

On the Sample Consensus Robust Estimation Paradigm:

Comprehensive Survey and Novel Algorithms with Applications

by

Peter Olubunmi OLUKANMI

Student Number 215040652

Submitted in fulfillment of the requirements

for the degree of Masters in Computer Science

in the

School of Mathematics, Statistics and Computer Science

University of KwaZulu-Natal

Durban, South Africa

2016

i

DECLARATION

UNIVERSITY OF KWAZULU-NATAL COLLEGE OF AGRICULTURE,

ENGINEERING AND SCIENCE

The research described in this thesis was performed at the University of KwaZulu-Natal under the

supervision of Professor A.O. Adewumi. I hereby declare that all materials incorporated in this

thesis are my own original work except where acknowledgement is made by name or in the form

of a reference. The work contained herein has not been submitted in part or whole for a degree at

any other university.

Signed:

Olukanmi Peter Olubunmi

Date: January, 2016

As the candidate’s supervisor, I have approved/disapproved the dissertation for submission

Signed:

Professor A.O. Adewumi

Date: January, 2016

ii

DECLARATION II - PLAGIARISM

I, Olukanmi Peter Olubunmi, declare that

1. The research reported in this thesis, except where otherwise indicated, is my original

research.

2. This thesis has not been submitted for any degree or examination at any other university.

3. This thesis does not contain other persons' data, pictures, graphs or other information,

unless specifically acknowledged as being sourced from other persons.

4. This thesis does not contain other persons' writing, unless specifically acknowledged as

being sourced from other researchers. Where other written sources have been quoted,

then:

a. Their words have been re-written but, the general information attributed to them has

been referenced.

b. Where their exact words have been used, their writing has been placed in italics and

in quotation marks, and referenced.

5. This thesis does not contain text, graphics or tables which are copied and pasted from the

internet, unless specifically acknowledged, and the source being detailed in the thesis and

in References section.

Signed:

Date: February, 2016

iii

DEDICATION

To Seun, the best wife in the world, to our lovely daughter, Grace, who landed on earth a few

days ago, and ultimately to the Almighty God who blessed me with these precious jewels.

iv

ACKNOWLEDGEMENT

My appreciation goes first to God, my Maker and the giver of all good things.

My profound and sincere gratitude goes to my darling wife, Mrs. Seun Olukanmi. Thank you for

your constant encouragement, whilst at the same time, writing your own thesis. My heartfelt

appreciation goes to my parents, Mr and Mrs Olukanmi, by whose many sacrifices I have come

this far, as well as to my parents-in-law, Pastor (Engr.) and Mrs Fagbemi.

Special thanks goes to my supervisor, Professor Aderemi Oluyinka Adewumi for his fatherly care,

guidance and counsel, throughout this programme. I also thank Dr A. Arasomwan and my

colleagues at the Centre for Applied Artificial Intelligence Research, for their valuable

contributions. Special thanks Peter Popoola and Ayobami Akinyelu: your questions and

suggestions were very helpful. Mafunda Sowambile, your suggestions on ‘proofs’, were very

helpful. Big thanks also to Dr Toyin Popoola, Dr T.A. Fashanu, Dr Tunde Adegbola, and Prof.

Fakinlede, of the department of Systems Engineering, University of Lagos, Nigeria, all of whom

have had indelible influences on my career in positive ways. A special place is reserved for the

able technician, to whom I have run, for one technology solution or the other: Mr Soren

Greenwood.

I appreciate Pastors Michael Olusanya and Joseph Adesina, and their respective families, as well

as all the members of the Deeper Life Bible Church, KZN Province, South Africa, for being very

supportive to me and my family.

All of you, and many others, have made it possible to complete this degree, in record time. May

God bless and keep you all.

v

ABSTRACT

This study begins with a comprehensive survey of existing variants of the Random Sample Consensus

(RANSAC) algorithm. Then, five new ones are contributed. RANSAC, arguably the most popular

robust estimation algorithm in computer vision, has limitations in accuracy, efficiency and

repeatability. Research into techniques for overcoming these drawbacks, has been active for about two

decades. In the last one-and-half decade, nearly every single year had at least one variant published:

more than ten, in the last two years. However, many existing variants compromise two attractive

properties of the original RANSAC: simplicity and generality. Some introduce new operations,

resulting in loss of simplicity, while many of those that do not introduce new operations, require

problem-specific priors. In this way, they trade off generality and introduce some complexity, as well

as dependence on other steps of the workflow of applications. Noting that these observations may

explain the persisting trend, of finding only the older, simpler variants in ‘mainstream’ computer vision

software libraries, this work adopts an approach that preserves the two mentioned properties.

Modification of the original algorithm, is restricted to only search strategy replacement, since many

drawbacks of RANSAC are consequences of the search strategy it adopts. A second constraint, serving

the purpose of preserving generality, is that this ‘ideal’ strategy, must require no problem-specific

priors. Such a strategy is developed, and reported in this dissertation. Another limitation, yet to be

overcome in literature, but is successfully addressed in this study, is the inherent variability, in

RANSAC.

A few theoretical discoveries are presented, providing insights on the generic robust estimation

problem. Notably, a theorem proposed as an original contribution of this research, reveals insights, that

are foundational to newly proposed algorithms. Experiments on both generic and computer-vision-

specific data, show that all proposed algorithms, are generally more accurate and more consistent, than

RANSAC. Moreover, they are simpler in the sense that, they do not require some of the input

parameters of RANSAC. Interestingly, although non-exhaustive in search like the typical RANSAC-

like algorithms, three of these new algorithms, exhibit absolute non-randomness, a property that is not

claimed by any existing variant. One of the proposed algorithms, is fully automatic, eliminating all

requirements of user-supplied input parameters. Two of the proposed algorithms, are implemented as

contributed alternatives to the homography estimation function, provided in MATLAB’s computer

vision toolbox, after being shown to improve on the performance of M-estimator Sample Consensus

(MSAC). MSAC has been the choice in all releases of the toolbox, including the latest 2015b. While

this research is motivated by computer vision applications, the proposed algorithms, being generic, can

be applied to any model-fitting problem from other scientific fields.

vi

TABLE OF CONTENTS

Declaration ... i

Declaration II - Plagiarism .. ii

Dedication .. iii

Acknowledgement ... iv

Abstract .. v

Table of Contents .. vi

LIST OF FIGURES .. xi

LIST OF TABLES ... xii

LIST OF ABBREVIATIONS... xiii

CHAPTER ONE .. 1

1 INTRODUCTION ... 1

1.0 Chapter Introduction ... 1

1.1 Background and Motivation ... 1

1.2 Problem Statement .. 3

1.3 Research Questions ... 4

1.4 Aim and Objectives .. 4

1.5 Contributions and Significance of Study .. 5

1.6 Scope and Limitations .. 5

1.7 Methodolgy ... 6

1.8 Definition of Terms .. 6

1.9 Organization of Thesis .. 8

CHAPTER TWO ... 9

2 LITERATURE REVIEW ... 9

vii

2.0 Chapter Introduction ... 9

2.1 Robust Estimation: Model Estimation in the Presence of Outliers............................... 9

2.2 Measuring Robustness: Breadkdown Point .. 10

2.3 Robust Estimation as a Combinatorial Optimization Problem 10

2.4 The RANSAC Algorithm ... 11

2.4.1 Outline of the RANSAC Algorithm ... 11

2.4.2 Drawbacks of RANSAC .. 12

2.5 Homography Estimation ... 13

2.5.1 Non-Refective Similarity ... 13

2.5.2 Affine Transformation .. 13

2.5.3 Projective Transformation .. 14

2.6 On Existing Reviews of RANSAC Variants .. 15

2.7 Brief Overview of the General Field of Robust Estimation 16

2.8 Robust Estimation Techniques in Computer Vision ... 17

2.8.1 Stochastic Techniques .. 17

2.8.2 Deterministic Techniques ... 19

2.8.3 On the Popularity of Stochastic Algorithms in Practice ... 20

2.9 Survey of RANSAC Variants ... 20

2.9.1 Pursuit of Improved Accuracy ... 21

2.9.2 Pursuit of Improved Efficiency .. 28

2.9.3 Review of Search Strategies in RANSAC Literature ... 31

2.9.4 Robustness Concerns in RANSAC Literature .. 37

2.9.5 Other Themes ... 39

2.9.6 USAC: An Integrated ‘Universal’ RANSAC Framework 40

2.10 Chronological Analysis of RANSAC Literature .. 42

viii

2.11 Methodology for Identification of Classics .. 43

2.12 Observations and Discussion .. 44

2.12.1 ‘Old’ works with low popularity score .. 45

2.12.2 Works with High Popularity Rate .. 46

2.12.3 Identifying the Most fundamental Research Question 55

2.12.4 Trends in the Current Half-Decade and Forecasts of the Immediate Future 55

2.13 Gaps Summary and Suggestions for Future Works .. 57

2.14 Chapter Summary ... 59

CHAPTER THREE ... 60

3 THEORETICAL CONTRIBUTIONS AND PROPOSED ALGORITHMS 60

3.0 Chapter Introduction ... 60

3.1 Revisiting RANSAC’s Heuristic: Seeking All-inlier Samples 60

3.2 Theorem 1: A Deterministic Way To Find All-inlier Samples 61

3.2.1 Proof ... 61

3.2.2 Significance of Theorem 1 ... 63

3.3 Extension .. 64

3.4 The CISAC (Consecutive Instances Sample Consensus) Algorithm 64

3.4.1 Properties of CISAC ... 65

3.4.2 Preliminary Experiments .. 66

3.4.3 Summary of Experimental Results Comparing CISAC and RANSAC 74

3.5 Study of Automatic Threshold Estimation Problem: The Value of Determinism 74

3.5.1 Experimental Results .. 75

3.5.2 Summary of Study on Threshold Estimation ... 78

3.6 AutoCISAC: Deterministic, Fully Automatic Algorithm ... 79

3.6.1 The Algorithm .. 79

ix

3.6.2 Experiments and Applications .. 79

3.6.3 Summary of Study on AutoCISAC .. 85

3.7 SASSAC: Safeguarding Against Risk in the CISAC Algorithm 86

3.7.1 The Algorithm .. 86

3.8 Novel M-estimators .. 87

3.9 Chapter Summary ... 88

CHAPTER FOUR .. 89

4 COMPARATIVE STUDY OF THE NEW ALGORITHMS AND THEIR RANDOM-

SAMPLING COUNTERPARTS .. 89

4.0 Chapter Introduction ... 89

4.1 Methodology ... 90

4.2 Performance Criteria ... 91

4.3 Data Analysis Approach ... 91

4.4 Experimental Results for Simulated Problem Sets ... 93

4.4.1 Accuracy Measured by Number of Inliers ... 94

4.4.2 Accuracy Measured by M-estimate Error .. 98

4.5 Experimental Results for Real Life Images .. 102

4.6 Summary of Findings ... 104

4.7 Chapter Summary ... 106

CHAPTER FIVE .. 108

5 SOFTWARE CONTRIBUTIONS ... 108

5.0 Preamble ... 108

5.1 MATLAB’s Geometric Transform Estimation Function ... 108

5.2 The Original MSAC Algorithm .. 109

5.2.1 Drawbacks of MSAC ... 109

x

5.3 MATLAB’s MSAC: Stopping Criterion for Balance of Efficiency and Accuracy .. 109

5.4 Pros and cons of MCISAC and MSASSAC ... 110

5.5 User Guide for Proposed Functions .. 110

5.5.1 Syntax and Description .. 111

5.5.2 Demo Examples ... 114

5.6 Chapter Summary ... 124

CHAPTER SIX .. 125

6 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 125

6.0 Chapter Introduction ... 125

6.1 Research Summary ... 125

6.2 Summary of Findings ... 126

6.3 Conclusion .. 128

6.4 Recommendations for Future Work ... 128

7 REFERENCES .. 130

8 APPENDIX 1. .. 136

Table 1: Results for Simulated Problem Sets 1 in Chapter 4 ... 136

Table 2: Results for Simulated Problem Sets 2 in Chapter 4 ... 147

xi

LIST OF FIGURES

Figure 2.1: Flowchart of RANSAC ... 12

Figure 2.2: Homography transformations illustrated ... 15

Figure 2.3: Strategies for Improving Accuracy .. 21

Figure 2.4: Approaches to Model Evaluation .. 22

Figure 2.5: Strategies for improving efficiency ... 29

Figure 2.6: Search Paradigms in RANSAC Literature .. 37

Figure 2.7: Research Activity in RANSAC literature from 1981 to 2015 43

Figure 2.8: Trends in the last half-decade .. 57

Figure 3.1: Aerial Photos of UKZN Campus and its neighbourhood .. 72

Figure 3.2: Plots of number of inliers detected by CISAC for each threshold value used 76

Figure 3.3: Plots of number of inliers detected by CISAC for each threshold value used 77

Figure 3.4: Aerial Photos of UKZN Campus and its neighbourhood .. 83

Figure 3.5: Stitching the UKZN aerial photo pair 1 ... 83

Figure 3.6: Bus image pair ... 84

Figure 3.7: Stitching the Bus Scene Pair .. 85

Figure 4.1: Problem set 1 - comparing accuracies meausred by number of inliers 94

Figure 4.2: Problem set 2 - comparing accuracies measured by the number of inliers 95

Figure 4.3: Problem set 1 - comparing accuracies measured by M-estimate error 98

Figure 4.4: Problem set 2 - comparing accuracies measured by M-estimate error 99

Figure 4.5: Boxplots Comparing accuracies on the UKZN Pair 1 ... 103

Figure 5.1: Image Read and Displayed .. 115

Figure 5.2: Image Resized and Rotated ... 116

Figure 5.3: Matched Features between the Image Pair .. 117

Figure 5.4: Image Read and Displayed .. 120

Figure 5.5: Resized and Rotated Image ... 120

Figure 5.6: Matched Features between Images .. 122

xii

LIST OF TABLES

Table 2-1: Optimization Objectives for High-BDP Estimators in Computer Vision 18

Table 2-2: Variants Sorted By Age/Year of Publication .. 47

Table 2-3: Variants Sorted By Popularity Score .. 49

Table 2-4: Variants Ranked By Average Citation Rate ... 49

Table 3-1: Performance of CISAC and RANSAC on the Line Fitting Set 67

Table 3-2: Performance of CISAC and RANSAC on the Affine Transformation Set 71

Table 3-3: Performance Evaluation on the UKZN Aerial Photo Pair .. 73

Table 3-4: AutoCISAC’s Estimates and Corresponding Number of Inliers 80

Table 4-1: Nemenyi Pairwise comparison for Problem Set 1 .. 96

Table 4-2: Median Ranks for Problem Set 1 .. 96

Table 4-3: Mean Ranks for Problem Set 1 ... 96

Table 4-4: Nemenyi Pairwise comparison for Problem Set 2 .. 97

Table 4-5: Mean Ranks for Problem Set 2 ... 97

Table 4-6: Median Ranks for Problem Set 2 .. 97

Table 4-7: Nemenyi Pairwise comparison for Problem Set 1 .. 100

Table 4-8: Mean Ranks for Problem Set 1 ... 100

Table 4-9: Median Ranks for Problem Set 1 .. 100

Table 4-10: Nemenyi Pairwise comparison for Problem Set 2 .. 101

Table 4-11: Mean Ranks for Problem Set 2 ... 101

Table 4-12: Median Ranks for Problem Set 2 .. 101

Table 4-13: Experimental Results on the UKZN Aerial Photo Pair .. 102

Table 5-1: Summary of Input Arguments .. 113

Table 5-2: Name-Value Pair Input Argument .. 113

Table 5-3: Summary of Output Arguments.. 114

xiii

LIST OF ABBREVIATIONS

Abbreviation Full Meaning

AutoCISAC: Automatic Consecutive-Instance Sample Consensus

BDP: Breakdown Point

CISAC: Consecutive-Instance Sample Consensus

CV: Computer Vision

MCISAC: M-estimator Consecutive-Instance Sample Consensus

MSAC: M-estimator Sample Consensus

MSASSAC: M-estimator Shuffle-and-Sweep Sample Consensus

RANSAC: Random Sample Consensus

SASSAC: Shuffle-and-Sweep Sample Consensus

1

CHAPTER ONE

1 INTRODUCTION

1.0 Chapter Introduction

This chapter presents an overview of this research work. It begins by explaining the underlying

motivation, after which the research problem is described. This is followed by an enumeration

of the research objectives. Some theoretical as well as practical significance of this work are

then highlighted, followed by clarification of scope of the study and an overview of adopted

methodolgy. Finally, a few important terms are defined, as used in this work, before wrapping

up the chapter with description of the organization of the rest of this thesis.

1.1 Background and Motivation

Model-fitting has been studied for years. It is a problem commonly encountered in nearly every

scientific field. Model-fitting techniques are integral components of toolboxes in domains like

machine learning, finance, econometrics, physics, statistics, engineering, and computer vision.

The most popular technique used for model-fitting, standard (or ordinary) least squares

regression, is however not robust to outlier contamination [1]. An outlier is a data instance that

is inconsistent with the model that fits the bulk of a dataset. A single outlier can significantly

affect estimates made using the standard least squares method, since each data instance error

contributes equally to the error function being minimized to achieve a model of best fit. This

led research in statistics to the development of robust estimation techniques.

The robust estimation problem involves fitting to data, an appropriate model which is not

misled by presence of outliers. Given data points to which a model perfectly fits, if some of

the points are given arbitrary bias, so that they are no longer consistent with the model, a robust

estimator is still able to produce the original model. Detailed discussion of concepts,

techniques, justification and technical issues surrounding robust estimation are provided in [2]

and [3]. A common measure of robustness is the breakdown point (BDP) [1] [4], defined as

the threshold of outlier rate beyond which the technique in question is no longer robust to

outliers. It is measured as a percentage which holds for all data sizes. RANSAC is one of those

relatively few robust estimators with higher BDP than fifty percent. Fifty percent is the limit

of the so called high-BDP technique known as Least Median of Squares (LMedS) [5], another

robust estimator that has enjoyed high popularity. Others like the M-estimator family [2] [6]

have much less BDP. Conventional statistics applications typically require BDP much less

than fifty percent, since outliers in such applications are ‘anomalies’ or ‘exceptions’ in the

2

data. However, the case is often different in computer vision applications, where outliers are

only defined with respect to the best among competing models that define geometric

transformations between common features in a pair of images.

A common robust estimation problem in computer vision is the image correspondence or

registration problem [7] [8], which involves estimating the geometric transformation required

to transform one of a pair of images such that common features in both images align. Such a

problem is encountered in diverse fields including medical imagery [9], remote sensing [7],

Location Detection in environmental planning (LDP) [10] omnidirectional camera model

fitting [11], motion estimation [12, 13], motion segmentation [14], autonomous vehicle

navigation [15], automated cartography [10]. RANSAC has become a popular and essential

component of computer vision software owing to its effectiveness in handling such problems.

Besides the fact that RANSAC is one of the most outlier-robust algorithms [1], there are other

properties that have made it highly favoured in computer vision. It is simple both in structure

and principle, easy to implement and due to its non-exhausitve search approach, it is relatively

more efficient compared to many other available techniques [16]. RANSAC has no domain-

specific component to it, and can therefore be applied to any model-fitting problem.

Nevertheless, RANSAC has some limitations [16], [17]. It is not guaranteed to find the optimal

model. Being a stochastic algorithm, it is not repeatable, that is, multiple runs of the algorithm

on the same problem typically yield varying results. There is also no upper bound on its

solution time, only a theoretical lower bound for the number of hypothetical models required

to be generated for a certain probability of finding a good solution. The more the time allowed,

the higher the probability of finding a good solution; and too short a time may result in really

bad estimates. There is also the issue of dependence on user-supplied parameters. This list of

drawbacks is not exhaustive. The desire to overcome some of these drawbacks has led to a

research area that has been very active for about two decades till date. Many variants have

therefore been developed. As the second chapter of this thesis reveals, nearly every year in the

last one-and-half decade witnessed the introduction of one or more variants. The last two years

(2014 and 2015) alone witnessed the introduction more than ten variants.

However, many existing variants compromise two attractive properties of the original

RANSAC: simplicity and generality. Some introduce new operations like local optimization

and preprocessing, to mention a few, resulting in loss of simplicity. Many of those that do not

introduce new operations modify RANSAC’s search strategy by leveraging on problem-

specific priors, thereby trading off generality and introducing some complexity as well as

dependence on other steps of the workflow of applications. These observations may explain

3

the persisting trend of finding only the older, simpler variants in popular computer vision

software libraries. Specifically, the OpenCV library and all releases of MATLAB’s computer

vision toolbox (1994 - 2015), arguably the two most popular software tools used in the

computer vision field, are being referred to. For instance, although MATLAB gets updated

twice every year, functions provided for estimating geometric transformations between image

pairs (a robust estimation problem) have not changed: the homography estimation function,

named estimateGeometricTransform, is still based on the M-estimator Sample Consensus

(MSAC) till date, while the fundamental matrix estimation function,

estimateFundamentalMatrix, offers both RANSAC and MSAC as options. Even if the makers

of these popular software, have other reasons for sticking with RANSAC and MSAC for so

many years till date despite being well aware of recent advancements, the properties that these

two ‘favoured’ algorithms have in common, which the ‘unfavoured’ ones compromise, are

worth paying attention to.

While this research shares with other research efforts the common goal of mitigating

RANSAC’s drawbacks, the foregoing observations on the ‘pitfalls’ of many existing

approaches and the discrepancy between progress in research and state of the art in popular

software, provide the motivation to pursue improvements adopting the peculiar approach

described in subsequent sections of this chapter.

1.2 Problem Statement

RANSAC has undergone much development through active research efforts over the last two

decades. In fact, for the past fifteen years, nearly every year, a new variant of the original

algorithm is published. Yet such progress is not reflected in popular software used in

education, research and practice: the persisting trend is to find only the older, simpler variants

in software implementations. It is observed that many existing variants compromise two

attractive properties of the original RANSAC: simplicity and generality. This is mainly

because they seek performance enhancements either by introduction of new operations or by

biasing sampling using problem-specific priors. This research focuses on exploring the

possibility of avoiding these ‘pitfalls’, while still mitigating as much of RANSAC’s drawbacks

as possible. Since many of RANSAC’s drawbacks are consequences of its random-sampling

search strategy, the approach adopted to preserve simplicity is to restrict modification of

RANSAC to only a replacement of its search strategy. This constraint then dictates that an

effective search strategy be developed that is inherently capable of producing performance

improvements over RANSAC without any additional refinement. A second constraint, serving

the purpose of preserving generality is that such a strategy must require no problem-specific

4

priors. Developing such a search strategy is the main problem addressed in this thesis.

Additionally, since the overall concern of this research is to drive forward the state of the art

in computer vision software, the need for a comprehensive and up-to-date survey of such a

fast paced literature as RANSAC’s, is also addressed in this research.

1.3 Research Questions

This research seeks to provide answers to the following questions. The first two questions are

addressed in the contributed survey while the rest of the work is devoted to addressing the last

question.

i. Taking a holistic look at RANSAC literature, what are the dominant themes; what

is/are the most fundamental question(s) in RANSAC research and what is/are the most

pressing concern(s) of research efforts?

ii. What directions should future research efforts pursue to achieve algorithms with

higher odds of being considered as good candidates for implementation in popular

software?

iii. How can the drawbacks of RANSAC be overcome purely by a change in search

strategy, without introducing new steps nor dependence on problem-specific priors?

1.4 Aim and Objectives

The primary aim of this study is to drive forward the state of the art in robust estimation,

particularly in computer vision software through provision of a comprehensive survey of

existing RANSAC variants and development of at least one new algorithm that offers

performance advantages over RANSAC, while avoiding the common ‘‘pitfalls’’ of

introducing new operations or dependence on problem-specific priors. The objectives

highlighted below provide guidance in achieving this aim.

i. To review relevant publications and provide organized discussion of variants with

analysis of literature to provide answers to the stated research questions.

ii. To develop and implement a search strategy that overcomes limitations of RANSAC’s

strategy, resulting in at least one variant whose advantages over RANSAC are

achieved purely by search strategy replacement.

iii. To carry out extensive empirical testing to evaluate the performance of the resulting

algorithm(s) and compare with RANSAC’s.

5

1.5 Contributions and Significance of Study

This study contributes to theory, research and practice of robust estimation in computer vision

in a number of ways, highlighted as follows:

The survey of RANSAC literature presented in this thesis, is the most comprehensive and up-

to-date review published on this subject. Through such a survey, practitioners will be better

armed to make choices for their applications; software makers will benefit from awareness of

a more rounded range of options than is currently found in popular software libraries; and

comparative studies, a common phenomenon in RANSAC literature, will be better guided.

A central contribution of this thesis is the presentation of theoretical insights on the generic

robust estimation problem. A theorem is proposed, referred to in this work as ‘the consecutive

inliers theorem’. A few other propositions are included. One of the empirical studies reported,

reveals interesting results on the automatic threshold estimation problem. These theoretical

contributions apply to the general robust estimation problem and therefore create a new world

of possibilities in RANSAC research and in robust estimation in general. As exemplified in

this work, insights revealed in the consecutive inliers theorem, make possible a number of

innovations, which we believe to only be the beginning of its exploration. Five novel

algorithms, presented in this thesis, are borne out of these theoretical insights. The algorithms

offer performance improvements over RANSAC while avoiding the earlier described ‘pitfalls’

of many existing algorithms. Three of the five algorithms are completely non-random. This

property has never been claimed by any RANSAC variant and is indeed not common among

non-exhaustive search algorithms in general.

Some significance also lie in taking these contributions beyond ‘theory, algorithm and

experimental results’ to actual ready-to-use software implementations that can benefit

practice, research and teaching in computer vision. Two of the algorithms are implemented as

contributed alternatives to the homography estimation function provided in MATLAB’s

computer vision toolbox, a widely used software in this field, after being shown to improve on

the performance of M-estimator Sample Consensus (MSAC), the variant used in the official

implementation, including the 2015b release.

1.6 Scope and Limitations

For the reasons described in the background section, this thesis considers improving RANSAC

only by replacing its search strategy. Otherwise, the proposed algorithms could also benefit

6

from many other enhancements from which RANSAC has benefited, such as preprocessing,

local optimization, partial evaluation, and many other enhancement methods found in

literature. But the focus is to address this ‘most fundamental’ problem first, having noted it to

be the root of many of RANSAC's drawbacks, before considering other enhancements in future

works, if at all necessary. Therefore exploration of these other directions is outside the scope

of this research. This delineation reflects in the various experiments reported, in the sense that

the proposed algorithms are compared to only pure-random-sampling variants like RANSAC

and MSAC.

1.7 Methodolgy

The validity of the ‘consecutive inliers theorem’ proposed in this thesis is established through

a concise proof. Properties of the proposed algorithms are studied and the claimed advantages

are verified empirically. Empirical studies reported involve line-fitting, affine transformation

and projective homography estimation problems. Simulated datasets are used to create a wide

range of data conditions, and in situations where the results from algorithms need to be

benchmarked with known ground truth. Homography estimation problems are also studied

using real-life image pairs consisting of aerial maps of the Westville campus of the University

of Kwazulu-Natal (UKZN) and its neighbourhood. These maps were sourced from Google

maps.

Comparative analyses are performed using descriptive statistics as well as relevant

visualizations. Statistical hypothesis tests are also employed. The Friedman test is used to test

for significant difference in relative ranking of algorithms run on the same set of problems

after which Nemenyi tests are conducted for pairwise comparisons. The purpose of these tests

is to be able to infer reliable generalizations about performances of algorithms.

All software implementations are done in the MATLAB language, while statistical hypothesis

tests are performed using facilities in the R software.

1.8 Definition of Terms

A few terms are defined here, as used throughout this thesis, which are consistent with popular

language in RANSAC literature.

Simplicity: an algorithm is described as simple in this thesis, if it does not include any extra

steps or operations such as local optimization, preprocessing and preliminary hypothesis tests.

7

Such an algorithm, like RANSAC or MSAC, simply involves using a search mechanism to

optimize an objective function used to measure model quality. The more extra steps an

algorithm contains, the more it is said to violate simplicity. While this may not necessarily

result in performance disdvantages, inclusion of extra steps generally increase difficulty of

implementation.

Generality: this refers to the absence of problem-dependent component. Generic algorithms,

like RANSAC, do not depend on any prior information that is problem-specific. The value of

generality is that such an algorithm can be used for model-fitting on any kind of data, rather

than being limited, for example, to image data. Also such an algorithm is independent of the

outcomes of other steps in the workflow of applications.

Repeatability: this is a measure of the ability of an algorithm to return the same (or close)

results upon multiple runs on the same problem. As far as RANSAC literature is concerned,

synonyms include consistence, non-randomness, stability, and precision.

Instance: a row in a data table; a point in data space.

Outliers: instances that are inconsistent with a model that fits the bulk of a dataset; instances

that are remarkably different from the bulk; instances with error greater than a given threshold.

All three definitions mean the same thing.

Outlier rate: also referred to as contamination level, is the fraction or percentage of data

instances that are outliers.

Inliers: the opposite of outliers.

Hypothesis: a model constructed at some point in time during the run of an algorithm. It is also

referred to as a solution or hypothetical model. This should not be confused with the use of the

same word in the context of inferential statistics in chapter 4, where the null and alternate

hypotheses represent complementary inferences about a population.

Consecutive instances: instances that follow each other (contiguous or adjacent) in the data

table.

Minimal sample size n: the minimum number of instances required to fit a model of interest.

For example, for a line-fitting problem, n = 2, for an affine transformation n=3, for a projective

homography n = 4.

8

Data size m: number of instances in a dataset. In the computer vision sense, this is the number

of matches.

1.9 Organization of Thesis

The rest of this thesis is organized as follows:

Chapter 2 presents an introduction to the working principles and limitations of the RANSAC

algorithm followed by a review of robust estimation techniques and a comprehensive survey

of RANSAC variants.

Chapter 3 presents the ‘consecutive inliers’ theorem and a proof to establish its validity. The

five novel algorithms are described in this chapter, being applications of insight provided by

the theorem. Also presented is a study on the problem of automatic estimation of distance

threshold, an important parameter in RANSAC-like algorithms and how the theorem leads to

innovation in addressing this problem.

Chapter 4 presents comparative studies involving six algorithms: four of the new ones and two

random-sampling algorithms found in popular software, RANSAC and MSAC. Performance

criteria include accuracy, efficiency, and repeatability (non-randomness).

Chapter 5 takes the contributions of this work a step further. Two of the algorithms are

implemented as contributed alternatives to the homography estimation function provided in

MATLAB’s computer vision toolbox, having being shown in chapter 4 to offer performance

advantages over M-estimator Sample Consensus (MSAC), the variant used in the official

implementation. The chapter includes a user guide written in the official MATLAB

documentation style which includes description of syntax, input arguments and output

arguments for both functions.

Finally, Chapter 6 presents summary, conclusion, and directions for future works.

9

CHAPTER TWO

2 LITERATURE REVIEW

2.0 Chapter Introduction

This chapter presents an introduction to the working principles and drawbacks of the RANSAC

algorithm followed by a brief overview of robust estimation techniques in general. These form

a prelude to a survey of RANSAC variants which is the main contribution of this chapter. To

the best of the author’s knowledge, currently, this is the most comprehensive survey published

on this subject. The underlying motivation is that besides development of new variants, which

is the concern of subsequent chapters, collection and organized discussion of existing variants

may be equally as valuable in driving forward the state of the art. The survey includes some

analysis of literature which aim to answer a few interesting questions in order to provide

researchers with holistic understanding of this fast-growing field. Research trends are observed

and an attempt is made to cast in a single sentence, what the survey reveals to be the most

fundamental research question. Also, to aid software production process which would

typically involve studying variants in much more detail, quantitative and qualitative

approaches are proposed to guide prioritization of original works to be studied. The survey

concludes with identification of gaps and recommended directions for future research efforts.

2.1 Robust Estimation: Model Estimation in the Presence of Outliers

Perhaps the most popular model-fitting technique in most scientific fields is the least squares

technique. It achieves model-fitting by minimizing the sum of squared residuals. A single

outlier can significantly affect its estimates, since each data instance error contributes equally

to the error function being minimized to achieve a model of best fit.

As already defined in chapter 1, an outlier is a data instance that is inconsistent with the model

that fits the bulk of a dataset. Inliers are those that are consistent with the model. Therefore an

instance must fall into one of the two categories. The robust estimation problem involves

fitting to data, an appropriate model which is not misled by presence of outliers. Given data

points to which a model perfectly fits, if some of the points are given arbitrary bias, so that

they are no longer consistent with the model, a robust estimator is still able to accurately

produce the original model.

10

2.2 Measuring Robustness: Breadkdown Point

A common measure of robustness of an estimator is the breakdown point (BDP). It is defined

as:

𝐵𝑃𝑀(𝐷𝐼) =
𝑑𝑒𝑓

min {
𝑚

|𝐷𝐼|
: 𝑏𝑖𝑎𝑠𝑀(𝑚; 𝐷𝐼) = ∞}

where 𝑏𝑖𝑎𝑠𝑀(𝑚; 𝐷𝐼) is the maximum perturbation associated with a model M and set 𝐷𝐼, that

leaves estimates unchanged [4].

Intuitively, the BDP of an estimator is the fraction of data that can be given arbitrary values

without making its estimates arbitrarily bad. It is typically measured as a percentage of the

data size. The percentage holds for all data sizes. RANSAC is one of those relatively few

robust estimators with BDP beyond fifty percent. Fifty percent is the limit for so called high

BDP technique known as Least Median of Squares (LMedS), another popular technique.

Others like the M-estimator family have much lower BDP. While fifty-percent BDP is

sufficient for most statistics applications, since the outliers in such applications are ‘anomalies’

or ‘exceptions’ in the data, the case may be different in computer vision applications, where

outliers are only defined with respect to the best among competing models.

2.3 Robust Estimation as a Combinatorial Optimization Problem

Consider taking a sample of m data points, where n is the minimum number of points required

to define a model of interest. If there are m instances in the data, then the possibilities are (𝑚
𝑛

)

in number. If an appropriate objective function is used to evaluate each resulting model, then

the model that best fits the data can be selected. Such an approach to model fitting is robust to

outliers without first detecting and deleting them. This is because each model is constructed

from a minimal sample set. It is easy to show that the best model will be constructed from a

minimal sample set that are all inliers. Clearly, this is a combinatorial optimization problem.

However, the immediate problem with this approach is that which plagues most practical

combinatorial optimization problems. The space of all possible models, also known as the

solution space, easily gets large, making exhaustive enumeration infeasible for even relatively

small sized problems. Fischler and Bolles [10] introduced RANSAC to handle this problem.

RANSAC and its variants, have since become very popular in computer vision, a field rife

with extreme robustness requirements.

11

2.4 The RANSAC Algorithm

RANSAC is simple in structure, yet is is very powerful and effective. The structure of the

algorithm is summarized as follows:

2.4.1 Outline of the RANSAC Algorithm

1. Repeat a and b until sufficient number of trials

a. Randomly select minimal sample set and fit hypothetical model. The minimal

sample set consists of the minimum number of data instances required to define a

given model. For example, when fitting a straight line, the minimal sample size is

two; three for an affine transformation; four for projective homography; and so

on.

b. Evaluate hypothesis –criterion: number of data instances consistent with the

hypothetical model (a number of other functions have been proposed)

2. Return the best model

The cost function which RANSAC seeks to minimize is stated as follows:

𝜌1(𝑒2) = {
0, 𝑒2 < 𝑇

𝑇2, 𝑒2 ≥ 𝑇

where e is the point error and T is the error threshold used to distinguish inliers from outliers.

The optimization problem that RANSAC seeks to solve is:

𝜃 = 𝜃
arg 𝑚𝑖𝑛

∑ 𝜌1(𝑒2, 𝜃)

𝑚

𝑖=1

where 𝜃 is the estimate of model parameters and m is the data size.

12

Figure 2.1: Flowchart of RANSAC

2.4.2 Drawbacks of RANSAC

Listed below are some of the drawbacks of the RANSAC algorithm. Although this list of

drawbacks is not exhaustive, it contains most of the drawbacks that have been widely identified

and studied.

1. Efficiency: There is no upper bound on its solution time, only a theoretical lower

bound for the number of hypothetical models required to be generated for a certain

probability of finding a good solution. The more the time allowed, the higher the

probability of finding a good solution; and too short a time may result in bad estimates.

2. Convergence: RANSAC’s solutions do not improve progressively as more iterations

are performed. An iteration is simply a random trial which may compare arbitrarily

with previous trials. The final solution returned is simply the best found so far. This

has implications on efficiency too, as the best solution may have been found much

earlier than the termination condition dictates, resulting in much waste of time, but

RANSAC has no way of knowing this in order to terminate early enough.

13

3. Accuracy: As is typical of stochastics algorithms, RANSAC is an approximation

algorithm. There is therefore no guarantee of finding the optimal solution.

4. Repeatability: Being a stochastic algorithm, it is not repeatable. That is, multiple runs

of the algorithm on the same problem typically yield varying results. Although given

an appropriately computed number of trials, the probability of a good solution is high.

However, it is possible for RANSAC to return a bad solution.

5. Lack of robustness to degenerate configurations.

6. There is also the issue of dependence on user-supplied parameters.

2.5 Homography Estimation

Any pair of images sharing the same surface can be related by a homography if we assume a

pin-hole camera model. In other words, homography is a special case of the fundamental

matrix. Such models are applied in problems like image registration, image rectification,

camera-motion estimation, image mosaicking, video stabilization, image in-painting, and so

on.

Given point correspondences, x’ and x, a homography transformation H satistfies:

𝑥′ = 𝐻𝑥

H is 3 by 3.

In the most general homography case, at least four point pairs are required to define a model.

The various kinds of homography include similarity, affine, and projective homographies.

Under homographic transformations, quadrilaterals are transformed into quadrilaterals.

2.5.1 Non-Refective Similarity

This may include one or more of rotation, scaling and translation. This implies that shapes and

angles are preserved, when such a transformation is applied. Such a model requires two points

pairs to define it.

2.5.2 Affine Transformation

A similarity transformation is a special case of affine transformation. In addition to the

possibility of rotation, translation and scaling, affine transformation may include shearing.

Though straight lines remain straight as in similarity transformation, shapes and angles are not

preserved. Affine transformations require a minimum of three point pairs to define the model.

14

2.5.3 Projective Transformation

This is the most general case of homography. Affine transformations are special cases of

projective homography. The only constraint in projective homography is that quadrilaterals

map to quadrilaterals. Projective transformations require a minimum of four poin pairs to

define the model.

Given point correspondences (x, y) and (u, v), affine and similarity transformations are given

as:

[𝑢 𝑣] = 𝑇[𝑥 𝑦 1]𝑇

Projective transformation T is given by:

[𝑢𝑝 𝑣𝑝 𝑤𝑝] = 𝑇[𝑥 𝑦 𝑤]

where 𝑢 =
𝑢𝑝

𝑤𝑝
, and 𝑣 =

𝑣𝑝

𝑤𝑝
.

Equivalently,

𝑢 =
𝐴𝑥 + 𝐵𝑦 + 𝐶

𝐺𝑥 + 𝐻𝑦 + 𝐼

𝑣 =
𝐷𝑥 + 𝐸𝑦 + 𝐹

𝐺𝑥 + 𝐻𝑦 + 𝐼

𝑇 = (
𝐴 𝐵 𝐶
𝐷 𝐸 𝐹
𝐺 𝐻 𝐼

)

15

(a) Original (untransformed)

(b) Similarity

 (c) Affine

(d) Projective

Figure 2.2: Homography transformations illustrated

2.6 On Existing Reviews of RANSAC Variants

A few attempts have been made in the past by some authors to provide organized discussions

of RANSAC variants. Choi et al [16] presented one such discussion under three themes

according to improvement focus – accuracy, speed and robustness. The discussion by Raguram

et al [18] highlights three other improvement themes which are all related to improvement of

speed – optimizing model verification, improving hypothesis generation, preemptive RANSAC

strategy, and local optimization. Their discussion culminated in the discussion of an algorithm

representing a fourth subject – adaptive real-time RANSAC. A more recent review [17],

contributed by this same Raguram and four other authors, each of whom had in the past

16

developed some of the most successful variants. Their goal is to present the idea that each

variant that exists can be treated as a special case of RANSAC under specific practical and

computational considerations. They therefore present an integrated framework named

Universal RANSAC (USAC) that aggregates the strengths of a number of variants each

constituting a module in the framework. Their review is a discussion of the functional

requirements of each module, and the various options that exist in literature for meeting the

requirements, leading to their choices in the final implementation of USAC. This framework is

discussed in further detail in section 2.9.6.

The survey presented in this chapter is substantially more comprehensive and up-to-date, than

any of the above, in terms of coverage of variants as well as discussion of themes. It treats in

more depth, the subjects of holistic literature understanding, gap identification and provision of

guidance for future research. Chronological analysis of literature is also presented. Approaches

to identifying ‘classics’ to aid prioritization of works for very detailed variant studies, such as

may be required in software development settings, are also suggested. Indeed the goal is to

provide a roadmap for navigating this vast literature.

2.7 Brief Overview of the General Field of Robust Estimation

This overview begins with robust estimation techniques used in the broader statistics

community, before narrowing focus to those used in computer vision. Though the list of

algorithms represents a good coverage of techniques in these fields, it is not exhaustive.

As mentioned earlier, the field of robust estimation is concerned with tackling the problem of

avoiding outlier-misled model-fitting. Many robust estimators have been developed. One

measure of the level of robustness of these techniques is known as BDP, defined as the

maximum outlier contamination level that an estimator can resist without arbitrarily large bias

in the estimates. One popular category of techniques is the M-estimate-type techiques such as

Huber, Tukey’s bisquare, Andrew’s, Fair’s, Welsch’s, Cauchy’s, and Talwar’s weighted M-

estimators. Techniques with higher BDP than M-estimators include LmedS [5] technique

which performs estimation by minimizing the median of squared residuals. Least Trimmed

Squares (LTS) [19] which minimizes the sum of squared residuals computed using fixed

cardinality subsets, and S-estimates, which minimize the variance of residuals. In the field of

computer vision, a field rife with robust estimation problems with high BDP requirements,

popular techniques used include LmedS, Minimize the Probability of Randomness

(MINPRAN) [20], and RANSAC. RANSAC seems to be the most popular.

17

The High-BDP estimators mentioned – LMS, LTS, MINPRAN, RANSAC – are all capable

of accurate model estimation even in the presence of up to fifty percent outliers. Roussew

argues that the highest breakdown limit is 50% [20], on the basis that higher contamination

may result in having outliers that ‘conspire’ to fit well to a model which becomes the best-

fitting model due to the number of outliers rather than being the ‘right’ model. However, if it

is assumed that this ‘conspiracy’ does not arise, then the robustness of the high BDP algorithms

can still be compared on contamination beyond fifty percent. While an algorithm like LmedS

would breakdown beyond 50% contamination, RANSAC can exhibit robustness to

contamination beyond 50%. Other robust estimators used in the field of computer vision are

discussed in the next subsection.

2.8 Robust Estimation Techniques in Computer Vision

There are two broad categories of techniques, namely, stocahatic techniques and deterministic

alternatives.

2.8.1 Stochastic Techniques

Stochastic techniques are essentially non-exhaustive search techniques. One group of such

algorithms found in robust estimation literature, involve optimization of some function of

residuals over several generated models. RANSAC falls into this category. It generates

hypothetical models and maximizes the cardinality of the inlier set. MSAC [21], a RANSAC

variant, maximizes an error function formulated in the M-estimate framework. MLESAC [22]

implements the same approach as MSAC using a slightly different error function. MAPSAC

[23] maximizes a posterior probability of inlier set. Many other variants, discussed later in

this work, differ from these in their strategy for generating and verifying models, but generally

employ one of these optimization objectives. Generally, algorithms that belong to the

RANSAC family depend on the user to supply of an appropriate distance threshold used by

the algorithm to distinguish between outliers and inliers.

Several other techniques exist that optimize other functions of residuals, which are not

dependent on the supply of threshold. One popular technique is the earlier mentioned LmedS

which minimizes the median of squared residuals. However, its BDP is lower than those of

the RANSAC family: it breaks down when data contamination exceeds fifty percent.

Minimum Probability of Randomness (MINPRAN), minimizes the probability that a

combination of model and corresponding inliers occurred by chance. While it does not require

noise threshold to be supplied, it assumes the knowledge of the dynamic range of the outlier

18

data. Another robust estimator is the Minimum Unbiased Estimate (MUSE) [24], which

minimizes order statistics of the squared residuals. It has been noted to have limited outlier

robustness [17]. Projection-based M-estimator (pbM) [25], computes threshold automatically

by approaching the M-estimator objective of MSAC, as a projection pursuit problem. But it is

noted to be a computationally expensive technique, especially as the model complexity

increases [17].

Table 2-1: Optimization Objectives for High-BDP Estimators in Computer Vision

Technique Objective

LMedS Minimize median of squared residuals [5]

LTS Minimize least squares over fixed-sized subsets of data [19]

RANSAC Maximize support i.e. inlier set cardinality [10]

MSAC Maximize inlier set likelihood by minimizing M-estimate error

MLESAC A different version of MSAC’s objective [21]

MAPSAC Maximize a-posterior probability of inlier set [23]

MINPRAN Minimize chance probability of inliers- model set [20]

MUSE Minimize order statistics of squared residuals [24]

pbM Same objective as MSAC formulated as projection pursuit [25]

Raguram et.al [17] note that the foregoing techniques that optimize functions of residuals,

generally rely on one or more user-supplied parameter(s). Those which do not rely on supply

of the threshold, rely on the supply of the number of hypotheses to be tested. This they argue,

relies in turn, on knowledge of the inlier rate, or a worst case assumption that guarantees

success for the worst inlier rate possible, for the given problem. They argue that these user

inputs can be difficult to compute. One technique that avoids these limitations, is the Residual

Consensus (RECON) Algorithm. It adopts a different paradigm, testing pairs of models for

consistency. The heuristic that is the basis for this approach is that the residuals for good

19

models are likely to be consistent with each other. This is of course, computationally

expensive, since hypothetical models have to be paired.

Another group of stochastic algorithms are those that detect inliers based on the distribution

of residuals. The approaches in this category work based on the idea that the distribution of

residuals with respect to a sufficiently large set of randomly selected models can reveal which

points are outliers or not. Such techniques are also very well suited for multi-model problems.

While this approach has been shown to be an effective approach, it depends on the generation

of a sufficient number of hypothetical models, which can be a limitation in terms of

computational complexity. Examples of techniques that belong in this category include J-

Linkage [26], Ensemble Method [27], and Kernel-Fitting [28].

2.8.2 Deterministic Techniques

A few robust estimation approaches exist that are deterministic, in that they do not explore the

solution space in a randomized way. Examples are Joint Compatibility Branch and Bound [29],

Active Matching and Consensus Set Maximization algorithm of [30]. The first two leverage

on prior information on location of image features, while the last reformulates the consensus

set maximization objective of RANSAC as a mixed-integer programming problem, solving it

using a branch and bound technique. Olsson et.al [31] presented an approach based on

computational geometry theory. They propose an O(kn+1) polynomial time algorithm, where k

is the number of matches and transformation space is of n degrees of freedom.

Litman et. al [32] point out that the foregoing method could not be used in practice for spaces

of more than a few degrees of freedom. A three-fold contribution is made by these authors, in

a work which is an interesting entry at the Computer Vision and Pattern Recognition (CPVR)

2015 conference. First is the introduction of a scheme for efficient sampling of the space of

transformations. The second contribution is an algorithm that finds the best transformation

given the inlier rate. The last is an algorithm that estimates the inlier rate without explicitly

detecting them. The authors consider the last as their main contribution, noting that without it

the rest of the framework has no practical applicability. In the approach of the framework, the

best transformation is found using a branch-and-bound technique. The authors introduce a

quantity v(p) that depends on the sample density E, and is a function of the inlier rate p. The

main insight of their paper, they note, is that this quantity, which is easy to compute, attains a

minimum at the ‘true’ inlier rate p*. They further established the existence of this minimum,

theoretically. Using the branch-and-bound approach, the technique minimizes the error of data

points, given this estimate inlier rate.

20

Broadly speaking, one advantage of these deterministic techniques is that they avoid

dependence on inlier error threshold. However, a major drawback of these class of algorithms

is that they are generally computationally costly, which is a major problem in practical

applications. This may be a reason why they are not as popular or accepted as the RANSAC

family, in computer vision software and practice.

2.8.3 On the Popularity of Stochastic Algorithms in Practice

A survey of popular computer vision software reveals that deterministic techniques are not

very popular compared to stochastic techniques. Due to the nature of solution spaces in real-

life computer vision applications, it is found that existing deterministic techniques are

generally limited in the kinds of problems they can handle. Generally speaking, in the light of

practical applications they are too costly computationally, though some of these algorithms

give guarantees of global optimum in cases they can handle. It is no wonder therefore, that

state-of-the-art software opt for their stochastic counterparts which adopt non-exhaustive

search, among which the RANSAC paradigm is favoured. Good results are still achievable,

and a wide range of practical problems can be solved by such an approach.

2.9 Survey of RANSAC Variants

Since its introduction in 1981, RANSAC has been through various developments resulting in

quite a number of variants. Each variant is designed to improve the performance of the basic

algorithm, in some way. As mentioned in the introductory section of this paper, Choi et.al [16]

identify the main research directions as improvement of accuracy, speed and robustness. Their

discussion reveals that by robustness, they refer specifically to low sensitivity to poor choice

of threshold. Similarly, Raguram et.al [17] identify the performance concerns efficiency,

accuracy, and lack of robustness to degeneracy. The functional themes with which their work

is concerned include prefiltering matches for better efficiency, (guided) sampling, model

checking, partial evaluation, preemptive verification, handling degeneracy, and local

optimization. In [18], a discussion is presented, of speed-related themes: optimized model

verification, improving hypothesis generation, preemptive RANSAC strategy, and local

optimization. The survey that is presented in the sections that follow builds upon these existing

works and is more comprehensive and up-to-date than any of them.

21

2.9.1 Pursuit of Improved Accuracy

Accuracy, in RANSAC literature, is used to convey either of two related concepts. The first

refers to effectiveness of the technique adopted for evaluated hypothetical models. The second

use of the term accuracy refers to the effectiveness of the search strategy used by an algorithm

to explore the space of possible hypotheses given any of the optimization objectives. Both uses

of the term are related since both the search strategy and the optimization objective interact to

produce the final estimates returned by the algorithm. Therefore accuracy generally bores down

to mean correctness of the estimates returned by an algorithm. The foregoing definitions are

simply different directions authors looked in order to improve RANSAC’s accuracy. Other

strategies is found in literature, for improving accuracy, include local optimization and adopting

of appropriate stopping criteria. Local optimization involves refining the initial estimates of

RANSAC using a local optimization algorithm. Since RANSAC performs time-constrained

optimization, the point of using a stopping criterion is to compute the lower bound on the

number of trials required for a certain probability of selecting good solutions.

Figure 2.1 is a visual representation of the various approaches that have been adopted in pursuit

of improved accuracy.

Figure 2.3: Strategies for Improving Accuracy

22

Figure 2.4 extends the diagram in Figure 2.3 to show a few subthemes that have been studied

in the pursuit of effective model evaluation.

Figure 2.4: Approaches to Model Evaluation

2.9.1.1 Model Quality Measures and Optimization Objectives

As described in chapter 2, the original RANSAC seeks to maximize the cardinality of the

consensus set. The assumption inherent in this objective is that the best model that fits the data

is the one that records the highest number of inliers. This assumption does not always hold.

MSAC [21] and MLESAC [22] replace this objective with slightly different objective functions

23

in the M-estimate framework, both proposed by Torr and Zisserman. Intuitively, and loosely

speaking, these functions seek to maximize the tightness of inliers, round the model. MAPSAC

[23] employs a Bayesian approach, maximizing a posterior probability of inlier set.

In a paper published in 2010, Gallio et.al [33], noted the unreliability of RANSAC in situations

with clustered patches of limited extent. In such cases, a single plane crossing through two such

patches may contain more inliers than the correct model. This happens with images containing

structures like steps, curbs ramps, and so on, in range sensor applications. The focus of the

authors is to mitigate the effect of such unreliability for safe parking of cars and robot

navigation. A modification of RANSAC, named CC-RANSAC is therefore proposed. The

difference between CC-RANSAC and RANSAC is that, instead of evaluating hypothetical

models based on the total cardinality of consensus set as RANSAC does, CC-RANSAC’s

objective is to maximize the connected components of inliers. An assumption of the algorithm

is that inliers cluster together into one large connected component. While the authors argue that

this holds for the concerned applications, they admit the necessity for further investigation.

2.9.1.2 Threshold Selection Techniques

As mentioned earlier, the distance threshold used for distinguishing outliers from inliers, is an

important parameter required by RANSAC and many variants. When the threshold is set to a

value that is too large, the algorithm becomes highly susceptible to noise, and outliers may be

regarded as inliers. This is because of the low discrimination of the algorithm between points.

On the other hand, when the threshold is set to a value that is too small, many inliers will be

falsely rejected as outliers. Both cases result in bad estimates. Therefore selecting an optimal

threshold value is an important step towards achieving accurate model estimates. Under this

heading, existing approaches to selecting this crucial parameter are discussed.

Empirical Approach

In many situations it is possible to make a reasonable empirical choice of the distance threshold.

This is probably still the most common approach in practice. A proabale reason may be the fact

that in many situations, it is fairly easy to determine the threshold by experiments. In modern

computer vision software like Matlab 2015b and OpenCV, implementations of the RANSAC

algorithm for estimating homographies and fundamental matrices require the user to supply a

value for this parameter.

24

Theoretical Approach

While it is possible in many applications to choose the value of the distance threshold by

experimentation, a more formal process can be adopted [17]. The approach assumes Gaussian

noise with zero mean and standard deviation σ. The point-model error d2 can therefore be

expressed as a sum of n squared Gaussian variables, n being the co-dimension of the model.

The residuals follow a chi-square distribution with n degrees of freedom. The inverse chi-square

distribution can be used to determine a threshold t that captures a fraction α of the true inliers:

𝑡2 = 𝜒𝑛
−1(𝛼)𝜎2

Where χ is the cumulative chi-square distribution, and α is the confidence level, that is, 1-α is

the probability of incorrectly rejecting a true inlier.

Automatic Tuning

Some variants have been developed to avoid dependence on user-supplied distance threshold.

These variants incorporate techniques for estimating the threshold. One such variant published

in 2003 - Feng and Hung’s MAPSAC [25] - performs simultaneous estimation of inlier rate and

threshold, using a mixture model of Gaussian and uniform distributions and computation of the

transformation by minimizing the 2D projection error. Another variant uMLESAC [25] is a

user-independent version of MLESAC that uses expected maximization (EM) for automatic

estimation as well as adaptive termination using failure rate and error tolerance. AMLESAC

[34], uses uniform search and gradient descent to estimate the threshold, and EM to estimate

the inlier rate, whilst including local optimization in its framework. StaRSaC [35] achieves

automatic estimation using a measure known as ‘variance of parameters’ (VoP) to compute a

stable range of solutions over a pool of transformations. The underlying principle of StaRSaC

is that a threshold value that is too small, produces a tight fitting, unstable solution. The degree

of instability increases with both the variance of the uncertainty and with the number of outliers.

Similarly, a threshold that is too large produces fits that are also unstable due to the influence

of outliers erroneously treated as inliers. The observation of the authors is that there exists a

region or range of distance threshold values, typically wide, that produce stable solutions. Once

this region is found, then the model that maximizes the RANSAC objective is chosen. So,

basically, StaRSaC runs multiple RANSAC’s using various thresholds and choses the one that

minimizes the VoP.

While the advantage of automatic tuning may be obvious, in that it makes the algorithm

independent of the user, it generally comes with significant increase in computational cost and

runtime.

25

2.9.1.3 Threshold-Independent Model Evaluation

Besides automatic threshold estimation, other approaches have been proposed for achieving

user-independence. Two such approaches are discussed under this heading, namely, a contrario

approaches and fuzzy approaches.

A Contrario Approaches

Moisan and Stival [36] propose a computational definition of rigidity along with a probabilistic

criterion to rate the meaningfulness of a rigid set as a function of the number of matched pairs,

as well as the accuracy of the matches. This criterion, they argue, yields an objective way to

compare precise matches of a few points, and make inference about a larger set. It guarantees

that the expected number of meaningful rigid sets found by chance in a random distribution of

points is as small as desired. The basic idea of the a contrario approach is to combine RANSAC

with a hypothesis testing framework, as a way of avoiding dependence on threshold selection.

According to Rabin et.al [37], who refer to the variant as a contrario RANSAC (AC-

RANSAC), this technique has the advantage of allowing the automatic tuning of parameters

without any a priori on the distribution of inliers. They further extend AC-RANSAC to develop

Sequential AC-RANSAC and MAC-RANSAC. Sequential AC-RANSAC extends AC-

RANSAC to the case of multi-model estimation while MAC-RANSAC combines Sequential

AC-RANSAC with spatial filtering and transformation fusion detection with a fusion splitting

criterion.

Fuzzy Techniques

Some authors have proposed the use of fuzzy techniques for avoiding drawbacks of

conventional threshold-dependent RANSAC. Variants that belong in this category evaluate

models based on membership functions of a fuzzy set. One such variant which incoporates

fuzzy theory into RANSAC, is the fuzzy RANSAC algorithm proposed by Lee and Kim in

2007 [38]. It classifies samples as good, bad and vague. Good sample sets are those whose

degree of inlier membership is high and the rate of membership change is small. Bad sample

sets are those whose degree of inlier membership is high and the rate of membership change is

small. Vague sample sets are those whose rate of membership change is large without relation

to any degree of membership. The algorithm then improves classification accuracy, omitting

outliers by iteratively sampling only from good sets.

Watanabe proposed another fuzzy RANSAC algorithm [39] which combines a fuzzy model

evaluation approach with extended sampling method based on reinforcement learning. They

argue that RANSAC’s model estimation precision can be improved by increased variation in

26

the size of samples from which hypothetical models are constructed. This however, increases

the size of the solution space. They propose a Monte-Carlo sampling, performed in proportion

to evaluation values, which is learned using reinforcement learning. The claim of their work,

substantiated by homography estimation experiments, is that the technique is more accurate and

efficient than RANSAC for the cases tested.

2.9.1.4 Local Optimization

The basic idea of local optimization is to use an optimization algorithm to refine the solution

from the basic RANSAC in a depth-first manner. This can be any suitable optimization

algorithm. The goal is to resort to locally optimize the best solution returned by RANSAC

within a reasonable number of iterations. This strategy was proposed by Chum et al [40] and

the resulting variant was named accordingly: Locally optimized RANSAC (LO-RANSAC).

They proposed this in response to the problem found in the fact that the number of iterations

required for RANSAC to produce near-optimal results, in practice, is usually much higher than

the theoretically computed lower bound. Their work points out the fact that while the optimal

solution must be constructed from an all-inlier sample, an all-inlier sample does not necessarily

produce an optimal solution. Four different approaches to local optimization were proposed by

the authors, tagged simple, iterative, inner-RANSAC, and inner-RANSAC with iteration. The

simple local optimization strategy applies a linear optimization algorithm to all data points

judged by basic RANSAC as inliers. Iterative local optimization, as the name suggests applies

a linear algorithm iteratively, while the threshold is being reduced per iteration. Inner-RANSAC

applies RANSAC successively to initially detected inliers, without requiring samples to be

minimal. In the iterative inner-RANSAC, each run of inner RANSAC is processed using the

iterative local optimization procedure.

Nine years after LO-RANSAC was published, another work was contributed, named LO+-

RANSAC [41]. It has two (out of three) authors in common with LO-RANSAC. It is an

improved version of LO-RANSAC. Two key contributions of this work are the use of a

truncated quadratic cost function and an introduction of a limit on the number of inliers used

for the least squares computation. They show through experiments that the algorithm is quite

stable. That is, less random; precise under a broad range of conditions; less sensitive to the

choice of inlier-outlier threshold; and is better for initializing bundle adjustment than the gold-

standard RANSAC.

27

Though the ‘LO’ variants do not offer guarantees of global optimum and absolutely repeatable

results, they achieve very significant improvements, which are still competitive in literature to

date. These improvements come with additional computational burden.

2.9.1.5 Search Strategy Change for Improved Accuracy

RANSAC’s search strategy is stochastic. There is therefore no guarantee of finding the global

optimum or even a good solution for that matter. However, the probability of finding a good

solution increases, as the number of trials is increased. The problem is that there is no upper

bound on the time it takes to find a good solution. This problem becomes more pronounced in

applications where a large number of trials cannot be allowed, such as in real-time applications.

One way to address this problem, is to bias sampling towards hypotheses that are more likely

to be good, so that they are selected earlier, and with higher priority, than less promising ones.

The earliest, and probably the most popular category of variants that sought to achieve better

speed and efficiency are known as guided-sampling algorithms. But many other search

paradigms have been developed. Some are refinements of the guided sampling concept, while

others represent significant departures from this concept. Each category is discussed in section

2.10.

Change or modification of search strategy is not connected to accuracy alone. It usually has

impact on speed as well. Therefore detailed discussion of search strategies is reserved for

section 2.9.3, to avoid repetition.

2.9.1.6 Stopping Criterion for Sufficient Trials

Like search strategy change, the use of appropriate stopping criterion may have an impact on

accuracy as well as speed. From the viewpoint of achieving better accuracy, it is necessary to

compute a lower bound for the number of trials that should be allowed for RANSAC to find a

good solution, with a given probability or confidence level. The absence of such criterion may

impact accuracy a great deal, since an arbitrarily number of allowed trials may be insufficient.

The gold-standard RANSAC [42], therefore, offers this advantage by incorporating a stopping

criterion, which has become quite popular in literature. The number of trails k, for samples that

have to be drawn for a given probability 𝑃𝐼 of drawing an uncontaminated sample is given by:

𝑘 =
log (𝜂)

log (1 − 𝑃𝐼)

𝑃𝐼 =
(𝐼

𝑛
)

(𝑚
𝑛)

28

∏
𝐼 − 𝑗

𝑚 − 𝑗

𝑛−1

𝑗=0

≈ (
𝐼

𝑚
) 𝑛

where I is the number of inliers, m is the number of points in the full data, and n is the minimal

sample size.

2.9.2 Pursuit of Improved Efficiency

Efficiency is often related to speed, which is a priority in low-time-budget applications. Speed

has to do with fast achievement of results, in terms of run time. Efficiency can be in terms of

time or computational cost. An algorithm is more efficient than another, if it finds good

solutions early or with less computation. Where an algorithm finds good solutions early, it is

safe to terminate it early enough to fit the speed requirements of the application.

Various strategies are found in RANSAC literature for improving efficiency. Some variants

employ guided-sampling, leveraging problem-dependent information to bias sampling towards

more promising candidates, instead of the uniform sampling strategy of RANSAC. Other

approaches adopt search strategies that are significant departures from RANSAC’s strategy (see

section 2.9.2). Some other variants save time and computational cost by running preliminary

tests on each hypothetical model to decide whether or not to proceed to full evaluation. The

stopping criterion discussed earlier as a means for achieving better accuracy, may also impact

efficiency significantly. The logic is that the algorithm may be confidently terminated if the

sufficient number of trials computed, has been reached. Another approach to reducing run time

and computational cost is the inclusion of preprocessing step, to derive a reduced, more reliable

set of matches, with higher inlier rate from the original data. This is effective because

RANSAC’s efficiency has been shown to deteriorate as data size and contamination level

increases [43],[44]. Each strategy is discussed in greater detail in the rest of this subsection.

Figure 2.3 summarizes existing approaches adopted in literature in pursuit of better efficiency

than the original RANSAC.

29

Figure 2.5: Strategies for improving efficiency

2.9.2.1 Search Strategy Change for Improved Efficiency

As stated under a similarly named heading, in section 2.9.2, to avoid repetition, search strategies

are discussed in a separate subsection. In context, it suffices to say that biasing sampling, or

employing completely new search strategies, could have impact not only on accuracy, but also

on efficiency.

2.9.2.2 Partial Hypothesis Evaluation

One operation that takes a high proportion of RANSAC’s run time is the evaluation of a

hypothetical model generated from a minimal sample. An approach that has proven quite

successful in achieving significant reduction in run time, and savings in computational cost is

the use of preliminary tests to decide whether or not a model is promising. The purpose of such

a test is to decide whether it is necessary to proceed to full evaluation of the model, or not.

30

Notable variants that adopt the strategy of partial evaluation of hypotheses include Preemptive

RANSAC [13] and Randomized RANSAC (R-RANSAC) group of algorithms [45],[45],[38].

The R-RANSAC group carry out a preliminary test which when violated, implies that a model

is not likely to be a good one. The implication is that it is not worth proceeding to full

evaluation of such a model. A number of tests have been proposed including the Td,d test [46],

Wald’s sequential probability ratio test (SPRT) [45], and Bail-out test [47]. Preemptive

RANSAC uses a breadth-first approach, generating and evaluating a fixed number of models

in parallel. The evaluation is done on a subset of the data. The models are ranked according to

the result of the evaluation. Only a fraction of them are evaluated on the next subset of the

data. This process continues until only one model is left or all subsets of the data have been

used. The number of hypothetical models retained before evaluating a given data point is given

according to some predefined preemption function. While the use of preliminary tests

generally reduces computation time, the tests are not guaranteed to be accurate. Therefore it is

possible to reject a good model.

2.9.2.3 Stopping Criterion and its Impact on Efficiency

Like search strategy change, the use of appropriate stopping criterion may impact accuracy as

well as efficiency. From the viewpoint of achieving better efficiency, it is useful to compute the

number of trials required for RANSAC to find a good solution with a given probabilistic

confidence level. Keeping in mind that RANSAC is non-convergent, and the solution per

iteration does not improve progressively, the demand for efficiency suggests that the algorithm

should be terminated once the computed number of trials has been reached. The absence of

such a criterion may impact efficiency a great deal, since exceeding the required number of

trials may prove to be a substantial waste of time and resources. Therefore the stopping of

criterion of the gold-standard RANSAC achieves the balance between efficiency and accuracy.

2.9.2.4 Preprocessing

The number of RANSAC iterations required depends on the outlier rate in the data. Specifically,

the lower the outlier rate, the lower the number of iterations required. A few authors have

therefore pursued the goal of improved efficiency by including a preprocessing step to extract

a reduced set with higher inlier rate from the original data. SCRAMSAC [43] proposed by

Sattler et.al in 2008, uses a spatial consistency filter to derive a refined dataset with reduced

size and increased inlier rate from the original set of matches. Two new works have been

contributed along this direction within the last two years. In 2013, Wang et.al propose a variant

named Reliable RANSAC [48] , which uses a relaxation technique to select matches that are

31

more likely to be correct, thereby resulting in a reduced, more reliable set. MC-RANSAC [49],

proposed by Trivedi et.al in 2014, uses a Monte-Carlo approach, to achieve a preprocessed

sample of hypothetical inliers.

It may be worth noting here that while the strategies discussed are the main ones by which

speed and efficiency are directly addressed, some efficiency gains can also be realized through

local optimization, discussed under the broad performance theme of accuracy. RANSAC may

be run briefly enough and then refined by local optimization, to save time.

2.9.3 Review of Search Strategies in RANSAC Literature

Under the broad themes of accuracy and efficiency, a functional theme – search strategy

modification or replacement - was mentioned as an effective strategy. This theme has been

reserved for this separate heading to avoid repetition, since it lies in the overlap of multiple

performance themes. It is indeed a very important theme, since many of the limitations of

RANSAC are direct consequences of its serial uniformly-random sampling search strategy.

Some authors have modified this strategy into biased or guided sampling while others propose

entirely new paradigms such as metaheuristics, fuzzy sampling, and so on.

2.9.3.1 ‘Guided’ Sampling

The earliest approach to modifying RANSAC’s search strategy is commonly referred to as

guided sampling. Guided-sampling algorithms use prior information on a problem to bias

sampling. In 2002, NAPSAC [50], the oldest variant found in this category, was proposed.

The concern of the authors is on the performance of RANSAC on high-dimensional problems,

in which they show that biasing the sampling towards clusters is preferable. NAPSAC works

based on the heuristic that an inlier is likely to be close to other inliers. Three years later, two

other variants surfaced: PROSAC [45] by Chum and Matas, and guided-MLESAC [51] by

Tordoff and Murray. In PROSAC’s strategy, samples are drawn from progressively larger sets

of top-ranked correspondences according to a similarity score that predicts correctness of

matches. Guided-MLESAC modifies MLESAC, guiding sampling by leveraging a priori

information on probability of validities of correspondences. In 2009, another work was

published by Ni [4] along the guided sampling direction. As the name, GroupSAC, suggests,

it biases sampling on the assumption that there exists some logical grouping in the data. The

authors term this concept group sampling. Such grouping, they suggest, might be clustering

based on optical flow, or grouping based on image segmentation. Ni also put the earlier

discussed LO-RANSAC in the category of modified sampling strategy variants [4]. This

32

applies specifically where local optimization is achieved using sampling based techniques like

the inner-RANSAC proposed by LO-RANSAC’s authors.

Zhao et.al published a variant FRANSAC [52], which works similar to PROSAC. It ranks

matches according to a distance measure defined as the ratio between the distance of a point’s

nearest neighbour and that of the next neighbour. Another variant published in the same year,

FSC [53], divides the data set into two parts: the sample set and the consensus set. The sample

set has high correctness rate and consensus set has a large number of correct matches. An

iterative method is employed to increase the number of correct correspondences.

While the guided sampling variants have been established in literature as effective ways to

improve efficiency, the drawback is that they generally depend on problem-dependent prior

information. Although many authors argue that they are usually available in practice, such

such priors generally limit the resulting variant in applicability, for example, to the computer

vision field. This is unlike RANSAC which can be applied to general robust estimation

problems. This limitation is avoided by some variants, discussed in the subsections that follow.

This new category of algorithms replace RANSAC’s strategy, usually with strategies from the

field of metaheuristic.

2.9.3.2 Metaheuristics

Some variants adopt problem-independent search strategies. Many of the works that fall under

this category use search strategies from the field of metaheuristics. The earliest found in the

course of conducting this survey, is GASAC [54], published in 2006, which uses an

evolutionary algorithm for its search. SwarmSAC [55], another variant published in 2008, uses

a discrete particle swarm optimization (PSO) algorithm for its search. A much more recent work

ANTSAC, published by Otte et.al in 2014, adopts concepts from the ant colony optimization

(ACO) algorithm such as volatile memory, in its search. These techniques were shown by their

authors to be generally more accurate than RANSAC. They also offer efficiency advantages in

high contamination or large-search-space situations. Unlike the ‘guided sampling’ variants, the

metaheuristic-based variants are generic since they do not require any problem-dependent

information. The field of metaheuristics, a field concerned with developing search strategies

for optimization problems, is noted by this survey to hold much promise for the RANSAC

community, in terms of developing search strategies that are problem-independent.

33

2.9.3.3 Conditional Sampling

A sampling approach proposed by Mela et.al [56], involves incremental building of sampling

sets. Data points are selected conditional on previously selected data. They argue that such an

approach provides more suitable samples in terms of inlier ratio, and have better potential for

accuracy. Again, like many biased-sampling variants, it depends on prior cues. BetaSAC as the

resulting algorithm is named, is presented as a general guided sampling framework in which

any kind of available prior information, can be easily used. The method classifies general inlier

samples into four types: inlier samples, consistent samples, samples that are consistent with

additional information, and suitable samples. Inlier samples are defined as those containing

purely inliers. Most of the guided-sampling methods including PROSAC, seek this kinds of

samples. However, there is still the possibility of constructing poor models from such a sample.

Consistent samples are inlier samples that satisfy some consistency constraints. As the authors

point out, different consistency constraints have been studied such as those originating from

oriented projective geometry used in epipolar geometry, and 4-dimensional linear subspace

constriants which holds for all relative homographies of a pair of planes. Some heuristics can

also serve this purpose. A good example is NAPSAC’s heuristic which is based on the

observation that an inlier tends to be closer to other inliers than outliers. The third class, samples

that pass a consistency test with additional information, are even higher potential samples than

the foregoing. Such information include those from the image signal itself such as information

derived from segmentation as used in GroupSAC. Finally, the highest potential samples, are

the ones classified as suitable samples. Generating such a sample is the desired goal of guided

sampling. According to the authors, such samples do not only have high potential to lead to

correct models but are also not affected by degeneracy and measurement noise.

Botterill et.al [57], proposed two variants in 2009, both of which adopt conditional sampling

strategies for early selection of sets that are most likely to lead to good hypotheses. The authors

argue that existing guided-sampling variants fail to take into account information gained by

testing hypothesis sets and finding them to be contaminated by outliers. Two algorithms,

BaySAC and SimSAC, are proposed to take advantage of such information gain. Both

algorithms take into account the observation that a model with low inlier rate likely results from

samples that are contaminated by one or more outliers. Therefore it is a waste of time to try the

same sample again or to try sample sets with one or more data points in common with these

samples already taken to be contaminated. This holds for any prior probability distribution, be

it the uniform distribution of RANSAC or the non-uniform distributions of several guided-

34

sampling variants. The goal therefore, is to choose samples that are most likely to contain no

outliers based on the prior probabilities as well as the described sampling history.

Due to the intractability, and probably non-existence of a closed-form solution for this posterior

probability, two approximation approaches were proposed by the authors, leading to the two

algorithms. BaySAC adopts a Naïve Bayes method which involves choosing n data points

which are most likely to be inliers based on initial prior probabilities being used, and then

updating this inlier probabilities based on history. This hypothesize-verify-update process is

repeated until sufficient trials have been made. The second variant, SimSAC follows an

alternative approach to computing inlier probabilities, using simulation. Inlier/outlier statuses

are initially assigned to points at random. It samples from this prior distribution of inlier/outlier

status vectors, and updates this sample conditional on observation of samples that contain

outliers, by finding peaks in accumulated histograms of inlier counts for each of the data points.

SimSAC is however found to be the slower and more computationally complex of the two.

BaySAC, according to the authors, works well when there are few large intersections between

inputs and output sets, but works poorly in some cases when the data size is small since the

points are still largely equiprobable even after the updates in such cases. According to the

authors, both algorithms improve on the computational efficiency and speed of RANSAC

significantly, while decreasing the failure rate in real-time applications.

Five years after the original BaySAC was published, Kang et.al published an optimized

BaySAC [81]. Instead of using specific characteristic information about a primitive, the authors

of the optimized BaySAC propose a technique for statistical testing of candidate model

parameters to compute the prior probability of each data point, which is predictably model-free.

The probability update is implemented by means of a simplified Bayes formula.

2.9.3.4 Fuzzy Sampling

Earlier discussed under threshold selection, the fuzzy RANSAC algorithm [38] proposed by

Lee and Kim in 2007, introduces another sampling strategy. It classifies samples as good, bad

and vague. Good sample sets are those whose degree of inlier membership is high and the rate

of membership change is small. Bad sample sets are those whose degree of inlier membership

is high and the rate of membership change is small. Vague sample sets are those whose rate of

membership change is large without relation to any degree of membership. The algorithm then

improves classification accuracy omitting outliers by iteratively sampling only from good sets.

35

2.9.3.5 Sampling Based on Reinforcement Learning

The fuzzy RANSAC [39] of Watanabe et.al, mentioned earlier under the discussion of fuzzy

model evaluation techniques, incorporates in its framework a sampling method based on

reinforcement learning. The authors argue that the precision of RANSAC’s model estimation

can be improved by increased variation in the size of samples from which hypothetical models

are constructed. This however, increases the size of the solution space. They propose a Monte-

Carlo sampling, performed in proportion to evaluation values, which is learned using

reinforcement learning. The authors discuss a number of expected advantages of the method.

One is balance of search exploration and exploitation. Other advantages discussed are better

efficiency than RANSAC, robustness to random noise by the learning mechanism, reduced

computational cost and accuracy, simplicity and wide applicability.

2.9.3.6 Importance Sampling

One other sampling strategy found in literature involves the use of importance sampling

function for outlier-contaminated data. This was proposed in a framework named Importance

Sampling Consensus (IMPSAC) by Torr and Davidson in 2003 [58]. Their work presents

synthesis of very useful statistical techniques and posterior distribution of a two-view relation

at a coarse level to obtain that of a finer level. The technique works by using a Monte Carlo

Markov Chain which is seeded using RANSAC, and used to generate the importance sampling

function.

2.9.3.7 Purposive Sampling

Another sampling paradigm was proposed by Wang and Luo [59], named Purposive Sampling

Consensus (PURSAC). Instead of following RANSAC’s assumption of uniform probability

distribution of data points, PURSAC seeks the points’ differences and ‘purposively’ selects

sample sets. Using sampling noise information which the author argue, always exists, sampling

is performed according to the sensitivity analysis of a model against the noise. In addition, the

algorithm includes local optimization.

The authors discuss two examples: a line-fitting problem and visual odometry. For line-fitting,

through analysis of geometry of the data points, confirmed by a Monte Carlo test, they show

that the smaller the distance between the two points that make up the minimal sample, the more

this sample is affected by sampling noise. Therefore, the conclusion is drawn that points

sampled should be far enough from each other for better likelihood of finding a good model.

The next step in the algorithm is to limit sampling to inliers though verification is still done

36

using the whole data set. In the final step, similar to LO-RANSAC, local optimization is

performed using an inner iteration.

For visual odometry, the concept is implemented thus: first all the points are ranked by their

matching scores, and the one with the highest rank is selected. Features close to this highest

ranking point according to a given threshold are excluded from subsequent sampling attempts.

This continues until all matches have been included in either the selection or exclusion list.

Sample sets are then picked only from the selected group, according to their ranking, though

the resulting hypothetical models are verified using the entire dataset.

By experiments, the authors show that PURSAC can achieve higher accuracy, precision, and

efficiency, than RANSAC, the number of iterations being close to the theoretical expected

lower bound. However, PURSAC’s implementation requires some quantitative analysis to

design the rules for purposive sampling, which depend on the model of interest.

37

Figure 2.6: Search Paradigms in RANSAC Literature

2.9.4 Robustness Concerns in RANSAC Literature

In addition to the general concept of robustness to outlier-contamination which is the possessed

(to different degrees) by every robust estimation algorithm there exists other concerns within

38

the RANSAC community to achieve robustness to certain peculiar image or parameter

conditions. Some of this concerns are discussed in this section.

2.9.4.1 Robustness to Degeneracy

RANSAC may produce a model that fits a given data but does not verify that such a model is

unique. This makes it prone to failure in data with degenerate configurations. DEGENSAC [60]

was proposed by Chum et.al in 2005, to include a test for degeneracy for epipolar geometry

estimation. A more general degeneracy testing approach was proposed by Frahm and Pollefeys

a year later, resulting in a variant dubbed QDEGSAC [61]. Their approach works by multiple

sequential calls to RANSAC. The first run estimates the most general model that RANSAC

would have returned ignoring the possibility of degeneracy. Constraints are then added

successively to subsequent runs. The final model returned is the one that successfully explains

at least fifty-percent of the inliers of the first general RANSAC run. The high computational

cost of QDEGSAC should be obvious to the reader, as it is a composite of multiple RANSC

runs.

2.9.4.2 Robustness to False Matching Under Drastic Occlusion and Stitching

The conventional RANSAC approach of using a size of sample equal to the minimum required

to define a given model, fails in some situations with drastic occlusion and scaling caused by

large viewpoint changes. This is because the conventional approach will find it difficult to find

enough correct matches to compute for example, the fundamental matrix. The result is false

acceptance of outliers as inliers. To tackle this problem, Chou and Wang proposed an approach

that uses only two points, correspondingly dubbed 2-point RANSAC [62], to raise the success

rate in planar cases. The approach was tested on loop-detection and place recognition tasks.

However, the authors express some concerns about the proposed approach. The first concern is

the 2-D limitation, the second being the computation speed. They hope to investigate more

efficient ways for dealing with the homography matching step than exhaustive search.

2.9.4.3 Robustness to Patch Clustering

As mentioned earlier under the discussion of optimization objectives, Gallio et.al [33] noted the

unreliability of RANSAC in situations with clustered patches of limited extent. In such cases,

a single plane crossing two such patches may contain more inliers than the correct model, a

situation that occurs with images containing steps, curbs or ramps, in range sensor applications.

CC-RANSAC was therefore proposed to improve robustness to such conditions by adopting a

new objective which is the maximization of connected components of inliers.

39

Normal Coherence RANSAC (NCC-RANSAC) [63], published in 2014 builds on the success

of CC-RANSAC in overcoming the challenge. CC-RANSAC has some limitations. It succeeds

when the patches are distinct but fails if they are connected. As the name implies, NCC-

RANSAC performs a normal coherence test on all data points of the inlier patches in order to

remove points whose normal directions contradict that of the fitted plane. The outcome is the

derivation of distinct inlier patches, each of which is treated as a candidate plane. The planes

are grown recursively until all planes have been completely extracted. This process of plane

fitting and clustering continues until no more planes are found.

2.9.5 Other Themes

In addition to the themes already discussed. A few other themes are identified in literature

which do not seem to be quite as popular as the previously discussed ones. The themes

discussed under this category, generally emerged relatively recently in literature.

2.9.5.1 Multi-Model Estimation

Most RANSAC variants assume that a single model accounts for all of the data configuration.

But it is found that there are cases where this assumption does not hold. A few authors have

explored extension of RANSAC to handle multi-model cases. Sequential RANSAC, as it is

called, involves detection of multiple models by applying RANSAC sequentially and removing

the inliers from the dataset as each model is detected. Such an approach is adopted in the work

of Kanazawa and Kawakami [64], and that of Vincent and Laganiere [65]. The Sequential AC-

RANSAC of Rabin et.al [37] also adopts this strategy, combining it with the a contrario

framework of AC-RANSAC. The same applies to MAC-RANSAC which extends sequential

AC-RANSAC with spatial filtering and transformation fusion detection with a fusion splitting

criterion.

Zuliani et.al [66] criticized the sequential approach as non-optimal and note that it is prone to

inaccurate estimation. In view of this they proposed a parallel strategy that detects models

simultaneously in a more principled way. Through experiments, they argue that the parallel

approach seems to produce more stable estimates than the sequential approach. An important

gap is also noted by the authors: the need for automatic estimation of the optimal number of

models.

2.9.5.2 Robust Estimation with Non-Homogenous Correspondences

This is another relatively unexplored area of research in RANSAC literature. Most works in

RANSAC literature assume homogeneous correspondences, that is, correspondences that are

40

of the same modality, sharing the same properties and metrics. However, one work is found

that addresses the non-homogeneous case. Published in 2014 by Barclay and Kaufmann, the

variant named Fault-Tolerant RANSAC (FT-RANSAC) [67], adopts PROSAC-inspired guided

sampling, consensus maximization of classical RANSAC, Hough-inspired dimensionality

reduction, and consistency voting mechanism. This setup helps the algorithm to compute the

best model among competing multi-modal solutions.

2.9.5.3 Target Tracking and Dynamic Model Estimation

Dynamic Target tracking involves evolving-state estimates. It is a widely studied field with

such applications as pedestrian tracking, vehicle tracking, bacteria tracking, air traffic control,

and so on. RANSAC has been found to be useful in this field, since the problems involve robust

estimation. KALMANSAC [68] is one algorithm used to track single dynamic targets using

causal measurements. KALMANSAC uses RANSAC to label data points as outlier or inliers.

Such labels are then used to seed the iteration of subsequent time-steps.

Recursive-RANSAC [69], unlike KALMANSAC, extends to the case of multiple target

tracking. It was originally developed for estimation of multiple static signals, and later extended

to the dynamic case. It achieves dynamic target estimation using a recursive RANSAC

procedure. While KALMANSAC computes the estimate of the maximum a posterior

probability estimate, Recursive-RANSAC stores multiple hypothesis tracks in memory to allow

subsequent inlier measurement to refine the current estimate. Recursive-RANSAC does not

require prior knowledge of the number of existing targets.

2.9.6 USAC: An Integrated ‘Universal’ RANSAC Framework

By the joint effort of five well-known authors in RANSAC literature, each of whom has been

involved in the development of one or more of the variants already discussed, a universal

RANSAC framework, USAC, was published in 2013 [17]. It is a composite of a number of

existing variants that fulfil the requirement of each module. The authors present the framework

designed based on the argument that each existing variant is a special case of RANSAC in terms

of practical and computational considerations. Therefore each module takes care of specific

functional requirements. In terms of overall performance, it is the current state of the art [32],

representing excellent performance along multiple directions. The various modules are

summarized below:

41

2.9.6.1 Prefiltering

Due to the fact that the runtime of RANSAC is determined by the inlier rate, a useful measure

is to preprocess the input data to improve the inlier rate. This restricts the input data to reliable

matched feature pairs, using consistency filters. This impacts the performance of RANSAC in

two ways: the matches used are cleaner and more correct and the data size is reduced. This

results in better efficiency. The algorithm chosen for this module is SCRAMSAC.

2.9.6.2 Sampling

To improve on the efficiency of the uniform random sampling of RANSAC, the authors of

USAC provided facility for biased sampling based on some prior information on the dataset.

For this purpose, they explored PROSAC, GroupSAC and NAPSAC. PROSAC is chosen

among these alternatives to achieve a balance of performance, generality, and the risk of

degeneracy. They argue that PROSAC is more easily applicable in the general case than

GroupSAC, and less susceptible to degenerate configurations than NAPSAC. PROSAC

however, requires matching scores for ordering the data points.

2.9.6.3 Preliminary Model Check

This module is aimed at carrying out preliminary tests to avoid full evaluation of a hypothetical

model, if it fails such a test which is an indication that it is not a good model. This is done in

USAC using the SPRT test, which the authors argue is a better choice than other alternatives

like Td,d test.

2.9.6.4 Check for Degeneracy

The goal of this module is to build robustness to degenerate data configurations. The choice

made for this module is DEGENSAC. The authors noted however, that integrating USAC with

QDEGSAC, a more general alternative for degeneracy detection, is quite easy: replacing the

calls to RANSAC made within QDEGSAC with calls to USAC.

2.9.6.5 Local Optimization

This module refines the initial consensus set maximization result, using LO-RANSAC. The

specific local optimization strategy is inner-RANSAC couple with iterative reweighted least

squares procedure. The argument for this choice is that it is found to work well in practice

without substantial addition to computational cost.

42

The authors include a check in the implementation of USAC before the local optimization step

is performed, to determine the extent of overlap between the current inlier set and the best inlier

set found so far. The reason is that a substantial overlap, say 95%, indicates that significant

improvement to the best result is unlikely to result from local optimization. In such a case of

substantial overlap, the local optimization step is not worth performing and can therefore be

skipped, to save time.

2.9.6.6 Stopping Criterion

There is the need to modify the stopping of criterion of RANSAC in the USAC framework.

The authors show that accounting for the effect of biased sampling and SPRT test results in

some changes in the usual probability of finding a good solution which is then used to construct

a stopping criterion in the gold-standard RANSAC. Details of these modifications are provided

in [17].

2.10 Chronological Analysis of RANSAC Literature

In this section, observations are presented on research activity from 1981 when the original

RANSAC was published, to date. One outcome is the identification of trends. Some of the

observations made also aid in measuring popularity of works and the rate at which each is

attracting attention in literature. These metrics are put to further use in the section on classics

identification. Aggregated with our theme-based discussions, the observations made in this

section, naturally lead to discussion of gaps in literature.

Figure 2.7 tells part of the story of the evolution of the RANSAC research. It is easily seen

that RANSAC research really started to become active at the beginning of the 21st century.

After the original RANSAC which was published in 1981, only two works are found by this

survey to be dated earlier than the year 2000. Since 2000, nearly every year has witnessed the

publication of new variants. It is also quite clear that research is still very much active in this

area. One evidence is seen in Figure 3.5a which shows that the years 2014 and 2015 witnessed

the highest level of activity, next to the year 2005. Furthermore, grouping the works in the

collection by decades shows an increasing trend in the number of variants published. A similar

trend is observed when the works are grouped by half-decade intervals.

The implication of these observations is that although much progress has been made in this

research area, there is still much activity going on. It is worth noting at this point, that many

of the works discussed in this survey were published under the auspices of major conferences

and journals in the field of computer vision. This can easily be verified by a glance through

43

the references section. This should reduce the probability of merely high activity without much

significant contributions. A plausible inference is that the consistently high (even rising) level

of research activity suggests the presence of gaps. This may imply the persistence of some old

problems or the emergence of new ones, or both.

(a) Yearly

(a) 5-year Interval

(c) Ten-year Interval

Figure 2.7: Research Activity in RANSAC literature from 1981 to 2015 measured by count

of variants

43

2.11 Methodology for Identification of Classics

In software production settings, there may be a need for in-depth study of original works or review

of specific variants in greater detail, than can be provided in a survey. Software makers and other

practitioners, who are supposed to benefit from existing works, are faced with the challenge posed

by the vastness and high-paced evolution of this literature. This section suggests ways to tackle

this challenge, considering the infeasibility of studying all works in detail, within reasonable time.

Qualitative as well as quantitative metrics are proposed.

As rules of thumb, this section suggests classifying as classic:

1. any work that is among the most popular in the entire collection of publications

2. any work (variant) that is preferred among those developed to solve the same problems

3. a pioneering work along the direction of a specific functional theme

The first suggested rule for identifying classics, should apply in most fields. The metric adopted

in this survey to measure popularity of a work is the total number of citations it has attracted. This

is based on the reasoning that a publication that presents a novel variant, is cited for one or more

reasons, some of which are identified as the following:

1. The algorithm is used in an application.

2. The algorithm is influential in developing another variant presented in the work that cites

it.

3. The cited work is included in discussion of related works.

4. For some reason, the variant published in the cited work is involved in the experiments of

the work that cites it. This often happens when the author(s) see(s) the need to compete

with the cited variant, usually because it is a popular choice for some specific performance

requirement.

Besides the popularity of variants, measured by absolute number of citations attracted, another

related metric is adopted in this survey: the citation rate. This provides a kind of normalization for

fair comparison of works in terms of their impact factor as well as current rate of attracting

attention in the community. This metric is computed as the ratio of total number of citations to the

number of years since publication.

44

The second rule suggested for identifying important works is to go for the preferred variant under

each functional-theme, that is, those developed to solve the same problems. An objective judgment

in each case will require series of well-designed experiments for appropriate performance

evaluations. This is definitely a major task that will require several months if not years, and

possibly collaborations among several experts, to complete. A second best option that is expected

to be suffice for the dominant themes, is suggested. The judgement of notable experts in the

RANSAC community – the five authors of USAC – is relied on. As discussed in the section on

USAC, each of the authors had been involved in RANSAC research for years and each had

developed some of the most popular variants. Moreover, USAC itself, though published just about

two years ago, has become quite successful and popular. The idea of USAC was to develop a

unified framework composed of modules each taking care of a specified functional requirement

that may come up under practical and computation consideration. Each module implements a

variant preferred by the authors for the specific purpose. The reader is referred to the discussion

provided in this survey on USAC in section 2.9.5 or the original paper [17] for details.

Lastly, while there is no guarantee that the collection of works in this survey is exhaustive, it is

noted that a pioneering work would have been cited by most works that are along the same

direction. This means it is unlikely that this survey would have missed a pioneering work in the

process of collecting the original publications for such a large collection of variants. Therefore,

looking up the discussion provided in this survey on any theme of interest and picking the earliest

published, should be a good way to identify such works.

The suggested rules can be applied by researchers and practitioners to identify works that are

important to their specific purposes. Priorities will vary from application to application.

In the section that follow, the suggested metrics for measuring popularity and popularity rate are

put to use in analysis of the RANSAC literature, to seek answer to a few interesting questions.

2.12 Observations and Discussion

A number of interesting findings result from aggregating observations from the spatial and

chronological analysis of the literature carried out in this survey. These findings are discussed in

this section.

45

2.12.1 ‘Old’ works with low popularity score

The entire collection of variants is categorized into three groups: high popularity (top 33%, about

18 in number), average popularity (middle 33%) and low popularity (bottom 33%). Another

classification is created according to age. Since research into development of variants really

became active from the year 2000, any work published on or before the middle of that decade

(2005 or earlier) is classified as old. Any work published after 2005 is classified as recent. A

variant that is old yet having low popularity score (total number of citations since it was published)

is judged not to have attracted much attention. Such works may represent themes that have not

been given much attention.

By these classifications, it is observed from table 2.3 that two variants, Feng and Hung's MAPSAC

and AMLESAC, fall into the category of old works with low popularity. Interestingly, they both

represent the same theme – user independence. A closer observation of the same table reveals that

almost all the other user-independent variants (uMLESAC, StaRSaC, Sequential AC-RANSAC,

MAC-RANSAC) which are of relatively average age are also not very popular. It is interesting to

see that they all rank closely on the popularity table. This may be an indication that this theme is

still relatively unpopular. At first glance, two automatic tuning works, AC-RANSAC and

Sequential RANSAC, seem to skew this conclusion a bit, making it to the top 33%, but they lie

somewhere at the bottom of this group. Moreover, they are both quite old and this may have

introduced some bias in their popularity score. A plausible inference from these observations is

that full user independence, though very advantageous is still not very popular. Such a conclusion

is given further validation by the fact that modern software like all existing releases of MATLAB’s

computer vision toolbox, including the 2015b release, still use implementations of robust

estimation functions based on variants that depend on user-supplied values. One possible reason

may be that existing fully automatic techniques come at significantly higher computational cost

and traded off simplicity. This would amount to forfeiting the very advantages that RANSAC

offers over many other robust estimation techniques. Besides, an appropriate value for the distance

threshold for example, can be determined through some experimentation. But these are just

hypothetical conclusions: the observation may simply be a pointer to the fact that the priorities of

research efforts so far lie in other themes than user-independence. Clearly from the table, most of

the works that made it to the top 33% on the popularity table are related to either accuracy or

efficiency. Any reader of RANSAC literature knows that these are popular themes.

46

A word caution is worth being chipped in here. Current popularity should not be used to

conclusively judge the importance or future prospects of the success of variants. This is because

there are a number of factors that affect the popularity of a work. These include the advantage of

age and the fact that research efforts easily follow the direction of earlier works. But popularity

still holds some value for judgment: a popular work is more likely to have undergone much

scrutiny and review, so the claims made should be more reliable. Little wonder the variants that

are in common use in computer vision software are found at the top of the table.

2.12.2 Works with High Popularity Rate

The list of variants at the top of Table 2.4, in which variants are ranked according to popularity

rate rather than absolute total citations, covers a balance of all three performance themes, the top-

most being gold-standard RANSAC which achieves a balance of accuracy and efficiency.

Although it may be argued that its relatively old age is responsible for its popularity, and while

this may be a factor, it is observed that there are several older works that are not nearly as popular.

Another plausible argument calling for caution in judgment, is that this algorithm was published

in a book – one of the most popular books in computer vision – which would have attracted

citations because of other subjects than just this algorithm. However, it is still true that the gold-

standard algorithm is highly favoured in software implementations till date. The stopping criterion,

which distinguishes it from the original RANSAC, is widely used.

Some relatively recent works are found that have a high popularity rate. This may be a good

indication of growing attention being paid to that work and the theme it represents. Recent works

with high citation rate may represent a fast growing theme while older works with low citation

rate may indicate that a theme or work is no longer receiving attention. Competitively high

popularity rate is observed for USAC and ARRSAC. USAC has the higher rate.

USAC is an integrated framework representing improvement along multiple themes. ARRSAC is

also ‘multi-theme’. This shows that there is remarkably fast growing interest in contributions that

achieve multidirectional or balanced improvements, rather than simply trading off one

performance measure to achieve another that is of emphasis in the concerned application. In fact,

USAC probably represents the most comprehensive improvement coverage in a single work, ever

in RANSAC literature. Clearly, multidirectional improvement should be considered by

researchers who want to develop successful algorithms.

47

Table 2-2: Variants Sorted By Age/Year of Publication

S/N Name Year Age (Years) Reference

1 RANSAC (original) 1981 35 [10]

2 K-RANSAC 1995 21 [70]

3 MLESAC 2000 16 [22]

4 MSAC 2000 16 [23]

5 Sequential RANSAC 2001 15 [65]

6 R-RANSAC 2001 15 [71]

7 MAPSAC 2002 14 [23]

8 R-RANSAC with Tdd Test 2002 14 [72]

9 NAPSAC 2002 14 [50]

10 gold-standard RANSAC 2003 13 [42]

11 Preemptive RANSAC 2003 13 [13]

12 LO-RANSAC 2003 13 [40]

13 AC-RANSAC 2003 13 [37]

14 IMPSAC 2003 13 [58]

15 Feng and Hung's MAPSAC 2003 13 [73]

29 uMLESAC 2003 13 [74]

16 PROSAC 2005 11 [75]

17 MultiRANSAC algorithm 2005 11 [66]

18 guided-MLESAC 2005 11 [51]

19 DEGENSAC 2005 11 [60]

20 R-RANSAC with SPRT Test 2005 11 [45]

21 RANSAC with bail-out test 2005 11 [47]

48

22 KALMANSAC 2005 11 [68]

23 AMLESAC 2005 11 [34]

24 QDEGSAC 2006 10 [61]

25 GASAC 2006 10 [54]

26 Lee and Kim's Fuzzy RANSAC 2007 9 [38]

27 ARRSAC 2008 8 [18]

28 Optimal R-RANSAC 2008 8 [76]

30 SwarmSAC 2008 8 [77]

31 1-point RANSAC 2009 7 [78]

32 SCRAMSAC 2009 7 [43]

33 GroupSAC 2009 7 [79]

34 BaySAC 2009 7 [57]

35 SimSAC 2009 7 [57]

36 StaRSaC 2009 7 [80]

37 MAC-RANSAC 2010 6 [37]

38 Sequential AC-RANSAC 2010 6 [37]

39 BetaSAC 2010 6 [56]

40 CC-RANSAC 2011 5 [33]

41 LO+-RANSAC 2012 4 [41]

42 USAC 2013 3 [17]

43 Reliable RANSAC 2013 3 [48]

44 recursive RANSAC 2013 3 [69]

48 MC-RANSAC 2013 2 [49]

50 fuzzy RANSAC 2013 2 [39]

45 NCC-RANSAC 2014 2 [63]

49

46 FT-RANSAC 2014 2 [67]

47 Optimized BaySAC 2014 2 [81]

49 ANTSAC 2014 2 [82]

51 FSC 2015 1 [53]

52 Distributed Robust Consensus 2015 1 [83]

53 FRANSAC 2015 1 [53]

54 2-point RANSAC 2015 1 [62]

55 PURSAC 2015 1 [59]

Table 2-3: Variants Sorted By Popularity Score

Ranking

(Total =

55)

Variant Year
Popularity Score

(Total Citation)

1
gold-standard

RANSAC
2003 17475

2 RANSAC 1981 13595

3 MLESAC 2000 978

4 PROSAC 2005 518

5 Preemptive RANSAC 2003 502

6 LO-RANSAC 2003 303

7 ARRSAC 2008 211

8 MSAC 1998 205

9 MAPSAC 2002 201

10 Optimal R-RANSAC 2008 200

11
MultiRANSAC

algorithm
2005 173

50

12 guided-MLESAC 2005 138

13 AC-RANSAC 2003 135

14
R-RANSAC with Tdd

Test
2002 134

15 Sequential RANSAC 2001 115

16 NAPSAC 2002 108

17 IMPSAC 2003 105

18 DEGENSAC 2005 99

19 QDEGSAC 2006 98

20
R-RANSAC with SPRT

Test
2005 95

21 1-point RANSAC 2009 94

22 SCRAMSAC 2009 79

23 GroupSAC 2009 65

24
RANSAC with Bail out

test
2005 62

25 K-RANSAC 1995 55

26 GASAC 2006 50

27 CC-RANSAC 2001 44

28 USAC 2013 41

29 LO+-RANSAC 2012 40

30 KALMANSAC 2005 34

31 BaySAC 2009 28

31 SimSAC 2009 28

33
Sequential AC-

RANSAC
2010 24

33 MAC-RANSAC 2010 24

51

33 Reliable RANSAC 2013 24

36
Feng and Hung's

MAPSAC
2003 22

36
Lee and Kim's Fuzzy

RANSAC
2007 22

36 StaRSaC 2009 22

39 AMLESAC 2005 19

40 uMLESAC 2003 17

41 BetaSAC 2010 13

42 recursive RANSAC 2013 12

43 R-RANSAC 2001 7

43 FSC 2015 7

45 SwarmSAC 2008 6

46 NCC-RANSAC 2014 4

47 FT-RANSAC 2014 2

47 Optimized BaySAC 2014 2

47
Distributed Robust

Consensus
2015 2

50 MC-RANSAC 2013 2

50 ANTSAC 2014 1

50 fuzzy RANSAC 2014 1

50 FRANSAC 2015 1

54 2-point RANSAC 2015 0

54 PURSAC 2015 0

52

Table 2-4: Variants Ranked By Average Citation Rate

Ranking

(Total =

55)

Variant Year Age

Popularity

Score

(Total

Citation)

Popularity Rate

(
𝑇𝑜𝑡𝑎𝑙 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛

𝐴𝑔𝑒
)

1
gold-standard

RANSAC
2003 13 17475 1344.23

2 RANSAC 1981 35 13595 388.43

3 MLESAC 2000 16 978 61.13

4 PROSAC 2005 11 518 47.09

5 Preemptive RANSAC 2003 13 502 38.62

7 ARRSAC 2008 8 211 26.38

10 Optimal R-RANSAC 2008 8 200 25

6 LO-RANSAC 2003 13 303 23.31

11
MultiRANSAC

algorithm
2005 11 173 15.73

9 MAPSAC 2002 14 201 14.36

28 USAC 2013 3 41 13.67

21 1-point RANSAC 2009 7 94 13.43

12 guided-MLESAC 2005 11 138 12.55

8 MSAC 1998 18 205 11.39

22 SCRAMSAC 2009 7 79 11.29

13 AC-RANSAC 2003 13 135 10.38

29 LO+-RANSAC 2012 4 40 10

19 QDEGSAC 2006 10 98 9.8

14
R-RANSAC with Tdd

Test
2002 14 134 9.57

53

23 GroupSAC 2009 7 65 9.29

18 DEGENSAC 2005 11 99 9

20
R-RANSAC with

SPRT Test
2005 11 95 8.64

17 IMPSAC 2003 13 105 8.08

33 Reliable RANSAC 2013 3 24 8

16 NAPSAC 2002 14 108 7.71

15 Sequential RANSAC 2001 15 115 7.67

43 FSC 2015 1 7 7

42 recursive RANSAC 2013 2 12 6

24
RANSAC with Bail

out test
2005 11 62 5.64

26 GASAC 2006 10 50 5

31 BaySAC 2009 7 28 4

31 SimSAC 2009 7 28 4

33
Sequential AC-

RANSAC
2010 6 24 4

33 MAC-RANSAC 2010 6 24 4

36 StaRSaC 2009 7 22 3.14

30 KALMANSAC 2005 11 34 3.09

27 CC-RANSAC 2001 15 44 2.93

25 K-RANSAC 1995 21 55 2.62

36
Lee and Kim's Fuzzy

RANSAC
2007 9 22 2.44

41 BetaSAC 2010 6 13 2.17

40 uMLESAC 2003 8 17 2.13

46 NCC-RANSAC 2014 2 4 2

54

47
Distributed Robust

Consensus
2015 1 2 2

39 AMLESAC 2005 11 19 1.73

36
Feng and Hung's

MAPSAC
2003 13 22 1.69

47 FT-RANSAC 2014 2 2 1

47 Optimized BaySAC 2014 2 2 1

50 FRANSAC 2015 1 1 1

45 SwarmSAC 2008 8 6 0.75

50 MC-RANSAC 2013 2 1 0.5

50 ANTSAC 2014 2 1 0.5

50 fuzzy RANSAC 2014 2 1 0.5

43 R-RANSAC 2001 15 7 0.47

54 2-point RANSAC 2015 1 0 0

54 PURSAC 2015 1 0 0

55

2.12.3 Identifying the Most fundamental Research Question

The observations discussed seem to produce a clear revelation on the dominant concerns in

RANSAC literature. While there are varied directions along which contributions have been made,

the most fundamental research question appears to be the following:

How can high accuracy be achieved in as few trials as possible?

Clearly, this is statement of the combined quest for speed and accuracy. These two performance

criteria are combined in one word: efficiency. Given the foundation of this fundamental objective,

most of the further important research concerns are captured thus:

How can this primary objective be achieved with as much simplicity, generality, non-

randomness of results, and robustness, as possible?

The presented discussion of variants and analysis of literature reveals the validity of this work’s

statement of the most fundamental research question. The fundamental nature of the problem is

evident in the fact that if RANSAC can be given an infinite amount of time, the probability of

finding a good solution approaches unity. The statement is further validated by the fact that

improvement of efficiency as attracted the most research attention. Interestingly, as the

observation of the most recent works show, the quest is still very much on and there is still room

for contribution.

2.12.4 Trends in the Current Half-Decade and Forecasts of the Immediate Future

A study of Table 2.2, in which works are sorted by year of publication reveals that the current

half-decade consists mostly of works that relate to improvement of efficiency. A closer study

shows that a significantly high proportion of these works are concerned with search strategy

development. Still along the same lines, the pie charts in Figure 3.6 show that about three-quarters

of the research attention in the last half decade was given to developing variants that improve on

RANSAC’s efficiency. Also, a bit over half of the works published during this period are

concerned with development of more effective search strategies.

All the above observations show that improvement of efficiency is still the ‘hottest’ research topic

in RANSAC literature, which is again consistent with the statement of the most fundamental

research question in this work. This statement appears valid for the overall literature as well as for

the last five years. It is seen that a prominent direction along which improved efficiency is pursued,

is the development of effective search strategies to replace serial uniformly random sampling.

56

In view of the recent trends discussed and the literature understanding gained as a result of this

survey, an attempt is made to forecast the direction of research activity in immediate future. It is

foreseen that more works will be published along these directions in the immediate future. The

reason for this statement is that, with regards to these themes, it does not appear that the

community has come close to a ‘plateau’ such as is the case with some themes like local

optimization, adopted optimization objectives, techniques for handling degeneracy, and a few

others for which the state of the art has been existing for relatively long period. A good example

is LO-RANSAC, published in 2003, which has generally remained the standard for local

optimization. However, the literature keeps evolving, with respect to search strategies. As for

many of these other themes, recent improvements, if at all, seem to be relatively marginal.

Recently, some attention is being given to those that do not depend on problem-dependent priors

while still possessing competitive efficiency. This is because the most popular technique along the

lines of efficient sampling consensus, PROSAC, depends on problem-dependent priors. This trend

is likely to continue in the nearest future.

New themes are also expected to continue to emerge to extend RANSAC to more complicated

applications than those for which it was originally designed. Some of the recent ones have been

discussed under the heading ‘Other themes’.

57

(a)Proportion of variants related to improvement of speed and efficiency

(b) Proportion of variants that involve exploration of new search strategies

Figure 2.8: Trends in the last half-decade

2.13 Gaps Summary and Suggestions for Future Works

There is no doubt that all the discussed efforts of various researchers have resulted in a family of

algorithms that is quite successful in the robust estimation front. It is a mark of success that

members of this family of algorithms are widely used in practice and in software implementations.

While an attempt has been made to forecast the immediate future of RANSAC research on the

basis of recent trends, this section takes on a more proactive tone. Suggestions are provided on

directions that should be pursued for significant gains in RANSAC research in the near future.

The purpose is to help drive forward the state of the art in a well-rounded way.

76%

24%

Published in 2011-2015

Related to Improvement of efficiency or not?

Yes No

53%
47%

Published in 2011-2015

Search Strategy or not?

Yes No

58

First, researchers should note that any of the functional themes discussed is a prospective research

direction. The entire RANSAC literature is barely three decades old. Some themes only emerged

even more recently. The point is that there is definitely room for improvement in the direction of

most of the themes discussed in this survey.

Perhaps, a more important point to stress is the fact that there are several other paradigms for

robust estimation in the computer vision field, but there are specific properties that have directed

much preference to RANSAC-like algorithms. Such properties include simplicity and the resulting

ease of implementation; efficiency that results from non-exhaustive search; non-dependence on

problem-specific information, and applicability over a wide range of practical situations. In fact,

RANSAC is still preferred in software implementations over many techniques with guarantees of

globally optimal solutions. While we acknowledge that any improvement to the algorithm is a

valid research contribution, it is advocated that the strengths that have made it a preferred choice

for robust estimation, should be preserved as much as possible. This is said in light of the fact that

many variants that have been developed have achieved their improvements over the original

algorithm by trading off some the cherished strengths, two of which are simplicity and generality.

Simplicity is often traded off by introduction of new operations while generality is often traded

off when algortihms leverage on problem-specific priors. This observations probably explains why

popular computer vision software, as mentioned before, have stuck with relatively older variants.

One way in which balanced multifaceted improvement can be achieved is the development of

integrated frameworks like USAC. Although simplicity will be traded off with such an approach,

gains in many other directions will be produced by more research along this direction. It should

be noted that there are still a number of functional themes discussed in this survey that are not yet

covered in USAC. An example is that USAC is limited to the single-model case. More

comprehensive comparative studies to decide the best choices among variants for each module of

such an integrated framework, are also valuable for continuous improvement of USAC.

Many of the drawbacks of RANSAC are direct consequences of the uniform serial random-

sampling search strategy it adopts. Concluding from the collection of works studied, perhaps, there

is a limit to how much improvement is achievable as long as the fundamental sampling strategy

of RANSAC is retained. This is especially true if dependence on problem-specific priors, is to be

avoided. The exploration and development of suitable search strategies is a necessary research

direction. This work suggests that research efforts look in such directions as the field of

59

metaheuristics – a field dedicated to developing effective search strategies for solving optimization

problems. Very few works are found to have moved in this direction: SwarmSAC, GASAC,

ANTSAC, and the achievements are encouraging. Multidirectional improvements are achieved as

inherent properties of the search strategies without leveraging any problem-dependent

information. Of course, such algorithms can still benefit from many other enhancements proposed

in literature like use of various objective functions, preprocessing, local optimization, partial

hypothesis evaluation, handling degeneracy, and several others, for further improved performance

as deemed necessary.

Lastly on suggestions for future research, it should be noted that absolute repeatability remains an

elusive property in RANSAC literature, though a few works have successfully reduced the

randomness of solutions to remarkable levels. While this is also a direct consequence of the

random search strategy, it is worth emphasizing. Software makers and practitioners will probably

gladly opt for an algorithm that leaves every attribute of the gold standard RANSAC as it is, while

being reliable enough to produce the same solution for every run on the same problem. Future

research efforts are encouraged to explore the possibility of coming as close as possible to this

ideal.

2.14 Chapter Summary

An introduction to the working principles and drawbacks of the RANSAC algorithm is presented

followed by a brief overview of robust estimation techniques in general. These lead to the main

contribution of this chapter: a survey which is to the best of our knowledge, the most

comprehensive survey published on RANSAC variants. Analysis of literature lead to provision of

answers to questions of interest. An attempt is made to identify the dominant themes, the most

fundamental question(s) in RANSAC research and the most pressing concern(s) of research

efforts, as well as recent trends. Also, to aid software production process which would typically

involve studying variants in much more detail, quantitative and qualitative approaches are

proposed to guide prioritization of original works to be studied. The survey concludes with

identification of gaps and recommended directions for future research efforts.

60

CHAPTER THREE

3 THEORETICAL CONTRIBUTIONS AND PROPOSED ALGORITHMS

3.0 Chapter Introduction

This chapter contains much of the main contributions of this thesis. It is logically divided into six

main parts. The first main part, Section 3.2, presents the main contribution to theory. A theorem

is proposed, which provides the central idea upon which much of the novel content of this thesis

is based. The theorem is stated and its potential for developing the desired alternative to

RANSAC’s search strategy, is described. A concise proof is provided to establish the theorem’s

validity. A few complementary propositions are also included. In section 3.3, the first novel

algorithm, named Consecutive Instance Sample Consensus (CISAC), is presented. Its properties

are discussed and a few preliminary experiments are performed to verify the properties beyond

mere theoretical expectations. Section 3.4 presents a study of the problem of automatic estimation

of distance threshold, an important parameter in RANSAC-like algorithms. The study reveals

interesting insights on the problem and shows the new possibilities that CISAC represents. These

insights are harnessed to develop a fully automatic algorithm, named Automatic CISAC

(AutoCISAC), presented in section 3.5. Section 3.6 presents another algorithm, named Shuffle-

and-Sweep Consensus (SASSAC), which is a refinement of CISAC for better reliability. The last

two algorithms, M-estimator CISAC (MCISAC) and M-estimator SASSAC (MSASSAC), are M-

estimate descendants of CISAC and SASSAC respectively. They are both described in section

3.7.

3.1 Revisiting RANSAC’s Heuristic: Seeking All-inlier Samples

As discussed in chapter 2, RANSAC approaches robust estimation as a combinatorial optimization

problem. It searches the space of hypothetical models constructed from minimal-size samples, to

optimize its measure of model quality. Precisely, models are selected by random sampling of data

instances, followed by evaluation of model constructed from each sample. This continues

iteratively, until the termination criterion is satisfied. Then the model with the maximum number

of inliers, is returned as the final estimate. A stopping criterion is used, which computes a lower

bound for the number of trials required to give a certain probability of finding good solutions. The

stopping criterion seeks to ensure that an all-inlier sample is chosen. Although there is no

61

guarantee that a particular all-inlier sample will produce the globally optimal solution, the heuristic

of seeking all-inlier samples proves to be quite effective in finding good solutions. While an all-

inlier sample does not necessarily result in an optimal model, it is definitely true that the optimal

solution will be constructed using an all-inlier sample.

In summary, the RANSAC family of algorithms are fundamentally based on the following

principle:

An optimal model is constructed from an all-inlier sample.

In place of random sampling, the consecutive inliers theorem, proposed in this thesis and stated in

the next section, reveals a direct way to find all-inlier samples. Interestingly, the theorem applies

to the generic robust estimation problem. That is, it holds for any given data, even those from non-

computer-vision applications.

3.2 Theorem 1: A Deterministic Way To Find All-inlier Samples

This theorem is hereafter referred to as ‘the consecutive inliers theorem’.

The theorem is stated thus:

Given ANY dataset containing m instances, for any natural number, 𝑛 < 𝑚, if with respect to

ANY model the number of outliers 𝐶 < ⌊
𝑚

𝑛
⌋, then there is at least one set of n consecutive

instances that are all inliers.

In other words, the theorem states that, if the condition 𝐶 < ⌊
𝑚

𝑛
⌋ is satisfied, it is impossible to

shuffle the data in such a way that there are no single cluster of n inliers that are consecutive.

3.2.1 Proof

The validity of Theorem 1 is quite easy to establish.

Let V be a set 𝐵 ∪ 𝑊, such that B and W are mutually exclusive, and n any natural number that is

less than m which is another natural number.

62

In the context of robust estimation problem, each 𝑣𝑖 ∈ 𝑉 is a data instance, each 𝑏𝑗 ∈ 𝐵 is an

outlier, and each 𝑤𝑘 ∈ 𝑊 is an inlier. n and m are the minimal sample size and the data size

respectively.

Since B and W are mutually exclusive, 𝐵 ∩ 𝑊 = 0.

Therefore |𝑉| = |𝐵| + |𝑊|.

In an attempt to ensure that no n-tuple made up purely of elements of 𝑊 are consecutive, a single

𝑏𝑗 ∈ 𝐵, is used to contaminate a cluster of (n-1) 𝑤𝑘’s to complete an n-tuple. It is easy to see that

any different approach may result in an inefficient use of the 𝑏𝑗′𝑠, causing shortage (none to use

for contaminating 𝑤𝑘′𝑠) in some portions of V.

Now, if |𝐵| = ⌊
𝑚

𝑛
⌋, then concatenating all ⌊

𝑚

𝑛
⌋ n-tuples that have been created to use up all 𝑏𝑗 ∈ 𝐵,

creates a set 𝑉′:|𝑉′| = |𝑉| − (𝑚 𝑚𝑜𝑑 𝑛). The remaining m mod n slots can only be filled with the

unused 𝑤𝑘′𝑠, which are of course, exactly m mod n in number.

Clearly, replacing any of the 𝑏𝑗′𝑠 in the final set V with a 𝑤𝑘 creates at least one cluster of 𝑤𝑘′𝑠

made up of 𝑛 + (𝑚 𝑚𝑜𝑑 𝑛) elements.

Hence, Theorem 1 is validated. □

An example should make the concept much clearer. Let m = 100, n = 2, ⌊
𝑚

𝑛
⌋ = 50. Then let C = 49

in order to satisfy the condition 𝐶 < ⌊
𝑚

𝑛
⌋. An attempt to ensure that no two inliers are consecutive

will have an outlier between any two inliers. The last outlier will have been included in the

arrangement at index 97 if we start with an outlier, or 98 if we start with an inlier. Either way, we

are left with at least 2 slots yet to be filled, having only inliers to fill them. Therefore at least two

inliers must be consecutive in such a dataset. Clearly, if the outlier rate is reduced, then there must

be even more consecutive sets of inliers.

63

Useful Analogy

An analogy that may prove useful in communicating the concept more easily is as follows:

If we have a sequence having for example, 4 (m) balls in total, each of which can either be black

(outlier) or white (inlier), if the black balls are fewer than 2 i.e. ⌊
𝑚

𝑛
⌋, then it is impossible that there

are no 2 white balls that lie side by side in the sequence. Same is true if m is 5 balls, since ⌊
𝑚

𝑛
⌋ =

⌊
5

2
⌋ = 2.

3.2.2 Significance of Theorem 1

If the condition 𝐶 < ⌊
𝑚

𝑛
⌋is satisfied, where n is the minimal sample size required to construct a

model of interest, then an efficient algorithm can be constructed to look only among hypotheses

that are constructed from instances that follow each other in the data table. The algorithm is sure

to find at least one all-inlier sample. Hence, it represents an alternative to RANSAC’s approach to

finding all-inlier samples, which are in turn used to construct good solutions. One reason the

approach is expected to be effective is that the condition 𝐶 < ⌊
𝑚

𝑛
⌋ is likely to be fulfilled in many

practical datasets since 𝑛 ≪ 𝑚. This drastically narrows search to (𝑚 − 𝑛 + 1) alternatives

instead of the exhaustive space of (𝑚
𝑛

) alternatives. Interestingly, this subset size reduces by ∆𝑛

as n, determined by the model, increases by ∆𝑛, for any given dataset. One implication of this is

that such an algorithm should possess good complexity in high-model-dimension cases, for which

RANSAC has been found to deteriorate in performance [50].

The value of seeking all-inlier samples is already stated in Proposition 1.

64

3.3 Extension

What if the condition 𝐶 < ⌊
𝑚

𝑛
⌋ is not satisfied, resulting in a situation where it is possible that

there are no n inliers that are consecutive?

The above question is addressed in proposition 2.

3.3.1.1 Proposition 2

In a typical dataset, the likelihood is high that there will be at least one all-inlier sample

containing purely or mostly consecutive data instances.

Proposition 2 simply points out a vital observation that can be gleaned from the proof of Theorem

1. In many cases, it will take a deliberate effort rather than chance, to efficiently arrange outliers

is such a way that no n inliers are consecutive, even when 𝐶 ≥ ⌊
𝑚

𝑛
⌋. Should 𝐶 become so high that

such likelihood becomes significant, it will still be quite likely that there is a cluster of n

consecutive instances that are mostly inliers. Therefore in most practical cases, constructing an

algorithm directly from the theorem will usually result in good solutions. The condition 𝐶 < ⌊
𝑚

𝑛
⌋is

only necessary for an absolute guarantee of finding an all-inlier sample.

3.4 The CISAC (Consecutive Instances Sample Consensus) Algorithm

The algorithm is a direct application of Theorem 1. Therefore, practically all of its working

principle has been explained in the section 3.3. As the consecutive inliers theorem dictates, CISAC

only enumerates hypotheses constructed from all possible selections of n consecutive data

instances, where n is the minimal sample size or model dimensionality. This is clearly a simple

algorithm that is very easy to implement. It’s outline is presented in algorithm 3.1.

65

Outline of the CISAC Algorithm

Input: threshold distance d

1. Generate all possible sets of n consecutive numbers between 1 and n. The procedure below achieves

this for any given value of n:
m = number of rows in data;

n = minimal sample size corresponding to model type

k = 1

for i = 1 to (m-n+1)

 for d = 1 to n

 samplingIndices(k, d) = i + (d-1)

 end

 k = k + 1

end

2. Construct k models such that model(i) is fitted to n data instances whose indices are the n elements

in the ith row of samplingIndices.

3. Return model with maximum number of inliers using threshold d to distinguish inliers from outliers.

Algorithm 3.1: The CISAC Algorithm

In algorithm 3.1, samplingIndices is a matrix whose kth row represents the kth sample, and each

element d on a that row represents the the indices of the rows that are sampled in the dataset.

3.4.1 Properties of CISAC

Before looking into experimental results in section 3.4.2, certain properties are expected on the

basis of the foregoing theoretical discussions. Some of these are discussed below.

Accuracy and Robustness: Theoretically, CISAC is guaranteed to find all-inlier samples when

outlier rate is less than ⌊
𝑚

𝑛
⌋. This means that for fitting a line or a similarity transformation, its

guaranteed breakdown point is about 50%, 33% for affine-model fitting, 25% for projective

homography, 14% for 7-point geometric models, and so on. However, in practical situations, as

the experiments reported in section 4.4.2 show, CISAC maintains good accuracy under fairly high

contamination even for projective homography. This implies robustness that in practice, should

be competitive with RANSAC’s.

Deterministic run time: Since the number of hypotheses generated and evaluated is fixed, unlike

RANSAC, CISAC’s runtime is completely deterministic.

66

Space and time Complexity: CISAC performs a fixed-sized sequence of hypothesis generation and

evaluations, so it exhibits space and time complexity of (𝑚 − 𝑛 + 1). This makes it an efficient

algorithm with increasing advantage as model dimensionality increases, a situation that causes

RANSAC performance to deteriorate [50].

Repeatability: No matter how many times CISAC is run, it will generate and evaluate exactly the

same set of hypotheses. Therefore it will always arrive at exactly the same solution. This represents

a breakthrough in RANSAC literature and a rare property for non-exhaustive-search algorithms

in general.

3.4.2 Preliminary Experiments

The goal here is to evaluate the effectiveness of CISAC’s simple search strategy, and to assess its

advantages if any, over RANSAC. In-depth comparative studies are reserved for chapter 4. The

experiments in this section are conducted using simulated datasets and a real-life image pair. The

simulated data are used in order to cover a sufficiently wide range of data conditions in terms of

data size and contamination level.

3.4.2.1 Experiments with Line-fitting Problem Set

This series of experiments study a simple generic problem – the line fitting problem. The goal is

to automatically fit a linear model to data containing outliers. 3 datasets are simulated with outlier

rates 10%, 30% and 50% respectively. The total number of data instances in all cases is 100.

The values of the independent variables are randomly generated from a uniform distribution, and

the corresponding values of the dependent variable are computed according to the true model:

𝑦𝑖 = {
10 + 5𝑥𝑖 + 𝑒: 𝑖 ≤ 𝑡 (𝑖𝑛𝑙𝑖𝑒𝑟𝑠)
50 + 𝑒: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠)

𝑒 𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑟𝑟𝑜𝑟: 𝑒 ∈ (0,1), 𝑒~𝑈

𝑖 ∈ {1,2,3, … , 𝑚}

𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑙𝑖𝑒𝑟𝑠

67

Each algorithm (CISAC and RANSAC) is run on every problem five times each, to evaluate

consistency or repeatability.

Discussion

Results from this experiment are presented in table 3.1. The table shows the full results of these

experiments. For each problem, the data size and true number of inliers are recorded. The estimates

of the model parameters and the corresponding values of the quality measures are then recorded

for each run of the algorithms on each problem. The number of iterations taken by each algorithm

is also recorded. Lastly, for fair comparison of efficiency, between both algorithms, the number

of calls to the objective function by each algorithm, is recorded.

Table 3-1: Performance of CISAC and RANSAC on the Line Fitting Set

Algorithm Problem m T Run B0 B1 ME I iter f

CISAC 1 100 90 1 10.7326 4.8773 7.8156 90 1 99

CISAC 1 100 90 2 10.7326 4.8773 7.8156 90 1 99

CISAC 1 100 90 3 10.7326 4.8773 7.8156 90 1 99

RANSAC 1 100 90 1 9.6027 5.198 10.6602 90 3 3

RANSAC 1 100 90 2 10.3375 5.1423 8.4333 90 3 3

RANSAC 1 100 90 3 10.4077 4.8983 9.8464 90 3 3

CISAC 2 100 70 1 10.2142 5.2046 12.1647 70 1 99

CISAC 2 100 70 2 10.2142 5.2046 12.1647 70 1 99

CISAC 2 100 70 3 10.2142 5.2046 12.1647 70 1 99

RANSAC 2 100 70 1 10.1367 5.2097 11.9455 70 7 7

RANSAC 2 100 70 2 11.0525 4.8238 12.0723 70 7 7

RANSAC 2 100 70 3 10.3283 5.0762 10.2866 70 7 7

CISAC 3 100 50 1 11.3022 4.8334 17.0681 50 1 99

CISAC 3 100 50 2 11.3022 4.8334 17.0681 50 1 99

CISAC 3 100 50 3 11.3022 4.8334 17.0681 50 1 99

68

RANSAC 3 100 50 1 10.8263 4.8656 14.8883 50 17 17

RANSAC 3 100 50 2 9.8368 5.2784 15.9395 50 17 17

RANSAC 3 100 50 3 10.6101 4.9628 14.6079 50 17 17

Key: m = data size; B0 = estimate of intercept; B1 = estimate of slope; ME = M-estimate error; I = number

of inliers detected; iter = number of iterations; f = number of calls to objective function.

Accuracy

The goal of both algorithms is to maximize the number of inliers. So, a higher number of inliers

detected implies better accuracy. Since the ground truth (true number of inliers) is known in all

cases, it is used to benchmark the performances of both algorithms. As an additional measure of

model quality, for each model returned, the M-estimate error is computed. This is the error

function that MSAC, another popular variant, seeks to minimize. The point is that two models

may have the same quality with respect to the number of inliers, but differ in M-estimate error,

which measures the bounded error within the threshold, rather than merely polarizing data points

as inliers or outliers. Precisely, the error is computed as:

∑ 𝜌1(𝑒)

𝑚

𝑖=1

𝜌1(𝑒) = {
|𝑒|, |𝑒| < |𝑇|
|𝑇|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

As seen in Table 3.1, in all cases tested, CISAC returns the exact number of inliers. Same is true

for RANSAC for nearly all cases, but with a few exceptions where it returns slightly poorer results.

This validates the effectiveness of the sample consensus paradigm in general, especially when

compared to other robust linear regression techniques that are popular in statistics. The paradigm

produces algorithms with robustness that is better than or equal to the likes of LMedS, in terms of

breakdown point.

In terms of the M-estimate error, CISAC and RANSAC seem to compete closely. Again, recall

that the emphasis of this experiment is validation of CISAC’s effectiveness rather than

comparative study which is reserved for chapter 4.

69

Solution Consistence/Repeatability

Perhaps a more important performance measure which reveals CISAC’s advantage over RANSAC

is the consistence of solutions returned. The theoretical discussion provided earlier on this subject

is validated by the experiments. No matter how many times it is run on a given problem, CISAC

returns exactly the same model, not just the same model quality. This is not true for RANSAC,

nor has it ever been claimed for any RANSAC variant, to the best of our knowledge.

The implication of this is that owing to the consecutive inliers theorem, CISAC represents a

breakthrough in addressing the long-standing reliability problem of RANSAC. CISAC is perfectly

repeatable. In other words, although CISAC adopts non-exhaustive search like every other

RANSAC variant, it is deterministic.

Run time Consistence

Another interesting behavior of CISAC, revealed in the experiments, although already discussed

theoretically, is the fact that its run time is completely deterministic. It can easily be computed

ahead for any problem, as a function of the data size for a given model type. RANSAC’s run time

varies when it is run on the same problem.

Speed

Considering the processing power of today’s computers, both algorithms proved quite fast and

efficient. This is shown by the number of function calls undertaken by each algorithm for each

problem. While CISAC’s runtime is perfectly deterministic and consistent, RANSAC is generally

faster. In any case, the number of CISAC’s function calls on each problem will take fractions of a

second to compute, on today’s average computer. So although slower than RANSAC on this

problem set, CISAC is still fast enough.

Also unlike RANSAC, CISAC’s runtime is not affected by outlier rate. This experiment as well

the one reported for affine transformations in section 3.4.2.2 show that RANSAC speed

deteriorates gradually as outlier rate is increased.

3.4.2.2 Experiment on Simulated Affine Transformation Problems

The methodology here is identical to that of Experiment 1, except for the model type being studied.

Here the problems involve affine transformations. The minimal sample size corresponding to an

70

affine transformation is 3, that is, at least three instances are required to define it. Both the input

and output in the dataset are bivariate. This is typical of robust estimation datasets in computer

vision, where each row of the input matrix represents the spatial coordinates of matched features

in the base image and the output matrix represents the corresponding coordinate in the transformed

image. The true model used in each case studied is generated according to:

𝑦𝑖𝑗 = {
𝜃𝑇𝑥𝑖𝑘 + 𝑅𝑖𝑝: 𝑖 ≤ 𝑡 (𝑖𝑛𝑙𝑖𝑒𝑟𝑠)

100 + 10𝑅𝑖𝑝: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠)

𝜃 = [
5 3 0
3 4 0
1 4 1

]

𝑖 = 1, 2, 3, … , 𝑚,

𝑗, 𝑘, 𝑝 ∈ {1,2}

𝑥𝑖1 = 5 × 𝑟1, 𝑥𝑖2 = 3 × 𝑟2

𝑟𝑒𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑅𝑖𝑝, 𝑟1, 𝑟2 ∈ (0,1)~𝑈

The distance threshold is chosen through experimentation as 1.5.

Due to space constraints, only performance measures are included in table 3.2. Actual estimates

of model parameters are not included in the table, since they are not required for performance

evaluation. The observations are similar to those seen for the line fitting problem set. But for this

problem set, CISAC’s advantages becomes slightly more pronounced. It is clearly more accurate

than RANSAC on both measures of accuracy: number of inliers I and M-estimate error ME.

Interestingly, still in all cases CISAC returns exactly the true number of inliers.

Another interesting observation is the effect of increased model dimensionality. The line-fitting

model has dimensionality of 2 while the affine model’s is 3. CISAC becomes faster while

RANSAC becomes slower as the model dimensionality increases, thereby reducing the speed gap

between the two algorithms.

71

Table 3-2: Performance of CISAC and RANSAC on the Affine Transformation Set

Algorithm Problem m t ME I t f

CISAC 1 100 90 59.593 90 1 98

CISAC 1 100 90 59.593 90 1 98

CISAC 1 100 90 59.593 90 1 98

RANSAC 1 100 90 68.8916 90 5 5

RANSAC 1 100 90 65.6811 90 6 6

RANSAC 1 100 90 64.1086 90 5 5

CISAC 2 100 70 82.018 70 1 98

CISAC 2 100 70 82.018 70 1 98

CISAC 2 100 70 82.018 70 1 98

RANSAC 2 100 70 85.3102 70 12 12

RANSAC 2 100 70 81.9344 70 12 12

RANSAC 2 100 70 86.6514 69 13 13

CISAC 3 100 50 102.2057 50 1 98

CISAC 3 100 50 102.2057 50 1 98

CISAC 3 100 50 102.2057 50 1 98

RANSAC 3 100 50 107.4615 49 38 38

RANSAC 3 100 50 104.0805 50 36 36

RANSAC 3 100 50 111.1799 44 53 53

Key: all symbols in the table have the same meaning as defined for Table 3.1.

72

3.4.2.3 Projective Homography on Aerial Photos of UKZN Campus

The goal of this experiment is to automatically estimate homography between matched features in

two overlapping real-life aerial photographs. The two maps used in this experiment have different

details, view, and zoom, of the same scene – the Westville campus of UKZN and its

neighbourhood. Since the campus is found on both images, they are sure to have several features

in common, such as buildings, road junctions, trees, and so on. Common features are first

automatically detected and their coordinates extracted using the Speeded-Up Robust Features

(SURF) technique. The extracted coordinate sets constitute the data to which the model is to be

fit. This is a typical robust estimation problem because only a subset of the matched feature

coordinate sets will conform to the best fitting model. In this context, others are treated as outliers.

In the sample consensus approach, the best model is the one with the highest number of inliers.

(a) Image 1
(b) Image 2

Figure 3.1: Aerial Photos of UKZN Campus and its neighbourhood (Source: Google maps)

The appropriate threshold is determined empirically by seeking the smallest threshold that results

in a stable solution for this image pair, varying its value from 0 in steps of 0.5. Its appropriateness

is verified visually, by applying the inverse of the resulting transformation on image 2, to stitch

the images, such that common features are aligned. A threshold of 4 was found to be appropriate.

Using this threshold, CISAC and RANSAC are both run10 times each, to estimate the 2-D

transformation necessary to align the image pair.

73

Table 3-3: Performance Evaluation on the UKZN Aerial Photo Pair

 Run

Algorithm 1 2 3 4 5 6 7 8 9 10 Worst Best Median

CISAC 133 133 133 133 133 133 133 133 133 133 133 133 133

RANSAC 108 123 130 130 130 110 120 131 117 128 108 131 125.5

Table 3.4: Runtime Evaluation on the UKZN Aerial Photo Pair, measured by number of

hypotheses tested

Run RANSAC CISAC

1 10 132

2 5 132

3 5 132

4 8 132

5 5 132

6 9 132

7 6 132

8 4 132

9 7 132

10 11 132

As shown in table 3.3, CISAC exhibited superior accuracy over RANSAC on this real-life

problem. RANSAC is not only worse in accuracy, but also not stable, unlike CISAC that is totally

deterministic. Concerning runtime, again the number of CISAC function calls can be performed

by the average computer today in fractions of a second. So although RANSAC is faster, CISAC

possesses practically satisfactory speed.

74

3.4.3 Summary of Experimental Results Comparing CISAC and RANSAC

The purpose of the experiments reported in this section is to verify the effectiveness of

constructing a robust estimator based purely on the consecutive inliers theorem. Although some

comparison is done with RANSAC, more in-depth comparative analysis is reserved for chapter 4.

The algorithm proposed and studied in this section, CISAC, is perfectly repeatable (deterministic)

and observed to be more accurate than RANSAC in the cases tested. To the best of our knowledge,

perfect repeatability has never been claimed for any RANSAC variant. It is a rare property indeed

for non-exhaustive search algorithms in general. Concerning speed, although the cases tested,

RANSAC performs less objective function calls, a measure of run time, an advantage of CISAC

is that the number of function calls is completely deterministic. It can be computed ahead for any

given dataset exactly as m-n+1, m being the data size and n the minimal sample size defined by

the model of interest. This predictability holds much value for practical applications. Moreover,

in the light of the computing power of modern computers, in practically all of the cases tested,

especially the real-life image problem, the number of CISAC’s function calls will execute in

fractions of a second. Also, CISAC’s efficiency advantage becomes increasingly pronounced as

model dimensionality increases, because of its constant time complexity, which is not affected at

all by data contamination. It should also be noted that in practical situations, a random algorithm

like RANSAC may need to be run multiple times, before reliable conclusions can be drawn about

its solutions. Such does not arise with a perfectly repeatable algorithm like CISAC.

CISAC will likely be considered by readers familiar with RANSAC literature as one of the

simplest RANSAC variants ever developed. It is remarkably easy and straightforward to

implement. It requires no prior information for biasing sampling. Informed by the consecutive

inliers theorem, it simply compares models constructed from instances that follow themselves in

the data table.

3.5 Study of Automatic Threshold Estimation Problem: The Value of Determinism

The performance of RANSAC and its variants depends on the choice of error threshold used in

the algorithm to distinguish inliers from outliers. It has been shown that the optimal threshold

range is associated with the range in which model parameters estimates is stable: the range that

minimizes variance of parameters (VoP) [28]. While such an approach works, it is difficult to

75

estimate the threshold and model parameters simultaneously. However, this approach is

necessitated by the stochastic behaviour of RANSAC. The completely non-random nature of

CISAC creates new possibilities. This part of the chapter shows how it simplifies the problem of

threshold learning. Minimization of VoP is simplified into search for the closest threshold range

to zero where the solution does not change. Such an approach is remarkably simple and is capable

of simultaneous estimation of threshold and model parameters.

While perfect repeatability eliminates the possibility of adopting the VoP-based approach, since

we would now have zero variance in solutions for each threshold value, the behavior over varying

threshold values shows that the problem can be approached in a much simpler way. As the

experiments in section 3.5.1 reveal, in the optimal threshold range, CISAC’s solution remains

steady and unchanging. Furthermore, over this range, the detected number of inliers is exactly

equal to the true number of inliers.

3.5.1 Experimental Results

The purpose of the series of experiments is to verify the effectiveness of the proposed automatic

threshold learning approach. Using 18 different datasets, the trend in solutions produced by

CISAC over defined range of threshold values, is observed. The first 9 are line-fitting problems

while the other 9 involve affine homographies. Simulated data is used so that for each problem,

the ground truth on the model, inlier rate and error range are known. The observed outcomes can

therefore be accurately benchmarked. For reasonable generalization, various data sizes and outlier

rates are studied.

3.5.1.1 Experiment 1 (Line-fitting Problem Sets)

The datasets studied for line-fitting are simulated according to the same model of experiment in

section 3.4.2.1. Figure 3.4 shows the observed trends.

76

Top row (left to right): Data size = 100 (i) outliers = 10% (ii) outliers = 30% (iii) outliers = 50%

Middle row (left to right): Data size = 200 (i) outliers = 10% (ii) outliers = 30% (iii) outliers = 50%

Bottom row (left to right): Data size = 300 (i) outliers = 10% (ii) outliers = 30% (iii) outliers = 50%

Figure 3.2: Plots of number of inliers detected by CISAC for each threshold value used

3.5.1.2 Experiment on Affine Transformation Problem Set

The datasets studied in this series of experiments are simulated according to the same model of

experiment in section 3.4.2.2. Figure 3.5 shows the observed trends.

77

Top row (left to right): Data size = 100 (i) outliers = 10% (ii) outliers = 30% (iii) outliers = 50%

Middle row (left to right): Data size = 200 (i) outliers = 10% (ii) outliers = 30% (iii) outliers = 50%

Bottom row (left to right): Data size = 300 (i) outliers = 10% (ii) outliers = 30% (iii) outliers = 50%

Figure 3.3: Plots of number of inliers detected by CISAC for each threshold value used

Figure 3.2 shows the number of inliers detected by CISAC for each threshold value used on each

of the nine line-fitting problems. There are two interesting observations that are easily seen from

these graphs. The first is that CISAC returns the exact number of inliers for each problem over a

contiguous range of threshold values. Interestingly, this is the stable range being sought: the range

in which the number of inliers does not change. The second observation is that the stable range is

very wide when inlier rate is higher and narrows gradually as the outlier rate is increased. The

narrowing of the stable region is caused by be the fact that higher outlier rate shifts the starting

point of the stable range to the right (higher threshold value).

The same observations hold for all the affine transformation problems as shown in Figure 3.3. It

can be concluded, that the observations about the stable range is general and independent of

problem, model, data size, and contamination level. The observations suggest an approach to

78

automatic threshold estimation, which could be adopted in developing fully automatic robust

estimators. The generalization is further supported by tests on real-life problems carried out in

section 3.6 for the fully automatic algorithm presented in that section.

3.5.2 Summary of Study on Threshold Estimation

The problem of automatic estimation of error threshold, a parameter upon which RANSAC and

many of its variants depend, is investigated. The existing approach of minimization of variance of

parameters (VoP) which involves multiple runs of RANSAC per threshold value is simplified into

single runs of CISAC per threshold value. Hence, the search for the stable range is reduced to a

search for the range in which the solution does not change. Such an approach is made possible by

the determinism of CISAC: a facility made possible by insights from the consecutive inliers

theorem proposed in this thesis. The empirical studies reported in this section show that this stable

range corresponds to the optimal threshold range. The corresponding model estimates are accurate

and the inlier rates are exact, with respect to available ground truth, in all cases tested. So the

approach is not only simple but precise. An additional advantage is that it affords simultaneous

estimation of the threshold and model.

To spell out the observations in clear terms, the following are concluded from the study:

 Given a perfectly repeatable algorithm like CISAC, the solution quality (number of

inliers) is a monotonically non-decreasing function of the distance threshold used in

distinguishing inliers from outliers.

 As the threshold is increased from zero, the solution quality rises steadily until it

smoothens out into steady state.

 It stays steady over a range of threshold values that is generally wide.

 The lower the outlier-contamination, the more quickly the steady state is reached, hence

the wider the steady range.

 Interestingly, this steady value is found in all tested cases to be the true number of inliers

79

3.6 AutoCISAC: Deterministic, Fully Automatic Algorithm

A fully automatic robust estimator is presented. This is the second novel algorithm proposed in

this thesis. It is based on CISAC and the parameter estimation technique established in section 3.5

of this chapter. The proposed framework is dubbed AutoCISAC. Experiments show that it is

accurate and just like CISAC, it is also perfectly repeatable. For simulated problems with known

ground truth, AutoCISAC returns the exact number of inliers. Real-life applications involving

fully automatic image stitching, are also presented in which AutoCISAC is used in the

transformation learning step.

3.6.1 The Algorithm

Starting from 0, the threshold is gradually increased and CISAC is run to compute model

parameters and the corresponding number of inliers. A step size of 0.5 should be fine for most

image-based applications while a smaller step size may be used if the algorithm is to be applied

on regular real-valued numerical data. This process running CISAC per threshold value continues

until the same number of inliers is reported by consecutive iterations. This implies that the

appropriate threshold as well as the solution has been found. Any of the threshold-and-model-

parameters set is appropriate, since they yield the same model quality measure. To avoid the need

to store previous solutions, the latter one is chosen. This also avoids choosing one that is on the

border of the range. For both reasons, the larger threshold is a better choice.

As shown by results of the experiments reported in this section, the estimated threshold and model

parameters are optimal and the number of inliers is accurate.

3.6.2 Experiments and Applications

The performance of AutoCISAC is evaluated through a few experiments described in this

subsection. The goal is to evaluate the effectiveness of its simple search approach, and to assess

its advantages if any, over the gold-standard RANSAC. The experiments are conducted using

simulated data and real-life images. The simulated data are used in order to cover a sufficiently

wide range of data conditions in terms of data size and contamination level.

80

3.6.2.1 Experiment on Simulated Line-fitting Problem Set

Again, the line-fitting problems are simulated similar to that of section 3.4.2.1. Fifteen datasets

are used in this study. Just for the sake of variety, the parameters of the true model, are changed.

The model used is as follows:

𝑦𝑖 = {
20 + 4𝑥𝑖 + 𝑒: 𝑖 ≤ 𝑡 (𝑖𝑛𝑙𝑖𝑒𝑟𝑠)
50 + 𝑒: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠)

𝑒 𝑖𝑠 𝑟𝑎𝑛𝑑𝑜𝑚 𝑒𝑟𝑟𝑜𝑟: 𝑒 ∈ (0,1), 𝑒~𝑈

𝑖 ∈ {1,2,3, … , 𝑚}

𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑖𝑧𝑒

𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑙𝑖𝑒𝑟𝑠

The algorithm is run on each problem three times, to evaluate repeatability.

Table 3.5 showing the experimental results show that the automated mechanism of AutoCISAC

is very effective. In all cases tested, the algorithm reports exactly the true number of inliers.

Table 3-4: AutoCISAC’s Estimates and Corresponding Number of Inliers

Problem Data size

True num

of inliers

Run

B0

(AutoCISAC’s

estimate)

B1

(AutoCISAC’s

estimate)

AutoCISAC's

detected num of

inliers

1 100 90 1 19.9552 4.1607 90

1 100 90 2 19.9552 4.1607 90

1 100 90 3 19.9552 4.1607 90

2 100 70 1 20.0444 4.0201 70

2 100 70 2 20.0444 4.0201 70

2 100 70 3 20.0444 4.0201 70

3 100 50 1 20.5887 3.9114 50

3 100 50 2 20.5887 3.9114 50

81

3 100 50 3 20.5887 3.9114 50

4 200 180 1 20.5947 4.0296 180

4 200 180 2 20.5947 4.0296 180

4 200 180 3 20.5947 4.0296 180

5 200 140 1 20.8991 3.8127 140

5 200 140 2 20.8991 3.8127 140

5 200 140 3 20.8991 3.8127 140

6 200 100 1 20.4056 4.1682 100

6 200 100 2 20.4056 4.1682 100

6 200 100 3 20.4056 4.1682 100

7 300 270 1 21.0449 3.9763 270

7 300 270 2 21.0449 3.9763 270

7 300 270 3 21.0449 3.9763 270

8 300 210 1 20.8924 3.8452 210

8 300 210 2 20.8924 3.8452 210

8 300 210 3 20.8924 3.8452 210

9 300 150 1 20.8047 3.9461 150

9 300 150 2 20.8047 3.9461 150

9 300 150 3 20.8047 3.9461 150

10 400 360 1 20.6975 3.9143 360

10 400 360 2 20.6975 3.9143 360

10 400 360 3 20.6975 3.9143 360

11 400 280 1 20.1568 4.0886 280

82

11 400 280 2 20.1568 4.0886 280

11 400 280 3 20.1568 4.0886 280

12 400 200 1 20.0114 4.1192 200

12 400 200 2 20.0114 4.1192 200

12 400 200 3 20.0114 4.1192 200

13 500 450 1 20.3967 3.9833 450

13 500 450 2 20.3967 3.9833 450

13 500 450 3 20.3967 3.9833 450

14 500 350 1 20.0674 4.0479 350

14 500 350 2 20.0674 4.0479 350

14 500 350 3 20.0674 4.0479 350

15 500 250 1 20.9058 3.9198 250

15 500 250 2 20.9058 3.9198 250

15 500 250 3 20.9058 3.9198 250

3.6.2.2 Application 1: Projective Homography on Aerial Photo of UKZN Campus

In this application, AutoCISAC is used to automatically estimate homography between matched

features in the same pair of aerial photographs used in section 4.4.2.3. Common features are first

automatically detected and their coordinates extracted using the SURF technique, before the

transformation is estimated. The effectiveness of AutoCISAC is judged visually, by applying the

inverse of the estimated transformation to the second image and displaying the transformed image

on the same coordinate system as the first image. The outcome is a final stitched image in which

common features are aligned.

83

(a) Image 1
(b) Image 2

Figure 3.4: Aerial Photos of UKZN Campus and its neighbourhood (Source: Google maps)

(a) Matched Features (b) Matches treated as inliers by AutoCISAC

(c) Final stitching obtained by applying the AutoCISAC-estimated transformation on Image 2 and

displaying the transformed pixels on the same coordinate system as Image 1. The stitched image combines

details from both images with common features aligned quite seamlessly. Empty spaces are zero padded

(filled with black)

Figure 3.5: Stitching the UKZN aerial photo pair 1

84

3.6.2.3 Application 2: Projective Homography on an Outdoor Bus Scene

This follows the same procedure as application 1 in section 3.6.2.2, using the pair of images in

Figure 3.8. Figure 3.9c shows the final stitched image.

(a) Image 1 (b) Image 2

Figure 3.6: Bus image pair

85

(a) Matched Features (b) Matches treated as inliers by AutoCISAC

(c) Final stitching obtained by applying the AutoCISAC-estimated transformation on Image 2 and

displaying the transformed pixels on the same coordinate system as Image 1. The stitched image combines

details from both images with common features aligned quite seamlessly. Empty spaces are zero-padded

(filled with black)

Figure 3.7: Stitching the Bus Scene Pair

3.6.3 Summary of Study on AutoCISAC

A fully automatic robust estimator named AutoCISAC, is proposed. Although based on the sample

consensus paradigm of RANSAC, it eliminates all dependence on user-supplied parameters. It is

perfectly repeatable, that is, its solutions are non-random. The algorithm basically extends CISAC

by incorporating the automatic threshold estimation technique presented in section 4.5.

86

AutoCISAC returns number of inliers exactly equal to the ground truth in all simulated cases

tested, and the solutions are perfectly repeatable. Real-life automatic image stitching applications

are presented in which AutoCISAC is used in the homography estimation stage. These

applications show the algorithm to be effective in such practical situations. It represents another

innovation made possible by the consecutive inliers theorem.

3.7 SASSAC: Safeguarding Against Risk in the CISAC Algorithm

While for many practical problems, CISAC maintains its accuracy even under higher outlier-

contamination, there is inherent risk of breakdown in the algorithm when the outlier rate is higher

than the contamination threshold defined for a given problem by the consecutive inliers theorem.

The reason CISAC is often accurate is that this threshold is high enough for many practical

datasets. Moreover, having outlier rate that exceeds this threshold only creates a risk rather than

certainty of breakdown. But this risk may be higher when outlier rate and model dimensionality

are both very high. The algorithm proposed in this section is still based on CISAC but includes an

additional mechanism for mitigating the risk. The algorithm is named Shuffle-and-Sweep Sample

Consensus (SASSAC). SASSAC eliminates the need for data to meet the theoretical condition that

guarantees CISAC’s accuracy. As the comparative study presented in chapter 4 shows, SASSAC

does not only overcome the earlier mentioned limitation but has an additional advantage of

improved robustness to poor choice of error threshold used to distinguish inliers from outliers.

This is a crucial parameter which is typically supplied by the user to algorithms belonging to the

RANSAC family. The beauty of the mechanism is that it is indeed simple and easy to implement,

so SASSAC still preserves RANSAC’s simplicity.

3.7.1 The Algorithm

SASSAC is based on the logic that even if the outlier rate is greater than the threshold defined by

the consecutive inliers theorem, at least one all-inlier sample and ultimately a good solution should

eventually be constructed if CISAC runs iteratively on different random permutations of the data.

This iterative process continues until the solution quality (number of inliers) found at an iteration

is equal to that found in a previous iteration. This logic is based on the observation that the solution

quality is likely to exhibit such ‘stability’ over different permutations of the data, for the best

solution, and is likely to be the true number of inliers. The effectiveness of SASSAC’s strategy is

validated through experiments reported in chapter 4 in which a comparative study is carried out

87

on six algorithms. These include CISAC, SASSAC, RANSAC, MSAC and two others –MSASAC

and MCISAC - described in that chapter. SASSAC improves CISAC’s reliability and accuracy at

a cost: a bit of randomness is introduced. The study in chapter 4 shows that SASSAC quite

consistent, but it is not totally deterministic like CISAC. This behavior comes from the random

permutation component.

Outline of the SASSAC Algorithm

Input: threshold distance d

1. Initialize I1 = 0, T1 = model with parameters equal 0

2. Generate all possible sets of n consecutive numbers between 1 and m. The procedure below achieves this for

any given value of n:

m = number of rows in data;

n = minimal sample size corresponding to model type

k = 1

for i = 1 to (m-n+1)

 for d = 1 to n

 samplingIndices(k, d) = i + (d-1)

 end

 k = k + 1

end

3. Construct k models such that model(i) is fitted to n data instances whose indices are the n elements in the ith

row of samplingIndices.

4. Compare the models and store the best in T2

5. I2 = max number of inliers (corresponding to T2)

6. If I1 == I2,

 terminate and return T2 as final model

 else I1 = I2; T1 = T2

 Shuffle data rows randomly

 Go to 2

Algorithm 3.2: Outline of the SASSAC algorithm

3.8 Two More Algorithms: Novel M-estimators

Torr and Zisserman [21] proposed an alternative to RANSAC’s measure of model quality which

takes into account the magnitudes of individual errors of inlier points rather than RANSAC’s

binary polarization. The alternative model quality measure is an error function to be minimized,

given as:

𝝆𝟏(𝒆𝟐) = {
|𝒆|, |𝒆| < 𝑻
𝑻, |𝒆| ≥ 𝑻

88

The resulting variant is named M-estimator Sample Consensus (MSAC). This is the variant that

the MATLAB computer vision toolbox uses for its homography estimation function:

estimateGeometricTransform. MSAC adopts the same search strategy as RANSAC: only

difference between both is the model quality measure used as the optimization objective.

All three algorithms proposed so far in this chapter are based on the consensus set maximization

objective of RANSAC. Two more algorithms are proposed in this section, which adopt the M-

estimator objective of MSAC. The resulting algorithms are named MCISAC and MSASSAC. Just

as MSAC is the M-estimator version of RANSAC, MCISAC and MSASSAC are the M-estimator

versions of CISAC and SASSAC respectively. Other than the change of model quality measure,

MCISAC is identical with CISAC; same goes between SASSAC and MSASSAC. An important

clause here is that although MSASSAC replaces SASSAC’s optimization objective, it still

maintains the concept of terminating when the number of inliers of the best solution found through

the sweep phase of one iteration is same as that found in a previous iteration. This choice is made

because termination based on a difference in a real-valued quantity such as M-estimate error will

result in an algorithm that runs in unnecessarily long time.

3.9 Chapter Summary

Much of the novel content of this thesis is presented in this chapter. The consecutive inliers

theorem is proposed, which reveals a straightforward way to achieve RANSAC’s goal: finding

all-inlier samples in order to find good solutions. This theorem leads to the development of five

algorithms. Three are totally deterministic, which is a property that has never been claimed in

RANSAC literature to the best out our knowledge. A set of preliminary experiments and real-life

applications show that the proposed algorithms are not only efficient, but very accurate, often

reporting number of inliers that is equal to ground truth. While in-depth comparative studies are

reserved for chapter 4, some comparison is done in this chapter that reveal the superiority of the

proposed algorithms to RANSAC in accuracy and consistence. Other interesting properties

achieved are tractable complexity even for high-model-dimension problems; predicatble and

consistent runtime that is unaffected by outlier rate.

All proposed algorithms meet the design requirements set at the start of this research: no extra

operations, no dependence on problem-specific priors; only a replacement of RANSAC’s random-

sampling search strategy to achieve all improvements.

89

CHAPTER FOUR

4 COMPARATIVE STUDY OF THE NEW ALGORITHMS AND THEIR RANDOM-

SAMPLING COUNTERPARTS

4.0 Chapter Introduction

Chapter 3 presents the consecutive inliers theorem proposed in this work. This theorem reveals a

direct way to find all-inlier samples used to construct good solutions. The algorithms, CISAC,

SASSAC, MCISAC and MSASSAC are borne out of application of this theorem. The comparative

study presented in this chapter is valuable for two main reasons. One is the fact that the algorithms

being compared represent two different search strategy categories: random sampling and the

consecutive-inliers strategy. This helps to evaluate the effectiveness of the latter, which is novel

to this thesis. Another value is in the fact that the random-sampling algorithms, RANSAC and

MSAC, have been favoured in software implementations such as functions in MATLAB’s

computer vision toolbox and the OpenCV library. Given the remarkable properties achieved in the

design of the new algorithms, if any of them can be shown to offer performance advantages over

either of the two existing algorithms, then such will be a good candidate for future software

implementations.

The study compares the performances of all six algorithms on the most general 2-D linear

geometric transformation problem: projective homography. Simulated data as well as real-life

images are used. Two real-life image pairs are used in the study to ensure that conclusions drawn

from the study apply to practical problems. Both are aerial photos of the Westville campus of

UKZN and its neigbourhood. Simulation helps to cover a wide range of data conditions and also

affords the possibility of benchmarking performance with known ground truth. Moreover, all the

simulated datasets are generic, so conlusions drawn in this study can be relied on for model-fitting

problems from any field.

Sections 4.1, 4.2 and 4.3 describe the methodology, performance criteria of interest and data

analysis approach respectively while section 4.4 presents experimental results, analysis and

discussion.

90

4.1 Methodology

A total of 18 simulated datasets are used in this study, to cover a wide range of data conditions.

They are categorized into two groups: the first 9 are datasets having outlier rates between 10%

and 30%, while the other 9 have outlier rates between 40% and 60%. The datasets are generated

according to the following model:

𝑦𝑖𝑗 = {
𝜃𝑇𝑥𝑖𝑘 + 𝑅𝑖𝑝: 𝑖 ≤ 𝑡 (𝑖𝑛𝑙𝑖𝑒𝑟𝑠)

100 + 10𝑅𝑖𝑝: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠)

𝜃 = [
5 3 2
3 4 6
1 4 1

]

𝑖 = 1, 2, 3, … , 𝑚,

𝑗, 𝑘, 𝑝 ∈ {1,2}

𝑥𝑖1 = 5 × 𝑟1

𝑥𝑖2 = 3 × 𝑟2

𝑟𝑒𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑅𝑖𝑝, 𝑟1, 𝑟2 ∈ (0,1)~𝑈

The model represents projective homography transformation. It is the most general form of linear

2-D transformation, with minimal sample size of 4. Each dataset is passed to each of the six

algorithms for an estimate of the true model to be computed. An input parameter required by all

six algorithms is the distance threshold. Additional inputs to RANSAC and MSAC are the

confidence level and the maximum number of trials or iterations, both of which are related to the

stopping criterion adopted by both algorithms. As described in chapter 3, the new algorithms do

not require this termination criterion, so these parameters do not apply to them. An optimal value

of the distance threshold is empirically determined according to the process described and justified

in section 3.5. The confidence level used by RANSAC and MSAC for computing the lower time

bound in the stopping criterion is set to 99% while the maximum number of iterations is set to

5000.

The problem sets are described thus:

Problem set 1: Estimation of projective homography for datasets in category 1 (outlier rate 10%,

20% and 30%).

91

Problem set 2: Estimation of projective homography for datasets in category 2 (outlier rate 40%,

50% and 60%).

The algorithms are also evaluated on real-life image pairs. The images were sourced from Google

maps. They are aerial photographs of the Westville campus of UKZN and its neighbourhood. The

two images that make up a pair contain overlapping details including some difference in zoom and

orientation. Common features are automatically identified using the SURF technique implemented

in the detectSURFFeatures function of MATLAB’s computer vision toolbox (2015b). The

coordinates of the matched features are extracted as the dataset from which all six algorithms

attempt to learn the geometric transformation relating both images.

4.2 Performance Criteria

The algorithms are evaluated and compared in terms of accuracy, consistence of solution and

runtime, and speed. Accuracy is measured using two alternative metrics: the consensus

maximization objective of RANSAC (the number of inliers) and the M-estimate error of MSAC.

Repeatability is measured by the amount of randomness (variation) observed when an algorithm

is run multiple times on the same problem. Adopting a popular practice in the field of optimization,

a field that has much to do with development of search techniques, speed is measured by the

number of times an algorithm calls the objective function. This measure is independent of

hardware platform, so it is more objective than measuring runtime in seconds.

Note:

The two measures of accuracy follow opposing directions. Number of inliers is to be maximized

while M-estimate error is to be minimized. Therefore in interpreting the results, when accuracy is

measured using the former, higher values imply better accuracy, while the reverse is the case when

accuracy is measured by M-estimate error.

4.3 Data Analysis Approach

Preliminary analyses are carried out using informative visualizations. Specifically, boxplots are

used to compare at a glance, the accuracies and variation in solutions produced by each algorithm.

Statistical hypothesis testing techniques are used to evaluate the significance of differences

observed between the set of results produced by each algorithm per problem set. The goal is to

92

make inferences or generalizations on the overall ranking of each algorithm relative to others.

Statistical significance is tested using the Friedman test. Where the difference is confidently

concluded to be significant (at 95% confidence level), additionally, a posthoc analysis is

performed for pairwise comparison of the algorithms, using the Nemenyi test.

Interpreting the boxplots

The boxplot uses box and whiskers to represent the minimum, first quartile, median, third quartile

and maximum in a set of numerical data values. The bottom and top ends of the whiskers represent

the minimum and maximum respectively, the bottom and top edges of the boxes are the first and

third quartile, and the middle line is the median. The vertical length of the boxes (interquartile

range) and the distance between the ends of the whiskers (range) give a measure of variation in

the solutions produced over multiple runs on the same problem. Extreme values are exempted

from the process of arriving at these statistics, and displayed as isolated points.

For easier visualization, a consistent colour code is adopted: green for SASSAC, brown for

CISAC, yellow for RANSAC, red for MSASSAC, gray for MCISAC, blue for MSAC. The larger

the colour area, the larger the interquartile range, which is a measure of variation. High variation

implies poor repeatability.

Interpreting Results from Friedman tests

The hypotheses of the test are formulated as follows:

Null Hypothesis: There is no statistically significant difference in the mean ranks of the number

of inliers detected by all six algorithms over all the problems.

Alternate Hypothesis: There is significant difference in the ranks.

The test statistics is given as:

𝐹 =
12

𝑟𝑐(𝑐 + 1)
∑ 𝑅𝑗

2 − 3𝑟(𝑐 + 1)

𝑐

𝑖=1

𝑅𝑗
2 = square of the total of the ranks for group j. In the reported experiments, a group is an

algorithm.

93

𝑟 = number of blocks, that is number of problem instances for which the comparisons are being

done.

𝑐 = number of groups.

𝐹 follows the Chi-square distribution.

The test is performed on the results of the experiments in this chapter using facilities in the

PMCMR package in the R software. The p-value is returned. A p-value less than 0.5 indicates that

at the standard confidence level of 95%, the null hypothesis can be confidently rejected and the

alternate hypothesis accepted. Otherwise, we fail to reject the null hypothesis due to the absence

of sufficient evidence.

Interpreting the Nemenyi tests

Upon rejection of the null hypothesis in the Friedman test, Nemenyi pairwaise comparison is

performed and the outcomes are displayed in a table. Each cell ij represents p-values for test of

significant difference between algorithms i and j. Similar to the Friedman test, significant

difference can only be confidently concluded when p-value is less than 0.5.

Interpreting Mean and Median Ranks

Since there are six algorithms being compared in the study, the highest mean and median rank

score is 6, the lowest being 1. A value of 6 is assigned to the algorithm with the highest value of

the measure of interest. That is, in the case where accuracy is measured using number of inliers,

the best algorithm gets a rank of 6. The best algorithm on the M-estimate error criterion will get a

ranking of 1, since it has the lowest value of the measure. Where there are ties the same rank is

assigned to the tied algorithms.

4.4 Experimental Results for Simulated Problem Sets

This section presents analysis of the results from the experiments. The full experimental data

recorded from the experiments are presented in Appendix 1.

94

4.4.1 Accuracy Measured by Number of Inliers

Figure 4.1: Problem set 1 (outlier rates 10%, 20%, 30%), comparing accuracies meausred by number of

inliers

95

Figure 4.2: Problem set 2 (outlier rates 40%, 50%, 60%), comparing accuracies measured by the number of

inliers

96

4.4.1.1 Statistical Test for Difference in Overall Ranking

Problem set 1: outlier rates 10%, 20%, 30%

Friedman chi-squared = 106.99, df = 5, p-value < 2.2e-16

Table 4-1: Nemenyi Pairwise comparison for Problem Set 1

 SASSAC CISAC RANSAC MSASSAC MCISAC

CISAC 1.000000 - - - -

RANSAC 0.000300 0.000300 - - -

MSASSAC 1.000000 1.000000 0.000300 - -

MCISAC 1.000000 1.000000 0.000300 1.000000 -

MSAC 0.000800 0.000800 1.000000 0.000800 0.000800

Table 4-2: Median Ranks for Problem Set 1

SASSAC CISAC RANSAC MSASSAC MCISAC MSAC

6 6 2 6 6 2

Table 4-3: Mean Ranks for Problem Set 1

SASSAC CISAC RANSAC MSASSAC MCISAC MSAC

6.000000 6.000000 3.355556 6.000000 6.000000 3.488889

Interpretation: The Friedman test reveals significant difference, since the p-value is less than 0.5.

That is, at least two of the six algorithms are significantly different in overall ranking on the

problem set. From the Nemenyi comparison table, SASSAC, MSASSAC, CISAC and MCISAC,

are not significantly different in performance. RANSAC and MSAC are also not significantly

different from each other but they differ from the first group. The tables of mean and median ranks

show that RANSAC and MSAC form the worse group.

An interesting observation is that on every problem in this set, all the four new algorithms reported

exactly the true number of inliers. Moreover, none of the two that have some elements of

97

randomness in their mechanism, SASSAC and MSASSAC, exhibited any randomness in the

solution quality produced on this problem set.

Problem set 2: outlier rates 40%, 50%, 60%

Friedman chi-squared = 41.411, df = 5, p-value = 7.75e-08

Table 4-4: Nemenyi Pairwise comparison for Problem Set 2

 SASSAC CISAC RANSAC MSASSAC MCISAC

CISAC 0.650500 - - - -

RANSAC 0.001400 0.168100 - - -

MSASSAC 0.999800 0.817400 0.004200 - -

MCISAC 0.445500 0.999600 0.310400 0.632000 -

MSAC 0.218000 0.594700 0.974000 0.050600 0.787500

Table 4-5: Mean Ranks for Problem Set 2

SASSAC CISAC RANSAC MSASSAC MCISAC MSAC

5.800000 5.133333 3.355556 5.688889 5.022222 3.822222

Table 4-6: Median Ranks for Problem Set 2

SASSAC CISAC RANSAC MSASSAC MCISAC MSAC

6 6 2 6 6 6

On this problem set, as table 1A in the appendix and the boxplots in Figure 4.2 show, in seven out

of all nine cases tested, all four algorithms returned inlier number equal to ground truth, without

any variation. The relative ranking of the algorithms remain same as for problem set 1, in the

order SASSAC, MSASSAC, CISAC, MCISAC, MSAC and RANSAC.

98

4.4.2 Accuracy Measured by M-estimate Error

Figure 4.3: Problem set 1 (outlier rates 10%, 20%, 30%) - comparing accuracies measured by M-

estimate error

99

Figure 4.4: Problem set 2 (outlier rates 40%, 50%, 60%) - comparing accuracies measured by M-

estimate error

100

4.4.2.1 Statistical Test for Difference in Overall Ranking

Problem set 1: outlier rates 10%, 20%, 30%

Friedman chi-squared = 147.53, df = 5, p-value < 2.2e-16

Table 4-7: Nemenyi Pairwise comparison for Problem Set 1

 SASSAC CISAC RANSAC MSASSAC MCISAC

CISAC 1.000000 - - - -

RANSAC 0.130200 0.130200 - - -

MSASSAC 0.000000 0.000000 0.000000 - -

MCISAC 0.000800 0.000800 0.000000 0.392400 -

MSAC 0.004200 0.004200 0.870400 0.000000 0.000000

Table 4-8: Mean Ranks for Problem Set 1

SASSAC CISAC RANSAC MSASSAC MCISAC MSAC

4.422222 4.422222 4.733333 1.733333 2.600000 5.177778

Table 4-9: Median Ranks for Problem Set 1

SASSAC CISAC RANSAC MSASSAC MCISAC MSAC

4 4 5 1 2 6

On this problem set, the order from best to worst, that is lowest to highest error, is MSASSAC,

MCISAC, SASSAC, CISAC, RANSAC and MSAC. MSASSAC and MCISAC seem to form the

best group, SASSAC and CISAC another. Then come RANSAC and MSAC in the rank.

Problem set 2: outlier rates 40%, 50%, 60%

Friedman chi-squared = 70.433, df = 5, p-value = 8.329e-14

101

Table 4-10: Nemenyi Pairwise comparison for Problem Set 2

 SASSAC CISAC RANSAC MSASSAC MCISAC

CISAC 0.375250 - - - -

RANSAC 0.011440 0.738920 - - -

MSASSAC 0.003060 0.000000 0.000000 - -

MCISAC 0.969510 0.068950 0.000560 0.043110 -

MSAC 0.295210 0.999999 0.817390 0.000000 0.046740

Table 4-11: Mean Ranks for Problem Set 2

SASSAC CISAC RANSAC MSASSAC MCISAC MSAC

3.955556 4.777778 4.622222 2.222222 3.577778 4.133333

Table 4-12: Median Ranks for Problem Set 2

SASSAC CISAC RANSAC MSASSAC MCISAC MSAC

4 5 5 2 4 5

Similar to problem set 1, on this problem set, the order from best to worst, that is lowest to highest

error, is MSASSAC, MCISAC, SASSAC, CISAC, RANSAC and MSAC. MSASSAC and

MCISAC seem to form the best group, SASSAC and CISAC another. RANSAC and MSAC come

behind.

102

4.5 Experimental Results for Real Life Images

All six algorithms are run 5 times each on the matched features dataset from the UKZN Aerial

Photo Pair studied in section 3.4.2.3. Table 4.13 shows the experimental results.

Table 4-13: Experimental Results on the UKZN Aerial Photo Pair

Algorithm Run I ME iter f

SASSAC 1 133 151.34387 2 264

CISAC 1 133 151.34387 1 132

RANSAC 1 127 225.6481 5 5

MSASSAC 1 133 128.01881 2 264

MCISAC 1 133 133.52167 1 132

MSAC 1 130 512.93524 3 3

SASSAC 2 133 151.34387 2 264

CISAC 2 133 151.34387 1 132

RANSAC 2 130 187.9812 6 6

MSASSAC 2 132 132.22241 2 264

MCISAC 2 133 133.52167 1 132

MSAC 2 131 374.40723 3 3

SASSAC 3 133 151.34387 2 264

CISAC 3 133 151.34387 1 132

RANSAC 3 132 146.37769 5 5

MSASSAC 3 133 133.52167 2 264

MCISAC 3 133 133.52167 1 132

MSAC 3 132 321.01636 2 2

SASSAC 4 133 151.34387 2 264

103

CISAC 4 133 151.34387 1 132

RANSAC 4 114 224.25392 9 9

MSASSAC 4 133 126.51538 2 264

MCISAC 4 133 133.52167 1 132

MSAC 4 131 334.45541 3 3

SASSAC 5 133 151.34387 2 264

CISAC 5 133 151.34387 1 132

RANSAC 5 132 146.65369 5 5

MSASSAC 5 133 133.01285 3 396

MCISAC 5 133 133.52167 1 132

MSAC 5 133 402.25391 8 8

Figure 4.5: Comparing accuracies on the UKZN Pair 1 - Left: measured by number of inliers, right:

measured by M-estimate error

On this real-life problem, all four new algorthms exhibited superior accuracy and consistence to

either RANSAC or MSAC on both measures of accuracy. All four new algorithms exhibited equal

104

accuracies when evaluated on the basis of number of inliers. On the M-estimate error ciriterion,

MSASSAC is the best.

4.6 Summary of Findings

The outcomes of the series of experiments that make up this comparative study are summarized

in this subsection.

Accuracy

In the analysis of experimental results presented in this chapter, accuracy of the algorithms is

measured using two different criteria: number of inliers detected which RANSAC seeks to

maximize, and the M-estimate error that MSAC seeks to minimize. The six algorithms compared

are those that adopt the random-sampling strategy - RANSAC and MSAC – and those proposed

in this work – SASSAC, CISAC, MSASSAC, MCISAC.

From the various observations discussed, there is sufficient evidence that on the consensus

maximization criterion, SASSAC is generally the most accurate of the six algorithms. MSASSAC

competes closely with SASSAC. On each problem set, the difference detected between the

performance of MSASSAC and that of SASSAC with respect to this criterion, is not statistically

significant. When accuracy is measured using the M-estimate error criterion, MSASSAC is

significantly superior to any of the other five. MCISAC is second, SASSAC third, CISAC fourth.

On both criteria, RANSAC and MSAC perform significantly worse than any of the four new

algorithms. The study shows that these generalizations apply to both low contamination and

extreme outlier-rate problems.

Still on accuracy, an interesting observation in the experiments is the fact that all four new

algorithms often returned the exact true number of inliers on the various problems. It is worth

pointing out that the conditions covered in the experiments range from simple to extreme

conditions that are found in practical applications, in terms of contamination level and data size.

In fact, it is not rare to find practical applications that involve contamination level much less than

the extreme 40% studied or data size much less than 1000. The real-life problem studied validates

the statement. The implication is that the algorithms have been quite rigorously tested and

compared.

105

Repeatability

Clearly, the four consecutive-inlier algorithms are generally more consistent than their random-

sampling counterparts. CISAC and MCISAC are perfectly repeatable exhibiting absolute zero

randomness. SASSAC and MSASSAC put up a similar behavior on many of the problems tested,

but they possess some inherent randomness which is manifested on a few of the problems tested.

In any case, any of these algorithms exhibit far less randomness or variation than either RANSAC

or MSAC, on practically all problems tested.

Simplicity

As described in chapter 1, a major design goal in this work is simplicity. Unlike RANSAC and

MSAC, all four new algorithms do not make use of the popular confidence-level-based stopping

criterion, described in chapter 2. They also involve very simple procedures and computations.

Informed by the consecutive inliers theorem, CISAC and MCISAC simply go straight for the m-

n+1 possible models that are constructed from consecutive rows in the data, and choose the best.

That is all there is to the algorithms. SASSAC and MSASSAC perform this simple procedure

iteratively over a few different random permutations of the data. Due to these new strategies, the

only parameter required to be supplied to all four algorithms is the distance threshold, which is

also required by RANSAC and MSAC, as well as most other variants in literature.

 Speed

RANSAC and MSAC are generally faster than the new algorithms. However, as can be seen in

experimental results in this chapter as well as section 3.5, the typical runtime of the new

algorithms, particularly CISAC and MCICSAC, measured by the number of calls to the objective

function, is still low and will typically run on today’s computers in fractions of seconds or at most

a few seconds for large-sized problems. One interesting advantage of CISAC and MCISAC is that

there runtime is deterministic function of data size and minimal sample size. So, for any given

problem the runtime can be exactly computed ahead of time. This property holds some value for

planning in practical applications. MSASSAC and SASSAC, also exhibit very predictable

runtime, although not exactly deterministic. They are also not as fast CISAC and MCISAC.

Another interesting observation is that as either contamination or model dimensionality is

increased, the runtime of RANSAC and MSAC deteriorates that of CISAC and MCISAC are

unaffected by contamination level. It even gets slightly better as model dimensionality is

106

increased. Although this improvement is typically insignificant, it is remarkable enough that the

runtime is not worsened.

Run time Variation

CISAC and MCISAC exhibit totally deterministic run time. From the experimental results, the

runtime of SASSAC and MSASSAC is quite consistent, almost non-random. The runtimes of

RANSAC and MSAC are more random than those of the other algorithms.

4.7 Chapter Summary

A comparative study of four of the algorithms proposed in this thesis (CISAC, MICSAC, SASSAC

and MSASSAC) and their random sampling counterparts (RANSAC and MSAC) is presented in

this chapter. The algorithms are evaluated on simulated datasets covering an extensive range of

data conditions, as well as a real-life problem. The study reveals quite clearly that all four new

algorithms are more accurate and more consistent than either RANSAC or MSAC. This holds for

problems with low outlier rate as well as those with extreme contamination. Two of the new

algorithms, CISAC and MCISAC are deterministic while the other two exhibit minimal

randomness. Interestingly, the four algorithms do not just merely offer improvements over the

accuracies of RANSAC and MSAC, but detect the true number of inliers in most of the cases

tested. Although they are generally slower than RANSAC and MSAC, the new algorithms,

particularly CISAC and MCISAC are still competitively fast. Moreover, their runtimes can be

computed ahead of time. On the consensus maximization criterion, SASSAC is the most accurate

of the six, while MSASSAC which is the most accurate on the M-estmate error criterion.

MSASSAC also competes closely with SASSAC on the former criterion. Note that the

maximization of consensus is the very objective that the authors of RANSAC designed it to

achieve, while minimization of M-estimate error is the objective that the authors of MSAC

designed it to achieve. But the random sampling strategy with which both algorithms explore the

solution space limits them. The outcomes of this study show that the consecutive inliers strategy

proposed in this thesis is a better way to optimize both objectives. The implication of having

MSASSAC and SASSAC perform better than either RANSAC and MSAC on any of the two

criteria, is that the proposed strategy optimizes both objectives more accurately, even when

optimization of one of the objectives is not directly sought.

107

The implication of all these study outcomes is that the objectives of this research work have been

realized quite satisfactorily.

108

CHAPTER FIVE

5 SOFTWARE CONTRIBUTIONS

5.0 Preamble

This chapter takes the contributions of this work a step further. Presented are two alternative

implementations of the homography estimation function in MATLAB’s computer vision toolbox,

which is a widely used software library. The contributed functions are two alternatives, based on

MCISAC and MSASSAC respectively, shown in chapter 4 to offer performance advantages over

MSAC, the variant used in the official implementation. MSAC has been used in all releases of the

toolbox, including the latest 2015b. The syntax of the proposed functions are consistent with the

official MATLAB pattern. This chapter includes a user guide written in the official MATLAB

documentation style which includes description of syntax, input arguments and output arguments

for both functions. The documentation includes brief practical demonstrations. In order to benefit

from code optimization expertise of the professionals at Mathworks, the proposed

implementations are achieved by editing the source code of the official function, replacing the

MSAC components with the proposed algorithms. A few additional output arguments that are

useful for performance evaluation are included in the proposed implementations.

5.1 MATLAB’s Geometric Transform Estimation Function

Due to the ubiquity of robust estimation problems in the field of computer vision, software in this

field include robust estimation functions as an important component. Many applications involve

estimation of homography, that is, 2-D geometric transformation between image pairs.

MATLAB’s computer vision toolbox, which is a very popular software library in this field,

provides a function for this purpose, named estimateGeometricTransform. The current release

(2015b), as well as past releases of this toolbox implement this function based on MSAC. This

chapter focuses on improving the state of the art by contributing alternative implementation of

MATLAB’s estimateGeometricTransform. The main idea is to replace the MSAC component of

the official implementation with MCISAC and MSASSAC to produce the two proposed

alternative functions.

109

5.2 The Original MSAC Algorithm

As discussed in chapter 2, MSAC was proposed by Torr and Zisserman in 1998. It is one of the

earliest variants of RANSAC. It replaces the optimization objective. MSAC’s error function is

stated thus:

𝜌1(𝑒2) = {
|𝑒|, |𝑒| < 𝑇
𝑇, |𝑒| ≥ 𝑇

Where T is the error bound used in distinguishing inlier from outliers as in RANSAC, that is, the

maximum distance between an inlier point and the projection.

5.2.1 Drawbacks of MSAC

MSAC’s optimization objective could be a better measure of model accuracy in many cases, since

it considers the actual errors within the distance threshold bound, rather than the binary

polarization adopted RANSAC. Apart from the advantages that result from replacing RANSAC’s

optimization objective with MSAC’s, MSAC shares other drawbacks of the former in chapter 2.

The reason is not far-fetched: MSAC adopts the uniform random-sampling strategy of RANSAC,

which is noted to be the root of many of RANSAC’s drawbacks.

5.3 MATLAB’s MSAC: Stopping Criterion for Balance of Efficiency and Accuracy

MATLAB implements a refined version of MSAC. In the official implementation of the

estimateGeometricTransform function, the stopping criterion discussed in chapter 3, is

incorporated into MSAC. The purpose is to achieve improved efficiency. The number k, of

samples that have to be drawn for a given probability 𝑃𝐼 of drawing an all-inlier sample is given

by:

𝑘 =
log (𝜂)

log (1 − 𝑃𝐼)

𝑃𝐼 =
(𝐼

𝑛
)

(𝑚
𝑛)

= ∏
𝐼 − 𝑗

𝑚 − 𝑗

𝑛−1

𝑗=0

≈ (
𝐼

𝑚
) 𝑛

110

where I is the number of inliers and m is the number of points in the full data, and n is minimal

sample size.

5.4 Pros and cons of MCISAC and MSASSAC

The comparative study of chapter 4 clearly established the superiority of either MCISAC or

MSASSAC over MSAC, on quite a number of performance measures.

The main advantage of MCISAC over MSASSAC is that it is totally deterministic while

MSASSAC has some elements of randomness to it. However, MCISAC shares the ‘small’ risk of

breakdown associated with CISAC, for very high model dimensionality and extreme

contamination, as discussed in chapters 3 and 4. Nevertheless, MCISAC is still a good choice for

homography estimation since this risk as been shown to be quite small and breakdown is unlikely

to occur in many practical situation. Although MSASSAC introduces a bit a randomness, it offers

improvement over MCISAC’s exploration, resulting in better accuracy. As shown in the

experiments of chapter 4, this randomness is generally small, and the variation in solution quality

could be zero in many practical cases. In any case, the inherent randomness as well as increased

runtime, are the costs incurred by MSASSAC, to achieve better accuracy and better robustness to

poor choice of distance threshold, than MCISAC.

In summary, MCISAC and MSASSAC compete closely and are both good choices for the

MATLAB function in question. The clear advantages of MSASSAC over MCISAC is the

elimination of the risk of breakdown (implying better reliability), improved accuracy and

robustness to poor choice of distance threshold. However, if the priority is either repeatability or

speed, then MCISAC assures the user better.

5.5 User Guide for Proposed Functions

As earlier described, the function estimateGeometricTransform estimates 2-D geometric

transformations between image pairs. In this section, the syntax is described and examples of use

are presented. The pattern of MATLAB’s documentation style is followed, so users who are

familiar with the original MATLAB function, should find the presentation intuitive. Both

implementations that are proposed share exactly the same syntax.

111

5.5.1 Syntax and Description

This subsection shows the various syntaxes that are legal in calling the functions. The variety

results from the fact that some input and output arguments are optional.

Syntax 1

tform = estimateGeometricTransformMCISAC(X,Y,transformType);

tform = estimateGeometricTransformMSASSAC(X,Y,transformType);

where X and Y are the matrices of matched points in the first and second image respectively.

In each case, the command returns a 2-D geometric transform object tform by detecting inlier pairs

in the matched set and computing the appropriate transformation.

Optional output are specified in Syntax 2 to 4.

Syntax 2

 [tform,inlierPoints1,inlierPoints2]

= estimateGeometricTransformMCISAC(X,Y,transformType);

[tform,inlierPoints1,inlierPoints2]

= estimateGeometricTransformMSASSAC(X,Y,transformType);

In addition to the 2-D transform object, this command returns the corresponding inlier pairs:

inlierPoints1 and inlierPoints2.

Syntax 1 and 2 above are identical to that of the original MATLAB implementation. Additional

outputs which may be useful for performance evaluation are included in the implementation

presented in this work: the M-estimate error to evaluate accuracy and the number of iterations to

track run time. It is unnecessary to return the number of inliers since it is simply the number of

rows of the matrix inlierPoints1 or inlierPoints2. The added outputs are reflected

in syntax 3.

112

Syntax 3

[tform,inlierPoints1,inlierPoints2,mError,iter]

= estimateGeometricTransformMCISAC(X,Y,transformType);

[tform,inlierPoints1,inlierPoints2,mError,iter]

= estimateGeometricTransformMSASSAC(X,Y,transformType);

mError is the magnitude of the M-estimate error corresponding to the returned transform. This

is the same error that MSAC seeks to minimize. iter is the number of iterations.

Syntax 4

[__,status] = estimateGeometricTransformMCISAC(X,Y,transformType);

[__,status] = estimateGeometricTransformMSASSAC(X,Y,transformType);

The output status comes from the official MATLAB implementation. It is returns a status code

0, 1 or 2. The purpose is to report solution conditions in case there are conditions that cannot

produce results. If the status is not requested such as in syntax 4, the function will produce an error

under such problematic conditions. This component is left as provided in the official

implementation.

Syntax 5

[__] = estimateGeometricTransformMCISAC(X,Y,transformType, ‘MaxDistance’,

Value);

[__] = estimateGeometricTransformMSASSAC(X,Y,transformType, ‘MaxDistance’,

Value);

Syntax 5 points out the availability of optional input arguments that can be passed to the function.

Again, the pattern of the official MATLAB implementation is followed. These input arguments

are discussed below.

Input Arguments

In the official implementation, there are three optional arguments. Two are specific to MSAC but

are not required by the new algorithms. The latter do not require a specification of maximum

113

number of trials and confidence level, both of which are related to MSAC’s stopping criterion.

The only argument left, which applies to the new algorithms is the error bound (distance threshold)

used for distinguishing inliers from outliers. It is named ‘MaxDistance’. If the user does not

specifiy a value for this argument, a default of 1.5 is used just like in the official implementation.

Table 5-1: Summary of Input Arguments

Argument Definition Value

matchedPoints1 Matched points from image 1

 cornerPoints object | SURFPoints object | MSERRegions object

| M-by-2 matrix of [x,y] coordinates

matchedPoints2 Matched points from image 2

cornerPoints object | SURFPoints object | MSERRegions object

| M-by-2 matrix of [x,y] coordinates

transformType Tranform/model type 'similarity' | 'affine' | 'projective'

Table 5-2: Name-Value Pair Input Argument

Name Definition Value

‘MaxDistance'

Error bound for distinguishing inliers from outliers, i.e.

maximum distance from point to projection

positive numeric scalar (default of

1.5 is used if not specified)

114

Table 5-3: Summary of Output Arguments

Argument Definition Value

tform Geometric tranformation affine2d object | projective2d object

status status code

0 (No error) | 1 (matchedPoints and matchedPoints2 do not contain

enough points) | 2 (Not enough inliers have been found)

inlierPoints1 inliers in image 1

 cornerPoints object | SURFPoints object | MSERRegions object | M-by-

2 matrix of [x,y] coordinates

inlierPoints2 inliers in image 2

 cornerPoints object | SURFPoints object | MSERRegions object | M-by-

2 matrix of [x,y] coordinates

5.5.2 Demo Examples

In this subsection, examples are presented to demonstrate the use of the contributed functions. The

examples, one for each function involve recovering an image that has undergone distortion, by

using the proposed functions to estimate the transformation. Matched feature pairs are

automatically detected using the SURF technique after which the proposed functions are used to

estimate the geometric transform in other to recover the distortion parameters, as well as the

original image. The problem is actually taken from MATLAB’s official documentation, while the

function used in the geometric transform estimation stage is replaced with the proposed ones. The

goal here is demonstration rather than performance evaluation.

5.5.2.1 Automatic Recovery of Image Rotation and Scale with Proposed

estimategeometrictransformMCISAC Function

This example is identical to a similarly titled example in the official MATLAB documentation.

The only difference is that the official estimateGeometricTransform function is replaced by the

proposed implementation in this work named estimateGeometricTransformMCISAC. As the name

implies, it is based on MCISAC.

The example uses detectSURFFeatures and vision.GeometricTransformEstimator System object

to recover rotation angle and scale factor of a distorted image. Then the distorted image is

115

transformed to recover the original image. In the example presented, the true rotation and scale

factor are 30 degrees and 0.7 respectively.

Step 1: Read Image

Read an image into the MATLAB workspace.

original = imread('cameraman.tif');

imshow(original);

text(size(original,2),size(original,1)+15, ...

 'Image courtesy of Massachusetts Institute of Technology', ...

 'FontSize',7,'HorizontalAlignment','right');

Figure 5.1: Image Read and Displayed

Step 2: Resize and Rotate the Image

scale = 0.7;

J = imresize(original, scale); % Try varying the scale factor.

theta = 30;

distorted = imrotate(J,theta); % Try varying the angle, theta.

figure, imshow(distorted)

116

Figure 5.2: Image Resized and Rotated

Step 3: Find Matching Features between Images

Detect common features in both the original and transformed images, using the SURF technique

ptsOriginal = detectSURFFeatures(original);

ptsDistorted = detectSURFFeatures(distorted);

Extract feature descriptors from detected features

[featuresOriginal, validPtsOriginal] = extractFeatures(original,

ptsOriginal);

[featuresDistorted, validPtsDistorted] = extractFeatures(distorted,

ptsDistorted);

Use the descriptors to match features

indexPairs = matchFeatures(featuresOriginal, featuresDistorted);

Retrieve coordinates of corresponding points for each image.

matchedOriginal = validPtsOriginal(indexPairs(:,1));

matchedDistorted = validPtsDistorted(indexPairs(:,2));

Show point matches. Notice the presence of outliers.

117

figure;

showMatchedFeatures(original,distorted,matchedOriginal,matchedDistorted);

title('Putatively matched points (including outliers)');

Figure 5.3: Matched Features between the Image Pair

Step 4: Estimate Transformation and solve for angle

Estimate transformation corresponding to the matching point pairs using the proposed function.

[mcisactform, mcisacinlierDistorted, mcisacinlierOriginal] =

estimateGeometricTransformMCISAC(...

 matchedDistorted, matchedOriginal, 'similarity');

Step 5: Solve for Scale and Angle

Let 𝑠𝑐 = 𝑠𝑐𝑎𝑙𝑒 × 𝑐𝑜𝑠𝜃

Let 𝑠𝑐 = 𝑠𝑐𝑎𝑙𝑒 × 𝑠𝑖𝑛𝜃

Then, Tinv = (
𝑠𝑐 −𝑠𝑠 0
𝑠𝑠 𝑠𝑐 0
𝑡𝑥 𝑡𝑦 1

)

where tx and ty are x and y translations, respectively.

Compute the inverse transformation matrix.

118

mcisacTinv = mcisactform.invert.T;

mcisacss = mcisacTinv(2,1);

mcisacsc = mcisacTinv(1,1);

mcisacscale_recovered = sqrt(mcisacss*mcisacss + mcisacsc*mcisacsc)

mcisactheta_recovered = atan2(mcisacss,mcisacsc)*180/pi

mcisacscale_recovered =

 0.6979

mcisactheta_recovered =

 30.3193

Notice that the estimated values compare quite accurately with the true values of 0.7 and 30

degrees respectively.

Repeat Steps 4 and 5 to evaluate repeatability

Second Trial

[mcisactform, mcisacinlierDistorted, mcisacinlierOriginal] =

estimateGeometricTransformMCISAC(...

 matchedDistorted, matchedOriginal, 'similarity');

mcisacTinv = mcisactform.invert.T;

mcisacss = mcisacTinv(2,1);

mcisacsc = mcisacTinv(1,1);

mcisacscale_recovered = sqrt(mcisacss*mcisacss + mcisacsc*mcisacsc)

mcisactheta_recovered = atan2(mcisacss,mcisacsc)*180/pi

mcisacscale_recovered =

 0.6979

mcisactheta_recovered =

 30.3193

119

Third Trial

[tform, inlierDistorted, inlierOriginal] = estimateGeometricTransform(...

 matchedDistorted, matchedOriginal, 'similarity');

[mcisactform, mcisacinlierDistorted, mcisacinlierOriginal] =

estimateGeometricTransformMCISAC(...

 matchedDistorted, matchedOriginal, 'similarity');

mcisacTinv = mcisactform.invert.T;

mcisacss = mcisacTinv(2,1);

mcisacsc = mcisacTinv(1,1);

mcisacscale_recovered = sqrt(mcisacss*mcisacss + mcisacsc*mcisacsc)

mcisactheta_recovered = atan2(mcisacss,mcisacsc)*180/pi

mcisacscale_recovered =

 0.6979

mcisactheta_recovered =

 30.3193

5.5.2.2 Demonstration of estimateGeometricTransformMSASSAC Function

This example is identical to the one presented for estimateGeometricTransformMCISAC. Here

second proposed function is used: estimateGeometricTransformMSASSAC.

Step 1: Read Image

Bring an image into the workspace.

original = imread('cameraman.tif');

imshow(original);

text(size(original,2),size(original,1)+15, ...

 'Image courtesy of Massachusetts Institute of Technology', ...

 'FontSize',7,'HorizontalAlignment','right');

120

Figure 5.4: Image Read and Displayed

Step 2: Resize and Rotate the Image

scale = 0.7;

J = imresize(original, scale); % Try varying the scale factor.

theta = 30;

distorted = imrotate(J,theta); % Try varying the angle, theta.

figure, imshow(distorted)

Figure 5.5: Resized and Rotated Image

121

Step 3: Find Matching Features between Images

Detect common features in both images.

ptsOriginal = detectSURFFeatures(original);

ptsDistorted = detectSURFFeatures(distorted);

Extract feature descriptors using the SURF method.

[featuresOriginal, validPtsOriginal] = extractFeatures(original,

ptsOriginal);

[featuresDistorted, validPtsDistorted] = extractFeatures(distorted,

ptsDistorted);

Match features by using their descriptors.

indexPairs = matchFeatures(featuresOriginal, featuresDistorted);

Retrieve locations of corresponding points for each image.

matchedOriginal = validPtsOriginal(indexPairs(:,1));

matchedDistorted = validPtsDistorted(indexPairs(:,2));

Show putatitive matches

figure;

showMatchedFeatures(original,distorted,matchedOriginal,matchedDistorted);

title('Putatively matched points (including outliers)');

122

Figure 5.6: Matched Features between Images

Step 4: Estimate Transformation and solve for angle

[msassactform, msassacinlierDistorted, msassacinlierOriginal] =

estimateGeometricTransformMSASSAC(...

 matchedDistorted, matchedOriginal, 'similarity');

Step 5: Solve for Scale and Angle

[msassactform, msassacinlierDistorted, msassacinlierOriginal] =

estimateGeometricTransformMSASSAC(...

 matchedDistorted, matchedOriginal, 'similarity');

msassacTinv = msassactform.invert.T;

msassacss = msassacTinv(2,1);

msassacsc = msassacTinv(1,1);

msassacscale_recovered = sqrt(msassacss*msassacss + msassacsc*msassacsc)

msassactheta_recovered = atan2(msassacss,msassacsc)*180/pi

msassacscale_recovered =

 0.6991

msassactheta_recovered =

 29.9552

123

Second trial

[msassactform, msassacinlierDistorted, msassacinlierOriginal] =

estimateGeometricTransformMSASSAC(...

 matchedDistorted, matchedOriginal, 'similarity');

msassacTinv = msassactform.invert.T;

msassacss = msassacTinv(2,1);

msassacsc = msassacTinv(1,1);

msassacscale_recovered = sqrt(msassacss*msassacss + msassacsc*msassacsc)

msassactheta_recovered = atan2(msassacss,msassacsc)*180/pi

msassacscale_recovered =

 0.6992

msassactheta_recovered =

 29.9701

Third Trial

[msassactform, msassacinlierDistorted, msassacinlierOriginal] =

estimateGeometricTransformMSASSAC(...

 matchedDistorted, matchedOriginal, 'similarity');

msassacTinv = msassactform.invert.T;

msassacss = msassacTinv(2,1);

msassacsc = msassacTinv(1,1);

msassacscale_recovered = sqrt(msassacss*msassacss + msassacsc*msassacsc)

msassactheta_recovered = atan2(msassacss,msassacsc)*180/pi

msassacscale_recovered =

 0.6991

msassactheta_recovered =

 29.9552

124

5.6 Chapter Summary

Two functions are contributed in this chapter. Both are proposed alternatives to the official

homography estimation function, named estimateGeometricTransform. The proposed

implementations are based on two of the algorithms proposed in this dissertation, MCISAC and

MSASSAC, which have both been shown in chapter 5 to offer several advantages over MSAC,

the variant that has been used in MATLAB’s official implementation till date. The advantages

include improved accuracy, repeatability and more tractable complexity that makes them perform

well even under very high outlier-contamination, robustness to poor choice of distance threshold.

The algorithms are also simpler in the sense that they do not require two of the input parameters

of MATLAB’s MSAC: the maximum number of iterations and confidence level. These parameters

are used to compute the appropriate termination criterion, which is eliminated in the proposed

algorithms. Unlike many RANSAC variants that offer some improvements over MSAC and

RANSAC, the new algorithms completely retain the generic nature of these older algorithms.

While both of them produce results that are quite consistent, one of them – MCISAC – is

completely non-random. Its run time is also totally deterministic. To the best of the author’s

knowledge, these last two properties have never been claimed by any algorithm in RANSAC

literature. They have been made possible by insight from the consecutive inliers theorem.

Having already established these properties empirically in chapter 5, the contribution in this

particular chapter is motivated by the need to make software implementations of these algorithms

available, to indeed drive forward the state of the art. It is hoped that future releases of MATLAB’s

computer vision toolbox, which is widely used in the field, will benefit from these innovations.

For the purpose user-friendliness, the syntax of the proposed implementations and the

documentation provided are consistent with the official MATLAB pattern.

125

CHAPTER SIX

6 SUMMARY, CONCLUSION AND RECOMMENDATIONS

6.0 Chapter Introduction

This is the concluding chapter of this dissertation. The research work is summarized along with

evaluation of achievement of its research objectives. Then directions for future work are

highlighted.

6.1 Research Summary

This study set out to drive forward the state of the art in robust estimation, particularly in computer

vision, by contributing a comprehensive survey of RANSAC variants and by developing new

algorithms that address gaps in literature. One motivation is the fact that, although much progress

has been made in development of RANSAC variants that offer improvements with respect to

various performance measures, popular software libraries have stuck with a few relatively older

variants. The implication is that the high activity and progress in RANSAC research especially in

the last two decades is not reflected commensurately in software libraries that are widely used in

this field. It is observed that the few variants that have remained the favourite choice in popular

software libraries, possess some attractive properties that many of the newer ones compromise, to

achieve the improvements they offer. Two of these properties are simplicity and generality.

This research identified the need to develop a search strategy that could replace RANSAC’s

uniform random sampling, without dependence on problem-specific prior information. The value

of such a strategy is that improvements can be achieved purely by a change in search strategy: no

extra operations. Algorithms designed in this way preserve the two earlier mentioned properties

and should be better candidates for software implementation.

An additional effort of this work in driving forward the state of the art, is a comprehensive survey

of existing variants. The survey presented is the most comprehensive and up-to-date document

published on this subject, to the best of the author’s knowledge. The motivation for such an effort

is that providing an organized discussion of existing works in such a vast literature may be equally

as valuable as embarking on new ones. Also of value is the included analysis of literature aimed

towards holistic understanding and identification of high-priority problems in RANSAC research.

126

Specifically, the study sought to provide answers to a few questions highlighted as follows.

i. Taking a holistic look at RANSAC literature, what are the dominant themes; what is/are

the most fundamental question(s) in RANSAC research and what is/are the most pressing

concern(s) of research efforts?

ii. What directions should future research efforts pursue to achieve algorithms with higher

odds of being considered as good candidates for implementation in popular software?

iii. How can the drawbacks of RANSAC be overcome purely by a change in search strategy,

without introducing new steps nor dependence on problem-specific priors?

The first two questions were answered through the instrumentality of the comprehensive survey

conducted and presented in chapter 2, while the last constituted the main technical problem

addressed in the rest of the dissertation.

6.2 Summary of Findings

The study collected and reviewed a total of 55 variants, by far the most comprehensive and up-to-

date collection in literature. It is found that in the last one-and-half decade, at least one variant is

published nearly every year. The activity level is still high and appears to be increasing, the last

two years alone witnessing the introduction of more than ten variants. The most dominant themes

in literature are found to be the pursuit of improved accuracy, and speed. Typically it is not desired

to have one while losing much of the other, implying that a major concern is efficiency. About

76% of works found in the survey are related to improvement of efficiency. While some works

seek improvements through diverse techniques that often lead to introduction of new operations

or steps into the original algorithm, 53% of the entire collection pursue improvement by

developing alternatives to RANSAC’s search strategy. Still gaps exist. Many of the strategies

developed leverage on problem-specific prior information. While several directions were

identified in the survey as good directions for future works, the rest of the dissertation was

dedicated to address this apparently most fundamental problem: developing search strategies that

neither introduce new operations nor require problem-specific priors.

Central to this dissertation is a theorem proposed in chapter three, referred to as the ‘consecutive

inliers theorem’. The theorem reveals a straightforward strategy for finding good solutions in any

robust estimation problem. The direct outcome is a search strategy that possesses the properties

that this work sought to achieve: simplicity and non-dependence on problem-specific prior

127

information. This search strategy is the basis for the first novel algorithm presented in this work,

named CISAC. CISAC does not only preserve the simplicity and generality of RANSAC, but is

also shown to be generally more accurate. Perhaps, a more interesting outcome is that CISAC is

completely non-random in both solutions produced as well as runtime. To the best of the author’s

knowledge, this property has never been claimed in RANSAC literature, and is not common

among non-exhaustive search algorithms in general.

Harnessing the new possibilities created by CISAC, a study is presented on the problem of

estimating optimal distance threshold, an important parameter required as input to RANSAC-like

algorithms. Empirical observations shows that the number of inliers detected by such a perfectly

repeatable algorithm, is a monotonically increasing function of distance threshold that reaches

steady state at the true value and remains so for a wide range of threshold values. This shows how

the properties of CISAC simplifies the problem. This insight is put to use in developing a

mechanism for fully automatic robust estimation, leading to the second proposed algorithm,

named AutoCISAC. Efforts to improve on CISAC’s reliability and accuracy, especially under

extreme outlier-contamination, resulted in another algorithm named SASSAC, which turned out

to be even more accurate.

CISAC, AutoCISAC and SASSAC, adopt RANSAC’s consensus maximization objective,

differing from the latter only by the adoption of the search strategies proposed in this work. Taking

a cue from the popular MSAC which replaces RANSAC’s optimization objective with M-estimate

error minimization, the ‘consecutive inliers’ strategy is explored for this objective, resulting in

two more algorithms: MCISAC and MSASSAC.

Simulated problems that cover a wide range of conditions and real-life problems are used for

testing. Comparative study on homography estimation show that all four proposed algorithms are

generally more accurate than RANSAC and MSAC. Interestingly all the proposed algorithms are

not just more accurate than their random-sampling counterparts, they detect the true number of

inliers in many cases tested.

Two of them, MCISAC and MSASSAC are then implemented as contributed alternatives to the

homography estimation function provided in MATLAB’s computer vision toolbox. The official

implementation in various releases including the current version (2015b) are based on MSAC.

Documentation is provided to describe the syntaxes, including demonstrations. To ahieve user-

128

friendliness, both the syntax of the functions and the documentation format are consistent with the

official MATLAB style.

6.3 Conclusion

It was hypothesized at the onset of this research, that many, if not all, of the drawbacks of

RANSAC can be overcome by only a replacement of its random sampling strategy. The outcomes

summarized in section 6.2 validate this argument and also validate the effectiveness of the

strategies developed in this work. The implication is that contrary to the approach of many existing

works discussed in chapter 2, RANSAC’s simplicity is preserved without dependence on problem-

specific prior information. The proposed algorithms are therefore likely to be considered by

software makers as good candidates for future releases. Indeed, a proactive step has been taken to

implement alternatives to a very useful function in MATLAB’s computer vision toolbox, which

is based on MSAC, over which the new algorithms are shown in this dissertation to exhibit

performance improvements.

6.4 Recommendations for Future Work

There is much room for further work. Hopefully, this work is only the beginning of the exploration

of the potentials of the newly proposed Consecutive Inliers Theorem as well as the insights

provided by the study reported in section 3.5, on the threshold estimation problem. As other

research efforts explore, refine and build upon these insights, much benefits will hopefully be

realized for theory and practice of robust estimation.

The automatic threshold estimation mechanism that resulted in AutoCISAC can also be applied to

the other proposed algorithms. One implication is that a fully automatic function will be achieved

as a candidate for a future contribution to the MATLAB computer vision toolbox. This facility is

currently unavailable, even in the 2015b release of the toolbox. One possible reason is the high

computational cost and runtime of existing automatic techniques, which may be significantly

reduced by the newly proposed mechanism in section 3.5. It is also noted that MATLAB’s

Computer Vision toolbox has another robust estimation function, specifically designed for

estimation of the fundamental matrix. This is a higher dimensional model for which the advantages

of the algorithms proposed in this work are expected to be even more pronounced, especially

SASSAC and MSASSAC. Implementation of the corresponding improved function is a candidate

129

future project. It is also noted that the OpenCV library, another very popular software library also

includes two different functions that implement RANSAC for homography and fundamental

matrix estimation respectively. This library should also benefit from the proposed algorithms in

the near future.

Finally, since all five proposed algorithms are completely generic, they can be applied to any

model-fitting problem, from other scientific fields. Notice that the extensive set of simulated

datasets studied in this work are generic. The author therefore recommends exploration of the new

algorithms for research and application in diverse scientific fields with model-fitting needs,

keeping in mind the fact that they claim outlier-robustness that is competitive with many of the

most robust techniques found in modern statistical software. While such robustness is inherited

from the general sample consensus paradigm rather than the specific contributions of this work,

the other specific advantages offered should make the newly proposed algorithms even more

attractive.

130

7 REFERENCES

[1] P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim, "Robust regression methods for

computer vision: A review," International journal of computer vision, vol. 6, pp.

59-70, 1991.

[2] P. J. Huber, Robust statistics: Springer, 2011.

[3] F. R. Hampel, "Robust estimation: A condensed partial survey," Probability

Theory and Related Fields, vol. 27, pp. 87-104, 1973.

[4] M. Zuliani, "RANSAC for Dummies," Vision Research Lab, University of

California, Santa Barbara, 2009.

[5] P. J. Rousseeuw, "Least median of squares regression," Journal of the American

statistical association, vol. 79, pp. 871-880, 1984.

[6] J. Ramsay, "A comparative study of several robust estimates of slope, intercept,

and scale in linear regression," Journal of the American Statistical Association,

vol. 72, pp. 608-615, 1977.

[7] L. G. Brown, "A survey of image registration techniques," ACM computing

surveys (CSUR), vol. 24, pp. 325-376, 1992.

[8] B. Zitova and J. Flusser, "Image registration methods: a survey," Image and vision

computing, vol. 21, pp. 977-1000, 2003.

[9] D. L. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, "Medical image

registration," Physics in medicine and biology, vol. 46, p. R1, 2001.

[10] M. A. Fischler and R. C. Bolles, "Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography,"

Communications of the ACM, vol. 24, pp. 381-395, 1981.

[11] B. Micusik and T. Pajdla, "Using RANSAC for omnidirectional camera model

fitting," 2003.

[12] D. Robinson and P. Milanfar, "Fundamental performance limits in image

registration," Image Processing, IEEE Transactions on, vol. 13, pp. 1185-1199,

2004.

[13] D. Nistér, "Preemptive RANSAC for live structure and motion estimation,"

Machine Vision and Applications, vol. 16, pp. 321-329, 2005.

[14] P. H. S. Torr, "Motion segmentation and outlier detection," University of Oxford

England, 1995.

[15] F. Mufti, R. Mahony, and J. Heinzmann, "Robust estimation of planar surfaces

using spatio-temporal RANSAC for applications in autonomous vehicle

navigation," Robotics and Autonomous Systems, vol. 60, pp. 16-28, 2012.

131

[16] S. Choi, T. Kim, and W. Yu, "Performance evaluation of RANSAC family,"

Journal of Computer Vision, vol. 24, pp. 271-300, 1997.

[17] R. Raguram, O. Chum, M. Pollefeys, J. Matas, and J. Frahm, "USAC: a universal

framework for random sample consensus," Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 35, pp. 2022-2038, 2013.

[18] R. Raguram, J.-M. Frahm, and M. Pollefeys, "A comparative analysis of RANSAC

techniques leading to adaptive real-time random sample consensus," in Computer

Vision–ECCV 2008, ed: Springer, pp. 500-513, 2008.

[19] P. Čížek and J. Á. Víšek, Least trimmed squares: Springer, 2000.

[20] C. V. Stewart, "MINPRAN: A new robust estimator for computer vision," Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 17, pp. 925-938,

1995.

[21] P. Torr and A. Zisserman, "Robust computation and parametrization of multiple

view relations," in Computer Vision, 1998. Sixth International Conference on, pp.

727-732, 1998.

[22] P. H. Torr and A. Zisserman, "MLESAC: A new robust estimator with application

to estimating image geometry," Computer Vision and Image Understanding, vol.

78, pp. 138-156, 2000.

[23] P. H. S. Torr, "Bayesian model estimation and selection for epipolar geometry and

generic manifold fitting," International Journal of Computer Vision, vol. 50, pp.

35-61, 2002.

[24] J. V. Miller and C. V. Stewart, "MUSE: Robust surface fitting using unbiased scale

estimates," in Computer Vision and Pattern Recognition, 1996. Proceedings

CVPR'96, 1996 IEEE Computer Society Conference on, pp. 300-306, 1996.

[25] C. Haifeng and P. Meer, "Robust regression with projection based M-estimators,"

in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on,

pp. 878-885 vol.2, 2003.

[26] R. Toldo and A. Fusiello, "Robust multiple structures estimation with j-linkage,"

in Computer Vision–ECCV 2008, ed: Springer, pp. 537-547, 2008.

[27] T.-J. Chin, H. Wang, and D. Suter, "Robust fitting of multiple structures: The

statistical learning approach," in Computer Vision, 2009 IEEE 12th International

Conference on, pp. 413-420, 2009.

[28] T.-J. Chin, J. Yu, and D. Suter, "Accelerated hypothesis generation for multi-

structure robust fitting," in Computer Vision–ECCV 2010, ed: Springer, pp. 533-

546, 2010.

[29] J. Neira and J. D. Tardós, "Data association in stochastic mapping using the joint

compatibility test," Robotics and Automation, IEEE Transactions on, vol. 17, pp.

890-897, 2001.

132

[30] H. Li, "Consensus set maximization with guaranteed global optimality for robust

geometry estimation," in Computer Vision, 2009 IEEE 12th International

Conference on, pp. 1074-1080, 2009.

[31] C. Olsson, O. Enqvist, and F. Kahl, "A polynomial-time bound for matching and

registration with outliers," in Computer Vision and Pattern Recognition, 2008.

CVPR 2008. IEEE Conference on, pp. 1-8, 2008.

[32] R. Litman, S. Korman, A. Bronstein, and S. Avidan, "Inverting RANSAC: Global

Model Detection via Inlier Rate Estimation," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 5243-5251, 2015.

[33] O. Gallo, R. Manduchi, and A. Rafii, "CC-RANSAC: Fitting planes in the

presence of multiple surfaces in range data," Pattern Recognition Letters, vol. 32,

pp. 403-410, 2011.

[34] A. Konouchine, V. Gaganov, and V. Veznevets, "AMLESAC: A new maximum

likelihood robust estimator," in Proceedings of the International Conference on

Computer Graphics and Vision (GrapiCon), 2005.

[35] S. Choi, T. Kim, and W. Yu, "Robust video stabilization to outlier motion using

adaptive RANSAC," in Intelligent Robots and Systems, 2009. IROS 2009.

IEEE/RSJ International Conference on, pp. 1897-1902, 2009.

[36] L. Moisan and B. Stival, "A probabilistic criterion to detect rigid point matches

between two images and estimate the fundamental matrix," International Journal

of Computer Vision, vol. 57, pp. 201-218, 2004.

[37] J. Rabin, J. Delon, Y. Gousseau, and L. Moisan, "MAC-RANSAC: a robust

algorithm for the recognition of multiple objects," in Fifth International

Symposium on 3D Data Processing, Visualization and Transmission (3DPTV

2010), pp. 051, 2010.

[38] J. jae Lee and G. Kim, "Robust estimation of camera homography using fuzzy

RANSAC," in Computational Science and Its Applications–ICCSA 2007, ed:

Springer, pp. 992-1002, 2007.

[39] T. Watanabe, "A fuzzy RANSAC algorithm based on reinforcement learning

concept," in Fuzzy Systems (FUZZ), 2013 IEEE International Conference on, pp.

1-6, 2013.

[40] O. Chum, J. Matas, and J. Kittler, "Locally optimized RANSAC," in Pattern

Recognition, ed: Springer, pp. 236-243, 2003.

[41] K. Lebeda, J. Matas, and O. Chum, "Fixing the locally optimized RANSAC–Full

experimental evaluation," Research Report CTU–CMP–2012–17, Center for

Machine Perception, Czech Technical University, Prague, Czech Republic, 2012.

http://cmp. felk. cvut. cz/software/LO-RANSAC/Lebeda-2012-Fixing

LORANSAC-tr. pdf. 16, 35, 412012, 2012.

http://cmp/

133

[42] R. Hartley and A. Zisserman, Multiple view geometry in computer vision:

Cambridge university press, 2003.

[43] T. Sattler, B. Leibe, and L. Kobbelt, "SCRAMSAC: Improving RANSAC's

efficiency with a spatial consistency filter," in Computer vision, 2009 ieee 12th

international conference on, pp. 2090-2097, 2009.

[44] M. Xu and J. Lu, "Distributed RANSAC for the robust estimation of three-

dimensional reconstruction," IET computer vision, vol. 6, pp. 324-333, 2012.

[45] J. Matas and O. Chum, "Randomized RANSAC with sequential probability ratio

test," in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference

on, pp. 1727-1732, 2005.

[46] J. Matas and O. Chum, "Randomized RANSAC with T d, d test," Image and Vision

Computing, vol. 22, pp. 837-842, 2004.

[47] D. P. Capel, "An Effective Bail-out Test for RANSAC Consensus Scoring," in

BMVC, 2005.

[48] X. Wang, H. Zhang, and S. Liu, "Reliable RANSAC Using a Novel Preprocessing

Model," Computational and mathematical methods in medicine, vol. 2013, 2013.

[49] P. Trivedi, T. Agarwal, and K. Muthunagai, "MC-RANSAC: A Pre-processing

Model for RANSAC using Monte Carlo method implemented on a GPU," in

Advances in Computing, Communications and Informatics (ICACCI), 2013

International Conference on, pp. 1380-1383, 2013.

[50] D. Nasuto and J. B. R. Craddock, "Napsac: High noise, high dimensional robust

estimation-it’s in the bag," 2002.

[51] B. J. Tordoff and D. W. Murray, "Guided-MLESAC: Faster image transform

estimation by using matching priors," Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 27, pp. 1523-1535, 2005.

[52] Y. Zhao, R. Hong, J. Jiang, J. Wen, and H. Zhang, "Image matching by fast random

sample consensus," in Proceedings of the fifth international conference on internet

multimedia computing and service, pp. 159-162, 2013.

[53] Y. Wu, W. Ma, M. Gong, L. Su, and L. Jiao, "A novel point-matching algorithm

based on fast sample consensus for image registration," Geoscience and Remote

Sensing Letters, IEEE, vol. 12, pp. 43-47, 2015.

[54] V. Rodehorst and O. Hellwich, "Genetic algorithm sample consensus (gasac)-a

parallel strategy for robust parameter estimation," in Computer Vision and Pattern

Recognition Workshop, 2006. CVPRW'06. Conference on, pp. 103-103, 2006.

[55] A. S. Chernyavskiy, "Discrete attribute-based particle swarm optimization for

robust parameter estimation.", 2008.

[56] A. Meler, M. Decrouez, and J. Crowley, "Betasac: A new conditional sampling for

ransac," in British Machine Vision Conference 2010, 2010.

134

[57] T. Botterill, S. Mills, and R. D. Green, "New Conditional Sampling Strategies for

Speeded-Up RANSAC," in BMVC, pp. 1-11, 2009.

[58] P. H. Torr and C. Davidson, "IMPSAC: Synthesis of importance sampling and

random sample consensus," Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 25, pp. 354-364, 2003.

[59] J. Wang and X. Luo, "Purposive Sample Consensus: A Paradigm for Model Fitting

with Application to Visual Odometry," in Field and Service Robotics, pp. 335-

349, 2015.

[60] O. Chum, T. Werner, and J. Matas, "Two-view geometry estimation unaffected by

a dominant plane," in Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on, pp. 772-779, 2005.

[61] J.-M. Frahm and M. Pollefeys, "RANSAC for (quasi-) degenerate data

(QDEGSAC)," in Computer Vision and Pattern Recognition, 2006 IEEE

Computer Society Conference on, pp. 453-460, 2006.

[62] C. C. Chou and C.-C. Wang, "2-point RANSAC for scene image matching under

large viewpoint changes," in Robotics and Automation (ICRA), 2015 IEEE

International Conference on, pp. 3646-3651, 2015.

[63] X. Qian and C. Ye, "NCC-RANSAC: A Fast Plane Extraction Method for 3-D

Range Data Segmentation," Cybernetics, IEEE Transactions on, vol. 44, pp. 2771-

2783, 2014.

[64] Y. Kanazawa and H. Kawakami, "Detection of Planar Regions with Uncalibrated

Stereo using Distributions of Feature Points," in BMVC, pp. 1-10, 2004.

[65] E. Vincent and R. Laganiére, "Detecting planar homographies in an image pair,"

in Image and Signal Processing and Analysis, 2001. ISPA 2001. Proceedings of

the 2nd International Symposium on, pp. 182-187, 2001.

[66] M. Zuliani, C. S. Kenney, and B. Manjunath, "The multiransac algorithm and its

application to detect planar homographies," in Image Processing, 2005. ICIP

2005. IEEE International Conference on, pp. III-153-6, 2005.

[67] A. Barclay and H. Kaufmann, "FT-RANSAC: Towards robust multi-modal

homography estimation," in Pattern recognition in remote sensing (PRRS), 2014

8th IAPR workshop on, pp. 1-4, 2014.

[68] A. Vedaldi, H. Jin, P. Favaro, and S. Soatto, "KALMANSAC: Robust filtering by

consensus," in Computer Vision, 2005. ICCV 2005. Tenth IEEE International

Conference on, pp. 633-640, 2005.

[69] P. C. Niedfeldt and R. W. Beard, "Recursive RANSAC: Multiple Signal

Estimation with Outliers," in 9th IFAC Symposium on Nonlinear Control Systems,

pp. 45-50, 2013.

135

[70] Y. C. Cheng and S. C. Lee, "A new method for quadratic curve detection using K-

RANSAC with acceleration techniques," Pattern Recognition, vol. 28, pp. 663-

682, 1995.

[71] J. Matas and O. Chum, "Randomized ransac," Center for Machine Perception,

Czech Technical University, Prague, December, 2001.

[72] O. Chum and J. Matas, "Randomized RANSAC with Td, d test," in Proc. British

Machine Vision Conference, pp. 448-457, 2002.

[73] C. Feng and Y. Hung, "A Robust Method for Estimating the Fundamental Matrix,"

in DICTA, pp. 633-642, 2003.

[74] S. Choi and J.-H. Kim, "Robust regression to varying data distribution and its

application to landmark-based localization," in Systems, Man and Cybernetics,

2008. SMC 2008. IEEE International Conference on, pp. 3465-3470, 2008.

[75] O. Chum and J. Matas, "Matching with PROSAC-progressive sample consensus,"

in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer

Society Conference on, pp. 220-226, 2005.

[76] O. Chum and J. Matas, "Optimal randomized RANSAC," Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 30, pp. 1472-1482, 2008.

[77] A. Chernyavskiy, "A robust scheme of model parameters estimation based on the

particle swarm method in the image matching problem," Journal of Computer and

Systems Sciences International, vol. 47, pp. 764-777, 2008.

[78] D. Scaramuzza, F. Fraundorfer, and R. Siegwart, "Real-time monocular visual

odometry for on-road vehicles with 1-point ransac," in Robotics and Automation,

2009. ICRA'09. IEEE International Conference on, pp. 4293-4299, 2009.

[79] K. Ni, H. Jin, and F. Dellaert, "Groupsac: Efficient consensus in the presence of

groupings," in Computer Vision, 2009 IEEE 12th International Conference on, pp.

2193-2200, 2009.

[80] J. Choi and G. Medioni, "StaRSaC: Stable random sample consensus for parameter

estimation," in Computer Vision and Pattern Recognition, 2009. CVPR 2009.

IEEE Conference on, pp. 675-682, 2009.

[81] Z. Kang, L. Zhang, B. Wang, Z. Li, and F. Jia, "An optimized BaySAC algorithm

for efficient fitting of primitives in point clouds," Geoscience and Remote Sensing

Letters, IEEE, vol. 11, pp. 1096-1100, 2014.

[82] S. Otte, U. Schwanecke, and A. Zell, "ANTSAC: A Generic RANSAC Variant

Using Principles of Ant Colony Algorithms," in Pattern Recognition (ICPR), 2014

22nd International Conference on, pp. 3558-3563, 2014.

[83] E. Montijano, S. Martinez, and C. Sagues, "Distributed Robust Consensus Using

RANSAC and Dynamic Opinions," Control Systems Technology, IEEE

Transactions on, vol. 23, pp. 150-163, 2015.

136

8 APPENDIX 1.

Table 1: Results for Simulated Problem Sets 1 in Chapter 4

Algorithm Problem m true I Run ME detected I t f

SASSAC 1 100 90 1 82.89684 90 2 194

CISAC 1 100 90 1 82.89684 90 1 97

RANSAC 1 100 90 1 124.88872 86 7 7

MSASSAC 1 100 90 1 80.452403 90 2 194

MCISAC 1 100 90 1 82.89684 90 1 97

MSAC 1 100 90 1 98.657932 90 6 6

SASSAC 1 100 90 2 82.89684 90 2 194

CISAC 1 100 90 2 82.89684 90 1 97

RANSAC 1 100 90 2 69.640197 90 15 15

MSASSAC 1 100 90 2 70.028832 90 2 194

MCISAC 1 100 90 2 82.89684 90 1 97

MSAC 1 100 90 2 174.73525 77 12 12

SASSAC 1 100 90 3 82.89684 90 2 194

CISAC 1 100 90 3 82.89684 90 1 97

RANSAC 1 100 90 3 140.27772 85 14 14

MSASSAC 1 100 90 3 76.194084 90 2 194

MCISAC 1 100 90 3 82.89684 90 1 97

MSAC 1 100 90 3 141.23607 85 8 8

SASSAC 1 100 90 4 82.89684 90 2 194

CISAC 1 100 90 4 82.89684 90 1 97

RANSAC 1 100 90 4 91.19497 90 6 6

137

MSASSAC 1 100 90 4 74.280386 90 2 194

MCISAC 1 100 90 4 82.89684 90 1 97

MSAC 1 100 90 4 98.798896 90 6 6

SASSAC 1 100 90 5 82.89684 90 2 194

CISAC 1 100 90 5 82.89684 90 1 97

RANSAC 1 100 90 5 76.072187 90 6 6

MSASSAC 1 100 90 5 70.014016 90 2 194

MCISAC 1 100 90 5 82.89684 90 1 97

MSAC 1 100 90 5 115.0917 84 17 17

SASSAC 2 100 80 1 113.31558 80 2 194

CISAC 2 100 80 1 113.31558 80 1 97

RANSAC 2 100 80 1 125.54253 80 10 10

MSASSAC 2 100 80 1 110.46279 80 2 194

MCISAC 2 100 80 1 110.46279 80 1 97

MSAC 2 100 80 1 180.50108 65 25 25

SASSAC 2 100 80 2 113.31558 80 2 194

CISAC 2 100 80 2 113.31558 80 1 97

RANSAC 2 100 80 2 107.2246 80 18 18

MSASSAC 2 100 80 2 110.46279 80 2 194

MCISAC 2 100 80 2 110.46279 80 1 97

MSAC 2 100 80 2 153.24258 77 12 12

SASSAC 2 100 80 3 113.31558 80 2 194

CISAC 2 100 80 3 113.31558 80 1 97

RANSAC 2 100 80 3 140.7289 76 13 13

MSASSAC 2 100 80 3 104.13995 80 2 194

138

MCISAC 2 100 80 3 110.46279 80 1 97

MSAC 2 100 80 3 169.88386 66 23 23

SASSAC 2 100 80 4 113.31558 80 2 194

CISAC 2 100 80 4 113.31558 80 1 97

RANSAC 2 100 80 4 108.65162 80 11 11

MSASSAC 2 100 80 4 110.46279 80 3 291

MCISAC 2 100 80 4 110.46279 80 1 97

MSAC 2 100 80 4 105.50282 80 10 10

SASSAC 2 100 80 5 113.31558 80 2 194

CISAC 2 100 80 5 113.31558 80 1 97

RANSAC 2 100 80 5 146.77326 76 13 13

MSASSAC 2 100 80 5 107.91078 80 2 194

MCISAC 2 100 80 5 110.46279 80 1 97

MSAC 2 100 80 5 157.14596 80 10 10

SASSAC 3 100 70 1 119.73696 70 2 194

CISAC 3 100 70 1 119.73696 70 1 97

RANSAC 3 100 70 1 128.19693 70 18 18

MSASSAC 3 100 70 1 119.73696 70 2 194

MCISAC 3 100 70 1 119.73696 70 1 97

MSAC 3 100 70 1 174.85968 65 28 28

SASSAC 3 100 70 2 119.73696 70 2 194

CISAC 3 100 70 2 119.73696 70 1 97

RANSAC 3 100 70 2 163.79897 66 23 23

MSASSAC 3 100 70 2 119.73696 70 2 194

MCISAC 3 100 70 2 119.73696 70 1 97

139

MSAC 3 100 70 2 129.35824 70 18 18

SASSAC 3 100 70 3 119.73696 70 2 194

CISAC 3 100 70 3 119.73696 70 1 97

RANSAC 3 100 70 3 154.27638 66 24 24

MSASSAC 3 100 70 3 119.73696 70 2 194

MCISAC 3 100 70 3 119.73696 70 1 97

MSAC 3 100 70 3 138.99692 70 18 18

SASSAC 3 100 70 4 119.73696 70 3 291

CISAC 3 100 70 4 119.73696 70 1 97

RANSAC 3 100 70 4 120.69667 70 21 21

MSASSAC 3 100 70 4 119.73696 70 2 194

MCISAC 3 100 70 4 119.73696 70 1 97

MSAC 3 100 70 4 121.67552 70 20 20

SASSAC 3 100 70 5 119.73696 70 2 194

CISAC 3 100 70 5 119.73696 70 1 97

RANSAC 3 100 70 5 193.46522 57 45 45

MSASSAC 3 100 70 5 119.73696 70 2 194

MCISAC 3 100 70 5 119.73696 70 1 97

MSAC 3 100 70 5 178.28081 64 27 27

SASSAC 4 500 450 1 474.3711 450 2 994

CISAC 4 500 450 1 474.3711 450 1 497

RANSAC 4 500 450 1 442.62535 450 6 6

MSASSAC 4 500 450 1 363.75572 450 2 994

MCISAC 4 500 450 1 377.06159 450 1 497

MSAC 4 500 450 1 558.79645 449 16 16

140

SASSAC 4 500 450 2 474.3711 450 2 994

CISAC 4 500 450 2 474.3711 450 1 497

RANSAC 4 500 450 2 815.24973 379 13 13

MSASSAC 4 500 450 2 353.91678 450 2 994

MCISAC 4 500 450 2 377.06159 450 1 497

MSAC 4 500 450 2 748.06336 429 9 9

SASSAC 4 500 450 3 474.3711 450 2 994

CISAC 4 500 450 3 474.3711 450 1 497

RANSAC 4 500 450 3 632.157 436 7 7

MSASSAC 4 500 450 3 377.06159 450 2 994

MCISAC 4 500 450 3 377.06159 450 1 497

MSAC 4 500 450 3 448.75539 450 6 6

SASSAC 4 500 450 4 474.3711 450 2 994

CISAC 4 500 450 4 474.3711 450 1 497

RANSAC 4 500 450 4 841.49242 366 16 16

MSASSAC 4 500 450 4 346.69881 450 2 994

MCISAC 4 500 450 4 377.06159 450 1 497

MSAC 4 500 450 4 423.45978 450 6 6

SASSAC 4 500 450 5 474.3711 450 2 994

CISAC 4 500 450 5 474.3711 450 1 497

RANSAC 4 500 450 5 576.50131 435 15 15

MSASSAC 4 500 450 5 345.09398 450 2 994

MCISAC 4 500 450 5 377.06159 450 1 497

MSAC 4 500 450 5 779.79232 386 12 12

SASSAC 5 500 400 1 549.19484 400 2 994

141

CISAC 5 500 400 1 549.19484 400 1 497

RANSAC 5 500 400 1 663.97153 397 11 11

MSASSAC 5 500 400 1 487.26203 400 2 994

MCISAC 5 500 400 1 489.60448 400 1 497

MSAC 5 500 400 1 719.916 382 13 13

SASSAC 5 500 400 2 549.19484 400 2 994

CISAC 5 500 400 2 549.19484 400 1 497

RANSAC 5 500 400 2 584.73829 400 11 11

MSASSAC 5 500 400 2 489.60448 400 2 994

MCISAC 5 500 400 2 489.60448 400 1 497

MSAC 5 500 400 2 701.51557 387 12 12

SASSAC 5 500 400 3 549.19484 400 2 994

CISAC 5 500 400 3 549.19484 400 1 497

RANSAC 5 500 400 3 988.24219 301 34 34

MSASSAC 5 500 400 3 489.60448 400 2 994

MCISAC 5 500 400 3 489.60448 400 1 497

MSAC 5 500 400 3 539.76599 400 13 13

SASSAC 5 500 400 4 549.19484 400 2 994

CISAC 5 500 400 4 549.19484 400 1 497

RANSAC 5 500 400 4 518.3864 400 22 22

MSASSAC 5 500 400 4 467.09653 400 2 994

MCISAC 5 500 400 4 489.60448 400 1 497

MSAC 5 500 400 4 565.02423 400 10 10

SASSAC 5 500 400 5 549.19484 400 2 994

CISAC 5 500 400 5 549.19484 400 1 497

142

RANSAC 5 500 400 5 773.22821 383 15 15

MSASSAC 5 500 400 5 489.60448 400 2 994

MCISAC 5 500 400 5 489.60448 400 1 497

MSAC 5 500 400 5 605.18518 400 10 10

SASSAC 6 500 350 1 700.90715 350 2 994

CISAC 6 500 350 1 700.90715 350 1 497

RANSAC 6 500 350 1 664.80133 350 18 18

MSASSAC 6 500 350 1 646.93481 350 2 994

MCISAC 6 500 350 1 654.97612 350 1 497

MSAC 6 500 350 1 1026.363 275 49 49

SASSAC 6 500 350 2 700.90715 350 2 994

CISAC 6 500 350 2 700.90715 350 1 497

RANSAC 6 500 350 2 724.84957 350 18 18

MSASSAC 6 500 350 2 640.59631 350 2 994

MCISAC 6 500 350 2 654.97612 350 1 497

MSAC 6 500 350 2 769.1797 350 40 40

SASSAC 6 500 350 3 700.90715 350 2 994

CISAC 6 500 350 3 700.90715 350 1 497

RANSAC 6 500 350 3 1023.5465 274 50 50

MSASSAC 6 500 350 3 654.97612 350 2 994

MCISAC 6 500 350 3 654.97612 350 1 497

MSAC 6 500 350 3 762.45126 339 21 21

SASSAC 6 500 350 4 700.90715 350 2 994

CISAC 6 500 350 4 700.90715 350 1 497

RANSAC 6 500 350 4 906.32579 315 28 28

143

MSASSAC 6 500 350 4 640.41771 350 2 994

MCISAC 6 500 350 4 654.97612 350 1 497

MSAC 6 500 350 4 873.87299 349 28 28

SASSAC 6 500 350 5 700.90715 350 2 994

CISAC 6 500 350 5 700.90715 350 1 497

RANSAC 6 500 350 5 838.29208 329 24 24

MSASSAC 6 500 350 5 618.99361 350 2 994

MCISAC 6 500 350 5 654.97612 350 1 497

MSAC 6 500 350 5 799.80489 349 18 18

SASSAC 7 1000 900 1 1047.5428 900 2 1994

CISAC 7 1000 900 1 1047.5428 900 1 997

RANSAC 7 1000 900 1 1282.0084 857 7 7

MSASSAC 7 1000 900 1 685.99278 900 2 1994

MCISAC 7 1000 900 1 685.99278 900 1 997

MSAC 7 1000 900 1 1135.6823 900 6 6

SASSAC 7 1000 900 2 1047.5428 900 2 1994

CISAC 7 1000 900 2 1047.5428 900 1 997

RANSAC 7 1000 900 2 891.22164 900 6 6

MSASSAC 7 1000 900 2 685.99278 900 2 1994

MCISAC 7 1000 900 2 685.99278 900 1 997

MSAC 7 1000 900 2 728.15628 900 6 6

SASSAC 7 1000 900 3 1047.5428 900 2 1994

CISAC 7 1000 900 3 1047.5428 900 1 997

RANSAC 7 1000 900 3 893.45433 900 6 6

MSASSAC 7 1000 900 3 685.99278 900 2 1994

144

MCISAC 7 1000 900 3 685.99278 900 1 997

MSAC 7 1000 900 3 1295.7646 868 17 17

SASSAC 7 1000 900 4 1047.5428 900 2 1994

CISAC 7 1000 900 4 1047.5428 900 1 997

RANSAC 7 1000 900 4 1685.7172 816 9 9

MSASSAC 7 1000 900 4 685.99278 900 2 1994

MCISAC 7 1000 900 4 685.99278 900 1 997

MSAC 7 1000 900 4 1096.0524 879 7 7

SASSAC 7 1000 900 5 1047.5428 900 2 1994

CISAC 7 1000 900 5 1047.5428 900 1 997

RANSAC 7 1000 900 5 1107.0685 878 23 23

MSASSAC 7 1000 900 5 685.99278 900 2 1994

MCISAC 7 1000 900 5 685.99278 900 1 997

MSAC 7 1000 900 5 1591.4606 795 11 11

SASSAC 8 1000 800 1 1046.0696 800 2 1994

CISAC 8 1000 800 1 1046.0696 800 1 997

RANSAC 8 1000 800 1 1535.4666 698 34 34

MSASSAC 8 1000 800 1 941.89488 800 2 1994

MCISAC 8 1000 800 1 974.17485 800 1 997

MSAC 8 1000 800 1 1358.6011 800 10 10

SASSAC 8 1000 800 2 1046.0696 800 2 1994

CISAC 8 1000 800 2 1046.0696 800 1 997

RANSAC 8 1000 800 2 1347.2883 778 12 12

MSASSAC 8 1000 800 2 957.16911 800 2 1994

MCISAC 8 1000 800 2 974.17485 800 1 997

145

MSAC 8 1000 800 2 1226.9052 800 10 10

SASSAC 8 1000 800 3 1046.0696 800 2 1994

CISAC 8 1000 800 3 1046.0696 800 1 997

RANSAC 8 1000 800 3 1362.7538 800 13 13

MSASSAC 8 1000 800 3 964.80227 800 2 1994

MCISAC 8 1000 800 3 974.17485 800 1 997

MSAC 8 1000 800 3 1549.4192 733 15 15

SASSAC 8 1000 800 4 1046.0696 800 2 1994

CISAC 8 1000 800 4 1046.0696 800 1 997

RANSAC 8 1000 800 4 1741.9824 751 14 14

MSASSAC 8 1000 800 4 953.41494 800 2 1994

MCISAC 8 1000 800 4 974.17485 800 1 997

MSAC 8 1000 800 4 1153.5091 800 10 10

SASSAC 8 1000 800 5 1046.0696 800 2 1994

CISAC 8 1000 800 5 1046.0696 800 1 997

RANSAC 8 1000 800 5 1059.9889 800 13 13

MSASSAC 8 1000 800 5 966.74463 800 2 1994

MCISAC 8 1000 800 5 974.17485 800 1 997

MSAC 8 1000 800 5 1037.5314 800 10 10

SASSAC 9 1000 700 1 1453.7138 700 2 1994

CISAC 9 1000 700 1 1453.7138 700 1 997

RANSAC 9 1000 700 1 1472.1798 700 20 20

MSASSAC 9 1000 700 1 1250.0945 700 2 1994

MCISAC 9 1000 700 1 1266.3553 700 1 997

MSAC 9 1000 700 1 1774.1328 657 24 24

146

SASSAC 9 1000 700 2 1453.7138 700 2 1994

CISAC 9 1000 700 2 1453.7138 700 1 997

RANSAC 9 1000 700 2 1215.2537 700 18 18

MSASSAC 9 1000 700 2 1207.4707 700 2 1994

MCISAC 9 1000 700 2 1266.3553 700 1 997

MSAC 9 1000 700 2 1245.3406 700 37 37

SASSAC 9 1000 700 3 1453.7138 700 2 1994

CISAC 9 1000 700 3 1453.7138 700 1 997

RANSAC 9 1000 700 3 1461.3562 695 34 34

MSASSAC 9 1000 700 3 1197.4443 700 2 1994

MCISAC 9 1000 700 3 1266.3553 700 1 997

MSAC 9 1000 700 3 1565.8152 680 30 30

SASSAC 9 1000 700 4 1453.7138 700 2 1994

CISAC 9 1000 700 4 1453.7138 700 1 997

RANSAC 9 1000 700 4 1452.1023 696 27 27

MSASSAC 9 1000 700 4 1234.9436 700 2 1994

MCISAC 9 1000 700 4 1266.3553 700 1 997

MSAC 9 1000 700 4 1523.5976 700 19 19

SASSAC 9 1000 700 5 1453.7138 700 2 1994

CISAC 9 1000 700 5 1453.7138 700 1 997

RANSAC 9 1000 700 5 1436.59 700 18 18

MSASSAC 9 1000 700 5 1266.3553 700 2 1994

MCISAC 9 1000 700 5 1266.3553 700 1 997

MSAC 9 1000 700 5 2035.1112 479 44 44

147

Table 2: Results for Simulated Problem Sets 2 in Chapter 4

Algorithm Problem m true I Run ME detected I t f

SASSAC 1 100 60 1 152.99403 60 2 194

CISAC 1 100 60 1 152.99403 60 1 97

RANSAC 1 100 60 1 220.68039 52 62 62

MSASSAC 1 100 60 1 152.99403 60 2 194

MCISAC 1 100 60 1 152.99403 60 1 97

MSAC 1 100 60 1 151.67451 60 35 35

SASSAC 1 100 60 2 152.99403 60 2 194

CISAC 1 100 60 2 152.99403 60 1 97

RANSAC 1 100 60 2 186.98374 58 50 50

MSASSAC 1 100 60 2 152.99403 60 3 291

MCISAC 1 100 60 2 152.99403 60 1 97

MSAC 1 100 60 2 184.02039 60 39 39

SASSAC 1 100 60 3 152.99403 60 2 194

CISAC 1 100 60 3 152.99403 60 1 97

RANSAC 1 100 60 3 172.57921 59 41 41

MSASSAC 1 100 60 3 152.99403 60 2 194

MCISAC 1 100 60 3 152.99403 60 1 97

MSAC 1 100 60 3 174.38544 58 59 59

SASSAC 1 100 60 4 152.99403 60 3 291

CISAC 1 100 60 4 152.99403 60 1 97

RANSAC 1 100 60 4 197.83007 54 54 54

MSASSAC 1 100 60 4 147.39959 60 2 194

148

MCISAC 1 100 60 4 152.99403 60 1 97

MSAC 1 100 60 4 149.29141 60 62 62

SASSAC 1 100 60 5 152.99403 60 3 291

CISAC 1 100 60 5 152.99403 60 1 97

RANSAC 1 100 60 5 161.95442 60 79 79

MSASSAC 1 100 60 5 152.99403 60 3 291

MCISAC 1 100 60 5 152.99403 60 1 97

MSAC 1 100 60 5 176.44471 60 35 35

SASSAC 2 100 50 1 198.3337 48 2 194

CISAC 2 100 50 1 232.82974 34 1 97

RANSAC 2 100 50 1 174.45257 50 73 73

MSASSAC 2 100 50 1 181.06812 50 2 194

MCISAC 2 100 50 1 232.82974 34 1 97

MSAC 2 100 50 1 195.632 47 94 94

SASSAC 2 100 50 2 174.47959 50 2 194

CISAC 2 100 50 2 232.82974 34 1 97

RANSAC 2 100 50 2 211.57448 48 86 86

MSASSAC 2 100 50 2 200.16008 50 2 194

MCISAC 2 100 50 2 232.82974 34 1 97

MSAC 2 100 50 2 184.50655 50 73 73

SASSAC 2 100 50 3 209.1657 45 2 194

CISAC 2 100 50 3 232.82974 34 1 97

RANSAC 2 100 50 3 223.31354 42 147 147

MSASSAC 2 100 50 3 202.58942 44 3 291

MCISAC 2 100 50 3 232.82974 34 1 97

149

MSAC 2 100 50 3 178.21307 50 88 88

SASSAC 2 100 50 4 170.03042 50 2 194

CISAC 2 100 50 4 232.82974 34 1 97

RANSAC 2 100 50 4 180.35232 50 91 91

MSASSAC 2 100 50 4 215.8358 40 2 194

MCISAC 2 100 50 4 232.82974 34 1 97

MSAC 2 100 50 4 203.88146 48 118 118

SASSAC 2 100 50 5 173.96111 50 2 194

CISAC 2 100 50 5 232.82974 34 1 97

RANSAC 2 100 50 5 201.594 50 194 194

MSASSAC 2 100 50 5 189.67469 50 2 194

MCISAC 2 100 50 5 232.82974 34 1 97

MSAC 2 100 50 5 205.937 42 147 147

SASSAC 3 100 40 1 236.61729 31 2 194

CISAC 3 100 40 1 251.35911 25 1 97

RANSAC 3 100 40 1 226.50533 36 273 273

MSASSAC 3 100 40 1 235.88215 31 2 194

MCISAC 3 100 40 1 251.15514 24 1 97

MSAC 3 100 40 1 231.78606 36 273 273

SASSAC 3 100 40 2 201.54457 40 2 194

CISAC 3 100 40 2 251.35911 25 1 97

RANSAC 3 100 40 2 219.22604 40 179 179

MSASSAC 3 100 40 2 204.31704 40 2 194

MCISAC 3 100 40 2 251.15514 24 1 97

MSAC 3 100 40 2 218.51399 40 221 221

150

SASSAC 3 100 40 3 216.74428 39 2 194

CISAC 3 100 40 3 251.35911 25 1 97

RANSAC 3 100 40 3 213.88642 39 198 198

MSASSAC 3 100 40 3 206.9146 40 3 291

MCISAC 3 100 40 3 251.15514 24 1 97

MSAC 3 100 40 3 202.36666 40 179 179

SASSAC 3 100 40 4 225.94238 37 2 194

CISAC 3 100 40 4 251.35911 25 1 97

RANSAC 3 100 40 4 225.65677 38 441 441

MSASSAC 3 100 40 4 236.42906 32 3 291

MCISAC 3 100 40 4 251.15514 24 1 97

MSAC 3 100 40 4 199.38365 40 253 253

SASSAC 3 100 40 5 198.94105 40 2 194

CISAC 3 100 40 5 251.35911 25 1 97

RANSAC 3 100 40 5 220.16068 39 198 198

MSASSAC 3 100 40 5 251.15514 24 2 194

MCISAC 3 100 40 5 251.15514 24 1 97

MSAC 3 100 40 5 209.34699 40 179 179

SASSAC 4 500 300 1 779.8866 300 2 994

CISAC 4 500 300 1 779.8866 300 1 497

RANSAC 4 500 300 1 879.6941 297 36 36

MSASSAC 4 500 300 1 730.77668 300 2 994

MCISAC 4 500 300 1 763.88325 300 1 497

MSAC 4 500 300 1 901.82973 289 40 40

SASSAC 4 500 300 2 779.8866 300 2 994

151

CISAC 4 500 300 2 779.8866 300 1 497

RANSAC 4 500 300 2 1015.8159 299 35 35

MSASSAC 4 500 300 2 763.88325 300 2 994

MCISAC 4 500 300 2 763.88325 300 1 497

MSAC 4 500 300 2 747.50849 300 56 56

SASSAC 4 500 300 3 779.8866 300 2 994

CISAC 4 500 300 3 779.8866 300 1 497

RANSAC 4 500 300 3 877.54274 300 35 35

MSASSAC 4 500 300 3 756.19966 300 2 994

MCISAC 4 500 300 3 763.88325 300 1 497

MSAC 4 500 300 3 1042.1705 247 79 79

SASSAC 4 500 300 4 779.8866 300 2 994

CISAC 4 500 300 4 779.8866 300 1 497

RANSAC 4 500 300 4 840.72529 300 35 35

MSASSAC 4 500 300 4 759.50143 300 3 1491

MCISAC 4 500 300 4 763.88325 300 1 497

MSAC 4 500 300 4 919.63173 299 35 35

SASSAC 4 500 300 5 779.8866 300 2 994

CISAC 4 500 300 5 779.8866 300 1 497

RANSAC 4 500 300 5 881.73109 298 36 36

MSASSAC 4 500 300 5 763.88325 300 2 994

MCISAC 4 500 300 5 763.88325 300 1 497

MSAC 4 500 300 5 943.16384 283 44 44

SASSAC 5 500 250 1 984.85475 250 2 994

CISAC 5 500 250 1 984.85475 250 1 497

152

RANSAC 5 500 250 1 991.62215 246 78 78

MSASSAC 5 500 250 1 867.51711 250 2 994

MCISAC 5 500 250 1 867.51711 250 1 497

MSAC 5 500 250 1 983.0789 250 90 90

SASSAC 5 500 250 2 984.85475 250 2 994

CISAC 5 500 250 2 984.85475 250 1 497

RANSAC 5 500 250 2 1066.003 235 94 94

MSASSAC 5 500 250 2 867.51711 250 2 994

MCISAC 5 500 250 2 867.51711 250 1 497

MSAC 5 500 250 2 1008.5939 235 117 117

SASSAC 5 500 250 3 984.85475 250 2 994

CISAC 5 500 250 3 984.85475 250 1 497

RANSAC 5 500 250 3 990.65135 244 80 80

MSASSAC 5 500 250 3 867.51711 250 2 994

MCISAC 5 500 250 3 867.51711 250 1 497

MSAC 5 500 250 3 865.87391 250 73 73

SASSAC 5 500 250 4 984.85475 250 2 994

CISAC 5 500 250 4 984.85475 250 1 497

RANSAC 5 500 250 4 1112.2619 214 152 152

MSASSAC 5 500 250 4 867.51711 250 2 994

MCISAC 5 500 250 4 867.51711 250 1 497

MSAC 5 500 250 4 979.58798 248 75 75

SASSAC 5 500 250 5 984.85475 250 2 994

CISAC 5 500 250 5 984.85475 250 1 497

RANSAC 5 500 250 5 987.63909 250 98 98

153

MSASSAC 5 500 250 5 867.51711 250 2 994

MCISAC 5 500 250 5 867.51711 250 1 497

MSAC 5 500 250 5 1182.6985 243 106 106

SASSAC 6 500 200 1 1015.7682 200 2 994

CISAC 6 500 200 1 1015.7682 200 1 497

RANSAC 6 500 200 1 1102.5133 194 379 379

MSASSAC 6 500 200 1 988.99309 200 2 994

MCISAC 6 500 200 1 1015.7682 200 1 497

MSAC 6 500 200 1 1040.2145 200 179 179

SASSAC 6 500 200 2 1015.7682 200 3 1491

CISAC 6 500 200 2 1015.7682 200 1 497

RANSAC 6 500 200 2 1039.5718 200 577 577

MSASSAC 6 500 200 2 1008.4005 200 2 994

MCISAC 6 500 200 2 1015.7682 200 1 497

MSAC 6 500 200 2 1124.0208 200 192 192

SASSAC 6 500 200 3 1015.7682 200 2 994

CISAC 6 500 200 3 1015.7682 200 1 497

RANSAC 6 500 200 3 1164.2729 187 235 235

MSASSAC 6 500 200 3 1015.7682 200 2 994

MCISAC 6 500 200 3 1015.7682 200 1 497

MSAC 6 500 200 3 1007.2848 200 448 448

SASSAC 6 500 200 4 1015.7682 200 4 1988

CISAC 6 500 200 4 1015.7682 200 1 497

RANSAC 6 500 200 4 1048.2362 200 179 179

MSASSAC 6 500 200 4 1015.7682 200 2 994

154

MCISAC 6 500 200 4 1015.7682 200 1 497

MSAC 6 500 200 4 1101.8811 180 273 273

SASSAC 6 500 200 5 1015.7682 200 2 994

CISAC 6 500 200 5 1015.7682 200 1 497

RANSAC 6 500 200 5 1184.6736 175 306 306

MSASSAC 6 500 200 5 989.14609 200 2 994

MCISAC 6 500 200 5 1015.7682 200 1 497

MSAC 6 500 200 5 1034.6176 200 298 298

SASSAC 7 1000 600 1 1619.8645 600 2 1994

CISAC 7 1000 600 1 1619.8645 600 1 997

RANSAC 7 1000 600 1 1603.2725 600 35 35

MSASSAC 7 1000 600 1 1505.6346 600 2 1994

MCISAC 7 1000 600 1 1520.2328 600 1 997

MSAC 7 1000 600 1 1615.1748 600 58 58

SASSAC 7 1000 600 2 1619.8645 600 2 1994

CISAC 7 1000 600 2 1619.8645 600 1 997

RANSAC 7 1000 600 2 2003.9353 493 77 77

MSASSAC 7 1000 600 2 1500.087 600 2 1994

MCISAC 7 1000 600 2 1520.2328 600 1 997

MSAC 7 1000 600 2 1907.5858 529 66 66

SASSAC 7 1000 600 3 1619.8645 600 2 1994

CISAC 7 1000 600 3 1619.8645 600 1 997

RANSAC 7 1000 600 3 1528.2524 600 68 68

MSASSAC 7 1000 600 3 1489.212 600 2 1994

MCISAC 7 1000 600 3 1520.2328 600 1 997

155

MSAC 7 1000 600 3 1633.7031 600 39 39

SASSAC 7 1000 600 4 1619.8645 600 2 1994

CISAC 7 1000 600 4 1619.8645 600 1 997

RANSAC 7 1000 600 4 2296.9123 428 136 136

MSASSAC 7 1000 600 4 1476.0138 600 2 1994

MCISAC 7 1000 600 4 1520.2328 600 1 997

MSAC 7 1000 600 4 1614.3995 600 63 63

SASSAC 7 1000 600 5 1619.8645 600 2 1994

CISAC 7 1000 600 5 1619.8645 600 1 997

RANSAC 7 1000 600 5 1536.5452 600 35 35

MSASSAC 7 1000 600 5 1490.4184 600 2 1994

MCISAC 7 1000 600 5 1520.2328 600 1 997

MSAC 7 1000 600 5 1885.2831 569 43 43

SASSAC 8 1000 500 1 1898.8244 500 2 1994

CISAC 8 1000 500 1 1898.8244 500 1 997

RANSAC 8 1000 500 1 2398.6682 372 240 240

MSASSAC 8 1000 500 1 1729.1584 500 2 1994

MCISAC 8 1000 500 1 1818.0483 500 1 997

MSAC 8 1000 500 1 1979.1915 488 80 80

SASSAC 8 1000 500 2 1898.8244 500 2 1994

CISAC 8 1000 500 2 1898.8244 500 1 997

RANSAC 8 1000 500 2 2085.6419 424 142 142

MSASSAC 8 1000 500 2 1818.0483 500 2 1994

MCISAC 8 1000 500 2 1818.0483 500 1 997

MSAC 8 1000 500 2 2066.6587 467 96 96

156

SASSAC 8 1000 500 3 1898.8244 500 2 1994

CISAC 8 1000 500 3 1898.8244 500 1 997

RANSAC 8 1000 500 3 2131.4288 459 103 103

MSASSAC 8 1000 500 3 1750.877 500 2 1994

MCISAC 8 1000 500 3 1818.0483 500 1 997

MSAC 8 1000 500 3 2202.3849 437 125 125

SASSAC 8 1000 500 4 1898.8244 500 2 1994

CISAC 8 1000 500 4 1898.8244 500 1 997

RANSAC 8 1000 500 4 1882.3426 500 73 73

MSASSAC 8 1000 500 4 1733.7194 500 2 1994

MCISAC 8 1000 500 4 1818.0483 500 1 997

MSAC 8 1000 500 4 1994.8553 490 79 79

SASSAC 8 1000 500 5 1898.8244 500 2 1994

CISAC 8 1000 500 5 1898.8244 500 1 997

RANSAC 8 1000 500 5 2130.7171 480 92 92

MSASSAC 8 1000 500 5 1714.8072 500 2 1994

MCISAC 8 1000 500 5 1818.0483 500 1 997

MSAC 8 1000 500 5 1829.0406 500 73 73

SASSAC 9 1000 400 1 2046.2313 400 2 1994

CISAC 9 1000 400 1 2046.2313 400 1 997

RANSAC 9 1000 400 1 2039.413 400 179 179

MSASSAC 9 1000 400 1 2019.5921 400 3 2991

MCISAC 9 1000 400 1 2046.2313 400 1 997

MSAC 9 1000 400 1 2378.0379 356 357 357

SASSAC 9 1000 400 2 2046.2313 400 2 1994

157

CISAC 9 1000 400 2 2046.2313 400 1 997

RANSAC 9 1000 400 2 2218.7764 397 439 439

MSASSAC 9 1000 400 2 2001.5483 400 2 1994

MCISAC 9 1000 400 2 2046.2313 400 1 997

MSAC 9 1000 400 2 2349.5912 330 388 388

SASSAC 9 1000 400 3 2046.2313 400 3 2991

CISAC 9 1000 400 3 2046.2313 400 1 997

RANSAC 9 1000 400 3 2262.2181 380 229 229

MSASSAC 9 1000 400 3 2046.2313 400 2 1994

MCISAC 9 1000 400 3 2046.2313 400 1 997

MSAC 9 1000 400 3 2162.6089 400 179 179

SASSAC 9 1000 400 4 2046.2313 400 2 1994

CISAC 9 1000 400 4 2046.2313 400 1 997

RANSAC 9 1000 400 4 2177.0274 387 204 204

MSASSAC 9 1000 400 4 2017.2168 400 2 1994

MCISAC 9 1000 400 4 2046.2313 400 1 997

MSAC 9 1000 400 4 2336.9847 385 209 209

SASSAC 9 1000 400 5 2046.2313 400 2 1994

CISAC 9 1000 400 5 2046.2313 400 1 997

RANSAC 9 1000 400 5 2073.8845 400 179 179

MSASSAC 9 1000 400 5 2046.2313 400 2 1994

MCISAC 9 1000 400 5 2046.2313 400 1 997

MSAC 9 1000 400 5 2252.6734 388 202 202

