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Abstract

Solutions to convex feasibility problems are generally found by iteratively con-
structing sequences that converge strongly or weakly to it. In this study, four types
of iteration schemes are considered in an attempt to find a point in the intersection
of some closed and convex sets.

The iteration scheme z,,1 = (1 — Apy1)y + Angr1Tn+1%5 18 first considered for in-
finitely many nonexpansive maps 11, T3, T3, . . . in a Hilbert space. A result of Shimizu
and Takahashi [33] is generalized, and it is shown that the sequence of iterates con-
verge to Py, where P is some projection. This is further generalized to a uniformly
smooth Banach space having a weakly continuous duality map. Here the iterates
converge to QQy, where () is a sunny nonexpansive retraction. For this same iteration
scheme, with finitely many maps 71,715, ..., Ty, a complementary result to a result of
Bauschke [2] is proved by introducing a new condition on the sequence of parameters
(An). The iterates converge to Py, where P is the projection onto the intersection
of the fixed point sets of the T;s. Both this result and Bauschke’s result [2] are then
generalized to a uniformly smooth Banach space, and to a reflexive Banach space
having a weakly continuous duality map and having Reich’s property. Now the iter-
ates converge to QJy, where () is the unique sunny nonexpansive retraction onto the
intersection of the fixed point sets of the T;s.

For a random map 7 : N — {1,2,..., N}, the iteration scheme z,,; = T (nt1)Zn
is considered. In a finite dimensional Hilbert space with T,y = Py(,), the iterates
converge to a point in the intersection of the fixed point sets of the P;s. In an arbitrary
Banach space, under certain conditions on the mappings, the iterates converge to a
point in the intersection of the fixed point sets of the T;s.

For the scheme z,.; = (1 —/\n+1)a:n+/\n+1Tr(n+1)a:n, in a finite dimensional Hilbert

space the iterates converge to a point in the intersection of the fixed point sets of the



T;s, and in an infinite dimensional Hilbert space with the added assumption that the
random map 7 is quasi-cyclic, then the iterates converge weakly to a point in the
intersection of the fixed point sets of the T;s.

Lastly, the minimization of a convex function é is considered over some closed and
convex subset of a Hilbert space. For both the case where 8 is a quadratic function
and for the general case, first the unique fixed points of some maps T are shown
to converge to the unique minimizer of # and then an algorithm is proposed that

converges to this unique minimizer.
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Chapter 1

Introduction

Numerous problems, coming from disciplines as diverse as approximation theory,
integral equations, signal and image processing, computerized tomography and control
theory ([10], [11],[12], [21], [32], [35], [40], [41]) can be realised as a convex feasibility
problem (CFP). A convex feasibility problem can be mathematically formulated as
follows:

Assume {C;}¥ is a finite family of nonempty, closed and convex
N

subsets of a Hilbert space H with C := ﬂ C; # (. Find a point in C.
A CFP is usually formulated in a Hilbert spacei:lif and the fixed point sets of certain
projections define the nonempty, closed and convex subsets Cj.

A typical application of the CFP is in image recovery. The problem of image

recovery can be stated as follows:

The original (unknown) image f is known a priori to belong to the

intersection of NV well-defined closed convex sets C1,...,Cy, in a Hilbert

space H. Given only the metric projections P; of H onto C; (1 =1,2,..., N),

recover f by an iterative scheme.

Solutions to CFPs are generally found by iteratively constructing sequences that



converge strongly or weakly to it. Different iteration schemes have been proposed
by various authors. In this study the following schemes are considered: the scheme
introduced by Halpern [19], the Mann [24] iteration scheme, the random iteration

scheme and the scheme proposed by Deutsch and Yamada [13].

For N nonexpansive maps 71,75, . .., T, the iteration scheme
Znt1 = Anp1¥ + (1= Mg1) T Zn (1.1)

was introduced first by Halpern [19] in 1967 in which he considered the case where

y =0and N =1 (i.e. he considered only one map T'). He showed that the condi-

oo

tions lim A, = 0 and E A\, = oo were necessary conditions for the convergence of
n—o0

n=1
the iterates to a fixed point of 7. In 1977 Lions [23] considered the above scheme

. A — A
with the additional assumption lim —"2—"+—1
n—0o /\n+l

convergence of the iterates. However, Lions’ conditions on the parameters did not

= 0 on the parameters, and obtained

include the natural choice of parameters, A, = nL-H Reich [30] in 1983 posed the
following problem:

In a Banach space, what conditions on the sequence of parameters (A,)

will ensure convergence of the iterates?
Wittmann [38] in 1992, in the setting of a Hilbert space, obtained convergence of

o

the iterates, where the parameters satisfied Z A — Ang1| < 00, in addition to the
two necessary conditions. Reich [31] in 1994 7cl):bltained strong convergence of the iter-
ates where the underlying space was uniformly smooth and had a weakly continuous
duality map. His result was proved for the case of a single map (i.e. N = 1), and
the parameters satisfied the two necessary conditions for convergence in addition to

the fact that they were increasing. Bauschke [2] in 1996, generalized Wittmann’s



result to finitely many maps, where T, := T}, moq v. The additional condition on
the parameters that he used was i |An — Ansn| < 0o0. He also provided an algo-
rithmic proof which has been usedns:ulccessfully, with modifications, by many authors
([13], 33}, [39])). In 1997, Shioji and Takahashi [34] extended Wittmann’s result
to a Banach space. Chapters 3 and 4 of this thesis provide some answers to the

problem posed by Reich [30], by introducing a new condition on the parameters,

n

lim =1, in the framework of both Hilbert and Banach spaces.
n—00 /\n+N

Mann [24], in 1953, introduced what is now known as the Mann iteration scheme:
Ipt1 = (1 - /\n+1)xn + /\n-}—lT{L‘n‘

Mann showed that for a continuous selfmap T' of a closed interval [a, b] having one fixed
point, convergence to this fixed point is obtained for the case of A, = % Reich [28], in
1979, showed that in a uniformly convex Banach space having a Frechét differentiable
norm and with T nonexpansive and having a fixed point, then weak convergence of
the iterates is obtained under certain conditions on the parameters (\,). Tseng [36],

in 1992, considered the scheme

LTpt1 = (1 - /\n-}—l):l:n + /\n+1Tr(n+1)$n7

where r : N — {1,2,... N} is a random map, and the maps T3,..., Ty are used.
He proved that in a finite dimensional Hilbert space, convergence of this scheme is
obtained, resolving a conjecture posed by Bruck [26] in 1983, at least in the finite
dimensional case. He also shows, in an infinite dimensional Hilbert space, under the

quasi-cyclic order, the iterates converge weakly.



The random iteration scheme

Tp41 = Tr(n—l—l)xn

has been considered by various authors ([3], [5], [7], [15], [16], [20]). Dye and Re ich [16]
showed that in a Hilbert space with r quasi-periodic, the iterates converge weakly.
In [15], they were able to extend this result to reflexive Banach spaces with a weakly
continuous duality map. However, the result could only be proved if the pool of maps
to be drawn from consisted of only two maps. In [14], Dye et al proved their result
for Banach spaces that have Opial’s property. However, in all of these results, only

weak convergence of the iterates is obtained.

The scheme considered by Deutsch and Yamada [13] is defined by
Tpy1 =Ty — A1 pb (Txy,).

Deutsch and Yamada considered this scheme in the context of the minimization prob-

lem:

Find v* € C so that #(u*) = min 0(u).

ueC

Under certain conditions they show that the above scheme converges to the unique
minimizer of §. This scheme generalizes the scheme introduced by Yamada et al [39]

with 0(z) = 3(Ax, 2)—(b, ). It also generalizes the scheme introduced by Halpern [19]
Lions [23], Wittmann [38] and Bauschke [2].

For the remainder of this chapter a brief overview of the results that are obtained

in this study is presented.



In chapter 2, definitions, notations and fundamental results are provided, and
proofs of some of these results are included. The topics covered are results for real
numbers, uniformly convex spaces, smooth Banach spaces, projections, duality maps,

nonexpansive mappings and sunny nonexpansive retractions.

In chapter 3, all the results are set in a real Hilbert space. The iterative scheme
Trg1 = Anp1¥ + (1 = A1) Tng1 %

is considered and convergence under different conditions is investigated. In Theo-
rem 3.4 for infinitely many nonexpansive maps 71,75, T3, . . ., under the assumptions

that lim sup ||T,z — Vi(Thz)|| = 0, (Vi nonexpansive, k = 1,2,..., N), ﬂFz’x(Ti) D
i=1

n—)oozec,

N 0
ﬂ Fiz(Vy) # 0, lim A\, = 0 and Z/\n, the iterates are shown to converge to Py,
n—oo

k=1 n=1
N

where P is a projection onto ﬂ Fiz(Vy). Theorem 3.4 generalizes a result of Shimizu
k=1

and Takahashi ([33]; Theorem 1), which is included in Corollary 3.5. Theorem 3.7

1s a complementary result to Theorem 3.1 of Bauschke [2] in which the condition

= 1. As is shown

o
Z |An — Anin| < o0 is replaced by the new condition lim
n=1

n—oo n+N

in Example 3.6, neither condition is stronger than the other.

In chapter 4, the iteration scheme

Tnt1 = /\n-i—ly + (1 - /\n+1)Tn+l$n

Is again considered, but this time the underlying space is a Banach space. Theorem 4.1
extends Theorem 3.4 with the sunny nonexpansive retraction replacing the projection

in a Hilbert space. In addition, it extends Theorem 1 of Shimizu and Takahashi [33]



to Banach spaces. In Theorem 4.2, the condition Z |An — Angn| < oo provides an

n=1
extension of Bauschke’s Theorem 3.1 [2] to uniformly smooth Banach spaces, while the

" — 1 extends Theorem 3.7 to uniformly smooth Banach spaces.

condition lim
n—=00 Ap4+N

Theorem 4.4 is new and generalizes Theorem 3.1 of Bauschke (2] to a reflexive Banach

space having a weakly continuous duality map and having Reich’s property.

In chapter 5, the random iteration scheme
Tnt1 = Tr(n+l)xn
and the relaxed iteration scheme

Tn41 = (1 - )\n+l)$n + )‘n+1Tr(n+l)xn

are considered for finitely many maps 71,75,...,Ty. In Theorem 5.1, the random
iteration scheme in a finite dimensional real Hilbert space is considered, where the
mappings are projections, and convergence of the iterates is obtained. Tseng ([36],
Theorem 1) showed the convergence of the relaxed iteration scheme in a finite dimen-
sional Hilbert space, with the assumption that each map is chosen infinitely often.
Theorem 5.2 is exactly Tseng’s result, but an alternate proof is provided. Theorem 5.4
considers the relaxed iteration scheme in an infinite dimensional Hilbert space with
the added assumption that r is quasi-cyclic, and obtains weak convergence of the
iterates. This is the same as Theorem 2 of Tseng [36], but a variation of the proof
is provided. In Theorem 5.5, the random iteration scheme is considered in a Banach
space with certain conditions imposed on the mappings, and strong convergence of
the iterates is obtained. Theorem 5.5 is a generalization of Theorem 5.1, but the proof

is included because it is much simpler than the rather technical proof of Theorem 5.5.



In chapter 6, applications to minimization problems are considered. All the results
hold in the framework of a Hilbert space. Firstly, we consider the scheme proposed
by Yamada et al [39]. Theorem 6.4 is a more general result than Theorem 1 of [39],
where it is shown that the unique fixed points of some mappings T converge to
the unique minimizer of a quadratic function #. Theorem 6.5 is a generalization of

|)‘n - )\n—i-li

Theorem 2 of [39], where we replace Lions’ condition lim = 0 by our

n—oo )‘%—H

new, more general condition lim =1, and finitely many mappings are consid-

n—o0
ered. We then consider the iteratiorn:sf\éheme proposed by Deutsch and Yamada [13].
In Theorem 6.13 it is shown the unique fixed points of T* converge to the unique
minimizer of the problem. This result is new since Deutsch and Yamada [13] did not
consider the behaviour of these fixed points. Theorem 6.14 is the main result of this
chapter, where it is shown that the iterateé as defined by Deutsch and Yamada [13]

converge to the unique minimizer of the minimization problem. This result is com-

plementary to a result of Deutsch and Yamada ([13]; Theorem 3.7), in which the

condition Z |An — Angn| < 00 is replaced by the condition lim

=1.



Chapter 2

Preliminaries

This chapter forms the basis for the rest of the thesis. Definitions, notations and some
basic results are provided. The proofs for some results are included, and references
are provided if they are not proved. Many of the results are very well-known but

there are some that are not widely known.

For the remainder of the thesis we work either in a real Hilbert space or a real
Banach space. A Banach space will be denoted by X with norm ||-||. A Hilbert space

will be denoted by H with the inner product (-, ).

R and N will denote the sets of real numbers and natural numbers, respectively.
R will denote the set of extended real numbers. If X and Y are Banach spaces then
L(X,Y) (resp. B(X,Y)) will denote the space of all linear (resp. bounded linear)
operators from X to Y. B(H) denotes the set of all bounded linear operators from
H to H. The dual space of X, denoted by X', is the space of all bounded linear

operators (or functionals) from X to R.



In a real Banach space X, for z € X and z* € X, we sometimes write (z,z*) for
z*(x).

We write z, —> z if the sequence (z,) converges to z. We sometimes refer to
this as strong convergence. A sequence (z,) is said to converge weakly to a point
z e X if

z*(z,) — z*(z) for all z* € X

We write z, — z if z, converges weakly to z. Clearly, strong convergence implies
weak convergence.
We define weak*-convergence in X as follows: z; —* z* if z}(z) — z*(z) for all

z€eX.

Lemma 2.0.1 ([22]). Let X be a Banach space and let z,, — = in X. Then (z,) is
bounded.

Lemma 2.0.2. Let X be a Banach space and let (z)) be a net in X. If every

subsequence of (x)) has a subsequence that converges to z, then x — <.

Proof. If (z,) does not converge to z, then there exists ¢ > 0 such that for all
A € (0,1), there exists A\, 0 < A < A such that z), ¢ N(z,€¢) (N(z,€) is the e-
neighbourhood of z); i.e. ||zy — x| > e

Thus there exists A, 0 < Ay < 5 such that [|z), — z|| > €.

Again there exists Ay, 0 < Ay < £A; such that [|zy, — z|| > .

Continuing in this way, we can find a subsequence (z,,) of () such that

|zx, —z|| > € for all n > 1. This implies that (z,,) has no subsequence that converges

to z, contradicting the hypothesis. O



10

Definition 2.0.3. Let C be a nonempty, closed and convex subset of a Banach space

X. A sequence (z,) is said to be Fejér monotone with respect to C if

|Zns1 — ¢|| < ||lzn — ¢|| for all ¢ € C.

The following result gives properties of a sequence that is Fejér monotone in a

Hilbert space.

Theorem 2.0.4 ([4]; Theorem 2.16). Let H be a Hilbert space and let C be a
nonempty, closed and conver subset of H. Let (z,) be a sequence in H that is Fejér

monotone with respect to C. Then
(1) (z.) is bounded.

(it) (xn) has at most one weak cluster point in C.

Consequently, (z,) converges weakly to some point in C iff all weak cluster

points of (z,) lie in C.
(111) The following are equivalent:

1. (z,) converges in norm to some point in C.
2. (zn) has norm cluster points, all lying in C.

3. (z,) has norm cluster points, one lying in C.

4. d(z,,C) — 0.

We sometimes use the notation lim a,, for liminf a,, and lim a,, for lim Sup ay,.
The following facts are well-known and can be found in most standard functional

analysis texts. The results hold in a real Banach space.
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Fact 2.0.5 ([17]). A set A is relatively compact if and only if every sequence in A

has a convergent subsequence.

Fact 2.0.6 ([17]). A set A is relatively weakly compact if and only if every sequence

in A has a weakly convergent subsequence.

The following fact is extremely important and is frequently used, often without

reference.

Fact 2.0.7 ([17]). The following are equivalent:
(a) X is reflezive.
(b) Every bounded sequence in X has a weakly convergent subsequence.

(c) Every bounded set in X is relatively weakly compact.

Fact 2.0.8 ([17]). If X is a reflezive space, then every closed, bounded and convez

set in X 1s weakly compact.
Definition 2.0.9. If D is a subset of X, then Int(D) denotes the interior of D.
Definition 2.0.10. If X is a Banach space and A C X, then the convex hull of A

is defined by

convA = ﬂ {K CX:KD2Aand K is convex}.
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This is clearly the smallest convex set that contains A.

Definition 2.0.11. A function ¢ : X — R is said to be convex if
p(tz + (1 — t)y) < td(z) + (1 - )9 (y)

for all z,y € X and t € [0, 1].

¢ is called a proper convex function if it is convex and its domain is nonempty.

2.1 Results for Real Numbers

We now provide three results about real numbers that will be used later. Lemma 2.1.2

is especially useful.

Lemma 2.1.1 ([2]). Let (\,) be a sequence in [0,1) such that lim A\, = 0. Then

i/\n:oo & ﬁ(l—/\n):().
n=1

n=1
Proof. Since nh_)rgo A, = 0, we may assume, without loss of generality, that A, < % for
all n. If f(z) = In(1 — z), then for 0 < z < 1, it is clear that —2 < f'(z) < —1.

Thus f'(z)+1 < 0and f'(z)+2 > 0. This meansr that Hy(z) := f(z)+z is decreasing
and Hy(z) := f(z) + 2z is increasing in the region 0 < z < 3. But H;(0) = 0 and

H,(0) = 0. Hence Hy(z) < 0 and Hy(z) > 0 in this region, showing that
- > In(1 = A\,) > —2),

for all A, € [0, 7]. By taking sums
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ie. . . .
> > nJJa-2)=>-2> A
n=1 n=1 n=1
Taking the limit as & —> oo gives the result. O

Lemma 2.1.2. Let (\,) be a sequence in [0, 1) that satisfies lim A, = 0 and

Z An = o0o. Let (an) be a sequence of nonnegative real numbers that satisfies any

n=1
one of the following conditions:

(a) For all e > 0, there exists N € N such that for alln > N,

ant1 < (1= Aa, + Mpe.

(b) ani1 < (1= Ap)an + pn, n > 0 where p, > 0 satisfies lim !—;ﬁ =0.

n—00 n

(¢) ans1 < (1= A\p)an + Mcn  where lime, < 0.

Then lim a, = 0.

Proof. (a) Forn > N,
ant1 < (1= Ap)an + Ae
< (T =2A)[(1 = Anc1)an—1 + Anore] + Ape
= (1= A)(1 = Anc1)an—1 + €[l — (1 = Ap) (1 = Apey)]

n

< H(l—/\j)aN+e

j=N

. "u_m]

J
Taking limits as n — oo, and noting Lemma 2.1.1 | gives lima, < ¢. Since € > 0 is

arbitrary, lima, = 0. Thus lim a, = 0.
n—oo
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(b) If lim j\— = 0, then for all ¢ > 0, there exists NV € N such that /\— < ¢ for all

n—oo n n

n > N. Hence p, < Aqe for allm > N. So for alln > N,
Unp1 < (1= Ap)a, + Ane.

By (a), lim a, =0.

n—oo

(c) Since lim ¢, < 0, we have for all € > 0, there exists N € N such that
sup{cn, Cny1,-..} <€ foralln > N.

In particular ¢, < € for all n > N. Hence for alln > N,
a1 < (1= Ap)an + e

By (a), lim a, = 0. O

Lemma 2.1.3. Let (a,) and (b,) be nonnegative sequences in R, with > azb, < o0

and Y a, = 00. Then limb, = 0

Proof. If b = limb, > 0, then there exists N € N such that b, > g for n > N.

Therefore

00 b 00
D b2 5 o
n=N n=N
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2.2 Uniformly Convex Banach Spaces

Definition 2.2.1. 1. A Banach space X issaid to be strictly convex if the following

implication holds for all z,y € X:

2] <1

r+y
lyll <1 = H<1-

[l —y[| >0

2. A Banach space X is said to be uniformly convex if for each ¢ € (0,2], there

exists 6 > 0 such that the following implication holds for all z,y € X:

el <1

lyll <1 =

lz—yll > €

Clearly, a uniformly convex Banach space is strictly convex. In a finite-dimensional

space, they are equivalent.

Definition 2.2.2. Let X be a Banach space. The modulus of convexity is the
function éx : [0, 2] — [0,1] defined by

r+y

Sx(e) = inf{l -

H N TEINEENS

We will write 6(¢) if it is understood that we are working in the space X.

The following result is clear from the definitions.
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Theorem 2.2.3. X is a uniformly conver Banach space if and only if §(¢) > 0 for

all € € (0,2].

Example 2.2.4. A Hilbert space is uniformly convez.

Let H be a Hilbert space. Let € € (0,2] and let z,y € H with ||z =1, |y = 1

and ||z — y|| = e. By the parallelogram law:
Iz +yll* + Iz = yl* = 2(|l]* + ly]1>),

we have

2 9 z—yl?
_ ~ 2 2 . ;
H = 2(alf + ul) H : H

SEOR

‘:E+y

and so
1

=+=0-6)

oo ]
Thus 65(e) =1 — (1— (5) ) > 0 since € € (0, 2].

Therefore H is uniformly convex. O

It is also clear from the definition of the modulus of convexity that for z,y € X

with [|z]| <1, [ly]| < 1 and [lz — y[| > ¢,

r+y

|<1-50,

We have a more general result than this.
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Lemma 2.2.5. Let X be a Banach space. Let e € (0,2] and 0 < r < 1. Then for
each z,y € X with ||z|] < 1,|ly|| <1 and ||z — yl| > ¢,
Az 4+ (1 — Nyl <1 —2min{A, 1 - A}d(e).
Proof. If XA =1, then the result is clear. Suppose that 0 <A < 5. Then

Az + (1 =Nyl = [IAz+y)+ (1 20yl
_ ”m (x ; y) +(1- 2/\)y”

T+y

< 27

H + (1= 2X)
< 2XM(1—=4(e)) + (1 —2X)

= 1-—2Xd(e).
If 1 <A<1 then0<1—A<3, andso
Az + (1 - Ayl < 1—2(1 = N)(e).
Hence, in general,

Iz + (1= Nyl <1 —2min{A, 1 — A} d(e).

Theorem 2.2.6 ([8]; Theorem 2.9). If X is a uniformly convexr Banach space then

X 1s reflexive.

More information on uniform convexity can be found in [18], pages 6-11.



18

2.3 Smooth Banach Spaces

Definition 2.3.1. Let X and Y be Banach spaces and let D C X be open. If
F:D — Y and z € D, then F issaid to be Gateaux-differentiable (G-differentiable)

at z if there exists F'(z) € L(X,Y) such that

t—00 1

= F'(z)y := (y,F'(z)) forall yeX.

Definition 2.3.2. Let X be a Banach space. f: X — R is said to be subdifferen-

tiable at a point z € X if there exists * € X such that
fy)—f(@) > (y—z,2") forall yeX. (2.1)

z* is called a subgradient of f at z.

The set of all subgradients of f at z is denoted by 9f(z); i.e.
Of(z)={z" € X : f(y)— f(z) > (y—z,2*) for all ye€ X}

The mapping 9f : X — 2X" is called the subdifferential of f.

Theorem 2.3.3 ([8]; Corollary 2.7). A proper convex function f is G-differentiable

at z € Int D(f) if and only if it has a unique subgradient at z; in this case of(z) =
F'(z).

Definition 2.3.4. A Banach space X is said to be smooth if for every z # 0 in X,

there is a unique z* € X~ such that ||z*|| = 1 and (z,z*) = ||z]].
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Theorem 2.3.5 ([8]; Theorem 3.5). X is smooth if and only if the norm is G-

differentiable on X\{0}.

Example 2.3.6. A Hilbert space is smooth.

Let z € X\{0} and y € X. Let ¢(z) = ||z||. Then

lim

¢(z + ty) — ¢(2)

t—0

So ¢'(z) = “—zﬂ

t

t —
)] e

t—0 t
(et ty ot ) (o)
t—0 t

lim (z+ty,z+ ty) — (z,z)
120 [(x + ty, z + ty)% + (z, z)%]t
o (6 2) +262,y) + 1y, y) — (z,2)
=0 [z 4ty z+ty)2 + (2, 2) 3]t
2(z,y) +t{y,y)
=0 [[z + ty|| + ||z||

Lemma 2.3.7. Let X be a Hilbert space. If ¢(z) = L||z||?, then ¢'(z) = z.

Proof.

i 22 1 ty) — 6(2)

t—0

Hence ¢'(z) = z.

t

2

o Y+t~ Hel?

t—=0 t

o P+ 26,4} + 2l = o]
t—0 2t

o) + £y

t—0 2t

(y, 7).
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Definition 2.3.8. A Banach space X is said to be uniformly smooth if

0.

’ llz +tyll + |z —tyl| —2
im sup =
=0 ||| yl|=1 2t

Lemma 2.3.9 ([8]; Proposition 3.11). If X is uniformly smooth, then X 1s smooth.

Lemma 2.3.10 ([8]). If X is uniformly smooth, then X is reflerive.

2.4 Projections

In this section, we work only in a real Hilbert space H. We define projections and
give the nice properties they have. The first result is standard and its proof can be
found in most standard Functional Analysis texts. In particular, more information

on the nearest point projections can be found in [18].

Theorem 2.4.1 ([22]). Let H be a Hilbert space and let K be a nonempty, closed

and convex subset of H. Then for x € X, there exists a unique y € K such that

inf ||z — k|| = ||z — y|.
inf o= K| = |z - y]

Definition 2.4.2. Let H be a Hilbert space and let K be a nonempty, closed and
convex subset of H. Then we define for any z € H,
d(z, K} := inf ||z — &||.
(z, K) = inf |lo — k|
The unique y € K, as obtained in Theorem 2.4.1 | will be denoted by Pxz.
Thus [|z — Pxz| = d(z,K), and Pk : H — K is a well-defined mapping.

Pk is called the nearest point projection (or simply the projection) of H onto K.
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The following lemma gives a characterization of projections.

Lemma 2.4.3 ([17]; Lemma 12.1). Let H be a Hilbert space and K a nonempty,

closed and convex subset of H. Then for x € H,
(a) (z — Pxx, Pxx —xz) >0 for all z € K.
(b) if (z—vy,y—x) >0 for each z € K, then y = Pgz.

The following result shows that a projection is nonexpansive and firmly nonex-

pansive, as is defined in Section 2.6.

Lemma 2.4.4 ([17]). Let H be a Hilbert space and K a nonempty, closed and conver

subset of H. Then for any z,y € H,
(Pxz — Pgy,r —y) > ||Pxz — Pgyl]?

and

|1Pxz — Pryl| < |lz - yl.
Proof. We will write P = Pg. Then by Lemma 2.4.3 ,
(Pt —z,Py~ Pz) >0 (2.2)

and

(Py —y, Pr — Py) > 0. (2.3)

Equation 2.2 becomes,

(x — Pz,Pz ~ Py) >0 (2.4)
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and adding equations 2.3 and 2.4 gives,

((z —y) - (Pz — Py), Pr — Py) 2 0.

Therefore
(z —y,Pz — Py) — ||[Pz — Py||> > 0,
and hence
(Pz — Py,z —y) > ||[Pz — Py|]*.
Also,
|Pz — Py||* < (Pz — Py,z —y) < ||Pz— Pyl| ||z — y]|
and so

1Pz = Pyl| < ||z —yl.

The following result also gives a characterization of projections.

Lemma 2.4.5. Let H be a Hilbert space and K a nonempty, closed and conver subset

of H. Then for any z € H,
(a) |z — Pz < |z — ylI* = ||Pxz — yl|* for ally € H.

(b) if |z — 2|> < ||z —y||?> = ||z — y||? for ally € H, then z = Pxz.



23

Proof. Let P = Pg. Then

|z — Pz||> = |lz—yl>+ ||y — Pz||” +2(z —y,y — Px)
= ||z —y|>+ |ly — Pz||* + 2(z — Pz,y — Pz) + 2(Pz — y,y — Px)
= ||z —y|®+ ||y — Pz|*+2(z — Pz,y — Pz) - 2||y — Pz’

= llz =yl ly - Pz||* + 2(z — Pz,y — Pz),

and the result follows from Lemma 2.4.3. | O

2.5 Duality Maps

The concepts of an inner product and projections in a Hilbert space provide us with
all the nice inequalities that we use. Also, using the inner product, we are able to
get an isomorphism from H to H*, where each x € H is associated with an z* € H*
satisfying the property

(@,2%) = ||=]|* = [|l="]I"

using Riesz’s Representation Theorem.

In a Banach space X, the normalized duality map,
J(@)={z" € X : (z,2") = |z = [|=*|I*},

which is multivalued, generalizes this isomorphism.

In what follows, X will denote a real Banach space. For any z € X and z* € X,

by (z,z*) we mean z*(z).
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Definition 2.5.1. (i) A continuous, strictly increasing function ¢ : R — R™ that

satisfies ¢(0) = 0 and tlim #(t) = oo is called a weight/gauge function.
—00

(ii) A duality mapping of weight ¢ is a map Js: X — 2X" defined by

Jo(z) = {a* € X"+ (z,27) = |l llzll, o(llll) = [l="[I} (2.5)
The Hahn-Banach Theorem ensures that Jg(z) is nonempty for each z € X.

If the weight function is defined by ¢(t) = t, then the corresponding duality map

is called the normalized duality map. Hence the normalized duality map is given
by |
J(z) ={z" € X" : (z,2") = |l«|* = [|"|I}. (2.6)

We note that in a Hilbert space, the normalized duality map is the identity map.

Definition 2.5.2. If ¢ is a weight function, then define

o(t) = /0 (s)ds.

Theorem 2.5.3 ([8]; Theorem 4.4). If J, is a duality map of weight ¢, then
Jo(z) = 02(||z]])-

Hence, if J is the normalized duality map, i.e. ¢(t) = ¢, then ®(t) = %tQ, and
1
I(z) = 0 |l2]).
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Noting Theorem 2.5.3 , we obtain the following subdifferential inequality from

equation (2.1) :
o(lyl) — @(llzll) = (y — z,Js(x)) forany Jy(z) € Jo(2). (2.7)
This can clearly be rewritten as
([l +yll) < @(lzl]) + (W, jpz +y)) forany jo(z +y) € Jp(z +y), (28)

and the inequality is most often used in this form.

For the normalized duality map J, the subdifferential inequality (2.8) becomes
lz+yll? <llzl* +2(y, 5(z +y)) forany j(z+y)eJ(z+y).  (29)

Lemma 2.5.4. If ¢(t) = f(z + ty), then ¢'(t) = (y, f'(z + ty)).

Proof.
(bl(t) — llcl_r)% ¢(t+ klz. _ ¢( )
- i L E 4B - Sl 1)
— him flz +ty +ky) — flz+ty)
k=0 k

= (v, [z +ty)).

Lemma 2.5.5 ([8]; Corollary 2.7). If f is a proper, convez function and is con-

tinuous at x € Int D(f), then 0f(z) = f'(x).



Corollary 2.5.6. If J, is single-valued, then we have the following identity:

(I|z + b)) - &(|z]) :/0 (b, Jy(x + th))dt.

Proof. Let J = Jy. If g(t) = f(z + th) = ®(||z + th]]), then by Lemma 2.5.4
g'(t) = (h, f'(z + th)).
By Lemma 2.5.5 and Theorem 2.5.3 ,
f'(x +th) = df (x + th) = 9(®(||z + th|]) = J(z + th);

i.e.

Lo (o -+ 1hl) = g'(t) = (h, J(x + th)).

So by integrating sides from 0 to 1 we obtain

& (|l + hll) - &(all) = / (o T(z + th))dt.

The following result gives another property of the function .

Lemma 2.5.7. For any s > 0 and any t € [0, 1],
Q(ts) < td(s).
Proof. Since ® is convex, we have
P(ts) = B(ts+ (1 -1)0)
< t®(s) + (1 —6)®(0)

= tP(s).

26
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We now look at some properties of the duality map.

Theorem 2.5.8 ([8]; Proposition 4.7). Let J; be a duality map having weight ¢.

Then
(a) Jp(—2) = =Jp(z) forz € X.

() Jy0) = CANED 5oy p e xas 0

(1)

(c) If J4, is another duality map having weight ¢y, then

¢(l[z])) g, (z) = da(lz]) Jo(z), z € X.

Proof. Write J = Jy and J, = Jy,.
(a) By Theorem 2.5.3 , and by definition of the subdifferential
J(z) = 0(2(|=])))

= {z" e X" (lyl)) - @(ll=ll) > {y — z,2*) forall ye X}.

Now
2 € J(-x) & O(lyl) - o(lz]) > (y+=,2*) forall yeX
& O(|lyll) = e(lzl)) = (-~y —=z,-2*) forall —yeX
& —z* e J(x)
& v e —J(x).
Hence J(—z) = —J(z).
P(Allz())

(b) Let 2* € J(z) and let a =

. We will show that az* € J(A\z). I d
e will show that ax (Az). Indeed,
(Az,az®) = Mdafz,z*)

= Aaflz”| |||

= |laz’|[{[Az]]
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and

ez = offz"]
P(Allz]})
= o(llzl)
¢(ll=)
= ¢(A=]])
= ¢(llrzl]).
Thus az* € J(\z).
The converse can be similarly proved.
(c) Let z* € Jy(z) and o = Mm_”)_ We will show that az* € J(x).
(x,az*) = ofz,z")
= oz ||z
= [loz™{| ||z|
and
lez™]| = allz”]]
= agi(|l=]])
= o(|=[])-
Hence J;(z) C aJ(z).
By symmetry, J(x) C éJl(x), and so we obtain the result. O

Part (c) of the previous theorem shows that if any one duality map is single-valued,

then all the duality maps must be single-valued.
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Theorem 2.5.9 ([8]; Corollary 4.5). A Banach space X s smooth if and only if

every duality map on X is single-valued; in this case

d
(y, Jo(z)) = %Q(ch + ty||)|t=0, forall z,y € X.

By the remark before the statement of this theorem, the single-valuedness of only

one duality map will ensure that a Banach space is smooth.

Lemma 2.5.10. If X s a uniformly smooth Banach space then the duality map Jy

15 uniformly continuous on bounded sets.

Definition 2.5.11. A Banach space X is said to have a weakly continuous du-
ality map if there exists a weight ¢ such that J; is single-valued and weak-weak*

sequentially continuous; i.e. if z, — z in X, then J(z,) —* J(z) in X".

We note that Banach space that has a weakly continuous duality map is necessarily
smooth. In a smooth Banach space, ||J(z)|| = ||z||, where J is the normalized duality

map.

Example 2.5.12 ([8]; Proposition 4.9; Corollary 4.11).

The duality map on the LP-space,1 < p < oo corresponding to the weight ¢(¢) = P!

is given by

Jf=\fI"""sgnf [ €L
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The duality map on the £P-space, 1 < p < 00, corresponding to the weight B(t) = 7!
is given by

Jr = (|zeP 'sgnzi)ren, = (zx)x € £,

2.6 Nonexpansive Mappings

Definition 2.6.1. Let X be a normed linear space and let C' be a nonempty, closed

and convex subset of X.

1. A mapping T : X — X is said to be a contraction if there exists a constant

k, 0 < k <1, such that

[Tz — Ty|| < kljz —y|| forall z,ye X.

2. If X is a Banach space, then a map T : C' — C is said to be nonexpansive if

| Tz —Ty|| < ||z —y| forall z,yeC.

3. 1z € is called a fixed point of T : C — C if Tz = z. The set of all fixed
points of T' is denoted by Fiz(T); i.e. Fiz(T)={r € C: Tz = z}.

The next result is the famous Banach’s Contraction Mapping Principle, the proof

of which can be found in [17].

Theorem 2.6.2 ([17]; Theorem 2.1). (Banach’s Contraction Mapping Principle)

Let X be a Banach space, C a closed subset of X and T : C — C be a contraction.
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Then T has a unique fized point in C. Moreover, for each zo € C, the sequence of

iterates (T™zo) converges to this fized point.

The following result ensures the existence of the nearest point projection of H

onto Fiz(T).

Theorem 2.6.3 ([17]; Lemma 3.4). Let H be a Hilbert space and C C H a
nonempty, closed and convez set. If T : C — C is nonexpansive, then Fiz(T) is

closed and conver.

A firmly nonexpansive map can be defined on a Banach space, but all we need is
a firmly nonexpansive map in a Hilbert space. The definition is greatly simplified in

a Hilbert space, and hence this is the definition we provide.

Definition 2.6.4. Let H be a Hilbert space and let C C H be a nonempty, closed
and convex set. Then a mapping T : C' — (' is said to be firmly nonexpansive if

T = (I + S) where S: C'— C is a nonexpansive map.

The next result gives a characterization of firmly nonexpansive maps in Hilbert

spaces. For the proof, see [17].

Theorem 2.6.5 ([17]; Theorem 12.1). Let C be a nonempty, closed and conves
subset of a Hilbert space H and let T : C — C be a mapping. Then the following

conditions are equivalent:

(a) T is firmly nonexpansive.
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(b) | Tz — Ty||* < Tz —Ty,z—y) forall z,yeC.
(c) 2T — I is nonezpansive.

A firmly nonexpansive map is clearly nonexpansive. We include the following re-

sult about firmly nonexpansive maps.

Lemma 2.6.6 ([4]; Lemma 2.4(ii)). If C is nonempty, closed and convez subset
of a Hilbert space H and if T : C — C is firmly nonezpansive with Fiz(T) # 0, then
for z € C and f € Fiz(T),

(i) Tz — f,z —Tz) > 0.

(i) |z — fII> = IRz — f||> > a(2 — @)|lz — Tz||* where R := (1 — a)] + oT,

a € (0,2).

Theorem 2.6.7. Let C be a nonempty, closed and convex subset of a Hilbert space

H. Then the nearest point projection Pc : H — C 1s firmly nonexrpansive.

The above result follows from Lemma 2.4.4 .

The following result gives the fixed point set for a convex combination of nonex-

pansive maps, in a uniformly convex Banach space.
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Lemma 2.6.8. Let X be a uniformly conver Banach space, and let C C X be a

nonempty, closed and convezr set. Let T; : C — C be nonezpansive (1 = 1,2,...,N)
N
such that mFm )£ 0 and let V = M1 + XNTo + - + ATy where \; > 0 for
i=1
N

i=1,2,...,N and > X\ =1. Then

=1

Fig(V) = (| Fiz(T;).

=1

Proof. We will prove this result by induction on N. It is clearly true for N = 1.

We will now prove it for N = 2. It is clear that Fiz(V ﬂsz . Now let
p € Fiz(V). Then MTi(p) + X2To(p) = p. We need to show that Ti(p) = p and
To(p) = p. If Ti(p) = p, then

ATo(p) =p— MTi(p) =p—p = (1 = A)p = Agp.

Hence T5(p) = p as well. So we may assume that Tj(p) # p and Ty(p) # p. This also
implies that T1(p) # T(p). For any ¢ € Fiz(T1) () Fiz(Ty), since p # q, we have

lp—all = IIMTap) + AeTa(p) - 4l

= [[M(Ta(p) ~ @) + Xo(Ta(p) — 9|

() = (it =l >H (210

By the nonexpansivity of 77 and T, and the fact that ¢ € Fiz(Ty) (N Fiz(Ty),

cllp—all _
|Ip— ql|

3

_lp=dll _
= o=l

and

Ti(p) —q¢ Tip ”
lp— ql| lp — qll llp ql|

IT1(p) — Ta(p)|| =

(
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1 f
with € > 0 and € = o=l I3 (p) — Ta(p)|| < r—ai (p) —qll+1T2(p) —qll) <2
By Lemma 2.2.5, equation (2.10) becomes
1P —qll < llp = qil [L = 2min{A;, A2} 6(e)] (2.11)

and by uniform convexity, 6(¢) > 0 by Theorem 2.2.3 . Hence equation (2.11) becomes
llp — qll < |lp — ql|, a contradiction. So T} (p) = p and T>(p) = p. Hence

Fiz(V) = Fiz(T1) (| Fiz(T3). So the result is true for N = 2.

Assume now that the result is true for NV > 3. Next we will show that 13}1{? result is

also true for V + 1 and by induction it will be true for all N. Let V = Z AT and

=1
N+1

put T = Z T Then V = \T; + (1 — A\)T. Hence

Fiz(V) = Fiz(Ty) () Fiz(T

N+1
= Fiz(Ty) ﬂ (ﬂ Fiz(T, )
N+1

= () Fiz(T,
=1

2.7 Opial’s Property and the Demiclosedness
Principle

Definition 2.7.1. A Banach space X is said to have Opial’s Property if whenever

Tn = z and y # z, then lim ||z, — z|| < lim ||z,, — y]|.

Opial’s property was introduced by Opial [25] in 1967, where he showed that
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Hilbert spaces and 7 spaces, 1 < p < oo, have this property.

Definition 2.7.2. A Banach space X is said to satisfy the Demiclosedness Prin-
ciple if for any nonempty, closed and convex subset C' of X and any nonexpansive
map T : C — C, I —T is demiclosed; i.e. if z, = 2z in C and (I —T)(z,) — y, then

(I-T)) =y
The next result shows in which space the Demiclosedness Principle holds.

Theorem 2.7.3 ([17]; Theorem 10.4). If X is a uniformly convez Banach space,

then the Demiclosedness Principle is satisfied.
A space having Opial’s Property has the following nice property.

Theorem 2.7.4 ([17]). Let X be a Banach space that has Opial’s Property. Then

X also satisfies the Demiclosedness Principle.

Proof. Let (z,) be a sequence in C such that z,, — z and (I — T)(z,) — y. Define

Ty(z) =Tz +vy for z € C. Then for 21,2, € C,
1Ty(20) = Ty(22)l| = I(T(21) +y) — (T(22) + )|
= [IT(z1) = T(=)ll
<z =zl

Hence T, is nonexpansive with (I — T3,)(z,) — 0.

We need to show that T,z = z.

l|lzn — Tyz||

A

|zn — Tyan + HTyxn - TyIH

IN

1T = T) ()l + [l2n ~ 2.
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Hence lim ||z,, — Tyz|| < lim ||z, — z||.

By Opial’s Property, # = T,z and hence (I —T)(z) = y. O

The above proof can be found in [17], and even though their hypothesis includes

X reflexive, no use of this fact is made in the proof.

As mentioned earlier, all Hilbert spaces and all #? spaces, 1 < p < oo, have Opial’s
Property. More generally, all spaces that have a weakly continuous duality map have

Opial’s Property. To prove this, we require the following lemma.
Lemma 2.7.5. Let X be a Banach space that has a weakly continuous duality map
Jp. If z, = z, then for all y € X, we have the following identity:
Iim @(||zn ~ yl]) = lim &(||z,, — ) + S(fjz — y])).
Proof. First take z = 0. We have the following identity (Corollary 2.5.6 ):

B (||zn + yl) = B(lzal) + / (4, Jo(n + ty)) .

So

o+ o) = T [#(lonl) + [ {0, i)
= Tim &(||z,]|) +/Ol(y,J¢(ty)>dt
~ T () + [ 1 (. el
= oz} + [ Il olyipe

= T () + / il #(ljtwll)d.
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If we let s = ||ty|| in the integral, then

1]
/ 6(s)ds
0

= ([lyl).

| ol éCltyla

For the general case, take z, = 2, — & — 0. So for any z € X,
lim ®(]|2, — 2I]) = Tim @(||za]) + 2(|[2[1)-
Let y =z + z. Then

i @ (||, — yl}) = Tm @ (|l — ) + 2(ly - =)

Theorem 2.7.6. Let X be a Banach space that has a weakly continuous duality map

Jy. Then X has Opial’s Property.

Proof. Suppose z, — z and suppose that y # z. From Lemma 2.7.5 and the fact

that @ is strictly increasing,

m@(|lzs —yll) = lm@(lzn — 2[l) + 2(|ly — =)

> 1lim &z, — =]).

Thus X has Opial’s Property. 0

2.8 Sunny Nonexpansive Retractions

Sunny nonexpansive retractions in Banach spaces together with duality maps, have

characterizations which are analagous to projections in Hilbert spaces. We define the
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following concepts below.

Definition 2.8.1. Let X be a Banach space, C a nonempty, closed and convex subset

of X, and K a nonempty subset of C. Let P: C — K. P is said to be:

1. sunny if for each z € C we have

P(tz + (1 — t)Pz) = Pz,

2. a retraction of C onto K if P is onto and

Pxr=z forall z ¢ K.

3. a sunny nonexpansive retraction if P is sunny, nonexpansive and a retrac-

tion of C onto K.

The following result gives a characterization of sunny nonexpansive retractions on

a smooth Banach space.

Theorem 2.8.2 ([18], [27]). Let X be a smooth Banach space and let C be a
nonempty, closed and convex subset of X. Let Q) : X — C be a retraction and let J

be the normalized duality map on X. Then the following are equivalent:
(a) Q is sunny and nonezpansive.
(6) 1Qz — Qy||*> < (z —y,J(Qz — Qy)) forall z,y€X.

(c) (x—Qz,J(y—Qz)) <0 forall z€X and yeC.
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Hence there is at most one sunny nonerpansive retraction on C.

Lemma 2.8.3. Let X be a Banach space and C a nonempty, closed and convez subset
of X. If T : C — C is a nonexpansive map and z € X, then for each 0 <t <1, there

ezists a unique z, € C such that z; =tz + (1 —t)Tz.

Proof. Let S(z) =tz + (1 —t)T(=z) for z € X. Then

1S(z1) = S()ll = (1= )(T(21) = T(z2))]

< (1 =B)fler — o]

Since 0 < 1 —t < 1, S is a contraction, and so by Banach’s Contraction Mapping

Principle, S has a unique fixed point z;. Thus z; = S(z;) =tz + (1 — t)T2. O

Reich [29] proved the following result.

Theorem 2.8.4 ([29]). Let X be a uniformly smooth Banach space and C' a nonempty,
closed and convez subset of X. Let T : C — C be nonexpansive and let z € X. For
each 0 < t < 1, there exists a unique z; € X satisfying z, = tz + (1 — t)Tz and

(zt)o<t<1 converges to a fized point of T ast — OF.

Definition 2.8.5. A Banach space X is said to have Reich’s Property if for any
weakly compact and convex subset C' of X, any nonexpansive mapping T : C — C

and any z € C, (z;) (as obtained in Lemma 2.8.3 ) converges to a fixed point of T as

t— 0T,
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Thus we have that every uniformly smooth Banach space has Reich’s property.
The following result gives a property for the normalized duality map which will be

used in Theorem 2.8.8 .

Lemma 2.8.6. Let X be a smooth Banach space, C a nonempty, closed and convex
subset of X and T : C — C nonezpansive. If J is the normalized duality map on X,
then

(I=T)(z) -(I-T)y),J(x—y)) 20 forall z,yeC.
Proof. Since X is smooth, J is single-valued. Then by definition of the normalized
duality map

(I-T)(z) - I -T)y),J(x—y)) = (&—y,J(z—y)— (Tz—Ty, J(z—y))

= |z —yl* = (Tz — Ty, J(z — y))

v

lz = ylI* = 1Tz = Ty|| | I (z - )]

>z —yl* = llz — yl| |z - vl

= 0.

O

The next lemma can be found in [8] and it gives a relationship between smooth

spaces and strictly convex spaces.

Lemma 2.8.7 ([8]; Theorem 1.3, Corollary 1.4 and Corollary 1.5). Let X be

a Banach space.

(o) If X~ is strictly convez, then X is smooth,
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(b) If X is reflexive, then X is smooth if and only if X7 is strictly conver.

(c) Let X be a Banach space with X strictly convez. Then any duality map is

norm-to-weak™ -continuous.

The following result gives conditions for the existence of a sunny nonexpansive

retraction.

Theorem 2.8.8. Let X~ be a strictly conver Banach space, X have Reich’s property,
C be a nonempty, closed and convez subset of X and T : C — C a nonexpansive map

with Fiz(T) # 0. Then Q : C — Fiz(T) defined by

18 a sunny nonexrpansive retraction.

Proof. For any z € C, there exists a unique z; € C such that z; =tz + (1 — )Tz, for

0 <t < 1. By Riech’s property, %m& 2y exists. Define Q(z) = %ir% z;. Now since,
- —

1 1-—
,_ 1, -y
t t

1
= ; (Zt - TZt) + TZt.

TZt

So

y—2 = z——(2—Tz) Tz
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For all f € Fiz(T), we have

(=2, ]2~ f)) = — (I =T)z), (2 — [))

IN
o

by Lemma 2.8.6 . Taking limits as ¢ — 0, and noting that J is norm-weak*-

continuous by Lemma 2.8.7 , we have
(Q(2) = 2, J(Q(2) - f)) <0.
Hence for any z and y in C,
(Q(z) — 2,J(Qz) - Qy))) < 0

and
(Qy) — v, J(Qy) — Q(x))) < 0.

Adding these two inequalities and noting that J is odd, gives us

(@) —z+y - Qy), J(Q(z) - Q(y)) < 0.

Therefore,
(y—2,J(Q) -Q) < —(Qz)—-QY), J(Q(z) - Qy)))
= -1Q) - QW)
By Theorem 2.8.2 , ) is a sunny nonexpansive retraction. O

We are now ready to obtain the existence of a unique sunny nonexpansive retrac-

tion on certain spaces.
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Theorem 2.8.9. Let X be a uniformly smooth Banach space, and C a nonempty,
closed and convex subset of X. Let T : C — C be a nonexpansive map with
Fiz(T) # 0. Then there exists a unique sunny nonezpansive retraction Q : C' —

Fiz(T).

Proof. Since X is uniformly smooth, it must also be smooth and hence be Lemma 2.8.7
X" is strictly convex. Existence now follows from Theorem 2.8.8 and uniqueness fol-

lows from Theorem 2.8.2 . ]

The following lemma establishes conditions under which a space has Reich’s prop-
erty. Reich [27] proved this result for the normalized duality map. Here we extend
the result to an arbitrary duality map, but we use the idea of the proof employed

in [27].

Lemma 2.8.10. Let X be a smooth Banach space having Opial’s Property and hav-
ing some duality map J, weakly sequentially continuous at 0. Then X has Reich’s

Property.

Proof. Let C be weakly compact and convex and let 7 : C — C be nonexpansive.

For A\, € (0,1), let 2, := z,, be a subsequence of (z;). Now
2n = (1= M)z + ATz,
Let y € Fiz(T). Then

=y = (1=X)(z—y)+ (T2, — )

= (1 - /\n)(z - y) + /\n(Tzn - Ty)'
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Therefore

(zn — Y, J(2n — ¥))
- (1 - /\n)<z - Y, J¢(zn - y)) + /\n<Tzn - Ty; qu(zn - y))

< (1= M)z =y, Jolzn — ¥)) + Aallze — yll | Js(2n — 9)II.
But (zn — ¥, Jo(2n — ¥)) = |lza — yll¢(l|za — yll)- So
llzn — yllé(||2n — yl) < (1= )z =y, Js(2n —y)) + Anllzn — yllé([[2n — yll)-

Hence
(1= 2)llzn = yllo(llzn — yll) < (1 = Au)(z =y, Jo(2n — ¥))-

So for all y € Fiz(T),

llzn — yllo([2n — yll) < (2 =y, Jo(zn — y)).

Also
(20 = 2, Jo(y — 2n))

= (zn —, J¢(y —zn)) +(y — 2, J¢(y — 2n))

> ~{lzn = ylléllzn — yl) + 22 = yll¢(l|2n — vl])

= 0.
So

(20 — 2, Jg(y — 2za)) > 0.

Now

2o =yl < (1= An)llz = yll + Aal| Tz — Ty

< (= )llz =yl + Aallza =y
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So (1 — Ap)ljzn — yll < (1 — A)llz — yl| and hence

l2n = yll < Iz —yll-

Therefore ||Tz, — Tyl| < ||zn — yl| < ||z — yl| and so (Tz,) is bounded. Since C' is
weakly compact, (T'z,) has a weakly convergent subsequence, say T'z,, — u € C. If

A, =@ Llasn — o0, then z, — Tz, = (1 — \,)z — (1 — A\)T2, — 0. Hence as k — o0,

Zn, — U

Opial’s Property implies the Demiclosedness Principle, and so
u € Fiz(T).
Therefore as k — oo,
|20, — ull (|20, — ull) < (2 =, Jg(zn, —w) = 0.

Since ¢ is strictly increasing, z,, — u.

We will now show that every weakly convergent subsequence of (z,) has the same
limit.
Suppose that z,, — u and 2, — v. Then by the previous proof , u,v € Fiz(T) and

Zn, — u and z,, = v. Now for all y € Fliz(T),
lzn =yl ¢(llzn = wll) < (z =y, Jo(2n — ).
So
[2n, = yll plllzne = yll) < (2 =y, Jo(20, — ¥))

and

“ij | ¢(“ij ~yl]) £{z -y, J¢(ij —y)).
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Taking limits, we get
lu = vl é(flu = vll) < (z = v, Jo(u ~ v)) (2.12)

and

v —ull ¢(llv = ull) < (z = u, Jo(v —w)) (2.13)

Adding equations 2.12 and 2.13 gives

IN

2||u = || (|| — v[]) (u— v, Js(u—v))

= JJu—v] o(]lu—vl]).

So [|lu — v|| ¢(J|u — v||) < 0 and hence u = v.
Therefore every weakly convergent subsequence of (z,) converges strongly to some
unique limit Pz. Thus every subsequence of (z;) has a subsequence converging to Pz.

Hence by Lemma 2.0.2, (z;) converges to Pz. O

Theorem 2.8.11. Let X be a reflexive Banach space having a weakly continuous du-
ality map Jy. Let C be a nonempty, closed and conves subset of X and letT : C — C
be nonexpansive with Fiz(T) # 0. Then there exists a unique sunny nonezrpansive

retraction @ : C — Fiz(T).

Proof. We note that since J, is weakly continuous, X must be smooth. Also by
Lemma 2.8.10, X has Reich’s Property. Then Theorem 2.8.8 ensures the existence of
a sunny nonexpansive retraction defined by Q(z) = tl_l)r(§1+ 2, where z;, = tz+ (1 — )Tz
for0 <t < 1.

For the proof of uniqueness, let Q) : C' — Fiz(T) be any sunny nonexpansive retrac-

tion. Fix any y € C, define a sequence (z,) as follows: for zo =y € C,

Iny1 = /\n—Hy + (1 - /\n+1)Txn7 n2>0

)
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where (A,;) C (0, 1) satisfies the following conditions:

= 1.

oo /\n
lim A, =0, Z A\, =00 and lim
n=1

n—00 n—00 /\n+1

Then it shown in Theorem 4.4 (chapter 4) that z, — Qy for the case of N = 1.
But Q : C — Fiz(T) was any arbitrary sunny nonexpansive map and y € C was

arbitrary. Hence there can be only one sunny nonexpansive retraction from C onto

Fix(T). O



Chapter 3

I[terative Methods in Hilbert
Spaces

Throughout this chapter we work only in a real Hilbert space. We are concerned with

the convergence properties of the following algorithm:

Let H be a Hilbert space, C' a nonempty, closed and convex subset of  and
T, : C — C a nonexpansive map for each n =1,2,... . For zy,y € C define

a sequence (z,) in C by the iterative relationship
Tpy1 — An_|_1 Yy -+ (1 - An+l)Tn—|—1$n7 n = 0, 1, 2, Ce
where (),,) is a sequence of control parameters.
In this chapter, we generalize the results of Shimizu and Takahashi [33], and
Bauschke [2]. The following equality is a generalization of the equality that is used

in the proof of Lemma 1 in Shimizu and Takahashi [33]. Here the equality holds for

any quantity that is defined as an average of some sort.

48
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Theorem 3.1. Let H be a Hilbert space and {To}taer C H, for some index set 1

1
having K elements. If y = 174 Zxa, then for any v € H,

acl

1 1
Iy = ol = & 3 Iz — 0l = 2 3 loa — vl

a€el
Proof.
1 s 1 2
= 2l =l = 2 > llea =l
acl a€cl

acl

1 :
2 S lle = vl = 170 = vl

a€l

1
=3 (la =yl + 1y = ol

ael

+2(Ta = ¥,y — v) — 120 = yl’]

2 Sy = ol + 200 — 4,y = )

acl

1 2
?K||y_v||2+—2(xa—yay—v>

K
acl
1 1
Iy = ol + 2= > 2= = D0,y —)
acl acl

1
—vl* +2(y - —=Ky,y -
ly —v[]* +2(y Ky v)

ly — v||* +2(0,y — v)

ly = ol

O

The following lemma, whose proof we do not include, is due to Shimizu and

Takahashi [33]. It is required in the proof of a later result.

Lemma 3.2 ([33]). Let C be a nonempty, bounded, closed and convez subset of a

Hilbert space H, and let §: C — C and T : C' — C be nonezpansive maps such that



a0

ST =TS. Forx € C, put

n—1
_ j
Tn(z) n +1 Ic:O 1+]:IcS b
Then
lim sup || Tz — S(Thz)|| =0
and

lim sup || Tz — T(T,x)|| = 0.

=0 e

Leading on from Lemma 3.2 we have the following result, for which we include

the proof and this also gives an idea of the proof of Lemma 3.2.

Lemma 3.3. Let C be a nonempty, bounded, closed and convex subset of a Hilbert

space H and let T : C — C be nonexpansive. For each x € C, if we define

then

lim sup | Thz — T(Thx)|| = 0.

n—oo x€



ol

Proof. For z € C, let y, = T,x. Then we have by Lemma 3.1 and by the nonexpan-

sivity of T' that

| Toz — T(Taz)|* = lign — Tynll®
n—1 n-1
1 ‘ 1 .
= LS~ Tl - - I -l
N0 3=0
1 n—1 1 1 n—1 A
= =Y |T9(x) = Tyal? + Iz = Tyal* — = > T (2) — wall®
n n n 4
1=1 7=0
122 1
< =T @)~ wall 4l = Tyl
j=1
1 n—1 -
—=> T () — yall?
n i
1 n—2 1 n—1 1
_ F( 2 1 Gy 2 . 2
= D 7@ = wl® = 2 DT @) = wall” + Ll = Tl
1 1,
= —|lz = Tyal® = =|IT" " (2) — yull?
n n
1
< =z = Tyal?
n
1
< =(diam(C))%
n

< = diam(C'), and so

N
lim sup || T,z — T(To(z))|| = 0.

n—o0 zeC

Thus sup || Tz — T(Tn(2))
zeC

The following result is a strong convergence result in a Hilbert space which gen-

eralizes Theorem 1 of Shimizu and Takahashi [33].

Theorem 3.4. Let (A,) C (0,1) satisfy lim A, =0 and Y _ X, = oo.
—00

n=1

Let C' be a nonempty, closed and convex subset of a Hilbert space H and let
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T,:C—C, (n=1,2,3,...), be nonezpansive mappings such that
(o]

F = m Fiz(T,) # 0. Assume that
n=1

lim sup ||75z — Vi(Tnz)|| = 0 forallk=1,2,...N,

where C is any bounded subset of C and Vi : C — C are nonezpansive mappings
N

(k=1,2,...,N) with F 2 ﬂFix(Vk);ﬁ@. Forzy € C and y € C define

k=1
Tni1 = A1y + (1= Ang1) Tng1 Zn, n > 0.
N
Then x, — Py where P is the projection from C onto ﬂ Fiz(Vy).
k=1

Proof. We proceed with the following steps.
(1) |lzn — [l < max{||zo — f]|,|ly — f||} for all n > 0 and for all f € F:
We use an inductive argument. The result is clearly true for n = 0. Suppose the

result is true for n. Let f € F. Then by the nonexpansivity of 7,11,

[Zns = fII = [[Ar1y + (1 = Ang1) Togazn — [

= a1y — )+ (1 = A1) (Tnrze — f)||

< Aaplly = fIT+ (U= Ay [ Trgrzn — il
< anlly = fll+ A = Anga)l|lzn — [
< Anprmax{|[zo — fI, [y = fII} + (1 = Anr) max{||zo — f|], v — £}

= max{{lzo — [, lly = fII}-

(2) (z,) is bounded:

For all n > 0 and for any f € F,

[2all < lzn = fI+ (]
< maxtlzo — fl, lly = flI} + [ £



(3) (Th41xn) is bounded:
For all n > 0 and for any f € F/,
[Tnirznll < N Twsrma = fII + (1]
< lwa = fIl+ S]]
max{|lzo — fII, [ly — fII} + [Lf]]

IN

(4) lim (T4 12 — Py,y — Py) < 0:
By step (3), (Tn+12,— Py, y— Py) is bounded, hence lim (Tp1 12, — Py, y— Py) exists.

Thus we can find a subsequence (n;) of (n) such that

lim (T, 412, — Py,y — Py) = li]I_H<Tnj+1iEnj — Py,y — Py)

and
Tn,41Zn; =P for some p € C.
By our assumption, we have for any k£ = 1,2,..., N and for C = {Zn tnen,
0 = lim sup [[Thi17 — Va(Tnsrz)|| = lim ||Th 12 — Vi(Tns124) ||
n—co ZEC' n—eo
= hm ||Tn]-+1xnj - Vk(Tnj-i-lInj)”-
j—roo
Thus

li]m | Tnj 4120, — Vi(Tn;1120,)|| =0 forallk=1,2,...,N.
So p € Fix(Vy) for k=1,2,..., N by the Demiclosedness Principle;

N
ie.pe [ Fiz(Vy). It follows, by Lemma 2.4.3 that
k=1

lim (Tn112, — Py,y — Py) = (p — Py,y — Py) < 0.
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By step (4) and the fact that A, — 0, we have for any € > 0, there exists NV € N

such that n > N implies that
€
(L4170 — Py, y — Py) < 1

and
€

Annlly = Pyl < 5

Hence we have for all n > N,

(1 = A1) (Tos1Za — PY) + A (y = PY)1?

= (1 - /\n+1)2HTn+1$n - PyH2 + /\n+12”y - Py”2

| Zns1 — Py”2

+2Xn11(1 = A1) Tz — Py, y — Py)

< (1= s ||lzn — Pyl + Aas®lly — Pyll®
+2XA41(1 = Ag1)(Tny12n — Py, y — Py)
< (1= Aas)llzn — Pyl?

+/\n+1[/\n+l|ly - Py”2 + 2<Tn+1$n - Py,y - Py)]

Y 6 6
< (1= Ang1)llzn = Pyl + Anga (5 + 5)

IN

(1= A1) lZa — Pyll* + Anjae.
By Lemma 2.1.2 | z, — Py. O]

Theorem 1 of [33] now comes out as a corollary to Theorem 3.4, as is seen in

Corollary 3.5(b).

Corollary 3.5. Let C be a nonempty, closed and convex subset of a Hilbert space H
and let S: C — C and T : C — C be nonezxpansive mappings with ST = T'S and
Fiz(T)N Fiz(S) # ¢. Suppose that (A\,) C (0,1) satisfies



%)

lim A\, =0 and > 0 A, =00

n—oo

Suppose that T, is defined as either

n—1
1 .
= — J >
(a) Tn(z) nZT T, n>1
j=0
or
n—1
(b) Tn(x) = ST nzl
’I’L+1 k:O i+j5=k

For zq € C and y = x, define
Tnt1 = A1y + (1= A1) D1 2, n > 0.

Then x,, converges to Py where P 1is the projection from C onto Fizx(S) N Fiz(T)

(i.e. Py = PT‘OjFiz(s)ﬂFiz(T)(y))'

Proof. Let w € Fiz(S) N Fiz(T), put r = ||lw — y|| and let

D={zeC:|z—w| <r}. Now D is nonempty (y,w € D), closed, bounded and
gonvex, and it is S and T invariant. We may thus assume that 5 and T" are mappings
from D to D, and hence so is T, (defined by either (a) or (b)).

By Lemma 3.2 and Lemma 3.3,

lim sup |72 — V(T,z)|| = 0.

n—=0 zeD

where V' is T if T}, is defined by (a) or V is either S or T if T,, is defined by (b).

Theorem 3.4 implies that z, — Py. ]

We now turn our attention to a scenario developed in Bauschke [2]. In this paper

Bauschke defined the following control conditions on the parameters (\,):

[B1 ] lim A\, = 0.

n—oo
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IS

n=1

B3 ] > |An — A < 00,

n=1

We will replace [B3] by the condition:

N3 ] lim An

=1.
n—o0 /\n+N
This condition is new and has not been used in the literature before.
Lions’ condition,

/\n - /\n
L3 ] lim 2~ =0,
nreo n+l

1
implies [N3], and [N3] includes the natural candidate of A, = T Comparing [B3]
n
and [N3] we find that no one condition is stronger than the other, as is demonstrated

in the following example.

Example 3.6.

If (An) is a decreasing sequence with A, —» 0, then [B3] always holds for N = 1.
Indeed,

> 1A = A Z (Ak = Aeg1)
pa P

/\ ) (/\2 - /\3) ()‘n - /\n—{—l)

—_

= Al — Anp1 — AL

So
00
Z |/\k — /\k+l| < 0.
k=1
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[B3] # [N3]: The sequence (),) with A, = exp(—n?) is a decreasing sequence and
so [B3] holds for N = 1. Also A\, = 0. For N =1,

Ao exp((n+1)?)

= =exp(2n+1) — 00 as n— o0,
et o) oY

and hence [N3] is not satisfied.
if n is odd

- S

[N3] # [B3]: Let (\,) be the sequence defined by A, =
if n is even.

B
L

Then A, — 0 and

A, ——W“\/}l_l if n is odd

/\n+1 vn+l
V-1

if n is even.

which converges to 1 as n — co. Thus [N3] is satisfied for N = 1, but [B3] is not.

Indeed, if n is odd, then

1 1
|An — Ang1l I%—m‘
VRt 1—1-/n|
Va(Vn+1-1)
|Vn+1-+n-1
Vi(vVn+1-1)

n+l-n . 1
Vn+l+yn

Va(vn+1-1)
1
-

Vr(vn+1-1)

_ ol

n
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and if n is even, then

1 1
’/\n—/\n—f-ll \/—ﬁ—l_\/m
|[Vn—+1-—+/n+1]|
vn+1(y/n—1)
——+1
Vn+l+yn
vVn+1(y/n—-1)
1
— o=
)
where u, = O(+) means that lim 213 # 0. Thus |A, — Ag1] = O(2) and since
n—00 —
o0 1 o0
Zlg:oowehavezlb\n—/\wﬂzoo. O

We will now prove a complementary result to Theorem 3.1 of Bauschke [2], with

condition [B3] replaced by condition [N3].

We consider N maps 11,T5,...,Ty. Forany n > 1,

Tn ‘= 1 mod N,

where n mod:N is defined as follows: if n = kN + 1, 0<[ < N, then

I it 1+#0
N ifl=0.

n mod N =

Theorem 3.7. Let C' be a nonempty, closed and convex subset of a Hilbert space H
N
andletTy, Ty, ..., Ty be nonezpansive mappings of C into C with F' := ﬂ Fiz(T;) # 0

1=1
and

F = Fig(Ty---T1) = Fiz(Ty - Ty) =+ = Fie(Ty_1Ty_y - Ti Ty).
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Let (M) € (0,1) satisfy the following conditions:

[N1] lim A, =0.
n—oo

(N2 ] D A =00
n=1
[N3] lim A =1

Given points 2o,y € C, the sequence (x,) C C is defined by
Tpy1 = /\n+1y + (1 - /\n+1)Tn+1xm n > 0.
Then x, — Ppy where Pg is the projection of C onto F.

Proof. We proceed with the following steps in the proof.
(1) llzn = fI| < max{{lzo — |, ly — ||} for all n > 0 and for all f € F:
We prove this by induction. It is clearly true for n = 0.

Assume that ||z, — f|| < max{|lzo — f||, ||y — f||}- Then

lznir = fIl = Aera(y = ) + (1 = A1) (Tnazn — f)|
< Annlly = fIl+ (1= M) | Toazn — /]|
< Annally = S+ (1= Mg lza — £l
< Anprmax{|fzo — fll lly = fII} + (1 = Aasr) max{lzo — £, [ly = fII}
= max{[lzo — f|l, ly - fI}-
Hence by induction, ||z, — f|| < max{||zo — |, ly — ||} for all n > 0 and all f € F.
(2) (zn) is bounded:
For any f € F and for all n > 0,
lzall < llza = fII+ 1]
< max{[lzo — fl, lly = £II} + 7]



(3) (Ths12,) is bounded:

For any f € F and for alln > 0,

I Tarr@nll < (1 Taprzn = fI+ 1]
< lza = fII+ /]
< max{|lzo = fll, lly = FII} + I71l:

Thus (7,+1%,) is bounded.

(4) Tn+1 — Lnt1dn — 0

||33n+1 - Tn+1$nH = /\n+1Hy - Tn+133nH

(VAN

A ([[Yll + 1T zal])

AN

A1 ([Jy]| + M), for some M.

Since A,y; — 0,
Tn+1 — Tn+137n — 0,
(5) Tnyn — Tp —> O

By (2) and (3), there exists a constant L > 0 such that for all n > 1,
Hy - Tn—f-lxn“ S L.
Since for all n > 1,7,y = T,,, we have

Hx‘ﬂ-f-N - xn“
= ||(/\n+N - /\n)(y - Tn+an+N~1) =+ (1 - /\n+N)(Tnxn+N—l - Tnxn—l)“

< Lgn = Anl + (1 - /\n+N)||33n+N—1 - x‘n—IH
An

n+N

= (1 - /\n+N)||xn+N—1 - xn-—l“ + /\n-f-NL} 1- b\

60
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By [N3], we have lim L Hl — = ( and so by Lemma 2.1.2,

n—00 n+N

TpnteN — Tn — 0.

(6) Tp — LpgnN - 'Tn+1xn — O

Noting (5), it suffices to show that

Tn4N — Tn+N o 'Tn-}—lxn » 0

Tpy+N — Tn-}—an—}—N—l > 0.

Again by (4),
TnaN-1— LngN-1ZTpgn—2 — 0.

Using the nonexpansivity of T, v we get
TosNZTosn-1 — Tna NIy N_1Znyn—2 — 0.
Using (4) again, we have
Tppn-2 — Inin-2Tpin-3 — 0,
and by the nonexpansivity of T,y and T}, y_1, we get

TosNTnen1Znen—2 — oy NTnsn 1 Thsn—2Znin—3 — 0.

Continuing in this way we get

TosnToin—1 TopoTny1 — TnaNTpa N1 - Thp12n — 0.
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Adding these N sequences yields
TptN — Tn+N n 'Tn—}-lxn — 0.

(7) im (Ty 4120 — Pry,y — Pry) < 0
By (3), (Tni12n — Pry, y — Pry) is bounded, hence Iim (T}, 12, — Pry, y — Pry) exists.

We can find a subsequence (n;) of (n) so that
E<Tn+lxn - PFyay - PFy> = leI&<Tnj+lxnj - PFyay - PF:U),

(nj+1) mod N=14  for some i and for all j > 1

and

Tpj41 = T for some c € C.

By (6)
xnj+1 - 711'_;{_]\[ t -Ti+1$nj+1 — :L‘n]'-‘rl - Tn]-+N+1 ot 'Tnj+2xnj+1 — O. By the Deml—
closedness Principle, z € Fiz(T;yn -+ T;41) = F. Thus, by (4) and Lemma 2.4.3 we

obtain,

Lm (T2, — Pry,y — Pry) = im (T, 170, — Pry,y — Pry)

J

= jl_i_)r&<Tnj+lxnj - xn]‘-f-l)y - PFy>

+]1_i_)r&<xnj+l - PFyvy - PF?/)

= 04 (z — Ppy,y — Pry)

IA

0.

Fix any € > 0. By (7) and [N1] we can find N, € N so that for all n > N,

i

(Tn-f-lxn - PFy7y— PFy> <

= m



and

Then for all n > N,

|20 41 — Pryll?

[N

VAN

€

Ansally = Pryll? < 5

Ant1(y = Pry) + (1= Ay1) (Togaa — Pry)|I?
Milly = Pryll? + (1 = A1) Tosrn — Pryll?
+2An11(1 = A1)y — Pry, Tn1%n — Pry)
Ait(Ansally = Peyll?) + (1 = Angd) || T2 — Prylf?
+2M i 1{Ths12n — Pry,y — Pry)

€

€
/\n+1§ + (1 = M) ||z — Pryl* + /\n+1§

(1 = Ang1)l|lzn = Pryl]® + Antae

By Lemma 2.1.2 , z, — Pry.
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Chapter 4

Iterative Methods in Banach
Spaces

In this chapter we work only in a Banach spaces and we again consider the following

iteration scheme
Tnt1 = /\n—I—ly + (1 - /\n—l—l)Tn-I-lxn; n Z 0.

In a Hilbert space the concepts of a projection and the inner product exist, and
they give us nice inequalities. We do not have these in a Banach space, but we do
have the duality maps and the existence of sunny nonexpansive retractions in certain
spaces that give us the inequalities that are analagous to those found in Hilbert
spaces. For example, the nice property of projections (Lemma 2.4.3) also holds for
sunny nonexpansive retractions (Theorem 2.8.2). Since the normalized duality map
in a Hilbert space is the identity map, every projection is a sunny nonexpansive
retraction. Therefore, in certain "nice” Banach spaces, we have convergence of the
iterates.

Bauschke [2] in his proof of his main result provides an algorithmic proof to obtain
his result. This technique has proved to be extremely useful. With appropriate

modifications this algorithm has been effectively used by many authors to obtain

64



convergence, for example in [33], [39] and [13]. We use this technique in Theorems 3.4
and 3.7, and in this chapter in Theorems 4.1, 4.2 and 4.4.

The following result generalizes Theorem 3.4 to Banach spaces, and hence it ex-
tends Theorem 1 of [33] to Banach spaces. It also complements the main result of [1]
where they only consider the mapping 7,, = = "21 S*T7 in a uniformly convex Ba-
nach space, and obtain weak convergence of thei’{t:eorates, whereas Theorem 4.1 gets
strong convergence. From Theorem 2.8.9, the existence of a unique sunny nonexpan-

sive retraction is guaranteed in a uniformly smooth Banach space. This fact is used

in the following two theorems.

Theorem 4.1. Let X be a uniformly smooth Banach that has a weakly continuous

duality map J. Let (A\,) C (0,1) satisfy

[N1] lim A, = 0.

n—o0

[N2 ] i/\n:oo.

Let C be a nonempty, closed and convex subset of X and let T, : C — C be nonez-

pansive mappings (n = 1,2,3,...) such that F := ﬂ Fiz(T,) # 0. Assume that

n=1

lim sup ||T,(z) — T(T,(2))|| = 0

n—)OOIEC

where T': C' — C' 1is nonexpansive with () 75 Fiz(T) C F and C is any bounded subset
of C. For zy,y € C, define

Tp+1 = /\n+1y + (1 - /\n+1)Tn+1xn; n Z 0.

Then z, — Qy where Q is the unique sunny nonezxpansive retraction from C onto

Fiz(T).
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Proof. Since a uniformly smooth Banach space is reflexive and smooth (Lemmas 2.3.10
and 2.3.9), Theorems 2.8.9 and 2.8.8 defines the unique sunny retraction
Q:C — Fiz(T) by Q(2) = lingr z; where 2z (0 <t < 1) is the unique fixed point of
t—0
Si(z) =tz + (1 ~ )Tz, z e C.
(1) [|zn — fl| < max{||zo — f]|,|ly — fl|} for all n > 0 and for all f € F:
We use an inductive argument. The result is clearly true for n = 0. Suppose the

result is true for n. Then by the nonexpansivity of 7,4,

||$n+1 - f“ = ”/\n-l—ly + (1 - /\n+1)Tn+1$n - fH

= A1y = ) + (1 = A1) (Tnr2n — )|

< ngilly = fll+ (1= M) Tngrzn — S|
< Apglly = Fll+ (1= Mgz = £l
< Anrrmax{{|zo — fIl, [y = fII} + (1 = Angr) max{||zo — f]|, ly = £}

= max{||lzo — £, ly - fII}.
(2) (z,) is bounded:
For each f € F and for each n > 0
lznll < lzn = fIT+ Al
< max{|[zo — fI[, [ly = flI} + I f]I

(3) (Thy1zy) is bounded:

For any f € F' and for all n > 0,

IN

| Tagrzn — fIl + | £l
< lzn = fI + A1)
< max{||zo — fl|, [ly — fII} + || £]]-

H7%+lxn”



(4) |Zns1 — Tot1Zn|| — O

By (3) we can find an M > 0 so that

|Znt1 — TnsrZall = M1y — Tng1Znl|
< (Wl + (1 Tasazal)
< ApiM
— 0

by [N1].
(5) xp — Txy — 0:

For C' = {Zn}n>1, we have

|2 — Tznll < oo = TnZaoa|l + (| Tazno1 — T(Tazn-)|| + [T (Tn2n-1) — Tz,

A

12 = Tanll + [ Tazn-1 = T(Tn@n-1)|| + [[TnZn-1 = 2n|
= 2“.’L‘n - Tnxn~1“ + |‘|Tnxn—l - T(Tnxn—l)“

< 2llzn = Tazna | + sup | Thz — T(Thz) ||
zeC

which converges to 0 by (4) and our hypothesis. Therefore
Ty — T2, — 0.

(6) lim (y — Q(y), J(zn — Q(y))) < O:

We may assume that there exists subsequence (n;) of (n) such that

Tp; — U

and

lim (y — Q(y), J(zn — Q(y))) = lim{y — Q(y), J (z, — Q¥)))-
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By (5), zn, — T'Tn; —> 0. The Demiclosedness Principle holds in a space that has
a weakly continuous duality map by Theorems 2.7.6 and 2.7.4. Hence u € Fiz(T).

Therefore

Lm (y — Q), J(za — Q(Y))) = lim(y —Q(y), J(za; — Q1))

J

= (y-Q), J(u—Qy)))

< 0

by Theorem 2.8.2 .

Using the subdifferential inequality (2.8)
O(flz +yl) < @lzll) + (v, J(z +y))

we get

Ol — QWD = 2(Mly — Q) + (1 = M) (Tnzn1 — QW)|)
< (1 - )\n) CI)(”-'Ln—l - Q(y)H) + )‘n<y - Q(y)’ J(an - Q(y))>

Since lim (y — Q(y), J(z, — Q(y))) < 0 by (6), Lemma 2.1.2 gives us z, — Q(y). O

The next result is an extension of Bauschke’s Theorem 3.1 [2] to Banach spaces,
if we use the first assumption of condition [N3]. The second assumption of condition
[N3] extends Theorem 3.7 to Banach spaces.

We will again define T, as follows for any n > 1:

Tn = dpn mod N



69

where n mod N is defined as follows: if n = kN + ¢, 0 < ¢ < N, then

¢ ifl#0
n mod N =
N ifé=0.

Theorem 4.2. Let X be a uniformly smooth Banach space and let C' be a nonempty,

closed and conver subset of X. LetT; : C — C, (i = 1,2,...,N) be nonexpansive
N

mappings and assume that F := ﬂ Fiz(T;) # 0. Assume also that

i=1
F= Fi:z:(TNTN_l v TQTl) = FZCE(TITN " ’T3T2) = - = Fix(TN_lTN_Q T TlTN).

Let (A\,) € (0,1) satisfy the following conditions:

[NI] lim A,.

n—o0

[N2 ] i/\n:oo.

=1.

n—oQ /\7L+N

o0
An
[N8 1) dn = Asn| <00 or  lim
n=1
If the iterative process is defined by
Tpt1 — /\n+1y + (1 - /\n+1)Tn+lxn; Y, ZTg € C,

then z, — Q(y), where Q is the unique sunny nonezpansive retraction from C onto

F.

Proof. We proceed with the following steps.

(1) llzn = fIl £ max{||zy — f||, lly — f||} for all n > 0 and for all f € F:

We use an inductive argument. The result is clearly true for n = 0. Suppose the



result is true for n. Then by the nonexpansivity of T}, .,

||$n+l - f“ = “)‘n+ly + (1 - )‘n+1)Tn+1$n - f“

= A1y — F) + (1 = dd) (D130 — f)l

N IA

IN

Ant1|ly = fll + (1 = Ang)[|[ Tnrrzn — f|
/\n+1||y - f|| + (1 - /\n+1)||$n - f||

Anpymax{[lzo — f, [ly = fII} + (1 = Angr) max{{lzo — fII, ly - FII}

= max{{lzo — f||, ly = fII}-

(2) (z,) is bounded:

For each f € F and all n >

[[2]]

(3) (Ty4125) is bounded:

For all n > 0 and for each f

”Tn+1$n”

(4) zp41 — Tpy12, — 0: By (3), we can find M > 0 such that

,|$n+1

0,

VAN

IA

€F,

IN A

IN

- Tn+1$nH

<

<

[zn = fII+ 11/
max{|[zo — fll. lly = fII} + /1.

I|Tn+1xn - f“ + “f“
[2n = fI+ 111l
max{||zo = f[I. lly = fII} + [1£]]-

At ||y — Tng12n |
Ant1 (Yl + 1 T2z ()

A1 M.
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By assumption [N1], ;41 — Tp412, — 0.

(5) Zpyn — xn — O

By (2) and (3), we can find a constant M so that for all n > 0,

and

[Zn+n — 2ol < M

||y - Tn+1£n” < M.

Noting that T,y = T,, we have for n > 0,

IA A

IN

IA

<

|Znsn — znl|

[Anin = A) (Y = Tnzn-1) + (1 = Ay M) (T NEniv—1 = Tnn)|
MAnsn = Aal + (1 = A W) Tons v—1 = Tnzp ||

M|Anin = Anl + (1 = Mg )| Znav-1 — Zn | (4.1)
M[Anin — Anl

(1 = A M) [ M Angv 1 = Al + (1= Apev—) [Ty vz — Tna|]

M| Ansn = An| + [ Aaanvoy — An—1]]

+(1 - /\n+N)(1 - /\n+N—1) Hxn+N——2 - xn—?“

MY " Dein = Ml + M T = Megw). (4.2)

k=m k=m

Letting n — oo in inequality 4.2 yields

B 7~ aall €203 P~ Ml + M [0 dern). (43)

k=m k=m

Condition [N2] implies that lim H (1= Aksn) = 0 and the first assumption of [N3]

m—0o0
k=m



m—co

implies that lim Z |[Aken — Ak = 0.
k=m

If we let m — oo in (4.3), we get Z,4ny —z, — 0 (by using the first assumption

of [N3]).

If we now use the second assumption of [N3], then inequality (4.1) is

Hxn+N - xn“ < M‘)‘n+N - )‘n‘ + (1 — )‘n+N)Han+N~1 - xn—IH

l)\n+N - An'

with — 0. By Lemma 2.1.2 , z,, v — z, — 0.

n+N

(6) Tn — Tn+N t 'Tn—i-lxn — 0.

Noting (5), it is sufficient to show that
Tpn4N — Tn+N te 'Tn—i-lxn — 0.

By (4),
TneN — Ty NTpin-1 — 0.
Again by (4),
TnyN-1 — Tngn-1Tpyn—2 — 0

and hence by the nonexpansivity of T, y,

Tn+NfUn+N—1 - Tn—i—NTn—i-N—lxn—i-N—Q — 0.

Similarly,

Lo NTos N 1T N—2 — Ty NT oy N1 Ty N 2Ty —> O

Toyn - 'Tn+237n+1 —Thyn - Tz, — 0.
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Adding these N sequences yields the desired result.

(7) Iim (y — Q(y), J(z — Qy))) < 0:

We may choose a subsequence (n;) of (n) so that

lim (y — Q(y), J(zn — Q(v))) = lim (y — Q(y), J (@, = Q))),

and

for some i € {1,2,...,N} and for all j > 1.
Then Tpvn - Tny1 =Ty - Tiyr forallj > 1.
Put S =T,y - Titr. Then Fiz(S) = F.
Since S is nonexpansive, with Fiz(S) = F # ), we have by Theorem 2.8.9 that there
exists a unique sunny nonexpansive retraction from C' onto F'.
Now Q(y) = 11_1)% 2, where 2, = ty+ (1 —1t)Sz,. If J denotes the normalized duality

map, then by inequality (2.9)
I

||Zt — xn]-

= (1~ t)(s'zt - xnj) +t(y — xnj)HQ

S (1 _t)2||‘§’zt _xnj||2+2t<y—xnja‘](zt —xnj)>
~ ~ - 2
< (1= 0 (I8 = S|l + 1520, — 2, ) + 26w = 2+ 2 — Tny, T2 — 32,)
2 - - - 2
= (1= 1) (152 ~ Sz, ]| + |52n, — 2, )
+2t (|2 — 2, 1>+ (y — 20, I (2 — 24))))
< @+ )z = an, P + a5 + 26y — 2, I (2 — 2,)),
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where a; = (1 —t)? [2“5’1:,1] — 2, || |2t — Znj || + 1SZ0, — a:njHQ]. Since
HS’a:nj —n, || — 0 by (6), and ||2;—xy,|| is bounded because z,; — Z and z, — Q(y),

we have a; — 0 as j — oo. Now
20 = a7 < (L4 )2 = @, 1" + a5 + 2t(y — 21, T (20 — Za)))-

Therefore

t 1
(y — 2, J(ﬂ?nj ~2z)) < §||Zt — Tn; H2 + gar

Taking lim sup as 3 — oo gives

- t
im (y — z¢, J (T, — 21)) < ¢5
j

for some ¢ > 0.
Now let ¢ — 0 to get

@M(y — 24, J(Tn; — 2¢)) < 0.
j

Now J is uniformly continuous on bounded sets. Hence we may swap the order of

the limits to get

0 > ml—itg@—ztw](ﬂ?nj—zt))
j

= lim(y - Q(y), J(zn; — Q(y)))
proving (7).
Now by the subdifferential inequality (2.9)
241 — Q(y)I?
= [0 = A1) (To1%n = QW) + dnpa (v — Q)|
= (1- )‘n+1)2“Tn+1$n - Q(y)”2 + 2211y — QY), J (Tns1 — QY)))

S (1 - )‘n—i-l)”xn - Q(y)”2 + 2)‘n+1<y - Q(y)? J($n+l - Q(y))>
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By Lemma 2.1.2 , z, — Q(v). U

Remark 4.3. 1. The uniform smoothness assumption in Theorem 4.2 can be weak-
ened to the assumption that the norm of X is uniformly Gateaux differentiable and
each nonempty, closed and convex subset of X possesses the fixed point property for

nonexpansive mappings.

2. Shioji and Takahashi [33] have proved the previous theorem with the above
assumption but for a single map 7. The proof of Theorem 4.2 shows that the use of

a Banach limit in the proof of Shioji and Takahashi’s theorem can be avoided.

3. Reich [31] obtained strong convergence of the iterates for the case N =1, in
the setting of a uniformly smooth Banach space having a weakly continuous duality

map.

Under the conditions of Theorem 2.8.11, the existence of a unique nonexpansive
retraction from C onto Fiz(T) is guaranteed for any nonexpansive mapping 1" from
C to C. A space having a weakly continuous duality map satisfies the Demiclosedness
Principle. Hence the following result is also an extension of Bauschke’s Theorem 3.1 [2]
to Banach spaces. This result is new and using the second of the two conditions in

[N3], we even obtain a new result in Hilbert spaces (see Theorem 3.7).

Theorem 4.4. Let X be a reflexive Banach space having a weakly continuous duality

map Jg. Let C' be a nonempty, closed and conver subset of H and let T; : C —
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C, (i=1,2,...,N) be nonezpansive maps satisfying

F = Fi.Z‘(TlvTN_l Tt TQTl) = FZ.’E(TlTN s 'T3T2) = s = F’i.’E(T,V_lTIV_g v T]TN),

N
where F := ﬂsz(Tz) + (. Let the sequence (M\,) C (0,1) satisfy the following
i=1

conditions:

[NI | lim A\, =0.

n—00

[N2 ] i/\n:oo.

= 1.

00 A,
— / Ii
[N3 | ; |An = Anan| <00 or lim o

Define z,, as follows:
Tptl = /\n+1y + (1 - /\n+l)Tn+1xn7 n Z 07 Zo,Y € C

Then z, — Q(y) where Q is the unique sunny nonezpansive retraction from C onto

F.

Proof. Put S =Ty ---Ty. Then Fiz(S) = F = thx(Tz) By Theorem 2.8.11 there
exists a unique sunny nonexpansive retraction é)_l C — Fiz(5).
We will show that z, — Q(y). Let z = Q(y).

(1) lzn = fll < max{||zo — fll, ||y — f||} for all n. > 0 and for all f € F":

We use an inductive argument. The result is clearly true for n = 0. Suppose the



result is true for n. Then by the nonexpansivity of T, 1,

lonsr = £l = Pasay+ (1 = Ans)Tariza — f]

= g1y — ) + (1 = Ag1) (Tng120 — f)]

IN A

IN

(2) (z) is bounded:

For each f € F and for all n > 0,

Angilly = fIl+ (1~ /\n+1)“Tn+1In -~ fll
Aty = fIl+ (1= X)) |20 — £]]
Anprmax{||zo = fI, ly = fII} + (1 = Anyr) max{||lzo — £l Iy — flI}

= max{|[zo — f,|lv = fII}.

lzall < lzn = FIl +11f]]

IN

(3) (Thy12s) is bounded:

For each f € F and for all n > 0,

max{||zo — |, ly — fII} + I £]-

[Tnt12nll < [ Tasrn — fII+ 1 f]]

< lea = £+ 1A

< max{|lzo — fll, lly = fII} + I £l

(4) Tny1 — Tny12, — 0: By (3) we can find M > 0 such that

”xn+l - Tn+1$n”

<

<

An+1”y'_'7;+1xn”

/\n+1(”y|| + HTn+1xn”)

An+1A4-
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By assumption [N1] 2,41 — Tpy12n — 0.
(5) Tpyin — zp — O:

By (2) and (3), we can find a constant M so that forall n > 0

[Tasn — @nll < M

and

Hy - Tn—i—l-'rnH S M
Noting that T, .y = T,, we have for n > 0,
||$n+N - -TnH

= ||(/\n+N - /\n)(y - Tnmn—l) + (1 — /\n+N)(Tn+N$n+N~1 - Tnifn—l)H

A/[|/\n+N - /\nl + (1 - /\n+N)||Tn$n+N—1 - Tnmn—ln

IA

MAasn = Aal + (1= Al n-1 = zoa (4.4)

IN

M| sn = Al

+(1 - )‘n-f-N)[Ml/\n—f-N—l - /\n—ll + (1 - /\n—f-N—l)Hxn—f-N——Z - xn~2|”

A/W“)\n—f-N - )\n| + l/\n+N—l - )‘n—ln

(1 = A w) (1 = Mg v ) l|Zni v—2 — Zn2|]

IA
——
o~
<t
~—

< M Z | Ay = Akl + M H (1 = Aesn)- (4.6)

k=m k=m

Letting n — oo in inequality (4.6) yields

lim|[znen = 2l <MY Negw — Ml + M T (0= Megw). (4.7)

k:m k:m
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Assumption [N2]| implies that lim H(l — Me+n) = 0 and the first assumption of

m—co
k=m

[N3] implies that nlll_r’noo; | Aesn — M| = 0.
If we let m — oo in inequality (4.7), we get Tpyn — z, —> 0 (by using the first
assumption of [N3]).

If we now use the second assumption of [N3], then inequality (4.4) is

”mn+N — Tn|| < M|Apyn — )‘n| + (1 - /\n+N)”zn+N—l - mn—IH

|/\n+N - /\ni
/\n+N
(6) Tp —dpypN - 'Tn—}—lmn — 0.

with — 0. By Lemma 2.1.2 , 2,y ny — 2, — 0.

Noting (5) it is sufficient to show that
TnyN — Tn+N o Tn-}—lzn — 0.

By (4),

TntN — Doy NTnyn-1 — 0.

Again by (4),
TpnyN-1 — LnyN-1Tnyn—2 — 0

and hence by the nonexpansivity of T, n,

Lo NTnyN-1 = Doy N N-1Zpin—2 — O

Similarly,

Loy NTnsn-1Znin-2 = Tna N Tpin 1 TosN—2Znin_s —> 0

Tn+1\r T Tn+2f17n+1 — Tn+N ror Tn+1.'1;n — 0.
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Adding these N sequences yields the desired result.

(7) dim (y — Q(y), Jo(zn — Q(y))) < 0:
Since ({y — Q(y), Js(zn — Q(y)))) is bounded and since X is reflexive, we can find a

subsequence (n;) of (n) such that

Tim (y — Q(y), Jo(zn — Q(¥))) = lim{y — Q(y), Jy(zn; — Q(Y))),

J
and

for some ¢ € {1,2,...,N} and for all j.
Then

lim (y — Q(y), Jo(en — QW) = lim{y = Qy), Jo(zn, — QW)
= (- QW) JsE - QW)

By (6),

Ty,

i i+N"'71i~rn]- = Ip;

i Tn]-+1\’+1 o 'Tn]'—l-l‘rn]‘ — O

By the Demiclosedness Principle (from Theorem 2.7.6 and Theorem 2.7.4 ),
z € Fix(Tyyn---T;) = Fiz(S) = F. By Theorem 2.8.2 ,

(y—Qy),J(Z-Q(y) <0

where J is the normalized duality map. But by Theorem 2.5.8 ,
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Now

Tni1 — QY) = Tn1—2

= (1= ) (Tnr12n — 2) + Anga(y — 2).

So by inequality (2.8) and by Lemma 2.5.7

D(f|lzn — 2ll) < (1 = Ay 1)) (Tni1%n — 2)) + Ant1(To — 2, Jp(Tnt1 — 2))
< (1= M) @(l|n — 2) + Ansi(mo — 2, Jp(@as1 — 2))-
By step (7) and Lemma 2.1.2 | ®(||z, — z||) — 0. Since & is increasing,

Tn~— 2 — 0. d

Remark 4.5. The weak continuity of the duality map in Theorem 4.4 makes the above

proof much simpler than that of Theorem 4.2.



Chapter 5

Random Iterations

In this chapter the following iteration schemes are considered:

Tpy1 = Tr(n—f-l)xn (51)

and
Tnt1 = (1 = Ag1)Tn + A1 Tr(na1) Tn (5.2)
The mappings are chosen in a random manner or in what is termed a quasi-cyclic
manner. Scheme (5.1) is called the random iteration scheme and scheme (5.2) is called
the relaxed iteration scheme with (),) the relaxation parameters. In most cases, as
in chapters 3 and 4, the mappings are chosen in a cyclic manner, i.e. every mapping
is chosen at least once every M iterations, say, where M is bigger than or equal to
the maximum number of mappings. In chapters 3 and 4, M is equal to the number of
mappings. The quasi-cyclic order of choosing the mappings is a generalization of the
cyclic order, where the cycle lengths are no longer fixed, but are allowed to increase
at a slow rate.
In the following result we consider the random iteration scheme in a finite dimen-

sional real Hilbert space, where the mappings are projections, and convergence of the

iterates is obtained.
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In both Theorems 5.1 and 5.2 we work in a finite dimensional Hilbert space, in

which weak and strong convergence are equivalent.

Theorem 5.1. Let H be a finite dimensional Hilbert space and let Cy,Csy,...,Cn be
N
closed convex subsets of H such that C := ﬂ C; #0. Let P;: H— C; be the nearest

=1
point projection for eacht=1,2,...N. For any ¢ € H, define
ITn = Pr(n)xn—la n =1,

where r : N — {1,2,..., N} is arbitrary, taking on each j € {1,2,..., N} infinitely

often. Then (x,) converges to a point in C.

Proof. Since P,(,) is nonexpansive, we have for each z* € C and for all n > 1,

lzn = 2*|| = [[Bmzn-1 — 2"
= HP'r(n)xn—l - P’r(n)x*”

< lgnar =2t (5.3)

Hence ,}H{.lo ||z —2"|| exists for each z* € C and so (z,,) is bounded. For any projection

Py we have by Lemma 2.4.5 that for all z € H and all y € K,
lz = Prz|® < ||z — y|* = || Pxa — y|*.
Therefore, for any z* € C,

Hxn-—l - -/L'n”2 — Hxn-—l - P‘/‘(n)-/L'n—l“2
< lenar = 2P = | By zney — 2|2

= ll#n =2 ~ [z — |



Since lim ||z, — z*|| exists, lim ||[zn_1 — z,||* = 0. Hence
n—0o0 n—00
lim ||z,—1 — za]| = 0.
n—o0
Now there exists a subsequence (z,,) such that
Tn; =T for some T € H
and for some 7 € {1,2,...,N},
r(n;)=1t¢ forallj>1.

But dim H < 00, 80 2,,; — I. Also

Ty

i = Pr(nj)xnj—l = Pixnj—l-

We will now show that T € C.

Since lim ||zp—) — 75| = 0 and z,, — T, we have
n—oo

Tny—1 — .
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(5.4)

(5.6)

Noting the continuity of P;, we may take limits in equation (5.5) to get T = PT.

Therefore T € C;. If we assume that T ¢ C, then T ¢ Cy, for some ko € {1,2,...,N}.

By rearrangement, if necessary, we may assume that z € C1,Cy, ..

T¢ Cry1,...,Cn, where 1 <L < N.

Fix £ > 1 and choose my to be the smallest integer 7, 7 > ng, such that r(r) > L;

i.e. mg =min{r > ng:r(7) > L}. So r(my) > L and r(mg — 1) < L. For any j with

ng < j < my, we have 7(j) < L, so that
z; =zl = [[Pgyzi— — 2
= [Pz — BT

< ij—l - f”v
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since T € Cy(;) and by the nonexpansivity of Prjy.

In particular,

[2me-1 =2l < (T2 — T
< em—s =7
< [z =7
— 0. (5.7)
by (5.6).
Now r(my) € {L +1,...,N} for all k. Hence we can choose a subsequence (my) of

(my) so that 7(my) = jo for some jo € {L+1,...,N} and for all ¥ > 1. Then
xmk/ — Pr(mk’)xmk/—l - Boxmk,—l- (58)

By (5.7), Zm,,—1 — T and by equation (5.4), ||zm,, -1 — Tm,, || — 0. So zp,, — T.
Taking limits as k' — oo in equation (5.8) yields T = P; 7, since P}, is continu-
ous. Hence z € Cj, with jo > L, a contradiction. Hence we may conclude that
T € C. By Fejér monotonicity of (z,,) with respect to C' (inequality (5.3)), and since

Tn, — T € C, we have z,, — T. O
J ?

The following result is a result of Tseng [36], but here we provide an alternate

proof.

Theorem 5.2 ([36]). Let H be a finite dimensional Hilbert space and let T; : H — H
N

be firmly nonezpansive mappings (1=1,2,...,N), with F := m Fiz(T;) # 0. For any

=1
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zo € H and any € € (0,2), define
Tpy1 = (1 — /\n+1)xn + /\n+1Tr(n+1)xna n 2 0

where e < A\, <2—€ foralln>1andr:N— {1,2,..., N} is arbitrary, taking on

each j € {1,2,..., N} infinitely often. Then (z,) converges to a point in F.
Proof. We can rewrite the process as

Tp = Tngt + A1 (Tn — Tr(ng1)Zn)-
For each z* € F, and for all n > 0,

120 =2 = [Zn41 = 2° + Ag1 (@0 — Tone1)Za) ||
= |Jzn4 — 2| + /\121+1||$n - T'r(n+1)xn||2
+2 41 (Tnpr — 27, T — Trng1)Zn)
= |lzns1 — 2+ Asallon — Trnry2all?
+2An114Zn41 — Tr(n1)Zn, Tn — Trns1)Zn)

+2/\n+l<Tr(n+1)xn - x*a Ty — T;(n+1)xn>

v

|Znsr — 2|2 + /\i+1||$n - Tr(n+1)$n”2
+2X 1 (L = Apgr)[|2n — T’f(?Hrl)an2

= |Zap = 2*? + Mg (2 - An1)|[Tn — Tr(?Hrl)xn”2 (5.9)

v

Zn1 = 2% + €|z — Trninzall?,

by Lemma 2.6.6 and by noting that z,,, — TrnanyTn = (1 = A1) (2 — Trn+1)Zn).

Hence

Ellzn = Tonnyal > <l = 2|2 = |onsa — 27 (5.10)
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This implies that (||z, — z*||) is a decreasing sequence and hence the limit exists.

Thus by inequality (5.10),
|zn — Trni1)Zal] — 0. (5.11)
By (5.11) we get
[2n = Zntill = Ansallzn = TrnanyZall — O (5.12)

We also have (z,) is bounded since lim ||z, — z*|| exists. Thus we may choose a
n—oo

subsequence (z,,) of (z,) such that
Tp, — T (5.13)
and
r(n; +1) =1

for some ip € {1,2,..., N} and for all j > 1.

By (5.11) we get x,; — Tj,z,, — 0. By continuity of T}, and by (5.13) we also have

Tp; — TigTn, —> T~ T3y 7.

Hence T € Fiz(T;,).
Itz ¢ F, then T ¢ Fiz(T;) for some 5. So we may assume (by rearrangement if

necessary) that

and
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where 1 < L < N.

Fix k£ € N and choose my, as follows:
my = min{7 > ny : (1) > L}.

Thus 7(mg) > L and r(my — 1) < L. For any 4 with ny < ¢ < m; we have r(1) < L,
so that ||z; —Z|| < ||zi-1 — Z|| noting that T € Fiz(Tr(;)) and using the argument used

to obtain inequality (5.10). Hence
[Zme—1 = Z|| < [[Tmy—2 —Z < -+ < Jlzn—1 — 7.

By (5.13), z,, — Z and by (5.12), ||zp—1 — 2n|| — 0. So 2,1 — Z. Therefore
Tmy—1 — .
By passing to a subsequence (my ) we have 7(my) = jp for some jo € {L+1,...,N}.

But ||Zm,, -1 — Tr(m,)Tm-1]| — 0 by (5.11) and
mek,—l - Tr(mk/)l‘mk/—ln = Ha:mk/—l - Tjoa:mk/—lu — Hj - Tjoj”'

So Z = T, i.e. T € Fiz(T),). This is a contradiction since j, > L. Hence
T € F. Since z,, — T by (5.13) and (z,) is Fejér monotone with respect to F' (from

inequality (5.10)) , we must have z, — Z. d

It still remains an open question whether Theorems 5.1 and 5.2 can be extended

to infinite dimensional Hilbert spaces. In this connection, see Theorem 2 of [15].
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Definition 5.3. Amap 7 : N — {1,2,...,N} is said to be quasi-cyclic if there is

an increasing sequence (7x) satisfying
(a) = 1,

(b) Te+1 — Tk > N for all & > l,

@ Y ——— =00,

Te+1 — T,
ey Tkl T Tk

(d) {1,2,...,N} C{r(m),r(me+1),...,7(meq1 — 1)} forallk > 1.

Condition (b) says that the length of each cycle is at least N (where N is the
number of mappings), condition (c) ensures that the lengths of the cycles do not
increase too fast and condition (d) says that every mapping is chosen at least once
in every cycle (i.e. between the 7" and the (744, — 1)*" iterate for all k¥ > 1). This
control was introduced by Tseng and Bertsekas ([37]) in 1987.

In the following theorem we obtain weak convergence in a Hilbert space that is
not necessarily finite dimensional. This is Theorem 2 of Tseng ([36]), but an alternate

proof is provided.

Theorem 5.4. Let H be a Hilbert space and let € € (0,2) be arbitrary. For
N

i= 1,2,...,N, let T, : H — H be firmly nonezpansive with F = ﬂFia:(Ti) # 0
=1

and let r : N — {1,2,..., N} be quasi-cyclic. For e < X\, <2 — ¢ and for z¢ € H,
define

Tnt1 = (1 - /\n—}-l)xn =+ /\n—}-lTr(n—}-l)xn, n > 0.

Then (z,) converges weakly to a point in F.
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Proof. There exists an increasing sequence (7x) satisfying conditions (a)-(d) of Defi-

nition 5.3 .
T]c+1-—1 .
Let o = Z i1 — 2]l k > 1. By the Cauchy-Schwartz inequality,
1=Tg
Tk—-}-l—l
ox? < Z |zir = @il *(7h11 = 7). (5.14)
I=Tg

In the proof of Theorem 5.2 we obtained for each z* € F, inequality (5.10)
E2”5371 - Tr(nJrl)-Tn“2 < l@n — ‘T*Hg — | Zns1 — x*llg
and so by (5.12)

||-Tn - $n+1“2 = )‘7214-1”‘7:71 - T7'(71+1)$"H2

(2—¢)

< S o = oI ~ flzn = 27|

Thus Z llzn — Tnya]|* < oo and lim |zn — zni1|] = 0. Inequallity (5.14) yields

n=1
oS 00 Try1—1
1 2 < 2
T_Tffk > i1 — @]
k=1 k+1 k k=1 =7}
x0
2
= E |1Znt1 — Zal|
n=1
< 0.
= 1
But E ————— = 00. Hence limo? = 0 by Lemma 2.1.3 , and so lim oy, = 0.
Tk+1 — Tk

k=1
Therefore we can find a subsequence (k') such that likrln ox = 0.

(zr,) is bounded as is shown in the proof of Theorem 5.2. Hence it has a weakly
convergent subsequence, which we may assume to be itself. So xz,, — 7 for some

TEH.
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To simplify the notation, we will drop the ”prime” in the remainder of the proof and

write k for k.

Fixie {1,2,...,N}. Theni € {r(m),r(m+1),...,7(7p41— 1)} for all k£ > 1. So for

each k > 1, we can find py with p+1 € {7, 7 +1,...,Tky1 — 1} so that 7(px +1) = 4.

Now
1
”ka - TT(Pk'f‘l)ka” X_— |prk+1 — Tp H
prt+1
1 5
S P (5.15)
— 0. (5.16)
So
“xpk-i‘l - TT(Pk+1)ka|| < prk-i-l - xﬁk“ + ||xpk - TT(Pk'H)kaH
1
< (T+ ;) prkﬂ — Zp |-
Therefore
[lek - T”'(Pk‘f‘l)kaH = me = Tz, ||
Pk
< Z ”.’17] - xj-i-l” + prk-i-l - Tixﬁk”
J=Tk
Tk+1~1
< D Nl =zl + |z — Tz, |
=Tk

<

ie. z, —Tixz,, — 0 as k — oo. But Ty,

1
o, + (1 + Z ) “'Tpk-‘rl — .’L'pkH — O,

= Z. So Tiz,, — % and by (5.16),

Tp = T. Again by (5.16), (I ~ T;)(z,,) — 0. By the Demiclosedness Principle,

N

I;z = 7; i.e. T € Fiz(T;). Since ¢ was arbitrary, T € m Fiz(T;) = F.

i=1
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Now assume that (z,) has another weak cluster point . Then there exists a subse-
quence (Zpm;) such that zn,, — I. Suppose also that z,, — T, for some subsequence
(zn,). By repeating the above argument, we can show that Z € F. From the proof
of Theorem 5.2 , ,}LIEOHI" — z*|| exists for each z* € F. Hence nh_)rgoﬂxn — Z|| and

lim ||z, — Z|| both exist. If & # T, then by Opial’s property,
n-—300

lim ||z, — z|| = lim mej — &
n J
— T, - 3
< mllxmj -
= lim [, — 7]
j
= lim||z, — 7|
n
= limz, -7
= Fmlfon, — 7
< lim||z,, — ||
= lim e, -3

= lim ||z, — &,
n

which is a contradiction. Thus (z,) has a unique weak cluster point in F. Now (zy) is
Fejér monotone with respect to F' (inequality (5.10) in the proof of Theorem 5.2), so

by Theorem 2.0.4 (ii), (z,) converges weakly to some point in F'. Hence z, = 7. U

For a finite collection of nonexpansive maps T; : C — C, (¢ = 1,2,...,N), we

consider the following iteration scheme:

In = Tr(n)xn—l .
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This boils down to looking at the products of the form
Tr(n)Tr(n—l) T T'r(l)y

and we investigate the convergence of the above iterates.

Dye and Reich [16] showed that in a Hilbert space with r quasi-periodic, as they
called it, the iterates converge weakly. In [15], they were able to extend this result to
reflexive Banach spaces with a weakly sequentially continuous duality map. However,
the result could only be proved if the pool of maps to be drawn from consisted of only
two maps. In [14], Dye et al proved the result for Banach spaces that have Opial’s
property. However, in all of these results only weak convergence of the iterates is
obtained. Our next result obtains strong convergence of the iterates in a Banach

space that has certain conditions imposed on the fixed point sets.

Theorem 5.5. Let X be a Banach space and let C be a nonempty, closed and convez

subset of X. LetT; : C = C, (1 =1,2,...,N) be nonerpansive with F; := Fiz(T})
N

and F = mFi # 0. Letr : N — {1,2,...,N} be a map that takes on each

i=1
i€ {1,2,...,N} infinitely often. Assume also that :

(i) there exists c € F such that fori € {1,2,..., N}, and for all sequences (u,) C C

?

lun —c|| = [|[Tiun — ¢|| — 0 implies d(un, F;) — 0.

(1) for all sequences (un) C X

?

joax d(un, F;) — 0 implies d(u,, F) — 0.

For zy € C, if

Tn = TrmyTn_1, n 21,
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then (z,) converges to a point in F.

Proof. Since each i € {1,2,..., N} is taken infinitely often, there exists an increasing

sequence (ng),nx —> 00 as k — 0o, such that for each £,
{T(nk + 1)) T(nk + 2)7 s 7T(nk+1)} 2 {1) 2: ey N}

Put Wy = To(neyn) " Trnu+1)- Then 2, = Wy,,. By nonexpansivity, we have for

each f € F,

Hmn—}—l - f” - ”Tr(n—}—l)xn - Tr(n+1)f||
|z — £

IN

Therefore (z,,) is Fejér monotone with respect to F. In particular, ¢ € F, so (||z,—c||)

is decreasing and hence lim ||z, — c|| exists. So
n
[0, = cll = IWizn, —cll = llzn, — el = [[#ny — ¢l — 0. (5.17)

Put Vi; = Trnp+g) - ey, 21,7 =1,2,... g1 — 1y

Then (||Vijzn, — c||) is decreasing in j by nonexpansivity and the fact that ¢ € F,

and for j =1,2,...,ng1 — ng,
Zne, = cll < W Vijzn, — ¢l < |@a, |- (5.18)
Sofor j=1,2,... ,ngp1 — g,
2n, = cll = IVejzn, = cll < |lzn, —cll = |2n,,, —el] — 0. (5.19)
Claim : For j = 1,2,...,ngq1 — ng, ||2n, — VijZn, || — 0 as k — oo.

We will prove this claim by induction.



7 = 1: By Fejér monotonicity, (z,,) is bounded and hence (Vj jz,,) is also bounded.

So (||zn, — Vk1Zn,||) is bounded. Hence there exists a subsequence (ny ) such that
HIH”Ink - Vk,l-rnk“ = hkl;l'l ”l‘nk, - Vk’,lxnkz ” (520)

and

r(ng +1) =1
for some ¢ € {1,2,..., N}. Noting that Vi, = T(n,+1), and by (5.19),
|2, — cll = [|Tizn,, —c|| — 0.
By assumption (i), d(zy,,, F;) — 0 as k' — 0. Now

||l”nk, - Vk’,lxnk/H < ||Ink, — ¢l + ||Vk',1l“nk, — ¢
< 2lzn, —¢l, forall ¢ € F,.
Hence
”xnk/ - Vk’,lxnk/“ S 2d‘(x’l7.k” E)

So by equation (5.20),

lim ”Ink - Vk,lxnk” - hkrln “Inkz - ‘/k’,l-rnk/ ||
S hkr,n2d(xnk” E)

= 0.

Therefore klirgj |Zn, — Vi12n, || = 0. Hence the claim is true for j = 1.

We will now assume that [[z,, — Vi ;_12n,]| — 0 as k — oo, and we will prove

that for 1 < j <nppy —ny, |2, — Vij@n,ll — 0 as k — oo.
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Since (||Zn, — Vi jZr,||) is bounded, we can find a subsequence (n/) such that
lim||zn, — Vi jn, || = lim [|2n,, — Vi jn, | (5.21)

and

r(ng +J) =14

for some i € {1,2,...,N} and for all ¥’ > 1.

So from equation (5.21) and the induction assumption,

lim||zp, — Vi jon, ]l = lim [[zn,, = Trtng 45 Vi 12, |
< likrln |1 Zny — Vir jo1Zn,, ||
+lig/n | TiVie j—12n,, — Vit j-1%n,, | (5.22)
= lim [TV jrtn, = Virjatin || (5.23)

Now for any ¢; € Fj,

ITiVi j1Zny = Virjo1Zn, | < (1 TiVie jo1Zn, — 6l + [les = Virjo12, |

< 2”V/C'»J'—1‘T"k’ - c’”

Hence | T;Vi j-1%n,, — Vi jorZn, || < 2d(Vi a2, F).

So from inequality (5.23), we have
H—m—“a:nk — Vi jZn, || < likI’nZd(Vk:,j_lxn;c, F).

Now

IN

1Znrr = el < Ty Vi g-12, — |

IA

Vi j-12n, — |

< [l2n, =l
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Therefore
[Vejo1@n, = el = ITVhj1zn, —cll - < Iz, = cll = l|Znes1 — <
— 0,
by (5.17).
By assumption (i), d(Vir j-12s,,, F;) — 0. So lim ||z, — Vi;zn,|| = 0 and hence

liin |zn, — Vi,jZn,|| = 0. Thus the claim is proved; i.e. for j =1,2,...,np 41 — 1,
“Z’nk — Vk’jxnkH — 0. (524)

Now {r(ng + 1),7(ng +2),...,7(ng41)} 2 {1,2,..., N} for each k.
Fix k € N. Then for each i € {1,2,..., N}, there exists py € {ng + 1,...,ng41} such
that r(px) = .

We can decompose Wy = T, )+ Tr(ny+1) as follows:

Nk+1

Wi = UT; Vi

where Uy = Ty ) Trpe+1)y and Vi =Ty 1y - “Tr(ng+1)-
Then by nonexpansivity,
[Znpy —cll = [[Wizn, — ]|
= [UT:Vitn, — ¢
< [ TiVizn, — c|
< Vi, — ¢l
< l#n, =l

Since lim ||z, — ¢|| exists,
n

”kank - C“ - ”Tzvkxnk - C” < H.’Enk - C“ - ‘lxnk-f—l - CH — 0.
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By assumption (i), d('Vkaznk, F;) — 0. Again, by nonexpansivity of T;

Hvkxnk - Tszl“nkH < “kank - C’H + HTle'TTLk - CI“

= 2||Vizn, — |

for all ¢ € F;.
Hence
HVk.’L‘nk — ﬂvkxnk|| < 2d(Vk.’L‘nk, E) —0 as k— o0. (525)

Now Vi, = Tr(pp—1) * * - Tr(ny) = Vk,; for some 7 > 1. So

”‘THIC - Tl‘rnlc” < ||xnk - Vk:rnk” + ||Vk-75‘n;c - Tzv}cl‘nk” + HTin-Tnk - Tzl'nk”
< 2|z, — ViZn, || + [|[Vazn, — TiVitn, ||

— 0

by (5.24) and (5.25).

Thus ||z, — || = [|Tizn, — ¢|| < ||Zn, — Ti%y, || — 0. By assumption (i),

d(z,,, F;) — 0. Since 1 was arbitrary, we have by assumption (ii) that

d(zy,,, F) — 0. So for each € > 0, there exists k so that d(z,,, F') <.

In particular, for any £ > 1, there exists k so that d(a:n,.c, F) < 21—k Hence there exists

pr € F such that

1
la; = Pl < 55

Since (z,) is Fejér monotone with respect to F,

llprs1 — pell < Pk — l‘an + ”-’L‘nm — k|
1
< okt |zn; — pill
1 1
< +

ok+1 T ok’
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Thus (px) is a Cauchy sequence in F' and hence converges to a point p in F' since

N
F = ﬂ Fiz(T;) is closed. Therefore p € F.
i=1

Now

|zn; =PIl < llzng = Pell + [l = 2|

1
< 2—k+llpk—pll — 0.

Thus z,, — p.

By Fejér monotonicity, the entire sequence must converge to p; 1.e. T, — D.

Remark 5.6. (a) For any relaxed projection on a Hilbert space, i.e.
R:= (1 - M1+ )Pk, A€ (0,2),
we have for any ¢ € K and for any z € H

Iz = cl® = [[Rz —c]® = M2 =Nz — Pxal’

= M2 -\ d(z, K)?

by Lemma 2.6.6 . Hence any projection on a Hilbert space satisfies assumption (i) of

Theorem 5.5.

(b) Combettes [9] defines a family of sets (S;) that satisfies condition (ii) as being

boundedly regular. Condition (ii) of Theorem 5.5 will be satisfied if dim H < co.

(c) By remarks (a) and (b) above, Theorem 5.1 is a special case of Theorem 5.5,

although the proof of Theorem 5.1 is much simpler than the rather technical proof of

Theorem 5.5 .



Chapter 6

Applications to Minimization
Problems

In this chapter we work only in a real Hilbert space, and the aim is to minimize some

objective function §. The minimization problem can be stated simply as follows:

[P] Find u* € F such that 8(u*) = 12£9(u)

Deutsch and Yamada [13] consider this problem for § that satisfies certain conditions,
and firstly show the existence and uniqueness of the solution to the above problem,
and then propose an algorithm that converges to this unique minimizer. This algo-
rithm extends the results of Yamada et al [39], where they consider the minimization
problem only for a quadratic function f. The algorithm of Deutsch and Yamada [13]
also extends results by Halpern [19], Wittmann [38] and Bauschke [2], where the

unique minimizer is the projection of some point y onto a set F.

In this chapter, we first consider the algorithm proposed by Yamada et al [39].
We obtain a generalization of their Theorem 1, which shows the convergence of some
unique fixed points to the unique minimizer, by making fewer assumptions. We then

obtain a generalization of their Theorem 2 and a complementary result to Theorem

100
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3. We next consider the algorithm of Deutsch and Yamada [13] and obtain a com-

plementary result to their main result. In addition, we also show the convergence of

some fixed points to the unique minimizer. This has not been considered in [13].
For the rest of this chapter H denotes a real Hilbert space. The details about the

problem to be solved are outlined below.

Let T H—-H(@#=1,2,.. ) be nonexpansive mappings with

F = ﬂF'La: ) # 0. Let A := Uco ) and let the function 6 : H — R be

=1
twice dlfferentlable on some open set U O A. Suppose 0" : U — B(H) satisfies the

properties that §”(z) is self-adjoint for all z € A, and there exist scalars M > m > 0

such that
ml[v||? < (0"(x)v,v) < M||v||*> forall z€ A and v € H. (6.1)
For an arbitrary fixed p with 0 < p < %, let
U(z) = () - %uxn? for all z € H (6.2)
and let
TMNz) = Tz — M\uf'(Tz) forall z€ H andall ¢ 0,1]. (6.3)
The iteration process that we consider is defined by
Tpy1 = T,;\;‘J{‘ Tn for any zo € H (6.4)

where (\,) is a sequence of parameters that satisfies certain conditions.

This process generalizes the iteration scheme proposed by Bauschke [2] where

he considered the case of 6(z) := i|lz — y||?> for some y € H, and the iteration
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scheme proposed by Yamada et al [39] where they considered the quadratic function
0(z) := 3(Az,z) — (b,z) forall z € H.

We show in Examples 6.16 and 6.17 that the iteration schemes proposed by
Bauschke and Yamada et al, are indeed special cases of the scheme defined in equa-
tion (6.4).

We first provide the following definition.

Definition 6.1. If H is a Hilbert space, then a bounded, self-adjoint dpera,tor

A € B(H) is said to be strongly positive if there exists o > 0 such that

(Az,z) > o||z||* forall z € H.

We will first consider the algorithm proposed by Yamada et al [39]:
Let A € B(H) be self adjoint and strongly positive, and b € H. Define a quadratic

function 6 : H — R as follows:
1
f(z) := Q(Aa:,a:) — (b, z). (6.5)
We note the following result.

Lemma 6.2 ([22]). Let H be a Hilbert space and A : H — H a linear operator. If

A is a bounded, self-adjoint operator, then

|All = sup |(Az,z)|.

llzl}=1

Since A is strongly positive, there exists o > 0 such that (Az,z) > af|lz||2. This

is the o that is referred to in the following two results.
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The following fact characterizes the minimizer of a quadratic function. It can be

found in [42].

Lemma 6.3 ([39]; 25E; 25.23). Let H be a Hilbert space, b€ H and A € B(H) be
a self-adjoint and strongly positive operator. Let 0 be defined by equation (6.5). Then

for a nonempty, closed and convez subset C of H,

(a) there exists a unique a minimizer u* of § over C; i.e. O(u*) = melg 6(x).
xz

(b) u* € C is a minimizer of 0 over C if and only if u* satisfies (Au*—b,x—u*) > 0

for all x € C.

The following result exhibits a sequence that converges to the unique minimizer
described above. It is a generalization of a result by Browder [6] and it is proved by
Yamada, et al ([39]; Theorem 1). They make the assumption that ||/ — Al| < 1, but
in our proof we avoid use of this assumption. In the statement of parts (a) and (b),
we make an additional assumption that A < “;” but this is not restrictive, since in
part (c) we take A — 0 and so A can be chosen as small as possible. In the proof of

part(b), Yamada et al [39] make use of a projection, but our proof for part (b) avoids

the use of a projection, and hence the result will be valid in any Banach space.

Theorem 6.4. Let H be a Hilbert space andT : H — H nonezpansive with Fiz(T) # 0.
Suppose that u* is the unique minimizer of the quadratic function 6 over Fiz(T) where

6 is defined by equation (6.5) . Let

Cy:= {$EH:|| —fI < j“} for all f € Fiz(T)
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and
TMz) = (I —MA)Tz+ b forall A e[0,1] and z€ H.
Then
1
(a) TA(Cy) C Cf for all f € Fiz(T) and A € [0,1], with X < AT’ In particular,

T(Cy) C Cy for all f € Fiz(T).

(b) T* . H — H is a contraction with its unique fized point £, € ﬂ C; for all
fEFiz(T)
1

e (0,1], with A < ——
| A

(c) }\1—1}(1)5)\ =u

Proof. The existence of the unique minimizer is guaranteed by Lemma 6.3.

(a) Forxz € H,
allz)* < (Az,z)

< (AN 1=l

Hence
Al > c. (6.6)
Also, for z € H, = # 0,
(I =Xz, z) = |z[|* -~ MAz, 2)
> lzlf® = Al Al ]2
= (1= AAD=]?

> 0,



1
since \ < ——.
Al

Hence, by Lemma 6.2 , for z,y € H,

1Tz = T*yll = (I - AA)(Tz —Ty)|

IN

11 = ATz - Ty||
< T = AAllllz - |

= (sup (I - AA)u,u>> |z —yl|

[lulj=1
— ”31||1£)1(|lu“2 — /\(Au, U) )
< sup (uf? — Aelful?)l =

= (1= a)llz -yl

z =yl

Let f € Fiz(T). Then

T f = (I —XA)Tf+Ab
= (I = MA)f+ b,

and so
T’\f—f:—/\(Af—b).

Therefore for z € Cy, we have

||T)‘.T _ f” < HT)‘_’L‘ — T)‘f“ + HT)‘f - f“

< (1= 2a) flo = fll+ AlAS b
h— -
lb—Afll IS = bl

« (0

< (1-2a)

1b—ASll
Q )

proving that T*(C;) C Cy.

In particular, if A = 0, then T'(Cy) C Cy.
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(b) Since A, > 0, then A > 0. Also from inequality (6.6) and our assumption on A,

So inequality (6.7) implies that T is a contraction with constant 1 — Aa for A € (0,1]

and A < H—;U By Banach’s contraction mapping principle (Theorem 2.6.2 ), T* has

a unique fixed point, &,.

For any f € Fiz(T), we need to show that {, € Cy. Now

lex = £II = 176 = £l
< [T =TI+ T = f]

< (=26 = fll + MAf — bl

by inequality (6.7) and equation (6.8). So

MIAS = bl _ lIAf - bl

Ao o

16 = fll <

Thus &, € Cy for each f € Fiz(T). Hence &, € ﬂ Cy.
fEFiz(T)
(c) By Lemma 2.0.2 , it suffices to show that every subsequence (§,) of (,) has a
subsequence that converges to u*, where &, := &, , and A, — 0.
b— A
Now Cj is actually the closed ball centered at f with radius l—f“ Hence Cf
o'

is weakly compact by Fact 2.0.8 . Since (&,) is bounded, there exists a subsequence
(n,;) that converges weakly to a point v € Cy for all f € Fiz(T). We will write

v; = &g, to simplify the notation. Hence v; — v.

Claim 1: T(v)=v. Since (T(v;)) is bounded, there exists 7 > 0 such that

IT(v;)]| < rforallj > 1 Now TMy; := T™iv; = v; and lim A, = 0 give

n—00
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us
IT(v;) = vl = Anl[AT(v;) = 0]
< Any (HAHIT (wg) 1+ ol
< Ang (1Al + 11011
— 0 as j— o0. (6.9)
By the Demiclosedness Principle, Tv = v, as was claimed.

Claim 2:
1
oy = 'l < = (b= Au, v~ v). (6.10)

Since v; = (I — Ay; A)Tv; + Ap;b and Tu* = u*, we can write

v; —u" = (I — Ay, A)(Tvj — Tu") 4 A, (b — Au’).

1
In the proof of inequality (6.7), we have shown that for those A with A < m,
1
11 — AA|| £ (1 — Xa). We may choose j large enough so that A, < AT Then it

follows that

lv; =l = (v —u",v; —u")
= (I = M, A)(Tvj — Tu") + Ay, (b — Au™),v; — u*)
< T = A A T vy — Tu|| oy — u*|] + An; (b — Au™,v; —u*)

< (1= a)llvy = ut )P+ A, (b — Aut, vy — ut).

1
Hence ||v; — u*|2 < E<b — Au®,v; — u"), which proves claim 2.
Since v; — v € Fiz(T) we have by Lemma 6.3 that

— 1
lm [Jv; — w2 < = (b — Au*,v — u*) <0.

R

Thus v; — u* as j — 0. O



108

Again, for finitely many maps T3, 75, ..., Tn, and for any n > 1, we will define T,

by T5, =T 1mod n-

The following theorem is an extension of Theorem 2 of [39] with N = 1, since a
sequence of parameters (\,) with lim A, = 0 that satisfies Lions’ condition
n—00
An = Ant1

An+1
We also note that in Theorem 2 of [39] we can leave out the condition that

lim

n—o0

= 0 will also satisfy [N3].

|/ — A|| < 1. Example 6.17 shows that Theorem 6.14 is a generalization of Theorem 1

of [39] if || — A|| < 1.

Theorem 6.5. Let H be a Hilbert space, T; : H - H (i = 1,2,...,N) are nonez-

pansive maps with
N
F=(Fiz(T;) #0
i=1

and
F=Fiz(Ty--Ti) = Fis(T\Ty - Tp) = -+ = Fig(Ty1Ty-s---T,T).
Assume that a sequence (A\,) C (0,1] satisfies

[N1] lim A, = 0.
n—oo

[Nz]iAnzoo.

[N3 ] lim

=1.
Then for any xy € H, the sequence generated by

Tpnt1 = )‘n+lb + (I - /\n+1A)Tn+1$n; n>0
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converges to u*, the unique minimizer of the quadratic function 6, defined in equa-

tion (6.5) over F'.

Proof. The existence of u* € F' is guaranteed by Lemma 6.3 .

M}_

Case 1. We will first assume that zq € Cye = {x € H:|z—u¥ < 5

The general case will be reduced to this case. The proof follows the following steps.
(1) (z,) and (Tnz,-;) are bounded:

If THx = A\pb+ (I — A\ A) Tz, then z,, = T*»z,_,. From Theorem 6.4 (a), (z,) C C,-
and (Thzn—1) C Cy«. So, (z,) and (T,z,_1) are bounded.

(2) Tap1 — Tppazn — 0

||$n+1 - Tn-l—lxn” = ||)‘n+1b + ([ - )‘n+1A)Tn+1$n - Tn-l—lxn“
= Anpllb = ATn 12|

< Anr [IB+ AN T zall ],

since A € B(H). (T412,) bounded, and A, — 0 imply that Tnp1l ~ Thi1zn — 0.

(3) Tyl — Ty — 0:
Choose n large enough so that ),y < ﬁ

Since A € B(H) and (T,x,-1) is bounded, we can find L > 0 such that

16 — ATozn1|| < Le.
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We also have T, n = T,,. Therefore by the proof of inequality (6.7) of Theorem 6.4 ,

| Tnsn — Tnll = Pnind+ (1 — )‘n+NA)Tn+an+N—1 - [)‘nb + (I — )‘nA)Tnxn—l ]H

= |(Angn = M) (b= ATozn 1) + (I = My v AN (TnTnyn-1 — Thxn-1)l|

IN

Loy = Anl + [T = Mg nv Al || Tnen -1 — Zp—a ||

S La|/\n~|—N - )\n| + (1 - )\n+Na)||‘rn+N—1 - xn—l”
Now lim LofAnin = A

= 0 by [N3]. So by Lemma 2.1.2 , £,y — 2, — 0.
n—00 /\n~|—Na

(4) Ty — Tn+N e 'Tn-|—1-rn — 0

In view of (3), it suffices to show that

TpyN — Tn+N e Tn~|—1~rn — 0.

TpeN — Tn+an~|—N—1 — 0

and

TnyN-1— Tnyn_1Tngn—2 — 0.

T, n nonexpansive, implies that

oy NTpyn_1 — TosNTagN-1Zpin—2 — 0.

Similarly,

Tn+NTn+N—1$n+N—2 - Tn+NTn+N—1Tn+N—2$n+N—3 — 0

Tn+N e Tn~|—2~rn+1 - Tn+N e Tn~|—1In — 0
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Adding these N sequences yields
TrntN — Logn  Tag1Tn — 0.

(5) lim (T 412, ~ u*, b — Au*) <O
({(Tny12n — u*, b~ Au*)) is bounded since (7, 112,) is bounded. Also, C,- is a closed
ball centered at u*, hence it is weakly compact by Fact 2.0.8. Thus we can find a

subsequence (n;) such that
m (T 12, — u*, b — Au*) = lim(T,, 120, — u*, b — Au®),
j

Tnj1 =T, for some i € {1,2,..., N}
and
Tp; =1 € Cyr.

By (4) we get

Tn,

i LiN-1"" T'zxnj =Tn

i~ Tnjen - Toyr12n; — 0.

By the Demiclosedness Principle , & € Fiz(T;y - Tiy1) = F. Therefore

im (T2, — u*,b— Au®) = lim (Tn;41%n; — u*, b — Au’)
j
= li]rn (Tizn, — u*,b— Au*)
= (TiZ —u",b— Au*)
= (& —u*,b— Au¥)

< 0

by Lemma 6.3 (b).
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(6) T, — u™
Since (Tp41%,) is bounded, A € B(H) and A, — 0, for any € > 0, we can find

1
M € N such that for all n > M we have A1 < m and,

. €
2/\n+1|<b o A’U,*, ATn+1xn — Au >' < ?)

Ao — 4w <
and
2(b — Au*, Tp 1z, —u*) < %.
Now
|zner = [P = [Aasa (b = Au®) + (I = M A) (Tniaza — u)|?
= /\i+1nb - AUJ*”2 + 2010 — Au, (I = A1 A) (Tn1zn — u*))
HIT = X1 A) (Tsazn — u) |
S /\EL—H”b - AU’*H2 + 2/\n-}-1<b - AU'*aTn-}—lxn - U'*>
202 (b — Au*, ATy 20 — AUY) + [T — X1 AP [ Tns12n — v
€x 0’ €x .
< /\n+1? + /\n+1§ + /\n+1? + (1= Ap10) |z — v

= Ay + (1= App10)|zn — w'|%

By Lemma 2.1.2 , z, — u".

Case 2. We now consider the general case where z, is an arbitrary element of
H. Let (z,) be generated by z, and let (s,) be generated by starting at sg € Cy-.
Then by Case 1, s, — so. Therefore it suffices to show that ||z, — s,|| — 0. Since

. } i 1
An — 0 we may assume that there exists V € N such that n > NV implies A, < m



113

Now

Tp = b+ (I — AA) T Tn1

and

Sp = Ab+ (I — ApA)TnSn1-
Therefore it follows that for n > N

lzn — sall = (I - A AN (TrTn—1 — Tnsn-)ll

(VAN

11 = XAl [lzn-1 = sn]

< (1- An@) ||Tno1 — Sn—IH

n

< JJ- M) llaya—svall—0
k=N

by [N2] and Lemma 2.1.2 . Hence ||z, — sp|| — 0. O

For A = I we obtain the iteration
Tpi1 = )\n+1b -+ (1 — An+1)Tn+1$n.

Hence Theorem 6.5 becomes an extension of Theorem 3.7 . By Theorem 3.7 ,
z, — Pgpb where Pp is the projection of H onto F. In this case, therefore, the

unique minimizer of the minimization problem [P], is Pgb.

For the remainder of this chapter, the iteration scheme proposed by Deutsch and
Yamada [13] is considered and it is shown to converge to the solution of the optimiza-
tion problem. The main result of their paper, Theorem 3.7, shows the convergence
of the iterates to the unique minimizer of some function # over F. We provide a

complementary result to their main result where we replace Bauschke’s condition
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[B3 ] io:|/\n+N - /\n' < o0

n=1

on the parameters by our new condition

A
[N3 ] lim —=

n—=00 Apy N

= 1.

We first define those functions that will be considered in the problem [P].

Definition 6.6. Let S be a subset of a Hilbert space H, and let a function ¢ : H — R
be twice differentiable on some open set U 2 S. Then " : U — B(H) is said to be
uniformly strongly positive and uniformly bounded (or USPUB) over S if

0" (z) is self-adjoint for all z € S, and there exist scalars M > m > 0 such that

m|v|? < (8" (z)v,v) < M||v|)* forallz € S and v € H.

Definition 6.7. Let f : H — R. Then f is said to be lower semicontinuous at
Ty € Hif

f(zo) =liminf f(z) = sup inf f(z),

Z—To VENz, veV

where N, is the set of all neighbourhoods of the point z.

The following result was proved by Deutsch and Yamada [13] and it gives a char-

acterization of a minimizer of a convex function.

Lemma 6.8 ([13]; Lemma 2.1). (Characterization of minimizers of a convez dif-
ferentiable function.) Let 0 : H — R be lower semicontinuous over H, convezx over
a nonempty, closed and convex subset C' of H, and differentiable over some open set
U2 C. Thenu* is a minimizer of 0 over C if and only if (0'(u*),z — u*) > 0 for all

z e C.
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The following result guarantees the existence of the unique minimizer and its proof

can be found in [13].

Theorem 6.9 ([13]; Theorem 3.4). (Ezistence and Uniqueness of Optimal Solu-
tions) Let C be a nonempty, closed and conver subset of a Hilbert space H, and let
U C H be an open subset containing C. Assume that 0 : H — R is twice differentiable

on U, and there exists some m > 0 such that
m||v||* < (0" (z)v,v) forall z€C and v€ H.
Then there exists a unique point u* € C such that

f(u") = inf H(u).

ueC

The following three results are needed for the proof of the main result, the first of

which is proved in [13]. The second result is well-known.

Lemma 6.10 ([13]). Let S be a subset of a Hilbert space H, and let § : H — R be
twice differentiable on some open set U D S. Suppose that 6" . U — B(H) satisfies the
condition USPUB over S. Then for each 0 < u < K%[_’ the function ¥ =V, : H - R
defined by

W(z) = b(x) ~ ol
is twice differentiable and V" : U — B(H) satisfies
(8" (z)v,v)| < L|]v||? forall ze€S and veH.
In particular,
W'(2) = W'l < Ll =yl forallz,yes, (6.11)

where L := max{|um — 1, |uM — 1|} < 1.



Lemma 6.11. Let H be a Hilbert space. If h(z) = Z|\z||?, then h'(z) = z.

Proof. For allv € V,

Hence h'(z) = z.

(h'(z),v)

h(z + tv) — h(z)

lim

t—0 t
bl ol — el

t—0 t

o el + 2ol + 26m,v) ~ o]
t—0 2t

ot
%g}(} 5””“ + <£L',’U>

(z,v).
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Lemma 6.12 ([13]). Let T : H — H be a nonezpansive mapping with Fiz(T) #

0. Suppose that a function 8 : H — R is twice differentiable on some open set

U2 co(T(H)), and 08" : U — B(H) satisfies the condition USPUB over co(T(H)).

2
For an arbitrarily fived p with 0 < p < W let

T z) =

U(x) :

1
pé(z) — §||:ch2 forall zeH,

T(z) — b (T(z))

(1=XNT(z) - \W'(T(z)) forall A€[0,1] and z€ H

and for f € Fiz(T), let

Cyi={z o gy < LETOLL,

1-L

where L := max{|um — 1|, |uM — 1|} < 1. Then

1T (=)

T <L -A1-D)Jz —y]

forall z,ye H

(6.12)
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and for all f € Fiz(T),

TMCy) CCy forall Xe[0,1].

We are able to deduce from inequality (6.12) that 7% is a contraction for all
A € (0,1], and so by Banach’s Contraction Mapping Principle (Theorem 2.6.2 ), T*
has a unique fixed point uy. Before we show the convergence of the iterates defined by
equation (6.4) we will first show the convergence of these fixed points to the solution
of [P]. This result is new as the behaviour of these fixed points was not studied by

Deutsch and Yamada [13].

Theorem 6.13. Let uy be the unique fized point of T* for A € (0,1] as is defined in

equation (6.3). Then /l\irr(l) uy exists and solves the minimization problem [P].
-

Proof. Let u* € F(T) be the unique solution of the minimization problem. Its exis-

tence is guaranteed by Theorem 6.9 . Since u, is the fixed point of 7%, we have
uy = Tuy — Apb' (Tuy) = (1 = N)Tuy — AV (Tuy).
Hence
(1 — )\)(U)\ - TU)\) + )\(U)\ + \I/I(TU)\)) = 0.
It is evident that
(T~ X)(u" = Tu") + AMu* + V' (Tz*) = Mu* + V' (Tu)).

Subtract these two equalities to get

(1= M[(ur = u*) = (Tur = Tu")] + Auy — u* + V' (Tuy) — O'(Tu)]

= —Aut + U(TwY)).
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Noting that u*+ U’ (Tw*) = pd' (Tu*) and using uy —u* to make the the inner product

we obtain,
(1= X)((uy —u*) — (Tuy — Tu"),uy — u")
FA[lun = w|® + (V' (Tuy — U (Tu*), up — u*)]
= = (u),uy —u"). (6.13)
Now
((ur —u*) — (Tuy — Tu*),up —u*) = |luy—u*|* = (Tuy — Tu*,uy — u*)

> luy = w]? = | Tuy — Tu'|| luy — ¥
> fluy = w? = fluy — ut|?
_— (6.14)

and by Lemma 6.10 ,

INA

(W (Tun) = U(Tu"), up — u”)| ' (Tur) = W' (Tw) | flux = u*]

< LlTuy = Tuff flux — ||

IA

Lijuy — u*|%. (6.15)

Thus we obtain from equation (6.13), and inequalities (6.14) and (6.15), that
A0 (u?), ux = u) 2 Alfjun — w*|® = Lljuy — u?|?]

and we may deduce that

o =P < = (O (), iy — ), (6.16)

Since (¢'(T'uy)) is bounded,

lux = Tupl] = Apll0'(Tup)|| — 0 as A —s 0.



119

Hence we have by the Demiclosedness Principle that every weak cluster point of (uy)
is a fixed point of 7'.
Take any weak cluster point Z of (uy); i.e. uy := uy, — &. Therefore Z € Fiz(T) and

hence (¢'(u*), % — u*) > 0 by Lemma 6.8. Therefore by inequality (6.16), we have

i fun —w'|? € — T (0w, E - w)

< 0.

This implies that u, — u*, and hence Z = u*. So u* is the only weak and norm

cluster point of (uy) and therefore uy — u*. O

We will now prove the main result of this section.

Theorem 6.14. Let T, : H — H (i=1,2,...,N) be nonexpansive mappings with

N
F = ﬂF'Ll‘(Tz) #0

and
F = FZ.T(TN o Tl) = FZiL(TlTN < TQ) = ... = F’I;JJ(TN_ITN_Q v 'T]TN).

N

Let A := Uco(Ti(H)) and suppose that a function § : H — R is twice differentiable
i=1

on some open set U D A, and 6" : U — B(H) satisfies the condition USPUB over

A. Assume that (M) is a sequence of parameters in (0, 1] that satisfies
[NI] lim A, = 0.
n—00

[N2 ] A =o0.

n>1

(N3 ] lim 2=

N0 Apy N

=1.
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2
Then for any arbitrary fized p, 0 < p < i and any xo € H, the sequence (z,)

generated by

An+l L !
Tnt1 = Tn—tl Ty = Tn1Tn — Appr b (Tn-}—lxn)

converges to the unique minimizer u* of the function 6 over F.

Proof. Case 1. We will assume that

Ty € Cyr = {CEEH:H:E—u*“S”u%\DL(U)H}

where L := max{|um — 1|,|uM — 1|} < 1. The general case will be reduced to this
case. We follow the following steps.

(1) (z,) and (T®,) are bounded:
By Lemma 6.12 , T*(Cy-) C Cy- for all A € [0,1]. So 2p4y € Cy- and Thy12n € Cye
(using A = 0). Hence (z,,) and (T,,z,_1) are bounded.

(2) Tpy1 — Thy1Zn — O:
Define ¥(z) := pf(z) — %||az:||2 By Lemma 6.10 , the nonexpansivity of T,,,; and the

fact that z,, € C),», we have for all n > 0,

H\I’I(Tnﬂxn) - \I’I(U*)“ < L||Tn+lxn - U*H
S LHxn - U*H
< * / *
< Lo+ v

This implies that (¥'(Tn4+17,)) and hence ('(Thi17,)) are bounded. Noting that

U'(x) = pb'(x) — z, we have
||xn+1 - Tn+1$n“ = ’\n+1||:u’01(Tn+137n)||‘

Since A, — 0, we have 2,4, — T, 112, — 0.
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(3) Tpyn — Tn — O:
By Lemma 6.12 , the definition of the iterates and the fact that T, = T}, we have

| %48 — Znll

= HTy/z\rIrvanﬁ—N—l - Tﬁ\nxn—lH

< T st~ T Sl + T2 Gn s — T2
< = dngn(l- D) |Znsn-1 = Tnal|

NNzt = Aanv il (T nTn1) = TaTnor + At (Tn2n 1)
= [1= (1= L)AnenEnrn-1 = Zooall + 1 Aarw = Aa| 146 (Tnzn1)|
= [1 = (= L] lzaen-1 = Tacall + [Aarw = Al [Taznor + V' (Taza-1) |-
Since (V(Thzn-1)) and (Thxn—1) are bounded, there exists ¢ > 0 such that
| Thzn_1 + V' (Thzn )| <c(l—L)  foralln>1.
Hence

|Znsn — znll ST = (1 = L)Ansn] 1Tnsnv—1 — 21|l + ¢(1 = L) [ Anyn — Anl-

’/\n—i—N - /\nl
/\n—i—N
(4) Tn — dpyN - 'Tn—i—lxn — 0

By [N3], li_)m c(l-1L) =0, and s0 Zpyn — z, — 0 by Lemma 2.1.2 .
n—0eo

In view of (3), it suffices to show that

TnyN — Tngn - Toprzn — 0.

TnyN ~ TniNTnen-1 — 0
and

TniN-1 ~ TngN1Tnin_o — 0.
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T, ~ nonexpansive implies that
ToiNZniN-1 — Tpy Ny N—1Tnyn—2 — 0.
Similarly,

Tn+NTn+N—1In+N—2—Tn+NTn+N—1Tn+N—2xn+N—3 — 0

ToiNToin-1 - Tng2Znir = TnanTognv-1 - Loz — 0.
Adding these N sequences yields
TN — DnynTnan—1 - Thprzn — 0.

(5) im (T, 412, — u*, —0'(u*)) < 0

Since (z,) and (T,412,) are bounded, we can find a subsequence (n;) such that
lim (T 17y — v, =60 (u*)) = lim (TTn, 4120, —u", —0'(u")),
j

T =T; for some i€ {1,2,...,N} and for all j > 1,

and

Tp; =& for some £ € C-.

By (4) we obtain

Tny = Tign - TiZp; = Tp; — Tojyn - Ty 41, — 0.

]
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By the Demiclosedness Principle, Z € Fiz(Tiyy - - - Ti41) = F. Therefore

lim (Tny17n — u, —0'(u")) = jli_)r&(Tnijnj —u*, —0'(u"))

= jll)r{.lo(ﬂa:nj —u*, —6'(u"))
= (Tig — ", —6'(u"))
= (& —u", -0'(u"))

< 0

by Lemma 6.8 .

(6) x, — u™:

Noting that T’\H‘u* = Tt — M1 0 (T u®) = u* — Apypuf'(u®),

By the

n

l|xn+1 - U*“2
|T)\n+1 %2
| +1 In — U |

n

/\'n. /\'n. * *
”Tnﬁlxn -1 +T1u - )\n+1u9'(u )“2

n
T3 2n = T3

2 (T o =TT, =0 (w)) + N2y 10 (w1

T35 @ = Tor ot |1? + Ay 7116 (w2

+2uAn 1 (Tng1Tn — )\n+1N91(Tn+lxn) —u'+ )\n+1N91(U*)a —91(“*»
I3t e = Tort w7+ A2y 216/ ()2 + 2dng 1 (Taa 2o — w0 (u”))
=202 N2 (0 (Toian) — 0 (u'), 0 (u®))

||T,?H’a:n - T,?H’u*”z + 2pA g1 (T 12n — U, —QI(U*»

N1 [0 )? = 20 (Tasrza) — 0 (w7), 6 (u)) .

boundedness of (6'(T+1(z»))), by (5) and the fact that A, — 0, for any
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e > 0, we can find M € N such that for all n > M,

2T Tn — ut, 0 (0?)) < %(1—L),

P [0 ()P = 200 (Tosrzn) — 6'(u?), 0'(u))] < %(1 - L).

Using these and Lemma 6.12 , we have for all n > M,

} € €
s = wI* < (1= a1 = D) flen = wI* + Anga 5 (1= L) + Anga 5 (1 = L)

< L= dans(1 = L) flon = ' >+ Apaa(1 - De.

By Lemma 2.1.2 , z, — u*. This completes the proof for Case 1.

Case 2. We now consider the general case where 7y is an arbitrary element of
H (z¢ may not belong to Cy+). Let (z,) be generated by zo and (s,) be generated
by s € C,-. Then by Case 1, s, — wu*. Therefore, it suffices to show that
|Zn — sn|| — 0.

Now by Lemma 6.12 , we have

|Zn —sal] = “Tﬁ\nmn—l - Tﬁ\HSn—lH

IN

[1=An(l = L)} {|&n-1 = sn1l

[1 = A(1 = L)] lzo = soll

A

1

<0

by [N2] and Lemma 2.1.1 .

Hence ||z, — s,|| — 0, proving the general case. O
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Even though the next result follows as a Corollary to Theorem 6.14 , we never-
theless include the proof, because of its simplicity. We replace [N3] in Theorem 6.14

by [L3] lim An = Ania] =0, and clearly [L3] implies [N3] if lim A, = 0.

n—oo /\7?1+1 n—oo

Corollary 6.15. Let H be a Hilbert space. Assume thatT : H — H 1is nonexpansive

with Fiz(T) # 0. Assume that a sequence (A,) C (0,1] satisfies

[N ] lim A, = 0.

n—o0

[NQ]i/\n:oo.

[N8 ] lim Pn=Ansil _

n—oo )‘721+1

If (z,) is defined as follows
Tppr =Tz, = Tx, — A1 pl (Tzy,), zo€ H, n>0,
then (zn) converges to u*, the solution of the problem [P].

Proof. If u, := u,, is the unique fixed point of 7%*, then Theorem 6.13 shows that
u, — u*. Therefore, it suffices to show that z, — u, — 0 as n — oco.

We have, by Lemma 6.12 , that

2o —unll = [T (2n-1) = T (un)|
< [1 _/\n(l_L)]”xn—l “un”
< [1 _/\n(l_L)]Hxn—l — Up_1|

+[1 - An(1~ L) |lun—y — Un | (6'17)
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Now by Lemma 6.10 ,
un — tnoall = (1= Aa)Tun — AW (Tun) = (1 = Aam1) TUn—1 + A1 (Tun—1)||
= “(1 - /\n)(Tun - Tun—l) - (/\n - /\n~1)TUn—1

~(n = A )Y (Tun1) + A (¥ (Ttn—1) — ¥'(Tun)) ||

IA

(1 - /\n)Hun — Un_1f| + [An = An—1] HTUn—l + \I’,(Tun—l)n
+ A L|| Tun — Tu, ||

< (1=l = D) flun = vncall + a = Anca| [Tty + U (Tup-1)]-

Hence it follows that

‘/\n - /\n—li
A (1 —=1L)
CI/\n - /\n—ll
—  A(1-1)

since (Tun_,) and (U'(T(un-1))) are bounded. By inequality (6.17),

IA

1T + ' (Tun-1 )|

Hun — Un 1|

\ C|/\n — /\n——1|
[2n = unll < [1=An(1 = L) ] flzn-1 = tnall +[1 = An(1 = L] W
= [1 =Ml = D) [lzn-1 = un-1l
c[1 = A(1 = L)] [An — Anca

(1- Ly 32

= [1 =21 = D) |lzn-1 — tn-a] + Aa(l — L)y

e[l = Aa(1 = L)] |An — Azl

(- L) X2
Lemma 2.1.2 , z, — u, — 0. O

(1 - L)

where &, = — 0 as n — oo, by [L1] and [L3]. By

We will now show in Example 6.16 that the 6 defined by 8(z) := ||z — y|* is
a special case of Theorem 6.14 and turns out to be the scheme proposed in Theo-
rem 3.7. We will also show in Example 6.17 that Theorem 2 of [39] with 8 defined by

0(z) :== 5(Az,z) — (b z) is a special case of Theorem 6.14.
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Example 6.16. For 0(z) = %||z—yl||?, Theorem 6.14 is an extension of Theorem 3.7.

6(z + vt) — 6(z)

(0'(z),v) = lim

t—0 t

oy dlle ot =yl — 4l P
t—0 t

g o= P Bl 421~ y,0) — [z
t—0 2t

t
= lim ool + (= —y,)
= <$_y7v>'

Thus 6'(z) = z — y. Also,

(6"(z),v) = lim

t—0 14

BN et el ol )
t—0 t

= .

-
So " = I. Now (68" (z)v,v) = (v,v) = ||v]|>. So M = 1. Choose p =1 < i Also

Ang1 L ) !
= T,Hn.l Tn = dny1Zn — /\n+1,ue (Tn+1$n)

Tn+l
= Tur1Zn — Anp1(Tn1%n — )
= A1y + (1= Ay1)Tns1%n,
which is the iteration scheme of Theorem 3.7, and hence converges to Pgry.
By Theorem 6.14, (z,) converges to u*, the unique minimizer of problem [P]. There-

fore Ppy = u*. This can be verified by the following:
(Pry —y,u— Ppy) >0 forall ueF

by Lemma 2.4.3, and by the Lemma 6.8, Pry = u*. O
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Example 6.17. For 0(x) = 1(Az,z) — (b,x) where A € B(H) is self-adjoint and
strongly positive, and ||I — Al < 1, Theorem 6.1/ is an extension of Theorem 3

of [89].

Since A is linear,

@(2).0) = lim 0(z + vt) — 0(x)

— i [3(A(z + vt),z +vt) — (b,z + vt) ] — [ 2(Az,z) — (b, 7)]
10 4

~ lim s (Az, vt) + (A(vt), z) + (A(wt), vt) ] — (b, vt)
10 t

. s H{Az, v) + t{Av, z) + 2 (A(vt), vt) | — t(b,v)
10 t

= %[Q(A:r,v)] ~(b,v)
= (Az,v) — (b,v)

= (Az —b,v).

Thus 0'(z) = Az — b,

and so §"(z) = A.

Now A is strongly positive, so there exists v > 0 such that (Az,z) > afz|? for all
z € H. Therefore

allv]]* < (Av,v) < [|4]|[|o]*

2
Choose M = ||A|| < 2 and choose =1 < 7 Then

— Tl !
- Tnil Tn = dnp1Tp — /\n-|—1/1'9 (Tn~|—1$n)

Tn+1
= Tn-l—lxn - /\n-l—l(ATn-l—lxn - b)

= Anprb+ (I — A1 A) Ty,

which is the iteration scheme of [39]. O
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