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Abstract

The study of embeddings is applicable and significant to higher dimensional theories of
our universe, high-energy physics and classical general relativity. In this thesis we inves-
tigate local and global isometric embeddings of four-dimensional spherically symmetric
spacetimes into five-dimensional Einstein manifolds. Theorems have been established
that guarantee the existence of such embeddings. However, most known explicit results
concern embedded spaces with relatively simple Ricci curvature. We consider the four-
dimensional gravitational field of a global monopole, a simple non-vacuum space with
a more complicated Ricci tensor, which is of theoretical interest in its own right, and
occurs as a limit in Einstein-Gauss-Bonnet Kaluza-Klein black holes, and we obtain
an exact solution for its embedding into Minkowski space. Our local embedding space
can be used to construct global embedding spaces, including a globally flat space and
several types of cosmic strings. We present an analysis of the result and comment on
its significance in the context of induced matter theory and the Einstein-Gauss-Bonnet
gravity scenario where it can be viewed as a local embedding into a Kaluza-Klein black
hole. Difficulties in solving the five-dimensional equations for given four-dimensional
spaces motivate us to investigate which embedded spaces admit bulks of a specific type.
We show that the general Schwarzschild-de Sitter spacetime and the Einstein Universe
are the only spherically symmetric spacetimes that can be embedded into an Einstein
space with a particular metric form, and we discuss their five-dimensional solutions.
Furthermore, we determine that the only spherically symmetric spacetime in retarded
time coordinates that can be embedded into a particular Einstein bulk is the general
Vaidya-de Sitter solution with constant mass. These analyses help to provide insight to
the general embedding problem. We also consider the conformal Killing geometry of a
five-dimensional Einstein space that embeds a static spherically symmetric spacetime,
and we show how the Killing geometry of the embedded space is inherited by its bulk.
The study of embedding properties such as these enables a deeper mathematical un-
derstanding of higher dimensional cosmological models and is also of physical interest
as conformal symmetries encode conservation laws.
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Chapter 1

Introduction

Through Einstein’s theory of general relativity it has become widely accepted that our
universe is well-modelled by a four-dimensional spacetime — comprising of three spatial
and one temporal dimensions (Einstein 1920). This idea provides useful descriptions of
objects and phenomena that are of astrophysical and cosmological interest, for example,
black holes, topological defects and various cosmologies. A major unsolved problem in
physics is the unification of the known forces, and over the past century attempts have
been made to understand this problem with the use of more than four dimensions.
In the 1920’s Kaluza (1921) and Klein (1926) tried to unify general relativity and
electromagnetism by proposing the existence of a fifth dimension that was compactified
(i.e. small and ‘curled up’), and therefore unnoticeable. Later, string theory (Green
et al. 1987; Becker et al. 2007; Vilenkin and Shellard 1994) emerged as a way to
combine gravity and quantum theory, and posits that fundamental particles of matter
are characterized by one-dimensional strings with vibrational patterns. It gave rise to
five superstring theories that each specify ten dimensions for the universe. The theory
of supergravity involves the problem of unifying general relativity and supersymmetry.
P-branes, objects having length in p dimensions (Green et al. 1987), were found to
be possible solutions in supergravity theory in eleven dimensions. It was then realized
that the five superstring theories and supergravity are just different representations of
an underlying eleven-dimensional theory called M-theory.

In Horava-Witten (1996) theory, the dimensionality is reduced to five by com-
pactifying six of the eleven dimensions. This has led to a great deal of interest in
five-dimensional brane-world models such as those of Arkani-Hamed-Dimopoulos-Dvali
(1998; 1999), Randall-Sundrum (1999a; 1999b) and Dvali-Gabadadze-Porrati (2000).
A brane-world is a particular three-dimensional spatial or four-dimensional spacetime
hypersurface (the brane) embedded into a higher dimensional space, referred to as the
bulk, where gravity propagates freely. Randall and Sundrum (1999a,b) considered a
four-dimensional Riemannian spacetime embedded in a five-dimensional Anti-de Sitter
bulk (AdSs5)) where the cosmological constant is negative. Dvali et al. (2000) presented
a model in which four-dimensional Newtonian gravity emerges on a three-dimensional
brane embedded in five-dimensional Minkowski space where the extra dimension is
infinite. Other higher dimensional theories include induced matter theory (Wesson
and Ponce de Leon 1992; Wesson et al. 1996; Overduin and Wesson 1997; Wesson
1999), where matter is described as arising from higher dimensional effects, D-brane



models (Polchinski 1995, 1997; Johnson 2003) of high-energy physics, and Einstein-
Gauss-Bonnet (EGB) gravity (Dadhich 2005, 2007), which is a modified view of grav-
ity involving higher order metric derivatives. Thus, the study of higher dimensional
theories is a popular and fertile field with the aim of improving our understanding of
the universe.

The concept of an embedding is a significant aspect in the study of higher di-
mensions. To proceed with this study, one requires an understanding of how to embed
a manifold into another manifold of higher dimension, and so it has led to a renewal
of interest in embedding theory. An embedding is a map of a manifold to the higher
dimensional space in which it is embedded, with the conditions that it is a homeomor-
phism onto its image and that there is a one-to-one relationship between the tangent
spaces of the two manifolds (Goenner 1980). The lower dimensional space is referred to
as the embedded space and the higher dimensional space as the embedding space or the
bulk. The embedding can be local, where one maps neighbourhoods in the embedded
space, or global, where one maps all of the embedded space. In addition, this mapping
may be isometric (distance preserving) and/or analytic.

Since the nineteenth century isometric embeddings into higher dimensions have
been explored extensively in geometry (Janet 1926; Cartan 1927; Friedman 1961; Nash
1954, 1956; Clarke 1970; Greene 1970; Greene and Jacobowitz 1971; Gunther 1989;
Campbell 1926; Magaard 1963; Anderson and Lidsey 2001; Dahia and Romero 2002a, b;
Anderson et al. 2003), with more focus on non-Euclidean spaces in recent times. The
main idea in these studies was to determine the minimum number of extra dimensions
needed to isometrically embed a pseudo-Riemannian manifold into a higher dimen-
sional manifold. This minimum value is referred to as the codimension. In the case
of Euclidean embedding spaces, the codimension is typically large (Stephani et al.
2003). However, when curvature is introduced in the bulk, the codimension is dras-
tically reduced to one. The Campbell-Magaard (1926; 1963) theorem provided the
first existence result for a local isometric embedding into a non-Euclidean space, and
it has led to several generalizations (Anderson and Lidsey 2001; Dahia and Romero
2002a,b; Anderson et al. 2003). Of particular importance are the theorems given by
Dahia and Romero which prove that there exists a local isometric embedding of any
analytic pseudo-Riemannian manifold into any Einstein space (2002a), and also into a
more general pseudo-Riemannian space (2002b). Furthermore, it has been shown (Kat-
zourakis 20050; Moodley and Amery 2012) that global embeddings can be constructed
from these local ones. This particular construction of a global embedding relies signifi-
cantly on the relevant local embeddings, and so it motivates one to explicitly determine
local embeddings for spaces of interest.

In this thesis we are concerned with codimension-one isometric embeddings be-
tween pseudo-Riemannian manifolds. The technique used to determine the embedding
space for a given pseudo-Riemannian manifold is to solve a form of the higher dimen-
sional field equations known as the Gauss, Codazzi and propagation equations, such
that the higher dimensional metric reduces to the given lower dimensional metric along
a hypersurface. This hypersurface is taken to be one in which the coordinate of the
extra dimension is a constant; so it is orthogonal to the extra dimension. The extrin-
sic curvature of a manifold is a second order tensor that measures the curvature of a
manifold in relation to the space in which it is embedded. The Gauss and Codazzi



equations are expressed in terms of the extrinsic curvature of the embedded space,
and Dahia and Romero (2002a) prove that these equations need only be solved on the
hypersurface we embed. The propagation equation specifies the rest of the bulk via
the higher dimensional metric.

Despite results for the existence of embeddings, the embedding equations, even
for specific cases, are not so easy to solve. Explicit solutions have been found for the
embeddings of Einstein spaces into Einstein (Anderson and Lidsey 2001) and Ricci
flat (Lidsey et al. 1997) spaces, for embedding n-dimensional plane wave backgrounds
and Ricci flat spacetimes into (n+ 1)-dimensional manifolds sourced by massless scalar
fields (Anderson and Lidsey 2001), and for embedding n-dimensional Einstein spaces
into (n 4 1)-dimensional manifolds sourced by self-interacting scalar fields (Anderson
et al. 2003). It should be stressed that embedding theory is complementary to a brane-
world perspective in which some global metric and topology are assumed — often with
a (possibly unphysical (Amery et al. 2011)) d-function energy-momentum tensor. From
an embedding perspective, in order to study a connection to four-dimensional gravity,
one should embed the perturbed metric.

The increased attention given to higher dimensional models indicates that it has
become important to obtain descriptions of objects (for example, stars, black holes and
topological defects) that are astrophysically and theoretically interesting in the context
of higher dimensions — cf. astrophysically derived constraints on Zs-symmetric higher
dimensional models (Deruelle and Katz 2001; Londal 2005; Amery et al. 2011). In addi-
tion to ‘stacking’ type results (such as the ‘black string’ (Horowitz and Strominger 1991;
Gregory and Laflamme 1993, 1994)) and model dependent numerical analyses (such as
that of Wiseman (2002)), some work has been done on embedding, for example, the ex-
terior Schwarzschild black hole (Dahia and Romero 2002a), and other non-topological
vacuum spacetimes into Einstein (Anderson and Lidsey 2001) and Ricci flat (Lidsey
et al. 1997) spaces, and embedding Friedmann-Lemaitre-Robertson-Walker models of
our universe into flat space (Ponce de Leon 1988; Wesson 1992, 1994). This is relatively
easy as the embedded manifolds have comparatively simple Ricci curvature, which re-
sults in commensurately simpler embedding equations. The exterior field to a gauge
topological defect (such as a local string) with a J-function energy-momentum may be
simply embedded (Amery et al. 2011; Anderson and Lidsey 2001). Spacetimes having
non-trivial Ricci curvature, such as global topological defects, are more difficult to deal
with.

The overall objective in this thesis is to apply the Dahia-Romero (2002a) the-
orem to investigate isometric embeddings of four-dimensional (4D) spherically sym-
metric (SS) spacetimes into five-dimensional (5D) Einstein spaces, and to study the
geometries of the resulting embedding spaces. Spherically symmetric spacetimes pro-
vide good descriptions of many structures in our universe, and the embeddings of these
astrophysical /cosmological objects into higher dimensions may yield further insight
into the properties of such objects. We focus our attention on Einstein spaces because
of their role in high-energy physics (Randall and Sundrum 1999a,b; Howe et al. 1998;
Lavrinenko et al. 1998), and since it is a reasonable place to start.

First we choose to embed the gravitational field of a four-dimensional global
monopole, motivated (in part) by the fact that it represents one of the simpler space-
times with non-trivial energy-momentum. It is therefore of mathematical interest as



a case study for embedding more complex spacetimes. Despite controversy about stabil-
ity (Vilenkin and Shellard 1994; Goldhaber 1989; Rhie and Bennett 1991; Perivolaropou-
los 1992) and severe cosmological constraints on their number density (Vilenkin and
Shellard 1994), global monopoles, as examples of topological defects, are interesting in
their own right since they are common in symmetry breaking theories of high-energy
physics and cosmology (Vilenkin and Shellard 1994; Kibble 1976; Vilenkin 1985; Bar-
riola and Vilenkin 1989; Sakellariadou 2007; Bezerra de Mello 2001; Bronnikov et al.
2002). The global monopole metric is also of theoretical interest appearing as the
r — 0 limit of a Kaluza-Klein black hole solution in EGB gravity (Maeda and Dadhich
2006). There it regularizes the metric and weakens the singularity sufficiently for mass
to vanish at » = 0. The natural appearance of this metric in this context may well
be at least as significant physically as the original context for which it is named. In
the context of EGB gravity, by embedding the global monopole metric, we are em-
bedding the Gauss-Bonnet-weakened singularity of a Kaluza-Klein black hole (Maeda
and Dadhich 2006). Once a local embedding is determined, it can be used to build
various global embedding spaces (noting that the global monopole metric is only valid
for r > 7).

Next we focus on the general embedding problem for spherically symmetric space-
times. Since the usual method of solving the five-dimensional metric for a chosen four-
dimensional space leads to difficulties, we take a slightly different approach in order
to gain insight into this problem. We restrict the metric of the Einstein bulk to a
particular form, and we investigate the kind of spherically symmetric spacetimes that
may embed into it. We also consider spherically symmetric spacetimes in retarded time
coordinates, which describe radiating solutions such as the Vaidya-de Sitter model, and
examine the embeddings of these spacetimes into Einstein bulks with special metric
types.

Another objective in this thesis is to study the conformal and Killing geometries
of a five-dimensional Einstein bulk that embeds a static spherically symmetric (SSS)
spacetime. Conformal and Killing geometries are important tools in general relativ-
ity that can help cast light on the structure of a spacetime such as its symmetries,
and provide information on conservation laws. Thus, it is of both mathematical and
astrophysical interest to investigate the relationship between the conformal Killing ge-
ometries of embedded and embedding spaces.

The scope of this thesis is as follows.

e Chapter 2: In this chapter we present the framework for isometric embeddings of
pseudo-Riemannian manifolds. We begin by reviewing some basic mathematical
tools pertinent to this study. In particular we provide definitions of an isometry,
the pseudo-Riemannian line element and the curvature tensors derived from it,
and highlight the Einstein field equations of general relativity. Extrinsic curvature
is an important aspect of an embedding, and so we explain this concept along
with intrinsic curvature. Local and global isometric embeddings are formally
defined. We introduce the Gauss, Codazzi and Ricci equations for embeddings
with arbitrary codimension, and also explain the meaning of a rigid embedding.
We provide a simple background of embedding theorems and particular results,
before focussing our attention on the Dahia-Romero (2002a) theorem for Einstein



embedding spaces. We review the methodology explained in their theorem as we
shall implement it in this thesis to treat our cases of interest. We conclude the
chapter with some examples of known embeddings: the embedding of Einstein
spaces into Einstein spaces, and the embedding of Ricci flat cosmic strings into

Ricci flat bulks.

Chapter 3: In this chapter we first discuss the global monopole exterior spacetime
and some of its properties, and then proceed to consider the embedding of this
spacetime. We obtain a Riemann flat solution that embeds the global monopole
metric. We further find that the global monopole metric is the typical static
spherically symmetric spacetime for embedding into a bulk of a certain form. We
analyze the properties of the resulting bulk metric to gain a better understanding
of the solution, and verify that the embedding space is related by a coordinate
transformation to 5D Minkowski space. From a 5D perspective this embedding
implies stability for the global monopole. We briefly discuss various global em-
beddings, including cosmic string solutions. We also discuss the relevance of
the solution in the context of induced matter theory and the EGB gravity sce-
nario where it can be interpreted as a local embedding into a Kaluza-Klein black
hole. The results of this chapter are original work and are being prepared for
publication (Moodley and Amery 2013b).

Chapter 4: In this chapter we aim to investigate what spherically symmetric
spacetimes may embed into particular 5D Einstein spaces. We treat two forms
for the 5D metric. In the first form, the unknown functions depend on the extra
dimension only, so that the components of this metric are separable with respect
to the extra dimension. This form guarantees that the embedding is ‘energeti-
cally rigid” and that the Killing geometry of the embedded space is inherited by
the higher dimensional space (Londal 2005; Amery et al. 2011). The embedding
analysis for this metric form leads to two kinds of four-dimensional solutions:
the general Schwarzschild-de Sitter spacetime and the Einstein Universe. We
present the properties of these spacetimes and discuss solutions for their em-
bedding spaces. The second form that we choose for the bulk metric involves
an unknown function that depends on the extra dimension as well as the radial
coordinate. The analysis for this metric indicates that there can be no radial
dependence, and so it reduces to a special case of the first bulk form. Next we
discuss 4D spherically symmetric spacetimes in retarded time coordinates and
investigate 5D Einstein bulk metrics that may admit embedded spaces of this
form. For our choices of the bulk metric, we obtain the Vaidya-de Sitter model
with constant mass as the only four-dimensional solution. Part of the original re-
search presented in this chapter has been published (Moodley and Amery 2011),
and other parts are being prepared for publication (Amery and Moodley 2012;
Moodley and Amery 2013q; Okelola et al. 2013).

Chapter 5: Here we study the conformal geometry when embedding 4D static
spherically symmetric spacetimes into a 5D Einstein bulk with a general form.
We review the properties of conformal Killing vectors and note some results for
decomposable spaces. Then we outline the method we use and the equations



that must be solved to determine the conformal Killing vectors of the specified
5D bulk. We show that the Killing geometry of a static spherically symmetric
spacetime is inherited by its Einstein embedding space. Other possible conformal
and Killing vectors of the Einstein bulk are also discussed. It is proved that there
are no hypersurface-like Killing vectors other than those inheriting the embedded
Killing geometry. In our partial analysis of the general conformal geometry, we
find that for a special case of the bulk, there does exist a conformal Killing vector
in the direction of the extra coordinate. The results of this chapter are original
work and have been published in Amery et al. (2011).

e Chapter 6: We conclude with a summary of the results produced in this study,
and also comment on open problems and future work.

e Appendix A: This appendix is complementary to chapter 2 and is provided for
the reader’s interest and to contextualize the local results reported in this thesis.
Here we present previous work carried out by the author on the construction

of a global isometric embedding from given local isometric embeddings into an
Einstein bulk (Moodley 2008; Moodley and Amery 2012).

We consistently adopt the following notational conventions: Roman lower case
indices label the coordinates (0,...,n — 1) of the embedded space, Roman upper case
indices label its spatial coordinates (1,...,n — 1), and Greek indices label the coor-
dinates (0,...,m — 1;m > n) of the embedding space. A tilde denotes quantities
pertaining to the embedding space and an overbar denotes quantities obtained from
the n-dimensional component of the higher dimensional metric. We use a prime and
an overdot to denote partial differentiation with respect to the coordinates r and v,
respectively.



Chapter 2

Embedding Theory

2.1 Introduction

Here we present the embedding results and techniques that will be applied in subse-
quent chapters. To begin with, in section 2.2 we review the tools of differential geometry
that are essential in describing an embedding. Section 2.2.1 contains material on fun-
damental tensorial quantities defined on pseudo-Riemannian manifolds and the field
equations of general relativity. The concepts of extrinsic and intrinsic curvature are dis-
cussed in section 2.2.2, and formal definitions of local and global embeddings are given
in section 2.2.3. In section 2.2.4 we present the general embedding equations known
as the Gauss, Codazzi and Ricci equations, and explain the meanings of intrinsic and
energetic rigidity. A brief history of existence theorems for local and global embeddings
is provided in section 2.3. In section 2.4 we review the Dahia-Romero (2002a) theorem
for embedding into Einstein spaces, and in section 2.5 we present some examples of
known solutions: the embedding of Einstein spaces into Einstein spaces, and the em-
bedding of Ricci flat cosmic strings into Ricci flat bulks. Appendix A is complementary
to this chapter and provides further information on global embeddings.

2.2 Differential geometry

Einstein’s theory of general relativity has laid the foundations for much of cosmology
and astrophysics. It provides significant tools that are useful in studying embeddings.
The theory presented here can be found in texts by Bredon (1997); Choquet-Bruhat
et al. (1982); Nakahara (1990); Hawking and Ellis (1973); Stephani (2004); Hobson
et al. (2006); Goenner (1980) and Eisenhart (1926).

2.2.1 Fundamentals

A n-dimensional C* (respectively, C*°) differentiable manifold is a second countable
Hausdorff space M together with a collection of charts {(U,, ¢o)} such that:

e cach chart is a homeomorphism ¢, : U, — U(/X C R™ where U, is open in M
and U(; is open in R",



e cach p € M is in the domain of some chart; i.e. the U, cover M,

e for any two charts ¢ : U — R™ and ¢ : V — R"”, the map
pop L p(UNV) — ¢(UNV)is C* (resp., C*), and

e the collection of charts is maximal.

We define coordinates for a point p € U, C M by 2* = u*o¢, : U, — R, a=1,...,n,
where u® : R" — R. For any point p in a smooth manifold M, T,M denotes the
tangent space of M at p, and is the vector space of all tangent vectors to M at p.

A n-dimensional differentiable manifold M is essentially a topological space that
locally resembles n-dimensional Euclidean space R™, and on which points can be as-
signed the real coordinates (x', 2% ..., 2"). A (n—1)-dimensional submanifold (n > 3)
of M is known as a hypersurface. In general relativity theory we are concerned with
pseudo-Riemannian manifolds endowed with the line element

ds® = gap(2°)da"dx?,

that measures the invariant infinitesimal distance ds between neighbouring points. A
strictly Riemannian manifold has a positive definite line element. The metric tensor g
having components ¢, describes the local geometry of the manifold. This symmetric
tensor can be used to raise or lower indices of tensors e.g. u, = guu’; satisfies the
property gu.,g% = 6¢, the Kronecker tensor; and has a vanishing covariant derivative —
see equation (2.2.4). In this thesis we employ the signature convention (— + ++) for a
four-dimensional spacetime. A pseudo-Euclidean (flat) manifold (R™) has a metric of
the form

ds® = Zsa(dxa)Q, £, = E1.
a=1

If e, =1 for all a, then the space is strictly Euclidean. The 4D Minkowski spacetime
of special relativity is an example of a pseudo-Euclidean manifold, and is represented
by ds* = —dt*+ dx?* + dy* + dz* in cartesian coordinates or ds* = —dt? + dr?+r?(d6? +
sin? #d¢?) in spherical coordinates.

Curvature is an important property of a pseudo-Riemannian manifold and it
can be described using the notions of extrinsic or intrinsic curvature. From the n-
dimensional metric g, we may derive the following measures of intrinsic curvature of
the manifold: the symmetric connection, Riemann tensor, the symmetric Ricci tensor,
and the Ricci scalar, which are given respectively by:

1

%, = §9ad(9cd,b + Gave = Goe.d); (2.2.1)

Ry =T = T + Tl — T 5 (2.2.2)

Rop =Ty = T + 10T 0 — Tl (2.2.3)
R = g™ Ry,



(Note that we use the above conventions about sign consistently in this thesis.) Here
a comma indicates partial differentiation with respect to a coordinate. We use a semi-
colon or a nabla to denote covariant differentiation. The covariant derivative of a type
(r,s) tensor T is a type (r,s + 1) tensor VT and its components are:

ai...ar . ai...Qr . ai...ar
VT b1..bs T by..bs;d — T b1...bs,d
al ca...ar ar ai...c
+I ch by...bs +-o 4T ch by...bs (2-2-4)

c aj...ar c aj...ar
—I bldT cha..bs — 7T T r bSdT b1...c

By convention, a Ricci flat manifold is one that has vanishing Ricci tensor but non-
zero Riemann tensor. For a Riemann flat manifold, both the Riemann and Ricci
tensors vanish. The historical relationship between intrinsic and extrinsic curvature
has been that of complementary discussions as the community struggled to get to grips
with pseudo-Riemannian geometry. General relativity is usually formulated from an
intrinsic perspective. We defer a detailed discussion of extrinsic curvature to section
2.2.2.

Suppose f is a function between two manifolds M and N. The function f is a
homeomorphism if

e f and its inverse f~! are continuous, and

e f is bijective i.e. one-to-one and onto.

Then M is said to be homeomorphic to N. Furthermore, f is a C* (C°°) diffeomor-
phism if it is a homeomorphism with f and f~1 C* (C*°) differentiable. Homeomorphic
spaces may be deformed from one to the other in a continuous manner, while diffeomor-
phic spaces may be deformed into each other smoothly. Consider pseudo-Riemannian
manifolds (M, g) and (N, g). A diffeomorphism f : M — N is an isometry if it is
metric preserving:

gf(P)(f*(V)ﬂf*(W)):gp(‘/?W)> v V>W€TPM7 v pEM7

where f, : T,M — T,N is the differential map. This property can be expressed in
coordinate form as

Oy 0y’ .
5 Bt Jab(f(P)) = 9i;(p),

where ' and y® are the coordinates of p and f(p), respectively. A diffeomorphism
f: M — N is a conformal transformation if

G5y (F(V), (W) = 2Pg (V,W), ¥ VW € T,M, ¥ pe M,

where u is a function on M. In coordinate form, the above condition means that

8ya 8yb N u
577 5.5 Je([(0) = € ®gij (p)-




This type of diffeomorphism preserves the metric up to a scale. A pseudo-Riemannian
manifold is conformally flat if it can be mapped to flat space by a conformal transfor-
mation. Two metrics h and h on M are conformally related if h = e2WPh, pe M,
for some function u, called the conformal factor, on M.

The Lie derivative is an essential tool in the study of the symmetries of a spacetime
(see chapter 5) and it is defined as follows: the Lie derivative of a type (r,s) tensor T
with respect to a vector field X is a type (r, s) tensor LxT with components:

ai...Qr _ ai...ar c
LxT by..bs T bl..Abs,cX

cay...ar al ... _ mai...c ar
=T bl...bSX - T b1..‘bsX

,C sC

at...ar c at...ar c
+T obeX oy T+ T by X by

Another useful tensor is the Weyl tensor or conformal curvature tensor, which is in-
variant under conformal transformations, and is given by

1
Cabcd - Rabcd - m (gacRbd + gbdRac - gbcRad - gadec)
R

i (n—1)(n—2) (9acgbd = GadGee) -

The classification of the Weyl tensor is relevant to the study of gravitational fields
(Stephani et al. 2003). The Weyl curvature plays a significant role in the dynamics of
brane-world models, where the bulk Weyl tensor can transmit non-local effects, such
as tidal and gravitational wave effects, onto the brane (Maartens 2001; Maartens and
Koyama 2010).

The most important formulae in general relativity are Einstein’s field equations
given by

1
Gab - Rab - éRgab - 87TGTab + Agab;

that relate spacetime geometry with matter and energy. The quantity T, is the energy-
momentum or matter tensor, A is the cosmological constant, and G is the gravitational
constant. The FEinstein tensor G, has vanishing divergence, which implies energy-
momentum conservation T“i’b = 0. The field equations may be solved to yield spacetime
metrics. However, this is often a non-trivial task due to the non-linearity, and hence
complexity, of the equations. Moreover, this problem becomes even more difficult
when more than four dimensions are considered. Thus, exact solutions cannot always
be determined.

In this study we are particularly interested in Einstein spaces. A n-dimensional
Einstein space has the Ricci tensor and Ricci scalar

2A

Ra = 5 _Yab,
b 2_ngb
_2nA
2-—n’
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where A is the cosmological constant. The Einstein tensor is G, = Ag,, and so Einstein
spaces are empty or vacuum (7, = 0). The case A = 0 corresponds to a Ricci flat
space Rq = 0.

2.2.2 Extrinsic and intrinsic curvature

The concept of the curvature of a manifold is significant in general relativity and it can
be perceived in two complementary ways: namely, intrinsic and extrinsic curvature.
The intrinsic perspective of a manifold is confined to the manifold itself, whereas the
extrinsic curvature of a manifold is dependent on how it is embedded in a higher
dimensional space. Thus, in embedding one space into another, the extrinsic curvature
will provide a description of the embedded space in relation to the embedding space.
A mathematical approach to determining the curvature of a manifold is to consider
the metric connection (2.2.1) and the Riemann tensor (2.2.2) defined in section 2.2.1.
The Riemann tensor is a useful measure of intrinsic curvature, and a manifold is said
to be intrinsically flat if R?,_, vanishes. Extrinsic curvature can be expressed in terms
of the connection I'*,.. As an example (Stephani 2004), the extrinsic curvature of a
three-dimensional space in a four-dimensional spacetime with metric

ds? = —*dt* + gapdr?da®,

where ¢ = ¢(t,x,y, z) and A, B label spatial coordinates, is given by

Pseudo-Euclidean spaces are intrinsically and extrinsically flat. If a seemingly curved
space can be transformed into a pseudo-Euclidean space globally, then the space must
be intrinsically flat. To develop intuition, let us consider a cylinder with open ends
whose surface is represented in cylindrical coordinates (z, ¢) by

ds* = dz* + a*d¢?,

where a is the fixed radius. By making the coordinate transformation x = z, y = a¢,
the metric can be written as the two-dimensional Euclidean metric

ds?® = da® + dy>.

This indicates that the surface of the cylinder is intrinsically flat, although it appears
curved in three-dimensional space. With respect to its embedding space ds? = dz? +
r2d¢? + dr?, it has the non-zero extrinsic curvature component

Q¢¢ = —T.

In a more physical sense, we observe that the cylinder can be built from a flat sheet
without any distortion. This cannot be done for a spherical surface, which is both
extrinsically and intrinsically curved. These notions of curvature play a key role in
the embedding equations with the extrinsic curvature providing a geometrical relation
between the embedded and embedding spaces — see section 2.4.
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2.2.3 Definition of an embedding

Definition 1. Suppose M is a n-dimensional analytic manifold with metric g;; and
N is a (n + k)-dimensional analytic manifold with metric §,,. Then a function f :
UCM — N, with U an open coordinated neighbourhood in M, is a local isometric
embedding (Goenner 1980) if:

1. f is a homeomorphism onto its image,
2. the differential map f, : T,M — Ty, N is injective (one-to-one) Vp € U, and

3. gp(V.:W) = gsn (£(V), f(W)), ¥V V.W e T,M, V pelU.

The last condition means that the embedding is isometric at all points of U. The
embedding is analytic (or C™, C*) if f is analytic (resp. C™, C*°). The map f :
M — N is a global isometric embedding if and only if the above three conditions
hold for all points in M (Goenner 1980).

In coordinate form, f is a local isometric embedding if there exist n + £k dif-
ferentiable functions y® = o®(2') such that the Jacobian matrix {%} has rank n
and

0o® 0o? _
gU(p) = Ol @gaﬁ’(f(p)) )

where ¢, y* denote coordinates of p, f(p), respectively. The above equation is equiv-
alent to the existence of solutions to the Gauss, Codazzi and Ricci equations (defined
in section 2.2.4) for local embeddings.

2.2.4 Gauss, Codazzi and Ricci equations

Consider a n-dimensional space V,, with metric

ds%n) = gijd$idxj7

and a m-dimensional space V,, with metric

ds%m) = agpdy®dy”,
where m > n and y® = y*(z*). We want to embed V,, (the embedded space) into V,,
(the embedding space).
The extrinsic curvature of V,, in V,, has the components (Eisenhart 1926)

(o) _ o), o
Q ij aaﬁnﬁ( )y 570

1,

where n%(?) are the components of unit normal vectors orthogonal to V, and each other;
oc=mn,...,m— 1; and the terms in brackets are labels and not indices.

A derivation by Eisenhart (1926) produces three equations required for embedding
V,, into V,,, as a hypersurface. Note that, given V,,, these equations are equivalent to
solving the field equations for V,,,. The equations are known as the Gauss, Codazzi and
Ricci equations and are given, respectively, by

12



R = Y e[ 077 — Q0T + Ragos v’ 0 i (2.2.5)

g g TO T TO T — o 6 o
AL — U =D ety — 87U+ Ragro vy 9 5™, (2.2.6)
(To) (to) (o7) 4(07) (e7) 4(e7) thio(M) o) (M)
tj,lc - tk:,j - Ze(@) [tjg tkg - tk:g tjg |+g [Qlk th - Qlj Qhk]
0
- Ra)\,uu yu’jyuykn/\(a)na(ﬂ- (227)

In the above, e,) = &1 and tg-m) represents the twisting of the n®(?) vectors in relation
to one another, where o, 7 =n,...,m — 1, o # 7. For codimension one, the twisting
vectors tg.m) vanish. The Gauss (2.2.5) and Codazzi (2.2.6) equations must be solved on
the hypersurface V,, and the Ricci equation (2.2.7) must be solved off the hypersurface.
For embeddings with codimension one, the Ricci equation is void and the space-space
components for the Ricci tensor for V,, are typically used as a propagation equation
(Dahia and Romero 2002a). There does not exist any known general solution to these
equations, so one must consider particular embedding spaces.

The embedding is described as being intrinsically rigid, if the extrinsic curvature
components Q(fj) and the twisting vectors tgm) can be written in terms of only the
metric g, the Ricci tensor for g, and their derivatives (Goenner 1980). Furthermore, if
these intrinsic quantities specify Q(igj) and tgm) uniquely, then the embedded space V,
is also intrinsically rigid. For an energetically rigid embedding, the extrinsic curvature
and twisting vectors depend on only the metric and Ricci tensor, and if this dependence
is unique, then V;, itself is said to be energetically rigid (Goenner 1980). The concept
of rigidity can be used to determine the variables upon which the extrinsic curvature
depends, which allows one to make suitable assumptions for the extrinsic curvature
in order to help solve the Gauss, Codazzi and Ricci equations (Londal 2005). All the
explicit embeddings we consider in this thesis are rigid. We shall briefly discuss rigidity
and analyze implications for Killing geometry inheritance in section 5.2.1.

2.3 Existence results

The earliest studies of local embeddings focussed on flat embedding spaces. The prob-
lem of embedding a m-dimensional Riemannian manifold locally into an Euclidean
manifold was first discussed by Schléfli (1871). It was suggested that the dimension
of the embedding space should be @ Later, Janet (1926) and Cartan (1927)
proved this true in their existence theorem for local isometric embeddings. The indef-
inite case was treated by Friedman (1961). Embedding locally into Euclidean spaces
has been useful as a way to obtain and classify general relativistic solutions, and can
provide insight into various properties of spacetimes (Stephani 1967, 1968; Stephani
et al. 2003). However, there is no physical reason for preferring flat embedding spaces,
and other pseudo-Riemannian manifolds, such as spaces of constant curvature (Rund
1972), have been utilized (Campbell 1926; Magaard 1963; Goenner 1980). The first
local existence result for a non-Euclidean bulk was provided by the Campbell-Magaard
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theorem, stated by Campbell (1926) and proved by Magaard (1963). The theorem
guarantees that a Riemannian manifold has an analytic local isometric embedding into
a Ricci flat space where at least one extra dimension is required. It is interesting that
the presence of curvature in the bulk reduces the codimension to one. The Campbell-
Magaard theorem has led to several generalizations (Anderson and Lidsey 2001; Dahia
and Romero 2002a,b; Anderson et al. 2003). Anderson and Lidsey (2001) presented
constructions embedding Einstein spaces into Einstein spaces and for the embedding
of plane wave backgrounds and Ricci flat spacetimes into five-dimensional spacetimes
sourced by massless scalar fields. It was further shown that Einstein and Ricci flat
spacetimes may be embedded into spacetimes sourced by self-interacting scalar fields
(Anderson et al. 2003). Dahia and Romero (20024,b) extended the Campbell-Magaard
theorem to Einstein embedding spaces, and later to more general pseudo-Riemannian
manifolds.
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The Dahia-Romero theorems:

e A n-dimensional pseudo-Riemannian manifold can be locally, analytically and
isometrically embedded in any (n+ 1)-dimensional Einstein manifold (Dahia and
Romero 2002a).

e A n-dimensional pseudo-Riemannian manifold can be locally, analytically and
isometrically embedded in a (n 4 1)-dimensional pseudo-Riemannian manifold
with a non-degenerate Ricci tensor which is equal, up to a local analytic diffeo-
morphism, to the Ricci tensor of an arbitrarily given pseudo-Riemannian manifold
(Dahia and Romero 2002b).

We discuss the technique for embedding into Einstein spaces in the next section.

The meaning of the second Dahia-Romero theorem is as follows. Let (E ,g) be the
arbitrarily given (n+1)-dimensional pseudo-Riemannian manifold with non-degenerate
Ricci tensor S, in a coordinate system 2. Denote the n-dimensional embedded space
by (M, g), and the (n+ 1)-dimensional local isometric embedding space by (E, §) with
coordinates z7 and a point p € E. The Ricci tensor Rag for E is equivalent to Sap:

- oftof

Ropla?) = 2L 0T 5,0(7),
where f : E — E is a local analytic diffeomorphism at p, 27 = f7(27), and
det(%ﬂp # 0. So M has a local isometric embedding into F, which is ‘Ricci equiv-
alent’ to E, and the embedding will be unique for all Ricci equivalent tensors. Note
that the embedding of M into E is not isometric in general. The diffeomorphism that
ensures Ricci equivalence reduces to a coordinate transformation only for Einstein em-
bedding spaces, in which case the embedding into E is truly isometric (Amery et al.
2011).

Embedding spaces having singular energy-momentum tensors (Dahia and Romero
2004) and five-dimensional Weyl embedding spaces (Dahia et al. 2008) have been con-
sidered, and the existence of harmonic (volume minimizing) locally analytic and isomet-
ric embeddings into Ricci flat and Einstein spaces has also been established (Chervon
et al. 2004).

Similarly to the local case, early work on global embeddings concentrated on
Euclidean embedding spaces and involved quite high codimensions. General results
include those by Nash (1954, 1956) and Kuiper (1955) and extensions by Clarke (1970);
Greene (1970); Gromov (1970); Greene and Jacobowitz (1971); Gunther (1989) and
Gunther (1991). Global embedding theory is useful as a way to find new solutions
in general relativity (Stephani 1967, 1968). Classical relativistic applications of global
embedding theory also include the maximal analytic extensions of the Schwarzschild
solution given by Fronsdal (1959), and of the Reissner-Nordstrom and Kerr spacetimes
by Plazowski (1973), as well as results by Friedman (1965) and Penrose (1965). Global
embeddings provide insight into the global features of a manifold, such as causality
(Clarke 1970). We note that the systematic analysis of global Euclidean embeddings
of exact solutions has not yet been carried out (Stephani et al. 2003).

Global embeddings into non-Euclidean spaces have been studied recently by Kat-
zourakis (2005b) and Moodley and Amery (2012). Essentially, Katzourakis (2005b)
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partially proved that the Campbell-Magaard theorem for Ricci flat spaces can be made
global and that the bulk has the topology M x Y, where M is the embedded space
and Y is a one-dimensional analytic manifold. The product metric for the bulk is valid
only for embedded spaces that are Ricci flat or Riemann flat. This is because the local
embedding equations yield a product metric only for Ricci flat or Riemann flat embed-
ded spaces — refer to section 2.4 for the technical details. The methodology given by
Katzourakis (2005b) can be improved to show that any pseudo-Riemannian manifold
has a global isometric embedding, of codimension one, into an Einstein space, and also
into a more general pseudo-Riemannian bulk (Moodley and Amery 2012). (Details of
these proofs are presented in the appendix for the reader’s interest.) These particular
constructions of a global embedding rely significantly on the relevant local embeddings.
Thus, one first has to determine the local embedding of a chosen spacetime before one
can proceed to build its global embedding. In the next section we explain a technique
that may be used to determine local isometric Einstein embeddings for spacetimes of
interest.

2.4 Technique for embedding into Einstein spaces

In this thesis we focus on the Dahia-Romero (2002a) theorem which provides a way
to determine an Einstein embedding and essentially involves solving the higher dimen-
sional field equations under certain conditions. Here we briefly review the method
for the Einstein embedding. The Ricci equivalent case (Dahia and Romero 2002b) is
similar.

Consider a n-dimensional analytic pseudo-Riemannian manifold M with metric

ds® = ga(27)da" da®.

A theorem given by Dahia and Romero (2002a) proves that M has a local analytic
isometric embedding into any (n + 1)-dimensional Einstein manifold N with metric in
Gaussian normal coordinates (without loss of generality):

5 = Gap(2’, y)dada® = gip(2?, y)da'da® + e((a, y))*dy?, (2.4.1)
62 - 1a gzk(aj]?()) = Gik »

along the hypersurface ¥y, defined by y = 0. Here y denotes the (n + 1)-th coordinate
and

~ 2N
Ra/j = Egaﬁ, A eR.

The metric component g, is a solution to the field equations for (2.4.1) given by
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Ry, = Ry + e (QurQjm — 25 Qi) — = g, (2.4.2)

Rip = 67" (V;Qu — Vi) = 0, (2.4.3)

. 1 ., . - =~ =
G", = —§?]Zk§]m[szkm + €(QinSm — Qi)

I
-

: (2.4.4)

subject to the condition gix(z7,0) = gir(z7). The term Qy, is the extrinsic curvature of

Yo and is defined by

Qik = —%ﬁaag:;k s Qik(IJ, 0) = sz .
The expression R;, is the Ricci tensor derived from g;.. The equations (2.4.3) and
(2.4.4) are, respectively, the Codazzi and Gauss equations defined in section 2.2.4.
Equation (2.4.2) is referred to as the propagation equation because it is used to prop-
agate off the hypersurface ¥ so as to specify the whole bulk.

Taking ¢ to be arbitrary (it can be set to unity without loss of generality), and
appealing to the Cauchy-Kowalewskaja theorem, it can be shown that the above system
of equations admits an analytic solution g;. that reduces to g;, on 3. Moreover, the
Codazzi and Gauss equations (2.4.3) and (2.4.4) need only be solved on the hypersur-
face Xy, since, by a similar argument, solutions to these equations on the hypersurface
imply that solutions exist in the bulk. Thus, the local isometric embedding is guaran-
teed. For a specified g;; and 2, the embedding f : U C M — N is unique. However,
since there are more independent €2;; functions than relevant equations, we have more
freedom in solving €2;;, and so different embedding spaces may be generated. By the
Dahia-Romero (2002a) theorem, any non-degenerate Einstein embedding space may
be used. The above system can be rewritten as

o €% | €g?™ (OGa 0F; OGim OFjk 2N
R; — . : UL hoallhe = —Gik, 2.4.5
k+2 Oy? + 4 dy Oy dy Oy 1—n7* ( )
GF(VQu — Vi) =0, (2.4.6)
R+ eg™ g™ (QurQjm — Qi) = —2A.. (2.4.7)

So to determine a solution for the bulk metric (2.4.1) (with ¢ = 1), we must solve
the propagation equation (2.4.5) for g; and the Codazzi (2.4.6) and Gauss (2.4.7)
equations for €2;, such that
gir(27,0) = gix , d — "= =Q.
gin(27,0) = girs, an 5 dy k
The same formalism applies for locally embedding M along some other hyper-
surface y = yo, yo € R, in N. It can further be shown that an analytic (or C™, C*)
global Einstein embedding exists for any analytic (resp. C™, C*°) pseudo-Riemannian
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embedded space (refer to Appendix A and Moodley and Amery (2012) for a detailed
discussion). Note that the global embedding introduces a further lack of uniqueness,
since its topology and metric need only be specified near the embedded hypersurface.

Since the Cauchy-Kowalewskaja theorem plays a key role in existence results like
the one reviewed here, concerns have been raised regarding physical properties, such
as causality and stability, of the embedding space (Anderson 2004; Wesson 2005). In
response to this problem, the theory of local Sobolev spaces is used to show that (Dahia
and Romero 2005a,b) for any four-dimensional spacetime, there exist initial data sets
whose Cauchy development for the Einstein vacuum equations is a five-dimensional
vacuum space into which this spacetime may be locally, analytically and isometrically
embedded. This ensures that we have causality and stability for both the embedded and
embedding spaces. In the same papers (Dahia and Romero 2005a,b), it is shown that
perturbations outside the (local) initial hypersurface do not affect the future domain
of dependence, and so causality is not violated. This result also holds for embedding
spaces with cosmological constants.

We note that taking gix = ¢ forces the extrinsic curvature €, to vanish, and
the embedding equations (2.4.5)—(2.4.7) become

2A
Ry, = 1 Gik
-n
R=—-2A.
From the first equation above we deduce that R = ff—z, and equating this expression

for R with —2A yields A = 0, so that R;, = 0. Thus, g; can equal g;; only if the
embedded space is Ricci flat or Riemann flat, in which case the embedding space

ds® = g + edy?,

is also Ricci flat or Riemann flat, respectively. This observation is crucial in our analysis
of a global embedding construction (see Appendix A and Moodley and Amery (2012)).

2.5 Examples of embeddings

We illustrate the embedding technique with some known examples. First we present
the embedding of a n-dimensional Einstein space (M, g) into a (n + 1)-dimensional
Einstein bulk, which was obtained by Lidsey et al. (1997) and Anderson and Lidsey
(2001). Since M has a constant Ricci scalar R = 2% where w is the four-dimensional
cosmological constant, we may set

Qi = foir, feR

The Codazzi equation (2.4.6) is trivially satisfied and the Gauss equation (2.4.7) spec-
ifies

—2eA 2ew
f_i\/n(n—l) HCE R
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Note that A is the five-dimensional cosmological constant. Next we assume that

gi = F(y)gir »
where the function F(y) must obey the initial conditions F(0) = 1 and F(0) = —2f.
Inserting this ansatz in the propagation equation (2.4.5) leads to the equation

. on— 2L deA dew
F — F =
+ 2 F+n—1 n—2"

which can be solved along with the initial conditions to obtain

F(y) = loosh (/72 y> 1+ sinh (/52 y>]2’ A0 s
(1+ /755 y) A=0.

Thus, a solution for the (n + 1)-dimensional Einstein space that embeds M is

ds* = F(y)gada'dz® + edy?,

with F(y) expressed by (2.5.1). For M that is Ricci flat or Riemann flat, this bulk
metric reduces to

—2eA
n(n —1)

As another application of the Campbell-Magaard-Dahia-Romero theorems, we
reproduce the example provided by Amery et al. (2011) for embedding Ricci flat cosmic
string exterior spacetimes into Ricci flat bulks with geometries different to (2.5.2).
Consider a 4D cosmic string exterior spacetime M of the form

d3* = exp (2 ) ds® + edy®. (2.5.2)

ds® = eA(T)(—alt2 + d2%) + dr® + B0 dp?,

and take it to be Ricci flat. The functions A, B must satisfy the 4D vacuum field
equations

0= Rp— ir 1 2 (2.5.3)
22 + 5 + 5 + 1
" (B/)Q A/B/ )
0=Rg3= | — B,
N IR R

This system admits the solutions (Vilenkin 1981; Kasner 1921):



=ay, and P = (ayr +as)? a; €R,

or A = (byr 4 b2)*3,  and BT — (i 4+ b2)723, b €R,
and so the metric for M has the form of either a conical geometry (Vilenkin 1981):

ds® = ay(—dt* + dz*) + dr® + (agr + a3)*db?, (2.5.4)

or a special case of the Kasner metric (Vilenkin 1981; Kasner 1921):

ds® = (bir + bo)"3(—dt? + dz?) + dr® + (byr + by)~*/2d6>. (2.5.5)

Note that M is embeddable into the 5D Einstein space (2.5.2) (Anderson and Lidsey
2001) and its Ricci flat (A = 0) embedding is just a stacking M x Y (Lidsey et al.
1997). However, since solutions for embedding spaces need not be unique, other kinds
of geometries may be determined.

Consider the following form for the 5D metric:

Gir, = djag[_eA(y,r)’ e 1, 63(%7“)} ’ (2.5.6)

where A(y,r) = A(r) + A(y) and B(y,r) = B(r)+ B(y) with initial conditions A(0) =
0 = B(0). Using the fact that Ry = 0, we find that the Ricci tensor Ry, calculated
from (2.5.6) also vanishes. Substituting A = 0, Rz = 0 and the ansatz (2.5.6) in the
propagation equation (2.4.5), it can be shown that A and B must satisfy equations
equivalent to the first and third equations of (2.5.3) with 121, B . r replaced by A, B, v,
respectively. Those equations yield solutions of either the conical form:

AW =G, and "W = (Gyy +as)?, @ €R, (2.5.7)

or the Kasner form:

AW = (byy + b)Y, and  ePY = (by +by) %3, b €R. (2.5.8)

The initial conditions indicate that a; = 1, a3 = +1 and by, = 1. The ansatz (2.5.6)
implies that we may take

Oy, = diag[—agoeo, agi1, 0, bgss),

where a, b are constants such that

A(0) = —2a, and B(0) = —2b. (2.5.9)

Using the above expression for €, in the Codazzi-Gauss equations (2.4.6) and (2.4.7)
yields the additional constraints

b
aA + §B’ =0, and 2a(a+2b)=0. (2.5.10)
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~ Consider the cosmic string M to be a conical spacetime (2.5.4), and suppose that
A and B also have the conical form (2.5.7). The conditions (2.5.9) and (2.5.10) imply
that either as = 0 or ay = 0. For ay, = 0, the Ricci flat bulk is

d&* = ai(—dt* + dz*) + dr® + (agr + a3)?d6? + edy?,

which represents a stacking M ((:’)O nical) xY(,), and regains the result of Lidsey et al. (1997).
Here the subscript in brackets indicates the functional dependence. For ay = 0, Amery

et al. (2011) obtain

d&* = ay(—dt* + dz*) + dr* + (a3)*(agy £ 1)%d6? + edy?,

which embeds a %)articular conical cosmic string at y = 0, and can be viewed as another
1

stacking N((yc)0 mieal) o R(y. Similarly, taking M to be a conical type cosmic string (2.5.4)

with A and B having the Kasner form (2.5.8) results in an embedding of a special

conical geometry into NV ((;;asner) X R(y. Other permutations may be similarly considered.

As this example shows, various geometries may be possible for the embedding space of
a given spacetime, which can be useful in the study of higher dimensional models.
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Chapter 3

Gravitational Field of a
Four-Dimensional Global Monopole
Embedded in a Five-Dimensional
Vacuum

3.1 Introduction

During the very early universe, when temperatures were high, the universe is consid-
ered to have been in a purely symmetric state. As the universe expanded and cooled,
this symmetry started breaking at particular temperatures, and phase transitions oc-
curred (Kibble 1982). Topological defects (Vilenkin and Shellard 1994) can be formed
when causally independent regions that undergo phase transitions and then expand to
eventually meet don’t fit together smoothly. Depending on the types of phase transi-
tions and symmetries involved, different kinds of topological defects can be produced,
of which key examples are monopoles, strings, domain walls and textures. The exte-
rior field to a gauge defect (such as a local string) with a d-function energy-momentum
may be simply embedded (Amery et al. 2011; Anderson and Lidsey 2001) — refer to
section 2.5 for examples of embeddings of Ricci flat cosmic strings. Global topological
defects, however, have non-trivial Ricci curvature which makes them difficult to deal
with. Motivated by the Dahia-Romero theorem for Einstein embedding spaces and the
lack of results for embeddings of non-vacuum spaces, we consider the embedding of the
gravitational field of a four-dimensional global monopole, as it represents one of the
simpler spacetimes with non-trivial energy-momentum.

Besides its mathematical interest, the monopole is also of relevance in high-energy
physics and cosmology, appearing as a limit in a model of a Kaluza-Klein black hole
in Einstein-Gauss-Bonnet gravity (Maeda and Dadhich 2006). Thus, a study of its
embedding might provide physical insights into the structure of our universe. In section
3.2 we present the metric of the global monopole exterior and discuss some of its
properties. We then proceed in section 3.3 to embed the monopole exterior metric into
an Einstein space, obtaining a Riemann flat solution in section 3.4. Moreover, we show
how spacetimes of the same form as the monopole metric are the only static spherically
symmetric spacetimes that can be embedded into a particular bulk with vanishing Ricci
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tensor. In section 3.5 we present an analysis of the Riemann flat embedding result. In
particular, we verify that this bulk can be transformed to 5D Minkowski space, and so
by applying recent global embedding theorems, the bulk may be taken as globally flat.
Further comments are provided in section 3.6, and a summary of our main results is
given in section 3.7. The original work presented in this chapter has been written up
and will be submitted for publication shortly (Moodley and Amery 20135).

3.2 The gravitational field of a global monopole

Monopoles are point-like topological defects formed as a result of spontaneous sym-
metry breaking phenomena in the early universe (Kibble 1976, 1982; Vilenkin 1985).
They arise when the vacuum manifold contains surfaces that are not continuously con-
tractible to a point (Vilenkin and Shellard 1994). The simplest global monopole occurs
due to the global symmetry breaking SO(3) — SO(2). A metric describing the gravi-
tational field exterior to such a global monopole is given in static spherically symmetric
(SSS) form, with coordinates t,r, 6, ¢, by (Barriola and Vilenkin 1989)

ds® = —dt* + K~ 'dr? 4 r*(d6* + sin® 0d¢?) , (3.2.1)

where K = 1 — 87Gn? is a constant and 1 ~ 10'% GeV is a typical grand unification
(energy) scale at which monopoles could have formed. To interpret this as the field
exterior to a global monopole, we must restrict r. < r < co. The non-zero components
of the Ricci tensor (2.2.3) for metric (3.2.1) are

Ry =K — 1, Rsz = (K — 1)sin? 0,

and the Ricci scalar is

2(K — 1)

r2

R:

The energy-momentum tensor outside the monopole core has the components

2 2
TOO = T_Z ) 1 = % )
Some features of the metric (3.2.1) are that it is not locally flat, that its subspace
¢ = 5 has a conical geometry with a deficit angle of 872Gn?, and that the monopole
exerts no gravitational force on the matter surrounding it. There are issues regarding
the stability (or instability) of the global monopole (Vilenkin and Shellard 1994; Gold-
haber 1989; Rhie and Bennett 1991; Perivolaropoulos 1992), which are based on the
possible collapse of the monopole’s gravitational field into a string (Goldhaber 1989).
However, there exist counterarguments that such a collapse will not occur (Rhie and
Bennett 1991; Perivolaropoulos 1992): Goldhaber’s argument ignores the core. Global
monopoles are also subject to strong cosmological constraints on their number density
(Vilenkin and Shellard 1994). However, they do arise so naturally that they are of
interest: their stability if embedded into a higher dimensional model is a natural ques-
tion, and a first step is to embed the exterior field. We shall find that the embedding
yields stability from a five-dimensional perspective — see section 3.5.3.

TQQ - O - T33 . (322)
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The global monopole metric has also appeared in the context of Einstein-Gauss-
Bonnet (EGB) gravity (Maeda and Dadhich 2006). Einstein-Gauss-Bonnet theory
(Dadhich 2005) requires a higher dimensional view of gravity and is based on the
notion that gravity is self-interactive. The new field equations involve higher order
derivatives of the metric than those used in general relativity, but reduce to the field
equations of general relativity in four dimensions. The global monopole metric occurs
in the r — 0 limit of a Kaluza-Klein black hole solution in EGB gravity (Maeda
and Dadhich 2006), where n corresponds to a function of a Weyl charge. The Gauss-
Bonnet term thus weakens the singularity, while Kaluza-Klein modes generate a Weyl
charge; the r — oo limit is the Reissner-Nordstrom metric. The n-dimensional bulk is
empty, locally homeomorphic to the product of the usual 4D Lorentzian manifold with
a (n — 4)-dimensional space of constant negative curvature, and has compact extra
dimensions.

3.3 Embedding the global monopole exterior

The equations (2.4.5)—(2.4.7) for the case of an embedding for the global monopole
exterior spacetime g;; into a 5D Einstein space with metric
—2A _

d5* = Gir(2?, y)da'da® + edy?, € =1, Rop = —=fas (3.3.1)

along the y = 0 hypersurface, are

*Gik 4eAgie  §F™ [ OGur OF; OGim OGji -
A EAR. ! m_ g st ZJJ — 2¢R; 3.3.2
Oy? 3 2 oy Oy oy Oy ik ( )
0 =g (V;Qux — Vi), (3.3.3)
—2A = R+ eg* "™ (Qit Qjm — Qi Qim) , (3.3.4)

with initial conditions

gzk(t7 r, 07 ¢7 0) = gzk(t7 T, 07 ¢) )

agzk(t7 r, 07 ¢7 0)
Ay

= -2 sz(ta r, 97 (b) ;

where Qi = Qu(27,0) and Qy = —%%ﬁf. By the Dahia-Romero (2002a) theorem, a

solution to the above system for g;. exists.
We begin to determine the embedding by making the following ansatz for €2;;:

Qi = diagla(r)goo, b(r)gi1, c(r)gaz, c(r)gss]
on the y = 0 hypersurface. Then equations (3.3.3) and (3.3.4) become
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—ad —-2d+——-—=0,
r r
2e(K —
— 2e\ — el 5 ) = 2¢® 4 2ab + 4ac + 4bc .
r
Setting o’ = —2U/, the first equation above implies that ¢ = < + b, a € R. Inserting
this expression for ¢ and a = —2b — 2I, I € R into the second equation yields an

algebraic equation that can be solved for b. Thus, the Codazzi-Gauss equations (3.3.3)
and (3.3.4) admit a solution

(3.3.5)

where I and « are integration constants.
Now we make the assumption

g = diag[—e10), PO (C(y, )2, (Cly,r))?sin® 0]

The initial conditions, which specify the embedded global monopole spacetime, become

A(0,7) =0, B(0,r)=—-InK, C(0,r)=r,
A(O, r) = 4b(r) + 41, B(O, r) = —2b(r), C’(O, r)=—a—b(r)r,

1/2
where b(r) = —1 + (% NECI S ) 30‘722 + 1% — @> , and the propagation equation

3r2 3r
(3.3.2) becomes

ivEy -+ B (3.3.8)

A2 AB N 2AC L deh 2 /A A% ABAC
2 2 C 3 b ’

B* AB N 2BC L deh 2 A A% AB BC 20"
2 2 C 3 B

B+ —+ 5+ 1 o T O>, (3.3.9)

) : . o el —2 B'cc’
ZCO+202+CCA+CCB+%02:6—;(—63+CC”+0/2— C;C
A/ !
+ ZC ) (3.3.10)

In order to determine the Einstein embedding space (3.3.1), one must solve (3.3.8)—
(3.3.10) for A, B and C' subject to the conditions (3.3.6) and (3.3.7). However, as it
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stands, this system of partial differential equations is highly non-linear and very difficult
to solve. A general solution to this system is yet to be found. In the next section
we show that we can obtain a Riemann flat solution by making further assumptions
regarding the unknown functions.

3.4 A Riemann flat solution

Consider the above system (3.3.6)—(3.3.10), and set A = 0 and B = —In K which
trivially satisfies the initial condition (3.3.6). The second condition (3.3.7) for A and
B implies that b(r) and [ vanish. From the expression for b(r), we deduce that

A=0, and o®=¢(1-K).

With our assumptions for A and B and the restriction A = 0, the propagation equation
(3.3.8) holds trivially. From equation (3.3.9) we have C” = 0, and so

Cly,r) = fly)r+g(y),

where f and g are unknown functions of y satisfying f(0) = 1, f(0) = 0 = ¢(0) and
g(0) = —a. Substituting this function into the third propagation equation (3.3.10), we
obtain

2F F + 27212 + (2fg + 25f + AF9) r + 20g + 25* = 2¢(1 — K f?). (3.4.1)

Consider coefficients of powers of r in equation (3.4.1). We must have

ff+fr=o,
fa+af+2fg=0,
Gg+ ¢ =e(l—Kf?).

We solve the above equations with the initial conditions for f and ¢ to find that f =1
and g = —awy, so that

Cly,r)=r—ay, o =¢l-K).
Thus, the metric (3.3.1) of the embedding space is

d3® = —dt* + K 'dr* + (r — ay)?(d6? + sin® 0d¢?) + edy?, (3.4.2)

which embeds the global monopole metric at y = 0. It can be verified that both the
Ricci and Riemann tensors are proportional to 1 — K — ea?, which is zero, and so the
bulk is Riemann flat (see section 3.5.1 for an alternate proof of this). We note that this
local embedding is simple and natural, and that we may follow the same technique to
embed along a hypersurface y = yp, in which case we obtain the Riemann flat metric

ds* = —dt* + K 'dr® + (r — ay + ayo)*(d? + sin® 0d¢?) + edy”. (3.4.3)
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We have obtained the metric (3.4.2) by choosing the simplest functions A = 0
and B = —In K, but the system (3.3.8)—(3.3.10) with initial conditions (3.3.6) and
(3.3.7) may admit other solutions with A # 0 and/or B # —In K. An investigation of
these cases is currently underway.

We observe that metric (3.4.3) lies outside the class of SSS embeddings (contain-
ing only the Einstein Universe and general Schwarzschild-de Sitter space) discussed in
chapter 4 and in work by Moodley and Amery (2011). Following a similar investigation
to that carried out by Moodley and Amery (2011) (see chapter 4), we consider what
static spherically symmetric spacetimes (Stephani 2004)

ds* = —e*dt? + 2 dr? + 12 (d6? + sin® 0dp?)

other than the global monopole metric, may be embedded into a bulk with metric

d3? = —e BN G124 BUN 2 1 (1 — oy)?(d6? + sin® 0dg?) + edy?, (3.4.4)

and vanishing Ricci tensor (A = 0). Here 0 € R and B(y,r) is an unknown function
satisfying the initial condition

B(0,r) = —2v(r) = 2X(r).

From the ansatz (3.4.4), we calculate the extrinsic curvature at y = 0:

Q. = diag [—b(r)goo, b(r)g11, or, orsin’ 9} ,

where B(0,7) = —2b(r). With the above expression and A = 0, the Codazzi (2.4.6)
and Gauss (2.4.7) equations admit a solution

ple—2z/

b(?”): 2 , PleR,

and a constraint equation

1 peR (3.4.5)

Using the ansatz (3.4.4) in the propagation equation (2.4.5) (or equivalently (3.3.8)—
(3.3.10)), we find that

. 20B
B-22 o, (3.4.6)
r—oy
2B/
B"— B”+ =0, (3.4.7)
r—oy
1—e P +eBB(r—oy) =eco? (3.4.8)

Equations (3.4.7) and (3.4.8) along with the initial condition B(0,7) = —2v(r) = 2A(r)
yield solutions
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B(y,r)=—In[(r —oy) ' P(y) + 1 —eo?] (3.4.9)

r

v(r) = %ln (P2(O) +1— 60'2> = —A\(r), (3.4.10)

where P, is an arbitrary function of y. From (3.4.10) we compute

—2¢02

r2

R:

b

and substituting this scalar into the constraint (3.4.5) implies that P, = 0, so that
B(0,r) = —2b = 0. Now solving the remaining equation (3.4.6) with the initial con-
ditions for B gives B(y,r) = —2v(r), and comparing this solution to (3.4.9) shows
that P,(y) = 0. Therefore, the only possible static spherically symmetric spacetimes

embeddable into the bulk (3.4.4) are of the form

ds® = —(1 — ea®)dt* + (1 — eo®) " rdr? + r2(d6* + sin? 0d¢?), o € R, (3.4.11)

and their Riemann flat embedding spaces are given by

ds* = —(1 — ea®)dt* + (1 — ea®) Ldr? + (r — oy)*(dO* + sin® 0d¢?) + edy® . (3.4.12)

Hence, the global monopole metric is the canonical example for embeddings of this
type. This is unfortunate as one might hope that, say, the Reissner-Nordstrém metric
could be embedded in this fashion.

We now briefly discuss the solution (3.4.2), while we provide a more detailed
analysis of its properties in section 3.5. We note that, although the solution (3.4.2) is
‘simple’; it is not obvious nor is it a trivial product metric (M x Y'). Rather it is a very
rare embedding of a 4D spacetime (the global monopole exterior) with complicated (i.e.
not constant) curvature. Moreover, the solution (3.4.2) represents an embedding into
5D Minkowski space, for which there does not exist an existence result. This challenges
perspectives on the meaning of energy-momentum in embedding scenarios. In section
3.5.2 we show that while our bulk is empty, its 4D hypersurface do contain matter,
which is of relevance to space-time-matter theory. (This is not necessarily to endorse
the space-time-matter programme; we merely note that the issue seems significant.)

Classical general relativity is a theory of metrics, and a metrically driven ap-
proach might seek to identify curved (e.g. constant curvature or Ricci flat, with no
energy-momentum) embedding solutions, with the aim of obtaining and understanding
a fuller picture of the nature of gravity. This could have positive implications for unifi-
cation models in physics. For example, consider notions such as (Ricci flat) Calabi-Yau
manifolds. From this perspective, Minkowski space may seem uninteresting, although
there are those who devote much time to studying it (Lindblad and Rodnianski 2004).
However, we make several observations. Firstly, a local embedding into Minkowski
space need not compromise a global embedding into a Riemannian curved space. One
need merely, say, embed into some asymptotically flat space. Less contrived examples
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are the object of current study, using the algorithms described in Appendix A and
Moodley and Amery (2012). Secondly, whether for logical reasons, or for the sake of
simplicity, there are many instances of higher dimensional flat space in high-energy
physics, and this raises several possibilities; for instance, the possibility of topological
effects (Green et al. 1987; Becker et al. 2007; Vilenkin and Shellard 1994). Finally, the
mere existence of embeddings of the type here must be accounted for and understood,
whatever one’s prejudices about higher dimensional curvature are.

3.5 Properties of the bulk

Here we discuss the features of the embedding space (3.4.2). A similar analysis follows

for the embedding space (3.4.3). First we note that a? = ¢(1 — K) = ¢(87Gn?). If we

insist that « be real, then € must be positive, and so the fifth dimension is space-like.

With € = 1, the value of « is approximately +4.11 x 1073 (using G = m;lz, where my,

denotes Planck mass, and the grand unification scale n ~ 10'® GeV). Recall that the

4D moilopole metric with § =  has a deficit angle A = 87*G7?, and so we can write
2 __ €

o~ = .
g

3.5.1 Hypersurfaces and other coordinate systems

We begin by considering hypersurfaces of the bulk metric. For a surface with y = ¢ =
constant we have that

ds® = —dt* + K~ 'dr* + (r — ac)?*(d6* + sin® 0d¢?)
= —dt* + K 'di? + 7(d0* + sin* 0d¢*), r > ac,
which describes the gravitational field of a 4D global monopole. Since every hypersur-
face y = constant has the structure of a monopole exterior but are not all identical, the

embedding space is ‘line-like’; but it is not a ‘stacking’ (i.e., N # M x Y at a metrical
level). Surfaces of constant ¢ are described by the metric

ds* = edy® + K~ 'dr® 4 (r — ay)*(d6” + sin® 0d¢?),
which resembles the flat-space metric for a texture given by (Vilenkin and Shellard
1994):
ds® = —dt* + dr* + (r — mwet)?(d0* + sin® 0dp*), t >,

with iy behaving as t for positive €, or with y behaving as t for negative e. Also, a
hypersurface of fixed radius » = ¢ has

ds® = —dt* + (ay — ¢)*(d6? + sin® 0d¢?) + edy?
= —dt* + (1 — K)7'dg* + 7*(d6* + sin® 0d¢?),

which resembles a 4D global monopole exterior with § = ay — ¢ as a radial coordinate.
The other 4D hypersurfaces are
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ds* = —dt* + K~ 'dr® + (r — ay)?d6* + edy?,
ds? = —dt* + K~'dr? + (r — ay)®dp® + edy?, ¢ € [0, 2n|sinc]),

for ¢ = constant and 6 = ¢ = constant, respectively. Furthermore, surfaces with both
angular coordinates fixed are three-dimensional Minkowski spaces:

ds* = —dt* + K~ 'dr® + edy? = —dt* + dr® + edy?.

We note that metric (3.4.2) is not invariant under y — —y; the bulk is not symmetric
with respect to the fifth dimension.
The 5D line element (3.4.2) can also be written in the non-diagonal forms

d3? = — dt* + K~ 'dr® + 2a K~ tdrdy + 7(d6* + sin® 0d¢?) + (o + €)dy?,

r=r—ay, and,

d3? = — dt* + di® + 20K~V drdy + K72 (d6* + sin? 0d¢?) + (o> K~ + €)dy?,
K'Y?F=p— ay,

or, with # = K~%2r, in the diagonal form

ds? = —dt® + di* + (K1/2 F — ay)*(d6? + sin? 0d¢?) + edy?.

Applying the coordinate transformation

R=r— ay, Y = a(eK)™V2r 4 (eK)Y?y, (3.5.1)
to the bulk metric (3.4.2) yields the 5D Minkowski spacetime

d3? = —dt* + dR? + R*(d0? + sin® 0d¢?) + dY?,

which reduces to the 4D global monopole exterior when Y = «a(eK) Y/2R. This is
an alternate verification that the bulk is Riemann flat. Here the angular coordinates
have no deficits and ¢, Y and R can be any real value. We note that the relevance
of the 5D Minkowski space to the 4D global monopole metric is a new result. The
above transformation involves a rotation of (r,y) to (R,Y) by a small angle w of
magnitude |w| =~ |a] = V87Gn for the y axis and a small angle p of magnitude
| = Ja|/K = V87Gn/(1 — 87Gn?) for the r axis. The rotation is in the negative
(clockwise) direction for positive o and positive (anticlockwise) direction for negative
«. Thus, the angles of rotation between the metric (3.4.2) and the Minkowski metric
are related to the energy scale n and the deficit angle A of the 4D metric. Similarly,
the metric (3.4.12) can also be transformed to 5D flat space.

We note that an application of the Campbell-Magaard theorem to embed a three-
dimensional conical geometry (Lidsey et al. 1997) implicitly anticipates our results.
Consider a hypersurface ¢ = constant of the global monopole exterior metric (3.2.1):
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ds* = —dt* + K Ydr* + r*d0*, r > r., (3.5.2)
= —dt* +dp* + Kp*df*, p> pe,

which represents a 3D conical spacetime with a radial deficit, and has vanishing Ricci
tensor. As we discussed in section 2.5, it is well known that the metric (3.5.2) has a
local embedding into the 4D flat space (Lidsey et al. 1997)

ds* = —dt* + K~ 'dr? + r2d6? + edy®.
We observe that the 4D metric

ds* = —dt* + K~ 'dr® 4 (r — ay)?d0* + edy®, v > 7.,

which is the hypersurface of the bulk (3.4.2) for ¢ = constant, is also a flat local
embedding of the conical geometry (3.5.2) at y = 0, and can be transformed to 4D
Minkowski space without any deficits. By recent existence theorems (Katzourakis
2005b; Moodley and Amery 2012), both embeddings above can be made global. The
analysis of Lidsey et al. (1997), however, is focussed on a local embedding and was
hampered by the lack of the perspective offered by the global, and (non-Ricci-flat)
local existence theorems. They further showed that the conical spacetime can be
globally embedded into 4D Minkowski space, although this is achieved via an adhoc
construction. Our results arise from a systematic application of the Dahia-Romero
(2002a) and Katzourakis-Moodley-Amery (Katzourakis 2005b; Moodley and Amery
2012) theorems. In this light we see that their discussion of local versus global issues
conflates questions of curvature and singularities.

3.5.2 Extrinsic curvature and energy-momentum

The embedding space is intrinsically flat. However, its submanifolds with constant y
do admit extrinsic curvature given by €, = —%889—;’“ of which the non-zero components
are

Qop = a(r — ay), and Q33 = a(r — ay) sin? 6.

The extrinsic curvature of a manifold is dependent on the space in which it is embedded,
hence the y dependence of €);;.. Under the coordinate transformation to flat space these
components become

Qs = R, and Q33 = aRsin? 0,

so that the extrinsic curvature is proportional to the radial coordinate R and a.

The above transformation (3.5.1) makes it obvious that the 5D spacetime is empty
(T ww = 0), while the 4D hypersurfaces contain matter. We may compute the energy-
momentum tensor of g;z, the metric induced on a hypersurface of constant y, from

éz‘k: = 871'GT,;C with
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K(r —ay)? ~ KR

TQQ - O - ng. (353)

At y = 0, equation (3.5.3) reduces to the matter tensor (3.2.2) of the global monopole.
In the context of induced matter theory (Wesson and Ponce de Leon 1992; Wesson
et al. 1996; Overduin and Wesson 1997; Wesson 1999), equation (3.5.3) is a general
4D energy-momentum tensor that depends on the extra dimension y and represents
matter induced from the higher dimensional geometry. Space-time-matter or induced
matter theory concentrates on 5D vacuum embedding spaces and involves the view
that the 5D geometry and the shape of the 4D hypersurfaces explain matter arising
in the 4D surfaces. An effective energy-momentum tensor is obtained from the field
equations for the 4D component of the 5D metric, and it is generally dependent on
the extra dimension. As is the case for our result here, the 5D vacuum field equations
contain the 4D field equations with matter.

3.5.3 Global and local geometry

The paradox of a vacuum spacetime (in Minkowski form) containing hypersurfaces
with singular energy-momentum may be understood as a consequence of the local em-
bedding of the global monopole exterior for r > r., and/or the global structure of the
local embedding space (3.4.2). Firstly, we note that, since we may take (3.4.2) as a
global isometric embedding metric on (some suitably defined subset of) R® (Moodley
and Amery 2012), we have an everywhere analytic and Riemann flat isometric global
embedding: the 4D global monopole spacetime is ‘analytic enough’ to allow globally
analytic (3.4.2) as an embedding space, despite it containing hypersurfaces of singular
energy-momentum. On the other hand, the topological singularity on the 4D hyper-
surfaces is weak: the integral of the density over volume vanishes at r = 0. Thus, we
have an example of a weak topological singularity being ‘undone’ by the geometry of
the embedding.

Secondly, consider the ry-plane with » > 0 divided into four regions by the line
y = =, a > 0 and the cutoff r = r.. This is depicted in Figure 3.1. The constant y
and constant r hypersurfaces have singular energy-momentum. For each of the four
regions, the ranges of the coordinates R and Y are presented in Table 3.1.
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Figure 3.1: Regions I — IV in the ry-plane.

Region Range of R Range of YV

I [0, c0) (—o0, o0)

I (—oo,0) (TC/N/K(1 ~“K), oo)
I11 (—o0, 0) (0, 00)

IV [0, 00) (—oo, ro//EK(I - K) }

Table 3.1: Ranges of R and Y for regions I — IV.

Consider region I where r > 7. and y < Z. Here R € [0,00) and Y € R. This
region may be interpreted as the local embedding of the global monopole metric for
r > 7. into (all of) 5D Minkowski space. For region Il where r > r. and y > =, we have
R € (—00,0) and Y € (r./+/K(1 — K),00). This region may be given an analogous
interpretation to region I by rescaling Y by an additive constant and recalling that a
hypersurface of constant r represents another embedding of a global monopole exterior
metric, this time for y > y. = *¢.

The two regions with r < r. have a similarly dual interpretation. Note though
that the metric (3.2.1) for r < r. does not represent the space exterior to nor inte-
rior to a global monopole. A similar analysis follows for the case @ < 0, with the
roles of regions I and II reversed. The main point of this discussion is that there is
no singularity if we consider only r» > r., and that the global embedding space is 5D
Minkowski space. Moreover, this is true for arbitrarily small r.. This property fa-
cilitates many different global embeddings. The first and most obvious of these is, of
course, 5D Minkowski space itself, but the imposition of a deficit angle would yield a 5D
cosmic string (Vilenkin and Shellard 1994). For a compactified (Kaluza-Klein) extra
dimension one could obtain (Azreg-Ainou and Clément 1996) static cosmic strings, flux
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strings, and 5D generalizations of 4D longitudinal dislocations (Gal’tsov and Letelier
1993; Tod 1994) and 4D spinning cosmic strings (Deser et al. 1984). Azreg-Ainou and
Clément (1996) also obtained a Kaluza-Klein Gauss-Bonnet superconducting cosmic
string which asymptotes (up to logarithms) to the static cosmic string metric.

Recall the issue of stability of the global monopole exterior noted in section 3.2.
Since 5D Minkowski space is stable (Choquet-Bruhat et al. 2006; Choquet-Bruhat 2009;
Lindblad and Rodnianski 2004), we may conclude that the 5D embedding of the global
monopole exterior yields stability from a 5D perspective / in the bulk.

3.5.4 Comment on Einstein-Gauss-Bonnet gravity scenario

As remarked in section 3.2, we can view our very natural construction as the em-
bedding of the r — 0 limit of a 5D EGB black hole. We may do so because of the
product topology assumed in that construction (Maeda and Dadhich 2006). In fact,
since all analytic (vacuum) solutions to the EGB equations are locally Minkowskian
(any pseudo-Riemannian manifold may be transformed to normal coordinates in which
the connections vanish locally (Stephani 2004)), we may also view our result (with ap-
propriate compactifications) as a local embedding of the 4D global monopole exterior
into the 5D EGB Kaluza-Klein black hole exterior. It is worth contrasting the 5D flat
vacuum embedding in general relativity with the EGB case. In the former case the
topology is product at a non-metrical level, but we have a metric that is not express-
ible as a product metric. In the latter, the presence of the Gauss-Bonnet term gives
a freedom in terms of the topologies that may be chosen for 5D vacuum spaces that
is not present in pure Einstein gravity — the product Mwmy X Y in EGB theory is
empty, whereas the product Mgy X Y in Einstein theory yields a 5D global monopole
metric (Banerjee et al. 1996; Rahaman, Ghosh, Kalam and Gayen 2005)

ds* = —dt* + K~'dr? +1*(d6* + sin® 0d¢?) + dy*, 4 € R,

which does not have vanishing energy-momentum (and hence, is not an Einstein space).
On the other hand, the flat Einstein embedding is natural and simple. The further
investigation of this relationship would involve embedding the » — oo limit of the EGB
black hole, namely the Reissner-Nordstrom solution. This investigation is underway.

3.5.5 A six-dimensional Einstein embedding

As a final remark, we observe that the 5D flat space (3.4.3) can be locally embedded
into a six-dimensional Einstein space (Anderson and Lidsey 2001) with line element

2¢,A\
d&* = exp ( % (z — zo)> X (— dt* + K~ 'dr?

+ (r — ay + ayp)*(d6? + sin® 0dp?) + edy2> + €,d2?,
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where ¢ = 1 and A is the 6D cosmological constant, and this space embeds the

4D global monopole metric at y = yo and z = 2. This may be of relevance to six-
dimensional theories such as those of Tye (2008) and Aharony (2000). The EGB black

hole (Maeda and Dadhich 2006) may also be contextualized in six dimensions.

3.6 Further remarks

We note that since metric (3.2.1) is only applicable away from the core, it would be
interesting to consider the embedding of a four-dimensional global monopole with core
mass M and/or a cosmological constant term A, which has the metric (Rahaman,
Mandal and Gayen 2005)

M M -1
ds* = — (1 — 811G — — — é7"2> dt* + (1 — 81Gn? — — — ATQ) dr?
r 3 r 3
+ 72(d6* + sin’ 0d¢?),

although this task would be even more complicated. The possible embedding of a global
monopole in this fashion could facilitate a programme contrasting the known strong
constraints on cosmological global monopole abundances with string abundances in 5D
embedded Einstein theories or black hole abundances in 5D embedded EGB theories.
It would similarly be interesting to consider embeddings of the gravitational fields of
global cosmic strings (Vilenkin and Shellard 1994) such as a linearized global string
exterior with metric (Harari and Sikivie 1988)

ds® = (1 — 47Gv* In L) (—dt* +d2?) + dr* +1r? <1 — 817Gk — 871GV In L) do?,
TC rC
where v < 10'7 GeV is a symmetry breaking scale, 7., is the radius of the string core, and
7GV%k is the energy per unit length within the core. These points will be considered
in future work.

3.7 Summary

In this chapter we considered the local isometric embedding of the gravitational field
exterior to a 4D global monopole defect, given by metric (3.2.1), into a 5D Einstein
bulk (3.3.1). We produced a Riemann flat solution (3.4.2) that embeds the global
monopole exterior along the hypersurface y = 0. It is further demonstrated that
the monopole metric is the typical static spherically symmetric spacetime that can
be embedded into a 5D space with form (3.4.4) and zero Ricci tensor. We studied
the geometry of the embedding space (3.4.2). We verified that the metric can be
transformed into 5D Minkowski space, and there is no inherited deficit angle. Applying
global existence theorems (Katzourakis 2005b; Moodley and Amery 2012), we observed
that the monopole exterior can be embedded into a globally flat space, and noted that
various cosmic string solutions may also be produced. Since 5D Minkowski space is
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stable, this potentially alleviates the stability problem for the 4D monopole exterior
metric, provided we regard gravity as being five-dimensional. Although the bulk is
empty, its hypersurfaces of constant y contain matter. This idea is relevant to induced
matter theory (Wesson 1999). We also discussed our solution in the context of Einstein-
Gauss-Bonnet theory, where it can be viewed as a local embedding of the monopole
exterior into the 5D EGB Kaluza-Klein black hole (Maeda and Dadhich 2006).

The embedding of the global monopole exterior into a general Einstein space
remains unsolved and is the subject of ongoing work. Thus, even with specific choices
for the lower dimensional space, solutions for the embedding spaces are difficult to find.
In the next section, we modify our approach to tackle this embedding problem.
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Chapter 4

An Investigation of Embeddings for
Spherically Symmetric Spacetimes
into Einstein Manifolds

4.1 Introduction

In this chapter we concentrate on local isometric embeddings of four-dimensional spher-
ically symmetric spacetimes into five-dimensional Einstein manifolds. Spherically sym-
metric spacetimes provide useful models of stars and black holes etc., and so their
embeddings will be of relevance in astrophysics and cosmology. We begin in section 4.2
by describing the metric and Ricci tensor components of a spherically symmetric space-
time. As observed in the previous chapter for the case of the global monopole exterior,
difficulties often arise in solving the five-dimensional embedding equations for given
four-dimensional spaces. This problem motivates us to investigate embedded spaces
that admit bulks of a specific type. So, in section 4.3, we consider an Einstein space of
a particular form where the metric components are separable with respect to the extra
dimension, and we obtain restrictions for the possible embedded spacetimes. In sec-
tion 4.4 we show that the general Schwarzschild-de Sitter spacetime and the Einstein
Universe are the only spherically symmetric spacetimes that can be embedded into an
Einstein space of this form, and we discuss their five-dimensional solutions. We also
consider another form for an Einstein bulk in section 4.5 that reduces to a special case
of the first bulk form. In section 4.6 we focus on metrics describing four-dimensional
spherically symmetric spacetimes in retarded time coordinates, and we examine em-
beddings of the general Vaidya-de Sitter model into specific five-dimensional Einstein
bulks. A summary of our main results is provided in section 4.7. The original studies
presented in sections 4.3 and 4.4 have been published (Moodley and Amery 2011), and
the physical interpretation of a solution presented in section 4.4.2 is being written up
for publication (Okelola et al. 2013). The results contained in section 4.5 have been
submitted for publication (Amery and Moodley 2012), and the results contained in
section 4.6 are being prepared for publication (Moodley and Amery 2013a).
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4.2 Embedding spherically symmetric spacetimes

We apply the technique reviewed in section 2.4 to embed a four-dimensional spherically
symmetric (SS) spacetime g, which has the line element (Stephani 2004):

d82 _ _€2u(t,r)dt2 + 62)\(t,r) er + 7“2(d92 + sin2 6d¢2) )

The non-zero components of the Ricci tensor (2.2.3) calculated from this metric are:

2
Roo = 2V V(=" — V2N — 70 NP VARED Sy 7 VN
r

2
R(]l - __)\t ’
T

2
—)\/ — 62()\_1/) ()\tt =+ )\? — Vt)\t) y
r

Roy =re 2/ —rePN 472 1,
R33 = R22 Sin2 0.
The equations (2.4.5)—(2.4.7) for embedding a 4D spherically symmetric space-
time g;; into a 5D Einstein space with metric

2
Ry =v"+v" =N -
1

. . - —2A
ds® = gik(azj,y)dx’dxk +edy?, € =1, R.s = Tgaﬁ, (4.2.1)

along the y = 0 hypersurface, are

- = R (122)
0= ¢g""(V,;Qr — Vi), (4.2.3)
—2A = R+ ¢g* "™ (QixQjm — QirQim) , (4.2.4)
with initial conditions
Gik(t,7,0,0,0) = g (t, 7,0, 0) , (4.2.5)
agik(t’gf’qb’ O oqu(tr0.6), (4.2.6)

where Qg = Qu.(27,0) and Q, = —%65—;’“. Although the Dahia-Romero (2002a) theo-
rem guarantees that a solution to the above system for g;, exists, these equations are
complex and the general solution is not yet known. For the case of the embedding of a
4D global monopole metric, which is static and spherically symmetric, we were able to
obtain a 5D solution (3.4.2) that is Riemann flat. A solution for an Einstein space that
embeds the monopole is still to be determined. Thus, even for specific SS spacetimes,
it is very difficult to solve the embedding equations. So, we consider another approach:
we assume that the 5D Einstein space (4.2.1) has a particular form, and we investigate
what SS spacetimes may embed into it.
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4.3 Bulk form 1

We proceed by making a fairly simple assumption

gir = diag[A(y)goo, B(Y)g11, C(y)g22, D(y)gss] (4.3.1)

for the 5D metric, where the unknown functions A, B, C' and D depend on y only and
each metric component is separable in y. This type of metric for the embedding space
includes warped geometries such as those of the Randall-Sundrum (1999a; 1999b) and
related (see Maartens and Koyama (2010)) brane-world scenarios and induced matter
theory (Wesson 2002), and allows for an energetically rigid embedding (Londal 2005;
Amery et al. 2011). The initial conditions (4.2.5) and (4.2.6) become

A(0) = B(0) = C(0) = D(0) =1, (4.3.2)
(O) = —2 9009007 0) = —2 Qllgn,
) =

B(
. 4.3.3
(0 -2 Q22922, D(O) = -2 933933. ( )

A
C
Condition (4.3.3) implies that the extrinsic curvature must have the form

Qi = diaglagoo, bgi1, cgo2, dgss],

where a, b, c and d are constants. We substitute the above expression into the Codazzi
(4.2.3) and Gauss (4.2.4) equations to obtain ¢ = d and

0=(a—0b)\, (4.3.4)

2
O:(b—a)l/—l—(b—c);, (4.3.5)
—2A = R+ 2¢ (ab+ 2ac + 2bc + ¢*) (4.3.6)

where equation (4.3.6) indicates that the Ricci scalar R of the embedded space must
be constant. )
The components of the Ricci tensor Ry calculated from (4.3.1) are

_ A A
Roo = EROO + (1 - E) (At + A% = Ae)

ROI = ROI )

_ B
Ry = Ry + <1 — Z) ()‘tt + )‘tz _ Vt/\t) GQ(A—V) ,

- C C
- = - -1
RQQ BR22+B 9
_ D D DY\ . D5 .
R33 = ER33 + (E - 6) SlIl2 0= 5R22 Sln29.
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The propagation equation (4.2.2) for ¢ = 0 and k = 1 gives

0 = R,
which implies that

)\t:()-

Thus, equation (4.3.4) is satisfied. With \; = 0 and the above components of R;i, the
other components of the propagation equation (4.2.2) are

. A A B C D 4e A

A+§<_Z+B+C+D)+TA__2€ER°09 (4.27)

. B(A B C D 4eA

B+5<Z—E+E+E)+_SB—_2ERHQ7 (438)
C(A B C D 4eA C C 1

C+ <A+§_6+B>+_C__2€§R229 —2¢ (§_1>ﬁ7 (4'3'9)

. D A B C D 4eA D D D\ 1
~_ = D= 2= — )= (431

Since the left-hand sides of equations (4.3.7)—(4.3.10) depend on y only, we should have

2
R()Ogoo — 6—2)\ (V” + v 12 — v A, + - V ) = Qq, (4311)
2
Riyg'l = e <1/” LN — _)\’> = Qo, (4.3.12)
r
C 99 C 1 C’ (Y N 1 1
el ~Z_1)=== — ) - == 4.3.1
BRQQQ + (B 1) 2 B , r + r2 r2 Oég(y), ( 3 3)
D 13 D D\ 1 D _ox V’ )\’ 1 D1
- Z_ = = —t = -=== 4.3.14
BR33g * (B C) - B° roor + r? Cr? = aay); ( )

where a; and ay are constants, and ag and a4 are functions of y. Comparing equations
(4.3.13) and (4.3.14), we deduce that ay = Zas, and so these equations are equivalent.
Subtracting equation (4.3.11) from equation (4.3.12), we obtain

U=\ (042 — al) 7’62)‘,
2
and inserting this expression into (4.3.13) leads to a first-order linear differential equa-
tion for e=2* that admits the solution

(4.3.15)
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1 B B —
A(r) :—5111 {64—0&57@)—1— (6%—1—%) 7’2}.

Using the fact that A(r) has no y dependence, and applying initial condition (4.3.2),
we determine that
B:C, and 043:02015
With B = C, the condition (4.3.3) implies that b = ¢, and equations (4.3.8) and (4.3.9)
imply that Rig'' = Ryg*2. So, by equations (4.3.12) and (4.3.13), we have a3 = ao.
Furthermore, equations (4.3.11)—(4.3.14) show that the Ricci scalar is
R = o7 + 3as.
Substituting (4.3.15) and

1 3y —
A(r) = ) In (1 + % + %ﬁ)

into (4.3.11) and simplifying the result yields

(g — ) (=273 + 3ais) B

—3"‘22_6‘1 r3 + 3r + 3as B

For the above equation to hold, we require either

ar=ay, or a;=0=aqas.

In each case, the solution for A(r) can be substituted into (4.3.15), which can then be
integrated to provide a solution for v(¢,r). The resulting spacetimes satisfy (4.3.11)—
(4.3.14), and are the only 4D spherically symmetric spacetimes that may be embedded
into a 5D Einstein space with g;; given by (4.3.1). Note that for each of the embedded
spaces we still need to solve the Codazzi-Gauss equations (4.3.5) and (4.3.6), and
the propagation equations (4.3.7)—(4.3.10) subject to the initial conditions (4.3.2) and
(4.3.3), in order to determine the bulk metric explicitly. We consider each case in the
next section.

4.4 Solutions for bulk form 1

4.4.1 Case I: o1 = o

With oy = as, we have

. 1 (673 a1 o
A(r) = 2ln<1+ . + 37“),

and

v(t,r) = =A(r) +g(t),
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where oy, a5 € R and ¢(t) is an arbitrary function. So,

dr?

T as | a2 + Tz(dQQ + Sin2 ¢9d§2§2) (441)
1+ 75 + ?7"2

ds? = —e29® (1 + 2y %ﬂ) dt* +
r

This solution is known as the general Schwarzschild-de Sitter spacetime, which rep-

resents a Schwarzschild black hole in a universe with a four-dimensional cosmological

constant given by w = —ay. This space is a vacuum and has Ricci scalar R = 4a;.
Now we solve the Codazzi-Gauss equations (4.3.5) and (4.3.6) to obtain

[—eA — 2
a=b=c=+ equ’

and so the initial condition (4.3.3) becomes

A(0) = B(0) = D(0) = i,/w | (4.4.2)

The propagation equations (4.3.7)—(4.3.10) for this case are

. A A 2B D 4eA A
A+g (—z B 5) T A ke (4.4.3)
C B(A D) 4
. DA 2B D 4el D
b+ (z Ty 5) L (1.45)

As the Schwarzschild-de Sitter spacetime is an Einstein space, a solution for the Ein-
stein embedding is already known (Lidsey et al. 1997; Anderson and Lidsey 2001),
and it can be obtained as follows. We may set A = B = D so that the equations
(4.4.3)—(4.4.5) reduce to a single equation

L A% 4eA
A—I—Z—l—TA:—%al,

which has the solution

cosh ’éA y)+4/1+ %‘Tl sinh ’TfA vyl , A#DO,
2 (4.4.6)

that satisfies the conditions (4.3.2) and (4.4.2). Hence, the 5D Einstein embedding
space for the general Schwarzschild-de Sitter spacetime (4.4.1) is

Ay) =
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ds* = A(y)ds® + edy?,

with A(y) given by (4.4.6). We note that other solutions for the embedding of this
spacetime into bulks of the form (4.3.1) may be possible.

In Case II we shall see that the bulk metric cannot take the form g; = A(y)gix.
So we conclude that the general Schwarzschild-de Sitter model is the only spherically
symmetric spacetime that admits a 5D Einstein bulk with ds* = A(y)ds? + edy®.
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4.4.2 Case II: o1 =0 = a5
When a; = 0 = a5, we have

A(r) = —% In (1 + %72) ,

and

v(t) =g(t),
where ay € R and ¢(¢) is an arbitrary function. So,
-1
ds? = —e*9Wa? 4 (1 + %72) dr® + r?(d6? + sin® 0dp?), (4.4.7)

which has Ricci scalar R = 3as. The scale factor e29() can be absorbed into a redefined
time coordinate. For as < 0, the metric describes the Einstein Universe in which the
scale factor is a constant, so the universe does not expand or contract. The Einstein

Universe has a cosmological constant w = =52. Note that unlike in Case I, the 4D
spacetime (4.4.7) is not an Einstein space.
Since v/ = 0, the general solution to the Codazzi-Gauss equations (4.3.5) and

(4.3.6) is given by

—a 1 4eh
c:b:—a:t—\/aQ—e——%ozg,
2 2 3

where a € R. The initial condition (4.3.3) becomes

A(0) = —2a, B(0)=D(0) =a=+ \/a2 — % — 2eqs . (4.4.8)

The functions A, B and D must satisfy the propagation equations

. A A 2B D 4eA
A+§(_Z+§+5>+TA_O’ (4.49)
. B(A D deA\
B+ 3 <Z + 5) + ?B = —2¢easy, (4.4.10)
. DA 2B D 4el D
b+5 <z+§—5> T3 D= kg, (44.11)

with initial conditions (4.3.2) and (4.4.8). Here we can set B = D so that (4.4.11) is
equivalent to (4.4.10). Then the above system becomes
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A+§ <—§+§> @A_o (4.4.12)

B 3
. B(A B 4el

Note that taking A = B yields ap = 0, which corresponds to a special subcase of Case
I with a5 = 0. In general we cannot have A = B here.
Consider A = 0. By setting A = 1, equation (4.4.12) holds trivially and condition
(4.4.8) implies that a = 0. Equation (4.4.13) becomes
2

B+ﬁ:_2€a2,

B(y) = <1+ — y) ,

that satisfies the initial conditions (4.3.2) and (4.4.8). Hence, the spacetime (4.4.7) can
be embedded into a 5D space with metric

which admits the solution

2
=2 2g(t) 342 — € dr? 20102 | w2 2 2
d5? = — 290 g2 4 <1+ 5 y) (T%ﬂjtr (dO” +sin” Od¢ )) +edy”. (4.4.14)

By applying the coordinate transformation

/—6042 R eR2\ 12
Ot = dT’, =— |14+ —
r v < + Y2> ,
1 i —EOég 6@2 (1 + ﬁ) :

the metric (4.4.14) can be written in the Minkowski form

d§® = —dT? + dR* + R*(d6* + sin® 0d¢*) + edY?,

and so the embedding space is flat. Thus, for as < 0, we regain the result obtained by
Wesson (1994) for the embedding of the Einstein Universe into a flat space. However,
there the method was to start with the 5D Minkowski metric and transform it to a
space that embeds the Einstein Universe along a y = constant hypersurface. Here we
consider a more general 5D metric, directly solve the field equations to find the Einstein
Universe as the only possible non-vacuum spherically symmetric embedded space, and
obtain a Minkowski bulk solution in the special case A = 0.
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When A = _73042, Lie symmetry analysis of the system (4.4.9)—(4.4.11) yields a
hitherto unknown solution:

2
—2eA —3€ . —2eA
cosh ( 3 y) - a\/ﬁ sinh ( 3 y)] , a €R, (4.4.15)

B(y) = C(y) = D(y) = 1.

The details of this analysis appear elsewhere (Okelola 2011; Okelola et al. 2013). So, the
spacetime (4.4.7) can be embedded into a 5D Einstein bulk with cosmological constant

A= _73(12 and metric

Ay) =

2

d3* = —A(y) e*Wdt? + +7%(d6” + sin® 0d¢*) + edy®, (4.4.16)

1+%r2

where A(y) is given by (4.4.15). The solution to equations (4.4.9)—(4.4.11) for A # S2ay
is yet to be determined. Note, however, that for any given 5D cosmological constant
A, we may choose ay = _?2/\, and conversely.

4.5 Bulk form 2

In this section we consider the following ansatz for the bulk metric (4.2.1):

Gir = A(Y, ) gi , (4.5.1)
where A is an unknown function of y and r, and A(0,r) = 1. We are interested in
determining what 4D spherically symmetric spacetimes admit a 5D Einstein embedding
space of this metric form. The propagation equation (4.2.2) becomes

. A2 4eA _
(A + —+ €—A> Gir = —2€Ryy; . (4.5.2)

For i = 0 and k = 1 we have Ry; = 0. From metric (4.5.1) and the Ricci tensor
components for a SS spacetime, we calculate that

_ A’ 2 A
Ro1 = Ro1 — Z)\t ==\ <; + Z) .

So Ry; = 0 implies that either A\, = 0 or AZ/ = —%. The latter equation can be solved to
obtain A(y,r) = %, but this cannot satisfy the initial condition A(0,r) = @ = 1.
Thus, we must have \;, = 0.

Setting i = 0 = k and i = 2 = k in equation (4.5.2) yields

A2 4eA

A + I + TA = —2€R00g00 s
. A2 4eA _
A+ - + TA = —2eRng”,
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respectively, and indicates that Rog” = Rapg?2. Using metric (4.5.1) and )\; = 0, we
determine that

AT 22" "t T

P , 2\ " / / /
5 o (VAN 1 e o (AT A, A, 24
Rypg® = e (r e ) e <2A Tox” TNt ia)

- 2 A" 3A A A
ROOQOO — 22 (V" + l//2 — N+ —l//) + e 2N ( / ) :
r

After equating the above two equations and simplifying we obtain

! 1 2/\_1 1\ A’
WYL A 5 :(—y’—i——)—.
r r r r) A

We deduce that AX/ = H,(r), where H; is a function of r only. This equation admits the
solution A = Hy(y) exp( [ Hy(r)dr) which, however, cannot satisfy the initial condition
A(0,7) = Hy(0)exp([ Hidr) = 1 unless H; = 0. This implies that A’ = 0. Thus,
girx. = A(y)gix and we regain the result obtained in section 4.4.1. In fact, we can
describe the general Schwarzschild-de Sitter model as the only possible spherically
symmetric embedded space for a 5D Einstein bulk g;x = A(y, )¢, and a solution for
A is given by (4.4.6).

4.6 Embedding spherically symmetric spacetimes
in retarded time coordinates

The usual metric for 4D spherically symmetric spacetimes

ds? = —eU) 2 4 2N dr? 412 (dh? + sin® 0d¢?) (4.6.1)

can be written in the form

ds* = o (v, r)dv? — 2u(v, r)dvdr + r*(d6* + sin® 0d¢?) (4.6.2)

via the relations

dv = fle’dt — f~teldr,
0 = _f27 H = f@A,
where v represents retarded time and f is an integrating factor such that dv is an

exact differential (Lindquist et al. 1965). The class of exact solutions with form (4.6.2)
includes the general Vaidya-de Sitter model (Vaidya 1953, 1966; Mallett 1985):

2m(v)

ds* = — i (v) (1 — - %rz) dv? — 2u(v)dvdr + r*(d6® + sin® 0d¢?),  (4.6.3)
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which describes the exterior region of a radiating star with cosmological constant w.
The mass term m is an arbitrary function of v, and the energy-momentum tensor is
given by T% = pu‘v’, where 1’ is a null vector having direction radially outward and p
denotes the energy density of the radiation. A more generalized version of this model
is the monopole-de Sitter charged Vaidya spacetime (Wang and Wu 1999; Bonnor and
Vaidya 1970) given by

r 3 72

2 drre?
PN ( oo 2mv) _w o, dme (“)> dv? — 2dvdr + 12(d0? + sin® 0d¢?), (4.6.4)

where K =1 — 87Gn?, n ~ 10’ GeV, and e(v) denotes an electric charge.

With m constant, the general Vaidya-de Sitter spacetime (4.6.3) is empty (i.e. it
is an Einstein space) and can be written in the spherically symmetric form (4.6.1) as
the general Schwarzschild-de Sitter spacetime

2 dr?
ds? = —e290 (1 2" Yoo ey + + r2(d6* + sin? 0dg?).
r 3 [T

Thus, the general Vaidya-de Sitter model with m € R can be embedded into a 5D
Einstein bulk d3? = A(y)ds* + edy* with A(y) given by (4.4.6). By our analysis of
the embedding of the general Schwarzschild-de Sitter model (refer to section 4.4.1), we
deduce that the m = constant general Vaidya-de Sitter solution is the only spherically
symmetric spacetime of type (4.6.2) that is embeddable into a 5D Einstein bulk of the
form gir = A(Y)gin-

We further investigate other metric forms for Einstein embeddings of SS space-
times type (4.6.2). We consider

gir = A(Y,0)gik , (4.6.5)
Gir = A(Y) 9000y 0p + A(Y) 9220707 + A(y)g330:0; + B(y)901076), + B(y)g106; 5y, (4.6.6)

where A(0,v) = 1 in (4.6.5) and A(0) = 1 = B(0) in (4.6.6), and follow the same
technique employed in sections 4.3 and 4.5. For both metric ansatzen, the propagation
equation (4.2.2) with ¢ = 1 = k implies that x/ = 0. Then, for metric (4.6.5), the
propagation equation for : =0, k =1 and ¢ = 2 = k becomes

A—i—AQ +4EAA_ 60’”+2€0'/ N 2¢ A,
A 3 w2 o2 orp A

A% 4eA 2¢  2e0’ 2e0c  4e A,

A+Z+TA:T‘_2+

b=
ru? o r2u? o orp A

Setting the right-hand sides of these two equations equal and simplifying the result,
we obtain




Since the left-hand side of the above equation does not depend on y, we must have

4 = g(v), a function of v only. Solving this constraint with the condition A(0,v) =1
yields %—ﬁ =0, and so A = A(y). For the metric (4.6.6), the propagation equation

(4.2.2) with i = 2 = k reduces to

B A T 2 /
SL T R T AT

which shows that

A? [ o n o N I h(y)
B2 \ru?2  r2pu? r2 Y),
where h is a function of y only. Taking y = 0 in the above expression and using the

initial conditions A(0) =1 = B(0), we observe that % + 2z = h(0) - r~2. Then the
above expression can be rewritten as

20 -1 = (5 -1)

which only makes sense when A = B and h(y) = h(0). Thus, the analyses for the
metrics (4.6.5) and (4.6.6) show that we regain the case g;; = A(y)gir. Hence, the
m = constant general Vaidya-de Sitter model is the only spherically symmetric space-
time of type (4.6.2) that can be embedded into a 5D Einstein bulk of type (4.6.5) or
(4.6.6).

The investigation of more complicated bulk metric forms provides a programme
of further research. It would be especially interesting to embed the monopole-de Sit-
ter charged Vaidya spacetime (4.6.4), and to study exact solutions for embeddings of
collapse and radiation. This is, however, a highly non-trivial task and may require
improved techniques in solving non-linear partial differential equations.

4.7 Summary

In this chapter we studied local isometric embeddings of 4D spherically symmetric
spacetimes, in both the usual metric form (4.6.1) and the retarded time coordinate
form (4.6.2), into 5D Einstein bulks. We emphasized that the embedding equations
(4.2.2)—(4.2.4) are very difficult to solve, even with specific choices of non-vacuum SS
spacetimes. This problem led us to modify our approach, and to investigate what
SS spacetimes can embed into Einstein bulks with particular metric forms. We chose
the bulk metrics (4.3.1) and (4.5.1) for embeddings of SS spacetimes type (4.6.1),
and the bulk metrics (4.6.5) and (4.6.6) for embeddings of SS spacetimes in retarded
time coordinates. The embedding analysis with the metric form (4.3.1) showed that
the only 4D solutions are the general Schwarzschild-de Sitter spacetime (4.4.1) and
the Einstein Universe (4.4.7). The Einstein embedding space ds? = A(y)ds? + edy?
(where A(y) is given by (4.4.6)) of the general Schwarzschild-de Sitter spacetime is
already known, and we explained how it is obtained. We determined that the Einstein
Universe can be embedded into the 5D flat bulk (4.4.14), and verified that the 5D metric
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can be transformed into Minkowski form. This regains the result by Wesson (1994),
although a different method was used there. Furthermore, the Einstein Universe has
an embedding into the 5D Einstein bulk (4.4.16) with cosmological constant A = Z2a,
where A(y) is given by (4.4.15). This solution is a new result, and was obtained with
collaborators via Lie analysis techniques. For the metric form (4.5.1), we recovered
the case of embedding the general Schwarzschild-de Sitter spacetime into a bulk with
git. = A(y)gir- The embedding analyses with the bulk metrics (4.6.5) and (4.6.6) yielded
the general Vaidya-de Sitter model (4.6.3) with constant mass as the only 4D solution.
Its Einstein embedding space, which is well known, is ds* = A(y)ds® + edy?, where
A(y) is specified by (4.4.6). In the next chapter, we consider symmetry inheritance
properties in embedding theory.
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Chapter 5

Killing Geometry in Higher
Dimensions

5.1 Introduction

So far we have been concerned with finding solutions for embedding spacetimes into
higher dimensions. It is also important to study the properties of embedding spaces
for both mathematical interest and astrophysical/cosmological consequences. Since
static spherically symmetric spacetimes provide good first descriptions of astrophysical
objects such as black holes and stars, an analysis of their embedding properties allows
for a confrontation between higher dimensional cosmological models and astrophysics
(Amery et al. 2011). The conformal and Killing geometries of a spacetime can be
useful for various reasons such as providing insight into symmetries and conservation
laws, which can improve our understanding of a spacetime’s structure. It is therefore of
interest to investigate any relationship between the conformal geometries of embedded
and embedding spaces. In this chapter we shall study the (conformal) Killing geometry
of a 5D Einstein space that embeds a static spherically symmetric (SSS) spacetime
along a hypersurface. We begin in section 5.2 with a review of important concepts,
providing definitions of various types of conformal geometry in section 5.2.1 and noting
some results for decomposable spaces in section 5.2.2. In section 5.3 we discuss the
methodology used to obtain the conformal Killing vectors for the embedded SSS space
and its Einstein bulk, and we highlight the equations to be solved for five-dimensional
Killing vectors. We demonstrate that there are 5D Killing vectors inheriting the four-
dimensional ones in section 5.4. These vectors are shown, in section 5.5, to be the only
hypersurface-like Killing vectors of the general embedding space. Further comments
regarding the general conformal geometry of the bulk are also made in section 5.5, and
a summary of our main results is provided in section 5.6. The original results contained
in this chapter have been published in Amery et al. (2011).
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5.2 Review

5.2.1 Definition and properties of conformal Killing vectors

A conformal Killing vector (CKV) X of a metric space is defined by the action of the
Lie derivative on the metric tensor g (Stephani et al. 2003):

Lxgij = 21(X)gij , (5.2.1)

where 9 is the conformal factor. If ¢ = 0, then X is a proper Killing vector (KV), and
if ¥, =0 # 1, then X is called a homothetic Killing vector (HKV). Applying the Lie
derivative, equation (5.2.1) can be written as

Xij + Xji = 20(x)gs; - (5.2.2)

Conformal Killing vectors generate isometries along null geodesics and are use-
ful in simplifying the field/embedding equations, in the classification of spacetimes
(Stephani et al. 2003), and in applications to, for instance, perturbation theory (Katz
et al. 1997; Amery and Shellard 2003) and singularity theorems (Hawking and Ellis
1973; Joshi 1993). Homothetic Killing vectors scale distances by a constant factor,
preserve the null geodesic affine parameter, and are related to self-similarity (Stephani
et al. 2003). Proper Killing vectors characterize the (continuous) symmetry properties
of pseudo-Riemannian spaces in an invariant fashion: they generate first integrals along
time-like geodesics via Noether’s theorem, and may be used to investigate the physical
properties of a spacetime, via the structure of their isometry group (Stephani et al.
2003).

Recall the concept of intrinsic rigidity explained in section 2.2.4. The Killing
geometry of a intrinsically rigid manifold is related to the extrinsic curvature €;;,
when embedding into some higher dimensional space, in an interesting way:

Lx; =0,

for a Killing vector X (Goenner 1980; Londal 2005). This property follows easily from
the fact that the extrinsic curvature depends only on the metric and its derivatives, by
the commutativity of the Lie and partial derivatives, and by the definition Lxg;; = 0.
For SSS spacetimes, the above condition can be used to show that the extrinsic curva-
ture in the bulk must depend on r and y only (Londal 2005).

5.2.2 Decomposable spaces

Some results have been obtained for the conformal Killing geometry of ‘decomposable
metrics’ (Apostolopolous and Carot 2005). A (m+n)-decomposable space is a product
space P = M x N endowed with a decomposable metric

G (2", 2) = gi5(2)8},6] + Gr=(2"), 5,
where g and g are metrics corresponding to the m- and n-dimensional spaces M and
N, respectively. In Gaussian coordinates, the (n + 1)-dimensional embedding space
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(2.4.1) is decomposable if and only if % vanishes, so that g;;(z*,y) = g;;(z*). The
decomposable space P has the following inheritance properties:

e Killing vectors for M and N are also Killing vectors for P;

e Suppose M and N have HKVs H;(z*) and Hy(z™) with conformal factors b and
b. Then H, = = bH, 5“ + bH~y 6T is a HKV for P with conformal factor bb. So P
admits a HKV if and only if both M and N do;

e P will possess a proper CKV with conformal factor ¢ if M and N admit gradient
CKVs ¢, and 9 v, respectively.

A (m + 1)-dimensional decomposable space is a generalization of a ‘stacking’
embedding M x AdS(;), which is a typical description of, for example, black strings
(Horowitz and Strominger 1991; Gregory and Laflamme 1993, 1994). However, there
are many spacetimes of interest that are not decomposable, such as in the brane-
world scenarios (Randall and Sundrum 1999q,b) which involve more general warped
Lorentzian manifolds — (M, g) with M = O x S, g = g; ® Ygy for submanifolds
(0, g1), (S, g2), and Y a function defined on O. There the metric may be transformed
so that it is conformally related to a decomposable metric. This can be useful since
conformal transformations map CKVs to CKVs (Stephani et al. 2003). However, KVs
are generally mapped to CKVs, so one still has to explicitly solve for the Killing
geometry (Amery et al. 2011). Furthermore, the Einstein bulk we shall consider in
this chapter is generally not conformal to a decomposable metric, unless the embedded
space is Ricci flat.

5.3 Methodology

We focus on embeddings for 4D SSS spacetimes with metric

gij = diag[—e®) 2 2 p2gin? g, (5.3.1)

into a 5D Einstein bulk of the form

d3? = gdr'da’ + edy?,
Gij = Ay, 7) 900078} + B(y, 7)gond; 67 (5.3.2)

(2 ] ?

where, in general, A and B are functions of y and r that are unlikely to be separa-
ble. The embedding space must satisfy the initial conditions A(0,7) = 1 = B(0,r),
A(O T)goo = —2 Qoo and B(O r)gcp = —2Qcp, where a solution to the Codazzi-Gauss
equations (2.4.6) and (2.4.7) for €;; has been obtained (Londal 2005) and includes the
solution that appears in chapter 4 in the case A = B.

We may compute the non-zero connection coefficients (2.2.1) for metric (5.3.2):
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=4 :_E

ij 29ij,4 )

i Lok
Iy = 59 "G (5.3.3)

7 1—in — _ _
Uk =T e = 59" (Gjnsk + Guk = Gikan) -

and for metric (5.3.1):

F001 _ I//, Floo _ V/€2(l/f)\)’ Flll _ )\/’
[y = —re Iy, = —rsin®fe >, 2, =1/r (5.3.4)
[?,, = —sinfcosf, 2, =1/r I?,, = cot 6.

Suppose that X©) = (Xé5),Xf5),X2(5),X§5),Xi5)) is a CKV for the embedding
spacetime (5.3.2) with conformal factor 1 (y, x¢), and that X*) = (Xé4), xW x®, X§4))
is a CKV for the embedded spacetime (5.3.1) with conformal factor p(z¢), where the

bracketed superscript is a label, not a tensorial index. The defining equations for a
CKV corresponding to spaces (5.3.2) and (5.3.1) are

5 5) 5 5 o 5) c\ ~

XO 4+ X0 =X0) + X0) — 207, X = 24 (y, 2 G , (5.3.5)
4 4 4 4 4 c

X+ xl =x + X ok X = 20(2)g;; (5.3.6)

respectively.
The conformal geometry of a SSS spacetime is well known (Maartens et al. 1995,
1996). The conformal Killing vectors satisfy the equations

4 4
X((),o) - 1ﬂooX{ ) = ¥400 »
X§+ X4 —2r%, X0k =0,
X(c% + Xg,)c - 2FECDX1(34) = 2¢gcp

and the Killing vectors (when ¢ = 0) were found to be

e*,0,0,0), (5.3.7
0,0,0,7%sin” ), (5.3.8
0,0, r%sin ¢, 7% sin 0 cos 6 cos ¢), (5.3.9
0,0, =72 cos ¢, r* sin 6 cos 0 sin ¢). (5.3.10

~— Nt N~

Y(O) _ (
Y(l) _ (
v =
v =
Using the metric connections (5.3.3), we rewrite (5.3.5) as
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X =ev(y,a°), (5.3.11)

X9+ X5 - g% X" =0, (5.3.12)
5 5 _kn/- _ _ 5 _ 5 o —
Xz‘(,j) + X](,i) -7 (Ging + Gnjii — Qz‘j,n)Xlg )+ 69ij,4X£ ) = 20(y, %) gij - (5.3.13)

The system (5.3.11)—(5.3.13) must be solved to obtain a CKV for the five-dimensional
bulk (5.3.2). Just like the case for the embedding equations observed in earlier chapters,
the higher dimensional conformal Killing equations are complex and difficult to solve
using standard techniques. We therefore shall restrict our attention to five-dimensional
KVs (i.e. when ¢ = 0).

Setting ¢ = 0, equation (5.3.11) yields

X =0, (5.3.14)

so that X f)) depends on ¢ only. Applying metric (5.3.2), we rewrite equation (5.3.12)
as the four equations

X + X = 5%57. (5.3.15)
B
Xeh+Xio = 5 X, (5.3.16)
and equation (5.3.13) as the ten equations
2A A’ .
2X57 — §F100X1(5) + E!J“QOOXP +eAgn Xy =0, (5.3.17)
A/
X8+ X0y — om0, X{Vop — ZX(@(% =0, (5.3.18)

1 .
X+ X —2rE ) X — = (BpoE + Bedh — Brg™ gop) XY + eBgop XY =0,
(5.3.19)

where T'%; is specified by (5.3.4). The set of equations (5.3.14)-(5.3.19) provide the
five-dimensional KVs for the bulk (5.3.2) embedding a SSS spacetime.

5.4 Inheritance of four-dimensional Killing geome-

try
Here we describe how the Killing geometry (5.3.7)—(5.3.10) of a SSS spacetime is in-
herited by the five-dimensional Einstein space (5.3.2) into which it is embedded. This

is to be expected since we have considered an energetically rigid embedding (Amery
et al. 2011).
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5.4.1 Decomposable bulk metric

A four-dimensional Ricci flat spacetime has an embedding into a Ricci flat bulk (5.3.2)
with A = B =1 (Londal 2005). So

ds? = g;;j(z")dx'd2? + edy?,

and the embedding space is decomposable. The results obtained by Apostolopolous
and Carot (2005) are applicable here — see section 5.2.2. The four-dimensional Killing
geometry is trivially inherited by the bulk: X®) = (X® 0) with X® given by (5.3.7)
(5.3.10).

5.4.2 Case A(y,r) = B(y,r)

Consider the case when A(y,r) = B(y,r). Our analysis in chapter 4 shows that the
only possible embedded SSS spacetime is the general Schwarzschild-de Sitter model,
and the five-dimensional Einstein embedding space has the form g;; = A(y)g;; with
A(y) specified by (4.4.6). The Killing equations (5.3.14)—(5.3.19) become

xP =o, (5.4.1)
. A
5 5 5
X3+ X = 5x7 (54.2)
X+ X7 - o X0 + edgy X =0, (543)

Set Xf’) = 0. Equation (5.4.1) is trivially satisfied. Equation (5.4.2) reduces to a

separable differential equation which admits the solutions XZ-(5) = fi(z%)A(y), where

)

the f; are unknown functions. Substituting this expression for X¢(5 into (5.4.3) implies

that

fig+ fia =205 fu =0,
which is equivalent to the defining equation (5.3.6) for a 4D KV (¢ = 0). So we must
have f; = Xi(4), a Killing vector of the four-dimensional SSS spacetime. Hence,

X® = (A(y) XW, 0), (5.4.4)

where A(y) is given by (4.4.6) and X® € {Y© Y Y@ Y1 the 4D KVs (5.3.7)-
(5.3.10). This proves the inheritance of the 4D Killing geometry by the five-dimensional
Einstein embedding space.

5.4.3 Case R = R(r)

Now we investigate the inheritance properties of the Einstein embedding space (5.3.2)
for the general case in which R may depend on r and A(y,r) may not equal B(y,r).
Suppose that

XO = (P(a',y) XY, H(z',y)),
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where X® is a KV (5.3.7)-(5.3.10) of the embedded SSS spacetime, and P and H
are unknown functions. Substituting the above expression into the system (5.3.14)—
(5.3.19), we obtain the following set of equations that must be solved for P and H:

H=0,
5 v (4) A (4) 5 v (4) B (4)
HJ)"‘PXO _ZPXO :0, H,C+PXC _EPXC :07
A A
PoXy + g =0, PeX+ PoxE — Zpxist =,
BI
PoXE + Pext) = 2 (3ot + obh) PXLY
B . (5.4.5)
— 5 (0p6% + 00.63) PX{" + eBgepH = 0.

Here we have used the fact that for all four KVs of a SSS spacetime, XYQ = 0 and
Xéflg = 0. Setting C' =1 = D in equation (5.4.5) yields H = 0. Thus, any inherited
KVs are hypersurface-like. Then the above system becomes

. A . B
(P—Z )Xé4):0, <P—E )Xg“zo,

A/

PoX," =0, PoXp! + PoX() - ZPX(§4)510 =0,

Pyx{V = P3X{" =0, PyX{Y + P3X{Y =0,
B’ B’

(P’ - §P> x5 =0, (P’ - EP) XM =0,

For X® =Y© = (¢£2,0,0,0) we have
. A Al
P:ZP’ Plzzp, and 30232233:0.
These equations are easily solved to obtain P(y,r) = koA(y,r), ko € R. Thus,
X® = (kg A(y,)Y©, 0), ko €R. (5.4.6)
For any of the three Killing vectors Y1, Y®) Y©®) we have
. B B
PIEP’ PIIEP’ and Py=Py=P3=0,

which yields the solution P(y,r) = k;B(y,r), k1 € R, and so

X®) = (ky B(y,r)XW, 0), ki €R, (5.4.7)
with X® € {Y®D, Y® y©)1,
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We have thus provided an explicit demonstration of the inherited Killing geometry
for a 5D Einstein bulk (5.3.2) embedding a SSS spacetime. Note that with A = B we
regain the results of section 5.4.2.

5.5 General considerations

5.5.1 Remarks on general Killing geometry of the bulk

Here we consider the 5D embedding space (5.3.2) with R = R(r) in general, and we
investigate the existence of Killing vectors other than the inherited SSS ones covered
in section 5.4.

First we observe that by setting Xi(s) = 0, equations (5.3.17) and (5.3.19) imply
that either X f’) = 0or A=0= B. In the latter case, the initial conditions of the
embedding further show that A = 1 = B, and this corresponds to the case of a decom-
posable bulk embedding a Ricci flat spacetime — see section 5.4.1. There the remaining
Killing equations indicate that Xf) is a constant, so that X©®) = (0,0,0,0,k), k € R,
is a Killing vector. In general we must have Xf) = 0, and so there does not exist
any Killing vector in the y-direction. This is sensible as such a KV would result in
y-independence for the extrinsic curvature €2;; and hence §,,, which contradicts the
general form (5.3.2) for the bulk metric, and yields a non-Einsteinian stacking (Amery
et al. 2011).

Now we consider X f’) = 0 and XZ@ not all vanishing. From equation (5.3.19)
with C =1 = D we deduce that

5
X]F,]_) = >\/ —+ El
X5 2B’

which gives the solution

X = f(y.t,0,0) e B2

Using the above expression for X1(5) in equation (5.3.16) with C' = 1 shows that

/ B

f 2B
= f(y,t,0,0) = g(t,r,0,0) (By, 7))/

For gB'/? to be independent of r, B must be separable, and with B(0,r7) = 1, this
means that B = B(y). However, this is not generally true, so ¢ must vanish, forcing
Xl(s) = 0. Similarly, taking Xl(s) = 0 in equation (5.3.19) with C' = 1 = D yields
Xis) =0 or B = 1. Hence, for the general R = R(r) case, X1(5) =0« Xf’) =0.
Next we present a full analysis of the five-dimensional Killing vectors that are
hypersurface-like. This is motivated by the fact that all the inherited SSS KVs in-
vestigated in section 5.4 are hypersurface-like. We take X f) = 0, which immediately

(5)

implies that X;” = 0 by the previous argument, and we proceed by choosing X6 to
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consist of only one non-zero component, then two non-zero components, and so on.
We list only those cases yielding Killing vectors. Consider X, ,S5) = X(()5)62. The Killing
equations (5.3.15)—(5.3.19) are simplified to

and we obtain the solution X ) _ = koe* A(y,r), ko € R, which was already presented
in section 5.4.3 as XO) = (ko A(y,r)Y®, 0). Similarly, taking X = X§5)(52 leads to
the solution X (kl B( r)Y ) , 0), k1 € R.

Now take X;(L) = X (52 X?EE’)(SI%. Substituting this into equations (5.3.15)—
(5.3.19) and solving the system yields the Killing vector

X®) = (kg e A(y,7), 0, 0, ky 72 sin® 0B(y, r), 0)
= (ko AY® 4k, BYW 0), ko ki €R.

The case Xf[r’) 52 + X )5 is not as straightforward as the previous ones. Here
the Killing equatlons become

.5 B e .5 B e
X =2, X9 =Bxp,
2 B’ 2 B’
X =2xP 4 2xf xQ =X X, (55.1)
Xé? = —sind cos 9X2(5), X2(533 + X§52) = 2cot GX?EE’),
with X2(’50) = X?E,Bo) X§52) = 0. The first four equations in (5.5.1) give
= f1(¢)r*Bly,r), and XS =hy(6,¢)r*B(y,r).
Inserting these functions into the last two equations of (5.5.1) leads to:
hi(0,¢) = — sin@cos&/f1d¢ + ha(0), (5.5.2)
ofi 3h1
L _9¢cotBh, =0 5.9.3
3(b + 1 ) ( )
and using equation (5.5.2) in (5.5.3), we obtain
0
fl /f1 ¢=——r + 2cot bhsy . (5.5.4)
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In equation (5.5.4), the terms on the left depend only on ¢ and the terms on the right
depend only on 6, so we may set both sides equal to a constant & (which turns out to
be zero) and proceed to solve for fi, hy and hy. We find that

fi(¢) = facos ¢ + fzsing,
h2<9) = hg SiIl2 9,
hi(6,$) = —sin@cosd (fosing — fscos ) + hysin?6

where fs, f3, hsy are arbitrary constants. Thus, the Killing vector is given by

X® = (0, 0, f,r?B, hyr’B, 0)
= (fs BY? — f, BY® 4 hs BYW  0),  fa, fs, hs € R.

Finally, we consider X, £L5) = Xé5)52 —I—X2(5)52 —|—X§5)§2, which is similar to the above
scenario. We obtain

X = koe™ Ay, ),
XS = (kycos ¢ + ks sin @) r2B(y, r) |
X§P = [~sinfcosd (kysin g — ks cos §) + ky sin® 0] r2B(y,r)

where k, € R, so that

X® = (kg AY® + ks BY® — ke, BY® 4k, BYW, 0).

The above analysis indicates that there are no hypersurface-like Killing vectors
other than those inheriting the embedded SSS geometry. This is reasonable since we
have imposed the SSS form for the y = constant hypersurfaces. The computation of
the Killing geometry with X f) # 0 is a much more complex task and remains to be
carried out, although in general one cannot expect any new Killing vectors since we
have not specified the bulk geometry.
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5.5.2 Remarks on conformal geometry of the bulk

Here we provide a partial analysis of the 5D conformal geometry with ¢ # 0.
Consider the equations (5.3.11)—(5.3.13) defining a CKV (¢ # 0) in the 5D em-
bedding space (5.3.2), and take XZ-(5) = 0. Equation (5.3.12) implies that Xfi) =0, so

Xf’) depends on y only. Using equation (5.3.11) in (5.3.13) we get

A X

— = — 9.5.5
B X®

2B~ x’

which indicates that A JA = B /B. Solving this equation and applying initial conditions,
we deduce that A = B. Recall from section 4.5 that when A = B, the embedding metric
has the form

ds* = A(y)ds® + edy?, (5.5.6)

with A(y) given by (4.4.6) and ds® the general Schwarzschild-de Sitter spacetime. Not-
ing that X, f’i) vanishes, we then solve (5.5.5) to obtain

XY =p(Aw)Y?, peR,

and from (5.3.11) we compute the conformal factor ¢ = eX\” = L AA1/2. Hence,

X =(0,0,0,0,p(A@w)"?), peR, (5.5.7)

where A(y) is specified by (4.4.6), is a CKV with conformal factor %AA‘V 2 for the
bulk (5.5.6). We note that there does not exist a CKV in the y-direction for the general

case A(y,r) # B(y,r).
Next, we observe that the sum of the CKV (5.5.7) and an inherited SSS KV

also yields a CKV for the embedding space (5.5.6). This can be verified by taking
X®) = (A(y) XYW, p(A(y))*/?) and ¢ = LAAY2 where X is a SSS KV (5.3.7)-
(5.3.10), in equations

X = e,
: A
XAE? + Xi(5) = ZXi(S) )
X0+ X0 ok X 4 cAg X = 20 Ag,; .

Noting that Xfi) = 0 and XZ-(5) = A(y)XiM), we see that the first two equations are
easily satisfied. In the last equation, eAgin f’) = 210 Ag;;, and

(5) (5) k x(5) _ (4) (4) k@] _
X 4 x® —orkxP = 4 [Xm. + X ork x| ] —0,
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since XZ-(4) is a 4D Killing vector. Thus,

X® = (A(y) XY, p(A@y)'?), peR, (5.5.8)

is a CKV for the bulk (5.5.6) with conformal factor LAA~Y/2,

The calculation of other conformal Killing vectors for the bulk (5.5.6) and the
full conformal geometry for the general case A # B involves more complex equations
and represents a continuing programme of research. We intend (with collaborators)
to employ the techniques of Lie symmetry analysis to attack these problems, both to
establish the conformal Killing geometry of a bulk with an embedded SSS hypersurface
as a problem in its own right, and also as an experimental platform from which we
hope to draw insight into the relationship between Lie symmetry reduction and CKV
inheritance (Amery et al. 2011).

5.6 Summary

In this chapter, we investigated the conformal Killing geometry when embedding 4D
static spherically symmetric spacetimes into a 5D Einstein bulk with form (5.3.2). We
presented the equations (5.3.11)—(5.3.13) that must be solved to obtain a CKV in the
bulk. First we restricted our treatment to KVs, and showed that the Killing vectors
of the embedded SSS spacetime are inherited by the bulk. For the case A = B, we
obtained the 5D Killing vector (5.4.4), where A(y) is given by (4.4.6) and X® are
the 4D Killing vectors (5.3.7)—(5.3.10). The general case R = R(r) yielded the Killing
vectors (5.4.6) and (5.4.7), where X® are the 4D KVs YN, Y® ' Y®) in the latter
solution. Next we considered the general Killing geometry, and found that the Killing
vectors inheriting the embedded SSS geometry are the only five-dimensional Killing
vectors that are hypersurface-like, which is a reasonable result since we had imposed
the SSS form for the y = constant hypersurfaces. We also showed that in general
there does not exist any 5D Killing vector in the y-direction. Finally, we discussed the
general conformal geometry of the bulk. For the existence of a CKV in the y-direction,
we found that we must have A = B, which corresponds to the embedding of the general
Schwarzschild-de Sitter spacetime. In that case we obtained the 5D conformal Killing
vector (5.5.7) with conformal factor %’AA*UQ, where A(y) is specified by (4.4.6). For
the same case, the solution (5.5.8), which is a sum of the CKV (5.5.7) and an inherited
SSS KV, is also a 5D conformal Killing vector with conformal factor ;—pAA_l/ 2. The
computation of the bulk Killing geometry with non-zero fifth component as well as
the full 5D conformal geometry remains to be carried out, and provides an avenue for
future work.
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Chapter 6

Conclusion

The primary objective in this thesis was to apply the method of embeddings to investi-
gate solutions in five-dimensional gravity. This research is motivated by the importance
of embedding theory in the study of higher dimensional models, and is also of purely
mathematical interest. In the past, embedding into Euclidean spaces has been useful in
spacetime classification and in obtaining new solutions to the field equations. Embed-
ding into curved pseudo-Riemannian spaces has become a promising field of research
in recent years. The Dahia-Romero (2002a; 2002b) theorems guarantee the existence of
embeddings into Einstein and more general pseudo-Riemannian spaces. However, gen-
eral solutions to the embedding equations are not yet known. Thus, we are encouraged
to explicitly obtain solutions to the higher dimensional field equations for particular
cases of interest. Here we sought to isometrically embed four-dimensional spherically
symmetric spacetimes into five-dimensional Einstein manifolds. We focussed on spher-
ically symmetric spacetimes since they are relevant in astrophysics and cosmology, and
on Einstein spaces because of their role in higher dimensional particle physics, as well
as their relative geometric simplicity.

In chapter 2 we presented preliminary definitions and concepts that were essential
in carrying out this research. We reviewed the technique provided by Dahia and Romero
(2002a) for isometric embeddings of pseudo-Riemannian manifolds into Einstein spaces.
We began with a 5D Einstein bulk having the line element (2.4.1):

d'§2 = gzk(l‘]a y)dw’idmk + E(gf_)(x‘]7 y))2dy2a 62 = 1a glk(xj7 0) = Gik »

in Gauss-normal form with ¢ = 1, where g;; are unknown functions of all five coordi-
nates, and considered a 4D metric g;; to be embedded along the hypersurface y = 0
in the bulk. The procedure is to solve a form of the five-dimensional field equations
known as the Gauss, Codazzi and propagation equations such that when y = 0 the
higher dimensional metric reduces to the four-dimensional one. The extrinsic curva-
ture tensor is utilized in the Codazzi and Gauss equations, which, according to the
Dahia-Romero theorem, only need to be solved at y = 0. This simplifies matters. A
solution to the Codazzi-Gauss equations for 4D static spherically symmetric spacetimes
has been obtained (Londal 2005). The propagation equation, however, is significantly
more complicated, and a general solution to this equation for general spherically sym-
metric spacetimes remains unknown.
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We present a summary of the tasks carried out and results produced in this thesis.

Chapter 3: Few solutions for embeddings are known, mostly dealing with embed-
ded spaces having vanishing energy-momentum. We began to tackle the problem of
embedding spacetimes with non-trivial energy-momentum by choosing to embed the
gravitational field exterior to a four-dimensional global monopole defect, since it is one
of the simpler spherically symmetric spacetimes having non-zero energy-momentum.
We have determined a solution (3.4.2):

d3* = —dt* + K~ 'dr® + (r — ay)*(d6* + sin® 0d¢?) + edy?, o* = €(1 — K),

for the global monopole exterior embedded locally and isometrically into a five-dimensional
Riemann flat manifold along the hypersurface y = 0. Moreover, it is demonstrated that
for static spherically symmetric spacetimes embedded at y = 0 into a particular 5D
bulk (3.4.4):

ds? = —e BUr g2 L B gp? 4 (r — oy)*(d6* + sin® 0d¢?) + edy?, o € R,

with vanishing Ricci tensor, the global monopole exterior is the typical solution for the
embedded space. We noted that the five-dimensional solution is simple but not trivial,
since it is not an obvious solution nor is it of a trivial product form M x Y. A detailed
analysis of the above bulk metric is performed. If we want to avoid a complex value for
a, then the fifth dimension must be space-like. It is verified that the five-dimensional
metric can be transformed to Minkowski space via rotations that are related to the
energy scale 1 and the deficit angle A of the 4D metric. There is no inherited deficit
angle. This observation as well as the fact that a global embedding can be constructed
from the local embeddings (Moodley and Amery 2012) indicates that the bulk obtained
may be taken as globally flat. However, we noted that various cosmic strings may also
be constructed. We note that 5D Minkowski space is not a new solution. However,
its relevance to the 4D global monopole metric was previously unknown. The stability
of 5D Minkowski space has obvious implications for discussions about the stability
of the 4D global monopole: if gravity is 5D the problem is alleviated. Stability via
embeddings may be a profitable avenue of research.

We have investigated further properties of the higher dimensional metric in order
to gain a better understanding of the solution. We presented other forms of the metric,
considered some of its submanifolds and their extrinsic curvature, and computed the
energy-momentum tensor for its four-dimensional component that depends on the extra
dimension. This tensor reduces to the matter tensor of the global monopole when y = 0.
This notion is discussed in the context of induced matter theory (Wesson 1999). We
also noted that since the hypersurfaces of constant y all correspond to different global
monopoles, the embedding space appears to have a ‘line-like’ structure, but is not an
actual ‘stacking” with topology N = M x Y. This facilitated a comparison with the
r — 0 limit of the EGB black hole (Maeda and Dadhich 2006) in which we observe
how the Gauss-Bonnet term increases the number of permissible vacuum topologies.
Furthermore, our (locally Minkowski) metric, with appropriate compactifications, can
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be viewed as a local embedding of the 4D global monopole exterior into the 5D EGB
Kaluza-Klein black hole. We noted that, by a repeated application of the Dahia-
Romero theorem, a six-dimensional vacuum embedding of the global monopole exterior
may be constructed. The results obtained in this chapter may also be relevant to other
higher dimensional models (Randall and Sundrum 1999q,b; Tye 2008), and are being
prepared for publication.

Chapter 4: We considered the general problem of embedding a spherically symmetric
spacetime. The complexity of the propagation equations for embedding the global
monopole metric shows just how difficult it is to find general solutions to the embedding
equations, even for specific four-dimensional non-vacuum spaces. This motivated us
to restrict the bulk metric to a particular form and to investigate what spherically
symmetric spacetimes g;; may embed into it. To begin with, we chose a 5D metric of
the form (4.3.1):

d5® = A(y)goodt® + B(y)gu1dr® + C(y)go2df® + D(y)gasdd® + edy?,

whose components are separable with respect to the extra dimension y. A metric of
this type ensures energetic rigidity and has been used in the Randall-Sundrum (1999a;
19990) and other (Maartens and Koyama 2010) brane-world scenarios as well as in-
duced matter theory (Wesson 2002). We determined that the general Schwarzschild-de
Sitter space and the Einstein Universe are the only 4D spherically symmetric space-
times that may embed into a 5D Einstein space with this particular form. As the
general Schwarzschild-de Sitter spacetime is an Einstein space, its Einstein embedding
is already known (Lidsey et al. 1997; Anderson and Lidsey 2001) and we discussed how
it is obtained. In the case of the Einstein Universe, we obtained an embedding space
(4.4.14):

2 e
2 2g(t) 42 —€Qg r 2/ 112 .2 2 2
ds? = —e¥ g% 4 <1+ 5 y> <—1+“;r2+r (d6? + sin? Odp )) + edy?,

that is Riemann flat and verified that the metric can be transformed to Minkowski
form. This coincides with a result obtained by Wesson (1994) for the embedding of the
Einstein Universe into a flat space, although a different method was used there. We
obtained a new solution (4.4.16):

2
—2eA -3 —2eA
ds? = — [cosh ( 36 y) —a 2_/\6 sinh ( 36 y) 29 qt?
_d +1r2(d6? + sin® 0d¢?®) + edy®, a €R
1+ 2r2 ’ ’
for the particular case A = _73042. However, the embedding metric for other non-flat

cases remains to be solved. We also concluded that the general Schwarzschild-de Sitter
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spacetime is the only possible embedded spherically symmetric spacetime with bulk

ds? = A(y)ds® + edy?, since the bulk metric for the Einstein Universe cannot have A =

B = C = D. These studies have been published in Moodley and Amery (2011). For

both embedding scenarios, additional solutions may be obtained by assuming different

functional relationships between A, B, C' and D. This is the subject of ongoing work.
Next we chose a 5D metric of the form (4.5.1):

ds* = A(y,r)ds* + edy?,

and demonstrated that A depends on y only, which regains the previously considered
case. Thus, we concluded that the general Schwarzschild-de Sitter spacetime is the
only spherically symmetric spacetime that may be embedded into a vacuum bulk of
this metric form. This result has been submitted for publication. We also considered
embeddings of spherically symmetric spacetimes written in retarded time coordinates
into 5D vacuum bulks with metric forms (4.6.5) and (4.6.6):

d3* = A(y,v)ds* + edy?,
d5* = A(y)goodv® + A(y)g20d6® + A(y)gssde® + 2B(y)gordvdr + edy®.

The analyses for both ansatzen yielded the general Vaidya-de Sitter model with con-
stant mass as the only possible embedded space, and its embedding space is known to
be ds? = A(y)ds® + edy* with A(y) given by (4.4.6). This work is being prepared for
publication.

Chapter 5: Our intention in this chapter was to investigate the relationship between
the conformal geometry of the embedded and embedding spaces. We considered 4D
static spherically symmetric spacetimes embedded into a 5D Einstein bulk with the
general form (5.3.2):

d3® = (A(y, 7)g0067 0] + By, T)QCDCSZC(SJD) da'da? + edy®,

where A, B remain unsolved functions. We demonstrated that the 4D Killing geometry
X®  which is well known, is inherited by the bulk Killing geometry X®). In the
case A = B, which corresponds to the embedding of the general Schwarzschild-de
Sitter model into a vacuum bulk with A = A(y) given by (4.4.6), it was shown that
X©®) = (A(y) XW, 0). For the general case in which the 4D Ricci scalar R may depend
on r, we found the solutions (5.4.6) and (5.4.7):

X® = (ko Aly,r)Y™, 0),
X® = (ky B(y,r) X%, 0), X®We{y® yv® y®y

where kg, k; € R, and the Y are the Killing vectors (5.3.7)-(5.3.10) of a static
spherically symmetric spacetime. It was further determined that these Killing vectors
inheriting the embedded SSS geometry are the only five-dimensional Killing vectors
that are hypersurface-like, which is a reasonable result since we had imposed the SSS
form for the y = constant hypersurfaces. We also investigated the existence of 5D
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Killing vectors in the y-direction, and found that there can be no such vectors in
general. In fact, it was proved that for the 5D Killing vector to have a non-zero fifth
component, its second component must be non-zero as well. As our final task, we
discussed the general conformal geometry of the bulk. A five-dimensional conformal
Killing vector in the y-direction exists only for the case A = B, which applies to the
embedding of the general Schwarzschild-de Sitter model. For that case we obtained
the solution (5.5.7):

X® =1(0,0,0,0,p(A(y)"*), peR,

with conformal factor %AA”/ 2 and noted that the sum of this vector with any of the
hypersurface-like Killing vectors is also a conformal Killing vector, given by (5.5.8):

XO) = (A(y) XY, p(A(y)?), peR,

with conformal factor %”AA‘l/ 2. The results of this chapter have been published
(Amery et al. 2011).

This programme of study has shown that embedding techniques can be useful as a way
to find new five-dimensional exact solutions which can then be applied in astrophysics
and cosmology.

We note that for non-vacuum embedded spaces, we encounter challenges in solving
the higher dimensional field equations due to their highly non-linear nature. Thus,
much work needs to be done to tackle this problem. We comment on remaining issues
of interest and possible directions of future research in this field.

e The embedding of the global monopole exterior metric into an Einstein space is
yet to be determined. In this general case, we were able to obtain a solution to
the Codazzi and Gauss equations, given by (3.3.5). However, the propagation
equations (3.3.8)—(3.3.10) with the initial conditions (3.3.6) and (3.3.7) remain
unsolved. This problem is currently under investigation. As this system of equa-
tions is highly non-linear, a deeper analysis of such equations may also lead to
new ideas and/or methods in solving non-linear differential equations.

e The embedding of the Einstein Universe into an Einstein bulk with arbitrary
value for A remains to be solved. The existence of other solutions with A # B
for embedding the general Schwarzschild-de Sitter spacetime is also a point of
interest.

e The computation of the full conformal and Killing geometry for rigid vacuum
embeddings of static spherically symmetric spacetimes remains to be carried out.
Again, the key challenge here is in solving non-linear equations. However, this
could be made easier if explicit solutions for A and B were first determined.

e Future work would include investigating what spherically symmetric spacetimes,
in the usual coordinates or retarded time coordinates, may embed into five-
dimensional Einstein spaces of other metric forms.
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e Further spacetimes that would be interesting to embed include the global monopole
interior with core mass and/or a cosmological constant, global cosmic strings, the
Reissner-Nordstrom black hole, and the general Vaidya-de Sitter spacetime with
non-constant mass term.

e [t would also be interesting to investigate embeddings into non-Einstein bulks
such as asymptotically Einstein spaces, which could be significant to brane-world
theory.
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Appendix A

Global Embeddings of
Pseudo-Riemannian Spaces

A.1 Introduction

In this appendix we provide further information on global embeddings for the reader’s
interest. Motivated by various higher dimensional theories in high-energy physics and
cosmology, we consider the problem of constructing global embeddings of pseudo-
Riemannian manifolds into manifolds of higher dimensions. A recent theorem by Kat-
zourakis (2005b) claims that the local existence theorem (Dahia and Romero 2002a) for
embedding into Einstein spaces can be made global, and his subsequent papers build
upon this result (Katzourakis 2005a, 2006a,b). However, careful analysis reveals that
there has been a crucial misunderstanding of the local result: the assumed form of the
local embedding space is only valid for Ricci flat embedded spaces. Hence, Katzourakis’
result is limited. We elucidate the impact of this misapprehension on the subsequent
proof, and amend the given construction so that it applies to all analytic embedded
spaces as well as to embedding spaces of arbitrarily specified (non-degenerate) Ricci
tensor. We also quantify how similar an arbitrary global space must be to the pro-
moted local embedding space in the vicinity of the embedded hypersurface, in order
for it to be a global embedding space. We acknowledge that the article by Katzourakis
(2005b) was recently updated and it has been noted that “There has been discovered
a misconception which does not allow the solvability of the algebraic systems arising
in the proof without further topological assumptions on the manifold” (Katzourakis
2011). We address this issue in our construction of a global embedding space. The
work presented here has been submitted for publication (Moodley and Amery 2012)
and an earlier version of this result was submitted as the author’s M.Sc. dissertation
(Moodley 2008). The outline of this appendix is as follows. In section A.2 we provide
relevant background material. In section A.3 we concentrate on global embeddings,
presenting two theorems: Theorem 1 pertaining to embeddings into Einstein spaces,
and its immediate generalization, Theorem 2, pertaining to embeddings into arbitrarily
specified pseudo-Riemannian spaces. We also contextualize these theorems as special
cases of an appropriate theorem generally applicable to metric spaces. We provide
commentary on the proofs and subsequent results in section A.4.
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A.2 Background

Here we review some definitions and notions in topology and embedding theory (Bre-
don 1997; Hurewicz and Wallman 1948; Choquet-Bruhat et al. 1982; Eisenhart 1926;
Goenner 1980).

Consider a topological space M and its cover V. A cover U of M is a refinement
of V if each element in U/ is a subset of some element in V. A cover U is said to be
locally finite if each point p € M has a neighborhood which meets, non-trivially, only a
finite number of members of U. A space M is paracompact if any open cover of M has
an open locally finite refinement. All metric spaces are paracompact. A fundamental
theorem of dimension theory states that if M is a n-dimensional manifold, then every
open cover V of M has a refinement ¢ such that no point of M lies in more than
n+ 1 elements of U. For every locally finite cover V = {V;} of a paracompact manifold
M., there exists a partition of unity {g;} subordinate to this refinement consisting of a
family of differentiable functions g; : M — R such that: (i) 0 < ¢g; < 1 on M for all
i; (ii) gi(p) = 0 for all p ¢ V;; and (iii) ¥; g;(p) = 1 for all p € M. In this appendix we
utilize ‘Bell functions’ satisfying the first two criteria above, but not the normalization
condition — see section A.3.2, Step 3.

Our theorems concern local and global isometric embeddings which were defined
earlier in section 2.2.3. Recall the Dahia-Romero theorems (stated in section 2.3):

e A n-dimensional pseudo-Riemannian manifold can be locally, analytically and
isometrically embedded in any (n+ 1)-dimensional Einstein manifold (Dahia and
Romero 2002a);

o A n-dimensional pseudo-Riemannian manifold can be locally, analytically and
isometrically embedded in an arbitrary (n + 1)-dimensional pseudo-Riemannian
manifold with a non-degenerate Ricci tensor which s equal, up to a local ana-
lytic diffeomorphism, to the Ricci tensor of a given pseudo-Riemannian manifold

(Dahia and Romero 2002b ).

Significant for our global constructions, is the observation that all the components of
the local embedding space metric may have functional dependence on all the variables.

A.3 Global embeddings

A.3.1 The problem

Katzourakis (2005b) posits a global isometric embedding of an arbitrary n-dimensional
pseudo-Riemannian space M into a (n + 1)-dimensional Einstein space £ := M x Y,
where ) is a one-dimensional analytic manifold. Repeated application of the theorem
embeds M into a space with codimension greater than one. As a corollary, it is claimed
that any analytic product manifold of the form £"+9) = M® x Y@ ¢ > 1 admits an
Einstein metric, and so is an Einstein space. The proof for these results rests on the as-
sumption that the local Einstein embedding has the form M x ). However, the Dahia
and Romero (2002a) result generally equips the embedding space with metric g, all of
the components of which depend (differently) on the (n + 1)th coordinate; the product
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structure M x Y is a local embedding iff M is Ricci flat. As an explicit counterexample,
consider a static spherically symmetric spacetime gy = diag(—e?(™), 22" 12 r2sin?0),
where the Ricci curvature scalar is a non-trivial function of r only, and set the em-
bedding metric to be gog = diag(gik, ¢(y)) in the local embedding equations for an
Einstein embedding space. This misunderstanding is the crucial limitation of Kat-
zourakis’ result. Next, we amend the construction so that it successfully applies to any
pseudo-Riemannian embedded space.

A.3.2 Global isometric embedding theorems

Theorem 1. Any n-dimensional real analytic pseudo-Riemannian manifold (M, gam)
has a global isometric analytic embedding into a (n+ 1)-dimensional Einstein manifold

(g,gg).

Overview of the proof: Before proceeding to the full development of the proof,
we outline the methodology used. We note that we proceed to keep the global embed-
ding space as free as possible, constraining its structure where necessary and assuring
ourselves that existence is guaranteed. This allows us to cast some light on the non-
uniqueness of the global embedding. First consider a global embedding space £ with
an Einsteinian metric structure containing a hypersurface with the same topology as
M — up to the metrical level. There certainly exists such a space: the promoted
local embedding space — the local embedding metric applied to the subspace of R**!
having the same coordinate restrictions and identifications as M. This is ‘topologi-
cally’” M x Y, albeit with a different metrical structure. For spacetimes with non-zero
Ricci tensor this is necessarily more subtle than a product topology: one has to man-
ually insert the embedded manifold into the global embedding manifold. Note that
£ is paracompact, so one may consider a ‘partition of unity’, though in an unnor-
malized fashion, to construct the ‘Bell” functions that are essential in specifying the
global analytic metric. Paracompactness further implies the existence of a locally finite
(maximum d) cover from which one may construct several more locally finite covers.
Ultimately one constructs two types of covers, both cases having as domain precisely
those subsets of the original patches on which the ‘Bell” functions are strictly positive,
but the one case having N ‘copies’ of each domain, being distinguished by different
coordinate systems. The arbitrariness of N allows one to ‘sew’ together the patches
(and metrics) by means of a finite number of finite linear systems of equations in a
large (and unspecified) number of arbitrary functions @Dsg). By choosing the number
of these functions to be sufficiently large, the existence of solutions to this metasystem
is guaranteed for a non-trivial class of (n + 1)-dimensional global Einstein spaces, so
long as there do not exist inconsistent rows in the metasystem. If there exist up to
(d—1)(n+1)(n+2)/2 inconsistent rows in the metasystem, new variables may be intro-
duced so that the new equations are consistent and the whole system admits solutions.
Each new equation means that one metric component on one global patch is a linear
combination of the local isometric embedding metric components. The greater number
of inconsistent rows that we have, the more the global embedding space is metrically
constrained by the local embedding space near the hypersurface. If there are more
than (d — 1)(n + 1)(n + 2)/2 inconsistent rows, our construction fails. However, the
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promoted local embedding space is an obvious example of a space that satisfies our
system: existence is guaranteed.

Detailed proof: The proof is separated into five steps, loosely matching those of
the original proof (Katzourakis 2005b): Step 1 contains a new construction, the effects
of which manifest in the sequel; Steps 2 and 3 are essentially unchanged, with slightly
different notation and some commentary; and Steps 4 and 5 are, of necessity, technical
developments of the corresponding steps in the original. Two of Katzourakis’ steps
(asserting a locally Einstein metric and the isometric condition) are subsumed in Steps
1 and 4.

Step 1: The bulk £ containing M. We assume that there exists an €& which
is an arbitrary (n+ 1)-dimensional real analytic pseudo-Riemannian space. Recall that
£ is paracompact and Hausdorff since it is a metric space (Hurewicz and Wallman
1948; Choquet-Bruhat et al. 1982; Bredon 1997). We shall further insist that &£ is
an Einstein space globally, and hence locally. Thus, we have a vacuum solution to
Einstein’s field equations defining a global metric over R**!, modulo possible purely
topological alterations such as holes and identifications. Since to specify the metric is
to specify an induced topology and differential structure, our argument is principally
about this process. However, in order to proceed with the embedding we need to also
insist that £ is at a purely topological level ‘like’ M on some hypersurface. As noted
above (in the overview), existence is guaranteed. The class of such Einstein spaces
may be very large. The promoted local embedding space alone may have arbitrary
pure topological alterations (e.g. holes) in the bulk. Denote an open cover of £ by
U = {U; | i € I} where I may be infinite. Since £ is paracompact, there exists a
locally finite refinement of this cover, given by

Q :={Q; | jeJ},

where J C I, and such that no point of & lies in more than n + 2 of its elements.
Denote the coordinates of a point p € € by (2'(p),...,2"(p),y(p)). We construct a
set @ from Q by excising all points having coordinates with y = ¢ (c is some fixed
constant), which is the y = ¢ hypersurface ¥.. Any patch of Q that includes points on
the y = ¢ plane is split into two open patches not containing those points with y = c.
Thus, we have that Q' is a cover for £ \ ¥, the complement of the hypersurface ¥, in
£. Any point in £\ ¥, that is covered by the maximum of n +2 elements of Q will still
be covered by n + 2 elements of Q. We then specify another (locally) Einstein space
& via its cover

Q:={Q; | jeJ},
as the union of Q" and the (n + 1)-dimensional patches generated through the appli-
cation of the local (Einsteinian) embedding theorem (Dahia and Romero 2002a) to a
locally finite cover for M. We denote these additional patches by M’ which covers
all points on the y = ¢ plane. Locally this procedure yields at most n 4+ 1 additional
patches since M is a n-dimensional manifold. Thus, each element of £ lies in at most
d=(n+1)+ (n+2) = 2n+ 3 elements of the cover Q. Note that the cover Q may be
refined further, subject to the fact that we would like to retain the (n + 1)-dimensional
patches generated by the local embeddings. However, the finitude of d is sufficient to
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proceed with our proof. Note also that, on every patch in é, the above construction
guarantees that there exists a (local) Einstein metric. Finally, observe that (modulo
the existence of a global analytic metric) local isometry implies global isometry, since
the y = ¢ plane is covered only by the patches induced by the local embeddings. To
prove that this class of spaces contains a non-trivial subset of spaces providing a global
embedding, we need to show that the metric matches across all intersections of patches.
That the patches themselves ‘work’ is standard — the metric induces a topology on
the subset of R™™! having the coordinate restrictions/identification of M (for a non-
compact embedding), and having also a S' topology for the extra dimension (for a
Kaluza-Klein embedding). To proceed with specifying our metric we first need some
machinery: we define several additional covers in Step 2. B

Step 2: The covers W, W and Q. At each p € £, we have p € ; for some
j € J. For every ij we construct N additional distinct neighborhoods (Wi, x(i,))-

1 < a < N, such that the W, cover the same domain ij in £, but are distinguished

la

by their different coordinate functions x(,) : Wi, — R"*', 1 < a < N. Here N € N
is large but finite and unspecified for now, and each x;,) = (a:%ia), e By ,J:Z.j)l),
where z(; \ = 7%0x(,) : Wi, — R, 7 : R"! — R. Since & is a pseudo-Riemannian
manifold, these nelghborhoods on & can be chosen distinct with geodesic coordinates,
and an arbitrarily large but finite number of such patches may be constructed by
choosing different initial directions at p.

We form a N-element class of patches at each p € &:

(Wil :=={Wi, X)) | a=1,...,N | dom(W;,) = dom(Q;)} ,
to obtain the locally finite cover:

Wi={Wjl | jeJ} )
~{(Warsxe) | @=L N | dom(IW;,) = dom(@,) | j € J}.

Here dom(Qj) denotes the domain of the patch @j. Now, using a Euclidean transfer, we
can identify each of the N distinct points x,)(p), - ., X(x)(p) as the origin 0 € R**1.
Consider the intersection (Y, X(ia)(Wi,) which is an open set in R"*'. Within this
set lies an open (n+ 1)-dimensional ball B(0, R;) of maximum radius R; > 0. Choosing
any r; < R;, B(0,7;) C ﬂivzl X(ia) (Wi, ), invert B(0,r;) via one of the coordinates,

say the first, x(i,)|B(0,m), 50 that each W;, contains an analytically diffeomorphic copy
of the ball B(0,r;): X&ll)(IB%(O,ri)) C W, a=1,...,N. We denote X&ll)(IBS(O,ri))
by Wg;,. At each p € £, form a N-element class of inversed balls, each with different
induced coordinates:

By = {(Wais Xlwa,) | a=1,...,N | dom(Wa,,) = dom(Qy)lws,, } -

to obtain another locally finite cover

={[B;] | jeJ}
={(Weio, X)) | @=1,...,N | dom(Wg;,) = dom(Q;)|ws, | Jj € J}.
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Finally, we restrict each element of O on its corresponding inversed ball to obtain the
locally finite cover

Q = {(Q) {yhhcasnn) | Q= Qili oy | 7€,

where yé.) : @ — R. Note that Q); C @j, and hence is locally Einsteinian by the
construction in Step 1.

While all three covers are locally finite, W and Wjg each contain more elements
than Q: any p € £ is covered by a maximum of d elements of Q, and a maximum of
Nd elements of W (resp. Wg). We also observe that, even though Wg;, C W, , Vi,,
and a maximum of Nd elements of each cover contain any given point p, these bounds
need not be realized. On the other hand, any given point p lies in some @; C @);, and
hence lies in at least NV of the W, ’s (resp. Wg;,’s). This observation shall be used later
in our counting arguments — see Step 5. The cover W is used to specify gg globally,
and the cover Q to evaluate it locally. This dual perspective gives rise to a system of
equations that must be satisfied to ensure the existence of the global metric — see Step
5. The ‘Bell’ functions of Step 3 are defined such that they are non-zero (and strictly
positive) only on elements of Wg.

Step 3: The family {f;,} of smooth ‘Bell’ functions. Since £ is a para-
compact manifold with a locally finite cover W, there exists a ‘partition of something’
subordinate to this cover (Katzourakis 2005b) — this is standard topology (Hurewicz
and Wallman 1948; Choquet-Bruhat et al. 1982; Bredon 1997). Hence, we are assured
the existence of a family {f;, } of C' non-negative functions on &, with properties:

o fi, € C°(E —RN[0,00));
e supp(fi,) € Wi, V [Wi] € W;
° EJ fi.lp) >0, Vp € ¢

ig €
1<a<N
e f; is real analytic within the (open) set of points p € £ on which it is strictly

positive, denoted by {f;, > 0}, and equal to Wp;,_;

® filtfi,>00 = fialintsupp(si,) € CF(EN{fi, >0} — RN (0,00)).

Note that the supports of the f; ’s (as well as their interior) form a locally finite
cover of £, and that they are non-zero precisely on the inversed balls and zero elsewhere.

Step 4: The global smooth and locally analytic metric gc. We have
assumed & to consist of real analytic Einstein patches. It remains to specify the global
metric appropriately. Consider the cover W and the idea of ‘sewing’ together the
W, patches to obtain the global metric. For each i, let wg‘ﬁ’) e C*W;,, — R),
a,p € {l,...n+ 1} be (n+ 1)(n + 2)/2 symmetric analytic functions on W; , and

consider the coordinate functions x?ia) : Wi, — R where a =1,...,n+ 1. Define
geUV) = | > X g defy@daf, | (UV),
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where we have set 777}((; = fi @D(Z“) € C®(€& — R), the f;, are the ‘Bell’ functions,

and U,V € TE. The composition of the analytic functions f;, and ¢S§) is analytic
which implies that ge¢ is real analytic. Next, we employ the cover Q to evaluate the
metric locally. Taking any (); € Q with coordinates Yoo 1<o<n+1, we have

B

8
- § { § : E : 1a) Yia)
gS’Qj - “ ay ©)) ay(z

T,0 a,B € {1,....n+1 iq€J
{ ’ 1<a<N

dygy © dygy
Qj

having used dx{;, (’“> dy . Thus, the components of ge|q, are

. ax
() _
l9¢°]., = > RN ay ay , 1<7,0<n+1, (A3.1)
a,Be{l,.,n+1} lz<aeJ (4) Q,

which are all analytic functions on @);.

Consider the metric evaluated at a point p € W, . Note that the f; are only
non-zero on the Wg;, C W, , which implies that the metric has zero contribution from
the W;, containing p, outside of the corresponding Wp;,. Note also that the sums over
iq € J, 1 < a < N, have at least N terms for each a, 8 — see Step 2. The evaluation
of the global metric in the locally Einsteinian cover Q shall be employed to generate
(finite) systems of equations that must be solved in order for the global metric to have
the desired local properties. Recall (from Step 1) that [gg )]w is known and Einsteinian
for all patches );. This local specification of £ ensures that g¢ is well defined, and is
utilized in the next step. A

Step 5: The existence of functions @/J(()fg). As yet we have not completely
specified the global embedding since we need to ensure that where patches overlap,
their metrics coincide, and that the functions wsg) do indeed exist on £. Since the f;,
are defined on W;, but are non-zero only inside Wg;,, and since dom(Wsg;,) = dom(Q);),

the components (A.3.1) of ge|q, can be rewritten as

. ) 0]
() _ § E Lia)
[gc‘,'J ]TU - { iq ay ) ay( }
(J 7)

afed{l..,n+1} T

vl (A.3.2)

where 1l <m0 <n+l,and T ={i, € J | 1 <a<N | dom(WW;,)Ndom(Q;) # 0}.
Note that the wg‘é) are the only unknown functions in the above relation since [gg )]m
is specified. The components of (A.3.2) yield (n+ 1)(n+2)/2 equations on every ();.

Fix 7,0 € {1,...,n+ 1}, and let

B
9] = @), and {fm a;““)%( )} (A.3.3)
vl Oy,

Qj

75



Then (A.3.2) becomes a linear functional equation with analytic coefficients, where the
wﬁjg) are linearly independent since the patches are distinguished by different coordinate
functions:

D) = > > S Yl (A.3.4)

a,e{l,..,n+1} 7T
From (A.3.3), the positivity of f;,|o,, and the fact that for any given 7 and o at least
one of the dxf; / dy(; and one of the (91;(51.@) / dy(;) are non-zero , we may conclude

that (A.3.4) evaluated at a point will have at least N variables wﬁjg) with non-zero
coefficients — see Step 2.

Recall that any point in £ lies in a maximum of d elements of the cover Q.
So consider the domain in £ that consists of the maximum d overlaps of the QJ S
Qj, N---NQ;, = N_;Qj;.. We wish to show that there exist solutions U 6 on
this intersection. Thus, (A.3.4) must be solved on @, ..., Q;, simultaneously. So on
N¢_, @, we have one system consisting of d equations:

(21) D) = 2 Edl iv: { )Gir) ¢(la}

We proceed to extend the wgg) solutions on Q;, N- - -ﬁ@jsﬂ- --NQj,, then Q; N-- -ﬂ@jsﬂ

N Q\Jk ‘N Qj,, and so on until we have solutions on each of the Q;,,...,Q,,, and
so on U4_, QJT Here the ‘overhat’ denotes the omission of the expression underneath.

On @, N---N QJSI N Qkk N Qj, we have a system of d — k equations:

d X (ia)
¢m>=§% Z; Z {007y Yas'}

(S(k+ 1)) B & X .
1§7’§d7 T¢Sa S:{Sla“'7sk}7 X = Ustt ?
t=1

and there are ( dfk) such systems. Recall that all these systems have at least N inde-
pendent variables, where N is finite but arbitrarily large.

For each choice of 7 and o, the total number of systems is $¢_ ( ) and the total
number of equations that must be solved is M = $¢_, ¢ ( t). ThlS procedure must be
carried out (n + 1)(n + 2)/2 times to solve for all 7,0 € {1,...,n+ 1}. So setting
N=(n+1)(n+2)/2)M —i— 1, we have more independent variables than equations, so
there will exist solutions ¢, la) on U2, @;, (and we have shown that the metric ge|u g,
exists); so long as there does not exist any rows of the form (0,...,0 | ), a # 0, in
the augmented matrix.

For points away from the inserted hypersurface y = ¢ we have intersections of
patches belonging only to Q'. There the equations should be easily solved for the
1/1((;5), since the patches in @' are generated from the initial manifold € for which a
global metric is already defined. Consider intersections that include patches in M’
(the set of local embedding patches). There might arise situations where a system has
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inconsistent rows, so that a linear combination of such rows yields a row of the form
0,...,0 | ), « {[ggr)]m} # 0. Here p denotes some j, with at least one @),
P

being a local embedding patch, and { . } denotes a linear combination labelled by
P

the p-rows involved. Note that the reason for the linear combination { . } is that the
p
problem row (0,...,0 | a) arose through some linear combination of rows in the row-

reduction process. If there exists such a row, we may add a new variable to the system
so that the equation becomes consistent, and couples to none of the others; so long as
this new equation has a valid meaning in our context. (This is standard linear algebra
— see, for example, Strang (2003), Anton and Rorres (2010) and Cullen (1990).) This
is carried out as follows. For one of the (maximum d) intersecting patches (labelled
by j¥) belonging to @', let a run through to N + 1 for some fixed a*, f*. The system

under consideration will consist of a new variable w ig;l and a new equation

(]r § E (ta) ot p* (ZN+1
{ TU} { T } ¢ + @ ZN+1 ¢ *B* ’
i o
1<a<N

where the {@E’;f )(j'r)} for all a, 8 and 1 < a < N, vanish as before. Thus, the func-
p

tion ,f\}j;l) is equal to a linear combination of the local embedding metrics up to a
coordinate change. So the new equation has a valid meaning in our context. This
amounts to saying that we can choose one metric component on one global isometric
embedding patch equal to a linear combination of the local components, up to a coor-
dinate change. For our purposes we note that we have complete freedom to specify the
global embedding space metric and choosing it such that it is like the local one forces a
result. However, many global spaces may be metrically ‘close’ to this one — having the
requisite metric at y = ¢. Trivial examples include the global space with the promoted
local space up to some y = y. and then matched to some other (n + 1)-dimensional
vacuum solution.

We can repeat this procedure for more than one inconsistency to create at most
(d—1)(n+ 1)(n + 2)/2 new variables. If there are more inconsistent equations than
this maximum, then this construction fails. If there are no more problems than this
maximum then the existence of solutions on the whole system is guaranteed. The
number of times we have to carry out this procedure of introducing new variables
gives us a measure of how ‘close’ the global embedding space is to the promoted local
embedding space near the y = ¢ hypersurface. '

Finally, we need to ensure that one may extend the zﬂg‘é) on the whole of £. For
any p € & there exists a maximum of d patches @); covering p. Choose any one of these
patches, say Qj,, and take any other point ¢ in @);,. Now ¢ may lie in a maximum of d
patches ) including Q);,. So we have two unions of patches UQ); and UQ); that are
overlapping on @j,. Their corresponding metrics ge|u g, and gg|UQ],, must coincide on
the intersection (UQ;) N (UQj) C Q,,; i.e. the equation
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d N
Do) = > )ORED DR Che s iR

a,B € {l,..,n+1}

must hold on both the systems solved on U@); and U @);; which it does, by construction.
This implies that there exist solutions w((;“ﬂ)) on (UQ;) U (UQRy). By considering all

such overlapping unions, we have that the w((i“g) exist on the whole of £. This implies
that the patches of the global space are appropriately ‘sewn’ together, and the global
metric gg is fully specified.

The isometry condition follows by construction: recall that an embedding is glob-
ally isometric if it is isometric at all points of the embedded space. Hence, by con-
struction, there exists a global isometric analytic embedding of M into £. o

The above result may be extended to arbitrarily given pseudo-Riemannian em-
bedding spaces:

Theorem 2. Any n-dimensional real analytic pseudo-Riemannian manifold (M, ga)
has a global isometric analytic embedding into an arbitrarily specified ‘Ricci equivalent’
(n + 1)-dimensional pseudo-Riemannian manifold (€, ge).

We state this theorem without proof since the methodology is essentially the same
as for Theorem 1, except that we must take £ to be the arbitrarily specified pseudo-
Riemannian space of the second Dahia-Romero theorem (2002b). The patches of the
local embedding space, which are ‘Ricci equivalent’ (up to local analytic diffeomor-
phism) to &£, are inserted along the excised y = ¢ hypersurface in £&. The global
isometric embedding space £ is only ‘Ricci equivalent’ (up to global analytic diffeo-
morphism) to £ near the y = ¢ hypersurface, but elsewhere it is exactly £. Note that
generally £ does not satisfy the isometry condition required in order to be a local and
hence global isometric embedding space for M.
We may present the results yet more generally as:

Theorem 3. If any n-dimensional real analytic metric space has a local isometric
analytic embedding into some specified (n + 1)-dimensional metric space, then there
exists a global isometric analytic embedding into that space.

The proof of Theorem 3 is essentially the ‘sewing’” argument presented above. In light
of this, we may consider Theorem 2 and Theorem 1 to be corollaries, in which the
conditional statement in Theorem 3 is guaranteed by the Dahia-Romero results.

A.4 Discussion

The principal differences between Katzourakis’ proof and ours arise because of the
more complicated structure of the local embeddings, and lie in the technicalities of the
specification of the bulk cover and metric, as well as the counting arguments demon-
strating the existence of the global metric. However, the central idea is the same: the
specification of a global metric on W via the introduction of arbitrary many analytic
maps from patches in W to R, and its evaluation on the local patches so as to generate
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a metasystem of equations that may be solved by choosing sufficiently many functions.
Unlike Katzourakis, we do not claim every Einstein space may be a global embedding
for a given local embedding space — (in Step 5) we quantify how ‘close’ it must be to
the promoted local embedding space, near the hypersurface.

Katzourakis begins by specifying £€ to have the topology M x Y resembling that
of the (erroneously assumed) local embedding space. Due to its product structure, £
inherits the properties of being real analytic, Hausdorff and paracompact from M and
Y via their property of being metric spaces. It also induces a natural cover consisting
of product charts, from which one may form the locally finite refinements required
to specify the global metric. The product structure implies that Katzourakis need
only posit unspecified functions () for one component of the metric. Crucially, it
also ensures that every neighborhood of £ is of precisely the (Einsteinian) form of
the (n 4 1)-dimensional neighborhoods induced by the local embedding theorems. We
have not assumed as much for the topology of £, so we must proceed through a more
elaborate construction for the bulk — we must manually embed M in £ to generate
the (Einsteinian) local embedding patches — and necessarily require more functions,
and hence more systems of equations. (For each of the (n + 1)(n + 2)/2 symmetric
metric components.) Note that the required number of variables may be made smaller
by first placing the global metric in Gaussian normal form.

Katzourakis (2005a, 2006a,b) has also considered situations in which the (Ein-
stein) bulk contains differential topological singularities, or in which several pseudo-
Riemannian manifolds are globally and analytically embedded into the bulk, or where
there is a combination of both. In all three scenarios, the given proofs are limited
in a fashion similar to his original result. For example, m pseudo-Riemannian man-
ifolds Mﬁ”l), . ,M,(an), ey ("m) with dimension Ni,..., Nk, ..., Ny, are embedded
as £ = M x ), where M = Mﬁ’“) X - oo X Mén’“) X - oo X Mg}f’") so that the branes are
disjoint submanifolds in the bulk. This embedding space is Einsteinian for only Ricci
flat M, and so each brane must be Ricci flat. An analysis of the application of our
construction to these contexts is underway, and further work is also motivated by the
physical interest in cases with singular brane energy-momentum.

We observe that our theorems demonstrate that the work in reducing the codi-
mension is done locally. Our construction of the global embedding is not necessarily
unique from a topological view: the metrical formulation in general relativity constrains
the global topology, but does not completely specify it (Lachieze-Rey and Luminet
1995; Rebougas 2005). Moreover, at a metrical level, we have not only choice for the
embedding metric, but also the freedom to specify the functions @Z)((;E) in many different
ways: we have requested only that the number of functions be sufficiently large. There
may be only one global embedding if, for all Einstein spaces except the promoted local
embedding space, the number of inconsistent rows is larger than can be dealt with by
introducing new variables (if the original Einstein space £ is ‘too different’ from the
local embedding space near y = ¢). However, in general there is a lack of metrical
uniqueness. In a sense, these considerations avoid concerns that the local results do
not ensure a well posed initial value problem or the non-occurrence of singularities,
since, while such properties may be present in other constructions, here we deal only
with analytic manifolds embedded, via one particular construction, into analytic man-
ifolds. Note that the preceding caveats don’t compromise the existence result: the
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embedding has the same existential level as any solution to the field equations, and
any local embedding may be directly promoted to a global one.

Future work should consider embedded spacetimes that possess singularities, such
as the Schwarzschild interior spacetime. Locally one can simply avoid the singularity,
but the global situation is more problematic as we need to take the singularity into
account when embedding M in £. Of course, one could take the point of view that
singularities are unphysical and/or censored from our experience. In this case the
existence of analytic global isometric embeddings for say, the Schwarzschild exterior
spacetime, is clearly a boon to the study of the astrophysical effects of higher dimen-
sions. Finally, we note that it would be interesting to relate topological invariants for
the global embedding space to those for the local embedding space and the embedded
space.
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