (Monsour and 

Burton, 2002; Buschermohle and Burns, 2014).  
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 Economics of PV Systems 

In terms of the economic feasibility of PV systems; the literature reveals that small systems are 

economically feasible. A generalised method to determine both technical and economic 

feasibility that can be applied to a range of sizes has not yet been developed (Kelley et al., 

2010). The cost of PV systems is dependent on the power produced by the panels and the 

storage (batteries or water tanks) components. The cost to run a PV irrigation system is 

negligible, but high capital costs are required, which is a limitation for the wide-scale adoption 

(Firatoglu and Yesilata, 2004). There has been a drastic drop in solar panel prices over the past 

30 years (Reichelstein and Yorston, 2013). Literature has highlighted methods in which to 

determine and evaluate the economic feasibility of PV systems as well as comparing it with 

conventional alternative power sources such as diesel engines and grid electricity (Odeh et al., 

2006; Meah et al., 2008; Kelley et al., 2010; Branker et al., 2011). 

 PV Irrigation System Configuration 

A PV irrigation system uses PV solar cells to capture solar radiation from the sun’s radiation 

to produce electricity for driving the pump. PV irrigation systems commonly consist of an array 

of solar cells, a power converter, a control unit, a pump and a borehole or reservoir (Yu et al., 

2011). The use of PV technology with irrigation systems for pumping requirements offers ease 

of use, dependability and low maintenance. The use of PV irrigation systems is ideal in remote 

areas which have no grid electricity connection (Senol, 2012). 

There are two main methods for storing energy generated by a photovoltaic water pumping 

system, namely, the battery-coupled and the directly driven solar water pumping systems. 

 Battery-coupled system 

The components within a battery coupled SPIS consist of PV solar panels, charge controller, 

batteries, pump controller, pressure switch, storage tank (optional) and a DC water pump 

(Sontake and Kalamkar, 2016). Lead acid batteries are commonly used for SPIS. One of the 

drawbacks of the battery is that it lowers the efficiency of the entire system. Charging and 

discharging the battery results in power being lost, resulting in low efficiency. Designing the 

batteries to be fully charged and discharged during the operation of the system will make the 

battery have better efficiency. The typical efficiency of a lead-acid battery is roughly 80 % but 

can be 75 % in hot climates (Deveci et al., 2015). This system is more reliable than the directly 
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Table 2.2 Types of pumps (Monsour and Bonton, 2002). 

Pump type Main characteristics Advantages Disadvantages 

Submerged 

three-phase 

motor 

 Primarily used for borehole water extraction 

 Three-phase motor is directly linked to a multi-stage 

centrifugal pump, which is submerged in water within a 

borehole 

 Simple 

installation 

 Protected from 

damage and 

vandalism 

 

Submerged 

DC motor 

pump 

 Closed coupled DC motor-pumps are used for some 

smaller borehole PV pumps 

 The motor used for this system is a permanent magnet 

brush type 

 A brushed motor 

requires replacement 

of brushes at least 

every two years. 

Surface 

mounted 

motor with 

submerged 

pump 

 Centrifugal pumps or positive displacement pumps are 

used for this system 

 The rod connections are in series, which feed through a 

rigid galvanised pipe called a riser 

 One end of the drive rods is connected to the motor and 

the other to the submerged pump 

 low efficiency caused 

by the power losses 

experienced in the 

shaft bearings 

Floating 

pump 

 A float houses the motor and pump system which rides on 

the surface of the open wells or channels 

 the system is very good in pumping irrigation water for 

canals and wells mainly because of its versatility 

PV system can be 

made portable by 

incorporating a 

wheelbarrow type 

trolley to allow 

transportation. 

Applied to low lift or 

low head requirement 

irrigation application 

systems 

Suction lift 

pump 

 The motor-pump system is mounted above the water of an 

open well 

 The pump height position above the water is restricted by 

the atmospheric pressure with the net positive suction head 

required (NPSHR)  

 Diaphragm and centrifugal pumps are used for suction lift 

systems. 

 
 Suitable for low 

head 

applications. 

 The system 

requires an 

operator to 

always be in 

attendance. 
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 SPIS internationally and in South Africa 

Countries such as Chile, India, and Morocco rely on subsidies from governmental organisations 

for small-medium scale irrigation schemes. These subsidies range from 30 % - 100 % funding 

towards SPIS for farmers. The high financial contributions from the government encourage 

farmers to implement the technology and increase the level of acceptance. The Chilean and 

Indian government subsidies normally support standardised and limited system kits which 

seldom meet the requirements of the target farms. Since these countries offer subsidies for 

SPIS; commercial financing of SPIS via banks does not exist. This is also the result of 

knowledge and the capacity for the assessment and risk management of these projects being 

low (Sass and Hahn, 2020). 

Infrastructure is the biggest drawback in Africa. Many places do not have access to the 

electricity grid. Farmers that do not have access to the electricity grid often revert to using 

diesel power, which is about five times more expensive than grid power per kWh. The initial 

costs of a diesel-powered irrigation system are a lot less compared to SPIS. The use of diesel-

powered irrigation systems could have a negative impact on the farmer’s bottom line over time, 

due to the operating costs. The Department of Agriculture, land Reform and Rural 

Development is considering the subsiding of SPIS installations for small-scale more 

favourably, but severe funding shortages prevent it from being implemented on a meaningful 

scale (Parker, 2019). 

 Water and Energy Consumption in Agriculture in South Africa 

The water requirements for irrigation are roughly 60 % of the total water requirements in South 

Africa, while industrial water requirements are 25 % (GCIS, 2015). Only 1.5 % of the land in 

South Africa is under irrigation, which produces 30 % of the country’s crops. Irrigation 

consumes 8 % of the total energy used in agriculture and 28 % of the total electricity used in 

agriculture (DoE, 2012).  

Agriculture in South Africa is dominated by commercial farming, which commonly accesses 

water from surface water resources. There is a physical scarcity of water in the country, 

therefore the public is focused on improving the efficiency of irrigation and providing equitable 

access (Hassan, 2015).  
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The electricity produced in South Africa mainly comes from coal, which produces 91.7 % of 

the total electricity in the country. In the past few years, a need to reduce the reliance on fossil 

fuels for energy supply has been acknowledged. The need to reduce carbon emissions and 

advancements in renewable energy sources are contributing factors to the reconsideration of 

energy supply (Goga and Pegram, 2014). 

It is estimated that 2 000 ha of arable land in South Africa is under solar powered irrigation. 

The factors currently influencing demand for solar powered irrigation in South Africa are as 

follows (Hassan, 2015): 

 The electricity rates for the agricultural sector are still competitive, apart from price 

increases: 

 Electricity      –  R 1.30 / kWh 

 Diesel      – R 4.00 / kWh 

 RuralFlex (Rural electricity)  –  R 0.70 / kWh 

 Solar (Commercial)   –  R 0.85 – 0.90 / kWh 

 The business case for solar irrigation technology is lacking as well as the financial benefits 

amongst farmers. 

 There are expectations that the prices of solar components will continue to fall.  

 There is a perception that there is no available funding. 

 There is a huge investment required for the implementation of solar powered 

irrigation systems. 

 Farmers fear that components will be lost due to theft (du Plessis, Cape Town, South Africa, 

2017). 

 There are relatively few service providers who are actively involved with SPIS. For the 

larger irrigation companies who technically service 90 – 95 % of the commercial irrigation 

farmland, solar is not a viable option yet, although they believe in the concept and that it 

will have future application (du Plessis, Cape Town, South Africa, 2017). 

The main drivers towards the implementation of SPIS are the expectation that there will still 

be excessive escalations in electricity rates, and concern about Eskom’s capacity, both in terms 

of the adequacy of power and their ability to deliver the power to the user. 



` 

   22 

 

 Irrigation Techniques 

Literature reveals that solar powered irrigation is preferable for certain irrigation techniques. 

Table 2.3 shows the irrigation methods that are suitable for solar powered irrigation. 

Table 2.1 The suitability of irrigation techniques with relation to solar pumps (Action, 2012) 

Distribution method  Typical application 

efficiency (%) (m) 

Typical head (m) Suitability for use 

with solar pumps 

Open channels 50 – 60 0.5 – 1.0 Yes 

Sprinkler 70 10.0 – 20.0 No 

Trickle/Drip 85 1.0 – 2.0 Yes 

Flood 40-50 0.5 No 

 

According to Saleem et al. (2015), SPIS can be successfully integrated with different irrigation 

techniques namely, drip, micro-sprinklers and rain guns. So SPIS utilised with drip and several 

sprinkler irrigation techniques will be discussed in the sections below. 

There are different types of sprinkler irrigation systems including set-move irrigation systems, 

solid-set systems, and continuous-move systems. 

           Drip irrigation 

A drip irrigation is also referred to as trickle irrigation and involves the slow rate of dripping 

water onto the soil at a flow rate that ranges from 2 – 20 l.h-1. The irrigation system consists of 

pipes with small diameter plastic pipes with emitters or drippers (Brouwer et al., 2016). With 

drip irrigation, water flows through the emitters and directly into the soil near the root zone of 

the crops. It may help achieve water conservation through reducing evaporation and deep 

percolation, if it is designed, installed and managed adequately (Stauffer, 2016). Due to the 

reduced water contact with leaves, stems, and fruit resulting from drip irrigation, the 

development of diseases is less common (Shock, 2006). 

Compared to sprinkler and flood irrigation, drip irrigation systems have low energy 

requirements, which are a result of the low water requirement and flow rate (Burger et al., 
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2003b). The operating pressure of drip irrigation systems ranges from 0.02 – 0.2 m (Ruffino, 

2009). According to Burger et al. (2003c), drip irrigation has a water application efficiency 

that ranges from 90 – 95 %, which is a result of the water being applied directly to the root 

zone. As a result, countries such as Morocco India and Chile SPIS are preferably integrated 

with drip irrigation systems for water saving and minimum energy consumption (Sass and 

Hahn, 2020). 

A drip irrigation system comprises many components, with each one playing a vital part in the 

operation of the system. Drip irrigation systems are recommended for use on soils with a coarse 

texture where water can be distributed horizontally through capillary action and vertically using 

gravity. Soils that possess poor ability to distribute water are not recommended to be irrigated 

with this system (Burger et al., 2003a). 

When compared to other irrigation systems such as furrow irrigation, drip irrigation systems 

are significantly more expensive. The system comes with many components which contribute 

to the high investment cost of the system such as the pressure regulator, filtration system, 

controller, backflow preventer, flush valve or cap, valves, pipes and emitters (Christenson, 

2006). The system also requires high maintenance due to the emitters having the potential to 

clog up. This makes the filtration system the most important component of the drip irrigation 

system as it prevents dirt and debris from clogging emitters (Burger et al., 2003g). 

           Sprinkler irrigation 

Sprinkler irrigation is a method where water is sprayed onto the crops and soil in a manner 

similar to rainfall. The precipitation is created by ejecting pressurised water through a nozzle 

called a sprinkler. There is a variety of irrigation capacity available for sprinkler irrigation 

systems (USAID/Nepal, 2009). The components that a typical sprinkler irrigation system has 

been namely: the pump unit, mainline and sometimes sub-mainlines, laterals, and sprinklers 

(Brouwer et al., 1988). Sprinkler irrigation is a high pressure method where one sprinkler can 

have a wetted diameter that ranges from 10 m to 20 m.  

Wind drift has a huge effect on the water application uniformity of a sprinkler irrigation system, 

which causes water losses that range from 5 to 10 %. High evaporation losses are experienced 

during high temperature seasons. High water pressure is required to operate the sprinklers 

(Amend, 2005). 
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There are different classifications of sprinkler irrigation systems, depending on the systems’ 

mobility, such as portable, semi-permanent and permanent (James, 1993; Burger et al., 2003e). 

The most widely used sprinkler distribution systems are portable laterals with sprinklers 

(moved as a unit), semi-solid set (sprinklers only moved), dragline (sprinklers and hoses 

moved), big gun (portable supply pipe where gun and supply line are moved), side-roll (entire 

unit moved) and permanent-solid set (Burger et al., 2003f). 

Table 2.4 shows how sprinklers can be divided according to the pressure required. SPIS’s are 

generally suitable for low-pressure irrigation systems (CSC, 2016). This is the result of high-

pressure irrigation systems when compared to low-pressure irrigation systems requiring more 

energy to operate the irrigation system. The higher the energy requirements of the system, the 

larger the solar panels, making the system more expensive. 

Table 2.2 Different sprinkler pressures, flow rates and typical applications (Burger et al., 

2003e) 

Sprinklers Pressure (m) Flow rate (m3.h-1) Typical application 

Low pressure < 20 < 0.7 Orchards 

Medium pressure 25 – 40 < 3.0 Cash crops 

High pressure > 40 < 50.0 Pastures and sugar-cane 

High volume > 45 20.0 – 100.0 Pastures and maize 

2.10.2.1 Micro sprinkler irrigation 

Micro-sprinkler irrigation systems operate like sprinkler irrigation systems. Compared to 

sprinkler irrigation systems, the operating pressure and flow rate of micro-sprinkler irrigation 

systems are low. The components of this type of system are the sprinklers (0.55 mm – 2.20 mm 

orifice), pipes, valves, connectors, and filters. The water application flow rate of these systems 

is between 20 l.h-1 and 100 l.h-1. The diameter of the area wetted by micro-sprinkler is from 1.5 

m to 10 m. 

The water application efficiency of a micro-sprinkler irrigation system ranges from 80 % to 90 

% depending on the level of design and irrigation system management (Godin and Broner, 

2013). A filtration system is an important feature for the water application efficiency of the 

micro-sprinkler irrigation system, even though the clogging of the system rarely occurs. 
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When a micro-sprinkler irrigation system is well managed, it can produce increased yields and 

increase water use efficiency. Water is allowed a chance to penetrate through the soil under 

low pressure with a micro-sprinkler as water is applied directly to the soil. The irrigation system 

normally operates at pressures between 14 – 20 m with a low to medium volume of water 

required. Compared to furrow irrigation, the integration of micro-sprinkler irrigation with solar 

water pumping systems is ideal due to the low pressure and high water use efficiency of the 

system, meaning the sizing of the solar panels will not be too large resulting in very high 

investment costs (Goswami and Zhao, 2009).  

2.10.2.2 Centre pivot irrigation 

A form of sprinkler irrigation, centre pivot irrigation is a system that applies a small amount at 

frequent intervals (Ruffino, 2009; Ahmed, 2013). The components that make up a centre pivot 

irrigation system include a pump, a motor, mainline, wheeled tower with a drive system with 

laterals attached, emitters (sprinkler and end-guns) and accessories like control switches, 

pressure gauges, water meter and safety valves. The laterals are fixed at the centre of the field 

and the system rotates the field at a set fixed speed (Jarrett and Graves, 2010; Ahmed, 2013). 

The water loss experienced with centre pivot irrigation is minimal with only drip irrigation 

having a lower water loss than the centre pivot irrigation system. Compared to other irrigation 

systems, such as other sprinkler irrigation systems and furrow irrigation, the centre pivot 

produces more uniform water coverage (James, 1993). Clogging of the nozzles rarely occurs 

due to their design, which results in the system not requiring a filtration system as advanced as 

the drip irrigation system. The expected life of the system is 20 years (Burger et al., 2003e). 

Centre pivots that operate at low pressures with drop nozzles usually have a water application 

efficiency of 85 % (Brown, 2008). According to Berne (2015), centre pivot irrigation systems 

can either have impact-type sprinklers or spray-type sprinklers. Spray-type sprinklers which 

are also known as spray nozzles have a significantly low-pressure requirement, which leads to 

a low energy requirement than do impact sprinklers. Centre pivots also need additional power 

to move the centre pivot tower around the field. 

Amend (2005) suggests solar powered centre pivot irrigation system be kept small scale with 

low pumping requirements due to the high capital investment cost of PV systems. This is due 

to the system requiring power for irrigation and to move the system around the field. The 

irrigation system can be very economical to produce high value crops. The centre pivot system 
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can also be used to reduce the temperature of the PV panels and be used to keep them clean by 

positioning the PV panels in the centre of the pivot, which will also reduce operating cost for 

maintenance (Sedki, 2014). 

 Furrow irrigation 

A type of surface irrigation, furrow irrigation does not irrigate the entire field like basin and 

border irrigation techniques do. The irrigation technique channels the flow of water along the 

main direction of the field using furrows (Walker, 1989). The energy requirement of the furrow 

irrigation system compared to sprinkler irrigation systems is low. The cost to construct a furrow 

irrigation system is cheaper compared to other irrigation systems such as sprinkler and drip 

irrigation. This makes the system suitable for cases where the energy requirement and 

investment costs are limited (Burger et al., 2003f). 

The water application efficiency of this system is low ranging from 50 % to 60 %. As a result 

of this, a substantial amount of water can be lost with this system. The efficiency of this system 

can be improved by implementing wastewater recovery and reuse techniques, and inlet 

discharge control (Walker, 1989). The pressure requirements of these systems range between 

1 – 3 m (Mahnke, 2010). 

Hossain et al. (2015) compared the water use and yield production of solar powered drip 

irrigation and furrow irrigation systems. The drip and furrow irrigation obtain similar yield 

production. The difference came to the water use, where the drip irrigation system saved 50 % 

of water when compared to furrow irrigation. The more water the system requires, the higher 

the pumping requirement, therefore, the number of PV panels required for a furrow irrigation 

system will be greater than the PV panels required for a drip irrigation system. 

 Crop Water Requirements 

The crop water requirement is defined as the amount of water required to meet the water loss 

through evapotranspiration. Evapotranspiration (ET) is the amount of water used by plants 

through transpiration and water loss through evaporation (Bithell and Smith, 2011). In the 

process of irrigation, there are potential areas of water loss and these include lateral runoff, 

deep drainage, and leaks in the delivery system. These are not accounted for in the ET 

calculations but can be measured and included in the estimates of crop irrigation requirements. 

There are four main climatic factors that influence crop water requirements and these include 
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radiation, temperature, humidity and wind (Crouwer and Heibloem, 1986; Burger et al., 

2003c). 

There are different methods worldwide that are used to determine crop-evapotranspiration. The 

ones used in South Africa will be discussed. These methods include the A-pan evaporation 

with the crop factor, the Penman-Monteith method (short grass reference) and the relation 

between short grass reference evapotranspiration (ETo) and A-pan evaporation (Eo). It is 

advised that irrigation designers start to use the Penman-Monteith method and SAPWAT with 

the guidance of professionals. Otherwise, tables for A-pan evaporation and amended crop 

factors (f) can be used to determine crop evapotranspiration.  Equation 2.1 shows the A-pan 

equation and Equation 2.2 shows the Penman-Monteith equation to determine crop 

evapotranspiration (Burger et al., 2003g).  

where, 

ETc  = crop evapotranspiration (mm.day-1), 

Eo = A-pan evaporation (mm.day-1), and  

f = crop factor (unitless). 

 

where, 

ETo = reference crop evapotranspiration (mm.day-1), and  

kc = crop coefficient (unitless). 

Drip and micro-sprinkler irrigation systems only irrigate a portion of the ground, as a result of 

this a ground cover reduction factor is used to account for the reduced evaporation from the 

soil (Savva and Frekken, 2002). Equation 2.3 shows the crop evapotranspiration with the 

ground cover reduction factor. 

 ETc = Eo × f   2.1 

 ETc = ETo × kc   2.2 



` 

   28 

 

where, 

kr  = ground cover reduction factor (dimensionless). 

 Irrigation Water Requirements 

When determining the irrigation water requirement, the effective rainfall must be calculated. 

Long term rainfall data is required to determine the long term monthly average rainfall. 

Interception, evaporation, runoff and seepage are factors that prevent most of the total rainfall 

from reaching the plant roots of crops. A large amount of water is removed from the measured 

rainfall as evaporation losses. Equation 2.4 and Equation 2.5 show how to determine the 

effective rainfall (Wane and Nagdeve, 2013). 

 
Peff = 0.6 × P −

10

3
 for P ≤ 23 mm 

2.4 

 
Peff = 0.8 × P −

24

3
 for P >23 mm 

2.5 

where, 

 Peff = effective rainfall (mm), and 

 P = monthly average rainfall (mm). 

The net irrigation requirement per day (NIRd) is calculated using Equation 2.6. There is a 

possibility that the NIRd calculated with the equation can be smaller than the actual maximum 

NIRd, which could lead to the system capacity being insufficient during a certain hot period 

and may lead to losses. To prevent this from occurring, the designer must always compare the 

average NIRd with the reported daily values to make the required adjustments (Burger et al., 

2003g). 

where, 

NIRd  = net irrigation requirement per day (mm), and  

 ETc = ETo × kc × kr      2.3 

 
NIRd =

ETc − Pe
n

 

  

  2.6 
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n  = number of calendar days in the relevant month (d). 

The groundwater readily available to the crops is determined with Equation 2.7 (Burger et al., 

2003g). 

where, 

RAW  = readily available water (mm), 

SWHC  = soil water holding capacity (mm.m-1) 

ERD   = effective soil depth (m), and 

   = allowable water depletion (%). 

The cycle length is calculated by dividing the crop’s daily net irrigation requirement by the 

total amount of readily available water per cycle. This is presented in Equation 2.8 (Burger et 

al., 2003g). 

where,  

tc  = cycle length (calendar days), and 

W  = percentage wetted area (%).  

The gross irrigation requirement per cycle takes into the irrigation system efficiency in 

delivering the water required to the plant and this is shown in Equation 2.9 (Burger et al., 

2003g). 

where, 

GIRc  = gross irrigation requirement per cycle (mm), and 

ηs  = system efficiency (%). 

 RAW = SWHC × ERD × α 

   

  2.7 

 
tc =

RAW×W

NIRd × 100
 

   

  2.8 

 
GIRc = NIRd × tc ×

100

ηs
 

   

  2.9 
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The system flow rate is determined by Equation 2.10 (Burger et al., 2003g). 

where, 

Q  = flow rate (m3.h-1),  

t   = operating hours per cycle (h), and 

AT  = total system area (ha). 

 Irrigation Management 

It is vital to implement irrigation management for effective and efficient use of water and 

energy resources as well as to enhance the farmer’s income. The management practices that 

are utilized to improve water use efficiency are irrigation scheduling, water flow 

measurements, drainage flow management, conservation tillage, land levelling, nutrient 

management and reducing evaporative, runoff and deep percolation losses (Aillery, 2006). The 

most important irrigation management practice is irrigation scheduling, because it avoids the 

over-application of water while reducing yield losses due to water shortage, therefore 

optimizing water and energy usage (Evans et al., 1996). According to Wright (2002), irrigation 

scheduling is the planning of timing and the quantity of water application to crops for optimum 

and healthy crop growth. To determine the intervals between irrigation and how much water to 

apply at each interval, the rate at which the crop consumes water and the quantity of water held 

in the crop root zone needs to be identified. This is done by conducting a soil analysis (where 

the soil texture, soil infiltration rate and the effective root depth are determined), determining 

the crop grown and the development stage of crops (McMullen, 2000). The implementation of 

soil moisture monitoring practices is vital for applying any irrigation management strategy. 

The techniques that can be used to determine soil moisture are the hand feel method, neutron 

probe, electrical resistance, soil tension, plant indicators and computerized models (Martine, 

2009). 

Irrigation management is vital for SPIS’s. Having a well-structured distribution system 

integrated with cautious water use could potentially half the size and the cost of the solar 

pumping system required. When sizing the solar irrigation system, the system must meet peak 

 
Q =

GIRc × AT

t
× 10 

    

  2.10 
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irrigation demand for a region even though these conditions will not last for a long time, thus 

resulting in the pump having an excess capacity for the other times of the year. Investment in 

time and money must be placed in the field towards water storage and the distribution system 

aimed at improving water use efficiency and utilization application (Halcrow, 1981).  

As part of irrigation management for SPIS’s, the solar panels of the system require cleaning to 

remove dirt on them so the system performs at its best. During high temperatures, the efficiency 

of solar panels is reduced. To prevent this, some systems incorporate a sprinkler in the design 

that is used to spray the panels to cool and clean them, therefore, maintaining the performance 

of the solar panels (Halcrow, 1981). It is vital to implement irrigation management for effective 

and efficient use of water and energy resources as well as to enhance the farmer’s income. The 

management practices that are utilized to improve water use efficiency are irrigation 

scheduling, water flow measurements, drainage flow management, conservation tillage, land 

levelling, nutrient management and reducing evaporative, runoff and deep percolation losses 

(Aillery, 2006). The most important irrigation management practice is irrigation scheduling 

because it avoids the over-application of water while reducing yield losses due to water 

shortage, therefore optimising water and energy usage (Evans et al., 1996). According to 

Wright (2002), irrigation scheduling is the planning of timing and the quantity of water 

application to crops for optimum and healthy crop growth. To determine the intervals between 

irrigation and how much water to apply at each interval, the rate at which the crop consumes 

water and the quantity of water held in the crop root zone need to be identified. This is done 

by conducting soil analysis (where the soil texture, soil infiltration rate and effective root depth 

are determined), determining the crop grown and the development stage of crops (McMullen, 

2000). The implementation of soil moisture monitoring practices is vital for applying any 

irrigation management strategy. The techniques that can be used to determine soil moisture are 

the hand feel method, neutron probe, electrical resistance, soil tension, plant indicators and 

computerised models (Martine, 2009). 

Irrigation management is vital for SPIS’s. Having a well-structured distribution system 

integrated with cautious water use could potentially half the size and cost of the solar pumping 

system required. When sizing a solar irrigation system, the system must meet peak irrigation 

demand for a region even though these conditions will not last for a long time, thus resulting 

in the pump having an excess capacity for other times of the year. Investment in time and 
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money must be placed in the field of water storage and the distribution system aimed at 

improving water use efficiency and utilisation application (Halcrow, 1981).  

As part of irrigation management for SPIS’s, the solar panels of the system require cleaning to 

remove dirt on them so the system performs at its best. During high temperatures, the efficiency 

of solar panels is reduced. To prevent this, some systems incorporate a sprinkler in the design 

that is used to spray the panels to cool and clean them, therefore, maintaining the performance 

of the solar panels (Halcrow, 1981). 

 Photovoltaic Electrical Output Modelling 

The sizing and optimisation of the pumping system, PV accessories and PV solar panels are 

the most important phase in the design process. This is caused by the complexity of some of 

the variables required in the design (Hamidat and Benyoucef, 2008; Bouzidi et al., 2009). The 

high investment cost of PV solar power makes it highly important to make sure the PV system 

is sized correctly (Cuadros et al., 2004). There are different models available which help 

determine the maximum power output of the solar panels that are required for the system to 

operate effectively (Bouzidi et al., 2009). These models have been determined through 

simulation of the operation of each sub-section of the PV system. 

The main stages required to size a PV solar pumping system include the following:  

(i) To determine the irrigation requirements of the irrigation system as per the 

characteristics of the crop, soil and climate. 

(ii) Performing a hydraulic analysis of the pumping system as per the depth of the water 

source and the head needed to stabilise the pressure in the irrigation system. 

(iii) To determine the peak PV power required to irrigate the area of land. 

To determine the nominal electrical power of the PV solar panels, in referential condition 

(Standard Test Condition (STC)), according to Kenna and Gillett (1985b) is as shown in 

Equation 2.11.  

 

 
Pel =

1000

[1 − αc(Tc − To)ηmp
×
EH
ET

 

                                         

  2.11 
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where 

Pel  = nominal electric power (W.), 

αc  = PV cell temperature coefficient (oC-1), 

Tc  = PV cell temperature (o C-1), 

To  = referential temperature of the PV array (25 o C), 

ηmp  = motor pump efficiency, 

EH  = hydraulic energy (kWh), and 

ET  = mean daily solar irradiance on horizontal plane (kWh.m-2.day-1). 

The hydraulic energy of the SPIS is calculated using the amount of water required for irrigation 

and the total static and dynamic head of the system (Kenna and Gillett, 1985b; Glasnovic and 

Margeta, 2007; Zegeye et al., 2014). Equation 2.12 shows that the hydraulic head requirement 

is varying with head and irrigation demand. 

where 

ρ    = density of water (kg.m-3), 

g    = gravitational acceleration (m.s-2), 

ηmp   = motor-pump efficiency (%), 

Qd   = mean daily water volume at the output of the PV pumping system  

(m3.day-1), and 

HTE   = total head (m) 

Where TC is calculated using Equation 2.13 as follows: 

where 

Ta   = air temperature (o C), 

 
EH =

ρgQdHTE

3.6 × 104ηmp
 

   

2.12 

 
Tc = Ta + (

NOCT − 20

0.8n
)ET 

    

  2.13 
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n    = monthly average daily hours of bright sunshine, and  

NOCT  = nominal operating cell temperature (o C). 

All variables which include temperature, solar irradiation, monthly average daily hours of 

bright sunshine and irrigation demand are varying with time and so does the nominal electric 

power. 

 Discussion and Conclusion 

Solar radiation is in abundance in South Africa with one of the world’s highest solar insolation 

levels. The implementation of solar energy technology in the country is on the rise due to the 

prices of solar energy technology being on the declined in recent years, specifically the prices 

of solar panels. Two thousand hectares of land in South Africa are estimated to operate with 

SPIS’s. Though this may be the case there is little to no literature on the implementation of 

SPIS’s in South Africa.  

There are several types of solar panels available in the market. The efficiency of these systems 

ranges between 8 – 22 % depending on the type of solar panel. The higher the efficiency of the 

solar panels, the higher the cost. Due to the limited amount of DC powered motors, an inverter 

is required for the AC system to convert DC power into AC, and this will result in a power loss 

between 10 – 20 %. There are three ways to store excess energy produced by the SPIS system. 

These include electricity being delivered to the grid, electricity being stored in batteries and 

excess water being stored in elevated water tanks, making use of potential energy. The most 

commonly used method to store excess energy is water tanks. 

The two system configurations of the SPIS, which are the battery-coupled system and the 

direct-coupled system, are available. The battery-coupled system generates electricity and the 

excess electricity is stored in the battery. Therefore, the system can also operate in the evening. 

The direct coupled system operates during the day when solar radiation is available. Excess 

water is then stored in an elevated storage tank. The battery-coupled system is more costly and 

less efficient because of the cost of the battery and the loss of power experienced by the battery. 

Direct-coupled systems are mainly implemented in irrigation systems such as drip irrigation, 

as they require less pressure and the elevated water tank which stores water at specific potential 

energy, which in turn can supply the dynamic head required by the system.  
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There are different solar powered irrigation pumps available for different pumping 

requirements. For pumping water from a borehole or a well, there are submersible motor and 

pump systems and submersible pumps with a surface mounted motors available. The most 

suitable pump for this type of application is the surface mounted pump, as the maintenance of 

the system is less intense than the submersible motor and pump system. For surface water 

pumping application, there are suction lift pumps and floating pumps that are available. The 

better choice between the two pumps is the floating pump, as both pumps are low head high 

volume pumps. However, the suction lift pump requires security and maintenance while the 

floating pump does not. 

There is a substantial amount of literature available on the implementation of SPIS with drip 

irrigation and micro-sprinkler irrigation in some parts of the world such as India. There is 

insufficient literature on the implementation of SPIS with centre pivot irrigation systems and 

furrow irrigation systems. All of these systems can be low head systems, which can result in 

the design of SPIS being economically feasible. Through the design of SPIS’s, irrigation 

management is vital in the design process. The most important part of irrigation management 

is irrigation scheduling, which helps in avoiding over irrigating and optimises water and energy 

usage. 

In conclusion, presently there is inadequate literature on the design and economic feasibility of 

SPIS’s in South Africa. There is also a lack of information on the different irrigation systems 

that solar energy can be integrated with. The universal models that are accessible only 

determine the size of the SPIS and do not determine the economic feasibility of a system. The 

lack of information in literature may lead to farmers who are interested in implementing SPIS, 

either oversizing their system, resulting in needlessly high investment costs or farmers thinking 

the technology is too expensive to consider implementing. Therefore, it is essential to design a 

model that will size a low-cost SPIS for South Africa considering the climatic conditions, soil 

types and crop types for different irrigation techniques. 

The aim of this research is therefore to determine the extent to which SPIS is implemented in 

South Africa. It is also to develop a model that will size an SPIS in South Africa, with a focus 

on the climatic conditions, crop type and pattern and the soil type. The model will then be 

evaluated by testing its ability to size a low cost SPIS and determine whether the system is 

economically feasible or not. 
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Abstract 

South Africa has a high potential for solar powered irrigation. However, there has been a lag in 

the development of solar powered irrigation systems (SPIS) in South Africa, mainly due to the 

high investment cost associated with solar technology. South Africa has gone through load 

shedding, which has affected many farmers in the country. The load shedding has triggered an 

interest in SPIS development. There is, however, not much information available in South 

Africa on the extent of solar powered irrigation and the systems in use thereof.  The work 

reported in this chapter sought to analyse the prospects for solar powered irrigation in South 

Africa and the extent and system types in use. The extent of SPIS in South Africa was 

determined by the use of a questionnaire and categorised in terms of farm size, SPIS 

configuration (storage of energy), type of irrigation, and the location of the systems. The 

questionnaires were conducted on SurveyMonkey®, allowing respondents to participate online 

from October 2017 to April 2018. There were difficulties encountered with finding SPIS users 

to distribute questionnaires to. The total number of respondents that participated and completed 

the questionnaires were 18 SPIS engineers, installers and designers and 13 SPIS users (farmers). 

SPIS engineers, installers and designers’ results showed that most SPIS they implemented were 

in the Western Cape and the Eastern Cape at 33 % for both provinces. SPIS engineers, installers 

and designers have also integrated SPIS with primarily drip and sprinkler irrigation at 33 % for 

both irrigation techniques.  For the SPIS user results, 54 % of the respondents were commercial 

farmers. From the results gathered, 39 % of the SPIS users have integrated their systems with 

drip irrigation and 39 % with sprinkler irrigation. The province that has the most SPIS from the 

SPIS users is the Western Cape having 31 %.  92 % of the SPIS found in the survey were 

installed between 2010 and 2016. The total area of SPIS found with the survey is 364.415 ha. 

The dominant irrigation system from the SPIS users is drip and sprinkler irrigation both being 
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38 %. The implementation of SPIS reflected from the questionnaire was mainly motivated by 

load shedding and the rise in electricity tariffs that occurred in South Africa. Most of the SPIS 

are integrated with irrigation techniques with high water use efficiency. The details of SPIS 

found in this chapter for South Africa were determined, but more SPIS users in the country 

need to be confirmed to obtain more information.    

 

Keywords: solar powered irrigation, survey, water use efficiency, load shedding 
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 Introduction 

South Africa has a high potential for solar powered irrigation, as the country receives high 

levels of direct normal irradiation. The production of electrical energy through solar 

photovoltaic (PV) panels is one of the most environmentally friendly, emission free and 

sustainable sources of energy known to humankind. 

The main source of electrical power in South Africa is fossil fuels. The country produces most 

of its electrical power from coal power stations. In the agricultural sector, irrigation is one of 

the sectors that consume high levels of electricity (DoE, 2012). 

South Africa’s electricity costs were possibly rated among the cheapest in the world. This was 

before 2008 when Eskom, the country’s energy supplier, had trouble meeting the country’s 

electricity demands (Jumman and Lecler, 2010). This was a result of the infrastructure, at the 

time, not matching the maintenance requirements and the growing demands of the country. This 

resulted in the decline in service and the introduction to “load shedding” and an increase in 

electricity tariffs. A 25 % tariff increase that would be in effect in the year 2010 and for each 

of the following three years was approved. The economic state of the country coupled with the 

tariff increases and load shedding was set to have a negative impact on farm profitability 

sustainably (Jumman and Lecler, 2010). In 2019, a tariff increase of 13.82 % for 2019/2020 

was approved. On the 22nd of January, Agri SA had a meeting with Eskom to discuss possible 

avenues to reduce the negative impact of load shedding on agriculture. The request was to 

exclude agriculture from stage 1 load shedding within the context of Food Security. The 

response from Eskom was it would not be possible since agriculture is not serviced by a 

dedicated agriculture network and that other stakeholders are similarly affected by load 

shedding (Liebenberg, 2019). 

Most of the irrigation in South Africa is predominantly in commercial farms where the source 

of water is highly dependent on surface water resources such as rivers and dams. Commercial 

farmers are driven by energy efficiency and independence, while smallholder farmers are driven 

by access to energy and the cost of fuel (Hassan, 2015). According to Hassan (2015), the area 

of arable land that is under solar powered irrigation is estimated to be approximately 2 000 

hectares in South Africa. 

Apart from the Hassan (2015) report, there is very little information and documentation on the 

extent of SPIS development in South Africa, and the information available is mainly short 
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articles on one SPIS that has been implemented by a company for exposure. As a result, 

information and characteristics of SPIS in South Africa are lacking. The main objective of the 

study of this chapter was to determine the extent of solar powered irrigation in South Africa 

and to determine the characteristics of the SPIS’ found. All types of SPIS′ were included in the 

research.  

 Materials and Methods 

The study was carried out across the whole of South Africa.  The following sections describe 

the tools and procedures used to develop the questionnaire and to distribute the questionnaire. 

An ethical clearance application was conducted through the Research Office at the University 

of Kwa-Zulu Natal (UKZN) and approved under Protocol Reference Number HSS/1039/017M.  

  Questionnaire 

The questionnaire was developed, and it targeted four groups of stakeholders and these were (i) 

SPIS users, (ii) engineers, installers and suppliers, (iii) potential SPIS users, and (iv) former 

SPIS users. Initially, the questionnaire was developed on a word document where there were 

different sections for each stakeholder targeted to participate. The type of questionnaire 

developed is a semi-structured questionnaire. Due to the issue of stakeholders not participating 

in the postal questionnaire survey, the questionnaire was changed into an online questionnaire. 

SurveyMonkey® (SurveyMonkey, 1999) was the tool used to create and run the questionnaire 

online. Survey Monkey® is an online application that helps users to create and distribute 

surveys and to collect and analyse the data obtained from the surveys. Two questionnaires were 

made for each group of targeted stakeholders. A pilot test was not conducted as the sample size 

was unknown before the questionnaire was distributed.  

 Data Collection 

A few methods were implemented to try and obtain data for the questionnaire.  

 Calls were made to practising agricultural engineers and others working in consulting 

companies and government departments around South Africa. 

 Requests were made to South African Irrigation Institute (SABI) and the South African 

Institute for Agricultural Engineers (SAIAE) to assist in the distribution of the 

questionnaire by sending out the links to the questionnaires to their members 
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 Attended a training programme at Franklin Electric® where companies that sell 

Franklin Electric® products were in attendance. 

 The links to the questionnaires were sent to Farmer’s Weekly magazine, where requests 

for respondents were posted on the Farmer’s Weekly Facebook® and Twitter® pages. 

Some followers on both platforms retweeted and shared the requests, which helped 

spread the requests to a wider audience.  

 Internet searches were conducted to try and find any documentation on systems 

implemented in South Africa 

 A seminar on SPIS was attended (“MASLOWATEN: Large Photovoltaic Irrigation 

Systems” on the 14th of March, 2018) where networking was done to try and find more 

participants for the questionnaire. 

 Analysis 

The data was analysed by Survey Monkey® and this data was opened on Microsoft Excel where 

tables, pie charts and bar graphs with frequencies of the results obtained were produced. Arc 

GIS was also used to provide a visual presentation of the location of the SPIS systems that were 

found through the questionnaire. 

 Results 

 SPIS engineers, designers and installers 

Eighteen respondents participated in the SPIS engineers, designers and installers questionnaire 

and the results from SurveyMonkey® are presented below. 

3.3.1.1  Basic demographic information 

The demographics of the SPIS engineers, designers and installers, such as race, gender and age 

are presented in Table 3.1. The age range of the respondents is 25 –74 years, and the dominant 

age range is 45 –54 years (29 %). 
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Table 3.1 Demographic profile of respondents 

Categories 

Total number of 

respondents 

(N=18) 

Total response 

rate (%) 

Race 

White  13 81  

African  2 13  

Indian  1 6  

Coloured  0 0  

Other 0 0  

Skipped 2 - 

Gender 

Male 18 100  

   

Female 0 0  

Age range (Years) 

18 – 24  0 0  

25 – 34  4 24  

35 – 44  3 18  

45 – 54  5 29  

55 – 64 4 24  

65 – 74 1 6  

>75 0 0  

Skipped 1 - 

 

Presented in Figure 3.1 below is a pie chart showing the level of education that the participants 

have obtained. The highest education levels achieved by the participants range from matric to 





` 

52 

 

implemented in the range of 0 – 5 SPIS (61 %) and a third of the respondents have implemented 

17 or more SPIS in South Africa (33 %). 

 

Figure 3.3The involvement of SPIS engineers, installers and designers with SPIS' and their 

opinion on the feasibility of SPIS in South Africa is shown in Figure 3.3 to Figure 3.6 

The information depicted in Figure 3.3 below shows the range of SPIS’s every respondent has 

been involved with. Most of the respondents are in companies or institutions that have 

implemented in the range of 0 – 5 SPIS (61 %) and a third of the respondents have implemented 

17 or more SPIS in South Africa (33 %). 
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Figure 3.3 The range of SPIS implemented by the respondents’ company or institution 

Shown in Figure 3.4 is the percentage of the type of farming SPIS that has been implemented 

by the respondent. The type of farm refers to either commercial farming, smallholder farming 

or subsistence farming. Almost half (44 %) of the respondents were involved with the 

implementation of SPIS for smallholder farming. 

61

6

33

0-5 6-11 12-17 >17

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Range of number of SPIS implemented by company

N
u

m
b

er
 o

f 
re

sp
o
n

d
en

ts
 (

%
)







` 

56 

 

When asked whether the SPIS they implemented had been vandalised or not, 78 % of the 

respondents replied that this had not happened and 22 % replied that some of the SPIS had been 

vandalised. 

In response to the question as to whether they believe SPIS is feasible in South Africa, the 

majority of the respondents (89 %) answered that they did with the remaining 11 % believing 

that SPIS is not feasible in South Africa. 

 SPIS users (farmers) 

This section of the questionnaire was designed for SPIS users who are mainly farmers in South 

Africa. 

3.3.2.1 Basic SPIS user information 

The demographics of the SPIS users such as their race, gender and age are presented in Table 

3.2.   The majority of the respondents were Whites (77 %), followed by Africans (23 %), and 

all of them were males (100 %). The respondents’ ages ranged between 25 and 74 years, and 

the dominant age range was 45 – 54 years (55 %). 

Table 3.2 The demographics of the respondents (SPIS users) 

Categories 

Total number 

of respondents 

(N = 13) 

Total response 

rate (%) 

Race 

White   10 77 

African  3 23 

Indian  0 0 

Coloured  0 0 

Other  0 0 

Gender 

Male  13 100 

   

Female  0 0 

Age 

18 – 24  0 0 

25 – 34  1 9 

35 – 44  2 18 

45 – 54  8 55 

55 – 64  1 9 
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65 – 74  1 9 

>75  0 0 

 

Illustrated in Figure 3.7 is the highest education level obtained by each participant. Many of the 

respondents (38 %) have obtained a diploma.  

 

Figure 3.7 The level of education of the respondents 

3.3.2.2 Location information of SPIS’ 

The location of the SPIS users such as the province and district municipality, in which the farm 

was located in and the area of the farm, is presented in Figure 3.8 and Table 3.3. 

The Western Cape province dominated the other provinces such as Gauteng, Eastern Cape, 

Limpopo, Free State and KwaZulu-Natal, by having the highest number of SPIS (31 %) (see 

Figure 3.8). 
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Figure 3.12 The type of solar panels used in the respondents SPIS 

Presented in Figure 3.13, the results show that most of the respondents (62 %) have submersible 

multistage centrifugal motor pump set pumping water. 

 

Figure 3.13 The type of pump-motor set used for the SPIS 

3.3.2.4 Storage options (energy and water) 

The use of solar energy in water pumping may need some sort of water or energy storage options 

depending on the demands of the farm. Two alternatives are available for the storage of 
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electrical power. These alternatives include a battery storage package and the use of the 

electrical grid. These two alternatives save excess electricity that is produced from the solar 

panels. A storage water tank is used in an SPIS to store water that is pumped for days when 

there is not enough solar radiation to power the motor pump set. Another alternative for back 

up energy is a generator, where farmers can use this when there is not enough solar radiation 

available to pump water for irrigation.  

Table 3.4 shows the responses the respondents provided concerning five questions that required 

answers of yes or no.  

Table 3.4 Energy and potential energy storage of SPIS 

  Yes  No Skipped 

 Total 

Respondents 

 
No. of 

respondents 

Percentage 

(%) 

No. of 

respondents 

Percentage 

(%) 

No. of 

respondents 

Percentage 

(%)  

Does the system 

have batteries? 1 8  12 92  0 0  13 

Is the system 

connected to the 

grid? 4 31  9 69  0 0  13 

Does the system 

make use of a 

generator for 

backup power? 3 23  9 69  1 8  13 

Does the system 

have a water tank 

to store excess 

water pumped? 4 31  9 69  0 0  13 

Do you ever have 

pressure and or 

flow rate 

problems? 4 31  9 69  0 0  13 
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3.3.2.5 Additional information on the SPIS’ 

Additional information about the SPIS’s of the respondents is captured from Figure 3.14˗ 

Figure 3.16. 

Displayed in Figure 3.14 is the years in which the respondents installed their SPIS. The years 

2013 and 2016 had the highest installation of SPIS (31 % each). One respondent did not mention 

which year they implemented their SPIS. 

 

Figure 3.14 The year in which the SPIS was implemented 

In Figure 3.14 the respondents were asked what changes they would implement to their SPIS. 

Most of the respondents replied that they would increase the security of their SPIS (46 %).  

8 % 8 % 8 %

31 %

8 %

31 %

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

0

10

20

30

40

50

60

70

80

90

100

Years in which SPIS were installed

N
u

m
b

er
 o

f 
S

P
IS

 i
n

st
a
ll

ed
 (

%
)



` 

64 

 

 

Figure 3.14 Improvements the respondents would implement to their SPIS 

Presented in Figure 3.16 is a bar graph showing the results for the power source the respondents 

were using before they installed the SPIS. Most of the respondents were using grid electricity 

(70 %). 

 

Figure 3.16 The power source each respondent used before the SPIS 
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 Discussion 

This section discusses the results obtained from the two questionnaires that were distributed to SPIS 

engineers, designers and installers and SPIS users. 

 SPIS engineers, designers and installers 

The discussion on the results is split into two in this sub-section. The respondents’ basic 

information includes the demographics and the education level and the respondents’ 

involvement with SPIS’. 

3.4.1.1 Respondents’ basic information 

The race results correspond to the Engineering Council of South Africa (ECSA)’s proportions 

of the total number of registered engineers in 2016, where they stated that registration statistics 

by the race of engineers for White, African, Coloured and Indian are 71 %, 18 %, 9 % and 2 %, 

respectively. The reason for the low percentage registration rates of non-white engineers is 

related to individuals migrating to other economic sectors or they are creating their business 

opportunities outside engineering (ECSA, 2016). The results for gender also correspond to 

ECSA’s 2016 annual report, which states that 10 % of the registered engineers were women 

(ECSA, 2016; Padayachee, 2017).  Gender bias is one of the main reasons stated by Padayachee 

(2017). This means that fewer women than men become professional engineers. Another reason 

is gender imbalance, which means that the fields of science, technology, engineering and 

mathematics (STEM) in 2016 had 23 % of women globally. Padayachee (2017) stresses that 

the gap needs to be addressed and prioritised so that more women can join the fields of STEM.  

The education level of the SPIS engineers, installers and designers results does not correspond 

to the 2012 findings of the Council on Higher Education of South Africa, which state there are 

41 % of engineering graduates with certificates and diplomas and 44 % of engineering graduates 

with undergraduate degrees (CHESA, 2012). The results from the survey show that many of 

the respondents have a post-graduate degree. In South Africa, the University of South Africa 

and the University of Pretoria offer engineering honours degrees, which are considered post 

graduate degree in South Africa.  
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3.4.1.2 Respondents’ involvement with SPIS’ 

There may be an overlap of the results, as some of the respondents may have come from the 

same company. This cannot be confirmed because the respondents answered the questionnaire 

anonymously.  

The small number of SPIS implementation around the country is caused by the high investment 

cost that comes with SPIS, as well as the perception of theft and security risk associated with 

SPIS. There is also limited understanding of technology by banks for financing and the 

possibility of land reform in South Africa (Hassan, 2015). In other countries, governments are 

promoting the use of SPIS in the framework of their national action plan regarding climate 

change as a way to reduce emissions in the agricultural sector (Hartung and Pluschke, 2018). 

South Africa has not done this yet. 

According to a study done by Hassan (2015), there are more than 225 thousand smallholder 

farmers in South Africa occupying an estimated 10 million ha, over 40 thousand commercial 

farmers are occupying an estimated 82 million ha and roughly 3 million households with 

subsistence farmers occupying 4 million ha of land. Commercial farms are generally large and 

would require many solar panels which will require large areas of land to provide power for 

irrigation systems and very high investment costs for the solar technology required. This 

explains the high number of SPIS that are implemented for smallholder irrigation systems.  The 

high investment costs that come with SPIS would prevent subsistence farmers from 

implementing SPIS. Subsistence farmers grow crops for their use to feed their families only. 

This would support the result of the low implementation of SPIS for subsistence farms due to 

the farmers not selling their crops for profit to be able to afford SPIS. Smallholder farmers own 

small plots of land on which subsistence crops are grown and one or two cash crops that are 

sold for profit. Since the plot areas are small, the number of solar panels would be small 

compared to large commercial farms. Though the investment cost of SPIS is high, smallholder 

farmers would be able to save profit from their cash crops and or apply for a loan to assist in 

purchasing an SPIS.  

Singh (2016) states that the north and north west regions of South Africa receive more solar 

radiation than the south and south east. Shortwave flux (SWflux) is a measure of solar radiation 

per square area and between the years of 1980 – 2009, the Northern Cape received the highest 

mean SWflux, followed by North West, Free State, Limpopo, Gauteng, Mpumalanga, Western 
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Cape, Eastern Cape and Kwa-Zulu Natal has the lowest SWflux. Niekerk et al. (2018) identified 

the irrigated area in South African provinces, and the Western Cape (269 476 ha) has the highest 

irrigated area, followed by Limpopo (218 302 ha), Eastern Cape (152 866 ha), Northern Cape 

(144 579 ha), Mpumalanga (125 595ha), Kwa-Zulu Natal (177 341 ha), North West (97 211 

ha), Free State (129 077 ha) and Gauteng (20 115 ha). This information shows why the Western 

Cape and the Eastern Cape are receiving the highest implementation of SPIS from engineers, 

installers and designers of SPIS.  

The Department of Water and Sanitation in 2014 had 32 % of their registered water users using 

sprinkler irrigation systems, followed by 29 % using moving irrigation systems, then 26 % 

using micro-irrigation system and 14 % using flood irrigation systems (Schulze, 2016). This 

explains why the respondents have mostly integrated SPIS with sprinkler and drip irrigation. 

According to Zegeye et al. (2014), photovoltaic energy has been widely used in low power 

applications in the world. A drip irrigation requires a low head compared to other irrigation 

systems making their power requirements low. 

South Africa receives high levels of solar energy that can be converted into electrical power 

(DoE and GIZ, 2015). Hassan (2015) states that solar energy is already competitive with diesel 

when the grid connection is not available. Many of the respondents feel that SPIS is feasible in 

South Africa and they mentioned the following reasons why: 

 SPIS saves energy and has better returns if the system is subsidised on the capital 

investment of the system. 

 Grid electricity from Eskom is rising in price and is likely to become expensive and 

unreliable in the future, and the economy is volatile. 

 The prices of technology are decreasing and will continue to make it more affordable 

 With small scale irrigation systems, SPIS is feasible. 

 South Africa receives a significant amount of solar energy which can be increased when 

using low pressure drip irrigation systems. 

 SPIS’s save a lot of money in the long run. 

 South Africa receives high levels of sunshine and many areas are off the grid.  

The remaining respondents that felt SPIS’s are not feasible in South Africa gave the 

following reasons, which include the following: 

 The cost of infrastructure requirements is too high, and it is not economically viable.  
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 Solar is not suitable for irrigation because of the varying 8 hours of sunlight received 

in South Africa on average. 

 SPIS users (farmers)  

The discussion on the results is split into five in this sub-section. The respondents’, information 

which includes demographics and the education level, the location information of the SPIS, 

characteristics and components of SPIS’, storage options and additional information of the SPIS 

are all discussed in this sub-section.  

3.4.2.1 Basic SPIS user information 

These results are presented in Table 3.2 respectively. According to Reform (2017), 72 % of the 

total farms and agricultural holdings are owned by white people in South Africa. Males own 72 

% of the total farmland and agricultural holdings in the country while females own 13 % 

(Reform, 2017). The results obtained in Table 3.2 reflect this reality of white males dominating 

the ownership of farms in South Africa. 

3.4.2.2 Location information of SPIS’ 

According to Hassan (2015), the estimated area of land in South Africa that is under solar 

irrigation is 2000 ha. The total area of the SPIS systems that were found through the 

questionnaire was 364.42 ha. Communication was made with Hassan (2015) to request more 

information on the project that was funded by the International Finance Corporation and he 

stated he could not share the information.  Table 3.3 and Figure 3.7 show that four out of the 

13 SPIS are in the Western Cape, followed by 3 system both in the Eastern Cape and in Gauteng. 

Limpopo, KwaZulu-Natal and the Free State have one SPIS system. Figure 3.4 shows that 

engineers, installers and designers have implemented SPIS’s in all the provinces in South 

Africa. The survey for SPIS users did not reach users in Mpumalanga, Northern Cape and North 

West. The data collected from the SPIS users and SPIS engineers, designer and installers do 

not correlate due to the survey not being distributed effectively. 

Hassan (2015) states that commercial farmers in South Africa are driven towards SPIS because 

of energy independence and efficiency. This shows why most of the SPIS users are commercial 

farmers. 
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3.4.2.3 Characteristics and components of the SPIS 

The (DWF, 2004; WWF, 2016) stated that South Africa primarily uses surface water for most 

of its urban, industrial and irrigation requirements. Groundwater is also used, but it’s mainly 

used in rural areas and more arid areas. Groundwater use is limited to a few places in the country 

due to the geology which is hard rock. This information does not correspond to the results 

obtained in the survey as most of the SPIS use boreholes as a water source. 

Most of the respondents have sprinkler and drip irrigation systems. One of the benefits of 

having these two irrigation techniques integrated with solar are, compared to furrow and centre 

pivot irrigation, the power requirements of these systems are low head, which resulted in the 

cost of the solar pumping system being low cost (Basalike, 2015).  

The most commonly used type of solar panel for SPIS is poly-crystalline solar panels. These 

results correspond to literature where the cost factor of mono-crystalline solar panels overrules 

its advantage with its efficiency, which ranges between 15 – 20 %, while the efficiency of 

polycrystalline solar panels ranges between 13 – 16 % (Bharam, 2012; Davies, 2013). The cost 

of poly-crystalline solar panels is lower than the cost of mono-crystalline solar panels (Davies, 

2013). Thin-film solar panels are the cheapest type of solar panel, but the reason why this type 

of solar panel is seldom used is that their efficiency is low at 7 – 13 % compared to 

monocrystalline and polycrystalline solar panels, which leads to them requiring a lot of space 

(Davies, 2013; Sendy, 2017).  

3.4.2.4 Storage options (energy and water) 

The submersible centrifugal pump has high reliability for pumping water especially for 

boreholes with medium depth (60 m) (Argaw, 2003). The submersible multistage centrifugal 

pump can provide high head pumping requirements (Volk, 2005). Most of the respondents are 

pumping water from a borehole and most of the respondents are using submersible multistage 

centrifugal pumps with their SPIS. 

There are disadvantages to using a battery pack in an SPIS, and these include, reducing the 

efficiency of the overall system because the operating voltage is dictated by the batteries and 

not the solar panels. Batteries are usually not recommended because of the additional cost for 

maintenance and the initial cost of the system (Eker, 2005). This explains why only a few SPIS 

users have SPIS with a battery pack. The reason there are few grid connected SPIS is because 
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Eskom does not allow the connection of small scale generator connections to their low voltage 

networks because this places the safety of the public and Eskom operating staff at risk (Eskom, 

2014). Biswas and Iqbal (2018) state that the use of a diesel engine provides lower costs for 

hybrid systems, but they are a bad solution for longer periods due to the increasing fuel prices 

and the cause of pollution to the environment.  According to Abdelfattah (2017), a stand-alone 

system with an elevated storage water tank is the most popular. This is not reflected in the 

results as only 36 % of the respondents have storage water tanks integrated with their SPIS.  

The design of SPIS needs to be fit-for-purpose and need regular services to advise farmers on 

the most suitable system, but these are often not in place (Hartung and Pluschke, 2018). This is 

the cause of some systems having pressure and flow rate issues at times. 

3.4.2.5 Additional information on the SPIS’ 

“Eskom resorted to national ‘load shedding’ from late 2007 to protect the power system from a 

total blackout, and a national emergency was declared in January 2008. Load shedding 

continued until the end of March 2008, while Eskom initiated a recovery plan, with the support 

of the government and business” (Joffe, 2012; Goldberg, 2015) This would explain the high 

implementation of SPIS during the year 2010 and 2016 as most of the respondents switched 

from Eskom grid electricity to solar power. 

SPIS are vulnerable to theft and vandalism in some areas in South Africa (Palmer, 2005; 

Hartung and Pluschke, 2018). The problem of theft and vandalism is why many of the SPIS 

users specified to increase the security of their SPIS. This also explains why some SPIS 

engineers, designers and installers have had some of the SPIS they been involved with being 

vandalised. 

 Conclusion 

This study concludes that there are SPIS’ in South Africa, and a significant number is mainly 

located in the Western Cape and the Eastern Cape. All the remaining provinces do have SPIS 

as SPIS engineers, installers and designers have implemented them. The main reason most of 

the SPIS users opted to use solar as a power source for their water pumping needs was to get 

off the electrical grid and have some energy independence. This was due to the increase in 

electrical power costs and unreliable electricity during the years South Africa experienced load 

shedding. This can also be seen by the fact that a majority of the SPIS users installed their SPIS 
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from the year 2010 to 2016. It was also found during this study that solar powered irrigation is 

feasible in South Africa as most of the SPIS users that participated in the questionnaire are 

commercial farmers. 

The solar panel type that is predominately used is poly-crystalline solar panels, mainly due to 

its high efficiency (13 – 16 %) compared to thin-film solar panels (7 – 13 %) and its low cost 

compared to mono-crystalline solar panels (Laswell, 2018). Sprinkler and drip irrigation are 

irrigation techniques that are mainly integrated with solar powered irrigation with the SPIS 

users that participated in the questionnaire. The motor-pump set that is primarily used by the 

SPIS users is the submersible multistage centrifugal motor-pump set. These types of pumps are 

high head low flow types of pumps, where they can be used to pump water from deep surface 

water and boreholes. Most of the SPIS users pump their water from boreholes. 

Overall the information acquired gave an idea of the extent of SPIS in South Africa and the 

main characteristics of SPIS in South Africa. The use of solar in irrigation will continue to rise 

as the price of solar components continues to decrease and more information on SPIS is 

available.  

The recommendations going forward with this study are to find a better way to obtain responses 

from the SPIS users that were not identified. This can be done by visiting SPIS engineers, 

installers and designers directly and requesting them for the details of the SPIS they 

implemented and possibly also giving the contact information of the SPIS users. Some 

companies are restricted from doing this though.  
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Abstract 

Irrigation is important in South African agriculture.  Since 2008, the country has been 

experiencing electricity load shedding and increasing tariffs. This has been affecting the 

agricultural sector, specifically farms that rely on irrigation systems. There is a lack of 

information in South Africa on the design and application of solar powered irrigation systems 

(SPIS). There are also limitations with the design of an SPIS for different configurations. There 

is a need to develop a model or tool that can assist in designing low-cost SPIS in South Africa. 

The work reported in this chapter lays out the design and development of an SPIS model, using 

Microsoft Excel and Visual Basic Application (VBA), to determine the most suitable or optimal 

low-cost SPIS for given conditions of climate, crops, soils and topography in South Africa. 

CLIMWAT and CropWAT models were used to determine the crop water requirements which 

are used in the SPIS model. Solar irradiation data were obtained from the NASA Predication of 

Worldwide Energy Resources (POWER) and this information was accessed by the model 

through hypertext mark-up language (Html) coding on VBA. The equations used to design an 

SPIS were placed in MS Excel and VBA was used to make the model user friendly. The 

hydraulic power requirement for the pump was determined wherein the model then selects an 

appropriate pump type and size. The electrical power requirements are also determined by the 

model, which then selects the suitable size and number of photovoltaic solar panels required. 

The model offers sizing of the battery package system for the battery-coupled configuration 

and offers a sizing of the storage water tank for the direct-coupled system. A model to size for 

South Africa has been designed and developed. A centre pivot irrigation system in the Durban 

region was used in the model to size the SPIS to irrigate sugarcane. The components sized were 

for two out of the three SPIS configurations and these were the direct coupled system and the 

battery-coupled system. The performance of the battery pack and PV solar array was then 
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simulated using the Photovoltaic Geographical Information System (PVGIS) tool. The 

simulated average energy output per day of the PV solar array was 0.11 % less than the average 

power requirement per day. The percentage of days when the battery is fully charged was 

simulated to be 61 % for the critical month of June. 

Keywords:  SPIS, NASA, irrigation system configuration, model 
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 Introduction  

Solar energy is a renewable energy source that has gained popularity due to its low operational 

costs and long life cycle costs (Deveci et al., 2015). South Africa has had a huge dependence 

on electricity generated from coal, which accounts for 90 % of the electricity consumed. South 

Africa has access to high levels of solar radiation, where the country receives an average solar 

radiation that is between 4.5 and 6.5 kWh.m-2.day-1 (Chang et al., 2011; FAO, 2015).  

In 2008, South Africa started going through electricity load-shedding and one of the causes of 

this was the dangerously low coal deposits at power stations (Daniel, 2019). Load-shedding 

recently occurred again in 2019 and the reason stated that it was Eskom’s infrastructural 

problems. The power utility revealed that it has been struggling to maintain the high demands 

of electricity because of repair work done to boiler tubes (Sicetsha, 2019). Eskom has also been 

granted by the National Energy Regulator of South Africa (NERSA), permission to increase 

electricity tariffs for the next three years (2020 – 2022) by 22 % (Head, 2019). Serious concerns 

have been expressed by agricultural organisations that any further load-shedding could 

negatively impact the profitability of farmers during important periods, particularly irrigation 

dependent farmers (Dean, 2019). As a result, the old biological objective of applying irrigation 

for sustaining maximum production paradigm is now required to be replaced with the new 

paradigm of water being used to be optimised and to increase profitability (WRC, 2017). With 

the rise in electricity tariffs, the dependence of commercial agriculture on electricity as a source 

to pump water will likely continue (WRC, 2017). Some smallholder farmers in South Africa do 

not have access to the electricity grid. These farmers only have access to diesel powered pumps, 

which have high operating costs (Parker, 2019). Countries such as India and China have 

implemented large scale government investments in solar powered irrigation systems (SPIS) 

subsidy projects for small scale farmers, which has the advantage of having almost no operating 

costs (Parker, 2019). 

There are three main different SPIS configurations and these include the direct-coupled SPIS, 

where water is pumped during the day when solar irradiation is available, and pumped water is 

delivered straight to the irrigation system. The next SPIS configuration is the direct-coupled 

SPIS with a water storage tank. For this type of configuration, water is pumped during the day 

when solar irradiation is available, and water is delivered to the elevated water storage tanks. 

This results in water being available all day independent of weather conditions (Xu et al., 2013; 

Deveci et al., 2015). The last type of SPIS configuration is the battery-coupled SPIS, where 
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electricity is produced by the PV solar array and is delivered to the battery pack. This system 

allows for excess energy not used by the system to be stored in the batteries (Deveci et al., 

2015). South Africa does not have documentation on installed SPIS in the country and the 

performance of these systems is not analysed or documented. In Chapter 3 of this study, 13 

SPIS were identified around the country and it was determined that most of the systems were 

direct-coupled SPIS. 

There are software programs and online tools available for download and use, which simulate 

and estimate the photovoltaic system performance. PVGIS is a Photovoltaic Geographical 

Information System that is free to use online. PVGIS can be used to simulate and estimate the 

performance of off grid PV systems that have a battery pack (Huld, 2011). PVSyst is a PC 

software tool that can be used for the study, sizing and data analysis for complete PV systems. 

It deals with a range of systems such as grid connected, stand alone, pumping and DC-grid PV 

systems. The software includes extensive meteorological data and PV system component 

database, as well as general solar energy tools (PVSyst, 2019). 

However, there is limited research on SPIS in South Africa. There have been reports on the 

suitability of the country to implement SPIS, but there is no information available on the sizing 

of SPIS in South Africa and the performance of implemented SPIS in the country. The objective 

of the work reported herein was to develop a model that can assist to design and size differently 

configured SPISs for South Africa considering climatic conditions of the region, soil properties, 

crop type, irrigation technique and farm size. The hypothesis for this study is that an SPIS model 

that can size the components of an SPIS for drip and centre pivot irrigation system can be 

developed for South Africa. 

 Materials and Methods 

 Study area 

The model was designed to size SPIS components for South Africa. The country is located on 

the southern tip of the African continent. Latitudinally the country stretches from 22° S to 35° 

S and longitudinally from 17° E to 33° E. The country is relatively dry and receives an average 

annual rainfall of about 450 mm (Communication, 2016). Most of the country has warm, sunny 

days with cool nights. On the west, the country is bounded by the Atlantic Ocean and the Indian 

Ocean is on the east side of the country. The country has six main climatic zones, the cold 
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interior, temperate interior, hot interior, temperate coastal, the sub-tropical coastal and arid 

interior. South Africa has approximately 14 million ha of cultivated land, which is 13 % of the 

total land in the country. It has been estimated that 1.3 million ha of the cultivated land is under 

irrigation (Matthew, 2017; Niekerk et al., 2018), which comprises 10 % of the cultivated land 

in South Africa. In 2014, the Department of Water and Sanitation registered areas, which 

showed that an estimated 32 % of the irrigation land was under sprinkler irrigation, 29 % was 

under moving irrigation systems, 26 % was under micro irrigation and 14 % was under flood 

irrigation (van der Stoepand Tylcoat, 2014).  

 Solar radiation data 

NASA Prediction of Worldwide Energy Resources (POWER) online website was used to 

obtain the horizontal solar irradiation of an area with the input of coordinates required from the 

user. The website creators requested that the following be stated with the use of their work as 

follows: "These data were obtained from the NASA Langley Research Center (LaRC) POWER 

Project funded through the NASA Earth Science/Applied Science Program" (Stackhouse et al., 

2016). Figure 4.1 shows the map of South Africa with the range in global horizontal irradiation 

that is received annually.     

 

Figure 4.1 Map of the average annual global horizontal irradiation of South Africa 
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 Model Design and Development 

Three types of SPIS configurations were considered for the development of the model. These 

configurations include the direct-coupled SPIS system, the battery-coupled SPIS system and 

the direct-coupled SPIS system with a water storage tank. The model flow diagram is presented 

in Appendix B and C. The newly developed model is from hereon named the SPISyst model. 

 Solar radiation data 

MS Excel along with its Visual Basic Application (VBA), was used to design, develop and 

operate the model. MS Excel spreadsheets were used to conduct calculations, while MS Excel 

VBA was used to make the model user friendly through having the use of command boxes and 

user-forms which will prompt the user to insert the required input variables. MS Excel and VBA 

were selected because most users with a PC have access to MS Excel and VBA comes with MS 

Excel so it all comes in one package.  Figure 4.2 shows the user form that is used to obtain the 

monthly average daily (MAD) horizontal solar irradiation from the NASA POWER website. 

The user is required to enter the top right and bottom left coordinates of the area of interest. 

  

Figure 4.2 NASA POWER regional data access user form 
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 General user and area information 

Figure 4.3 shows the second user form that was created to appear after the user has completed 

the NASA POWER regional data access user form. The purpose of this user form is to obtain 

details of the user, such as the user’s name, email address, name of the farm, the size of the 

farm, the location of the farm, the irrigation system in use, the type of water source and the 

static pumping head of the irrigation system. The user form has tabs on the left, when clicked, 

illustrations of the three different types of SPIS configurations appear.  

 

Figure 4.3 First SPISyst user form to establish which irrigation system the designer is 

working with 
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 Crop water requirements 

To determine the crop water requirements, the models CLIMWAT and CropWAT were used. 

The reason for this software being chosen for this model was firstly the CropWAT programme 

is free and secondly, it is user friendly. To determine the crop water requirements CLIMWAT 

was used to obtain the climatic and rainfall data required by CropWAT. The majority of the 

data collected in the software covers the period from 1971 – 2000. The least number of years 

of collected data is 15 years. The mean daily maximum temperature (°C) and mean daily 

minimum temperature (°C) (FAO, 2019) are weather parameters that were collected for each 

location in South Africa available on CLIMWAT as MS Excel outputs.  

 Irrigation water requirements 

The irrigation water requirements were determined with the use of CLIMWAT and CropWAT. 

The approach used for CropWAT to determine crop water requirements starts with determining 

the crop reference evapotranspiration. The FAO Penman-Monteith method (Burger et al., 

2003c) is used for the computation of evapotranspiration from meteorological data. Equation 

4.1 presents the FAO Penman-Monteith equation. 

where, 

ETo  = reference crop evapotranspiration (mm day-1), 

Rn  = net radiation at the crop surface (MJ m-2 day-1), 

G  = soil heat flux density (MJ m-2 day-1), 

T  = air temperature at 2 m height (°C), 

u2  = wind speed at 2 m height (m s-1), 

es  = saturation vapour pressure (kPa), 

ea  = actual vapour pressure (kPa), 

es - ea  = saturation vapour pressure deficit (kPa), 

Δ  = slope of the vapour pressure curve (kPa °C-1), and 

γ  = psychrometric constant (kPa °C-1). 

The crop evapotranspiration is different from the reference evapotranspiration because the 

ground cover, the properties of the canopy, and aerodynamic resistance of the crop are different 

 

ETo =
0.408∆(Rn − G) + γ

900
T + 273u2(es − ea)

∆ + γ(1 + 0.34u2)
 

4.1 
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from grass. The crop coefficient integrates the characteristics that are different between field 

crops and reference grass. Equation .2 shows how to calculate crop evapotranspiration with the 

use of the crop coefficient. 

where, 

ETc  = crop evapotranspiration (mm d-1), and 

kc  = crop coefficient (dimensionless). 

Equation 4.3 and 4.4 were available as the dependable rain method for determining the effective 

rainfall on CropWAT. The empirical formula was developed based on analysis that was done 

on different arid and sub-humid climates by the Water Service of FAO. Equation 4.3 and 4.4 

determine the monthly effective rainfall by using long-term average rainfall figures (Wane and 

Nagdeve, 2013). 

 
Peff = 0.6 × P −

10

3
 for P ≤ 23 mm 

4.3 

 
Peff = 0.8 × P −

24

3
 for P >23 mm 

4.4 

where, 

 Peff = effective rainfall (mm), and 

 P = monthly average rainfall (mm). 

To determine the nett irrigation requirement Equation 4.5 is used. 

where, 

 NIR = nett irrigation requirement (mm/month). 

When the nett irrigation requirement is determined the gross irrigation requirement is 

determined, which depends on the type of irrigation technique or system used as shown in 

Equation 4.6. 

where, 

 ETc = kcETo 4.2 

 NIR = ETc − Peff 4.5 

 
GIR =

NIR

ηs
 

4.6 
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 GIR = gross irrigation requirement (mm/month), and 

 ηs = irrigation system water application efficiency (decimal). 

 Irrigation system total dynamic and friction head 

To size an SPIS appropriately, the total dynamic head of the irrigation system is required to be 

calculated accurately to avoid oversizing or under-sizing the SPIS (Chandel et al., 2015). Drip 

and centre pivot irrigation systems were selected for the development of the model for the 

following reasons; wide application in South Africa, high water use efficiency, low labour 

requirements and low energy requirements (Burger et al., 2003a). With lower energy 

requirements, this leads to less power required from solar panels, which will result in sizing 

less solar panels for the irrigation system. 

To make sure the irrigation systems are sized appropriately, the frictional head losses in the 

pipe network of the irrigation systems will be calculated in the model using General Exponential 

Equation, Equation 4.1 (Burger et al., 2003d). The secondary losses from valves and bends in 

the system will be assumed to be 10 % of the total frictional head (Burger et al., 2003d). 

where:  

 hf  = frictional head (m), 

 p, b, r = constants for General Exponential Equation, 

 l  = length of pipe (m), 

 Q  = flow rate (m3.hr-1 or m3.s-1),  

 di  = internal diameter of pipe (m), and 

 F  = Jensen-Fratini constant. 

4.3.5.1 Centre pivot irrigation system total dynamic head 

The model will calculate the total dynamic head for a centre pivot irrigation system with the 

following sprinkler spacing and sprinkler discharge scenarios: 

 Scenario 1-Constant sprinkler spacing (Le,) variable sprinkler flow rate (qe) 

 Scenario 2-Variable sprinkler spacing (Le), constant sprinkler flow rate (qe) 

 
hf =

FblQp

di
r  

4.7 
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Figure 4.4 is the user form that appears when the user selects the irrigation system type as a 

centre pivot irrigation system on the previous user form in Figure 4.3. It should be stressed that 

the design of the irrigation system is required to be completed before the SPISyst model is used. 

Irrimaker model can be used to develop the design of the irrigation system (Model Maker 

Systems, 2018). The user form is set up to accommodate the varying frictional head losses 

through the centre pivot structure as shown in Figure 4.4 using Equation 4.3.  

 

Figure 4.4 The centre pivot user form for the SPISyst model 

When the total frictional and secondary frictional losses are calculated with the use of the user 

form in Figure 4.4, the total head of the centre pivot irrigation system needed for the pump will 

be calculated using Equation 4.8. 

where: 

 Hp  = total pump head requirement (m), 

hstat  = static head (m), 

 htower = height of tower (m), 

 Hp = hstat + htower + hop + hf + hpr + hsec 4.8 
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 hop  = operating pressure of end sprinkler (m), 

hf  = frictional head of the system (m), 

 hpr  = pressure regulator pressure (m), and 

 hsec  = secondary frictional losses (m). 

  

4.3.5.2 Drip irrigation total dynamic head 

The conventional drip irrigation system concept was considered for the model. The model 

calculates the total frictional head for a drip irrigation system with the same sized blocks and 

different sized blocks. To do this, the user is required to complete the design for the drip 

irrigation system and this can be done on the Irrrimaker model or other methods. Figure 4.5 

shows the first user form that appeared after the user had selected their irrigation system like 

drip irrigation from the user form shown in Figure 4.3. 

 

Figure 4.5 Drip irrigation user form 

The user form in Figure 4.5 gathers information from the user about the number of blocks the 

system has. The model then determines the total frictional head for the same sized blocks and 
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unequal sized blocks. What is meant by the same sized blocks is, the blocks are equal in size 

and spacing of emitters, lateral lines, and manifolds.  

The user form in Figure 4.6 will appear first so the user will enter the information on blocks 

that are the same size if they specified there are two or more blocks of the same size. When the 

user form is completed by the user, the user form in Figure 4.7 for the unequally sized blocks 

will appear that the user input into the model. The number of blocks that are not the same size 

is limited to six blocks for the model. Figure 4.7 shows the page that will appear when the user 

has clicked “Submit” on the user form in Figure 4.6. The user will input information about the 

supply line from the water source. Figure 4.8 shows the user form that appears for the user to 

insert details related to the critical supply line length for unequal sized drip irrigation 

blocks.Drip irrigation systems have a filtration process to remove clogging components such 

as sand, silt, clay and organic matter, which can be detrimental to the components of the system 

(Burger et al., 2003i). This has been accounted for in the SPIS model. 
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Figure 4.6 Drip irrigation user form to obtained data from user for equal sized blocks to 

determine frictional head of irrigation system 
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Figure 4.7 Drip irrigation user form to obtain data from user of unequally sized number of 

blocks for frictional head calculation. 
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Figure 4.8 Supply line user form for drip irrigation 

Equation 4.9 is used to determine the pumping head required for the irrigation system. 

 

where: 

hfil = fictional head losses due to filtration (m). 

 Energy required 

The hydraulic energy demand of the system will be calculated from the total dynamic head and 

the flow rate (Cuadros et al., 2004; Gajić et al., 2013; Zegeye et al., 2014) using Equation 4.10. 

The linear graphs in Figure 4.9 were used to obtain the linear equations to size the pump and 

the SPIS in the SPISyst model using the system efficiency for a drip irrigation system and a 

centre pivot irrigation system. The density of water was assumed to be 1000 kg.m-3, and the 

gravitational force was assumed to be 9.81 m.s-2.  The irrigation system efficiency was varied 

 Hp = hstat + hf + hsec + hfil + hop 4.9 
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The data obtained from the NASA POWER website are the monthly average daily (MAD) 

horizontal solar irradiation. The MAD horizontal solar irradiation has to be converted to MAD 

tilted surface solar irradiation (Axaopoulos, 2016b).  

For numerous locations around the world, the MAD irradiation on a horizontal surface can be 

looked up online. To accurately determine how much energy is falling on an inclined solar 

panel, at an angle from the horizontal, a series of calculations have to be conducted (ITACA, 

2016).   

Axaopoulos (2016b) states that Rb is the conversion factor for the direct solar irradiation 

received on the inclined solar panel. The conversion factor is a ratio of the MAD irradiation on 

an inclined surface (Ht) to that MAD on a horizontal surface (H). Equation 4.11 is used to 

calculate the conversion factor (Rb) for the MAD direct solar irradiation, which is presented 

below (Axaopoulos, 2016a). 

where: 

 ϕ = latitude coordinate of the location in decimal format (°), 

 δ = declination angle (°), 

 ωs’ = sunset hour angle (°), and 

 β = solar panel array slope to the horizontal (°). 

According to Axaopoulos (2016a), solar declination is the angle between the sun’s rays and the 

plane of the equator on earth. The declination angle varies between -23.45° to +23.45°. This 

variation is responsible for the changing seasons, with their unequal periods of daylight and 

darkness. The sunset hour angle is the angular distance between the hour circle of the sun and 

the local’s meridian. Equation 4.12 presented below calculates the declination angle 

(Axaopoulos, 2016b) and Equation 4.13 calculates the solar hour angle (Axaopoulos, 2016b). 

where, 

 

Rb =
cos( ϕ − β) cos δ sinω ′s + (

π
180)ω′s sin( ϕ − β) sin δ

cosϕ cos δ sinωs + (
π

180)ωs sin ϕ sin δ
 

4.11 

 
δ = −23.45. sin (

284 + n

365
) 

4.12  
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 n  = the day of the year (unitless). 

The MAD extraterrestrial irradiation (Ho) is calculated using Equation 4.14. This equation can 

only be used for latitudes ranging from -60 o to +60 o (Axaopoulos, 2016b).  

where: 

 Gsc = solar constant = 1.367 kW.m-2 (Axaopoulos, 2016c). 

The clearness index (K) is the ratio of MAD horizontal irradiation and the MAD horizontal 

extraterrestrial irradiation. Thus, K is an indication of solar radiation from the sun that is lost in 

the earth’s atmosphere as a result of scattering and absorption. Equation 4.15 presented below 

is used to determine K (Axaopoulos, 2016b). 

where, 

 H = total MAD solar irradiation on a horizontal surface (kW.m-2). 

Several researchers, some of them, which include, Choudhury (1963); Ruth and Chant (1976); 

Tuller (1976); Collares-Pereira and Rabl (1979); Erbs et al. (1982), have proposed different 

methods for determining the ratio Hd/Ho
 where Hd is the MAD horizontal diffuse irradiation. 

According to Liu and Jordan (1960) and Axaopoulos (2016b) the ratio Hd/Ho is calculated using 

Equation 4.16 presented below. 

Equation 4.17 will then calculate the total solar irradiance received by the inclined solar panel 

array. The reflectance of the ground (ρ) will be assumed to be 0.2 (Axaopoulos, 2016b). 

where: 

 μ = reflectance of the ground (unitless) 

 HT = MAD titled surface irradiation (kW.m-2). 

 ωs = cos−1( − tan ϕ . tan δ) 4.13 

 
Ho =

24 × 3600 × Gsc
π

(1 + 0.033 cos
360n

365
) (cos ϕ cos δ sinωs +

πωs

180
sinϕ sin δ) 

4.14 

 
K = (

H

Ho
) 

4.15 

 Hd

Ho
= 1.446 − 2.965K + 1.727K2 

4.16 

 HT

H
= (1 −

Hd

Ho
)Rb +

Hd

Ho
(
1 + cos β

2
) + μ(

1 − cos β

2
) 

4.17 



` 

94 

 

When the irrigation water requirements were determined through CropWAT and the tilted solar 

radiation determined, a ratio between irrigation water requirements and tilted solar radiation is 

derived to determine the critical month which requires the most power. Equation 4.18 which is 

used to calculate the critical month value is presented below (Cuadros et al., 2004). The units 

of the critical ratio are presented below with Equation 4.14. The ratio can be made unitless by 

multiplying by the density of water, the gravitational acceleration and the total head of the 

irrigation system. All these values will be fixed from January to December so the highest value 

of the ratio will be the critical month. 

The month that yields the highest value ratio is taken as the critical month, i.e, the month in 

which the irrigation system will be designed (Kelley et al., 2010; Zegeye et al., 2014).  

 Photovoltaic (PV) array sizing 

Equation 4.19 is used to determine the temperature of the cells in the PV module. The higher 

the PV cell temperature of the module the lower the efficiency of the PV module (Dubey et al., 

2013). These weather parameters from CLIMWAT were used in the development of the SPIS 

model for the calculation of the nominal solar power output to operate the SPIS. This was done 

because of the effect of temperature on the efficiency of solar panels. Equation 4.19 is selected 

due to its application being among the best and being the simplest amongst a large number of 

other equations present in literature (Araneo et al., 2014). 

where, 

Tc = temperature of the cells in the module (°C), 

Ta = air temperature (°C), 

NOCT = nominal operating cell temperature (°C), and 

n  = number of sunshine hours. 

 
MCR =

Q

ET
 

4.18 

Units: m3

kg
×
s2

m
×
m

1
 

 

 
Tc = Ta +

NOCT − 20

0.8n
HT 

4.19 
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Kenna and Gillett (1985a) developed the equation used to determine the nominal electric power 

output of the PV solar panels which is presented below with Equation 4.20. 

where, 

Pel = nominal electrical power of solar panels (kW), 

αc = PV cell temperature coefficient (oC-1), 

HT     = intensity of MAD tilted solar irradiance on a surface (kWh.m-2.day-1), and 

ηmp = solar powered motor-pump efficiency (unitless). 

To determine the minimum number of solar panels the system requires, the nominal power 

requirement of the solar panels determined with Equation 4.20 is divided by the power rating 

of each solar panel (McCluskey, 2018). 

The model has a list of polycrystalline solar panels, which is presented in Appendix B, with 

power ratings ranging between 100 – 330 W. The model will determine the solar panels which 

gives the lowest cost. 

 Water storage tank 

The storage water tank SPIS is only suitable for drip irrigation systems. This is due to the 

irrigation system having low pressure head requirements and flow rate. To size, the storage 

water tank for an SPIS, the flow rate and the pressure head requirements of the system are 

required. The pump and storage water tank must be designed to provide water for days of 

autonomy (DoA), which is an estimated number of days that would be cloudy and not provide 

enough power to pump the daily water requirement. Equation 4.21 was required for the 

maximum height of the storage water tank of the SPIS. The height of the available water tank 

stands available in the market is limited to a height of 9 m (RainHarvest, 2017). 

 
Pel =

1000

[1 − αc(Tc − Ta))]ηmp

×
EH
HT

 
4.20 

 Hp ≤ 9m 4.21 
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If this equation is not satisfied, then the configuration with a storage water tank is not suitable 

for the drip irrigation system. When satisfied then the sizing of the water tank will be 

determined from Equation 4.22.   

where, 

 Vr  = volume of water required for storage (m3.day-1), 

 Q  = flow rate of irrigation system (m3.h-1), 

 DoA = number of days of autonomy (days), and   

 hop  = number of hours the irrigation system operates in a day (hours). 

The capacity of water storage tanks available in the market range from 260 – 10 000 litres. A 

system with a volume of 20 000 litres is the allowable limit for the system where two storage 

water tanks can be used for a storage water tank SPIS.  

 Battery sizing analysis 

To size the battery bank for a battery-coupled SPIS, the average daily load needs to be converted 

to amp-hours per day (McCluskey, 2018). The number of days of autonomy (DoA) and the 

depth of discharge (DoD) will be accounted for in the overall actual sizing of the battery bank. 

The depth of discharge of a battery pack is a fraction amount of the battery capacity that is set 

to be discharged to protect the battery pack and maintain the battery life span (Andoh-Appaiah, 

2018). A 2 – 3 DoA is commonly used for off-grid solar systems (Teitelbaum, 2016; 

McCluskey, 2018). A 50 % DoD is mainly used for lead acid batteries, which helps protect the 

battery lifespan since they are used almost every day (Teitelbaum, 2016; McCluskey, 2018). 

Batteries are sensitive to extremely low temperatures because less energy can be obtained from 

cold batteries compared to warm batteries. So, a temperature multiplier that corresponds to the 

winter average ambient temperature of the region must be selected from the manufacturers’ 

catalogues. Equation 4.23 was used to size the required battery capacity of the irrigation system 

(McCluskey, 2018). 

where, 

 Vr = Q× DoA × hop 4.22 

 
BC =

EH × DoA × TBM
VDC ×DoD

 
4.23 
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 BC  = required battery capacity (Ah), 

 VDC  = system voltage (V), and 

 TBM  = battery temperature multiplier (oC-1). 

The total number of parallel battery strings needs to be limited to three or less for lead acid 

batteries (Teitelbaum, 2016). So, the battery capacities that form three strings or less will be 

selected for the sizing of the system in the model. Equation 4.24 is used to determine the number 

of batteries per string (McCluskey, 2018).  

where, 

B||  = total parallel battery strings (unitless), and 

 bC  = unit battery capacity (Ah). 

To determine the total number of battery cells per string Equation 4.25 is used (McCluskey, 

2018). 

where,  

 BS  = number of batteries per string (unitless), 

 VB  = battery bank voltage (V), and 

 vb  = unit battery voltage (V). 

Equation 4.26 is used to determine the total battery cells (McCluskey, 2018). 

where, 

 BTOT = total number of battery cells (unitless). 

The number of strings in a battery bank is limited to a maximum of three strings for common 

lead-acid batteries. A list of the lead-acid deep cycle batteries used in the SPISyst model is 

shown in Appendix D (Current Automation, 2018b). 

 
B|| =

BC
bC

 
4.24  

 
BS =

VB
vb

 
4.25 

 BTOT = BS × B|| 4.26 
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 Solar powered motor-pump selection 

The energy requirements and flow rate will help in selecting the appropriate solar powered 

pump from a list of pumps within the model. Lorentz® submersible centrifugal solar water 

pumps were selected for the model and the list of the pumps is presented in Appendix D (Bundu 

Power, 2018) 

From the survey conducted for this study in Chapter 3, it was revealed that the most common 

type of pump used in the SPIS was a three-phase submersible pump. For this model, information 

and details on three-phase motor-pumps were loaded in the model where the wattage of the 

pumps range 200 – 40000 W. 

 Charge controller selection 

For the sizing of an appropriate charge controller, the power supply of the voltage of the charge 

controller needs to correlate to the solar panels open circuit voltage (Voc) or maximum power 

voltage (Vmp) (Bane, 2017). Equation 4.27 and 4.28 were used to select a suitable charge 

controller for the SPIS system. 

where, 

 IC  = charge controller current (A),  

 Isc  = solar panel string charge (A), and 

 N||  = number of panels connected in parallel (unitless). 

and 

where, 

 VCi  = maximum allowable input voltage from solar panels to charge controller (V), 

 Voc  = solar panel array open circuit voltage (V), and 

 Nsr  = number of solar panels connects in series (unitless). 

 IC = Isc × N|| × 1.25 4.27 

 VCi = Voc × Nsr 4.28 



` 

99 

 

A charge controller is only required for battery-coupled systems. Calculations require the 

battery selected capacity and voltage and the systems current requirements. A list of the charge 

controllers used in the SPISyst model is presented in Appendix E (Sustainable.co.za, 2018a). 

 SPISyst model check with PVGIS model  

Photovoltaic Geographical Information System (PVGIS) is a simulation model that was used 

to check the results obtained with the SPISyst model, by estimating the potential energy 

generation of the sized SPIS. The model is a free online based PV energy simulation model for 

stand-alone, grid-connected and off-grid PV systems in Europe, Africa and Asia. The model 

works by estimating the solar energy production of a system with a PV solar array. It is a PV 

Geographical Information System (GIS) so it uses Google Maps application that makes it easy 

to use to find the area of interest. The online model calculates the monthly and yearly potential 

energy production of a PV system with defined solar array orientation and tilt angle. 

 Results and Discussion 

This section contains the results of the calculation methods described in the sections above in 

the form of tables and graphs. The crop water requirements and the irrigation water 

requirements that were determined by CropWAT are presented in Appendix H and the design 

of the irrigation system is presented in Appendix J. 

  Calculation of inclined surfaces solar irradiation 

The monthly average daily (MAD) horizontal irradiation obtained through the NASA POWER 

website for a region in Durban with the coordinates 29.859° South, 30.022° East was obtained 

through the first user form of the model. The data obtained from the website through the model 

are presented in Table 4.1as Ho from January to December. The orientation of the inclined 

surface is 180° facing the northern direction. The incline angle is fixed for the whole year at 

30° to maximise the potential solar irradiation available to be captured by the solar array area. 

For January, the MAD horizontal surface solar irradiation is 5.53 kWh.m-2.day-1 and MAD 

inclined surface irradiation was estimated to be 5.74 kWh.m-2.day-1. 

From the MAD horizontal solar irradiation obtained from the NASA POWER website, this data 

was used as shown in Table 4.1 to obtain the monthly average daily solar irradiation on an 
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inclined surface. Table 4.1shows some of the variables used to calculate the MAD tilted surface 

solar irradiation which was done in the SPISyst model.  

Table 4.1 Estimation of MAD tilted solar irradiation on an inclined surface for Durban 

(coordinates), RSA. 

Month 

     MAD horizontal 

surface solar 

irradiation (H) 

MAD horizontal 

surface extraterrestrial 

irradiation (Ho) 

Ratio 

(Hd/H) 

 

Conversion 

factor (Rb) 

MAD tilted 

surface solar 

irradiation (HT) 

(kWh.m-2day-1) (kWh.m-2day-1)     (kWh.m-2day-1) 

January 5.53 7.40 0.19 0.92 5.74 

February 5.26 8.32 0.26 0.99 5.71 

March 4.8 8.87 0.35 1.11 5.58 

April 4.05 9.46 0.49 1.37 5.14 

May 3.39 9.22 0.59 1.78 4.73 

June 2.96 9.33 0.68 2.13 4.23 

July 3.17 9.05 0.62 1.95 4.55 

August 3.78 9.66 0.55 1.51 4.94 

September 4.36 8.87 0.41 1.20 5.24 

October 4.56 8.76 0.37 1.02 5.02 

November 4.87 7.42 0.24 0.94 5.11 

December 5.44 7.44 0.20 0.91 5.58 

 

The MAD tilted surface solar irradiation is higher compared to the MAD horizontal surface 

solar irradiation. This means that having the solar panels at an incline angle of 30 o will absorb 

more solar energy compared to the solar panels at an incline angle of 0 o. So, sizing solar panels 

using the MAD titled surface solar irradiation is advisable. 

 Comparison of MAD horizontal and inclined solar irradiation 

Illustrated below in Figure 4.10 is the comparison of MAD horizontal surface solar irradiation 

and MAD titled surface solar irradiation with the monthly required flow rate of the irrigation 

system. The crop of interest for this centre pivot irrigation system is sugarcane. The flow rate 

of the system was obtained from CropWAT. The CropWAT output with the irrigation water 
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After all the input values were entered in the model by the user, the spreadsheet presented in 

Figure 4.11 appears on the screen showing the user the components of each type of 

configuration that were required. The direct-coupled SPIS configuration is Option 1. The 

components along with their details are listed. The components sized and selected by the model 

for the SPIS configuration were the solar panels and the pump-motor size. The battery-coupled 

system was Option 2 in the model output. The components that were sized for this SPIS 

configuration were solar panels, charge controller, battery pack and the pump-motor. The third 

option was the storage water tank configuration. For this SPIS configuration, the components 

sized were the solar panels, the pump-motor and the storage water tank. 

 

Figure 4.11 The output spreadsheet of the SPISyt model 

For the irrigation system example used for this chapter, the sized components are presented in  

Table 4.3. 

Table 4.3 Sized components for the direct-coupled and battery-coupled system options 

Direct-Coupled System 

Item Rating and units Brand 

Solar Panels 125 W x 8 Renewsys® 

Solar motor pump Single-phase 600 W (48 V 13 A) Lorentz® 

Battery-Coupled System 
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Solar Panels 140 W x 5 Renewsys® 

Solar motor pump Single-phase 600 W (48 V 13 A) Lorentz® 

Battery cells 100 Ah x 12 Enertec(Discovery)® 

Charge Controller 1 x MPPT 100 V/ 50 A Victron Blue Solar® 

 

Since the design example used was a centre pivot irrigation system, the direct-coupled SPIS 

with a storage water tank configuration does not get designed for this scenario because the 

pressure requirements of the irrigation will be too high to be supplied through gravity. The 

direct-coupled and battery-coupled systems had the same pump size since they were both 

designed for an operation time of 6 hours. The nominal power of the solar array of the battery-

coupled system was 700 Wp, and the direct-coupled system had a nominal power of 1000 Wp. 

The battery-coupled system required less power compared to the direct-coupled system because 

of the stored energy in the battery pack. The direct-coupled system required fewer major 

components compared to the battery-coupled system and the installation of the system is less 

complex compared to the battery-coupled system (Sontake and Kalamkar, 2016). 

 Model checking with PVGIS  

With the use of PVGIS, the results obtained from Figure 4.11 for the battery-coupled system 

were used in the validation of the results. Table 4.3 shows the input information provided to the 

PVGIS website as well as the simulation outputs. Figure 4.12, Figure 4.13 and Figure 4.14 

present graphically the results of PV performance, battery performance and the battery state of 

charge, respectively. 
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Table 4.4 Required input information and simulation results from PVGIS model (European 

Commission Joint Research Centre, 2017) 

Provided inputs: 

Location [Lat/Lon]: -29.858 

Horizon: Calculated 

Database used: PVGIS-CMSAF 

PV installed [Wp]: 700 

Battery capacity [Wh]: 1440 

Discharge cutoff limit [%]: 50 

Consumption per day [Wh]: 1960 

Slope angle [Â°]: 30 

Azimuth angle [Â°]: 180 

PVGIS Simulation outputs: 

Percentage of days with full battery [%]: 70 

Percentage of days with empty battery [%]: 0 

Average energy not captured [Wh]: 754.45 

Average energy missing [Wh]: 0 

 

The SPIS configuration that is simulated using the PVGIS tool is the battery-coupled SPIS. The 

simulation output summary in Table 4.4 shows that the potential of the percentage of days with 

full battery is 70 % and the potential of the percentage of days with empty battery is 0 %. Table 

4.4 also shows that an average of 1080 Wh of potential energy is not captured by the SPIS, and 

an average of 0 Wh of potential energy is missing. The average energy not captured of 754.45 

Wh is due to solar panels being fixed at an incline angle of 30 o. If the solar designed to have 

single or dual axis rotation lower average energy not captured would be obtained. The 

simulation results for the design for the battery pack show the battery capacity will be full at 

14400 Ah for 70 % of the days and being empty for 0 % of the days. This shows that the battery 

pack will be reliable and potentially provide power for the demands of the irrigation system. 
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Figure 4.13 Performance of battery pack of the system from PVGIS model (European 

Commission Joint Research Centre, 2017) 

The performance of the battery pack sized is shown in Figure 4.13. For the critical month of 

June, the percentage of days when the battery becomes full is 61 %. The percentage of days 

when the battery becomes empty is simulated to be 0 % for all the months of the year. The 

battery is fully charged before being discharged and the battery having the potential of not going 

empty makes the life span of the battery long. 
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Figure 4.14 Charge state frequency of battery pack from PVGIS model (European 

Commission Joint Research Centre, 2017) 

Figure 4.14 shows the state of charge of the battery, and for a percentage of days of 41 %, the 

stage of charge of the battery is between 95 – 100 % for the whole year. The results show that 

the sized battery would have a high potential of not discharging in a state of charge below 50 – 

55 % which means that the life span of the battery would not be negatively affected. The system 

would be able to charge the battery for the two days of autonomy it was designed to supply 

power for. 

 Conclusion 

The model was designed and developed using MS excel and VBA where three SPIS 

configurations were options for selection. The performance of the PV solar panel array, with a 

nominal power of 700 Wh for the critical month of June, was found to have an average daily 

energy output of 1957.8 Wh. The irrigation system had a daily consumption requirement of 

1960 Wh. The results from the PVGIS tool showed that the sized PV solar array will meet most 

of the power requirements of the centre pivot irrigation system. The performance of the battery 

pack sized in the model for the critical month was predicted by the PVGIS tool to have 63 % 

percentage days of the battery being full and the battery state of charge having 35 % percentage 

days of the battery having a state of charge in the range 95 – 100 %. These results show that the 

model can size SPIS components that will be able to meet the power requirements of the drip 

and centre pivot irrigation systems. 
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It is recommended that the SPISsyt model is used to design an SPIS that will be implemented, 

and the performance of the system is evaluated to further confirm that the model can size the 

major components of an SPIS. The SPISyst model should also include the design of surface 

water pumps in the database for component selection. The cost of the components can also be 

incorporated to then develop a bill of quantities with the output of the components required for 

the SPIS. 
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Abstract 

Solar energy has huge potential in South Africa due to the country receiving high levels of solar 

irradiation. The integration of photovoltaic technology and irrigation can help South African 

farmers eliminate the negative effects of possible electricity load shedding and increasing 

electricity tariffs. South Africa has a few solar powered irrigation systems and there is no 

literature on the design and implementation of these systems in the country, resulting in a need 

for an SPIS model. The objective of this study was to test the solar powered irrigation system 

(SPISyst) model for the six major climatic zones in South Africa and determine the quantity 

and size of the main solar powered irrigation systems (SPIS) components. The SPIS 

configurations that were sized for comprised the direct-coupled system, a battery-coupled 

system with a 5-hour operation time for both the centre pivot and drip irrigation systems and a 

battery-coupled system with a 10-hour operation time for the drip irrigation systems only. The 

electrical power required to pump irrigation water for the six climatic zone scenarios were 

determined and the temperate coastal climatic zone, which had a drip irrigation system for 

grapes obtained the highest electrical power requirement for the direct-coupled system of 

0.01809 kW.mm-1.ha-1.m-1. The direct-coupled system required few components compared to 

the battery-coupled system, but the latter offers back up electrical power to operate the motor-

pump and the SPIS have less solar panels than the direct-coupled system. A linear generic 

equation between pump power requirements and the number of solar panels was developed for 

the nine South African provinces. Of the nine provinces, the Western Cape province showed 

that it required the highest electrical solar power for an irrigation system with a critical month 

in the winter season with a gradient of the linear graph being 0.5366 and the least number of 

solar panels when designed for the summer season with a gradient of the linear graph being 



` 

116 

 

0.2581. The SPISyst model was able to size SPIS components for both direct-coupled and 

battery-coupled system scenarios and a rule of thumb to estimate the number of solar panels 

was determined.  

Keywords: Solar powered irrigation system, climatic zone, renewable energy, photovoltaic 

technology 
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 Introduction 

The use of conventional energy sources, such as fossil fuels, has been identified to have 

negative impacts on the environment and there has also been an increase in the costs of these 

energy sources which have become barriers to the expansion of irrigated agriculture (Dekker et 

al., 2012). Renewable energy sources such as wind, biofuels and solar are alternatives that can 

be considered for the sustainable growth of irrigated agriculture. The integration of solar energy 

with irrigation is favoured more compared to other renewable energy source alternatives due to 

the correlation between crop water requirements and power production from solar irradiation 

converted to electrical power by photovoltaic technology (Ahmed, 2013; Zegeye et al., 2014).  

South Africa has encountered electricity load shedding since 2008 and the latest episode 

occurred at the beginning of the year 2019. Load shedding has had a direct negative impact on 

irrigation activities of farmers who cannot use their electric pumps during their access window 

of water (Bulbulia, 2019). The National Energy Regulator of South Africa (NERSA) had 

approved several high increases in annual tariffs between 2008 – 2013, which resulted in 

electricity costs more than doubling, raising prices by cumulative 114 % which have increased 

production costs for farmers (Deloitte, 2017). Alternative energy sources such as solar energy 

can be used in irrigation with the use of photovoltaic (PV) solar panels to create a solar powered 

irrigation system (SPIS). SPIS can be an off-grid, grid-tied or hybrid system. There are three 

different off-grid SPIS configurations which are the direct-coupled system, the battery-coupled 

system and the direct-coupled system with a storage water tank. The battery-coupled system 

and the direct-coupled system with storage water tank system are designed to store electrical 

power and water at an elevated height, respectively, to account for days of autonomy. Days of 

autonomy are the number of days the system will be able to irrigate without the PV panels 

providing power to the system due to low solar irradiation. This results in farmers favouring 

energy independence and one way to obtain this is the use of PV technology as a source to 

produce energy for irrigation purposes (Dekker et al., 2012). 

Deveci et al. (2015) developed a low cost solar powered drip irrigation model using System 

Modelling Language. There are also software programs available for download, such as 

HOMER®, PVSyst® and Retscreen® which size and simulate solar systems for a cost 

(HOMER Energy, 2018; Natural Resources Canda, 2018; PVSyst, 2019). SISIFO® is an online 

site that sizes and simulate SPIS components for the direct-coupled system and the direct-

coupled system with a storage water tank or reservoir. The solar powered irrigation system 
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model was designed to size SPIS components for three different irrigation systems 

configurations which are the direct-coupled system, the direct-coupled with storage water tank 

and a battery-coupled system. The developed SPIS model was named the SPISyst model. 

South Africa has six major climatic zones which have dominant crops that are grown in each 

zone, in a range of specific soil types with the use of different irrigation techniques.  

Investigations of SPIS sizing with varying crop types, climatic conditions, soil types and 

irrigation techniques, namely, drip irrigation and centre pivot irrigation, in South Africa are 

missing in the literature. An investigation of this nature may be beneficial for obtaining the 

quantity and size of SPIS components required for the different SPIS configurations for South 

Africa and then compare the results. The objective of the study was to test the SPISsyst model 

under different climatic zones, crops, soil types and irrigation techniques in South Africa. The 

model is tested by inputting different scenarios of designs based on the 6 climatic zones and 

recording the results of the model. To show the influence or impact of climate on the sizing of 

SPIS specifically, the climate a rule of thumb (RoT) can be developed for nine areas of the 

provinces in South Africa to compare the differences in the size of the solar panels required. 

 Materials and Methods 

This section will be detailing the procedures taken and the tools used along with the SPISyst 

model to determine a RoT for the sizing of SPIS in South Africa. 

 SPISyst model 

The SPISyst model (developed as outlined in Chapter 5) sizes the components required for an 

SPIS considering the three configurations which are the direct-coupled system, the battery-

coupled system and the direct-coupled system with a water storage tank. The model output is 

the components required for a designed irrigation system (drip or centre pivot). In the previous 

chapter, the model output was checked through a PVGIS simulation to observe if the output 

components were suitable for the irrigation design. The results showed that SPISsyst outputs 

were suitable for the irrigation system example given. 

 Study area 

The study area was South Africa, specifically the six climatic zones and the nine provinces. The 

six major climatic zones and the nine provinces in South Africa are presented in Figure 5.1. 
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Table 5.1 Combination of South African climatic zones, crop type, soil types and irrigation 

systems for perennial crops for SPISyst model evaluation or testing. 

  

The crops for each climatic zone were selected based on the dominant irrigated crops in terms 

of yield. In South Africa, potatoes can be produced all year round. The Sandveld area in the 

North West province lies in the temperate interior climatic zone and is one of the major regions 

for potato production in South Africa at 15 % of the country’s potato production (Kotze, 2016).  

The Western Cape region, which is mainly in the temperate coastal climatic zone, produces 

more than 80 % of South Africa’s table grapes (Department of Agriculture, 2012). Sugarcane 

is primarily grown in tropical regions and favours the sub-tropical coastal climatic zone in South 

Africa, which is mainly on the coast of the KwaZulu-Natal province (Department of 

Agriculture, 2014). The areas that are key for the production of mangoes are located in the north 

eastern parts of the country and the Limpopo province is the largest producer of mangoes 

(Department of Agriculture, 2015). The area that produces the largest amount of maize is the 

Free State according to Lehohla (2002). The Free State is also an area that produces the most 

wheat in South Africa (ARC, 2017). The Northern Cape province is highlighted as one of the 

No. Climatic Zones Crops Soil type Irrigation system Site select  

1 

Temperate interior Potato Sandy loam Centre pivot 

Potchefstroo  

North West 

2 

Hot interior Mango Sandy Drip 

Punda-Milia  

Limpopo 

3 

Temperate coastal Grapes Loam Drip 

Cape Town  

Western Cap  

4 

Sub-tropical coastal Sugarcane Sandy loam Centre pivot 

Cape St Luc   

KZN 

5 

Arid interior Lemon Sandy loam Drip 

Upington – 

North West 

6 

Cold interior 

Summer – Maize 

Winter – Wheat Loam Centre pivot 

Bloemfontei   

Free State 
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provinces which grow citrus, which is grown along the Orange River (Department of 

Agriculture, 2017). The Orange River in the Northern Cape lies within the arid interior climatic 

zone. 

 Crop water requirements 

To determine the crop water requirements of each crop in the climatic zones, FAO CLIMWAT 

2.0 and CropWAT 8.0 were used (FAO, 2009). CLIMWAT 2.0 was used to obtain the weather 

data for each location within each climatic zone. These climatic data were selected as it was 

available for free on CLIMWAT and it extracted from CLIMWAT in MS Excel spreadsheets, 

which made it easy to integrate with the SPISyst model. The climatic data that were required 

for the model were the monthly average temperature and the sunshine hours for the whole of 

South Africa. The research was informed that its request for data was too large and only 

institutions that have a Memorandum of Understanding (MoU) with South African Weather 

Services (SAWS) could access the data. SAPWAT also had data in the software, but the data 

could not be extracted from the software unless done manually. CLIMWAT was used in 

CropWAT 8.0 to determine the crop water requirements. SAPWAT 4 was not used in this study 

as problems were encountered by installing the programme. 

Equations 5.1 and 5.2, the dependable rain method, was applied in determining the monthly 

effective rainfall in CropWAT 8.0  using long-term average rainfall data (FAO, 2009). 

 
Peff = 0.6 × P −

10

3
 for P ≤ 23 mm 

5.29 

 
Peff = 0.8 × P −

24

3
 for P >23 mm 

5.30 

where, 

 Peff = monthly effective rainfall (mm), and 

 P = monthly average rainfall (mm). 
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 Weather data 

The average daily solar irradiation on a horizontal plane per month was obtained through the 

NASA Prediction of Worldwide Energy Resources (POWER) online website (Stackhouse et 

al., 2016) with the input of coordinates of an area. The average temperature data required for 

the SPISyst model calculations to determine the power requirements of the solar panels are 

obtained from CLIMWAT 2.0.  SAPWAT4 was not used for this study due to the problems 

encountered in installing the software, and in any case, SAPWAT4 and CropWAT 8.0 give 

comparable results since SAPWAT4 is based on CropWAT 8.0. 

 Design of irrigation systems 

The SPISyst model was created to size SPIS components for drip irrigation and centre pivot 

irrigation systems. From the two irrigation systems and the crops selected for each climatic 

zone, a suitable irrigation system was chosen as shown in Table 5.1. The Irrigation Design 

Manual (Agricultural Research Council, 2003) was used in the irrigation systems design 

processes. Google Earth Pro® was used to obtain the area data for each site, such as the 

coordinates, and elevations. The coordinate and elevation data needed to be converted to be 

used on AutoCAD® 2020 to draw the irrigation design of each system. GPS Visualizer®, which 

is an online website, was used to obtain the elevations from Google Earth Pro® data and was 

saved as a comma separated value (csv) file. The csv file of the coordinate and elevation data 

was then uploaded into the QuickGrid_x64® programme to convert the csv file to an 

AutoCAD® Drawing Interchange file which then had the area plotted with the contour lines of 

the area of interest. Alternatively, the design of the irrigation systems could come from 

programmes such as Irrimaker® (Model Maker System, 2018). 

5.2.6.1 Centre pivot irrigation system design 

Centre pivot irrigation system is categorised as an irrigation system that moves while applying 

water to a field. Centre pivots are made up of steel frames and pipes, which are supported at 

approximately 50 m intervals by an A-frame on two wheels (Burger et al., 2003j). 

The equations below were used to first determine the rotation time and gross application. The 

speed setting of the centre pivot system was all assumed to be at 50 %. The permissible wheel 

slippage was assumed to be 3 % for all cases this is due to the slopes for fields with a centre 

pivot structure are required to be less than 5 % (Burger et al., 2003j). 
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The flow rate of the systems was determined using Equation 5.3 (Burger et al., 2003j). The 

gross irrigation requirement was obtained from CropWAT 8.0 output csv file. Due to the 

irrigation system being able to operate during the day when solar radiation is available, the 

system is designed to operate for 5 hours per day. The irrigation systems will also work for all 

7 days of the week. The area of each field was obtained from the AutoCAD plot of the field. 

 
Q =

A10GIR7

tdth
 

5.31 

where, 

 Q = flow rate (m3.h-1), 

 A = area (ha), 

 GIR =  gross irrigation requirement (mm), 

 th = working hours per day (hours), and 

 td =  working hours per week (days). 

To determine the travel speed of the last wheel of the centre pivot at a 100 % speed setting, 

Equation 5.4 was used (Burger et al., 2003j). So, at a 100 % speed setting the centre pivot 

irrigation system will operate for 2.5 hours and at a 50 % speed setting the system will operate 

for 5 hours. Equation 5.4 and Equation 5.5 were then used to determine the appropriate speed 

which then leads to select the appropriate type of drive and wheel size. 

 
t =

2πr

60v
 

5.32 

where, 

 t = rotation time at 100 % speed setting (hours), 

 r = distance from the centre to the farthest driving wheel (m), and 

 v = travel speed of the farthest wheel at 100 % speed setting (m.min-1). 

 
tv =

t

vv
 

5.33 

where, 

 tv = rotation time at a specific % speed setting (hours), and 

 vv = specific speed setting (fraction). 
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In the process of determining the suitable sprinkler package, Equation 5.6 was used (Burger et 

al., 2003c). The Senninger®1 irrigation product information was used in the calculation and 

determination of the sprinkler packages for all three centre pivot designs. 

 
GAR =

2000Qr

R2B
 

5.34 

where, 

 GAR = average gross application rate (mm.h-1), and 

 B  = wetted sprinkler strip width (m), and 

 R  = total centre pivot radius (m). 

Equation 5.7 was used to determine the fixed radius of each section of sprinklers in the centre 

pivot system. 

 
qe =

2QrfLe
R2

 
5.35 

where, 

 qe =  sprinkler flow rate (l.s-1), 

 Le = sprinkler spacing (m), and 

 rf =   radius to a fixed point (m). 

The Irrigation Design Manual (Agricultural Research Council, 2003) was used to determine the 

electrical power requirements of the motor to drive the centre pivot structure by using the 

number of pivot towers of the systems.  

Microsoft Office Excel 2016 was used in the design process for the centre pivot irrigation 

systems and the spreadsheets are presented in Appendix K. The drawings and a summary of the 

components required for each centre pivot irrigation system are presented in Figures 5.2 and 

5.3. 

Presented in Figure 5.2 is the centre pivot irrigation system design drawing for sugarcane in 

Cape St. Lucia in KZN, which is in the temperate interior of South Africa. The average area of 

                                                

1 Disclaimer: Use of tradenames is for information purposes and use of is not an indorsement by author/s or author/s 

institutions 
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irrigated sugarcane for smallholder farmers in KwaZulu-Natal is 9.6 ha (James and Woodhouse, 

2017). The area of the field that was selected for the design was 7.47 ha.   

 

Figure 5.2 Illustration of centre pivot irrigation system design layout for sugarcane 

Two types of sprinklers were selected from the Senninger® irrigation product catalogue 

(Senninger, 2007). Which are the I-Wob and the 6° Impact, which have a wetted strip width of 

12.2 – 17.4 m and 21.4 – 30.5 m, respectively. The flow rate of the I-Wob sprinkler was 

determined to be 0.62 l.h-1 and for the 6° Impact sprinkler is 2.98 l.h-1. The spans selected for 

the centre pivot structure and their dimensions are presented in Table 5.22. The power 

requirement for the high speed motors that drive the centre pivot structure was selected to be 

7.5 kW with an average amperage of 7.67 A from Burger et al. (2003j). The length of the 

mainline from the water source to the centre of the field was measured to be 300 m. The internal 

diameter of the mainline was 153.6 mm and the outside diameter was 160 mm and it was a 

Class 6 pipe. The diameter of the mainline was largely due to the system being designed to 
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operate for a minimum of 5 hours. To reduce the pipe diameters the operation time can be 

increased by the user. 

Table 5.2 Centre pivot span selection data 

 No. of spans Length of each span 

(m) 

Internal diameter 

(mm) 

Tower 1, 2 and 3 3 32  150  

Tower 4 1 38  150  

Overhang 1 20  150  

Figure 5.3 shows the centre pivot design drawing for maize and wheat in Bloemfontein Free 

State commanding 24.7 ha. One half of the field will be used to grow and irrigate maize during 

the summer and the other half will be used to grow and irrigate wheat during the winter, as 

shown in Figure 5.3. This was done because maize is a summer crop and wheat is a winter crop 

and they won’t be competing for land and crop rotation purposes. 

 

Figure 5.3 Illustration of the centre pivot irrigation system design layout for maize and wheat 
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The sprinkler package selected for the centre pivot system above was Senninger® I-Wob and 

the 6° Impact with a wetted strip width of 12.2 – 17.4 m and 21.4 – 30.5 m sprinkler flow rate 

of 0.24 l.h-1 and 1.152 l.h-1, respectively. 

The centre pivot span selection information for the irrigation system is shown in Table 5.33. 

The power requirement of the high speed motors required to drive the centre pivot structure 

was 7.5 kW with an average amperage of 8.93 A. The length of the mainline from the water 

source to the centre of the field was measured to be 290 m and the internal diameter was 

determined to be 192.2 mm and the outside diameter is 200 mm Class 6 pipe. 

Table 5.3 Centre pivot span quantity and dimensions for maize and wheat in Bloemfontein 

 No. of spans Length of each span 

(m) 

Internal diameter 

(mm) 

Tower 1 and 2  2 32  203 

Tower 3 and 4 2 45  203 

Tower 5 and 6 2 56  203 

Overhang 1 15 203 

 

Figure 5.4 shows the centre pivot irrigation system design drawing for potatoes in 

Potchefstroom North West commanding 7.47 ha. The arrangement of the centre pivot spans is 

shown as well as the position of the water source and mainline. 
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Figure 5.4 Illustration of centre pivot irrigation system design for potatoes 

The sprinkler packages selected for the system are Senninger® I-Wob and 6° Impact with a 

wetted strip width of 12.2 – 17.4 m and 21.4 – 30.5 m and a sprinkler flow rate of 0.63 l.h-1 and 

3.024 l.h-1, respectively. The spans selected for the centre pivot system are shown in detail in 

Table 5.44. The power requirements of the high speed motors that will drive the centre pivot 

system were 7.5 kW with an average amperage of 10.19 A. The length of the mainline was 

measured to be 255 m. The internal diameter of the mainline after calculations was selected to 

be 120 mm with an outside diameter of 125 mm Class 4 pipe. 

Table 5.4 Centre pivot span quantity and dimensions for potatoes in Potchefstroom 

 No. of spans Length of each span 

(m) 

Internal diameter 

(mm) 

Tower 1 and 2 2 32 150  

Tower 3 and 4 2 38 150  

Tower 5 1 45 150  

Overhang 1 15 150 
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5.2.6.2 Drip irrigation system design 

Drip irrigation is a form of micro-irrigation which makes use of drippers (or emitters) to emit 

water at low flow rates and pressures (Burger et al., 2003h). The gross irrigation requirement 

was calculated using CropWAT 8.0. The irrigation cycle for all systems was assumed to be 3 

days with irrigation occurring for all 7 days in the week. The equations presented below were 

used in the design of the drip irrigation systems. Equation 5.8 was used to determine the emitter 

flow rate suitable for the irrigation system (Burger et al., 2003b). The NETAFIM®2 dripper 

lines, drippers and other emitter product catalogue (NETAFIM, 2017) was used to select the 

most suitable dripper lines and drippers or emitters. 

 
qe =

GIRc

ts
A 

5.36 

where, 

 qe = emitter flow rate (l.h-1), 

 GIRc = gross irrigation requirement per cycle (mm), 

 ts =  standing time (h), and 

 A = area irrigated by an emitter, lateral spacing (Ld) x emitter spacing (Le) (m
2). 

To size the drip irrigation groups theoretically, the equations below were used in MS Excel 

2016 spreadsheets. Equation 5.9 was used to determine the flow rate for each group (Burger et 

al., 2003h). Equation 5.10 was then used to determine the number of emitters that will be in 

each group (Burger et al., 2003h). Then, lastly Equation 5.11 was used to determine the 

theoretical size of each group (Burger et al., 2003h). Thus, the flow rate for each group was: 

 
Q =

GIRcAT

t
10 

5.37 

where, 

 Q = total flow rate per group (m3.h-1), 

 AT = total system area (ha), and  

                                                

2 Disclaimer: Use of tradenames is for information purposes and use of is not an indorsement by author/s or author/s 

institutions 
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 t = operating hours per cycle (h).  

The number of emitters in each group: 

 
ne =

1000Q

qe
 

5.38 

where, 

 ne = number of emitters. 

And the theoretical size of each group: 

 
Ag =

ne(Ld × Le)

10000
 

5.39 

where, 

 Ag = group area (ha). 

After the theoretical sizing was complete, the actual sizes of each group for the irrigation 

designs were determined on AutoCAD from the generated areas. This is where the lateral length 

and the manifold length of the system was determined. The actual group sizes in some cases 

were not the same as the theoretical group area, therefore Equation 5.12 was used to find the 

practical system capacity (Burger et al., 2003h). 

 
Q =

L. nd
Le

×
qe

1000
× 1.03 

5.40 

where, 

 L  = Lateral length (m), 

nd  =  number of laterals per group (unitless), and 

1.03  =  snaking factor. 

Shown in Figure 5.5 is the drip irrigation system design drawing for grapes in Cape Town 

Western Cape commanding an area of 6.4 ha. The system has four groups and the layout and 

lengths of the lateral lines, manifolds and mainline are shown in the drawing. 
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Figure 5.5 Illustration of the grape drip irrigation system design layout 

The emitter flow rate selected for the irrigation system is an 8 l.h-1 flow rate. Table 5.5 shows 

the pipe dimensions of the lateral lines, manifolds and mainline of the drip irrigation system 

design. The filter selected for the system is a 3” T (80 mm) type disc filter.  

Table 5.5 Information of pipes sized in the design of the irrigation system for grapes 

 Materials Internal Diameter 

(mm) 

Outside Diameter 

(mm) 

Pipe Class 

Lateral Polyethylene 12   

Manifold PVC 30.5 32 4 

Mainline PVC 86.8 90 4 

Presented in Figure 5.6 is the drip irrigation design layout drawing for mangoes grown in 

Punda-Milia in Limpopo commanding 9 ha. The system has seven groups with two different 
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sizes as shown in the drawing. The layout of the lateral lines, the manifolds and the mainline 

are shown in Figure 5.6. 

 

Figure 5.6 Illustration of the mango drip irrigation system design layout 

For each row of trees, there are double lateral lines. The flow rate of the emitter selected is 40 

l.h-1. Table 5.6 shows the dimensions of the lateral lines, manifolds and mainline of the 

irrigation design system and the type of material. 

Table 5.6 Information of pipes sized in the design of the irrigation system for mangos 

 Materials Internal Diameter 

(mm) 

Outside Diameter 

(mm) 

Pipe Class 

Lateral Polyethylene 21.2   

Manifold PVC 86.8 90 4 

Mainline PVC 134.4 140 4 

Figure 5.7 shows the drip irrigation design layout drawing of the lemon field in Upington, North 

West commanding 10.5 ha. The system has seven groups with two different sizes as shown in 
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the drawing. The layout of the lateral lines, the manifolds and the mainline are shown in the 

figure below. 

 

Figure 5.7 Illustration of lemon drip irrigation design layout 

For each row of trees, there are double lateral lines. The flow rate of the emitter selected is 12 

l.h-1. Table 5.7 shows the dimensions of the lateral lines, manifolds and mainline of the 

irrigation design system and the type of material for each. 

Table 5.7 Information of pipes sized in the design of the irrigation system for lemon trees 

 Materials Internal Diameter 

(mm) 

Outside Diameter 

(mm) 

Pipe Class 

Lateral Polyethylene 21.2   

Manifold PVC 105.2 110 4 

Mainline PVC 153.6 160 4 

 

Table 5.8 presents a summary of the irrigation design details used and obtained for the six crops 

in the different climatic zones. 
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Table 5.8 Summary of the irrigation system design details 

 Sugarcane Wheat 

and 

maize 

Potato Grapes Mango Lemon 

Area (ha) 11.2 12.4 7.5 6.4 9 10.5 

GIR/month (mm) 71.6 64.9 160.7 21 172.1 154.3 

Tc (days) 7 7 7 3 3 3 

Ts (hours) 5 5 5 5 5 5 

Q (m3.h-1) 53.5 134.45 40.02 19.2 64.54 38.5 

qe (l.h
-1) 4 4 3.3 8 12  40 

TDH (m) 43.19 33.09 38.09 28.02 13.09 25.12 

 SPIS sizing  

The SPISyst model was used to size the SPIS components for each of the designed centre pivot 

and drip irrigation systems. The data required to size the components of the SPIS were the total 

dynamic head and the flow rate of the irrigation system, which were determined in the previous 

section. 

 Power requirements and number of solar panels required 

The next step taken was to determine the power requirements for varying flow rates and total 

dynamic head at a fixed pump-motor efficiency. The calculated power was then used to 

calculate and determine the number of solar panels required in each location for the summer 

and winter seasons. Figure 5.8, which comes from Equation 5.13 was used to calculate the 

power requirements for varying flow rate and total dynamic head (Burger et al., 2003k) in a 

spreadsheet and is presented in Appendix B. 
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 Tc = temperature of the cell in the module (°C), 

 Ta = air temperature (°C), 

 ηmp = motor-pump efficiency(unitless), and 

 HT =  intensity of MAD tilted solar irradiation of a surface (kWh,m-2.day-1) 

  Results and Discussion 

This section presents the results obtained from the tests conducted from the SPISyst model for 

the six climatic zones for the irrigation systems that are designed above. 

 SPISyst output for the six climatic zones 

The irrigation systems designed above are all too large to have a storage water tank option for 

sizing because the total dynamic head (TDH) of the systems are greater than 9 m. So, the two 

types of SPIS that were sized by the SPISyst model are direct coupled and the battery coupled 

system. Table 5.9 shows the electrical energy required by the irrigation system from the solar 

panels in the base unit kW.mm-1.ha-1.m-1 head, which is made up of Pel.GIR-1.ha-1.m-1TDH, for 

the six direct and battery coupled systems. The results obtained from the sizing of the SPIS for 

each irrigation system are shown in Table 5.10 to Table 5.15. The results that are presented in 

the tables are the SPIS component details that are suitable for each irrigation system. 

The critical months for the irrigation systems were determined to be April for grapes, September 

for maize and wheat, mangoes and potatoes, and December for sugarcane and lemons as shown 

in Table 5.9. For the direct coupled system, the grapes obtained the highest electrical power 

required of 0.01809 kW.mm-1.ha-1.m-1 head from the solar panels. This is because in April the 

solar irradiation obtained in the temperate interior is low compared to the other climatic zone 

critical month solar irradiation. Based on that, solar irradiation is measured in kW.m-2, therefore 

more solar panels will be required, which will occupy a larger area compared to the other 

climatic zones, resulting in a high power requirement for the solar panels. The arid interior 

received the lowest electrical power required of 0.01048 kW.mm-1.ha-1.m-1 head from the solar 

panels. The arid interior in South Africa, which is located on the west coast of the country 

receives the highest levels of solar irradiation compared to other climatic zones (Singh, 2016). 

This means less area is required to capture solar irradiation from the solar panels, resulting in a 

low power rating for the solar panels. 
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The battery coupled system, compared to the direct coupled system, requires less electrical 

power for all six climatic zone examples shown in Table 5.9. The climatic zone that has the 

lowest electrical power requirements for the battery coupled system is the arid interior with 

0.00677 kW.mm-1.ha-1.m-1head. The reason for this is that the batteries will store excess 

electrical power produced by the solar panels, and the batteries are sized to store power for two 

days of autonomy, which means when the solar panels are not producing the required electricity 

the battery pack will be supplying the electricity to operate the irrigation system. 

Table 5.10 to Table 5.12 show the SPIS components that were sized for the three centre pivot 

irrigation systems. The SPIS components sized are for the pump power requirements and the 

motors that drive the centre pivot tower around the field. Firstly, the direct coupled system and 

the battery coupled system SPIS were sized for a 5-hour operation a day. The centre pivot 

irrigation system for potatoes in Table 5.12 obtained the largest SPIS with a 21 kW motor, 

which runs a 20 – 55 m and 112 m3.h-1 pump and 61 by 325 W solar panels for the direct 

coupled SPIS. The battery coupled system obtained 72 from 1954 Ah 2 V battery cells and 4 

by MPPT 200 V 150 A charge controllers. So, the direct coupled system will not be able to 

operate during completely cloudy days, while the battery coupled system will, at most, be able 

to operate for two days of little to no sunlight available, provided the battery pack is fully 

charged. The battery coupled system will come with higher investment costs for the battery 

pack and the charge controllers and the system will be more complex compared to the direct 

coupled system. 

Presented in Table 5.13 to Table 5.15 are the SPIS components that are sized for drip irrigation 

systems for a direct coupled, battery coupled 5-hour irrigation operation time and a battery 

coupled 10-hour irrigation operation time.  Table 5.14 shows that the drip irrigation system 

designed for lemons obtained the largest SPIS compared to the other drip irrigation systems. 

For the direct coupled and battery coupled 5-hour operating time system, the pump size selected 

was a 3 phase 15 kW motor, which runs a 10 – 35 m and 126 m3.h-1 submersible pump for both 

configurations. The battery coupled system with a 10-hour irrigation operation time has the 

same number of solar panels as well due to the energy requirement not changing requires a 7 

kW 3 phase motor to run a 5 – 30 m and 76 m3.h-1 pump. The pump size selected is smaller due 

to the increase in operation time, which resulted in a reduced flow rate. 
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Table 5.9 The electrical power required from the solar panels for the different irrigation 

systems. 

 Sub-tropical 

coastal 

(Sugarcane) 

Cold interior 

(Maize and 

Wheat) 

Temperate 

interior 

(Potato) 

Arid interior 

(Lemon) 

Temperate 

coastal 

(Grapes) 

Hot interior 

(Mango) 

Critical month December September September December April September 

Direct coupled 

Pel GIR-1 ha-1.TDH-1(kW mm-1.ha-1 m-1 head) 

0.01493 0.01366 0.01282 0.01048 0.01809 0.01235 

Battery coupled 

Pel GIR-1 ha-1.TDH-1(kW mm-1.ha-1 m-1 head) 
0.01023 0.00901 0.00852 0.00677 0.01118 0.00823 

 

Table 5.10 SPIS components for centre pivot irrigation system for sugarcane in KZN 

Direct Coupled System  

Component Quantity Size 

 

Pump  1 10 – 50 m 65 m3 h-1 

Motor 1 15 kW 

Solar Panels 52 325 W (99.78 m2) 

Battery Coupled System- 5-hour operation per day 

Pump 1 10 – 50 m 65 m3 h-1 

Motor 1 15 kW 

Solar Panels 36 320 W (69.08 m2) 

Battery Pack 36 1660 Ah 

Charge Controller 4 MPPT 200 V/ 100 A 
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Table 5.11 SPIS components for centre pivot irrigation system for maize and wheat in the Free 

State 

Direct Coupled System 

Component Quantity Size 

Pump  1 10 – 35 m 126 m3 h-1 

Motor 1 15 kW 

Solar Panels 39 320 W (74.83 m2) 

Battery Coupled System- 5-hour operation per day 

Pump 1 10 – 35 m 126 m3 h-1 

Motor 1  15 kW 

Solar Panels 26 320 W (49.89 m2) 

Battery Pack 36 1380 Ah 

Charge Controller 4 MPPT 200 V/ 100 A 

 

Table 5.12 SPIS components for centre pivot irrigation system for potatoes in North West 

Direct Coupled System 

Component Quantity Size 

Pump 1 20 – 55 m 112 m3 h-1 

Motor 1 21 kW 

Solar Panels 61 325 W (117.05 m2) 

Battery Coupled System- 5-hour operation per day 

Pump 1 20 – 55 m 112 m3 h-1 

Motor 1 21 kW 

Solar Panels 41 325 W (78.67 m2) 

Battery Pack 72 1954 Ah 

Charge Controller 4 MPPT 200 V/ 100A 
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Table 5.13 SPIS components for a drip irrigation system for grapes in the Western Cape 

Direct Coupled System 

Component Quantity Size 

Pump 1 10 – 45 m 26 m3 h-1 

Motor 1 4 kW 

Solar Panels 20 325 W – (38.38 m2) 

Battery Coupled System- 5-hour operation per day 

Pump 1 10 – 45 m 26 m3 h-1 

Motor 1 4 kW 

Solar Panels 16 260 W  (26.19 m2) 

Battery Pack 24 420 Ah 

Charge Controller 2 MPPT 150V / 35 A 

Battery Coupled System- 10-hour operation per day 

Pump 1 10 – 40 m 13 m3 h 

Motor 1 1.8 kW 

Solar Panels 16 260 W (26.19 m2) 

Battery Pack 24 420 Ah 
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Table 5.14 SPIS major components for the drip irrigation system for mangos in Mpumalanga. 

Direct Coupled System 

Component Quantity Size 

Pump 1 2 – 16 m 120 m3 h-1 

Motor 1 7 kW 

Solar Panels 60 320 W (115.1 m2) 

Battery Coupled System- 5-hour operation per day 

Pump 1 2 – 16 m 120 m3 h-1 

Motor 1 7 kW 

Solar Panels 40 320 W (76.8 m2) 

Battery Pack 36 1660 Ah 

Charge Controller 4 MPPT 150V/ 35 A 

Battery Coupled System- 10-hour operation per day 

Pump 1 6 – 16 m 59 m3.h-1 

Motor 1 4 kW 

Solar Panels 40 320 W (76.75 m2) 

Battery Pack 36 1660 Ah 

Charge Controller 4 MPPT 150V / 35 V 
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Table 5.15 SPIS components for the drip irrigation system for lemons in the Northern Cape. 

Direct Coupled System 

Component Quantity Size  

Pump 1 10 – 35 m 126 m3 h-1 

Motor  1 15 kW 

Solar Panels 43 325 W (82.51 m2) 

Battery Coupled System- 5-hour operation per day 

Pump 1 10 – 35 m 126 m3 h-1 

Motor 1 15 kW 

Solar Panels 28 325 W (53.73 m2) 

Battery Pack 36 1380 Ah 

Charge Controller 4 MPPT 200 V/ 100 A 

Battery Coupled System- 10-hour operation per day 

Pump 1 5 – 30 m 76 m3.h-1 

Motor 1 7 kW 

Solar Panels 28 325 W (53.73 m2) 

Battery Pack 36 1380 Ah 

Charge Controller 4 MPPT 200 V/ 100 A 

 Power requirements versus the number of solar panels    

Figure 5.9 to Figure 5.17 below illustrates the relationship between the pump power 

requirements and the electrical power required from the solar panels for direct-coupled SPIS 

for 9 regions in the provinces in South African for January, which represents summer and June, 

which represents winter. The relationship between pump power requirements and the electrical 

power required from the solar panels was a linear relationship and the equations of each trend 

line are presented in the figures. The generic equation is of the form is presented as Equation 

5.15 as follows: 

 Pel = MEH 5.15 

where, 

Pel = electrical power required from solar panels (W), 
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EH  = pump power requirement (W) (Equation 5.13), and 

M  = slope of the relationship which is the number of solar panels per pump power 

required (unitless). 

Equation 5.16 was used to estimate the number of solar panels with a wattage that ranges 

between 200 - 325 W.  

 
Nx =

Pel
x

 
5.16 

where, 

 Nx = number of x Watts solar panels for the direct SPIS (unitless), and 

 x = the wattage of the solar panels (200 – 325 W solar panels) (W). 

The graphs and the equations presented above can be used to estimate the number of solar 

panels required for direct-coupled SPIS if the pump power requirements are known by the user. 

A comparison between the number of solar panels determined by the SPISyst model and the 

graphs is presented in Table 5.16. 

The figures for each province can be used to determine the number of 30 W solar panels that 

will be required for specific pump power requirements, which is the flow rate, the total dynamic 

head and the operation time, for the location selected in that province. The operation time is 

fixed at 5 hours for all data points. Figure 5.12  and Figure 5.13 show that for the winter season, 

the Western Cape and the Eastern Cape have the highest and the second highest gradients at 

0.5366 and 0.4695, respectively. Practically this means these two provinces offer less solar 

irradiation compared to other provinces, therefore they would require more solar panels for the 

same pumping requirements. Figure 5.12 and Figure 5.14 illustrate for the summer season, the 

Western Cape and the Northern Cape have the lowest and second lowest gradients at 0.2581 

and 0.2741, respectively. This shows that these two areas will require the least solar panels at a 

specific pump power requirement for a direct-coupled system. The summer and winter data 

points for Figure 5.10 and Figure 5.11 are very close to each other compared to the other 

provinces, but the winter period still required more solar panels for winter than for summer for 

a specific pump power requirement. In Table 5.16 the solar panels sized with the graphs are 

either more than or less than the solar panels sized with the model. The maize and wheat 

example used Figure 5.17 to obtain the slope for the generic equation to determine the number 

of solar panels sized with the graph was the same as the number of solar panels sized with the 
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An example that demonstrates how to size the number of solar panels required for a direct-

coupled irrigation system is presented below. 

Table 5.16 Comparison of the number of solar panels required for an irrigation system 

determined with the model and the graphs 

 Sugarcane Maize and 

wheat 

Potatoes Grapes Mangoes Lemons 

Solar panels size (W) 325 325 325 325 320 325 

No. of solar panels 

determined from the 

graphs 

50 39 64 18 62 45 

No. of solar panels 

determined from the 

SPISyst model 

52 39 61 20 60 43 

Variance (%) + 3.85  0 - 4.92  + 10  - 3.33 - 4.65 
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 Conclusion 

In this chapter, the SPISyst model was tested by subjecting the model through irrigation design 

scenarios based on the six climatic zones in South Africa. The crops, soil type and irrigation 

techniques selected for the design scenarios were selected from the literature. The irrigation 

designs were then completed manually. 

The temperate coastal gave the highest electrical power requirement of 0.01809 kW.mm-1.ha-

1.m-1 head from the solar panels compared to the other climatic zones for direct-coupled 

configuration. The direct-coupled configuration obtained higher electrical power requirements 

from the solar panels compared to the battery-coupled system. This was due to the design of 

the battery being designed to store excess energy for 2 days of autonomy. The direct-coupled 

and battery-coupled component outputs were presented for the centre pivot irrigation design 

for potatoes in the temperate interior that required the largest SPIS components. 

A generic equation to estimate the electrical power of solar panels required and the number of 

solar panels was developed for each of the nine provinces in South Africa. The Western Cape 

was determined to have the steepest slope for the winter compared to the other provinces 

because it obtained a gradient of 0.5366. To estimate the number of solar panels required for a 

direct-coupled SPIS using the graphs was determined and the highest percentage error was 10 

%. The graphs can be used as a preliminary design tool. The SPISyst model was able to size 

SPIS components for both direct-coupled and battery-coupled systems for all six scenarios. A 

rule of thumb was also established to estimate the size of solar panels for a given pump power 

requirement for South Africa.   

It is recommended that smaller areas are selected for the evaluation of the model to obtain 

components for the direct-coupled system with a storage water tank. The reliability of the 

battery-coupled system can also be further investigated so that a choice in the percentage 

reliability can be made by the user, which will vary the battery pack size. Other irrigation 

techniques can also be investigated to quantify and size the required SPIS components for these 

systems. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 Summary 

South Africa is a semi-arid country where parts of the country’s cultivated agriculture are under 

irrigation to provide crop water requirements. Most irrigation systems use pumps with electric 

motors to distribute water to crops. The source of electricity is mainly coal, which is a fossil 

fuel. South Africa has experienced load shedding since 2008, which has negatively affected 

farmers in the country. There had also been electricity tariff increases which resulted in the 

cost of production for farms increasing. Renewable energy sources are alternatives that can be 

considered for the sustainable growth of irrigated agriculture. The use of solar power in 

irrigation is an alternative source more favoured compared to other renewable resources due to 

its correlation between crop water requirements and power production from solar irradiation. 

South Africa receives high levels of solar radiation and this energy can be captured to pump 

water for irrigation systems. With solar the energy source is clean, and the farmer is no longer 

dependent on the electricity supplier. The literature showed different types of solar powered 

irrigation systems (SPIS) configurations and the main types are the direct-coupled system, the 

battery-coupled system and the storage water tank configuration. Drip irrigation and centre 

pivot irrigation are documented as being the best irrigation systems suited to integrate with 

SPIS due to their high water use efficiency (WUE) and relatively low head operation.  

Submersible motor-pumps are mainly used with SPIS in literature. Some models size solar 

powered systems and are available for sale and download online. The study was undertaken to 

obtain information on SPIS implementation in South Africa. A model was developed to size 

SPIS in South Africa. The model was tested for 6 climatic zones in South Africa. 

 Conclusion 

To determine the extent of SPIS in South Africa, online questionnaires were developed using 

SurveyMonkey®. The questionnaires targeted SPIS engineers, designers, installers and SPIS 

users. The participants were contacted by requesting questionnaires to be sent to institutions 

that had access to the required participants and emails with the link to the online survey. A total 

of 13 SPIS users and 18 SPIS engineers, installers and designers completed the online 

questionnaires. The data obtained from the questionnaires showed that the Western Cape and 

the Eastern Cape provinces had the most SPIS implemented. The majority of the SPIS systems 
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were implemented between the years 2010 – 2016, which correlate with the issues that came 

with load shedding. The solar panels used were predominantly poly-crystalline panels due to 

their high efficiency compared to thin-filmed solar panels. Drip and centre pivot irrigation 

systems were the most that were integrated with solar power. The extent of SPIS use in South 

Africa was determined at 364,415 ha. An idea of the extent of SPIS in South Africa was 

established with the SPIS installers, engineers and designers but details on these systems were 

determined only by the number of SPIS users that participated in the questionnaire in South 

Africa.  

An SPIS model, named SPISyst, was developed using MS Excel. Drip and centre pivot 

irrigation systems were the irrigation techniques considered for the model. CLIMWAT and 

CROPWAT were used to obtain temperature data and determine the crop water and irrigation 

requirements of crops of interest. The NASA Prediction of World Energy Resources (POWER) 

website was used to obtain the monthly average daily (MAD) horizontal solar irradiation data. 

Three configurations were considered for the SPISyst model. The Visual Basic Application 

feature in MS Excel was used to create the user forms of the SPISyst model. PVGIS was used 

to simulate if the design of the SPISyst model would be able to provide the power requirements. 

The battery-coupled centre pivot irrigation system configuration was tested with the PVGIS 

simulation. The PVGIS simulation showed that the solar array sized for the irrigation system 

would be able to meet the power requirements. PVGIS estimated that the state of charge of the 

battery pack sized by the SPISyst model will be 100 % for 63 % of the days during the critical 

month of the irrigation system. The PVGIS simulation also showed that the state of charge of 

the battery pack will be between 95 – 100 % for 35 % of the days of the year. A model to size 

SPIS was designed and developed. The SPISyst model results were also simulated and obtained 

positive results.  

The SPISyst model was then tested for the six climatic zones in South Africa, where the major 

crops in each climatic zone were selected and had to be irrigated with either solar powered drip 

irrigation or a centre pivot irrigation system. The power required to pump irrigation water for 

each climatic zone was determined for both direct-coupled and battery-coupled systems. The 

direct-coupled system had higher power requirements than the battery-coupled system. This is 

due to the configuration not having backup power storage. The SPIS major components were 

sized for both direct and battery-coupled systems. A generic equation to determine the 

electrical solar power required for a given amount of motor-pump requirement was developed 
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for each of the South African provinces for the summer and the winter season. The SPISyst 

model was tested and it was able to size SPIS components for 6 scenarios in different climatic 

zones in South Africa. A rule of thumb was also established to estimate the number of solar 

panels required for an SPIS for a given pump power requirement. 

 Recommendations 

A better survey can be conducted to find and determine the total area in South Africa under 

solar powered irrigation. With the development of the SPISyst, it is recommended to 

incorporate hybrid SPIS where solar is paired with diesel or with other renewable energy 

sources such as wind energy. The model can also be improved by adding the sizing of grid tied 

SPIS. The SPISyst model can also be improved by adding more types of solar water pumps 

such as surface water pumps. Further research can be done by using the model to size either a 

small-scale drip or centre pivot SPIS and collect data on the performance of the system. The 

actual economics of SPIS in South Africa for different crops and regions can be investigated. 
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7. APPENDICES 

 Appendix A 
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 Appendix B Flow chart of SPISyst model development sub-sections 
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 Appendix C Flow Chart of SPISyst model 
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 Appendix D 

Table 7.1 The solar panel brands and sizes used in the SPISyst model (Current Automation, 2018a; Sustainable.co.za, 2018b) 

  Panel model 

Nominal power 

(W) 

Open circuit voltage 

(Voc) 

Maximum voltage 

(Vmp) 

Maximum current 

(A) 

Short Circuit 

current 

Renewsys 

Solar 

SP-RENE-

100W 100 21.92 17.92 5.59 5.95 

Renewsys 

Solar 

SP-RENE-

125W 125 22.08 18.04 6.94 7.38 

Renewsys 

Solar 

SP-RENE-

140W 140 22.21 17.55 7.98 8.49 

Renewsys 

Solar 

SP-RENE-

150W 150 22.79 18.44 8.15 8.67 

Renewsys 

Solar 

SP-RENE-

180W 180 22.6 18.08 10.25 11.22 

Renewsys 

Solar 

SP-RENE-

250W 250 37.89 30.63 8.16 8.8 

Renewsys 

Solar 

SP-RENE-

255W 255 37.98 30.62 8.33 8.99 

Yingli solar YL255 255 37.6 30 8.49 8.9 

Renewsys 

Solar 

SP-RENE-

260W 260 37.7 30.72 8.47 8.82 

Canadian Solar CS6P-260P 260 37.5 30.4 8.56 9.12 

Renewsys 

Solar 

CS6K 260P-

FG 260 38.4 30.4 8.56 9.12 

Renewsys 

Solar 

SP-RENE-

265W 265 38.46 30.77 8.63 8.99 

Canadian Solar CS6P-265P 265 37.7 30.6 8.66 9.32 
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Canadian Solar 

CS6K 265P-

FG 265 37.7 30.6 8.66 9.23 

Renewsys 

Solar 

SP-RENE-

270W 270 38.7 30.95 8.73 9.12 

Canadian Solar 

CS6K 270P-

FG 270 37.9 30.8 8.75 9.32 

Renewsys 

Solar 

SP-RENE-

300W 300 45.65 36.52 8.22 8.56 

Renewsys 

Solar 

SP-RENE-

305W 305 45.94 36.75 8.3 8.65 

Yingli Solar YL310C-36b 310 45.8 36 8.76 9.21 

Canadian Solar 

CS6X 315P-

FG 315 45.1 36.6 8.61 9.45 

Canadian Solar 

CS6X 320P-

FG 320 45.3 36.8 8.69 9.26 

Canadian Solar 

CS6X 325P-

FG 325 45.5 37 8.78 9.34 

Canadian Solar CS6P 315P 315 45.1 36.4 8.52 9.18 

Canadian Solar CS6X 320P 320 45.3 36.6 8.61 9.26 

Canadian Solar CS6X 325P 325 45.5 36.8 8.69 9.32 

Canadian Solar CS6U 330P 330 45.6 37.2 8.88 9.34 



` 

162 

 

 

 Appendix E 

Table 7.2 List of Lorentz® submersible centrifugal solar water pumps (Bundu Power, 2018) 

Model 

Operating Voltage 

(V) 

Voltage 

(V) 

Power 

(W) 

PS200-HR-14 24 48 200 

PS200-HR-07 24 48 200 

PS200-HR-04 24 48 200 

PS600-C-SJ8-5   48 600 

PS600-C-SJ5-8   48 600 

PS600-HR-14   48 600 

PS600-HR-04   48 600 

PS600-HR-10   48 600 

PS600-HR-07   48 600 

PS600-HR-03   48 600 

PS600-HR-04H   48 600 

PS600-HR-03H   48 600 

PS1800-C-SJ42-1   96 1800 

PS1800-C-SJ30-1   96 1800 

PS1800-C-SJ17-2   96 1800 

PS1800-C-SJ12-4   96 1800 

PS1800-C-SJ8-7   96 1800 

PS1800-HR-14   96 1800 

PS1800-C-SJ5-12   96 1800 

PS1800-HR-04   96 1800 

PS1800-C-SJ3-18   96 1800 

PS1800-HR-10   96 1800 

PS1800-HR-23   96 1800 

PS1800-C-SJ1-25   96 1800 

PS1800-HR-03   96 1800 

PS1800-HR-07   96 1800 

PS1800-HR-14H   96 1800 

PS1800-HR-04H   96 1800 

PS1800-HR-07H   96 1800 

PS1800-HR-03H   96 1800 

PS1800-HR-05HL   96 1800 

PS4000-C-SJ60-1   238 4000 

PS4000-C-SJ60-2-2   238 4000 

PS4000-C-SJ42-2   238 4000 

PS4000-C-SJ30-2   238 4000 

PS4000-C-SJ17-4   238 4000 
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PS4000-C-SJ8-15   238 4000 

PS4000-C-SJ5-25   238 4000 

PS4000-HR-14HL   238 4000 

PS4000-C-SJ3-32   238 4000 

PS4000-HR-05HHL   238 4000 

PS7K2-C-SJ95-1   575 7000 

PS7K2-C-SJ42-3   575 7000 

PS7K2-C-SJ30-6   575 7000 

PS7K2-C-SJ17-9   575 7000 

PS9K2-C-SJ30-7   575 9000 

PS9K2-C-SJ17-11   575 9000 

PS9K2-C-SJ8-44   575 9000 

PS15K2-C-SJ150-1   575 15000 

PS15K2-C-SJ95-2   575 15000 

PS15K2-C-SJ75-3   575 15000 

PS15K2-C-SJ42-6   575 15000 

PS15K2-C-SJ30-12   575 15000 

PS15K2-C-SJ17-18   575 15000 

PS21K2-C-SJ120-2-1   575 21000 

PS21K2-C-SJ75-4   575 21000 

PS21K2-C-SJ42-10   575 21000 

PS21K2-C-SJ30-16   575 21000 

PS25K2-C-SJ150-2-2   575 25000 

PS25K2-C-SJ95-4   575 25000 

PS25K2-C-SJ42-12   575 25000 

PS25K2-C-SJ30-22   575 25000 

PS40K2-C-SJ120-3   575 40000 

PS40K2-C-SJ95-7   575 40000 

PS40K2-C-SJ42-19   575 40000 
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 Appendix F 

Table 7.3 Lead acid deep cycle batteries listed in the SPISyst model (Current Automation, 

2018b) 

Battery (Lead Acid Deep 

Cycle) 

Capacity of cell 

(AH) Voltage (V) 

Raylite Batteries R- Solar 50 12 

Forbatt  65 12 

Trojan 85 12 

Raylite Batteries R- Solar 96 12 

Enertec (Discover) 100 12 

Forbatt  100 12 

Vision- Fully sealed 100 12 

Enervision E- Guard 102 12 

Trojan 225 6 

Trojan 240 6 

Trojan 420 6 

Raylite M- Solar 530 6 

Raylite M- Solar 600 6 

Raylite M- Solar 750 6 

Raylite M- Solar 900 6 

Raylite M- Solar 1050 4 

Raylite M- Solar 1380 4 

Raylite M- Solar 1660 4 

Trojan SPRE 1255 2 

Trojan 1954 2 

Trojan 2405 2 
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 Appendix G 

Table 7.4 Charge controllers listed in the SPISyst model (Sustainable.co.za, 2018a). 

Type Brand Model Name 

Max. 

Current (A) 

Max. 

Voltage (V) 

PWM Steca PRS 3030 30 17.2 

PWM Phocos CX40 40 12V/48V 40 50 

MPPT Victron Blue Solar MPPT 100V/30A 30 100 

MPPT Victron Blue Solar MPPT 100V/50A 50 100 

MPPT Victron Blue Solar MPPT 150V/35A 35 150 

MPPT Morningstar Tristar 

TS 45A 

12V/24V/48V 45 150 

MPPT Morningstar Tristar 

TS 60A 

12V/24V/48V 60 150 

MPPT Victron Blue Solar MPPT 150V/ 70A 70 150 

MPPT Victron Blue Solar MPPT 150V/85A 85 150 

MPPT Microcare MPPT 200V/100A 100 200 

MPPT Victron Blue Solar MPPT 150V/100A 100 150 
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 Appendix H 

Table 7.5 CropWAT output for sugarcane 

SCHEME SUPPLY                         

                          

ETo station: DURBAN-(LOUIS-

BOTHA)                                 

Rain station: DURBAN-(LOUIS-

BOTHA)                               

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Precipitation deficit                         

1. Sugarcane (Ratoon) 20.6 5.7 0 0 0.7 42.9 48.1 13.2 21 22.7 27.2 53.3 

                          

Net scheme irr.req.                         

in mm/day 0.7 0.2 0 0 0 1.4 1.6 0.4 0.7 0.7 0.9 1.7 

in mm/month 20.6 5.7 0 0 0.7 42.9 48.1 13.2 21 22.7 27.2 53.3 

in l/s/h 0.08 0.02 0 0 0 0.17 0.18 0.05 0.08 0.08 0.1 0.2 

                          

Irrigated area 

(% of total area) 100 100 0 0 100 100 100 100 100 100 100 100 

Irr.req. for actual area 

(l/s/h) 0.08  0.02 0 0 0 0.17 0.18 0.05 0.08 0.08 0.1 0.2 

Cropwat 8.0 Bèta     26/03/19 7:28:05 

PM 
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 Appendix J 

Table 7.6 Drip irrigation design example used for Chapter 4 

 

Drip Irrigation Example   
area  4,5 Ha 

Emitter pressure 12 M 

Emitter flow rate 4,32 Lph 

Crops per row 25   

Eemitter per crop 3   

q dripline 0,324 m3/h 

Dripline length 148 M 

Dripline diameter 0,016 M 

1. no of laterals 26   

1. manifold length 78 M 

1. q manifold 8,424 m3/h 

1. manifold diameter 0,05 M 

2. no of laterals 24   

2. manifold length 72 M 

2. q manifold 7,78 m3/h 

2. manifold diameter 0,05 M 

3. no of laterals 26   

3. manifold length 78 M 

3. q manifold 8,424 m3/h 

3. manifold diameter 0,063 M 

4. no of laterals 24   

4. manifold length 72 M 

4. q manifold 7,78 m3/h 

4. manifold diameter 0,05 m 

Last 2 manifolds 3 and 4 

1. mainline q1 16,20 m3/h 

1. mainline L 1 to 1-3 manifold 150 m 

1. mainline diameter 1 0,075 m 

1. mainline q2 7,78 m3/h 

1. mainline L2 3-4 manifold 78 m 

1. mainline diameter 2 0,063 m 

First 2 manifolds 1 and 2 

2. mainline q1 16,20 m3/h 

2. mainline L1 78 m 

2. mainline diameter 1 0,075 m 

Supply line 

Supply line Q 16,20 m3/h 

Supply line L 25 m 

Supply line D 0,075 m 

Suction lift 2 m 

Elevation diff from water source to highest point in the 
field 8,2 m 
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