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Abstract

The Internet has experienced a tremendous growth over the past two decades and with that
growth have come severe congestion problems. Research efforts to alleviate the congestion
problem can broadly be classified into three groups: (1) Router based congestion detection; (2)
Generation and transmission of congestion notification signal to the traffic sources; (3) End-to-
end algorithms which control the flow of traffic between the end hosts. This dissertation has
largely addressed the first two groups which are basically router initiated. Router based
congestion detection mechanisms, commonly known as Active Queue Management (AQM), can
be classified into two groups: conventional mathematical analytical techniques and fuzzy logic
based techniques. Research has shown that fuzzy logic techniques are more effective and robust
compared to the conventional techniques because they do not rely on the availability of a precise
mathematical model of Internet. They use linguistic knowledge and are, therefore, better placed to
handle the complexities associated with the non-linearity and dynamics of the Internet. In spite of
all these developments, there still exists ample room for improvement because, practically, there

has been a slow deployment of AQM mechanisms.

In the first part of this dissertation, we study the major AQM schemes in both the conventional
and the fuzzy logic domain in order to uncover the problems that have hampered their
deployment in practical implementations. Based on the findings from this study, we model the
Internet congestion problem as a multi-objective problem. We propose a Fuzzy Logic Congestion
Detection (FLCD) which synergistically combines the good characteristics of the fuzzy
approaches with those of the conventional approaches. We design the membership functions
(MFs) of the FLCD algorithm automatically by using Multi-objective Particle Swarm
Optimization (MOPSO), a population based stochastic optimization algorithm. This enables the
FLCD algorithm to achieve optimal performance on all the major objectives of Internet
congestion control. The FLCD algorithm is compared with the basic Fuzzy Logic AQM and the

Random Explicit Marking (REM) algorithms on a best effort network. Simulation results show
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that the FLCD algorithm provides high link utilization whilst maintaining lower jitter and packet
loss. It also exhibits higher fairness and stability compared to its basic variant and REM. We
extend this concept to Proportional Differentiated Services network environment where the
FLCD algorithm outperforms the traditional Weighted RED algorithm. We also propose self-
learning and organization structures which enable the FLCD algorithm to achieve a more stable
queue, lower packet losses and UDP traffic delay in dynamic traffic environments on both wired

and wireless networks.

In the second part of this dissertation, we present the congestion notification mechanisms which
have been proposed for wired and satellite networks. We propose an FLCD based dual explicit
congestion notification algorithm which combines the merits of the Explicit Congestion
Notification (ECN) and the Backward Explicit Congestion Notification (BECN) mechanisms. In
this proposal, the ECN mechanism is invoked based on the packet marking probability while the
BECN mechanism is invoked based on the BECN parameter which helps to ensure that BECN is
invoked only when congestion is severe. Motivated by the fact that TCP reacts to the congestion
notification signal only once during a round trip time (RTT), we propose an RTT based BECN
decay function. This reduces the invocation of the BECN mechanism and resultantly the
generation of reverse traffic during an RTT. Compared to the traditional explicit notification
mechanisms, simulation results show that the new approach exhibits lower packet loss rates and
higher queue stability on wired networks. It also exhibits lower packet loss rates, higher goodput
and link utilization on satellite networks. We also observe that the BECN decay function reduces
reverse traffic significantly on both wired and satellite networks while ensuring that performance

remains virtually the same as in the algorithm without BECN traffic reduction.
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Chapter 1

Introduction

1.1 General

The Internet came into existence as an outgrowth of the Advanced Research Projects Agency
Network (ARPANET), a United States Department of Defense project. From a mere
interconnection of disparate computer systems, it has evolved into one of mankind’s greatest
achievements. Apart from being the universal source of information, the Internet is the most
democratic of all the mass media. Consequently, the world has witnessed an exponential growth
of the Internet over the past two decades [ZAKOS]. It has actually grown from connecting 213
hosts in 1981 to over 353 Million in 2005. The number of World-Wide-Web (WWW) sites has
grown from 1 in 1990 to over 70 Million in 2005 while the number of users has grown from 16
Million in December 1995 to over 1 Billion in December 2005. The Internet has also experienced
a rapid introduction of applications. Some of the major applications include the WWW, File
Transfer Protocol (FTP), Email, Video and Audio streaming, Voice-over-IP (VoIP) and
ecommerce. The transmission media have also evolved immensely such that in addition to the
traditional wired links, wireless systems and dense wavelength division multiplexing (DWDM),

which offer multi-gigabit capacities, are becoming more and more ubiquitous.

The success of the Internet can largely be attributed to the strength of its underlying protocol
suite, the Transmission Control ProtocolInternet Protocol (TCP/IP). TCP is a higher layer
protocol which divides a message or file into TCP segments which are then packaged into
packets, containing addresses of the source and the destination. TCP provides a reliable, in-order

delivery from the source to destination. On the other hand, IP is a lower layer protocol which
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handles the address part of each packet so that it gets to the right destination. When these packets
arrive at the destination, they are reconverted into TCP segments by removing the source and
destination addresses. The TCP receiver reassembles these segments into the original message.
To ensure reliable delivery, the TCP receiver sends an acknowledgement (ACK) for every
segment received. Every segment from the sender is sent with a sequence number identifying
which bytes the segment contains. ACKs are cumulative. They identify the sequence number of
the next in-order byte the receiver expects to receive from the sender. A TCP sender uses these
ACKs to compute the send window, which roughly keeps track of how much data has been sent
but not yet acknowledged. To provide in-order delivery, the TCP receiver must buffer any
segments that are received out-of-order until gaps in the sequence number space have been filled.
In each ACK, a TCP receiver includes the amount of space it has left in its buffer. This amount of
space is called the receiver’s advertised window rwnd . Upon receiving this window update, a
TCP sender will not allow more than that amount of data to be unacknowledged in the network
(i.e., if there is no room in the receiver’s window, no new data will be sent). This is how TCP
performs flow control. The goal of flow control is to make sure that the sender does not overrun
the receiver’s buffer. For flow control, the send window cannot be larger than the receiver’s

window.

Although TCP/IP has sustained the Internet for a long time, it was not designed to work
optimally. The enormous growth of the Internet in terms of demand for access from its users and
the increasing demand for new applications has really exposed the weaknesses in the TCP/IP
protocol suite. One of the major weaknesses of TCP/IP relates to its failure to address the
problems of congestion. These problems arise because the Internet is essentially a network of
interconnected queues in which packets are switched from their respective sources to their
destinations. Routers and switches contain queues which are used for buffering packets when the
instantaneous arrival rate of packets is greater than the outbound traffic rate. These queues are
generally first in/first out (FIFO) and have finite capacity. A new packet at a router/switch must
wait for the packets in front of it to be transmitted first before it can be transmitted. If the queue is
full, the packet is dropped. Queuing delays stow down the delivery of data from the sender to the
receiver. This decreases the performance of applications {rom the perception of the user. It also
atfects the quality of service requirements of interactive applications such as telephony, video
conferencing and interactive games since these applications require to be delivered quickly within
certain delay constraints. The side effect of this problem is the issue of delay variation which

causes jitter in the delivery of these bandwidth-sensitive applications. Apart from wasting
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resources, lost packets have a major effect on the performance of TCP. TCP ensures a reliable
delivery of segments, so if a TCP segment is dropped, subsequently received segments cannot be
delivered to the application layer until the dropped segment has been successfully received. When
a segment has been dropped, TCP detects the drop and retransmits the lost segment. This results
in increased delays for the user. These problems call for an urgent need to re-examine the current
Internet congestion control mechanisms and improve them in light of the unprecedented growth

of the Internet.

1.2 An Overview of Internet Congestion Control

The need for Internet congestion control originally became apparent during several periods of
1986 and 1987, when the Internet experienced the "congestion collapse” condition predicted by
Nagle [NAG84].The network was so overloaded with retransmissions of lost data such that no
new data could get through. During this period, a large number of widely dispersed Internet sites
experienced simultaneous slowdown or cessation of networking services for prolonged periods.
The world was at the brink of an Internet meltdown [JK88],[FLOOOa]. This condition triggered a
wave of relentless research efforts which are still going on. It 1s now generally accepted in the
Internct community that the problem of network congestion control remains a critical issue and a
high priority one, especially given the growing size, increasing demand for new services with
varying quality of service characteristics, and higher speed (bandwidth) demanded from an
increasingly integrated services network. Rescarch in this aspect has evolved along three
interrelated fronts namely: end-to-end mechanisms, router (gateway) based detection mechanising

and explicit notification mechanisms.

1.2.1 End-to-end Mechanisms

End-to-end mechanisms attempt to address the congestion problem by making changes to
TCP.They try to detect congestion by monitoring end-to-end measurements. The original TCP
[CK74, CDS74] detected segment loss by setting a Retransmission Timeout (RTO) timer when a
segment was sent. If the timer expired before the ACK for that segment was received, the
scgment was assumed to be lost and all segments starting at that sequence number were
retransmitted (this scheme is known as “Go-Back-N"). Only flow control was implemented in

TCP. Nothing in TCP dictated what should be done when congestion was encountered in the
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network. In an immediate response to the congestion collapse scenario, Jacobson and Karels
[JK88] implemented the first attempt at TCP congestion control which consists of several
changes to the original TCP. These changes include the addition of a slow start phase, a
congestion avoidance phase, and a fast retransmit phase. The modified TCP was called 7CP

Tahoe.

1.2.1.1 TCP Tahoe

TCP Tahoe requires each side of the connection to keep track of two additional variables: the
congestion window cwnd and the threshold ssthresh . Before the introduction of this mechanism,
the amount of data that the sender could inject into the network was limited by rwnd only. The
introduction of cwnd imposed an additional constraint on how much traffic a host can send into a
connection. Specifically, the amount of unacknowledged data that a host can have within a TCP

connection may not exceed the minimum of cwnd and rwad .

Before TCP Tahoe was introduced, TCP senders could send out segments as fast as possible at
startup. The TCP senders, though, have no indication of how much data the network can handle at
once, so often, these bursts led to packets being dropped at routers. TCP Tahoe introduced the
slow start algorithm which is called into play either when a TCP connection starts up or after a
packet loss. The congestion window cwnd is set to one segment at startup. TCP sends the {irst
segment into the network and waits for an acknowledgement. If this segment 1s acknowledged
before its timer runs out, the sender increases the congestion window by one and sends out two
segments. If these segments are acknowledged before their timeouts, the sender increases the
congestion window by one segment for each of the acknowledged segments, giving a congestion
window of four segments, and sends out four segments. This procedure continues as long as (1)
cwnd < ssthresh (2) the acknowledgements arrive before their corresponding timeouts. During
this phase of the congestion control procedure, the transmission rate starts slowly but accelerates
rapidly afterwards. This enables TCP to slowly probe the network to determine the available

capacity, in order to avoid congesting the network with an inappropriately large burst of data.

When cwnd > ssthresh , slow start ends and congestion avoidance begins. Congestion avoidance
probes for additional bandwidth by linearly increasing the transmission rate. Once in congestion

avoidance phase, cwnd is increased by [/cwnd of a segment for each ACK received. The idea is
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that in one round trip time (RTT), a TCP sender with a window of size cwnd will receive at most
cewnd ACKs, so this results in a congestion window increase of at most one segment every RTT.
This lincar increase contrasts with slow start, which is an exponential increase with cwnd
doubling every RTT. The congestion avoidance phase continues as long asthe
acknowledgements arrive before their corresponding timeouts. But the window size, and hence
the rate at which the TCP sender can send, can not increase forever. Eventually, the TCP rate
will become higher such that one of the links along the path becomes saturated. At this point,
packet loss (and a resulting timeout at the sender) will occur. When a timeout occurs, the value of
ssthresh is sct to half the value of the currentewnd , and cwnd itsclf is reset to one segment. The
sender then again grows the congestion window exponentially fast using the slow start procedure
until cwnd > ssthresh, after which congestion avoidance takes over again. The TCP window
adjustment mechanism is gencrally known as the Additive Increase Multiplicative Decrease
(AIMD) algorithm. This is because TCP essentially increases its window size by one every RTT
(and thus increases its transmission rate by an additive factor) when its network path is not

congested, and decreases its window size by a factor of two every RTT when the path is

congested.

The fast retransmit mechanism is a faster way of detecting segment loss which works by inferring
segment loss through the receipt of three duplicate acknowledgements. Whenever a receiver
receives an out-of-order segment (e.g., a gap in sequence numbers), it sends an acknowledgement
for the last in-order segment it received, which would be a duplicate of the previous
acknowledgement sent. The sender uses the receipt of three duplicates of the same ACK to infer
that there was segment loss rather just segment re-ordering. The advantage of this mechanism is
that it reduces the amount of time needed to detect a segment loss. Without fast retransmit, the
expiration of the RTO timer would be required to detect loss. For flows with large congestion
windows, multiple acknowledgements will typicaily arrive in one RTT.In this way, fast
retransmit allows TCP to avoid large timeouts during which no data can be sent. When the third
duplicate ACK 1is received, TCP performs a retransmission of what appears to be the missing
segment, without waiting for the RTO timer to expire. The congestion window is set to 1
segment. Duplicate ACKSs may continue to arrive, but no change is made to cwnd and hence no
data segments are sent. When the ACK, that acknowledges that the lost segment has been
successfully received, returns, cwnd is incremented to 2, transmission resumes with the next two

segments in the pipeline. From this point, slow start continues as normal.
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1.2.1.2 TCP Reno

In 1990, a feature known as fast recovery was added to TCP Tahoe by Van Jacobson. The new
TCP is known as TCP Reno and is the de facto standard version of TCP on the Internet
[APS99].When three duplicate ACKs are received, fast recovery is entered instead of slow start.
In this mode, ssthreshis set to 1/2cwnd and cwnd is set to ssthresh+3 (one for each of the
three duplicate ACKs, which imply that segments have left the network. For each additional
duplicate ACK received, cwnd is incremented by one segment, as in slow start. New segments
can be sent as long as cwnd allows. When the ACK arrives for a retransmitted packet, cwnd is
set back to ssthresh TCP then leaves fast recovery and returns to congestion avoidance. This
mechanism enables the sender to probe for available bandwidth conservatively with less chance

of overflowing network queues than with using slow start.

1.2.1.3 TCP New Reno

Recently, TCP New Reno has been proposed [FH99]. TCP New Reno addresses some of the
problems encountered with TCP Reno. The fundamental problem with TCP Reno is that the first
partial ACK brings the sender out of the fast recovery phase. This will result in the requirement of
timeouts when there are multiple losses in a window, and thus stalling the TCP connection. TCP
New Reno solves this problem by using a partial ACK as an indication of another lost packet and
as such the sender retransmits the first unacknowledged packet. Unlike Reno, partial ACKs don't
take New Reno out of Fast Recovery. This way, it retransmits one packet per RTT until all the

lost packets are retransmitted and avoids requiring multiple fast retransmits from a single window

of data.

1.2.2 Router-Based Detection Mechanisms

Router based mechanisms operate by detecting incipient congestion at the router queues and
notifying the senders so that they reduce their transmission rates. Jacobson and Karels pointed out
that the end-to-end mechanisms, while necessary and powerful, were not sufficient to provide
good service in all circumstances [JK88]. They observed that while transport endpoints can
ensure that network capacity is not excecded, they cannot ensure fair sharing of that capacity.

They further noted that cnough information to control sharing and fair allocation is found only in
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gateways (routers) at the convergence of flows [JK88]. Floyd and Jacobson [FI93] further pointed
out that the gateway can reliably distinguish between propagation delay and persistent queuing
delay. Only the gateway has a unified view of queuing behaviour over time; the perspective of
individual connections is limited by the packet arrival patterns for those connections. The default
router algorithm for detecting congestion is known as the drop-tail mechanism. Routers usually
employ the drop-tail technique along with FIFO-based queue scheduling. The first packet that
arrives at the router is the first to be transmitted. The packet that arrives last is the likely
candidate to be dropped in the event that the queue reaches its maximum length. Braden er al.
[BRA9S] noted that the drop-tail technique had served the Internet quite well for years but it has
two major setbacks: lockout and full queues. The lock out phenomenon may occur when drop-tail
allows a few connections or flows to monopolize queue space. This usually happens as a result of
synchronization or other timing effects. The full queue phenomenon happens because of the
nature of the drop-tail mechanism itself. The drop-tail mechanism allows queues to maintain a
full queue status for long periods of time, since drop-tail signals congestion (via a packet drop)
only when the queue has become full. Besides these two major setbacks, this mechanism is also
biased against bursty traffic. The burstier the traffic from a particular connection, the more likely

it is that the gateway queuc will overflow when packets from that connection arrive at the

gateway [FI92].

1.2.2.1 Random Early Detection

Random Early Detection (RED) [FJ93], proposed by Floyd and Jacobson, marks one of the
greatest milestones in router based congestion detection. The main goal behind RED is to provide
congestion avoidance by controlling the average queue size. Congestion notification is performed
by dropping packets. When packets are dropped, the sender TCP detects that there is congestion
on the network either through duplicate ACKs or timeouts. Once congestion has been detected

TCP invokes the congestion avoidance algorithms presented in Section 1.2.1.

RED uses a weighted average queue size and two thresholds min, and max, .When the
weighted average queue size is belowmin, , RED acts like a drop-tail router and forwards all

packets. This is deemed as a congestion free zone. When the weighted average queue size is

between min, andmax,, RED drops the incoming packets probabilistically. All incoming

packets are dropped when the weighted average queue size is greater than max, .The RED AQM
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scheme is illustrated in Figure 1.1.BS denotes the maximum buffer size which is usually set

to2*max,, .

| O I

Packet dropping probability

max,

ming, max, BS

Queue length

Figure 1.1: RED AQM Scheme

The equations that RED uses to compute the weighted average queue size and the drop
probability are as follows:
e Exponential weighted moving average:
Avg .. =1~ wQ)Avg”,d + Wy *0
where () is the current queue length and w), is the weight parameter
*  Drop probability: p, = p, /(1= count * p,), where

py, ={(max,,(Avg —min,))/(max,, —min,) and count is the number of undropped packets

since the last dropped packet. Parameter max, denotes the maximum packet dropping

probability before RED starts dropping all incoming packets.

RED ensures that packets are dropped in proportion to the input rates of the connections.
Conncctions with higher input rates receive more drops of packets than connections with lower
input rates. By so doing, RED tries to maintain equal rate allocation and removes biases against
bursty connections. By using probabilistic packet dropping RED also eliminates global

synchronization exhibited by the drop-tail approach. The Internet Engineering Task Force (IETF)
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recommends the deployment of RED in RFC 2309 [BRA98]. Although RED has been widely
implemented in today’s routers, it has largely remained not switched on because there are still lots
of doubts concerning its ability to address the congestion problem. The major weakness of RED

relates to the setting of its four operational parameters: thresholds min, andmax, , the weight
parameter w, and the maximum packet marking probability max,. The efficiency of RED is

completely dependent on the proper configuration of these parameters [FKS99]. In [LOWO02],
Low er. al. perform a control-theoretic analysis of TCP/RED and points out that RED becomes
unstable as RTT delay increases, or when network capacity increases. It has further been

questioned whether RED really gives any benefit over drop-tail [MBD99].

1.2.2.2 Post RED Mechanisms

A plethora of router based congestion detection mechanisms, now generally known as Active
Queue Management (AQM) has been proposed in order to address the weaknesses of RED
[OLW99] [FEN99] [PPPO0] [ALLYO1] [FYXO02]. Based on their architecture and principles of

operation, these mechanisms can be classified into two broad categories: traditional (analytical)

or fuzzy logic based.

Traditional (Analytical) Techniques
Traditional techniques attempt to address the weaknesses of RED by using formal

mathematical models of the system and traditional control theoretic tools. The key

traditional AQM algorithms include:

* BLUE [FEN99]: This algorithm uses packet loss and link-idle events rather than the
queue length to control congestion. BLUE increases the packet drop probability in
response to a bufler overflow (ie., a packet drop) and decreases the packet drop
probability when the link becomes idle.

* CHOKe [PPPO0]: CHOKe is short for “CHOose and Keep for responsive flows, CHOose
and kill for unresponsive flows. This is a stateless algorithm that attempts to ensure a fair
bandwidth allocation to all the flows that share a FIFO based outgoing link of a
congested router. It accomplishes this by dropping more packets from high-bandwidth
unresponsive flows. The essence of this algorithm is that, when a packet arrives, a
random packet is picked from the queue. If the randomly chosen packet is from the same

source as the newly arrived packet, both packets are dropped.

9
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e Adaptive Virtual Queue (AVQ) [KSO1] uses a modified token bucket model as a virtual
queue (VQ) to regulate buffer utilization rather than the queue length. AVQ adjusts the
size and link capacity of the VQ proportional to the measured input rate and drops
packets when the VQ overflows.

o Adaptive RED (ARED) [FGSO1] atiempts (0 maintain suitable operating parameters in

RED by dynamically adjusting max, in the RED algorithm based on observed queue
length dynamics. ARED increases max, when weighted average queue length exceeds

the target queue length and decreases max, when weighted average queue length goes

below the target queue length.

¢ Random Exponential Marking (REM) [ALLYO!] is an optimization based scheme for
communicating congestion from links to sources by exponential marking. REM uses
pricing algorithm to determine the congestion measure. The congestion measure is a
function of the rate mismatch and the queue mismatch.

¢ Proportional Integral (PI) [HMTGO1] is a control theoretic approach which regulates the
queue length to a reference value by using instantaneous samples of the queue length
taken at a constant sampling frequency as its input.

o GREEN [WZ02] is a feedback control function which adjusts the rate of congestion
notification in response to the flow based congestion measure which denotes the

estimated data arrival rate above the target link capacity.

Fuzzy Logic Based Techniques

Fuzzy logic is one of the tools that constitute what is commonly as Computational Intelligence
(CI). The other components of CI are artificial neural networks (ANNs) and evolutionary
computation (EC). Fuzzy logic was invented by Zadeh [ZA65] for handling uncertain and
imprecise knowledge in real world applications. It has proved to be a powerful tool for decision-
making, and manipulating imprecise and noisy data. Fuzzy control was introduced by Mamdani
[MAM74] for controlling complex processes. Unlike classical logic which requires a deep
understanding of a system, exact equations, and precise numeric values, fuzzy logic incorporates
an alternative way of thinking, which allows modeling complex systems using a higher level of
abstraction originating {rom our knowledge and experience. Fuzzy Logic has been found to be
very suitable for embedded control applications. Several manufacturers in the automotive and
acrospace Industry are using fuzzy lechnology Lo improve quality and reduce development time.

In consumer electronics, fuzzy logic improves time to market and helps to reduce costs. In

10
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manufacturing, fuzzy logic is proven to be invaluable in increasing equipment efficiency and
diagnosing malfunctions. Some of the benefits of Fuzzy Logic include performance, simplicity,

lower cost, and productivity.

Li and Lee [LL89] and Prade [PRASQ] stress that in practical queuing systems, the mean of the
arrival rate and the mean service rate are frequently fuzzy ie. they cannot be expressed in exact
terms. It is therefore very difficult to solve queuing problems by using traditional analytical
techniques. Based on these developments, a number of fuzzy logic based congestion detection
algorithms have been proposed with satisfactory results since 2003.The performance of these
algorithms, in terms of packet loss rate, link delay and stability, is generally better than that of
traditional approaches. The Europcan Network for Intelligent Technologies (EUNITE) Roadmap
[SLMO04] further points out that the application of fuzzy control techniques to the problem of
congestion control in IP-based networks is suitable due to the difficulties in obtaining a precise

mathematical model using conventional analytical methods.

The general trend, in Fuzzy Logic based congestion detection techniques [FYX02] [CHRO3a]
[WANO3] [ANNO4], is that they use queue length and/or traffic arrival rate as input variables.
The system output is the probability which is used in the congestion notification process. The
control law of the fuzzy algorithm is encapsulated in a set of simple linguistic rules and
membership functions which are jointly known as the rule base. The efficiency of these

algorithms is therefore largely dependent on the proper design of the rule base.

1.2.3 Explicit Notification Mechanisms

Efficient delivery of congestion signals is essential to the performance of the Internet. Packet
dropping is the default method used by IP routers to inform the senders about their load levels.
The senders detect these packel drops by using retransmission timeouts and the fast retransiit
mechanism. Then they respond by limiting their packet injection rate in order to match the
available petwork capacity. This method of delivering congestion signals has a number of
disadvantages. The packet drops not only increase the amount of traffic in the network due to
retransiussions but also add a large transfer delay. This mechanism also proves to be expensive
because the dropped packets will have traversed a larger portion of the network by the time they
get dropped. Therefore, a scarch for mechanisms which would offer direct feedback to the

senders without dropping the packets became necessary. In the following subsections, we discuss

11
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the explicit congestion notification mechanisms that are available in literature. We also discuss
the explicit underutilization notification mechanisms. These mechanisms are tailored for high
bandwidth capacity links (greater than 1 Gbps) where the link is underutilized i.e. congestion is

not a concern.

1.2.3.1 Internet Control Message Protocol (ICMP) Source Quenches (ISQ)

The Internet Control Message Protocol (ICMP) was designed to be an integral part of IP
[POS81]. ICMP enables the router or the destination host to communicate with the source host
occasionally. The Source Quench (SQ) is an example of the messages sent by using ICMP. Using
the drop-tail mechanism, a router discards incoming data packets if it does not have the buffer
space needed to queue them for output to the next network on the route to the destination
network. If a router discards a packet, it may send an ISQ message to the source host of the
packet. A destination host may also send an ISQ message if packets arrive too fast to be
processed. The ISQ message is a request to the host to cut back the rate at which it 1s sending
traffic into the network. The router may send an 1SQ message for every packet that it discards.
On receipt of an ISQ message, the source host cuts back the rate at which it is sending traffic to
the specified destination until it no longer receives source quench messages from the router. The
source host can then gradually increases the rate at which it sends traffic to the destination until it

again receives source quench messages.

RFC 1254 [MRO91] points out that although ISQ messaging was well defined, the conditions for
1SQ generation at the router and the appropriate reaction at the source host were not implemented
in a standardized way. RFC 1812 [BAK95] further points out that the generation of 1SQ messages
creates an extra overhead on router resources (e.g. memory, processing time). The transmission of
[SQ messages adds traffic in the reverse direction on what might be a congested path. Based on
these observations, RFC 1812 disapproves the generation of ISQs from a router or a destination
host but also specifies that a router that generates ISQs must be able to limit the rate at which they
are sent. With these developments, interest in ISQ messaging as a mechanism for explicit
congestion notification died down such that in the implementation of RED and all subsequent

AQM algorithms, this mechanism was not supported.

12
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1.2.3.2 Explicit Congestion Notification (ECN)

A major turning point in explicit congestion notification took place with the introduction of the
ECN approach [FLO%4], [RFO1]. Two bits in the [P header have been reserved for this purpose.
One of these bits is known as the ECN Capable Transport (ECT) bit. A packet with the ECT bit
set i.e. equal to one, informs every ECN capable router along its path that its TCP sender is ECN
capable. When the ECN capable router detects congestion, it marks the packet’s second reserved
bit which is known as the Congestion Experienced (CE) bit. It then forwards the packet to the
next link. The packet traverses the network until it reaches its destination. Upon receiving a
packet with the CE bit marked, the receiver echoes the ECN bit back to the source in the TCP
header of the returning ACKs. The sender responds to ECN by halving the congestion window
thereby reducing packet transmission rate. This happens once in an RTT. After responding to
ECN, the sender sets the Congestion Window Reduced (CWR}) bit in its TCP header. This serves
to inform the receiver that action has been taken in response to the congestion signal. In order to
act against the loss of ACKs, the receiver continues to set the ECN-Echo bit in subsequent ACKs
even if further packets do not have the CE bit set until it receives a packet with CWR bit set in the
TCP header.

Studies have shown that the use of the ECN mechanism for the notification of congestion to the
end nodes prevents unnecessary packet drops and retransmissions [FLO94], [SAOO]. A second
benefit of ECN is that the sources can be informed of congestion quickly and unambiguously,
without the source having to watt for either a retransmit timer or three duplicate ACKs to infer a
dropped packet. For those cases where a dropped packet is not detected by the Fast Retransmit
procedure, the use of ECN mechanisms can improve a bulk-data connection's response to
congestion. ECN's downside relates to the long delay experienced in congestion notification,
Under heavy load and large delay links such as satellite links, congestion will persist for a long

time. These lead to higher queue variance, reduced throughput and longer transfer delays for short

lived flows.

1.2.3.3 Backward Explicit Congestion Notification (BECN)

Recently, ISQ messaging has been revived with the introduction of Backward Explicit
Congestion Notification (BECN) [HNS98].The BECN proposal clearly defines the guidelines for

generating ISQs and responding to them in a TCP/IP network. It sorts out the reservations

13
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expressed against the use of ISQs in [MR91].1t also points out that the problem of extra routcr
overhead and increased reverse network traffic generated by 1SQs would no longer be a big
concern as stated in [BAK95] because the ISQs would be generated only when the computed
RED probability requires dropping or marking. Studies [AKUO2] comparing ECN and BECN
have shown that BECN exhibits lower transfer delay for interactive TCP applications, and

improves goodput for butk TCP applications.

BECN’s major downside relates to the generation and transmission of 1SQs. Therefore it is
generally desirable to minimize the generation of ISQs in high speed routers. Another drawback
of BECN is lack of reliability. In contrast to ECN, which ensures that the destination host sends
ECN-Echo ACKs continuously until the sender notifies it that congestion notification has been

rececived, BECN doecs not guarantee reliability because ISQ loss can not be detected by the

sender.

1.2.3.4 Explicit Underutilization Notification Mechanisms

The main goal in these mechanisms is to allow TCP to switch off its traditional congestion
avoidance algorithms and exponentially increase its sending rate so as to utilize the vast network
capacity at its disposal. Router based mechanisms that have been proposed in this area include:

e Anti-ECN: In contrast to ECN, the Anti-ECN [KUNO3] proposal is a simple scheme
which uses a single bit in the packet header to allow a TCP connection to increase its
sending rate aggressively over an underutilized high capacity link. It uses aggregate
information to provide feedback and does not require the routers to maintain per tflow
state. The senders can increase their rates even in the middle of a transfer.

*  Quick-Start: Quick-Start [SAF05] is a collaborative effort between sources and routers. A
TCP source sends a packet that includes a Quick-Start Request in an [P option containing
the requested rate, say X bytes/sec. Each router along the path either indicates agreement
with the request or lowers the requested sending rate or implicitly signals that the Quick-
Start option was not processed and hence the request was not approved. The data receiver
reports the information received in the Quick-Start Response in a TCP option, and the
data sender determines if all of the routers along the path have agreed to the request and
sets the sending rate appropriately. The assumption is that routers will only approve

Quick-Start requests when they are underutilized.
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1.3 Motivation and Focus of this Thesis

Work on this thesis has been spurred by a number of factors. Firstly, it has been observed that
even though literature is replete with AQM proposals, none of these mechanisms has really been
implemented and activated in commercial routers. Practically speaking, routers are still using the
drop-tail mechanism in order to detect congestion. Bitorika er al. [BRHO4] carried out an
evaluation of key AQM algorithms that had been proposed between 1999 and 2003. Their major
finding was that each algorithm performs well only for specific metrics. None of the algorithms
exhibited global optimal performance. It is worthy pointing out that AQM algorithms evaluated
by Bitorika et al. are all based on formal analytical techniques. The introduction of fuzzy logic
based AQM techniques, which perform better than their analytical counterparts, gives the Internet
community a lot of hope. However, a crucial problem with fuzzy AQM algorithms relates to the
design of linguistic rules and their membership functions. The fuzzy AQM schemes in literature
rely on the expert knowledge of the designer who performs the rigorous process of tuning the
fuzzy parameters until optimal performance is rcached (from the designer’s perspective). The
human factor involved in this operation makes it difficult for these algorithms to achieve optimal
performance for all the key AQM objectives. Therefore, this thesis focuses on finding a method
of designing the fuzzy AQM scheme that achieves optimal performance in all the major
performance metrics of Internet congestion control without relying on the designer’s expert

knowledge.

Secondly, we have noticed that, in trying to keep up with the variations, unmodelled system
dynamics and other disturbances on the Internet, a few adaptive fuzzy AQM schemes have been
proposed. Much as these algorithms perform better than the traditional AQM approaches, the
manner in which they adapt themselves to the network is still based on the same analytical
methods. Therefore, they intrinsically carry along with them the weaknesses of those methods. A
look on the other hand shows that there is a large body of research works on online adaptation
and self learning fuzzy logic systems [PM79], [PRF99], [SBMO02], [PRGO04]. This thesis therefore
uses some principles learnt from these systems in order to develop online self-learning and

organization structures for the fuzzy AQM scheme.
The third motivating factor for this work relates to the desire to implement an explicit congestion

notification mechanism that combines the ECN and BECN approach so that the two approaches

must complement each other. The first proposal to combine these mechanisms is based on RED
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[AKUO3]. Considering the weaknesses of RED and the superiority of fuzzy logic based AQM
schemes, we felt that a dual explicit congestion notification mechanism based on fuzzy logic
would perform better than the RED based proposal. This thesis also extends this concept to

satellite networks which are characterized by long delays.

1.4 Empirical Validation

Throughout this research, we use the network simulator ns-2[NS05] for validation of all the
proposed models, protocols and algorithms and for conducting performance comparison with
various prior works in related areas. We developed our own ns-2 simulation source codes for the
new algorithms and integrated them in the ns-2 package. In all simulations involving web traffic,
we use the standard web traffic generator included with ns-2, with the following parameter
settings: an average of 30 web pages per session, an inter-page paramecter of 0.8, an average page

size of 10 objects, an average object size of 400 packets and a Pareto I shape parameter of 1.002.

1.5 Thesis Organization

Chapter 2: Literature Survey of post-RED AQM algorithms. This Chapter begins by
presenting the principles of operation, the efficiencies and deficiencies of the key analytical AQM
schemes. The chapter continues by presenting the fuzzy logic control theory before reviewing the

fuzzy AQM schemes in terms of their design principles, efficiencies and deficiencies.

Chapter 3: Fuzzy Logic Congestion Detection Algorithm Design using MOPSO. In this
chapter, we propose a Fuzzy Logic Congestion Detection (FLCD) algorithm which combines the
good attributes of both the traditional AQM approaches and the fuzzy logic based algorithms that
have been reported in literature. We also introduce new concepts in order to address some of the
demerits observed in Chapter 2. The membership functions (MFs) of the FLCD algorithm are
designed automatically by using a Multi-objective Particle Swarm Optimization (MOPSQ)
algorithm in order to achieve optimal performance on all the major performance metrics of IP
congestion control. The performance of this new algorithm is compared with that of the fuzzy
logic based congestion control algorithm in [FYX03] and the Random Explicit Marking (REM), a
highly rated analytical AQM algorithm. This Chapter extends the FLCD algorithm to

Proportional Differentiated Services IP networks.
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Chapter 4: Online Self-learning and Organization. This Chapter enhances the performance of
the FLCD algorithm by proposing two online self organization structures that enable the FLCD
algorithm to learn the system conditions and adjust itself accordingly thereby achieving optimal
performance in dynamic traffic environments and a wide range of topologies. The first self
organization structurc adjusts the update interval in line with the prevailing link propagation
delay. This would help to improve the FLCD algorithm’s performance with respect to TCP traffic
transmissions which depend on the value of the RTT. The second one implements a self-learning
and adaptation mechanism based on concepts borrowed from the self organized fuzzy controllers

in [PM79], [PRF99], [SBMO02], [PRGO4].

Chapter 5: A Dual Explicit Congestion Notification Mechanism. This Chapter proposcs a
fuzzy logic based dual explicit congestion notification mechanism which combines the merits of
the Explicit Congestion Notification (ECN) and the Backward Explicit Congestion Notification
(BECN) mcchanisms. This Chapter also proposes an RTT based decay function which reduces

the amount of reverse traffic without jeopardizing the performance of the BECN mechanism.

Chapter 6: Conclusion and Future Work. This Chapter presents conclusions drawn in this

dissertation and gives direction for future work.

1.6 Original Contributions of this Thesis

The key contributions of this research are summarized as follows:

1. A proposal for a multi-objective particle swarm optimized Fuzzy Logic Congestion

Detection (FLCD) mechanism in Chapter 3.

2. An extension of the Fuzzy Logic Congestion Detection algorithm to the Proportional

Differentiated Services IP Networks in Chapter 3

3. A proposal for self-learning and organization structures for the FLCD algorithm in
Chapter 4.

4. A proposal for a fuzzy logic based dual explicit congestion notification mechanism and a

proposal for an RTT based BECN reverse traffic reduction mechanism in Chapter
5.
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Chapter 2

Literature Survey on post-RED AQM
Algorithms

2.1 Introduction

Chapter 1 has discussed the design principles, the strengths and the weaknesses of the Random
Early Detection (RED) algorithm, which is an IETF standard Active Queue Management (AQM)
algorithm. Chapter 1 also points out that a plethora of AQM algorithms has been proposed either
to improve the RED algorithm or to introduce novel concepts for congestion detection. In this
Chapter, we present an in-depth review of the major post-RED algorithms both in the traditional
and the fuzzy logic domain. Although fuzzy logic algorithms exhibit better performance than
traditional AQM algorithms, we think that they can be improved further by incorporating some
good operational characteristics from traditional algorithms. This Chapter is organized as follows:
In section 2.2, the major traditional AQM algorithms are reviewed. Their efficiencies and
deficiencies are highlighted. Section 2.3 begins by presenting the Fuzzy Logic Control Theory
and ends with a review of the major Fuzzy Logic AQM algorithms. The efficiencies and

deficiencies of these algorithms are highlighted. Finally, section 2.4, presents a summary of this

Chapter.

2.2 Major Traditional AQM Algorithms

This section reviews the following traditional AQM algorithms: BLUE [FEN99], CHOKe
[PPPO0], Adaptive RED [FGSO01], REM [ALLY01] and GREEN [WZ02]. These algorithms have

been adequately documented in peer-reviewed literature. Except for BLUE, all of these
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algorithms have featured in the comparative study of AQM schemes by Bitorika er al. [BRHO3].

We review them in the chronological order of their publication.

2.2.1 BLUE

BLUE algorithm [FEN99], proposed by Wu-Chang Feng et al., uses packet loss and link under-
utilization events, rather than queue size, to adjust the rate of congestion notification. The

congestion notification rate p, is increased at a set rate if the queue size exceeds a threshold L,
and it is decreased if the link is idle. The notification rate is increased byd,,
every freezetime seconds when the queue size is over the Lthreshold. The notification rate
decreases by d,every freezetime seconds when the link is idle. In this way, the congestion
notification rate p, converges to a value which controls the arrival rate so that queue is below the

threshold L, and the link is not idle. Figure 2.1 shows the BLUE algorithm.

Upon Packet loss or (B(f) > L)event:
if ((t —last _update)> freezetime) then

pm+1 = pm + dl
last _update =1

Upon link idle event:

if ((r —last _update) > freezetimme) then
pmH = pm - dl
last _update =1

Where ¢ = current time , B(r) = current queue size

Figure 2.1: BLUE AQM

Simulation results in [FEN99} show that BLUE achieves a more stable marking probability than

RED. It is also shown that BLUE has a more stable queue size than RED.
Although BLUE exhibits better performance compared to RED, further research [WZ02] has
uncovered a number of shortcomings in it. The major problem relates to its design which

necessitates that the queue wanders between O and the L threshold level in order for the marking
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probability p, to be adjusted to an equilibrium level required for a given load of TCP
connections. This is because p, is not adjusted unless the queue is either 0 orL. Unless the
aggregate arrival rate into the link is matched perfectly to the link capacity, then the queue will
decrease or increase, and cause adjustments to p, when the link idle or queue (hreshold events are
generated. It has been pointed out in [WY03] that such fluctuations in queue size result in delay

jitter which is detrimental to the Quality of Service (QoS) of interactive applications, such as

VolP.

2.2.2 CHOKe

CHOKe [PPP00], which is short for “CHOose and Keep for responsive flows, CHOose and Kill
for unresponsive flows” is a stateless active queue management scheme which aims to control
source rates so that an equal sharing of bandwidth is achieved at the CHOKe link. The CHOKe
algorithm is interesting because of its performance as well as its simple and elegant

implementation.

CHOKe differentially penalizes non-responsive and TCP unfriendly flows by using queue buffer
occupancy information of each flow. It calculates the average occupancy of the FIFO buffer using
the exponential moving average just as RED [FJ93] does. It also marks two thresholds on the
butfer, a minimum threshold minth and a maximum threshold maxth . If the average queue size is
less than minth , every arriving packet is queued into the FIFO buffer .If the average queue size is
greater than maxth , every arriving packet is dropped. If the average queue is between mint/h and
maxth, each arriving packet is compared with a randomly chosen packet called a drop
candidate packet, from the FIFO buffer. If they have the same flow 1D, they are both dropped.
Otherwise the randomly chosen packet is kept in the buffer (in the same position as before) and
the arriving packet is dropped with a probability that depends on the average queue size. Results
in [PPPO0] show that this simple algorithm 1s able to control high-bandwidth unresponsive UDP
flows, so that TCP connections can share the link more equitably. The CHOKe algorithm also

helps to protect the networks from network anomalies such as Denial of Service (DoS) attacks

and routing loops [HMMDO02] which may flood the network.

Although the CHOKe algorithm is good at addressing the problem of fairness, it is easy to see

that this algorithm is not good at addressing the other major AQM objectives such as

maximization of link utilization and minimization of packet loss rates.

21



Chapter 2 Literature Survey on Post-RED AQM Algorithms

2.2.3 Adaptive RED

Adaptive RED is a modification to RED which addresses the difficulty of setting appropriate

RED parameters [FGS01].Adaptive RED adapts the maximum drop probability max,, so that the
average queue size is halfway between min, andmax, . The value of max, is kept in the range

1- 50% and is adapted gradually. Adaptive RED adds the increment and the decrement factors to

RED. These factors control the increase and the decrease rates of max, respectively. When the

average queue is below the target value, the value of max, is decreased. When the average

g
queue is above target value, the value of max, is increased. Adaptive RED includes another

modification to RED, called “gentle RED” [FLOOOb]. In gentle RED, when the average queue

size is between max, and the maximum buffer size BS , the drop probability is varied linearly
from max, to 1, instead of being set to 1 as soon as the average is greater thanmax, These
modifications to max, and the drop probability are shown in Figure 2.2. Results in [FGSO1]

show that ARED removes the sensitivity to parameters that affect RED’s performance and can

reliably achieve a specified target average queue length in a wide variety of traffic scenarios.

%

O R e R R e e e i) L e pr— e e

Initial drop probability

1%

Ming, target max,, BS

Queue length

Figure 2.2: Adaptive RED Initial Dropping Probability
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2.2.4 REM

Random Explicit Marking (REM) is a framework for communicating congestion information
from links to sources by exponential marking. A REM link marks a packet at link/with a

probability based on the link price p, state, and a global encoding constant §(1 < ¢):

m()=1-¢ " (2.1)
Assuming links mark packets independently, the overall probability of a packet being marked has

an exponent with the sum of the link prices:

1- Ha — (1)) = 1= g~ PP (2.2)

leL

Because sources know the value of @, they can compute the total end-to-end path congestion
price. Therefore, in a complete deployment, REM requires a REM link algorithm and a source
algorithm capable of decoding REM information. In the present Internet implementation link
REM AQM algorithm deployed with the TCP source algorithm. In this case, the price p, (1) state

variable can be interpreted as the marking rate, just as the other AQMs discussed. Three different

alternative pricing algorithms PC1-PC3 constitute REM.

PCL:p, (1 + 1) = yb,(1) (2.3)
PC2: p, (t + V) =[p,(1)— y(x () ~c)] (2.4)
PC3: p,(t+ 1) =p, (1) = Y b (1) + X' () =T (2.5)

where p,(1)1s the congestion notification rate, ¢, is a target capacity just below the actual link

capacity, &,(1)is the backlog, and y and rare control gain constants which affect speed and

stability of control.

PC1 control law is very similar to RED because the congestion notification rate 1s proportional to
backlog. PC2 and PC3 measure the arrival rate to the link to compute the congestion notification
rate instead of using the backlog. The congestion notification rate is controlled by an integral
controller, whose error term is the discrepancy between the aggregate arrival rate to the link and
the target link capacity. The difference between PC2 and PC3 is that PC3 adds a backlog penalty
term to the control process, which makes the marking rate increase with greater rate if there is a
backlog. This improves the transient response of the basic PC2 controller, and reduces the amount

of backlog during transient periods when the load changes.
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Although REM works very well in a steady state situation, experimental results in [BZ02] show
that its behaviour in transicnt conditions and with realistically constrained buffer sizes is not

necessarily optimal.

2.2.5 GREEN

The GREEN algorithm is a feedback control function which adjusts the rate of congestion

notification in response to the flow based congestion measure x,, the estimated data arrival rate.
GREEN is based on a threshold function. If the link’s estimated data arrival rate x  is above the
target link capacityc,, the rate of congestion notification Pis incremented by AP at a rate
of 1/AT .Conversely, if x_ is below¢,, Pis decremented by AP at a rate of I/ AT . The algorithm

applies probabilistic marking of incoming packets at the rate P, either by dropping packets, or

setting the ECN. Let the step function U (x) is defined by:

+1 x=0
U(x)= (2.6)
-1 x<Q
therefore
P=P+APU(x, ~c,). 2.7

The target link capacityc,is assigned a value just below the actual link capacityc,
typically 0.97¢, so that the queue size converges to 0. Incoming data rate estimation is performed
using exponential averaging:

X, = (1 —exp(=Del/ K))*(B/Del)+exp(=Del | K)* x (2.8)

where Del is the inter-packet delay, B the packet size and K the time constant. There is a
relationship between REM PC3 and GREEN. If equation (2.1) 1s lincarised,m= P, the
exponential marking 1s eliminated. Furthermore if the buffer terma =0 and the linear
constant ¥is replaced with the step function (2.6), GREEN's congestion notification

rate P becomes equivalent to REM’s price p, .

Results in fWYO03] show that GREEN exhibits higher link utilization, lower packet rate and delay

than RED and Drop-tail algorithms. Its overall performance is, however very similar to that of

REM because their control laws are similar.
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Although GREEN comes with all these advantages relative to its predecessors, a comparative
evaluation of AQM algorithms in [BRHO3] uncovers one major fundamental problem. Results in
[BRHO3] show that GREEN does not keep track of the queue length because its only congestion
metric is traffic load. Thus it can reach steady-state when the queue is full while keeping the
incoming traffic rate close to the target. In this situation its behaviour is just the same as that of

the Drop-tail mechanism.

2.2.6 WRED

Weighted RED (WRED) is Cisco’s proprietary algorithm which belongs to the family of multi-
RED algorithms which have been proposed for congestion control in Differentiated Services
(DiffServ) TP Networks [BLA98]. Other algorithms in this family include RIO-C and RIO-DC
[MLO00].Differentiated Services (DiffServ) is a paradigm that has been proposed for QoS
provisioning on the Internet. Research in DiffServ IP Networks was triggered by the desire to
satisfy QoS requirements for different applications as the Internet evolves. For instance,
applications such as World Wide Web (WWW) and file transfers prefer low data loss rates while
tolerating large delays. On the other hand, multimedia applications (Voice over IP, Video-on-
Demand etc.) require low delays but can tolerate a certain amount of loss rates. The first
paradigm that was proposed to meet these demands is known as the Integrated Services (IntServ)
[WHI97], [GKP98], [SSZ98]. IntServ ensures end-to-end and per-flow QoS. All connections
reserve the resources needed and routers maintain their reservation parameters on a per-flow
basis. The main problem with this approach relates to the issue of scalability. As the number of
users or connections increases, it becomes difficult to maintain reservation parameters on a per-
flow basis. In order to reduce the problems of IntServ, DiffServ was introduced to provide QoS

with aggregation of flow and per-class service.

DiffServ classifies packets into different service classes by setting a 6-bit pattern in the IP header,
called the Differentiated Services Code Point (DSCP). Each of the 64 possible classes is
associaled with a particular forwarding mechanism at a node, called a Per-hop Behaviour (PHB).
The PHB determines the relative QoS of each class. The classes are called Behaviour Aggregates
(BA). The IETF DiffServ standards describe qualitatively the behaviour expected for each BA but
do not regulate the specific forwarding mechanisms required at the routers and switches to
achieve these behaviours. The original DiffServ proposal [BLA98] is composed of two broad

classes: the expedited forwarding (EF) class and the assured forwarding (AF) class. The

25



Chapter 2 Literature Survey on Post-RED AQM Algorithms

Expedited Forwarding (EF) class is the highest priority class and is for applications requiring
low-loss, low-latency and low-jitter. Typical applications for the EF class include voice over IP
(VoIP), interactive games and online trading programs. The Assured Forwarding AF class has a
lower priority than EF. AF is comprised of a number of subclasses with different grades of
service priority. The AF class is intended for best-effort applications such as FTP, and WWW.
Each subclass within AF is identified by the notation AFxy, where x specifies the service class
and y the packet drop precedence. The AF class is subdivided into four service classes,
implemented as Premium (AFly), Gold (AF2y) Silver (AF3y) and Bronze (AF4y). The IETF
specifies [WH99] that cach of these subclasses should receive a guaranteed minimum share of
link capacity. Typically, the bandwidth available B(AFxy) to a class x in a bottleneck link is such
that B (AFly) > B(AF2y) > B(AF3y) > B(AF4y). Within cach subclass, one of three levels of the
packet drop precedence (y) is specified. The packet drop probability dP(AFxy) of each level
should be dP (AFx1) <= dP(Afx2) <= dP(Afx3).

In order to ensure that QoS requirements for different traffic classes are met, the DiffServ
environment employs a distinct scheduling algorithm in the deque routine. This is in contrast to
best effort networks where the simple FIFO scheduling mechanism is used. Examples of DiffServ
scheduling disciplines include: Round Robin (RR), Priority Scheduling (PS) and Weighted Fair
Queuing (WFQ). A typical DiftServ implementation uses a priority scheduler to give the EF class
packets absolute priority over AF class packets. The bandwidth available to the AF class is
typically shared between each AF subclass by using a WFQ scheduler. The WFQ scheduler
ensures that each service class received a pre-configured portion of bandwidth during overload.
The WRED AQM scheme is implemented on each of the four AF queues while the EF queuc is
controlled by either RED or a Drop-tail approach.

WRED computes a single average queue size which includes packets from all drop precedences.
By convention, packets of the three drop precedence within an AF class are delimited by the
colors red, green and yellow, such that the packet drop probability of each color is; Pr(red) >

Pr(yellow) > Pr(green). WRED gives each color a separate packet dropping probability as shown

in Figure 2.3,
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Packet Dropping Probability

| | | | |
| |
R Ill’lillth Y:r‘ninth R :‘mz\xth G :Iminth Y maxth G:maxth

Aggregate Queue Size
Figure 2.3: WRED Mechanism

Although WRED has been deployed in commercial routers, it generally remains disabled

[BRHO3] because of the problems associated with RED.

2.3 Fuzzy Logic Based AQM Schemes

We present the Fuzzy Logic Control Theory before analyzing Fuzzy Logic AQM schemes. This
theory is the backbone for all the Fuzzy Logic AQM schemes such that a proper understanding of
this theory, before delving into the specifics of different AQM schemes that are emanating from

it, is very important.

2.3.1 Fuzzy Logic Control Theory

We first of all present an overview on fuzzy sets and operators. The principles of operation of the

Fuzzy Logic Controller (FLLC) are presented in the second part of this section.
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2.3.1.1 Fuzzy Sets and Operators

Fuzzy logic is a concept that brings together the reasoning used by computers and the reasoning
used by people. The concept of fuzzy logic was first presented by Zadeh [ZAD65], known as the
father of fuzzy theory. In the conventional (crisp) sets, members are always fully categorized and
there is no ambiguity or dichotomy about membership. Zadeh contends that human thinking does
not embrace precise definitions, but classes of definitions known as fuzzy sets in which the
transition {rom membership to non-membership is gradual rather than abrupt. The degree of

membership is specified by a number between 0, non-membership, and 1, full membership.

The fuzzy set A in X is characterized by a membership function g, (x), which associates each
element in X with a real number in the interval [0, 1]. g (x)is known as the grade of
membership. Hence the fuzzy set on the universe of discourse X is defined as:
A={(x, q,(x)Nlxe X} (2.9)

The fuzzy set has three principal features as shown in Figure 2.4:

1. The range of values (domain) called the Universe of Discourse over which the fuzzy set

1s valid (the x-axis).
2. The degree of membership (i) axis (the y-axis)

3. The fuzzy set function which maps the domain to the degree of membership.
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Figure 2.4: Fuzzy Membership Function

The membership functions in Fig 2.4 are triangular. They are overlapping each other by at least
50%. As a result, a discrete value on the universe of discourse (domain) can be a member of two
or more fuzzy sets. For example, the discrete (crisp) value of 0.375 has a membership grade or u
of 0.25 in the fuzzy set LOW , a membership grade or x4 of 0.75 in the fuzzy set MEDIUM and a
membership grade of 0.0 in the fuzzy set HIGH. Besides triangular membership functions, other

types of membership functions include trapezoidal, gaussian, bell, sigmoid and asymmetric.

Like conventional sets, there are specifically defined operations for combining and modifying
fuzzy sets. Since fuzzy sets arc not crisply partitioned in the same sense as Boolean sets, these
operations are applied at the truth membership level. These set theoretic functions provide the
fundamental tools of the logic. Following the conventional fuzzy logic operations initially defined

by Zadeh, the basic operations are

Intersection: AN B =min(, (x), 11, (X)) = 11, (x)} A 2, (x) (2.10)
Union: AU B = max(, (x), ty (X)) = pt, (X)V Uy {x) (2.11)
Complement: ~ A=1- g, (x) (2.12)
Subset: A B=pt, (x) < 1, (x) (2.13)
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The intersection in (2.10) and the union in (2.11) are the most frequently used examples of the T-

norm (Triangular norm) and the T-conorm operators respectively.

The T-norm operator, 7 :[0,1]x[0,1]—[0,1] gives a general specification of the intersection of

two fuzzy sets A and B . It aggregates two membership grades as follows

2,0 O 5 () = T, (), 1, ()) = 10, () ® 1, () (2.14)
where ®1s the T-norm operator. This two-placed function meets the following basic
requirements:

Boundary: 7(0,0)=0,T(a,l)=T{,a)=a (2.1%)
Monotonicity: T(a,b) <T{(c,d) if a<cand b<d (2.16)
Commutativity: T(a,b) =T (b, a) (2.17)
Associativity: T(a,T(b,¢)y =T(T (a,b),c) (2.18)

The T-conorm operator, §:[0,1]x[0,1] = [0,1] gives a general specification of the union of two

fuzzy sets A and B . It aggregates two membership grades as follows

H, () O () = Sy (3, 1y () = 1, (1) @ f2 () (2.19)
where @is the T-conorm operator. This two-placed function meets the following basic
requirements:

Boundary: S(1,1) =1,5(0,a) = S(a,0) = a (2.20)
Monotonicity: S(a,b) < S(c,d) if a<cand b<d (2.21)
Commutativity: S(a,b) = S(b,a) (2.22)
Associativity: S(a, S(b,¢)) = S(S(a,b),¢) (2.23)

2.3.1.2 Fuzzy Logic Control: Principles of Operation

A fuzzy logic controller is an approximate reasoning-based controller, which does not require
exact analytical models and is much closer in spirit to human thinking and natural language than a
traditional logic system. Fuzzy rules are the backbone of a fuzzy logic system. A simple fuzzy

rule can be written as

if xis HIGH theny is POSITIVE BIG (2.24)
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where HIGH and POSITIVE BIG are linguistic values defined by fuzzy sets on the Universes of
Discourse X and Y respectively. The if-part, x is HIGH ,is known as the antecedent and the then-
part, y is POSITIVE BIG , is known as the consequent. A set of linguistic rules used to map fuzzy

inputs to outputs is known as a rule base. Apart from the rule base, other parts of a Fuzzy Logic

System include the Fuzzifier, the Inference Engine and the Defuzzifier as shown in Figure 2.5.

Real world inputs Real world outputs
A 4 A
\ A A / L }
- Inference .
Fuzzifier ‘ Engine } Defuzzifier
A
A
|
Rule base

Figure 2.5: Fuzzy Logic Controller

The Fuzzifier translates the real world input variables into fuzzy representation by calculating
suitable sets of degrec of membership for each of the inputs. The Inference Engine evaluates
output fuzzy sets from input sets using the predefined fuzzy rules contained in the rule base. The
Defuzzifier transforms the output fuzzy sets into real world output variables. The Inference
Engine calculates the degree of activation of every rule in the rule base. If the antecedent for

rule j contains one variable, the rule’s degree of activation is equal to the degree of membership
of that single variable. Ifﬂ} (x,) denotes the degree of membership of inputx, for rule j then
L(r,) the degree of activation of rule jis expressed as follows
1
M) = (xp) (2.25)
If the antecedent for rule j contains more than one variable in the form

rule j: IF A} AND A7 AND ... AND A} THEN b, (2.26)

(98]
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where Af Is a fuzzy set with membership
function ,uj R—-[01,j=1...,mk= 1,...,n,bj € N . In this case, the degree of activation for

rule j, 4(r;) is determined using the r-norm operator as follows

pry) = () ® 1 (1) ®.. 8 41 (x;) (2.27)
Therefore at the output of the Inference Engine there will always be a fuzzy set
,u(rj) for j=1,2,...,m. This fuzzy set 1s composed of the fuzzy sets output by each of the rules

using equation (2.27). In order to be used in the real world, the fuzzy output needs to be
interfaced to the crisp domain by using a defuzzifier, There are several defuzzification methods
but the widely applied one is the Centre of Gravity (COG) technique, which computes the
weighted-average of the centre of gravity of each membership function. The COG of the system

with mrules is as follows

2.b,u(r)
Yy = (2.28)

> i)

J=1

where b, is the centre of the membership function recommended by the consequent of rule ;.

2.3.2 Evaluation of Fuzzy Logic AQM Schemes

This subsection presents an analytical evaluation of the key Fuzzy Logic AQM schemes that are

available in the public domain.

2.3.2.1 The Algorithm of Ren et. al.

This algorithm is arguably the first fuzzy logic AQM algorithm to be published. It is inspired by
the PT congestion control mechanism developed by Holot er @l [HMTGO1]. Holot er al.
approximated the non-linear and dynamic TCP/AQM model, proposed by Misra er al. [MGTO00],
as a linear constant system by small-signal lincarization about an operating point, and then
designed the traditional PI controller using the classical control theory. The PI proves useful and
helpful in the analysis and explanation of the instability of RED under some network parameter

configuration. In spite of this advantage, Ren et al. [FYX02] arguc that the PI controller is prone

(8]
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to instability and poor performance because the real network is full of dynamic parameters such

as number of active connections.

In their design of a fuzzy based congestion controller, Ren et. al. [FYX02] define EQ as the
expected value of queue length. They also define VQ as the estimated value of the maximum
range that the queue length variation can reach during one sampling interval. They fix the
sampling frequency at 160Hz. They also fix VQ at 0.5BS (where BS is the buffer size). They use
two input linguistic variables: error of queue lengthe and the error’s varying rate Ae.The latter
effectively describes the local dynamic of the difference between the arrival rate and the service
rate. The chosen output is linguistic variable which represents the increment of the packet
marking or dropping probability. The model of fuzzy system, comprising the control rules and the
term sets of the variables with their related fuzzy sets is obtained through a tuning process that
starts from a set of the initial insight considerations. This process continues until the system

reaches a level of performance considered to be adequate. The membership functions are as

shown in Figure 2.6.

0.6EQ 08EQ EQ 12EQ 14EQ BS

(a)Queue Length (a)Variance of Queue Length

NH NB NM NS 7 PS PM  PB PH

: : ux]0*
-8.75 -7.00 -5.25 3.5 <175 175 350 525 700 875

(a)Control variabte

Figure 2.6: Membership Functions for Ren’s Algorithm

Both of the input variables have seven fuzzy term sets, which are negative big (NB), negative

medium (NM), negative small (NS), zero (Z), positive small (PS), positive medium (PM) and

33



Chapter 2 Literature Survey on Post-RED AQM Algorithms

positive big (PB). The output variable is greater by two term sets in number; the extra sets are

negative huge (NH) and positive huge (PH).The control rule base is as follows:

Table 2.1: Fuzzy Control Rules for Ren’s Algorithm
Ae

e [NB| NM | NS | PS PM \ PB
NB | NH | NH NH NB NM | NM |
NM | NH | NB NB NM NM NS NS
NS | NB [ NM NS 7z Z 7 PS
NS | ! 1

gl N

Z |NM | NS Lz Z J Z PS PMT
PS | NS | Z ) ya L z ’ PS PM PB
PM | PS | PS | PM | PM | PB | PB PB
PB | PM | PM | PB PB PB g PH ‘

The fuzzy sets in the matrix denote the output control variable under different input conditions.
For example, if queue erroreis Negative Big (NB) and error varying rate Aeis Negative Small

(NS), then the control variable is Negative High (NH).

This algorithm was implemented on the NS-2 platform and had its performance compared with
the PI controller under various scenarios. Simulation results show that it has superior steady and
transient state performance, exhibits great adaptability to variances in link delay and capacity, and
provides more robustness against noise and disturbance. However, its major weakness lies in the
fact that its control rules and membership functions are obtained through a manual tuning process
which 1s based on the designer’s insight. The human factor involved in this operation makes it

difficult for these algorithms to achieve optimum performance for all the key AQM objectives.

2.3.2.2 The Algorithm of Chrysostomou ef. al.

Chrysostomou et al. [CHRO3a] use a similar approach to Ren er al. [FYX02]. The fuzzy control
system is designed to regulate the queues of IP routers by achieving a specified desired Target
Queue Length (TQL)q,,, in order to maintain both high utilization and low mcan delay. All the

quantities are considered at the discrete instantk7, withT the sampling period. Two input

variables are used: (1)e(kT)=gq,,, — ¢ . the error on controlled variable g at each sampling period
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and (2) e(kT =T , the error of the queue length at the previous sampling period. The output of the
fuzzy control system is the mark probability p(kT). The two input linguistic variables have the

same membership function with fuzzy term sets which are negative very big (NVB), negative big
(NB), negative small (NS), zero (Z), positive small (PS), positive small(PM) and positive very big
(PVB).This approach is just the same as in [FYX02]. The oulput variable, the mark probability
has a membership function with fuzzy term sets which are zero (Z), tiny (T), very small (VS),
small (S), big (B), very big (VB) and huge (H). Just like in [FYX02], the design of the rule base is
also achieved through a tuning process that starts from a set of the initial insight considerations
and progressively modifying the parameters of the system until it reached a level of performance
considered to be adequate. A certain level of intuition and experience is used to design the rule

base.

This FLC is implemented in the NS-2 platform and has its performance compared against P,
Adaptive RED and REM under various scenarios. This controller is shown to exhibit to exhibit
many desirable properties, like robustness and fast system response, and behaves better than other
AQM schemes (PI, ARED, REM) in terms of queue fluctuations and delay, packet losses, and
link utilization. However, Chrysostomou et al. [CHR03a] were quick to point out the need for
future work to include the design of a fuzzy model reference learning controller, which can tune
the parameters of the fuzzy logic learning controller on line, using measurements from the
system, to obtain a better performance. They also point out the nced to investigate the
implementation of this fuzzy logic congestion controller in a differentiated service environment in

TCP/IP networks, using separate linguistic rules for each predefined class of service.

Just like the proposal in [FYX02], its major weakness lies in the fact that its control rules and
membership functions are obtained through a manual tuning process which is based on the
designer’s insight. The human factor involved in this operation makes it difficult for these

algorithms to achieve optimum performance for all the key AQM objectives.

2.3.2.3 Fuzzy BLUE Controller

Fuzzy Blue Controller (FBC), proposed by Yaghmaee and Toosi [YT03], is an extension to the
traditional BLUE mechanism [FEN99]. FBC is a two-input-single-output fuzzy logic controller.

The input linguistic variables are packet loss and the normalized queue length. The output
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linguistic variable is the drop probability p, . The term set of linguistic variables packet loss and
normalized queue length are defined as follows:
¢ T(packet loss) ={ small, med (medium), big}

¢ T(normalized queue length) ={low, mid (middle), high }

The output term set of fuzzy logic controller is also defined as follows:

e  T(Pm)={zero, low, moderate, high}

The design of rule base is based on experience and beliefs on how the system should work. Table
2.2 presents the fuzzy linguistic rules used in the simulation. The tuning (trial and error) approach
is used along with the theory approach in order to design the rule base. In the theory approach,

rules are designed in such a way that specific functionality of a parameter (such as throughput) is

guaranteed.

The performance of the Fuzzy BLUE Controller was compared with that of the traditional BLUE
mechanism. A number of different trials were performed to test the correctness of the algorithm.
Based on simulation results, it was shown that the Fuzzy BLUE could achieve near 100%
throughput [YTO3]. It was also shown that the Fuzzy BLUE mechanism has better loss

performance and queue length behavior than traditional BLUE mechanism.

Table 2.2: Linguistic rules for Fuzzy Blue Controller

/* Linguistic rules of FBC #/

if packet loss is small and normalized queue length is low then pm is zcro;

if packet loss is small and normalized queue length is med then pm is zero;

if packet loss is small and normalized queue length is high then pm is zero;

if packet loss is med and normalized queue length is low then pm is zero;

if packet loss is med and normalized queue length is med then pm is zero;

if packet loss is med and normalized queue length is high then pm is moderate;
if packet loss is big and normalized queue length is low then pm is zero;

if packet loss is big and normalized queuc length is med then pm is low;

u" packet loss is big and normalized queue length is high then pm is high,

Just like the proposals in [FYX02], [CHR03a], its major weakness lics in the fact that its control

rules and membership functions are obtained through a manual tuning process.
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2.3.2.4 Adaptive Fuzzy RED

To our knowledge, Adaptive Fuzzy RED (AFRED) [WANO3] is the first algorithm that employs
an online adaptation mechanism. This algorithm uses the instantaneous queue length as the only
input variable to determine the packet marking or dropping probability. It employs an Adaptive
Adjust Module (AAM) which is triggered periodically to calculate the real packet drop rate and
output adjust conditions to the Fuzzy Controller Module (FCM). Figure 2.7 shows AFRED’s

Enque Deque
——q> Buffer ‘——»q

architecture.

0 PDR

L

----------------------- : Adjust

Action  L____........

Q. Queue Length PDR: Packet Drop Ratio

Py,. Pucket Marking/Drop Probability
Figure 2.7: AFRED Architecture

The novel principle exhibited by AFRED is that the real packet drop ratio (pdr) can show the
congestion degree coarsely at least since heavy (or light) congestion will trigger lots of (or few)
packet drops. Although this proposal introduces the concept of online adaptation, it falls short in
two areas. Firstly, it uses the instantaneous queue length as a sole input variable. As explained in
[FKS99], [ALLYO01], [WZ02], queue size is not a good indicator of the severity of congestion,
and the level of congestion notifications issued may be too great and bursty, leading to excessive
packet loss. Secondly, it uses only packet loss in the adjust process. Other important performance

metrics such as link utilization, fairness, delay and jitter are not considered.

2.3.2.5 Fast Adaptive Fuzzy Controller

In this algorithm, the authors use Lyapunov’s Direct Method for stability analysis [PY98] based
on the mathematical model for the internet which was developed by Frank Kelly [KELO1] and
generalized to support multiple TCP sessions by Crowcroft and Oeschslin [CO].They also

incorporate the classical Proportional Integral Derivative (PID) controller for online adaptation.

37



Chapter 2 Literature Survey on Post—RED AQM Algorithms

This algorithm exhibits better queue stability and lower packet loss rates compared to RED and
the Proportional Integral Derivative (PID) AQM algorithm [YCO03]. However, the internet
mathematical model [KELO1], [CO] used in this algorithm is based on the principle that the
Internet is predominantly TCP. It neglects the effect of non-responsive tlows (such as UDP) and
network anomalies such as Denial of Service attacks and rooting loops [HMMDO2]. A recent
study of internet traffic [FKMO03] shows that UDP accounts for (22+11) % packet composition of
internet traffic while TCP accounts for (75+12) %. Therefore, ignoring the UDP component
compromises the composition of traffic on the Internet. The other problem relates to the fact that
this algorithm puts more emphasis on queue stability without incorporating other important

performance metrics such as link utilization, packet loss rates and fairness.

2.3.2.6 Fuzzy RED for DiffServ

Fuzzy RED [CHRO3b] is the DiffServ implementation of best-effort Fuzzy AQM in [CHRO3a].
This algorithm removes the fixed maximum and minimum queue thresholds from the RED queue
for each class, and replace them with dynamic network state dependant thresholds calculated
using a fuzzy inference engine (FIE).Two sets of linguistic rules are used in order to generate two
mark probabilities for high and low priority traffic. The mark probability behavior based on two
network-queue state inputs: the instantaneous queue size and the queue rate of change.NS-2
simulation results show that Fuzzy-RED behaves well and delivers almost identical throughput
results under various conditions without any retuning or parameterization. Fuzzy-RED also
performs equally well using homogeneous or heterogeneous traffic sources (in this case TCP/FTP
traffic and TCP/Web-like traffic) without any change in the way it is defined or necding any
special tuning. Chrysostomou et al. [CHR0O3b] point out that future work can include further
refinement of the rule base, self-tuning, or different fuzzy based control strategies for the design

of the fuzzy rule base and its tuning.

Fuzzy RED has two major shortcomings. The first one is that it inherits the tuning problems from
its forerunner in [CHRO3a]. The second one relates to the DiffServ queuing architecture for
which it is tailored. A closer look at the Fuzzy RED algorithm shows that it implements only one
queue and performs service diffcrentiation by using two different marking schemes. The issue of
scheduling is not explicitly mentioned such that it can be assumed that default FIFO scheduling is
used. Recent developments in DiffServ research show that architectural trends are shifting

towards Proportional Differentiated Scrvices (PropDiffServ) [DSR02] model where cach traffic
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class is assigned its own queue. In other words, PropDiffServ model removes the concept of drop
precedences within a DiffServ class. This reduces the implementation difficulties associated with
the original DiffServ framework [BLA98].The PropDiffServ ensures the quality spacing between
classes of traffic to be proportional to certain pre-specified class differentiation parameters. An
AQM scheme is implemented on each queue (class). The Weighted Fair Queue (WFQ) [LTC00]
scheduling algorithm determines the allocation of bandwidth in each class as well as packet

transmission order based on pre-specified class differentiation parameters.

2.4 Chapter Summary

In this Chapter, we have presented operational characteristics, the efficiencies and deficiencies of
the major traditional AQM schemes. We have also presented the Fuzzy logic Control theory
which is the backbone of all fuzzy logic based AQM schemes. We have evaluated the operational
characteristics, efficiencies and deficiencies of the major fuzzy logic based AQM schemes in
literature. We have uncovered a number of deficiencies in these schemes. Firstly, we have found
out that their control rules and membership functions are obtained through a manual tuning
process which is based on the designer’s insight. The human factor involved in this operation
makes it difficult for these algorithms to achieve optimal performance for all the key AQM
objectives. Secondly, these algorithms are generally designed with an assumption that the Internet
is predominantly composed of TCP traffic, whose sources respond to congestion notification
signals from routers by reducing their sending rates. Practically, the situation is not like that
because apart from the non-responsive UDP traffic which accounts for (22£11)% of Internet
traffic [FKMO3], the Internet is nowadays facing a growing list of non-responsive flows and
anomalies such as Denial of Service (DoS) attacks and routing loops [HMMDO02]. These flows do
not reduce their sending rates in times of congestion as responsive TCP flows reduce their rates.
Therefore, fairness in these schemes would diminish exponentially as the number of non-
responsive flows increases. Chapter 3 presents a new fuzzy logic AQM scheme which addresses
these deficiencies by employing multiobjective evolutionary optimization. CHOKe, a traditional

AQM scheme is incorporated in the new approach in order to address the fairness issue.
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Chapter 3

Fuzzy Logic Congestion Detection using
MOPSO

3.1 Introduction

In this chapter, we propose a Fuzzy Logic Congestion Detection (FLCD) algorithm which
combines the good characteristics of both the traditional AQM approaches and the fuzzy logic
based AQM algorithms. We also introduce new concepts in order to address some of the
problems observed in Chapter 2. The membership functions (MFs) of the FLCD algorithm are
designed by using a Multi-objective Particle Swarm Optimization (MOPSO) algorithm in order to
achieve optimal performance on all the major performance metrics of IP congestion control. The
FLCD algorithm is implemented on both the best effort and the Proportional Differentiated
Services (PropDiffServ) IP networks .In the best effort implementation, the performance of the
FLCD algorithm is compared with that of the fuzzy logic based congestion control algorithm in
[FYX03] and the Random Explicit Marking (REM) [ALLYO0!} algorithm. In the PropDiffServ
environment, the performance of the FLCD algorithm is compared with that of Cisco’s WRED
[CISCOO02], which has been deployed in commercial routers. This Chapter is organized as
follows: In section 3.2, the FLCD algorithm is presented. Section 3.3 presents the MOPSO theory
and the formulation of the IP congestion problem. Section 3.4 implements the MOPSO scheme,
generates optimization results and draws the best compromise solution which is used in the
configuration of the practical FLLCD algorithm. In Section 3.5, we present simulation results and
comparative performance analysis of the FLCD algorithm in best effort IP networks. In Section

3.6, the FLCD algorithm is implemented in PropDiffServ IP networks. Section 3.6 also presents
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simulation results and a comparative performance analysis of the FLCD algorithm in

PropDiffServ [P networks. Finally section 3.7 gives the summary of this chapter.

3.2 Fuzzy Logic Congestion Detection Algorithm

The FLCD algorithm is composed of the Fuzzy Logic Controller (FLC), the Probability Adjuster
(PA) and the CHOKe Activator (CA). Figure 3.1 shows the proposed FLCD architecture.

> CA 1]
]

X —— 45

Ap,
FLC PA

Y

P,

Figure 3.1: Fuzzy Logic Congestion Detection Architecture

A single FIFO buffer in which all packets are treated equally is assumed. The queue status is
sampled at a period7of 0.002 seconds just as in [ALLYO!] in order to obtain the queue-

occupation size (backlog) g(r) and the traffic arrival rate (¢) . The backlog ¢(r) is translated into

the backlog factor & which is the ratio of backlog with respect to the Buffer Size BS :

a=q(t)! BS 3.1)

In contrast to the proposals in [FYX02], [CHRO3a], [CHRO3b], which use the variation of queue
length in order to determine the packet arrival rate, the FLCD algorithm determines the packet
arrival rate by counting the actual number of packets that arrive at the buffer (both those that are
queued and those that are dropped) during sampling period 7. When the buffer is prevalently full,
the variation of queuc length is very small such that it fails to capture the packet arrival rate
because most packets are dropped before they get queued. We let n denote the number of packets

that arrive at the buffer during period7. We also letw, denote the measuring weight and r

mn
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denote the maximum packet arrival rate. The weighted average packet arrival rate r(t) and the

packet arrival factor f are determined as follows

M= rt=0)+(1-0)*n (3.2)

_ (3.3)

[, o<y,
- 1.0 rtyzr,

The FLC Unit determines the change in packet marking/dropping probability Ap, by using the
fuzzified values of parameters@and f. The set of linguistic rules that govern the inference

process in the FLC is shown in Table 3.1.

Table 3.1: Rule Base for the FLC Unit

If « is LOW and § is LOW then Ap, is Negative Big.

if o is LOW and B is MEDIUM then Ap, is Negative Small.
if o is LOW and f is HIGH then Ap, is Zero.

if o is NORMAL and 3 is LOW then Ap,is Negative Small.
if @ is NORMAL and £ is MEDIUM then Ap, is Zero.

if & is NORMAL and f is HIGH then Ap, is Positive Small.
if @ is HIGH and S is LOW then Ap, is Positive Small.

if @ is HIGH and £ is MEDIUM then Ap, is Positive Big.

if o is HIGH and f is HIGH then Ap, is Posilive Big.

The PA compules the new packet market probability p, (1) as follows
p,(t)=p,=17)+Ap, (1) 3.4)
Packets are either marked (if ECN or BECN is enabled) or dropped with the probability p, (1) in

order to inform the sending sources that there is congestion in the network. The sources respond

by reducing their sending rates according to TCP’s congestion avoidance mechanisms.

In order to address the issue of fairness in light of non-responsive flows and network anomalies
such as Denial of Service (DoS) attacks and routing loops [HMMDO02] which may dramatically

flood the network as the responsive flows back off, we incorporate the CHOKe Activator (CA)
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which uses p, (1) to generate a fuzzy parameter ¢ e [0,1] LetF,

thresh

denote the CHOKe threshold

then the fuzzy parameter ¢ is derived as follows

0 Pipresh > Ph

¢ = [ pb - plhl'(’xh
- Prhresh

: (3.5)
] Pinresh S Py

When p,,... > p, low congestion), ¢is 0.0. During this period there is no CHOKe activity.
When p,,,., < p, (high congestion), the value of¢ increases rapidly. As a result, more packets
from non-responsive and TCP unfriendly flows are dropped at the bottleneck link. An arriving
packet 1s picked probabilistically based on the value of¢. This packet is compared with a
randomly chosen packet from the buffer. If they have the same flow ID, they are both dropped.
Otherwise the randomly chosen packet is kept in the buffer (in the same position as before) and

the arriving packet is queued if the buffer is not full; otherwise it is dropped.

Figures 3.2 and 3.3 show the membership functions (MF1 and MF2) that are used for fuzzifying
the variables @ and £ respectively. Figure 3.4 shows the membership function (MF3) used in the

defuzzification process in order to generate the change in packet marking/dropping

probability Ap, .
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Figure 3.2: Membership Function (MF1) for the backlog factor
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Figure 3.4: Membership Function (MF3) for the change in packet marking probability

44



Chapter 3 Fuzzy Logic Congestion Detection Algorithm Design using MOPSO

The 18-dimensional parameter vector P that determines the membership functions and packet
marking probability variation is expressed as follows
P= [xo,x,,xz,x3,x4,xs,xé,x,,xx,xq,,\"”,,x],,xm,x,_},xw,\'ls,x,(,),A‘l7] (3'6)
The definition of these elements is presented as follows:
1. Xy X, Xy, X3, X, arc parameters for the backlog factor (&) membership function (MF1) as
shown in Figure 3.2.

2. Xq,X,, Xy, Xy, Xy are parameters for the packet arrival ( ) rate membership function (MFEF2)

as shown in Figure 3.3.

(o8]

Xygs Xy 1> Xp2s Xi3s Xjg0 Xjgare parameters for the change in packet marking probability
(Ap, ) membership function (MF3) as shown in Figure 3.4.

4. x4,%, denote the maximum negative and positive variations (AR, andAP,, ) of the

change in packet marking probability. The output from the defuzzification process

which falls in the range [0,1.0] is scaled to[AP, , AP, ]

neg? posd’

Parameters for individual membership functions must always be sorted in ascending order. For
instance, for MF1 the following

X, <X <X, <X <X, 3.7)
must always be true. The same applies to MF2 and MF3. The elements in equation (3.6) are

determined in Section 3.3.

3.3 MOPSO in FLCD Parameter Optimization

An evaluation framework [BRH03] for AQM schemes outlines link utilization, packet loss rate,
delay, jitter and fairness as the main metrics for evaluating AQM schemes. These metrics are, in
most cases, conflicting and non-commensurable. For instance, when link utilization is high, the
packet loss rate also becomes high because the buffer is generally full. A comparative study
[BRHO4] of AQM schemes that were proposed between 1999 and 2003 further reveals that these
schemes perform well for a particular metric and poorly for another. For example, the CHOKe
algorithm [PPPOO0] provides much better fairness but fails to keep link utilization high. Although
GREEN [BZ02] maintains a very low queuing delay its behaviour is closest to the Drop-tail,

except that the queue is generally empty or small one while the Drop-tail queue is always full.
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These observations motivated us to model IP congestion detection as a multi-objective (MO)
problem. We use the Multi-objective Particle Swam Optimization in order to achieve optimal

performance on all the major metrics of IP congestion control.

3.3.1 Basics of Multi-objective Optimization

LetScR” be an N-dimensional search space and
fin:Sc RY SR, i=1,.,k, be k objective functions defined over S . Therefore, a general MO

problem can be defined in the following format [COE99] {ZIT99]:

Optimize £ (x) =[ £, (), fo () (D] - fRY 5 R (3.8)
subjectto g (x)<0forj=1.,p 3.9)
and /'zj(x)=0f0rj=p+l,..,m (3.10)

where x = (x.x,,...,x,)€ S, g,(x) and h (x) are the equality and inequality constraints

respectively.

As already mentioned, the objective solutions are generally competing and non-commensurable
such that it is impossible to obtain the global optimum at the same point for all the objectives.
The goal of MO is to provide a set of Pareto optimal solutions to the aforementioned problem.

Pareto dominance and optimality are defined as {ollows [ZIT99]:

Definition 1 (Pareto Dominance): A given vectorx=(x,,X,,...,x,)is said to dominate

X'=(x x5 x, )it and only ifVie (1,2, a},x, <x tand3ie {1, 2,...,n},x; < x,".This property

is used to define Pareto optimal points.

Definition 2 (Pareto Optimality): For a general MO problem, a given solution f(x)e F (where
Fis the feasible solution space) is Pareto Optimal if and only if there is no f(x")e F that

dominates f(x). The set of all Parcto optimal solutions of an MO problem is called a Pareto

optimal set and it is denoted as P * .

Definition 3 (Pareto Front): The set PF* ={(f,(x),f, (X),, [y (X)) I xe P¥} A Pareto front
PF * is called convex if and only if there exists x"e PF *  such that

ANxN+(T=D1x"1 2 1x"ll,  Vx,x'e PF* ¥e (0,1) (3.1
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and it is called concave if and only if there exists x"e PF *, such that
Alxi+1=Dhx < llx"ll,  Vx,x'e PF¥*, YA€ (0,1 (3.12)
A Pareto front can be convex, concave or partially convex and/or concave and/or discontinuous.

The last three cases present the greatest difficulty for most MO techniques.

3.3.2 MOPSO Theory

MultiObjective Particle Swarm Optimization (MOPSO) is a special case of the Particle Swarm
Optimization (PSO) algorithm that is specifically tailored for problems with multiple objectives.
PSO is a relatively new population-based stochastic algorithm introduced by Kennedy and
Eberhart [KE93]. Like Ant Colony optimization (ACO), it belongs to the category of Swarm
Intelligence methods, which are inspired from the social dynamics and the emergent behavior that
arise in socially organized colonies [BDT99] [KE95].Like other evolutionary computation
techniques such as Genetic Algorithms (GA) [BF92], PSO is initialized with a population of
random solutions known as a swarm which evolve by updating the generations until an optimal
solution or a termination criteria is reached. However, unlike GA, PSO has no evolution operators
such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the
problem space by following the current optimum particles. Compared with genetic algorithms
(GAs), the information sharing mechanism in PSO is significantly different. In GAs,
chromosomes share information with each other. So the whole population moves like one group
towards an optimal arca. In PSO, only the global best value, gBest (or [Best) is shared amongst
the particles. The evolution only looks for the best solution. Compared with GA, all the particles

tend to converge to the best solution much faster.

A particle moves at an adaptable velocity within the search space and retains a memory of the
best position it ever encountered. A particle’s movement vector is dynamically adjusted

according to its own and others’ experiences. Assume a D-dimensional search
space f: S R” > R and a swarm$S = {X, Xy, X y}of N particles. The j-th particle X, € S is
in effect a D-dimensional vector X, = (x,,.%,.....X; ) . The velocity of the particle V, € S and the
best previous position encountered by the particle P e S are also both D-dimensional vectors

expressed as V= (v, vy, v, poyy) and B =(p. Py, Pypyy) Tespectively. Assume P, to be
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the global best position among all particles in the neighborhood of the i-th particle, and ¢ to be

the iteration counter, and then the swarm velocity equation is as follows:

V.t + 1) =V, () + o r (B — X (D) + i (P (1) = X,(1) (3.13)
wherei=1,....N , ¢, and ¢, are constants denoting cognitive and social parameters respectively.
In [KE95]The values of ¢, and c,are chosen in the range[0.5, 2.5]. They are applied in order to
include the influence of the particle’s previous best position P () and the best position Px,(r)

among all particles in the neighborhood of the i-th particle respectively. Parameters rand r, are
random numbers uniformly distributed within[0, 1]. Parameter @ known as thc inertia weight

helps to dampen the velocities of the particles and to assist in the convergence to the optimum

point at the end of the optimization iteration.

The first part in (3.11), known as the inecrtia component, is the current velocity of the particle
providing momentum for the particle to move at the same speed. The second part, known as the
cognitive component, represents the thinking of an individual particle. It accelerates the particle
towards its own best position. The last part known as the social part accelerates the particle
towards the best position of all particles in order to converge to the global optimum value.

Kennedy [KE97] further defined the arbitrary parameter V. =(v

m ml?

VyasesVep) €S to be the

upper limit of the velocity. Whenever, a vector clement cxceeds the corresponding element of V,

n

that element is reset to its upper limit. The position of each particle is updated at each iteration by
using

X,t+h=X,()+V,(r+1) (3.14)
For the basic PSO (single objective case), one objective function is evaluated after every
generation update until an optimal solution or a termination criterion is reached. Its high speed of
convergence and its relative simplicity has made PSO a highly viable candidate for solving not
only single objective functions but also multiobjective optimization problems. Recently, a
plethora of MOPSO algorithms has been reported in literature [FIE04] [PC04] [COE04]. These
algorithms exhibit better performance characteristics compared o the traditional multiobjective
evolutionary algorithms (MOEAs) such as the Pareto Archived Evolution Strategy (PAES)

[KC0O0] and the Nondominated Sorting Genetic Algorithm II (NSGAID) [DAPO2].

48



Chapter 3 Fuzzy Logic Congestion Detection Algorithm Design using MOPSO

3.3.3 Problem Formulation

The formulation of the IP congestion control problem requires two stages: the development of

objective functions and the determination of the constraints for the optimization process.

3.3.3.1 Development of Objective Functions

Objective functions are developed based on the following metrics: link utilization, packet loss
rate, delay and jitter. The fairness metric is not included in this process partly because it has been
addressed in section 3.2 and partly because the evaluation of fairness is more computationally
intensive compared to the other metrics. Therefore, the four objective functions are derived as

follows:

Maximizing Link Utilization (U)

Let R be the total number of packets that have successfully traversed the bottleneck link during
simulation time T ; leth be the packet size in bytes; let C denote the network capacity in bytes
per second. The link utilization U is:

y = Rb (3.15)
CcT
Since MO problems are generally solved by minimizing the objective functions, the link

utilization objective function £, is presented as a reciprocal of link utilization

_CT

F==
Rb

(3.16)

Minimizing Packet Drop Rate (PDR)
Let R' be the total number of packets received at various destination nodes, andd the total
number of packets dropped during simulation time T .The packet drop rate objective function f,

i1s determined as follows

F :% (3.17)
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Minimizing Average Delay
Average delay is a function of the average queue size. Letg, denote average queue size.
Assuming that a total of N samples ¢,,q,.....qy ©of queue size are taken over the simulation

time 7 , then the average delay objective function F; is found as follows

N

2.4

— 5 o=
Fo=a. =74 (3.18)
Minimizing Average Jitter
This strives to minimize the end-to-end delay variation experienced by the packets. Jitter causes
unfairness in average transfer delay which affects intelligibility in real-time traffic. The average
jitter objective function F, is found as follows

N

Z(qi _quv)z

F, =izl 3.19
L=t (3.19)

3.3.3.2 Constraints

* Most congestion detection algorithms exhibit typically very high link utilization.
Therefore, we limit the link utilization U as follows
U>0095 (3.20)
* Most congestion detection algorithms exhibit very low packet drop rates utilization.
Therefore, we limit the packet drop rate PDR as follows

PDR <0.15 3.2D

3.3.3.3 Problem Statement

The congestion detection MO problem can therefore be stated as follows:
min[F,,F,,F;,F,] (3.22)

subject to the constraints in (3.20) and (3.21).
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3.3.4 MOPSO Implementation and Optimization Results

3.3.4.1 The Optimization Process

This process is motivated by the work in [PHSO5] where a basic PSO is used in order to optimize
a rule-based system. In our multiobjective approach, the Adaptive MOPSO (AMOPSO)
algorithm, proposed by Pulido and Coello [PC04}, is used in order to optimize the membership
function parameters defined in (3.6) and referred to as a particle in this section and beyond. The
AMOPSO algorithm divides the population of particles into several swarms (each with a fixed
size). Each swarm over-flies a specific region of the Pareto optimal set (i.e. the decision variable
space), and has its own niche of particles and a swarm of particle guides known leaders. The
hierarchical single clustering algorithm is used to associate leaders to a swarm. A particle
randomly chooses a leader from the corresponding swarm of leaders. The AMOPSO algorithm
was validated by using threc standard test functions which are currently adopted in the
evolutionary multiobjective optimization community. Its performance was compared with the
Nondominated Sorting Genetic Algorithm II (NSGAITL) [DAPO2], the Pareto Archived Evolution
Strategy (PAES) [KCO00] and the MOPSO algorithm proposed in [COEO4]. Results in [PC04]
show that the AMOPSO algorithm generates significantly improved Pareto fronts when compared
to the other algorithms. Quantitative assessment bascd on Error ratio (ER), Generational Distance
(GD) and Spacing as performance metrics also shows that the AMOPSO algorithm shows that the

average performance of the AMOPSO algorithm is generally good.

In order to solve the IP congestion problem, the 18-dimensional decision variable space is defined

as follows:

1. Parameters x,, x,..., X5 in (0.0,1.0).

3]

Parameter x, in [-0.0005,0.0).
3. Parameler x, in (0.0,0.0005].

The range for parameters x,,and x; must be small in order to avoid drastic changes in the

congestion notification. The computational flow of the optimization process is as follows:
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function AMOPSO Algorithm
BEGIN

For each swarm

1. Initialize randomly the velocity and position of n,,.,.. particles and maintain the

particles within the search space.
2. Run the FLCD script using the initialized particle positions.
3. Evaluate the four objective functions (See Section 3.3) based on the results from the
FLCD script.
4. Initialize gleader set (i.e. the set of global leaders)
ENDFor
DO
For each swarm
DO
For cach particle
S. Select a leader
6. Perform flight
7. Update values for velocity and position using equations (3.13) and (3.14).
8. Run the FLCD script using the updated particle positions.
9 Evaluate the four objective functions based on the results from Step 8.
If it is a leader then add to gleader set
EndFor

While maximum number of internal iterations sgmax is not reached

10. Store leaders in gleader setinn

s
EndFor
11. Assign each leader group to a swarm

While maximum number of iterations GMax is not reached.

END

The AMOPSO algorithm requires the following parameters:

®* GMax: 1t refers to the maximum number of generations that the algorithm will be
executed.

® 1, - 1L Tefers to the total number of particles that will be over-flying the search space.
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¢ n . it refers to the number of particle groups.

Swarms

e sgmax: it refers to the maximum number of internal generations that the particles of each

swarm will run before sharing their leaders.

The complete execution process of the AMOPSO algorithm is divided in three stages:
initialization, flight and generation of results. At first, every swarm is initialized. Each swarm
creates and randomly initializes its own particles within the decision variable described in the
earlier stage of this section. The particle elements are then sorted in ascending order for each
membership function as per equation (3.7). For each swarm, the FLCD algorithm is evaluated
using the initialized particle positions. Details of the FLCD script which invokes the FLCD
algorithm are presented in next section. The four objective function values are evaluated for cach
particle based on the results from the FLCD script. A set of leaders among the particle swarm set
is generated based on Pareto ranking subject to the constraints in (3.20) and (3.21). Next, the
algorithm executes the flight of every swarm; then it performs the clustering algorithm to group
the particles. This s performed until GMax itcrations are rcached. The exccution of the flight of
each swarm can be scen as an entite PSO process (with the difference that it only optimizes a
specific region of scarch space). First, each particle selects a leader from the swarm of leaders
associated with it. The particle’s velocity and position are updated in the direction of the sclected
leader. The particle elements are then sorted in ascending order for each membership function as
per equation (3.7).Then the FLCD algorithm is evaluated using the new particle position. The
four objective functions are evaluated. If the updated particle satisties the constraints in (3.20)
and (3.21) and is not dominated by any member of the leaders set, it becomes a new leader. The

execution of the swarm starts again until a total of sgmax iterations are reached. Once all the
swarms have finished their flights, a clustering algorithm is invoked in order to group the closest
particle guides into n, . -swarms. These particle guides will try to outperform each swarm in the

next iteration. The third and final stage reports all nondominated solutions found.

3.3.4.2 Implementation of the FLCD Script

The FLCD script is implemented on the Network Simulator (NS-2.28). Figure 3.5 shows the

network topology on which it 1s implemented. The bottleneck bandwidth is 10Mbps with a

propagation delay of 40ms. The buffer is set to 90 packets. All the other links have 100Mbps
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capacity with 2ms propagation delay. Traffic flow is from Routerl to Router2. The FLCD
algorithm is activated on the bottleneck link between Routerl and Router2. All simulations use
NS-2.28's NewReno TCP variant with an initial congestion window cwnd of 3 segments (per
[AFP02]), a Maximum Segment Size (MSS) of 1500 bytes and the receiver acknowledging each
segment. Packet-based ECN marking is used. The optimization script runs for 100 seconds. 60
persistent FTP flows start randomly in the interval [0s-5s] while 10 UDP traffic flows are
activated in the following intervals, [20s-30s] and [80s-90s].

100Mbps
2ms

100Mbps

10Mbps
Router2

Direction of traffic flow

Figure 3.5: Network Topology

3.3.4.3 Parameters for the Optimization process

The C++ source code of the AMOPSO algorithm was downloaded from the EMOO repository

located at; hitp://www lania.mx/~ccoello/EMOO. After customizing it to the congestion MO

problem, it was compiled using Fedora Core2’s GNU C compiler running on a Dell Optiplex
GX280 PC with the following system characteristics: A CPU frequency of 3.00GHz and a RAM
of 1.00GB. Since the FLCD script is implemented on the Network Simulator, the exchange of
parameters between the FLCD script and the AMOPSO algorithm was donce by using text files. A
single optimization run was used because of two reasons:
¢ The AMOPSO algorithm has already been extensively validated against some of the
state-of-the-art algorithms. Therefore, we have nothing prove about its viability. We
rather concentrate on the task of ensuring that the decision variable space is thoroughly

searched by employing a larger number of gencrations GMax . The choice of a large
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GMax 1s also partly influenced by the fact that there exists no knowledge of the true
Pareto front for the problem at hand. Except for GMax , we use the same parameters as in
{PULOS].Other application specific implementations of MOEAs have used a single
optimization run as evidenced by the work of Zhao and Cao [ZCO05] and Rivas-Davalos
and Irving [RIO5].

¢ The implementation of multiple independent optimization runs would be computationally
expensive considering the fact that the AMOPSO algorithm periodically invokes the
FLCD script, which runs under the NS simulator, in order to evaluate the four objective

functions. We therefore stick to a single optimization run with a large GMax .

Except for GMax all the parameters for the optimization process were set as in [PUL0S5]. The

setings are as follows:n,, .. =40,GMax=380, sgmax=5and n,, =8 These values were
empirically derived in [PUL05]. A GMax of 80 denotes 16000 fitness function evaluations. The
AMOPSO algorithm produces very competitive results using only 2000 fitness function
evaluations, Therefore by using 16000 fitness function evaluations, a closer and better picture of
the true Pareto Front would be found. Since the optimization results are non-reproducible, the use
of more fitness function evaluations enhances the likelihood of getting similar results on different

runs. We following parameters for the FLCD algorithm: w, =0.9, r =5.0and P, , =0.15.

thresh

3.3.4.4 Optimization Results

The optimization process generated 120 non-dominated solutions. The true Pareto front for this
problem is a spread of solutions in the 4D space depicting the four objective functions. Since the
graphical presentation of such a spread of solutions is practically difficult, we present four views

of the generated Pareto front in 3D using Figure 3.6 — Figure 3.9.
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LINK UTILIZATION (%)

LOSS RATE{%} QUEUE LENGTH (PKTS)

LINK UTEIZATION (%)

Figure 3.6: Queue Length versus Loss Rate

versus Link Utilization Figure 3.8: Link Utilization versus Queue
Variance versus Loss Rate
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Figure 3.7: Link Utlization versus Queue

. Figure 3.9: Queue Length versus Queue
Length versus Queue Variance © 5

Variance versus Loss Rate

Figure 3.6 shows that link utilization increases as queuc length increases. This leads to large
queuing delays and packet loss rates. Figure 3.7 shows that queuc variance is low when link
utilization and queue length are high. This lcads to low jitter for intcractive applications. A major
setback of this good attribute is, however, that it comes at the cxpense of delay which increases as
queue length increascs. The spread of particles in Figures 3.8 and 3.9 is quite similar. The only
difference between the two plots is on the X-axis. The X-axis variable is link utilization for
Figure 3.8 while it is qucue length for Figure 3.9. The Y-axis and Z-axis variables are queue
variance and loss rate respectively in both cascs. The similarity in the spread of particles further

confirms the fact that increasing link utilization comes at a cost of increased link delay.
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3.3.4.5 Best Compromise Solution

In order to implement a practical FLCD algorithm, there is a nced to obtain the best compromise
solution from the set of Pareto optimal solutions. In order to do this, a Fuzzy inference algorithm

[ZCO05] is employed. A simple linear membership function is considered for each of the objective
functions in the inference process. Let F™" and F™ denote minimum and maximum values
for the i objective function for the entire set of Pareto Optimal solutions (120 in this case). Let
F, and w, € (0,1] respectively denote the value and the weight of the i"" objective function for

the solution at hand. The membership function u, is defined as follows:

B ‘/V’ P (F}mux . F;)
max mn
- F

U,

1

(3.23)

Figure 3.10 illustrates the typical shape of the membership function. The membership function

represents the degree of achievement of the original objective as a value between 0 and w, with

u; = w;as completely satisfactory and u, =0 as completely unsatisfactory.

w?

0.0

mY

Fe £

Figure 3.10: Objective Membership Inference function

We introduce a simple algorithm which configures the thresholds £™ and F.™ automatically

prior to the Fuzzy inference algorithm. This algorithm parses the set of Pareto optimal solutions
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in order to obtain the minimum and maximum thresholds F,™" and F;"*" . For each non-dominated

solution & , the normalized membership function u” is calculated as

J
Noyy

p— (3.24)

where M is the number of non-dominated solutions, and N . is the number of objective functions.

obj

The solution that attains the highest membership u* in the fuzzy set is chosen as the best

compromise solution.

Let w, denote the weight for link utilization, w, denote the weight for the loss rate, w, for delay
and w, for the jitter. In this implementation, the link utilization is deemed to be the most
important, seconded by the loss rate objective because these objectives are necessary for all types
of wraffic. The jitter and delay objectives are least significant because they are generally tailored
for real-time (UDP) traffic which accounts for (22+11) % packet composition of internet traffic.
Therefore, we employ the following weighting mechanism:

w, = 2w, = 3wy = 3wy (3.25)

When the Fuzzy Inference algorithm is applied to the Pareto set of optimal solutions the
dimensions of the best compromise solution obtained are as follows:

P ={0.01,0.02,0.03,0.04,0.29,0.95,0.96,0.97,0.98,0.99,

< (3.26)
0.01,0.02,0.03,0.34,0.61.0.64.-0.0005,0.0005]

These parameters are used in configuring the membership functions of the practical FLCD

algorithm,

3.4 Simulation Results and Performance Analysis in Best effort IP Networks

After obtaining the optimal membership functions, three experiments are conducted in order to
compare the optimized FLCD with the basic Fuzzy AQM [FYXO02] and the Random Explicit
Marking (REM) [ALLYOI1] algorithms based on the five metrics for network performance

evaluation as proposed in [BRHO3]. These metrics are given in Appendix A. We use the same
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network topology (Figure 3.5) and simulation platform (NS-2.8). Next, we describe three

experiments and the observed results.

3.4.1 Experiment 1: Congestion Control with Packet Dropping

In this experiment, we compare the performance of the MOPSO FLCD algorithm against REM,
basic Fuzzy AQM and the Drop-tail mechanism. ECN is disabled in all the four cases such that
congestion notification is done through packet dropping. We simulate 80 persistent FTP flows,
competing for bottleneck link. 10 UDP flows are introduced in the following intervals [20s-30s]
and [100s-110s]. The FTP flows start randomly within the first Ss and they run up to the end of
the simulation. The simulation runs for 150s. The buffer size was set at 90. In addition to the
three schemes, we also simulated a simple drop-tail buffer and used it as a baseline for
performance comparison. Table 3.2 shows the packet loss rate, link utilization, average queuc

length, standard deviation of the quecue length and fairness for the four schemes.

Table 3.2: Comparison of AQM schemes with Packet Dropping

AQM Loss Rate | Link Utilization | Average Queue Fairness
Queue Variance (%)
Length (packets)
J (packets)
Drop-tail 22.26% 99.65 78.14 124.36 88.96
REM 22.66% 95.07 40.07 1101.09 97.19
Basic Fuzzy 20.64% 96.48 44.65 743.44 97.14
LMOPSO FLCD | 18.31% ;98.52 | 52.38 | 665.61 | 98.0

From Table 3.2, we see that the congestion control algorithms do not offer much help in reducing
the packet loss rate compared to the drop-tail mechanism. The MOPSO FLCD algorithm,
however, manages to achieve the lowest packet rate and fairness. The drop-tail mechanism
registers the highest link utilization but at cost of high average queue length. This will result in
network latency. REM exhibits low average queue length but at a cost of link utilization and
queue instability as portrayed by the queue variance. The MOPSO FLCD algorithm generally
outperforms the other algorithms in that it achieves the lowest loss rate, high link utilization and

moderate values for average queue length, queue variation and fairness.
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Since ECN marking is believed to be a better choice for congestion notification in TCP

connections, we will only study the congestion control schemes in the rest of the simulations.

3.4.2 Experiment 2: Vary the congestion level at the bottleneck link

In this experiment, packet loss rate and link utilization are evaluated. Delay and jitter are
evaluated for the embedded UDP traffic. 30 web servers are connected (o Routerl with a
corresponding number of web clients connected to Router2. We also attach 15 web clients to
Routerl and 15 web servers to Router2 to provide background traffic on the return path. We
activate 5 web sessions on each client-server connection. The number of FTP Traffic flows from
Router! to Router2 is varied by using 10, 20, 30,40,50,60,70,80,90 and 100 flows in order to
establish different levels of congestion. The FTP flows start randomly within the initial 5s of the
simulation while the web-traffic connections start within the first 10s. 10 UDP flows from Router
to Router2 are activated in the following intervals [20s-25s], [100s-110s]) and [140s-150s].UDP

traffic rate is set at [Mbps.The simulations run for 150s at every instance. Figure 3.11- Figure

3.14 show the results.
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Figure 3.11: Packet Loss Rate Figure 3.12: Link Utilization
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Figure 3.13: Delay for UDP traffic Figure 3.14: Jitter for UDP traffic

Fig.3.11 shows that the MOPSO FLCD algorithm has the lowest packet loss rate ranging from
2.392% to 9.083% while the basic Fuzzy algorithm comes second with a loss rate ranging from
2.409% to 11.07%. REM, with a loss rate ranging from 2.192% to 12.935%, competes fairly well
with the fuzzy approaches when the number of background FTP flows is less than 40 but as the
number of background FTP flows increases the REM control faw fails to adjust to detect the

increasing congestion levels.

Fig.3.12 shows that the MOPSO FLCD algorithm exhibits the highest link utilization (96.716%
t0 99.018%) when the number of FTP flows is low. The basic Fuzzy algorithm (91.518% to
98.61%) and the REM algorithm (89.203% to 98.818%) come sccond and third respectively.
When the number of FTP flows exceeds 50, all the three mechanisms exhibit predominantly high

levels of link utilization.

Fig.3.13 shows the queuing delay link exhibited by the three algorithms as experienced by UDP
packets as they traverse the bottlencck. The average delays are as follows: 112.59ms for MOPSO
FLCD, 113ms for Basic Fuzzy and 113.048ms for REM.Although the MOPSO FLCD algorithm
slightly outperforms the other two algorithms, the performance on this metric is basically the

same.

Fig.3.14 shows that the MOPSO FLCD algorithm exhibits the least jitter with an overall average
of 0.985ms. The basic Fuzzy algorithm comes second with an overall average value of 1.1975ms

while the REM algorithm comes third with an overal] average value of 1.2735ms.
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3.4.3 Experiment 3: Vary the rate of UDP Traffic

In this experiment, we simulated 50 FTP flows, competing for bottleneck link. 20 UDP flows are
introduced in the following intervals [20s-30s] and [100s-110s] while the FTP flows start
randomly within the first 20s and they run up to the end of the simulation. The simulation runs for
150s. UDP flow rate is varied by using OMbps, 1Mbps, 2Mbps up to 15 Mbps in order to
determine the Fairness metric as the data rate of unresponsive flows increases. Figure 3.15 shows

the performance of the three algorithms as UDP traffic rate increases.

FAIRNESS %

UDP TRAFFIC RATE

Figure 3.15: Fairness

Figure 3.15 shows that all three mechanisms exhibit very high levels of fairness when UDP traffic
rate is low. The situation changes as UDP traffic rate increases. The MOPSO FLCD algorithm
maintaing a fairly high level of fairness as UDP traffic rate increases while the level of fairness in
REM and Basic Fuzzy algorithms decreases exponentially. The MOPSO FLCD algorithm
exhibits the highest fairness with an average of 66.155%. The Basic Fuzzy algorithm (49.97%)
and REM (45.97%) come second and third respectively. Beside the effect of the optimization
process, the MOPSO FLCD algorithm achieves a high fairness level courtesy of the embedded
CHOKe algorithm. Apart from ensuring that TCP flows are guaranteed a fair share of the
bottleneck link in light of unresponsive flows, the MOPSO FLCD algorithm is also a good tool

for averting Denial of Service (DoS) attacks and routing loops.
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3.5 FLCD in Proportional Differentiated Services (PropDiftServ) IP Networks

The superior performance of the MOPSO FLCD algorithm in best effort IP networks gave us the

impetus to implement it in the PropDiffServ IP network environment.

3.5.1 Implementation

The implementation of the MOPSO FLCD congestion detection mechanism in the Prop-DiffServ
is shown in Figure 3.16. The number of service classes is denoted by N 'When packet arrives at
the Prop-DiffServ link it is enqued into a particular queue based on its class. Each queue is
managed by a separate FLCD algorithm. Therefore, each queue (class) is treated as a FIFO buffer
just like in the best-effort FLCD algorithm.

Enqueuc

Figure 3.16: Fuzzy Logic Congestion Detection in the PropDiffServ Network

The Weighted Fair Queuing (WFQ) is used as the scheduling mechanism in the dequeuing
routine. The WFQ algorithm is parameterized by a weight vector W where W, is the proportion of
capacity class i when there are packets available for transmission for all classes. This ensures that
the performance of the low priority queues is guaranteed. The constraints for the weights are

W, >0 (3.27)

and
v
>w=1. (3.28)
i=l

Recently, Joutsensalo ¢t al. [JHPO3] have proposed an adaptive weighted fair queue based
algorithm for channel allocation. The weights are adapted by using revenue as a target function.

We have used this version of WFQ along with the FLCD algorithm. The Nortel DiffServ
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implementation in NS-2.28 does not employ the WFQ scheduling algorithm. Therefore, we had to
download the C++ source codes for the WEQ algorithm from hup://www.cc.jyvu.[i/~sayenko/sre/
and patch them to the DiffServ codes in NS-2.28. The pscudo codes for the PropDiffServ FLCD

algorithm and the PropDiffServ enque and deque routines are shown in Figure 3.17 and Figure

3.18 respectively.

Every 7 seconds:
for(i=Li++isN)
/I Computing the packet marking probability for queue i
Evaluate a(iy and B(i):
Evaluate Ap,(t);
Pui(t) < Apy; (1 =)+ Ap, (1)
/
Parameters for queue i:
a(i) = backlog factor, 5() = packet arrival factor,
Ap,(t) =change in packet marking probability at time ¢,

Py () = packet marking probability at time 1.

Figure 3.17: FLCD algorithm in PropDiffServ IP scenario
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Enque:
for every incoming packet/
Extract the codepoint from the packet's header;
Extract queue k (from the PropDiftserv Table) that matches packet's codepoint;
if (queue k is full) Drop incoming packet;
else {
Generate random number R € [0,1.0];
if (R < p,,) Mark the Congestion Experienced (CE) bit;
Enque the packet in queue k;

/

Deque:
WFQ selects queue k to deque based on Weight vector W;
Deque fore packet from queue £;

where k =1,2,...,N; N = number of traffic classes (queues);

p,; = packet marking probability for queue k.

Figure 3.18: PropDiffServ Enque and Deque Roulines

3.5.2 Simulation Results and Performance Analysis

In this Section, we compare the performance of the PropDiffServ version of the MOPSO FLCD
algorithm with the WRED algorithm. Figure 3.19 shows the PropDiffServ simulation topology.
We use the same WEFQ scheduler [JHPO3] in both cases. We simulate both schemes using the
Network Simulator (NS-2.28). A four-class PropDiffServ mechanism is implemented on the
router. Class k is composed of traffic from source S(k), wherek =1,2,3.4. The traffic sources are
connected to the router through 100 Mbps, 2ms delay links. Traffic flow is from sources S(1), S
(2), S(3) and S(4) through the router to the Destination. The router is connected to the Destination
through a 10 Mbps, 40ms delay link. The buffer size is set to 50 for each queue. ECN marking is

employed for all TCP flows. Two experiments are conducted in our simulations.
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Figure 3.19: PropDiffServ Network Topology

3.5.2.1 Experiment 4: TCP Traffic Simulation

The aim of this experiment is to compare the packet loss rate, buffer occupancy and link
utilization metrics of the FLCD algorithm with that of the WRED algorithm when traffic in all
classes is generated by TCP sources. The simulation time for each scenario is 200sec.The

simulation metrics for this experiment are presented in Table 3.3.

Table 3.3: Parameters for TCP Traffic Simulation

W, | Sources Start TStop R
8/15 | 25 TCP 0 } 120

20 Lmo

40 | 160
z

200

Table 3.4 shows the Packet loss rate and the link utilization metrics for the two algorithms.

Table 3.4: Performance Results for TCP Traffic simulation

TFLCD T WRED
Packet loss rate ' 0.95% 2.73%

Metric

R U

|
Link utilization | 95.655% | 94.956%
L L L
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Table 3.4 shows that the FLCD algorithm reduces the packet loss rate by 65% while link
utilization remains virtually the same in both cases. Traditionally, packet loss rate increases as
link utilization increases. Any attempt to reduce packet loss rate results in drastic drops in link
utilization. The situation is different in the FLLCD algorithm because it is optimized to offer

optimal performance on all the major metrics of IP congestion control.

Figure 3.20 and Figure 3.21 show the aggregate backlog for the FLCD algorithm and the WRED

algorithm respectively.
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Figure 3.20: Backlog for the FLCD algorithm
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Figure 3.21: Backlog for the WRED algorithm

The average values of backlog are 59.5 for FLCD and 79.04 for WRED. This implies that the

buffer size requirement in the FLCD algorithm is lower than in the WRED algorithm. The other
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implication is that the queuing delay incurred by packets in the FLCD algorithm would be lower

than in the WRED approach. This characteristic is very important for real-time traffic.

3.5.2.2 Experiment 5: Real Time Traffic Simulation

The aim of this experiment is to compare the performance of the FLCD algorithm with that of the
WRED algorithm when one class carries higher priority video traffic while the rest of the classes
carry TCP traffic of the same priority.NS-2.28’s Constant Bit Rate (CBR) traffic generator is used
in order to generate video traffic which is sent at a rate of 128Kbytes/sec. This traffic
configuration has also been used in [MNTO4]. All the traffic flows start at Osec and stop at
200sec. The other simulation parameters are presented in Table 3.5. Figure 3.22 and Figure 3.23

show the results.

Table 3.5: Parameters for Real-time Traffic Simulation

Class W, Sources

| 1 0.4 LS,IO,IS,...SS CBR UDP

[ 0.2 40 FTP )
3 02 40 FTP |
4 0.2 40 FTP

AVERAGE DELAY (ms)
AVERAGE JITTER (ms)

“;(‘5 1‘0 “5 2’0 2‘5 3‘0 35 05 10 15 20 2‘5 3‘0 35
NUMBER OF REALTIME FLOWS NUMBER OF REALTIME FLOWS
Figure 3.22: Average Delay for Real-time Figure 3.23: Average Jitter for Real-time

traffic traffic

Figure 3.22 shows that the FLCD algorithm exhibits a lower average delay. It's average delay is

virtually constant when the number of real-time traffic flows is 20 or less. It however exhibits an
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exponential decrease in delay as the number of flows increases beyond 20. It finally saturates
around 55ms which is just 15ms higher than the link propagation delay (40ms). The overall
average delay in the FLCD algorithm is 92.59ms. The WRED algorithm is unstable when the
number of real-time traffic sources is low. Its average delay is 112.28ms for 5 real-time flows. It
then shoots to an overall high of 159ms for 10 real-time flows before stabilizing as the number of
real-time flows increases. WRED registers an overall average delay of 135.25ms.The exponential
decrease in average delay in the FLCD algorithm is attributed to the fact that this algorithm
becomes more aggressive in dropping real-time packets as their arrival rate increases. This helps
to minimize queuing delay for the packets that have been enqueued succeésfully. This
characteristic is very important for real-time traffic because this type of traffic operates within
stringent time delays. If the arrival of a packet at the destination node is outside its time delay
threshold, that packet is just dropped. Therefore, dropping packets aggressively as their arrival

rate increases helps to get rid of useless late packets from the network.

Figure 3.23 shows that the WRED algorithm exhibits a lower jitter when the number of real-time
flows is low i.c. 5 and 10. This advantage is however offset by the huge delay as shown in Figure
3.22. As the amount of real-time traffic increases, we observe that the FLCD algorithm
outperforms the WRED algorithm. The overall average jitter is 5.57ms for FLCD and 8.112ms

for WRED. This mcans that the intelligibility of real-time traffic is higher in the FLCD algorithm.

3.6 Chapter Summary

In this Chapter, we have developed a Fuzzy Congestion Detection algorithm by fusing the
strengths of some of the traditional AQM schemes into the Fuzzy logic AQM framework. For
instance, we have extended the basic Fuzzy algorithm by incorporating the CHOKe algorithm in
order to address the issue of fairness which was not explicitly addressed in all the preceding fuzzy
logic AQM approaches. We then modeled the congestion control problem as a multi-objective
(MO) problem and used MOPSO in the automatic design of membership functions for the Fuzzy
Logic Congestion Detection algorithm. The proposed algorithm addresses the major objectives of
AQM by optimizing the membership functions of the input and output variables based on four
objective functions. These objective functions are derived based on the following requirements:
maximizing link utilization, minimizing loss rate, minimizing link delay and jitter. The

effectiveness of the proposed approach is proved on both best effort and PropDiffServ IP
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networks. In the best effort implementation, the performance of the proposed approach is
compared with the basic Fuzzy algorithm and the REM algorithm. Performance results show that
the proposed approach exhibits highest link utilization and fairness. It also exhibits the lowest
packet loss rates and UDP traffic jitter. Its performance in terms of UDP traffic delay is similar to
REM and the basic Fuzzy algorithm. In the PropDiffServ implementation, the performance of the
proposed approach is compared with that of the WRED algorithm. Simulation results show that
the FLCD approach achieves higher link utilization, lower packet loss rate, jitter and delay. The
superior performance of the MOPSO FLCD is attributed to the effectiveness of the MOPSO
dynamics in producing the Pareto set of optimal solutions from which the best compromise
solution, which is used in the configuration of the FLCD algorithm, is drawn. The other striking
advantage of this algorithm, compared to the basic Fuzzy algorithm, is that it uses fewer fuzzy
sets leading to a smaller rule base and minimized memory requirements. Chapter 4 proposes a

mechanism for the online fine-tuning of the algorithm.
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Chapter 4

Online Self Learning and Organization

4.1 Introduction

In this Chapter, we propose self-learning and organization structures for the FLCD algorithm
which has been proposed in Chapter 3. Although the FLCD algorithm exhibits good performance,
it is prone to poor performance in certain network conditions because its optimization process is
implemented offline based on a single optimization script. This script can obviously not manage
to capture all the traffic dynamics, pattern variations and network topologies. Self-learning and
organization structures are therefore necessary in order to enable the FLCD algorithm to fine tune
itself in light of traffic variations, unrnodelled system dynamics and other external disturbances
without disrupting the structure of the optimized membership functions. In order to achieve this,
we introduce two concepts: an RTT based sampling mechanism and a self-learning and
adaptation mechanism. The RTT based sampling mechanism would enable the FLLCD algorithm
to adjust its update interval in line with the prevailing link propagation delay. This would help to
improve the FLCD algorithm’s performance with respect to TCP traffic transmissions which
depend on the value of RTT. The self-learning and adaptation mechanism learns the link
conditions and adjusts the fuzzy rule base periodically. This mechanism departs from the
classical approaches used in [WANOZ], [ANNO4] by using some concepts learnt from the state-
of-the-art algorithms [SBMO2], [PRG04] that have been proposed for self-learning and adaptive
fuzzy logic controllers. The underlying principles of the self-lcarning and organization structures
are presented in Section 4.2, Simulation results in dynamic traffic environments are presented in

Scction 4.3. Section 4.4 extends the Self-organized FLCD algorithm to Wireless Local Area
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Networks (WLANSs) where the problem of congestion exists at the interface between the wired
and wireless networks due to the natural differences between these two types of networks. This

Chapter is summarized in Section 4.5.

4.2 Self-learning and Organization Structures

4.2.1 RTT Based Queue Sampling Mechanism

The motivation to implement an RTT based queue sampling mechanism stems from the fact that
the rate at which TCP injects packets into the network is largely dependent on RTT because TCP
is an acknowledgement based end-to-end algorithm. The FLCD algorithm is optimized at
sampling rate 7 of 0.002s at a bottleneck link propagation delay D of 0.04s.If this sampling rate is
used on links with shorter propagation delays, the incoming queue would be undersampled. This
sttuation would lead to higher loss rates due to buffer overflows because the traffic arrival rate is
high. On the other hand, if this sampling rate is used on links with longer propagation delays, the
incoming queues would be oversampled such that the packet arrival rate would always be very
low.The effect of this scenario is that the change in packet marking probability will always be
low because the contribution of the packet arrival factor Lo the fuzzy output value is always low.
The system will not be able to increase the packet marking probability in times of congestion
such that it will easily degenerate into a drop-tail mechanism with large losses and
underutilization. Therefore, the sampling rate is modified based on the link propagation delay by
using a linear relationship as follows

., T*D
T =
0.04

(4.1)
where 7" and D denote the sampling rate and the propagation delay for the new link.

The modification of the sampling ratc necessitates the adjustment of the maximum packet arrival

rate r, from Chapter 3. The MOPSO optimization process uses a static value of 5.0 for this

parameter. In order to cater for dynamic situations while at the same time preserving all the

performance characteristics yielded by the optimization process, we use 5.0 as a startup value for

r,.-1f the weighted average packet arrival rate r(r) is greater than r, , r, is adjusted by a weighting

m?

procedure otherwise it remains uncharged. This process is illustrated in the following
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5.0 1=0
r(=d@ (-1 + (- @) *r() r)>r, (-1 (4.2)
r (1 =17 r(6)<r,(t=7")

where @ is the measuring weight just like in Chapter 3.

4.2.2 The Self-Learning and Adaptation Mechanism

This mechanism adjusts the FLCD algorithm in line with the prevailing system conditions. The
implementation of online adaptation and self-learning fuzzy systems is an active research area
[PM79], [SBMO2], [PRF99],(PRG04].The general trend in these systems is that the rule
consequents and the membership functions defined in the premises of the fuzzy rules are tuned
using various algorithms based on the prevailing plant conditions. For instance the approach in
[PRGO4] uses two control blocks: the Adaptation Block (A-Block) which is responsible for
adapting the consequents of the main controller’s rules to minimize the error arising from the
plant output, and the Global Learning Block (GL-Block) which compiles real input-output data
obtained from the plant. The A-Block is responsible for coarse tuning of the fuzzy rules in the
initial stages. As the process advances, the A-Block gives way to the GL-Block which fine-tunes

both the membership functions (premises) and the consequents.

In our approach, we use some concepts learnt from [SBM02], [PRG04]. We, however, only fine-
tune the rule consequents because of two reasons:
¢ The membership functions aad parameters of the FLCD algorithm have already been
optimized offline in Chapter 3. With these membership functions and parameters, optimal
performance on all the major AQM objectives is guaranteed. Further tuning of
membership functions would disrupt their optimal parameter settings thereby defeating
the whole purpose of the proposal in Chapter 3. This is not the case with the proposal in
[PRGO4] in which there is no model of the plant such that the controller’s rules and
parameters defining it are optimized from a “void” fuzzy controller.
* It has been reported in [ANNO4] that the modification of membership functions uses a lot
of memory resources. This process would also take up more of the router’s processing

time. Therefore, the performance of Internet routers could be adversely affected.
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The FLCD self-learning and adaptation mechanism is built on the principle of monotonicity
which is evident in [PM79], [SBMO02], [PRF99],[PRG04].1t evaluates the current state of the
plant and proposes the correction of the rules responsible for the existence of such a state, either
as a reward or a penalty. In [PRF99], [PRG04], this modification is proportional to the degree
with which the rule was activated in achieving the control output u(f —d) now being evaluated at
instants The system has to waitd iterations in order to evaluateu(r —d).This calls for the
definition of a queue, with the depth given by the delay of the plant, where the degrees of
activation of the rules are stored, While such an arrangement works well in [PRF99], [PRG04], it
is not suitable for the FLCD algorithm. There are two reasons for this assertion. Firstly, the
implementation of a dynamic queue would not only consume the precious memory resources of
the router but it would also increase the processing overhead on Internet routers. This must be
minimized at all costs because the router’s primary function is to route packets. Secondly, the
evaluation of plant delay in real time is a complex process because of the dynamics of Internet

traffic. In light of these observations, we use the weighted average degrees of activation in the
adaptation mechanism. If F,, (1) denotes the adaptation parameter and (1) denotes the
weighted average degree of activation for rule jal instants, then the proposed change in the
output scalar (b;(1) ) for rule j would be expressed as follows

Ab, (1) = 11, (1).F,, (1) (4.3)

The weighted average degree of activation for rule j is realized as follows

M= (=) + (L= @) * (1) (4.4)
In real-time, the system must be stabie under different traffic patlerns and network lopologies.
Therefore, as proposed in [ANNO4], the variation of queue length must play a role in the
adaptation mechanism. The system must also be capable of adjusting itself based on the observed
packet losses. It has been pointed out in (WANO3] that packet losses can show the degree of
congestion coarsely at lcast. Therefore, we implement F,,(1)as a sum of the queue error
factoer(l)and the packet loss factorPf(t)i.e. E4,,(f):Q[(t)+Pf(t).We let these factors

contribute equally to F,,(r) such that

Q, (=P (1) =% (4.5)

The two parameters Q(r) and P, (1) defining F, (1) are discussed in the next subsections.
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4.2.2.1 Evaluation of the Queue Error Factor

Let Q(r)denote queue length at instants The queue variation at instants with respect to @, , 1s
expressed as follows

AQ)=Q(1) -0, (4.6)
When AQ(r) > 0, we know that the level of congestion is increasing hence the need to increase the
packet marking/dropping probability by adjusting the rule consequents in the positive direction.
As aresult, TCP sources will reduce their sending rates while more UDP packets will be dropped.
When AQ(#) <0, we know that the level of congestion level is abating hence the need to reduce
the packet marking/dropping probabiiity by adjusting the rule consequents in the positive
direction. As a result, TCP sources will increase their sending rates while less UDP packets will
be dropped thereby increasing the overall utilization of the link. Based on these concepts, the

queue error factor Qj (t)can be expresszd as follows

o 800)

g AQ(1) <0
0, = ABQS( ; 4.7
C,. A 0
> po Q) >

where BS is the Buffer Size while C,and C, are constants for ncgative and positive adjustment

respectively.

Constants Cyand C, are directly proportional to the maximum negative and positive variations
(AP, and AP, ) of the change in packet marking probability respectively. These relationships
are presented mathematically as follows

C =5.1AP | (4.8)

neg

C,=S,AP (4.9)

pos

where §; and S, denotes the negative and positive error scaling factors respectively.

If §,and S, are too small, the resulting Q,(1)is also very small such that the contribution of the
adaptation mechanism is negligible. If S, and S, are too big, the resulting Q, (1)would be too big

thereby driving the system into instability. By definition, both H;(r)and b (1) vary within the
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range [0.0,1.0] .Whenmzl.o, Abj (r) in cquation (4.3) becomes equal to F,;(¢) . For stable
operation of the system, we limit the range of variation for Ab, (1) to 8% of the maximum value
ofbj (t) .Therefore, the range of variation for Qf ()can be limited to 4% because Q, (1) = Fyp(1)/2
as given by equation (4.5). This 1mplies that @ (f)would fall within  the
range[-0.02,0.02] .Typical values forQ,, would be between 0.25BSand0.75BS .To cater for
extreme cases, we fix Q,(,f within the interval (0.0, 8S). IfQ,{j — BS ,AQ(t) would fall in the
interval (=BS,0.0) while Q(f)is in the range[-0.02,0.0] Therefore, for an extreme negative

variation, we letAQ (r)=-BSandQ,(r)=-0.02 in the negative component of equation
(4.7).This yields C, as follows

C, =002 (4.10)
The optimization process in Chapter 3 defines -0.0005 as a value forAP,, . Substituting
C,=0.02 andlAp,, [=0.0005into cquation (4.8) yields the negative variation scaling factor as
follows

5, =400 (1D
IfQ,, »0,A0() would fall in the interval (0.0,BS) while Qf (t) is in the range
[0.0,0.025] .- Therefore for an extreme positive variation, we let AQf (=BS and Q,(n= 0.02 in
the positive component of equation (4.7).This yields C, as follows

C,=0.02 (4.12)

The optimization process in Chapter 3 defines 0.0005 as a value forapP,, . Substituting

C, =0.025and AP, =0.0005 into equation (4.9) yields

P08

S, =40.0 (4.13)
The values for S;and S, are the same in this case because AP, =l AP, Ibut cases would easily
arise from the optimization process whereby AP #HAP | In such cases, the values of

pos neg

S,and S, would be different.
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4.2.2.2 Evaluation of the Packet Loss Factor

In contrast to the queue error factor which is proactive, this factor is a reactive one. It is based on
the notion that an increasing number of lost packets entails that congestion is increasing hence the

need to increase the packet marking probability. The evaluation of P, (r) is based on the weighted

packet loss rate pdr(t) which is evaluated after every 7'seconds in keeping with the RTT based
sampling mechanism proposed carlier. This can be expressed as follows
ndp(t)

n(r) (4.14)
pdr(t) =@, * pdr(t =)+ (1— @,) ¥ pdr(t)

pdr(t) =

where ndp(t) and n(r) denote the number of dropped packets and the number of arrival packets
in the interval[(t—7"),1] respectively. pdr(t)denotes the actual packet drop ratio in the

interval [(l - T'),t] while @, is the measuring weight.

Let pdr, and pdr,, denote the maximum packet drop rate and the minimum packet drop rate.

When pdr(¢) = pdr,,, , the rule consequents must remain static because the congestion level is

deemed to be within the proper limits. When pdr(t) — pdr,, ., we know that congestion is
becoming more severe hence the need to adjust the rule consequents in the positive direction
.This will increase the packet marking/dropping probability and as a result the amount of traffic
injected into the network will decrease. Based on these concepts, the packet loss factor P, (1) can

be expressed as follows

pdr(t)~ pdr_.
P/,([)=C3_*”””_ (4.15)

dr — pdr .
P ax ~ P in

Constant C; is directly proportional to the maximum positive variations (AP, ) of the change in

packet marking probability. This relationship is presented mathematically as follows

Cy=S,.AF (4.16)

oy

where S, denotes the positive loss scaling factor.
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In equation (4.13), P.(¢) falls within the range [0,C,]because pdr(t)is restricted to
[Pd’mm Pdrmax} The range of variation for Ab,(1) ,and consequently for F,, (1), is limited to

8% of the maximum value ofbj (t) Therefore, the range of variation for Pj.(z) can be limited to
4% because ﬂ-(t)zFAB(r)/Z(equation (4.5)). This implies that Pj-(f) would fall within the
range [0.0,0.04] . Therefore

C, =004 (4.17)
Substituting C, =0.04 and AP =0.0005 into equation (4.16) yields

[)(75
5, =80 (4.16)

The self-learning and adaptation architecture and algorithm are shown in Figure 4.1 and Figure
4.2 respectively.
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Figure 4.1: Self-learning and Adaptation Architecture
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Initialization:
'« 7*D/0.04
Every t' seconds:
Evaluate Q /(1)

if (AQ(N<0) Q (1) &« C,.AQ(1)/BS
else Q, (1) « C,.AQ(1)/BS
Evaluate P (1):

Pi(1) « C3.(pd;‘(r) — pdr )/pdrmax - ‘Ddrmin

min

Evaluate F,, (1)
Fo(t) & Q,(1)+P (1)
Evaluate Abj(r) and update bj(t) forrules 1,2,...,m:
for (j =0;j <m; j++){
M) = @ (=T + (L= @) * e (1)
Ab (1) &= 11,(.F,5 (1)
Generate b; (1) using the Fuzzy Inference Engine(FIE):
b;(r) « FIE(a(n), f(1))
b (1) «b;(1)+ Ab (1)
)
Evaluate p, (1)
prod ¢ 0.0;sum < 0.0
for (j=0;j<m;j++){
prod « prod + b (1)* 1t,(1)
sum & sum+ t (1)
}
Ap, (1) < prod [sum
pp(t) & Ap, (1 =7 + Ap, (1)

Figure 4.2: Self-learning and Adaptation Algorithm

4.3 Simulation Results in Dynamic IP environments

Two experiments were conducted on the NS-2.8 simulation platform in order to compare the
Self-Organized FLCD (Self-Org FLCD) algorithm with the basic Fuzzy AQM [FYX02], the
unorganized FLCD and the Adaptive RED (ARED) [FGS01] algorithms. ARED is an adaptive
version of the basic RED [FJ93] algorithm against which proposals in [ANNO04], [WANQ3] are
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benchmarked. ARED is more stable than the basic RED algorithm. It has been pointed out in
[FGS01] that ARED is capable of restoring the average queue back to the target range within 10
seconds when traffic rate increases by ten times. The basic RED algorithm does not manage to

recover the average queue with such a sharp increase in traffic.

We use the following metrics: packet loss rate, link utilization, jitter, delay and link fairness.
These metrics are presented in the Appendix A. The reference queue length is set to 40% of the
full buffer size in all the three algorithms. All simulations use NS-2.28’s NewReno TCP variant
with an initial congestion window cwnd of 3 segments (per [AFP02]), a Maximum Segment Size
(MSS) of 1500 bytes and the receiver acknowledging each segment. The full buffer size is set to
90 packets. ECN marking 1s used. 30 web servers are connected to Router[ with a corresponding
number of web clients connected to Router2. We also attach 15 web clients to Routerl and 15
web servers to Router2 to provide background traffic on the return path. Simulations for these

experiments are implemented on the network topology in Figure4.3.

Q 100Mbps 1OOMbps
S(1)

2 ms

R(1)

R(2)
10Mbps h

Routerl Router2
20 ms

R(3)

A

Dircction of traftic flow

R
S ™

Figure 4.3; Network Topology

4.3.1 Experiment 1: Queue Evolution in Dynamic Traffic Environments

In this experiment, we compare the sensitivity of the four schemes when flows are introduced and
dropped dynamically during a simulation period of 500s. We simulate 50 FTP flows from
Router] to Router2.These flows start randomly within the first 5s and remain active throughout
the simulation period. At time=120s, the number of FTP flows from Router] to Router? is 50. We

increase this number by 50 at each 1 second interval until the simulation time reaches 144
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seconds. Between 144seconds and 220 seconds, the number of FTP flows remains constant.
When time reaches 220 seconds the number of FTP f{lows is reduced by 50 at each 1 second
interval until time=244 seconds after which the number of FTP flows remains constant. 10 UDP
flows from Routerl to Router2 are activated in the following intervals [120s-130s] and [350s-
370s].UDP traffic rate is set at 0.5Mbps. We activate 10 web sessions on each client-server
connection. Table 4.1 shows the queue evolution statistics for the four schemes. Fig. 4.4 shows

the queue length evolution dynamics for the four schemes.

Table 4.1: Queue Length Evolution Statistical results

Metric ARED ‘l Fuzzy(basic) | FLCD SelfOrg-FLCD

Average Queue | 61.6 1 40.915 38.814 | 36.74934

Length (Packets) J \
Queue variance | 363.348 | 596.7366 | 425.872 | 319.50838
(Packets) / L
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Figure 4.4: Queue Evolution for the four schemes
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Table 4.1 and Figure 4.4 show that the Self organized FLCD algorithm is more stable than the
other approaches. It really attempts to limit the length of the queue to 36 packets (40% of full
buffer size). The unorganized FLCD algorithm ranks second while the basic Fuzzy algorithm and
the ARED algorithm rank third and fourth respectively. Right from the onset, even without the
introduction of dynamic traffic, the ARED queue stabilizes at a much higher value. The TCP
traffic inflow during slow-start completely overwhelms it such that it fails to recover the queue
length to the desired target. The three other approaches also register high queue length
immediately after startup but they manage to recover and maintain the queue within the precincts
of the target. Of the three well performing approaches, the self organized FLCD approach
registers the shortest queue length during the startup phase (approximately 60 packets) while the
unorganized FLCD algorithm (approximately 82 packets) and the basic Fuzzy algorithm
(approximately 85 packets) rank second and third respectively. In terms of recovery time during
the startup phase, the self organized FLCD algorithm still ranks first with a recovery time of
approximately Sseconds while the unorganized FLCD algorithm (approximately 10 seconds) and
the basic Fuzzy algorithm (approximately 15 seconds) rank second and third respectively. When
UDP traffic is introduced in intervals [120s-130s] and [350s-370s], the queue’s high period is
smallest in the self organized FLLCD algorithm compared to the other approaches. With the
introduction of dynamic TCP traffic, all the algorithms except ARED which just shifts the queue
even higher close to the buffer limit, become unstable as they try to limit the queue length to the
set target. Once again the self organized FLCD algorithm performs better than the unorganized
FLCD algorithm and the basic Fuzzy algorithm in that it attempts to bring the queue down to 36
packets right from the time dynamic TCP wraffic starts entering the link. The self organized FLCD
algorithm also exhibits good recovery performance when the dynamic TCP traffic stops flowing.
The basic fuzzy algorithm suffers severe underutilization when dynamic TCP traffic stops
flowing. After approximately 390 seconds up to 500 seconds, all the four schemes limit the queue
length to approximately 36 packets. It is worthy pointing out that ARED is more stable during
this period but that advantage is offset by its very high average queue length. The effect of long

queues is twofold. Besides enhancing the need for larger buffers long gueues have an effect of

increasing packet delays.
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4.3.2 Experiment 2: Dynamic Traffic Environments with varying propagation delays

In this experiment, we compare the performance of the three schemes when the round trip delay
of the bottleneck link is varied. We use the network topology shown in Figure 4.3 We vary the
round trip link delay by using 20ms, 40ms, 60s up to 180 ms.The simulations run for 200
seconds. We simulate 50 FTP flows, competing for bottlencck link from Routerl to Router2.
These flows start within the first 5 seconds. We activate 4 web sessions on each client-server
connection. 10 UDP flows are introduced in the following intervals [50s-60s] and [150s-160s]
while the FTP flows start randomly within the first Ss and they run up to the end of the
simulation. At time 60s, 200 new FTP flows start, with 40 starting every 7.5 scconds. When time
reaches 140 seconds, the new FTP flows are removed from the tratfic mix in steps of 40 flows

cvery 7.5 seconds. Figure 4.5- Figure 4.9 show the results.
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Figure 4.9: UDP Traffic Jitter with varying Round trip Link Delay

Figure 4.5 shows that the Self organized FLCD algorithm has the lowest packet loss rate ranging
from 0.28% to 1.181%.The organized FLCD algorithm comes second with a loss rate ranging
from 0.532% to 1.324%. The basic Fuzzy algorithm comes third with a loss rate ranging from
0.972% to 1.647%. The ARED algorithm comes fourth with a loss rate ranging from 1.995% to
3.533%.The self organized FLCD algorithm’s low packet loss is due to role of the packet loss

factor which is embedded in the self learning and adaptation mechanism. This factor helps to
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increase the packet marking probability when packet losses have been detected. This helps to
reduce further packet losses. ARED’s poor packet loss performance is due to the fact that the
ARED control law fails to keep the queue within the desired precincts. When dynamic traffic sets
in, buffer overflows are inevitable as seen in Fig.4.4.

Fig.4.6 shows that ARED and both FLCD approaches achieve high link utilization throughout the
simulation run. The average link utilization values are as follows: 99.34% for self organized
FLCD, 99.36% for unorganized FLCD, 99.57% for ARED, 98.58% for basic Fuzzy. The basic
Fuzzy algorithm exhibits lower link utilization because it suffers from severe underutilization
soon after the dynamic TCP traffic stops flowing. It fails to recover the queue to the target after
such a sharp decrease in traffic (See Figure 4.4).

Figure 4.7 shows that both FLCD approaches achieve the highest average link fairness (77.6% for
FLCD and 77.5% for self organized FLCD). The basic Fuzzy algorithm follows them closely
with an average of 76.98% while ARED comes last with an average of 75.2%.From this, we
observe that the self organized FLCD algorithm does not jeopardize the fairness element of the
FLCD algorithm.

Figure 4.8 shows that for round trip link delays shorter than 100ms, self organized FLCD
algorithm achieves the lowest UDP packet delay (76.8ms). The FLCD algorithm (86ms) comes
second. The ARED (98ms) algorithm and the basic Fuzzy algorithm delays (98.93ms on average)
exhibit similar UDP traffic delays. However, when the round trip delay exceeds 100seconds, the
FLCD algorithms and ARED exhibit similar UDP traffic delay performance while the basic
Fuzzy algorithm exhibits slightly longer delays. The self organized FLCD algorithm exhibits
better UDP delay performance for shorter round trip time because of the RTT based update
mechanism which forms part of the self learning and organization structure. This mechanism
enables the FLCD algorithm to frequently update the packet marking probabihity for links with
shorter RTTs. The effect of this is that buffer overflows are minimized. It becomes easier for the
FLCD algorithm to keep the queue close to its target thereby improving the end-to-ed delay.
Figure 4.9 shows that the basic Fuzzy algorithm exhibits the lowest jitter (with an average of
1.78ms). The FLCD schemes rank second with averages of 1.854ms for FLCD and 1.847seconds

for self organized FLCD algorithm. The ARED algorithm comes last with an average jitter of
2.19ms.
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4.4 Self-Organized FLCD algorithm in Wireless Local Area Networks

4.4.1 The Need for Congestion Control in WLANs

IEEE 802.11 wireless LANs (WLANs) have gained strong popularity in a number of vertical
markets, health-care, retail, manufacturing, warehousing and academic institutions. In contrast to
traditional wired networks, WLANSs are characterized by mobility support, installation simplicity
and flexibility, reduced cost-of-ownership and scalability. The widespread deployment of
WLANs is due to the productivity, convenience and cost advantages offered by these
characteristics. Despite the growing popularity, the available bandwidth in IEEE802.11 networks
is much smaller than in wired local area networks since IEEE 802.11 networks are non-switched
half duplex. These networks suffer from interference from radio sources like microwave ovens,
cordless phones and wireless computer devices such as Bluetooth. They also suffer from the
hidden node problem which results in collisions and reduced channel performance [SCHOO]. The
maximum peak transmission rate possible in 802.11a/g stations is 54Mbps. However studies
[KS03] have shown that, due Lo a large overhead per frame transmission, the maximum efficiency
is only 50-60%. In addition, maximum channel throughput can only be achieved in close
proximity to the Access point (AP). As distance from the Access point increases, throughput
diminishes more or less rapidly due to elfects of packet loss, reflection, diffraction and scattering.
The actual channel throughput also heavily depends on the frame payload size. When only {rames
as are typical for VoIP are sent, the maximum throughput on the wireless channel on the wireless

channel can drop below [ Mbps even at a data rate of 11 Mbps [KS03].

At present, an IEEE working group (IEEE802.11n) 1s working on a new standard which builds on
the previous 802.1t standards by adding MIMO (Multiple-Input Multi-Output) concepts in order
to offer wireless transmissions at rates greater than 100Mbps. It is projected that 802.11n will also
offer a better operating distance than current 802.11 networks. While the ultimate advantage of
this standard is obviously speed, it is reported in [COXO03] that just like its preceding standards,
maximum throughput can only be achieved in close proximity to the Access Point (AP). As
distance increases from the Access Point (AP), throughput still diminishes more or less rapidly. It
further reported in [COXO03] that in almost every case today, an Access Point is a shared medium:
whatever throughput it can deliver is divided up among the users that connect to that one access
point. This implies that for 10 users sharing one Access Point, the throughput per user translates

to 10 Mbps. This new standard was designed in order to match the 100Mbps switched Ethernet
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capacity in the Distribution System (DS). However, new standards offering higher data rates are
arising in switched Ethernet .While 1-Gigabit Ethernet is now widely available and 10-Gigabit
products are becoming more available, the IEEE and the 10-Gigabit Ethernet Alliance [CISCO]
are working on 40, 100, or even 160Gbps standards. Therefore, the disparity in channel capacity
between the wired and the wireless interfaces of the Access Point will continue to present a
significant bottleneck in the downstream direction. The incoming link will continue to be
oversubscribed resulting in frequent buffer overflow. As a result, the implementation of a
congestion control scheme in either the Gateway or the Access Point will always remain a viable
solution for avoiding congestion and ensuring that delays for packets with real-time constraints
are minimized in IEEE 802.11 WLANSs. In [YI04], a proxy-RED congestion control scheme is
proposed for WLANs. The main idea of this scheme is to reduce overhead at the access point by
implementing the AQM functionality at the gateway. The instantaneous queue length at the
access point is sampled periodically to calculate the estimated average queue length, which is
used for determining the drop/marking probability at the gateway. Results [YI04] show that this
congestion control scheme significantly improves packet loss rate and goodput for a small buffer,
and delay for a large buffer. This approach is based on the WLAN architecture in Figure 4.10.
Each Access Point (AP) connects its associated Basic Service Set (BSS) to the gateway. The
galeway provides Internet connectivity to the APs.

Access point

i
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- N\

& fi;

)
Internet \)
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Figure 4.10: Gateway centric WLAN Architecture

However, WLAN architectural trends [ZR0S5] show that the WLAN architecture in Figure 4.10 is

not highly scalable because the cost of deploying a large scale WLAN network dramatically
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increases as the network expands. An emerging architecture which presents a possible solution to

the scalability problem is the (static) multi-hop.11 (mesh) network (See Figure 4.1 1).
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Figure 4.11: Wireless AP-to-AP Mesh Network

Interest in this approach is indicated not only by the newly formed Mesh Task Group within IEEE
802.11 but also mesh solutions offered by several companies [MESHD, MESHN]. The
deployment of a proxy-based (gateway-centric) congestion control scheme in the future wireless
AP-AP mesh network 1s not a scalable approach because there will be numerous APs without
direct connection to the gateway. Therefore, congestion control schemes will still have to be

implemented in the access point because the access point has direct control to a particular Base

Scrvice Set (BSS).

4.4.2 Simulation Model and Results

To investigate the performance of the self-organized FLCD algorithm in WLAN, we run some
simulations on the network topology shown in Figure 4.12. Servers S1, S2, S3 and S4 are
connected to the Gateway which is connected o the Access Point. The bandwidth and
propagation delay between the servers and the Gateway and between Gateway and the Access
Point are set to 100Mbps and 2ms respectively. The Access Point feeds two fixed nodes (FN1 and

FN2) and two mobile nodes (MN1 and MIN2)) in 36Mbps WLAN architecture. We compare the
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performance of the self-organized FLCD algorithm with that of the basic Fuzzy logic AQM,
Adaptive RED and the Drop-tail mechanism which is used in WLAN networks at present. These

schemes are configured in the Access Point at the WLAN interface.
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Figure 4.12: WLAN Simulation Topology

We vary the buffer size by using 50,100, 150 up to 400 packets. The simulations run for 250
seconds. 48 FTP flows and 4 web traffic flows, each having 4 sessions, are configured to flow
from the servers to all the WLAN nodes throughout the simulation period. To provide
background traffic on the return path., we configure 4 web traffic {lows, each having 4 sessions,

to flow from the WLAN nodes to the servers. Audio, video and basic UDP traffic was generated
based on Table 4.2.

Table 4.2: Real Time Traffic Simulation parameters

? Audio } Video 1 Background \

‘ Transport Protocol | UDP | UDP UDP

[ Packet Size 160 bytes ? 1280 bytes 1500 bytes ‘
Packet Interval EO ms } 10 ms 12.5 ms }
Flow Rate j 8 Kbytes/s ‘ 128 Kbytes/s 120 Kbytes/s 1

Video traffic flows from Servers S1 and S2 to the mobile nodes in the interval [40s-70s]. Audio
traftic flows from Servers S1 and S2 to the mobile nodes in the interval [130s-160s]. Basic UDP

traftic flows from all the 4 Servers to all the WLAN nodes in the intervals {25s-30s] and {215s-
220s]. Figure 4.13- Figure 4.16 show the results,
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Figure 4.16: Throughput with varying Buffer Size

Figure 4.13 shows that the Self organized FLCD algorithm cxhibits the lowest UDP traffic delay
ranging from 85.7ms (for a buffer of 50 packets) to 455.7ms (for a buffer of 400 packets).The
basic Fuzzy AQM algorithm comes second with the UDP traffic delay ranging from 104.8ms (for
a buffer of S0 packets) to 621ms (for a buffer of 400 packets). ARED comes third with UDP
traffic delay ranging from 137.76ms to 571.34ms (for a buffer of 400 packets).The Drop-tail
mechanism comes fourth with the UDP traffic delay ranging from 125.47ms (for a buffer of 50
packets) to 974.6ms (for a buffer of 400 packets).In terms of averages, the UDP (raffic delay
performance is as follows: 282.587ms for the Self organized FLCD, 381.727ms for basic Fuzzy
AQM, 421.4ms for ARED and 548ms for Drop-tail. The Self organized FLCD algorithm
achieves the lowest delay because it maintains the shortest queue amongst the four mechanisms.
The Drop-tail mechanism exhibits the highest delay because its queue is perpetually long because
it does not employ any special mechanism to limit it. More UDP packets would be discarded at
the receivers in the Drop-tail mechanism due to late arrival because of the high link delay. We
also observe that in all cases, UDP traffic delay increases with varying proportions as buffer size

increases. This happens because queuing delay increases as buffer size increases.

Figure 4.14 shows that the Drop-tail algorithm exhibits the best UDP traffic jitter with an average
value of 3.01ms.The basic Fuzzy AQM algorithm comes second with an average value of 3.3 1ms
while the Self organized FLCD algorithm comes third with an average valuc of 3.75ms. ARED

comes fourth with an average value of 4.547ms The optimization results in Chapter 3 reveal that
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jitter and delay are non-commensurate j.e. they cannot be improved at the same time. This 1s
proven again in this case because the Drop-tail mechanism exhibits the lowest UDP traffic jitter
at the expense of UDP wraffic delay while the Self organized FLCD algorithm exhibits the
shortest UDP traffic delay at the expense of UDP traffic jitter. A closer look at the jitter
performance shows that jitter values for the three mechanisms are very close such that the
performance of the Self organized FLCD algorithm in terms of jitter would not be very far from

the other two approaches.

Figure 4.15 shows that the Self organized FLCD algorithm exhibits the lowest packet loss rate for
small buffer sizes. When the buffer size increases, its loss rate 1s almost similar to that of the
basic Fuzzy algorithm. On average, the FLCD algorithm exhibits an average loss rate of
2.687%.The basic Fuzzy algorithm , which ranks second, has average loss rate of 3.31% .RED
ranks third with a loss rate of 6.98% while the Drop-tail mechanism ranks fourth with an average
of 11.226%. The Drop-tail mechanism performs poorly because it does not detect incipient
congestion as a result it fails to minimize packet loss rates. The basic Fuzzy AQM algorithm

exhibits higher packet losses for smaller buffers because it maintains larger queues which easily

overflow.

Figure 4.16 shows that all the four schemes exhibit low average throughput rates. The average
values are as follows: 3.395Mbps for ARED, 3.366Mbps for the Self organized FLCD algorithm,
3.361Mbps for Drop-tail and 3.36Mbps for the basic Fuzzy AQM algorithm. These values
account for less than 10% of the available bandwidth 1.e.36Mbps. From these results, we observe

that the introduction of an AQM in WLAN environments does not improve throughput

significantly.

4.5 Chapter Summary

This Chapter has proposed online self organization structures for the Fuzzy Logic Congestion
Detection (FLCD) algorithm. These structures include an RTT based sampling mechanism and a
self-learning and adaptation mechanism. The latter modifies the algorithm’s update interval in
line with the prevailing outgoing link propagation delay while the former fine-tunes the algorithm
according the prevailing system conditions. The effectiveness of the proposed approach is proved

by comparing the performance of the self organized FLCD algorithm with that of the unorganized
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FLCD, the Adaptive RED and the basic Fuzzy algorithms under dynamic traffic patterns.
Performance results show that the proposed approach achieves a much more stable queue
compared to the other approaches. Apart from enhancing the stability of the FLCD algorithm the
new approach also reduces UDP traffic delay for short round trip propagation delays. It also
reduces the FLCD algorithm’s loss rate. We have also observed that the addition of the self-
organization structures to the FLCD algorithm does not jeopardize other performance metrics like

utilization, jitter and fairness.

The final part of this Chapter extended the concept of Fuzzy logic congestion detection to WLAN
networks. In this implementation, the FLCD algorithm helps to minimize UDP traffic delay,
packet loss rates. In terms of throughput, the FL.CD algorithm exhibits similar performance to the

other schemes. Its UDP jitter is slightly higher than its basic variant and the Drop-tail mechanism

but better than that of ARED.
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Chapter 5

The Dual Explicit Congestion Notification
Mechanism

5.1 Introduction

Chapter 1 of this thesis described the explicit congestion related notification mechanisms that
have been proposed for IP networks. These mechanisms have been broadly classified into two
groups: congestion notification and underutilization notification mechanisms. Chapter 1 also
explains the merits and demerits of these mechanisms. Of all these mechanisms, the Explicit
Congestion Notification (ECN), an IETF standard for congestion notification in IP networks, is

the most widely used. Research efforts [LJ01], [SDJ04] are still taking place in order to improve
ECN.

This thesis does not implement underutilization notification mechanisms because the method for
estimating link utilization in literature [SHO2] is more accurate in this aspect. The mechanism in
[SHO2] estimates utilization based on the microflow status of the output link. Apart from the
periodic utilization updates, it also makes utilization updates whenever a packet leaves the queue.
Any link utilization estimation algorithm based on the packet marking/dropping probability (from
the FLCD in this case) cannot achieve that level of accuracy because its utilization information is
determined after specific periods depending on the rate at which queue length and packet arrival

rate are sampled. This thesis, therefore, only focuses on the congestion notification mechanisms

i.e. ECN and BECN.
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This Chapter begins b “resenting an overview on related work in this area in Section 5.2. An
algorithm, that combincs the ECN and BECN mechanisms based on the output of the Fuzzy
Logic Congestion Detection (FL.CD) algorithm which was presented in Chapter Three, is then
developed in Section 5.3. An RTT based BECN reduction mechanism is also proposed in the
same section. Section 5.4 presents the performance evaluation of the proposed models in both

wired and satellite networks. This Chapter is summarized in Section 5.5.

5.2 Related Work

5.2.1 Wired Networks

Although congestion control research cfforts in conventional wired IP networks have been taking
place for more than two decades, explicit congestion notification has only been introduced
recently [RFO1]. The resurgence of BECN is also provoking more research efforts from the
Internet community. Notable research works for wired networks in literature are as follows: The

ECN mark-front strategy [LLJO1] and the Combined ECN/BECN approach [AKUOQ3].

5.2.1.1 The ECN Mark-front strategy

Liu and Jain [LJO1] improve the ECN mechanism by introducing the mark-front strategy. Instead
of marking a packet from the tail of the queue, this strategy marks the packet in front of the queue
and thus delivers faster congestion notification signals to the source. With a simplified model,
they analyze the buffer size requirement for both the mark-front and mark-tail strategies. They
tested link cfficiency, fairness and more complicated scenarios using simulations based on the
RED. Results [LJO1] show that the mark-front strategy provides a better congestion control that
helps TCP to achieve smaller buffer size requirement, higher link efficiency and better fairness

among users. Based on these results, the recent AQM schemes [ALLY01, HMTGO01] employ the
ECN mark-front strategy.
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5.2.1.2 The Combined 3 ECN/ECN Approach

Akujobi et al. [AKUO03] proposed the first algorithm to combine the ECN and BECN mechanisms
using RED as the congestion detection algorithm. This mechanism invokes ECN for low to
medium level congestion and BECN for medium to high level congestion. A new threshold,
becnthresh is introduced between RED’s minimum (minth) and maximum (naxth) threshold, in
order to identify the point at which BECN is triggered. ECN is invoked when the average queue
length is between minth and becnthresh while BECN is invoked when the average queue length is
between becnthresh and maxth. Results show that this mechanism combines the merits of BECN
and BCN algorithms cffectively and leads to improved performance compared to individual ECN
and BECN schemes. It also results in significant reduction in ISQ reverse traffic compared to the
BECN mechanism. The study of the impact of different becnthresh settings and the development

of its preferred values has been pointed out as an area of future research in [AKUOQ3].

5.2.2 Satellite Networks

Satellite networks play an indispensable role in the deployment of global communication
networks because they offer global coverage, broadcast capabilities, flexibility in bandwidth
allocation, support for mobilily and ease of deployment in areas of low subscriber density and
with little infrastructure. Based on these characteristics, satellite networks are suited for the
provision of broadband internet access to remote locations, as well high speed backbone
networks. Currently, satellite architectures are classified as Geostationary Orbit (GSO) and Non-
geostationary Orbit (NGSO). The NGSO architecture comprises the Medium earth orbit (MEQO)
and the Low earth orbit (LEO) [DKGOI], [KDJO1]. In the GSO architecture, satellites are
positioned on equatorial orbit. Their altitude is approximately 35,800km above the surface of the
earth. The satellites appear to an observer on earth as being stationary. In the NGSO architecture,

satellites operate in orbits much closer to the earth. These satellites change their position relative
to ground position quickly.
The provisioning of quality-of-service (QoS) presents the greatest obstacle to the further
development of satellite network systems. GSO systems are characterized by large delays due to
their high altitude while NGSO systems are characterized by large deles ariations because they
are not stationary. These characteristics seriously affect TCP perform: @ becau.z TCP is 2

acknowledgement and time-out-based congestion control mechanism. Its performance
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inherently related ‘o t ¢ delay-bandwidth product of the connection. TCP round-trip time
estimations arc also sensitive to delay variations, which may cause false time-outs and
transmissions. As a result, congestion control issues in satellite networks are more complex than

those of lower-latency terrestrial networks [DSL0O1a], [DSLO1b], [GD99], [HENS9].

The other obstacle to good TCP performance over satellite networks is its non-negligible bit-error
rates (BER) because of transmission link errors. TCP provides reliable byte-streams to
applications by ensuring that the sender retransmits corrupted data. However, packet loss 1s also
used by TCP to determine the level of congestion in the network because traditionally, in wired
networks, the bulk of packet loss comes from congestion. TCP responds to congestion by
reducing its congestion window (cwnd) and therefore its sending rate. The reduction of cwnd
when packet loss has been caused by channel errors [KSE04] will lead to network
underutilization. Therefore, several solutions have been proposed to distinguish network
congestion cffects from corruption effects so that the TCP sender decreases its cwnd only when
there is congestion. Explicit loss notifications (ELN) [BK98], [SAM99] explicitly notify the TCP
senders about packet losses due to channel errors while explicit congestion notifications (ECN)
[FLOY4], [SA00], [AKUQ2] explicitly notify the senders by marking, instead of dropping,
packets when the link is oversubscribed. In satellite networks, the need to minimize packet losses
is even greater because network bandwidth is expensive and the packets to be dropped will have
already traversed through a series of precious links. The dropped packets will also exacerbate the
consequences of the alrcady high latency and latency variations. Notable research works on
explicit congestion notification for satellite networks are as follows: The ECN mark-front strategy

[DSLO1a] and the Multilevel ECN strategy [DSLO1b].

5.2.2.1 The ECN Mark-front strategy

Durresi er al. [DSLO1a] extend the mark-front strategy [LJOI] to satellite networks. They
achieved similar results to those in [LJ01].The effect of their results had much more impact on
satellite networks than on wired networks. In satellite networks, the reduction of buffer size
requirements for a condition without losses translates into less complex devices and less delay.
By sending faster feedback signaling about congestion, the source adjusts its cwnd in time to
avuid packet loss and link idling, consequently improving the link “iciency. This result is
important because in satellite networks, link bandwidth is more expensi  nd les:  ailable than

in terrestrial networks.
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5.2.2.2 The Multilevel ECN Strategy

Durresi et al. [DSLO1b] implement a Multi-level ECN (MECN) mechanism in a satellite network
scenario. This mechanism uses the CE and the ECT bits to implement three different congestion
levels. The CE-ECT bit combination ‘01'-indicates no congestion, ‘10’ indicates incipient
congestion and ‘11’ indicates moderate congestion. Packet drop occurs if there is severe
congestion in the router and buffers overflow. The RED scheme is modified to include another
threshold called midth between minth and maxth. If the size of the average queue is between
minth and midth, there 1s incipient congestion and the CE, ECT bits are marked as ‘10" with a
maximum probability of Plmax. If the average queue is between midih and maxth, there is
moderate congestion and the CE, ECT bits are marked as ‘11’ with the maximum probability
P2max.If the average queue is above maxth all packets are dropped. The receivers reflect the bit
marking in the IP header, through TCP ACKs by using a combination of 2 bits §, 9 (CWR, ECE)
in the reserved field of the TCP header. The response of the TCP senders is defined as follows.

When there is no congestion, the cwnd is allowed to grow additively as usual. When there is

packet drop, the cwnd is decreased multiplicatively by &, =50% . When the marking is ‘10
(incipient congestion), cwnd is decreased multiplicatively by ¢ = 20% .When the marking is
‘117 (moderate congestion) cwnd is decreased multiplicatively by «, = 40% .This enables TCP

senders to have a better tuned response to congestion. MECN converges faster, with fewer losses

than simple ECN and improves other QoS parameters such as link utilization and delay.

5.3 The proposed Dual explicit Congestion Notification Algorithm

This algorithm is developed based on the motivation drawn from the work in {[AKU03] and the

superior performance of the FLCD algorithm. ECN and BECN are invoked based on the level of
congestion as depicled by the packet marking probability pp from the FLCD algorithm. Figure

5.1 shows the FLCD architecture with the BECN mechanism incorporated.
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Figure 5.1: FLCD Architecture with BECN Activation Mechanism

The BECN factor e [0,1], generated by the BECN Activator, is directly proportional to the
packet marking probability p, It K denotes the BECN constant then the BECN factor is
determined as follows

v=K*p, (5.1)
ECN and BECN are invoked probabilistically based on the values of p, and #respectively. ECN

marking is invoked in the deque routine in order to reduce the delay incurred in delivery of
congestion information to the sender. BECN marking, which triggers the flow of reverse ICMP
source quench messages, is invoked in the enque routine in order to inform the sender about
incipient congestion as soon as it is detecled. In order to ensure reliable delivery of the congestion
notification signal, a corresponding packet traversing the link in the forward path is ECN marked
every time BECN is invoked. If the ISQ message fails to reach the sender then the ECN Echo in
the next ACK message will trigger the sender to reduce its congestion window. When K =1, the
system is almost 100% BECN dependent. We say almost 100% because of the unreliability of
1SQ messages since they are not guided by acknowledgements such that ECN will still play a role
in the notification mechanism (especially in lossy environments). When K =0, the system is
100% ECN dependent. No BECN 1SQ message is gencrated under this condition because ¢ is

cqual to 0. In this proposal, we set K to 0.5.

5.3.1 Dual Explicit Congestion Notification with Reverse Traffic Reduction

Chapter 1 of this thesis pointed out that the generation of ICMP packets must be minimized at all
costs partly because it oversubscribes the router in terms of processing overhead and partly
because it increases the amount of traffic in the reverse path. We argue that it is possible to

reduce the generation and transmission of reverse ICMP traffic without seriously affecting the

100



Chapter 5 The Dual Explicit Congestion Notification Mechanism

performance of the system. This is due to the fact that the reception of multiple congestion
notification signals, in succession, at the sending TCP does not lead to multiple reductions in the
sending rate as TCP reduces its sending rate only once each roundtrip time (RTT) [RFO1],
[AKUOQ3].Therefore the implementation of the reverse traffic reduction mechanism based on the
value of RTT will not only reduce the effects of ISQ generation on router performance but will
also minimize the flow of control traffic in the reverse path. We develop this mechanism by first

of all estimating the value of RTT.

5.3.1.1 RTT Estimation

We use the method used in [FKGSO01] in order to estimate RTT. Let L denote the delay on the
outgoing link, C denote the outgoing link capacity in packets/second and K, a constant. RTT is
derived as follows

RTT = K, *(L+1/C) (5.2)

5.3.1.2 BECN Decay Function

A BECN decay function helps to ensure that the amount of ISQ generation is reduced
exponentially during an RTT. A BECN timer is used for the timing of this function. This timer is

reset immediately after the fuzzy congestion detection algorithm becomes operational. A time
threshold 7, . =0.1" RTT is maintained in the router. The decay factor D is therefore

determined as follows

D _ 1 f()i‘ r< [IhlL’Xh
T 1ty (@ RTT) _ (5.3)
e for t <r< RTT

thresh

where parameter ¢ is the weighting factor.

When time ! </y,.4, , the number of I1SQ traffic flows is not restricted. This is done in order to
ensure that all the sources, responsible for the present congestion status, get the BECN ISQ
message. When time /> ty,05, , the number of ICMP messages deteriorates according to the

Decay function in equation (5.3).When time # > RTT , the BECN timer is reset i.e. 1 = 0sec . At
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this point, the number of ISQ flows is not restricted untilfreaches ¢ Whent >t the

thresh thresh *

BECN decay function is activated again. The process is repeated and so on.

5.3.2 Behaviour of an FLCD based Dual Explicit Congestion Notification Router

An FLCD based dual explicit congestion notification router essentially behaves as a pure ECN
router under low congestion. Under heavier congestion, both ECN and BECN mechanisms are
used for congestion notification. The computational flow of the BECN ISQ generation and

marking process in the enque routine is as follows

Generate a random number Re [0,1.0];
if (bufferis full){
Drop the incoming packet,
if ( ECT bit is set in IP header){ // Checking if the sender is ECN or BECN capable
/I Activate BECN with ISQ reduction mechanism
if (BECN Decay Funcrion (s enabled}{
if (R<D)Send ISQ due to a dropped packet back to the sender;
/
/! Activate BECN without I1SQ reduction mechanism
else Send 1SQ due to a dropped packet back 1o the sender;
/
/
elseif (ECT bit is set){
Il Activate BECN with ISQ reduction mechanism
if (BECN Decay Function is enabled){
if (R<D*3&)Mark packet (CE bit) and send ISQ
dueto a marked packet back 1o the sender;
/
else{ [/ Activate BECN without ISQ reduction mechanism
if (R<®)Mark packet (CE bit) and send 1SQ

due to a marked packet back to the sender;

/
elseif ((R<p,)and ECT bit is not set) Drop the incoming packet;

Figure 5.2: BECN Packet Marking Algorithm

102



Chapter 5 The Dual Explicit Congestion Notification Mechanism

The computational flow of ECN marking process in the deque routine is as follows

Generate a random number Re [0,1.0];
if ((R< p,)and ECT bit is set) and if (packet is not already marked) {
Mark packet (CE bit);

Figure 5.3: ECN Packet Marking Algorithm

5.3.3 Behaviour of an ECN+BECN-Capable TCP end host

The ECN+BECN TCP end hosts perform initial end-to-end negotiations to establish ECN
capability just like pure ECN hosts. The TCP sender responds to either ECN or BECN
(depending on whichever signal arrives first). Whichever notification reaches the sender first
should cause the window reduction. When the sender receives an ECN Echo-ACK or an ISQ
message. it reduces its congestion window and the slow start threshold to one-half of the current
window. If the ISQ is due to a marked packet, the sender waits a full RTT after window reduction
before it starts increasing its window. If the ISQ is due to a dropped packet, the sender follows
the TCP congestion control algorithm immediately after reducing the window. The sender does

not respond to congestion signals more than once in an RTT [AKU03].

5.4 Performance Evaluation

In this section, we compare the performance of the proposed dual cxplicit congestion notification
algorithm with some of the congestion notification schemes described in section 5.2. In order to
show the effect of the ISQ reduction mechanism, the proposed notification algorithm has been
implemented in two modes i.e. with and without ISQ reduction mechanisms. The simulations
considered two topologies: wired and satellite networks. The FI'P traffic model in the Network
Simulator is used with an infinite amount of traffic to send. TCP type is New Reno with a data
packet size of 1000 bytes and ACK packet size of 40 bytes. The TCP clock granularity is set to
100ms. Delayed ACKs are not used in these simulations. Packet-based marking in all cases. For

RED, the maximum probability for ECN marking is set to 1.0. For the FLCD BECN reduction
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approach, we set the weighting factora to 0.75 .The buffer size is set to 90 packets in all cases.

The following performance metrics are used:

Bottleneck link utilization: This refers to the number of data packets respectively that
successfully traverse the bottleneck link and are received by the receiver.

Queue Length: This is the average of queue length samples that are recorded every
0.5seconds as the simulation runs.

Percentage loss: This measures the ratio of packets dropped at the bottleneck link to the
total number of packets injected into the bottleneck link for a particular flow or set of
flows

Percentage [SQ reverse traffic: This is computed as the number of BECN ISQs generated
in the reverse direction of data flow as a ratio of the total number of packets received
from that direction.

TCP Goodput: This is computed as the total amount of TCP traffic that traverses the

network as a ratio of the total capacity of the network.

5.4.1 Wired Network

For the wired network, we use the simulation topology in Figure 5.4,

100Mbps 100Mbps

10Mbps
Rourer}

40 ms

O/ Direction of traffic flow

S(m) R(n)

Figure 5.4: Wired Network Simulation Topology

We compare the performance of the two versions of the proposed algorithm (with and without

ISQ reduction) with the combined ECN/BECN approach [AKUO3].The bottleneck bandwidth is

10Mbps with a propagation delay of 40ms. All other links have 100Mbps with a propagation
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delay of 2ms.Traffic flow is from sources , S(1)...S(n) through routers, Routerl and Router2 to
receivers, R(1)...R(n). We follow the guidelines used in [AKUO3] in setting RED queue
parameters as follows: minth = I5KB, maxth = 3*minth, buffer size = 2*maxth, becnthresh =
30KB, maxp =0.1, wg=0.002, mean packet size=1000bytes. Traffic configuration is done as
follows.30 web servers are connected to Routerl with a corresponding number of web clients
connected to Router2. We also attach 15 web clients to Router] and 15 web servers to Router2 to
provide background traffic on the return path. We activate § web sessions on each client-server
connection. The number of FTP Traffic flows from Routerl to Router2 is varied by using 10, 20,
30,40,50,60,70,80,90 and 100 flows in order to establish different levels of congestion. The FTP
flows start randomly within the initial 5s of the simulation while the web-traffic connections start
within the first 10s.For the FL.CD BECN reduction approach, we set X, to 3 just as in [FKGSO1].
Packet-based dropping for RED is used. This is done basically for comparison purposes because

our scheme also employs packet-based dropping. These simulations run for 150s Figure 5.5-

Figure 5.8 show the results.
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Figure 5.5 shows that the RED (ECN+BECN) approach exhibits the highest ISQ reverse traffic
when the number of FTP flows is 70 or less. This happens because the length of the queue is
predominantly between becnthresh (30packets) and maxth(45packets) during this period (See
Figure 5.6).As a result more packets are BECN marked leading to the generation of ISQ reverse
traffic. After 70 FTP flows, the ISQ reverse traffic decreases drastically because the length of the
queuc is predominantly above maxth (45 packets). During this period ECN is the predominant
congestion notification mechanism. The ISQ reverse traffic generated at this stage is mainly due
to buffer overflows. It is worthy pointing out that the ISQ reverse traffic decreases drastically at a
time when it was supposed to be increasing because this is the stage (100 FTP flows) when the
network faces real congestion as opposed to the stage when the number of FTP flows is 70.This
just illustrates the difficulty pointed out in [AKUQ3] pertaining to the placement of the BECN
threshold.

From Figure 5.5, we also observe that the amount of reverse traffic in the basic FLCD algorithm
is directly proportional to the number of FTP flows. This happens because the packet marking
probability increases at a rate that is directly proportional to the number of FTP flows traversing
the link because the amount of web traffic 1s constant. Therefore, the rate of reverse traffic, which
is a function of the BECN factor, also increases as the number of FTP flows increase. In the case
of the modified FLCD algorithm, the amount of reverse traffic is also directly proportional to the
number of FTP flows but its gradient is approximately half of the basic FLCD algorithm.

On the overall, the average percentages of ISQ reverse traffic are as follows: 3.8% for RED

(ECN+BECN), 4.6% for FLCD (ECN+BECN) and 2.24% for Modified FLCD (ECN+BECN).
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We note that the modified FLCD algorithm achieves the lowest ISQ reverse traffic .Compared to

basic FLCD algorithm, it reduces the ISQ reverse traffic by more than 50%.

Figure 5.6 shows the FLCD approaches exhibiting similar performances in terms of qucue length.
They register their longest queue length (approximately 45packets for the basic FLCD and 44
packets for the modified FLCD algorithm) when the number of FTP flows is 20. The long queue
lengths when the number of FTP flows is low can be attributed to the high proportion of bursty
web traffic flows in the traffic mix coupled with the short round trip time. The other reason is that
at this stage, the level of congestion is low such that the main mechanism of congestion
notification 1s ECN which 1s slow thereby leading to longer queues. Beyond 50 FTP flows, the
FLCD queues stabilize to 34 packets up to the end of the simulation. The RED approach exhibits
shorter queue lengths when the number of FTP flows is low because its control law is entirely
queue length based such that it is insensitive to variations in the arrival rate of the bursty web
traffic flows. The other reason for this behaviour relates to the fact that RED enjoys the benefits
of BECN when the congestion level is low as shown in Figure 5.5. Since BECN is faster than
ECN, RED achieves shorter queues when congestion levels are low. This advantage is however
short-lived because the RED approach fails to control the queue as the number of FTP flows
increases. It reaches 56 for 100 FTP flows. At this point the amount of BECN traffic is very low.

Figure 5.7 shows the RED approach cxhibiting the highest average packet loss rate (0.327%)
while the FLCD approaches exhibit similar performance (0.1463% for FLCD and 0.1608% for
modified FLCD). Besides the {act that the RED algorithm iy inferior to the FLCD algorithms, this
trend can also be attributed to the fact that the BECN marking mechanism in the RED approach is
misplaced as pointed out carlier. Most of the losses take place as the number of FTP flows

increase. Unfortunately, that is the time when the BECN marking mechanism is withdrawn.

From the result in Figure 5.7, we also observe that the FLCD algorithms achieve virtually the
same packet loss rates even though the ISQ reverse traffic in modified FLCD algorithm is
reduced by more than 50%.This confirms our assertion that most of the ISQ reverse packets are

wasted because TCP responds to ISQs once every round trip time.,

Figure 5.8 shows the three mechanisms exhibiting equally high levels of average link utilization.
The RED approach however registers slightly higher link utilization when the number of FTP
flows is 10.This happens because at this stage the RED queue is predominantly below minth such

that most packets are not marked. This results into more packets being injected into the bottleneck
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link. The FL.CD approaches tend to be more aggressive in marking packets at this stage because
they are rate based as well as queue based. Once the arrival rate increases, even without any
meaningful queue change, the packet marking probability is adjusted upwards. As a result, they

exhibit slightly lower link utilization at this stage.

We also note the RED approach exhibits a slight slump at about 70 FTP flows. This happens
because the algorithm switches from the BECN notification back to the ECN notification
mechanism as the queue length becomes predominantly above maxth. The curves for the FLCD
approaches are smooth because of the fuzziness employed in the invocation of the two congestion

notification mechanisms. Therefore, the FLCD approaches are more stable.

5.4.2 Satellite Network

For the satellite network, we use the simulation topology in Figure 5.9. We compare the
performance of the two versions of the proposed algorithm (with and without ISQ reduction) with

the combined ECN Mark front strategy [DSL01a].

Figure 5.9: Satellite Network Simulation Topology

Traffic sources S(1)...S(n) are connected to Router R1 through 10 Mbps, 2ms delay links. Router
R1is connected to R2 through a 1.5 mbps, 125ms delay link. R2 is connected to R3 through a 1.5
mbps, 125ms delay link. The overall round trip link delay is 500ms which is the typical for GSO

satellite networks [HLO1]. A number of receivers R(1)...R(n) are connected to R3 through 10
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Mbps 4ms delay links while a number of traffic sources are connected to R1 through 10 Mbps
2ms delay links. Link speeds are chosen so that congestion will only happen between R1 and R2
where our scheme is tested. Traffic configuration is done as follows.30 web servers are connected
to Routerl with a corresponding number of web clients connected to Router3. We also attach 15
web clients to Router] and 15 web servers to Router3 to provide background traffic on the return
path. We activate 8 web sessions on each client-server connection. The number of FTP Traffic
flows from Routerl to Router3 is varied by using 10, 20, 30,40,50,60,70,80,90 and 100 flows in
order to establish different levels of congestion. The FTP flows start randomly within the initial
Ss of the simulation while the web-traffic connections start within the first 10s. The target queue
length is set to 35% of the buffer size in all the three cases. For the FLCD BECN reduction

approach, we set K, to 6 because in satellite networks there are two links with the same delay

between the source and the destination. The simulation period is 200s for all runs. Figure 5.10-

Figure 5.13 show the results.
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Figure 5.10: ISQ Reverse traffic Figure 5.11: Packet loss rate
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Figure 5.10 shows that the amount of reverse traffic in the basic FLCD algorithm is directly
proportional to the number of FT'P flows. This happens because the packet marking probability
increases at a rate that is directly proportional to the number of FIP flows traversing the link
because the amount of web traffic is constant. Therefore, the rate of reverse traffic, which is a
function of the BECN factor also increases as the number of FTP flows increases. In the case of
the modified FLCD algorithm, the amount of reverse traffic is also directly proportional to the
number of FTP flows but only up to 80 FTP flows after which the reverse traffic rate saturates to
about 4.62%. For the period when the amount of reverse traffic is directly proportional to the
number of FTP flows, the rate of increase is approximately 0.43% for every 10 FTP flows
introduced as opposed to 0.9% for a similar number of FTP flows in the basic FLCD algorithm.
The overall average reverse traffic rates are 4.96% and 2.7% for the basic and the modified
algorithms respectively. This implies that the modified algorithm reduces the amount of reverse

traffic by 45.46%.

Figure 5.11 shows that the FLCD algorithms exhibit lower packet loss rate than the RED/ECN
mark front algorithm. The average packet loss rates are 1.09% and 1.16% for the basic and the
modified algorithms respectively. The average loss rate for RED/ECN mark front algorithm is
2.15%.The FLCD approaches register lower loss rate because they benefit from early congestion
notifications through the BECN mechanism. We also observe that the modified FLCD algorithm
maintains a competitive packet loss rate although its amount of reverse ISQ traffic is reduced by

45.46%. This confirms the fact that most of the reverse ISQ traffic in the original FLCD
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algorithm is wasted because the TCP sender responds to a congestion notification message only

once in an RTT.

Figure 5.12 shows that although the level of link utilization is very high in all the three cases the
RED/ECN mark front strategy registers the lowest level of link utilization (94.99%) when the
number of FTP flows 1s 10 while the fuzzy approaches register higher levels of utilization at this
stage i.e. 96.771% for the modified case and 96.165% for the basic case. When the number of
FTP flows is low, the proportion of web traffic is high. The burstiness of web traffic coupled with
the long delay associated with ECN causes a series of backlog variations on the link which lead to
underutilization in the RED/ECN approach. The situation 1s different with the FLCD approaches
because they enjoy a fair share of BECN messages in the reverse path. This results in fast
delivery of congestion information and as a result the link does not experience severe delay based
backlog variations thereby ensuring high link utilization. As the number of FTP flows increases,
the RED/ECN algorithm registers a slightly higher level of link utilization than the fuzzy

approaches because long lived FTP flows, which are more stable, begin to dominate.

In Figure 5.13, the FLCD algorithms register higher average goodput than the RED/ECN mark
front algorithm. The average goodput values are 66.23% and 64.66% for the basic and the
modified algorithms respectively. The RED/ECN algorithm registers an average goodput value of
61.95%. This shows that although the RED/ECN algorithm recgisters high bottleneck link
utilization, the actual amount of useful data relayed to the recciver is actually low because of

retransmissions which happen as a result of the higher loss rates.

5.5 Chapter Summary

In this chapter, we have proposed a fuzzy logic based dual explicit congestion notification
mechanism based on the output of the FLCD algorithm. We have also proposed an RTT based
decay function which helps to reduce the amount of ICMP reverse traffic by taking advantage of
the fact that TCP responds 1o congestion signals only once during an RTT. We have compared
the performance of the two FLCD (BECN+ECN) approaches with the RED (ECN+ BECN) on
wired networks and with the RED (Mark Front Strategy) on satellite networks. Results show that
the FLCD approaches exhibil better performance in terms of packet loss rate, queue stability on

wired networks. On satellite networks, they exhibit better packet loss rates, goodput and link
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utilization. We have also observed that the RTT based decay function helps to reduce the amount
of reverse traffic by more than 50% for wired networks and by more than 40% for satellite
networks while ensuring that performance remains virtually the same as in the original algorithm

and much better than the RED based approaches.
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Conclusions and Future Work

6.1 Summary

This dissertation has tackled two aspects of IP congestion control: router-based congestion
detection and explicit notification mechanisms. The first part of this research focused on the
development of a Fuzzy Logic Congestion Detection (FLCD) mechanism which achieves optimal
performance on all the major performance metrics of Internet congestion control. The second part
focused on the development of an FLCD based dual explicit congestion notification mechanism
which combines the merits of Explicit Congestion Notification (ECN) and the Backward Explicit

Congestion Notification (BECN) mechanisms.

In Chapter 1, we have outlined the origins of congestion on the Internet. We have categorized
Internet congestion control research into three interrelated fronts: end-to-end mechanisms, router
based detection mechanisms and explicit notification mechanisms. We have described the key
research developments on each front. We have also explained the reasons behind the emergence
of fuzzy logic based AQM schemes. In this Chapter, we have also presented the motivation of the

research done and the original contributions of this dissertation.

In Chapter 2, we studied the principles of operation, the efficiencies and deficiencies of the key
traditional AQM schemes. We also presented the fuzzy logic control theory. We also studied the
fuzzy AQM schemes in terms of their design principles, their efficiencies and deficiencies. From
these studies, we observed that fuzzy control rules and membership functions are obtained
through a manual tuning process which is based on the designer’s insight. The human factor
involved in this operation makes it difficult for these algorithms to achieve optimum performance
for all the key AQM objectives. We also observed that thesc algorithms are generally designed

with an assumption that the Internet is predominantly composed of TCP traffic, whose sources
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respond to congestion notification signals from routers by reducing their sending rates. We also
observed that practically, the situation is not like that because apart from the non-responsive UDP
traffic which accounts for a reasonable traffic proportion, the Internet is nowadays facing a

growing list of non-responsive flows which should also be taken into account.

In Chapter 3, we have developed the Fuzzy Logic Congestion Detection (FLCD) algorithm. The
CHOKe algorithm is incorporated in the FLCD architecture in order to address the issue of
fairness which was not addressed explicitly in all the preceding fuzzy logic AQM approaches. We
then modeled the congestion control problem as a multi-objective (MO) problem and used Multi-
Objective Particle Swarm Optimization (MOPSO) in designing the membership functions for the
Fuzzy Logic Congestion Detection algorithm. The optimization process was based on four
objective functions. These objective functions were derived based on the following requirements:
maximizing link utilization, minimizing loss rate, minimizing link delay and jitter. In the best
effort implementation, the performance of the proposcd approach was compared with the basic
Fuzzy algorithm and the REM algorithm. From performance results so far obtained, we observed
that the FLCD algorithm exhibits highest link utilization and fairness. It also exhibits the lowest
packet loss rates and UDP traffic jitter. Its performance in terms of UDP traffic delay is similar to
REM and the basic Fuzzy algorithm. We cxtended the FLCD algorithm to PropDiffServ IP
networks where its performance was compared with that of the WRED algorithm. From
performance results so far obtained, we observed that the PropDiffServ FLCD approach achicves

higher link utilization, lower packet loss rate, jitter and delay.

In Chapter 4, we proposed self organization structures in order to enable the FLCD algorithm to
learn the system conditions and fine-tune itself accordingly thereby achieving optimal
performance in dynamic traffic environments and a wide range of topologies. These structures
include an RTT based sampling mechanism and a sclf-learning and adaptation mechanism. The
former modifies the algorithm’s update interval in line with the prevailing outgoing link
propagation delay while the latter fine-tunes the algorithm according the prevailing system
conditions. The performance of the self-organized FLCD algorithm is compared with that of the
unorganized FLCD, the Adaptive RED and the basic Fuzzy algorithms under dynamic traffic
patterns. From performance results so far obtained, we observed that the self organized FLCD
algorithm achieves a much more stable queue compared to the other approaches. Apart from

enhancing the stability of the FLCD algorithm the self-organization structures also reduce UDP
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traffic delay for short round trip propagation delays. They also reduce the FLCD algorithm’s loss
rate. We also observed that the addition of the self-organization structures to the FLCD algorithm
does not jeopardize other performance metrics like utilization, jitter and fairness. In the final part
of this Chapter, we extended the FLCD concept to WLAN networks. From performance results so
far obtained, we observed that the FLCD algorithm minimizes UDP traffic delay, packet loss
rates. It also maintains a stable throughput for all buffer sizes. Its UDP jitter is slightly higher

than its basic variant and the Drop-tail mechanism.

In Chapter 5, we proposed a dual explicit congestion notification mechanism based on the output
of the FLCD algorithm. This mechanism combines the BECN and the ECN protocols in order to
combine their merits. We also proposed an RTT based decay function which helps to reduce the
amount of ICMP reverse traffic by taking advantage of the fact that TCP responds to congestion
signals only once during an RTT. We compared the performance of the two FLCD approaches
(with and without reverse traffic reduction) with the RED (ECN+ BECN) on wireline networks
and with the RED (Mark Front Strategy) on satellitc networks. From performance results so far
obtained, we observed that the FL.CD approaches exhibit better performance in terms of packet
loss rate, queue stability on wireline networks. On satellite networks, they exhibit better packet
loss rates, goodput and link utilization. We also observed that the RTT based decay function
helps to reduce the amount of reverse traffic significantly on both wircline and satellite networks
while ensuring that performance remains virtually the same as in the FLCD algorithm without

reverse traffic reduction.

6.2 Future Work

The greatest challenge that we have encountered in this research relates to the expensiveness of
the process of optimizing the FLCD algorithm in Chapter 3. The iterations and the continuous
exchange of parameters between the AMOPSO and the FLCD algorithms have been observed to
be very time-consuming processes for a single processor machine. In order to speed up the
optimization process, we suggest exploring the use of High End Computing (HEC) techniques
where multiple processors would be used in the optimization process. This would also enable us
to increase the number of iterations in order to achieve a better Pareto {ront than the present one.
The number of parameters in the particle vector, which captures the fuzzy set parameters, could

also be increased in order to come up with even better results.

117



Chapter 6 Conclusions and Future Work

Another observation prompting future work relates to the uncertainties associated with the regular
two-dimensional (type-1) fuzzy sets [MJ02] which have been used in the FLCD algorithm and ail
its predecessors. Recently the three dimensional type-2 fuzzy sets have been proposed in order to
get rid of the uncertainties associated with type-1 fuzzy sets. It has however been pointed out that
type-2 fuzzy sets are more complex than type-1 fuzzy sets [MJO2]. As part of future work, we
suggest implementing the FLCD algorithm using type-2 fuzzy sets and comparing its
performance (in terms of uncertainty levels and complexity) with that of the type-1 fuzzy set
FLCD algorithm proposed in this dissertation. A search for mechanisms that would reduce the
complexity of the type-2 fuzzy set FLCD algorithm while maintaining good performance (in

terms of uncertainties) would also be an important research venture.

Lastly, we suggest the extension of the concepts proposed in this dissertation to mobile adhoc
networks (MANET). Nodes in such networks are characterized by limited resources. Constraints
are given on processing power, available memory and processing bandwidth [HKKO04].
Therefore any attempt of extending the FLCD algorithm and the dual explicit congestion

mechanism to MANETSs must take care of these constraints.
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A MAJOR NETWORK PERFORMANCE METRICS

This Appendix presents the five major network performance metrics as proposed in [BRHO3].

A.1 Notation
A.1.1 Notation for All Traffic Flows

The total simulation time is denoted by 7 and network capacity by C . Let F denote the total
(both UDP and TCP) flows indexed by i€ [1, F'] traversing the bottleneck link in time 7 . For
flow 1, the following variables are defined:

e 5, the total size of the data received

o S, the total size of the data sent

A.1.1 Notation for UDPTraffic Flows

Let N denote the number of UDP (real-time) flows indexed by j € [1, N]traversing the
bottleneck link in time 7 .For each UDP flow j, the following variables are defined:
* R, the total size of UDP data received

e D, the average delay

* J,, the average jitter
o PJ the total number of packets
In UDP flow j, for each packet indexed by k € [1, P, ], the following variables are defined:
e J,,jitter between packet k and packet k +1
e D, delay for packetk
* s, ,the time packet k was sent from the sender

* r,thetime packet k was received at the receiver

A.2 Metric definitions

The five general network performance metrics are:

A.2.1 Utilization Metric

F
Zi:l S"

cr (A1)
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A.2.2 Fairness Metric
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A.2.5 Jitter Metric
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A.3 Computation of Metrics

The first three metrics which are used for overall performance evaluation have been presented
just as they are defined in [BRHO03]. The Delay metric been modified in order to only cater for

real-time flows whose performance is heavily dependent on delay and jitter.

A.3.1 Delay Metric Computation
For packet k in UDP flow j the delay is given by:

D, =1 s, (A.6)
Average delay is then computed as
PJ
2.0
D = e (A7)

J

Therefore, the weighted average delay which takes into account the amount of UDP
traffic that has been transferred successfully becomes

Z/j\lzl RJHJ
Z/j\']:] R/'

(A.8)
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A.3.1 Jitter Metric Computation

The Jitter metric is derived based on the definition of jitter for real-time flows [SCFO3]. The jitter
of a packet stream is defined as the mean deviation of the difference in packet spacing at the
receiver compared to the sender, for a pair of packets. Jitter between packet k and packet k +1is

expressed as

Je =y =)= (5, =5)]

(A.9)
= = 8i) = (=501
Average delay is then computed as
-1
2
J, =t (A.10)

J
P -1
Therefore, the weighted average jitter which takes into account the amount of UDP traffic
that has been transferred successfully becomes
N _
R.J

j=t Y

Zj‘lzl RJ'

(A.11)

121



References

[AFP02)
[AKU02)

[AKU03)

[ALLYO1]

[ANNO4]

[APS99]
[BAKO95]
[BDT99]
[BF92]

[BK98)

[BLA9S]
[BRA9SE]

[BRHO3]

[BRHO4]

[CDS74)

[CHRO3a]

M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial Window. RFC
3390, October 2002.

F. Akujobi er al. BECN for Congestion Control in TCP/IP Networks: Study and
Comparative Evaluation. In Proceedings of Globecom 2002.

F. Akujobt ez al. Congestion control in TCP/IP networks: A combined ECN and
BECN approach. In Proceedings of MILCOM 2003 - [EEE Military
Communications Conference, vol. 22, no. 1, Oct 2003 pp. 248-254

S. Athuraliya, V.H. Li, SH. Low, Q. Yin. REM: Active Queue Management.
IEEE Network Magazine, 15(3), pp.48-53, May 2001.

Y. Hadjadj Aoul, A. Nafaa, D. Negru and A. Mehaoua. FAFC: Fast Adaptive
Fuzzy AQM Controller for TCP/IP Networks. In Proc. of IEEE GLOBECOM
2004, Dalas, Texas, USA, November 29, 2004

M. Allman, V. Paxson and W. Richard Stevens. TCP Congestion Control. RFC
2581, April 1999,

J Baker. Requirements for IP Version 4 Routers. Internet RFC 1812, June 1995.

E. Bonabeau, M. Dorigo and G. Théraulaz. From Natural to Artificial Swarm
Intelligence. Oxford University Press, New York, 1999

Bill P. Buckles and Fred E. Petry. Genetic Algorithins. IEEE Computer Society
Press, 1992.

H. Balakrishnan and R.H. Katz. Explicit Loss Notification and Wireless Web
Performance. In Proceedings of IEEE Globecom Internet Mini-conference,
Svdney, Australia, November 1998

S. Blake et al. Architecture for Differentiated Services. IETF RFC 2475, 1998.

B. Braden ef al. Recommendations on Active Queuc Management and Congestion
Avoidance in the Internet. IETF RFC2309, April 1998.

A. Bitorika, M. Robin, and M. Huggard. A Survey of Active Queue Management
Schemes. Trinity College Dublin, Department of Computer Science, Tech. Rep.,
September 2003,

A. Bitorika, M.Robin and M. Huggard. A comparative study of Active Queue
Management  schemes. In  Proceedings  International — Conference — on
Communications (ICC 2004), June 2004.

Vint Cerf, Yogen Dalal, and Carl Sunshine. Specification of Internet Transmission
Control Program. RFC 675, December 1974,

C. Chrysostomou et al. Fuzzy Logic Congestion Control in TCP/IP Best-Effort
Networks, 2003 Australian Telecommunications Networks and Applications

Conference (ATNAC 2003), Melbourne, Australia, 8 - 10 December 2003 (CD
ROM - ISBN: 0-646-42229-4).

122



References

[CHRO3b]

[CISCO]
[CISCO98]

[CISCO02]

[CK74]
[CO]

[COE99]

[COE04]

[COXO03]

[DAP02]

[DAV02]
[DKGOI]

[DSLO1a]

[DSLO1b]

[DSRO2]

[FEN99]

C. Chrysostomou, A. Pitsillides, L. Rossides, A. Sekercioglu. Fuzzy Logic
Controlled RED: Congestion Control in TCP/IP Differentiated Services Networks.
In Special Issue on The Management of Uncertainty in Computing Applications in
Soft Computing Journal - A Fusion of Foundations, Methodologies and
Applications, Vol 8, Number 2, pp. 79 - 92, December 2003.
http://www.cisco.com/warp/public/cc/techno/media/lan/gig/tech/10gig_sd.htm
Technical Specification from Cisco. Distributed Weighted Random Early
Detection.

http://www.cisco.com/univercd/cc/td/doc/product/software/ios 11 1/wred.pdf

CISCO. Weighted Random Early Detection on the Ciscol2000 Series Router.
http://www cisco.com/univercd/cc/td/doc/product/software/ios112/ios112p/gsr/wr
ed_gs.htm: CISCO Ltd., 2002.

Vint Cerf and Bob Kahn. A protocol for packet network intercommunication.
[EEFE Transactions on Communications, 22(5), May 1974.

J. Crowcroft and P. Oeschslin. Services using a weighted proportionally fair
sharing TCP. ACM Computer Communications review, 28, 53-67

C.A Coello Coello. A Comprehensive survey of evolutionary based multiobjective
optimization techniques. Knowledge and Information Systems, vol.1, no.3, pp.269-
308, Aug.1999

C.A Coello Coello, G.T. Pulido and M. A Lechunga. Handling Multiple Objectives
With Particle Swarm Optimization. In Proceedings of the 2002 Congress on
evolutionary Computation, In /EEE Transactions on Evolutionary Computation,
8(3), pp.256-279, June 2004,

Cox, John. Wireless LAN throughput on the rise, Network World Fusion, 26
September, 2003. http://www.nwlusion.com/news/2003/0929802 1 1n.htm]

K. Deb, S. Agrawal, A. Pratap and T. Miyerivan. A Fast Elitist Multi-Objective
Genetic Algorithm: NGSA-IL. In IEEE Transactions on Evolutionary Computation
6(2002) 182-187.

B Davie et al. An Expedited Forwarding PHB, RFC 3246, March 2002.

A. Durresi, S. Kota, M. Goyal, R. Jain and V. Bharani. Achieving QoS for TCP
Traffic in Satellite Networks with Differentiated Services. Journal of Space
Communications , Volume 17, Number 1-3, pp. 125-136, 2001

2001A. Durresi, M. Sridharan, C. Liu and Raj Jain. Improving Congestion Control
in Satellite Networks. In Proceedings of SPIE Conference on Quality of Service
over the Net Genceration Data Networks, Denver, August 20-24, 2001, Vol. 4524,
pp. 293-303.

A. Durresi, M. Sridharan, C. Liu, M. Goyal and R. Jain. Congestion Control using
Multilevel Explicit Congestion Notification in Satellite Networks. In Proceedings
of 10th IEEE International Conference on Computer Communications and
Networks (ICCCN2001) , Scottsdale, AZ, October.

C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differentiated services:
Delay differentiation and packet scheduling. IEEE/ACM Transactions on
Networking, 10(1):12-26, 2002.

W. Feng et al Blue: A New Class of Active Queue Management Algorithms.
Technical Report CSE-TR-387-99, University of Michigan, 1999

123



References

[FGSO1]

[FH99]
[FIEO4]
[FI92)
[E193]
[FKS99]
[FLOY%4]

[FLO00a]
{FLOOOb]

[FYX02]
[GD99]
[GKP98]

[HEI99]
[HENS9]

[HKKO04]

[HLO1]

[HMMDO2]

[HMTGO1]

[HNS98]

[JAC99]
[JHPO3]

S. Floyd, R. Gummadi, S.Shenker. Adaptive RED: An Algorithm for increasing
the robustness of RED’s Active Queue Management. Technical report ICSI,
August 2001

S. Floyd, T. Henderson. The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 2582, April 1999.

J.E. Fieldsend. Multi-Objective Particle Swarm Optimization Methods. Technical
Report #419, Department of Computer Science, University of Exeter, March 2004,
S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet-Switched Gateways.
Internetworking: Research and Experience, V.3 N.3, September 1992, p.115-156.
Sally Floyd and Van Jacobson. Random early detection gateways for congestion
avoidance. In IEEE/ACM Transactions in Networking, 1(4):397-413, August 1993
W. Feng, D. Kandlur, D. Saha and K. Shin. A Self-Configuring RED Gateway.
INFOCOM’99, March 1999, pp.1320-1328

S. Floyd, TCP and Explicit Congestion Notification. In ACM Computer
Communications review, V.24, N.5, p.10-23, October 1994

S. Floyd. Congestion Control Principles. RFC 2914, ACIRI, September 2000

S. Floyd. Recommendation  on  using  Gentle
http://www icir.org/floyd/red/gentle. html. March 2000.

Ren Fengyuan, Ren Yong and Shan Xiuming. Design of a fuzzy controller for
active queue management. Computer Communications 25 (2002), 874-883

N. Ghani and S. Dixit. TCP/IP Enhancements for satellite networks. IEEE
Communications Magazine, pp.64-72, vol.37, No 7, July 1999

R. Guerin, S. Kamat, V. Peri, and R. Rajan. Scalable QoS provision through buffer
management. in Proc. ACM SIGCOMM’ 98, 1998

J. Heinanen, et al., Assured Forwarding PHB Group, RFC 2597, Jun 1999

variant RED,

T.R. Henderson. Networking over next generation satellite systems. PhD
dissertation, University of California at Berkeley, 1999

V. Hadzinski, A. Kopke, H. Karl, C. Frank, and W. Drytkiewicz, Improving the
Energy efficiency of Directed Diffusion Using pervasive Clustering. In
Proceedings of First European Workshop in Wireless Sensor Networks (EWSN),
Berlin, Germany (2004) 172-187.

Y. Hu and V.O.K. Li. Satellite-Based Internet: A tutorial, /EEE Commuinications,
March 2001.

U. Hengartner, S. Moon, R. Mortier and C. Diot. Detection of routing loops and
analysis of routing loops in packet traces. In Proceedings ACM SIGCOMM
Internet measurement Workshop, Marseille, France, November 2002.

C. V. Hollot, V. Misra, D Towsley, W.B. Gong. A Control theoretic analysis of
RED. In Proccedings of IEEE INFOCOM 2001, vol.3, pp. 1510-1519,Anchorage,
Alaska, 2001

S.J. Hadi, B. Nandy, N. Seddigh. A Proposal for Backward ECN for the Internet
Protocol (IPv4/IPv6) , Internet Draft, July 1998

V. Jacobson, et al. An Expedited Forwarding PHB. REC 2598, Jun 1999,

J. Joutsensalo, T. Hamildinen, M. Pddkkénen and A. Sayenko. Adaptive weighted
fair scheduling method for channel allocation. IEEE International Conference on
Communication 2003 (ICC '03), Volume 1, pp. 228-232, 2003

124



References

[JK88]
[KCO00]

[KDJO1]

[KE95]

[KE97]

[KELO1]
[KSO1]

[KS03]

[KSE04]

(KUNO3]

[LJO1]

[LICO]

[LL89]
[LOW02]
[LRIS]

[LTCO00]

[MAM74]

[MBD99]

Van Jacobson and Michael Karels. Congestion Avoidance and Control. In
Proceedings ACM SIGCOMM 88, 1988, pp. 314-29.

K.D. Knowles and D. Corne. Approximating the Nondominated Front Using the
Pareto Archived Evolution Strategy. Evolution Computation, 8(2):149-172, 2000.
S. Kota, A. Durresi, R. Jain. Realizing Future Broadband Satellite Network
Services. Chapter in On Modelling and Simulation Environment for Terrestrial
and Satellite Networks, Edited by A. Nejat Ince, Published by Kluwer, ISBN: 0-
7923-7547-5, October 2001.

J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of
IEEE International Conference on Neural Networks, Vol. TV, pp. 1942-1948.
IEEE service center, Piscataway, New Jersey, 1995,

J Kennedy. The particle swarm: Social adaptation of knowledge. In [EEE Int.
Congress on Evolutionary Computation (1997), IEEE Press.

F. Kelly. Mathematical Modeling of the Internet. Springer-verlag, Berlin (2001)

S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive Virtual Queue
(AVQ) Algorithm for Active Queue Management. Technical Report, UIUC, Feb,
2001.

Martin Kappes and Sachin Garg. An Experimental Study of Throughput for UDP
and VoIP Traffic in IEEE 802.11b Networks. In Proceedings of the IEEE Wircless
Communications and Networking Conference (WCNC), March 2003

R. Krishnan, J. P.G. Sterbenz, W.M. Eddy, C. Partridge, and M. Allman. Explicit
Transport Error Notification (ETEN) for Error-Prone Wireless and Satellite
Networks. Pre-print: Accepted for publication in Elsevier Compurer Networks,
October 2004.

S. Kunniyur. AntiECN Marking: A Marking Scheme for High Bandwidth Delay
Connections. In Proceedings of ICC 2003, May 2003.

Chunlei Liu and Raj Jain. Improving Explicit Congestion Notification with the
Mark-Front Strategy. Computer Networks, Vol, 35, no 2-3, pp 185-201, February
2001.

C. Li, S. Tsao, M.C. Chen, Y. Sun, and Y. Huang. Proportional Delay
Differentiation Service Based on Weighted Fair Queuing, In Proceedings of IEEE
ICCCN 2000.

RJ. Li and E.S. Lee (1987). Analysis of fuzzy queues. Comput. Math
Applications, 17(1989), 1143-1147

S.H. Low, F. Paganini, J. Wang, S. Adlakha, and J.C. Doyle. Dynamics of
TCP/AQM and a scalable control. In Proceedings of IEEE INFOCOM, June 2002
T. Li, Y. Rekhter. A Provider Architecture for Differentiated Services and Tratfic
Engineering (PASTE). IETF RFC 2430, October 1998.

C. Li, S. Tsao, M.C. Chen, Y. Sun and Y. Huang. Proportional delay
differentiation service based on weighted fair queving. In Proc. IEEE ICCN 2000,
2000

E.H. Mamdani, Application of fuzzy algorithm for control of simple dynamic
plant. In Proceedings of IEEE, 121 (1974), p. 12.

M. May, I. Bolot, C. Diot, and B. Lyles. Reasons Not to Deploy RED. In
Proceedings of Seventh. International Workshop on Quality of Service

125



Referencés

[MESHD]
[MESHN]
[MGTO0]

[MJO2]

[MLOO0]

[(MNTO04]

[MRO1]
[NAG84]

[NDO6a]

[NDOOb]

[NSO5]
[NYIO5]

[OLW99]

[PCO4]

(IWQ0S5'99), pages 260-262), London, June 1999.

MeshDynamics, http;/www.meshdynamics.com

MeshNetworks, http://www.meshnetworks.com

V. Misra, W.B. Gong, D.Towsley. Fluid-based analysis of a network of AQM
routers supporting TCP flows with application to RED, In Proceedings of
ACM/SIGCOMM 2000.

JM. Mendel and R.ILB. John. Type-2 Fuzzy Sets made simple. In JEEE
Transactions on Fuzzy Systems, 10(2), pp.117-127, April 2002.

R.Makkar, I. Lambaridis et. al. Empirical Study of Buffer Management Scheme
for DiffServ Assured Forwarding PHB. Proceedings of Ninth Conference on
Computer Communications and Networks, Las Vegas, Nevada, 2000.

M. Malli, Qiang Ni, Thierry Turletti, and Chadi Barakat. Adaptive Fair Channel
Allocation for QoS Enhancement in IEEE 802.11 Wireless LANs. [FEE
International Conference on Communications (ICC 2004), Paris, June 2004.

A. Mankin, K. Ramakrishnan. Gateway Congestion Control survey. RFC 1254,
August 1991,

John Nagle. Congestion Control in IP/TCP Internetworks. RFC 896, FACC Palo
Alto, 6 January 1984,

C.N. Nyirenda, D.S. Dawoud. Performance Evaluation of the Swarm Optimized
Fuzzy Logic Congestion Detection Mechanism in Proportional Differentiated
Services 1P Networks. Southern African Telecommunications Networks and
Applications Conference (SATNAC) 2006 proceedings (CD ROM),Cape Town,
South Africa, 3-6 September 2006.

C.N. Nyirenda, D.S. Dawoud. Multi-objective Particle Swarm Optimization for
Fuzzy Logic Based Active Queue Management. In Proceedings of the 15th IEEE
International Conference in Fuzzy Systems as part of the Fourth IEEE World

Congress on Computational Intelligence (IEEE WCCI 2006), Vancouver, BC,
Canada, pages: 2231 - 2238, 16-21 July 2006.

NS-2 network simulator, http://www.isi.edu/nsnam/ns/.

C.N. Nyirenda. Fuzzy Logic Congestion Control for TCP/IP Networks: A Dual
Explicit Notification. Southern African Telecommunications Networks and
Applications Conference (SATNAC) 2005 proceedings (CD ROM), ISBN 0-620-
34908-5, Champagne Sports, Drakensberg, South Africa, Sept 2005.

TJ. Ot, T.V. Lakshman, and L. Wong. SRED: Stabilized RED. In Proceedings of
IEEE INFOCOM 1999.

G.T. Pulido and C.A. Coello Coello.Using Clustering Techniques to Improve the
Performance of a Multi-Objective Particle Swarm Optimizer. In Proceedings of
the Genetic and Evolutionary Computation Conference, Springer-Verlag, Lecture

Notes in Computer Science Vol. 3102, pp. 700--712, Seattle, Washington, USA,
June 2004.

126



References

[PHSO05]

[PM79]

(POS8!1]
[PPPOO0]

[PRASO]

[PRF99]

[PRGO4]

(PULOS]

[PY98]
[RFO1]

[RI05]

[SA00]
[SAF05]

[SAM99]

[SBMO0?]
[SCF03]

[SCHOO]
[SDJ04]

S. Patchararungruang, S. Halgamuge, N. Shenoy. Optimized Rule Based Delay
Proportion Adjustment for Proportional Differentiated Services. In IEEE Journal
on Selected Areas in Communications, February 2005.

P. Procyk and E. Mamdani: A linguistic self organizing process controller,
Automatica 15 (1) (1979) 15-30.

I. Postel. Internet Control Message Protocol. RFC 792, September 1981

R. Pan, B. Prabhakar, and K. Psounis. Choke - a statcless active queue
management scheme for approximating fair bandwidth. In Proceedings of
INFOCOM'00, March 2000, pp. 942-951

H.M Prade. An Outline of fuzzy or probabilistic models for queuing systems. In
Proceedings of Symposium for  Policy Analytical Information  Systems, in
Durham, NC, 1980, 147-153

H. Pomares, 1. Rojas, F.J. Fernandez, M. Anguita, E. Ros and A. Prieto: A new
approach for the design of fuzzy controllers in real time, In Proc. 8th Int. Conf.
Fuzzy Systems, Seoul, Korea, August 1999, pp. 522-526.

H. Pomares, 1. Rojas, J. Gonzalez, M. Damas, B. Pino and A. Prieto: Online
Global Learning in Direct Fuzzy Controllers, [EEE Transactions on Fuzzy
Systems, Vol. 12 (2), April 2004.

G.T. Pulido. On the Use of Self-Adapration and Elitism for Multiobjective Particle
Swarm Optimization, PhD Thesis, Computer Science Section, Department of
Electrical Engineering, CINVESTAV-IPN, September 2005.

K. M. Passino and S. Yurkovich. Fuzzy Control. Edited by Prentice Hall, ISBN 0-
201-18074-X (1998).

K. Ramakrishnan and S. Floyd. The Addition of Explicit Congestion Notification
(ECN) to IP. RFC-3168, September 2001.

F. Rivas-Davalos and M.R. Irving. An Approach based on the Strength Pareto
Evolutionary Algorithm 2 for power Distribution System Planning, in C.A. Coello
Coello and A. A. H. Aguirre and E. Zitzler(editors), Evolutionary Multi-Criterion
Optimization. Third International Conference, EMQO 2005, pp.707-720, Springer.
Lecture Notes in Computer Science Vol. 3410, Guanajuato, Mexico, March 2005
J. Hadi Salim, U. Ahmed. Performance Evaluation of Explicit Congestion
Notification (ECN) in IP Networks. RFC 2884, July 2000.

P. Sarolahti, M. Allman and S. Floyd: Evaluating Quick-Start for TCP.
Manuscript, February 2005.

N. Samaraweera. Non-Congestion Packet Loss Detection for TCP Error Recovery
Using Wireless Links. In [EE Proceedings in Communications, Volume 146,
Number 4, August 1999, pp.222-230.

[. Skrjanc, S. Blazic and D. Matko: Direct fuzzy model reference adaptive control,
International Journal on Intelligent Systems, vol.17, pp. 943-963, 2002.

H. Schulzrinne, S.Casner, F. Frederick, and V. Jacobson. RTP: A Transport
Prorocol for Real-Time Applications. draft-ietf-avt-rtp-new-12.txt, March 2003.

J. Schiller. Mobile Communications ISBN 0-201-39386-2, 2000.

M. Sridharan, A. Durresi and R. Jain. Adaptive Multi-level Explicit Congestion

Notification. In Proceedings of 2004 Symposium on Performance Evaluation of

Computer and Telecommunication Systems (SPECTS'04), San Jose, CA, July 25-
29,2004

127



References

[SHO2]

[SLMO4]

[SSZ98]

[WANO3]

[WES02]

(WH99]
[WHI97]
[WYO03]

[WZ02]

[YCO03]
[Y104]

[YM383]

[YTO3]

[ZA65]
[ZAKOS]

[ZCO05]

[ZIT99]

[ZRO5]

S. Sundarrajan and J. Heidemann. Study of TCP Quick-Start with NS-2.
Unpublished report, University of South California, 2002.

M. Spott, K. Leiviskd and T. Martin. Roadmap Contribution IBA C Applications
in Telecommunications, Multimedia and Services. European Network on
Intelligent Technologies (EUNITE) for Smart Adaptive Systems (SAS), July 2004
I. Stoica, S. Shenker and H. Zhang. Core stateless fair queuing: Achieving
approximately fair bandwidth allocations in high speed networks. In Proc. ACM
SIGCOMM 98, 1998.

W. Chonggang et al. AFRED An Adaptive Fuzzy-based Control Algorithm for
Active Queue Management. In Proceedings of the 28" Annual IEEE International
Conference on Local Computer Networks 2003

Westberg et. al, Resource Management in Diffserv (RMD): A functionality and
performance behaviour. In Proceedings of the Seventh International Workshop on
Protocols For High-Speed Networks (PfHSN'2002)

W.Weiss, J. Heinanen, F. Baker and J. Wroclawski. Assured Forwarding PHB
Group. The Internet Society RFC 2597, Juine 1999.

P.P. White. RSVP and integrated services in the internet: A tutorial. [EEL
Comimunications Magazine, pp. 100-106, May 1997.

Bartek P. Wydrowski. Technique in Internet Congestion Control. PhD Thesis,
University of Melbourne, February 2003.

B. Wydrowski and M. Zukerman. GREEN: An active queue management
algorithm for a self managed traffic. In Proceedings of ICC’02, vol.4, May 2002,
pp. 2368-2372.

F. Yanfei and F.L. Chuang. Design a PID controller for Active Queue
Management. /SCC 2003 (July 2003).

S. Yi et al. Proxy-RED: An AQM scheme for wireless LANS. In Proc. /I[CCCN,
Chicago, Oct. 2004

S. Yasunobu, S. Miyamoto. Automatic Train Operation by Predictive Fuzzy
Control. In Industrial Applications of Fuzzy Control, M. Sugeno, Ed., pp. 1-18,
Elsevier Science Publishers, 1985.

M. H. Yaghmaee and H. A. Toosi. A Fuzzy Based Active Queue Management
Algorithm. In Proceedings of 2003 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems (SPECTS'03), Montreal,
Canada, July, 2003.

L.A Zadeh, Fuzzy sets. Information and Control, 8:338-353, 1965.

R.H. Zakon, Hobbes' Internet Timeline,
http://www zakon.org/robert/internet/limeline/, Robert Hobbes, 2005.

B. Zhao and Y. Cao. Multiple objective particle swarm optimization technique for
economic load dispatch. Journal of Zhejiang Universiry SCIENCE 2005,
6A(5):pages 420-427

Eckart, Zitzler. Evolutionary algorithms for multiobjective optimizations: methods
and applications. PhD Thesis, Swiss Federal Institute of Technology, Zurich, 1999

Jing Zhu, and Sumit Roy. 802.11 Mesh Networks with Two-Radio Access Points.
ICC 2005, May 2003, Seoul, Korea.

128



	Nyirenda_Clement_Nthambazale_2006.front.p001
	Nyirenda_Clement_Nthambazale_2006.front.p002
	Nyirenda_Clement_Nthambazale_2006.front.p003
	Nyirenda_Clement_Nthambazale_2006.front.p004
	Nyirenda_Clement_Nthambazale_2006.front.p005
	Nyirenda_Clement_Nthambazale_2006.front.p006
	Nyirenda_Clement_Nthambazale_2006.front.p007
	Nyirenda_Clement_Nthambazale_2006.front.p008
	Nyirenda_Clement_Nthambazale_2006.front.p009
	Nyirenda_Clement_Nthambazale_2006.front.p010
	Nyirenda_Clement_Nthambazale_2006.front.p011
	Nyirenda_Clement_Nthambazale_2006.front.p012
	Nyirenda_Clement_Nthambazale_2006.front.p013
	Nyirenda_Clement_Nthambazale_2006.front.p014
	Nyirenda_Clement_Nthambazale_2006.p001
	Nyirenda_Clement_Nthambazale_2006.p002
	Nyirenda_Clement_Nthambazale_2006.p003
	Nyirenda_Clement_Nthambazale_2006.p004
	Nyirenda_Clement_Nthambazale_2006.p005
	Nyirenda_Clement_Nthambazale_2006.p006
	Nyirenda_Clement_Nthambazale_2006.p007
	Nyirenda_Clement_Nthambazale_2006.p008
	Nyirenda_Clement_Nthambazale_2006.p009
	Nyirenda_Clement_Nthambazale_2006.p010
	Nyirenda_Clement_Nthambazale_2006.p011
	Nyirenda_Clement_Nthambazale_2006.p012
	Nyirenda_Clement_Nthambazale_2006.p013
	Nyirenda_Clement_Nthambazale_2006.p014
	Nyirenda_Clement_Nthambazale_2006.p015
	Nyirenda_Clement_Nthambazale_2006.p016
	Nyirenda_Clement_Nthambazale_2006.p017
	Nyirenda_Clement_Nthambazale_2006.p018
	Nyirenda_Clement_Nthambazale_2006.p019
	Nyirenda_Clement_Nthambazale_2006.p020
	Nyirenda_Clement_Nthambazale_2006.p021
	Nyirenda_Clement_Nthambazale_2006.p022
	Nyirenda_Clement_Nthambazale_2006.p023
	Nyirenda_Clement_Nthambazale_2006.p024
	Nyirenda_Clement_Nthambazale_2006.p025
	Nyirenda_Clement_Nthambazale_2006.p026
	Nyirenda_Clement_Nthambazale_2006.p027
	Nyirenda_Clement_Nthambazale_2006.p028
	Nyirenda_Clement_Nthambazale_2006.p029
	Nyirenda_Clement_Nthambazale_2006.p030
	Nyirenda_Clement_Nthambazale_2006.p031
	Nyirenda_Clement_Nthambazale_2006.p032
	Nyirenda_Clement_Nthambazale_2006.p033
	Nyirenda_Clement_Nthambazale_2006.p034
	Nyirenda_Clement_Nthambazale_2006.p035
	Nyirenda_Clement_Nthambazale_2006.p036
	Nyirenda_Clement_Nthambazale_2006.p037
	Nyirenda_Clement_Nthambazale_2006.p038
	Nyirenda_Clement_Nthambazale_2006.p039
	Nyirenda_Clement_Nthambazale_2006.p040
	Nyirenda_Clement_Nthambazale_2006.p041
	Nyirenda_Clement_Nthambazale_2006.p042
	Nyirenda_Clement_Nthambazale_2006.p043
	Nyirenda_Clement_Nthambazale_2006.p044
	Nyirenda_Clement_Nthambazale_2006.p045
	Nyirenda_Clement_Nthambazale_2006.p046
	Nyirenda_Clement_Nthambazale_2006.p047
	Nyirenda_Clement_Nthambazale_2006.p048
	Nyirenda_Clement_Nthambazale_2006.p049
	Nyirenda_Clement_Nthambazale_2006.p050
	Nyirenda_Clement_Nthambazale_2006.p051
	Nyirenda_Clement_Nthambazale_2006.p052
	Nyirenda_Clement_Nthambazale_2006.p053
	Nyirenda_Clement_Nthambazale_2006.p054
	Nyirenda_Clement_Nthambazale_2006.p055
	Nyirenda_Clement_Nthambazale_2006.p056
	Nyirenda_Clement_Nthambazale_2006.p057
	Nyirenda_Clement_Nthambazale_2006.p058
	Nyirenda_Clement_Nthambazale_2006.p059
	Nyirenda_Clement_Nthambazale_2006.p060
	Nyirenda_Clement_Nthambazale_2006.p061
	Nyirenda_Clement_Nthambazale_2006.p062
	Nyirenda_Clement_Nthambazale_2006.p063
	Nyirenda_Clement_Nthambazale_2006.p064
	Nyirenda_Clement_Nthambazale_2006.p065
	Nyirenda_Clement_Nthambazale_2006.p066
	Nyirenda_Clement_Nthambazale_2006.p067
	Nyirenda_Clement_Nthambazale_2006.p068
	Nyirenda_Clement_Nthambazale_2006.p069
	Nyirenda_Clement_Nthambazale_2006.p070
	Nyirenda_Clement_Nthambazale_2006.p071
	Nyirenda_Clement_Nthambazale_2006.p072
	Nyirenda_Clement_Nthambazale_2006.p073
	Nyirenda_Clement_Nthambazale_2006.p074
	Nyirenda_Clement_Nthambazale_2006.p075
	Nyirenda_Clement_Nthambazale_2006.p076
	Nyirenda_Clement_Nthambazale_2006.p077
	Nyirenda_Clement_Nthambazale_2006.p078
	Nyirenda_Clement_Nthambazale_2006.p079
	Nyirenda_Clement_Nthambazale_2006.p080
	Nyirenda_Clement_Nthambazale_2006.p081
	Nyirenda_Clement_Nthambazale_2006.p082
	Nyirenda_Clement_Nthambazale_2006.p083
	Nyirenda_Clement_Nthambazale_2006.p084
	Nyirenda_Clement_Nthambazale_2006.p085
	Nyirenda_Clement_Nthambazale_2006.p086
	Nyirenda_Clement_Nthambazale_2006.p087
	Nyirenda_Clement_Nthambazale_2006.p088
	Nyirenda_Clement_Nthambazale_2006.p089
	Nyirenda_Clement_Nthambazale_2006.p090
	Nyirenda_Clement_Nthambazale_2006.p091
	Nyirenda_Clement_Nthambazale_2006.p092
	Nyirenda_Clement_Nthambazale_2006.p093
	Nyirenda_Clement_Nthambazale_2006.p094
	Nyirenda_Clement_Nthambazale_2006.p095
	Nyirenda_Clement_Nthambazale_2006.p096
	Nyirenda_Clement_Nthambazale_2006.p097
	Nyirenda_Clement_Nthambazale_2006.p098
	Nyirenda_Clement_Nthambazale_2006.p099
	Nyirenda_Clement_Nthambazale_2006.p100
	Nyirenda_Clement_Nthambazale_2006.p101
	Nyirenda_Clement_Nthambazale_2006.p102
	Nyirenda_Clement_Nthambazale_2006.p103
	Nyirenda_Clement_Nthambazale_2006.p104
	Nyirenda_Clement_Nthambazale_2006.p105
	Nyirenda_Clement_Nthambazale_2006.p108
	Nyirenda_Clement_Nthambazale_2006.p109
	Nyirenda_Clement_Nthambazale_2006.p110
	Nyirenda_Clement_Nthambazale_2006.p111
	Nyirenda_Clement_Nthambazale_2006.p112
	Nyirenda_Clement_Nthambazale_2006.p113
	Nyirenda_Clement_Nthambazale_2006.p114
	Nyirenda_Clement_Nthambazale_2006.p115
	Nyirenda_Clement_Nthambazale_2006.p116
	Nyirenda_Clement_Nthambazale_2006.p117
	Nyirenda_Clement_Nthambazale_2006.p118
	Nyirenda_Clement_Nthambazale_2006.p119
	Nyirenda_Clement_Nthambazale_2006.p120
	Nyirenda_Clement_Nthambazale_2006.p121
	Nyirenda_Clement_Nthambazale_2006.p122
	Nyirenda_Clement_Nthambazale_2006.p123
	Nyirenda_Clement_Nthambazale_2006.p124
	Nyirenda_Clement_Nthambazale_2006.p125
	Nyirenda_Clement_Nthambazale_2006.p126
	Nyirenda_Clement_Nthambazale_2006.p127
	Nyirenda_Clement_Nthambazale_2006.p128

