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Abstract

Cold atoms and surface plasmons are now widely recognised as having a vast potential

as sources for future quantum information technologies, including in quantum sim-

ulations, quantum computing and quantum-enhanced metrology. In the first part of

this Thesis an experimental investigation of the decoherence of single surface plasmon

polaritons in plasmonic waveguides is carried out. In the study, a Mach-Zehnder con-

figuration previously considered for measuring decoherence in atomic, electronic and

photonic systems, is used. By placing waveguides of different lengths in one arm mea-

surements of the amplitude damping time, pure phase damping time and total phase

damping time were achieved. Decoherence was found to be mainly due to ampli-

tude damping and thus losses arising from inelastic electron and photon scattering play

the most important role in the decoherence of plasmonic waveguides in the quantum

regime. However, pure phase damping is not completely negligible. In the second

part of the Thesis the properties of light in the fundamental mode of a subwavelength-

diameter plasmonic nanowire are also investigated. One of the applications of the light

is the trapping of atoms by the optical force of the evanescent field and the subsequent

guiding of the emitted light from the atoms. The quantum correlation functions of

the emitted light from different numbers of atoms into the wave guided mode of the

nanowire are investigated analytically. It is found that the nanowire provides an ef-

ficient method of generating quantum states of light - it gives a faster time scale for

the dynamics and improved coupling efficiency compared to an equivalent dielectric

nanofiber. The results of this Thesis will be useful for the design of plasmonic wave-

guide systems for carrying out phase-sensitive quantum applications, such as quantum

sensing, and for the generation of novel quantum states of light for quantum comput-

ing and quantum communication. The probing techniques developed for the plasmonic

waveguides may also be applied to other types of plasmonic nanostructures, such as

those used as nanoantennas, as unit cells in metamaterials and as nanotraps for cold

atoms.
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Chapter 1

Introduction

1.1 Background

Plasmonic systems involve electromagnetic excitations of light coupled to electron charge den-

sity oscillations on the surface of metals [1]1. These hybrid excitations of light and matter are

known as surface plasmon polaritons (SPPs) and the electromagnetic field is highly confined [2, 3].

This confinement has opened up many applications for controlling light at the nanoscale, including

nanoantennas for sending and receiving light signals [4], the enhancement of photovoltaics for solar

cell technology [5], and many more [6]. The hybrid nature of SPPs has also raised the interesting

prospect of integrating photonics and electronics in the same platform [7]. Most recently, studies

have investigated plasmonics in the quantum regime [8], with single-photon sources [9–12] and

single-photon switches [13–15] being proposed and experimentally realized. These nanophotonic

devices are important for emerging quantum technologies, such as photonic-based quantum com-

puters [16, 17] and quantum communication networks [18]. Recent work has also demonstrated

several key quantum applications, including quantum sensing [19–21], quantum spectroscopy [24],

quantum logic gates [25], entanglement generation [26] and distillation [27], and quantum random

number generation [28]. What is surprising is that all of these applications can be realized even in

the presence of loss, which is ever present in plasmonic systems as they are scaled down to confine

light to smaller scales.

In the classical regime, loss has been studied extensively, both in plasmonic nanostructures and

waveguides [1]. At the microscopic level, loss is mainly due to the electron dynamics in the metal,

1This section is adapted from that published in https://arxiv.org/abs/1705.10344.
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which are governed by electron-electron scattering events, and electrons scattering with other charge

carriers, phonons, defects and impurities [29]. In the quantum regime, loss – commonly referred to

as amplitude damping [30] – has recently been studied in terms of its impact on the quantum statis-

tics of single SPPs in waveguides [31, 32]. However, in addition to loss of amplitude, an important

factor that needs to be taken into account is loss of coherence, both spatial and temporal [33]. In

the classical regime, there have been many works that have investigated loss of coherence in plas-

monic nanostructures and waveguides, both spatially [34–37] and temporally [38–42, 68]. At the

microscopic level, pure loss of coherence is due to elastic electron scattering processes that do not

lead to the loss of energy from the plasmon oscillation [38, 69]. In the quantum regime, loss of co-

herence – commonly referred to as phase damping [30] – has not yet been studied for single SPPs.

While results in the classical regime suggest that phase damping does not have a significant impact

on the plasmon dynamics in nanostructures [38] and in waveguides of short length [68], it is not

yet known how low-level excitations of light are affected, nor what role it may play in the plasmon

dynamics in longer waveguides. Given the increasing number of applications already demonstrated

for plasmonics in the quantum regime it is important to understand the relative impact of amplitude

damping, which also causes loss of coherence, and phase damping, so that phase-sensitive quantum

applications may be properly developed. This is the first of the two main topics investigated in this

Thesis.

With the rapid developments in the fields of quantum computation and quantum information sci-

ence, there has been growing interest in investigating new physical mechanisms that allow coherent

coupling between individual quantum systems and photon fields. Coupling between optical emitters

and light fields is one of the outstanding goals in quantum technology [43]. This may lead to many

possible applications, for example the generation of single photons on demand [44], the control of

the emission rate of quantum emitters [45], and the construction of single-photon transistors [13]

that would also facilitate the scalability of quantum computers. A stronger concentration of opti-

cal fields is possible with surface plasmons compared to conventional dielectric methods [46]. In

this setting, strong coupling is being pursued by combining emitters with nanophotonic waveg-

uides [47–49]. Akimov et al. have demonstrated a 2.5 fold enhancement in the emission of a single

quantum dot into the SPP mode of a silver nanowire and observed that the light scattered out of the

end of the nanowire is anti-bunched [9], as depicted in Fig 1.1 (a) and (b). The unique properties

of plasmons on this kind of metallic nanostructure have produced various effects such as single-
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(a) (b)

(a) (b)

(c) (e)
(c) (e)

(d)

(d)

Figure 1.1: Experiments with metalic nanostructures. a) Quantum dot emission into SPP modes of a
silver nanowire. The quantum dot decays into free space modes and SPP modes with rates Γrad and
Γpl respectively. b) Self-correlation coincidences of the scattered light from SPP modes [9]. c) An
atom near a metal surface emits photons with γrad into free space and γsp into SPPs guided modes
on the metal surface. d) SPPs on a thin metal film couple to the far field in the dielectric substrate
by leakage radiation. The emitted light field is p-polarized. A detector collects photons under the
solid angle ∆Ω. e) Rb cold atoms near a gold film. Emitted photons are collected by an optical fiber
coupler (FC) and detected with single-photon detectors [89].

molecule detection with surface-enhanced Raman scattering, and enhanced transmission through

subwavelength apertures. There is an increasing interest in these systems for applications such as

biosensing [50, 51] and subwavelength imaging [37].

Furthermore, proposals for trapping not just one emitter, but many in the form of ultracold atoms

placed close to plasmonic structures have received much attention recently [52–54]. The proposals

are based on the concept of dipole traps that are generated above plasmonic nanostructures, similar

to the optical trapping of nano-objects in plasmonically patterned light fields [55]. Atoms have the

advantage of being identical quantum emitters and have very narrow optical transitions with typical

widths in the megaHertz range. Using quantum optics techniques, clouds of atoms can be cooled
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to quantum degeneracy at temperatures of the order of nanoKelvins [56]. The atoms are trapped

with ultrahigh precision in magnetic microtraps in optical dipole traps where they suffer very low

intrinsic decoherence [57–59]. Stehle et al. have demonstrated cooperative coupling of ultracold

atoms with surface plasmons propagating on a plane gold surface [89] , as depicted in Fig. 1.1 (c),

(d) and (e). Plasmonic traps improve the control over the motion of atoms in the subwavelength

regime even further. Atoms that are positioned very close to plasmonic structures couple with high

efficiency to surface plasmon modes, which could be used for single-photon applications and for

enabling long-range interactions between atoms [52, 54]. Strong coupling is also acheived by com-

bining cold atoms with nanophotonic waveguides [47–49]. Kumar et al. have demonstrated the

propagation of higher order modes in an optical nanofiber integrated into a magneto optical trap

for neutral atoms [60]. In the dielectric waveguides it has been shown that a significant fraction

of emission from a single atom can be coupled into a nanofiber [61]. The quantum correlations

of photons emitted into a nanofiber have also been measured [62]. It is still unclear how metallic

waveguides supporting surface plasmons perform in this setting. This is the second of the two main

topics investigated in this Thesis.

1.2 Aim and Approach

The goal of this study is to use the techniques of quantum optics to investigate the fundamental

quantum mechanics of surface plasmons, to probe decoherence of plasmonic waveguides in the

quantum regime and to investigate the quantum properties of light generated from atomic decay

into the fundamental mode of a subwavelength-diameter plasmonic nanowire.

1.3 Outline

An experimental investigation of the decoherence of single surface plasmon polaritons in plasmonic

waveguides is carried out. The properties of light in the fundamental mode of a subwavelength-

diameter plasmonic nanowire are investigated. The aim of this thesis is to describe this work, in

the appropriate theoretical context and describing the methods of the experiment in detail for other

researchers to be able to reproduce and extend them. The chapters are organized as follows:

• In Chapter 2 the basic tools and techniques required to understand and evaluate the remain-

der of the thesis are described. The simplest classical description of the surface plasmon is
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given, which models the metal as a gas of free, independent electrons that move under the

influence of an applied field. Then the procedure for quantizing electromagnetic waves is

described and it is summarized how the same procedure can be applied to surface plasmons,

drawing on the analogy between the photon and the plasmon. Lastly a description is given

about the main ideas behind spontaneous parametric down-conversion (SPDC), the nonlinear

optical phenomenon used to generate pairs of single photons used in the experiment on the

decoherence of SPPs.

• In Chapter 3 the decoherence of SPPs in plasmonic waveguides in the classical and quantum

regimes is investigated. Both amplitude and phase damping effects of SPPs are measured. For

classical SPPs and single SPPs, it was discovered that amplitude damping is the main source

of amplitude and phase decay. The results will be useful in the design of phase-sensitive

quantum plasmonic applications, such as quantum sensing and allow appropriate quantum

states to be chosen for a given task to be achieved

• In Chapter 4 the atomic emission into nanophotonic waveguides is then presented. A descrip-

tion of the properties of light in the fundamental mode of a subwavelength-diameter dielectric

fiber is given. This is followed by the description of the properties of light in the fundamental

mode of a subwavelength-diameter silver nanowire. The correlations of the photons emitted

by fluorescence from atoms and an atomic cloud of atoms into guided modes of a nanofiber

are investigated, as well as the correlations between SPPs emitted by fluorescence into guided

modes of a silver nanowire.

• In Chapter 5, the project is summarised and the future outlook is discussed.
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Chapter 2

Basic Tools and Techniques

This chapter presents the theory that is required throughout this Thesis. It begins with a discussion

on surface plasmons, a totally classical result based on Maxwell’s equations. In quantum theory, in

contrast, excitations of surface plasma waves come in discrete energy steps. Like photons, singular

surface plasmons are indivisible and must be added to or subtracted from surface plasma waves in

number products. In accordance with this, the quantization of the free-space electromagnetic field

and that of surface plasmons is discussed. The chapter ends of with the description of a single-

photon source.

2.1 Surface Plasmon Polaritons

So as to investigate the properties of SPPs, we begin from Maxwell’s equations [64, 65]:

∇ · D = ρ, (2.1a)

∇ · B = 0, (2.1b)

∇ × E = −
∂B
∂t
, (2.1c)

∇ ×H = j +
∂D
∂t
, (2.1d)

where D is the dielectric displacement, E is the electric field, H is the magnetic field, and B is the

magnetic flux density. Without the external charge and current densities (∇ · D = 0 and j = 0)

Eqs. (2.1c) and (2.1d) can be combined to form the wave equation

∇2E −
ε

c2

∂2E
∂t2 = 0, (2.2)
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Figure 2.1: Charges and electromagnetic field lines of a SPP propagating on a metal (ε1 and z < 0)
and dielectric (ε2 and z > 0) interface along the x-direction.

where ε is the dielectric function of the material the electric field is in. To start with, assume a

harmonic time dependence E(r, t) = E(r)eiωt of the electric field and substitute it into Eq. (2.2) to

give

∇2E + k2
0εE = 0, (2.3)

and k0 = ω
c is the vacuum propagation constant. Consider surface plasma waves propagating in

the x-direction. Since the geometry is thought to be infinitely long in the y-direction, the elec-

tromagnetic field has no spatial dependence along the y-direction, as shown in Fig. 2.1. Now

E(x, y, z) = E(z)eiβx where β is the propagation constant. Substituting this into Eq. (2.3) yields

the following form of the wave equation

∂2E(z)
∂z2 + (k2

0ε − β
2)E = 0. (2.4)

In the same way the equation for the magnetic field H is obtained

∂2H(z)
∂z2 + (k2

0ε − β
2)H = 0. (2.5)

For time-harmonic dependence ( ∂∂t = −iω) and propagation along the x-direction ( ∂∂x = iβ) with no

spatial variation along the y-direction ( ∂∂y = 0) Eq. (2.1c) and (2.1d) for different field components

of H and E are simplified as follows:

∂Ey

∂z
= −iωµ0Hx, (2.6a)

∂Ex

∂z
− iβEz = iωµ0Hy, (2.6b)
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iβEy = iωµ0Hz, (2.6c)

∂Hy

∂z
= iωε0εEx, (2.6d)

∂Hx

∂z
− iβHz = −iωε0εEy, (2.6e)

iβHy = −iωε0εEz. (2.6f)

The guided electromagnetic modes have two solution sets, one for transverse magnetic (TM) modes

or transverse electric (TE) modes. For TM modes where only Ex, Ez and Hy are nonzero the

equations reduce to

Ex =
−i
ωε0ε

∂Hy

∂z
, (2.7)

Ez =
−β

ωε0ε
Hy, (2.8)

and by sustituting Eqs. (2.7) and (2.8) into the wave equation (2.4) yields the TM modes wave

equation which is given by
∂2Hy

∂z2 + (k2
0ε − β

2)Hy = 0. (2.9)

From the solution of Eq. (2.9) and Eqs. (2.7) and (2.8) the field components can be found for

z > 0

Hy(z) = A2eiβxe−k2z, (2.10a)

Ex(z) = iA2
1

ωε0ε2
k2eiβxe−k2z, (2.10b)

Ez(z) = −A1
β

ωε0ε2
eiβxe−k2z, (2.10c)

and for z < 0

Hy(z) = A1eiβxek1z, (2.11a)

Ex(z) = −iA1
1

ωε0ε1
k1eiβxek1z, (2.11b)

Ez(z) = −A1
β

ωε0ε1
eiβxek1z, (2.11c)

where

k2
i = β2 − k2

0εi (i = 1, 2) (2.12)

is the component of the wave vector perpendicular to the interface in the two regions and kz =

(−1)iki. The continuity of Hy and Ez at the interface means that

A1 = A2 =⇒
k2

k1
= −

ε2

ε1
. (2.13)
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By substituting this relation into Eq. (2.12) the dispersion relation of SPPs is given by

β = k0

√
ε1ε2

ε1 + ε2
. (2.14)

This equation is valid for both real and complex ε1. Carrying out a similar procedure for the TE

modes leads to the conclusion that no TE surface modes can exist due to the geometry of the sys-

tem.

2.2 Quantization of Photons and Plasmons

2.2.1 Quantization of the Free-Space Electromagnetic Field

The electric and magnetic fields can both be written in terms of the vector potential A(r, t) using the

following relations E(r, t) = −
∂A(r,t)
∂t and B(r, t) = ∇×A(r, t). In the Coulomb gauge, ∇·A(r, t) = 0,

the vector potential can be thought of as the electromagnetic field, i.e. a field that represents both

the electric and magnetic fields. With no sources, Maxwell’s equations in vacuum reduce to a single

wave equation for the vector potential,

∇2A −
1
c2

∂2A
∂t2 = 0. (2.15)

Consider a cavity region as a region of space, V = L3, without any real boundaries. Taking running

waves and subjecting them to periodic boundries leads to a relation for the spatial part of A in the x

direction represented by a plane wave eikx = eik(x+L) that

kx =

(
2π
L

)
mx, mx = 0,±1,±2..., (2.16)

and in the case of the y and z directions it is given by

ky =

(
2π
L

)
my, my = 0,±1,±2..., (2.17)

and

kz =

(
2π
L

)
mz, mz = 0,±1,±2, .... (2.18)

The wave vector is then given by

k =

(
2π
L

)
(mx,my,mz), mx,my,mz ∈ {0,±1,±2...} , (2.19)
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with k =
ωk
c .The vector potential for the electromagnetic field in the cavity can then be expressed as

a summation of plane waves, each with a specific wavevector k and polarisation s

A(r, t) =
∑
k,s

eks[Aks(t)eik·r + A∗ks(t)e
−ik·r]. (2.20)

Take note that in the Coulomb gauge condition, ∇·A = 0, implies that k · eks = 0 and ek1 × ek2 =

k
|k| = κ. By substituting Eq. (2.20) into Eq. (2.15) we obtain a harmonic oscillator equation given

by
∂2Aks

∂t2 + ω2
k Aks = 0; (2.21)

for amplitudes with Aks(t) = Aks(0)e−iωkt and Aks(0) ≡ Aks . By writing the electric and magnetic

fields in terms of the vector potential we have

E(r, t) = i
∑
k,s

ωkeks[Aksei(k·r−ωkt) − A∗kse
−ik·r−ωkt], (2.22)

B(r, t) =
i
c

∑
k,s

ωk(κ × êks)[Aksei(k·r−ωkt) − A∗kse
−ik·r−ωkt]. (2.23)

The energy stored in the field is given by

H =
1
2

∫
V

(
ε0E · E +

1
µ0

B · B
)

dV, (2.24)

where the integral is taken over the entire discretization box (x, y, z ∈ [0, L]). Substituting Eqs. (2.22)

and 2.23 into Eq. (2.24) gives

H = 2ε0V
∑
k,s

ω2
k AksA∗ks, (2.25)

where the modes are othorgonal and the combined boundry conditions expression is∫
V

e±i(k−k′)·rdV = δkk′V. (2.26)

To quantize the field, the amplitudes are set to be

Aks =
1

2ωk(ε0V)
1
2

[ωkqks + ipks], (2.27)

A∗ks =
1

2ωk(ε0V)
1
2

[ωkqks − ipks]. (2.28)

By sustituting Eqs. (2.27) and (2.28) into Eq. 2.25 the following expression is obtained

H =
1
2

∑
k,s

(p2
ks + ω2

kq2
ks), (2.29)

22



which is the Hamiltonian for a summation of independent harmonic oscillators of unit mass. To

quantize the electromagnetic field, we replace the classical amplitudes pks and qks with the quantum

operators p̂ks and q̂ks and impose the commutation relations

[q̂ks, q̂k′s′] = 0 = [ p̂ks, p̂k′s′], (2.30)

[q̂ks, p̂k′s′] = i~δkk′δss′ . (2.31)

For each mode we have the creation and annihilation operators, respectively, for the mode with

wavevector k and polarization s,

âks =
1

(2~ωk)
1
2

[ωkq̂ks + ip̂ks] (2.32)

â†ks =
1

(2~ωk)
1
2

[ωkq̂ks − ip̂ks], (2.33)

and they must satisfy the following commutation relation

[âks, âk′s′] = 0 = [â†ks, â
†

k′s′], (2.34)

[âks, â
†

k′s′] = δkk′δss′ . (2.35)

The energy of the field becomes the Hamiltonian operator as the sum of all modes and polarizations

and is given by

Ĥ =
∑
k,s
~ωk

(
â†ksâks +

1
2

)
. (2.36)

With the quantization of the field the amplitudes, Aks become operators, which, from Eqs. (2.27)

and (2.32), are given by

Âks =

(
~

2ωkε0V

) 1
2

âks. (2.37)

Finally, the quantized vector potential takes the form

Â(r, t) =
∑
k,s

(
~

2ωkε0V

) 1
2

eks[âksei(k·r−ωkt) + â†kse
−i(k·r−ωkt)], (2.38)

and the quantized electric and magnetic fields are given by

Ê(r, t) = i
∑
k,s

(
~ωk

2ε0V

) 1
2

eks[âksei(k·r−ωkt) − â†kse
−i(k·r−ωkt)], (2.39)
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B̂(r, t) =
i
c

∑
k,s

(κ × eks)
(
~ωk

2ε0V

) 1
2

eks[âksei(k·r−ωkt) − â†kse
−i(k·r−ωkt)]. (2.40)

2.2.2 Quantization of Surface Plasmons

For surface plasmons, a precisely comparable method yields a similar relationship between the

classical and quantum theory [66, 67]. Specifically, the vector potential that portrays the classical

surface plasmon fields is given by

A(r, t) =
∑

k
Akukeik·re−iωt + c.c, (2.41)

where c.c stands for complex conjugate and the quantization volume V is now an area L2, the sum

is over wavevectors k parallel to the metal’s surface. The vector uk(z) is given by the following

expression

uk(z) =
1

√
L(ω)

e−kiz(k̂ − i
k
ki

ẑ), (2.42)

where the wave vectors ki are the same as the ones described in Eq. (2.12) and L(ω) is a normaliza-

tion factor. The positive and negative solutions of Eq. (2.12) are taken for the fields in air (z > 0)

and the metal (z < 0) individually. The amplitudes Ak and A∗k become operators, as in Eq. (2.37) of

the previous section, which obey the commutation relation in Eqs. (2.34) and (2.35). Then surface

plasmons can be imagined as specifically similar to photons, they are the quanta of modes of the

electromagnetic field, created and destroyed by operators that take after the classical field ampli-

tudes in their dynamics. From this viewpoint, surface plasmons should replicate the greater part of

quantum effects that photons do, including quantum interference.

2.3 Single-Photon Source

2.3.1 Introduction

Spontaneous parametric down-conversion (SPDC) is a nonlinear process in which light of one fre-

quency is converted into light of a different frequency. In the process of SPDC a single photon of

one frequency is converted into two photons of lower frequency. The input wave is referred to as

the pump and the two outputs are referred to as the signal and idler. A type I SPDC process is

considered here, where the signal and idler photons have the same polarization but orthogonal to
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that of the pump. Conservation of energy requires that

ωp = ωs + ωi, (2.43)

where ωp is the frequency of the pump, ωs is the frequency of the signal and ωi is the frequency of

the idler. Conservation of momentum requires that

kp = ks + ki, (2.44)

where kp,ks and ki are the pump, signal, and idler wavevectors respectively. Equations (2.43)

and (2.44) are known as the phase-matching conditions. For a type I process the interaction Hamil-

tonian is ĤI = ~ηâ†s â†i + H.c, where â†s and â†i are the creation operators of the signal (s) and idler

(i) beams, respectively. The Hamiltonian represents a post-selection of the momenta of the output

beams. The factor η is proportional to the classical field amplitude of the pump and the second order

susceptibility of the nonlinear material. The signal and idler modes must emerge from the crystal on

opposite sides of concentric cones centered on the direction of the pump beam as shown in Fig. 2.2a.

Consider the initial state of the signal and idler modes to be represented by |Ψ0〉 = |0〉s |0〉i, which is

the vacuum state for type I down-conversion. The state vector evolves according to

|Ψ(t)〉 = e−
itĤI
~ |Ψ0〉 , (2.45)

which is expanded, since ĤI has no explicit time dependence, as

|Ψ(t)〉 ≈

1 − itĤI

~
+

1
2

(
−itĤI

~

)2 |Ψ0〉 (2.46)

to second order in time. For type I SPDC then we have

|Ψ(t)〉 =

(
1 −

µ2

2

)
|0〉s |0〉i − iµ |1〉s |1〉i , (2.47)

where µ = ηt. By detecting a photon in the idler (i) mode, a second term which has a single photon

in the signal mode is selected. We can also detect a pair of photons, which also select out the second

term, but this time there are two photons to work with as shown in Fig. 2.2.

2.3.2 Theory

In a classical field the correlations between the beam intensities, IB and IB′ is given by the degree

of second-order coherence, g(2)
B,B′(τ), which is a function of the time delay τ between the intensity

25



measurements [64]. It is given by

g(2)
B,B′

(τ) =
〈IB(t + τ)IB′ (t)〉
〈IB(t + τ)〉〈IB′ (t)〉

, (2.48)

where IB and IB′ are intensities detected by detectors B and B′. It is called the degree of second-order

coherence because it involves correlations between intensities. When taking intensity measurements

at τ = 0, for a 50:50 beam splitter in which the IB, IB′ , and incident intensity I have the following

relation IB(t) = IB′(t) = 1
2 Ii(t), then

g(2)
B,B′(0) =

〈[Ii(t)]2〉

〈Ii(t)〉2
= g(2)(0). (2.49)

Using the Cauchy-Schwartz inequality [65]

g(2)
B,B′

(0) = g(2)(0) ≥ 1. (2.50)

In quantum theory, the correlations between the output fields from the beam splitter are described by

the quantum degree of second-order coherence g(2)
B,B′(τ). The electric fields and intensities are treated

as quantum mechanical operators. By taking measurements at τ = 0, the detection of photons at the

outputs quantum mechanically results in

g(2)
B,B′(0) =

〈: ÎB ÎB′ :〉

〈ÎB〉〈ÎB′〉
, (2.51)

where the colons denote normally ordered operators with all creation operators to the left and anni-

hilation operators to the right. The intensity operator is proportional to the photon number operator

for the field n̂ = â†â, so that

g(2)
B,B′(0) =

〈n̂Bn̂B′ 〉

〈n̂B〉〈n̂B′〉
=
〈â†Bâ†B′ âBâB′〉

〈â†BâB〉〈â
†

B′ âB′〉
. (2.52)

Using beamsplitter transformations of the idler mode the second-order quantum coherence can now

be composed as [65]

g(2)
B,B′(0) =

〈n̂i(n̂i − 1)〉
〈n̂i〉

2 = g(2)(0). (2.53)

The second-order coherence between the beam splitter outputs is equal to the second-order coher-

ence of the input. Experimentally, g(2) at zero time delay is written as

g(2)(0) =
NABB′NA

NABNAB′
, (2.54)
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Figure 2.2: Single photon source experimental setup.

where NABB′ is the number of threefold coincidences, NAB is the coincidence rates between detec-

tors A and B, NAB′ is the coincidence rate between detectors A and B’ and NA is the number of

single counts at detector A. There is a coincidence window that determines whether the detections

are coincident. In the event that a genuinely single-photon state enters the beam splitter, the an-

ticipated result would be that g(2)(0) = 0, but this is not the case in an experiment. An outcome

of characterizing a coincidence with an infinite time window is a nonzero second-order coherence

function. This is on the grounds that there is the likelihood that uncorrelated photons from various

downconversion events may hit the B and B’ detectors inside the infinite incident window; these are

accidental coincidences.

2.3.3 Experimental Setup

Pairs of horizontally polarized single photons at 810 nm are produced by using a vertically polarized

200 mW solid-state laser (COHERENT OBIS) of peak wavelength 405 nm focused onto a Beta

Barium Borate (BBO) concatenated crystal cut for type-I SPDC. Phase matching conditions lead to

photons from a given pair being emitted into antipodal points of a forward directed cone with an

opening angle of 6◦ [90, 91]. Filters at 800 nm are placed on both paths (∆λ = 40 nm) before each

fiber coupler (FC) to spectrally select out the down-converted photons. The FCs consists of a 20x

microscope objective and XYZ-translation stage. Such broad filters are used in order to maximize

the generation rate of photon pairs for probing the plasmonic waveguides. While this influences the

spectral quality of the photons, it is shown later that a second-order correlation value well below

0.5 is achieved, which is a clear indication that the experiments are performed in the single-photon

regime. After the filters, each beam from the SPDC is sent to a single-mode fiber (SM).

Figure 2.2b shows a Hanbury-Brown and Twiss interferometer (HBT) used to measure the g(2)(0).

27



NA(103cps) NB(103cps) NB′(103cps) NAB(102cps) NAB′(102cps) NABB′(102cps)

99 97 126 5 6 0.002

Table 2.1: Count rate results at zero time delay.

One of the SM fibers is connected to a multimode (MM) fiber which is directly connected to a

single-photon silicon avalanche photodiode detector (SAPD Excelitas SPCM-AQR-15 labelled as

A) which monitors the arrival of one photon from a given SPDC pair. A detection of a photon at the

SPAD heralds the presence of a single photon in the other fiber [90]. The single-mode fiber on the

other arm is in the same way connected to a MM fiber. The heralded photons from this fiber are sent

to the HBT interferometer such that the correlations between photo-detections at SPAD detectors B

and B′ are measured. The signal from detector B is sent to an electronic delay box circuit which

make it possible to select the zero time delay required to take the measurement. Extra lengths of

cabling are used to delay the signals from detectors A and B making it possible to set negative

time delays (B′ arrives before A and B) using the delay circuit. Measurements were taken at zero

time delay to record 12 runs with an integration time of 5 s per run and a coincidence window of

8 ns.

2.3.4 Results

Table 2.1 shows the count rates at zero time delay produced by a single-photon source. When the

count rates and coincidence window increases, the number of accidental coincidences also increases.

Equation (2.54) was used to calculate g(2)(0) values. The average value of g(2)(0) was 0.1 ± 0.04,

which violates the classical inequality g(2)(0) ≥ 1 and it is lower than 0.5. This shows that single-

photon excitations were achieved.
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Chapter 3

Probing Decoherence in Plasmonic
Waveguides in the Quantum Regime

3.1 Introduction

In this chapter we experimentally investigate amplitude and phase damping for single SPPs in

waveguides1. We refer to both types of damping as ‘decoherence’ because amplitude damping

also reduces the coherence properties of single excitations [30, 70]. For the dimensions of the gold

stripe waveguides we use, as depicted in Fig. 3.1 (a), the spatial mode is well defined as a sin-

gle mode [71–74], with the SPPs excited in the number state degree of freedom. As a result, the

decoherence is in the temporal domain as the SPP propagates. We probe plasmonic waveguides

of varying lengths in a Mach-Zehnder interferometer configuration that has previously been used

to study decoherence in atomic [76–80], electronic [81–83], photonic [84, 85] and relativistic [86]

quantum systems. The configuration allows us to extract out values for the two main damping mech-

anisms of the SPP system, as depicted in Fig. 3.1 (b): the amplitude damping time, T1 – the time it

takes for the probability of an SPP in the excited state to reduce to 1/e its initial value – and the pure

phase damping time, T ∗2 – the time it takes for the off-diagonal elements of an SPP state to reduce

to 1/e their initial values. The total phase damping time, T2, for a single SPP includes contributions

from both T1 and T ∗2 , and is given by the relation T−1
2 = T−1

1 /2 + T ∗ −1
2 , i.e. T2 ≤ 2T1 [30], where

the presence of T1 is a result of amplitude damping also contributing to total phase damping. In

our experiment we find values of T1 = 1.90 ± 0.01 × 10−14 s, T ∗2 = 11.19 ± 4.89 × 10−14 s and

therefore T2 = 2.83 ± 0.32 × 10−14 s. These suggest that the total phase damping time is dominated

by amplitude damping, showing that loss of amplitude is the most important factor in the deco-

1This work is adapted from that published in https://arxiv.org/abs/1705.10344.
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Figure 3.1: Experimental setup for probing the decoherence of single surface plasmon polaritons
(SPPs). (a) Pictorial representation of the type of plasmonic waveguide probed. An input grating is
used to couple single photons into the plasmonic waveguide, creating single SPPs which propagate
along the waveguide, and then decouple back into single photons at an output grating. (b) Diagram
showing two main damping channels for the waveguides – amplitude damping (AD) and phase
damping (PD) – and their effect on the internal number state of the bosonic SPP: AD causes a loss of
energy and reduces coherence (red arrows), while PD maintains energy but reduces coherence (blue
arrows). (c) Microscope stage for probing the waveguides in configuration B. Configuration A does
not include half wave-plate 2 (HWP2), the polarising beamsplitter (PBS) and the 50:50 beamsplitter
(BS) - see main text for details. Inset shows a three-dimensional atomic force microscope image
of the different length gold stripe waveguides used. (d) A Mach-Zehnder interferometer (MZI) for
probing phase damping. (e) A modified version of the MZI with a polarizing beamsplitter, as used
in the microscope stage.

herence of single SPPs in the plasmonic waveguides. However, the role of pure phase damping is

not completely negligible. Our work shows that both amplitude and pure phase damping can lead

to decoherence in quantum plasmonic systems, and it provides useful information about the loss

of coherence that should be considered when designing plasmonic waveguide systems for phase-

sensitive quantum applications, such as quantum sensing [19–22] and quantum imaging [22, 23].

The techniques developed here for characterising decoherence in plasmonic waveguides may be

useful for studying other plasmonic nanostructures, such as those used as nanoantennas [4], as unit

cells in metamaterials [87, 88] and as nanotraps for cold atoms [89].
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3.2 Experimental setup

The setup used to probe SPP decoherence is shown in Fig. 3.1c. 2Here, a microscope is used to

convert single photons into single SPPs on plasmonic waveguides. Single photons generated via

SPDC, as explained in Chapter 2. Minor changes are made to the experimental setup for SPDC;

polarizing beamsplitters (PBSs) are positioned in the path of the down-converted beams to clean up

the polarization of the photons and remove any light with vertical polarisation. In order to main-

tain the polarization of the heralded photon while it is transferred to the microscope, a polarisation

maintaining (PM) fiber is used.

Two main configurations of the setup shown in Fig. 3.1c are used in the experiment. We denote

these as configuration A and configuration B. In configuration A, half-wave plate 2 (HWP2), the

PBS and the beamsplitter (BS) are not present. In this case, single photons are introduced to the

stage via the beam expander (BE). Then, HWP1, a linear polarizer (LP) and a quarter-wave plate

(QWP) are used to control the polarisation of the photons and maintain them as linearly polarized.

HWP4 is used to optimize the polarisation for coupling the single photons into single SPPs on the

waveguides [32]. A microscope objective (100x) focuses the beam of single photons onto the input

grating of a plasmonic waveguide, as depicted in Fig. 3.1a. Excited single SPPs then propagate

along the waveguide and are decoupled back into photons at an output grating. The microscope

collects the decoupled photons, which are picked off by a knife-edge mirror (KM) and directed to a

multimode fiber (MM) via a fiber coupler (FC). The MM fiber is connected to a SPAD. A detection

of a photon together with a detection of the corresponding heralding photon from the SPDC pair

within a coincidence window of 8 ns confirms single photons were sent through the microscope

stage, converted to SPPs and then back into photons again.

In configuration B, which is used for a number of measurements, all components shown in Fig.

1c are present. These enable the quantification of the impact of waveguide propagation on the co-

herence properties of single photons converted into SPPs. In this configuration, the microscope

becomes part of one arm in a Mach-Zehnder interferometer (MZI) by using the PBS and BS, with

one path photonic and the other plasmonic. Details of configuration B will be described later.

2Jason Francis contributed by designing the microscope stage for probing SPPs and data collection. Xia
Zhang contributed by providing the atomic force microscope images and data collection.
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The plasmonic waveguides probed have a range of different lengths, from 7.32 µm to 32.47 µm.

They are gold stripes 2 µm wide and 70 nm high. At the ends of the waveguides are gratings of

height 90 nm made from 11 steps of period 740 nm, serving as inputs and outputs for converting

photons to SPPs and back again [31]. Due to the design of the gratings, the optimal angle for in-

coupling a photon is normal to the waveguide surface. Furthermore, due to reciprocity, the photons

output from a grating at the end of a waveguide are also normal to the waveguide. This enables

the insertion and collection optics in our setup to all be placed on the same side of the waveguide

sample. The waveguides are fabricated as follows3. First, a positive photoresist is spin-coated on a

silica glass substrate (refractive index 1.526), and then electron beam lithography is used to define

the waveguide regions. Finally, a lift-off technique is used, with an adhesion layer of Ti (thickness

2-3 nm) followed by a 70 nm Au layer deposition using electron beam evaporation. The gratings

are formed on the top in a similar process, utilising alignment marks to match the layers. A 3D

image of the waveguides has been obtained using an atomic force microscope (NT-MDT Smena),

as shown in the inset of Fig. 3.1c.

3.3 Results

We start with the results for amplitude damping of single SPPs using the microscope stage in config-

uration A, i.e. without the MZI (HWP2, PBS and BS removed). Recent experiments have confirmed

the bosonic nature of SPPs [92–96], and explored related quantum behaviour [97]. Initial results

have also been obtained for amplitude damping of single SPPs [31]. Here, we confirm these results

and provide a more detailed analysis of the role of amplitude damping in the decoherence process.

We then investigate phase damping of single SPPs, which to our knowledge has not been done be-

fore. The study of amplitude and phase damping at the same time allows us to combine both into a

general model for decoherence of single SPPs. In Fig. 3.1b we show the energy level structure for

a system of a bosonic particle (the SPP) [65]. Amplitude damping is associated with energy loss

and the system, initially in an excited state |1〉, will decay to the ground state |0〉 after some time t

through its interaction with the environment. For the SPP this arises from electron collisions in the

supporting metal which cause energy loss in the electronic degree of freedom of the SPP, as well

as surface defects and the mode structure of the waveguide causing energy loss in the optical de-

3The waveguides were manufactured at NTT AT in Japan.
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gree of freedom due to coupling of light into the far-field. In general, for single bosonic excitations

undergoing amplitude damping we have the following transformation of the density matrix for the

system,

ρ(0)→ ρ(t) =

 ρ00 + (1 − e−Γ1t)ρ11 e−Γ1t/2ρ01

e−Γ1t/2ρ10 e−Γ1tρ11

 , (3.1)

where ρi j = 〈i| ρ(0) | j〉 are the initial entries of the density matrix at t = 0 in the number state

basis, |n〉, and Γ1 characterizes the strength of the damping induced by the environment [30]. In

the classical regime, Γ1 corresponds to population decay or loss, the value of which is easily found

by measuring the decay of the SPP intensity as a function of waveguide length. Here, the length

at which the intensity has dropped to 1/e of its initial value is the propagation length L [1], and

the value for Γ1 is then the inverse of the time at which the SPP reaches this length (T1), given by

Γ1 = vg/L, where vg is the group velocity of the SPP. In the quantum regime, when single SPPs are

considered, the value of Γ1 can be found similarly, but the intensity measurement is replaced by the

mean single-excitation count rate [31, 32]. This can be obtained in our setup by measuring the rate

of coincidences between the heralding photon and the photon that has undergone the photon-SPP-

photon conversion process, as the waveguide length increases. A coincidence detection corresponds

to the case where a single photon was generated, converted to a single SPP and then converted back

to a single photon. The length at which the coincidence rate drops to 1/e of its initial value is then

the propagation length L in the single-SPP regime. It represents the length at which the probability

of an excited single SPP to propagate to that point reduces to 1/e [31]. The value for Γ1 is then

obtained as in the classical case. To check that we are able to probe single SPPs in the waveguides

we measure the second-order correlation function g2(0) for single photons sent through a waveguide

of length 7.47 µm, as described in Ref. [31]. We find g(2)(0) = 0.26 ± 0.01, which is below 0.5,

confirming we are in the single-excitation regime [65]. This value of g(2)(0) is larger than that of

the photon source. This is due to the low count number and the stability of the setup over the period

in which the counts are recorded. The impact of the grating on filtering the frequency affects the

spectral purity of heralded photon.

We first measure the propagation length L using the microscope in configuration A in the clas-

sical regime using a white laser source (Fianium WL-MICRO) and a filter centered at 810 nm

with ∆λ = 10 nm. The input intensity is set to a few mW and the transmitted light intensity

(104 − 105 cps) is recorded by an SPAD coupled to a MM fiber, as shown in Fig. 3.1 (c). The results

for different waveguide lengths are shown in Fig. 3.2 (a). One can clearly see the well-observed
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Figure 3.2: Decoherence in the classical and quantum regime. (a) Intensity throughput as a function
of waveguide length showing amplitude damping for classical SPPs. (b) Amplitude damping for
single SPPs in the quantum regime measured via coincidences with a heralding photon. (c) Effective
phase damping parameter Γe f f as a function of waveguide length showing pure phase damping for
classical SPPs. (d) Effective phase damping parameter Γe f f showing pure phase damping for single
SPPs. The shaded regions represent upper and lower values of a straight line best fit using the least
squares method and a Monte Carlo simulation drawing each data point from within its individual
standard deviation with Poissonian distribution.

exponential decay of the intensity as the waveguide length increases. We find a propagation length

of L = 5.85±0.03 µm. Which is determined by the best fit to exponential decay shown in Fig. 2a via

a least squares method and extracting the 1/e value. This value is similar to previous experimental

work [28, 31], although slightly smaller than the 10 µm predicted using finite element simulation

(COMSOL) of the stripe waveguide [71–74]. The difference may be caused by edge effects along

the lateral width of the waveguides, surface and material defects during fabrication, and a small

deviation of the actual dielectric function of gold from that used in the simulation [75]. COMSOL’s

2D mode silver model was used to solve for modes supported by the stripes. The solution gives

the full fields and complex effective mode index (which was used to calculate vg). The geometry

of the system was the 2D cross-section of the waveguide. The mesh has a minimum element size

of 0.1 nm everywhere and a maximum element size of λ0/25 for the waveguide and surrounding
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Figure 3.3: Dispersion curve for light in a stripe waveguide.

region extending 250 nm from the waveguide surface. The maximum element size elsewhere is

λ0/5. Here λ0 is the free-space wavelength of 810 nm corresponding to the SPP.

To convert this to the amplitude damping time T1 we obtain the SPP dispersion relation for the plas-

mon mode in the waveguide from the simulation shown in Fig. 3.3. Based on this, we find the group

velocity vg(ω0) = 2.958×108 ms−1 at the free-space wavelength λ0 = 810 nm. From the simulation

k as a function of ω, vg(ω0) =
(
∂k
∂ω

)−1
at a given ω0. A more rigorous approach would be to directly

measure the group velocity; however, for the waveguide dimensions and free-space wavelength we

consider, theoretical simulation describes the experimental data well [73]. Furthermore, here we

use the group velocity simply to convert the damping factor into the time domain and its value in

the spatial domain is valid regardless. Using the group velocity we find Γ1 = 5.06 ± 0.01 × 1013 s−1

and an amplitude damping time of T1 = Γ−1
1 = 1.98 ± 0.01 × 10−14 s.

In Fig. 3.2 (b) we show the results for single SPPs in our experiment. Here, the exponential decay of

the mean count rate (observed via the coincidence rate) is seen as the waveguide length increases.

The data collection time has been increased to 24 s for each length in order to measure a simi-

lar number of counts as the classical case, which has a shorter collection time of 1 s. We find a

propagation length of L = 5.61 ± 0.05 µm, consistent with the result from the classical regime.
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From this we obtain Γ1 = 5.27 ± 0.02 × 1013 s−1 and a single-SPP amplitude damping time of

T1 = Γ−1
1 = 1.90 ± 0.01 × 10−14 s. In general, the relation between the phase damping time T2

and amplitude damping time T1 is given by T−1
2 = T−1

1 /2 + T ∗ −1
2 [30], where T ∗2 is the pure phase

damping time. Thus, from the above result we already have an upper bound of T2 ≤ 2T1 for single

SPPs in the quantum regime. However, T ∗2 remains to be found to determine the exact value of T2,

and could reduce it appreciably.

Pure phase damping characterized by the time T ∗2 is associated with interactions where energy is

maintained and therefore a system initially in a ground state, or excited state, will remain in that state

after some time t. However, a state in a superposition of ground and excited states will experience a

loss of coherence between the states due to a time varying change in the relative phase. For the SPP

this arises from electron collisions in the supporting metal associated with elastic processes [38,69].

For single bosonic excitations we have the following transformation of the density matrix,

ρ(0)→ ρ(t) =

 ρ00 e−Γ∗2tρ01

e−Γ∗2tρ10 ρ11

 , (3.2)

where Γ∗2 characterizes the strength of the damping induced by the environment [30]. In the classical

regime, Γ∗2 corresponds to the loss of temporal coherence. We obtain its value in the classical and

quantum regime by placing different length plasmonic waveguides inside a MZI and measuring the

loss of interference between the two paths, as shown in Fig. 3.1 (d). In what follows, we describe

how this is done in the quantum regime and link it with the classical case in the corresponding

limit.

We start with the case of no decoherence in the waveguides. In Fig. 3.1 (d) we consider the input

state |0〉1 |1〉2, corresponding to a single photon in mode 2. The first beam splitter (BS1) transforms

the state to [65]
1
√

2
(|0〉1′ |1〉2′ + i |1〉1′ |0〉2′). (3.3)

Taking the neutral density (ND) filter and plasmonic waveguide as having unit transmission for the

moment, and the mirrors (M1 and M2) contributing a phase factor eiπ/2 to each term, we have the

following state after the second beamsplitter (BS2),

1
2

[(1 − ei(φ−δ)) |0〉1′′ |1〉2′′ + i(1 + ei(φ−δ)) |1〉1′′ |0〉2′′]. (3.4)

Here, the phase φ corresponds to a change in path length 1′ caused by mirror M1 placed on a
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translation stage and the phase δ = kspp`, with kspp the SPP wavenumber and ` the length of the

plasmonic waveguide. The probability of a photon detected in mode 1′′ is then simply

p(φ) =
1
2

(1 + cos(φ − δ)). (3.5)

We now introduce decoherence in the system. When amplitude and pure phase damping are in-

cluded in the plasmonic waveguide, the transformations in Eqs. (3.1) and (3.2) are applied to

the state after the first beamsplitter, given by Eq. (3.3). The transformations are given explic-

itly for mode 2′ by |0〉 〈0| → |0〉 〈0| + (1 − e−Γ1t) |1〉 〈1| , |0〉 〈1| → e−Γ∗2te−Γ1t/2 |0〉 〈1| , |1〉 〈0| →

e−Γ∗2te−Γ1t/2 |1〉 〈0| and |1〉 〈1| → e−Γ1t |1〉 〈1|. The probability of a photon detected in mode 1′′ then

becomes

p(φ) =
1
4

(1 + e−Γ̃1 + 2e−Γ̃1/2−Γ̃∗2 cos(φ − δ)), (3.6)

where Γ̃1 = Γ1`/vg = `/L and Γ̃∗2 = Γ∗2`/vg. As Γ̃1 is already known from previous measurements

and δ is a fixed phase for a given waveguide length `, then by measuring p(φ) as φ is varied using

the translation stage of M1, the remaining unknown parameter Γ̃∗2 can be extracted to obtain Γ∗2, and

thus T ∗2 . In practice, however, the impact of amplitude damping in the plasmonic waveguide reduces

the average value of p(φ) significantly and in the most extreme case we have p(φ) = 1/4, as only

photons going through the free-space arm of the MZI will be detected. As the amplitude damping

in the plasmonic waveguide becomes large it is difficult to observe oscillations in p(φ) and extract

out Γ̃∗2. This problem can be addressed by introducing an additional tuneable amplitude damping

on the free-space arm using a variable neutral density (ND) filter. As the photon is also a boson, we

can use Eq. (3.1) to model the damping, which changes the probability of detection to

p(φ) =
1
4

(e−Γ + e−Γ̃1 + 2e−(Γ+Γ̃1)/2−Γ̃∗2 cos(φ − δ)), (3.7)

where Γ characterizes the amplitude damping on the free-space arm. This parameter can be tuned

to match Γ̃1 in the plasmonic waveguide by blocking the plasmonic waveguide arm and measuring

the output counts in mode 1′′ as the ND filter is varied.

In order to integrate the MZI of Fig. 3.1 (d) into our microscope stage more easily we replace

BS1 and the variable ND filter with a PBS preceded by HWP2, as shown in Fig. 3.1 (e). This

configuration provides polarization control over the relative splitting into modes 1′ and 2′, and

allows us to increase the rate of photons injected into the plasmonic waveguide compared to the

original configuration of Fig. 3.1 (d). HWP4 provides polarization control for optimising coupling
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of single photons to single SPPs and HWP3 rotates the polarization of the free-space arm to match

the output of the plasmonic beamsplitter in order to obtain interference at the BS. For a given

waveguide length, once HWP3 and HWP4 have been modified, the polarization state in the free-

space and plasmonic arms is fixed for the entire set of measurements. The above modifications

change the detection probability to

p(φ) =
1
2

(e−Γ1′ + e−(Γ̃1+Γ2′ ) + 2e−(Γ1′+Γ2′+Γ̃1)/2−Γ̃∗2 cos(φ − δ)), (3.8)

where Γ1′ and Γ2′ are controlled by HWP2, and we set Γ1′ = Γ̃1 + Γ2′ in order to observe clearly

a symmetric oscillation in p(φ). Finally, we include a possible asymmetry in the splitting at the

BS, which has an order of magnitude larger error in its splitting than the PBS. With reflection and

transmission coefficients R and T , respectively, for the BS, this changes the detection probability

to

p(φ) = R e−Γ1′ + T e−(Γ̃1+Γ2′ )

+2
√

RTe−(Γ1′+Γ2′+Γ̃1)/2−Γ̃∗2 cos(φ − δ). (3.9)

From the above equation it would appear that only a single waveguide length is needed to extract

out Γ̃∗2. However, in practice it is not always possible to get a complete overlap of modes 1′ and

2′ at the BS. This non-ideal overlap reduces the visibility of the oscillations in p(φ) and acts as

an effective phase damping, which we describe using the parameter Γint. Thus, Γ̃∗2 in Eq. (3.9) is

transformed as Γ̃∗2 → Γeff = Γ̃∗2 +Γint. Due to this non-ideal overlap, it appears that we must also find

Γint to obtain Γ̃∗2. This can be done by extracting Γeff from p(φ) for waveguides of different lengths

and then using Γeff(`) = Γ∗2`/vg + Γint, where the pure phase damping per unit length, Γ∗2/vg, is the

gradient of Γeff(`) and Γint is the y-intercept.

In Fig. 3.2 (c) and (d) we plot Γeff(`) for increasing waveguide length in the classical and quantum

regime, respectively. For the classical case, Γeff(`) is obtained by fitting the function I(φ) = Iin p(φ)

to intensity measurements, where Iin is the initial input intensity to the MZI. Examples of the in-

tensity measurements for the different waveguide lengths probed in the classical regime are shown

in Fig. 3.4 (a)-(d) over a period of oscillation. A Monte Carlo simulation is carried out for each

of these figures, where Γeff(`) is varied to fit the function I(φ) for 200 instances of a given figure.

Each instance has its data points drawn randomly from within the standard deviations measured

at each value of φ using a Poissonian distribution. All other parameters of I(φ) are known except
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Figure 3.4: Intensity dependence of the output signal from the MZI in the classical and quantum
regimes for different waveguide length as the phase φ is modified. Here, φ = 2πsx/λ0, where s
accounts for the translation stage geometry and x is its position ×2 (total delay). (a)-(d) The left
hand column corresponds to the classical regime with intensity measured as counts. (e)-(h) The
right hand column corresponds to the quantum regime with intensity measured as coincidences.
The solid lines are fits using p(φ). The length of the waveguide increases with row number in steps
of 5 µm and is 8.31 µm, 13.31 µm, 18.31 µm and 23.31 µm for the left hand column and 7.47 µm,
12.47 µm, 17.47 µm and 22.47 µm for the right hand column. The visibility is given in the inset for
each panel and related to system parameters by V = (pmax − pmin)/(pmax + pmin). Maximum counts
do not necessarily decrease as the length increases due to variations in alignment and intensity
optimized for each waveguide.

for Γeff(`), and the resulting values extracted are shown in Fig. 3.2 (c). The error bars on each

value are obtained by analysing and fitting I(φ) to several periods of oscillation for each waveguide
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length `. From Fig. 3.2 (c) we find a gradient of Γ∗2/vg = 0.042 ± 0.003 (µm)−1 and thus a value of

Γ∗2 = 1.25 ± 0.11 × 1013 s−1 and T ∗2 = 8.03 ± 0.71 × 10−14 s.

It should be noted that the periods of the oscillations shown in Fig. 3.4 are not all equal to the

wavelength of the single photons (810 nm). The change in the period is due to small differences

in the angle of the output beam for different length waveguides. Although the output beams from

the gratings are designed to be normal to the waveguide surfaces, small differences in the lateral

beam displacement due to the different length of the waveguides results in an angle change when

the beams pass through the microscope objective. The result is that the delay distance x that the

mirror stage moves is rescaled by a small geometric factor s, becoming sx. The change in period

does not have any effect on the values of the decay parameters extracted from the fits as these are

dependent only on the amplitude and mid-point of the oscillations.

In Fig. 3.2 (d) we perform the same extraction method for single SPPs and Fig. 3.4 (e)-(h) shows

examples of the oscillations used for each waveguide length. From Fig. 3.2 (d) we find a gradient

of Γ∗2/vg = 0.030 ± 0.013 (µm)−1 and thus a value of Γ∗2 = 0.89 ± 0.39 × 1013s−1 and T ∗2 =

11.19±4.89×10−14s. While the results from the quantum case are clearly statistically more noisy, the

values are consistent with those found in the classical regime to within a standard deviation.

It is also interesting to inspect the values of Γint, which are found to be 0.048 ± 0.061 and 0.893 ±

0.193 for the classical and quantum case, respectively. The difference in values is due to the better

mode overlap achieved in the classical case, as the interference could be optimized by monitoring

the intensity fluctuations with a spectrometer in real-time and with a reduced bandwidth for the

source of light. Indeed, one can see the better mode overlap via the high visibility of the oscillations

in the classical case in Fig. 3.4 (a). For the quantum case, due to the low count rates real-time

monitoring could not be performed and a similarly good mode overlap was not possible. The low

count rates are also the cause of the larger error bars in Fig. 3.2 (d), as the statistical fluctuations are

larger due to the instability of the MZI over the longer time periods required for data collection. The

single-SPP amplitude damping measurements shown in Fig. 3.2 (b) do not require the MZI and thus

have smaller error. Improvements to the generation rate of our single-photon source would allow

an increase in visibility and reduction in the error in the phase damping investigation. It would

also allow the probing of longer waveguides. However, even with the current setup we are able to

observe the same trend of Γeff in the quantum regime as seen in the classical regime.
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Classical Quantum
Γ1 5.06 ± 0.01 × 1013 s−1 5.27 ± 0.02 × 1013 s−1

Γ∗2 1.25 ± 0.11 × 1013 s−1 0.89 ± 0.39 × 1013 s−1

Γ2 3.77 ± 0.12 × 1013 s−1 3.53 ± 0.40 × 1013 s−1

T1 1.98 ± 0.01 × 10−14 s 1.90 ± 0.01 × 10−14 s
T ∗2 8.03 ± 0.71 × 10−14 s 11.19 ± 4.89 × 10−14 s
T2 2.65 ± 0.08 × 10−14 s 2.83 ± 0.32 × 10−14 s

Table 3.1: Summary of results from probing decoherence in plasmonic waveguides.

An important factor that might influence our measurement of pure phase damping is dispersion in

the plasmonic waveguides. For large dispersion, the SPP wavepacket would spread significantly

and any interference between the photon it is converted into and the free-space photon would be

reduced, and appear as phase damping. In order to assess the impact of this effect, we calcu-

late the group velocity dispersion (GVD) coefficient, defined as Dω0 = d
dω ( 1

vg(ω) )|ω0 [98]. Using

the dispersion relation for the plasmonic waveguides from the mode simulation [71–74], we find

Dω0 = 5.81 × 10−25 s/m-Hz. To see how this affects the interference, as an example we take

an initial Gaussian wavepacket spectral amplitude for a single SPP centred on ω0 as ξ0(ω) =

(2πσ2
ω)−1/4e−(ω−ω0)2/4σ2

ω , where a single SPP is described as
∣∣∣1ξ〉 =

∫
dωξ0(ω)â†(ω) |0〉 [32, 65].

The initial temporal spread is σt0 = 1/2σω. After time t, the wavepacket has moved a distance `

and spread according to σt = (σ2
t0 + (`Dω0/2σt0)2)−1/2. We then have the corresponding spectral

amplitude ξt(ω) = (2πσ2
ω,t)
−1/4e−(ω−ω0)2/4σ2

ω,t , with σω,t = 1/2σt. Calculating the overlap of ξ0(ω)

and ξt(ω) gives a quantity that represents how well the mode from the plasmonic waveguide over-

laps with the free-space photonic mode at the BS in the MZI [99]. Here, ξ0(ω) represents the photon

in the free-space mode (negligible dispersion) and ξt(ω) represents the photon from the plasmonic

waveguide (with dispersion). Setting σω = ∆ω/2
√

2ln2, with ∆ω corresponding to a FWHM of

∆λ = 40 nm, and taking ω0 corresponding to the central wavelength λ0 = 810 nm and using the

GVD coefficient together with a length ` = 90 µm (more than 3 times the longest waveguide con-

sidered), we find
∫
ξ∗0(ω)ξt(ω)dω = 0.99. Thus it is expected that there is a negligible impact of

dispersion on the interference for the waveguide lengths considered.

We now combine all the results in this study, taking the amplitude damping and pure phase damping

values found. The combined phase damping time is T2 = (T−1
1 /2 + T ∗ −1

2 )−1 = 2.65 ± 0.08 × 10−14s

and 2.83±0.32×10−14s in the classical and quantum regimes, respectively. We are therefore able to

confirm that in both cases, amplitude damping is the main source of phase and amplitude decay in

41



the plasmonic waveguides, although pure phase damping modifies the phase damping by a relatively

small amount. A summary of the main results of the study is given in Tab. 3.1.

3.4 Discussion

In this Chapter we investigated the decoherence of SPPs in plasmonic waveguides in the classical

and quantum regimes. We measured both amplitude and phase damping effects of SPPs. We found

that for classical SPPs and single SPPs, amplitude damping is the main source of amplitude and

phase decay. The results will be useful in the design of phase-sensitive quantum plasmonic applica-

tions, such as quantum sensing and allow appropriate quantum states to be chosen for a given task

to be achieved. While our work has been limited to probing decoherence for single excitations of

SPPs in the quantum regime and many excitations in the classical regime, there is an intermediate

regime, involving low numbers of excitations that remains to be investigated. It would be interest-

ing to confirm the role of decoherence in this regime, where the bosonic SPP mode is treated as a

qudit [100]. This would be important for developing quantum plasmonic state engineering at the

few SPP excitation number.
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Chapter 4

Atomic Emission into Nanophotonic
Waveguides

In this chapter we investigate the properties of the field in the fundamental mode HE11 with circular

polarization of a vacuum-clad subwavelength-diameter optical fiber from Maxwell’s equations. The

properties of light in the fundamental mode of a subwavelength-diameter plasmonic nanowire are

also investigated. The quantum correlation functions of the emitted light from different numbers of

atoms into the guided mode of the fiber and nanowire are investigated analytically. From this we see

that the plasmonic nanowire is a more efficient method of generating quantum states of light.

4.1 Field Expressions in an Optical Fiber

Consider a thin, single-mode optical fiber that has a cylindrical silica core of radius a and refractive

index n1 = 1.45 and an infinite vacuum clad of refractive index n2 = 1. The fiber supports the fun-

damental mode with circular polarization HE11. The dispersion relation is given by [61,101]

J0(ha)
haJ1(ha)

= −
n2

1 + n2
2

2n2
1

K′1(qa)
qaK1(qa)

+
1

h2a2

−

n2
1 − n2

2

2n2
1

K′1(qa)
qaK1(qa)

2

+
β2

n2
1k2

(
1

q2a2 +
1

h2a2

)2


1
2

,

(4.1)

where β is the propagation constant that satisfies this equation when all other parameters are set.

The expression Jn represents the Bessel functions of the first kind and expression Kn the modified

Bessel functions of the second kind. The parameter h describes the field inside the fiber and is given
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by the expression below

h = (n2
1k2

0 − β
2)

1
2 , (4.2)

with k0 = 2π
λ and λ is the free-space wavelength of the field. The parameter q describes the field

outside the fiber and is given by

q = (β2 − n2
2k2

0)
1
2 . (4.3)

The solutions of Maxwell’s equations for the cylindrical components of the electric field E in this

mode are given for r < a by the expression below

Er(r, ϕ, z) = iA
q
h

K1(qa)
J1(ha)

[(1 − s)J0(hr) − (1 + s)J2(hr)], (4.4a)

Eϕ(r, ϕ, z) = −lA
q
h

K1(qa)
J1(ha)

[(1 − s)J0(hr) + (1 + s)J2(hr)], (4.4b)

Ez(r, ϕ, z) = f A
2q
β

K1(qa)
J1(ha)

J1(hr), (4.4c)

and for r > a they are given by

Er(r, ϕ, z) = iA[(1 − s)K0(qr) + (1 + s)K2(qr)], (4.5a)

Eϕ(r, ϕ, z) = −lA[(1 − s)K0(qr) − (1 + s)K2(qr)], (4.5b)

Ez(r, ϕ, z) = f A
2q
β

K1(qr). (4.5c)

The expressions above are mathematically correct and true for the fundamental mode with rotating

polarization of a fiber of radius a and pair of refractive indices n1 > n2. The coefficient A is a

normalization constant of the fields, which links the power carried by the mode to the maximal field

amplitude and is given by

A = (2πa2(n2
1P1 + n2

2P2))−
1
2 , (4.6)

where P1 and P2 are given by the following expressions

P1 =
q2K2

1 (qa)

h2J2
1(ha)

(
(1 − s)2[J2

0(ha) + J2
1(ha)] + (1 + s)2[J2

2(ha)

−J1(ha)J3(ha)] + 2
h2

β2 [J2
1(ha) − J0(ha)J2(ha)]

)
,

(4.7)

P2 =(1 − s)2[K2
1 (qa) − K2

0 (qa)] + (1 + s)2[K1(qa)K3(qa)

− K2
2 (qa)] + 2

q2

β2 [K0(qa)K2(qa) − K2
1 (qa)].

(4.8)
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Figure 4.1: Intensities |Ez|
2, |Er |

2, and |Eϕ|
2 of the cylindrical-coordinate components of the field in

the HE11 mode with circular polarization.

The parameter s is given by

s =

(
1

q2a2 + 1
h2a2

)
[

J′1(ha)
haJ1

+
K′1(qa)

qaK1(qa)

] . (4.9)

To demonstrate the features of subwavelength-diameter fibers, numerical calculations of field ex-

pressions for the following parameters: a = 200 nm, λ = 852 nm (standard cooling transition in

atomic caesium), n1 = 1.45, and n2 = 1 were performed. The intensities |Ez|
2, |Er |

2, and |Eϕ|
2

of the cylindrical-coordinate components of the field are plotted see Fig. 4.1. The intensities are

plotted as functions of r in Fig. 4.1. The field intensity distributions at r
a < 1 inside the fiber and

at r
a > 1 outside the fiber have very different behaviors. Due to the boundary condition and the

high contrast between the refractive indices of the silica core and the vacuum cladding, the radial

component Er has a discontinuity when r = a, while Ez and Eϕ do not have this discontinuity and

are continuous. Outside the fiber, the intensities of the transverse components Ex and Ey differ

from each other and substantially vary with ϕ and, inside the fiber, |Ex|
2 and |Ey|

2 are almost equal

to each other and do not vary with ϕ. The azimuthal profiles are shown in Fig. 4.2(a), (b) and (c),

and the cross-section profiles are shown in Fig. 4.3(a), (b) and (c). The cross-sectional plots of

magnitudes of the electric fields are shown in Fig. 4.4(a), (b) and (c). From Fig. 4.2 it is clear that
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Figure 4.2: Azimuthal profiles of the intensities |Ex|
2, |Ey|

2, and |Ez|
2 of the Cartesian-coordinate

components of the electric field in the HE11 mode with circular polarization.

the azimuthal dependences of |Ex|
2 and |Ey|

2 outside the fiber reduce as r increases. Figures 4.3(a)

and (b) show the distribution of the electric field cross-section profiles inside and outside the fiber.

The regions where r < a and r > a are clearly identified due to the discontinuity at the boundary

r = a. This strong discontinuity is due to the large refractive index difference between the bulk

and the surrounding medium and from the strong radial confinement of the field when λ > a. The

strength of the evanescent field outside the fiber is apparent in Fig. 4.1(b), the field outside is higher

than inside the fiber and almost three times as large as inside the fiber. In figures 4.2(c), 4.3(c)

and 4.4(c) the longitudinal-component intensity |Ez|
2 is perfectly cylindrically symmetric, in the

whole cross-section plane and |Ez|
2 is small when compared to |Ex|

2 and |Ey|
2. Figures 4.5(a) and

4.5(b) are vector plots of the electric field component transversal to the fiber axis (Ex, Ey) inside and

outside respectively. The field rotates in time with respect to the fiber axis, and the rotation is not

perfectly circular. The position of maximal ellipticity is located at the surface of the fiber (r = a).

This is taken from the boundary conditions for the electric field [102], which lead to a discontinuity

in the Er component at the fiber surface.

The properties of the field in the fundamental mode HE11 with circular polarization of a vacuum-

cladding subwavelength-diameter have been investigated. The total intensity is radially dependent,

but azimuthally independent, as seen in Fig. 4.4(a).
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(a) (b)

(c)

Figure 4.3: Cross-section profiles of the intensities |Ex|
2, |Ey|

2, and |Ez|
2 of the Cartesian-coordinate

components of the electric field in the HE11 mode with circular polarization.

4.2 Field Expressions in a Nanowire

A strategy for calculating the plasmonic electromagnetic field of a nanowire is illustrated here. A

cylindrical metallic wire of radius a is surrounded by a dielectric medium, with the metal electric

permitivity ε2, where ε2 < 0. The electric pemitivity of the medium is ε1, and ε1 > 0. In cylindrical

coordinates the positive frequency component of the electric field in a mode is given by

Ei = Ei,m(ki⊥r)eimϕeik‖z, (4.10)

where i = 1, 2 denotes the outside and inside regions respectively, m is the mode order, k‖ is the

longitudinal component of the wavevector (=β) and ki⊥ is the transverse component of the wave

vector in region i as shown in Fig. 4.6. The vacuum wave vector ki has the following relation
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(a) (b)

(c)

Figure 4.4: Nanofiber electric field density plots. (a) Magnitude of the total electric field |E| =√
|Er |

2 + |Ez|
2 + |Eϕ|

2. (b) Magnitude of the transverse electric field |E| =
√
|Er |

2 + |Eϕ|
2. (c) Mag-

nitude of the longitudinal electric field |E| = |Ez|.

k2
i = εik2

0 = k2
‖

+k2
i⊥. The dispersion relation for the wire is given by the following expression

m2k2
‖

a2

 1
k2

2⊥

−
1

k2
1⊥

2

=

[
1

k2⊥

J′m(k2⊥a)
Jm(k2⊥a)

−
1

k1⊥

H′m(k1⊥a)
Hm(k1⊥a)

]
×

 k2
2

k2⊥

J′m(k2⊥a)
Jm(k2⊥a)

−
k2

1

k1⊥

H′m(k1⊥a)
Hm(k1⊥a)

 .
(4.11)

By setting m = 0 in Eq. (4.11) for the fundamental mode we have for the TM mode (TE mode not

supported)
k2

2

k2⊥

J′0(k2⊥a)
J0(k2⊥a)

−
k2

1

k1⊥

H′0(k1⊥a)
H0(k1⊥a)

= 0. (4.12)

This is solved by changing k‖ with all other parameters fixed and gives the dispersion relation of the

mode. The electric field in the TM mode for r > a is given by

E(r, z, t) = b1

i k‖k1⊥

k2
1

H′0(k1⊥r)r̂ +
k2

1⊥

k2
1

H0(k1⊥r)ẑ
 ei(k‖z−ω,t) (4.13)
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Figure 4.5: Field plot of the electric field component in the HE11 mode for circular polarization.
The following parameters have been used: n1 = 1.45, n2 = 1, a = 200 nm and λ = 852 nm.(a) The
field inside the fiber. (b) The field outside the fiber.

Figure 4.6: Model of geometry in a nanowire.

and for r < a the electric field is given by

E(r, z, t) = b2

i k‖k2⊥

k2
2

J′0(k2⊥r)r̂ +
k2

2⊥

k2
2

J0(k2⊥r)ẑ
 ei(k‖z−ωt), (4.14)

and b1 and b2 are related by boundary conditions

b1

b2
=

k2⊥

k1⊥

J′0(k2⊥a)
H′0(k1⊥a)

. (4.15)

The transverse and longitudinal components are shown in Fig. 4.7. Outside the nanowire, the

intensities of the transverse components Ex and Ey differ from each other and vary with ϕ and
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Figure 4.7: Intensities |Ez|
2 and |Er |

2 of the cylindrical-coordinate components of the field in the
HE11 mode of a nanowire. The wire has radius a = 200 nm with ε2 = −28.5 + 2i and ε1 = 1. The
free space wavelength is λ = 852 nm.
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Figure 4.8: Azimuthal profiles of the intensities |Ex|
2, |Ey|

2, and |Ez|
2 of the Cartesian-coordinate

components of the electric field in a fundamental mode nanowire.

inside the wire, |Ex|
2 and |Ey|

2 are equal to each other and do not vary with ϕ. This is visible in

the azimuthal profiles in Figs. 4.8(a) and 4.8(b) and the cross-section profiles in Figs. 4.9(a) and

4.9(b). From Fig. 4.8 the azimuthal dependences of |Ex|
2 and |Ey|

2 outside the wire stays constant

as r increases. Figures 4.10(a) and (b) shows the distribution of the electric field inside and outside

the wire. The regions where r < a and r > a are clearly identified in Fig. 4.9(a) and (b) due to

the discontinuity at the boundary r = a. This strong discontinuity is due to the large refractive
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(a) (b)

(c)

Figure 4.9: Cross-section profiles of the intensities |Ex|
2, |Ey|

2, and |Ez|
2 of the Cartesian-coordinate

components of the electric field of the HE11 mode in a nanowire.

index difference between the bulk and the surrounding medium and the strong radial confinement

of the field when λ > a. The strength of the evanescent field outside the wire is shown in Fig.

4.7(a) and (b), the field outside is higher than |E(r = 0)|2 inside the wire . In figures 4.8(c)

and 4.9(c) the longitudinal-component intensity |Ez|
2 is perfectly cylindrically symmetric and small

when compared to |Ex|
2 and |Ey|

2. Figures 4.11(a) and 4.11(b) are vector plots of the electric field

component transversal to the nanowire axis (Ex, Ey) inside and outside respectively.

4.3 Photon and SPP Correlations Emitted by Atoms into Nanopho-
tonic Waveguides

The fluorescent emission of light from N identical two-level atoms in a linear array or a gas (cloud

of atoms) into the guided modes of a nanophotonic waveguide is investigated. An external classical

driving field perpendicular to the waveguide pumps the atoms into their excited states.
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Figure 4.10: Nanowire electric field density plot. (a) Magnitude of the total electric field |E| =√
|Er |

2 + |Ez|
2. (b) Magnitude of the transverse electric field |E| =

√
|Er |

2. (c) Magnitude of the
longitudinal electric field |E| = |Ez|.
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Figure 4.11: Field plot of the electric field component in the HE11 mode of silver nanowire. The
following parameters have been used: ε2 = −28.5 + 2i, ε1 = 1, a = 200 nm and λ = 852 nm. (a)
The field inside the wire. (b) The field outside the wire.
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Figure 4.12: Model of geometry in a nanophotonic waveguide.

4.3.1 Atoms in an Array

The correlation between the fields measured at spacetime points za and zb as seen in Fig. 4.12

moving in the direction fa and fb with polarisations la and lb respectively is investigated. The

normalized first-order correlation function measures the degree of possible interference between

two spacetime points of a given field and is given by the following expression

g(1)
N (a; b) =

G(1)
N (a; b)
√
〈Ia〉 〈Ib〉

, (4.16)

where G(1)(a; b) = 〈Â†(a)Â(b)〉 and 〈Iν〉 =
〈
Â†(ν)Â(ν)

〉
= G(1)

N (ν; ν) is the intensity of the light beam

in the guided mode with propagation direction fν and polarization lν. For N atoms the first-order

correlation function is given by [63]

G(1)
N = Ze−iω0τ̃(S Γ(1)(τ) + Cρ2

eg), (4.17)

where S and C are the coefficients for single atom contributions and the coefficients for two atom

interference contributions respectively, τ̃ = τ̃b − τ̃a = (tb −
|zb−z0 |

vp
) − (ta −

|za−z0 |
vp

) is the relative

phase delay time, z0 is the coordinate atom on the z-axis. When the atom is in its steady state,

ρeg = | − i Ωγ

2Ω2 + γ2| and ρee = Ω2

2Ω2+γ2 are average values of the elements of the single atom density

matrix and

Γ(1)(τ) =
Ω2

2Ω2 + γ2

[
γ2

2Ω2 + γ2 +
1
2

e−
γτ
2 +

1
2

e−
3γτ

4 (P cos κτ + Q sin κτ)
]
, (4.18)
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where Ω is the Rabi frequency of the driving field, γ is the spontaneous decay rate of the atom, τ is a

positive time delay and κ =

√
Ω2−γ2

16 is the effective frequency. P =
2Ω2−γ2

2Ω2+γ2 and Q =
γ
4κ (10Ω2−γ2)

2Ω2+γ2 [63].

Z is the proportionality constant represented by the following expression

Z =
ω0d2

2ε0~vg
=

3λ2
0ng

8π
γ0. (4.19)

In Eq. (4.19), d is the dipole moment of the atom, λ0 = 2πc
ω0

is the transition wavelength of the atom

in vacuum, ng = c
vg

is the group index of the waveguide at frequency ω0, vg =
(
∂β
∂ω

)−1
|ω=ω0 is the

group velocity and γ0 is the natural linewidth of the atom and is given by

γ0 =
ω3|d|2

3π~ε0c3 . (4.20)

The total decay rate of the atom into all modes; guided, radiative and non-radiative is given by the

following expression
γ

γ0
=
γradiative

γ0
+
γguided

γ0
+
γnon−radiative

γ0
. (4.21)

We consider the quasi-static limit when the distance between the atom and the fiber and the radius

of the fiber are substantially less than the radiation wavelength. The following expression repesents

the radiative decay in the radial coordinates of the atom [103]

γradiative

γ0
=

∣∣∣∣∣∣1 +
ε − 1
ε + 1

a2

r2

∣∣∣∣∣∣2 ; (4.22)

where ε = n2
2 in the nanofiber case. The non-radiative quasi-static approximation is given be-

low
γnon−radiative

γ0
= Im

(
ε − 1
ε + 1

)
3

16k3
0(r − a)3

. (4.23)

The decay into the guided modes cannot be described by the quasi-static approximation and a full

electrodynamical approach is needed. From Barthes et al. and Chen et al. [104, 105] the general

formula for the decay into the guided modes is

γguided

γ0
=

3πcε0Eu[Eu]∗

k2
0

∫
A∞

(E ×H∗) · zdA
(4.24)

where u is the atom’s dipole unit vector, Eu(r, ϕ) is the electric field of the mode projected in

the direction u, A∞ is the integration over the transverse plane and E and H are the electric and

magnetic vector fields of the modes. In the nanowire case from Chang et al. [13] in the quasi-

static approximation the radiative decay is also given by Eq. (4.22) but now ε < −1 (-28.5 for a

silver nanowire). The quasi-static approximation for the non-radiative Eq. (4.23) is also used for the
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nanowire case. For the guided modes of the nanowire, when m = 0, the plasmon mode function is

roughly quasi-static when the nanowire radius a is small such that k‖ and ki⊥ are directly proportional

to the reciprocal of the nanowire radius. The analytical expression of the plasmon coupled emission

rate in a metallic nanowire is given by [13]

γguided

γ0
= αpl

K2
1 (κ1⊥r)

(k0a)3 (4.25)

and the coefficient αpl is given by

αpl =
3(ε1 − ε2)

ε
1
3
1

(κ1⊥a)2I1(κ1⊥a)I0(κ1⊥a)
dχ(κ1⊥a)/dx

(4.26)

where I0 and I1 are Bessel functions and χ(x) = ε1I0(x)K′0(x) − ε2K0(x)I′0(x).

The normalized second order correlation function measures intensity correlations between two

spacetime points of a given field and it is given by

g(2)
N (a; b) =

G(2)
N (a; b)
√
〈Ia〉 〈Ib〉

. (4.27)

For N atoms G(2)
N is given by

G(2)
N (a; b) =Z2(BΓ(2)(τ) + F0ρ

2
ee + F|Γ(1)(τ)|2 + F′|Γ(1′)(τ)|2

+ FcΓ(c)(τ) + ρ2
eg(V0ρee + VΓ(1)(τ) − V ′Γ(1′)(τ))

+ Wρ4
eg),

(4.28)

with

Γ(2)(τ) =
Ω4

(2Ω2 + γ2)2

(
1 − e−

3γτ
4

[
cos κτ +

(
3γ
4κ

)
sin κτ

])
, (4.29)

Γc(τ) =
Ω4γ2

(2Ω2 + γ2)3

[
1 − e−

3γτ
4 ×

(
cos κτ −

4Ω2 − γ2

4κγ
sin κτ

)]
, (4.30)

and

Γ1′(τ) = −
Ω2

2Ω2 + γ2

[
γ2

2Ω2 + γ2 −
1
2

e−
γτ
2 +

1
2

e−
3γτ

4 (P cos κτ + Q sin κτ)
]
. (4.31)

The coefficients for single-atom contributions, for atoms in an array, are given by

S = NM, (4.32a)

B = N |M|2, (4.32b)
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Figure 4.13: Experimental setup for measuring first-order and second-order correlation function.
a) Michelson interferometer recording g(1)

N measurements. b) Hanbury Brown-Twiss interferometer
recording g(2)

N measurements.

the coefficients for two-atom interference contributions are

C = N(N − 1)M, (4.33a)

F0 = F = F′ = N(N − 1)|M|2, (4.33b)

Fc = 4N(N − 1)|M|2, (4.33c)

the coefficients for three-atom interference contributions are

V0 = V = V ′ = 2N(N − 1)(N − 2)|M|2 (4.34)

and the coefficients for four-atom interference contributions are given by

W = N(N − 1)(N − 2)(N − 3)|M|2, (4.35)

with M defined by the following expression

M = E(a)
d (r, ϕ)E(b)∗

d Ei(la−lb)ϕ, (4.36)

where E(ν)
d (r, ϕ) = d · E(ω0 fνlν)(r, ϕ), d is the unit vector of the atomic dipole, Eω0 fνlν is the mode

function of electric field component of the guided mode (see Sections 4.1 and 4.2) and (ω0 fνlν) is

the mode index. The above expression may be used in the calculation of correlation functions for

both the nanofiber and nanowire. Experimentally the normalized correlation function g(1)
N is mea-

sured using a Michelson interferometer and the second-order function is measured using a Hanbury

Brown-Twiss interferometer, as shown in Fig. 4.13. At zero time delay when τ = 0, if a global maxi-

mum or a global minimum is spotted in the plot of g(2)
N (a; b) this is known as photon bunching effect

and antibuching effect, respectively. At zero time delay g(2)
N (a; b) > 1 indicates super-Poissonian
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Figure 4.14: Normalized first-order g(1)
N (τ) and second-order g(2)

N (τ) correlation functions as a func-
tion of γ0τ. (a), (c), (e), (g) and (i) The left hand column corresponds to the normalized first-order
correlation function when N = 1, N = 2, N = 3, N = 4 and N = 5 respectively. (b), (d), (f), (h)
and (j) The right hand side column corresponds to the normalized second-order correlation function
when N = 1, N = 2, N = 3, N = 4 and N = 5 respectively. The following parameters and conditions
were used a = 200 nm, λ0 = 852 nm, Ω = 2γ0,r − a = 100 nm, γ = 1.4γ0, fa = fb and la = lb.
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Figure 4.15: Normalized first-order g(1)
N (τ) and second-order g(2)

N (τ) correlation functions. (a), (c),
(e), (g) and (i) The left hand column corresponds to the normalized first-order correlation function
when N = 1, N = 2, N = 3, N = 4 and N = 5 respectively. (b), (d), (f), (h) and (j) The right
hand side column corresponds to the normalized second-order correlation function when N = 1,
N = 2, N = 3, N = 4 and N = 5 respectively. The following parameters were used a = 25 nm,
λ0 = 852 nm, Ω = 2γ0, r − a = 50 nm and γ = 1.08γ0

photon statistics and when g(2)
N (a; b) < 1 this indicates sub-Poissonian statistics. In Figs. 4.14
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Figure 4.16: Normalized first-order g(1)
N (τ) and second-order g(2)

N (τ) correlation functions for a
nanowire(a), (c), (e), (g) and (i) The left hand column corresponds to the normalized first-order
correlation function when N = 1, N = 2, N = 3, N = 4 and N = 5 respectively. (b), (d), (f), (h)
and (j) The right hand side column corresponds to the normalized second-order correlation function
when N = 1, N = 2, N = 3, N = 4 and N = 5 respectively. The following parameters were used for
the nanowire; a = 200 nm, λ0 = 852 nm, Ω = 2γ0, r − a = 100 nm and γ = 2.5γ0.
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Figure 4.17: Normalized first-order g(1)
N (τ) and second-order g(2)

N (τ) correlation functions. (a), (c),
(e), (g) and (i) The left hand column corresponds to the normalized first-order correlation function
when N = 1, N = 2, N = 3, N = 4 and N = 5 respectively. (b), (d), (f), (h) and (j) The right
hand side column corresponds to the normalized second-order correlation function when N = 1,
N = 2, N = 3, N = 4 and N = 5 respectively. The following parameters were used; a = 25 nm,
λ0 = 852 nm, Ω = 2γ0, r − a = 50 nm and γ = 4.16γ0.
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(linear array, nanofiber, a=200 nm), 4.15 (linear array, nanofiber, a = 25 nm), 4.16 (linear array,

nanowire, a = 200 nm) and 4.17 (linear array, nanowire, a = 25 nm) the first-order g(1)
N (τ) and

second-order g(2)
N (τ) correlation functions are plotted as a function of the normalized time delay γ0τ

for atom numbers N = 1 up to N = 5. The first-order g(1)
N (τ) correlation function has a maximum

at zero time delay. As the number of atoms coupling into the waveguide increases, the infinite line

height changes because there are more emitters and the resultant field is larger. The shape stays

the same because the emitters are emitting to the guided modes coherently. They are all oriented

in the same direction, they are all in phase and are place an effective wavelength apart. This means

that the emitters/atoms are separated by the wavelength of the mode in the waveguide (the effective

wavelength), i.e. 2π/β, where β is the propagation constant. The effective wavelength is a rescaled

version of the free-space wavelength, λ0, which is given by 2π/k0, with k0 = ω/c. The effective

wavelength is always smaller than the free-space wavelength as β ≥ k0 for a given ω. Placing the

emitters an effective wavelength apart means that they emit in phase with each other, ie. there is no

phase difference between the emitted light from any of the emitters. Then, if the light from each

emitter is coherent to within several effective wavelengths (more than the number of emitters), the

total light from all emitters will be a coherent superposition. In a nanofiber and nanowire as seen in

Figs. 4.14(b) (linear array, nanofiber, a = 200 nm), 4.14(d) (linear array, nanofiber, a = 200 nm),

4.15(b) (linear array, nanofiber, a = 25 nm), 4.15(d) (linear array, nanofiber, a = 25 nm), 4.16(b)

(linear array, nanowire, a = 200 nm), 4.16(d) (linear array, nanowire, a = 200 nm), 4.17(b) (linear

array, nanofiber, a = 25 nm) and 4.17(d) (linear array, nanowire, a = 25 nm) when N = 1 and N = 2

there is a minimum observed in g(2) at zero time delay, this dip is referred to as antibunching. The

dips are below infinite line indicating sub-Poissonian statistics at zero time delay. The minimum

observed at zero time delay when N = 3, N = 4 and N = 5 as seen in Figs. 4.14(f) (linear array,

N = 3, nanofiber, a = 200 nm), (h) (linear array, N = 4, nanofiber, a = 200 nm), and (j) (linear

array, N = 5, nanofiber, a = 200 nm), 4.15(f) (linear array, N = 3, nanofiber, a = 25 nm), (h) (linear

array, N = 4, nanofiber, a = 25 nm), and (j) (linear array, N = 5, nanofiber, a = 25 nm), 4.16(f)

(linear array, N = 3, nanowire, a = 200 nm), (h) (linear array, N = 4, nanowire, a = 200 nm), and

(j) (linear array, N = 5, nanowire, a = 200 nm), 4.17(f) (linear array, N = 3, nanowire, a = 25 nm),

h (linear array, N = 4, nanowire, a = 25 nm) and (j) (linear array, N = 5, nanowire, a = 25 nm) indi-

cates antibunching effect. The dips are above the infinite line indicating super-Poissonian statistics

at 0 time delay.
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4.3.2 Atomic Gas

In an atomic gas the interaction and collisions between the atoms are neglected and the position

of the atoms in the gas are random variables. The many-atom first-order and the second-order

correlation functions are the given by [63]

G(1)
N (a; b) = NZMe−iω0τ̃Γ(1)(τ)δ fa fb (4.37)

and

G(2)
N (a; b) =Z2(NDΓ(2)(τ) + N(N − 1)M2

0ρ
2
ee

+ N(N − 1)M2|Γ(1)(τ)|2δ fa fb

+ N(N − 1)M′2|Γ(1′)(τ)|2δ fa− fb).

(4.38)

The correlation function coefficients are now represented by

S = NMδ fa fb , (4.39a)

B = ND, (4.39b)

and

F0 = N(N − 1)M2
0 , (4.40a)

F = N(N − 1)M2δ fa fb , (4.40b)

F′ = N(N − 1)M′2δ fa− fb , (4.40c)

where

M0 =
1
2

sin2 θ
〈
|Er |

2 + |Eϕ|
2
〉

r
+ cos2 θ

〈
|Ez|

2
〉

r
, (4.41a)

M = M0δlalb +
1
4

sin2 θ
〈
(|Er | + |Eϕ|)2

〉
r
δla−lb , (4.41b)

.

M′ = −M0δla,−lb −
1
4

sin2 θ
〈
(|Er | + |Eϕ|)2

〉
r
δlalb , (4.41c)

D =
3
8

sin4 θ
〈
|Er |

4 + |Eϕ|
4
〉

r
+ cos4 θ

〈
|Ez|

4
〉

r

+
1
4

sin4 θ
〈
|Er |

2|Eϕ|
2
〉

r

+ sin2 θ cos2 θ
〈
|Er |

2|Ez|
2 + |Eϕ|

2|Ez|
2
〉

r

+ 2lalb fa fb sin2 θ cos2 θ
〈
|Eϕ|

2|Ez|
2
〉

r

(4.41d)

60



N=5(a)

0.011

0.1

N=25(c)

0.06

0.5

g N
(1
) (
τ)

N=50(e)

-10 0 10
0.11

1

γ0τ

N=5(b)

0.009

0.051

N=25(d)

0.24

0.46

g N
(2
) (
τ)

N=50(f)

-10 0 10
0.99
1.42
1.92

γ0τ

Figure 4.18: Normalized first-order g(1)
N (τ) and second-order g(2)

N (τ) correlation functions for atomic
gas near a nanofiber. (a), (c), and (e) The left hand column corresponds to the normalized first-order
correlation function when N = 5, N = 25 and N = 50 respectively. (b), (d) and (f) The right
hand side column corresponds to the normalized second-order correlation function when N = 5,
N = 25, N = 50 and respectively. The atoms are in a cylindrical shell with rmax = 2 µm around
the nanofiber. The total number of observation directions are fa= fb which is represented by the
solid line and fa=- fb which is represented by the dotted lines. The atomic dipole is positioned along
a line in the fiber transverse plane θ = π

2 . The following parameters were used; a = 200 nm,
λ0 = 852 nm, Ω = 2γ0 and γ = 1.4γ0.

where 〈...〉r stands for statistical averaging with respect to the radial distance r and θ denotes the

orientation angle of the atomic dipole vector with respect to the fiber axis z. Er, Eϕ and Ez are the

mode profile functions for the guided modes. The nanowire mode functions have no ϕ component

therefore the above expressions in Eq. (4.41) have to be modified and are given by

M0 =
1
2

sin2 θ
〈
|Er |

2
〉

r
+ cos2 θ

〈
|Ez|

2
〉

r
, (4.42a)

M = M0δlalb +
1
4

sin2 θ 〈|Er |〉r δla−lb , (4.42b)

M′ = −M0δla−lb −
1
4

sin2 θ 〈|Er |〉r δlalb , (4.42c)

D =
3
8

sin4 θ
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|Er |

4
〉

r
+ cos4 θ

〈
|Ez|

4
〉

r

+
1
4

sin4 θ
〈
|Er |

2
〉

r

+ sin2 θ cos2 θ
〈
|Er |

2|Ez|
2 + |Ez|

2
〉

r

+ 2lalb fa fb sin2 θ cos2 θ
〈
|Ez|

2
〉

r

(4.42d)

In Figs. 4.18 (atomic cloud, nanofiber, a = 200 nm), 4.19 (atomic cloud, nanofiber, a = 25 nm),

4.20 (atomic cloud, nanowire, a = 200 nm) and 4.21 (atomic cloud, nanowire, a = 25 nm) the

normalized first-order and second-order correlation functions are plotted. In the case of the fiber
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Figure 4.19: Normalized first-order g(1)
N (τ) and second-order g(2)

N (τ) correlation functions for atomic
gas near a nanofiber.(a), (c), and (e) The left hand column corresponds to the normalized first-order
correlation function when N = 5, N = 25 and N = 50 respectively. (b), (d) and (f) The right
hand side column corresponds to the normalized second-order correlation function when N = 5,
N = 25, N = 50 and respectively. The atoms are in a cylindrical shell with rmax = 0.25 µm around
the nanofiber. The total number of The observation directions are fa= fb which is represented by
the solid line and fa=- fb which represented by the dotted lines. The atomic dipole is positioned
along a line in the fiber transverse plane θ = π

2 . The following parameters were used a = 25 nm,
λ0 = 852 nm, Ω = 2γ0 and γ = 1.08γ0.
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Figure 4.20: Normalized first-order g(1)
N (τ) and second-order g(2)

N (τ) correlation functions for atomic
gas around a nanowire.(a), (c), and (e) The left hand column corresponds to the normalized first-
order correlation function when N = 5, N = 25 and N = 50 respectively. (b), (d) and (f) The right
hand side column corresponds to the normalized second-order correlation function when N = 5,
N = 25, N = 50 and respectively. The atoms are in a cylindrical shell with rmax = 2 µ m around
the nanowire. The observation direction is fa= fb. The atomic dipole is positioned along a line in
the wire transverse plane θ = π

2 . The following parameters were used a = 200 nm, λ0 = 852 nm,
Ω = 2γ0 and γ = 2.5γ0.

two directions were considered fa = fb solid curves and fa = − fb the dotted lines as shown in

Fig. 4.18(b) (atomic cloud, N = 5, nanofiber, a = 200 nm), (d) (atomic cloud, N = 25, nanofiber,

a = 200 nm), and (f) (atomic cloud, N = 50, nanofiber, a = 200 nm) and 4.19(b) (atomic cloud,

N = 5, nanofiber, a = 25 nm), (d) (atomic cloud, N = 25, nanofiber, a = 25 nm) and (f) (atomic

cloud, N = 50, nanofiber, a = 25 nm). The infinite line and peak of g(1)
N (τ) increases as the number
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Figure 4.21: Normalized first-order g(1)
N (τ) and second-order g(2)

N (τ) correlation functions for atomic
gas around a nanowire. (a), (c), and (e) The left hand column corresponds to the normalized first-
order correlation function when N = 5, N = 25 and N = 50 respectively. (b), (d) and (f) The right
hand side column corresponds to the normalized second-order correlation function when N = 5,
N = 25, N = 50 and respectively. The atoms are in a cylindrical shell with rmax = 2µm around
the nanowire. The observation direction is fa= fb. The atomic dipole is positioned along a line in
the wire transverse plane θ = π

2 . The nanowire radius is a = 200 nm, λ0 = 852 nm, Ω = 2γ0 and
γ = 4.16γ0.

of atoms increases in a nanofiber of a = 200 nm. When a = 25 nm there is no change on the infinite

line and the peaks of g(1)
N (τ). This is expected because there is little coupling into the guided modes

of the fiber as the fiber radius gets smaller (I acknowledge discussions with Fam Le Kien regarding

this). At zero time delay for small number of atoms a global minimum is observed in g(2) (anti-

bunching) as seen in Fig. 4.18(b) and a local minimum is also observed see Fig. 4.18(d) for large

N at zero time delay. In the case of a fiber with a = 25 nm, g(2)
N (τ) has a global maximum at zero

time delay see solid curve in Fig. 4.19(b), (d) and (f). In an atomic cloud around the silver nanowire

when fa = fb there is no change on the peak and infinite line of the function g(1)
N (τ) as the number of

atoms increases, as seen in Figs. 4.20 and 4.21. The function g(2)
N (τ) when there is a small number

of atoms has a global minimum at zero time delay see Figs. 4.20(c) and 4.21(c). For a nanowire of

radius a = 200 nm at N = 25 there is global minimum, see Fig. 4.20(d). There is a global maximum

at higher values of N see Figs. 4.21(d) and (f). In Fig. 4.20(f) there is a local maximum.

The quantum properties of light in the fundamental mode with rotating polarization of a subwavelength-

diameter nanofiber have been investigated using the exact solutions of Maxwell’s equations. The

total intensity is azimuthally independent. The quantum properties of the field in the fundamen-

tal mode of a subwavelength-diameter plasmonic nanowire were also investigated. The correlation

functions of the fluorescence from atoms at equidistant positions in an array and atoms in a cloud

into the guided modes of nanophotonic waveguides (nanofiber and metallic nanowire) was also in-
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vestigated analytically. The plasmonic nanowire is a more efficient method of generating quantum

states of light. It has a faster time scale for the dynamics for the plasmonics. The correlation func-

tions have different behaviors depending on the direction the photons are emitted. In the case of the

nanofiber as the fiber radius is made smaller the coupling efficiency is weak. In the nanowire as the

wire radius is decreased the coupling efficiency is stronger.
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Chapter 5

Conclusion

Two main topics were investigated - decoherence of SPPs in the quantum regime and the emission

of quantum states of light from cold atoms into nanophotonic waveguides. There is great potential

in the above mentioned topics for advances in quantum information technologies such as quantum

computing. For the first topic, the decoherence of SPPs in plasmonic waveguides in the classical

and quantum regimes was investigated. Amplitude and phase damping effects of SPPs were mea-

sured. For classical SPPs and single SPPs, amplitude damping is the main source of amplitude and

phase decay. For the second topic, it was found that a plasmonic nanowire has stronger coupling

efficiency as the radius is decreased and the nanofiber has weak coupling as the radius is decreased.

While in the experiment the focus was on a gold metal, as an initial study, the probing of decoher-

ence in other types of metallic media that support surface plasmons, such as silver and graphene,

would be an important next step. In addition, only a fixed wavelength of 810 nm was consid-

ered, mainly due to experimental access to single photons at this wavelength via parametric down-

conversion. However, other single-photon sources with different wavelengths are possible, such as

solid state emitters, for example: quantum dots and nitrogen vacancy centres. It is not clear what

to expect at these wavelengths, as the fundamental mechanisms which cause pure phase damping

in waveguides are not well known. This is an important area of future study, both theoretically and

experimentally, for developing plasmonics for quantum technological applications. There is also

an intermediate regime of quantum plasmonics, involving low numbers of excitations that remains

to be investigated and it would be interesting to explore decoherence in this regime. The results

achieved in the decoherence work, as mentioned before, would be useful for phase-sensitive quan-
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tum plasmonic applications, such as quantum sensing, and would allow appropriate quantum states

to be selected. This is important for developing quantum plasmonic state engineering at the few

SPP excitation number. The probing techniques developed for the plasmonic waveguides may also

be applied to other types of plasmonic nanostructures, such as those used as nanoantennas, as unit

cells in metamaterials and as nanotraps for cold atoms.

On the cold atoms theory work, future studies could be to carry out an experiment with a nanowire

and record the correlation measurements in a cold atom setup to see if the results match the an-

alytical behavior predicted. The study of the explicit form of the quantum state generated in the

plasmonic nanowire would also be an area to focus on, as well as investigating the impact of loss on

the states that are generated. As the current scenario deals with non-interacting emitters it would be

interesting to look at the collective decays of interacting emitters eg: Dicke superradiance (collec-

tive spontaneous emission). Another interesting area one could explore is theoretically studying the

trapping of cold atoms near a nanowire and also looking at different plasmonic structures such as

wedges interacting with atoms. The coupling between metal waveguides and atoms provides more

possibilities to realize functional components for the construction of nanophotonic circuits with

performances which have not been achieved before. These would be useful in the construction of

quantum computers. It would also be interesting to measure the correlations between SPPs emitted

by multi-atom fluorescence into a nanowire. For a nanowire with a small radius, the stronger the

coupling efficiency is. It would be interesting to study the field around the subwavelength-diameter

nanowire to investigate the trapping and guiding of neutral atoms by the optical force of the evanes-

cent field. This may be pursued theoretical and experimentally.

There are a lot of applications for metallic nanowires that are capable of guiding light in nanopho-

tonic circuits. Some of the quantum properties of plasmons propagating in nanowires have been

studied here, but others such as emission direction, polarization, group velocity, near-field distribu-

tion and how they behave as the wire radius decreases require further study. The results of the work

on nanowires and nanofibers will be greatly useful in studying and manufacturing new nanoscale

photonic devices with high quality and high performance suitable for future hybrid quantum de-

vices based on atom and photon behavior. The devices that are constructed using the subwavelength

diameter nanowires may have important applications for developing quantum networks.
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Kim and S. A. Maier, Observation of quantum interference in the plasmonic Hong-Ou-Mandel

effect, Phys. Rev. App. 1, 034004 (2014).

[95] Y.-J. Cai, M. Li, X.-F. Ren, C.-L. Zou, X. Xiong, H.-L. Lei, B.-H. Liu, G.-P. Guo and G.-C.

Guo, High visibility on-chip quantum interference of single surface plasmons. Phys. Rev. App.

2, 014004 (2014).

[96] G. Fujii, D. Fukuda and S. Inoue, Direct observation of bosonic quantum interference of sur-

face plasmon polaritons using photon-number-resolving detectors, Phys. Rev. B 90, 085430

(2014).

74



[97] B. Vest, M. C. Dheur, E. Devaux, A. Baron, E. Rousseau, J. P. Hugonin, J. J. Greffet, G.

Messin, F. Marquier, Anticoalescence of bosons on a lossy beam splitter, Science 356, 1373

(2017).

[98] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd edition, Wiley (2007).
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