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ABSTRACT 

 

Accurate phase equilibrium data is essential for designing efficient chemical separations 

equipment, and molecular simulations (MS) have become a convenient, practical means for 

obtaining such data. Typically MS of chemical systems use mixing rules to calculate potential 

energy model parameters for non-bonded unlike-atoms on different molecule-types in all phases 

in the same manner (i.e. homogeneously). Good predictions of phase equilibrium compositions 

can be obtained for mixtures comprising chemically-similar molecules, but significant 

deviations from laboratory experiments are observed with increasing dissimilarity between 

molecules. This work presents a novel approach for accurately predicting binary two-phase fluid 

equilibrium in isobaric-isothermal Gibbs ensemble Monte Carlo simulations. 

The very first steps using heterogeneous unlike-pair parameters in each phase ( V
12  and L

12 ) 

were taken, using the mixture methane-xenon. It is shown that homogeneous cross-energy  

( V L
12 12 12 when    ) adjustments are incapable of always predicting vapour- and liquid-phase 

compositions with good accuracy simultaneously at all state points. Increasing 12 , which 

increases attractive forces between methane and xenon by decreasing the Lennard-Jones 

potential well depth, led to enhancement of methane solubility in both phases in the two-phase 

region. The opposite was true when decreasing 12 . In spite of its shortcomings, the 12  

approach was used to show its equivalence to the kij interaction parameter used in equation of 

state models, its optimum-value temperature-dependence, and a discontinuity of the optimum-

value at/near the methane critical temperature. Speculation by other workers of the discontinuity 

being due to new interactions generated in the supercritical region was verified by analysing 

potential energies. 

The lack of simultaneity of good solubility predictions in both phases was overcome with the 

heterogeneous approach. It revealed strong coupling between the phases that was attributed to 

the large difference between the pure components’ Lennard-Jones s , and also that different 

heterogeneous pairs can give the same compositions i.e. a degeneracy. Keeping L
12  constant 

and increasing V
12  showed both decreases and increases of methane solubility in both phases 

that were larger at lower L
12  and smaller at higher L

12 , for a given V
12  change. This was due to 

the total (vapour + liquid) potential energies determining the overall nature of the forces in the 

system (i.e. attractive or repulsive). 
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Finally, a model (based on a recent MS study) for determining optimum heterogeneous pairs 

that also formally proves the degeneracy of the heterogeneous approach is developed and 

discussed. 

The study proved to be a promising step by using a fresh approach towards addressing the 

limitations of the homogeneous mixing parameter approach. Although a unique solution is not 

(always) possible thus making optimum-parameter trends arbitrary, it is still of good practical 

value for application to more complex mixtures in future studies. 
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1. INTRODUCTION 

 

This study reports a novel approach for addressing problems associated with using conventional 

mixing rules in Monte Carlo molecular simulations of fluid phase equilibria of mixtures. This 

approach can be used for molecular systems in which the non-bonded van der Waals 

intermolecular forces are modelled by the ubiquitous Lennard-Jones 12-6 potential energy 

model (Lennard-Jones, 1924), which is a specific form of the more-generalized Mie potential 

(Mie, 1903), and the Lorentz (Lorentz, 1881) and Berthelot (Berthelot, 1889) mixing rules 

(collectively known as the Lorentz-Berthelot mixing rules). 

 

Some of the earliest types of chemical separations were carried out by the Babylonians over 

four millennia ago in a region then known as Mesopotamia for the manufacture of perfume 

products (Levey, 1954), while the clearest initial evidence for distillation is attributed to Greek 

alchemists working in Alexandria, Egypt, approximately two millennia ago (Forbes, 1970). 

(Although the mixture distilled during this period is not explicitly stated, it is believed that the 

mixture was sea water, which the alchemists separated to obtain fresh water and salt.) Ever 

since, significant progress has been made as alchemy turned into chemistry, which in turn 

merged with other sciences to form chemical engineering; this has made the transformation of 

laboratory-scale separation processes into the industrial scale feasible. Along with the 

advancements in these subjects, chemical separation equipment of ever-increasing complexity 

has been developed as well: from the batch distillation alembic (an alchemical still) of the 

Greeks, which was later modified by the Persian polymath Geber (who developed modern 

distillation), to the continuous distillation Cellier Blumenthal still (Forbes, 1970). 

 

A crucial aspect in the design of chemical separations processes such as distillation is the 

acquisition of accurate phase equilibrium data. Aside from laboratory experiments, such as 

conventional phase equilibrium measurements in conjunction with a chemical analysis 

technique, e.g. gas chromatography (for example, see Joseph et al. (2001) and Naidoo et al. 

(2008)), molecular simulation provides an alternative means for studying the properties of 

coexisting phases of matter and generating phase diagrams. It can provide great insight into the 

microscopic structure of the different forms of matter, but only if reliable methods for 
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describing and calculating the interactions between the matter constituents are available; after 

all, the properties that different phases of matter exhibit are necessarily due to the characteristic 

interactions amongst the molecules. With the current global trend of being more 

environmentally-friendly, while at the same time reducing the cost of designing, manufacturing 

and setting up expensive laboratories, molecular simulations are no longer seen as just 

complementary to experiments, but rather as a genuine, practical means for obtaining reliable 

thermodynamic data in lieu of experimental data. Within this field, one uses molecular 

dynamics (MD) if the dynamical properties, e.g. diffusion coefficients and viscosity, of a system 

are sought, in which case the classical equations of motion are repeatedly solved as the atoms or 

molecules follow a deterministic trajectory in space. On the other hand if one requires the 

equilibrium properties of a system, then the preferred simulation method is the stochastic Monte 

Carlo (MC) technique, wherein random numbers and acceptance/rejection criteria for different 

trial moves determine the trajectory of the system in Gibbs phase space – this permits the 

simulation to perform ‘unphysical’ trial moves (Frenkel & Smit, 2002) that speeds up the 

system’s approach to equilibrium. It should be noted that MD can also be used to study systems 

at equilibrium, but the approach to equilibrium may take an extremely long time, making it 

impractical for research purposes (Frenkel & Smit, 2002). 

 

While accurate phase equilibrium predictions can be made via MC molecular simulations for 

the two-phase coexistence of pure (single-component) systems, and for two- and multiphase 

mixtures consisting of chemicals sharing similar or the same chemistry (e.g. alkane mixtures), 

significant deviations from experiment are observed when asymmetric and non-ideal mixtures 

are studied, for example, mixtures compromising alkane and alcohol molecules. This is 

primarily due to the non-bonded molecular interactions between different (pseudo-)atomic 

groups not being modelled accurately enough and hence calculated. Several ‘mixing’ rules (to 

be discussed in Chapter 2) that attempt to describe these interactions correctly have been 

formulated and used in simulation studies but most of these rules by themselves are not accurate 

enough, and require the use of additional modifications, usually in the form of multiplying 

factors, which are usually obtained through step-wise refinement over several simulations until 

an acceptable deviation from experimental data is observed. Even when using these correction 

factors that are applied to the mixing rules, large deviations are still observed in highly non-

ideal systems, especially in one of the phases. 

 

The prediction of phase equilibrium properties of mixtures via molecular simulations has 

improved significantly over the past three decades due to the advent of faster (yet cheaper) 
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computational power, and of equal importance, the development of different molecular 

simulation methods, for example, Gibbs ensemble Monte Carlo (GEMC) (Panagiotopoulos, 

1987 and Panagiotopoulos et al., 1988), Gibbs-Duhem integration (Kofke, 1993a and Kofke, 

1993b) and Grand Equilibrium (Vrabec and Hasse, 2002). A common element amongst all of 

these methods is the potential energy model, or force field, which is used to calculate the 

interaction energy of the system’s molecular configurations during a simulation. As stated 

above, these models predict the equilibrium properties of the pure chemical species, or classes 

of chemically-similar molecules, for which they were developed with a high degree of accuracy 

and are also capable of predicting the phase equilibria of mixtures containing such compounds 

belonging to the same homologous series with similar accuracy. Therefore the observation of 

deviations between simulation and experiment is undoubtedly due to the inadequacies of the 

mixing rules to calculate the interactions between the unlike atoms of different molecules in 

each phase accurately, however complex these rules might be, if it is accepted that the force 

field parameters reproduce the experimental pure component properties of the molecules for 

which they were developed with good accuracy. This has also been observed in the author’s 

previous works on the simulation of binary (n-hexane/water and ethane/ethanol systems – see 

Moodley et al. (2010a)) and ternary (methane/n-heptane/water, n-butane/1-butene/water and n-

hexane/ethanol/water systems – see Moodley et al. (2010b)) vapour-liquid-liquid equilibrium of 

complex polyatomic mixtures. 

 

Many binary and two-phase fluid systems for which the corresponding experimental data are 

modelled via the myriad of equations of state use the so-called ‘combined’, or gamma-phi, 

method (Smith et al., 2001). This accounts for departures from an ideal system that obeys 

Raoult’s law by using different thermodynamic models to describe each phase, and this means 

that the interactions in both phases are modelled uniquely.  

 

Thus it is the purpose of this work to apply a similar approach and investigate the effects of 

varying the appropriate force field parameter(s) in each phase, with a view to more accurate 

predictions of phase compositions in molecular simulations. It is interesting to note that the 

choice of a set of combining rules has a significant effect on thermodynamic properties, even 

when ‘all-atoms’ (in contrast to ‘united-atom’) force fields which explicitly model all types of 

atoms are employed to model molecular interactions, are used (Delhommelle & Millié, 2001). A 

good example of why interactions should be calculated differently in each phase is the vapour-

liquid coexistence of pure water, in which water has a different dipole moment in each phase. 

Strauch & Cummings (1992) reduced the magnitude of partial charges on water molecules in 



Introduction 
 

4 
 

the vapour phase, while keeping liquid-water partial charges unchanged from the original 

Simple Point Charge (Berendsen et al., 1981) force field and in doing so, improved the results 

of the initial Gibbs Ensemble Monte Carlo simulations that used the same dipole moment in 

each phase (de Pablo et al.,1990). 

 

It has been known since the early 1990s that correction factors applied to the Lorentz-Berthelot 

energy and size rules can improve simulation results to better-agree with experiment (Möller et 

al., 1992) and numerous studies have implemented such factors to improve the results of 

simulations to give better agreement with experiment or equations of state (to be discussed in 

Chapter 2). Recent studies concerning Lennard-Jones mixtures have also concluded that 

corrections to the LJ energy cross-parameter are important for ‘fine-tuning’ of simulation results 

(i.e. improving quantitative agreement between simulations and experiments), while deviations 

from the Lorentz rule for the size cross term affect simulation results significantly by giving rise 

to qualitative changes in a mixture by affecting the heights and widths of the first peaks of radial 

distribution functions (Boda & Henderson, 2008 and Rouha & Nezbeda, 2009), also to be 

discussed further in Chapter 2. 

 

By modelling the cross-energy interactions in each phase uniquely (which in this work shall be 

referred to as “heterogeneous unlike-energy parameters”), it is hoped that better agreement 

between simulated and experimental compositions will be obtained because accurate phase 

equilibrium data is necessary for designing efficient chemical separation equipment. Going 

through the scientific literature, there appears to be no studies that have attempted to use 

different unlike energy parameters in each phase of two-phase (or higher) fluid systems. Hence 

modelling the cross-energy interactions in each phase uniquely is one of several novel features 

of this work that contributes original research to molecular simulations. 

 

In spite of the limitations when using the same energy parameter in each phase of a two-phase 

system (which in this work shall be referred to as the “homogeneous unlike-energy parameter”), 

this work will also show the analogy between the homogeneous unlike-energy parameter and 

the  binary interaction parameter that is used in equation of state (EoS) modelling, and also 

provide a brief insight into the phenomenon of the discontinuity of the optimum interaction 

parameter at the critical temperature of the reference component of a binary system, which, also 

to the knowledge of the author and at the time of this work being carried out, has not been 

reported explicitly in the scientific literature and is also an original aspect of this work.  
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By building on a recent study (Vlcek et al., 2011), this thesis also presents the development and 

implementation of a model and a method that consolidates the initial purely numerical approach 

of using heterogeneous unlike-energy parameters. It also explains the inadequacies of the 

approach used in this study, and is also an additional novel aspect of this work. 

 

The document is structured as follows. In Chapter 2 a very brief description of the theoretical 

aspects that are central to the proposed work, statistical mechanics and molecular simulation, is 

given. In Chapter 3 a literature survey is presented, detailing previous studies that have used 

different types of mixing rules (and highlights their limitations), including several recent 

molecular simulation studies that have presented methods for finding optimum mixing 

parameters as well as studies that have used automatic parameterization of force field 

parameters. Chapter 4 discusses the modelling approach and methodology that was used. The 

results of the work and a discussion of the insights based on these results are given in Chapter 5. 

Concluding remarks and recommendations for future work are provided in Chapters 6 and 7, 

respectively.
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2. THEORY OF MOLECULAR SIMULATIONS 

 

This chapter is the author’s humble attempt at providing an overview of the principles of 

statistical mechanics, potential energy models, mixing rules and the Gibbs ensemble Monte 

Carlo (GEMC) method – these form the mathematical framework used in this study. As such, 

only the essential aspects of these topics are discussed but references to the corresponding 

comprehensive works are provided. 

 

2.1 Statistical Mechanics and the Monte Carlo Method 

 

Statistical mechanics is a formalism used to study the properties of macroscopic systems by 

relating them to the systems’ microscopic constituents and configurations. A key idea in this 

subject is that of an ‘ensemble’. Given a system in a certain macroscopic state, an ensemble is a 

collection of all possible microstates which correspond to that macrostate (see Figure 2-1). 

 

 

Figure 2–1 – Illustration of a four-state system consisting of two distinct particles, which are represented by 

the filled and open circles. If one specifies the total energy of the macroscopic system as U = 3 (here the energy 

units are arbitrary), then four microscopic configurations are possible. When the energy U, total number of 

particles N, and total system volume V are fixed (or kept constant) then this corresponds to the micro-

canonical, or NVE, ensemble. 

 

Another idea that is central to molecular simulation studies is the “ergodic hypothesis”. Instead 

of trying to replicate an infinite number of microstates on something as finite as a computer’s 

memory, one may consider a single micro-system and how it evolves with ‘time’. The ergodic 

hypothesis states that “…in the course of such a ‘natural evolution’ of the system any 

permitted microstate will be reached (or closely approximated) with the same relative 
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U = 1 
U = 0 

U = 3 
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frequency…” (Vesely, 2005). The ergodic hypothesis has an important consequence: for the 

calculation of thermodynamic averages over the microstates it does not matter if averages are 

taken over states randomly picked from an ensemble, or over the successive states of one single, 

isolated system. The corollary of the ergodic hypothesis is stated succinctly as: 

 

ensemble average = time average, (2-1) 

 

where ‘average’ refers to the thermodynamic average of a required quantity. Thus, one expects, 

provided that sufficient sampling time in a MD simulation and correct sampling of phase space 

in a MC simulation occurred, that these two different methods yield the same results. 

 

The ensemble average of a quantity A  is defined as 

 

( ) ( )ens

ens
ens

w A
A

Q


 Γ Γ
, (2-2) 

 

where ( )ensw Γ  is the ‘weight’ of a particular microstate being in a certain configuration Γ ,1 

and ( )ens ensQ w
Γ

Γ  is the ensemble partition function which is a sum over all the possible 

states of a system, and is unique for each type of ensemble. It may also be thought of as a 

normalizing factor for the probability pens of finding a system in a particular state or 

configuration. For example, the partition function for the NVT  ensemble, in which the number 

of particles, system volume and temperature are all constant, is 

 

 expNVT n
n

Q U  , (2-3) 

                                                           
1 This is a multidimensional vector that consists of all of the particles’ positions and momenta, which are 
coordinates in Gibbs phase space.  In the context of MC simulations, where the kinetic energy is factored 
out of the partition function, this vector contains only the positions of all particles within the system. 
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where the summation is over all states at V  and T , 1/ kT  ( k is the Boltzmann constant) 

and nU  is the total potential energy of the microstate at V  and T . In macroscopic systems 

consisting of many interacting particles, the spacing of energy levels is usually less than the 

thermal energy kT  and may be treated as a continuum (Widom, 2002). Thus the summation in 

Equation 2.2 becomes an integral in the classical sense, 

 

   1 2 1 23
1 ... exp , ... ...

!
N N

NVT N NNQ U d d d d d d
h N

    p r p p p r r r , (2-4) 

 

where h  is Planck’s constant, !N  is a correction for indistinguishable particles, and Np  and 

Nr  refer to the momenta and coordinates of all N  particles. As can be seen in Equation 2-4, 

integrating the partition function poses an enormous computational task due to its high 

dimensionality and so an efficient numerical technique is required for the Monte Carlo method 

since, for the evaluation of the integrand for a dense liquid, the majority of points the 

Boltzmann factor is extremely small (Frenkel & Smit, 2002). To this end, the Metropolis 

method, a type of importance sampling that samples those points in phase space that contribute 

significantly to the integral, according to a probability distribution that is dependent on the type 

of ensemble being studied, is implemented. 

 

The Monte Carlo method of molecular simulation is so-named due to its use of random numbers 

for determining the type of perturbation to apply to a system (i.e. a move type – see Section 

2.2.1), and also for deciding whether the move must be accepted or rejected according to 

acceptance criteria that are based on probability distributions, which in turn are based on the 

ensemble of interest.  Thus, a quality random number generator is required.  Ideally, the period 

of the generator must be much larger than the number of Monte Carlo cycles that are to be 

performed, so as to avoid patterns which would impose a bias on the simulation. (In one Monte 

Carlo cycle, N  moves are attempted, where N  is the number of particles used in the 

simulation.) Excellent, detailed treatments of the subject are given by Allen & Tildesley (1987), 

Frenkel & Smit (2002) and Ungerer et al. (2005). 
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2.1.1 The Metropolis Method 

 

In general it is not possible to evaluate integrals of the form exp[ ( )]dN NU r r  when using 

direct Monte Carlo sampling. The Metropolis method of sampling involves the construction of a 

random walk through phase space where the probability distribution is non-negligible. Frenkel 

& Smit (2002) use the analogy that this method is akin to determining the average depth of the 

river Nile by taking measurements within the Nile only, whereas the method of random 

sampling would sample all of Africa to determine the same average depth. A detailed treatment 

is given by Frenkel & Smit (2002) and for brevity is not repeated here. Essentially, the method 

states that the probability of performing a trial move from an old state to a new state is equal to 

the probability of the reverse move. Metropolis et al. (1953) devised an efficient strategy for the 

sampling of phase space that ensures if the new molecular configuration has a lower energy than 

the old configuration then the move is accepted. This ensures that an equilibrium state is 

continuously approached in the chemical system during the equilibration period of a simulation, 

since the potential energy of each new state progressively decreases (provided that the trial 

move is accepted). Once an equilibrated system has been realised, the system’s properties 

fluctuate around their equilibrium ensemble averages. 

 

2.2 Ensembles 

 

Two popular ensembles in MC simulations are the isotropic-isochoric-isothermal ( NVT ) and 

the isotropic-isobaric-isothermal ensembles ( NpT ). As their names imply, these ensembles both 

maintain a fixed number of particles ( N ), and temperature (T ). The total system volume (V ) 

is fixed in an NVT  simulation and the total system pressure ( p ) is fixed in an NpT  

simulation, where the volume of the simulation box is varied until it fluctuates around its 

equilibrium ensemble average and thepressure constraint is satisfied (see Figure 2-2). 
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(a) 

 

 

(b) 

Figure 2–2 – Schematic of the NVT and NPT ensembles. In the NVT ensemble (a) only particle displacements 

are permitted, whilst in the NPT ensemble (b) the total system volume is allowed to change as well. 

 

In chemical thermodynamics, two or more phases (homogenous regions of matter with constant 

composition) are in equilibrium when their pressures, temperatures, and additionally, the 

chemical potentials of each species in each phase are all identical. These satisfy, respectively, 

mechanical, thermal, and chemical equilibrium. In order to determine the number of system 

variables (e.g. pressure, temperature, volume, or composition) that one is free to choose before 

the chemical system is ‘fully specified’, the Gibbs phase rule ( CPF  2 , where F is the 

number of degrees of freedom, P is the number of phases and C  is the number of chemical 

species) is used. 

 

2.2.1 The Gibbs ensemble 

 

The Gibbs ensemble (Panagiotopoulos, 1987 and Panagiotopoulos et al., 1988) allows for the 

direct determination of phase coexistence of pure chemical systems and of mixtures from 

knowledge of the intermolecular interactions. The advantage of this method over indirect phase 

equilibrium simulations techniques and direct techniques that involve modeling surfaces due to 

contact between phases, is that there is no physical contact between the two thermodynamic 

regions and thus no interfaces to model. 

 

Since this study concerns itself with investigating the effects of using unique cross parameters 

between unlike atoms (or atomic, or pseudo-atomic groups, depending on the force field 
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representation of the molecules being simulated) in each phase of a two-phase system, the 

relative merits and demerits of choosing one simulation method (specifically, one ensemble) 

over another will not be discussed. The Gibbs ensemble Monte Carlo (GEMC) method has 

proven its worth as the bulk of phase equilibrium studies have implemented it, and although 

recently other techniques have been developed and used, for example, the Grand Equilibrium 

method (Vrabec & Hasse, 2002) and Virtual Gibbs ensembles (Escobedo (1999) and Shetty & 

Escobedo (2002)), the NpT -GEMC method remains the most widely-used. Some other 

ensembles that implement the Monte Carlo method are the isotension-isothermal (Parrinello & 

Rahman (1980 and 1981)) and grand-canonical (first implemented by Norman & Filinov 

(1969)) ensembles. Another technique that is highly efficient for phase equilibria predictions is 

transition-matrix Monte Carlo (Shen & Errington, 2005), which combines transition-matrix 

Monte Carlo and grand canonical methods. One important feature of this method is its ability to 

predict the entire fluid-phase diagram of a binary mixture at fixed temperature using just one 

simulation. 

 

 

Figure 2–3 – Schematic of a two-phase chemical system and the different types of standard trial moves that are 

used in a Gibbs ensemble simulation: (a) original configuration, (b) particle displacements, (c) volume changes, 

and (d) particle swaps. For simplicity, monatomic molecules are shown. 

 

In a Gibbs ensemble simulation, different trial moves are performed (see Figure 2-3) and are 

either accepted or rejected according to criteria that are derived from thermodynamic arguments 

(a) (b) (c) (d) 

PHASE I 

PHASE II 



Theory 

12 
 

and fluctuation theory. A detailed treatment is given by Panagiotopoulos (1987) and Landau & 

Lifshitz (1980). 

 

The acceptance criteria in the NpT ensemble for the three main move types are: 

 

1. Particle displacements 

 

The acceptance rules can be derived by imposing the condition of “detailed balance” – 

this means the probabilities of a trial move and its reverse trial move must be equal. 

Assume that the new state n is obtained from the original state o by displacing a 

randomly selected particle within a single simulation box. The acceptance rule for a 

particle displacement is: 

 

       I I
new oldmin 1,exp n nacc o n U U     

 
s s , (2-5) 

 

where snew and sold refer, respectively, to the particle coordinates of the new and old 

configurations using the scaled coordinates formalism and the nI superscript denotes 

that the randomly displaced particle resides in box I. This acceptance rule is identical to 

the conventional NVT ensemble acceptance criterion. 

 

2. Particle insertions 

 

The acceptance rule for removing a particle of species i from box I and inserting the 

same particle in box II is written for a multi–component mixture as (Frenkel and Smit, 

2002): 
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 
 

 
   

II

I II I II

I
I,

new newI
II

min 1, exp
1

n
i n n n n

n V V
acc o n U U

n V
  

          
 

s s . (2-6) 

 

3. Box volume changes 

The particle insertion and particle displacement acceptance criteria for the NpT–Gibbs 

ensemble are identical to the acceptance criteria for its NVT counterpart; however, for 

mutual exchange of volume between any two phases (here denoted as phases I and II), 

the acceptance criterion is different. For an increase in the volume of phase I of IV , 

new old
I I IV V V   (Panagiotopoulos et al., 1988): 

 

 
 

I I
I II I

I

II II
II I II

II

ln
min 1,exp

ln

V VU U N
V

acc o n
V VN P V V

V

 



   
      

   
   

      
   

. (2-7) 

 

For a pure chemical system, the NVT  variant of the Gibbs ensemble, using two simulation 

boxes, is used to study its phase coexistence (see Figure 2–3); usually, this is done at several 

different temperatures for a predefined number of particles and total system volume. Obviously, 

these parameters must be judiciously selected so as to not obtain the same vapour and liquid 

densities for two or more sets of N , V , and .T  

For systems containing large, polyatomic molecules, more advanced techniques are required 

because the probability of complete transferring such molecules from the vapour phase (or a 

low density phase) to the liquid phase (or a high density phase) in a single swap move is very 

low. To address this, the configurational-bias Monte Carlo method (Siepmann & Frenkel, 1992) 

was developed. Using this method, a molecule is grown atom–by–atom into those areas of a 

dense fluid that have lower energy positions, and this ‘bias’ is then corrected afterwards, 

effectively leading to a large increase in acceptance rates for polyatomic molecule insertions.  

When the vapour-liquid or liquid-liquid (or multiphase) coexistence of a mixture is to be 

simulated, then the ensemble of choice is the NpT  ensemble. This ensemble allows for direct 

comparison with experimental phase equilibrium measurements due to the system temperature 
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and pressure being fixed. Provided that the simulation occurs within a system’s two- or 

multiphase region, then the desired number of phases should be obtained – this, however, 

depends on how accurately the set of force fields that are used in the simulation can represent 

the non-bonded intermolecular interactions. 

 

2.3 Molecular interactions, force fields and mixing rules 

 

A force field, or potential energy model, describes the potential energy of a system of particles. 

It consists of mathematical functions that model the various types of intra- (bonded) and 

intermolecular (non-bonded) interactions in the system. 

 

The actual terms that a force field consists of depends on the rigour of the molecular model. (To 

date, all force fields have been developed only for pure chemicals or classes of chemical.) For 

example, a united-atom force field typically “lumps” the hydrogen atoms that are bonded to 

carbon or oxygen atoms onto the carbon or oxygen atoms to give a single “pseudo-atom” – 

numerous united-atom force fields have been developed for many different types of inorganic 

and organic molecules – some prominent models are Tranferable Potentials for Phase 

Equilibria – United-Atom (TraPPE-UA – see Martin & Siepmann (1998a), Martin & Siepmann 

(1998b), Martin & Siepmann (1999), Wick et al. (2000), Chen et al. (2001), Kamath et al. 

(2004) and Stubbs et al. (2004)), Revised Nath, Escobedo, and de Pablo (NERD – see Nath et 

al. (1998) and Nath et al. (2000) (Version 1), Nath et al. (2001a), Nath & Khare (2001b) and 

Nath (2003) (Version 2), and Khare et al. (2004) (Version 3)), and Optimized Potentials for 

Liquid Simulations united atom (OPLS-ua – see Chandrasekhar et al. (1984), Cournoyer & 

Jorgensen (1984), Jorgensen et al. (1984), Jorgensen & Swenson (1985), Jorgensen (1986a), 

Jorgensen (1986b), Jorgensen & Briggs (1988) and Jorgensen et al. (1990)). For example, 

methanol would be represented by two pseudo-atoms – (—CH3) and (—OH) and methane 

would be represented as a single interaction site – (—CH4). This improves computational 

efficiency by reducing the simulation time for equilibrium to be attained because fewer particle 

interactions are computed. Furthermore, it reduces the complexity of the molecule by having 

fewer intramolecular interactions (see below). This coarse graining approach has become 

necessary for the simulation of many types of molecules, especially large, complex proteins 

because explicitly modelling every atom of a large molecule leads to unreasonably long 

simulation times. 
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In contrast, an all-atom (or explicit-atom) force field is one in which all the atoms in a molecule 

are explicitly modelled – for example, TraPPE-Explicit Hydrogen (TraPPE-EH – see Chen & 

Siepmann (1999) and Rai & Siepmann (2007)), Chemistry at HARvard Macromolecular 

Mechanics (Charmm27 – see MacKerell Jr. et al. (1998) and Foloppe & MacKerell Jr., (2000)), 

and OPLS-all atom (OPLS-aa – see Pranata et al. (1991), Kaminski et al. (1994), Jorgensen et 

al. (1996), Damm et al. (1997), Jorgensen & McDonald (1998), McDonald & Jorgensen (1998), 

McDonald et al. (1998), Rizzo & Jorgensen (1999), Mahoney & Jorgensen (2000) and 

Kaminski et al. (2001)). While these force fields are associated with longer equilibration times 

than united-atom force fields for a given molecule, they offer a higher level of accuracy. 

 

The total potential energy (U ) of a system may be written as a sum of two parts, 

 

total intra interU U U  , (2-8) 

 

where intraU  is the contribution of intramolecular interactions and interU  is the contribution of 

intermolecular interactions. Each contribution can be split further into different types of 

contributions, depending on the structure of the molecule of interest and its inherent chemistry.  

These parameters are dependent on the chemistry of the molecule of interest and are usually 

predicted using ab initio quantum mechanical methods where the Schrödinger equation is 

solved for the molecule whose parameters are sought.  A good discussion is given by Jensen 

(2007). Force fields are further “fine-tuned” by fitting the model parameters to large 

experimental datasets, thus making most force fields semi-empirical. Ungerer et al. (2000) and 

Bourasseau et al. (2003) give detailed treatments of the optimization of alkane and olefin force 

fields, respectively. 

 

Regarding intramolecular interactions, typically three main types are modelled. These are bond-

bending, bond-stretching, and dihedral angle (or torsion) perturbations (see Figure 2-4).  Note 

that the Lennard-Jones interactions also form part of intramolecular interactions (not shown in 

the diagram). 
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Figure 2-4 - The various intramolecular interactions that contribute to the potential energy of a given 

molecular configuration. From top left (clockwise): (a) bond stretching (b) bond bending (c) torsion energy. 

The circles represent individual atoms and the solid lines that join the circles represent chemical bonds. 

 

The stretching and bending interactions are usually modelled by Taylor series around ‘rest’ 

lengths and angles, respectively, as 

 

2
str str 0

1 ( )
2

U k l l  , and 
(2-9) 

2
bend bend 0

1 ( )
2

U k    , 
(2-10) 

 

where the sk  refer to stretching and bending constants, and the sl  and s  refer to lengths and 

angles, respectively. For torsion or ‘twisting’ energy to be present, there must be at least four 

bonded atomic groups in the molecule (see Figure 2-4).  The angle formed by the planes A and 

B in the figure is referred to as the dihedral angle ( ).  The orientation of the molecule is of no 

consequence when measuring the dihedral angle and so the energy interactions may be defined 

by a periodic function, specifically, a cosine series, which is typically of the form 

 

Utors = c0 + c1[1 + cos ] + c2[1 – cos2 ] + c3[1 + cos3 ], (2-11) 

 

B 
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where the sc are constants. 

 

Intermolecular interactions, all of which are electromagnetic by nature, fall into three categories 

that depend on the ranges of intermolecular separations (Kaplan, 2006). The three ranges of 

interactions are (Kaplan, 2006): 

1. Short, where the potential is repulsive and, due to overlapping of molecular 

electronic shells, electronic exchange dominates. (This is explained by the Pauli 

Exclusion Principle.) 

2. Intermediate, in which the repulsive and attractive forces coexist and cancel each 

other at the van der Waals minimum, which imparts stability to the molecular system. 

3. Long, where the forces are attractive and electronic exchange is negligible. 

 

Within the context of molecular simulations these interactions are usually represented by a 

potential energy model/function (also called a force field) that contains information about the 

system that it describes through numerical parameters (Stone, 2008). For computational 

expediency, most of these potentials treat the interactions as additive two-body (or pair-wise) 

interactions. The main contributions to the intermolecular energies that are described by 

different terms in the potential energy models are (Stone, 2008): 

1. The exchange (or exchange-repulsion or van der Waals repulsion) term, due to the 

overlapping of the electronic shells. 

2. The dispersion term (or van der Waals attraction or London force), which is an 

attractive interaction “arising from correlated fluctuations of the electrons in the 

interacting molecules” (Stone, 2008). 

3. The electrostatic term that describes the interaction between the charge distributions of 

the molecules. 

4. Induction, which is the distortion of the electron density of a molecule in response to 

the electric field of other molecules in its vicinity.  

5. Charge transfer, where transfer of electron density from one molecule to another can 

lead to the initial stage of chemical bonding. This is part of the induction term, but it is 

treated separately sometimes. 
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The intermolecular interactions are split in two parts – a van der Waals component that 

describes the non–polar interactions, and a Coulombic component that describes the charged-

particle interactions. 

 

The Lennard-Jones 12–6 potential (Lennard-Jones, 1931) is a simple mathematical formula that 

models this behavior: 

 

 
12 6

LJ 4 ,ij ijij
ij ij

ij ij
U r

r r
 


    
     
    
    

 (2-12) 

 

where ij , ij  and ijr  are the depth of the potential well, the distance at which the 

intermolecular potential is zero, and the separation between two atomic sites i  and j , 

respectively (see Figure 2-5). The attractive  
6r  term (which represents a dispersion force) 

is quantum mechanical in its origin since dispersion interactions decrease with distance as 61 r

(Kaplan, 2006), while the repulsive  
12r term has the exponent 12 “due to mathematical 

convenience.” (Kaplan, 2006) Other non-bonded pair-wise potential energy models of note, 

which are more complex than the Lennard-Jones potential, are the 12–6–4 (Mason & Schamp, 

1958), m–6–8 (Klein & Hanley, 1970) and Stockmayer (1941) potential models. The 

justification for using the Lennard-Jones potential is given in Chapter 4. 
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Figure 2-5 - Illustration of the potential energy well of a Lennard–Jones fluid. 

 

The Coulomb interactions, relevant to systems of molecules that contain charged or partially 

charged species, are calculated using Coulomb’s law of electric interaction between two charged 

bodies: 

 

Coulomb
04

i jij

ij

q q
U

r
 , (2-13) 

 

where qi and qj are the charges on interacting sites i and j, while ε0 = 8.854×10−12 C2.N-1 m-2 

(also F. m-1) is the permittivity of free space.  Being a long-range interaction, the contribution of 

electrostatic interactions in a system cannot be ignored.  More advanced techniques are required 

when calculating the total contribution of electrostatic interactions in a system; to this end, the 

Ewald summation method (de Leeuw (1980a, 1980b and 1980c)) for point charges is used. A 

comprehensive quantitative treatment of induction and charge transfer interactions, which are 

not central to this work and are only modeled in very refined force fields (this is also justified in 

Chapter 4), is given by Kaplan (2006). 

 

A mixing rule (also called a combining rule) is a formula for calculating a parameter of a 

mixture (which is here understood to be a single phase containing two different types of 

chemical species) from knowledge of the corresponding parameter of the individual chemical 

species. More specifically for phase equilibrium calculations, a mixing rule is used to calculate 

the interaction parameter(s) between two different interaction sites between the molecules in a 

mixture. These combining rules find application in various equations of state models and in MC 

and MD simulations. Mixing rules are used to calculate the non-bonded intermolecular 

interactions between two atomic groups; note that these atomic groups can be on the same 

molecule. 

 

The accuracy of the cross-energy parameters as determined by the mixing rules is very 

important because it contributes to calculations of the properties of a phase, which are 

dependent on the composition of the phase. Hence, obtaining the correct chemical composition 
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of a phase in a thermodynamic systems, which are dependent on the potential energy models of 

the pure components and the mixing rules, cannot be overstated. The parameters that are of 

interest when using mixing rules are the (Lennard-Jones – see Chapter 3) size ( ) and energy 

(ε) parameters. The usual method for calculating the combined parameters of heterogeneous 

pairs in molecular simulations is through the Lorentz (Lorentz, 1881), an arithmetic average, 

and Berthelot (Berthelot, 1889), a geometric average, rules: 

 

2
ii jj

ij
 




 , 
(2-14) 

 

and 

 

ij ii jj   . (2-15) 

 

More complex variations of these have been used (this will be discussed in Chapter 3), but in 

this study the Lorentz-Berthelot rules were chosen due to their simplicity and because the focus 

of this study was to test a new approach towards obtaining more accurate simulation results. In 

any case, the more complex mixing rules still use the same unlike-size and unlike-energy 

parameters in each phase, which is what this study tries to overcome by using different cross-

energy terms in each phase. 

 

Consider a mixture containing two types of molecules, A and B, and each molecule consists of 

two different pseudo-atomic groups (Figure 2-6). 
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Figure 2–6 – Schematic of the various non-bonded interactions for two different molecules. For clarity, the 

self-interactions are not shown. The circles represent individual atoms and the solid lines that join the circles 

represent chemical bonds. 

 

The size and energy interactions between two ‘like’ atomic groups are denoted by ii
  and ii

 , 

respectively, while interactions between unlike group pairs are denoted by 
ij

  and 
ij
 . For 

such a mixture, each pseudo-atomic group has three energy and three size unlike-pair 

parameters. Since there are four different pseudo-atoms, there are  4 3 3 2 12    unlike-pair 

parameters (the division by two is necessary since ij ji   and ij ji  ). In general, for a 

mixture containing X  distinct (pseudo)-atomic groups, there will be 

     1 1 2 1X X X X X         unlike-pair parameters. This illustrates that for mixtures 

of complex molecules that consist of many different types of chemical functional groups, the 

modeling of unlike interactions becomes increasingly important.
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3. LITERATURE REVIEW OF STUDIES THAT USED DIFFERENT 

MIXING RULES, AND OPTIMUM POTENTIAL ENERGY 

PARAMETERS 

 

Molecular simulations have been applied successfully to the study of multi-component phase 

equilibrium in numerous studies but have relied on the use of mixing rules to calculate 

interactions between unlike atomic sites. As explained in Chapter 1, except for mixtures 

comprising chemically similar molecules, significant deviations from experimental data are 

observed between simulation and experiment. Several studies have employed empirical 

multiplying factors for the interaction parameters between those pseudo-atomic groups that 

dominate the contribution of non-bonded interactions to the total potential energy of the system, 

but such parameters are only obtained via successive modifications of the (constant) multiplying 

factors over several simulations – this is time-consuming and tedious. Typically, the simplest 

method for adjusting unlike molecular interactions in a binary Lennard-Jones system is to 

change the cross-energy parameter. Increasing only the cross-energy parameter results in the 

solubility of the more volatile component increasing in each phase (decreasing the parameter 

has the opposite effect). Changing only the unlike size parameter is not so straightforward, since 

Boda & Henderson (2008) and Rouha & Nezbeda (2009) showed that large-enough changes 

lead to the mixture’s qualitative behaviour being altered. In this chapter, a survey of studies that 

have used modified/adjusted non-bonded cross-interaction parameters, or numerical methods 

for the parameterisation of force fields of pure chemicals (this will be used as part of the 

background for the model and method to be used in this study – see Chapter 4), or have reported 

notable deviations from experimental data, are summarised.  

 

Sadus (1993) examined the influence of molecular shape and combining rules for unlike 

interactions on the critical phase transition of four non-polar type III binary mixtures 

(tetrafluoromethane/n-heptane, and sulfur hexafluoride/[either n-octane, n-nonane, or n-

undecane]). The critical properties of these mixtures were predicted by using two equations of 

state: the Carnahan-Starling hard sphere model (Carnahan & Starling, 1969) and the Boublik-

Nezbeda representation of non-spherical molecular geometry (Boublik, 1981). These models 

differ by a non-sphericity parameter   that is present in the Boublik-Nezbeda EoS; when 1  , 

the Carnahan-Starling EoS is obtained. Very good quantitative agreement between theory and 
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experiment was obtained over a wide range of densities, temperatures and pressures. Aside from 

reaching conclusions about the modelling of the shape of the n-alkane molecules that were 

studied, it was found that correct determination of the parameters characteristic of unlike 

interactions significantly influenced the predicted critical properties. The conformal parameters 

esf  and esh , which can be obtained from the van der Waals mixing rules ( mix i j ijA x x A , 

where mixA  is a mixture property and x  is a mole fraction) and are proportional to the strength 

of intermolecular potential and internuclear separation, respectively, are only accurate when the 

site differences between component molecules are not large. An adjustable parameter (in the 

form of a simple multiplying factor) reflecting the strength or weakness of unlike interactions 

was used in the van der Waals mixing rules for esf ; without the parameter, significant 

deviations from experimental data were observed. 

 

Errington et al. (1998) used GEMC simulations to determine methane/water and ethane/water 

phase equilibria from 300 K to 570 K, and from sub-atmospheric pressure up to 3000 bars. 

Water was modelled by the extended simple point charge (SPC/E) and modified extended 

simple point charge MSPC/E (Boulougouris et al., 1998) potential models, while the alkanes 

were modeled by the Transferable Potentials for Phase Equilibria (TraPPE-UA) force field 

(Martin & Siepmann, 1998). In a second set of simulations, the exp-6 potential model 

(Buckingham, 1938) was used to calculate the van der Waals interactions for all chemical 

species. Isobaric-isothermal ( NpT ) GEMC simulations were used to determine the Henry’s law 

constants of the alkanes in water; where instabilities were encountered in these simulations, 

constant volume ( NVT ) simulations were used instead. It was found that the SPC/E and 

MSPC/E models were in good agreement with experimental data, though at higher pressures the 

exp-6 model was more accurate in the vicinity of the pure water critical point. In general, at 

high pressures, deviations were observed between the experimental and simulation 

((M)SPC/E+TraPPE-UA, and exp-6) data. 

 

Delhommelle & Millié (2001) used NpT -GEMC simulations to compute vapour-liquid 

equilibria and liquid properties of binary mixtures comprising rare gases modelled by effective 

pair potentials. Three sets of combining rules were used: Lorentz-Berthelot, Kong (1973), and 

Waldman-Hagler (1993). It was shown that: (1) the choice of a set of combining rules has a 

significant effect on thermodynamic properties, (2) the Lorentz-Berthelot combining rules yield 

significant deviations from experiment, and (3) the Kong rules provided a better, though not 
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adequate, description of mixture properties. A brief discussion was given in which it was 

pointed out that even when ‘all-atoms’ (as opposed to ‘united-atom’) force fields, which 

explicitly model, for example, hydrogen atoms in alkanes, are employed to model molecular 

interactions, the choice of combining rule is still significant.  It was mentioned too that models 

that use a united atoms representation are sometimes ‘dissimilar enough to be sensitive to the 

choice of the set of combining rules’. Delhommelle & Millié (2001) also state that if the pure 

components’ Lennard-Jones size parameters do not differ by much then the Lorentz mixing rule 

suffices for obtaining the unlike-size parameter. 

 

Using temperature scaling Gibbs ensemble MC simulations, Zhang & Duan (2002) studied the 

VLE of a methane/ethane mixture. Using the LB rule in its conventional form, excellent 

agreement between simulations and experiment was obtained. This was partly due to methane 

and ethane belonging to the same homologous series as well as the workers proposing a new set 

of LJ parameters for ethane. It was mentioned, though, that consideration was given to a study 

by Möller et al. (1992) in which correction factors of 1.0009 and 1.0025 were applied to the 

energy and size rules, respectively, as follows: 

1,ij ij i jk   , (3-1) 

and  

 2, 2ij ij i jk    . (3-2) 

 

In Equations 3-1 and 3-2, 1,ijk  and 2,ijk  are the mixing coefficients for the Berthelot and Lorentz 

combining rules, respectively. However it was argued by Zhang & Duan that these deviations 

from unity were small enough not to affect their results since the error from simulation noise 

was probably larger. 

 

Zhang & Siepmann (2005) studied the pressure dependence of the vapour-liquid-liquid 

equilibria (VLLE) of two ternary alkanes/perfluoroalkanes/CO2 mixtures (n-decane/n-

perfluorohexane/CO2 and n-hexane/n-perfluorodecane/CO2). Satisfactory results were obtained 

only after modifications of the both the size and energy cross-parameters for each binary 

pairing, although no details on the actual optimization procedure were provided in the 

publication. The comparisons of the simulations were made with a limited range of 
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experimental data, and mostly with the SAFT-VR (statistical associating fluid theory of variable 

range) equation of state. 

 

Docherty et al. (2006) used GEMC simulations to calculate the excess chemical potential of 

methane in water over a wide temperature range. Water was modeled by the TIP4P/2005 model, 

while methane molecules were represented as simple Lennard-Jones beads. The experimental 

chemical potentials were not reproduced when using the Lorentz-Berthelot combining rules, but 

it was observed that the deviations were systematic. Accurate results were obtained when a 

positive deviation (approximately +7%) from the Berthelot energy cross-parameter was 

implemented – this indirectly accounted for the polarization energy between methane and water. 

The large excess chemical potential that was initially observed was postulated to be a result of 

either a too large diameter or too low well depth, or a combination of both, for methane-water 

interactions. The workers decided to change the value of the well depth only, since the accuracy 

of the data prevented simultaneous changes to both the size and energy parameters. By 

increasing the non-bonded interaction energy parameter, the interaction energy between the 

dipole moment of water and the induced dipole of methane was implicitly accounted for. 

 

Lenart & Panagiotopoulos (2006) used grand canonical Monte Carlo simulations with histogram 

reweighting to determine the critical loci of methane/ethane and methane/water mixtures. These 

mixtures display different classes of criticality, with methane/ethane displaying type I criticality 

(i.e. continuous mixing between both components over the entire composition range) and 

methane/water displaying type IIIb criticality (i.e. a discontinuity is present in the critical locus). 

The dispersion interactions were modelled with the modified Buckingham exp-6 potential 

model (Buckingham, 1938), and heterogeneous interactions between different atom types were 

calculated by using the Lorentz-Berthelot rules. Additionally, the repulsion factor for the 

Buckingham potential was described by ij ii jj   . Further to the Lorentz-Berthelot rule, 

the Kong and Sadus combining rules were used for the methane/water mixture. The water and 

alkane models were both developed by Errington and Panagiotopoulos (1998a, 1998b, and 

1999), and the study showed that the methane/ethane mixture quantitatively predicted the 

experimental results using the conventional LB mixing rules. However, the same combining 

rules for the methane/water mixture gave only a qualitative description of the critical behavior. 

It was found that the Lorentz-Berthelot + Sadus combined description provided the best 

prediction of the experimental results when compared to the other combining rules that were 

used in the study. It was suggested by the workers that the addition of an empirical parameter to 
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improve the energy and size parameters may yield simulation results that are closer to 

experiment, but at a cost, as this would render the models non-predictive. 

 

Schnabel et al. (2007) systematically investigated the influence of the unlike Lennard-Jones 

parameters on vapour-liquid coexistence of CO/C2H6 and N2/C3H6 mixtures. The performance 

of eleven combining rules - Lorentz–Berthelot (Lorentz, 1881; Berthelot, 1889), Kohler 

(Kohler, 1957), Hudson–McCoubrey (Hudson et al., 1960), Fender–Halsey (Fender et al., 

1962), Hiza (Hiza & Duncan, 1969; Hiza & Duncan, 1970; Hiza & Robinson, 1978), Sikora 

(Sikora, 1970), Smith–Kong (Smith, 1972; Kong, 1973), Halgren (Halgren, 1992), Waldman–

Hagler (Waldman & Hagler, 1993), and Al-Matar & Rockstraw (types A and B) (Al-Matar & 

Rockstraw, 2004) – each of varying complexity, was also examined. They argued that unlike LJ 

parameters can be directly adjusted to a single experimental data point. Twenty-five 

combinations of different LJ cross parameters (size and energy) were used to simulate the 

CO/C2H6 mixture with minimum and maximum deviations of -4% and 4%, respectively, while 

thirty simulations over the same range of deviations were performed for the N2/C3H6 mixture. 

The results indicated that the mixture bubble density was accurately obtained even when using 

an arithmetic mean to calculate the LJ size cross-parameter, and that the density was insensitive 

to variations of the LJ energy cross-parameter. The vapour pressure was found to be dependent 

on both types of cross parameters, with considerably lower sensitivity for vapour composition. 

This study recommends the adjustment of the unlike LJ size parameter to experimental vapour 

pressures. A similar study in which only the LJ energy cross terms were adjusted to a single 

experimental vapour pressure corresponding to different binary mixtures was performed by 

Vrabec et al. (2005). Using the adjustment procedure, excellent agreement between experiment 

and simulation was obtained for C2H6/C2H4, C2H6/C2H2, and C2H4/C2H2 (binary) mixtures. In 

fact, very good results were obtained from a simulation of the corresponding ternary 

C2H6/C2H4/C2H2 mixture with no altering of the corrected LJ energy cross-terms from the binary 

simulations. 

 

Boda & Henderson (2008) studied the effects of deviations from the LB mixing rule on a simple 

LJ mixture at two state points (p* = 0.017 and T* = 0.7, for x1 = 0.0625 and 0.5) using nine 

combinations of ξ12 (= 1+δε) and η12 (= 1+δσ), where δε, σ = {-0.2, 0, 0.2} where ξ12 and η12 were 

the LJ multiplying factors for the unlike energy and size parameters, respectively (much like the 

1,ijk  and 2,ijk  multiplying factors in Equations 3-1 and 3-2). This study found that radial 

distribution functions (rdfs) are weakly dependent on the unlike energy parameter and it also 
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showed that there is a strong dependence of the rdfs on the size parameter i.e. affecting the 

heights and widths of the first peaks. This suggests the possibility that different qualitative fluid 

behavior depends more on deviations from the unlike LJ size parameter, than on the energy 

parameter. 

 

Rouha and Nezbeda (2009) studied simple LJ mixtures to examine whether deviations from the 

LB rule may produce qualitatively different mixture properties (e.g. properties such as those 

exhibited by mixtures of strongly associating fluids). A systematic study was undertaken to 

evaluate the partial molar quantities (using a method based on Tikhonov regulation to evaluate 

derivatives (Lubansky et al., 2006)), of a LJ mixture at selected combinations of the LJ cross 

parameters that produced qualitative changes in the thermodynamics of the mixture. Both size 

and energy parameters of the individual components were identical but cross interactions were 

varied for several different combinations of the parameters, over the entire concentration range 

[0, 1]. This study concluded from observations of the excess volumes and enthalpies, partial 

molar volumes, and rdfs, that manipulation of the energy cross-parameter is important for ‘fine-

tuning’ of the results (i.e. improving quantitative agreement between simulation and 

experiment), but deviations from the Lorentz rule (for the LJ size cross term) affects results 

significantly by giving rise to qualitative changes in the mixture. 

 

Vrabec et al. (2009) did a comprehensive study to describe the VLE of 267 binary systems 

using the grand equilibrium method (Vrabec & Hasse, 2002). For each binary system, a state 

independent binary parameter (i.e. a multiplying factor; see Equation 3-1) was adjusted to a 

single experimental vapour pressure corresponding to that mixture. It was found on average that 

the LJ unlike energy parameter was altered by less than 5%. Although the correction factor was 

adjusted to only one experimental data point (viz. the mixture’s vapour pressure, at a specified 

temperature), it had hardly any effect on the bubble density and dew point composition. Since 

the experimental dew point composition was not included in the adjustment, the simulated dew 

point data was fully predictive and provided superior results to adjusted cubic equations of state. 

The workers stated that one may argue that the binary interaction parameter (and consequently, 

the mixture model) might be valid only at the temperature where it was fitted to the vapour 

pressure; to address this, they studied 53 binary mixtures for two to a maximum of four 

isotherms, and for a mixture of CO/CH4, excellent results were obtained over a 55K range. 

Similar results were obtained over a 100K range for chlorodifluoromethane/CS2. 
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Faller et al. (1999) developed an automatic parameterisation method for force fields in 

molecular simulations. By incorporating the simplex method of optimization in molecular 

dynamics simulations, they were able to fine-tune the Lennard-Jones size and energy parameters 

for four pure liquids (2-methylpentane, tetrahydrofurane, cyclohexene, and cyclohexane). The 

optimized parameters were obtained by minimizing a ‘target function’ that was the square root 

of the weighted sum of relative squared deviations, 
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where ,i targetP  is the experimental value of property iP  which in turn is dependent on the 

parameters of interest   np , and iw  is a weighting factor which is determined by how easy it 

is to reproduce property i . The experimental properties to which the Lennard-Jones parameters 

were fitted in this study were the heats of vapourization (for the energy parameters) and the 

liquid densities (for the size parameters). They noted that when the force field parameters were 

changed with respect to an old equilibrated configuration, the new system had to re-equilibrate 

with respect to the new parameters, before another set of parameters were calculated. They also 

noted that due to the ‘noise’ inherent in all simulations, one should not strive to reproduce 

experimental data to a high precision. 

 

Recently, Müller et al. (2008) used the method proposed by Faller et al. (1999) as part of their 

work in developing a force field, with subsequent parameter fine-tuning, for ethylene oxide. 

During the molecular dynamics simulations, the Lennard-Jones energy and size parameters were 

also fitted to the experimental heat of vapourization and liquid density of ethylene oxide at 375 

K and 1428.5 kPa, respectively. They noted, when compared to tabulated  - and  - values of 

carbon and oxygen, that their parameter set was novel as it was outside the initially estimated 

parameter space, and thus represented one solution to the optimization problem. 

 

In a study of the solubility and structure of water in n-alkanes and polyethylene, Johansson et al. 

(2007) used an empirical multiplying factor of 1.30 (which was obtained after a systematic 

investigation that tested several values of correction factors) for the Lennard-Jones energy 
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parameter to better represent interactions between TraPPE-UA alkanes SPC/E water 

interactions, since the unmodified geometric average gave water solubilities in alkanes that were 

much lower than experimental values. However, the agreement between simulation and 

experiment for alkane solubility in water was worsened. 

 

A slightly different approach to optimizing the molecular interactions for Lennard-Jones-based 

pure fluids to improve agreement (by reducing the deviations) between simulation and 

experiment, using alkane/perfluoroalkanes as an example, was used by Potoff & Bernard-Brunel 

(2009). By varying the repulsive exponent of the Lennard-Jones potential (and keeping the 

attractive “6” exponent constant), the pure alkane (ethane to tetradecane) and pure 

perfluoroalkane (perfluoromethane to perfluorooctane) were optimized to reproduce 

experimental saturated liquid densities to within 1%, and experimental vapour pressures to 

within 3% (alkanes) and 6% (perflouroalkanes). Thereafter, by using the Lorentz-Berthelot 

mixing rules the optimized pure models were tested to determine their performance in binary 

mixture simulations. Slight deviations that were more pronounced in the vapour phase were 

observed for n-propane/n-pentane at 360.93 K, and the deviations were especially higher at 

410.93 K, which is in the region of supercritical propane. For the ethane/perfluoroethane 

mixture, the Lorent-Berthelot mixing rules provided very poor agreement with experiment and 

satisfactory agreement with experiment was obtained only after using a multiplying factor of 

0.955 for the Berthelot (energy) parameter. Again, while excellent agreement was obtained for 

the liquid phase, deviations in the vapour phase were observed in the ethane-rich and 

perflouroethane-rich regions of the phase diagram. Another pure component force field 

parameter optimization method for the non-bonded Lennard-Jones parameters that is worth 

mentioning here is the method of van Westen et al. (2011). Using the perturbed chain statistical 

associating fluid theory equation of state (PC-SAFT) (Gross & Sadowski, 2001), which is an 

analytical equation of state, an objective function based on deviations from experiment of the 

vapour pressures, enthalpies of vapourisation and liquid densities was minimized – this 

approach was found to be “orders of magnitude” faster than conventional simulation 

approaches. The PC-SAFT-based objective function proved to be an excellent approximation of 

the real objective function and only a few subsequent simulations were required for the 

optimization to converge. 

 

To summarize, the following is noted, with reference to the review that has been presented: 
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1. Automatic parameterization of non-bonded force field parameters is possible and has 

been performed in real-time in molecular dynamics simulations, but no similar studies 

that use Monte Carlo simulations have been reported. Such parameterizations of these 

interactions have been done with respect to pure fluids (liquids) and not mixtures. 

2. Monte Carlo simulation studies of the phase equilibrium of mixtures that have used 

adjusted parameters, have done so by either successive modification of the adjustment 

factors, or have required several independent simulations. 

3. Fitting of the Lennard-Jones energy and size parameters to experimental data has been 

done to heats of vapourisation (or as shown by studies of simulations of mixtures, the 

mixture’s vapour pressure) and liquid densities. 

4. For fine-tuning of force fields the unlike-energy parameter is usually adjusted, and 

changing the unlike-size parameter effects qualitative phase behaviour changes. 

5. The Lorentz rule (arithmetic average) for calculating the unlike LJ size parameter is 

adequate when the LJ size parameters of the pure components do not differ 

significantly. 

 

These salient points will be discussed further in Chapter 4 where the rationale for this work’s 

methodology is developed. 
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4. MODEL & METHOD 

 

This chapter formulates and justifies the methodology that was used in this study. An overview 

of molecular and intermolecular interactions is given first, along with the selection of the 

chemical system that was used in all simulations in this work. Following that, a decision is 

made on the parameters of the potential model that needed to be modified for the purposes of 

this work, based on the Literature Review (Chapter 3), and the weakness of automating the 

search for optimum heterogeneous parameters is also discussed. Finally, the approaches used in 

this work to accomplish the new proposed method are given. 

 

4.1 Intermolecular interactions 

 

Since this study is concerned with presenting a novel approach for treating the unlike 

intermolecular interactions uniquely in each phase of a two-phase fluid equilibrium system, the 

potential models of the pure components of the system must give excellent agreement between 

the pure component phase coexistence simulations and the corresponding experimental data. 

Furthermore, because the use of unique unlike interactions in each phase is being attempted, it is 

prudent to consider a mixture of “simple” chemicals that can be represented by a 

computationally economical potential model that does not contain too many adjustable 

parameters. At the same time, it must be ensured that the potential energy model provides an 

acceptable physical model of the system and, ideally, does not have too many types of 

intermolecular interaction terms (which would make the simulations computationally 

expensive). 

 

The system methane/xenon was chosen for this study because it meets the requirements 

mentioned above. There is also reliable experimental vapour-liquid equilibrium data for this 

system over a wide range of temperatures (Dias et al., 2004), and it is well-represented by the 

Peng-Robinson (Peng & Robinson, 1976) equation of state – this means that the temperature 

range of its vapour-liquid phase coexistence can be extended in order to study the phase 

behaviour at temperatures slightly below the critical temperature of pure methane.  Both 
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molecules are represented as simple monoatoms by their potential models (Gray & Gubbins, 

1984, Panagiotopoulos, 1989, and Martin & Siepmann, 1998) and for methane, bond bending, 

bond stretching and torsion energies are not considered. The potential energies of both types of 

chemicals are modelled by the Lennard-Jones 12-6 force field. Certainly, the Lennard-Jones 

potential is a first-order approximation because it considers the van der Waals repulsion and 

attraction two-body interactions only. These, however, generally account for most of the overall 

non-bonded intermolecular energy especially in systems that contain no polar molecules, and/or 

have very small induction effects, as is the case with inert gases and hydrocarbons (Stone, 

2008), which is precisely the system that is being studied here. Thus for pure chemical systems 

containing molecules that are symmetric, not easily polarisable, neutral (i.e. have no permanent 

dipoles, or higher) and are known to have very little induction effects, it can be assumed that 

whatever discrepancies exist between simulation and experiment (keeping in mind that a pair-

wise additive potential is being used) can be attributed to three-body and higher terms. Provided 

that the qualitative equilibrium properties of a mixture, e.g. the shape of its phase envelope at 

the macroscopic conditions of interest, can be predicted even if only roughly (in the context of 

molecular simulations), then this potential model provides a computationally efficient and 

powerful tool to predict fluid phase equilibrium, if combined with a fresh approach to modelling 

the unlike interactions. 

  

4.2 Deciding what unlike-molecule interactions parameters to modify 

 

Chapter 3 reported studies that were considered useful for determining the parameters that 

needed to be adjusted for the fine-tuning of the unlike-interaction force field parameters. It also 

reported a few works that during the initial stages of this study, seemed to be useful for 

automating the search for the optimum parameters that would minimise the deviation between 

simulations and experimental data. 

 

Irrespective of the complexity of the mixing rules that are used to calculate unlike-pair 

interaction parameters in a simulation, it is clear that that the accuracy of simulations is limited 

unless adjustable parameters associated with the mixing rules are adjusted when simulating 

complex chemical mixtures comprising several different types of atoms. In fact, for highly non-

ideal chemical mixtures the inaccuracies are so large because the unlike atomic interactions can 

be dominant enough so as to produce vastly different qualitative phase behaviour from what is 

observed in reality. For example, Moodley (2008) studied the three-phase coexistence of a 
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ternary n-hexane/ethanol/water mixture using NpT -GEMC simulations and the TraPPE-UA 

and SPC/E force fields, and the study showed that the qualitative shape of the simulated phase 

envelope progressively deviated from the experimentally observed shape as the concentration of 

ethanol was increased over several simulations. Even more worrying is that the deviations were 

not systematic. In other words, misrepresentation of the unlike non-bonded interactions can give 

simulation results that are in stark contrast to the observed chemistry of a mixture. 

 

Except for the work of Zhang & Siepmann (2005), all studies reviewed in Chapter 3 focused on 

the simulation of binary mixtures and the adjustment of the corresponding non-bonded 

parameters. In particular, the majority of those studies adjusted the Lennard-Jones energy (or 

potential energy well depth) parameter between unlike pairs of atoms – as pointed out in the 

Chapters 1 and 3, this parameter is of interest when fine-tuning or optimizing the interaction 

energies between different non-bonded types. Hence in this work the focus will be on the 

adjustment of the energy cross parameters in each phase. It should be noted that although Zhang 

& Siepmann (2005) studied the three-phase coexistence of ternary mixtures, they adjusted the 

non-bonded interaction parameters with respect to every possible binary system 

(alkane/perfluoroalkane, alkane/CO2, and perfluoroalkane/CO2 mixtures). Unfortunately their 

GEMC simulation results for the ternary system were compared to the results of another 

predictive method (SAFT-VR EoS) and thus it is difficult to infer from their study whether the 

GEMC results were accurate when compared to experimental data of the same system, even 

though the binary simulations that used the optimized interaction parameters were in very good 

agreement with the corresponding experimental data. This highlights the deficiency of not only 

three-phase coexistence studies, but also of ternary mixture studies that involve the adjustment 

of non-bonded interactions between unlike atomic groups. Similarly, Vrabec et al. (2005) also 

used adjusted parameters from binary simulations to study the ternary vapour-liquid equilibrium 

of C2H6/C2H4/C2H2 at 277.79 K and 3.54 MPa, and obtained very good agreement with both 

experiment and the Peng-Robinson EoS (Peng & Robinson, 1976) – this does not provide a 

conclusive argument, though, that adjustments of energetic parameters for binary combinations 

are sufficient to accurately simulate ternary (or higher) mixtures that are composed of the 

different molecules from the binary mixtures. 

 

Rowlinson & Swinton (1982) state that it is unwise to attempt to explain or calculate the 

properties of mixtures from a knowledge of the pure component properties (and hence, 

parameters) only – this is precisely what conventional mixing rules (for example, the ubiquitous 
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Lorentz-Berthelot rules) do. One needs to incorporate experimental information in order to 

obtain good models for mixtures (Haslam et al. 2008). It is through the introduction of 

correction factors that the mixture experimental information is imparted onto systems that 

would otherwise rely solely on pure-component model information.  

 

As pointed out by Galindo et al. (2006) in their study of the excess chemical potential of 

methane in water, by adjusting the Lennard-Jones energy parameter between methane and 

water, they were able to implicitly account for the polarization energy of the two species, even 

though non-polarizable potential models were used in that study – this again reinforces the 

decision to adjust the Lennard-Jones unlike-energy parameter in this work, since by calculating 

the optimum parameters (or correction factors) between non-bonded atomic groups in molecular 

simulations, one can gain far greater insights into the chemistry of different molecular systems 

at equilibrium, irrespective of the number of chemical species or coexisting phases. Certainly, 

quantum mechanical methods are more rigorous and accurate, and do not require a priori 

knowledge of experimental data (Sandler 2003), but such methods will remain impractical for 

studying large chemical systems that contain complex molecules for many years to come, due to 

the large amounts of computational power required. This current method attempts to offer a 

means to improving current, practical methods. 

 

The NpT –GEMC simulation was the chosen method of computation since it allows for the 

calculation of the phase equilibrium of mixtures at fixed temperature, pressure and total number 

of molecules without having to model the vapour-liquid interface, which is usually complex and 

subject to finite-size effects. It also allows direct comparison of the simulated data with 

experimental phase equilibrium data. The important details of this method were given in 

Chapter 2. 

 

4.3 Automation of finding the optimum heterogeneous parameters 

 

The Nelder-Mead simplex method of optimization (Nelder & Mead, 1965) has been used to 

good effect in studies for determining optimum force field parameters (Faller et al., 1999 and 

Müller et al., 2008). However, this method was used to optimize the force field parameters for 

pure compounds only and also by using homogeneous size and energy parameters, and to date 
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no studies have been reported on the automatic parameterization of cross-interactions (between 

unlike atomic group in mixtures). Thus, the implementation of the simplex method in this study 

for the automation of the cross-parameters was seen, initially, as a possible solution. 

 

 

Figure 4-1 – Schematic of the approach used in this work. Unlike previous approaches that used the same 

Lennard-Jones cross-energy parameter in both simulation boxes, this work uses unique cross-energy 

parameters in each simulation box. 

 

Unfortunately the simplex method was not viable because of the very nature of the model, i.e., 

using heterogeneous energy parameters. The problem was that while the simplex method 

attempted to minimize the error between simulation and experimental mole fractions by using 

different energy cross-parameters in each simulation box, it had no control over the numerical 

difference between the two parameters, and when the difference between the parameters was too 

large, a single liquid phase or phase-swapping were observed. Introducing a constraint on the 

difference would have been pointless because the only way to determine the maximum 

allowable difference for two-phase equilibrium would have been to run several simulations in 

which unlike differences between the parameters were tested, in which case the approach 

discussed at the end of this thesis would suffice. In any case, notwithstanding knowing what the 

maximum allowable difference is (a priori or not), the simplex method would not have been 

able to determine what the unique solution (optimum heterogeneous parameter pair) to the 

problem is because it turns out that there is no unique solution. This will be shown in both the 

preliminary investigation, which was purely numerical in its approach, and then through a more 

rigorous approach that was done at the end of this study (Chapter 5).  

 

 

V
12  

L
12  
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4.4 Approach to the problem and execution of simulations 

 

The Monte Carlo for Complex Chemical Systems (MCCCS) Towhee program 

(http://towhee.sourceforge.net/) was modified to use different energy cross-parameters, V
12  and 

L
12 , in each simulation box for two-box isobaric-isothermal Gibbs ensemble Monte Carlo 

(NpT-GEMC) simulations (see Appendix C for the list of modifications made to the relevant 

subroutines, as well as additions to the code). This was done by multiplying the Lorentz-

Berthelot unlike-energy parameter, 12 11 22   , by the factors VB  and LB  in the designated 

vapour and liquid simulation boxes, respectively, so that V V
12 11 22B    and L L

12 11 22B   . 

The force field parameters for methane and xenon are tabulated in Table 4-1.  These molecules 

are represented as single interaction sites with no Coulombic charges – hence, only the Lennard-

Jones 12-6 potential was used to calculate the interaction energies. The pure component 

Lennard-Jones parameters were not fine-tuned because the pure components’ properties are 

already in excellent agreement with experiment. 

 

Atom, or interaction, type   / [K]   / [Angströms] 

methane-methane 148 3.73 

xenon-xenon 183.29 3.91 

methane-xenon (Lorentz-Berthelot) 227 3.82 

Table 4–1 – Lennard-Jones potential model parameters for methane (Martin & Siepmann, 1998) and xenon 

(Gray & Gubbins, 1984 and Panagiotopoulos, 1989). 

 

Firstly VB  was set equal to LB  for several values around unity to observe the effects of a 

homogeneous energy cross-parameter at eight different temperatures below and above the 

critical temperature of pure methane at specific pressures (see Table 4–2). 

 

 

http://towhee.sourceforge.net/
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T / [K] 165 172 180 185 189.78 208.28 236.17 260.62 

p / [kPa] 1200 1500 1750 2000 2073 2411 4559 5105 

 y1 0.9418 0.9239 0.8951 0.8796 0.8348 0.6908 0.5778 0.3123 

 x1
 0.59 0.56 0.5 0.49 0.4792 0.2871 0.3317 0.1678 

Table 4–2 – Experimental and equation of state-generated data (Dias et al., 2004) which were used in this 

study. y1 and x1 are, respectively, the vapour and liquid mole fractions of methane, T is the temperature and p 

is the pressure. 

 

The pressures that were selected at each temperature correspond to those which allow for the 

largest two-phase region in the experimental and equation of state-generated two-phase 

envelopes, and thus allowed for a large range of correction ( B ) factors to be studied at each 

two-phase state point.  Here, the Peng-Robinson equation of state (Peng & Robinson, 1976) was 

used to generate the phase envelopes below 189.78 K since it provides an excellent fit to the 

experimental data at temperatures greater than or equal to 189.78 K. Once the results of these 

simulations were obtained, square grids of VB  and LB , based on the ‘optimum’ values from the 

homogeneous simulations, were generated and once again, these values were used in further 

simulations to determine the effects of the heterogeneous cross-energy parameters in each 

phase. Except at 172.5 K and 236.17 K, where a 9 9  grid of factors was used, all other state 

points used a 5 5  grid (see Chapter 5 for the justification). Seven hundred molecules were 

used in each simulation along with 1.0-1.5 % box volume moves, 10-20 % swap moves and the 

remainder of the Monte Carlo moves were centre-of-mass translations. Pre-equilibration periods 

consisting of at least 35 10  MC cycles (where one MC cycle consists of N MC moves, where 

N  is the total number of molecules) were used, to ensure that at least 50% of all box volume 

changes and translations were accepted. Thereafter, equilibration periods consisting of 52 10  to 

53 10  MC cycles were used, followed by productions runs of at least 51.5 10  MC cycles. 

Lennard-Jones interactions were truncated at Xe2.84 11.1044    Angströms (Frenkel & Smit, 

2002) and analytical tail corrections were used beyond this distance. The results of both 

homogeneous and heterogeneous simulations were quantified by using different error 

calculations for the individual phase composition deviations, and then the combined (total) 

deviation, from experiment. For individual phase composition deviations, a relative error, 
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sim exp

exp% relative error 100% X X
X


  , (4-1) 

 

where simX  and expX refer to simulated and experimental solubilities (vapour or liquid), was 

used while the combined deviation of the two phases was calculated as 

 

2 2sim exp sim exp
1 1 1 1

exp exp
1 1

Total error y y x xSSQD
y x

    
     

   
, (4-2) 

 

where SSQD  is the sum of the squared relative deviations and the 1y  and 1x  symbols refer to 

the vapour and liquid compositions of methane, respectively. 

 

As mentioned in Chapter 1, despite the shortcomings of the traditional homogeneous approach, 

further investigations were done to determine the temperature dependence of the global 

optimum homogeneous parameters. The same simulation methodology mentioned above was 

used at several pressures at each temperature (150 K, 165 K, 180 K, 189.78 K, 223.81 K and 

248.15 K and also at several other state points that are described in Chaper 6. 

 

Apart from the simulated solubilities, other simulation properties of interest were the potential 

energies, number densities and specific densities. The importance of these properties will 

become apparent in Chapter 5. 
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5. RESULTS & DISCUSSION 

 

This chapter is structured as follows. The results of simulations using homogeneous sB  are 

discussed first in which it is shown that the homogeneous Lennard-Jones energy parameter is 

inadequate for giving good predictions of solubilities in the vapour and liquid phases 

simultaneously. The temperature dependence of the optimum homogeneous energy parameters 

is also explained. This is followed by a discussion of the heterogeneous  V L,B B  simulations 

where apart from showing the improvements that the heterogenous parameter approach offers, 

the implications on the system’s energy and solubilties are explained too. Finally a model and 

method that consolidates the findings of the heterogeneous parameter approach is presented and 

results obtained from it are discussed. Tables and figures that are referred to within the text are 

presented at the end of the chapter. At the outset, it should be mentioned that in spite of several 

thousand simulations being executed in the course of this study, the bulk of the results from 

these simulations were discarded since the initial parts of this study involved a lot of trial and 

error, and debugging of code. Supplementary numerical data that were used for generating some 

of the graphs are given in Appendix A. 

 

5.1 Homogeneous energy parameters 

 

5.1.1 Initial investigations 

 

Graphical results are presented in Figures 5-1, 5-2 and 5-3 and numerical data is tabulated in 

Table 5-1. As can be seen, increases in B resulted in increasing solubility of the reference 

component, methane, in each phase. This effect is more pronounced in the liquid phase than in 

the vapour phase, as the same incremental changes of B results in a much larger change of the 

solubility of methane in the liquid box and has also been observed in Grand Equilibrium 

simulations (Vrabec & Hasse, 2009), where small changes in vapour compositions were 

observed and the vapour pressure varied linearly with changes in the unlike energy parameter. 

This is to be expected since vapour phase densities in these simulations were mostly two orders 

of magnitude smaller than the coexisting liquid densities; thus fewer interactions with other 
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(vapour) molecules, coupled with more long-range interactions not contributing to the potential 

energy, lead to smaller changes in the solubilities of each component. This apparently 

monotonic trend is not indefinite and is valid in the two-phase region only. Below the lower 

limit of the two-phase region, a complete vapour, distributed over both simulation boxes, was 

observed while above this limit, a complete liquid was similarly observed, in most cases in one 

simulation box only. Again, this is due to much weaker liquid interactions dominating towards 

lower values of B , while stronger interactions persist at the higher values – eventually, these 

weak (or strong) interactions result in a transition to a complete vapour (or liquid). Such 

transitions to single phases were observed in the initial simulations that used a smaller potential 

energy truncation radius to get a qualitative idea of how large deviations from the Berthelot rule 

affect the system, but in a computationally efficient manner. 

 

Another explanation for the aforesaid solubility response of methane in each phase to changes 

of B  is to consider the Lennard-Jones potential energy model. Decreasing B  is equivalent to 

increasing the potential well depth  12 , thus increasing the repulsive forces in the two-phase 

system and diminishing the attractive forces to form a vapour.  The opposite is true when B  is 

increased, in which case a liquid is formed due to dominant attractive forces. Therefore 

decreasing B  in two-phase NpT -GEMC simulations is equivalent to approaching the mixture’s 

dew point, and beyond this point a complete vapour forms. Similarly, increasing B  

progressively shifts the mixture’s bubble point, until complete liquefaction occurs; at 165 K, 

172.5 K and 180 K, the liquid-phase composition of methane approached those of the overall 

methane compositions that were used in the simulations at those conditions. At the same time, 

the number of vapour molecules decreased until complete liquid formation occurred; that is, the 

system entered the single phase region below the mixture’s bubble line. When compared with 

the other temperatures (185 K – 260.62 K) the liquid composition curves at 165 K, 172.5 K and 

180 K are not linear especially at higher B  values, since at 1.00B   at 260.62 K, the “vapour” 

density exhibits large fluctuations and beyond this point, a complete liquid forms. Thus, the B -

interval in which the liquid-phase methane composition approached the overall mixture methane 

composition progressively decreased with increasing temperature and pressure because the 

(average) width of the phase envelope for the mixture becomes smaller with increasing 

temperature, due to in the supercritical methane temperature range. Note how, from the relative 

errors of methane solubilities in each phase, a homogeneous B is inadequate for predicting the 

experimental solubilities in both phases with good accuracy simultaneously. At all state points 

the combined absolute error of the vapour and liquids compositions is much lower at a B  that 

gives the lowest liquid composition error than at a B  that gives the lowest vapour phase error, 
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due to the much larger changes in methane solubility with B  in the liquid phase. The errors that 

are expressed as sums of the squared relative deviations, for the most part, belie the large 

deviations between experiment and the simulation results at their minima (which correspond to 

‘optimum’ sB ). For example, at 260.62 K the simulation minimum error point gives a total 

absolute error equal to 10.84 %, which is much larger than when expressed in the alternate form 

mentioned above. At this temperature-pressure pair it was also noted that linear extrapolation to 

a theoretical ‘zero-error’ B  is not possible as this false optimum is located in the region that 

results in complete liquid formation. 

 

This justified the further investigation of the effects of varying B  independently in each 

simulation box, and to determine whether the homogeneous energy correction factor bottlenecks 

mentioned above could be overcome. It is also worth mentioning that the optimum correction 

factors that were found at each temperature-pressure pair are only local optima and are not 

transferable to other pressures, for each temperature. To illustrate this point, it was noted that for 

additional simulations at 172.5 K, the optimum  ( 0.99)B   at 1400 kPa is much different to the 

optimum correction factor ( 1.02)B   at 2200 kPa. 

 

5.1.2 Temperature and pressure dependence of optimum homogeneous B  

 

In spite of the abovementioned inadequacies of the homogeneous energy correction factor 

approach, further work was done to determine the temperature and/or pressure dependence of 

the optimum homogeneous energy correction factors, since an overwhelming majority of 

simulation studies of mixture fluid phase equilibrium have used the same unlike Lennard-Jones 

parameters, specifically the energy parameter, at all temperatures/pressures of interest by 

assuming ‘transferability’ of the parameters.  The results are shown graphically in Figure 5-4 

and numerically in Table 5-2. In Figures 5-4  a  to 5-4  d , only simulated data corresponding 

to the unadjusted Berthelot parameter ( 1B  ) are shown – the optimum B  for each simulated 

NpT  state point was used for calculating the global optimum B  for each temperature to 

establish the temperature dependence of the energy parameter, but further simulations at these 

temperatures (165 K to 189.78 K) based on the global optimum B  were not done since the 

Berthelot value provides a reasonably good fit.  

 



Results & Discussion 
 

42 
 

As can be seen, at low temperatures (Figures 5-4  a  to 5-4  d ) the simulated vapour 

compositions, having small statistical uncertainties, are in excellent agreement with 

experimental data and equation of state predictions. However at 189.78 K (Figure 5-4  d ) 

slight deviations between simulation and experiment become apparent over the entire pressure 

range and the trend persists at higher temperatures, with positive deviations that become larger 

with increasing pressure. This observation seems contrary to Figure 5-4  f , where the vapour 

composition seems to be in better agreement with experiment at the highest simulated pressure, 

when compared with the lower pressures at this isotherm – however, at this state point, there are 

large, overlapping uncertainties in both the vapour and liquid compositions and hence, densities. 

Therefore, this was not a reliable result and was discarded when calculating the global optimum 

B for this temperature. In fact, for all temperatures greater than 223.81 K the simulated systems 

tended towards instability at high pressures (near the mixture critical point) when using the 

Berthelot energy parameter. The critical temperature of pure methane is 190.4 K (Perry & 

Green, 2007) and that of xenon is 289.7 K (Smith et al., 2001). The instabilities are not 

unexpected since Gibbs ensemble simulations near the critical points of both pure substances 

and mixtures are not very efficient (Panagiotopoulos, 1987). In regards to the simulated liquid 

compositions using the Berthelot rule, positive deviations from experiment are also observed 

from moderate to high temperatures at all pressures, but negative deviations occur at the lower 

temperatures when pressures are low. 

 

The mostly-positive departures from experimental compositions observed in the phase 

diagrams, coupled with the observed increase of methane solubility in each phase with 

increasing B  in the first part of this section means that the Berthelot rule gives an energy 

parameter value that is higher than it should be if better agreement between simulation and 

experiment is sought. This means the optimum energy parameters for each isotherm should be 

less than unity in order to reduce the potential well depth and the over-prediction of attractive 

forces between the unlike molecules. This was investigated by using a weighted-fit for each 

isotherm, based on the relative volatilities of methane and xenon for different pressures along 

the same isotherm, to obtain the global homogeneous B  at each temperature. A similar 

procedure was also performed using the width of the phase envelope at each experimental 

pressure-temperature state that was simulated as the weighting factor. Figure 5-5 shows the 

variation of the optimum global B  with temperature for the two different methods mentioned 

above. 
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Using the optimum energy parameters that were obtained from the weighted-relative volatility 

fitting at 223.81 K and 248.15 K (the temperatures at which the largest deviations from 

experiment were observed when using the Berthelot energy parameter) it is seen that better 

agreement with experiment is obtained especially in the liquid phase. However, positive 

deviations from experiment are still observed in the vapour phase and at 248 K, slight negative 

deviations are observed for the liquid phase with increasing pressure. Thus with increasing 

pressure methane molecules have a preference for the vapour phase when using a single 

homogeneous optB  for a given temperature. It is also worth noting that at the highest pressure at 

248.15 K, a stable system was obtained with the lower, revised optB , which is expected because 

the original Berthelot value was too high to yield stable vapour-liquid coexistence. This is 

consistent with the observation at 260.62 K mentioned at the beginning of this section, where at 

or beyond the Berthelot energy parameter ( 1B  ) fluctuations in densities, and hence system 

instabilities, occurred. These observations imply that when a weight-averaged temperature-

dependent homogeneous energy parameter is used for the calculation of phase diagrams, 

satisfactory agreement with experiment also depends on the pressure at the thermodynamic state 

of interest. In this regard equation of state modelling of the fluid phase equilibrium of mixtures 

usually outperforms molecular simulation due to an EoS using a much larger number of 

adjustable parameters. 

 

Figure 5-5  a  also reveals trends for the temperature-dependence of the optimum global sB . 

The tendency is for optB  to decrease with increasing temperature, before and after the 

discontinuity at or near the critical temperature of methane (the more volatile component). This 

is in line with the observation that when using the Berthelot energy parameter ( 1B  ) the 

positive deviations from experiment get larger as the temperature is increased, and thus optB  

should follow the opposite trend. The trends of the optimum global sB  obtained from the 

second fitting procedure are not apparent because of the nature of the weight that was used to 

obtain these optimum sB . Relative volatilities contain important thermodynamic information 

of a mixture, while the width of the phase envelope of a mixture by itself is seemingly arbitrary. 

 

At constant pressure, there are also variations of optB  with temperature that are comparable in 

magnitude to the variations observed in the constant temperature simulations discussed above. It 

seems that the tendency is for the optimum parameters to decrease with temperature at the 

moderate pressure (3000 kPa) and to increase with temperature at the higher pressure (5000 
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kPa), although despite extremely long production runs at 248.15 K, the value of the optimum B  

did not change appreciably upon analysing the simulation data. Considering that at 1800 kPa no 

definite trend of optB  could be discerned as well (to be discussed in section 5.1.3), this means 

that while there is a dependence of optB  on temperature and pressure in simulations (indeed, 

equations of state have such dependences too), it is more frugal to calculate and discuss such 

parameters in terms of temperature only. Note that at 150 K, the methane/xenon experimentally-

observed vapour-liquid equilibrium region does not extend over the entire composition range of 

methane. However, for the purpose of demonstrating the temperature-dependence of the 

optimum energy parameter, this temperature was chosen since it is sufficiently far away from 

165 K so as to observe a difference in the optimum energy parameter values at these two 

temperatures. One possibility for why solid-liquid equilibrium was not observed in these 

simulations at 150 K can be explained through the parameterization of the original pure 

component force fields. The parameters were fitted to vapour and liquid thermophysical 

properties and no such solid properties were used. Note too, that in order to simulate solid 

phases accurately in the Gibbs ensemble, additional free-energy models of the solid phase must 

be generated - see Sweatman & Quirke (2004). 

 

5.1.3 A possible explanation for the discontinuity at 189.78 K 

 

Although the range of optimum sB  corresponding to the temperature range that was studied is 

seemingly small, it is evident that there is a discontinuity at 189.78 K which is slightly lower 

than the experimentally observed critical temperature of pure methane, which is 190.4 K (Perry 

& Green, 2007). This means the TraPPE-UA potential energy model for methane slightly under-

estimates its experimentally-observed critical temperature. Indeed, the work of Martin & 

Siepmann (1998) reports a reduced critical temperature (
4

*
c c CHT T  ) of methane of 

1.294 0.009  and at the lower limit of this value, the critical temperature of methane is 190.18 

K but this is still a (slightly) higher value than that at which the discontinuity is observed; 

however the same study also stated that the systematic error associated with the uncertainty of 

the critical scaling exponent   (this should not be confused with the statistical mechanics 

quantity B1 k T  ) is roughly 1%, and roughly 2% if one considers finite simulation sizes. 

Using the former modest error estimate of 1%, the critical temperature of TraPPE-UA methane 

is then 188.23 K – this is lower, albeit very slightly, than the temperature at which the 

discontinuity of the optimum B  is observed and thus it can be concluded that the observation of 
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the deviation between the simulation and the experimental methane critical temperature is 

consistent with previous work and not due to any error that might have come out in this work. 

Similar discontinuities at the critical temperatures of the more-volatile component have been 

reported, based on equation of state modelling of experimental data, for the 12k  binary 

interaction parameters of R227ea/ 2CO , R134a/ 2CO , methane/butane (Valtz et al., 2003) and 

2SO /R227ea (Valtz et al., 2004) mixtures. Therefore based on Figure 5-5  a  and as stated by 

Valtz et al. (2003), it is incorrect to extrapolate temperature-dependent optimum binary 

interaction parameters that are fitted only to temperatures below or above the volatile 

component’s critical temperature, to temperatures on the corresponding opposite sides of the 

critical point. Valtz et al. (2003) also state, with reference to the discontinuity, that “...the 

phenomenon ... is certainly due to the absorption of a supercritical gas in a liquid very 

different to that of a subcritical gas. Maybe it generates new interactions that lead to a 

significant jump in the values of the binary interaction parameters.” This hypothesis was 

tested at a single pressure (1800 kPa) that has both sub- and supercritical methane in its 

temperature range (172.5 K, 180 K, 185 K, 189.78 K, 208.29 and 223.81 K). Initially, the 

standard Berthelot energy parameter was used in each simulation because although there are 

pressure- and temperature-dependencies of the optB  for each  ,P T  pair, the temperature 

dependence of 
optB  at constant pressure is slightly smaller than the pressure dependence of 

optB  

at constant temperature. In any case, due to this isobar having small composition ranges or 

being in the dilute regions at the initial temperature range that was studied that included 165 K 

and 236 K, meaningful composition trends could not be established at the minimum (165 K) 

and maximum (236 K) temperatures when varying the unlike energy parameter at these 

temperatures due to finite-size effects (even when using 1500 total molecules). Therefore it was 

assumed that unreliable optimum energy parameters might have introduced unnecessary 

uncertainty to the results. 

 

Figure 5-7 provides evidence for the assertion of there being “new interactions” in the 

supercritical liquid since again at 189.78 K there is a distinct increase (spike) in the liquid-phase 

potential energy after a monotonic decrease of the liquid energy with subcritical methane 

temperature increases. Despite the simulation uncertainties of potential energies being large 

(this is in fact typical in both Monte Carlo and molecular dynamics molecular simulations), 

Figure 5-7 shows that the uncertainties of the average vapour- and liquid-phase potential 

energies at all temperatures are sufficiently small to infer trends of these potential energies with 

respect to sub- and supercritical methane. It appears that at constant pressure, increasing the 
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system temperature within the subcritical methane temperature range effects quite a steep 

energy decrease in the liquid phase while there are very small changes to the vapour phase 

energy. Thus, the attractive forces in the liquid phase become stronger with increasing 

temperature; equally one can say that the repulsive forces get weaker. At 189.78 K, there is a 

sharp increase in the liquid-phase potential energy – this indicates that a strong repulsion force 

is present at, or just after, the onset of methane criticality and most likely the cause of the 

discontinuity that is observed.  At this point one can also say that there is a sudden weakening of 

the attractive forces in the liquid. Beyond this point there are no large changes in the liquid-

phase potential energy, though the attractive forces persist, but there is a steady decrease of the 

potential energy of the vapour phase, indicating that attractive forces in the vapour phase get 

stronger (or the repulsive forces get weaker) with increasing temperature above the critical 

temperature of methane, and thus increasing the solubility of xenon, the ‘solute’, in this phase. 

Interestingly there is also a sudden increase in vapour potential energy at 185 K. To confirm that 

this was not an “outlier” in the data, the simulations were repeated using the optimum energy 

parameters for each temperature and it is seen that the overall trend persists even with the 

“correct” energy parameters. 

 

One approach to understand the effects of the discontinuity phenomenon that was explained 

above is to study the phase densities on either side of the discontinuity. Figure 5-8 consolidates 

the energy trends shown in Figure 5-7. Below 189.78 K, the very small increases of potential 

energy in the vapour correspond to small changes of vapour density, while the steep decrease of 

the liquid-phase energy, which indicates increasing attractive system energy, corresponds to a 

steady increase of the liquid density with increasing temperature. At and beyond the 

discontinuity (189.78 K), it is clear that for a given temperature interval, there is a significantly 

sharper increase of the supercritical-methane vapour density, which corresponds to the steady 

decrease of vapour potential energy in Figure 5-7, when compared to the same interval on the 

subcritical side of the discontinuity. The slope of the vapour density-temperature curve also 

increases with temperature and this agrees well with supercritical fluid (SCF) theory in that for a 

gas that is above its critical point, liquids become much more soluble in the gas phase due to the 

gas density being much higher and comparable to the density of a liquid (Petrucci et al., 2006). 

 

A question that arises is whether the discontinuity, in the context of these simulations, is the 

result of methane-methane, methane-xenon or xenon-xenon interactions (or combinations 

thereof). Considering that the vapour and liquid potential energy profiles in Figure 5-7 were 

obtained by using different values for scaling the methane-xenon interactions (first the 
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unadjusted Berthelot parameter and then the optimum homogeneous unlike-energy parameter 

for each temperature), and that the revised potential energy profile that was obtained was merely 

shifted vertically upwards along the potential energy axis, it can be concluded that the 

discontinuity is not due to the unlike interactions (otherwise, there would have been noticeable 

shifts along the temperature axis too). The experimental critical temperature of pure xenon, 

289.7 K (Smith et al., 2001), is much higher than the highest temperature that was used in this 

part of the work (223.81 K) and it is not expected that the simulated critical temperature of 

xenon will differ from the experimental by much, since the xenon force field gives excellent 

agreement with experiment for the pure component simulations. That is not to say within the 

context of these simulations that xenon-xenon interactions did not contribute to the 

discontinuity at all, but rather that the evidence is in favour of the discontinuity being due to 

methane-methane interactions since the phenomenon is observed at or near the critical 

temperature of pure methane. 

 

5.2 Heterogeneous energy parameters 

 

Independent changes of the unlike energy parameter in each phase lead to the observation of 

interesting coexisting phase behaviour at the chosen thermodynamic state points.  Initially, 9 9  

(square) grids of equally spaced sB  were used at 172.5 K and 236.17 K to get a refined set of 

data.  These temperatures are, respectively, significantly below and above the critical 

temperature of pure methane.  The size of the B  interval for the initial 236.17 K simulations 

was reduced because a significant number of simulations resulted in either large periodic 

density fluctuations in both phases or liquid-liquid equilibrium, and the focus of this work was 

vapour-liquid equilibrium only. Also, 5 5  grids were tested and it was found that cubic spline 

interpolation provided as good a representation of the data as it did for the larger grids (see 

Figure 5-9).  Therefore, it was decided to use the more computationally economical 5 5  grids 

for the remainder of the state points.  The results of these simulations are shown in Figure 5-10, 

where the effects of heterogeneous correction factors on the sum of the relative deviations 

squared are shown.  While this representation of the error belies the total absolute error, it was 

still used because it provided a smooth ‘function’ with which a reasonable qualitative overview 

of the simulation deviations at different combinations of cross-energy correction factors could 

be gained.  As can be seen, the minimum errors, and hence optimum B  pairs are located close 

to the line V LB B .  Importantly it is seen that, for example, at 260.62 K for which the total 

absolute error is 10.84 % when using a homogeneous correction factor, a pair of heterogeneous 
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correction factors reduced the error to 3.96 % at the point V L( ,  ) (0.9853,  0.9856)B B  .  

Furthermore, at 236.17 K the total absolute error has been reduced to 4.35 % at 
V L( ,  ) (1.0045,  1.0060)B B  , from the initial error of 8.17 %, which was obtained using a single 

homogeneous energy parameter.  While the reductions of the errors might not seem substantial, 

they nevertheless emphasize the suggestion of this work, that is, to model the unlike energy 

interactions in each phase uniquely.  The simulations at 260.62 K proved mostly unstable 

especially when the differences between the correction factors were large, in spite of decreasing 

the range of factors that were initially studied; this is directly related to the much smaller 

homogeneous correction factor range that gave stable VLE at this pressure and temperature. 

 

An interesting observation from Figure 5-10 is the location of the areas of the largest errors.  For 

165 K to 185 K (Figures 5-10  a  – 5-10  d ), the subcritical temperatures of methane, the 

maximum errors are located in regions where the vapour phase energy correction factors are 

larger than the corresponding liquid phase factors and these are regions where the numerical 

differences between the factors are large.  In contrast, for temperatures 189.78 K to 260.62 K 

(Figures 5-10  e  – 5-10  h ), the regions of maximum errors are located where the liquid phase 

energy correction factors are larger than the vapour phase factors.  This can be attributed to the 

discontinuity that was described in the homogeneous simulations section of this chapter and is 

perhaps suggestive of a trend for the sub- and supercritical heterogeneous energy correction 

factors. Again at 189.78 K, which is less than the experimental critical temperature of pure 

methane (190.4 K), the location of the maximum errors is in the same region as those of the 

supercritical temperatures.  However, as explained in Section 5.1.3, the critical temperature of 

pure methane has been shifted to a lower value in the context of this work. 

 

While the numerical results of the grid simulations do not indicate any sub- or supercritical 

methane trends in terms of the optimum heterogeneous parameters, it should also be borne in 

mind that these numerical results are based on actual, discrete simulation datasets and were not 

interpolated (or extrapolated) to any theoretical minima. However, later in this chapter a new 

model for the relationship between unlike-atom potential energies and the phase-dependent 

energy parameter perturbations is presented. It will be shown that the anticipated trends 

discussed above are not necessarily valid, since different pairs of the vapour and liquid energy 

parameter correction factors at a single pressure and temperature can be construed as being 

“optimum”. All simulation errors at all state points that were studied were dominated by the 
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liquid phase (Figure 5-11 is an example at 172.5 K and 1500 kPa) and this was also observed 

when homogeneous correction factors were used. 

 

The variations of the vapour and liquid compositions with VB  at constant values of LB  at 

172.5 K are shown in Figures 5-12. At constant LB , increasing VB  causes a monotonic 

decrease (within the range of VB  that was used) of methane solubility in both phases, with 

larger changes observed in the liquid phase.  In both phases, the overall changes in solubility 

over the range of VB  are larger at lower values of constant LB  than at higher values of LB .  

The opposite of the aforesaid observations is true when VB  is constant and LB  is varied, with 

the difference being in both phases the overall changes in solubility over the range of LB  are 

larger at higher values of constant VB  than at lower values of VB . The reasons for these 

observations are as follows. At constant LB , increasing VB  results in a decrease of the vapour 

phase potential energy and an increase of the attractive forces in this phase.  At the same time, 

increases of the liquid phase potential energy, which corresponds to a more repulsive nature 

being present in this phase, are observed (Figure 5-13). However, the total (system) potential 

energy, or “net” energy, is dominated by the liquid phase potential energy due to it being larger 

in magnitude, and being repulsive, results in a decrease of methane solubility in both phases. 

This agrees with the homogeneous simulations that were discussed earlier in this Chapter in 

which, due to the Berthelot energy parameter yielding too high solubilities when compared to 

experiment, the homogeneous factors were decreased to less than the Berthelot value (i.e. less 

than unity) to reduce the excess attractive nature (or increase the repulsive nature) of the system. 

Referring to Figure 5-13 again, it is seen that for the range of VB  that was used, larger changes 

of the potential energy contributions (due to the perturbations VB  and LB  around the Berthelot 

rule) occur at lower values of LB , while smaller changes are observed when is LB  higher; this 

is perhaps the reason why larger changes in solubilities are observed when LB  is low, since the 

potential energy “driving force” is larger. 

 

Similar trends are observed at 236.17 K (4559 kPa) (see Figure 5-14), but here sharp changes in 

the vapour and liquid compositions between V 0.994B   and 1.0015 for L 1.0015B   to 1.006 

are observed.  These are regions wherein the differences between the correction factors are 

large, and this causes sharp changes in density and hence, composition.  Especially when 
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L 1.006B   there are several sharp changes in compositions.  These observations suggest that 

adjusting the simulated compositions is not controlled simply by the correction factors used in 

each simulation box, but also by the differences between the factors in each phase.  Notice too, 

that the composition profiles are shifted along the abscissa of the diagrams at different constant 

values of the vapour and liquid correction factors. Again, similar trends with respect to the 

potential energy of each phase that were observed for the system at 172.5 K are observed here 

too, but because of the slightly larger grid used at this state point, there are both increases and 

decreases of mole fractions with increasing VB  at constant LB . 

 

It was also found that different combinations of heterogeneous energy cross-parameters do not 

necessarily map uniquely into the solubility and hence, error, spaces.  At 185 K, the co-ordinates 
V L( ,  ) (0.9825,  0.9875)B B    a  and (0.9850,  0.9900)   b  both yielded, within excellent 

statistical uncertainty, the same vapour ( 0.9154 0.005  and 0.9153 0.004 ) and liquid 

compositions ( 0.5932 0.001  and 0.5933 0.001 ), respectively.  Incidentally, for each set of 

coordinates the difference between the vapour- and liquid-phase correction factors is the same (

0.05  ) and upon further inspection, it is seen that the corresponding liquid potential energies 

( 6 4-0.59708 10  K 0.36352 10  K     a  and 6 4-0.59798 10  K 0.24131 10  K     b ) and 

vapour potential energies ( 3 3-0.81926 10  K 0.26304 10  K     a  and 

3 4-0.80110 10  K 0.21361 10  K     b ) are in excellent agreement with each other.  This 

observation by itself is enough to conclude that there exist several V L( ,  )B B  pairs for a certain 

NpT  state point, each having distinct individual VB  and LB  values (but whether having the 

same difference between each pair of values remains to be seen) that give the same solubilities 

and energies in each phase of a two phase system – technically, one can state that there is a 

degeneracy associated with the heterogeneous energy parameter approach.  This will be proved 

later in this chapter as well when a new unlike-atom potential energy model that utilises 

heterogeneous energy parameters is presented. 

 

The findings discussed so far can be explained more formally, and since Monte Carlo molecular 

simulations are driven by the changes of a system’s potential energy, the obvious starting point 

for such an explanation is to discuss the coexisting vapour and liquid potential energies. A very 

recent study  (Vlcek et al., 2011) developed a computational scheme for the determination of the 

optimum unlike Lennard-Jones parameters (size and energy) and optimum electrostatic charges 
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for a system exhibiting very low mutual solubility – carbon dioxide/water – by using a rigorous 

statistical mechanical treatment.  Like all parameter-optimization studies preceding it, the 

aforesaid work used homogeneous corrections factors for the system of interest. 

 

In order to elucidate the above remarks, it is instructive to consider not just the potential 

energies of the system being investigated at each V L( ,  )B B  pair, but the contribution made by 

every such pair to the potential energy of the reference Lorentz-Berthelot system in which 

 V L( ,  ) 1,1B B  . In this argument, the grid simulations at three different pressures (3121 kPa, 

4559 kPa and 5290 kPa) at 236.17 K shall be used. Before presenting the argument, though, the 

method implemented by Vlcek et al. (2011) will be explained briefly, although their method of 

optimizing the electrostatic interactions will be omitted since the mixture that was used in this 

work contained no molecules with permanent electrostatic charges. 

 

A lengthy derivation by Vlcek et al. (2011) shows that the equation that relates, or ‘couples’, the 

coexisting phases in a two-phase binary system is  

 

 

 
 

 

 
 

V L
1 1
V LV L1 1

0 0
exp exp

 
   

   
       
      , (5-1) 

 

where 0 and   refer to the unperturbed and perturbed systems respectively,   is the number 

density of the reference component in a phase (having units of 

number of molecules of component 1 unit volume ), B1 k T   in which Bk  is the Boltzmann 

constant and T  is the system temperature, and the  refer to ensemble averages. The 

equation was derived by first imposing the condition for chemical equilibrium i.e. the chemical 

potential of each species must uniform throughout the system – this is true for both the 

perturbed and the unperturbed (Lorentz-Berthelot) systems. Then, using the coupling parameter 

approach (Fischer et al. (1989) and Chialvo (1991)) for the unlike size and energy parameters, 

along with the definition of the NpT partition function for both the perturbed and unperturbed 

systems, the chemical equilibrium condition was expressed in a form that related the 

perturbation of the unlike-pair LJ interaction parameters to the changes in the concentration 

(number density) of the reference species in both phases i.e. Equation 5-1.Using results from a 
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study by Chialvo (1991), Vlcek et al. (2011) also presented a relationship between the 

contribution made by the perturbation,  , to the potential energy of the reference system (where 

1B   , i.e. homogeneous correction factors).  The relationship is 

     REF 6 12 REF 6 122 2 6B             , (5-2) 

 

where    is the contribution of the unlike-atom perturbation   to the system’s total 

potential energy, REF  is the total unlike-atom potential energy when 1B    (obtained from 

a single simulation),   REF

0

, 0
ij ij ij ij

j i

r u r r


 
 

     also when 1B    (also obtained 

from a single simulation),   is the Lennard-Jones size correction factor and B  is the Lennard-

Jones energy correction factor. Equation 5-2 allows for a very large number of  ,B   pairs to be 

tested, using simplex optimization, for example, without the need for the same number of 

additional simulations using every such pair in order to match the unlike-energy contribution on 

the left hand side.  The unlike energy contribution is obtained from Equation 5-1.  Vlcek et al. 

(2011) simplified Equation 5-1 by noting that because 2CO  has a high dilution in the 2H O –

rich phase (and vice versa), the chemical potentials of 2CO  in the 2CO –rich and 2H O  in the 

2H O –rich phases are practically unchanged because of the abovementioned high dilutions; 

hence, Equation (5-1) was simplified to 

 

 

 

 

 
1 1

L1 1
exp

0 0

x
x

  
 


   
   , (5-3) 

 

where x  refers to liquid mole fraction.  Hence for the specific case of a binary system 

containing chemicals with high insolubility in their respective dilute phases, only the Lorentz-

Berthelot and target solubilities are required to obtain    (Equation 5-3), which is then used 

in Equation 5-2 to obtain the first approximation of the optimized unlike Lennard-Jones 

parameters.  The second iteration would use the first approximation as the new reference 

system, and the procedure would continue until the desired tolerance is reached (in the case of 

2CO / 2H O , two iterations were sufficient for every NpT  state that was simulated). As with 
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most perturbative methods, the perturbed system must be sufficiently close to the unperturbed 

system in order to get meaning results. As an example, the work of Vlcek et al. (2011) showed 

that the optimized LJ unlike size and energy parameters  ,   for carbon (in CO2)-oxygen (in 

H2O) interactions in the final iteration were (2.8412 Å, 0.5511 kJ/mol), while the unperturbed 

Lorentz-Berthelot system values were (3.0995 Å, 0.6597 kJ/mol) – relative to the LB system, 

these changes were -8.33% and -16.46%, respectively. In the context of this work, as was shown 

in section 5.1.1 of this chapter, the extreme cases of large perturbations resulted in systems that 

were not two-phase systems. 

 

5.3 New model and method stemming from this work 

 

In the context of this part of the current work (heterogeneous energy parameters), 1   because 

no corrections were applied to the Lennard-Jones unlike-size parameter. Thus Equation 5-2 

reduces to 

 

   REF 1B    . (5-4) 

 

Equation 5-4 contains only a homogeneous energy correction factor and the contribution of the 

unlike molecules to the base/reference system’s total potential energy is also contained within a 

single constant, REF .  This equation needs to be modified to contain the vapour and liquid 

correction factors, as well as the reference unlike potential energy in each phase to describe the 

contribution of each perturbation to the unlike potential energy in that phase. Chialvo (1991) 

showed, using exact mathematical expressions, that the total contribution of unlike atoms to the 

potential energy of a two-phase system is a linear combination of the departures from the 

Lorentz-Berthelot mixing rules.  Since 1   the total potential energy consisting of the ‘base 

case’ Lorentz-Berthelot system and the homogeneous energy parameter perturbation (departure 

from the Berthelot rule) is (Chialvo, 1991) 
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This is an important result because it implies that the linearity of Equation 5-4 is still preserved 

when an additional energy parameter is introduced and as shown below, this relationship is valid 

for the system studied in this work. 

 

Hence, this work proposes the following modified form of Equation 5-2 that models the 

contributions of the vapour- and liquid-phase perturbations,  V 1B   and  L 1B  , to the 

vapour and liquid unlike-atom total potential energies for a binary Lennard-Jones system: 

 

     V L

V V V V L
, REF , REF1 1B BB B       , (5-6) 

   

     V L

L L V L L
, REF , REF1 1B BB B       , and (5-7) 

   

         V L
V L V V L L

, REF , REF
1 1

B B
B B           . (5-8) 

 

In Equation 5-6  
V

  is the total contribution of the perturbations  V 1B   and  L 1B   to 

the potential energy of the vapour phase, and V
V

, REFB  
and L

V
, REFB  are the total unlike-atom 

energies contributed to the vapour phase potential energy when V 1B 
 
and L 1B   respectively.  

Equation 5-7 is the corresponding liquid phase model, and Equation 5-8 is simply the sum of 

Equations 5-6 and 5-7. Although Equation 5-8 will not be used directly in the following 

discussion, it emphasises the preservation of the linearity of the anticipated contributions of the 

perturbations. 
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Considering that the work of Vlcek et al. (2011) was published during the advanced stages of 

this work, and that obtaining the V, L
V, L

, REFB  directly from further simulations would have first 

required a considerable programming effort, it was decided to test the proposed model by using 

existing grid simulation data at 236.17 K at three different pressures (3121 kPa, 4559 kPa and 

5290 kPa). 

 

For each grid-simulation dataset, the contributions of the perturbations  V 1B   and  L 1B   to 

the total unlike energy were obtained by simply subtracting the homogeneous “base case” total 

system energy from the total system energies of the corresponding perturbed systems.  

Following that, multivariable linear regression (using MATLAB®) gave the V, L
V, L

, REFB .  

Obviously, the approach being described relies on the perturbed systems having accurate 

potential energies with low simulation uncertainties and ideally the V, L
V, L

, REFB  should be obtained 

directly from the actual “base” system simulation (as explained in the previous paragraph), but 

it will be shown that this approach is sufficient to explain the degeneracy of energy states 

mentioned earlier in this chapter. 

 

The results of the regressions carried out at (236.17 K, 3121 kPa) and (236.17 K, 4559 kPa)  are 

shown in Figures 5-15 to 5-18. As can be seen, the proposed model is indeed validated by the 

high coefficient of determination ( 2R ) equal to 0.9779 and the sum of residuals (
111.0914 10  ) using a 95% confidence interval is sufficiently close to zero. The five data 

points used for the regression at 4559 kPa are based on simulations that used heterogeneous 

energy parameters close to the Berthelot value, and the model did not give a good representation 

of the initial data set (consisting of all 81 simulations, see Figure B-7 in Appendix B) because, 

as shown in Figure 5-14, there are no monotonic trends for the compositions of each phase 

which are directly related to the system’s potential energy. In fact, Figure 5-14 shows a few 

inflections at certain LB  values, which are more pronounced in the liquid phase – this indicates 

a transition between different coexisting vapour-liquid states. 

 

Using the same range of vapour and liquid energy correction factors on a smaller ( 5 5 ) grid at 

236.17 K and at a lower pressure (3121 kPa), a similar excellent fit is obtained ( 2 0.9700R   
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and sum of residuals = -152.4425 10 ).  Clearly, at constant temperature, a system at a lower 

pressure is less sensitive to the same range of heterogeneous energy parameters than a system at 

a higher pressure – these smoother trends are shown in Figures B-8 to B-12 in Appendix B 

where several quantities (specific densities, energy contributions, methane number densities and 

methane composition profiles) obtained from the simulations at 236.17 K at the different 

pressures are provided, to give an understanding of how the same range of heterogeneous 

perturbations effect different changes in these quantities at different pressures. According to the 

residual case order plot, using a 95% confidence interval, the fifth simulation is an outlier to the 

data; this state point has the maximum difference between the V L( ,  )B B  pair and large system 

fluctuations are therefore expected. Unfortunately, at the highest pressure that was tested at 

236.17 K, most simulations resulted in system compositions that were far-removed from the 

target compositions, much like the inflections discussed above for Figure 5-14 and hence it 

would be of little use to compare these results to the results of the 3121 kPa and 4559 kPa 

simulations. 

 

Now that the proposed energy model has been validated, the next step is to show how to put the 

model into practise by combining it with the work of Vlcek et al. (2011), specifically, Equation 

5-1, which is the general relationship between both phases. While the development of the model 

proposed in this work was simplified by not applying perturbations to the Lennard-Jones size 

parameter, complications arise when trying to relate the total potential energy of the system to 

the number densities. Obviously, the simplifying assumptions made for the 2CO / 2H O  system 

cannot be used here since methane/xenon are highly miscible in both the vapour and the liquid 

phases, though less-so in the supercritical methane region. 

The following is proposed. Equation 5-1 is rearranged to contain the ratio of vapour and liquid 

unlike-energy contributions, 

 

 

 
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exp

exp

A
A

 

 
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 


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 




 , (5-9) 

 

where    L L
L 1 10A     and    V V

V 1 10A    .  Thus, a relationship between the number 

densities on the right hand side and the heterogeneous energy correction factors, via Equations 
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5-6 and 5-7, on the left hand side is obtained. One point of concern is the vapour number 

density of the reference component, methane.  In all simulations, the liquid number density 

varied linearly with the liquid mole fraction; the variations are shown in Figures 5-19 and 5-20 

for the two systems being discussed viz. (236.17 K, 3121 kPa) and (236.17 K, 4559 kPa).  

However the trend is not so apparent for the vapour number density and mole fraction of 

methane. Fortunately in this discourse, both the target (  V
1  ) and the reference (  V

1 0 ) 

number densities were within the linear range of the relationships shown in Figures 5-19 and 5-

20. 

 

The difference between the two sides of Equation 5-9 is plotted as a function of the 

heterogeneous energy correction factors for the (236.17 K, 3121 kPa) and (236.17 K, 4559 kPa) 

systems in Figures 5-21 and 5-22 using their respective V, L
V, L

, REFsB  obtained from the regressions 

described above. The contours labelled “0” indicate the first-approximation lines containing 
V L( ,  )B B  coordinates that should be close to the target solubilities for the respective systems. 

 

For the 236.17 K system at 3121 kPa, three coordinates along the “zero” line were selected and 

used as the energy correction factors in three separate simulations.  The results are tabulated in 

Table 5-3. 

 

The experimental mole fractions of methane in the vapour and liquid phases at (236.17 K, 3121 

kPa) are 0.1510 and 0.4201, respectively. While the solubilities obtained from the simulations 

are certainly far from the target solubilities (it should also be remembered that like the original 

method described by Vlcek et al. (2011), the target solubilities were not realised upon the first 

iteration), what is promising is that three different simulations that used different heterogeneous 

energy correction factors gave, within their simulation uncertainties, roughly the same 

compositions. Indeed, the differences between each pair of values used here (0.015, 0.0152 and 

0.0153, respectively) are not equal but sufficiently close to each other to infer equality of results 

of all three simulations, unlike the observation discussed earlier in this chapter for 185 K, for 

which different pairs of correction factors having the same difference gave identical results.  

The non-constant difference is attributed to the though excellent, but slightly imperfect fitting of 

the contributions of the perturbations to the V, L
V, L

, REFsB  due to the simulation uncertainties of the 

potential energies. Considering that the system to which the proposed model and method has 
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been applied, methane/xenon, is highly sensitive to perturbations of the unlike energy 

parameter, and the fact that the left hand side of Equation 5-9 is also numerically sensitive due 

to its exponential nature, the reasons given above are valid.  

 

Similarly, at 4559 kPa, four simulations were executed by using values along the “0” as well as 

the “0.2” lines, to show that the method works along different contours of Equation 5-9. The 

results are tabulated in Table 5-4. Note that some of the correction factors used here are out of 

the range of the corresponding values whose energies were used in the fitting procedure 

described earlier, but these out-of-range heterogeneous pairs are still in the neighbourhood of 

the original pairs. 

 

Once again, it is seen that the heterogeneous pairs selected from the contour plot, this time 

along two different lines, are in excellent agreement with each other along the same contour. It 

only makes sense to compare the results obtained when using those values from the “0” line 

with experimental mole fractions at this pressure ( 1 0.3317x   and 1 0.5778y  ). The 

simulation values are in good agreement with experiment after the first iteration, though the 

uncertainties of the liquid solubilities are high – this is perhaps due to the large differences 

between the correction factors which impart certain instabilities to the systems. 

 

Obviously the approach described above does not give a direct (or immediate) answer for the 

optimum energy correction factors, since, like the model and method from which is was 

developed (which itself was later simplified to Equations 5-3), it requires a few more iterations 

that would require the determination of the V, L
V, L

, REFsB  either through regression of data from 

simulations around the newly acquired ‘reference’ states (like in this work), or directly through 

a single simulation (which, as stated previously, would require considerable programming effort 

to isolate the unlike interactions due to each correction factor in each phase). The number 

density–mole fraction profiles are not expected to change since the simulation pressure and 

temperature are constant (see Figure 5-19 and 5-20). 

 

What the approach has done is that it has formally proved the degeneracy of energy states when 

using heterogeneous parameters for a single NpT  simulation, which was observed in Section 

5.2. It has also shown that the numerical difference between each such pair is virtually the same. 

Thus it appears there is no unique solution to the problem of finding a pair of phase-dependent 
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unlike-energy parameter correction factors that minimises the error between simulation and 

experiment. Furthermore, the method shown above has been applied to a two-phase system that 

has components with high mutual solubilities (certainly, it is a simple system with only two 

types of intermolecular forces being present) and thus the method has provided a slightly more 

general framework for determining optimum energy correction factors for Lennard-Jones 

mixtures when compared to the study of Vlcek et al. (2011), which used simplifying 

assumptions based on the chemistry of the carbon dioxide/water mixture. 

 

5.4 Tables and graphs 

 

See next page. 
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  B y1  y1 error / [%] x1  x1 error / [%] TAE / [%] 

(165 K, 1200 kPa) 0.880 0.9080 0.0078 -3.586 0.2056 0.0241 -65.147 68.73353 

  
0.900 0.9106 0.0082 -3.318 0.2562 0.0269 -56.576 59.89465 

y1
exp 0.9418 0.920 0.9110 0.0059 -3.270 0.3137 0.0168 -46.833 50.10291 

x1
exp 0.5900 0.940 0.9211 0.0045 -2.196 0.4356 0.0268 -26.176 28.37133 

  
0.955 0.9282 0.0047 -1.451 0.4956 0.0211 -15.996 17.44679 

  
0.970 0.9333 0.0058 -0.901 0.5370 0.0210 -8.976 9.87614 

  
0.985 0.9394 0.0048 -0.261 0.5659 0.0136 -4.080 4.34153 

  
1.000 0.9440 0.0025 0.229 0.5808 0.0072 -1.559 1.78840 

  
1.015 0.9458 0.0021 0.422 0.5851 0.0061 -0.829 1.25064 

  
1.030 0.9489 0.0026 0.749 0.5903 0.0020 0.047 0.79596 

    1.036 0.9502 0.0038 0.892 0.5906 0.0029 0.102 0.99414 
(172.5 K, 1500 kPa) 0.900 0.8891 0.0096 3.761 0.2757 0.0336 50.771 54.53227 

  
0.950 0.9088 0.0092 1.633 0.4771 0.0192 14.801 16.43375 

y1
exp 0.9239 0.955 0.9105 0.0042 1.443 0.4813 0.0170 14.061 15.50388 

x1
exp 0.5600 0.970 0.9169 0.0035 0.756 0.5162 0.0164 7.830 8.58580 

  
0.980 0.9215 0.0087 0.257 0.5449 0.0273 2.701 2.95737 

  
0.985 0.9228 0.0041 0.108 0.5516 0.0143 1.493 1.60104 

  
0.990 0.9244 0.0090 -0.064 0.5488 0.0188 1.999 2.06264 

  
1.000 0.9282 0.0051 -0.469 0.5687 0.0128 -1.545 2.01342 

  
1.015 0.9318 0.0028 -0.862 0.5781 0.0082 -3.225 4.08742 

    1.030 0.9368 0.0026 -1.398 0.5859 0.0035 -4.620 6.01814 
(180 K, 1750 kPa) 0.955 0.8797 0.0074 1.720 0.4260 0.0181 14.802 16.52181 

  
0.970 0.8866 0.0059 0.943 0.4559 0.0169 8.818 9.76087 

y1
exp 0.8951 0.980 0.8918 0.0094 0.367 0.4740 0.0198 5.202 5.56840 

x1
exp 0.5000 0.985 0.8971 0.0047 -0.225 0.5009 0.0179 -0.173 0.39853 

  
0.990 0.8984 0.0098 -0.369 0.5100 0.0271 -1.991 2.36031 

  
1.000 0.9042 0.0047 -1.019 0.5275 0.0163 -5.498 6.51716 

  
1.010 0.9096 0.0024 -1.619 0.5480 0.0072 -9.601 11.21935 

  
1.020 0.9141 0.0048 -2.118 0.5590 0.0145 -11.804 13.92226 

  
1.030 0.9175 0.0026 -2.507 0.5676 0.0099 -13.515 16.02165 

  
1.040 0.9198 0.0094 -2.758 0.5702 0.0193 -14.041 16.79933 

  
1.050 0.9223 0.0087 -3.045 0.5793 0.0108 -15.865 18.91001 

  
1.075 0.9291 0.0040 -3.804 0.5886 0.0041 -17.713 21.51750 

    1.100 0.9349 0.0041 -4.447 0.5918 0.0023 -18.363 22.81027 
(185 K, 2000 kPa) 0.955 0.8639 0.0091 1.778 0.4236 0.0189 13.553 15.33041 

  
0.970 0.8734 0.0080 0.700 0.4581 0.0222 6.505 7.20449 

y1
exp 0.8796 0.985 0.8810 0.0061 -0.162 0.4881 0.0178 0.383 0.54517 

x1
exp 0.4900 1.000 0.8899 0.0058 -1.170 0.5228 0.0139 -6.687 7.85663 

  
1.010 0.8953 0.0062 -1.782 0.5379 0.0149 -9.771 11.55238 

  
1.020 0.9000 0.0055 -2.324 0.5495 0.0141 -12.145 14.46911 

    1.030 0.9080 0.0050 -3.230 0.5713 0.0124 -16.602 19.83169 
Table 5-1 – Numerical results from the initial homogeneous B simulations of methane/xenon at various temperatures and 
pressures. B is the Lennard-Jones unlike-energy multiplying factor, y1 and x1 are the vapour and liquid mole fractions of 
methane, respectively (with simulation uncertainties listed in the corresponding columns to the right of the mole 
fractions), y1 error and x1 error are the percent relative errors between simulation and experiment and TAE is the total 
absolute error.
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  B y1  y1 error / [%] x1  x1 error / [%] TAE / [%] 

(189.78 K, 2073 kPa) 0.955 0.8341 0.0073 0.080 0.3642 0.0162 24.001 24.08132 

  
0.970 0.8435 0.0059 -1.043 0.3997 0.0164 16.600 17.64250 

y1
exp 0.8348 0.985 0.8500 0.0065 -1.820 0.4290 0.0175 10.481 12.30096 

x1
exp 0.4792 0.990 0.8580 0.0102 -2.774 0.4459 0.0203 6.957 9.73099 

  
1.000 0.8606 0.0054 -3.090 0.4646 0.0148 3.042 6.13259 

  
1.010 0.8629 0.0068 -3.364 0.4726 0.0147 1.379 4.74347 

  
1.020 0.8699 0.0060 -4.208 0.4899 0.0148 -2.238 6.44566 

  
1.030 0.8767 0.0060 -5.022 0.5099 0.0147 -6.396 11.41811 

    1.040 0.8840 0.0077 -5.894 0.5207 0.0163 -8.655 14.54962 
(208.29 K, 2411 kPa) 0.900 0.7191 0.0080 4.095 0.2071 0.0169 -27.879 31.97384 

  
0.910 0.7166 0.0072 3.741 0.2210 0.0153 -23.023 26.76336 

y1
exp 0.6908 0.920 0.7127 0.0071 3.168 0.2315 0.0136 -19.349 22.51733 

x1
exp 0.2871 0.930 0.7124 0.0088 3.131 0.2417 0.0129 -15.805 18.93552 

  
0.940 0.7126 0.0069 3.156 0.2498 0.0136 -12.991 16.14669 

  
0.950 0.7123 0.0099 3.115 0.2551 0.0139 -11.151 14.26671 

  
0.960 0.7088 0.0064 2.609 0.2649 0.0163 -7.722 10.33137 

  
0.970 0.7141 0.0098 3.379 0.2707 0.0151 -5.729 9.10815 

    0.990 0.7124 0.0093 3.129 0.2948 0.0146 2.683 5.81209 
(236.17 K, 4559 kPa) 0.955 0.5759 0.0068 0.329 0.2710 0.0081 18.295 18.62383 

  
0.970 0.5903 0.0082 -2.161 0.2969 0.0093 10.494 12.65546 

y1
exp 0.5778 0.985 0.5977 0.0085 -3.447 0.3140 0.0098 5.334 8.78082 

x1
exp 0.3317 1.000 0.6120 0.0086 -5.922 0.3392 0.0085 -2.250 8.17199 

  
1.010 0.6201 0.0070 -7.315 0.3512 0.0100 -5.893 13.20814 

  
1.020 0.6269 0.0081 -8.500 0.3632 0.0094 -9.494 17.99378 

    1.030 0.6375 0.0111 -10.340 0.3799 0.0128 -14.546 24.88593 
(260.62 K, 5105 kPa) 0.880 0.2966 0.0147 5.018 0.0956 0.0072 43.050 48.06821 

  
0.900 0.3019 0.0156 3.334 0.1064 0.0082 36.605 39.93924 

y1
exp 

 
0.915 0.3083 0.0162 1.274 0.1164 0.0092 30.612 31.88602 

x1
exp 

 
0.925 0.3084 0.0159 1.255 0.1205 0.0090 28.185 29.43992 

  
0.935 0.3108 0.0173 0.475 0.1252 0.0100 25.389 25.86383 

  
0.945 0.3221 0.0107 -3.132 0.1355 0.0072 19.266 22.39821 

  
0.955 0.3209 0.0132 -2.764 0.1394 0.0080 16.905 19.66936 

  
0.985 0.3314 0.0205 -6.130 0.1599 0.0099 4.714 10.84338 

    0.990 0.3362 0.0177 -7.643 0.1621 0.0073 3.402 11.04523 
Table 5-1 – (continued) Numerical results from the initial homogeneous B simulations at various temperatures and 
pressures. B is the Lennard-Jones unlike-energy multiplying factor, y1 and x1 are the simulated vapour and liquid mole 
fractions of methane, respectively (with simulation uncertainties listed in the corresponding columns to the right of the 
mole fractions), y1 error and x1 error are the percent relative errors between simulation and experiment and TAE is the 
total absolute error. 
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T / [K] p / [kPa] B y1 
 

x1 
 

Bopt y1
exp x1

exp 
150 130.235 1 0.6942 0.0059 0.0731 0.0029 0.9864 0.6990 0.0600 

 
348.2978 1 0.9049 0.0028 0.2673 0.0094 0.9879 0.8990 0.2400 

 
702.351 1 0.9679 0.0022 0.6257 0.0142 1.0077 0.9668 0.6400 

 
900.9612 1 0.9870 0.0015 0.8439 0.0195 1.0041 0.9872 0.8700 

165 320.7 1 0.6865 0.0092 0.1090 0.0036 0.9847 0.6918 0.0900 

 
701.5 1 0.8720 0.0123 0.2942 0.0212 0.9873 0.8711 0.2800 

 
1200 1 0.9436 0.0022 0.5798 0.0043 0.9961 0.9415 0.5881 

 
1600 1 0.9753 0.0015 0.8192 0.0123 1.0625 0.9253 0.8363 

180 790 1 0.7331 0.0080 0.1828 0.0056 0.9794 0.7301 0.1618 

 
1001.8 1 0.7962 0.0022 0.2519 0.0045 0.9845 0.7914 0.2300 

 
1750 1 0.9048 0.0026 0.5335 0.0057 0.9946 0.8955 0.5017 

 
2500 1 0.9548 0.0030 0.7824 0.0161 0.9920 0.9492 0.7819 

189.78 693 1 0.4991 0.0089 0.0846 0.0038 0.9990 0.4877 0.0880 

 
1128 1 0.7095 0.0110 0.2034 0.0060 0.9981 0.6913 0.1994 

 
1592 1 0.8005 0.0051 0.3248 0.0113 1.0002 0.7850 0.3239 

 
2632 1 0.9036 0.0038 0.6196 0.0140 0.9976 0.8800 0.6186 

 
3231 1 0.9381 0.0014 0.7726 0.0066 0.9866 0.9214 0.7645 

 
3743 1 0.9630 0.0015 0.8831 0.0066 0.9437 0.9470 0.8822 

223.81 1726 1 0.3050 0.0136 0.0725 0.0050 0.9890 0.2961 0.0670 

 
2345 1 0.4834 0.0116 0.1636 0.0062 0.9915 0.4713 0.1477 

 
2961 1 0.6001 0.0067 0.2472 0.0047 0.9995 0.5716 0.2444 

 
3656 1 0.6710 0.0070 0.3393 0.0088 0.9869 0.6508 0.3264 

 
4330 1 0.7277 0.0027 0.4400 0.0046 0.9939 0.6887 0.4353 

 
5017 1 0.7642 0.0026 0.5345 0.0066 0.9958 0.7281 0.5308 

 
5516 1 0.6067 0.0084 0.7861 0.0039 0.9808 0.7376 0.5948 

248.15 3109 1 0.2413 0.0034 0.0807 0.0011 0.9800 0.2226 0.0706 

 
4020 1 0.4037 0.0053 0.1737 0.0033 0.9798 0.3733 0.1591 

 
4895 1 0.4944 0.0055 0.2621 0.0044 0.9880 0.4563 0.2545 

 
5482 1 0.5394 0.0130 0.3235 0.0142 0.9814 0.4947 0.3086 

 
5976 1 0.5222 0.0812 0.4183 0.0783 0.9908 5145.0000 0.3600 

Table 5-2 – Numerical results from further simulations of methane/xenon at six different temperatures and several 
pressures to determine the optimum B at each state point. T is temperature, p is pressure, B is the Berthelot Lennard-
Jones unlike-energy multiplying factor, y1 and x1 are the simulated vapour and liquid mole fractions of methane, 
respectively (with simulation uncertainties listed in the corresponding columns to the right of the mole fractions), Bopt is 
the optimum B corresponding to the simulated state point and y1

exp and x1
exp are the experimental vapour and liquid mole 

fractions, respectively. 
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Case No. BV BL  y1
 x1

 

1 0.99 1.005 0.1122 (0.0041) 0.3511 (0.0036) 

2 0.992 1.0072 0.1133 (0.0034) 0.3540 (0.0064) 

3 0.994 1.0093 0.1147 (0.0029) 0.3544 (0.0071) 

Table 5-3 – Results of three independent simulations using values obtained from the proposed unlike-energy model for 
methane/xenon at (236 K, 3121 kPa). Uncertainties of the simulation outputs are shown in parentheses. 

 

Case No. BV  BL  y1
 x1

 

1 – line “0” 1.00432 0.994 0.5587 (0.0087) 0.3046 (0.0319) 

2 – line “0” 1.00540 0.9952 0.5578 (0.0112) 0.3088 (0.0379) 

3 – line “0.2” 0.9752 0.977 0.6155 (0.0077) 0.3327 (0.0082) 

4 – line “0.2” 0.9829  0.985 0.6266 (0.0049) 0.3447 (0.0042) 

Table 5-4 – Results of three independent simulations using values obtained from the proposed unlike-energy model for 
methane/xenon at (236 K, 4559 kPa). Uncertainties of the simulation outputs are shown in parentheses. 

 

 

 

Figure 5–1 – Composition profiles of methane in the vapour (x) and liquid (+) phases for homogeneous 
correction factor (BV = BL) simulations.  The solid lines of constant composition represent the experimental 
(target) solubilities. 
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Figure 5–2 – Liquid-phase (x1), vapour-phase (y1), total absolute error (TAE) and sum of squared deviations 
(SSQD) error plots with respect to methane composition for homogeneous correction factor simulations at (a) 
165 K, (b) 172.5 K, (c) 180 K and (d) 185 K. 
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Figure 5–3 - Liquid-phase (x1), vapour-phase (y1), total absolute error (TAE) and sum of squared deviations 
(SSQD) error plots with respect to methane composition for homogeneous correction factor simulations at (a) 
189.78 K, (b) 208.23 K, (c) 236.17 K and (d) 260.62 K. 
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 a   b  

 c   d  

 e   f  

Figure 5–4 - Phase diagrams of the vapour-liquid equilibrium system methane (1)/xenon (2) at
 
(a) 150 K, (b) 165 

K, (c) 180 K, (d) 189.78 K, (e) 223.81 K and (f) 248.15 K.  Circles represent simulation data using the unmodified 

Berthelot rule and continuous solid lines are Peng-Robinson predictions based on experimental data (Dias et al., 

2004), shown as squares. Triangles in (e) and (f) represent simulation data using the corresponding 

temperature-specific optimum (B). 
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 a   b  

Figure 5–5 - Temperature dependence of optimum homogeneous energy parameter using (a) weighted relative 

volatility and (b)
 
weight phase envelope width.

 

 

  

 a   b  

Figure 5–6 - Temperature dependence of optimum homogeneous energy parameter at (a) 3000 kPa and (b)
 

5000 kPa. 
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Figure 5–7 - Variation of vapour- and liquid-phase potential energies with temperature at 1800 kPa, using the 

standard Berthelot energy parameter (circles) and optimum energy parameters (triangles) for each temperature. The 

dashed lines of constant temperature indicate the location of the discontinuity of the liquid potential energy. 
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Figure 5–8 - Temperature-dependence of vapour- and liquid-phase densities on both sides of the critical temperature of methane at 1800 kPa, using the standard Berthelot energy 

parameter (blue dots with error bars) and optimum energy parameters (triangles) for each temperature. The dashed lines of constant temperature indicate the discontinuity. The 

smooth curves running through the data are added for emphasis and are not based on any theoretical models. 
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Figure 5–9 - Error surfaces with respect to composition using a sum of squared deviations (SSQD) 

representation for heterogeneous correction factors (BV ≠ BL) at (a) 165 K and (b) 189.78 K.  Simulation data 

are shown as black (+) symbols, while the surfaces were generated using cubic spline interpolation. 
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Figure 5–10 - Error surfaces on the BV-BL
 plane with respect to composition using a sum of squared deviations 

representation for heterogeneous correction factors (BV-BL) at (a) 165 K, (b)
 
172.5 K, (c) 180 K, (d) 185 K, (e) 

189.78 K, (f) 208.23 K, (g) 236.17 K and (h) 260.62 K.  The surfaces were generated from simulation data using 

cubic spline interpolation.  Dark blue regions correspond to small errors, while large errors are shown in red. 

 

 

Figure 5–11 - Comparison of the (a) liquid-phase and  (b) vapour-phase composition errors (using a sum of 

squared deviations representation), and their contributions to the (c) total error at (1500 kPa, 172.5 K). 
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Figure 5–12 - Variation of methane solubility at 172.5 K in the vapor and liquid phases with vapour-phase 

correction factor BV at various constant liquid-phase correction factors (BL): 0.9840 (solid line); 0.9843 (); 

0.9845 (− − −); 0.9848 (); 0.9850 (— − ― −); 0.9853 (); 9855 (— — —); (0.9858) ; 0.9860 ().The solid 

lines of constant composition refer to the experimental values. 
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Figure 5–13 - Comparisons of the “excess” vapour and liquid potential energies using BV = BL = 0.985 as the reference system at (172.5 K, 1500 kPa). 
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Figure 5–14 - Variation of methane solubility at 236.17 K in the vapor and liquid phases with vapour-phase 

correction factor (BV) at various constant liquid-phase correction factors (BL): 0.9940 (solid line); 0.9955 (); 

0.9970 (− − −); 0.9985 (); 1.000 (— − ― −); 1.0015 (); 1.003 (— — —); (1.0045) ; 1.006 (). The solid 

lines of constant composition refer to the experimental values. 
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Figure 5–15 - Comparison between the energies at (236 K, 4559 kPa) in the vapour, liquid and overall  system 

(vapour + liquid) due to heterogeneous perturbations from simulations (blue dots) with the surface predicted 

by the model proposed in this work.  

 

 

Figure 5–16 - Residual plot for the total system energy at (236 K, 4559 kPa) using a 95% confidence interval. 
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Figure 5–17 - Comparison between the energies at (236 K, 3121 kPa) in the vapour, liquid and overall  system 

(vapour + liquid) due to heterogeneous perturbations from simulations (blue dots) with the surface predicted 

by the model proposed in this work. 

 

 

Figure 5–18 - Residual plot for the total system energy at (236 K, 4559 kPa) using a 95% confidence interval. 
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Figure 5–19 - Solubility-number density relationships in the vapour and liquid phase at (236.17 K, 4559 kPa) 

 

Figure 5–20 - Solubility-number density relationships in the vapour and liquid phase at (236.17 K, 3121 kPa) 
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Figure 5–21 - Contour and surface plots depicting the difference between the ratio of number densities and 

phase energy ratio defined by Vlcek et al. (2011) and modified in this work for the methane/xenon system at 

(236.17 K, 4559 kPa). 

 

Figure 5–22 - Contour and surface plots depicting the difference between the ratio of number densities and 

phase energy ratio defined by Vlcek et al. (2011) and modified in this work for the methane/xenon system at 

(236.17 K, 3121 kPa). 
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6. CONCLUSIONS 

 

This work has proved to be a good step for addressing the inadequacies of conventional mixing 

rules in molecular simulations. The reason for this is two-fold. Firstly, the introduction of an 

additional parameter to any parametric model (if one considers a mixing rule to be a model) that 

attempts to reproduce experimental data (“reality”) usually decreases the relative error between 

the model system and reality. Secondly, in the present case by modelling the interactions 

between unlike molecules, which in this case are completely described by the Lennard-Jones 

potential, in each phase uniquely, a more solid physical foundation is naturally implied because 

the effective range of the intermolecular interactions that are expected in a liquid and a vapour 

are better-represented (e.g. the short-range order that characterises a liquid phase is dependent 

on the configurational energy of the phase). In other words, the multiplying factors that adjust 

the LJ unlike-energy parameter ( 12 ) in this work scaled the overall potential energy, especially 

the contribution of the  
6r  term that makes the predominant contribution to the attractive 

dispersion interaction energy of neutral systems (Kaplan, 2006) in each phase uniquely, as 

opposed to using a single value for the same parameter in both phases. The necessity of the 

heterogeneous scaling can also be ascribed to the ‘effective’ contribution of the three-body (and 

higher terms) in each phase. For example, three-body dispersion interactions weaken the pair 

dispersion interactions in methane by approximately 20% (Kaplan, 2006). It was shown in 

Chapter 5 that a single-valued scaling (homogeneous correction factor) for the system 

methane/xenon (vapour and liquid phases) is inadequate for simultaneous satisfactory prediction 

of vapour and liquid compositions. 

 

Obviously, one can argue that the LJ parameters of the pure components were the same in each 

phase and that if the potential models of the pure components were first given a treatment such 

as the one presented in this work, then the Lorentz-Berthelot or another set of mixing rules 

would suffice for the mixture of the two components. This, however, is still an incorrect 

approach (even if the simulation error bars might have extended over the experimental values of 

the properties of interest, for example, on a phase diagram) since any attempts to explain or 

calculate the properties of mixtures from knowledge of their pure components' properties and 

hence, parameters only, do not include any information about the mixtures (Rowlinson & 
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Swinton, 1982), and yet again it is only via mixing rules that the mixture interactions and 

subsequent properties can be approximated. Thus, experimental information must be used in 

order to obtain good models for mixtures (Haslam et al., 2008). As explained Chapter 4, in the 

broader context of intermolecular forces, the present study focused on a relatively simple, 

neutral-molecules chemical mixture, consisting of monoatoms, that was modelled by the simple 

Lennard-Jones 12-6 potential energy model. This is certainly a caveat since a lot of systems of 

practical interest cannot be adequately modelled as such. On the contrary a lot of important 

asymmetric, non-polar, non-ideal mixtures (e.g. n-alkane-perfluoroalkane) can benefit from the 

approach presented here. Indeed, several other potential energy models of higher complexity 

that are essentially variations of the Lennard-Jones model, for example, the 12–6–4 (Mason & 

Schamp, 1958), m–6–8 (Klein & Hanley, 1970) and Stockmayer (1941) potential models, and 

which still assume pair-wise additivity of interactions (some of which modify the neutral-system 

dominant  dispersion interaction energy term) do provide a more rigid physical foundation for 

modelling different types molecules, but such complex models that are associated with more 

complex molecules and higher computational costs do not take into account the mixture 

properties and hence still rely on homogeneous mixing rules. 

 

It was also shown numerically, and then proved by using a model that was developed in the 

latter part of this study, that the heterogeneous parameter approach gives no unique solution for 

a given NpT  state point. This is also a caveat of the approach in that if a global heterogeneous 

parameter fitting was done for a single temperature (by using the weighted-relative volatilities 

corresponding to each pressure for the isotherm) then there would have been multiple solutions 

for each NpT  simulation to choose. However, it was shown that along the energy contours on 

the V LB B  plane (for a given NpT  state point) that the correction factor used in one phase 

was everywhere either less than or greater than the correction factor used in the other phase. 

This means that with judicious selection of heterogeneous parameters, one may obtain 

chemically-sensible trends at a given temperature with respect to these parameters. 
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7. RECOMMENDATIONS 

 

One application of the method presented here could be towards obtaining accurate prediction of 

hydrocarbon/water phase equilibrium especially to better represent TraPPE-UA alkanes and 

SPC/E water interactions. The study of Johansson et al. (2007) that used an empirical 

multiplying factor of 1.30 between water and alkanes to improve water solubility in alkanes, 

after the unmodified geometric average gave water solubilities in alkanes that were much lower 

than experimental values, also worsened alkane solubility in water. Thus as a first step in trying 

to obtain simultaneous good predictions of compositions in both phases, the heterogeneous 

unlike-energy parameter approach can be used. Further refinement, if necessary, can be done by 

varying the unlike-size parameter. 

  

Another possible extension of this work would be to vary the repulsive exponent of the 

Lennard-Jones potential independently in each phase, which is also an extension of the work of 

Potoff & Bernard-Brunel (2009). Effectively, the range of the potential would be altered directly 

in each phase, unlike in this work where the overall potential energy was scaled linearly by the 
LB  and VB  multiplying correction factors. 
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A.1 Numerical data 

 

T / [K] p / [kPa] B y1   x1   Bopt 
150 130.235 0.97 0.7035 0.016 0.0482 0.0051 0.9864 
y1

exp 0.69901 0.98 0.7005 0.006 0.057 0.0006 
 x1

exp 0.06 0.99 0.7065 0.0159 0.0616 0.0017 
 

  
1 0.6942 0.0059 0.0731 0.0029 

 
  

1.01 0.7196 0.0075 0.084 0.0038 
 

  
1.02 0.7008 0.0113 0.0908 0.0035 

 
  

1.03 0.7146 0.0106 0.104 0.006 
     1.04 0.7218 0.0059 0.1159 0.007   

 
348.2978 0.97 0.8975 0.0068 0.1996 0.007 0.9879 

y1
exp 0.89901 0.98 0.9015 0.0018 0.2182 0.0039 

 x1
exp 0.24 0.99 0.9019 0.0014 0.2441 0.0072 

 
  

1 0.9049 0.0028 0.2673 0.0094 
 

  
1.01 0.9063 0.0089 0.2885 0.0215 

 
  

1.02 0.9147 0.0031 0.3101 0.0092 
     1.03 0.9131 0.007 0.3274 0.014   

 
702.351 0.95 0.9547 0.0017 0.5068 0.0139 1.0077 

y1
exp 0.96675 0.96 0.9582 0.0011 0.5443 0.0211 

 x1
exp 0.64 0.97 0.9589 0.0021 0.5482 0.0179 

 
  

0.98 0.9653 0.0026 0.6103 0.016 
 

  
0.99 0.9669 0.0005 0.6258 0.0076 

 
  

1 0.9679 0.0022 0.6257 0.0142 
 

  
1.01 0.9722 0.0009 0.6458 0.0135 

     1.02 0.974 0.0012 0.6519 0.014   

 
900.9612 0.97 0.982 0.0008 0.8309 0.0056 1.0041 

y1
exp 0.98721 0.975 0.9825 0.0004 0.8278 0.0079 

 x1
exp 0.87 0.98 0.985 0.0007 0.8502 0.0066 

 
  

0.985 0.9862 0.0012 0.853 0.0156 
 

  
0.99 0.9845 0.0011 0.8271 0.012 

 
  

0.995 0.986 0.0007 0.8364 0.0093 
 

  
1 0.987 0.0015 0.8439 0.0195 

 
  

1.005 0.9876 0.0015 0.844 0.0168 
 

  
1.01 0.989 0.0006 0.8555 0.0101 

 
  

1.015 0.9891 0.0004 0.8507 0.0039 
 

  
1.02 0.9893 0.0006 0.8438 0.0091 

     1.025 0.989 0.0005 0.832 0.0082   
Table A-1 - Numerical data obtained from NpT-GEMC at 150 K simulations that were used for calculating the 
optimum homogeneous B for each pressure-temperature pair by fitting the SSQDs to quadratic polynomials 
and then determining the B that gave the minimum error. 
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T / [K] p / [kPa] B y1   x1   Bopt 
165 320.7 0.955 0.6708 0.0248 0.0581 0.0099 0.9847 

y1
exp 0.69183 0.96 0.6812 0.0141 0.067 0.0025 

 x1
exp 0.09 0.97 0.6744 0.0323 0.0692 0.007 

 
  

0.98 0.6839 0.0298 0.0809 0.01 
 

  
0.99 0.6831 0.0239 0.0929 0.0046 

 
  

1 0.6865 0.0092 0.109 0.0036 
 

  
1.01 0.7019 0.0224 0.1215 0.0074 

 
  

1.02 0.7081 0.0196 0.1307 0.0088 
 

  
1.03 0.7054 0.018 0.1482 0.0063 

 
  

1.04 0.7164 0.0142 0.1578 0.0052 
 

  
1.05 0.7097 0.0094 0.1701 0.0063 

     1.06 0.7365 0.0319 0.1932 0.0126   

 
701.5 0.955 0.8656 0.012 0.208 0.0201 0.9873 

y1
exp 0.87112 0.97 0.8646 0.0099 0.2366 0.0282 

 x1
exp 0.28 0.98 0.8696 0.0143 0.2686 0.0236 

 
  

0.99 0.8722 0.0111 0.2799 0.0217 
 

  
1 0.872 0.0123 0.2942 0.0212 

 
  

1.01 0.8808 0.0088 0.3292 0.0156 
     1.02 0.8877 0.0099 0.3567 0.0191   

 
1200 0.88 0.9055 0.0065 0.1997 0.0199 0.9961 

y1
exp 0.9415 0.92 0.9158 0.0073 0.353 0.0562 

 x1
exp 0.5881 0.94 0.9216 0.0025 0.4254 0.0163 

 
  

0.955 0.9263 0.0009 0.4888 0.0088 
 

  
0.97 0.9349 0.0022 0.5445 0.009 

 
  

0.985 0.9397 0.0007 0.5654 0.0188 
 

  
1 0.9436 0.0022 0.5798 0.0043 

 
  

1.015 0.947 0.0009 0.5869 0.0031 
     1.03 0.9488 0.0009 0.5912 0.0006   

 
1600 1 0.9753 0.0015 0.8192 0.0123 1.0625 

y1
exp 0.9253 1.01 0.978 0.0012 0.8262 0.0087 

 x1
exp 0.8363 1.02 0.9816 0.0012 0.8434 0.0105 

 
  

1.03 0.9823 0.0007 0.8386 0.009 
 

  
1.04 0.9841 0.0003 0.844 0.0046 

 
  

1.05 0.9855 0.0007 0.8485 0.0076 
 

  
1.06 0.9879 0.0015 0.8615 0.0151 

 
  

1.07 0.9875 0.0011 0.8472 0.0125 
 

  
1.08 0.99 0.0005 0.8639 0.0073 

 
  

1.09 0.9903 0.0009 0.8602 0.0111 
     1.1 0.9911 0.0007 0.8616 0.0088   

Table A-2 –Numerical data obtained from NpT-GEMC simulations at 165 K that were used for calculating the 
optimum homogeneous B for each pressure-temperature pair by fitting the SSQDs to quadratic polynomials 
and then determining the B that gave the minimum error. 
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T / [K] p / [kPa] B y1   x1   Bopt 
180 K 790 0.955 0.734 0.0077 0.1294 0.008 0.9794 
y1

exp 0.7301 0.96 0.731 0.0021 0.1393 0.0018 
 x1

exp 0.1618 0.98 0.7314 0.0077 0.1587 0.0069 
 

  
0.99 0.7332 0.0042 0.1709 0.0055 

 
  

1 0.7331 0.008 0.1828 0.0056 
 

  
1.01 0.7373 0.0063 0.1975 0.007 

 
  

1.02 0.7517 0.0064 0.2223 0.0097 
 

  
1.03 0.7437 0.0058 0.2281 0.0061 

 
  

1.04 0.7681 0.011 0.2562 0.0098 
 

  
1.05 0.7659 0.0085 0.2644 0.0089 

     1.06 0.766 0.0139 0.2771 0.0114   

 
1001.8 0.955 0.7837 0.0045 0.1823 0.0094 0.9845 

y1
exp 0.79137 0.97 0.7832 0.0101 0.2051 0.0064 

 x1
exp 0.23 0.98 0.7907 0.0083 0.2216 0.0144 

 
  

0.99 0.7891 0.0136 0.2343 0.0104 
 

  
1 0.7962 0.0022 0.2519 0.0045 

 
  

1.01 0.8005 0.0049 0.272 0.005 
     1.02 0.8028 0.0036 0.2888 0.0066   

 
1750 0.955 0.8792 0.0027 0.4158 0.0117 0.9946 

y1
exp 0.8955 0.97 0.8882 0.0055 0.4589 0.027 

 x1
exp 0.5017 0.985 0.898 0.0037 0.5016 0.018 

 
  

1 0.9048 0.0026 0.5335 0.0057 
 

  
1.01 0.9093 0.0017 0.5447 0.0082 

 
  

1.02 0.9146 0.0027 0.5606 0.0069 
 

  
1.03 0.9169 0.0025 0.5685 0.0095 

 
  

1.075 0.9291 0.004 0.5886 0.0041 
 

  
1.1 0.9349 0.0041 0.5918 0.0023 

     1.15 0.9421 0.0051 0.5941 0.0011   

 
2500 0.96 0.9406 0.0013 0.7559 0.0065 0.992 

y1
exp 0.9492 0.97 0.9456 0.0028 0.7674 0.0146 

 x1
exp 0.7819 0.98 0.9496 0.0021 0.7804 0.0089 

 
  

0.99 0.9504 0.0022 0.7714 0.0119 
 

  
1 0.9548 0.003 0.7824 0.0161 

 
  

1.01 0.9581 0.0029 0.7901 0.0158 
 

  
1.02 0.9628 0.0013 0.8044 0.0073 

     1.03 0.9653 0.0038 0.8078 0.0217   
Table A-3 –Numerical data obtained from NpT-GEMC simulations at 180 K that were used for calculating the 
optimum homogeneous B for each pressure-temperature pair by fitting the SSQDs to quadratic polynomials 
and then determining the B that gave the minimum error. 
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T / [K] p / [kPa] B y1   x1   Bopt 
189.78 693 0.96 0.4923 0.0149 0.0598 0.0023 0.999 
y1

exp 0.4877 0.97 0.4921 0.0097 0.0654 0.0033 
 x1

exp 0.088 0.98 0.494 0.0142 0.0705 0.0035 
 

  
0.99 0.5075 0.0161 0.08 0.0037 

 
  

1 0.4991 0.0089 0.0846 0.0038 
 

  
1.01 0.5052 0.0087 0.0935 0.0018 

 
  

1.02 0.5135 0.005 0.1018 0.0016 
 

  
1.03 0.5119 0.0126 0.1105 0.0027 

     1.04 0.5126 0.0075 0.1195 0.003   

 
1128 0.97 0.6929 0.0102 0.1551 0.0053 0.9981 

y1
exp 0.6913 0.98 0.7 0.0105 0.1724 0.0053 

 x1
exp 0.1994 0.99 0.6997 0.0039 0.1837 0.0045 

 
  

1 0.7095 0.011 0.2034 0.006 
 

  
1.01 0.7163 0.0093 0.2183 0.0067 

 
  

1.02 0.7105 0.0053 0.2267 0.0019 
 

  
1.03 0.7263 0.0087 0.2481 0.0058 

     1.04 0.7374 0.0067 0.2691 0.0043   

 
1592 0.96 0.7868 0.002 0.2549 0.0031 1.0002 

y1
exp 0.785 0.97 0.7811 0.0055 0.2587 0.0102 

 x1
exp 0.3239 0.98 0.7941 0.009 0.2898 0.0089 

 
  

0.99 0.7981 0.0037 0.3115 0.007 
 

  
1 0.8005 0.0051 0.3248 0.0113 

 
  

1.01 0.8086 0.0049 0.3446 0.0091 
 

  
1.02 0.8153 0.0064 0.3622 0.0101 

     1.03 0.8195 0.0034 0.3763 0.0076   

 
2632 0.95 0.8737 0.004 0.5216 0.0157 0.9976 

y1
exp 0.88 0.96 0.8784 0.0042 0.5471 0.018 

 x1
exp 0.6186 0.97 0.8859 0.0025 0.5647 0.0051 

 
  

0.98 0.8946 0.0016 0.5945 0.0058 
 

  
0.99 0.8984 0.0013 0.6039 0.0044 

 
  

1 0.9036 0.0038 0.6196 0.014 
 

  
1.01 0.9075 0.0025 0.6286 0.0062 

 
  

1.02 0.9122 0.0026 0.6384 0.0109 
 

  
1.03 0.92 0.001 0.6577 0.0029 

     1.04 0.9246 0.0021 0.6668 0.0076   

 
3231 0.95 0.9142 0.0042 0.7269 0.0198 0.9866 

y1
exp 0.9214 0.96 0.9188 0.0018 0.7367 0.0095 

 x1
exp 0.7645 0.97 0.9235 0.0033 0.7449 0.0133 

 
  

0.98 0.9293 0.0026 0.7583 0.0122 
 

  
0.99 0.9345 0.0007 0.7691 0.0036 

 
  

1 0.9381 0.0014 0.7726 0.0066 
 

  
1.01 0.9424 0.0021 0.7807 0.0077 

 
  

1.02 0.9455 0.0014 0.7845 0.0054 
     1.03 0.948 0.0003 0.7858 0.0028   

 
3743 0.96 0.9531 0.004 0.8765 0.0135 0.9437 

y1
exp 0.947 0.97 0.9566 0.0032 0.8804 0.011 

 x1
exp 0.8822 0.98 0.9571 0.0023 0.8759 0.008 

 
  

0.99 0.9618 0.0025 0.8855 0.009 
 

  
1 0.963 0.0015 0.8831 0.0066 

 
  

1.01 0.967 0.0014 0.8918 0.0054 
 

  
1.02 0.9679 0.0013 0.8894 0.005 

 
  

1.03 0.9716 0.0015 0.898 0.0065 
     1.04 0.9654 0.0144 0.9004 0.0098   
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Table A-4 –Numerical data obtained from NpT-GEMC simulations at 189.78 K that were used for calculating 
the optimum homogeneous B for each pressure-temperature pair by fitting the SSQDs to quadratic 
polynomials and then determining the B that gave the minimum error. 

 

T / [K] p / [kPa] B y1   x1   Bopt 
223.81 1726 0.96 0.2909 0.0047 0.0538 0.0012 0.989 

y1
exp 0.2961 0.97 0.2944 0.0098 0.0577 0.0026 

 x1
exp 0.067 0.98 0.2938 0.0101 0.0611 0.0024 

 
  

0.99 0.3102 0.0129 0.0703 0.0039 
 

  
1 0.305 0.0136 0.0725 0.005 

 
  

1.01 0.3055 0.0112 0.077 0.0046 
 

  
1.02 0.3166 0.0081 0.0846 0.0028 

 
  

1.03 0.3255 0.0087 0.0926 0.0033 
     1.04 0.3344 0.0065 0.1022 0.0019   

 
2345 0.92 0.4609 0.0061 0.0934 0.0015 0.9915 

y1
exp 0.4713 0.93 0.4593 0.0087 0.098 0.0038 

 x1
exp 0.1477 0.94 0.4623 0.0044 0.1067 0.0022 

 
  

0.95 0.4662 0.0062 0.1137 0.0024 
 

  
0.96 0.4679 0.0104 0.1213 0.0048 

 
  

0.97 0.4788 0.0075 0.1329 0.0034 
 

  
0.98 0.4829 0.007 0.1419 0.004 

 
  

0.99 0.4816 0.0098 0.1474 0.0049 
 

  
1.01 0.5023 0.013 0.1738 0.0079 

 
  

1.02 0.5062 0.0074 0.1827 0.0046 
     1.03 0.5108 0.0081 0.1928 0.0056   

 
2961 0.97 0.5784 0.0043 0.2064 0.0025 0.9995 

y1
exp 0.5716 0.98 0.5755 0.0052 0.2126 0.0032 

 x1
exp 0.2444 0.99 0.5902 0.0062 0.2317 0.0055 

 
  

1 0.6001 0.0067 0.2472 0.0047 
 

  
1.01 0.6031 0.0062 0.2592 0.0049 

 
  

1.02 0.6118 0.0041 0.2728 0.0047 
     1.03 0.6189 0.0035 0.2852 0.0038   

 
3656 0.97 0.654 0.0028 0.2979 0.0035 0.9869 

y1
exp 0.6508 0.98 0.6605 0.0066 0.3114 0.0096 

 x1
exp 0.3264 0.99 0.6669 0.0031 0.3284 0.0036 

 
  

1 0.671 0.007 0.3393 0.0088 
 

  
1.01 0.6825 0.0024 0.3596 0.0042 

 
  

1.02 0.6946 0.0034 0.3798 0.0054 
     1.03 0.6988 0.0036 0.3889 0.004   

 
4330 0.97 0.7035 0.0031 0.3912 0.0042 0.9939 

y1
exp 0.6887 0.98 0.7101 0.0045 0.4043 0.0077 

 x1
exp 0.4353 0.99 0.7191 0.0022 0.4244 0.006 

 
  

1 0.7277 0.0027 0.44 0.0046 
 

  
1.01 0.7357 0.0038 0.4573 0.0053 

 
  

1.02 0.7438 0.0027 0.4705 0.005 
     1.03 0.7509 0.0055 0.4808 0.0078   

 
5017 0.97 0.7365 0.0067 0.4815 0.0119 0.9958 

y1
exp 0.7281 0.98 0.7502 0.0062 0.5085 0.0119 

 x1
exp 0.5308 0.99 0.7614 0.0027 0.5289 0.0034 

 
  

1 0.7642 0.0026 0.5345 0.0066 
 

  
1.01 0.7711 0.0066 0.5446 0.0133 

 
  

1.02 0.7754 0.0034 0.5515 0.0049 
 

  
1.03 0.7873 0.0023 0.5726 0.005 

 
  

1.04 0.7973 0.0055 0.5916 0.0072 
     1.05 0.6998 0.0998 0.6891 0.1047   

 
5516 0.94 0.734 0.0044 0.5157 0.0115 0.9808 
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y1
exp 0.7376 0.95 0.5485 0.0391 0.729 0.0296 

 x1
exp 0.5948 0.96 0.5607 0.0093 0.7583 0.0034 

 
  

0.97 0.6071 0.0812 0.727 0.0714 
 

  
0.98 0.7617 0.0012 0.5637 0.0045 

 
  

0.99 0.5903 0.0175 0.7672 0.0142 
 

  
1 0.6067 0.0084 0.7861 0.0039 

 
  

1.01 0.6191 0.0084 0.7816 0.0137 
     1.02 0.7844 0.0083 0.6365 0.0031   

Table A-5 –Numerical data obtained from NpT-GEMC simulations at 223.81 K that were used for calculating 
the optimum homogeneous B for each pressure-temperature pair by fitting the SSQDs to quadratic 
polynomials and then determining the B that gave the minimum error. 

 

T / [K] p / [kPa] B y1   x1   Bopt 
248.15 3109 0.96 0.2254 0.0105 0.0615 0.0039 0.98 
y1

exp 0.2226 0.97 0.228 0.0072 0.0653 0.0028 
 x1

exp 0.0706 0.98 0.2369 0.0109 0.0714 0.0039 
 

  
0.99 0.235 0.0124 0.0742 0.0041 

 
  

1 0.2413 0.0034 0.0807 0.0011 
 

  
1.01 0.2495 0.0088 0.0868 0.0036 

 
  

1.02 0.2499 0.0107 0.0908 0.0046 
 

  
1.03 0.2512 0.0114 0.0955 0.0054 

 
  

1.04 0.2638 0.0134 0.1045 0.0067 
     1.05 0.1401 0.0006 0.1399 0.0004   

 
4020 0.96 0.3815 0.0048 0.1409 0.0026 0.9798 

y1
exp 0.3733 0.97 0.3846 0.0087 0.1485 0.0059 

 x1
exp 0.1591 0.98 0.3963 0.0104 0.1598 0.0068 

 
  

0.99 0.3959 0.0069 0.1644 0.0044 
 

  
1 0.4037 0.0053 0.1737 0.0033 

 
  

1.01 0.4089 0.0085 0.183 0.0053 
 

  
1.02 0.4151 0.0091 0.193 0.006 

 
  

1.03 0.4232 0.009 0.2037 0.0059 
 

  
1.04 0.4286 0.0043 0.2136 0.0029 

     1.05 0.4344 0.007 0.2214 0.0038   

 
4895 0.96 0.4628 0.0045 0.2128 0.0031 0.988 

y1
exp 0.4563 0.965 0.4766 0.0067 0.2272 0.0064 

 x1
exp 0.2545 0.97 0.4742 0.0067 0.2297 0.0056 

 
  

0.975 0.4806 0.0073 0.2369 0.0067 
 

  
0.98 0.4796 0.0047 0.2391 0.0042 

 
  

0.985 0.4829 0.0056 0.2454 0.004 
 

  
0.99 0.4886 0.0032 0.252 0.0034 

 
  

0.995 0.4849 0.0022 0.2521 0.0029 
 

  
1 0.4944 0.0055 0.2621 0.0044 

 
  

1.005 0.4982 0.0048 0.2683 0.0048 
 

  
1.015 0.51 0.0048 0.2843 0.0043 

 
  

1.02 0.5098 0.0038 0.2859 0.0042 
     1.025 0.5118 0.0064 0.2896 0.006   

 
5482 0.95 0.5053 0.0128 0.2621 0.0133 0.9814 

y1
exp 0.4947 0.96 0.5084 0.0158 0.2711 0.0152 

 x1
exp 0.3086 0.97 0.5188 0.0137 0.2878 0.0144 

 
  

0.975 0.5184 0.0144 0.2903 0.0137 
 

  
0.98 0.5251 0.0097 0.2997 0.013 

 
  

0.985 0.5319 0.0127 0.3084 0.0126 
 

  
0.99 0.5331 0.0127 0.313 0.0139 

 
  

0.995 0.5367 0.0123 0.3182 0.0143 
 

  
1 0.5394 0.013 0.3235 0.0142 

     1.01 0.5488 0.0109 0.339 0.0124   

 
5976 0.94 0.5239 0.0075 0.2982 0.0096 0.9908 
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y1
exp 5145 0.95 0.5275 0.0032 0.3073 0.0042 

 x1
exp 0.36 0.96 0.5335 0.0051 0.3184 0.0055 

 
  

0.97 0.5455 0.0029 0.337 0.003 
 

  
0.975 0.5506 0.0055 0.3484 0.007 

 
  

0.98 0.547 0.007 0.3451 0.0075 
 

  
0.985 0.5432 0.0076 0.3432 0.0071 

 
  

0.99 0.4663 0.097 0.4565 0.1004 
 

  
1 0.5222 0.0812 0.4183 0.0783 

     1.015 0.4401 0.0708 0.5208 0.0824   
Table A-6 –Numerical data obtained from NpT-GEMC simulations at 248.15 K that were used for calculating 
the optimum homogeneous B for each pressure-temperature pair by fitting the SSQDs to quadratic 
polynomials and then determining the B that gave the minimum error. 

 

T / [K] BRV
opt BW

opt 

150 0.9922 0.9929 

165 0.9961 0.9914 

180 0.9859 0.9858 

189 0.9959 0.9941 

223 0.9927 0.9922 

248 0.9824 0.9832 
Table A-7 - Optimum global homogeneous parameters obtained from weighted relative volatility (BRV

opt) and 
weighted phase envelope width (BW

opt), and plotted in Figure 5-5. 

 

T / [K] p / [MPa] y1   x1   

223.81 1.726 0.3001 0.0074 0.0680 0.0023 

 
2.345 0.4818 0.0091 0.1503 0.0056 

 
2.961 0.5901 0.0034 0.2328 0.0031 

 
3.656 0.6713 0.0043 0.3344 0.0036 

 
4.33 0.7184 0.0030 0.4254 0.0050 

  5.017 0.7542 0.0049 0.5158 0.0110 

248.15 3.109 0.2308 0.0088 0.0708 0.0017 

 
4.02 0.3894 0.0052 0.1574 0.0024 

 
4.895 0.4778 0.0040 0.2398 0.0029 

 
5.482 0.5246 0.0073 0.2997 0.0077 

  5.976 0.5464 0.0088 0.3487 0.0096 
Table A-8 - Numerical data obtained from NpT-GEMC simulations, using the optimum temperature-
dependent B parameters obtained from the relative volatility-weighted fitting and plotted in Figure 5-4. 

 

BV BL U(V+L) x 1 x 104/ [K] 

1 1 0 

0.9985 1 -35001 

1.0015 1 23743 

1 0.9985 17898 

1 1.0015 -38868 
Table A-9 - Heterogeneous B simulation (4559 kPa, 236.17 K) data used in the multivariable linear regression 
to obtain heterogeneous potential energy model parameters. 
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T / [K] UV x 1x104/ [K] UL x 1x105/ [K] 

172.5 -1.9562 0.1160 -3.2780 0.1126 

180 -1.9998 0.1425 -3.4787 0.1413 

185 -1.8669 0.0718 -3.8323 0.0452 

189.79 -1.9731 0.0501 -3.7419 0.0541 

208.29 -2.1834 0.0982 -3.7143 0.1124 

228.81 -2.3049 0.0989 -4.0017 0.1230 
Table A-10 - Total potential energies obtained from NpT-GEMC simulations for the vapour (UV) and liquid 
(UL) phases using the standard Berthelot parameter (B = 1) and plotted in Figure 5-7. 

 

T / [K] ρV x 1x104/ [kg m-3] ρL x 1x105/ [kg m-3] 

172.5 33.85 0.3043 1030.60 23.40 

180 39.505 0.4946 1468.50 32.00 

185 43.726 0.6032 1665.00 28.40 

189.78 49.883 2.0351 1858.60 58.10 

208.29 75.438 1.5444 2202.30 15.30 

223.81 109.38 3.1087 2378.00 20.20 
Table A-11 - Phase densities obtained from NpT-GEMC simulations for the vapour (ρV) and liquid (ρL) phases 
using the standard Berthelot parameter (B = 1) and plotted in Figure 5-8. 

 

Simulation number BV BL U(V+L) / 1 x 104 [K] 

3 0.999 0.994 -7.94022 
4 1.002 0.994 -9.4625 
8 0.999 0.997 -4.4154 
9 1.002 0.997 -8.52507 

11 0.993 1 6.1131 
13 0.999 1 -1.5918 
14 1.002 1 -5.4354 
18 0.999 1.003 3.3583 
19 1.002 1.003 -1.2639 
23 0.999 1.006 5.9384 
24 1.002 1.006 2.2509 

 1 1 0 
Table A-12 - Heterogeneous B simulation (3121 kPa, 236.17 K) data used in the multivariable linear regression 
to obtain heterogeneous potential energy model parameters. 

 

BV BL U(V+L) x 1 x 104/ [K] 

1 1 0 

0.9985 1 -35001 

1.0015 1 23743 

1 0.9985 17898 

1 1.0015 -38868 
Table A-13 - Heterogeneous B simulation (4559 kPa, 236.17 K) data used in the multivariable linear regression 
to obtain heterogeneous potential energy model parameters. 
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T / [K] BV BL x1 y1 T / [K] BV BL x1 y1 T / [K] BV BL x1 y1 

165 1.0285 1.0285 0.5853 0.9496 180 0.9801 0.9801 0.4704 0.8888 185 0.98 0.98 0.4907 0.8827 

 
1.0293 1.0285 0.5792 0.9464 

 
0.9825 0.9801 0.4218 0.874 

 
0.98 0.9825 0.5789 0.9062 

 
1.03 1.0285 0.5806 0.9456 

 
0.985 0.9801 0.3679 0.8515 

 
0.98 0.985 0.5933 0.9155 

 
1.0308 1.0285 0.5296 0.9361 

 
0.9875 0.9801 0.3483 0.8481 

 
0.98 0.9875 0.5952 0.9183 

 
1.0315 1.0285 0.5287 0.9348 

 
0.9899 0.9801 0.3468 0.8427 

 
0.98 0.99 0.5964 0.9197 

 
1.0285 1.0293 0.5934 0.949 

 
0.9801 0.9825 0.5738 0.915 

 
0.9825 0.98 0.4164 0.8597 

 
1.0293 1.0293 0.5794 0.9467 

 
0.9825 0.9825 0.4854 0.8915 

 
0.9825 0.9825 0.489 0.8787 

 
1.03 1.0293 0.5852 0.9482 

 
0.985 0.9825 0.4295 0.8749 

 
0.9825 0.985 0.5796 0.9074 

 
1.0308 1.0293 0.5702 0.9439 

 
0.9875 0.9825 0.3928 0.8662 

 
0.9825 0.9875 0.5932 0.9154 

 
1.0315 1.0293 0.56 0.942 

 
0.9899 0.9825 0.3551 0.8508 

 
0.9825 0.99 0.5955 0.9184 

 
1.0285 1.03 0.5934 0.9478 

 
0.9801 0.985 0.5901 0.9227 

 
0.985 0.98 0.3791 0.8385 

 
1.0293 1.03 0.5921 0.9481 

 
0.9825 0.985 0.5784 0.9193 

 
0.985 0.9825 0.4132 0.8544 

 
1.03 1.03 0.5892 0.9483 

 
0.985 0.985 0.5079 0.8998 

 
0.985 0.985 0.5009 0.8833 

 
1.0308 1.03 0.5865 0.9476 

 
0.9875 0.985 0.44 0.8791 

 
0.985 0.9875 0.583 0.9084 

 
1.0315 1.03 0.5681 0.9418 

 
0.9899 0.985 0.3835 0.857 

 
0.985 0.99 0.5933 0.9153 

 
1.0285 1.0308 0.5944 0.9514 

 
0.9801 0.9875 0.5943 0.9249 

 
0.9875 0.98 0.3474 0.8286 

 
1.0293 1.0308 0.5932 0.9501 

 
0.9825 0.9875 0.5908 0.9236 

 
0.9875 0.9825 0.3703 0.8365 

 
1.03 1.0308 0.5884 0.9513 

 
0.985 0.9875 0.5798 0.9157 

 
0.9875 0.985 0.4235 0.8562 

 
1.0308 1.0308 0.5896 0.9477 

 
0.9875 0.9875 0.5008 0.8953 

 
0.9875 0.9875 0.4948 0.8829 

 
1.0315 1.0308 0.5871 0.9448 

 
0.9899 0.9875 0.4375 0.8789 

 
0.9875 0.99 0.5872 0.9082 

 
1.0285 1.0315 0.595 0.9525 

 
0.9801 0.9899 0.5952 0.9266 

 
0.99 0.98 0.3244 0.8185 

 
1.0293 1.0315 0.5934 0.9534 

 
0.9825 0.9899 0.5941 0.926 

 
0.99 0.9825 0.3486 0.827 

 
1.03 1.0315 0.5922 0.9482 

 
0.985 0.9899 0.5917 0.9224 

 
0.99 0.985 0.3879 0.8431 

 
1.0308 1.0315 0.5919 0.9512 

 
0.9875 0.9899 0.5726 0.9151 

 
0.99 0.9875 0.4395 0.8644 

  1.0315 1.0315 0.5884 0.9499   0.9899 0.9899 0.5161 0.9003   0.99 0.99 0.4831 0.8781 
Table A-14 – Heterogenous B “grid” simulation data for 165 K (1200 kPa), 180 K (1750 kPa) and 185 K (2000 kPa). 
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T / [K] BV BL x1 y1 T / [K] BV BL x1 y1 T / [K] BV BL x1 y1 

189.78 1.008 1.008 0.4622 0.8601 208.29 0.9779 0.9779 0.2703 0.7039 260.62 0.9844 0.9844 0.3403 0.1633 

 
1.009 1.008 0.4538 0.8554 

 
0.9863 0.9779 0.256 0.6893 

 
0.9844 0.9847 0.3358 0.164 

 
1.01 1.008 0.4262 0.8444 

 
0.9948 0.9779 0.253 0.6833 

 
0.9844 0.985 0.3389 0.1681 

 
1.011 1.008 0.4193 0.8394 

 
1.0032 0.9779 0.2555 0.6778 

 
0.9844 0.9853 0.3489 0.1677 

 
1.012 1.008 0.4063 0.8354 

 
1.0117 0.9779 0.2581 0.6751 

 
0.9844 0.9856 0.3479 0.1682 

 
1.008 1.009 0.507 0.877 

 
0.9779 0.9863 0.3852 0.7774 

 
0.9847 0.9844 0.3129 0.1608 

 
1.009 1.009 0.4804 0.8661 

 
0.9863 0.9863 0.2862 0.7089 

 
0.9847 0.9847 0.3389 0.1621 

 
1.01 1.009 0.4499 0.8534 

 
0.9948 0.9863 0.2644 0.6884 

 
0.9847 0.985 0.3292 0.1579 

 
1.011 1.009 0.4312 0.8465 

 
1.0032 0.9863 0.2598 0.6812 

 
0.9847 0.9853 0.3416 0.1648 

 
1.012 1.009 0.4192 0.8409 

 
1.0117 0.9863 0.2636 0.6772 

 
0.9847 0.9856 0.3482 0.1671 

 
1.008 1.01 0.539 0.8883 

 
0.9779 0.9948 0.5954 0.8772 

 
0.985 0.9844 0.2811 0.1739 

 
1.009 1.01 0.5106 0.8766 

 
0.9863 0.9948 0.4529 0.8095 

 
0.985 0.9847 0.3341 0.1603 

 
1.01 1.01 0.4742 0.8649 

 
0.9948 0.9948 0.2899 0.7076 

 
0.985 0.985 0.3277 0.1654 

 
1.011 1.01 0.4533 0.855 

 
1.0032 0.9948 0.272 0.6871 

 
0.985 0.9853 0.3241 0.1626 

 
1.012 1.01 0.432 0.8461 

 
1.0117 0.9948 0.2658 0.6814 

 
0.985 0.9856 0.3455 0.1659 

 
1.008 1.011 0.5727 0.8998 

 
0.9779 1.0032 0.5973 0.8847 

 
0.9853 0.9844 0.3015 0.1596 

 
1.009 1.011 0.5387 0.8888 

 
0.9863 1.0032 0.5956 0.8789 

 
0.9853 0.9847 0.3395 0.1659 

 
1.01 1.011 0.5132 0.8791 

 
0.9948 1.0032 0.4677 0.8172 

 
0.9853 0.985 0.3192 0.1641 

 
1.011 1.011 0.4871 0.8679 

 
1.0032 1.0032 0.3118 0.7212 

 
0.9853 0.9853 0.3196 0.1643 

 
1.012 1.011 0.4461 0.8531 

 
1.0117 1.0032 0.279 0.6906 

 
0.9853 0.9856 0.3194 0.165 

 
1.008 1.012 0.5878 0.9057 

 
0.9779 1.0117 0.5982 0.8808 

 
0.9856 0.9844 0.3494 0.1688 

 
1.009 1.012 0.577 0.902 

 
0.9863 1.0117 0.5973 0.8873 

 
0.9856 0.9847 0.3445 0.1666 

 
1.01 1.012 0.5441 0.8898 

 
0.9948 1.0117 0.5956 0.8819 

 
0.9856 0.985 0.3415 0.1665 

 
1.011 1.012 0.5205 0.8813 

 
1.0032 1.0117 0.4936 0.8298 

 
0.9856 0.9853 0.3147 0.1586 

  1.012 1.012 0.4673 0.8631   1.0117 1.0117 0.3268 0.7251   0.9856 0.9856 0.3263 0.1624 
Table A-15 – Heterogenous B “grid” simulation data for 189.78 K (2073 kPa), 208.29 K (2411 kPa) and 260.62 K (5105 kPa).
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A.2 Matlab routines 

 

Subroutine 1 - Generating the false-colour surfaces for heterogeneous simulation data using 
165 K (Table A-14) as an example. 

 

load grid165.txt 

ppp = length(grid165); 

ydim = sqrt(ppp); 

Bvmat=[grid165(1:ydim,1),grid165(ydim+1:2*ydim,1),grid165(2*ydim+1:3*ydim,1),.

.. 

    grid165(3*ydim+1:4*ydim,1),grid165(4*ydim+1:5*ydim,1)]; 

Blmat=[grid165(1:ydim,2),grid165(ydim+1:2*ydim,2),grid165(2*ydim+1:3*ydim,2),.

.. 

    grid165(3*ydim+1:4*ydim,2),grid165(4*ydim+1:5*ydim,2)]; 

 

xlin = linspace(min(Blmat(1,:)),max(Blmat(1,:)),800); 

ylin = linspace(min(Blmat(1,:)),max(Blmat(1,:)),800); 

[X165, Y165]=meshgrid(xlin,ylin); 

 

Z165 = griddata(grid165(:,1),grid165(:,2),grid165(:,5),X165,Y165,'cubic'); 

h=fig('units','inches','width',9.724,'height',5.9,'font','Helvetica','fontsize

',10) 

subplot(2,4,1) 

pcolor(X165,Y165,Z165) 

 

% colorbar('location','northoutside') 

shading interp 

% axis tight 

% axis equal 

axis square 

 

Subroutine 2 – Heterogeneous potential energy model data regression, using 236.17 K (4559 
kPa) as an example. 

 

% SURFACE REGRESSION TO THOSE POINTS JUST AROUND (1.00,1.00) 

% indexvec contains the numbers (“identities”) of the simulations that gave 

good linear trends with respect to the base-case Lorentz-Berthelot 

simulation(BV = Bl = 1) 

 

indexvec=[3 4 8 9 11 13 14 18 19 23 24]; 

  

energv=fv; 

energl=fl; 

  

zetaV=[zetav(indexvec); 1]; 

zetaV=zetaV-1; 

zetaL=[zetal(indexvec); 1]; 

zetaL=zetaL-1; 

% linear regression without interaction term 

X=[ones(12,1) zetaV zetaL]; 

  

% vapour 

yv=[energv(indexvec)./1e4; 0]; 

% liquid 

yl=[energl(indexvec)./1e4; 0]; 

% total 

y=yv+yl; 

bv=regress(yv,X) 

bl=regress(yl,X) 

bt=regress(y,X); 
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% use a 95% confidence interval 

alpha = 0.05; 

[betahat,Ibeta,res,Ires,stats] = regress(y,X,alpha); 

 

figure 

% residual plot 

rcoplot(res,Ires) 

sumofresids=sum(res) 

% extract R-squared value 

stats1=stats(1) 

  

 

h1=fig('units','centimeters','width',20.0,'height',6.0,'font','Helvetica','fon

tsize',10); 

subplot(1,3,1) 

scatter3(zetaV,zetaL,yv,'filled') 

hold on 

x1fit = linspace(min(zetaV),max(zetaV),100); 

x2fit = linspace(min(zetaL),max(zetaL),100); 

[X1FIT,X2FIT] = meshgrid(x1fit,x2fit); 

YFIT = bv(1)+bv(2)*X1FIT + bv(3)*X2FIT; 

meshc(X1FIT,X2FIT,YFIT) 

axis tight 

axis square 

box on 

grid off 

xlabel('({\itB}^V - 1)') 

ylabel('({\itB}^L - 1)') 

zlabel('{\itU}_1_2^V / [K]') 

hold on 

%  

subplot(1,3,2) 

scatter3(zetaV,zetaL,yl,'filled') 

hold on 

x1fit = linspace(min(zetaV),max(zetaV),50); 

x2fit = linspace(min(zetaL),max(zetaL),50); 

[X1FIT,X2FIT] = meshgrid(x1fit,x2fit); 

YFIT = bl(1)+bl(2)*X1FIT + bl(3)*X2FIT; 

meshc(X1FIT,X2FIT,YFIT) 

axis tight 

axis square 

box on 

grid off 

xlabel('({\itB}^V - 1)') 

ylabel('({\itB}^L - 1)') 

zlabel('{\itU}_1_2^L / [K]') 

hold on 

%  

subplot(1,3,3) 

scatter3(zetaV,zetaL,y,'filled') 

hold on 

x1fit = linspace(min(zetaV),max(zetaV),50); 

x2fit = linspace(min(zetaL),max(zetaL),50); 

[X1FIT,X2FIT] = meshgrid(x1fit,x2fit); 

YFIT = bt(1)+bt(2)*X1FIT + bt(3)*X2FIT; 

meshc(X1FIT,X2FIT,YFIT) 

axis tight 

axis square 

box on 

grid off 

xlabel('({\itB}^V - 1)') 

ylabel('({\itB}^L - 1)') 

zlabel('{\itU}_1_2 / [K]') 

hold on 
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Figure B-1 – Variations of the vapour-phase energy contributions to the base-case Lorentz-Berthelot 
system (BV = BL = 1) at (236.17 K, 4559 kPa). 

Figure B-2 – Variations of the liquid-phase energy contributions to the base-case Lorentz-Berthelot 
system (BV = BL = 1) at (236.17 K, 4559 kPa). 
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Figure B-3 – Contours of the vapour- and liquid-phase energy contributions to the base-case 
Lorentz-Berthelot system (BV = BL = 1) at (236.17 K, 4559 kPa). The energy unit is Kelvin [K]. 

Figure B-4 – Contours of the vapour- and liquid-phase compositions (mole fractions) using methane 
as the reference component at (236.17 K, 4559 kPa). 

 

  
Figure B-5 – Contours of the vapour- and liquid-phase specific densities at (236.17 K, 4559 kPa) in [kg. m-

3] 
Figure B-6 – Contours of the vapour- and liquid-phase number densities of methane at (236.17 K, 4559 
kPa) in [number of methane molecules. nm-3] 
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Figure B-7 – Comparison between the energy contributions at (236 K, 4559 kPa) in the vapour, liquid and overall  system (vapour + liquid) due to heterogeneous perturbations from simulations (blue dots) with the surface 
predicted by the model proposed in this work (see Chapter 5), using results from the 81 simulations at this state point. 
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Figure B-8 – Variations of the vapour- and liquid-phase energy contributions to the base-case Lorentz-Berthelot system (BV = BL = 1) at (236.17 K, 3121 kPa). 
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Figure B-9 – Contours of the vapour- and liquid-phase energy contributions to the base-case Lorentz-
Berthelot system (BV = BL = 1) at (236.17 K, 3121 kPa). The energy unit is Kelvin [K]. 

Figure B-10 – Contours of the vapour- and liquid-phase compositions (mole fractions) using methane as the 
reference component at (236.17 K, 3121 kPa). 

  
Figure B-11 – Contours of the vapour- and liquid-phase specific densities at (236.17 K, 3121 kPa) in [kg. 
m-3] 

Figure B-12 – Contours of the vapour- and liquid-phase number densities of methane at (236.17 K, 3121 kPa) in 
[number of methane molecules. nm-3] 

  
Figure B-13 – Contours of the vapour- and liquid-phase energy contributions to the base-case Lorentz-
Berthelot system (BV = BL = 1) at (236.17 K, 5290 kPa). The energy unit is Kelvin [K]. 

Figure B-14 – Contours of the vapour- and liquid-phase compositions (mole fractions) using methane as 
the reference component at (236.17 K, 5290 kPa). 
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Figure B-15 – Contours of the vapour- and liquid-phase specific densities at (236.17 K, 5290 kPa) in [kg. 
m-3] 

Figure B-16 – Contours of the vapour- and liquid-phase number densities of methane at (236.17 K, 5290 
kPa) in [number of methane molecules. nm-3] 

 

 
Figure B-17 – Comparison between the energy contributions at (236 K, 5290 kPa) in the vapour, liquid and overall  system (vapour + liquid) due to heterogeneous perturbations from simulations (blue dots) 
with the surface predicted by the model proposed in this work (see Chapter 5), using results from the 25 simulations for this state point. 
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C1. Modifications of MCCCS Towhee code for 
implementation of heterogeneous cross-energies 

 

File: mymodule.F 
This file contains global variables and was added to the existing 
code for the purposes of this work. 
N.B. Lines containing “c      # ...” strings are comment lines. 
        module mymodule 
        implicit none 
        save 
c      # vapour phase LJ cross-energy multiplying factor 
        double precision :: myBvalvb 
c      # liquid phase LJ cross-energy multiplying factor 
        double precision :: myBvallb 
c      # array for storing simplex (in this case, a 2-dimensional 
triangle) coordinates as (BV,BL) 
        double precision Rsimplex(3,2) 
c      # the box in which the energy is being computed 
        integer :: CurrentBox 
c      # the frequency at which the simplex is updated 
        integer :: bupdate 
        integer :: theInnerCycl 
        logical :: lBresume 
        end module mymodule 
 

File: engtotal.F 
Corrections to the tail cross-energies, except for inter-box molecule 
swaps, are done here. 
N.B. Lines containing “c      # ...” strings are comment lines. 
      subroutine twh_engtotal_tail(vtail, ibox) 
      use mymodule 
... 
[...other variable declarations] 
... 
      double precision [...some other variables], tailBf 
 
... 
c     # heterogenous tail energy corrections 
      if (imolty .ne. jmolty) then 
         if (ibox .eq. 1) then 
            tailBf = myBvalvb 

         elseif (ibox .eq. 2) then 
            tailBf = myBvallb 
         else 
            write(777,*) 'SM: engtotal- vtail error: more than 2 boxes in 
simulation 
         endif 
      else 
            tailBf = 1.0d0 
c     # initial debugging check 
c         write(888,*) 'No correction' 
      endif 
 
c     ## end of B-factor correction 
            vtail = vtail + dble(ncmt)*rho*coru*tailBf 
... 
[...other program statements] 
 
... 
      return 
      end 
On line 452: 
          CurrentBox = ibox 
 

File: swapmoves.F 
Corrections to the tail cross-energies for inter-box molecule swaps 
are done here. 
N.B. Lines containing “c      # ...” strings are comment lines. The 
following code snippet was added on line 897. 
      subroutine twh_swapmoves(lfailure,swaptype,inmoltype,inbox) 
      use mymodule 
... 
[...other variable declarations] 
 
... 
      double precision [...some other variables], swapBf 
 
 [...other program statements] 
... 
c     # heterogenous tail energy corrections for swap moves 
                     if (imt .ne. jmt) then 
                        if (activebox .eq. 1) then 
                           swapBf = myBvalvb 

                        elseif (activebox .eq. 2) then 
                           swapBf = myBvallb 
                        else 
                           write(965,*) 'swapmoves.F: error > 3 boxes' 
                        endif 
                     else 
                           swapBf = 1.0d0 
                     endif 
c     ## End of B-factor correction 
                     if ( imt .eq. imolty ) then 
                        vtailtest(icordflag) = vtailtest(icordflag) + 
     &                       dble(ncmt + mcount)*rho*coru*swapBf 
                     else 
                        vtailtest(icordflag) = vtailtest(icordflag) + 
     &                       dble(ncmt)*rho*coru*swapBf 
                     endif 
                  enddo 
               enddo 
[...other program statements] 
 

File: vtwobody.F 
Modifications to the Lennard-Jones two-body potential energy. 
N.B. Lines containing “c      # ...” strings are comment lines. 
      double precision function vtb_lennard_jones(ntij, rijsq, lonefour) 
      use mymodule 
 
      double precision srsix,tbljBf 
 
c     # cross-energy multiplying factors. 407 and 404 are the 
methane-xenon cross-energy 
c     # “identity” integers generated within the Towhee source code. 
 
      if ((ntij .eq. 407) .or. (ntij .eq. 404)) then 
         if (CurrentBox .eq. 1) then 
            tbljBf = myBvalvb 
c            write(888,*) 'Box 1 407' 
         elseif (CurrentBox .eq. 2) then 
            tbljBf = myBvallb 
c            write(888,*) 'Box 2 407' 
         else 
            write(777,*) 'SM: vtb_lennard_jones error' 
         endif 
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      else 
            tbljBf = 1.0d0 
c            write(888,*) 'No correction' 
      endif 
c     ## End of B-factor correction 
 
      if ( lonefour ) then 
c      write(898,*) 'lonefour = true' 
 
         srsix = twh_get_nbcoeff(15,ntij) / (rijsq**3) 
         vtb_lennard_jones = srsix*(srsix-1.0d0) 
     &        *twh_get_nbcoeff(16,ntij)*tbljBf 
 
         call twh_lshift(GLB_GET,lshift) 
         if ( lshift ) then 
            vtb_lennard_jones = vtb_lennard_jones 
     &           - twh_get_nbcoeff(0,ntij) 
         endif 
      else 
c         write(889,*) 'tbljBf',tbljBf 
         srsix = twh_get_nbcoeff(13,ntij) / (rijsq**3) 
         vtb_lennard_jones = srsix*(srsix-1.0d0) 
     &        *twh_get_nbcoeff(14,ntij)*tbljBf 
         call twh_lshift(GLB_GET,lshift) 
         if ( lshift ) then 
            vtb_lennard_jones = vtb_lennard_jones 
     &           - twh_get_nbcoeff(0,ntij) 
         endif 
      endif 
 
      return 
      end 

 

File: readtowhee.F 
Reads the energy correction factors which are then stored by 
mymodule(.F). 
N.B. Lines containing “c      # ...” strings are comment lines. 
      subroutine twh_readtowhee(lfailure,atomcount) 
      use mymodule 
 
c     # Read B-factors 
       myBvalvb = twh_read_labeled_float(4,'myBvalvb',.true., 
     &    idname) 
       myBvallb = twh_read_labeled_float(4,'myBvallb',.true., 

     &    idname) 
c     ## End 

 

File: stresstensor.F 
Tail cross-energy corrections to intermolecular pair virial function 
divided by r2. 
N.B. Lines containing “c      # ...” strings are comment lines. The 
following code snippet was added on line 281. 
      subroutine twh_stresstensor(lfailure,stress,ibox) 
      use mymodule 
 
      double precision boxvolume,tailpBf 
 
c     ## SM2010 12-Aug 
      if (imolty .ne. jmolty) then 
         if (ibox .eq. 1) then 
            tailpBf = myBvalvb 
         elseif (ibox .eq. 2) then 
            tailpBf = myBvallb 
         else 
            write(777,*) 'SM: stresstensor- more than 2 boxes' 
         endif 
      else 
            tailpBf = 1.0d0 
c            write(888,*) 'No correction' 
      endif 
c     ## End of B-factor correction 
               stress(7) = stress(7) + rhosq*corp*tailpBf 
            enddo 
         enddo 
         stress(7) = CON_PRESSCONST*stress(7) 
      endif 
On L185: 
CurrentBox = ibox 
 

File: wtwobody.F 
Cross-energy corrections to intermolecular pair virial function 
divided by r2. 
N.B. Lines containing “c      # ...” strings are comment lines. 
      double precision function wtb_lennard_jones(ntij, rijsq) 
      use mymodule 
 
      double precision srsix,pvfljBf 

 
c     ## SM2010 12-Aug 
      if ((ntij .eq. 407) .or. (ntij .eq. 404)) then 
         if (CurrentBox .eq. 1) then 
            pvfljBf = myBvalvb 
c            write(888,*) 'Box 1 407' 
         elseif (CurrentBox .eq. 2) then 
            pvfljBf = myBvallb 
c            write(888,*) 'Box 2 407' 
         else 
            write(777,*) 'SM: wtb_lennard_jones err; > 2 boxes in sim' 
         endif 
      else 
            pvfljBf = 1.00d0 
c               write(888,*) 'No correction' 
      endif 
c     ## End of B-factor correction 
 
      srsix = twh_get_nbcoeff(13,ntij) / (rijsq**3) 
      wtb_lennard_jones = twh_get_nbcoeff(14,ntij)*pvfljBf 
     &     *12.0d0*srsix*(0.5d0-srsix) / rijsq 
 
      return 
      end 
 

 

C2. Modifications of MCCCS Towhee code for 
implementation of simplex algorithm to find optimum 
heterogeneous cross-energy correction factors 

 

File: readtowhee.F 
Reads the energy correction factors which are then stored by 
mymodule(.F), as well as the simplex update frequency. 
N.B. Lines containing “c      # ...” strings are comment lines. 
      subroutine twh_readtowhee(lfailure,atomcount) 
      use mymodule 
 
c     # Read B-factors 
       myBvalvb = twh_read_labeled_float(4,'myBvalvb',.true., 
     &    idname) 
       myBvallb = twh_read_labeled_float(4,'myBvallb',.true., 
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     &    idname) 
      bupfreq = twh_read_labeled_integer(4,'bupfreq',.true., 
     &    idname) 
c     ## End 

 

File: mainloop.F 
Contains the simplex algorithm and also determines when the 
simplex should be transformed (expansion, contraction, shrink or 
reflection). 
N.B. Lines containing “c      # ...” strings are comment lines. 
c     On line 759 
c     --- check whether we need to call the LJ epsilon modifier 
c     --- subroutine //Suren Moodley 
        iiii = nnn 
c       myCycleCount = iiii 
c       write(953,*) iiii 
        if (mod(nnn,bupfreq)==0) then 
c           if (Bcount .gt. 0) then 
c              call twh_averages(lfailure,AVG_EXTRACT_BLOCK_VAL 
c     &             ,keycode,1,1,currblksolu,Bcount) 
              Bcount = Bcount + 1 
c           endif 
c              write(969,*) currblksolu 
              call suren(nnn,Bcount) 
        end if 
 
      enddo 
 
Line 99 
      integer outputlocation,outputmode,pstyle,Bcount,iiii 
 
c    On line 373 
      Bcount = 0 
 
      subroutine twh_mainloop(outputlocation,outputmode, 
     &   lread_wrapper,pstyle) 
c     ****************************************************************** 
      use mymodule 
 
 
c       ### Simplex optimization routine written by Suren Moodley 
### 
       subroutine suren(nnn,Bcount) 
       use mymodule 

       implicit none 
#define FUNCTION_LIMITED_DOUBLE 
#define FUNCTION_RANDOM 
#include "functions.h" 
c     ### variables passed to/from the subroutine 
      logical lfailure,lBflag 
      integer nnn,Bcount,iptrB,iB,jjjj 
      integer nmolty,numboxes 
c     ### local variables 
c     ### logical scalars 
      logical, save :: lReflDone,lExpndDone,lContrDone,lShrinkDone 
      logical, save :: lCtOuter,lCtInner 
c     ### integer scalars 
      integer incount,keycode,xxbox,yymolty,Bcseed,nstep 
      integer imolty,jmolty,ii,jj,ntii,ntjj,ntij,hbtype,classical_n 
      integer numiunit,numjunit,molvcount,Bincr 
      integer, save :: ShrinkCount 
c     ### double precision scalars 
      double precision xyzvalue,molfrave1,molfrave2,stddevmolf1 
      double precision 
termobj1,termobj2,relerror,ssqmoldev,stddevmolf2 
      double precision rci3,ndub,overra,onepi,aaa,bbb,twopi,dvalue 
      double precision rcut,LJEcorr,tempFeval,tempBB,ssqmoldev2 
      double precision, parameter :: AlphaB = 0.50d0 
      double precision, parameter :: BetaB = 0.80d0 
      double precision, parameter :: GammaB = 1.1250d0 
      double precision, parameter :: DeltaB = 0.8250d0 
      double precision :: diffmolfrc 
c     ### double precision arrays 
      double precision molvector1(11),molvector2(11) 
      double precision, save :: prvmolfrc(100) 
      double precision, save :: molfold(2,2), molfnew(2,2) 
      double precision, save :: Blast(2),SimHist(100,3) 
      double precision, save :: 
bFHI(1,3),bFMD(1,3),bFLO(1,3),bRef(1,3) 
      double precision, save :: bExp(1,3),bCont(1,3),bShr(1,3) 
      double precision, save :: bCentroid(1,2) 
      double precision, save :: simplex(3,3),simpplus(4,3) 
      double precision, save :: Bold(2),Bnew(2) 
      double precision, save :: Bhistory(2,10),Chistory(2,10) 
      double precision, save :: 
Clatest(2),ReflectM(1,3),ExpandM(1,3) 
      double precision, save :: CntrctM(1,3),ShrinkM1(1,3) 
      double precision, save :: ShrinkM2(1,3) 
      double precision, save :: ExpData(2) 
 

c     ### retrieve constants 
      call twh_numboxes(GLB_GET,numboxes) 
      call twh_nmolty(GLB_GET,nmolty) 
      call twh_nstep(GLB_GET,nstep) 
      call twh_constant_pi(GLB_GET,onepi) 
      call twh_constant_twopi(GLB_GET,twopi) 
      call twh_nmolty(GLB_GET,nmolty) 
      call twh_rcut(GLB_GET,rcut) 
        write(994,*) 'u must nt c this if bupdate > than nsteps' 
c     ### initialize parameters 
        ExpData(1)=0.6310d0 
        ExpData(2)=0.4340d0 
c     ### these are the experimental solubilties of component 1 in 
the 
c     ### vapor (1) and liquid (2) phases. 
 
c     ### algorithm-proper begins! 
 
      if (Bcount .eq. 1) then 
 
      molvcount = 1 
      do Bincr = 20*Bcount, (20*Bcount-10), -1 
        do xxbox = 1,numboxes 
           do yymolty = 1,nmolty 
              keycode = AC_MOL_FRACTION 
                 call 
twh_averages(lfailure,AVG_EXTRACT_BLOCK_VAL 
     &           ,keycode,xxbox,yymolty,xyzvalue,Bincr) 
                    molfnew(xxbox,yymolty) = xyzvalue 
                    molvector1(molvcount) = molfnew(1,1) 
                    molvector2(molvcount) = molfnew(2,1) 
           enddo 
        enddo 
        molvcount = molvcount+1 
      enddo 
 
      molfrave1 = (molvector1(1) + molvector1(2) + molvector1(3) 
     &            + molvector1(4) + molvector1(5) + molvector1(6) 
     & + molvector1(7) + molvector1(8) + molvector1(9))/9.0d0 
      ssqmoldev = ((molvector1(1) - molfrave1)**2.0d0 
     &            + (molvector1(2) - molfrave1)**2.0d0 
     &            + (molvector1(3) - molfrave1)**2.0d0 
     &            + (molvector1(4) - molfrave1)**2.0d0 
     &            + (molvector1(5) - molfrave1)**2.0d0 
     &            + (molvector1(6) - molfrave1)**2.0d0 
     &            + (molvector1(7) - molfrave1)**2.0d0 
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     &            + (molvector1(8) - molfrave1)**2.0d0 
     &            + (molvector1(9) - molfrave1)**2.0d0) 
       stddevmolf1 = dsqrt((1.0d0/9.0d0)*ssqmoldev) 
 
      molfrave2 = (molvector2(1) + molvector2(2) + molvector2(3) 
     &            + molvector2(4) + molvector2(5) + molvector2(6) 
     &  + molvector2(7) + molvector2(8) + molvector2(9))/9.0d0 
      ssqmoldev2 = ((molvector2(1) - molfrave2)**2.0d0 
     &            + (molvector2(2) - molfrave2)**2.0d0 
     &            + (molvector2(3) - molfrave2)**2.0d0 
     &            + (molvector2(4) - molfrave2)**2.0d0 
     &            + (molvector2(5) - molfrave2)**2.0d0 
     &            + (molvector2(6) - molfrave2)**2.0d0 
     &            + (molvector2(7) - molfrave2)**2.0d0 
     &            + (molvector2(8) - molfrave2)**2.0d0 
     &            + (molvector2(9) - molfrave2)**2.0d0) 
       stddevmolf2 = dsqrt((1.0d0/9.0d0)*ssqmoldev2) 
 
c    # write some vals to file 
      open(963, file = 'out95.suren', position = 'append') 
      write(963,*) 'Bcount: ',Bcount 
      write(963,*) 'molvector1',molvector1(1),molvector1(2) 
     &             ,molvector1(3),molvector1(4),molvector1(5) 
      write(963,*) 'molvector2',molvector2(1),molvector2(2) 
     &             ,molvector2(3),molvector2(4),molvector2(5) 
      write(963,*) 'ave mole fraction Box 
1',molfrave1,'Bvap',myBvalvb 
      write(963,*) 'ave mole fraction Box 2',molfrave2,'Bliq',myBvallb 
      write(963,*) 'sum of deviations squared',ssqmoldev 
      write(963,*) 'standard deviation',stddevmolf1 
      close(963) 
c    # end of write 
c    # must modify these when using reduced quantities (eij/e11 
etc) 
      if ((stddevmolf1 .gt. 0.0250d0) .or. 
     & (stddevmolf2 .gt. 0.0250d0)) then 
      open(963, file = 'out95.suren', position = 'append') 
      write(963,*) 'sd1',stddevmolf1,'sd2',stddevmolf2,'...exiting' 
      close(963) 
         return 
      else 
 
c     ### will need to implement weight factors in future versions 
        termobj1 = (1-(molfrave1/ExpData(1)))**2.0d0 
        termobj2 = (1-(molfrave2/ExpData(2)))**2.0d0 
        SimHist(Bcount,3) = dsqrt(termobj1 + termobj2) 

 
        SimHist(Bcount,1) = myBvalvb 
        SimHist(Bcount,2) = myBvallb 
       write(709,*)  SimHist(Bcount,1),SimHist(Bcount,2) 
        simplex(Bcount,1) = myBvalvb 
        simplex(Bcount,2) = myBvallb 
        simplex(Bcount,3) = SimHist(Bcount,3) 
 
        myBvalvb = 0.9930d0 
        myBvallb = 0.9910d0 
      endif 
 
      elseif (Bcount .eq. 2) then 
      molvcount = 1 
      do Bincr = 20*Bcount, (20*Bcount-10), -1 
        do xxbox = 1,numboxes 
           do yymolty = 1,nmolty 
              keycode = AC_MOL_FRACTION 
                 call 
twh_averages(lfailure,AVG_EXTRACT_BLOCK_VAL 
     &           ,keycode,xxbox,yymolty,xyzvalue,Bincr) 
                    molfnew(xxbox,yymolty) = xyzvalue 
                    molvector1(molvcount) = molfnew(1,1) 
                    molvector2(molvcount) = molfnew(2,1) 
           enddo 
        enddo 
        molvcount = molvcount+1 
      enddo 
 
      molfrave1 = (molvector1(1) + molvector1(2) + molvector1(3) 
     &            + molvector1(4) + molvector1(5) + molvector1(6) 
     & + molvector1(7) + molvector1(8) + molvector1(9))/9.0d0 
      ssqmoldev = ((molvector1(1) - molfrave1)**2.0d0 
     &            + (molvector1(2) - molfrave1)**2.0d0 
     &            + (molvector1(3) - molfrave1)**2.0d0 
     &            + (molvector1(4) - molfrave1)**2.0d0 
     &            + (molvector1(5) - molfrave1)**2.0d0 
     &            + (molvector1(6) - molfrave1)**2.0d0 
     &            + (molvector1(7) - molfrave1)**2.0d0 
     &            + (molvector1(8) - molfrave1)**2.0d0 
     &            + (molvector1(9) - molfrave1)**2.0d0) 
 
      molfrave2 = (molvector2(1) + molvector2(2) + molvector2(3) 
     &            + molvector2(4) + molvector2(5) + molvector2(6) 
     &  + molvector2(7) + molvector2(8) + molvector2(9))/9.0d0 
      ssqmoldev2 = ((molvector2(1) - molfrave2)**2.0d0 

     &            + (molvector2(2) - molfrave2)**2.0d0 
     &            + (molvector2(3) - molfrave2)**2.0d0 
     &            + (molvector2(4) - molfrave2)**2.0d0 
     &            + (molvector2(5) - molfrave2)**2.0d0 
     &            + (molvector2(6) - molfrave2)**2.0d0 
     &            + (molvector2(7) - molfrave2)**2.0d0 
     &            + (molvector2(8) - molfrave2)**2.0d0 
     &            + (molvector2(9) - molfrave2)**2.0d0) 
       stddevmolf2 = dsqrt((1.0d0/9.0d0)*ssqmoldev2) 
 
c    # write some vals to file 
      open(963, file = 'out95.suren', position = 'append') 
      write(963,*) 'Bcount: ',Bcount 
      write(963,*) 'molvector1',molvector1(1),molvector1(2) 
     &             ,molvector1(3),molvector1(4),molvector1(5) 
      write(963,*) 'molvector2',molvector2(1),molvector2(2) 
     &             ,molvector2(3),molvector2(4),molvector2(5) 
      write(963,*) 'ave mole fraction Box 
1',molfrave1,'Bvap',myBvalvb 
      write(963,*) 'ave mole fraction Box 2',molfrave2,'Bliq',myBvallb 
      write(963,*) 'sum of deviations squared',ssqmoldev 
      write(963,*) 'standard deviation',stddevmolf1 
      close(963) 
c    # end of write 
      if ((stddevmolf1 .gt. 0.010d0) .or. 
     & (stddevmolf2 .gt. 0.010d0)) then 
      open(963, file = 'out95.suren', position = 'append') 
      write(963,*) 'sd1',stddevmolf1,'sd2',stddevmolf2,'...exiting' 
      close(963) 
         return 
      else 
        termobj1 = (1-(molfrave1/ExpData(1)))**2.0d0 
        termobj2 = (1-(molfrave2/ExpData(2)))**2.0d0 
 
        SimHist(Bcount,3) = dsqrt(termobj1 + termobj2) 
 
        SimHist(Bcount,1) = myBvalvb 
        SimHist(Bcount,2) = myBvallb 
 
        simplex(Bcount,1) = myBvalvb 
        simplex(Bcount,2) = myBvallb 
        simplex(Bcount,3) = SimHist(Bcount,3) 
      write(709,*)  SimHist(Bcount,1),SimHist(Bcount,2) 
        myBvalvb = 0.99150d0 
        myBvallb = 0.99250d0 
      endif 
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      elseif (Bcount .eq. 3) then 
      molvcount = 1 
      do Bincr = 20*Bcount, (20*Bcount-10), -1 
        do xxbox = 1,numboxes 
           do yymolty = 1,nmolty 
              keycode = AC_MOL_FRACTION 
                 call 
twh_averages(lfailure,AVG_EXTRACT_BLOCK_VAL 
     &           ,keycode,xxbox,yymolty,xyzvalue,Bincr) 
                    molfnew(xxbox,yymolty) = xyzvalue 
                    molvector1(molvcount) = molfnew(1,1) 
                    molvector2(molvcount) = molfnew(2,1) 
           enddo 
        enddo 
        molvcount = molvcount+1 
      enddo 
 
      molfrave1 = (molvector1(1) + molvector1(2) + molvector1(3) 
     &            + molvector1(4) + molvector1(5) + molvector1(6) 
     & + molvector1(7) + molvector1(8) + molvector1(9))/9.0d0 
      ssqmoldev = ((molvector1(1) - molfrave1)**2.0d0 
     &            + (molvector1(2) - molfrave1)**2.0d0 
     &            + (molvector1(3) - molfrave1)**2.0d0 
     &            + (molvector1(4) - molfrave1)**2.0d0 
     &            + (molvector1(5) - molfrave1)**2.0d0 
     &            + (molvector1(6) - molfrave1)**2.0d0 
     &            + (molvector1(7) - molfrave1)**2.0d0 
     &            + (molvector1(8) - molfrave1)**2.0d0 
     &            + (molvector1(9) - molfrave1)**2.0d0) 
       stddevmolf1 = dsqrt((1.0d0/9.0d0)*ssqmoldev) 
 
      molfrave2 = (molvector2(1) + molvector2(2) + molvector2(3) 
     &            + molvector2(4) + molvector2(5) + molvector2(6) 
     &  + molvector2(7) + molvector2(8) + molvector2(9))/9.0d0 
      ssqmoldev2 = ((molvector2(1) - molfrave2)**2.0d0 
     &            + (molvector2(2) - molfrave2)**2.0d0 
     &            + (molvector2(3) - molfrave2)**2.0d0 
     &            + (molvector2(4) - molfrave2)**2.0d0 
     &            + (molvector2(5) - molfrave2)**2.0d0 
     &            + (molvector2(6) - molfrave2)**2.0d0 
     &            + (molvector2(7) - molfrave2)**2.0d0 
     &            + (molvector2(8) - molfrave2)**2.0d0 
     &            + (molvector2(9) - molfrave2)**2.0d0) 
       stddevmolf2 = dsqrt((1.0d0/9.0d0)*ssqmoldev2) 
 

c    # write some vals to file 
      open(963, file = 'out95.suren', position = 'append') 
      write(963,*) 'Bcount: ',Bcount 
      write(963,*) 'molvector1',molvector1(1),molvector1(2) 
     &             ,molvector1(3),molvector1(4),molvector1(5) 
      write(963,*) 'molvector2',molvector2(1),molvector2(2) 
     &             ,molvector2(3),molvector2(4),molvector2(5) 
      write(963,*) 'ave mole fraction Box 
1',molfrave1,'Bvap',myBvalvb 
      write(963,*) 'ave mole fraction Box 2',molfrave2,'Bliq',myBvallb 
      write(963,*) 'sum of deviations squared',ssqmoldev 
      write(963,*) 'standard deviation',stddevmolf1 
      close(963) 
c    # end of write 
      if ((stddevmolf1 .gt. 0.010d0) .or. 
     & (stddevmolf2 .gt. 0.010d0)) then 
      open(963, file = 'out95.suren', position = 'append') 
      write(963,*) 'sd1',stddevmolf1,'sd2',stddevmolf2,'...exiting' 
      close(963) 
         return 
      else 
 
        termobj1 = (1-(molfrave1/ExpData(1)))**2.0d0 
        termobj2 = (1-(molfrave2/ExpData(2)))**2.0d0 
        SimHist(Bcount,3) = dsqrt(termobj1 + termobj2) 
 
        SimHist(Bcount,1) = myBvalvb 
        SimHist(Bcount,2) = myBvallb 
 
        simplex(Bcount,1) = myBvalvb 
        simplex(Bcount,2) = myBvallb 
        simplex(Bcount,3) = SimHist(Bcount,3) 
      write(709,*)  SimHist(Bcount,1),SimHist(Bcount,2) 
 
      do iB = 1,3 
        iptrB = iB 
         do jjjj = iB+1,3 
            if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
               iptrB = jjjj 
            endif 
         enddo 
        if (iB .ne. iptrB) then 
           tempBB = simplex(iB,3) 
           simplex(iB,3) = simplex(iptrB,3) 
           simplex(iptrB,3) = tempBB 
           tempBB = simplex(iB,1) 

           simplex(iB,1) = simplex(iptrB,1) 
           simplex(iptrB,1) = tempBB 
           tempBB = simplex(iB,2) 
           simplex(iB,2) = simplex(iptrB,2) 
           simplex(iptrB,2) = tempBB 
        endif 
      enddo 
 
      write(800,*) simplex(1,1), simplex(1,2), simplex(1,3) 
      write(800,*) simplex(2,1), simplex(2,2), simplex(2,3) 
      write(800,*) simplex(3,1), simplex(3,2), simplex(3,3) 
 
      bCentroid(1,1) = 0.5d0*(simplex(1,1)+simplex(2,1)) 
      bCentroid(1,2) = 0.5d0*(simplex(1,2)+simplex(2,2)) 
      ReflectM(1,1)=bCentroid(1,1)+AlphaB*(bCentroid(1,1)-
simplex(3,1)) 
      ReflectM(1,2)=bCentroid(1,2)+AlphaB*(bCentroid(1,2)-
simplex(3,2)) 
      ReflectM(1,3)=0.0d0 
        write(800,*) 'Reflected point:',ReflectM(1,1),ReflectM(1,2) 
      myBvalvb = ReflectM(1,1) 
      myBvallb = ReflectM(1,2) 
 
      lReflDone = .true. 
      lExpndDone = .false. 
      lContrDone = .false. 
      lShrinkDone = .false. 
      lCtOuter = .false. 
      lCtInner = .false. 
      endif 
 
      else 
 595  molvcount = 1 
      do Bincr = 20*Bcount, (20*Bcount-10), -1 
        do xxbox = 1,numboxes 
           do yymolty = 1,nmolty 
              keycode = AC_MOL_FRACTION 
                 call 
twh_averages(lfailure,AVG_EXTRACT_BLOCK_VAL 
     &           ,keycode,xxbox,yymolty,xyzvalue,Bincr) 
                    molfnew(xxbox,yymolty) = xyzvalue 
                    molvector1(molvcount) = molfnew(1,1) 
                    molvector2(molvcount) = molfnew(2,1) 
           enddo 
        enddo 
        molvcount = molvcount+1 
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      enddo 
      molfrave1 = (molvector1(1) + molvector1(2) + molvector1(3) 
     &            + molvector1(4) + molvector1(5) + molvector1(6) 
     & + molvector1(7) + molvector1(8) + molvector1(9))/9.0d0 
      ssqmoldev = ((molvector1(1) - molfrave1)**2.0d0 
     &            + (molvector1(2) - molfrave1)**2.0d0 
     &            + (molvector1(3) - molfrave1)**2.0d0 
     &            + (molvector1(4) - molfrave1)**2.0d0 
     &            + (molvector1(5) - molfrave1)**2.0d0 
     &            + (molvector1(6) - molfrave1)**2.0d0 
     &            + (molvector1(7) - molfrave1)**2.0d0 
     &            + (molvector1(8) - molfrave1)**2.0d0 
     &            + (molvector1(9) - molfrave1)**2.0d0) 
       stddevmolf1 = dsqrt((1.0d0/9.0d0)*ssqmoldev) 
 
      molfrave2 = (molvector2(1) + molvector2(2) + molvector2(3) 
     &            + molvector2(4) + molvector2(5) + molvector2(6) 
     &  + molvector2(7) + molvector2(8) + molvector2(9))/9.0d0 
      ssqmoldev2 = ((molvector2(1) - molfrave2)**2.0d0 
     &            + (molvector2(2) - molfrave2)**2.0d0 
     &            + (molvector2(3) - molfrave2)**2.0d0 
     &            + (molvector2(4) - molfrave2)**2.0d0 
     &            + (molvector2(5) - molfrave2)**2.0d0 
     &            + (molvector2(6) - molfrave2)**2.0d0 
     &            + (molvector2(7) - molfrave2)**2.0d0 
     &            + (molvector2(8) - molfrave2)**2.0d0 
     &            + (molvector2(9) - molfrave2)**2.0d0) 
       stddevmolf2 = dsqrt((1.0d0/9.0d0)*ssqmoldev2) 
 
c    # write some vals to file 
      open(963, file = 'out95.suren', position = 'append') 
      write(963,*) 'Bcount: ',Bcount 
      write(963,*) 'molvector1',molvector1(1),molvector1(2) 
     &             ,molvector1(3),molvector1(4),molvector1(5) 
      write(963,*) 'molvector2',molvector2(1),molvector2(2) 
     &             ,molvector2(3),molvector2(4),molvector2(5) 
      write(963,*) 'ave mole fraction Box 
1',molfrave1,'Bvap',myBvalvb 
      write(963,*) 'ave mole fraction Box 2',molfrave2,'Bliq',myBvallb 
      write(963,*) 'sum of deviations squared',ssqmoldev 
      write(963,*) 'standard deviation',stddevmolf1 
      close(963) 
c    # end of write 
      if ((stddevmolf1 .gt. 0.006250d0) .or. 
     & (stddevmolf2 .gt. 0.0062500d0)) then 
      open(963, file = 'out95.suren', position = 'append') 

      write(963,*) 'sd1',stddevmolf1,'sd2',stddevmolf2,'...exiting' 
      close(963) 
         return 
      else 
 
c    # write some vals to file 
      open(963, file = 'out95.suren', position = 'append') 
      write(963,*) 'Standard deviations are satisfactory' 
      close(963) 
c    # end of write 
 
        termobj1 = (1-(molfrave1/ExpData(1)))**2.0d0 
        termobj2 = (1-(molfrave2/ExpData(2)))**2.0d0 
 
        SimHist(Bcount,3) = dsqrt(termobj1 + termobj2) 
        SimHist(Bcount,1) = myBvalvb 
        SimHist(Bcount,2) = myBvallb 
      write(709,*)  SimHist(Bcount,1),SimHist(Bcount,2) 
     &    ,SimHist(Bcount,3) 
      write(800,*) 'This is Bcount:',Bcount 
      write(800,*) 'Previous transformation results:' 
      write(800,*) SimHist(Bcount,1),SimHist(Bcount,2) 
     &             ,SimHist(Bcount,3) 
c      ### More reflections,expansions,shrinks, and contractions! 
 
        if (lReflDone .eqv. .true.) then 
 
          ReflectM(1,3)=SimHist(Bcount,3) 
 
          if ((ReflectM(1,3) .ge. simplex(1,3) .and. 
     &        (ReflectM(1,3) .lt. simplex(2,3)))) then 
                write(800,*) 'Reflection accepted; reflect again' 
c       ## Accept the reflected point; do another reflection 
                  simplex(3,1)=ReflectM(1,1) 
                  simplex(3,2)=ReflectM(1,2) 
                  simplex(3,3)=ReflectM(1,3) 
 
                  do iB = 1,3 
                    iptrB = iB 
                     do jjjj = iB+1,3 
                        if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
                           iptrB = jjjj 
                        endif 
                     enddo 
                    if (iB .ne. iptrB) then 
                       tempBB = simplex(iB,3) 

                       simplex(iB,3) = simplex(iptrB,3) 
                       simplex(iptrB,3) = tempBB 
                       tempBB = simplex(iB,1) 
                       simplex(iB,1) = simplex(iptrB,1) 
                       simplex(iptrB,1) = tempBB 
                       tempBB = simplex(iB,2) 
                       simplex(iB,2) = simplex(iptrB,2) 
                       simplex(iptrB,2) = tempBB 
                    endif 
                  enddo 
 
                  bCentroid(1,1) = 0.5d0*(simplex(1,1)+simplex(2,1)) 
                  bCentroid(1,2) = 0.5d0*(simplex(1,2)+simplex(2,2)) 
      ReflectM(1,1)=bCentroid(1,1)+AlphaB*(bCentroid(1,1)-
simplex(3,1)) 
      ReflectM(1,2)=bCentroid(1,2)+AlphaB*(bCentroid(1,2)-
simplex(3,2)) 
                  ReflectM(1,3)=0.0d0 
           write(800,*) 'Reflected point: ',ReflectM(1,1),ReflectM(1,2) 
                  myBvalvb = ReflectM(1,1) 
                  myBvallb = ReflectM(1,2) 
                  lReflDone = .true. 
                 write(800,*) simplex(1,1), simplex(1,2), simplex(1,3) 
                 write(800,*) simplex(2,1), simplex(2,2), simplex(2,3) 
                 write(800,*) simplex(3,1), simplex(3,2), simplex(3,3) 
                  return 
                  write(800,*) 'Live long and prosper' 
 
          elseif (ReflectM(1,3) .lt. simplex(1,3)) then 
                write(800,*) 'Expand: FRefl = ', ReflectM(1,3) 
c       ## Expansion 
                  simplex(3,1)=ReflectM(1,1) 
                  simplex(3,2)=ReflectM(1,2) 
                  simplex(3,3)=ReflectM(1,3) 
 
                  do iB = 1,3 
                    iptrB = iB 
                     do jjjj = iB+1,3 
                        if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
                           iptrB = jjjj 
                        endif 
                     enddo 
                    if (iB .ne. iptrB) then 
                       tempBB = simplex(iB,3) 
                       simplex(iB,3) = simplex(iptrB,3) 
                       simplex(iptrB,3) = tempBB 
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                       tempBB = simplex(iB,1) 
                       simplex(iB,1) = simplex(iptrB,1) 
                       simplex(iptrB,1) = tempBB 
                       tempBB = simplex(iB,2) 
                       simplex(iB,2) = simplex(iptrB,2) 
                       simplex(iptrB,2) = tempBB 
                    endif 
                  enddo 
 
                  bCentroid(1,1) = 0.5d0*(simplex(1,1)+simplex(2,1)) 
                  bCentroid(1,2) = 0.5d0*(simplex(1,2)+simplex(2,2)) 
 
      ExpandM(1,1)=bCentroid(1,1)+(GammaB*(ReflectM(1,1) 
     &    -bCentroid(1,1))) 
      ExpandM(1,2)=bCentroid(1,2)+(GammaB*(ReflectM(1,2) 
     &    -bCentroid(1,2))) 
                  ExpandM(1,3)=0.0d0 
                 write(800,*) 'Expanded 
point',ExpandM(1,1),ExpandM(1,2) 
                  myBvalvb = ExpandM(1,1) 
                  myBvallb = ExpandM(1,2) 
 
                  lReflDone = .false. 
                  lExpndDone = .true. 
                 write(800,*) simplex(1,1), simplex(1,2), simplex(1,3) 
                 write(800,*) simplex(2,1), simplex(2,2), simplex(2,3) 
                 write(800,*) simplex(3,1), simplex(3,2), simplex(3,3) 
                  return 
                write(800,*) 'May the Force be with you' 
          elseif (ReflectM(1,3) .ge. simplex(2,3)) then 
                write(800,*) 'Contract: FRefl = ',ReflectM(1,3) 
c       ## Contraction 
 
                  do iB = 1,3 
                    iptrB = iB 
                     do jjjj = iB+1,3 
                        if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
                           iptrB = jjjj 
                        endif 
                     enddo 
                    if (iB .ne. iptrB) then 
                       tempBB = simplex(iB,3) 
                       simplex(iB,3) = simplex(iptrB,3) 
                       simplex(iptrB,3) = tempBB 
                       tempBB = simplex(iB,1) 
                       simplex(iB,1) = simplex(iptrB,1) 

                       simplex(iptrB,1) = tempBB 
                       tempBB = simplex(iB,2) 
                       simplex(iB,2) = simplex(iptrB,2) 
                       simplex(iptrB,2) = tempBB 
                    endif 
                  enddo 
 
                  bCentroid(1,1) = 0.5d0*(simplex(1,1)+simplex(2,1)) 
                  bCentroid(1,1) = 0.5d0*(simplex(1,1)+simplex(2,1)) 
                  bCentroid(1,2) = 0.5d0*(simplex(1,2)+simplex(2,2)) 
 
                  if ((ReflectM(1,3) .ge. simplex(2,3) .and. 
     &               (ReflectM(1,3) .lt. simplex(3,3)))) then 
                     write(800,*) '-- Outide Contraction' 
      CntrctM(1,1)=bCentroid(1,1)+BetaB*(ReflectM(1,1)-
bCentroid(1,1)) 
      CntrctM(1,2)=bCentroid(1,2)+BetaB*(ReflectM(1,2)-
bCentroid(1,2)) 
                        lCtOuter = .true. 
                  elseif (ReflectM(1,3) .ge. simplex(3,3)) then 
                     write(800,*) '-- Inside Contraction' 
      CntrctM(1,1)=bCentroid(1,1)+BetaB*(simplex(3,1)-
bCentroid(1,1)) 
      CntrctM(1,2)=bCentroid(1,2)+BetaB*(simplex(3,2)-
bCentroid(1,2)) 
                        lCtInner = .true. 
                  else 
                     write(800,*) 'Contraction: not supposed to happen' 
                  endif 
 
                  CntrctM(1,3)=0.0d0 
             write(800,*) 'Contracted point',CntrctM(1,1),CntrctM(1,2) 
                  myBvalvb = CntrctM(1,1) 
                  myBvallb = CntrctM(1,2) 
                 write(800,*) myBvalvb, myBvallb 
                  lReflDone = .false. 
                  lContrDone = .true. 
                 write(800,*) simplex(1,1), simplex(1,2), simplex(1,3) 
                 write(800,*) simplex(2,1), simplex(2,2), simplex(2,3) 
                 write(800,*) simplex(3,1), simplex(3,2), simplex(3,3) 
                  return 
                write(800,*) 'Free your mind' 
          endif 
c       ## end of Contraction 
        elseif (lExpndDone .eqv. .true.) then 
                write(800,*) 'Last transformation: Expansion' 

          ExpandM(1,3)=SimHist(Bcount,3) 
        write(800,*) 'Ex:',ExpandM(1,3),'Rf:',ReflectM(1,3) 
 
          if (ExpandM(1,3) .lt. ReflectM(1,3)) then 
c       ## accept expansion and do another reflection 
          write(800,*) 'Expansion accepted; calculate new Reflection' 
                  simplex(3,1) = ExpandM(1,1) 
                  simplex(3,2) = ExpandM(1,2) 
                  simplex(3,3) = ExpandM(1,3) 
 
                  do iB = 1,3 
                    iptrB = iB 
                     do jjjj = iB+1,3 
                        if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
                           iptrB = jjjj 
                        endif 
                     enddo 
                    if (iB .ne. iptrB) then 
                       tempBB = simplex(iB,3) 
                       simplex(iB,3) = simplex(iptrB,3) 
                       simplex(iptrB,3) = tempBB 
                       tempBB = simplex(iB,1) 
                       simplex(iB,1) = simplex(iptrB,1) 
                       simplex(iptrB,1) = tempBB 
                       tempBB = simplex(iB,2) 
                       simplex(iB,2) = simplex(iptrB,2) 
                       simplex(iptrB,2) = tempBB 
                    endif 
                  enddo 
 
                  bCentroid(1,1) = 0.5d0*(simplex(1,1)+simplex(2,1)) 
                  bCentroid(1,2) = 0.5d0*(simplex(1,2)+simplex(2,2)) 
      ReflectM(1,1)=bCentroid(1,1)+AlphaB*(bCentroid(1,1)-
simplex(3,1)) 
      ReflectM(1,2)=bCentroid(1,2)+AlphaB*(bCentroid(1,2)-
simplex(3,2)) 
                  ReflectM(1,3)=0.0d0 
            write(800,*) 'Reflected point:',ReflectM(1,1),ReflectM(1,2) 
                  myBvalvb = ReflectM(1,1) 
                  myBvallb = ReflectM(1,2) 
 
                  lReflDone = .true. 
                  lExpndDone = .false. 
 
                  return 
          else 
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c       ## reject expansion; accept previous + do another reflection 
       write(800,*) 'Expansion rejected; reverting to previous Reflct' 
c                  simplex(3,1) = ReflectM(1,1) 
c                  simplex(3,2) = ReflectM(1,2) 
c                  simplex(3,3) = ReflectM(1,3) 
 
                  do iB = 1,3 
                    iptrB = iB 
                     do jjjj = iB+1,3 
                        if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
                           iptrB = jjjj 
                        endif 
                     enddo 
                    if (iB .ne. iptrB) then 
                       tempBB = simplex(iB,3) 
                       simplex(iB,3) = simplex(iptrB,3) 
                       simplex(iptrB,3) = tempBB 
                       tempBB = simplex(iB,1) 
                       simplex(iB,1) = simplex(iptrB,1) 
                       simplex(iptrB,1) = tempBB 
                       tempBB = simplex(iB,2) 
                       simplex(iB,2) = simplex(iptrB,2) 
                       simplex(iptrB,2) = tempBB 
                    endif 
                  enddo 
 
                  bCentroid(1,1) = 0.5d0*(simplex(1,1)+simplex(2,1)) 
                  bCentroid(1,2) = 0.5d0*(simplex(1,2)+simplex(2,2)) 
 
      ReflectM(1,1)=bCentroid(1,1)+AlphaB*(bCentroid(1,1)-
simplex(3,1)) 
      ReflectM(1,2)=bCentroid(1,2)+AlphaB*(bCentroid(1,2)-
simplex(3,2)) 
                  ReflectM(1,3)=0.0d0 
             write(800,*) 'Reflected point',ReflectM(1,1),ReflectM(1,2) 
                  myBvalvb = ReflectM(1,1) 
                  myBvallb = ReflectM(1,2) 
 
                  lReflDone = .true. 
                  lExpndDone = .false. 
                 write(800,*) simplex(1,1), simplex(1,2), simplex(1,3) 
                 write(800,*) simplex(2,1), simplex(2,2), simplex(2,3) 
                 write(800,*) simplex(3,1), simplex(3,2), simplex(3,3) 
                  return 
 
          endif 

 
        elseif (lContrDone .eqv. .true.) then 
          CntrctM(1,3)=SimHist(Bcount,3) 
          write(800,*) 'Cn:',CntrctM(1,3),'Rf:',ReflectM(1,3) 
 
       if (lCtOuter .eqv. .true.) then 
          if (CntrctM(1,3) .le. ReflectM(1,3)) then 
c       ## accept contraction and do another reflection 
          write(800,*) 'Outer-Contraction accepted; Reflecting again' 
                  simplex(3,1) = CntrctM(1,1) 
                  simplex(3,2) = CntrctM(1,2) 
                  simplex(3,3) = CntrctM(1,3) 
 
                  do iB = 1,3 
                    iptrB = iB 
                     do jjjj = iB+1,3 
                        if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
                           iptrB = jjjj 
                        endif 
                     enddo 
                    if (iB .ne. iptrB) then 
                       tempBB = simplex(iB,3) 
                       simplex(iB,3) = simplex(iptrB,3) 
                       simplex(iptrB,3) = tempBB 
                       tempBB = simplex(iB,1) 
                       simplex(iB,1) = simplex(iptrB,1) 
                       simplex(iptrB,1) = tempBB 
                       tempBB = simplex(iB,2) 
                       simplex(iB,2) = simplex(iptrB,2) 
                       simplex(iptrB,2) = tempBB 
                    endif 
                  enddo 
 
                  bCentroid(1,1) = 0.5d0*(simplex(1,1)+simplex(2,1)) 
                  bCentroid(1,2) = 0.5d0*(simplex(1,2)+simplex(2,2)) 
      ReflectM(1,1)=bCentroid(1,1)+AlphaB*(bCentroid(1,1)-
simplex(3,1)) 
      ReflectM(1,2)=bCentroid(1,2)+AlphaB*(bCentroid(1,2)-
simplex(3,2)) 
                  ReflectM(1,3)=0.0d0 
            write(800,*) 'Reflected point:',ReflectM(1,1),ReflectM(1,2) 
                  myBvalvb = ReflectM(1,1) 
                  myBvallb = ReflectM(1,2) 
                  lContrDone = .false. 
                  lCtOuter = .false. 
                  lReflDone = .true. 

 
                  return 
 
          else 
c       ## reject contraction; do a Shrink transformation 
       write(800,*) 'Outer-Contraction rejected; now Shrinking 
simplex' 
 
                  do iB = 1,3 
                    iptrB = iB 
                     do jjjj = iB+1,3 
                        if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
                           iptrB = jjjj 
                        endif 
                     enddo 
                    if (iB .ne. iptrB) then 
                       tempBB = simplex(iB,3) 
                       simplex(iB,3) = simplex(iptrB,3) 
                       simplex(iptrB,3) = tempBB 
                       tempBB = simplex(iB,1) 
                       simplex(iB,1) = simplex(iptrB,1) 
                       simplex(iptrB,1) = tempBB 
                       tempBB = simplex(iB,2) 
                       simplex(iB,2) = simplex(iptrB,2) 
                       simplex(iptrB,2) = tempBB 
                    endif 
                  enddo 
 
      ShrinkM1(1,1)=simplex(1,1)+DeltaB*(simplex(2,1)-
simplex(1,1)) 
      ShrinkM1(1,2)=simplex(1,2)+DeltaB*(simplex(2,2)-
simplex(1,2)) 
      ShrinkM2(1,1)=simplex(1,1)+DeltaB*(simplex(3,1)-
simplex(1,1)) 
      ShrinkM2(1,2)=simplex(1,2)+DeltaB*(simplex(3,2)-
simplex(1,2)) 
                  ShrinkM1(1,3)=0.0d0 
                  ShrinkM2(1,3)=0.0d0 
          write(800,*) 'Shrink co-ords 
pt1',ShrinkM1(1,1),ShrinkM1(1,2) 
          write(800,*) 'Shrink co-ords 
pt2',ShrinkM2(1,1),ShrinkM2(1,2) 
                  myBvalvb = ShrinkM1(1,1) 
                  myBvallb = ShrinkM1(1,2) 
 
                  lContrDone = .false. 
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                  lCtOuter = .false. 
                  lShrinkDone = .true. 
                  ShrinkCount = 1 
c     ## now replace 2nd n 3rd row of simplex matrix with ShrinkM1 
n M2 
           simplex(2,1) = ShrinkM1(1,1) 
           simplex(2,2) = ShrinkM1(1,2) 
           simplex(2,3) = ShrinkM1(1,3) 
           simplex(3,1) = ShrinkM2(1,1) 
           simplex(3,2) = ShrinkM2(1,2) 
           simplex(3,3) = ShrinkM2(1,3) 
                 write(800,*) simplex(1,1), simplex(1,2), simplex(1,3) 
                 write(800,*) simplex(2,1), simplex(2,2), simplex(2,3) 
                 write(800,*) simplex(3,1), simplex(3,2), simplex(3,3) 
           write(800,*) 'Note: simplex([2,3],3) still to be calculated' 
 
                 return 
            endif 
 
       elseif (lCtInner .eqv. .true.) then 
          if (CntrctM(1,3) .lt. simplex(3,3)) then 
c       ## accept contraction and do another reflection 
          write(800,*) 'Inner-Contraction accepted; Reflecting again' 
                  simplex(3,1) = CntrctM(1,1) 
                  simplex(3,2) = CntrctM(1,2) 
                  simplex(3,3) = CntrctM(1,3) 
 
                  do iB = 1,3 
                    iptrB = iB 
                     do jjjj = iB+1,3 
                        if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
                           iptrB = jjjj 
                        endif 
                     enddo 
                    if (iB .ne. iptrB) then 
                       tempBB = simplex(iB,3) 
                       simplex(iB,3) = simplex(iptrB,3) 
                       simplex(iptrB,3) = tempBB 
                       tempBB = simplex(iB,1) 
                       simplex(iB,1) = simplex(iptrB,1) 
                       simplex(iptrB,1) = tempBB 
                       tempBB = simplex(iB,2) 
                       simplex(iB,2) = simplex(iptrB,2) 
                       simplex(iptrB,2) = tempBB 
                    endif 
                  enddo 

 
                  bCentroid(1,1) = 0.5d0*(simplex(1,1)+simplex(2,1)) 
                  bCentroid(1,2) = 0.5d0*(simplex(1,2)+simplex(2,2)) 
      ReflectM(1,1)=bCentroid(1,1)+AlphaB*(bCentroid(1,1)-
simplex(3,1)) 
      ReflectM(1,2)=bCentroid(1,2)+AlphaB*(bCentroid(1,2)-
simplex(3,2)) 
                  ReflectM(1,3)=0.0d0 
            write(800,*) 'Reflected point:',ReflectM(1,1),ReflectM(1,2) 
                  myBvalvb = ReflectM(1,1) 
                  myBvallb = ReflectM(1,2) 
                  lContrDone = .false. 
                  lCtInner = .false. 
                  lReflDone = .true. 
 
                  return 
 
          else 
c       ## reject contraction; do a Shrink transformation 
       write(800,*) 'Inner-Contraction rejected; now Shrinking 
simplex' 
 
                  do iB = 1,3 
                    iptrB = iB 
                     do jjjj = iB+1,3 
                        if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
                           iptrB = jjjj 
                        endif 
                     enddo 
                    if (iB .ne. iptrB) then 
                       tempBB = simplex(iB,3) 
                       simplex(iB,3) = simplex(iptrB,3) 
                       simplex(iptrB,3) = tempBB 
                       tempBB = simplex(iB,1) 
                       simplex(iB,1) = simplex(iptrB,1) 
                       simplex(iptrB,1) = tempBB 
                       tempBB = simplex(iB,2) 
                       simplex(iB,2) = simplex(iptrB,2) 
                       simplex(iptrB,2) = tempBB 
                    endif 
                  enddo 
 
      ShrinkM1(1,1)=simplex(1,1)+DeltaB*(simplex(2,1)-
simplex(1,1)) 
      ShrinkM1(1,2)=simplex(1,2)+DeltaB*(simplex(2,2)-
simplex(1,2)) 

      ShrinkM2(1,1)=simplex(1,1)+DeltaB*(simplex(3,1)-
simplex(1,1)) 
      ShrinkM2(1,2)=simplex(1,2)+DeltaB*(simplex(3,2)-
simplex(1,2)) 
                  ShrinkM1(1,3)=0.0d0 
                  ShrinkM2(1,3)=0.0d0 
          write(800,*) 'Shrink co-ords 
pt1',ShrinkM1(1,1),ShrinkM1(1,2) 
          write(800,*) 'Shrink co-ords 
pt2',ShrinkM2(1,1),ShrinkM2(1,2) 
                  myBvalvb = ShrinkM1(1,1) 
                  myBvallb = ShrinkM1(1,2) 
 
                  lContrDone = .false. 
                  lCtInner = .false. 
                  lShrinkDone = .true. 
                  ShrinkCount = 1 
c     ## now replace 2nd n 3rd row of simplex matrix with ShrinkM1 
n M2 
           simplex(2,1) = ShrinkM1(1,1) 
           simplex(2,2) = ShrinkM1(1,2) 
           simplex(2,3) = ShrinkM1(1,3) 
           simplex(3,1) = ShrinkM2(1,1) 
           simplex(3,2) = ShrinkM2(1,2) 
           simplex(3,3) = ShrinkM2(1,3) 
                 write(800,*) simplex(1,1), simplex(1,2), simplex(1,3) 
                 write(800,*) simplex(2,1), simplex(2,2), simplex(2,3) 
                 write(800,*) simplex(3,1), simplex(3,2), simplex(3,3) 
           write(800,*) 'Note: simplex([2,3],3) still to be calculated' 
 
                 return 
           endif 
       else 
                 write(800,*) 'Error:both Inner & Outer cntrcts false' 
       endif 
 
        elseif (lShrinkDone .eqv. .true.) then 
 
        if (ShrinkCount .eq. 1) then 
           write(800,*) 'meh...' 
 
           ShrinkM1(1,3)=SimHist(Bcount,3) 
           write(800,*) 'Shr1:',ShrinkM1(1,3) 
c     ## now replace 2nd+3rd highest pt on simplex by ShrinkM1 n 
M2 
c     ## increment ShrinkCount by 1 and assign other set of Shrink 
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pts 
c     ## to Bvapor and Bliquid 
 
           ShrinkCount = ShrinkCount + 1 
           simplex(2,3) = ShrinkM1(1,3) 
           myBvalvb = ShrinkM2(1,1) 
           myBvallb = ShrinkM2(1,2) 
 
              write(800,*) simplex(1,1), simplex(1,2), simplex(1,3) 
              write(800,*) simplex(2,1), simplex(2,2), simplex(2,3) 
              write(800,*) simplex(3,1), simplex(3,2), simplex(3,3) 
              write(800,*) 'Note: simplex(3,3) still to be calculated' 
 
           return 
 
        elseif (ShrinkCount .eq. 2) then 
           ShrinkM2(1,3)=SimHist(Bcount,3) 
           write(800,*) 'Shr2:',ShrinkM2(1,3) 
           write(800,*) 'blah' 
           ShrinkCount = 0 
           simplex(3,3) = ShrinkM2(1,3) 
 
c     ## reflect, n set Shrink logical to F and Refl logical to T... 
                  do iB = 1,3 
                    iptrB = iB 
                     do jjjj = iB+1,3 
                        if (simplex(jjjj,3) .lt. simplex(iptrB,3)) then 
                           iptrB = jjjj 
                        endif 
                     enddo 
                    if (iB .ne. iptrB) then 
                       tempBB = simplex(iB,3) 
                       simplex(iB,3) = simplex(iptrB,3) 
                       simplex(iptrB,3) = tempBB 
                       tempBB = simplex(iB,1) 
                       simplex(iB,1) = simplex(iptrB,1) 
                       simplex(iptrB,1) = tempBB 
                       tempBB = simplex(iB,2) 
                       simplex(iB,2) = simplex(iptrB,2) 
                       simplex(iptrB,2) = tempBB 
                    endif 
                  enddo 
 
                  bCentroid(1,1) = 0.5d0*(simplex(1,1)+simplex(2,1)) 
                  bCentroid(1,2) = 0.5d0*(simplex(1,2)+simplex(2,2)) 
      ReflectM(1,1)=bCentroid(1,1)+AlphaB*(bCentroid(1,1)-

simplex(3,1)) 
      ReflectM(1,2)=bCentroid(1,2)+AlphaB*(bCentroid(1,2)-
simplex(3,2)) 
                  ReflectM(1,3)=0.0d0 
            write(800,*) 'Reflected point:',ReflectM(1,1),ReflectM(1,2) 
                  myBvalvb = ReflectM(1,1) 
                  myBvallb = ReflectM(1,2) 
 
                  lShrinkDone = .false. 
                  lReflDone = .true. 
 
              write(800,*) simplex(1,1), simplex(1,2), simplex(1,3) 
              write(800,*) simplex(2,1), simplex(2,2), simplex(2,3) 
              write(800,*) simplex(3,1), simplex(3,2), simplex(3,3) 
 
           return 
        else 
           write(800,*) 'Error: ShrinkCount neq 1 or 2' 
        endif 
 
        endif 
      endif 
      endif 
 
      return 
      end 
c    # End of simplex code // SM 
 
File: towhee_input.F 
This is the sample input file that is read by Towhee before 
execution. 
inputformat 
'Towhee' 
randomseed 
1321240 
random_luxlevel 
3 
random_allow_restart 
T 
myBvalvb 
1.0d0 
myBvallb 
1.0d0 
ensemble 

'npt' 
temperature 
236.17d0 
pressure 
4559.0d0 
nmolty 
2 
nmolectyp 
360 360 
numboxes 
2 
stepstyle 
'cycles' 
nstep 
200000 
printfreq  
0 
blocksize  
10000 
moviefreq 
0 
backupfreq   
0 
runoutput 
'full' 
pdb_output_freq 
0 
loutdft  
.false.   
loutlammps 
.false. 
pressurefreq 
0 
trmaxdispfreq 
2000 
volmaxdispfreq 
2000 
chempotperstep 
0 0 
potentialstyle 
'internal' 
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ffnumber 
2 
ff_filename 
/home/suren/towhee-6.2.2/ForceFields/towhee_ff_TraPPE-
UA 
/home/suren/towhee-
6.2.2/ForceFields/towhee_ff_Pana1989 
classical_potential 
'Lennard-Jones'        
classical_mixrule 
'Lorentz-Berthelot' 
lshift 
.false. 
ltailc 
.true. 
rmin   
1.0d0  
rcut   
11.10440d0 
rcutin  
5.0d0  
electrostatic_form 
'coulomb' 
coulombstyle 
'ewald_fixed_kmax' 
kalp 
5.6 
kmax 
5 
dielect 
1.0 
nfield 
0 
solvation_style 
'none' 
linit    
.FALSE. 
initboxtype 
'dimensions' 
initstyle 

'full cbmc' 'full cbmc' 
'full cbmc' 'full cbmc' 
initlattice 
'simple cubic' 'simple cubic' 
'simple cubic' 'simple cubic' 
initmol 
300 60 
60 300 
inix iniy iniz 
8    8    8    
8    8    8 
hmatrix 
100.0d0 0.0d0 0.0d0 
0.0d0 100.0d0 0.0d0 
0.0d0 0.0d0 100.0d0 
38.00d0 0.0d0 0.0d0 
0.0d0  38.00d0 0.0d0 
0.0d0  0.0d0 38.00d0 
pmvol 
0.015d0    
          pmvlpr 
          0.5d0 1.0d0 
          rmvol 
          0.1d0 
          tavol 
          0.4d0 
0.115d0      
          pm2cbswmt 
          0.4d0 1.0d0 
          pm2cbswpr 
          1.00d0 
pmtracm 
1.0d0    
#(methane) 
input_style 
'basic connectivity map' 
nunit 
1 
nmaxcbmc 
1 
lpdbnames 

F 
forcefield 
'TraPPE-UA' 
charge_assignment 
'bond increment' 
unit ntype 
1    'CH4' 
vibration 
0 
improper torsion 
0 
#(xenon) 
input_style 
'basic connectivity map' 
nunit 
1 
nmaxcbmc 
1 
lpdbnames 
F 
forcefield 
'Pana1989' 
charge_assignment 
'bond increment' 
unit ntype 
1    'Xe' 
vibration 
0 
improper torsion 
0 
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This appendix provides an outline of the experimental system, methane/xenon, with which the 

simulation results in this work were compared. As pointed out by the experimental workers 

(Dias et al., 2004), many types of molecular characteristics (e.g. shape, flexibility and size) add 

up to give the overall system’s thermodynamic behaviour. The information presented here is 

based on the experimental investigation of Dias et al. (2004).  

 

Mixtures of spherical and quasi-spherical molecules (e.g. noble gases and methane) are among 

the simplest types of systems that can be studied, and in the case of alkane/noble gas mixtures, a 

series of mixtures of light alkanes (ethane, propane, n-butane, or i-butane) and xenon have also 

been studied. This justified the study of the methane/xenon system, since methane was missing 

from the list of light alkanes used in previous such studies. The experimental measurements 

were performed in a recently-developed apparatus for the study of vapor-liquid or vapor-liquid-

liquid equilibrium, which uses a static and analytical method. The phase compositions were 

analysed by use of a differential thermal conductivity method, using a catherometer. The 

following phase diagrams were obtained from experiment. For the numerical results that were 

obtained from the experiments, the reader is referred to Dias et al. (2004). The vapour-liquid 

phase diagram for the system (Figure D-1) is shown on the next page. 

 

Dias et al. (2004) used the optimum kij interaction parameter from a best fit to the isotherm at 

236.17 K (the mid-point of the temperature range) to generate all other EoS-predicted data. As 

can be seen, the PR-EoS provides an excellent representation of the experimental data, although 

at lower temperatures the vapour phase compositions is over-estimated and at higher 

temperatures, the liquid phase compositions are over-estimated. 
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Figure D-1 –Isothermal (P, x, y) slices of the methane/xenon vapour-liquid phase diagram. Solid lines 

correspond to the results obtained with the Peng-Robinson equation of state (PR-EoS), and the symbols 

correspond to the experimental data – starting from the lower-most isotherm with symbols (experimental 

data), the experimental temperatures are 189.78 K, 208.29 K, 223.81 K, 236.17 K, 248.15 K, 260.62 K and 

273.18 K. The isotherms below 189.78 K, from the lowest isotherm going up are 165 K, 172 K, 180 K and 185 

K, which were generated using the PR-EoS. 
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