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Abstract

The Internet has experienced a tremendous growth over the past two decades and with that

growth have come severe congestion problems. Research efforts to alleviate the congestion

problem can broadly be classified into three groups: Cl) Router based congestion detection; (2)

Generation and transmission of congestion notification signal to the traffic sources; (3) End-to­

end algorithms which control the flow of traffic between the end hosts. This dissertation has

largely addressed the first two groups which are basically router initiated. Router based

congestion detection mechanisms, commonly known as Active Queue Management (AQM), can

be classified into two groups: conventional mathematical analytical techniques and fuzzy logic

based techniques. Research has shown that fuzzy logic techniques are more effective and robust

compared to the conventional techniques because they do not rely on the availability of a precise

mathematical model of Internet. They use linguistic knowledge and are, therefore, better placed to

handle the complexities associated with the non-linearity and dynamics of the Internet. In spite of

all these developments, there still exists ample room for improvement because, practically, there

has been a slow deployment of AQM mechanisms.

In the first part of this dissertation, we study the major AQM schemes in both the conventional

and the fuzzy logic domain in order to uncover the problems that have hampered their

deployment in practical implementations. Based on the findings from this study, we model the

Internet congestion problem as a multi-objective problem. We propose a Fuzzy Logic Congestion

Detection (FLCD) which synergistically combines the good characteristics of the fuzzy

approaches with those of the conventional approaches. We design the membership functions

(MFs) of the FLCD algorithm automatically by using Multi-objective Particle Swarm

Optimization (MOPSO), a population based stochastic optimization algorithm. This enables the

FLCD algorithm to achieve optimal performance on all the major objecti ves of Internet

congestion control. The FLCD algorithm is compared with the basic Fuzzy Logic AQM and the

Random Explicit Marking (REM) algorithms on a best effort network. Simulation results show
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that the FLCD algorithm provides high link utilization whilst maintaining lower jitter and packet

loss. It also exhibits higher fairness and stability compared to its basic variant and REM. We

extend this concept to Proportional Differentiated Services network environment where the

FLCD algorithm outperforms the traditional Weighted RED algorithm. We also propose self­

learning and organization structures which enable the FLCD algorithm to achieve a more stable

queue, lower packet losses and UDP traftic delay in dynamic traffic environments on both wired

and wireless networks.

In the second part of this dissertation, we present the congestion notification mechanisms which

have been proposed for wired and satellite networks. We propose an FLCD based dual explicit

congestion notification algorithm which combines the merits of the Explicit Congestion

Notification (ECN) and the Backward Explicit Congestion Notification (BECN) mechanisms. In

this proposal, the ECN mechanism is invoked based on the packet marking probability while the

BECN mechanism is invoked based on the BECN parameter which helps to ensure that BECN is

invoked only when congestion is severe. Motivated by the fact tbat TCP reacts to tbe congestion

notification signal only once during a round trip time (RTT), we propose an RTT based BECN

decay function. This reduces the invocation of the BECN mechanism and resultantly the

generation of reverse traffic during an RTT. Compared to the traditional explicit notification

mechanisms, simulation results show that the new approach exhibits lower packet loss rates and

higher queue stability on wired networks. It also exhibits lower packet loss rates, higher goodput

and link utilization on satellite networks. We also observe tbat the BECN decay function reduces

reverse traffic significantly on both wired and satellite networks while ensuring that performance

remains virtually the same as in the algorithm without BECN traffic reduction.
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Chapter 1

Introduction

1.1 General

The Intemet came into existence as an outgrowth of the Advanced Research Projects Agency

Network (ARPANET), a United States Department of Defense project. From a mere

interconnection of disparate computer systems, it has evolved into one of mankind's greatest

achievements. Apart from being the universal source of information, the Intel11et is the most

democratic of all the mass media. Consequently, the world has witnessed an exponential growth

of the Internet over the past two decades [ZAK05]. It has actually grown from connecting 2 J 3

hosts in 1981 to over 353 Million in 2005. The number of World-Wide-Web (WWW) sites has

grown from I in 1990 to over 70 Million in 2005 while the number of users has grown from 16

Million in December 1995 to over 1 Billion in December 2005. The Internet has also experienced

a rapid introduction of applications. Some of the major applications include the WWW, File

Transfer Protocol (FTP), Email, Video and Audio streaming, Voice-over-IF (VoIP) and

ecommerce. The transmission media have also evolved immensely such that in addition to the

traditional wired links, wireless systems and dense wavelength division multiplexing (DWDM),

which offer multi-gigabit capacities, are becoming more and more ubiquitous.

The success of the Internet can largely be attributed to the strength of its underlying protocol

suite, the Transmission Control ProtocoVlnternet Protocol (TCP/JP). TCP is a higher layer

protocol which divides a message or file into TCP segments which are then packaged into

packets, containing addresses of the source and the destination. TCP provides a reliable, in-order

delivery from the source to destination. On the other hand, LP is a lower layer protocol which
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handles the address part of each packet so that it gets to the right destination. When these packets

anive at the destination, they are reconverted into TCP segments by removing the source and

destination addresses. The TCP receiver reassembles these segments into the original message.

To ensure reliable delivery, the TCP receiver sends an acknowledgement (ACK) for every

segment received. Every segment from the sender is sent with a sequence number identifying

which bytes the segment contains. ACKs are cumulative. They identify the sequence number of

the next in-order byte the receiver expects to receive from the sender. A TCP sender uses these

ACKs to compute the send window, which roughly keeps track of how much data has been sent

but not yet acknowledged. To provide in-order delivery, the TCP receiver must buffer any

segments that are received out-of-order until gaps in the sequence number space have been filled.

In each ACK, a TCP receiver includes the amount of space it has left in its buffer. This amount of

space is called the receiver's advertised window rwnd . Upon receiving this window update, a

TCP sender will not allow more than that amount of data to be unacknowledged in the network

(i.e., if there is no room in the receiver's window, no new data will be sent). This is how TCP

performs flow control. The goal of flow control is to make sure that the sender does not overrun

the receiver's buffer. For flow control, the send window cannot be larger than the receiver's

window.

Although TCP/lP has sustained the Internet for a long time, it was not designed to work

optimally. The enormous growth of the Internet in terms of demand for access from its users and

the increasing demand for new applications has really exposed the weaknesses in the TCP/IP

protocol suite. One of the major weak.nesses of TCP/lP relates to its failure to address the

problems of congestion. These problems arise because the Internet is essentially a network. of

interconnected queues in which packets are switched from their respective sources to their

destinations. Routers and switches contain queues which are used for buffering packets when the

instantaneous arrival rate of packets is greater than the outbound traffic rate. These queues are

generally flfst in/first out (FIFO) and have finite capacity. A new packet at a router/switch must

wait for the packets in front of it to be transmitted first before it can be transmitted. If the queue is

full, the packet is dropped. Queuing delays slow down the delivery of data from the sender to the

receiver. This decreases the performance of applications from the perception of the user. It also

affects the quality of service requirements of interactive applications such as telephony, video

conferencing and interactive games since these applications require to be delivered quickly within

certain delay constraints. The side effect of this problem is the issue of delay variation which

causes jitter in the delivery of these bandwidth-sensitive applications. Apart from wasting

2
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resources, lost packets have a major effect on the performance of TCP. TCP ensures a reliable

delivery of segments, so if a TCP segment is dropped, subsequently received segments cannot be

delivered to the application layer until the dropped segment has been successfully received. When

a segment has been dropped, TCP detects the drop and retransmits the lost segment. This results

in increased delays for the user. These problems call for an urgent need to re-examine the current

Internet congestion control mechanisms and improve them in light of the unprecedented growth

of the Internet.

1.2 An Overview of Internet Congestion Control

The need for Internet congestion control originally became apparent during several periods of

1986 and 1987, when the Internet experienced the "congestion collapse" condition predicted by

Nagle [NAG84]The network was so overloaded with retransmissions of lost data such that no

new data could get through. During this period, a large number of widely dispersed Internet sites

experienced simultaneous slowdown or cessation of networking services for prolonged peJiods.

The world was at the brink of an Internet meltdown fJK88],[FLOOOa]. This condition triggered a

wave of relentless research efforts which arc still going on. It is now generally accepted in the

Internet community that the problem of network congestion control remains a critical issue and a

high priority one, especially given the growing size, increasing demand for new services with

varying quality of service characteristics, and higher speed (bandwidth) demanded from an

increasingly integrated services network. Research in this aspect has evolvcd along three

interrelated fronts namely: end-to-end mechanisms, router (gateway) based detection mechanisms

and explicit notification mechanisms.

1.2.1 End-to-end Mechanisms

End-to-end mechanisms attempt to address the congestion problem by making changes to

TCPThey try to detect congestion by monitoring end-to-end measurements. The original TCP

[CK74, CDS74] detected segment loss by setting a Retransmission Timeout (RTO) timer when a

segment was sent. If the timer expired before the ACK for that segment was received, the

segment was assumed to be lost and all segments starting at that sequence number were

retransmittcd (this scheme is known as "Go-Back-N"). Only flow control was implemented in

TCP. Nothing in TCP dictated what should be done ""'hen congestion was encountered in the

3
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network. In an immediate response to the congestion collapse scenario, Jacobson and Karels

[JK88] implemented the first attempt at TCP congestion control which consists of several

changes to the original TCP. These changes include the addition of a slow start phase, a

congestion avoidance phase, and a fast retransllllt phase. The modified TCP was called TCP

Tahoe.

1.2.1.1 TCP Tahoe

TCP Tahoe requires each side of the connection to keep track of two additional variables: the

congestion window cwnd and the threshold ssthresh . Before the introduction of this mechanism,

the amount of data that the sender could inject into the network was limited by rwnd only. The

introduction of cwnd imposed an additional constraint on how much traffic a host can send into a

connection. Specifically, the amount of unacknowledged data that a host can have within a TCP

connection may not exceed the minimum of clVnd and rwnd .

Before TCP Tahoe was introduced, TCP senders could send out segments as fast as possible at

startup. The TCP senders, though, have no indication of how much data the network can handle at

once, so often, these bursts led to packets being dropped at routers. TCP Tahoe introduced the

slow start algoritlun which is called into play either when a TCP connection starts up or after a

packet loss. The congestion window clVlld is set to one segment at starlup. TCP sends the first

segment into the network and waits for an acknowledgement. If this segment is acknowledged

before its timer runs out, the sender increases the congestion window by one and sends out two

segments. If these segments are acknowledged before their timeouts, the sender increases the

congestion window by one segment for each of the acknowledged segments, giving a congestion

window of four segments, and sends out four segments. This procedure continues as long as (I)

cWlld < ssthresh (2) the acknowledgements arrive before their corresponding timeouts. During

this phase of the congestion control procedure, the transmission rate starts slowly but accelerates

rapidly afterwards. This enables TCP to slowly probe the network to determine the available

capacity, in order to avoid congesting the network with an inappropriately large burst of data.

When clvnd > sSlhresh , slow start ends and congestion avoidance begins. Congestion avoidance

probes for additional bandwidth by linearly increasing the transmission rate. Once in congestion

avoidance phase. cwnd is increased by 1/ CWlld of a segment for each ACK received. The idea is

4



Chapter 1 Introduction

that in one round trip time (RTT), a TCP sender with a window of size cwnd will receive at most

CWlld ACKs, so this results in a congestion window increase of at most one segment every RTI.

This linear increase contrasts with slow start, which is an exponential increase with cwnd

doubling every RTT. The congestion avoidance phase continues as long as the

acknowledgements arrive before their corresponding timeouts. But the window size, and hence

the rate at which the TCP sender can send, can not increase forever. Eventually, the TCP rate

will become higher such that one of the links along the path becomes saturated. At this point,

packet loss (and a resulting timeout at the sender) will occur. When a timeout occurs, the value of

ssthresh is set to half the value of the current cwnd , and cwnd itself is reset to one segment. The

sender then again grows the congestion window exponentially fast using the slow start procedure

until cwnd > ssthresh, after which congestion avoidance takes over again. The TCP window

adjustment mechanism is generally known as the Additive Increase Multiplicative Decrease

(AIMD) algorithm. This is because TCP essentially increases its window size by one every RTT

(and thus increases its transmission rate by an additive factor) when its network path is not

congested, and decreases its window size by a factor of two every RTT when the path is

congested.

The fast retransmit mechanism is a faster way of detecting segment loss which works by inferring

segment loss through the receipt of three duplicate acknowledgements. Whenever a recei vel'

receives an out-of-order segment (e.g., a gap in sequence numbers), it sends an acknowledgement

for the last in-order segment it received, which would be a duplicate of the previous

acknowledgement sent. The sender uses the receipt of three duplicates of the same ACK to infer

that there was segment loss rather just segment re-ordering. The advantage of this mechanism is

that it reduces the amount of time needed to detect a segment loss. Without fast retransmit, the

expiration of the RTO timer would be required to detect loss. For flows with large congestion

windows, multiple acknowledgements will typically arrive in one RTT.In tllis way, fast

rctransrnit allows TCP to avoid brgc timeouts during which no data can be sent. When the third

duplicate ACK is received, TCP performs a retransnlission of what appears to be the missing

segment. without waiting for the RTO timer to expire. The congestion window is set to I

segment. Duplicate ACKs may continue to arrive, but no change is made to cyvnd and hence no

data segments are sent. When the ACK, that acknowledges that the lost segment has been

successfully received, returns, clvl1d is incremented to 2, transmission resumes with the next two

segments in the pipeline. From this point, slow start continues as normal.
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1.2.1.2 TCP Reno

Introduction

In 1990, a feature known as fast recovery was added to TCP Tahoe by Van Jacobson. The new

TCP is known as TCP Reno and is the de facto standard version of TCP on the Internet

[APS99].When three duplicate ACKs are received, fast recovery is entered instead of slow start.

In this mode, ssthresh is set to 1I2CWlld and cwnd is set to ssthresh + 3 (one for each of the

three duplicate ACKs, which imply thar segments have left the network. For each additional

duplicate ACK received, cwnd is incremented by one segment, as in slow start. New segments

can be sent as long as cwnd allows. When the ACK arrives for a retransmitted packet, cwnd is

set back to ssthresh .TCP then leaves fast recovery and returns to congestion avoidance. This

mechanism enables the sender to probe for available bandwidth conservatively with less chance

of overflowing network queues than with using slo~' start.

1.2.1.3 TCP New Reno

Recently, TCP ew Reno has been proposed [FH99l TCP New Reno addresses some of the

problems encountered with TCP Reno. The fundamental problem with TCP Reno is that the first

partial ACK brings the sender out of the fast recovery phase. This will result in the requirement of

timeouts when there are mUltiple losses in a window, and thus stalling the TCP connection. TCP

New Reno solves this problem by using a partial ACK as an indication of another lost packet and

as such the sender retransmits the first unacknowledged packet. Unlike Reno, partial ACKs don't

take New Reno out of Fast Recovery. This way, it retransmits one packet per RTT until all the

lost packets are retransmitted and avoids requiring multiple fast retransmits from a single window

of data.

1.2.2 Router-Based Detection Mechanisms

Routcr based mechanisms opcratc by detecting incipient congestion at the router queues and

notifying the senders so that they reduce their transmission rates. Jacobson and Karels pointed out

rhat the end-to-end mechanisms, while necessary and powerful, were not sufficienr to provide

good service in all circumstances [JK88]. They observed that while t.ransport endpoints can

ensure that network capacity is not exceeded, they cannot ensure fair sharing of that capacity.

They further noted that enough information to control sharing and fair allocation is found only in
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gateways (routers) at the convergence of flows [JK88]. Floyd and Jacobson [FJ93] further pointed

out that the gateway can reliably distinguish between propagation delay and persistent queuing

delay. Only the gateway has a unified view of queuing behaviour over time; the perspective of

individual connections is limited by the packet arrival patterns for those connections. The default

router algorithm for detecting congestion is known as the drop-tail mechanism. Routers usually

employ the drop-tail technique along with FIFO-based queue scheduling. The first packet that

arrives at the router is the first to be transmitted. The packet that anives last is the likely

candidate to be dropped in the event that the queue reaches its maximum length. Braden et al.

[BRA98] noted that the drop-tail technique had served the Internet quite well for years but it has

two major setbacks: lockout and full queues. Thc lock out phenomenon may occur when drop-tail

allows a few connections or flows to monopolize queue space. This usually happens as a result of

synchronization or other timing effects. The full queue phenomenon happens because of the

nature of the drop-tail mechanism itself. The drop-tail mechanism allows queues to maintain a

full queue status for long periods of time, since drop-tail signals congestion (via a packet drop)

only when the qucue has become full. Bcsides these two major setbacks, this mechanism is also

biased against bursty traffic. The burstier the traffic from a particular connection, the more likely

it is that the gateway queue will overflow when packets from that connection anive at the

gateway [FJ9:?].

1.2.2.1 Random Early Detection

Random Early Detection (RED) [FJ93J, proposed by Floyd and Jacobson, marks one of the

greatest milestones in router based congestion detection. The main goal behind RED is to provide

congestion avoidance by controlling the average queue size. Congestion notification is performed

by dropping packets. When packets are dropped, the sender TCP detects that there is congestion

on the network either through duplicate ACKs or timeouts. Once congestion has been detected

TCP invokes the congestion avoidance algorithms presented in Section 1.2.1.

RED uses a weighted average queue size and two thresholds min
'h

and max,,, .When the

weighted average queue size is below min,,,, RED acts like a drop-tail router and forwards all

packets. This is deemed as a congestion free zone. When thc weighted average queue size is

between mill'h and /llaXth , RED drops the incoming packets probabilistically. All incoming

packets arc dropped when the weighted average queue size is greater than max,,, .The RED AQM
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scheme is illustrated in Figure 1.1. SS denotes the maximum buffer size which is usually set

t02 *max,lt.

--- - ... ------- . ---- - ---. --- - -- ---. - - -,

/I1ill 'h

Queue length

Figure 1.1: RED AQM Scheme

BS

The equations that RED uses to compute the weighted average queue size and the drop

probability are as follows:

• Exponential weighted moving average:

Avgm.". = (l-IVQ )Avgo1d + wQ *' Q
where Q is the current queue length and wQ is the weight parameter

• Drop probability: Po = PI, 1(1- count *' Ph) , where

Ph = (max" (Avg - mill/h) l(nwx,1t - mill/It) and count is the number of undropped packets

since the last dropped packet. Parameter maxI' denotes the maximum packet dropping

probability before RED starts dropping all incoming packets.

RED ensures that packets arc dropped in proportion to the input rates of the connections.

Connections with higher input rates receive more drops of packets than connections with lower

input rates. By so doing, RED tries to maintain equal rate allocation and removes biases against

but'sty connections. By using probabilistic packet dropping RED also eliminates global

synchronization exhibited by the drop-tail approach. The Internet Engineering Task Force (IETF)
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•

recommends the deployment of RED in RFC 2309 [BRA98]. Although RED has been widely

implemented in today's routers, it has largely remained not switched on because there are still lots

of doubts concerning its ability to address the congestion problem. The major weakness of RED

relates to the setting of its four operational parameters: thresholds min'h and max'h ' the weight

parameter wQ and the maximum packet marking probability I1lUXp . The efficiency of RED is

completely dependent on the proper configuration of these parameters [FKS99]. In [LOW02],

Low et. al. perform a control-theoretic analysis of TCP/RED and points out that RED becomes

unstable as RTT delay increases, or when network capacity increases. It has further been

questioned whether RED really gives any benefit over drop-tail [MBD99].

1.2.2.2 Post RED Mechanisms

A plethora of router based congestion detection mechanisms, now generally known as Active

Queue Management (AQM) has been proposed in order to address the weaknesses of RED

[OLW99] [FEN99] [PPPOO] [ALLYO 1] [FYX02]. Based on their architecture and principles of

operation, these mechanisms can be classified into two broad categories: traditional (analytical)

or fuzzy logic based.

Traditional (Analytical) Techniques

Traditional techniques attempt to address the weaknesses of RED by USll1g formal

mathematical models of the system and traditional control theoretic tools. The key

traditional AQM algorithms include:

• BLUE [FEN99]: This algorithm uses packet loss ami link-idle events rather than the

queue length to control congestion. BLUE increases the packet drop probability in

response to a buffer overDow (i.e., a packet drop) and decreases the packet drop

probability when the link becomes idle.

CHOKe [PPPOO]: CHOKe is short for "CHOose and Keep for responsive flows, CHOose

and kill for unresponsive flows. This is a stateless algorithm that attempts to ensure a fair

bandwidth allocation to all the flows that share a FIFO based outgoing link of a

congested router. It accomplishes this by dropping more packets from high-bandwidth

unresponsive flows. The essence of this algorithm is that, when a packet arrives, a

random packet is picked from the queue. If the randomly chosen packet is from the same

source as the newly ani ved packet, both packets are dropped.
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• Adaptive Virtual Queue (AVQ) [KSOI] uses a modified token bucket model as a virtual

queue (VQ) to regulate buffer utilization rather than the queue length. AVQ adjusts the

size and link capacity of the VQ proportional to the measured input rate and drops

packets when the VQ overflows.

• Adaptive RED (ARED) [FGSOI] attempts to maintain suitable operating parameters in

RED by dynamically adjusting maxI' in the RED algorithm based on observed queue

length dynamics. ARED increases max/, when weighted average queue length exceeds

the target queue length and decreases maxI} when weighted average queue length goes

below the target queue length.

• Random Exponential Marking (REM) [ALLYOI] is an optimization based scheme for

communicating congestion from links to sources by exponential marking. REM uses

pricing algorithm to determine the congestion measure. The congestion measure is a

function of the rate mismatch and the queue mismatch.

• Proportional Integral (PI) [HMTG01] is a control theoretic approach which regulates the

queue length to a reference value by using instantaneous samples of the queue length

taken at a constant sampling frequency as its input.

• GREEN [WZ02] is a feedback control function which adjusts the rate of congestion

notification in response to the flow based congestion measure which denotes the

estimated data arrival rate above the target link capacit)'.

Fuzzy Logic Based Techniques

Fuzzy logic is one of the tools that constitute what is commonly as Computational Intelligence

(Cl). The other components of Cl are artificial neural networks (ANNs) and evolutionary

computation (EC). Fuzzy logic was invented by Zadeh [ZA65] for handling uncertain and

imprecise knowledge in real world applications. It has proved to be a pO'Nerful tool for decision-

making, and manipulating imprecise and noisy data. Fuzzy control was introduced by Mamdani

[MAM74] for controlling complex processes. Unlike classical logic which requires a deep

understanding of a system, exact equations, and precise numeric values, fuzzy logic incorporates

an alternative way of thinking, which allows mode ling complex systems using a higher level of

abstraction originating from our knowledge and experience. Fuzzy Logic has been found LO be

very suitable for embedded control applications. Several manufacturers in the automotive and

aerospace industry are using fuzzy technology to improve quality and reduce development time.

In consumer electronics, fuzzy logic improves time to market and helps to reduce costs. In
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manufacturing, fuzzy logic is proven to be invaluable in increasing equipment efficiency and

diagnosing malfunctions. Some of the benefits of Fuzzy Logic include performance, simplicity,

lower cost, and producti vity.

Li and Lee [LL89] and Prade [PRA80] stress that in practical queuing systems, the mean of the

arrival rate and the mean service rate are frequently fuzzy ie. they cannot be expressed in exact

terms. It is therefore very difficult to solve queuing problems by using traditional analytical

techniques. Based on these developments, a number of fuzzy logic based congestion detection

algorithms have been proposed with satisfactory results since 2003.The performance of these

algorithms, in terms of packet loss rate, link delay and stability, is generally better than that of

traditional approaches. The European Network for Intelligent Technologies (EUNITE) Roadmap

[SLM04] further points out that the application of fuzzy control techniques to the problem of

congestion control in lP-based networks is suitable due to the difficulties in obtaining a precise

mathematical model using conventional analytical methods.

The general trend, in Fuzzy Logic based congestion detection techniques [FYX02] [CHR03a]

[WAN03] [ANN04], is that they use queue length and/or traffic arrival rate as input variables.

The system output is the probability which is used in the congestion notification process. The

control law of the fuzzy algorithm is encapsulated in a set of simple linguistic rules and

membership functions which are jointly known as the rule base. The efficiency of these

algorithms is therefore largely dependent on the proper design of the rule base.

1.2.3 Explicit Notification Mechanisms

Efficient delivery of congestion signals is essential to the performance of the Internet. Packet

dropping is the default method used by IP routers to inform the senders about their load levels.

The senders detect these packet drops by using retransmission timeouts and the fast retransmit

mechanism. Then they respond by limiting their packet injection rate in order to match the

available network capacity. This method of delivering congestion signals has a number of

disadvantages. The packet drops not only increase the amount of traffic in the network due to

retransmissions but also add a large transfer delay. This mechanism also proves to be expensive

because the dropped packets will have traversed a larger portion of the network by the time they

get dropped. Therefore, a search for mechanisms which would offer direct feedback to the

senders without dropping the packets became necessary. In the following subsections, we discuss

11



Chapter 1 Introduction

the explicit congestion notification mechanisms that are available in literature. We also discuss

the explicit underutilization notification mechanisms. These mechanisms are tailored for high

bandwidth capacity links (greater than I Gbps) where the link is undenltilized i.e. congestion is

not a concern.

1.2.3.1 Internet Control Message Protocol (ICMP) Source Quenches (ISQ)

The Internet Control Message Protocol (ICMP) was designed to be an integral part of LP

[POS8l]. ICMP enables the router or the destination host to communicate with the source host

occasionally. The Source Quench (SQ) is an example of the messages sent by using ICMP. Using

the drop-tail mechanism, a router discards incoming data packets if it does not have the buffer

space needed to queue them for output to the next network on the route to the destination

network. If a router discards a packet, it may send an ISQ message to the source host of the

packet. A destination host may also send an ISQ message if packets arrive too fast to be

processed. The ISQ message is a request to the host to cut back the rate at which it is sending

traffic into the network. The router may send an ISQ message for every packet that it discards.

On receipt of an ISQ message, the source host cuts back the rate at which it is sending traffic to

the specified destination until it no longer receives source quench messages from the router. The

source host can then gradually increases the rate at which it sends traffic to the destination until it

again receives source quench messages.

RFC 1254 [MR9l] points out that although ISQ messaging was well defined, the conditions for

ISQ generation at the router and the appropriate reaction at the source host were not implemented

in a standardized way. RFC 1812 [BAK95] further points out that the generation of ISQ messages

creates an extra overhead on router resources (e.g. memory, processing time). The transmission of

ISQ messages adds traffic in the reverse direction on what might be a congested path. Based on

these observations, RFC 1812 disapproves the generation of ISQs from a router or a destination

host but also specifies that a router that generates ISQs must be able to limit the rate at which they

are sent. With these developments, interest in ISQ messaging as a mechanism for explicit

congestion notification died down such that in the implementation of RED and all subsequent

AQM algorithms, this mechanism was not supported.
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1.2.3.2 Explicit Congestion Notification (ECN)

Introduction

A major turning point in explicit congestion notification took place with the introduction of the

ECN approach [FL094], [RFOI]. Two bits in the IP header have been reserved for this purpose.

One of these bits is known as the ECN Capable Transport (ECT) bit. A packet with the ECT bit

set i.e. equal to one, informs every ECN capable router along its path that its TCP sender is ECN

capable. When the ECN capable router detects congestion, it marks the packet's second reserved

bit which is known as the Congestion Experienced (CE) bit. It then forwards the packet to the

next link. The packet traverses the network until it reaches its destination. Upon receiving a

packet with the CE bit marked, the receiver echoes the ECN bit back to the source in the TCP

header of the returning ACKs. The sender responds to ECN by halving the congestion window

thereby reducing packet transmission rate. This happens once in an RTT. After responding to

ECN, the sender sets the Congestion Window Reduced (CWR) bit in its TCP header. This serves

to inform the recei ver that action has been taken in response to the congestion signal. In order to

act against the loss of ACKs, the receiver continues to set the ECN-Echo bit in subsequent ACKs

even if further packets do not have the CE bit set until it receives a packet with CWR bit set in the

TCP header.

Studies have shown that the use of the ECN mechanism for the notification of congestion to the

end nodes prevents unnecessary packet drops and retransmissions [FL094], [SAOO). A second

benefit of ECN is that the sources can be informed of congestion quickly and unambiguously,

without the source having to wait for either a retransmit timer or three duplicate ACKs to infer a

dropped packet. For those cases where a dropped packet is not detected by the Fast Retrallsmit

procedure, the use of ECN mechanisms can improve a bulk-data connection's response to

congestion. ECN's downside relates to the long delay experienced in congestion notification.

Under heavy load and large delay links such as satellite links, congestion will persist for a long

time. These lead to higher queue variance, reduced throughput and longer transfer delays for short

lived nows.

1.2.3.3 Backward Explicit Congestion Notification (BECN)

Recently, ISQ messaging has been revived with the introduction of Backward Explicit

Congestion Notification (BECN) [HNS98].The BECN proposal clearly defines the guidelines for

generating ISQs and responding to them in a TCP/IP network. It sorts out the reservations

13



Chapter 1 Introduction

expressed against the use of ISQs in [MR91].It also points out that the problem of extra router

overhead and increased reverse network traffic generated by ISQs would no longer be a big

concern as stated in [BAK95] because the ISQs would be generated only when the computed

RED probability requires dropping or marking. Studies [AKU02) comparing ECN and BECN

have shown that BECN exhibits lower transfer delay for interactive TCP applications, and

improves goodput for bulk TCP applications.

BECN's major downside relates to the generation and transmission of ISQs. Therefore it is

generally desirable to minimize the generation of ISQs in high speed routers. Another drawback

of BECN is lack of reliability. In contrast to ECN, which ensures that the destination host sends

ECN-Echo ACKs continuously until the sender notifies it that congestion notification has been

received, BECN docs not guarantee reliability because ISQ loss can not be detected by the

sender.

1.2.3.4 Explicit Underutilization Notification Mechanisms

The mam goal in these mechanisms is to allow TCP to switch off its traditional congestion

avoidance algorithms and exponentially increase its sending rate so as to utilize the vast network

capacity at its disposal. Router based mechanisms that have been proposed in this area include:

• Allli-ECN: In contrast to ECN, the Anti-ECN [KUN03] proposal is a simple scheme

which uses a single bit in the packet header to allow a TCP connection to increase its

sending rate aggressively over an underutilized high capacity link. It uses aggregate

information to provide feedback and does not require the routers to maintain pcr now

state. The senders can increase their rates even in the middle of a transfer.

• Quick-Slart: Quick-Start [SAF05] is a collaborativc effort between sources and routers. A

TCP sourcc sends a packet that includes a Quick-Start Request in an IF option containing

the requested rate. say X bytes/sec. Each router along the path either indicates agreement

with the request or lowers the requested sending rate or implicitly signals that the Quiek­

Start option was not processed and hence the request was not approved. The data receiver

reports the information received in the Quick-Start Response in a TCP option, and the

data sender determines if all of the routers along the path have agreed to the request and

sets the sending rate appropriately. The assumption is that routers will only approve

Quick-Start requests when they are underutilized.
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1.3 Motivation and Focus of this Thesis

Introduction

Work on this thesis has been spurred by a number of factors. Firstly, it has been observed that

even though literature is replete with AQM proposals, none of these mechanisms has really been

implemented and activated in commercial routers. Practically speaking, routers are still using the

drop-tail mechanism in order to detect congestion. Bitorika et al. [BRH04] carried out an

evaluation of key AQM algorithms that had been proposed between 1999 and 2003. Their major

finding was that each algorithm performs well only for specific metrics. None of the algorithms

exhibited global optimal performance. It is worthy pointing out that AQM algorithms evaluated

by Bitorika et al. are all based on formal analytical techniques. The introduction of fuzzy logic

based AQM techniques, which perform better than their analytical counterparts, gives the Internet

community a lot of hope. However, a crucial problem with fuzzy AQM algorithms relates to the

design of linguistic rules and their membership functions. The fuzzy AQM schemes in literature

rely on the expert knowledge of the designer \vho performs the rigorous process of tuning the

fuzzy parameters until optimal performance is reached (from the designer's perspective). The

human factor involved in this operation makes it difficult for these algorithms to achieve optimal

performance for all the key AQM objectives. Therefore, this thesis focuses on finding a method

of designing the fuzzy AQM scheme that achieves optimal performance in all the major

performance metrics of Internet congestion control without relying on the designer's expert

knowledge.

Secondly, we have noticed that, in trying to keep up with the variations, unmodelled system

dynamics and other disturbances on the Internet, a few adaptive fuzzy AQM schemes have been

proposed. Much as these algorithms perform bctter than the traditional AQM approaches, the

manner in which they adapt themselves to the network is still based on the same analytical

methods. Therefore, they intrinsically carry along with them the weaknesses of those methods. A

look on the other hand shows that there is a large body of research works on online adaptation

and self learning fuzzy logic systems [PM79], [PRF99], [SBM02], [PRG04]. This thesis therefore

uses some principles learnt from these systems in order to develop online self-learning and

organization structures for the fuzzy AQM scheme.

The third motivating factor for this work relates to the desire to implement an explicit congestion

notification mechanism that combines the ECN and BEeN approach so that the two approaches

must complement each other. The first proposal to combine these mechanisms is based on RED
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[AKU03]. Considering the weaknesses of RED and the superiority of fuzzy logic based AQM

schemes, we felt that a dual explicit congestion notification mechanism based on fuzzy logic

would perform better than the RED based proposal. This thesis also extends this concept to

satellite networks which are characterized by long delays.

1.4 Empirical Validation

Throughout this research, we use the network simulator ns-2[NS05] for validation of all the

proposed models, protocols and algorithms and for conducting performance comparison with

various prior works in related areas. We developed our own ns-2 simulation source codes for the

new algorithms and integrated them in the ns-2 package. In all simulations involving web traffic,

we use the standard web traffic generator included with ns-2, with the following parameter

settings: an average of 30 web pages per session, an inter-page parameter of 0.8, an average page

size of 10 objects, an average object size of 400 packets and a Pareto II shape parameter of !.002.

1.5 Thesis Organization

Chapter 2: Literature Survey of post-RED AQM algoIithms. This Chapter begins by

presenting the principles of operation, the efficiencies and deficiencies of the key analytical AQM

schemes. The chapter continues by presenting the fuzzy logic control theory before reviewing the

fuzzy AQM schemes in terms of their design principles, efficiencies and deficiencies.

Chapter' 3: Fuzzy Logic Congestion Detection Algorithm Design using MOPSO. In this

chapter, we propose a Fuzzy Logic Congestion Detection (FLCD) algorithm which combines the

good attributes of both the traditional AQM approaches and the fuzzy logic based algorithms that

have been reported in literature. \Ve also introduce new concepts in order to address some of the

demerits observed in Chapter 2. The membership functions (MFs) of the FLCD algorithm are

designed automatically by using a Multi-objective Particle Swarm Optimization (MOPSO)

algorithm in order to achieve optimal performance on all the major performance metrics of IP

congestion control. The performance of this new algorithm is compared with that of the fuzzy

logic based congestion control algorithm in [FYX03] and the Random Explicit Marking (REM), a

highly rated analytical AQM algorithm. This Chapter extends the FLCD algorithm to

Proportional Differentiated Services IP networks.
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Chapter 4: Online Self-learning and Organization. This Chapter enhances the performance of

the FLCD algorithm by proposing two online self organization structures that enable the FLCD

algorithm to learn the system conditions and adjust itself accordingly thereby achieving optimal

performance in dynamic traffic environments and a wide range of topologies. The first self

organization structure adjusts the update interval in line with the prevailing link propagation

delay. This would help to improve the FLCD algorithm's performance with respect to TCP traffic

transmissions which depend on the value of the RTT. The second one implements a self-learning

and adaptation mechanism based on concepts borrowed from the self organized fuzzy controllers

in [PM79], [PRF99], [SBM02], [PRG04].

Chapter 5: A Dual Explicit Congestion Notification Mechanism. This Chapter proposes a

fuzzy logic based dual explicit congestion notification mechanism which combines the merits of

the Explicit Congestion Notification (ECN) and the Backward Explicit Congestion Notification

(BECN) mechanisms. This Chapter also proposes an RTT based decay function which reduces

the amount of reverse traffic without jeopardizing the performance of the BECN mechanism.

Chapter 6: Conclusion and Future Work. This Chapter presents conclusions drawn in this

dissertation and gives direction for future work.

1.6 Original Contributions of this Thesis

The key contributions of this research are summarized as follows:

I. A proposal for a multi-objective particle swarm optimized Fuzzy Logic Congestion

Detection (FLCD) mechanism in Chapter 3.

2. An extension of the Fuzzy Logic Congestion Detection algorithm to the Proportional

Differentiated Services lP Networks in Chapter 3

3. A proposal for self-learning and organization structures for the FLeD algorithm in

Chapter 4.

4. A proposal for a fuzzy logic based dual explicit congestion notification mechanism and a

proposal for an RTT based BECN reverse traffic reduction mechanism in Chapter

5.
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Chapter 2

Literature Survey on post-RED AQM
Algorithms

2.1 Introduction

Chapter I has discussed the design principles, the strengths and the weaknesses of the Random

Early Detection (RED) algorithm, which is an IETF standard Active Queue Management (AQM)

algorithm. Chapter I also points out that a plethora of AQM algorithms has been proposed either

to improve the RED algorithm or to introduce novel concepts for congestion detection. In this

Chapter, we present an in-depth review of the major post-RED algorithms both in the traditional

and the fuzzy logic domain. Although fuzzy logic algorithms exhibit better performance than

traditional AQM algorithms, we think that they can be improved further by incorporating some

good operational characteristics from traditional algorithms. This Chapter is organized as follows:

In section 2.2, the major traditional AQM algorithms are reviewed. Their efficiencies and

deficiencies are highhghted. Section 2.3 begins by presenting the Fuzzy Logic Control Theory

and ends with a review of the major Fuzzy Logic AQM algorithms. The efficiencies and

deficiencies of these algorithms are highlighted. Finally, section 2.4, presents a summary of this

Chapter.

2.2 Major Traditional AQM Algorithms

This section reviews the following traditional AQM algorithms: BLUE [FEN99], CHOKe

[PPPOO], Adaptive RED [FGS01], REM [ALLYOJ] and GREEN [WZ02]. These algorithms have

been adequately documented in peer-reviewed literature. Except for BLUE, all of these
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algorithms have featured in the comparative study of AQM schemes by Bitorika et al. [BRH03].

We review them in the chronological order of their publication.

2.2.1 BLUE

BLUE algorithm [FEN99], proposed by Wu-Chang Feng et al., uses packet loss and link under­

utilization events, rather than queue size, to adjust the rate of congestion notification. The

congestion notification rate Pm is increased at a set rate if the queue size exceeds a threshold L,

and it is decreased if the link is idle. The notification rate is increased by d, '

every ji'eezetill1e seconds when the queue size is over [he L threshold. The notification rate

decreases by d
2

every freezetime seconds when the link is idle. In this way, the congestion

notification rate Pm converges to a value which controls the arrival rate so that queue is below the

threshold L, and the link is not idle. Figure 2.1 shows the BLUE algorithm.

Upon Packet loss or (B(t) > L) event:

jf ((t -last _update) > freezetime) then

Pm+] = Pm +d l

lust _l~pdale = t

Upon link idle event:
if ((t -last _update) > freezetime) then

Pm+1 = Pm -d2

last _ update = t

Where t =current time, B(t) =current queue size

Figure 2.1: BLUE AQM

Simulation results in [FEN99] show that BLUE achieves a more stable marking probability than

RED. It is also shown that BLUE has a more stable queue size than RED.

Although BLUE exhibits better performance compared to RED, further research lWZ02] has

uncovered a number of shortcomings in it. The major problem relates to its design which

necessitates that the queue wanders between 0 and the L threshold level in order for the markinG
'"
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probability Pili to be adjusted to an equilibrium level required for a given load of TCP

connections. This is because Pili is not adjusted unless the queue is either 0 or L. Unless the

aggregate arrival rate into the link is matched perfectly to the link capacity, then the queue will

decrease or increase, and cause adjustments to Pili when the link idle or queue threshold events are

generated. It has been pointed out in [WY03] that such fluctuations in queue size result in delay

jitter which is detrimental to the Quality of Service (QoS) of interactive applications, such as

VoIP.

2.2.2 CHOKe

CHOKe [PPPOO], which is short for "CHOose and Keep for responsive flows, CHOose and Kill

for unresponsive flows" is a stateless active queue management scheme which aims to control

source rates so that an equal sharing of bandwidth is achieved at the CHOKe link. The CHOKe

algorithm is interesting because of its performance as well as its simple and elegant

implementation.

CHOKe differentially penalizes non-responsive and TCP unfriendly flows by using queue buffer

occupancy information of each flow. It calculates the average occupancy of the FIFO buffer using

the exponential moving average just as RED [FJ93] does. It also marks two thresholds on the

buffer, a minimum threshold minth and a maximum threshold maxth . If the average queue size is

less than minth , every arriving packet is queued into the FIFO buffer .If the average queue size is

greater than maxth , every arriving packet is dropped. If the average queue is between minth and

maxth, each arriving packet is compared with a randomly chosen packet called a drop

candidate packet, from the FIFO buffer. If they have the same flow ID, they are both dropped.

Otherwise the randomly chosen packet is kept in the buffer (in the same position as before) and

the arriving packet is dropped with a probability that depends on the average queue size. Results

in [PPPOO] show that this simple algorithm is able to control high-bandwidth unresponsive UDP

flows, so that TCP connections can share the link more equitably. The CHOKe algorithm also

helps to protect the networks from network anomalies such as Denial of Service (DoS) attacks

and routing loops [HMMD02] which may flood the network.

Although the CHOKe algorithm is good at addressing the problem of fairness, it is easy to see

that this algorithm is not good at addressing the other major AQM objectives such as

maximization of link utilization and minimization of packet loss rates.
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Adaptive RED is a modification to RED which addresses the difficulty of setting appropriate

RED parameters [FGSO 1].Adaptive RED adapts the maximum drop probability maxp so that the

average queue size is halfway between min th and maxlh . The value of max" is kept in the range

1- 50% and is adapted gradually. Adaptive RED adds the increment and the decrement factors to

RED. These factors control the increase and the decrease rates of maxI' respectively. When the

average queue is below the target value, the value of max" is decreased. When the average

queue is above target value, the value of max" is increased. Adaptive RED includes another

modification to RED, called "gentle RED" lFLOOOb]. In gentle RED, when the average queue

size is between maxlh and the maximum buffer size SS , the drop probability is varied linearly

from maxI' to I, instead of being set to 1 as soon as the average is greater than max'h These

modifications to maxI' and the drop probability are shown in Figure 2.2. Results in [FGSO 1]

show that ARED removes the sensitivity to parameters that affect RED's performance and can

reliably achieve a specified target average queue length in a wide variety of traffic scenarios.
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Figure 2.2: Adaptive RED Initial Dropping Probability
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Random Explicit Marking (REM) is a framework for communicating congestion information

from links to sources by exponential marking. A REM link marks a packet at link I with a

probability based on the link price PI state, and a global encoding constant ¥'(l < ¥') :

m l (t)=I-r'" (2.1 )

Assuming links mark packets independently, the overall probability of a packet being marked has

an exponent with the sum of the link prices:

1- f1 (1- 1n
l
(t» = 1- ¥'-(pl+p2+ P:i+.)

IEL

(2.2)

Because sources know the value of t/J ' they can compute the total end-to-end path congestion

price. Therefore, in a complete deployment, REM requires a REM link algorithm and a source

algorithm capable of decoding REM information. In the present Internet implementation link

REM AQM algorithm deployed with the TCP source algorithm. In this case, the price PI (r) state

variable can be interpreted as the marking rate, just as the other AQMs discussed. Three different

alternative pricing algorithms PC I-PC3 constitute REM.

, .

PC2: PI (t + I) = [PI (r) - y(x (r) - Cl W

PC3: p,(t + I) = [PI(t) - y(al.h,(r) + x' (t) - cl)r

(2.3)

(2.4)

(2.5)

where PI (t) is the congestion notification rate, Cl is a target capacity just below the actual link

capacity, hi (r) is the backlog, and y and a are control gain constants which affect speed and

stability of control.

PC 1 control law is very similar to RED because the congestion notification rate is proportional to

backlog. PC2 and PC3 measure the arrival rate to the link to compute the congestion notification

rate instead of using the backlog. The congestion notification rate is controlled by an integral

controller, whose error term is the discrepancy between the aggregate anival rate to the link and

the target link capacity. The difference between PC2 and PC3 is that PC3 adds a backlog penalty

term to the control process, vihich makes the marking rate increase with greater rate if there is a

backlog. This improves the transient response of the basic PC2 controller, and reduces the amount

of backJog during transient periods when the load changes.
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Although REM works very well in a steady state situation, experimental results in [BZ02] show

that its behaviour in transient conditions and with realistically constrained buffer sizes is not

necessarily optimal.

2.2.5 GREEN

The GREEN algorithm is a feedback control function which adjusts the rate of congestion

notification in response to the flow based congestion measure XC" the estimated data arrival rate.

GREEN is based on a threshold function. If the link's estimated data arrival rate x,sr is above the

target link capacity Cl' the rate of congestion notification Pis incremented by M at a rate

of 1/ /::,.T .Conversely, if X Cj.1
is below Cl' Pis decrcmented by M at a rate of! / /::,.T . The algorithm

applies probabilistic marking of incoming packets at the rate P , either by dropping packets, or

setting the ECN. Let the step function Vex) is defined by:

therefore

{
+l

Vex) =
-I

X~O

x<O
(2.6)

(2.7)

The target link capacity Cl is assigned a value just below the actual link capacity c ,

typically 0.97c, so that the queue size converges to O. Incoming data rate estimation is performed

using exponential averaging:

Xw = (1- exp(-Del / K» *(B / Del) + exp(-Del / K) * X
CJI

(2.8)

where Del is the inter-packet delay, B the packet size and K the time constant. There is a

relationship between REM PC3 and GREEK If equation (2.1) is linearised, m =P, the

exponential marking is eliminated. Furthermore if the buffer tenn a = 0 and the linear

constant r is replaced with the step function (2.6), GREEN's congestion notification

rate P becomes equivalent to REM's price PI .

Results in lWY03j show that GREEN exhibits higher link utilization, lower packet rate and delay

than RED and Drop-tail algorithms. Its overall performance is, however very similar to that of

REM because their control laws are similar.
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Although GREEN comes with all these advantages relative to its predecessors, a comparative

evaluation of AQM algorithms in [BRH03] uncovers one major fundamental problem. Results in

[BRH03] show that GREEN does not keep track of the queue length because its only congestion

metric is traffic load. Thus it can reach steady-state when the queue is full while keeping the

incoming traffic rate close to the target. In this situation its behaviour is just the same as that of

the Drop-tail mechanism.

2.2.6 WRED

Weighted RED (WRED) is Cisco's proprietary algorithm which belongs to the family of multi­

RED algorithms which have been proposed for congestion control in Differentiated Services

(DiffServ) IP Networks [BLA98]. Other algorithms in this family include RIO-C and RIO-DC

[MLOO].Differentiated Services (DiffServ) is a paradigm that has been proposed for QoS

provisioning on the Internet. Research in DiffServ IP Networks was triggered by the desire to

satisfy QoS requirements for different applications as the Internet evolves. For instance,

applications such as World Wide Web (WWW) and file transfers prefer low data loss rates while

tolerating large delays. On the other hand, multimedia applications (Voice over IP, Video-on­

Demand etc.) require low delays but can tolerate a certain amount of loss rates. The first

paradigm that was proposed to meet these demands is known as the Integrated Services (IntServ)

[WHI97], [GKP98], [SSZ98]. IntServ ensures end-ta-end and per-flow QoS. All connections

reserve the resources needed and routers maintain their reservation parameters on a per-flow

basis. The main problem with this approach relates to the issue of scalabiJity. As the number of

users or connections increases, il becomes difficult la maintain reservation parameters on a per­

flow basis. In order 10 reduce the problems of IntServ, DiffServ was introduced to provide QoS

with aggregation of flow and per-class service.

DiffServ classifies packets into different service classes by setting a 6-bit pattern in the LP header,

called the Differentiated Services Code Point (DSCP). Each of the 64 possible classes is

associated with a particular forwarding mechanism at a node, called a Per-hop Behaviour (PHB).

The PHB determines the relative QoS of each class. The classes are called Behaviour Aggregates

(BA). The IETF DiffServ standards describe qualitatively the behaviour expected for each BA but

do not regulate the specific forwarding mechanisms required at the routers and switches to

achieve these behaviours. The original DiffServ proposal [BLA98] is composed of two broad

classes: the expedited forwarding (EF) class and the assured forwarding (AF) class. The
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Expedited Forwarding (EF) class is the highest priority class and is for applications requiring

low-loss, low-latency and low-jitter. Typical applications for the EF class include voice over IP

(VoIP), interactive games and online trading programs. The Assured Forwarding AF class has a

lower priority than EF. AF is comprised of a number of subclasses with different grades of

service priority. The AF class is intended for best-effort applications such as FTP, and WWW.

Each subclass within AF is identified by the notation AFxy, where x specifics the service class

and y the packet drop precedence. The AF class is subdivided into four service classes,

implemented as Premium (AFly), Gold (AF2y) Silver (AF3y) and Bronze (AF4y). The lETF

specifies [WH99] that each of these subclasses should receive a guaranteed minimum share of

link capacity. Typically, the bandwidth available B(AFxy) to a class x in a bottleneck link is such

that B (AFly) > B(AF2y) > B(AF3y) > B(AF4y). Within cach subclass, one of three levels of the

packet drop precedence (y) is specified. The packet drop probability dP(AFxy) of each level

should be dP (AFx 1) <= dP(Afx2) <= dP(Afx3).

In order to ensure that QoS requirements for different traffic classes are met, the DiffServ

environment employs a distinct scheduling algorithm in the deque routine. This is in contrast to

best effort networks where the simple FIFO scheduling mechanism is used. Examples of DiffServ

scheduling disciplines include: Round Robin (RR), Priority Scheduling (PS) and Weighted Fair

Queuing (WFQ). A typical DiffServ implementation uses a priority scheduler to give the EF class

packets absolute priority over AF class packets. The bandwidth available to the AF class is

typically shared between each AF subclass by using a WFQ scheduleI'. The WFQ scheduler

ensures that each service class recei ved a pre-configured portion of bandwidth during overload.

The WRED AQM scheme is implemented on each of the four AF qucues while the EF queue is

controlled by either RED or a Drop-tail approach.

WRED computes a single average queue size which includes packets from all drop precedences.

By convention, packets of the three drop precedence within an AF class are delimited by the

colors red, green and yellow, such that the packet drop probability of each color is; Pr(red) >

Pr(yellow) > Pr(green). WRED gives each calor a separate packet dropping probability as shown

in Figure 2.3.
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Figure 2.3: WRED Mechanism

Although WRED has been deployed in conunercial routers, it generally remains disabled

[BRH031 because of the problems associated with RED.

2.3 Fuzzy Logic Based AQM Schemes

We present the Fuzzy Logic Control Theory before analyzing Fuzzy Logic AQM schemes. This

theory is the backbone for all the Fuzzy Logic AQM schemes such that a proper understanding of

this theory, before delving into the specifics of different AQM schemes that are emanating from

it, is very important.

2.3.1 Fuzzy Logic Control Theory

We first of all present an overview on fuzzy sets and operators. The principles of operation of the

Fuzzy Logic Controller (FLC) are presented in the second part of this section.
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Fuzzy logic is a concept that brings together the reasoning used by computers and the reasoning

used by people. The concept of fuzzy logic was first presented by Zadeh [ZAD65], known as the

father of fuzzy theory. In the conventional (crisp) sets, members are always fully categorized and

there is no ambiguity or dichotomy about membership. Zadeh contends that human thinking does

not embrace precise definitions, but classes of definitions known as fuzzy sets in which the

transition from membership to non-membership is gradual rather than abrupt. The degree of

membership is specified by a number between 0, non-membership, and I, full membership.

The fuzzy set A in X is characterized by a membership function f.lA (x) , which associates each

element in X with a real number in the interval [0, I]. f.l
A

(x) is known as the grade of

membership. Hence the fuzzy set on the universe of discourse X is defined as:

A = {(x,J.1A (x» I XE X} (2.9)

The fuzzy set has three principal features as shown in Figure 2.4:

I. The range of values (domain) called the Universe of Discourse over which the fuzzy set

is valid (the x-axis).

2. The degree of membership (~) axis (the y-axis)

3. The fuzzy set function which maps the domain to the degree of membership.
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Figure 2.4: Fuzzy Membership Function

The membership functions in Fig 2.4 are triangular. They are overlapping each other by at least

50%. As a result, a discrete value on the universe of discourse (domain) can be a member of two

or more fuzzy sets. For example, the discrete (crisp) value of 0.375 has a membership grade or f1

of 0.25 in the fuzzy set LOW, a membership grade or f1 of 0.75 in the fuzzy set MEDIUM and a

membership grade of 0.0 in the fuzzy set HIGH. Besides triangular membership functions, other

types of membership functions include trapez.oidal, gaussian. bell, sigmoid and asymmetric.

Like conventional sets, there are specifically defined operations for combining and modifying

fuzzy sets. Since fuzzy sets arc not crisply partitioned in the same sense as Boolean sets, thesc

operations are applied at the truth membership level. These set theoretic functions provide the

fundamental tools of the logic. Following the conventional fuzzy logic operations initially defined

by Zadeh, the basic operations are

Intersection: An B = min(J.1,\ (x),J..l/J (x» = J..l
A

(x) 1\ J.1/J (x)

Union: A u B = max(J.1A (x), J.1n(x» = J.1
A

(x) V J.1n(x)

Complement: - A = 1- J..l/l (x)

Subset: A ~ B = J.1,\ (x) :::; J.1B (x)

(2.10)

(2.1 1)

(2.12)

(2.13)
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The intersection in (2.10) and the union in (2.11) are the most frequently used examples of the T­

norm (Triangular norm) and the T-eol1omz operators respectively.

The T-norm operator, T :[0, I] x [0, 1] ~ [0,1] gives a general specification of the intersection of

two fuzzy sets A and B . It aggregates two membership grades as follows

(2.14)

where ® is the T-norm operator. This two-placed function meets the following basic

requirements:

Boundary: T(O,O) =O,T(a,l) =T(l,a) =a

Monotonicity: TCa,b)::::; TCe,d) if a::::; c and b::::; d

Conunutativity: T(a,b) =T(b,a)

AssociatiYity: T(a,T(b,c») =T(T(a,b),c)

(2.15)

(2.16)

(2.17)

(2.18)

The T-conorm operator, S: [0, I] x [0, 1] ~ [0,1] gi yes a general specification of the union of two

fuzzy sets A and B . It aggregates two membership grades as follows

/lA (x) U f..1B(X) =S(/lA (X),/lB(X») =/lA (x) EEl JiB (X) (2.19)

where EEl is the T-conorm operator. This two-placed function meets the following basic

requirements:

Boundary: 5(1,1) =1, 5(0, a) =S(a,O) =a

Monotonicity: S(a,b)::::; S(c,d) if a::::; c and b::::; d

Commutativity: S(a,b) =S(b,a)

AssociatiYity: S(a,S(b,c) = S(S(a,b),c)

2.3.1.2 Fuzzy Logic Control: Principles of Operation

(2.20)

(2.21)

(2.22)

(2.23)

A fuzzy logic controller is an approximate reasoning-based controller, which does not require

exact analytical models and is much closer in spirit to human thinking and natural language than a

traditional logic system. Fuzzy rules are the backbone of a fuzzy logic system. A simple fuzzy

rule can be written as

if x is HIGH then y is POSITIVE BIG
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where HIGH and POSITIVE BIG are linguistic values defined by fuzzy sets on the Universes of

Discourse X and Y respectively. The if-part, x is HIGH ,is known as the antecedent and the then­

part, y is POSITIVE BIG, is known as the consequent. A set of linguistic rules used to map fuzzy

inputs to outputs is known as a rule base. Apart from the rule base, other parts of a Fuzzy Logie

System include the Fuzzifier, the Inference Engine and the Defuzzifier as shown in Figure 2.5.

Real world inputs Real world outputs

I I I ... ... ...
~ ~ ~ I I I

~
Inference

!----+Fuzzifier Engine Defuzzifier

1
Rule base

Figure 2.5: Fuzzy Logic Controller

The Fuzzifier translates the real world input variables into fuzzy representation by calculating

suitable sets of degree of membership for each of the inputs. The Inference Engine evaluates

output fuzzy sets from input sets using the predefined fuzzy rules contained in the rule base. The

Defuzzifier transforms the output fuzzy sets into real world output variables. The Inference

Engine calculates the degree of activation of every rule in the rule base. If the antecedent for

rule j contains one variable, the rule's degree of activation is equal to the degree of membership

of that single variable. If j.1.~ (XI) denotes the degree of membership of input XI for rule j then

p(r)) the degree of activation of rule j is expressed as follows

If the antecedent for rule j contains more than one variable in the form

rule.i: IF A~ AND AJ Ai'lD '" AND A] THEN bj
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where AJ IS a fuzzy set with membership

function J1J : 9\ -7 [0,1], j =1, ... , In, k =1, ... ,11, bj E 9\. In this case, the degree of activation for

rule j, J1(r j ) is detennined using the t-norm operator as follows

(2.27)

Therefore at the output of the Inference Engine there will always be a fuzzy set

J1(r) for j =1,2, ... , In. This fuzzy set is composed of the fuzzy sets output by each of the rules

using equation (2.27). In order to be used in the real world, the fuzzy output needs to be

interfaced to the crisp domain by using a defuzzifier. There are several defuzzification methods

but the widely applied one is the Centre of Gravity (COG) technique, which computes the

weighted-average of the centre of gravity of each membership function. The COG of the system

with m rules is as follows

(2.28)

where bj is the centre of the membership function recommended by the consequent of rule}.

2.3.2 Evaluation of Fuzzy Logic AQM Schemes

This subsection presents an analytical evaluation of the key Fuzzy Logic AQM schemes that are

available in the public domain.

2.3.2.1 The Algorithm of Ren et. al.

This algorithm is arguably the first fuzzy logic AQM algorithm to be published. It is inspired by

the PI congestion control mechanism developed by Holot el al. [HMTGOl]. Holot et at.

approximated the non-linear and dynamic TCP/AQM model, proposed by Misra et al. [MGTOO],

as a linear constant system by small-signal linearization about an operating point, and then

designed the traditional PI controller using the classical control theory. The PI proves useful and

helpful in the analysis and explanation of the instability of RED under some network parameter

configuration. In spite of this advantage, Ren et al. [FYX02] argue that the PI controller is prone
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to instability and poor performance because the real network is full of dynamic parameters such

as number of active connections.

In their design of a fuzzy based congestion controller, Ren et. al. [FYX02] define EQ as the

expected value of queue length. They also define VQ as the estimated value of the maximum

range that the queue length variation can reach during one sampling interval. They fix the

sampling frequency at 160Hz.They also fIx VQ at O.SBS (where BS is the buffer size).They use

two input linguistic variables: error of queue length e and the error's varying rate ~e .The latter

effectively describes the local dynamic of the difference between the anival rate and the service

rate. The chosen output is linguistic variable which represents the increment of the packet

marking or dropping probability. The model of fuzzy system, comprising the control rules and the

term sets of the variables with their related fuzzy sets is obtained through a tuning process that

starts from a set of the initial insight considerations. This process continues until the system

reaches a level of performance considered to be adequate. The membership functions are as

shown in Figure 2.6.

f.J

10 NB

o+-_--'-__.L-_..L-_...L-_-'-----''-----i~

O.8EQ EQ 12EQ IAEQ BS

(a)Queue Length

NB

(a)Vanance of Queue Lenglh

-7.00 -5.25 -:1.50 -1.75

(a)Control ,'ariablc

Figure 2.6: Membership Functions for Ren's Algorithm

Both of the input variables have seven fuzzy term sets, which are negative big (NB), negative

medium (NM), negative small (NS), zero (Z), positive small (PS), positive medium (PM) and
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positive big (PB). The output variable is greater by two term sets in number; the extra sets are

negative huge (NH) and positive huge (PH).The control rule base is as follows:

Table 2.1: Fuzzy Control Rules for Ren' s Algorithm

t.e

e NB NM I NS Z PS PM PB

NB NH NH I NH NB NB NM NM

NM NH NB I NB NM NM NS NS

NS NB NM NS Z Z Z PS

Z NM NS Z Z Z PS PM

PS NS Z Z Z PS PM PE

PM PS PS PM I PM PB PB PB

PB PM PM PB PB PB
I

PH PH

The fuzzy sets in the matrix denote the output control variable under different input conditions.

For example, if queue eowe is Negative Big (NB) and error varying rate toe is Negative Small

(NS), then the control variahle is Negative High (NH).

This algorithm was implemented on the NS-2 platform and had its performance compared with

the PI controller under various scenarios. Simulation results show that it has superior steady and

transient state performance, exhibits great adaptability to variances in link delay and capacity, and

provides more robustness against noise and disturbance. However, its major weakness lies in the

fact that its control rules and membership functions are obtained through a manual tuning process

which is based on the designer's insight. The human factor involved in this operation makes it

difficult for these algorithms to achieve optimum performance for all the key AQM objectives.

2.3.2.2 The Algorithm of Chrysostomou et. al.

Chrysostomou et al. [CHR03a] use a similar approach to Ren et al. [FYX02]. The fuzzy control

system is designed to regulate the queues of LP routers by achieving a specified desired Target

Queue Length (TQL) qdeJ in order to maintain both high utilization and low mean delay. All the

quantities are considered at the discrete instantkT, with T the sampling period. Two input

variables are used: (I) e(kT) = qde, - q , the error on controlled variable q at each sampling period
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and (2) e(kT - T) , the error of the queue length at the previous sampling period. The output of the

fuzzy control system is the mark probability p(kT) . The two input linguistic variables have the

same membership function with fuzzy term sets which are negative very big ( VB), negative big

(NB), negative small (NS), zero (Z), positive small (PS), positive small(PM) and positive very big

(PVB).This approach is just the same as in [FYX02]. The output variable, the mark probability

has a membership function with fuzzy term sets which are zero (Z), tiny (T), very small (VS),

small (S), big (B), very big (VB) and huge (H). Just like in [FYX02], the design of the rule base is

also achieved through a tuning process that starts from a set of the initial insight considerations

and progressively modifying the parameters of the system until it reached a level of performance

considered to be adequate. A certain level of intuition and experience is used to design the rule

base.

This FLC is implemented in the NS-2 platform and has its performance compared against PI,

Adaptive RED and REM under various scenarios. This controller is shown to exhibit to exhibit

many desirable properties, like robustness and fast system response, and behaves better than other

AQM schemes (PI, ARED, REM) in terms of queue fluctuations and delay, packet losses, and

link utilization. However, Clu'ysostomou et at. [CHR03a] were quick to point out the need for

future work to include the design of a fuzzy model reference learning controller, which can tune

the parameters of the fuzzy logic learning controller on line, using measurements from the

system. to obtain a better performance. They also point out the need to investigate the

implementation of this fuzzy logic congestion controller in a differentiated service environment in

TCP/IP networks, using separate linguistic rules for each predefined class of service.

Just like the proposal in [FYX02], its major weakness lies in the fact that its control rules and

membership functions are obtained through a manual tuning process which is based on the

designer's insight. The human factor involved in this operation makes it difficult for these

algorithms to achieve optimum performance for alltbe key AQM objectives.

2.3.2.3 Fuzzy BLUE Controller

Fuzzy Blue Controller (FBC), proposed by Yaghmaee and Toosi [YT03J, is an extension to the

traditional BLUE mechanism [FEN99]. FEC is a two-input-single-output fuzzy logic controller.

The input linguistic variables are packet loss and the normalized queue length. The output
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linguistic variable is the drop probability Pm . The term set of linguistic variables packet loss and

normalized queue length are defined as follows:

• T(packct loss) ={ small, med (medium), big}

• T(normalized queue length) ={Iow, mid (middle), high}

The output term set of fuzzy logic controller is also defined as follows:

• T(Pm)={zero, low, moderate, high}

The design of rule base is based on experience and beliefs on how the system should work. Table

2.2 presents the fuzzy linguistic rules used in the simulation. The tuning (trial and error) approach

is used along with the theory approach in order to design the rule base. In the theory approach,

rules are designed in such a way that specific functionality of a parameter (such as throughput) is

guaranteed.

The performance of the Fuzzy BLUE Controller was compared with that of the traditional BLUE

mechanism. A number of different trials were performed to test the correctness of the algorithm.

Based on simulation results, it was shown that the Fuzzy BLUE could achieve near 100%

throughput [YT03]. It was also shown that the Fuzzy BLUE mechanism has better loss

performance and queue length behavior than traditional BLUE mechanism.

Table 2.2: Linguistic rules for Fuzzy Blue Controller

/* Linguistic rules of FBC */
if packet loss is small and normalized queue length is low then pm is zero;
if packet loss is small and normalized queue length is med then pm is zero;
if packet loss is small and normalized queue length is high then pm is zero;
if packet loss is med and normalized queue length is low then pm is zero;
if packet loss is med and normalized queue length is mcd then pm is zero;
if packct loss is med and normalized queue length is high then pm is moderate;
if packet loss is big and normalized queue length is low then pm is zero;
if packet loss is big and normalized queue length is med then pm is low;
if packet loss is big and normalized queue length is high then pm is high;

Just like the proposals in [FYX02], [CHR03a], its major weakness lies in the fact that its control

rules and membership functions are obtained through a manual tuning process.
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2.3.2.4 Adaptive Fuzzy RED

Literature Survey on Post-RED AQM Algorithms

To our knowledge, Adaptive Fuzzy RED (AFRED) [WAN03] is the first algorithm that employs

an online adaptation mechanism. This algorithm uses the instantaneous queue length as the only

input variable to determine the packet marking or dropping probability. It employs an Adaptive

Adjust Module (AAM) which is triggered periodically to calculate the real packet drop rate and

output adjust conditions to the Fuzzy Controller Module (FCM). Figure 2.7 shows AFRED's

archi lecture.

_E_'n~e Buffer

PDR

Deque

Adjust
FCM:~..1-------.;

Action

QL Queue Length PDR: Packet Drop Ratio

P,,: Packet Markilt/?IDrop Probability

Figure 2.7: AFRED Architecture

The novel principle exhibited by AFRED is that the real packet drop ratio (pdr) can show the

congestion degree coarsely at least since heavy (or light) congestion will trigger lots of (or few)

packet drops. Although this proposal introduces the concept of online adaptation, it falls short in

two areas. Firstly, it uses the instantaneous queue length as a sole input variable. As explained in

[FKS99], [ALLYOl], [WZ02], queue size is not a good indicator of the severity of congestion,

and the level of congestion notifications issued may be too great and bursty, leading to excessive

packet loss. Secondly, it uses only packet loss in the adjust process. Other important performance

metrics such as link utilization. fairness, delay and jitter are not considered.

2.3.2.5 Fast Adaptive Fuzzy Controller

In this algorithm, the authors use Lyapunov's Direct Method for stability analysis [PY98] based

on the mathematical model for the internet which was developed by Frank Kelly [KELO I] and

generalized to support multiple TCP sessions by Crowcroft and Oeschslin [CO].They also

incorporate the classical Proportional Integral Derivative (PID) controller for online adaptation.
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This algorithm exhibits better queue stability and lower packet loss rates compared to RED and

the Proportional Integral Derivative (PID) AQM algorithm [YC03]. However, the internet

mathematical model [KELOl], [CO] used in this algorithm is based on the principle that the

Internet is predominantly TCP. It neglects the effect of non-responsive nows (such as UDP) and

network anomalies such as Denial of Service attacks and rooting loops [HMMD02]. A recent

study of internet traffic [FKM03] shows that UDP accounts for (22±11) % packet composition of

internet traffic while TCP accounts for (75±12) %. Therefore, ignoring the UDP component

compromises the composition of traffic on the Internet. The other problem relates to the fact that

this algorithm puts more emphasis on queue stability without incorporating other important

performance metrics such as link utilization, packet loss rales and fairness.

2.3.2.6 Fuzzy RED for DiffServ

Fuzzy RED [CHR03b] is the DiffServ implementation of best-effort Fuzzy AQM in [CHR03a].

This algorithm removes the fixed maximum and minimum queue thresholds from the RED queue

for each class, and replace them with dynamic network state dependant thresholds calculated

using a fuzzy inference engine (FIE).Two sets of linguistic rules are used in order to generate two

mark probabilities for high and low priority traffic. The mark probability behavior based on two

network-queue state inputs: the instantaneous queue size and the queue rate of change.NS-2

simulation results show that Fuzzy-RED behaves well and delivers almost identical throughput

results under various conditions without any retuning or parameterization. Fuzzy-RED also

performs equally well using homogeneous or heterogeneous traffic sources (in this case TCPIFTP

traffic and TCPIWeb-like traffic) without any change in the way it is defined or needing any

special tuning. Chrysostomou et al. [CHR03b] point out that future work can include further

refinement of the rule base, self-tuning, or different fuzzy based control st.rategies for the design

of the fuzzy rule base and its tuning.

Fuzzy RED has two major shortcomings. The first one is that it inherits the tuning problems from

its forerunner in lCHR03a]. The second one relates to the DiffServ queuing architecture for

which it is tailored. A closer look at the Fuzzy RED algorithm shows that it implements only one

queue and performs service differentiation by using two different marking schemes. The issue of

scheduling is not explicitly mentioned such that it can be assumed that default FIFa scheduling is

used. Recent developments in DiffServ research show that architectural trends are shifting

towards Proportional Differentiated Services (PropDiffServ) [DSR02] model where each traffic
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class is assigned its own queue. In other words, PropDiffServ model removes the concept of drop

precedences within a DiffServ class. This reduces the implementation difficulties associated with

the original DiffServ framework [BLA98].The PropDiffServ ensures the quality spacing between

classes of traffic to be proportional to certain pre-specified class differentiation parameters. An

AQM scheme is implemented on each queue (class). The Weighted Fair Queue (WFQ) [LTCOO]

scheduling algorithm determines the allocation of bandwidth in each class as well as packet

transmission order based on pre-specified class differentiation parameters.

2.4 Chapter Summary

In this Chapter, we have presented operational characteristics, the efficiencies and deficiencies of

the major traditional AQM schemes. We have also presented the Fuzzy logic Control theory

which is the backbone of all fuzzy logic based AQM schemes. We have evaluated the operational

characteristics, efficiencies and deficiencies of the major fuzzy logic based AQM schemes in

literature. We have uncovered a number of deficiencies in these schemes. Firstly, we have found

out that their control rules and membership functions are obtained through a manual tuning

process which is based on the designer's insight. The human factor involved in this operation

makes it difficult for these algorithms to achieve optimal performance for all the key AQM

objectives. Secondly, these algorithms are generally designed with an assumption that the Internet

is predominantly composed of TCP traffic, whose sources respond to congestion notification

signals from routers by reducing their sending rates. Practically, the situation is not like that

because apart from the non-responsive UDP traffic which accounts for (22±11)% of Internet

traffic [FKM03], the Internet is nowadays facing a growing list of non-responsive nows and

anomalies such as Denial of Service (DoS) attacks and routing loops [HMMD02]. These nows do

not reduce their sending rates in times of congestion as responsi ve TCP flows reduce their rates.

Therefore, fairness in these schemes would diminish exponentially as the number of nOI1­

responsive flows increases. Chapter 3 presents Cl new fuzzy logic AQM scheme which addresses

these deficiencies by employing multiobjective evolutionary optimization. CHOKe, a traditional

AQM scheme is incorporated in the new approach in order to address the fairness issue.
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Fuzzy Logic Congestion Detection using
MOPSO

3.1 Introduction

In this ch:lpter, we propose a Fuzzy Logic Congestion Detection (FLCD) algorithm which

combines the good characteristics of both the traditional AQM approaches and the fuzzy logic

based AQM algorithms. We also introduce new concepts in order to address some of the

problems observed in Chapter 2. The membership functions (MFs) of the FLCD algorithm are

designed by lIsing a Multi-objective Particle Swarm Optimization (MOPSO) algorithm in order to

achieve optimal performance on all the major performance metrics of IF congestion control. The

FLCD algorithm is implemented on both the best effort and the Proportional Differentiated

Services (PropDiffServ) IF networks .In the best effort implementation, the performance of the

FLCD algorithm is compared with that of the fuzzy logic based congestion control algorithm in

[FYX03J and the Random Explicit Marking (REM) [ALLYO I] algorithm. In the PropDiffServ

environment, the performance of the FLCD algoritlun is compared with that of Cisco's WRED

(CISC002], which has been deployed in commercial routers. This Chapter is organized as

follo\vs: In section 3.2, the FLCD algorithm is presented. Section 3.3 presents the MOPSO theory

and the formulation of the IP congestion problem. Section 3.4 implements the MOPSO scheme,

generates optimization results and draws the best compromise solution which is used in the

configuration of the practical FLCD algorithm. In Section 3.5, we present simulation results and

comparative performance analysis of the FLCD algorithm in best eff0I1 IF networks. In Section

3.6, the FLCD algorithm is implemented in PropDiffServ IF networks. Section 3.6 also presents
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simulation results and a comparative performance analysis of the FLCD algorithm in

PropDiffServ IP networks. Finally section 3.7 gives the summary of this chapter.

3.2 Fuzzy Logic Congestion Detection Algorithm

The FLCD algorithm is composed of the Fuzzy Logic Controller (FLC), the Probability Adjuster

(PA) and the CHOKe Activator (CA). Figure 3.1 shows the proposed FLCD architecture.

a

fJ

CA

Pb

FLC
6Pi' I PA ~

I I

Figure 3.1: Fuzzy Logic Congestion Detection Architecture

A single FIFO buffer in which all packets are treated equally is assumed. The queue status is

sampled at a period r of 0.002 seconds just as in [ALLYO IJ in order to obtain the queue­

occupation size (backlog) q(t) and the traffic anival rate r(t) . The backlog q(t) is translated into

the backlog factor a which is the ratio of backlog with respect to the Buffer Size SS :

a = q(t)/ BS (3.1 )

In contrast to the proposals in [FYX02], [CHR03a], [CHR03b], which use the variation of queue

length in order to determine the packet arrival rate, the FLCD algorithm determines the packet

alTi val rate by counting the actual number of packets that anive at the buffer (both those that are

queued and those that are dropped) during sampling period r . When the buffer is prevalently full,

the variation of queue length is very small such that it fails to capture the packet arrival rate

because most packets are dropped before they get queued. We let 11 denote the number of packets

that arrive at the buffer during period r. We also let {VI denote the measuring weight and r,,,
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denote the maximum packet arrival rate. The weighted average packet arrival rater(t) and the

packet arrival factor f3 are determined as follows

r(t)=OJ
1
~'r(t-r)+(l-(q)*n (3.2)

re,) < ';n

rU) ~ r,n
(3.3)

The FLC Unit detennines the change in packet marking/dropping probability!!.pb by using the

fuzzified values of parameters a and f3. The set of linguistic rules that govern the inference

process in the FLC is shown in Table 3.1.

Table 3.1: Rule Base for the FLC Unit

If a is LOW and f3 is LOW then !!.Pb is Negative Big.

if a is LOW and f3 is MEDIUM then !!.Pb is Negative Small.

if a is LOW and f3 is HIGH then !!.Pb is Zero.

if a is ORMAL and f3 is LOW then !!.P" is Negative Small.

if a is NORMAL and f3 is MEDIUM thell !!.Pb is Zero.

if a is NORMAL and f3 is HIGH then !!.P" is Positive Small.

if a is HIGH and f3 is LOW then /).p" is Positive Small.

if a is HIGH and f3 is MEDIUM then !!.p/) is Positive Big.

if a is HIGH and f3 is HIGH then !'J.Pb is Positive Big.

The PA computes the new packet market probability p,,(t) as follows

(3.4)

Packets are either marked (if ECN or BECN is enabled) or dropped with the probability Ph (t) in

order to inform the sending sources that there is congestion in the network. The sources respond

by reducing their sending rates according to TCP's congestion avoidance mechanisms.

In order to address the issue of fairness in light of non-responsive flows and network anomalies

such as Denial of Service (DoS) attacks and routing loops [HMMD02] which may dramatically

flood the network as the responsive flows back off, we incorporate the CHOKe Activator (CA)

42



Chapter 3 Fuzzy Logic Congestion Detection Algorithm Design using MOPSO

which uses Ph (I) to generate a fuzzy parameter r/J E rO, 1] .Let ~hresh denote the CHOKe threshold

then the fuzzy parameter r/J is derived as follows

(3.5)

When Plllm!> > Pb (low congestion), r/J is 0.0. During this period there is no CHOKe activity.

When Pr!>r"sh ::; Ph (high congestion), the value of r/J increases rapidly. As a result, more packets

from non-responsive and TCP unfriendly flows are dropped at the bottleneck link. An arriving

packet is picked probabilistically based on the value of r/J. This packet is compared with a

randomly chosen packet from the buffer. If they have the same now ID, they are both dropped.

Otherwise the randomly chosen packet is kept in the buffer (in the same position as before) and

the an'iving packet is queued if the buffer is not full; otherwise it is dropped.

Figures 3.2 and 3.3 show the membership functions (MFl and MF2) that are used for fuzzifying

the variables ex and j3 respcctively. Figure 3.4 shows the membership function (MF3) used in the

defuzzification process in order to generate the change in packet marking/dropping

probability (}h .
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Figure 3.2: Membership Function (MFl) for the backlog factor
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The IS-dimensional parameter vector P that determines the membership functions and packet

marking probability variation is expressed as follows

(3.6)

The definition of these elements is presented as follows:

1. x
O
,x

l
,x

2
,x),x

4
are parameters for the backlog factor (a) membership function (MFI) as

shown in Figure 3.2.

2. x
5

' x
6

' x
7

' xo' xr) are parameters for the packet arrival (f3 ) rate membership function (MF2)

as shown in Figure 3.3.

3. x
lO

' XII' X
12

, X
13

, X 14 , XIS are parameters for the change in packet marking probability

(t.p" ) membership function (MF3) as shown in Figure 3.4.

4. X
16

,X
17

denote the maximum negative and positive variations (!lP,,,'g and M,,,,,) of the

change in packet marking probability. The output from the defuzzification process

which falls in the range [0,1.0] is scaled to[t.P,ll'g't.PI'Os]·

Parameters for individual membership functions must always be sorted in ascending order. For

instance, for MFI the following

(3.7)

must always be true. The same applies la MF2 and MF3. The elements 111 equalion (3.6) are

determined in Section 3.3.

3.3 MOPSO in FLeD Parameter Optimization

An evaluation framework lBRH03] for AQM schemes outlines link utilization, packet loss rate,

delay, jitter and fairness as the main metrics for evaluating AQM schemes. These mctrics are, in

most cases, conflicting and non-commensurable. For instance, when link utilization is high, the

packet loss rate also becomes high because the buffer is generally full. A comparative study

[BRH04] of AQM schemes that were proposed between 1999 and 2003 further reveals that these

schemes perform well for a particular metric and poorly for another. For example, the CHOKe

algorithm [PPPOO] provides much better fairness but fails to keep link utilization high. Although

GREEN [BZ02] maintains a very low queuing delay its behaviour is closest to the Drop-tail,

except that the queue is generally empty or small one while the Drop-tail queue is always full.
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These observations motivated us to model IF congestion detection as a multi-objective (MO)

problem. We use the Multi-objective Particle Swam Optimization in order to achieve optimal

performance on all the major mctrics of IP congestion control.

3.3.1 Basics of Multi-objective Optimization

LetS eRN be an N-dimcnsional search space and

fi(x): Se RN -7 R, i = l, ... ,k, be k objective functions defined over S. Therefore, a general MO

problem can be defined in the following format [COE99] [ZIT99]:

Optimize f (x) = [fl (x),.t~ (x), ... ,fk Cr)r:f :R,v -7 Rk

subjectto gj(x)~Oforj=I,.. ,p

and hj(x)=Oforj=p+I, .. ,m

(3.8)

(3.9)

(3.10)

wherex=(x"x2 , ... ,xn )ES, gj(x) and hj(x) are the equality and inequality constraints

respectively.

As already mentioned, the objective solutions are generally competing and non-commensurable

such that it is impossible to obtain the global optimum at the same point for all the objectives.

The goal of MO is to provide a set of Pareto optimal solutions to the aforementioned problem.

Pareto dominance and oprimality are defined as follows [ZLT99]:

Definition 1 (Pareto Dominance): A given vectorx=(x l 'x2 ,x,)is said to dominate

x' = (XI ',x2 ', ... , XII ') if and only if'1i E {l, 2, ... ,11} ,Xi ~ Xi ' and 3i E {l, 2, ,11 },Xi < Xi '.This propcrty

is used to define Pareto optimal points.

Definition 2 (Pareto Optimality): For a general MO problem, a given solution f (x) E F (where

F is the feasible solution space) is Parero Optimal if and only if there is no f(X')E F that

dominatesf(x). The set of all Pareto optimal solutions of an MO problem is called a Pareto

optimal set and it is denoted as P * .

Definition 3 (Pareto Front): The setPF*={(fI(x),j~(x),... ,fk(x)lxEP*}.A Pareto front

PF * is called convex if and only if there exists X"E PF"'. such that

)"lIxll+(I-).)llx'll ~ Ilx"ll,
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and it is called concave if and only if there exists X"E PF *, such that

.-tllxll+(1-.-t)llx'll ::; Ilx"ll, 'ifx,x'E PF*, 'if.-tE (0,1) (3.12)

A Pareto front can be convex, concave or partially convex and/or concave and/or discontinuous.

The last three cases present the greatest difficulty for most MO techniques.

3.3.2 MOPSO Theory

MultiObjective Particle Swarm Optimization (MOPSO) is a special case of the Particle Swarm

Optimization (PSO) algorithm that is specifically tailored for problems with multiple objectives.

PSO is a relatively new population-based stochastic algorithm introduced by Kennedy and

Eberhart [KE95]. Like Ant Colony optimization (ACO), it belongs to the category of Swarm

Intelligence methods, which are inspired from the social dynamics and the emergent behavior that

arise in socially organized colonies [BDT99] [KE95].Like other evolutionary computation

techniques such as Genetic Algorithms (GA) [BF92], PSO is initialized with a population of

random solutions known as a swarm which evol ve by updating the generations until an optimal

solution or a termination criteria is reached. However, unlike GA, PSO has no evolution operators

such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the

problem space by following the cunent optimum particles. Compared with genetic algorithms

(GAs), the information sharing mechanism in PSO is significantly different. In GAs,

chromosomes share information with each other. So the whole population moves like one group

to\.vards an optimal area. In PSO, only the global best value, gBest (or IBest) is shared amongst

the particles. The evolution only looks for the best solution. Compared with GA, all the particles

tend to converge to the best solution much faster.

A particle moves at an adaptable velocity within the search space and retains a memory of the

best position it ever encountered. A particle's movement vector is dynamically adjusted

according to its own and others' expenences. Assume a D-dimensional search

space f :Se st /) -7 R and a swarm § ={X l' X 2 , ... , X N ) of N particles. The i-th particle X; E § is

in effect a D-dimensional vector Xi = (XiO ' X,i' ... , Xi(f)-i)) . The velocity of the particle Vi E S and the

best previous posirion encountered by the particle P; E § are also both D-dimensional vectors

expressed as V, =(V'O,Vi1,,,,,Vi(J)_I)) and P; =(P,O,Pil,,,,,P,(D-J)) respectively. AssumeP~, to be
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the global best position among all particles in the neighborhood of the i-th particle, and t to be

the iteration counter, and then the swarm velocity equation is as follows:

(3.13)

where i = I, ... ,N , Cl and c2 are constants denoting cognitive and social parameters respectively.

In [KE95]The values of Cl and c2 are chosen in the range [0.5, 2.5] . They are applied in order to

include the i.ntluence of the particle's previous best position P; (I) and the best position ?!:i (r)

among all panicles in the neighborhood of the i-th particle respectively. Parameters 'j and r2 are

random numbers uniformly distributed within [0, I]. Parameter (jJ known as the inertia weight

helps to dampen the velocities of the particles and to assist in the convergence to the optimum

point at the end of the optimization iteration.

The first part in (3.11), known as the inertia component, is the current velocity of the partic!c

providing momentum for the particle to move at the same speed. The second part, known as the

cognitive component, represents the thinking of an individual particle. It accelerates the particle

towards its own best position. The last part known as the social part accelerates the particle

towards the best position of all particles in order to converge to the global optimum value.

Kennedy [KE97] further defined the arbitrary parameter \/,,, = (1'1111,1'1112"'" Vmn ) E § to be the

upper limit of the velocity. Whenever, a vector e!cment exceeds the corresponding element of V", '

that element is reset to its upper limit. The position of each particle is updated at each iteration by

using

(3.14)

For the basic PSO (single objective case), one Objective function is evaluated after every

generation update until an optimal solution or a termination criterion is reached. Its high speed of

convergence and its relative simplicity has made PSO a highly viable candidate for solving not

only single objective functions but also multiobjective optimization problems. Recently, a

plethora of MOPSO algorithms has been reported in literature [FTE04] [PC04] [COE04]. These

algorithms exhibit better performance characteristics compared to the traditional multiobjeclive

evolutionary algorithms (MOEAs) such as the Pareto Archived Evolution Strategy (PAES)

[KCOO] and the Nondominated Sorting Genetic Algorithm Il (NSGAIJ) lDAP02].
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3.3.3 Problem Formulation

The formulation of the IP congestion control problem requires two stages: the development of

objecti ve functions and the determination of the constraints for the optimization process.

3.3.3.1 Development of Objective Functions

Objective functions are developed based on the following metrics: link utilization, packet loss

rate, delay and jitter. The fairness metric is not included in this process partly because it has been

addressed in section 3.2 and partly because the evaluation of fairness is more computationally

intensive compared to the other metrics. Therefore, the four objective functions are derived as

follows:

Maximizing Link Utilization (V)

Let R be the total number of packets that have successfully traversed the bottleneck link during

simulation time T ; let b be the packet size in bytes; Jet C denote the network capacity in bytes

per second. The link utilization u is:

u =!!.!!...
CT

(3.15)

Since MO problems are generally solved by minimizing the objective functions, the link

utilization objective function F
I
is presented as a reciprocal of link utilization

F = CT
I Rb

(3.16)

Minimizing Packet Drop Rate (PDR)

Let R' be the total number of packets received at vanous destination nodes, and d the total

number of packets dropped during simulation time T .The packet drop rate objective function F
2

is determined as follo,vs

d
F2 =­

R'
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Minimizing Average Delay

Average delay is a function of the average queue size. Let qUI denote average queue size.

Assuming that a total ofNsamples Q"q2, ... ,q,v of queue size are taken over the simulation

time T , then the average delay objecti ve function F) is found as follows

(3.18 )

Minimizing Average litter

This strives to minimize the end-ta-end delay variation experienced by the packets. litter causes

unfairness in average transfer delay which affects intelligibility in real-time traffic. The average

jittcr objective function F4 is found as follows

3.3.3.2 Constraints

N

L)qj _QC/l.)2
F = -,-i~=c.I _

4 N-1
(3.19)

• Most congestion detection algorithms exhibit typically very high link utilization.

Therefore, we limit the link utilization U as follows

U > 0.95 (3.20)

• Most congestion detection algorithms exhibit very low packet drop rates utilization.

Therefore, we limit the packct drop rate PDR as follows

PDR<0.15

3.3.3.3 Problem Statement

The congcstion detection MO problem can therefore bc stated as follows:

min [F; ,F2 , F) , F4 ]

subject to the constraints in (3.20) and (3.21).
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3.3.4 MOPSO Implementation and Optimization Results

3.3.4.1 The Optimization Process

This process is motivated by the work in [PHS05] where a basic PSO is used in order to optirnize

a rule-based system. In our multiobjective approach, the Adaptive MOPSO (AMOPSO)

algorithm, proposed by Pulido and Coello [PC04], is used in order to optimize the membership

function parameters defined in (3.6) and referred to as a particle in this section and beyond. The

AMOPSO algorithm divides the population of particles into several swarms (each with a fixed

size). Each swarm over-flies a specific region of the Pareto optimal set (i.e. the decision variable

space), and has its own niche of particles and a swarm of particle guides known leaders. The

hierarchical single clustering algorithm is used to associate leaders to a swarm. A particle

randomly chooses a leader from the corresponding swarm of leaders. The AMOPSO algorithm

was validated by using three standard test functions which are cun'ently adopted in the

evolutionary multiobjective optimization community. Its performance was compared with the

Nondominated Sorting Genetic Algorithm II (NSGAII) [DAP02], the Pareto Archived Evolution

Strategy (PAES) [KCOO] and the MOPSO algorithm proposed in [COE04]. Results in [PC04]

show that the AMOPSO algorithm generates significantly improved Pareto fronts when compared

to the other algorithms. Quantitative assessment based on Error ratio (ER), Generational Distance

(GD) and Spacing as performance metrics also sho\vs that the AMOPSO algorithm shows that the

average performance of the AMOPSO algorithm is generally good.

In order to solve the IF congestion problem, the IS-dimensional decision variable space is defined

as follows:

I. ParametersxO,x1,,,,,xI5 in (0.0,1.0).

2. Parameter x'6 in [-0.0005,0.0).

3. Parameter X l7 in (0.0,0.0005].

The range for parameters x16 and );\7 must be small in order to avoid drastic changes 111 tbe

congestion notification. The computational flow of the optimization process is as follows:
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function AMOPSO Algorithm

BEGIN

For each swarm

1. Initialize randomly the velocity and position of np(ml<le< particles and maintain the

particles within the search space.

2. Run the FLCD script using the initialized particle positions.

3. Evaluate the four objective functions (See Section 3.3) based on the results from the

FLCD script.

4. Initialize gleader set (i.e. the set of global leaders)

ENDFor

DO

For each swarm

DO

For each particle

5. Select a leader

6. Perform flight

7. Update values [or velocity and position using equations (3.13) and (3.14).

8. Run the FLeD script using the updated particle positions.

9 Evaluate the four objeclive functions based on the result$ from Step 8.

If it is a leader then add to gleader set

ElldFor

While maximum number of internal iterations sgmox is not reached

10. Store leaders in gleader set in 11.'"1/1"1/1.\"

EndFor

11. Assign each leader group to a swarm

While maximum number of iterations GMax is not reached.

END

The AMOPSO algorithm requires the following parameters:

• GMax: it refers to the maximum number of generations that the algorithm will be

executed.

• nl'l/lIide, : it refers to the total number of particles that will be over-flying the search space.
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• n"",r"" : it refers to the number of particle groups.

• sgmax: it refers to the maximum number of internal generations that the particles of each

swarm will run before sharing their leaders.

The complete execution process of the AMOPSO algorithm is divided in three stages:

initialization, flight and generation of results. At first, every swarm is initialized. Each swarm

creates and randomly initializes its own particles within the decision variable described in the

earlier stage of this section. The particle elements are then sorted in ascending order for each

membership function as per equation (3.7). For each swarm, the FLCD algorithm is evaluated

using the initialized particle positions. Details of the FLCD script which invokes the FLCD

algorithm are presented in next section. The four objecti ve function values are evaluated for each

particle based on the results from the FLCD script. A set of leaders among the particle swarm set

is generated based on Pareto ranking subject to the constraints in (3.20) and (3.21). Next, the

algorithm executes the flight of every swann; then it performs the clustering algorithm to group

the particles. This is performed until GMax iterations are reached. The execution of the flight of

each swarm can be seen as an entire PSO process (with the difference that it only optimizes a

specific region of search space). First, each particle selects a leader from the swarm of leaders

associated with it. The particle's velocity and position arc updated in the direction of the selected

leader. The particle elements are then sorted in ascending order for each membership function as

per equation (3.7).Then the FLCD algorithm is evaluated using the new particle position. The

four objective functions are evaluated. If the updated particle satisfies the constraints in (3.20)

and (3.21) and is not dominated by any member of the leaders set, it becomes a new leader. The

execution of the swarm starts again until a total ofsgmax iterations are reached. Once all the

swarms have finished their flights, a clustering algorithm is in voked in order to group the closest

particle guides into 11"'(Irm.1 swarms. These particle guides will try to outperform each swam in the

next iteration. The third and final stage reports all nondorninatcd solutions found.

3.3.4.2 Implementation of the FLCD Script

The FLCD script is implemented on the Network Simulator (NS-2.28). Figure 3.5 shows the

network topology on which it is implemented. The bottleneck bandwidth is 10Mbps with a

propagation delay of 40ms. The buffer is set to 90 packets. All the other links have IOOMbps
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capacity with 2ms propagation delay. Traffic flow is from Routerl to Router2. The FLCD

algorithm is activated on the bottleneck link between Routerl and Router2. All simulations use

NS-2.28's NewReno TCP variant with an initial congestion window cl1:nd of 3 segments (per

[AFP02]), a Maximum Segment Size (MSS) of 1500 bytes and the receiver acknowledging each

segment. Packet-based ECN marking is used. The optimization script runs for 100 seconds. 60

persistent FTP flows start randomly in the interval [Os-Ss] while 10 UDP traffic flows are

activated in the following intervals, [20s-30s] and [80s-90s].

S( 1)
IOOMbps
2 InS

100Mbps
2 rns

10Mbps
f-------1 Rouler2

40ms

R(l)

S(n)

DircClion of traffic flow

Figure 3.5: Network Topology

R(n)

3.3.4.3 Parameters for the Optimization process

The C++ source code of the AMOPSO algorithm was down loaded from the EMOO repository

located at: blLjJ://\v\Vw.lania.mx/-ccoello/EMOO. After customizing it to the congestion MO

problem, it was compiled using Fedora Core2's GNU C compiler running on a Dell Optiplex

GX280 PC with the following system characteristics: A CPU frequency of 3.00GHz and a RAM

of J .OOGB. Since the FLCD script is implemented on the Network Simulator, the exchange of

parameters between the FLCD script and the AMOPSO algorithm was done by using text files. A

single optimization run was used because of two reasons:

• The AMOPSO algorithm has alxeady been extensively validated against some of the

state-of-the-art algorithms. Therefore, we have nothing prove about its viability. We

rather concentrate on the task of ensuring that the decision variable space is thoroughly

searched by employing a larger number of generations GMax . The choice of a large
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GMax is also partly intluenced by the fact that there exists no knowledge of the true

Pareto front for the problem at hand. Except for GMax , we use the same parameters as in

[PULOS].Other application specific implementations of MOEAs have used a single

optimization run as evidenced by the work of Zhao and Cao [ZCOS] and Rivas-Davalos

and Irving [RIOS].

• The implementation of multiple independent optimization runs would be computationally

expensive considering the fact that the AMOPSO algorithm periodically invokes the

FLCD script, which runs under the NS simulator, in order to evaluate the four objective

functions. We therefore stick to a single optimization run with a large GMax .

Except forGMax all the parameters for the optimization process were set as ID [PULOS].The

settings are as follows: n{'allicles =40, GMax =80, sgmax =5 and Ils ll'rmns =8 .These values were

empirically derived in [PUL05]. A GMax of 80 denotes 16000 fitness function evaluations. The

AMOPSO algorithm produces very competitive results using only 2000 fitness function

evaluations. Therefore by using 16000 fitness function evaluations, a closer and better picture of

the true Pareto Front would be found. Since the optimization results are non-reproducible, the use

of more fitness function evaluations enhances the likelihood of getting similar results on different

runs. We following parameters for the FLCD algOlithm: IVI '= 0.9, r,,, =5.0 and P'llIcsh =0.15 .

3.3.4.4 Optimization Results

The optimization process generated 120 non-dominated solutions. The true Pareto front for this

problem is a spread of solutions in the 4D space depicting the four objective functions. Since the

graphical presentation of such a spread of solutions is practically difficult, we present four views

of the generated Pareto front in 3D using Figure 3.6 - Figure 3.9.
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Figure 3.9: Queue Length versus Queue
Variance versus Loss Rate

Figure 3.6 shows that link utilization increases as queuc length increases. This lcads to large

queuing delays and packet loss rates. Figure 3.7 shows that queue variance is low when link

utilization and queue length are high. This leads to low jitter for interactive applications. A major

setback of this good attribute is, however, that it comes at the expense of delay which increases as

queue length increases. The spread of particles in Figures 3.8 and 3.9 is quite similar. The only

difference between the two plots is on the X-axis. The X-axis variable is link utilization for

Figure 3.8 while it is queue length for Figure 3.9. The Y-axis and Z-axis variables are queue

variance and loss rate respectively in both cases. The similarity in the spread of particles further

confirms the fact that increasing link utilization comes at a cost of increased link delay.
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3.3.4.5 Best Compromise Solution

In order to implement a practical FLCD algorithm, there is a need to obtain the best compromise

solution from the set of Pareto optimal solutions. In order to do this, a Fuzzy inference algorithm

[ZCOS] is employed. A simple linear membership function is considered for each of the objective

functions in the inference process. Let F;mill and F;m" denote minimum and maximum values

for the /' objective function for tbe entire set of Pareto Optimal solutions (120 in this case). Let

F; and wj E (0, lJ respectively denote the value and the weight of the i '" objective function for

the solution at hand. The membership function u j is defined as follows:

W *(F"ll
" - F)u. = I I I

I F.m:1x _ F. l11in
1 I

(3.23)

Figure 3.10 illustrates the typical shape of the membership function. The membership function

rcpresents the degree of achievement of the original objective as a value between 0 and I-\'j with

Uj =wj as completely satisfactory and uj =0 as completely unsatisfactory.

11

H'

O.O'=F-··-·---------------~F-.'.--.----.F

Figure 3.10: Objective Membership 1J1ference function

We introduce a simple algorithm which configures the thresholds F;mill and F;max automatically

prior to the Fuzzy inference algorithm. This algorithm parses tbe set of Pareto optimal solutions
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in order to obtain the minimum and maximum thresholds F/"nand F,max . For each non-dominated

solution k , the normalized membership function ~/ is calculated as

Noh;

,,",k
L.. u,

k i=1
U =--­

M No;"

L2:>;
k=1 i=1

(3.24)

where M is the number of non-dominated solutions, and N"hJ is the number of objective functions.

The solution that attains the highest membership uk in the fuzzy set is chosen as the best

compromise solution.

Let Hit denote the weight for link utilization, w2 denote the weight for the loss rate, W 1 for delay

and \1'4 for the jitter. In this implementation, the link utilization is deemed to be the most

important, seconded by the loss rate objective because these objectives are necessary for al1 types

of traffic. The jitter and delay objectives are least significant because they are generally tailored

for real-time (UDP) traffic which accounts for (22±1l) % packet composition of internet traffic.

Therefore, we employ the fol1owing weighting mechanism:

When the Fuzzy Inference algorithm is applied to the Pareto set of optimal solutions the

dimensions of the best compromise solution obtained are as fol1ows:

P = [0.01. 0.02, 0.03, 0.04, 029, 0.95, 0.96. 0.97.0.98,0.99,

0.01.0.02.0.03.0.34.0.6 L0.64. -0.0005. 0.0005]

(3.25)

(3.26)

These parameters are used in configuring the membership functions of the practical FLCD

algorithm.

3.4 Simulation Results and Performance Analysis in Best effort JP Networks

After obtaining the optimal membership functions. three experiments are conducted in order to

compare the optimized FLCD with the basic Fuzzy AQM [FYX02] and the Random Explicit

Marking (REM) [ALLYO 1] algorithms based on the five metrics for network performance

evaluation as proposed in [BRH03]. These metrics are given in Appendix A. We use the same
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network topology (Figure 3.5) and simulation platform (NS-2.8). Next, we describe three

experiments and the observed results.

3.4.1 Experiment 1: Congestion Control with Packet Dropping

In this experiment, we compare the pelformance of the MOPSO FLCD algorithm against REM,

basic Fuzzy AQM and the Drop-tail mechanism. ECN is disabled in all the four cases such that

congestion notification is done through packet dropping. We simulate 80 persistent FTP flows,

competing for bottleneck link. 10 UDP flows are introduced in the following intervals [20s-30s]

and [100s-110s]. The FTP flows start randomly within the first 5s and they run up to the end of

the simulation. The simulation runs for 150s. The buffer size was set at 90. In addition to the

three schemes, we also simulated a simple drop-tail buffer and used it as a baseline for

performance comparison. Table 3.2 shows the packet loss rate, link utilization, average queue

length, standard deviation of the queue length and fairness for the four schemes.

Table 3.2: Comparison of AQM schemes with Packet Dropping

AQM Loss Rate Link Utilization Average Queue Fairness

Queue Variance (%)

Length (packets)

I (packets)

Drop-tail 22.26% 99.65 78.14 124.36 88.96

REM 22.66% 95.07 40.07 1101.09 97.19

Basic Fuzzy 20.64% 96.48 44.65 743.44 97.14

I MOPSO FLCD 18.31% I 98.52 J52.38 1665.61 I 98.0 ~,

From Table 3.2, we see that the congestion control algorithms do not offer much help in reducing

the packet loss rate compared to the drop-tail mechanism. The MOPSO FLCD algorithm,

however, manages to achieve the lowest packet rate and fairness. The drop-tail mechanism

registers the highest link utilization but at cost of high average queue length. This will result in

network latency. REM exhibits low average queue length but at a cost of link utilization and

queue instability as portrayed by the queue variance. The MOPSO FLeD algorithm generally

outperforms the other algorithms in that it achieves the lowest loss rate, high link utilization and

moderate values for average queue length, queue variation and fairness.
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Since ECN marking is believed to be a better choice for congestion notification in TCP

connections, wc will only study the congestion control schemes in the rest of the simulations,

3.4.2 Experiment 2: Vary the congestion level at the bottleneck link

In this experiment, packet loss rate and link utilization are evaluated, Delay and jitter are

evaluated for the embedded UDP traffic, 30 web servers are connected to Router1 with a

corresponding number of web clients connected to Router2, We also attach 15 web clients to

Router! and 15 web servers to Router2 to provide background traffic on the return path, We

activate 5 web sessions on each client-server connection, The number of Frp Traffic flows from

Routerl to Router2 is varied by using 10, 20, 30,40,50,60,70,80,90 and 100 flows in order to

establish different levels of congestion, The FTP flows start randomly within the initial 5s of the

simulation while the web-traffic connections start within the first lOs, 10 UDP flows from Router

to Router2 are activated in the following intervals [20s-25s], [100s-ll0s] and [140s-150s],UDP

traffic rate is set at 1MbpsThe sirnulations run for 150s at every instance, Figure 3,11- Figure

3,14 show the results.

13,----,---.----,,------r---.--,------r---.---,

0-2o--ft"---tD-::':SO--:!6=-O----,7==-0--!:.SO--:!g=-o----,liCO
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, -t-REM

" -.," -"-e- BASICFUZlY

~•.~
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,
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Figure 3,11: Packet Loss Rate Figure 3.12: Link Utilization
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Figure 3.13: Delay for UDP traffic Figure 3.14: litter for UDP traffic

Fig.3.11 shows that the MOPSO FLCD algorithm has the lowest packet loss rate ranging from

2.392% to 9.083% while the basic Fuzzy algorithm comes second with a loss rate ranging from

2.409% to 11.07%. REM, with a loss rate ranging from 2.192% to 12.935%, competes fairly well

with the fuzzy approaches when the number of background ITP flows is less than 40 but as the

number of background ITP flows increases the REM control law fails to adjust to detect the

increasing congestion levels.

Fig.3.12 shows that the MOPSO FLCD algorithm exhibits the highest link utilization (96.716%

to 99.018%) when the number of ITP fJows is low. The basic Fuzzy algorithm (91.518% to

98.61%) and the REM algorithm (89.203% to 98.818%) come second and third respectively.

When the number of FTP flows exceeds 50, all the three mechanisms exhibit predominantly high

levels of link utilization.

Fig.3.13 shows the queuing delay link exhibited by the three algorithms as experienced by UDP

packets as they traverse the bottleneck. The average delays are as follows: J12.59ms for MOPSO

FLCD, 113ms for Basic Fuzzy and 113.048ms for REM. Although the MOPSO FLCD algorithm

slightly outperforms the other two algorithms, the performance on this metric is basically the

same.

Fig.3.14 shows that the MOPSO FLCD algorithm exhibits the least jitter with an overall average

of O.985ms. The basic Fuzzy algorithm comes second with an overall average value of 1.1975ms

while the REM algorithm comes third with an overall average value of 1.2735ms.
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3.4.3 Experiment 3: Vary the rate of UDr Traffic

In this experiment, we simulated 50 FTP flows, competing for bottleneck link. 20 UDP flows are

introduced in the following intervals [20s-30sJ and [100s-110s] while the FTP flows start

randomly within the first 20s and they run up to the end of the simulation. The simulation runs for

150s. UDP flow rate is varied by using OMbps, 1Mbps, 2Mbps up to 15 Mbps in order to

determine the Fairness metric as the data rate of unresponsive flows increases. Figure 3.15 shows

the performance of the three algorithms as UDP traffic rate increases.
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Figure 3.15: Fairness

Figure 3.15 shows that all three mechanisms exhibit very high levels of fairness when UDP traffic

rale is low. The situation changes as UDP traffic rate increases. The MOPSO FLCD algorithm

maintains a fairly high level of fairness as UDP traffic rate increases while the level of fairness in

REM and Basic Fuzzy algorithms decreases exponentially. The MOPSO FLCD algorithm

exhibits the highest fairness wilh an average of 66.155%. The Basic Fuzzy algorithm (49.97%)

and REM (45.97%) come second and third respectively. Beside the effect of the optimization

process, the MOPSO FLCD algorithm achieves a high fairness level courtesy of the embedded

CHOKe algorithm. Apart from ensuring that TCP flows are guaranteed a fair share of the

bottleneck link in light of unresponsive flows, the MOPSO FLCD algorithm is also a good tool

for averting Denial of Service (DoS) attacks and routing loops.

62



Chapler 3 . Fuzzy Logic Congestion Detection Algorithm Design using MOPSO

3.5 FLCD in Proportional Differentiated Services (PropDiffServ) IP Networks

The superior performance of the MOPSO FLCD algorithm in best effort IP networks gave us the

impetus to implement it in the PropDiffServ IP network environment.

3.5.1 Implementation

The implementation of the MOPSO FLCD congestion detection mechanism in the Prop-DiffServ

is shown in Figure 3.16. The number of service classes is denoted by IV .When packet arrives at

the Prop-DiffServ link it is enqued into a particular queue based on its class. Each queue is

managed by a separate FLCD algorithm. Therefore, each queue (class) is treated as a FIFO buffer

just like in the best-effort FLCD algorithm.

Class I
FLeD I L._-,---

Enqueuc

" ·1~ -J

Class N
FLCDN

Dequcuc

Figure 3.16: Fuzzy Logic Congestion Detection in the PropDiffServ Network

The Weighted Fair Queuing (WFQ) is used as the scheduling mechanism in the dequcuing

routine. The WFQ algorithm is parameterized by a weight vector IV where H~ is the proportion of

capacity class i when there are packets available for transmission for all classes. This ensures that

the performance of the low priority queues is guaranteed. The constraints for the weights are

and

~ >0 (3.27)

(3.28)

Recently, Joutsensalo et al. [JHP03] have proposed an adaptive weighted fair queue based

algorithm for channel allocation. The weights are adapted by using revenue as a target function.

We have used this version of WFQ along with the FLeD algorithm. The None] DiCfServ
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implementation in NS-2.28 does not employ the WFQ scheduling algorithm. Therefore, we had to

down load the C++ source codes for the WFQ algorithm from !.!l.!lYllwww.cc.jvuJi/-saycnkll£sI:...cL

and patch them to the DiffServ codes in NS-2.28. The pseudo codes for the PropDiffServ FLCD

algorithm and the PropDiffServ enque and deque routines are shown in Figure 3.17 and Figure

3. I8 respectively.

Every T seconds:
forCi = l;i + +;i:S; N){

II Computing the packet marking probability for queue i

Evaluate (X(i) and j3(i):

Evaluate 6.Pb/(t);

Pbi (t) ~ 6.Pbl (t - r) + !1Pbi (t);

}

Parameters for queue i:

(XCi) = backlog factor, j3Ci) = packet ani vat factor,

6.p/J/(t) = change in packet marking probability at time t,

Pln(t) = packet marking probability at time t.

Figure 3.17: FLCD algorithm in PropDiffServ IP scenario
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Enque:

for every incoming packet(

Extract the codepoint from the packet's header;

Extract queue k (from the PropDiffserv Table) that matches packet's codepoint;

if (queue k is full) Drop incoming packet;

else (

Generate random number RE [0,] .0];

if (R < P/'k) Mark the Congestion Experienced (CE) bit;

Enque tbe packet in queue k;

J
J

Deque:

WFQ selects queue k to deque based on Weight vector W;

Deque fore packet from queue k;

where k =1,2, ... ,N;N =number of traffic classes (queues);

Pbk = packet marking probability for queue k.

Figure 3.18: PropDiffServ Enque and Deque Routines

3.5.2 Simulation Results and Performance Analysis

In this Section. we compare the performance of the PropDilIServ version of the MOPSO FLeD

algorithm with the WRED algorithm. Figure 3.19 shows the PropDiffServ simulation topology.

We use the same WFQ scheduleI' [JHP03] in both cases. We simulate both schemes using the

Network Simulalor (NS-2.28). A four-class PropDiffServ mechanism is implemented on the

rouler. Class k is composed of traffic from source S(k), where k = l. 2,3. 4. The traffic sources are

connected 10 the router through 100 Mbps, 2ms deJay links. Traffic flow is from sources S(1). S

(2),5(3) and 5(4) through the router to the Destination. The router is connected to the Destination

through a 10 Mbps, 40ms delay link. The buffer size is set to 50 for each queue. ECN marking is

employed for all TCP flows. Two experiments are conducted in our simulations.
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Figure 3.19: PropDiffServ Network Topology

3.5.2.1 Experiment 4: TCP Traffic Simulation

The aim of this experiment is to compare the packet loss rate, buffer occupancy and link

utilization metrics of the FLCD algorithm with that of the WRED algorithm when traffic in all

classes is generated by TCP sources. The simulation time for each scenario is 200sec.The

simulation metrics for this experiment are presented in Table 3.3.

Table 3.3: Parameters for TCP Traffic Simulation

I Class
I

W I Sources Start 1Stop I
1 8/;5 I

I 1 125 TCP 0 120 I
2 4/15 50Tep 20 140 I

I
3 2/15 50TCP 40 160 I

1

4 125 Tep
i I

! 1/15 60 200 I
J

Table 3.4 shows the Packet loss rale and the link ulilization melIics for the two algorithms.

Table 3.4: Performance Results for TCP Traffic simulation

Metric FLCD WRED :
Packet loss rate 0.95% 2.73%

:
Link utilization 95.655% 94.956% :
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Table 3.4 shows that the FLeD algorithm reduces the packet loss rate by 65% while link

utilization remains virtually the same in both cases. Traditionally, packet loss rate increases as

link utilization increases. Any attempt to reduce packet loss rate results in drastic drops in link

utilization. The situation is different in the FLCD algorithm because it is optimized to offer

optimal performance on all the major metrics of IP congestion control.

Figure 3.20 and Figure 3.21 show the aggregate backlog for the FLCD algorithm and the WRED

algorithm respectively.
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Figure 3.20: Backlog for the FLCD algorithm
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Figure 3.21: Backlog for the WRED algorithm

The average values of backlog are 59.5 for FLCD and 79.04 for WRED. This implies that the

buffer size requirement in the FLCD algorithm is lower than in the WRED algorithm. The other
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implication is that the queuing delay incurred by packets in the FLCD algorithm would be lower

than in the WRED approach. This characteristic is very important for real-time traffic.

3.5.2.2 Experiment 5: Real Time Traffic Simulation

The aim of this experiment is to compare the performance of the FLCD algorithm with that of the

WRED algorithm when one class carries higher priority video traffic while the rest of the classes

carry TCP traffic of the same priority.NS-2.28' s Constant Bit Rate (CBR) traffic generator is used

in order to generate video traffic which is sent at a rate of 128Kbytes/sec. This traffic

configuration has also been used in [MNT04]. All the traffic flows start at Osec and stop at

200sec. The other simulation parameters are presented in Table 3.5. Figure 3.22 and Figurc 3.23

show the results.

Table 3.5: Parameters for Real-time Traffic Simulation

Class W . Sources
I I

1 0.4 5,10,15, ... ,35 CBR UDP

2
,

0.2 40FTP
i

3 0.2 40 FTP I:

4 0.2 40 FTP

j
3S3015 20 25

t.Ju~.mER OF REALTI~.1E FLOWS

- , -

10

loor
80

::15---;';'0;----;';'5,.---:!:do;----:!:ds,.---:!:3'O,.------,J35
NUMBER OF REALnr.~E FLOWS

180

Figure 3.22: Average Delay for Real-time
traffic

Figure 3.23: Average litter for Real-time
traffic

Figure 3.22 shows that the FLeD algorithm exhibits a lower average delay. It's average delay is

virtually constant when the number of real-time traffic flows is 20 or less. It however exhibits an
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exponential decrease in delay as the number of flows increases beyond 20. It finally saturates

around 55ms which is just 15ms higher than the link propagation delay (40ms). The overall

average delay in the FLCD algorithm is 92.59ms. The WRED algorithm is unstable when the

number of real-time traffic sources is low. Its average delay is 112.28ms for 5 real-time flows. ]t

then shoots to an overall high of 159ms for 10 real-time flows before stabilizing as the number of

real-time flows increases. WRED registers an overall average delay of l35.25ms.The exponential

decrease in average delay in the FLCD algorithm is attributed to the fact that this algorithm

becomes more aggressive in dropping real-time packets as their arrival rate increases. This helps

to minimize queuing delay for the packets that have been enqueued successfully. This

characteristic is very important for real-time traffic because this type of traffic operates within

stringent time delays. If the arrival of a packet at the destination node is outside its time delay

threshold, that packet is just dropped. Therefore, dropping packets aggressively as their arrival

rate increases helps to get rid of useless late packets from the network.

Figure 3.23 shows that the WRED algorithm exhibits a lower jitter when the number of real-time

flows is low i.e. 5 and 10. This advantage is however offset by the huge delay as shown in Figure

3.22. As the amount of real-time traffic increases, we observe that the FLCD algorithm

outperforms the WRED algorithm. The overall average jitter is 5.57ms for FLCD and 8.112ms

for WRED. This means that the intelligibility of real-time traffic is higher in the FLCD algorithm.

3.6 Chapter Summary

In this Chapter, we have developed a Fuzzy Congestion Detection algorithm by fusing the

strengths of some of the traditional AQM schemes into the Fuzzy logic AQM framework. For

instance, we have extended the basic Fuzzy algorithm by incorporating the CHOKe algorithm in

order to address the issue of fairness which was not explicitly addressed in all the preceding fuzzy

logic AQM approaches. We then modeled the congestion control problem as a multi-objecti ve

(MO) problem and used MOPSO in the automatic design of membership functions for the Fuzzy

Logic Congestion Detection algorithm. The proposed algorithm addresses the major objectives of

AQM by oprimizing the membership functions of the input and output variables based on four

objective functions. These objective functions are derived based on the following requirements:

maximizing link utilization, minimizing loss rate, minimizing link delay and jitter. The

effectiveness of the proposed approach is proved on both best effort and PropDiffServ JP
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networks. In the best effort implementation, the performance of the proposed approach is

compared with the basic Fuzzy algorithm and the REM algorithm. Performance results show that

the proposed approach exhibits highest link utilization and fairness. It also exhibits the lowest

packet loss rates and UDP traffic jitter. Its performance in terms of UDP traffic deJay is similar to

REM and the basic Fuzzy algorithm. In the PropDiffServ implementation, the performance of the

proposed approach is compared with that of the WRED algorithm. Simulation results show that

the FLCD approach achieves higher link utilization, lower packet loss rate, jitter and delay. The

superior performance of the MOPSO FLCD is attributed to the effectiveness of the MOPSO

dynamics in producing the Pareto set of optimal solutions from which the best compromise

solution, which is used in the configuration of the FLCD algorithm, is drawn. The other striking

advantage of this algorithm, compared to the basic Fuzzy algorithm, is that it uses fewer fuzzy

sets leading to a smaller rule base and minimized memory requirements. Chapter 4 proposes a

mechanism for the online fine-tuning of the algorithm.
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Online Self Learning and Organization

4.1 Introduction

In this Chapter, we propose self-learning and organization structures for the FLCD algorithm

which has been proposed in Chapter 3. Although the FLCD algorithm exhibits good performance,

it is prone to poor performance in certain network conditions because its optimization process is

implemented oftline based on a single optimization script. This script can obviously not manage

to capture all the traffic dynamics, pattern variations and network topologies. Self-learning and

organization structures are therefore necessary in order to enable the FLCD algorithm to fine tune

itself in light of traffic variations, unrnodelled system dynamics and other external disturbances

without disrupting the structure of the optimized membership functions. In order to achieve this,

we introduce two concepts: an RTT based sampling mechanism and a self-learning and

adaptation mechanism. The RTT based sampling mechanism would enable the FLCD algorithm

to adjust its update interval in line with the prevailing link propagation delay. This would help to

improve the FLCD algorithm's performance with respect to TCP traffic transmissions which

depend on the value of RTT. The self-learning and adaptation mechanism learns the link

conditions and adjusts the fuzzy rule base periodically. This mechanism departs from the

classical approaches used in [WAN031, [ANN04] by using some concepts learnt from the state­

of-the-art algorithms [SBM02], [PRG04J that have been proposed for self-learning and adaptive

fuzzy logic controllers. The underlying principles of the self-learning and organization structures

are presented in Section 4.2. SimulatiJn results in dynamic traffic environments arc presented in

Section 4.3. Section 4.4 extends the Self-organized FLCD algorithm to Wireless Local Area
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Networks (WLANs) where the problem of congestion exists at the interface between the wired

and wireless networks due to the natural differences between these two types of networks. This

Chapter is summarized in Section 4.5.

4.2 Self-learning and Organization Structures

4.2.1 RTT Based Queue Sampling Mechanism

The motivation to implement an RTT based queue sampling mechanism stems from the fact that

the rate at which TCP injects packets into the network is largely dependent on RTT because TCP

is an acknowledgement based end-to-end algorithm. The FLCD algorithm is optimized at

sampling rate r of 0.0025 at a bottleneck link propagation delay D of O.04s.If this sampling rate is

used on links with shorter propagation delays, the incoming queue would be undersampled. This

situation would lead to higher loss rates due to buffer overflows because the traffic arrival rate is

high. On the other hand, if this sampling rate is used on links with longer propagation delays, the

incoming queues would be oversampled such that the packet arrival rate would always be very

low.The effect of this scenario is that the change in packet marking probability will always be

low because the contribution of the packet arrival factor Lo the fuzzy output value is always low.

The system will not be able to incre2,se the packet marking probability in times of congestion

such that it will easily degenerate into a drop-tail mechanism with large losses and

underutilization. Therefore, the sampling rate is modified based on the link propagation delay by

using a linear relationship as follows

r* D
r'=--

0.04

where r' and D denote the sampling rate and the propagation delay for the new link.

(4.1 )

The modification of the sampling rate necessitates the adjustment of the maximum packet arri val

rate rill from Chapter 3.The MOPSO optimization process uses a static value of 5.0 for this

parameter. In order to cater for dynamic situations while at the same time preserving all the

performance characteristics yielded by the optimization process, we use 5.0 as a startup value for

';" .If the weighted average packet arrival rate 1'(1) is greater than r;", r;" is adjusted by a weighting

procedure otherwise it remains unchanged. This process is illustrated in the following
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{

s.o
r;1I(/)== ~ *rm(/,-T')+(l-WI)*r(r)

r;n (t -"T)

1=0

r(r) > r;n (I - T')

r(t) < r,1I (t - T')

(4.2)

•

where ~ is the measuring weight just like in Chapter 3.

4.2.2 The Self-Learning and Adaptation Mechanism

This mechanism adjusts the FLCD algorithm in line with the prevailing system conditions. The

implementation of online adaptation and self-learning fuzzy systems is an active research area

[PM79], [SBM02], [PRF99],[PRG04].The general trend in these systems is that the rule

consequents and the membership functions defined in the premises of the fuzzy rules are tuned

using various algorithms based on the prevailing plant conditions. For instance the approach in

[PRG04] uses two control blocks: the Adaptation Block (A-Block) which is responsible for

adapting the consequents of the main controller's rules to minimize the elTor arising from the

plant output, and the Global Leaming Block (GL-Block) which compiles real input-output data

obtained from the plant. The A-Block is responsible for coarse tuning of the fuzzy rules in the

initial stages. As the process advances, the A-Block gives way to the GL-Block which fine-tunes

both the membership functions (premises) and the consequents.

In our approach, we use some concepts learnt from [SBM02], [PRG04]. We, however, only finc­

tune the rule consequcnts because of two reasons:

• The membership functions and parameters of the FLCD algorithm have already been

optimized offline in Chapter 3. With these membership functions and parameters, optimal

performance on all the major AQM objectives is guaranteed. Further tuning of

membership functions would disrupt their optimal parameter settings thereby defeating

the whole purpose of the proposal in Chapter 3. This is not the case with the proposal in

[PRG04] in which there is no model of the plant such that the controller's rules and

parameters defining it are optimizcd from a "void" fuzzy controller.

It has been reported in [ANN04] that the modification of membership functions uses a lot

of memory resources. This process would also take up more of the router's processing

time. Therefore, the performance of Internet routers could be adversely affected.
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The FLCD self-learning and adaptation mechanism is built on the principle of monotonicity

which is evident in [PM79], [SBM02], [PRF99],[PRG04].It evaluates the cunent state of the

plant and proposes the correction of the rules responsible for the existence of such a state, either

as a reward or a penalty. In [PRF99], (PRG04], this modification is proportional to the degree

with which the rule was activated in achieving the control output u(t - d) now being evaluated at

instant! .The system has to wait d iterations in order to evaluate u(t - d) .This calls for the

definition of a queue, with the depth given by the delay of the plant, where the degrees of

activation of the rules are stored. While such an arrangement works well in [PRF99], [PRG04], it

is not suitable for the FLCD algorithm. There are two reasons for this assertion. Firstly, the

implementation of a dynamic queue would not only consume the precious memory resources of

the router but it would also increase the processing overhead on Internet routers. This must be

minimized at all costs because the router's primary function is to route packets. Secondly, the

evaluation of plant delay in real time is a complex process because of the dynamics of Internet

traffic. In light of these observations, we use the weighted average degrees of activation in the

adaptation mechanism. If F'\R (t) denotes the adaptation parameter and j..L j (t) denotes the

weighted average degree of activation for rule j at instantt, then the proposed change in the

output scalar (hj (I) ) for rule j would be expressed as follows

(4.3)

The weighted average degree of activation for rule j is realized as follows

(4.4)

In real-time, the system must be stabie under different traffic patterns and network topologies.

Therefore, as proposed in [ANN04], the variation of queue length must play a role in the

adaptation mechanism. The system must also be capable of adjusting itself based on the observed

packet losses. It has been pointed out in (WAN03] that packet losses can show the degree of

congestion coarsely at least. Therefore, wc implement FAl/t) as a sum of the queue error

factor Qf (I) and the packet loss factor PI (I) i.e. F',4R (t) = QI (I) + PI (I) .We let these factors

contribute equally to FAIJ(t) such that

Q ( ) FAR(t)
-r t =Pr(t)=--. 2

The two parameters Qr(I) and PI (I) defining FAll (t) are discussed in the next subsections.
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4.2.2.1 Evaluation of the Queue Error Factor

Let Q(t) denote queue length at instant! .The queue variation at instantr with respect to Q"j is

expressed as follows

AQ(t) = Q(t) - Qcc} (4.6)

When I:.Q(t) > 0 , we know that the level of congestion is increasing hence the need to increase the

packet marking/dropping probability by adjusting the rule consequents in the positive direction.

As a result, TCP sources will reduce their sending rates while more UDP packets will be dropped.

When I:.Q(t) < 0, we know that the level of congestion level is abating hence the need to reduce

the packet marking/dropping probability by adjusting the rule consequents in the positive

direction. As a result, TCP sources wili increase their sending rates while less UDP packets will

be dropped thereby increasing the overall utilization of the link. Based on these concepts, the

queue error factor Q} (t) can be expressed as follows

l
c I:.Q(t)

I' SS

Q, (r) = Co. I:.Q(t)

k SS

I:.Q(t) < 0

I:.Q(r) > 0

(4.7)

where BS is the Buffer Size while Cl and C2 are constants for negative and positive adjustment

respectively.

Constants Cl and C2 are directly proportional to the maximum negative and positive variations

(!:.Pile}; and ~JOS) of the change in packet marking probability respectively. These relationships

are presented mathematically as follows

C2 =S2·M po"

where 51 and 52 denotes the negative and positi vc error scaling factors respecti vely.

(4.8)

(4.9)

If SI and 52 are too small, the resulting Qj (t) is also very small such that the contribution of the

adaptation mechanism is negligible. If SI and S2 are too big, the resulting Q
j

(t) would be too big

thereby driving the system into instability. By definition, both f.l)t) and b
j
(t) vary within the
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rangc[O.O,l.O].When,uj(t) =1.0, 6.bj (T) in equation (4.3) becomes equal toFAIJ(t). For stable

operation of the system, we limit the range of variation for 6.bj (t) to 8% of the maximum value

ofbj(t) .Therefore, the range of variation forQ[(t) can be limited to 4% because Qj(t) = FAB (t)/2

as given by equation (4.5). This implies that Q[ (t) would fall within the

range[-O.02,0.02).Typical values forQ rel would be between 0.25BS andO.75BS .To cater for

extreme cases, we fix Qre[ within the interval (0.0, BS). If Q,,} ~ BS ,6.Q(t) would fall in the

interval(-BS,O.O)whileQ[(t)is in the range[-0.02,0.O].Therefore, for an extreme negative

variation, we let6.Q[(t)=-BSandQr(t)=-0.02 in the negative component of equation

(4.7).This yields Cl as follows

Cl =0.02 (4.10)

The optimization process ll1 Chapter 3 defines -0.0005 as a value for !1P,1l.g. Substituting

Cl = 0.02 and IM::ll'g 1= 0.0005 into equation (4.8) yields the negative variation scaling factor as

follows

S\ =40.0 (4.11)

IrQ,rf ~O,6.Q(t) would fall in the interval (O.O,BS) whileQf(t) IS 111 the range

[0.0,0.025J .Therefore for an extreme positive variation, we let 6.Q[ (t) = BS and Q r (r) = 0.02 in

the positive component of equation (4.7).This yields C2 as follows

Cl = 002 (4.12)

The optimization process in Chapter 3 defines 0.0005 as a value for 6Ppos ' Substituting

Cl == 0.025 and M pv , == 0.0005 into equation (4.9) yields

52 = 40.0 (4.13)

The values for SI and S, are the same in this case because M =1 M Ibut cases would easi ly
- I'll.\" !le;:

arise from the optimization process whereby Mpu,:;tl M,,,g I .In such cases, the values of

51 and 52 would be different.
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4.2.2.2 Evaluation of the Packet Loss Factor

In contrast to the queue error factor which is proactive, this factor is a reactive one. It is based on

the notion that an increasing number of lost packets entails that congestion is increasing hence the

need to increase the packet marking probability. The evaluation of PI(t) is based on the weighted

packet loss rate pdr(l) which is evaluated after every T' seconds in keeping with the RTf based

sampling mechanism proposed earlier. This can be expressed as follows

pdr(t) = ndp(l)
n(t)

pdr(t) = CV:. *pdr(1 - n + (1- (VI) * pdr(l)

(4.14)

where ndp(t) and n(/) denote the number of dropped packets and the number of arrival packets

in the interval [(I - T'),l] respectively. pdr(t) denotes the actual packet drop ratio in the

interval [(t - T'),l] while (V2 is the measuring weight.

Let pdr"ulX and pdr,1lI1l denotc the maximum packet drop rate and the minimum packet drop rate.

When pdr(t) = pd';lli/l ' the rule consequents must remain static because the congestion level is

deemed to be within the proper limits. When pdr(t) ~ pdr,l1ax' we know that congestion is

becoming more severe hence the need to adjust the rule consequents in the positi ve direction

.This will increase the packet marking/dropping probability and as a result the amount of traffic

injected into the network will decrease. Based on these concepts, the packet loss factor P
f

(I) can

be expressed as follows

pdr(t) - pdr .
Pj(t)=C). /Jlln

Pdr - pdr .
/JIGX lIun

(4.15)

Constant C) is directly proportional to the maximum positive variations (t'1P1'os) of the change in

packet marking probability. This relationship is presented mathematically as follows

C3 = S'1"t'1Ppos

where S1 denotes the positive loss scaling factor.
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In equation (4.13), PI (t) falls within the range [0, Cl] because pdr(t) is restricted to

[ pdr . , pdr ] .The range of variation for t1b
J

(I) ,and consequently for FAB (t) , is limited to
mm max

8% of the maximum value ofbj(t) Therefore, the range of variation for PI(t) can be limited to

4% because PI(t) = FAFJ (t)12 (equation (4.5)). This imphes that PI(t) would fall within the

range [0.0,0.04] . Therefore

C3 =0.04 (4.17)

Substituting C3 = 0.04 and t1Ppos = 0.0005 into equation (4.16) yields

53 =80 (4.16)

The self-learning and adaptation architecture and algorithm are shown in Figure 4.1 and Figure
4.2 respectively.
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Figure 4.1: Self-learning and Adaptation Architecture
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Initialization:
r' ~ r* D/0.04

Every 1" seconds:
Evaluate QJ (t) :

if (l-.Q(r) < 0) Q r (r) f- C!.l-.Q(r)/ BS

else Qf(r) f- C2 ·l-.Q(t)/BS

Evaluate Pj (r) :

pet) f-C .(pdr(r)-pdr . )/pdr -pdr.
J 3 nun max mm

Evaluate FA/! (r) :

FAIJ(t) f-Qj(l)+PJ(t)

Evaluate l-.bj(r) and update hj(t) for rules 1,2, ... ,m:

for (j = 0;) < 111;) + +)(

fij(r) f- (VI *fi j (t-r')+(I-(()I)*fi/!)

Mj(l) f- I'j(t).FAB(r)

Generate b. (r) using the Fuzzy Inference Engine(FIE):
)

bj (!) f- FIE(a(l),j3(t»

b/t) ~ b/t) + M/I)

]

Evaluate Pb(t):

prod f- O.O;sum f- 0.0

for (j = 0;) < m;) ++){

prod f- prod +h j (t)"' fij (t)

SI/l1l f- SI./l1l + fi j (t)

l-.Pb (r) f- prod /sum

Pb(l) f-l-.p,,(r -r') +l-.p,,(l)

Figure 4.2: Self-learning and Adaptation Algorithm

4.3 Simulation Results in Dynamic JP environments

Two experiments were conducted on the NS-2.8 simulation platform in order to compare the

Self-Organized FLCD (Self-Org FLCD) algorithm with the basic Fuzzy AQM [FYX02], the

unorganized FLeD and the Adaptive RED CARED) [FGS01] algorithms. ARED is an adaptive

version of the basic RED [FJ93] algorithm against which proposals in [ANN04], [WAN03] are
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benchmarked. ARED is more stable than the basic RED algorithm. It has been pointed out in

[FGS01] that ARED is capable of restoring the average queue back la the target range within 10

seconds when traffic rate increases by ten times. The basic RED algorithm does not manage to

recover the average queue with such a sharp increase in traffic.

We use the following metrics: packet loss rate, link utilization, jiner, delay and link fairness.

These metrics are presented in the Appendix A. The reference queue length is set to 40% of the

full buffer size in all the three algorithms. All simulations use NS-2.28' s NewReno TCP variant

with an initial congestion window cwnd of 3 segments (per [AFP02J), a Maximum Segment Size

(MSS) of 1500 bytes and the receiver acknowledging each segment. The full buffer size is set to

90 packets. ECN marking is used. 30 web servers are connected to Router 1 with a corresponding

number of web clients connected to Router2. We also attach 15 web clients to Router! and 15

web servers to Router2 to provide background traffic on the return path. Simulations for these

experiments are implemented on the network topology in Figure4.3.

S(1 )

5(3)

o
S(II)

IOOMbrs

./2 InS

Direction or traffic f1uw

IUOMbps
'2 ms

~,
R(l)

R(n)

Figure 4.3: Network Topology

4.3.1 Experiment 1: Queue Evolution in Dynamic Traffic Environments

In this experiment, we compare the sensitivity of the four schemes when flows are introduced and

dropped dynamically during a simulation period of 500s. We simulate 50 FTP flows from

Routerl to Router2.These flows start randomly within the first Ss and remain active throughout

the simulation period. At time=120s, the number of FTP Haws from Router! to Router2 is 50. We

increase this number by 50 at each 1 second interval until the simulation time reaches 144
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seconds. Between 144seconds and 220 seconds, the number of FTP flows remains constant.

When time reaches 220 seconds the number of FTP flows is reduced by 50 at each I second

interval until time=244 seconds after which the number of FTP flows remains constant. 10 UDP

flows from Router 1 to Router2 are activated in the following intervals [120s-130s] and [350s­

370s]UDP traffic rate is set at 0.5Mbps. We activate 10 web sessions on each client-server

connection. Table 4.1 shows the queue evolution statistics for the four schemes. Fig. 4.4 shows

the queue length evolution dynamics for the four schemes.

Table 4.1: Queue Length Evolution Statistical results

I Metric I ARED Fuzzy(basic) FLCD SelfOrg-FLCD

Average Queue 161.6 . 40.915 38.814 I 36.74934
Length (Packets)
Queue variance 1363.348 596.7366~72 319.50838
(Packets)
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Figure 4.4: Queue Evolution for the four schemes
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Table 4.1 and Figure 4.4 show that the Self organized FLCD algorithm is more stable than the

other approaches. It really attempts to limit the length of the queue to 36 packets (40% of full

buffer size). The unorganized FLCD algorithm ranks second while the basic Fuzzy algorithm and

the ARED algorithm rank third and fourth respectively. Right from the onset, even without the

introduction of dynamic traffic, the ARED queue stabilizes at a much higher value. The TCP

traffic intlow during slow-start completely overwhelms it such that it fails to recover the queue

length to the desired target. The three other approaches also register high queue length

immediately after startup but they manage to recover and maintain the queue within the precincts

of the target. Of the three well performing approaches, the self organized FLCD approach

registers the shortest queue length during the startup phase (approximately 60 packets) while the

unorganized FLCD algorithm (approximately 82 packets) and the basic Fuzzy algorithm

(approximately 85 packets) rank second and third respectively. In terms of recovery time during

the startup phase, the self organized FLCD algorithm still ranks first with a recovery time of

approximately 5seconds while the unorganized FLCD algorithm (approximately 10 seconds) and

the basic Fuzzy algorithm (approximately 15 seconds) rank second and third respectively. When

UDP traffic is introduced in intervals [120s-1305] and [350s-370s], the queue's high period is

smallest in the self organized FLCD algorithm compared to the other approaches. With the

introduction of dynamic TCP traffic, all the algorithms except ARED which just shifts the queue

even higher close to the buffer limit, become unstable as they try to limit the queue length to the

set target. Once again the self organized FLCD algorithm performs better than the unorganized

FLCD algorithm and the basic Fuzzy algorithm in that it attempts to bring the queue down to 36

packets right from the time dynamic TCP traffic starts entering the link. The self organized FLCD

algorithm also exhibits good recovery performance when the dynamic TCP traffic stops flowing.

The basic fuzzy algorithm suffers severe underutilization when dynamic TCP traffic stops

flowing. After approximately 390 seconds up to 500 seconds, all the four schemes limit the queue

length to approximately 36 packets. It is worthy pointing out that ARED is more stable during

this period but that advantage is offset by its very high average queue length. The effect of long

queues is twofold. Besides enhancing the need for larger buffers long queues have an effect of

increasing packet delays.
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4.3.2 Experiment 2: Dynamic Traffic Environments with varying propagation delays

In this experiment. we compare the performance of the three schemes when the round trip delay

of the bottleneck link is varied. We use the network topology shown in Figure 4.3.We vary the

round trip link delay by using 20ms. 40ms. 60s up to 180 ms.The simulations run for 200

seconds. We simulate 50 FTP flows. competing for bottleneck link from Routerl to Router2.

These flows start within the first 5 seconds. We activate 4 web sessions on each client-server

connection. 10 UDP flows are introduced in the following intervals [50s-60s] and [150s-160s]

while the FTP flows stmt randomly within the first Ss and they run up to the end of the

simulation. At time 60s. 200 new FTP flows start. with 40 starting every 7.5 seconds. When time

reaches 140 seconds. the new FTP flows are removed from the traffic mix in steps of 40 flows

every 7.5 seconds. Figure 4.5- Figure 4.9 show the results .
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Figure 4.5 shows that the Self organized FLCD algorithm has the lowest packet loss rate ranging

from 0.28% to 1.181 %.The organized FLCD algorithm comes second with a loss rate ranging

from 0.532% to 1.324%. The basic Fuzzy algorithm comes third with a loss rate ranging from

0.972% to 1.647%. The ARED algorithm comes fourth with a loss rate ranging from 1.995% to

3.533%.The self organized FLCD algorithm's low packet loss is due to role of the packet loss

factor which is embedded in the self learning and adaptation mechanism. This factor helps to
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increase the packet marking probability when packet losses have been detected. This helps to

reduce further packet losses. ARED's poor packet loss performance is due to the fact that the

ARED control law fails to keep the queue within the desired precincts. When dynamic traffic sets

in, buffer overflows are inevitable as seen in FigAA.

FigA.6 shows that ARED and both FLCD approaches achieve high link utilization throughout the

simulation run. The average link utilization values are as follows: 99.34% for self organized

FLCD, 99.36% for unorganized FLCD, 99.57% for ARED, 98.58% for basic Fuzzy. The basic

Fuzzy algorithm exhibits lower link utilization because it suffers from severe underutilization

soon after the dynamic TCP traffic stops flowing. It fails to recover the queue to the target after

such a sharp decrease in traffic (See Figure 4.4).

Figure 4.7 shows that both FLCD approaches achieve the highest average link fairness (77.6% for

FLCD and 77.5% for self organized FLCD). The basic Fuzzy algorithm follows them closely

with an average of 76.98% while ARED comes last with an average of 75.2%.From this, we

observe that the self organized FLCD algorithm does not jeopardize the fairness element of the

FLCD algorithm.

Figure 4.8 shows that for round trip link delays shorter than lOOms, self organized FLCD

algorithm achieves the lowest UDP packet delay (76.8ms). The FLCD algorithm (86ms) comes

second. The ARED (98ms) algorithm and the basic Fuzzy algorithm delays (98.93ms on average)

exhibit simihu UDP traffic delays. However, when the round trip delay exceeds IOOseconds, the

FLCD algorithms and ARED exhibit similar UDP traffic delay performance while the basic

Fuzzy algorithm exhibits slightly longer delays. The self organized FLCD algorithm exhibits

better UDP delay performance for shorter round trip time because of the RTT based update

mechanism which forms part of the self learning and organization structure. This mechanism

enables the FLCD algorithm to frequently update the packet marking probability for links with

shorter RTTs. The effect of this is that buffer overflows are minimized. It becomes easier for the

FLCD algorithm to keep the queue close to its target thereby improving the end-to-ed delay.

Figure 4.9 shows that the basic Fuzzy algOlithm exhibits the lowest jitter (with an average of

J.78ms). The FLCD schemes rank second with averages of 1.854ms for FLCD and 1.847seconds

for self organized FLCD algorithm. The ARED algorithm comes last with an average jitter of

2.19ms.
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4.4 Self-Organized FLeD algorithm in Wireless Local Area Networks

4.4.1 The Need for Congestion Control in WLANs

IEEE 802.11 wireless LANs (WLANs) have gained strong popularity in a number of vertical

markets, health-care, retail, manufacturing, warehousing and academic institutions. In contrast to

traditional wired networks, WLANs are characterized by mobility support, installation simplicity

and flexibility, reduced cost-of-ownership and scalability. The widespread deployment of

WLANs is due to the productivity, convenience and cost advantages offered by these

characteristics. Despite the growing popularity, the available bandwidth in IEEE802.ll networks

is much smaller than in wired local area networks since IEEE 802.11 networks are non-switched

half duplex. These networks suffer from interference from radio sources like microwave ovens,

cordless phones and wireless computer devices such as Bluetooth. They also suffer from the

hidden node problem which results in collisions and reduced channel performance [SCHOO]. The

maximum peak transmission rate possible in 802.11 a/g stations is 54Mbps. However studies

[KS03J have shown that, due to a large overhead per frame transmission, the maximum efficiency

is only 50-60%. In addition, maximum channel throughput can only be achieved in close

proximity to the Access point (AP). As distance from the Access point increases, throughput

diminishes more or less rapidly due to effects of packet loss, reflection, diffraction and scattering.

The actual channel throughput also heavily depends on the frame payload size. When only frames

as are typical for VoIP are sent, the maximum throughput on the wireless channel on the wireless

channel can drop below IMbps even at a data rate of 11 Mbps [KS03].

At present, an IEEE working group (IEEE802.lln) is working on a new standard which builds on

the previous 802.11 standards by adding MIMO (Multiple-Input Multi-Output) concepts in order

to offer wireless transmissions at rates greater than IOOMbps. It is projected that 802.11 n will also

offer a better operating distance than cUITenl 802.11 networks. While the ullimale advantage of

this standard is obviously speed, it is reported in [COX03] that just like its preceding standards,

maximum throughput can only be achieved in close proximity to the Access Point (AP). As

distance increases from the Access Point (AP), throughput still diminishes more or less rapidly. It

further reported in [COX03j that in almost every case today, an Access Point is a shared medium:

whatever throughput it can deliver is divided up among the users [hat connect to that one access

point. This implies that for 10 users sharing one Access Point, the throughput per user translates

to 10 Mbps. This new standard was designed in order to match the 100Mbps switched Ethernet
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capacity in the Distribution System (DS). However, new standards offering higher data rates are

arising in switched Ethernet .While 1-Gigabit Ethernet is now widely available and 10-Gigabit

products are becoming more available, the IEEE and the IO-Gigabit Ethernet Alliance [CISCO]

are working on 40, 100, or even 160Gbps standards. Therefore, the disparity in channel capacity

between the wired and the wireless interfaces of the Access Point will continue to present a

significant bottleneck in the downstream direction. The incoming link will continue to be

oversubscribed resulting in frequent buffer overf1ow. As a result, the implementation of a

congestion control scheme in either the Gateway or the Access Point will always remain a viable

solution for avoiding congestion and ensuring that delays for packets with real-time constraints

are minimized in IEEE 802.11 WLANs. In [YI04], a proxy-RED congestion control scheme is

proposed for WLANs. The main idea of this scheme is to reduce overhead at the access point by

implementing the AQM functionality at the gateway. The instantaneous queue length at the

access point is sampled periodically to calculate the estimated average queue length, which is

used for determining the drop/marking probability at the gateway. Results [YI04] show that this

congestion control scheme significantly improves packet loss rate and goodput for a small buffer,

and delay for a large buffer. This approach is based on the WLAN architecture in Figure 4.10.

Each Access Point (AP) connects its associated Basic Service Set (BSS) to the gatev,'ay. The

gateway provides Internet connectivity to the APs.
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Figure 4.10: Gateway centric WLAN Architecture

However, WLAN architectural trends [ZR05] show that the WLAN architecture in Figure 4.10 is

not highly scalable because the cost of deploying a large scale WLAN network dramatically
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increases as the network expands. An emerging architecture which presents a possible solution to

the scalability problem is the (static) multi-hop. 11 (mesh) network (See Figure 4.11).
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Figure 4.11: Wireless AP-to-AP Mesh Network

Interest in this approach is indicated not only by the newly formed Mesh Task Group within IEEE

802.11 but also mesh solutions offered by several companies lME5HD, ME5HN). The

deployment of a proxy-based (gateway-centric) congestion control scheme in the future wireless

AP-AP mesh network is not a scalable approach because there will be numerous APs without

direct connection to the gateway. Therefore, congestion control schemes v"ill still have to be

implemented in the access point because the access point has direct control to a particular Base

Service Set (BSS).

4.4.2 Simulation Model and Results

To investigate the performance of the self-organized FLeD algorithm in WLAN, we run some

simulations on the network topology shown in Figure 4.12. Servers 51, 52, S3 and 54 are

connected to the Gateway which is connected 10 the Access Point. The bandwidth and

propagation delay between the servers and the Gateway and between Gateway and the Access

Point are set to 100Mbps and 2ms respectively. The Access Point feeds two fixed nodes (F 1 and

FN2) and two mobile nodes (M I and MN2») in 36Mbps WLA architecture. We compare the
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performance of the self-organized FLeD algorithm with that of the basic Fuzzy logic AQM,

Adaptive RED and the Drop-tail mechanism which is used in WLAN networks at present. These

schemes are configured in the Access Point at the WLAN interface.

54

100Mbps
21n-;

lOOMbps

2ms

Ac.:c.:ess polO!"
FN2

" MN2

Figure 4.12: \VLAN Simulation Topology

We vary the buffer size by using 50, 100, 150 up to 400 packets. The simulations run for 250

seconds. 48 FTP flows and 4 web traffic flows, each having 4 sessions, are configured to flow

from the servers to all the WLAN nodes throughout the simulation period. To provide

background traffic on the return path., we configure 4 ,veb traffic nows, each having 4 sessions,

to flow from the WLAN nodes to the servers. Audio, video and basic UDP traffic was generated

based on Table 4.2.

Table 4.2: Real Time Traffic Simulation parameters

Audio I Video Background

Transport Protocol UDP I UDP UDP

Packet Size 160 bytes 1280 bytes 1500 bytes
i

Packet Interval 20 ms 10 ms 12.5 ms

Flow Rate
I

8 Kbytes/s 128 Kbytes/s 120 Kbytes/s
~.___ .-----.J

Video traffic nows from Servers SI and S2 to the mobile nocles in the interval [40s-70sJ. Audio

traffic flows from Servers SI and S2 to the mobile nodes in the interval [130s-160s]. Basic UDP

traffic flows from all the 4 Servers to all the WLAN nodes in the intervals [25s-30s] and [215s­

2205]. Figure 4.13- Figure 4.16 show the results.
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Figure 4.13 shows that the Self organized FLCD algorithm exhibits the lowest UDP traffic delay

ranging from 85.7ms (for a buffer of 50 packets) to 455.7ms (for a buffer of 400 packets).The

basic Fuzzy AQM algorithm comes second with the UDP traffic delay ranging from 104.8ms (for

a buffer of 50 packets) to 621 ms (for a buffer of 400 packets). ARED comcs third with UDP

traffic delay ranging from 137.76ms to 571.34ms (for a buffer of 400 packets)The Drop-tail

mechanism comes fourth with the UDP traffic delay ranging from 125.47ms (for a buffer of 50

packets) to 974.6ms (for a buffer of 400 packets).In terms of averages, the UDP traffic delay

performance is as follows: 282.587ms for the Self organized FLCD, 381.727ms for basic Fuzzy

AQM, 421Ams for ARED and 548ms for Drop-tail. The Self organized FLCD algorithm

achicves the lowest delay because it maintains the shortest queue amongst the four mechanisms.

The Drop-tail mechanism exhibits the highest delay because its queue is perpetually long because

it does not employ any special mechanism to limit it. More UDP packets would be discarded at

the receivers in the Drop-tail mechanism due to late arrival because of the high link delay. We

also observe that in all cases, UDP traffic delay increases with varying proportions as buffer size

increases. This happens because queuing delay incrcascs as buffcr size increascs.

Figure 4.14 shows that the Drop-tail algorithm exhibits the best UDP traffic jitter with an average

value of 3.01 msThe basic Fuzzy AQM algorithm comes second with an average value of 3.31ms

while the Self organized FLCD algorithm comes third with an average \alue of 3.75ms.ARED

comes fourth with an average value of 4.547ms The optimization results in Chapter 3 reveal that
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jitter and delay are non-commensurate i.e. they cannot be improved at the same time. This IS

proven again in this case because the Drop-tail mechanism exhibits the lowest UDr traffic jitter

at the expense of UDP traffic delay while the Self organized FLCD algorithm exhibits the

shortest UDP traffic delay at the expense of UDP traffic jitter. A closer look at the jitter

performance shows that jitter values for the three mechanisms are very close such that the

performance of the Self organized FLCD algorithm in terms of jitter would not be very far from

the other two approaches.

Figure 4.15 shows that the Self organized FLCD algorithm exhibits the lowest packet loss rate for

small buffer sizes. When the buffer size increases, its loss rate is almost similar to that of the

basic Fuzzy algorithm. On average, the FLCD algorithm exhibits an average loss rate of

2.687%.The basic Fuzzy algorithm, which ranks second, has average loss rate of 3.31 % .RED

ranks thjrd with a loss rate of 6.98% while the Drop-tail mechanism ranks fourth with an average

of 11.226%. The Drop-tail mechanism performs poorly because it does not detect incipient

congestion as a result it fails to minimize packet loss rates. The basic Fuzzy AQM algorithm

exhibits higher packet losses for smaller buffers because it maintains larger queues which easily

overflow.

Figure 4.16 shows that all the four schemes exhibit low average throughput rates. The average

values are as follows: 3.395Mbps for ARED, 3.366Mbps for the Self organized FLCD algorithm,

3.361 Mbps for Drop-tail and 3.36Mbps for the basic Fuzzy AQM algorithm. These values

account for less than 10% of the available bandwidth i.e.36Mbps. From these results, we observe

that the introduction of an AQM in WLAN environments does not improve throughput

significantly.

4.5 Chapter Summary

This Chapter has proposed online self organization structures for the Fuzzy Logic Congestion

Detection (FLCD) algorithm. These structures include an RTT based sampling mechanism and a

self-learning and adaptation mechanism. The latter modifies the algorithm's update interval in

line with the prevailing outgoing link propagation delay while the former fine-tunes the algorithm

according the prevailing system conditions. The effectiveness of the prop sed approach is proved

by comparing the performance of the self organized FLCD algorithm with that of the unorganized
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FLCD, the Adaptive RED and the basic Fuzzy algorithms under dynamic traffic patterns.

Performance results show that the proposed approach achieves a much more stable queue

compared to the other approaches. Apart from enhancing the stability of the FLCD algorithm the

new approach also reduces UDP traffic delay for short round trip propagation delays. It also

reduces the FLCD algorithm's loss rate. We have also observed that the additjon of the self­

organization structures to the FLCD algorithm does not jeopardize other performance metrics like

utilization, jitler and fairness.

The final part of this Chapter extended the concept of Fuzzy logic congestion detection to WLAN

networks. In this implementation, the FLCD algorithm helps to minimize UDP traffic delay,

packet loss rates. In terms of throughput, the FLCD algorithm exhibits similar performance to the

other schemes. Its UDP jitter is slightly higher than its basic variant and the Drop-tail mechanism

but better than that of ARED.
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The Dual Explicit Congestion Notification
Mechanism

5.1 Introduction

Chapter I of this thesis described the explicit congestion related notification mechanisms that

have been proposed for IP networks. These mechanisms have been broadly classified into two

groups: congestion notification and underutilization notification mechanisms. Chapter 1 also

explains the merits and demerits of these mechanisms. Of all these mechanisms, the Explicit

Congestion Notification (ECN), an IETF standard for congestion notification in JP networks, is

the most widely used. Research efforts [LJ01J, [SDJ04] are still taking place in order to improve

ECN.

This thesis does not implement underutilization notification mechanisms because the method for

estimating link utilization in literature [SH02l is more accurate in this aspect. The mechanism in

[SH02l estimates utilization based on the microflow status of the output link. Apart from the

periodic utilization updates, it also makes utilization updates whenever a packet leaves the queue.

Any link utilization estimation algorithm based on the packet marking/dropping probability (from

the FLCD in this case) cannot achieve that level of accuracy because its utilization information is

determined after specific periods depending on the rate at which queue length and packet arrival

rate are sampled. This thesis, therefore, only focuses on the congestion notification mechanisms

i.e. ECN and BECN.
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This Chapter begin~ I~,: ')resenting an overview on related work in this area in Section 5,2, An

algorithm, that combi!lc~ the ECN and BECN mechanisms based on the output of the Fuzzy

Logic Congestion Detection (FLCD) algorithm which was presented in Chapter Three, is then

developed in Section 5,3, An RTT based BECN reduction mechanism is also proposed in the

same section, Section 5.4 presents the performance evaluation of the propos~d models in both

wired and satellite networks, This Chapter is summarized in Section 5.5.

5.2 Related Work

5.2.1 Wired Networks

Although congestion control research efforts in conventional wired JP networks have been taking

place for more than two decades, explicit congestion notification has only been introduced

recently [RFO I]. The resurgence of BECN is also provoking more research efforts from the

Internet community, Notable research works for wired networks in literature are as follows: The

ECN mark-front strategy [LJOl] and the Combined ECN/BECN approach [AKU03],

5.2.1.1 The ECN Mark·front strategy

Liu and lain [UO!] improve the ECN mechanism by introducing the mark-front strategy, Instead

of marking a packet from the tail of the queue, this strategy marks the packet in front of the queue

and thus delivers faster congestion notification signals to the source, With a simplified model,

they analyze the buffer size requirement for both the mark-front and mark-tail strategies, They

tested link efficiency, fairness and more complicated scenarios using simulations based on the

RED. Results [UG I] show that the mark-front strategy provides a better congestion control that

helps TCP to achieve smaller buffer size requirement, higher link efficiency and beller fairness

among users, Based on these results, the recent AQM schemes [ALLYO I, HMTGOl] employ the

ECN mark-front strategy.
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5.2.1.2 The Combined ~;ECNIECNApproach

Akujobi et al. [AKU03] proposed the first algorithm to combine the ECN and BECN mechanisms

using RED as the congestion detection algorithm. This mechanism invokes ECN for low to

medium level congestion and BECN for medium to high level congestic'n. A new thr(;~bold,

bccnlhresh is introduced between RED's minimum (minth) and maximum ,il1C1Xlh) threshold, in

order to identify the point at which BECN is triggered. ECN is invoked when the average queue

length is between millth and becllthresh while BECN is invoked when the average queue length is

between becnlhrcsh and mC/xth. Results show that this mechanism combines the merits of BECN

and ECN algorithms effectively and leads to improved performance compared to individual ECN

and BECN schemes. It also results in significant reduction in lSQ reverse traffic compared to the

BEeN mechanism. The study of the impact of different becllthresh settings and the development

of its preferred values has been pointed out as an area of future research in [AKU03].

5.2.2 Satellite Networks

Satellite netv.'orks play an indispensable role in the deployment of global communication

networks because they otfer global coverage, broadcast capabilities, flexibility in bandwidth

allocation, support for mobility and ease of deployment in areas of low subscriber density and

with litLle infrastructure. Based on these characteristics, satellite networks are suited for the

provision of broadband internet access to remote locations, as well high speed backbone

networks. Currently, satellite architectures are classified as Geostationary Orbit (GSO) and Non­

geostationary Orbit (NGSO). The NGSO architecture comprises the Medium earth orbit (MEO)

and the Low earth orbit (LEO) [DKG01J, [KDJ01). In the GSO architecture, satellites are

positioned on equatorial orbit. Their altitude is approximately 35,800km above the sw-face of the

earth. The satellites appear to an observer on earth as being stationary. In the NGSO architecture,

satellites operate i!l orhits much closer to the earth. These satellites change their position relative

to ground position qUickly.

The provisioning of quality-of-service (QoS) presents the greatest obstacle to the further

development of satellite network systems. GSO systems are charactel1zed hy large delays due to

th~;! high altitude while NGSO systems are characterized by large del,~, '::lriations because the\'

are not stationary. These characteristics seriously affect TCP perforn~ ~ becau .. ~ TCP is 2:1

acknowledgement and time-aut-based congestion control mechanism. Its performance
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inherently related '0 t' c delay-bandwidth product of the connection. TCP round-trip time

estimations are also sensitive to delay variations, which may cause false time-outs and

transmissions. As a result, congestion control issues in satellite networks are more complex than

those of lower-latency terrestrial networks [DSLOJ a), [DSLO Ib], [GD99), [HEN99].

The other obstacle to good TCP performance over satellite networks is its non-negligible bit-error

rates (BER) because of transmission link errors. TCP provides reliable byte-streams to

applications by ensuring that the sender retransmits corrupted data. However, packet loss is also

used by TCP to determine the level of congestion in the network because traditionally, in wired

networks, the bulk of packet loss comes from congestion. TCP responds to congestion by

reducing its congestion window (cwnd) and therefore its sending rate. The reduction of cwnd

when packet loss has been caused by channel errors [KSE04] will lead to network

underutilization. Therefore, several solutions have been proposed to distinguish network

congestion effects from corruption effects so that the TCP sender decreases its cwnd only when

there is congestion. Explicit loss notifications (ELN) [BK98), [SAM99] explicitly notify the TCP

senders about packet losses due to channel errors while explicit congestion notifications (ECN)

[FL0(4), [SAOO], [AKU02] explicitly notify the senders by marking, instead of dropping,

packets when the link is oversubscribed. In satellite networks, the need to minimize packet losses

is even greater because network bandwidth is expensive and the packets to be dropped will have

already traversed through a series of precious links. The dropped packets will also exacerbate the

consequences of the already high latency and latency variations. Notable research works on

explicit congestion notification for satellite networks are as follows: The ECN mark-front strategy

[DSLOla] and the Multi/evel ECN strategy [DSLOlb].

5.2.2.1 The ECN Mark-front strategy

Durresi et al. [DSLOla] extend the mark-front strategy [UOl] to satellite networks. They

achieved similar results to those in [UOl).The effect of their results had much more impact on

satellite networks than on wired networks. In satellite networks, the reduction of buffer size

requirements for a condition without losses translates into less complex devices and less delay.

By sending faster feedback signaJing about congestion, the source adjusts its cwnd in time to

avc,iJ packet loss and link idling, consequently improving the link ·'iciency. '~his result is

important because in satellite networks, link bandwidth is more expcnsi '~nd les~ailable than

in terrestrial networks.
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5.2.2.2 The Multilevel ECN Strategy

Durresi el al. lDSLOlb] implement a Multi-level ECN (MECN) mechanism in a satellite network

scenario. This mechanism uses the CE and the ECT bits to implement three different congestion

levels. The CE-ECT bit combination '01' -indicates no congestion, '10' indicates incipient

congestion and '11' indicates moderate congestion. Packet drop occurs if there is severe

congestion in the router and buffers overflow. The RED scheme is modified to include another

threshold called midlh between minlh and maxlh. If the size of the average queue is between

minlh and midth, there is incipient congestion and the CE, ECT bits are marked as '10' with a

maximum probability of P Imax. If the average queue is between midlh and maxlh, there is

moderate congestion and the CE, ECT bits are marked as '11' with the maximum probability

P2max.If the average queue is above lI1axlh all packets are dropped. The receivers reflect the bit

marking in the IP header, through TCP ACKs by using a combination of 2 bits 8, 9 (CWR, ECE)

in the reserved field of the TCP header. The response of the TCP senders is defined as follows.

When there is no congestion, the cWlld is allowed to grow additively as usual. When there is

packet drop, the clVlld is decreased multiplicatively byaJ =50%. When the marking is '10'

(incipient congestion), cWlld is decreased multiplicative!y by a\ =20% .When the marking is

'11' (moderate congestion) cWlld is decreased multiplicatively by a 2 = 40% .This enables TCP

senders to have a better tuned response to congestion. MECN converges faster, with fewer losses

than simple ECN and improves other QoS parameters such as link utilization and delay.

5.3 The proposed Dual explicit Congestion Notification Algorithm

This algorithm is developed based on the motivation drawn from the work in [AKU03] and the

superior performance of the FLCD algorithm. ECN and BECN are invoked based on the level of

congestion as depicled by the packet marking probability Pb from the FLeD algorithm. Figure

5.1 shows the FLCD architecture with the BECN mechanism incorporated.

99



Chapter 5 The Dual Explicit Congestion Notification Mechanism

rl CA ~~
Ia

H~A~FLCU PA ~ PI>

fJ
I Y BA t-~

Figure 5.1: FLCD Architecture with BECN Activation Mechanism

The BECN factor 19E [0,1], generated by the BECN Activator, is directly proportional to the

packet marking probability Pb .If K denotes the BECN constant then the BECN factor is

determined as follows

lJ= K" P" (5.1 )

ECN and BECN are invoked probabilistically based on the values of Pb and 13 respectively. ECN

marking is invoked in the deque routine in order to reduce the delay incurred in delivery of

congestion information to the sender. BECN marking, which triggers the flow of reverse ICMP

source quench messages, is invoked in the enque routine in order to inform the sender about

incipient congestion as soon as it is detected. In order to ensure reliable delivery of the congestion

notification signal, a corresponding packet traversing the link in the forward path is ECN marked

every time BECN is invoked. If the ISQ message fails to reach the sender then the ECN Echo in

the next ACK message will trigger the sender to reduce its congestion window. When K = 1, the

system is almost 100% BECN dependent. We say almost 100% because of the unreliability of

ISQ messages since they are not guided by ack.nowledgements such that ECN will still play a role

in the notification mechanism (especially in lossy environments). When K =0, the system IS

100% ECN dependent. No BECN ISQ message is generated under this condition because 7'J is

equal to O. In this proposal, we set K to 0.5.

5.3.1 Dual Explicit Congestion Notification with Reverse Traffic Reduction

Chapter 1 of this thesis pointed out that the generation of rCM? packets must be minimized at all

costs partly because it oversubscribes the router in terms of processing overhead and partly

because it increases the amount of traffic in the reverse path. We argue that it is possible to

reduce the generation and transmission of reverse ICM? traffic without seriously affecting the
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performance of the system. This is due to the fact that the reception of mUltiple congestion

notification signals, in succession, at the sending TCP does not lead to mUltiple reductions in the

sending rate as TCP reduces its sending rate only once each roundtrip time (RTT) [RFOl],

[AKU03].Therefore the implementation of the reversc traffic reduction mechanism based on the

value of RTT will not only reduce the effects of ISQ generation on router performance but will

also minimize the flow of control traffic in the reverse path. We develop this mechanism by first

of all estimating the value of RTT.

5.3.1.1 RTT Estimation

We use the method used in [FKGSOl] in order to estimate RTT. Let Ldenote the delay on the

outgoing link, C denote the outgoing link capacity in packets/second and K1 a constant. RTT is

deri ved as follows

5.3.1.2 BEeN Decay Function

RTT=K1*(L+l/C) (5.2)

A BECN decay function helps to ensure that the amount of ISQ generation IS reduced

exponentially during an RTT. A BECN timer is used for the tinung of this function. This timer is

reset immediately after the fuzzy congestion detection algorithm becomes operational. A time

threshold f,,,,c," =0.1 *RTF is maintained in the router. The decay factor D is therefore

determined as follows

where parameter a is the weighting factor.

for t'h'(',I":S; r < RTF
(5.3)

When time f < "hresh , the number of ISQ traffic flows is not restricted. This is done in order to

ensure that all the sources, responsible for the present congestion status, get the BECN ISQ

message. When time' > "lIrcsll, the number of ICMP messages deteriorates according to the

Decay function in equation (5.3).When time t> RTT, the BECN rimer is reset i.e. t =Osec. At
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this point, the number of ISQ flows is not restricted until t reaches {fhmh .When I > l'llrexh' the

BECN decay function is activated again. The process is repeated and so on.

5.3.2 Behaviour of an FLCD based Dual Explicit Congestion Notification Router

An FLCD based dual explicit congestion notification router essentially behaves as a pure ECN

router under low congestion. Under heavier congestion, both ECN and BECN mechanisms are

used for congestion notification. The computational flow of the BECN ISQ generation and

marking process in the enque routine is as follows

Generate a random number RE [0,1.0];

if (buffer is full) {

Drop the incoming packet;

(f ( ECT bit is set in JP header) {II Checking if the sender is ECN or BECN capable

II Activate BECN with ISQ reduction mechanism

if (BECN Decay Function is enabled){

(f (R < D) Send JSQ due to a dropped packet back to the sender;

J
II Activate BECN without [SQ reduction mechanism

else Selld [SQ due 10 a dropped packet back TO the sender;

J
J

else if (ECT bit is set) {

II Activate BECN with JSQ reduction mechanism

if (BECN Decay Function is enabled){

if' (R<D*iJ)Mark packet (CEhit) and selld [SQ

due to a marked packet back to the sender;

else { II Activate BECN withoul JSQ reduction mechanism

if (R <19) Mark packet (Ct: bir) and send ISQ

due to a marked packet back to the sender;

J
J

else if ((R < Pb ) and ECT bit is not set) Drop the incoming packet;

Figure 5.2: BECN Packet Marking Algorithm
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The computational flow of ECN marking process in the dequc routine is as follows

Generate a random Ilumber RE [0,1.0);

if ((R < P,,) alld ECT bit is set) and (f (packet is not already marked) {

Mark packet (CE bit);

}

Figure 5.3: ECN Packet Marking Algorithm

5.3.3 Behaviour of an ECN+BECN-Capable TCP end host

The ECN+BECN TCP end hosts perform initial end-to-end negotiations to establish ECN

capability just like pure ECN hosts. The TCP sender responds to either ECN or BECN

(depending on whichever signal arrives first). Whichever notification reaches the sender first

should cause the window reduction. When the sender receives an ECN Echo-ACK or an ISQ

message, it reduces its congestion window and the slow start threshold to one-half of the current

window. If the ISQ is due to a marked packet, the sender waits a full RTT after window reduction

before it starts increasing its window. If the ISQ is due to a dropped packet, the sender follows

the TCP congestion control algorithm immediately after reducing the window. The sender does

not respond to congestion signals more than once in an RTT [AKU03].

5.4 Performance Evaluation

In this section, we compare the performance of the proposed dual explicit congestion notification

algorithm .vith some of the congestion notification schemes described in section 5.2. In order to

show the effect of the lSQ reduction mechanism, the proposed notification algorithm has been

implemented in two modes i.e. with and without ISQ reduction mechanisms. The simulations

considered two topologies: wired and satellite networks. The FfP traffic model in the Network

Simulator is used with an infinite amount of traffic to send. TCP type is New Reno with a data

packet size of 1000 bytes and ACK packet size of 40 bytes. The TCP clock granularity is set to

lOOms. Delayed ACKs are not used in these simulations. Packet-based marking in all cases. For

RED, the maximum probability for ECN marking is set to 1.0. For the FLCD BECN reduction
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approach, we set the weighting factor a to 0.75 The buffer size is set to 90 packets in all cases.

The following performance metrics are used:

• Bottleneck link utilization: This refers to the number of data packets respectively that

successfully traverse the bottleneck link and are received by the receiver.

• Queue Length: This is the average of queue length samples that are recorded every

0.5seconds as the simulation runs.

• Percentage loss: This measures the ratio of packets dropped at the bottleneck link to the

total number of packets injected into the bottleneck link for a particular flow or set of

flows

• Percentage ISQ reverse traffic: This is computed as the number of BECN ISQs generated

in the reverse direction of data flow as a ratio of the total number of packets received

from that direction.

• Tep Goodput: This is computed as the total amount of TCP traffic that traverses the

network as a ratio of the total capacity of the network.

5.4.1 Wired Network

For the wired network, we use the simulation topology in Figure 5.4.

S(I)

$(0)

100Mbps
2 IllS

Djrcclion of lretffic flow

100:'1bps
:2 Ins

~ R(I)

o
R(n)

Figure 5.4: Wired Network Simulation Topology

We compare the performance of the two versions of the proposed algorithm (with and without

ISQ reduction) with the combined ECN/BECN approach [AKU03 ].The bottleneck bandwidth is

IOMbps with a propagation delay of 40ms. All other links have 100Mbps with a propagation
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delay of 2ms.Traffic flow is from sources, S(l) ... S(n) through routers, Routerl and Router2 to

receivers, R(1) ...R(n). We follow the guidelines used in [AKU03] in setting RED queue

parameters as follows: minth = 15KB, maxth = 3*minth, buffer size = 2*maxth, becnthresh =

30KB, maxp =0.1, wq=0.002, mean packet size=IOOObytes. Traffic configuration is done as

follows.30 web servers are connected to Routerl with a corresponding number of web clients

connected to Router2. We also attach 15 web cl ients to Router 1 and 15 web servers to Router2 to

provide background traffic on the return path. We activate 8 web sessions on each client-server

connection. The number of FTP Traffic flows from Routerl to Router2 is varied by using 10,20,

30,40,50,60,70,80,90 and 100 flows in order to establish different levels of congestion. The FTP

flows start randomly within the initial Ss of the simulation while the web-traffic connections start

within the first I Os.For the FLCD BECN reduction approach, we set K1 to 3 just as in [FKGSO I].

Packet-based dropping for RED is used. This is done basically for comparison purposes because

our scheme also employs packet-based dropping. These simulations run for 150s.Figure 5.5­

Figure 5.8 show the results.
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Figure 5.5: ISQ Reverse traffic
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Figure 5.7: Packet Loss Rate Figure 5.8: Bottleneck Link Utilization

Figure 5.5 shows that the RED (ECN+BECN) approach exhibits the highest ISQ reverse traffic

when the number of FrP flows is 70 or less. This happens because the length of the queue is

predominantly between beenthresh (30packets) and maxth(45packets) during this period (See

Figure 5.6).As a result more packets are BECN marked leading to the generation of ISQ reverse

traffic. After 70 FTP flows, the ISQ reverse traffic decreases drastically because the length of the

queue is predominantly above maxth (45 packets). During this period ECN is the predominant

congestion notification mechanism. The ISQ reverse traffic generated at this stage is mainly due

to buffer overflows. It is worthy pointing out that the ISQ reverse traffic decreases drastically at a

time when it was supposed to be increasing because this is the stage (lOO FTP flows) when the

network faces real congestion as opposed to the stage when the number of FrP flows is 70.This

just illustrates the difficulty pointed out in [AKU03] pertaining to the placement of the BECN

threshold.

From Figure 5.5, we also observe that the amount of reverse traffic in the basic FLCD algorithm

is directly proportional to the number of FTP flows. This happens because the packet marking

probability increases at a rate that is directly proportional to the number of FTP nows traversing

the link because the amount of web traffiC is constant. Therefore, the rate of reverse traffic, which

is a function of the BECN factor, also increases as the number of FrP flows increase. In the case

of the modified FLCD algorithm, the amount of reverse traffic is also directly proportional to the

number of FTP flows but its gradient is approximately half of the basic FLCD algorithm.

On the overall, the average percentages of ISQ reverse traffic are as follows: 3.8% for RED

(ECN+BECN), 4.6% for FLCD (ECN+BECN) and 2.24% for Modified FLCD (ECN+BECN).
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We note that the modified FLCD algorithm achieves the lowest ISQ reverse traffic .Compared to

basic FLCD algorithm, it reduces the ISQ reverse traffic by more than 50%.

Figure 5.6 shows the FLCD approaches exhibiting similar performances in terms of queue length.

They register their longest queue length (approximately 45packets for the basic FLCD and 44

packets for the modified FLCD algorithm) when the number of FTP flows is 20. The long queue

lengths when the number of riP flows is low can be attributed to the high proportion of bursty

web traffic flows in the traffic mix coupled with the short round trip time. The other reason is that

at this stage, the level of congestion is low such that the main mechanism of congestion

notification is ECN which is slow thereby leading to longer queues. Beyond 50 FTP flows, the

FLCD queues stabilize to 34 packets up to the end of the simulation. The RED approach exhibits

shorter queue lengths when the number of FTP flows is low because its control law is entirely

queue length based such that it is insensitive to variations in the arrival rate of the bursty web

traffic flows. The other reason for this behaviour relates to the fact that RED enjoys the benefits

of BECN when the congestion level is low as shown in Figure 5.5. Since BECN is faster than

ECN, RED achieves shorter queues when congestion levels are low. This advantage is however

short-lived because the RED approach fails to control the queue as the number of FTP flows

increases. It reaches 56 for lOO riP flows. At this point the amount of BECN traffic is very low.

Figure 5.7 shows the RED approach exhibiting the highest average packet loss rate (0.327%)

while the FLCD approaches exhibit similar performance (0.1463% for FLCD and 0.1608% for

modified FLCD). Besides the fact that the RED algorithm is inferior to the FLCD algorithms, this

trend can also be attributed to the fact that the BECN marking mechanism in the RED approach is

misplaced as pointed out earlier. Most of the losses take place as the number of FTP flows

increase. Unfortunately, that is the time when the BECN marking mechanism is withdrawn.

From the result in Figure 5.7, we also observe that the FLCD algorithms achieve virtually the

same packet loss rates even though the ISQ reverse traffic in modified FLCD algorithm is

reduced by more than 50%.This confirms our assertion that most of the ISQ reverse packets are

wasted because TCP responds to ISQs once every round trip time.

Figure 5.8 shows the three mechanisms exhibiting equally high levels of average link utilization.

The RED approach however registers slightly higher link utilization when the number of FTP

flows is 10.This happens because at this stage the RED queue is predominantly below minth such

that most packets are not marked. This results into more packets being injected into the bottleneck
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link. The FLCD approaches tend to be more aggressive in marking packets at this stage because

they are rate based as well as queue based. Once the arrival rate increases, even without any

meaningful queue change, the packet marking probability is adjusted upwards. As a result, they

exhibit slightly lower link utilization at this stage.

We also note the RED approach exhibits a slight slump at about 70 FTP fJows. This happens

because the algorithm switches from the BECN notification back to the ECN notification

mechanism as the queue length becomes predominantly above lIlaxth. The curves for the FLCD

approaches are smooth because of the fuzziness employed in the invocation of the [WO congestion

notification mechanisms. Therefore, the FLCD approaches are more stable.

5.4.2 Satellite Network

For the satellite network, we use the simulation topology in Figure 5.9. We compare the

performance of the two versions of the proposed algorithm (with and without ISQ reduction) with

the combined ECN Mark front strategy [DSLOl a].

S(I)

S(n)

L~
<t ~

IS Jvfhps. 1.5 Mbps
125ms .···125 ms

IOMbps
4ms

R(I)

R(n)

Figure 5.9: Satellite Network Simulation Topology

Traffic sources S(1) ... 5(n) are connected to Router Rl through 10 Mbps, 2ms delay links. Router

R I is connected to R2 through a 1.5 mbps, 125ms delay link. R2 is connected to R3 through a 1.5

mbps, 125ms delay link. The overall round trip link delay is 500ms which is the typical for GSO

satellite networks [HLOl]. A number of receivers R(I) ... R(n) are connected to R3 throuoh 10
~
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Mbps 4ms delay links while a number of traffic sources are connected to R 1 through 10 Mbps

2ms delay links. Link speeds are chosen so that congestion will only happen between R I and R2

where our scheme is tested. Traffic configuration is done as follows.30 web servers are connected

to Router! with a corresponding number of web clients connected to Router3. We also attach 15

web clients to Routed and 15 web servers to Router3 to provide background traffic on the return

path. We activate 8 web sessions on each client-server connection. The number of FTP Traffic

flows from Routerl to Router3 is varied by using 10,20,30,40,50,60,70,80,90 and 100 flows in

order to establish different levels of congestion. The FTP flows start randomly within the initial

Ss of the simulation while the web-traffic connections start within the first IOs. The target queue

length is set to 35% of the buffer size in all the three cases. For the FLCD BECN reduction

approach, we set K} to 6 because in satellite networks there are two links with the same delay

between the source and the destination. The simulation period is 200s for all runs. Figure 5.10­

Figure 5.13 show the results.

'2

10

6-

,.

, -&flCD(E~.BECN}

. 1- -8-M3MIed FLC01ECNtSECN

~ • ~ 80 ro 80 80 ~

tL,.t~r ~f B!Cf:~~o"r-.tFTP F.~'Il'S

,51---:----:--:---:--~r=:;::~~=;E=:::=;l
I ...REIlfECN ,lARK fRONT)

-& flCOIECN.BECNj
/!r !Io~I;,d flCOIEc;N.8ECN

. ,

'~
~----:1f)O----'3~O-~'1--:50:---6-f:-Q--::70--:80':---:'90' 100

Ib'nber 01 Backgw'Jf'd FTP Ffj)·..."S

Figure 5.10: ISQ Reverse traffic

III

Figure 5.1l: Packet loss rate



Chapter 5 The Dual Explicit Congestion Notification Mechanism

I

.0eo

, , ,
·-:----'~--I---'-

I
- -,-

, I' I!

~ ~ 40 ~ 60 70
N:r.nbeloI8~~ HP r.vws

10

e;'--'-'--~-'--'--I+:;:-::RE=OI:::::ECN:::::M:::::.'R:::-K::FRO::NT:::-ll'1

-&- FlCOIECN.BECtl,

~"~dlhed FLCO(ECN.aECN

'"•r
~'5

~60 -.~--~-

~ coso80

, , ,
r - - -. - J- - - r - - -: - -

I ,

, ,
- - - - - - -

, +REO{ECNMARK FRON11

- ~ -: - -e-FlCD(ECN~BECN)

I I -b-t.tldihed FlCO\ECN.BECN
I I

! ! , ,

.;0 50 GO 70
:-..Il.rnt;OI 01 B<l~fCur.d FTPFb...."S

I ~ __ L

I

30

995 - -: - - - - ~,-::::::3r~-~-~-~'~f~~~:=~
99· 7.

9SJ - - ~ - -- -
, 98

f
--~ - ,- -:-

2975 - - r - - -, - - - ,-

~ l'
~ 97 - I -I - t-
o:>

~9fj5'

Figure 5.12: Bottleneck ink Utilization Figure 5.13: Goodput

Figure 5.10 shows that the amount of reverse traffic in the basic FLCD algorithm is directly

proportional to the number of FTP flows. This happens because the packet marking probability

increases at a rate that is directly proportional to the number of FTP flows traversing the link

because the amount of web traffic is constant. Therefore, the rate of reverse traffic, which is a

function of the BECN factor also increases as the number of FTP flows increases. In the case of

the modified FLCD algorithm. the amount of reverse traffic is also directly proportional to the

number of FTP flows but only up to 80 FTP flows after which the reverse traffic rate saturates to

about 4.62%. For the period when the amount of reverse traffic is directly proportional to the

number of FTP flows, the rate of increase is approximately 0.43% for every 10 FTP flows

introduced as opposed to 0.9% for a similar number of FTP flows in the basic FLCD algorithm.

The overall average reverse traffic rates are 4.96% and 2.7% for the basic and the modified

algorithms respectively. This implies that the modified algorithm reduces the amount of reverse

traffic by 45.46%.

Figure 5.11 shows that the FLCD algorithms exhibit lower packet loss rate than the RED/ECN

mark front algorithm. The average packet loss rates are 1.09% and 1.16% for the basic and the

modified algorithms respectively. The average loss rate for RED/ECN mark front algorithm is

2.15%.The FLCD approaches register lower loss rate because they benefit from early congestion

notifications through the BECN mechanism. We also observe that the modified FLCD algorithm

maintains a competitive packet loss rate although its amount of reverse ISQ traffic is reduced by

45.46%. This confirms the fact tbat most of the reverse ISQ traffic in the original FLCD
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algorithm is wasted because the TCP sender responds to a congestion notification message only

once in an RTT.

Figure 5.12 shows that although the level of link utilization is very high in all the three cases the

REDIECN mark front strategy registers the lowest level of link utilization (94.99'70) when the

number of FIP flows is 10 while the fuzzy approaches register higher levels of utilization at this

stage i.e. 96.771 % for the modified case and 96.165% for the basic case. When the number of

FTP flows is low, the proportion of web traffic is high. The burstiness of web traffic coupled with

the long delay associated with ECN causes a series of backlog variations on the link which lead to

underutilization in the RED/ECN approach. The situation is different with the FLCD approaches

because they enjoy a fair share of BECN messages in the reverse path. This results in fast

delivery of congestion information and as a result the link does not experience severe delay based

backlog variations thereby ensuring high link utilization. As the number of FTP flows increases,

the RED/ECN algorithm registers a slightly higher level of link utilization than the fuzzy

approaches because long lived FTP flows, which are more stable, begin to dominate.

In Figure 5.13, the FLCD algorithms register higher average goodput than the REDfECN mark

front algorithm. The average goodput values are 66.23% and 64.66% for the basic and the

modified algorithms respectively. The RED/ECN algorithm registers an average goodput value of

61.95%. This shows that although the RED/ECN algorithm registers high bottleneck link

utilization, the actual amount of useful data relayed to the receiver is actually low because of

retransmissions which happen as a result of the higher loss rates.

5.5 Chapter Summary

In this chapter, we have proposed a fuzzy logic based dual explicit congestion notification

mechanism based on the output of the FLCD algorithm. We have also proposed an RTT based

decay function which helps to reduce the amount of ICMP reverse traffic by taking advantage of

the fact that TCP responds to congestion signals only once during an RTT. We have compared

the performance of the two FLCD (BECN+ECN) approaches with the RED (ECN+ BECN) on

wired networks and with the RED (Mark Front Strategy) on satellite networks. Results show that

the FLCD approaches exhibit better performance in terms of packet loss rate, queue stability on

wired networks. On satellite networks, they exhibit better packet loss rates, goodput and link
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utilization. We have also observed that the RTI based decay function helps to reduce the amount

of reverse traffic by more than 50% for wired networks and by more than 40% for satellite

networks while ensuring that performance remains virtually the same as in the original algorithm

and much better than the RED based approaches.
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Chapter 6

Conclusions and Future Work

6.1 Summary

This dissertation has tackled two aspects of IP congestion control: router-based congestion

detection and explicit notification mechanisms. The first part of this research focused on the

development of a Fuzzy Logic Congestion Detection (FLCD) mechanism which achieves optimal

performance on all the major performance metrics of Internet congestion cont.rol. The second part

focused on the development of an FLCD based dual explicit congestion notification mechanism

which combines the merits of Explicit Congestion Notification (ECN) and the Backward Explicit

Congestion Notification (BECN) mechanisms.

In Chapter 1, wc have outlined the origins of congestion on the Internet. We have categorized

Internet congestion control research into three interrelated fronts: end-ta-end mechanisms, router

based detection mechanisms and explicit notification mechanisms. We have described the key

research developments on each front. We have also explained tbe reasons behind the emergence

of fuzzy logic based AQM schemes. In this Chapter, we have also presented the motivation of the

research done and the original contributions of this dissertation.

In Chapter 2, we studied the principles of operation, the efficiencies and deficiencies of the key

traditional AQM schemes. We also presented the fuzzy logic control theory. We also studied the

fuzzy AQM schemes in terms of their design principles, their efficiencies and deficiencies. From

these studies, we observed that fuzzy control rules and membership functions are obtained

through a manual tuning process which is based on the designcr's insight. The human factor

involved in this operation makes it difficult for these algorithms to achieve optimum performance

for all the key AQM objectives. We also observed that these algorithms are generally designed

with an assumption that the Internet is predominantly composed of TCP traffic, whose sources
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respond to congestion notification signals from routers by reducing their sending rates, We also

observed that practically, the situation is not like that because apart from the non-responsive UDr

traffic which accounts for a reasonable traffic proportion, the Internet is nowadays facing a

growing list of non-responsi ve flows which should also be taken into account.

In Chapter 3, we have developed the Fuzzy Logic Congestion Detection (FLCD) algorithm. The

CHOKe algorithm is incorporated in the FLCD architecture in order to address the issue of

fairness which was not addressed explicitly in all the preceding fuzzy logic AQM approaches, We

then modeJed the congestion control problem as a multi-objective (MO) problem and uscd Multi­

Objective Particle Swarm Optimization (MOPSO) in designing the membership functions for the

Fuzzy Logic Congestion Detection algorithm. The optimization process was based on four

objective functions. These objective functions were derived based on the following requirements:

maximizing link utilization, minimizing loss rate, minimizing link delay and jitter. In the best

effort implementation, the performance of the proposed approach was compared with the basic

Fuzzy algorithm and the REM algorithm. From performance results so far obtained, wc observed

that thc FLCD algorithm exhibits highest link utilization and fairness, It also exhibits the lowest

packet loss rates and UDr traffic jitter. Its performance in terms of UDP traffic delay is similar to

REM and the basic Fuzzy algorithm. We extended the FLCD algorithm to PropDiffServ IP

networks where its performance was comparcd with that of the WRED algorithm, From

performance results so far obtained, we observed that the PropDiffScrv FLCD approach achieves

higher link utilization, lower packet loss rate, jitter and delay.

In Chapter 4, we proposed self organization structures in order to enable the FLCD algorithm to

learn the system conditions and fine-tune itself accordingly thcreby achieving optimal

performancc in dynamic traffic environments and a wide range of topologies, These structures

include an RTT based sampling mechanism and a self-learning and adaptation mechanism, The

former modifies the algorithm's update interval in line with the prevailing outgoing link

propagation delay while the lattcr fine-tunes the algorithm according the prevailing system

conditions, The performance of thc self-organized FLeD algorithm is compared with that of the

unorganized FLCD, the Adaptive RED and the basic Fuzzy algorithms under dynamic traffic

patterns, From performance results so far obtained, we observed that the self organized FLCD

algorithm achieves a much more stable queue compared to thc other approaches, Apart from

enhancing the stability of the FLCD algorithm the self-organization structurcs also reduce UDr
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traffic delay for short round trip propagation delays. They also reduce the FLCD algorithm's loss

rate. We also observed that the addition of the self-organization structures to the FLeD algorithm

does not jeopardize other performance metrics like utilization, jittcr and fairness. In the final part

of this Chapter, we extended the FLCD concept to WLAN networks. From performance results so

far obtained, we observed that the FLCD algorithm minimizes UDP traffic delay, packet loss

rates. It also maintains a stable tlu'oughput for all buffer sizes. Its UDP jitter is slightly higher

than its basic variant and the Drop-tail mechanism.

In Chapter 5, we proposed a dual explicit congestion notification mechanism based on the output

of the FLCD algorithm. This mechanism combines the BECN and the ECN protoeols in order to

combine their merits. We also proposed an RTT based decay function which helps to reduce the

amount of ICMP reverse traffic by taking advantage of the fact that TCP responds to congestion

signals only once during an RTT. We compared the performance of the two FLCD approaches

(with and without reverse traffic reduction) with the RED (ECN+ BECN) on wireline networks

and with the RED (Mark Front Strategy) on satellite networks. From performance results so far

obtained, wc observed that the FLCD approaches exhibit better performance in terms of packet

loss rate, queue stability on wireline networks. On satellite networks, they exhibit better packet

loss rates, goodput and link utilization. We also observed that the RTT based decay function

helps to reduce the amount of reverse traffic significantly on both wircline and satellite networks

while ensuring that performance remains virtually the same as in the FLCD algorithm without

reverse traffic reduction.

6.2 Future Work

The greatest challenge that we have encountered in this research relates to the expensiveness of

the process of optimizing the FLCD algorithm in Chapter 3. The iterations and the continuous

exchange of parameters between the AMOPSO and the FLCD algorithms have been observed to

be very time-consuming processes for a single processor machine. In order to speed up the

optimization process, we suggest exploring the use of High End Computing (HEC) techniques

\vhere multiple processors would be used in the optimization process. This would also enable us

to increase the number of iterations in order to achieve a beller Pareto front than the present one.

The number of parameters in the particle vector, which captures the fuzzy set parameters, could

also be increased in order to come up with even better results.
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Another observation prompting future work relates to the uncertainties associated with the regular

two-dimensional (type-I) fuzzy sets [MJ02] which have been used in the FLCD algorithm and all

its predecessors. Recently the three dimensional type-2 fuzzy sets have been proposed in order to

get rid of the uncertainties associated with type-l fuzzy sets. It has however been pointed out that

type-2 fuzzy sets are more complex than type-l fuzzy sets [MJ02]. As part of future work, we

suggest implementing the FLCD algorithm using type-2 fuzzy sets and comparing its

performance (in terms of uncertainty levels and complexity) with that of the type-l fuzzy set

FLCD algorithm proposed in this dissertation. A search for mechanisms that would reduce the

complexity of the type-2 fuzzy set FLCD algorithm while maintaining good performance (in

terms of uncertainties) would also be an important research venture.

Lastly, we suggest the extension of the concepts proposed in this dissertation to mobile adhoc

networks (MANET). Nodes in such networks are characterized by limited resources. Constraints

are gIven on processing power, available memory and processing bandwidth [HKK04].

Therefore any attempt of extending the FLeD algorithm and the dual explicit congestion

mechanism to MANETs must take care of these constraints.
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Appendices

A MAJOR NETWORK PERFORMANCE METRICS

This Appendix presents the five major network performance metrics as proposed in [BRH03].

A.I Notation

A.1.t Notation for All Traffic Flows

The total simulation time is denoted by r and network capacity by C . Let F denote the total
(both UDP and Tep) flows indexed by i E [1, F] traversing the bottleneck link in time T . For

flow i, the following variables are defined:

• Si' the total size of the data recei ved

• S,: , the total size of the data sent

A.1.! Notation for UDPTraffic Flows

Let N denote the number of UDP (real-time) flows indexed by j E [1, N] traversing the

bottleneck link in time T .For each UDP tlow j , the following variables are defined:

• Rj , the total size of UDr data received

• DJ' the average delay

• ] j , the average jitter

• Pj , the total number of packets

In UDP flow j , for each packet indexed by k E [1, ~] , the following variables are defined:

• ] k ' j itter between packet k and packet k + I

• Dk , delay for packelk

• Sk ' the time packet k was sent from the sender

• rk , the lime packet k was received at the receiver

A.2 Metric definitions

The five general network performance metrics are:

A.l.t Utilization Metric
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A.2.2 Fairness Metric

A.2.3 Drop Metric

A.2.4 Delay Metric

A.2.5 Jitter Metric

A.3 Computation of Metrics

(I:ls;f
FI:,S;2

F

'" SLJi-1 t

I
F .

S
;=1 I

N -

'" RDLJ j=1 / /

I N
R

j=1 /

N -

'" RJLJ j=1 ) }

",N RLJ j=l /

(A.2)

(A.3)

(AA)

(A.S)

The first three metrics which are used for overall performance evaluation have been presented

just as they are detined in [BRH03]. The Delay metric been modi tied in order to only cater for

real-time tlows whose performance is heavily dependent on delay and jitter.

A.3.1 Delay Metric Computation

For packet kin UDP flow j the delay is given by:

Dk = 'i: - Sk

Average delay is then computed as

Therefore, the weighted average delay which takes into account the amount of UDP
traffic that has been transferred successful! y becomes

N -

'" RDLJ j=l } }

",N RLJ j=' /
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A.3.1 Jitter Metric Computation

The Jitter metric is dezived based on the definition of jitter for real-time flows [SeF03]. The jitter

of a packet stream is defined as the mean deviation of the difference in packet spacing at the

recei ver compared to the sender, for a pair of packets. Jitter between packet k and packet k +1 is

expressed as

Jk =1 (rkTI -liJ-(Sk+l -Sk) I

=1(rk+l-sk+l)-(rk -sk)1

Average delay is then computed as

(A.9)

(A.ID)

(A.Il)

Therefore, the weighted average jitter which takes into account the amount of UDP traffic
that has been transferred successfully becomes

N -
~ R.J
~j=1 J J

~NR
~j=1 J
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