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DISSERTATION SUMMARY 

Chilo partellus (Lepidoptera: Crambidae) and Chilo sacchariphagus (Lepidoptera: 

Crambidae) are two stem borers which pose a threat to the South African sugar 

industry at present. The reliable supply of good quality insects for host-plant resistant 

studies is vital. The techniques used at the South African Sugar Research Institute 

(SASRI) for establishing and maintaining C. partellus colonies were described 

because these insects are vital in host-plant resistance research. Sugarcane agro-

ecosystems in KwaZulu-Natal were surveyed for C. partellus, and species 

confirmation took place using cytochrome oxidase I subunit barcoding. A neighbor-

joining tree showing Chilo phylogeny supported the concept of using C. partellus as a 

surrogate insect for C. sacchariphagus for host-plant resistant screening studies in 

South Africa. Artificial diets were developed to optimize insect growth and 

reproduction and to meet or exceed the nutritional requirements of the target insect. 

Experiments were conducted to test different diets, with the incorporation of various 

ingredients, and the use of different inoculation and rearing methods. Vials that were 

inoculated with two neonate larvae each gave greater mean larval weights and larval 

survival percentages compared to the multicell trays and plastic jars. An improved 

artificial diet for rearing C. partellus was established incorporating non-fat milk 

powder (2.35% m/v) and whole egg powder (1.75% m/v). This diet gave higher mean 

larval survival percentages and mean larval weights than other diets tested. A 

version of this diet was developed with an increased content of cane leaf powder 

(from 2.5% to 6.5% m/v), so that better discrimination between leaf powders from 

different sugarcane genotypes would become possible in diet incorporation 

bioassays. 

Stalk borers can have detrimental effects on crops such as sugarcane, maize and 

sorghum in sub-Saharan Africa. C. partellus and C. sacchariphagus are serious 

pests on a number of hosts and pose a serious threat to the sugarcane industry in 

South Africa. The use of host-plant resistance is extremely important in controlling 

these pests, and the breeding of new and improved varieties are important in 

maintaining good yields. Constitutive antibiosis resistance to C. partellus larvae was 

explored in a diverse collection of 20 sugarcane varieties, by incorporating crushed 
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dried leaf whorl powder into an artificial diet. There were significant differences in 

larval weight, total C. partellus weight and larval survival in diets incorporating leaf 

powder from different sugarcane varieties. Varieties M1135/64 and N24 gave 

consistently lower larval weights and larval survival, whereas varieties M1025/70, 

R573 and N25 gave higher larval weights and larval survival when incorporated into 

the diet, which suggests that they have little or no constitutive resistance against C. 

partellus.  The concept of insect surrogacy was also explored, whereby known field 

resistance ratings of specific sugarcane varieties to C. sacchariphagus were 

compared to the results obtained for resistance to C. partellus from this study. Some 

correlations were observed for specific sugarcane varieties, such as N25 and R570, 

with respect to C. partellus and C. sacchariphagus resistance. However, further 

investigations will be required using different resistance screening methods to 

determine the different components of resistance of sugarcane varieties.  

Chilo partellus was used as a surrogate insect for C. sacchariphagus in ovipositing 

studies on sugarcane because C. sacchariphagus is not yet present in South Africa. 

Both pests belong to the same family and have the same feeding mechanisms, 

therefore similar defense mechanisms in plants may operate against them. The 

concept of ovipositional antixenosis behaviour of insects is based on the theory that 

female insects will choose their hosts in a hierarchal manner, laying most of their 

eggs on the preferred plant. This could be due to characteristics of the plant that 

either fail to provide ovipositing behaviour-including stimuli (attractants), or contain 

ovipositional-inhibiting stimuli (repellents). In this study, differences with respect to 

ovipositing by C. partellus moths were investigated on 20 selected sugarcane 

varieties. Two experiments were conducted, whereby the 20 sugarcane varieties 

were planted into 98 well seedling trays in a completely randomized design, 

replicated five and ten times for Experiments One and Two, respectively. Individual 

trays were placed into BugDorm® rearing tents when plants were still in their 

seedling stage, and moths were put into the tents for ovipositing to take place. No 

statistically significant differences were found between sugarcane varieties for both 

egg and batch number for both experiments (F pr > 0.05). A direct correlation was 

seen between egg number and batch number, with R2 values of 0.696 and 0.899 for 

Experiments One and Two, respectively.   
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C. partellus and C. sacchariphagus initially feed on the leaf whorl of their hosts 

before boring into the stalk, which results in destruction of the growing point and 

extensive stalk damage. Host-plant resistance plays a pivotal role in controlling such 

pests, and therefore it is important to identify sugarcane varieties that could 

potentially have resistance against them. Glasshouse trials conducted in pots were 

used to compare 21 sugarcane varieties for their resistance against C. partellus. The 

whorls of the plants were inoculated with 10 neonate larvae, and after 30 days 

sugarcane varieties were assessed for various damage parameters. Results from 

these trials give preliminary indications as to whether Fulmekiola serrata 

(Thysanoptera: Thripidae) and Chilo sacchariphagus  resistances are correlated; 

whether C. partellus or F. serrata could serve as surrogates in assessing resistance 

to C. sacchariphagus; and whether C. partellus itself poses a threat to sugarcane 

varieties. There was a significant difference between sugarcane varieties for the 

mean number of shotholes/lesions, mean number of borings, and mean number of 

larvae recovered. Sugarcane varieties N32 and M1135/64 showed the highest levels 

of resistance against C. partellus, which concurs with C. sacchariphagus ratings 

obtained from previous studies. With respect to F. serrata numbers, sugarcane 

varieties N21, R568, R574 and R572 had the highest F. serrata numbers in a trial 

conducted by the South African Sugar Research Institute. All four of these varieties 

were shown to be susceptible to C. partellus in the pot trials conducted in this study. 

Eldana saccharina Walker (Lepidoptera: Pyralidae) and F. serrata are considered 

serious pests of sugarcane in South Africa. The potential for an invasion by the borer 

C. sacchariphagus from Mozambique poses a great risk to the South African 

sugarcane industry, and C. partellus may represent a threat similar to the one once 

posed by E. saccharina before it adapted to feed on sugarcane. F. serrata, C. 

partellus, and C. sacchariphagus all feed on the whorl of their hosts, and therefore 

similar plant resistance mechanisms may act against them. Rating of sugarcane 

clones for damage caused by these pests and the selection of resistant genotypes 

can be difficult and expensive, and it can take up to 15 years before new varieties are 

released.  A study was made to develop a rapid, non-destructive, on-site technique 

for predicting sugarcane resistance to pests such as Chilo spp. and F. serrata. The 

technique was based on near infrared reflectance spectroscopy (NIRS), which can 

also be used to examine the interaction between sugarcane and its attackers. 



iv 
 

Differences in resistance of sugarcane varieties to these pests may be in part due to 

biochemical and structural differences within the leaf. NIRS can penetrate up to 2.5 

mm into plant material which infers that NIR spectra should represent the constitutive 

structural and chemical composition of the leaf that could be related to sugarcane 

resistance to pests such as C. partellus and F. serrata. Therefore, spectral data was 

obtained from intact leaves of 21 selected sugarcane varieties using a portable NIR 

spectrometer. Correlations between NIR spectral data and reference data obtained 

for C. partellus and F. serrata were developed using partial least squares (PLS) 

regression with full cross validation. Validation plots were useful in discriminating 

between sugarcane varieties for either constitutive or induced resistance based on 

predicted and actual values of reference data. Test validation was conducted on 

selected reference material using a validation set of five samples. Test validations 

gave better results than cross validations, with the best predictive model for the mean 

number of shotholes per variety (R2 of 0.75, SEP of 8.1). Larger calibration and 

validation sample sets, with equal numbers of resistant, intermediate and susceptible 

varieties, are required for models to have an improved predictive capability. 

Reference data such as the number of shotholes per variety, which are directly 

related to leaf characteristics, gave better model performance than reference 

parameters not directly related to the scanned leaves, such as boring length in the 

stalk. 
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DISSERTATION INTRODUCTION 

Background and motivation 

Sugarcane (Saccharum officinarum L.) is a monocotyledonous plant, cultivated in 

tropical and subtropical areas worldwide for its sugar-rich stalks (Sampietro et al., 

2007). South Africa currently produces approximately 16 million tons of sugarcane 

per annum from a total area of 373,000 hectares (Singels et al., 2011). It is a leading 

producer worldwide, and the industry plays an important economic role in the country 

because it provides employment and contributes toward sustainable development 

and the national economy (Maloa, 2001). The industry provides employment to 

approximate 439,000 people and generates an estimated eight billion rand towards 

the economy (South African Sugar Industry Directory, 2012). Furthermore, there are 

approximately 35,300 registered cane growers in South Africa (Anon, 2009).  

There are over 1,500 species of insects that attack sugarcane worldwide resulting in 

yield losses in all sugar industries (Ul-Hussnain et al., 2007). Eldana saccharina 

Walker (Lepidoptera: Pyralidae) and Fulmekiola serrata Kobus (Thysanoptera: 

Thripidae) are two of the most serious pests to sugarcane production in South Africa 

(Singels et al., 2011). Stalk borers are significant pests of sugarcane because they 

feed directly on the vegetative tissue in which sucrose is stored, effecting both yield 

and quality of the crop (Vercambre et al., 2001). The spotted stem borer Chilo 

sacchariphagus Bojer (Lepidoptera: Crambidae) causes serious damage to 

sugarcane in Mozambique (Way et al., 2011). Although this borer is not yet present 

in South Africa, it does pose a risk to sugar industries in countries bordering 

Mozambique (Way et al., 2011). The rise in trade and the change in global climate 

have resulted in the easier spread and establishment of insects and diseases in 

previously unaffected areas (Way et al., 2011). In addition, the related stem borer 

Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) has adapted to sugarcane in 

North Africa (Assefa and Conlong, 2009). It is present in the South African sugarcane 

agro-ecosystem feeding on maize, sorghum and indigenous grasses (Hutchison et 

al., 2008). C. partellus may represent a threat similar to the one previously posed by 
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E. saccharina before it fully adapted to feeding on sugarcane in the early 1970s 

(Atkinson et al., 1981). 

The use of insecticides for controlling pests raises environmental concerns, and can 

have a negative impact on beneficial insects and natural enemies of pests 

(Broekgaarden et al., 2011). The use of host plant resistance has a number of 

advantages over other control methods, and is one of the most effective means of 

controlling insects (Broekgaarden et al., 2011). Resistant varieties do not harm the 

environment, and in some cases, plant resistance is the only effective method for 

controlling certain pests (Kfir et al., 2002). Breeding for resistance to insects in 

sugarcane lags behind other crops, and this is most likely due to its complex genome 

and the inheritance of polygenic traits (White et al., 2010). Screening for resistance to 

pests and diseases is presently limited to later selection stages within the sugarcane 

breeding programme (Rutherford, 1998). The development of new varieties can take 

up to 15 years, and is a resource intensive process (Purcell et al., 2010b). 

Applications of new screening tools at earlier selection stages will reduce costs, 

increase productivity, and increase the number of resistant clones progressing to 

later selection stages (Purcell et al., 2005). With an increasing number of potential 

pests of sugarcane in South Africa, the need for rapid and less costly methods to 

screen sugarcane varieties increases in importance. 

Near infrared reflectance spectroscopy (NIRS) is a rapid, non-invasive, and reliable 

technique which has the potential to examine the interaction between sugarcane and 

its related pests. Use of NIRS might allow for the earlier screening of varieties and a 

reduction in the need for field trials, which will in turn allow for better resource 

management (Purcell et al., 2005). Calibration of near-infrared spectrometers 

involves acquiring spectra of representative samples, reference analysis of samples 

using laboratory or traditional methods, and model building using chemometrics 

(Blanco and Villarroya, 2002; Chen et al., 2002).  
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Description of area of research 

Globalisation and climate change are likely to lead to the increased emergence and 

spread of new pests (Way et al., 2011). While these pests are currently absent it is 

desirable to find alternative methods of determining the level of risk to current 

sugarcane varieties. To this end, surrogate insects can be used, and was explored. 

C. partellus was used as a surrogate for C. sacchariphagus, since both initially feed 

on the whorl of the plant and then become top borers (Way and Turner, 1999; Tefera 

and Pringle, 2004). There is also a possibility that F. serrata (thrips), which also feeds 

on the whorl, could act as a surrogate for Chilo spp. resistance screening. Among the 

few South African varieties with known resistance or susceptibility to C. 

sacchariphagus, there appears to be a correlation between resistance rankings to F. 

serrata and C. sacchariphagus (shown in this thesis). Near infrared (NIR) reflectance 

spectra obtained from intact surfaces reflect biochemical and structural differences 

within the leaf, since NIR can penetrate up to 2.5 mm into plant material (Purcell et 

al., 2010a). Building on research conducted by the South African Sugar Research 

Institute (SASRI) from the early 1990s, the Bureau of Sugar Experiment Stations 

(BSES) in Australia have successfully employed NIR to scan intact nodal buds for the 

prediction of constitutive smut resistance (Purcell et al., 2010b). BSES has also used 

NIRS for scanning intact undamaged sugarcane leaves in order to predict for 

constitutive resistance to Fiji Leaf Gall Virus (Purcell et al., 2009). In this case the 

model was shown to actually predict varietal preference of the insect vector 

Perkinsiella saccharicida Kirkaldy (Hemiptera: Delphacidae) suggesting that a similar 

approach could be developed for F. serrata and top borer lepidopteran species.  

Hypothesis  

A. C. partellus and F. serrata can be used as surrogates for C. sacchariphagus in 

screening sugarcane varieties for resistance. 

B. Fibre optic NIR methods can be used to predict constitutive resistance of 

sugarcane varieties to C. partellus and F. serrata using reflectance spectra 

from intact leaf surfaces. 
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Objectives 

A. To develop rearing methods for C. partellus and to develop methods for 

screening sugarcane varieties for resistance to sugarcane borers. In this study 

C. partellus and C.sacchariphagus were the stem borers of interest. 

B. To screen a collection of sugarcane varieties for overall resistance to C. 

partellus  

C. To obtain preliminary indications as to whether F. serrata and Chilo 

resistances of sugarcane varieties are correlated; whether C. partellus or F. 

serrata could serve as surrogates in assessing resistance to C. 

sacchariphagus, and whether C. partellus might itself pose a threat to certain 

sugarcane varieties. 

D. To develop and validate predictive models for constitutive resistance traits 

against F. serrata and Chilo spp. Overall resistance ratings are already known 

for F. serrata but need to be determined for Chilo.  

E. To identify NIR ‘outlier’ sugarcane varieties which predict as being susceptible 

in terms of constitutive resistance, but are in fact resistant. Such sugarcane 

varieties are likely to possess strong physiologically reactive resistance 

(induced resistance). 

F. To identify a set of potentially C. sacchariphagus resistant and susceptible 

sugarcane varieties that in the future could be sent to Mafambisse in 

Mozambique for confirmation screening in another project.  

 

Dissertation referencing and format style 

 

The system used for referencing in the chapters of this dissertation is based on the 

Harvard system of referencing (De Montfort University), and follows the style used in 

“Journal of Biocontrol Science and Technology”.  

 

The dissertation is laid out in discrete research chapters, each one following the 

format of a stand-alone research paper (whether or not the chapter has already been 

published). This is the dominant dissertation format adopted by the University of 

KwaZulu-Natal because it facilitates the publishing of research out of theses far more 
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than the older monograph form of dissertation. As such, there is some unavoidable 

repetition of references and some introductory information between chapters. 
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CHAPTER 1 

Literature review 

1.1 Background information on sugarcane 

1.1.1 Origin and importance  

Sugarcane varieties belong to the genus Saccharum L., of the Poaceae family 

(Blackburn, 1984). Sugarcane is a monocotyledonous crop that is grown mainly in 

the tropics and subtropics for its stalks that contain a high level of sucrose (Anon, 

2004; Dillon et al., 2007). It is the source for 75% of the world’s sugar supply and its 

fully grown stem can store up to 12-16% of its fresh weight, and about 50% of its dry 

weight as sucrose (Bull and Glasziou, 1963). It is believed that sugarcane has its 

origin in New Guinea where it was grown as a native garden crop used for its 

chewing purposes (Barnes, 1974). S. sinense Roxb. and S. barberi Jesw. have been 

grown for years in China and India respectively, but the increased use of S. 

officinarum L. resulted in the growth of the sugar industry in the tropics and 

subtropics (Blackburn, 1984). The cross between S. officinarum L. and S. 

spontaneum L. and in some lineal descents, S. sinense, or S. barberi resulted in the 

modern sugarcane hybrid (Saccharum spp.) that is cultivated today (Dillon et al., 

2007).  

Sugarcane is produced in large quantities worldwide, with over 1,000 million tons 

harvested per year (Henry and Kole, 2010). In many countries sugarcane provides a 

number of useful raw materials to a range of industries (Hunsigi, 2001). The by-

products of sugarcane, such as molasses, bagasse and filter mud, are also used in a 

number of ways (Almazan et al., 1998; Anon, 2004). Sugar is the most commonly 

used carbohydrate source globally, particularly for those with a below average 

income (Almazan et al., 1998). 

 

1.1.2 The sugarcane industry in South Africa 

South Africa currently produces approximately 16 million tons of sugarcane per 

annum from a total area of 373,000 hectares (Singels et al., 2011). The three major 
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areas of sugarcane production in South Africa are the coastal belt and midlands 

areas in KwaZulu-Natal, the Mpumalanga Lowveld and Northern Pondoland in the 

Eastern Cape (Figure 1.1) (Lewis, 1990). There are an estimated 35,300 registered 

cane growers, with the majority farming in KwaZulu-Natal (Anon, 2009b). The South 

African sugarcane industry started in Natal in 1847 where it proved a great success 

(Lewis, 1990). It is a leading producer worldwide and the industry plays an important 

role in the country as it provides employment and contributes toward sustainable 

development and the national economy (Maloa, 2001). The industry provides 

employment to approximately 439,000 people and generates an estimated R8 billion 

towards the economy (South African Sugar Industry Directory, 2012). In South Africa, 

molasses and sugar are produced at 14 mills for the local and foreign markets. The 

industry focuses on the production of sugar that is of good quality and that is sold at 

a good price, together with sustainable development (Anon, 2009b). 

 

Figure 1.1 Distribution of sugarcane and its major growing areas in South Africa 

(www.usda.gov) 

 

http://www.usda.gov/
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1.2 Sugarcane insect pests 

1.2.1 Introduction 

There are over 1500 species of insects that attack sugarcane worldwide (Ul-

Hussnain et al., 2007). They belong to a range of orders, including Lepidoptera, 

Homoptera, Coleoptera, Hemiptera, Orthoptera and Isoptera (Assefa and Conlong, 

2009). In South Africa, insects which have a major effect on sugarcane production 

are Eldana saccharina Walker (Lepidoptera: Pyrialidae), Fulmekiola serrata Kobus 

(Thysanoptera: Thripidae) (thrips), Schizonycha affinis Boheman and Hypopholis 

sommeri Burm. (Coleoptera: Scarabaeidae) (white grubs), and Petamella 

prosternalis (Acrididae: Orthoptera) (grasshopper) (Way et al., 2011; Bam and 

Conlong, 2012). E. saccharina and F. serrata are the most serious and extensive 

insects in sugarcane production (Singels et al., 2011). Chilo sacchariphagus Bojer 

(the spotted sugarcane stalk borer) and Chilo partellus (Swinhoe) (the spotted maize 

stem borer) belong to the insect order Lepidoptera (butterflies and moths) and family 

Crambidae (Arabjafari and Jalali, 2007; Goebel and Way, 2009). Stalk borers are one 

of the most serious insect pests of crops such as sugarcane, maize, and sorghum in 

sub-Saharan Africa (Kfir et al., 2002). Insect damage can result in the total loss of a 

crop in a relatively short time. This loss can be seen by poor stands, poor growth, 

decreased yields, and poor quality of the crop (Bezuidenhout et al., 2008; Goebel 

and Way, 2009). 

Alien invasive species are those that are brought into a country either accidentally or 

intentionally, which invade their new home and cause a threat to ecosystems, 

habitats, biological diversity and humans (Chenje and Mohamed-Katerere, 2008). 

Invasive alien species are a threat to South African agriculture (Way et al., 2011). 

Extreme changes in climate and increasing global trade results in the spread of pests 

and diseases occurring more easily and establishing in new, previously unaffected 

countries (Goebel and Sallam, 2011). Invasion of alien species can be extremely 

harmful to important agricultural crops as they are expensive to control; can result in 

the prevention of export programmes; and cause disturbances in ecosystems which 

can lead to loss of biodiversity (Chenje and Mohamed-Katerere, 2008; Westphal et 

al., 2008). 
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1.2.2 Chilo partellus (Swinhoe) and Chilo sacchariphagus Bojer 

(Lepidoptera: Crambidae) 

1.2.2.1 Background of Chilo partellus (Swinhoe) 

Chilo partellus (Swinhoe) is a serious pest in Asia and southern African countries 

(Arabjafari and Jalali, 2007). It invaded Africa prior to 1930 when it was first noted in 

Malawi; however it was not reported for the next 20 years until it was recorded in 

Tanzania (Kfir et al., 2002). In Africa it is in: Botswana, Cameroon, Ethiopia, Kenya, 

Malawi, Mozambique, Somalia, Sudan, Lesotho and South Africa (Hutchison et al., 

2008). Host crops of C. partellus include sorghum (Sorghum bicolor L. Moench), rice 

(Oryza sativa L.), maize (Zea mays L.), pearl millet (Pennisetum glaucum L.), Job’s 

tears (Coix lacryma-jobi L.) and a number of grasses such as Sudan grass (Sorghum 

x drummondii) and Napier grass (Pennisetum purpureum Schumach.) (Arabjafari and 

Jalali, 2007; Hutchison et al., 2008).  

C. partellus is extremely competitive and has been found to displace other native 

stem borers in eastern and southern Africa, making it one of the most harmful and 

serious stem borers of crops (Kfir et al., 2002). An example is given by Kfir et al. 

(2002) of the Eastern Province of Kenya, where C. partellus has almost completely 

displaced the local stem borer, Busseola fusca Fuller (Lepidoptera: Noctuidae). This 

could be clearly seen in sorghum where the C. partellus population was found in 

higher proportions than other borers, rising from 3% in 1986 to 91% in 1992. The 

reason for the higher competitiveness of C. partellus compared to other borers such 

as B. fusca and Chilo orichalcociliellus Strand (Lepidoptera: Crambidae) could be 

due to its shorter generation time and its capability to end diapause quickly, which 

allows for it to inhabit its host plants first (Kfir et al., 2002). The damage caused by C. 

partellus has been reported to result in losses ranging from 24-75% (Arabjafari and 

Jalali, 2007). 

The life cycle of C. partellus shows complete metamorphosis, with an egg, larval, 

pupal, and adult stage (Figure 1.2a-d) (Hutchison et al., 2008). The borer can 

undergo one or more generations per year, but this depends on host plant availability 

and regional conditions (Hutchison et al., 2008). The larval stage can undergo 

diapause depending on conditions such as altitude and climate, and when in areas 

with sufficient crop and grass host plants, the borer will repeat its life cycle 
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throughout the year (Kfir et al., 2002). The female moths tend to show preference for 

the whorl stage of the plants for ovipositing. However, their eggs are laid on both the 

upper and under sides of the leaves, as well as on the stem. They are laid in clusters 

of approximately 100 eggs per female (Hutchison et al., 2008). Eggs hatch in seven 

to ten days and the hatched larvae move to the top of the plant where they continue 

feeding on the leaf whorls (Hutchison et al., 2008). The larva of this borer feed on the 

leaves of the plants from 15 minutes to eight hours and eventually bore into the stem 

which leads to the plant’s deterioration (Figure 1.3b-c) (Sarup et al., 1985). The 

feeding of the newly hatched larvae on the leaves results in lesions and give a 

“shothole” appearance to the leaf (Figure 1.3a) (Tefera and Pringle, 2004). Larva 

also cause ‘dead-hearts’ by feeding and tunnelling into the growing points of plants 

(Midega et al., 2011; Tefera and Pringle, 2004). The extensive damage caused by 

the borer weakens the plant, reduces yields, and makes it more vulnerable to 

pathogenic infections (Tefera and Pringle, 2004). Once the larvae enter the stalk, and 

after feeding for two to three weeks, the pupal stage commences for five to twelve 

days, and the adult stage for about two to five days (Anon, 2011). The entire life 

cycle lasts for 25 to 50 days, depending on environmental conditions (Hutchison et 

al., 2008; Uys, 2009).  

The larvae of C. partellus are cream to yellow in colour and have dark brown spots 

along the top surface of their bodies (Hutchison et al., 2008). The head capsule is 

reddish-brown and the larvae reach up to 25mm when fully mature (Anon, 2011).  
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Figure 1.2 Life stages of Chilo partellus (a) the egg stage; (b) The larval stage 

(photos from http://keys.lucidcentral.org) (c) The pupal stage; (d) the adult stage 

(photos from http://www.plantwise.org) 

 

Figure 1.3 Damage due to Chilo partellus (a) on the leaves of Job’s tears (Coix 

lacryma-jobi L.); (b) in the stalk of Job’s tears; (c) in the stalk of wild sorghum 

(Sorghum halepense (L.) Pers.) 

http://keys.lucidcentral.org/
http://www.plantwise.org/
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1.2.2.2 Background of Chilo sacchariphagus Bojer 

Chilo sacchariphagus Bojer originated in southeast Asia (Conlong and Goebel, 

2002). It has been a serious insect pest of sugarcane since the 19th century in 

Reunion, Mauritius, and Madagascar (Rochat et al., 2001). In 1998 C. 

sacchariphagus was found in Mozambique, and today it is a great threat to 

sugarcane production of sugar estates in the Companhia de Sena (Marromeu or 

Sena) and in the north at the Açucareira de Mozambique (Mafambisse) estate (Way 

et al., 2011). There have been no records yet of C. sacchariphagus in neighbouring 

countries of Mozambique, including South Africa (Way and Turner, 1999). In 

Mauritius, C. sacchariphagus is the most important borer of sugarcane, whereas 

borers such as Sesamia calamistis Hampson (Lepidoptera: Noctuidae) (the pink 

borer) and Tetramoera schistaceana Snellen (Lepidoptera: Tortricidae) (the white 

borer) are not as important (Soma and Ganeshan, 1998). Sugar cane is the primary 

host of C. sacchariphagus; however, it can occasionally attack maize and sorghum 

(Williams, 1983).  

Like C. partellus, C. sacchariphagus can breed through the whole year with up to 4 

generations (Conlong and Goebel, 2002). Eggs are laid on the top and bottom of the 

leaf blades, along the midribs in clusters of approximately 20 to 40 eggs, with an 

estimated fecundity of 300 to 850 eggs in total per female (Goebel, 2006). This 

process occurs at night after the adults have emerged and mated (Way and Turner, 

1999). Unlike E. saccharina, the female of C. sacchariphagus emits pheromones and 

not the male (Goebel, 2006). First instar larvae feed on the leaves or within the rolled 

up spindle (leaf whorl). This feeding habit results in shotholes in the leaves when 

they fully emerge (Way and Turner, 1999). In younger cane, older larvae feed on the 

meristematic region which can cause “dead hearts” (Way and Turner, 1999). In 

mature cane the larvae feed just below the growing tip, which results in side 

shooting, and if widespread tunnelling occurs, stalks become seriously damaged 

(Way and Turner, 1999). Larvae usually attack cane that is three to seven months old 

(relatively young) and therefore loss in cane weight is of more importance than 

reduced sucrose content (Goebel, 2006; Bezuidenhout et al., 2008). 

Larvae are cream to white in colour with a spotted exterior and may also have stripes 

running along the body (Figure 1.4b) (Anon, 2009a). Pupation generally takes place 
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on the inside of the leaf sheath in an undefined cocoon (Uys, 2009). Populations of 

C. sacchariphagus seem to prosper when the temperatures are greater than 20oC, 

with an optimum temperature of 26oC for their development (Rochat et al., 2001). 

Goebel and Way (2009) investigated the impact of stem borers E. saccharina and C. 

sacchariphagus on sugarcane yield and quality. They found that these borers both 

have an effect on both sugarcane quality (sucrose) and biomass (yield). The larvae 

of these borers feeding on sugarcane resulted in a decreased size and mass of 

sugarcane stalks and also in a reduction in the amount of juice. The levels of gums 

and non-sugar juice constituents in the stalks increased in infested stalks as 

compared to healthy stalks.  

 

 

 

Figure 1.4 Appearance of Chilo sacchariphagus (a) adult and (b) larva (Hutchison et 

al., 2008) 

a. b. 
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Figure 1.5 Larva and pupa of Chilo sacchariphagus on infested sugarcane stalks 

(Way, 1999) 

1.2.2.3 Economic importance and threat of Chilo sacchariphagus 

and Chilo partellus to the sugarcane industry in South Africa 

The high likelihood of C. sacchariphagus moving from Mozambique into South Africa 

poses a great risk to the South African sugarcane industry. Although it has not yet 

entered South African territory, studies on climatic conditions suited for the pest show 

that the coastline of KwaZulu-Natal and neighbouring river valleys, particularly in the 

north, are suitable for the pest’s establishment (Goebel, 2006; Bezuidenhout et al., 

2008). Temperature thresholds have been determined for the different life cycle 

stages of C. sacchariphagus, and these can be used to determine whether certain 

sugarcane producing areas are vulnerable to attack by this pest (Goebel, 2006). 

However, in order for such predictions to be accurate, an accurate history of records 

of temperature readings is required (Bezuidenhout et al., 2008). 



17 
 

Bezuidenhout et al. (2008) conducted a study using the temperature thresholds 

known for C. sacchariphagus to put together a series of maps which show the 

potential spread of this borer into regions of South Africa and Swaziland, based on 

long term temperature data sets of these areas. The maps were developed to show 

the distribution of C. sacchariphagus based on mortality, maintenance and mating 

indices. Maps (for comparison purposes) were also put together for La Mare, 

Reunion Island, where survival conditions for C. sacchariphagus are ideal. It was 

found that the north-eastern areas of KwaZulu-Natal are the most prone to C. 

sacchariphagus, and although the mating and maintenance indices are high for 

Limpopo and Mpumalanga, their mortality index is also significantly higher. Although 

the north-eastern areas of KwaZulu-Natal have the highest chance of survival for C. 

Sacchariphagus, the index values are not the same as that of La Mare, particularly 

for mortality index (49 days versus one day per annum) and mating index (3275 

versus 4300 hours per annum). Therefore, this may indicate that there could be a 

climate barrier for the spread of C. sacchariphagus into South Africa. However, these 

predictions will need to be backed up by further studies. 

Losses due to C. sacchariphagus in Réunion are approximately eight to ten million 

Euros per annum, but this value can differ according to the area planted with the 

more susceptible variety R579 (Goebel and Way, 2009). The larvae can result in 

huge crop losses due to the damage that they cause, namely, damage to growing 

points, disruption of metabolite and nutrient translocation, stunting, lodging, and 

ultimately death (Hutchison et al., 2008). In South Africa C. partellus can cause yield 

losses of 50% to maize and sorghum crops (Hutchison et al., 2008). In Maputo, the 

Limpopo Valley, and in Southern Mozambique there have been records of 100% of 

plant infestations in maize (Kfir et al., 2002). Way (1999) reported losses of 40% at 

the Mafambisse Estate in Mozambique in a sugarcane crop infested with C. 

sacchariphagus. 

According to Way et al. (2011), the natural spread of C. sacchariphagus from 

Mozambique into other countries is not likely, because the sugar estates are isolated 

and surrounded by vegetation over which the moths are unable to fly. The most likely 

means by which this borer could spread is through movement of infested sugarcane 

setts between sugar industries. Travellers may either bring infested material 
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innocently or deliberately from Mozambique into South Africa because private 

vehicles are not checked as efficiently as they should be (Way et al., 2011).  

Although C. sacchariphagus has not yet spread outside Mozambique into adjacent 

countries, this borer is still very important in terms of biosecurity (Bezuidenhout et al., 

2008). C. partellus has adapted to sugarcane in North Africa and is present in the 

South African sugarcane agroecosystem (Assefa and Conlong, 2009; Hutchison et 

al., 2008). C. partellus therefore represents a threat similar to the one once posed by 

E. saccharina before it adapted to feeding on sugarcane. The remarkably fast spread 

of C. partellus from Malawi, and the associated crop losses and damage due to this 

borer, prove how serious these exotic pests can be if left uncontrolled (Conlong and 

Goebel, 2002). 

 

1.2.3 Fulmekiola serrata Kobus (Thysanoptera: Thripidae)  

1.2.3.1 Background of Fulmekiola serrata 

Fulmekiola serrata Kobus (Thysanoptera: Thripidae) is a recent incursion in southern 

Africa suspected of causing significant yield losses in sugarcane (Way et al., 2010). 

Its origin is in the Oriental region where it has been recorded in Java, Taiwan, Japan, 

China, and India (Way et al., 2006b). It has now spread to other countries such as 

Mauritius, Reunion and Madagascar (Way et al., 2006b). F. serrata was first found on 

sugarcane in Africa in 2004 (Abdel-Rahman et al., 2008). It is not known how the 

pest was introduced into Africa, but it is thought that it entered through contaminated 

plant material or via wind from Mauritius (Way et al., 2006b). The increase in F. 

serrata populations in South Africa could be due to increased temperatures, drought, 

and periods of wind which makes for a favourable environment for the fast 

multiplication and spread of the pest (Way et al., 2006b). Species of thrips that attack 

sugarcane include F. serrata, Haplothrips aculeatus Fabricius, Anaphothrips 

sudanensis Trybom (Way et al., 2006b) and more recently the Oriental rice thrips 

Stenchaetothrips biformis Bagnall (Thysanoptera: Thripidae) in Australia (Sallam et 

al., 2013). 

In F. serrata, all life stages live in the folded leaf spindles at the top of the plant where 

they feed on plant sap by piercing the leaf tissues using their mouthparts (Way et al., 
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2006a; Way et al., 2010). This enclosed environment provides the insect with ideal 

humid conditions and also provides for some protection from predators (Way et al., 

2006a). Approximately 80 eggs are laid by the female inside the leaf spindles and the 

nymphs cause most of the crop damage (Leslie, 2006). Eggs hatch about four to five 

days after being laid, and this occurs quicker when temperatures are higher (Alleyne, 

1981). The minute larvae are initially white in colour and later turn yellow, with red 

coloured eyes (Way et al., 2006b). They develop quite quickly, with two distinct 

stages having been identified. There is a pre-pupal and pupal stage as well, where 

both are usually inactive. The pupae become active when disturbed (Alleyne, 1981). 

The adult insects (Figure 1.6) are very small, being 2-3 mm long, black in colour, and 

have well developed wings (Alleyne, 1981). When one opens the young leaf 

spindles, which exposes the insects, they move in erratic circles on the leaf, which 

could indicate that F. serrata is very photosensitive (Way et al., 2006a). It is possible 

that it is thigmotactic, meaning that it inhabits small spaces, which allow for its close 

contact with a surface (Way et al., 2006b). 

 

 

Figure 1.6 The adult insect of Fulmekiola serrata, approximately 2 mm in length 

(Leslie, 2006) 

The damage caused by F. serrata can be serious because all its life stages feed on 

the leaves (Way et al., 2006a). The spindle leaf is usually where F. serrata thrives 

and where damage is most noticeable (Leslie, 2006). In young cane, F. serrata 

infestations result in the leaves turning yellow and eventual death of the tips of leaves 

(Way et al., 2006b). The leaves in turn, remain unrolled and join at the tips (Leslie, 

2006). In older cane, unrolled leaves have streaks of yellow with brown chlorotic 
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lesions and silver leaf margins, and the leaf tips also become brown and withered 

(Way et al., 2006a; Way et al., 2006b). 

 

 

Figure 1.7 Fulmekiola serrata (a) on a sugarcane leaf and (b) in the leaf spindle 

(Anon, 2007; Leslie, 2005) 

 

1.2.3.2 Economic importance of Fulmekiola serrata 

There have been only a few yield loss trials on F. serrata, and the information 

obtained from them is unclear, possibly due to confounding plant growth promoting 

effects of the neonicotinoid insecticides effective against them  (Thielert, 2006; 

Gonias et al., 2008; Way et al., 2010). In Mauritius, the economic loss due to this 

pest has not been quantified, even though it does attack sugarcane from time to time 

(Way et al., 2006b). In the 1950s in Taiwan, approximately 20,000 hectares of 

sugarcane was seriously infested with F. serrata causing large amounts of damage 

(Anon, 2013b). It is presumed that F. serrata does not cause a decrease in cane 

quality, because the stalks, which are the storage sites for sucrose, are not directly 

attacked, and so the damage is more likely to cause a decrease in yield because it 

stunts the overall growth of the plants by affecting leaves and hence photosynthetic 

activity (Way et al., 2006b). In China, there have been yield losses of up to 15% due 

to thrips (Way et al., 2006b).  
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1.2.4 Control of sugarcane pests 

Biological control, cultural practices, chemical control and host plant resistance are 

the methods used to control borers such as C. sacchariphagus and C. partellus 

(James, 2004). In Mauritius, cultural and chemical control methods are not 

considered feasible in controlling C. sacchariphagus because it was found that the 

cultural practice of burning sugarcane before and after harvest actually had a 

negative impact on the natural enemies of the borer, whereas the larvae and pupae 

living inside stalks remained unaffected (Rochat et al., 2001). Classical biological 

control is the favoured method of control whereby a number of natural parasitoids 

have been introduced from other countries to control the borers (Way and Turner, 

1999). Since C. sacchariphagus is not indigenous to Africa, and mainly attacks 

sugarcane, it should fit the profile for being a target for biological control (Conlong 

and Goebel, 2002). Rochat et al. (2001) reported that approximately 17 species of 

natural enemies of C. sacchariphagus have been brought into Reunion from different 

countries, but only a third of them survived and none were able to reduce the levels 

of C. sacchariphagus. The control of C. partellus and C. sacchariphagus is 

particularly difficult, because once the larvae enter the plant tissue; it is difficult for 

natural enemies and insecticides to reach the target (Afzal et al., 2009). Since C. 

sacchariphagus has a larger impact on cane weight than on sucrose content due to 

its early attack of sugarcane, control methods should focus on early infestations, with 

the parasites being released when the crop is still young. In turn this will prevent the 

insect populations from increasing, which could potentially reduce yield losses 

(Goebel and Way, 2009).  

Way et al. (2011) made recommendations for the control of C. sacchariphagus, 

including the establishment of a breeding programme for developing resistant 

varieties. Resistant varieties have a number of advantages over other control 

methods. Resistant varieties are not influenced by changing weather conditions, do 

not harm the environment, and in some cases, are the only effective method for 

controlling certain pests (Kfir et al., 2002). Breeding for resistance to insects in 

sugarcane lags behind other crops, and this is most likely due to its complex genome 

and the inheritance of polygenic traits (White et al., 2010). 



22 
 

A number of studies have been published reporting on the evaluation of sugarcane 

varieties for their resistance to sub-species of C. sacchariphagus. However, none of 

the data provides information on the resistance status of Reunion sugarcane 

varieties, and the gain that could be achieved by improving sugarcane varieties 

(Nibouche and Tibere, 2009). The two main sugarcane varieties of sugarcane grown 

in Reunion are R570 and R579, which have different susceptibilities to C. 

sacchariphagus (Nibouche and Tibere, 2010). It was shown that R570 is one of the 

most resistant sugarcane varieties to C. sacchariphagus when compared to other 

sugarcane varieties (Nibouche and Tibere, 2010). Conlong et al. (2004) reported on 

differences in Southern African sugarcane varieties grown in Mozambique with 

respect to damage caused by C. sacchariphagus. The development of thrips 

resistant varieties is still in its initial stages. In onion, wheat, and cabbage some 

resistant varieties have been developed. Some of this resistance is based on 

morphological characters of the plant such as having round or flat leaves, hairy 

leaves, and an open plant design (Parrella and Lewis, 1997). In sugarcane it has 

been shown that those varieties that have a slow initial growth and are slower in 

unrolling their central leaf rolls are more prone to attack and damage by F. serrata 

(Leslie, 2005). In South Africa sugarcane varieties that are affected the most are 

N27, N35 and N41 (Leslie, 2005). 

 

1.3. Host-plant resistance to insect pests 

1.3.1 Introduction 

Pest and disease resistance is shown in the inherited ability of an organism to negate 

the effects, totally or partially, of a pathogen, insect, or other harmful factor (Sharma, 

1997). Resistance is shown when symptoms are minimal to none which indicates 

that the pest cannot spread, or spreads with difficulty on the host (Ahman, 2006). The 

resistant characteristic of plants is usually a result of morphological and biochemical 

attributes of the plant which has an effect on the insect’s behaviour and biology and 

leads to better survival and production of the plant (Sharma, 1997; Thayumanavan 

and Sadasivm, 2003; Gogi et al., 2010). By comparing resistant plants to more 

susceptible plants under similar conditions, one can deduce the degree of resistance 

of that plant (Sharma, 1997). 
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Naturally occurring pest resistant traits in plants can be of either induced or 

constitutive resistance (Broekgaarden et al., 2011).  Induced resistance requires the 

plant to recognize that there is an invader, which in turn results in the plant producing 

proteins or metabolites that are harmful to the invader (Keen, 1999; Underwood and 

Rausher, 2002; War et al., 2012) (Figure 1.8). With induced resistance the plant 

detects the pest via at least one molecule produced by the pest. The molecule(s) 

may be a protein, fatty acid derivative (fatty acid-amino acid conjugates), or other 

chemical compound secreted by the pest (Alborn et al., 1997).  

 

Figure 1.8 Mechanism of induced resistance in plants. POD, peroxidase; PPO, 

polyphenol oxidase; PAL, phenylalanine ammonia lyase; TAL, tyrosine alanine 

ammonia lyase; LOX, lipoxygenase; SOD, superoxide dismutase; APX, ascorbate 

peroxidase; HIPVs, herbivore induced plant volatiles. (War et al., 2012) 

 

Constitutive resistance is the level of resistance already present in the plant, and is 

not dependent on the attack of a pest (Do Vale et al., 2001). It can be morphological, 

structural or chemical in nature (Keen, 1999; Underwood and Rausher, 2002). 
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Arimura et al. (2005) classified and described resistance in terms of direct and 

indirect defences. Direct defences are those which instantly impact on herbivores 

attacking the plant, such as physical barriers which include thorns, trichomes, waxes, 

spines, and chemical means using secondary plant metabolites or special defense 

proteins. Direct defences can be both constitutive and inducible. Indirect defences 

are mediated through other species such as natural enemies of the insect pest 

(Dudareva et al., 2006) (Figure 1.8).  

 
There are three components of plant resistance, namely, antixenosis, antibiosis, and 

tolerance (Thayumanavan and Sadasivm, 2003). One or more of these mechanisms 

may be present in a resistant plant; however it is favourable for all three mechanisms 

to be present in a resistant variety (Ahman, 2006). Mathes and Charpentier (1969) 

describe four types of resistance to moth borers occurring in sugarcane. These are (i) 

the host-plant may be unsuitable for the moths to lay their eggs (ii) the host-plant 

may have negative effects on the borer due to physical and nutritional attributes of 

the plant (iii) the host-plant may be unsuitable for the entry of the borers and (iv) 

tolerance of the host-plant to borers. Number (i) can be defined as antixeniosis and 

(ii) and (iii) as antibiosis. These mechanisms will be discussed in more detail later on 

in the chapter. 

 

1.3.2 Components of host-plant resistance 

The three components of resistance, namely, antixenosis, antibiosis, and tolerance 

are they can be either physical or chemical in nature, or a combination of both. 

Antixenosis is a resistant mechanism in plants that can be morphological, physical, or 

structural in nature and interferes with the behavioural aspect of insects such as 

mating, laying of eggs and the insects feeding (Thayumanavan and Sadasivm, 2003; 

Eickhoff et al., 2008; Gogi et al., 2010). It therefore results in the insect avoiding the 

host plant. It could be due to the colour, texture of the leaf surface, certain 

allelochemicals, or an interaction between all of these factors in the plant which 

deters the insect pest and prevents ovipositing from occurring on the plant (Gogi et 

al., 2010).  
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Antixenosis has been used in some cases to develop resistant varieties of crops 

(Kumarasinghe and Jepson, 2003). Examples are shown in rice that are resistant to 

Cnaphalocrocis medinalis Guenee (Lepidoptera: Crambidae) (rice fodder) as a result 

of crossing a susceptible cultivar with a wild rice cultivar having antixenotic 

characteristics; Chilo infuscatellus Snellen has a preference for ovipositing on 

sugarcane plants of 45 days old, whereas older plants will not be used for this 

purpose (Kumarasinghe and Jepson, 2003). In a paper published by Nibouche and 

Tibére (2010), mechanisms of resistance of two varieties (R570 and R579) to C. 

sacchariphagus, and its location in the plant were identified. In Cultivar R570, plants 

were artificially infested with C. sacchariphagus in the glasshouse. Within 48 hours 

after infestation there was a reduction in larvae numbers that had established on the 

plants. Bioassays carried out in the laboratory indicated that the reduction in larvae 

numbers was due to antixenosis on the lower surface of the leaf sheath. 

Susceptibility to the antixenosis was seen in the first, second and third instar stages.  

However, antixenosis was not seen on the leaf spindle or on the stalk. It was also 

concluded that antibiosis could not have been involved in the resistance shown as 

there was a low number of dead larvae on the plants and thus it was concluded that 

antixenosis was the main mechanism of resistance to C. sacchariphagus. 

Antibiosis adversely affects the biology of an insect which tries to use the plant as a 

host and can be physical or chemical in nature (Thayumanavan and Sadasivm, 

2003). Damage to the insect can be severe and often affects the larvae and eggs 

(Sharma, 1997). Insects that survive the effects of antibiosis may be permanently 

damaged having stunted growth, slower development processes, and a reduction in 

fecundity (Sharma, 1997; Padmaja et al., 2012). Antibiosis can be attributed to 

allelochemicals, growth inhibitors, and morphological factors preventing the attack of 

the insect (Eickhoff et al., 2008). Allelochemicals such as glycoalkaloids in potato, γ-

tomatine in tomato, gossypol in cotton, and rutin and chlorogenic acid in tomato are 

harmful to insects that attack such plants (Sharma, 1997). Examples of some growth 

inhibitors imparting antibiosis are maysin in maize, coumestrol in soybean, and 

terpenoids in cotton which prevent the growth of insects that feed on them (Sharma, 

1997). In a study conducted by Kumar et al. (2006) on antibiosis mechanisms of 

resistance to C. partellus in sorghum, it was found that antibiosis resulted in reduced 

pupal weight and less pupation. It was suggested that this could be due to secondary 
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plant substances present in the leaves. The levels of amino acids, tannins, phenolics, 

lignins, acid detergent fiber (ADF), and neutral detergent fiber (NDF) were linked to 

resistance of sorghum to C. partellus (Kumar et al., 2006). 

Tolerance allows for normal growth and an increase in plant biomass, irrespective of 

the level of insect infestations (Sharma, 1997). Painter (1951) defined tolerance as, 

“a basis of resistance in which the plant shows an ability to grow and reproduce itself 

or repair injury to a marked degree in spite of supporting a population approximately 

equal to that damaging a susceptible host”. According to Reese et al. (1993), 

tolerance is the preferred mechanism of resistance because it does not negatively 

impact on the natural enemy populations, whereas antixenosis and antibiosis 

increase selection pressure on insect populations, which can lead to the 

development of more virulent biotypes and can also, have an adverse effect on 

control methods. 

 

1.3.3 Physical defense mechanisms in plants 

The surface of a plant is where organisms first come into contact with the plant in 

order to establish themselves with the plant, and therefore physical and chemical 

structures on the plant surface are important in contributing to pest resistance (Howe 

and Schaller, 2008). Trichomes and/or hairs on the surface of plants have been used 

to give rise to insect-resistant varieties (Peter et al., 1995). Trichomes can either be 

non-glandular, tiny hairs which physically deter insects, or they may be specialized 

glandular trichomes, morphological and chemical in nature, whereby they secrete 

substances which are stored or volatilized on the surface of the plant and are used to 

repel pests and prevent them from feeding (Johnson, 1975; Fernandes, 1994; Larkin 

et al., 2003, Martin and Glover, 2007; Howe and Schaller, 2008). Recent research 

also shows that trichomes may be involved in the early detection of pests whereby 

the trichomes are disturbed by the presence of moths or larvae and this leads to the 

plant gaining awareness of the pest which allows it to respond to the insect attack 

more quickly. The nature of response could be to increase the trichome density on 

new leaves (van Schie et al., 2007; Kobayashi et al., 2010).  
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Epicuticular wax on the surface of leaves may also play a role in protecting plants 

against insects (Eigenbrode and Espelie, 1995). In addition to preventing the plant 

from desiccation, they also result in a more slippery surface which prevents non-

specialized insects from inhabiting the plant (Jenks et al., 1994; Riederer and 

Schreiber, 2001). The chemical and physical components of the wax layer play an 

important role in determining resistance (Howe and Schaller, 2008). In a study 

conducted on C. partellus it has been found that edge spines and leaf surface waxes 

play an important role in the reorientation of newly hatched C. partellus larvae which 

have drifted out onto leaves, and whose aim is to reach the whorl. The larvae are 

reorientated to the stalk in order for them to continue their climb. Therefore plant 

characteristics such as leaf surface waxes can be partially responsibly for different 

levels of resistance between varieties (Bernays et al., 1985). 

Silicon in plants can also confer resistance to insects, and it has been shown that 

constitutive resistance using silicon as a physical defense mechanism is important 

against chewing insects. This has been shown for sugarcane that the application of 

silicon fertilizer resulted in increased resistance to penetration by E. saccharina 

(Keeping and Meyer, 2002; Kvedaras and Keeping, 2007). Another important 

physical attribute of plants involved in pest resistance is leaf toughness. This 

characteristic has an effect on insect penetration, preventing their piercing and 

sucking mouthparts from damaging plant tissues (Schaller, 2008). Leaf toughness is 

generally regarded as a physical factor.  However the chemical composition of the 

cell wall contributes to leaf toughness (Schaller, 2008). Other physical attributes of 

plants contributing towards insect resistance are shape and colour. In a study was 

conducted by Kumarasinghe and Jepson (2003) on the antixenotic effect of 

sugarcane leaves on feeding and ovipositing by Pyrilla perpusilla Walker 

(Lophopidae: Homoptera), leaf colour was found to play an important role in choice of 

host for feeding. 

 

1.3.4 Chemical defense mechanisms in plants 

Chemical factors involved in plant resistance can be used in one of two ways. Firstly, 

chemicals can decrease the nutritional value of the plant as a food source, and 

secondly, they can deter insects by producing toxins. Plant primary metabolism gives 
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rise to carbohydrates, amino acids, and lipids that are vital nutrients for insects; and 

the availability of these nutrients has an effect on the life span, size, productiveness, 

and mortality of insects (Howe and Schaller, 2008).  

Secondary metabolites play a vital role in defense mechanisms of plants (i.e., 

antixenosis, antibiosis and tolerance) (Wink, 1988). Phenolic compounds are 

secondary metabolites that are major compounds in plants (Mazid et al., 2011). 

Phenolic compounds include coumarin, lignin, flavonoids, and tannins (Mazid et al., 

2011). Coumarins occur extensively in plants and are known to act as natural 

defense compounds against insects, fungi, and bacteria (Mazid et al., 2011). There 

are a number of cases where flavonoids are used in resistance against insects in 

plants. The C-glycosyl flavone, maysin, in maize silk tissues has insecticidal activity 

against Helicoverpa zea Boddie (Lepidoptera: Noctuidae) (Byrne et al., 1996; Rector 

et al., 2002). Tannins can affect the growth and development of insects, and can also 

behave as feeding repellents to a number of animals (Mazid et al., 2011). Terpenes 

are the largest group of secondary products and have a number of functions in 

plants, which include the formation of oils and resins involved in the defense against 

other organisms (Mazid et al., 2011). It has been shown that individual terpenes 

behave as insect antifeedants (Meisner et al., 1982; Van Beek and De Groot, 1986; 

Wickham and West, 1992). They have also been found to play a role in antibiosis in 

sugarcane against the woolly aphid Ceratavacuna lanigera Zehntner (Hemiptera: 

Aphididae) (Hunsigi et al., 2006). 

Non-protein, nitrogen containing secondary metabolites includes alkaloids, 

cyanogenic glycosides, polyamines, polyamine phenylpropanoid conjugates (PPCs) 

and benzoxazinoids (Mazid et al., 2011). Dhurrin, a cyanogenic glycoside has been 

found in sugarcane leaves using HPLC, and it plays a role in constitutive and 

inducible resistance whereby the activity of IDP-glucose:p-hydroxymandelonitrile-O-

glucosyltransferase and dhurrinase enzymes increases when sugarcane is attacked 

by the stalk borer Diatraea saccharalis Fabricius (Lepidoptera: Crambidae) (De 

Rosa-Junior et al., 2007). It has been found that high concentrations of cyanide 

correlate with a reduction in feeding by first instar larvae of C. partellus in sorghum 

(Woodhead et al., 1980). Arginine is an important amino acid in plants and is 

involved in defense mechanisms against insects and pathogens. Arginine can be 

broken down by Jasmonic acid (JA)-induced arginase which in turn has an effect on 
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the insect’s nutrition (Chen et al., 2005). Benzoxazinoids occur predominantly in the 

family Poaceae which includes maize, wheat and sugarcane (Singh et al., 2003). 

Benzoxazinoids concentrations are higher in younger plants and young, exposed 

tissues of older plants (Thackray et al., 1990). Aphids and stalk borers are deterred 

by benzoxazinoid compounds, which could be due to an anti-feeding effect of the 

compound and may also result in the inability of insects to detoxify other defense 

compounds in plants (Klun and Robinson, 1969; Argandona et al., 1980; Houseman 

et al., 1992; Barry et al., 1994; Ortego et al., 1998). Benzoxazinoids are known to be 

constitutive compounds but can also be synthesized due to an induced response 

from insect attack (Gutierrez et al., 1988; Huang et al., 2006; Wang et al., 2007). 

 

1.3.5 Protein based defense mechanisms in plants 

There are four classes of proteinases in insects, namely, serine, cysteine, aspartic 

acid proteinases and the metalloproteinases (Falco et al., 2001). Serine proteinase is 

found in Lepidoptera and cysteine proteinase activity in Coleopteran insects 

(Houseman et al., 1992; Gatehouse et al., 1985; Murdock et al., 1987). Plant 

proteinase inhibitors (PIs) are found in a number of plants and form part of their 

natural defence mechanisms against herbivores (Ryan, 1990). The inhibitors are 

more commonly found in plant parts more prone to attack, such as bulbs, leaves and 

seeds and may be of constitutive or wound-induced in nature (Falco et al., 2001). A 

number of papers have shown that these proteinase inhibitors have an effect on 

larval development but do not cause their death (Wolfson and Murdock, 1995). It is 

thought that the inhibitors have an effect on the digestive system of insects by 

inhibiting the activity of midgut enzymes therefore resulting in the reduced availability 

of amino acids required for protein synthesis, which in turn negatively impacts on 

growth, development, and reproduction of the insect (Falco et al., 2001). 

Alternatively, an indirect effect on insects can be caused whereby there is an 

increase in production of digestive proteinases to make up for the low levels of 

available amino acids, and this results  in a reduction in amino acids needed for 

essential proteins (Broadway and Duffey, 1986). It has been shown in artificial diets 

incorporating soybean proteinases fed to sugarcane borers that a reduction in growth 

and development occurs in the borers (Falco et al., 2001). 
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Chitinase may also play a protective role against insects in plants by interrupting 

chitin-containing glycoproteins of the peritrophic matrix, which is a system that 

guards the gut cells from being damaged by digestive enzymes and microorganisms 

(Barbehenn, 2001). Lectins are sugar-binding proteins that occur in plants and other 

organisms, predominantly in legumes, that play a role in the defense mechanisms of 

the plant (Falco et al., 2001). The expression of lectin-like genes in sugarcane has 

been shown to be specific to certain tissues where expression is lower in the stalk 

and higher in the leaf roll, apical meristem and lateral buds (Falco et al., 2001).  

Polyphenol oxidase (PPO) enzymes result in the browning of plant extracts and 

tissues that have been damaged by herbivory, wounding and JA (Constabel et al., 

2000; Falco et al., 2001). It has been suggested that there is a role for PPOs in 

defending plants against insects. During feeding of the insect on the plant, o-

quinones are produced due to mixing of PPO and phenolics and this leads to the 

modification of free amino acids and sulfhydryl groups in dietary proteins in the 

insect’s mouth and gut (Falco et al., 2001). The formed phenolic decreases the 

nutritive value of the proteins (Constabel et al., 2000). The combination of PPOs with 

a phenolic substrate in glandular trichomes results in a glue-like substance which 

traps tiny insects (Falco et al., 2001). When PPOs are present in mesophyll tissue 

they result in proteins being modified and this leads to reduced digestibility of the 

protein in the insects gut during feeding (Falco et al., 2001).  

Maize insect resistance cysteine proteinase (Mir1-CP) is a papain-like cysteine 

proteinase with an amino acid sequence similar to that of the cysteine proteinases 

from a number of baculoviruses that infect lepidopteran larvae through consumption 

(Rawlings et al., 1992). After ingestion by the insect, Mir1-CP proteolytic activity 

harms the peritrophic matrix (PM) (Pechan et al., 2002). Maize lines showing 

resistance to fall-armyworm (FAW) and other lepidopteran larvae were conventionally 

bred from wild germplasm from Antigua (Williams et al., 1990; Davis et al., 1998). 

After one hour of attack the maize varieties show a build-up of Mir1-CP in the whorl 

due to feeding of lepidopteran larvae (Pechan et al., 2000). Sugarcane shows cDNAs 

alike to that of the maize mir1 gene (Falco et al., 2001). The gene has been found to 

be expressed in the sugarcane callus, seeds, the root transition zone, and in the stalk 

of the plant (Jiang et al., 1995). Reports show that FAW resistant maize inbred 

Mp708 shows three times higher levels of JA before the attack by herbivores 
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compared to the susceptible maize inbred.  It therefore seems that a section of 

Mp708’s defence pathway is primed by JA with small amounts of protein always 

being present (Shivaji et al., 2010). It was shown by Mohan et al. (2008) that Mir1-CP 

had LC50 values close to that of Bacillus thuringiensis CryIIA toxin, in the range of 0.6 

to 8 µg g-1. 

 

1.3.6 Indirect defense mechanisms in plants 

Within the last few years another type of defense has been identified, which was first 

found in maize, and is now referred to as indirect defense. It has now been identified 

in a number of plant species in which the attack of insect results in the plant giving off 

complex amounts of volatiles into the atmosphere from their vegetative plant parts 

and these volatiles are known as herbivore induced plant volatiles (HIPVs). Enemies 

of these herbivores can be attracted to these HIPVs, and this is known as constitutive 

indirect defense (Turlings et al., 1990; Dicke and Sabelis, 1998; Baldwin et al., 2002). 

There is a range of HIPVs known to exist in plants, including alkenes, alkanes, and 

two jasmonates (cis-jasmone and methyl jasmonate), but the main compounds 

seems to be C6 green leaf volatiles (GLVs), terpenes and products derived from the 

shikimic acid pathway (Preston et al., 2001; Farmer and Ryan, 1990; Holopainen, 

2004; Van den Boom et al., 2004; Arimura et al., 2004; Turlings et al., 1998; Ferry et 

al., 2004). The volatiles can work in a number of different ways against herbivores; 

either attracting predators and parasites of the target herbivores, directly deterring 

the herbivore, or by priming the healthy plant parts of the plant under attack, or of the 

neighbouring vulnerable plants so that more efficient defense can take place in future 

attacks (De Moraes et al., 2001; Heil and Silva-Bueno, 2007; Ton et al., 2007).  

Although indirect defense mechanisms are seen in natural hosts of E. saccharina, 

there have been no known records of sugarcane displaying indirect defense to this 

stalk borer (Conlong and Hastings, 1984). This could be due to loss of this trait 

during sugarcane plant breeding where only direct defence is actively selected for 

(Gouinguene et al., 2001; Degen et al., 2004). This has been seen in maize whereby 

a number of North American maize lines do not release (E)-β-caryophyllene in 

response to attack by Diabrotica virgifera virgifera LeConte (Coleoptera: 
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Chrysomelidae) (western corn rootworm), whilst European lines which do show 

indirect defense to the rootworm (Kollner et al., 2008). 

 

1.3.7 Screening for host-plant resistance 

1.3.7.1 Techniques for screening and assessing plants for 

resistance to stalk borers 

Initial host-plant resistance screening studies should take place under controlled 

conditions in a glasshouse, or in the laboratory to increase precision (Ahman. 2006). 

Characteristics in the field such as soil, moisture, climate, and variable pest numbers 

reduce precision of field trials. Field assessments are generally performed at the last 

two stages of sugarcane selection programmes (Keeping, 2006). Designing 

experiments where the conditions are optimized for determining differences between 

sugarcane varieties in terms of their resistances takes into account the background 

of resistance mechanisms. For assessing both induced and constitutive resistance, 

bioassays using insects on plants can be used to compare insect numbers, plant 

symptoms, antibiosis, and antixenosis resistance components (Ahman, 2006). 

Numerous methods have been used and explored to distinguish sugarcane varieties 

for resistance against stalk borers. These include measurement of internode rind 

hardness, forced penetration of larvae into stalks, ovipositing tests using moths, trials 

conducted under a controlled environment for artificial infestation of plants, and the 

incorporation of leaf powders into an artificial diet (Nibouche and Tibere,2010; 

Goebel and Way, 2009; Vercambre et al., 2001).  

Black head stage egg masses and neonate larvae of C. partellus have been used to 

artificially infest maize varieties to determine their different resistances or 

susceptibilities (Kumar, 1997a). In sorghum and maize, the use of a “Bazooka” 

applicator for inoculating plants with C. partellus has been successful (Sharma et al., 

1992). First instar larvae, together with a carrier, such as poppy seeds or corn cob 

grits, are transferred into a plastic bottle of the Bazooka and the leaf whorl of plants 

are infested with a single stroke that releases five to seven larvae (Sharma et al., 

2008). A camel hair paint brush can also be used to manually deposit larvae onto the 

plant (Nibouche and Tibere, 2010). Generally, five to seven larvae are enough to 



33 
 

cause a fair amount of damage to the leaves and growing point (i.e. >90% damage) 

(Padmaja et al., 2012). The use of larvae for infestation of plants has been reported 

to be more effective than egg masses in host-plant resistance screening studies 

(Kumar, 1995). 

A number of different damage parameters have been used in assessing sugarcane 

varieties for resistance to Chilo spp. These include foliar damage (leaf feeding 

damage), length of the stalk tunnelled, number of entry and exit holes in the stalk, 

stalk breakage, larval and pupal numbers, and deadhearts (Kumar, 1997b; Sharma 

et al., 2008). Due to the majority of injuries that cause yield loss occurring within the 

stalk of the plant, most studies on resistance use stalk damage parameters to assess 

resistance (Nibouche and Tibere, 2009). These damage parameters can be easily 

used when a small number of sugarcane varieties are being assessed, however, in 

large breeding programmes, where rapid progress is required, a single parameter 

such as leaf feeding damage can be used (Kumar, 1997a). Furthermore, C. 

sacchariphagus and C. partellus larvae initially feed on the leaves of their host before 

entering the stalk, resulting in leaf lesions. These leaf lesions give indications of 

young borer populations on the crop (Nibouche and Tibere, 2009). The use of leaf 

feeding injuries to assess resistance of sugarcane to C. sacchariphagus has been 

done by Conlong et al. (2004). Leaf damage on the whorl stage of maize has also 

been used to distinguish between susceptible and resistant varieties of maize 

(Kumar, 1997b).   

The stage of the plant to be used in host-plant resistance screening studies must 

also be considered. Ampofo et al. (1986) used plants that were four weeks old for 

studies on maize resistance to C. partellus. However, it has also been found that 

plants of 2 weeks of age can distinguish between resistant and susceptible 

sugarcane varieties (Kumar, 1997a). C. partellus has been known to attack sorghum 

plants from two weeks after germination (Kumar et al., 2006). 

1.3.7.2 The use of artificial diet bioassays in insect resistance 

screening 

Artificial diets are vital in arthropod research (Blanco et al., 2009). Incorporating leaf 

material into an artificial diet can be useful in determining any constitutive resistance 

mechanisms in different plant varieties (Blanco et al., 2009). The use of artificial diets 
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in resistance screening studies is also useful in comparing sugarcane varieties under 

uniform conditions where variations from the environment are excluded (Padmaja et 

al., 2012). In order for successful resistance screening studies to take place, a large 

supply of insects in sufficient numbers is required, as well as a suitable artificial diet 

for rearing and maintaining insects to be used in resistance screening studies (Songa 

et al., 2001).  

There are numerous commercial diets that have been developed to maximize insect 

growth and development by meeting all the nutritional requirements of the target 

insect (Blanco et al., 2009). If an artificial diet does not meet the nutritional 

requirements of the insect it can result in a negative effect on the insects’ 

development and reproduction. Artificial diets should contain the correct proportions 

of nitrogen, lipids, carbohydrates, vitamins and minerals (Cohen, 2004). 

Carbohydrates have an effect on egg production and survival making them one of the 

most important components in the diet (Hari et al., 2008). Reduced fitness and 

reproduction has been observed in a number of economically important insects which 

have been soley raised on artificial diets (Kega et al., 2010). This is often referred to 

as bottleneck stress and can occur when an insect is taken out of its natural 

environment and has stress imposed to it that would not occur in nature, such as 

crowding, nutrition, temperature, humidity and lack of feeding choices (Cohen, 2004).   

The incorporation of freeze-dried leaf powder into the artificial diet of C. partellus was 

done in an experiment to study the antibiosis resistance mechanism of 20 sorghum 

varieties (Kumar et al., 2006). Williams and Buckley (2008), also conducted a study 

whereby lyophilized leaf tissue of 20 maize varieties, varying in resistance, were 

incorporated into an artificial diet to determine their effects on the growth of fall 

armyworm (Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)) and the 

southwestern corn borer (Diatraea grandiosella Dyar (Lepidoptera: Crambidae)). 

Differences in growth of these insects were observed between resistant and 

susceptible maize varieties incorporated into diets. 
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1.3.7.3 Surrogate insect resistance screening 

Due to quarantine procedures, limitations to conduct host-plant resistance screening 

on sugarcane varieties to C. sacchariphagus occur in South Africa. The concept of 

‘surrogate insect resistance screening’ was explored in this project, whereby F. 

serrata and C. partellus were used as surrogates for C. sacchariphagus in host-plant 

resistance studies. The concept of surrogate insect resistance screening is based on 

the theory that all three of these pests feed on the whorl of the plant, and therefore 

similar resistance mechanisms within the plant may act against them. C. partellus 

and C. sacchariphagus have an additional factor in common because they are both 

top borers. Among the few South African varieties with known resistance or 

susceptibility to C. sacchariphagus, there may be a correlation between F. serrata 

and C. sacchariphagus resistance rankings (Figure 1.9) suggesting that there could 

be some commonality in resistance mechanisms at least within the leaf whorl. 

Surrogate insect resistance screening has proven successful within the borer genus 

Ostrinia on maize (Overman, 1994). 

 

Figure 1.9 Relationship between Fulmekiola serrata numbers per leaf whorl (Anon, 

SASRI, South Africa) and Chilo sacchariphagus leaf damage index for five genotypes 

(for which data is available) (Conlong et al., 2004) 
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1.3.8 Near-infrared reflectance spectroscopy (NIRS) as a rapid screening 

tool in pest resistance 

1.3.8.1 Background information 

The analysis of plant constituents (e.g. proteins, carbohydrates, and lipids) is an 

integral part of numerous agricultural studies. However, chemical analyses are time 

consuming and expensive (Purcell et al., 2009). In plant breeding trials, large 

numbers may be required for analysis. This can lead to the analyst being forced to 

bulk samples in order for a sufficient amount to be obtained, and this in turn results in 

the accuracy of the experimental design being compromised (Foley et al., 1998). The 

use of NIRS has proven to be useful to overcome such issues. NIRS makes use of 

optical data, and is based on the reflectance from a sample in relation to the amount 

of radiation hitting it (Newgard, 2004). NIRS is associated with the absorption of 

electromagnetic radiation in the wavelength region from 750 to 2500 nm, next to the 

mid-infrared region and up to the visible region (Osborne, 1983; Workman and 

Shenk, 2004). The types of bonds that occur between atoms in plant tissues reflect 

the composition of the tissue, and spectroscopy can be used to determine 

information about the bonds between the atoms or groups of atoms (functional 

groups) (André and Lawler, 2003). The exposure of a sample to irradiation results in 

vibrations between the bonds which in turns results in stretching and bending. This 

results in a wave motion occurring in the bond at a frequency specific to the 

functional group. Absorption occurs of the incident light whose frequency matches 

that of the vibrations of the waves, and reflection or transmittance occurs of those 

frequencies that do not match. Vibrations of C-H, -O-H, S-H, and N-H bonds 

predominantly absorb NIR (Reich, 2005). These bonds are major constituents of 

organic compounds in plant tissues (André and Lawler, 2003). The type and number 

of bonds in the tissues are determined by the chemical make-up of the tissue and 

hence it is the chemical constituents in the tissues that determine the wavelengths 

and the amount of light that is absorbed (Foley et al., 1998). It is therefore the light 

that is reflected from a sample that gives information on the chemical composition of 

that specific sample.  

NIRS has a number of advantages in that it provides a rapid and accurate analysis of 

materials, is non-destructive to samples being analysed, does not require expensive 
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and hazardous chemicals, is able to analyse a large number of nonhomogeneous 

samples, and a number of components in each sample can be seen in its spectrum 

from a single measurement, which in turn also reduces costs (Reich, 2005; Roggo et 

al., 2007; Mark and Campbell, 2008). However, there are also accompanying 

disadvantages with using NIRS. The initial cost of the instrumentation is large, and it 

is also a necessity to calibrate the instrument for each sample component to be 

analysed (Osborne, 1983; Workman and Shenk, 2004). 

NIRS has been used by a number of industries including the oil, pharmaceutical, and 

agricultural industries. The use of NIRS is becoming increasingly popular and has 

become a routine method for analyses in many research fields (Foley et al., 1998). In 

agriculture, NIRS has a number of uses, which includes that of measuring grain 

quality, moisture content, and oil and protein contents (Throne et al., 2003). 

Additionally, NIRS has also been used to measure the composition of plants that are 

resistant to insects and pathogens (Andre and Lawler, 2003). The many advantages 

of NIRS, along with incremental advancements in the technology, have led to an 

increased use of NIRS in agriculture over other traditional methods. The majority of 

NIRS instruments that are being used are laboratory instruments which are kept in a 

controlled environment. However, a number of handheld NIRS instruments are also 

being used, mainly for measuring nitrogen contents of leaves to assist in optimizing 

fertilizer applications to crops. Portable NIRS instruments are also available that can 

scan the entire NIR spectrum. These specific instruments make use of fibre optic 

probes (Foley et al., 1998). 

Overtones and amalgamations occur in the NIR spectrum due to scattering of light 

and the occurrence of absorptions in the mid-infrared region (Barton, 2002). This 

makes the direct interpretation of the NIR spectrum difficult because there are only a 

few areas of absorbance that are due to only one functional group (Reich, 2005). 

Thus statistical models are needed to confirm the intensity of the relationship 

between a specific absorbance and a laboratory assay of a specific constituent in a 

number of different tissues for the sample of interest. Near infrared spectroscopy 

(NIRS) is therefore a secondary method used, whereby chemical composition is 

determined by comparisons of the spectra with samples whose composition has 

been determined using laboratory methods (Figure 1.10) (Foley et al., 1998). 
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Figure 1.10 Steps involved in building near infrared models for predicting for 

components of interest such as Eldana saccharina resistance in sugarcane 
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conventional means (Chen et al., 2002). Reference values may be that of measured 

nitrogen or protein concentrations, carbohydrates, grain yield, digestibility and intake 

of food by herbivores, susceptibility or resistance to insect attack, and others (Foley 

et al., 1998). It involves selecting representative samples and acquiring spectra using 

a spectrometer (Chen et al., 2002). Once the calibration has been built, it is important 

to test its quality, and this is done by a process called validation. Validation tests the 

ability of the calibration equation to predict a different sample set or an entire 

population of samples (Naes et al., 2002). Different types of validation methods can 

be used. An independent sample set, separate to the calibration data set can be 

used, or the same calibration data set can be used as is done in cross-validation 

(Foley et al., 1998). If the calibration model is accurate in predicting reference values 
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then it can ultimately be used to estimate the composition of samples for which they 

are not known (André and Lawler, 2003).  

 

1.3.8.3 Chemometrics 

Chemometrics is the name given to mathematical and statistical methods which are 

used to remove the complexity from spectral data and to obtain useful information 

from the data (Jørgensen, 2000). Chemometric methods used can be one of a 

number of different multivariate regression procedures, such as multiple linear 

regression (MLR), principal components regression (PCR), and partial least squares 

(PLS) regression (Foley et al., 1998). The use of such procedures allows one to see 

an overall view of the data, whereby major differences between groups and 

correlations can be evaluated (Wold, 1991). Pre-treatments and transformation of 

spectral data is used to reduce the effect of particle size, scattering and other factors 

on the NIR spectra. Transformation techniques include calculating first and second 

derivatives, de-trending, and standard normal variate (SNV) transformation 

(Jørgensen, 2000).  

 

1.3.8.4 Evaluation of statistics from near infrared calibrations and 

validations 

Evaluation of statistics from the calibrations and validations developed using NIRS is 

an important step to determine the accuracy and efficiency of a calibration model. 

Common statistics used are the standard deviation (SD), standard error of calibration 

(SEC), standard error of prediction (SEP), the coefficient of determination (R2), slope 

of the regression equation, root mean square error of calibration (RMSEC), standard 

error of cross validation (SECV), root mean square error of cross validation 

(RMSECV), residual predictive deviation (RPD), standard error of prediction (SEP), 

and the root mean square error of prediction (RMSEP) (Dardenne, 2010; Fassio et 

al.,2007). The equations and interpretations of these statistics can be read in a 

number of textbooks (Naes et al., 2002). 
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1.3.8.5 Use of NIRS to predict for pest and disease resistance in 

plants 

Plant constituents in different plant parts are often analysed using spectroscopic 

techniques. Investigation of new techniques and applications of these techniques is 

constantly underway. For example, plant breeders are developing NIRS calibrations 

that can assist in developing improved plant varieties in a shorter time frame (Purcell 

et al., 2009). Improved varieties of sugarcane are vital in protecting the plant against 

disease and insects, and are also important in producing higher yields of biomass 

and sucrose per hectare. The conventional development of new varieties can take up 

to 10 years, and is a resource and labour intensive procedure (Purcell et al., 2010).  

Fiji leaf gall (FLG) is caused by infection by the Fiji disease virus (FDV) and is a 

serious disease in sugarcane in Australia that is transmitted by the sugarcane 

planthopper Perkinsiella saccharicida Kirkaldy (Hemiptera: Delphacidae) (Purcell et 

al., 2009). The main means of control is the use of resistant varieties and by using 

clean, disease free planting material. There is difficulty in rating sugarcane clones for 

resistance to the disease because infection rates cannot be controlled in field trials. 

Using glasshouses to perform ratings have also been shown to be unreliable 

because there are no correlations between the glasshouse results and field trial 

results. Therefore, as with many other diseases, the development and use of a rapid 

and in-field technique to detect resistance would be highly beneficial in sugarcane 

plant breeding programmes. In a paper published by Purcell et al. (2005), a number 

of benefits are listed with the use of NIRS as an early resistance screening method. 

These include earlier screening of varieties for the virus which will have a positive 

effect on the number of clones being brought forward to later stages in the selection 

programme, earlier detection of susceptible clones, a reduction in the need for field 

trials, which will in turn allow for better resource management, and generation of 

reliable data that can be used in future research projects.  

As with the case of FDV in Australia, E. saccharina poses as a serious threat to the 

sugarcane industry in South Africa (Rutherford and Van Staden, 1996). The use and 

effectiveness of field trials is also limited because there are low numbers of the borer 

when the rainfall is high in some years. Thus a quick, accurate method is desired in 
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the early selection stages of a plant breeding programme. Larvae that have just 

hatched usually take approximately one week before physically boring into the stalk. 

Thus, the differences in survival and behaviour of larvae on the stalks of sugarcane 

varieties could be explained based on the biochemical effects on the surface of the 

stalk (Rutherford and Van Staden, 1996). Chromatography is usually used to 

differentiate between components involved in resistance. However chromatographic 

methods are not practical when it comes to screening a large number of samples, 

which is the case in early stages of a selection programme for sugarcane. Rutherford 

and Van Staden (1996) were able to come up with a NIR method to predict E. 

saccharina resistance by using a stepwise linear multiple regression model based on 

wax analysis. Using this information, Purcell et al. (2003) looked at the surface wax 

of sugarcane leaves using gas chromatography (GC) and spectroscopic methods, 

and thereafter, they were able to distinguish between sugarcane plant components 

using chemometric data treatment. Meyer (1997) reviewed a number of papers that 

suggest that flavonoids in the stalk bud scales and surface wax of the stalk could 

account for 55% of the variation in resistance among 30 NIRS analysed clones. 

Rutherford and Van Staden (1996) also deduced that wavelengths selected in 

multiple regression models indicate that alcohols and carbonyls contributed 

significantly to the wax component of insect resistance.  

Near infrared spectroscopy (NIRS) has also been applied to smut (Sporisorium 

scitamineum) resistance in sugarcane, whereby on-site screening based on NIRS 

was investigated by Purcell et al. (2010). Smut is a disease which results in severe 

stunting of plants, which in turn leads to significant decreases in yields. In an 

experiment conducted by Purcell et al. (2010), 31 sugarcane samples were used for 

a validation trial. NIRS was used to obtain the spectra from stalk bud tissue which 

were then pre-treated and analysed using chemometrics. The smut ratings based on 

NIR were compared to ratings from field trials. The results obtained were promising 

and showed good potential for using NIRS as an early screening method for 

resistance in sugarcane to smut (Purcell et al., 2010). 
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Abstract 

Chilo partellus and Chilo sacchariphagus are two stem borers that threaten the South 

African sugar industry at present. Sugarcane agro-ecosystems in KwaZulu-Natal 

were surveyed for C. partellus, and species confirmation took place using 

cytochrome oxidase I subunit (CO1) barcoding. A reliable supply of good quality 

insects is essential for host-plant resistant studies. The techniques used at the South 

African Sugar Research Institute (SASRI) for establishing and maintaining C. 

partellus colonies were developed. Artificial diets are developed to optimize insect 

growth and reproduction, and have to meet or exceed the nutritional requirements of 

target insects. Experiments were conducted to test different diets, with the 

incorporation of various ingredients and using different inoculation and rearing 

methods. Vials that were inoculated with two neonate larvae each gave higher mean 

larval weights and larval survival percentages than multicell trays and plastic jars. An 

improved artificial diet for rearing C. partellus was established; containing an 
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increased proportion of cane leaf powder (6.5% m/v), and incorporating non-fat milk 

powder (2.35% m/v) and whole egg powder (1.75% m/v). This diet gave higher mean 

larval survival percentages and mean larval weights than other diets tested. Because 

of an increased content of cane leaf powder (from 2.5% to 6.5% m/v), better 

discrimination between leaf powders from different sugarcane genotypes should 

become possible.  

Keywords: Chilo partellus; Chilo sacchariphagus; host-plant resistance; cytochrome 

oxidase I subunit barcoding; sugarcane agro-ecosystem; artificial diet; constitutive 

resistance 

 2.1 Introduction 

Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) is a serious pest in Asia and 

southern African countries (Arabjafari and Jalali, 2007). The main host plants of C. 

partellus include crops such as maize (Zea mays L.), sorghum (Sorghum bicolor L. 

Moench), rice (Oryza sativa L.) and pearl millet (Pennisetum glaucum) (Sallam and 

Allsop, 2002). C. partellus can infest the crop from seedling stage up until maturity 

and affects the entire plant except for the roots. C. partellus has adapted to 

sugarcane in North Africa (Assefa and Conlong, 2009), and is present in the South 

African sugarcane agro-ecosystem (Hutchison et al., 2008). It may represent a threat 

similar to the one once posed by Eldana saccharina Walker (Lepidoptera: Pyralidae) 

before it adapted to feeding on sugarcane after which it became a major pest 

(Rutherford, personal communication).The fast spread of C. partellus from Malawi, 

and the associated crop losses and damage due to this borer prove how serious this 

pest can be if left uncontrolled (Conlong and Goebel, 2002). Chilo sacchariphagus 

Bojer originated in south East Asia and has been a serious insect pest of sugarcane 

since the 19th century in Reunion, Mauritius and Madagascar (Rochat et al., 2001; 

Conlong and Goebel, 2002). The potential for an invasion by C. sacchariphagus from 

Mozambique into South Africa poses a great risk to the South African sugarcane 

industry (Goebel, 2006; Bezuidenhout et al., 2008). 

The use of host-plant resistance is one of the main methods of control for harmful 

borers such as C. partellus and C. sacchariphagus (Songa et al., 2001). The 

behavior of the borers is unpredictable and their numbers vary with changing 

seasons. As a result, field trials depending upon natural infestations of the borers are 



64 
 

unreliable for resistance screening studies. Artificial rearing of the target pests is 

therefore required. Incorporating leaf material of different sugarcane varieties into the 

artificial diet of insects can be used to test for the presence of constitutive antibiosis 

resistance mechanisms in different sugarcane varieties, which can be useful in 

arthropod research (Blanco et al., 2009). In order for successful resistance screening 

studies to take place, a large supply of insects in sufficient numbers is required, 

which requires a suitable artificial diet for rearing and maintaining insects to be used 

in resistance screening studies (Songa et al., 2001). Thus, colonies need to be 

established in a controlled environment. The success of the research depends on the 

supply of the insect in sufficient numbers and at the correct stages of its life cycle 

(Songa et al., 2001). Mass rearing can be defined as “the production of insects in 

numbers per generation exceeding 10 thousand to 1 million times the mean 

productivity of the native female population” (Taneja and Nwanze, 1990). The 

maintenance of the colony involves periodically incorporating wild populations of the 

species into the laboratory colony. This is done in order to preserve and maintain the 

heterozygosity in the pest population and to avoid deviation from the natural pest 

behaviour (Onyango et al., 1994). A suitable rearing facility is required in order to 

establish colonies successfully. Requirements in the facility are sufficient laboratory 

space, equipment, diet components, trained staff and different rooms are required to 

perform specific functions in rearing insect colonies. The rooms where larvae and 

moths are kept should have conditions (temperature, humidity and light) suitable to 

those of the insect and representative to conditions in the field (Tende et al., 2010). 

There have been various artificial diets used for rearing C. partellus, and that have 

been adapted and improved over time (Figure 2.1) (Taneja and Nwanze, 1990). 

Generally, artificial diets of insects should contain portions of nitrogen, lipids, 

carbohydrates, vitamins and minerals (Cohen, 2004). A list of the most important diet 

components and their functions in insects is shown in Table 2.1 (Cohen, 2004). It is 

important that the components in an insect’s diet be available in sufficient amounts, 

or else the insect will feed at a slower rate and less efficiently. In a number of cases, 

where economically important pests have been reared solely on artificial diet, 

reduction in fitness and reproduction has occurred, which in turn leads to slower 

developmental times and reduced fecundity (Kega et al., 2010). This is often referred 

to as bottleneck stress, which occurs when insects are taken out of their natural 
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environment and have factors imposed on them which did not occur in nature. 

Stresses that can impose themselves to insects in a rearing environment include 

crowding, nutrition, temperature, humidity, antimicrobial agents and lack of feeding 

choices (Cohen, 2004). 

C. sacchariphagus is not yet found in South Africa and therefore cannot be used to 

carry out studies in this country, unless under quarantine. The concept of ‘surrogate 

insect resistance screening’ will be explored, whereby C. partellus could be used as 

a potential surrogate for C. sacchariphagus in host-plant resistance studies. The 

concept is based on the fact that both these pests feed on the whorl of the plant, and 

both are top borers, and therefore similar resistance mechanisms within the plant 

may act against them equally. The concept of ‘surrogate insect resistance screening’ 

has proven successful within the borer genus Ostrinia on maize (Overman, 1994). 

Cytochrome oxidase I subunit (CO1) barcoding allows for the identification of 

organisms by looking at the similarity of their DNA sequence to a set of reference 

taxa (Habeeb and Sanjayan, 2011).  It allows for the discrimination of closely related 

species of lepidopterans and can therefore be used to select which target insects can 

be best used as surrogate insects in resistance studies (Herbert et al., 2003). 

The objectives of this chapter were to (a) survey the sugarcane agro-ecosystem in 

KwaZulu-Natal for the presence of C. partellus and to identify its various hosts; (b) 

discriminate between borers using cytochrome oxidase I subunit barcoding for the 

selection of target insects for use as surrogate insects in resistance studies (c) 

describe rearing methods used for establishing and maintaining C. partellus at the 

South African Sugar Research Institute (SASRI); and (d) establish a new artificial 

diet, to carry out constitutive resistance studies on sugarcane  varieties, with an 

increased proportion of cane leaf powder, without having a detrimental effect on the 

nutrient composition within the diet. Inoculation and rearing methods were also 

compared in order to establish which method would have the least negative impact 

on larval survival and growth.  
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Figure 2.1 Diets used for mass rearing Chilo partellus (Taneja and Nwanze, 1990) 
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Table 2.1 Important diet components and their functions in insects (Cohen, 2004) 

 

 

2.2 Materials and methods 

2.2.1 Surveying the sugarcane agro-ecosystem for Chilo partellus 

Field collections of putative C. partellus were carried out from infested host plants at 

three different sites. The sites visited were Sezela, Mount Edgecombe and Tinley 

Manor (all based in KwaZulu-Natal, South Africa). The stalks and leaves of the host 

plants were examined for borer damage symptoms and the presence of larvae. 

Stalks were dissected longitudinally using a cane knife (SASRI Technical Services) 

to recover the larvae. Recovered larvae were immediately placed in 25 ml sized 

plastic vials (Lasec, Durban, South Africa) containing 8 ml of the standard artificial 

Diet Component Function

Proteins

Source of Nitrogen.

Broken down into amino acids which are then used to build proteins for use in the

insects body (Muscles, cell membranes, enzymes, etc.)

Lipids

(sterols, oils, fats, 

phospholipids)

Building cell membranes, hormones, transport of nutrients, energy source,

structural material for making other molecules.

Carbohydrates Building material and energy source.

Water soluble vitamins

(Vitamin B and C)

Vitamin B is used as a co-factor in metabolism, or as a growth factor.

Vitamin C is a phagostimulant, antioxidant, cuticle sclerotization, and possibly for

defense.

Lipid-soluble vitamins

Vitamin A is important for eye pigment formation and other pigments needed for

growth.

Antioxidants and form part of membranes and vacoules. 

Vitamin E has an effect of fertility/fecundity, is an antioxidant, and may also have

other functions.

Minerals

Various minerals have different functions. E.g. Potassium is involved in some

chemical reactions, and is found in a number of structures. Important minerals

include potassium, phosphorous, magnesium, iron, and selenium.

Feeding stimulants
Stimualte the feeding process. Includes gamma amino butyric acid, sinigrin, waxes,

and plant secondary compounds.

Protective agents Prevents contamination of microbials, oxidation, and nutrient distruction. 

Nutritionally inert ingredients

Used to provide texture by use of fillers. E.g. cellulose used as a powder, girt, or

flakes.

May also be included for bulking the diet or to carry other substances. May also

include wheat germ, soy flour, bean meals, or other material from plants.

Water Required for all life processes.

Emulsifiers
Stabilizers which allows lipid- and aqueous-phase substances to mix and interact

for long times.

Gelling agents and stabilizers

Have a number of functions such as making a high water content diet solid,keeps 

the diet components mixed, and prevents reactions between ingredients from 

occuring.
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diet adapted from Onyango and Ochieng’-Odero (1994) (Table 2.2). Host plants 

found to be infested were observed and recorded. Two larvae from each site were 

stored in empty plastic vials containing ethanol to be used for species identification 

purposes. The rest of the larvae collected were left to feed on the diet and were to be 

used in colony establishment. 

Table 2.2 Artificial diet prepared in vials for mass rearing of Chilo partellus at SASRI, 

Mount Edgecombe (adapted from Onyango and Ochieng’-Odero (1994), by replacing 

maize whorl powder with cane leaf whorl powder)  

Fraction Ingredients 
Quantity for 

1L 

A 

Distilled water (ml) 400 

Brewer's yeast (g) 23 

Sorbic acid (g) 0.6 

Nipagin (g) 1.5 

Ascorbic acid (g) 2.5 

Vitamin E (cold water soluble) (g) 2 

Cane leaf whorl powder (g) 25 

Chickpea flour (g) 90 

Sucrose (g) 35 

B 
Agar powder (g) 12.5 

Distilled water (ml) 400 

C Formaldehyde (40%) (ml) 3 

 

2.2.2 Chilo partellus identification 

The objectives were to show that the larva collected from the field were larvae of C. 

partellus.  

2.2.2.1 DNA extraction and quantification 

DNA from two larvae collected from each site (a total of six larvae) was extracted 

using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) as per the 

manufacturer’s instructions. DNA quantification was performed using a NanoDrop® 

spectrophotometer (ND-1000) (Thermo Fisher Scientific, Wilmington, USA). 
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2.2.2.2 PCR amplification 

 

PCR amplification was carried out using the Kapa Robust 2G Kit (Kapa Biosystems, 

Massachusetts, USA) components as per manufacturer’s instructions. The positive 

control used included E. saccharina DNA (SASRI insect rearing unit, Mount 

Edgecombe, South Africa), and the negative control had no DNA. Three replications 

were performed for the larva from each site. Primers used for PCR amplification of 

the mitochondrial cytochrome oxidase I subunit (COI) were COI – 5’ F 

GGTCAACAAATCATAAAGATATTGG and COI – 5’ R 

TAAACTTCAGGGTGACCAAAAAATCA (Former et al., 1994). The components were 

made up into a 30 µl reaction mixture with a final concentration of 0.5 µM for each 

primer, 0.2 mM of dNTP mix, 0.75 U of KAPA2G Robust HotStart DNA polymerase, 1 

x KAPAEnhancer 1, 30 ng of extracted DNA and 1 x KAPA2G Buffer A. PCR 

amplification was performed in a Bio-Rad MyCyclerTM thermal cycler (Bio-Rad 

Laboratories Inc., USA) and the PCR parameters were as follows: 1 cycle of initial 

denaturation at 94oC for 2 min, 38 cycles of 94oC for 30 sec, 55oC for 50 sec, 72oC 

for 1 min 30 sec, and a final extension step of 72oC for 10 min.  

 

 

2.2.2.3 Gel electrophoresis 

Gel electrophoresis was performed in order to ensure the presence of DNA and to 

estimate the DNA fragment size. A 1.2% agarose gel was prepared by dissolving 0.6 

g of agarose gel in 50 ml running buffer (45 mM Tris, 45mM boric acid, 1mM EDTA; 

pH 8.0) which was made up of 200 ml 5 x TBE and 1800 ml distilled water. The 

solution was then poured into a 50 ml casting tray inserted with a comb, forming 15 

wells, which was allowed to set. Once the gel was set, it was placed into an 

electrophoresis chamber filled with 1 x TBE running buffer. The molecular solutions 

were made up using 1.5 µl loading dye and GelRed mix (10:1 ratio) and 5 µl of the 

amplified DNA sample. The solute ions were then carefully dispensed into individual 

wells in the gel material and a potential difference of 70 V cm-1 was applied to create 

an electric field. DNA fragments were observed using short wavelength UV light (320 

nm) beside a molecular weight marker (GeneRulerTM 100bp DNA Ladder Plus 

(Fermentas Life Sciences)). 
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2.2.2.4 PCR purification       

The remaining 25 µl of DNA sample was used for PCR purification which was carried 

out using the Promega Wizard SV Gel and PCR Clean-up System (Promega, 

Madison, USA) as per manufacturer’s instructions. DNA quantification was performed 

using a NanoDrop® spectrophotometer (ND-1000). 

 

2.2.2.5 Sequencing 

Purified PCR product was sequenced according to the method used by Platt et al. 

(2007), using the BigDye Terminator v3.1 Cycle Sequencing Kit components (Applied 

Biosystems, California, USA) and analysed using an ABI PRISM 310 genetic 

analyser (Applied Biosystems, USA). 

 

2.2.2.6 Sequence analysis and phylogeny 

Resulting nucleotide sequences were submitted to the BOLD (Barcode of Life Data) 

program (Ratnasingham and Hebert, 2007) for initial identification. Sequences were 

analysed and aligned using GeneiousTM 5.5.6 software (Kearse et al., 2012). 

Sequences were then moved into BioEdit sequence alignment editor (Hall, 1999). 

Alignments were constructed using MAFFT (a multiple sequence alignment program) 

(Katoh and Standley, 2013). The evolutionary history of the taxa analysed was 

represented using the bootstrap consensus tree using 1000 replicates (Felsenstein, 

1985). Branches corresponding to partitions reproduced in less than 50% bootstrap 

replicates were collapsed. The percentages of replicate trees in which the related 

taxa are clustered together in the bootstrap test were displayed next to the branches 

(Felsenstein, 1985). The tree was constructed to scale, where the lengths of 

branches were in the same units as those of evolutionary distances used to build the 

phylogeny tree. The Jukes-Cantor method (Jukes and Cantor, 1969) was used to 

compute evolutionary distances, and units were in the number of base substitutions 

per site. Pairwise deletion was used, where all positions having alignment gaps and 

missing data were eliminated in pairwise sequence comparisons. A total of 537 
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positions were present in the final dataset. Phylogenies were built using Mega4 

(Molecular Evolutionary Genetic Analysis) software (Tamura et al., 2007).   

 

2.2.3 Chilo partellus colony establishment and rearing 

2.2.3.1 Rearing facilities and equipment  

C. partellus larvae were reared according to the protocol used by SASRI, and are 

described below. The rearing facility for C. partellus at SASRI consisted of six rooms 

which were used for various rearing activities. These were the preparation room, the 

larval growth room, the parasite assessment room, the pupal development and adult 

emergence room, and lastly the gestation room.  

Larval and pupal development took place in rearing rooms maintained at 27 +/- 2oC, 

65 +/- 5% and an 8 hour light: 16 hour dark photophase provided by 65 watt colour 

19 Triphos fluorescent tubes. Lighting was supplemented by natural lighting through 

the windows. Emerged adults, mating, completion of their gestation period and egg-

laying took place in rearing rooms maintained at 27 +/- 2oC, 70 +/- 5% and an 8 hour 

light: 16 hour dark photophase provided by 65 watt colour Triphos fluorescent tubes. 

Light was also supplemented by natural lighting from windows. Inoculation of 

neonate larvae was done in rooms maintained at human comfort conditions (22 +/- 

2oC, ambient humidity). Light was provided by fluorescent tubes (colour 21 or cool 

white; nm spectrum; 400-500 lux).  

 

2.2.3.2 Diet preparation and pouring 

Collected larvae were reared and maintained on the diet shown in Table 2.2. The 

method for diet preparation was as follows: The Brewer’s yeast (NCP, 

Modderfontein, Johannesburg, South Africa), sorbic acid (Sigma Life Sciences, 

United States), ascorbic acid (Warren Chem Specialities, Cape Town, South Africa), 

vitamin E (Polychem Supplies cc, Congella), ground chickpea (S.E. Mart, Durban, 

South Africa), sucrose (Huletts, Durban, South Africa), and crushed cane tops and 

leaves (SASRI, KwaZulu-Natal, South Africa) from Fraction A were weighed and 

mixed together thoroughly. The sample of nipagin (Sharon Laboratories, Israel) was 
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dissolved in the ethanol from Fraction A. The distilled water from Fraction A was 

autoclaved and then allowed to cool to 60-70oC. It was then added to the dry 

ingredients from Fraction A, together with the dissolved nipagin, and mixed together 

for 3 minutes in the blender (6.7 litre bowl capacity) (Kenwood, United Kingdom). The 

agar powder (Polychem supplies cc, Congella) and distilled water in Fraction B were 

mixed together, autoclaved, and allowed to cool to 60-70oC. Fraction A and Fraction 

B ingredients were mixed together, after which the 40% formaldehyde volume (Merck 

(PTY) Ltd., Johannesburg, South Africa) from Fraction C was added, and mixing in 

the blender took place for a further 3 minutes. Eight millilitres of diet was dispensed 

into 25 ml sized vials (Lasec, Durban, South Africa) and placed open on the laminar 

bench where they were exposed to UV light for 1 hour. 

 

2.2.3.3 Diet inoculations 

The surface of the diet in each vial was punctured once with the end of a sterilized 

plastic rod to facilitate penetration of larva. Two active neonate larvae were 

transferred into a single 25 ml vial using a clean, sterilized paintbrush (Winsor and 

Newton, London, UK). Each vial was sealed with a ventilated lid. The vials and 

ventilated lids were sterilized in a 4.3% solution of Jik (Protea Chemicals, 

Johannesburg, South Africa) and water to prevent contamination. 

 

2.2.3.4 Larval growth 

The inoculated vials were transferred into the larval growth rooms, and at 25-27 days 

after inoculation, they were screened for the presence of pupae. The pupae were 

placed into multicell trays (Interpac, Woodland, California) and sealed with clingwrap 

(Multiwrap (PTY) Ltd., Wadeville, South Africa) using a wrapping machine. Each cell 

was aerated by checking that the machine punched a hole through the plastic wrap.  
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2.2.3.5 Adult emergence and ovipositing 

The pupae in the multicell trays were transferred to the adult emergence and 

ovipositing room for adult emergence to take place. Adults were collected daily, and 

a maximum of 20 males and females were placed into a 30 cm x 30 cm x 30 cm 

Perspex box with sleeves (Perspex from Maizey Plastics, Johannesburg, South 

Africa and assembled at SASRI), with a stocking rate of 1 female: 1 male always 

being maintained. Wax paper (Masscash (PTY) Ltd., Johannesburg, South Africa) 

ovipositing substrates were placed in each box together with a 250 ml container with 

fresh water and four 0.375” x 1-1/2” dental wicks (Shanghai Ristea Industries Co. 

Ltd., Shanghai, China) for the adults to drink from. The wax paper ovipositing 

substrates were folded into a number of pleats to form an appropriate substrate for 

ovipositing to take place. Eggs were collected on a daily basis and placed into plastic 

tubing which was sealed with a heat sealer. The sealed bags containing the 

ovipositing substrates were labelled with the date. Eggs were then placed in an 

incubator (TriLab, Pinetown, South Africa) maintained at 24oC. Perspex boxes were 

discarded after five days. 

 

2.2.3.6 Egg surface sterilization 

Surface sterilization took place of eggs that were five days or older (not hatching). 

This was done by removing the eggs from the substrate and placing them onto a 

Petri dish (Concorde Plastic (PTY) Ltd., Johannesburg, South Africa) with autoclaved 

Whatman No. 1 filter paper (Schleicher & Schuell, Whatman International Ltd, 

Maidstone, England). Under the fume cupboard, a solution of 15 ml formaldehyde 

and 85 ml distilled water was made up. This 5.25% formaldehyde solution was then 

added to the eggs in the Petri dish and left for 15 minutes, after which the 

formaldehyde solution was carefully poured off. The eggs were then rinsed twice with 

distilled water for 30 seconds each time. Eggs were finally transferred onto a clean 

piece of autoclaved damp Whatman No. 1 filter paper in a Petri dish and placed back 

into the incubator until hatching took place for inoculations. 
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2.2.4 Colony maintenance 

In order to maintain the established colonies, C. partellus borers were occasionally 

collected from their hosts in the agro-ecosystems surrounding sugarcane fields. The 

hosts were dissected and the larva or pupa extracted from the plant material. The 

collected insects were reared in isolation for their first generation to prevent any 

microbial contamination of the existing colony.  

 

2.2.5 Optimizing the artificial diet of Chilo partellus  

Eight separate experiments were conducted to compare different diets (Tables 2.3-

2.5), where all of the diets were prepared and poured using the same method 

established at SASRI, which are described above in Section 2.3.3.2, except where 

specified. Ingredients within the diets were adjusted accordingly to maintain a 

constant level of nitrogen, potassium and phosphorous in all the diets for 

comparative purposes and to prevent a negative impact on the insect’s growth and 

survival. The incorporation of egg powder (Sunspray Food Ingredients (PTY) Ltd., 

Johannesburg, South Africa) and non-fat milk powder (Lactalis Ingredients, 

Bourgbarre, France) into the diets played an important role in maintaining the correct 

proportion of nutrients within the diet. The control (represented as Diet One) used in 

each experiment (with the exception of Experiment Two) was the standard diet 

described by Onyango and Ochieng’-Odero (1994), where the variety NCo376 was 

sourced for cane leaf whorl powder 

Diets made in 25 ml sized plastic vials are shown in Table 2.3. Approximately 8 ml of 

diet was dispensed into the plastic vials. The diet surface was punctured using the 

back end of a sterilized rod to facilitate larval penetration. Each diet was made up of 

three replications of 20 vials each, arranged in a completely randomized design. Two 

neonate C. partellus larvae were introduced into each vial using a fine tipped, 

sterilized paintbrush (Winsor and Newton, London, UK), after which each vial was 

closed using a gauzed ventilated lid to prevent larvae from escaping and to prevent 

contamination. Vials were placed into open plastic containers (Lasec, Durban, South 

Africa) for each diet, and left in the rearing facility for 27 days (i.e. just before 

pupation) (Figure 2.2a). In Experiments Two and Three, vials were placed upside 
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down in the plastic containers to further reduce the death of larvae as a result of their 

movement away from the diet. C. partellus larvae are known to be positively 

phototropic and negatively geotropic (Scheltes, 1978).  

Plastic jars with gauzed lids (Lasec, Durban, South Africa) of 500 ml capacity were 

used for Experiments Four and Five(Table 2.4). Approximately 150 ml of diet was 

dispensed into each console jar, and the surface of the diet was punctured ten times 

using the back end of a sterilized rod. Five replications were used for Experiments 

Fourand 10 replications were used for Experiment Five, where each replication 

consisted of one jar. Inoculations were performed differently to that of the vials and 

multicell trays, where neonate larvae were used. In Experiment Four a, 50 sterilized 

C. partellus eggs in the black-head stage were placed onto the surface of Whatman 

No. 1 filter paper (Schleicher & Schuell, Whatman International Ltd, Maidstone, 

England) (Figure 2.2b). The filter paper was carefully placed onto the inside of the 

console jar lid, and jars were then closed and kept upside down to ensure that 

emerging larvae would move upwards toward the diet (Figure 2.2c). The same was 

repeated for Experiment Four b, except 100 sterilized eggs were used. For 

Experiment Five, 100 sterilized and non -sterilized eggs each were used for Diet One 

and Two, respectively. Jars were kept in the rearing facility for 27 days. Jars were 

observed on a daily basis, and once larvae had been seen to emerge, jars were 

turned upright to prevent the diet from eventual collapse. 

Table 2.5 shows diets used for experiments conducted using multicell trays (Interpac, 

Woodland, California). Each tray consisted of 32, 10 ml sized cells, into which 8 ml of 

diet was dispensed per cell. The diet was punctured using the back end of a 

sterilized rod. Three replications were used for each diet, with each replication 

consisting of one multicell tray. Inoculations were performed the same way as that for 

the vials, except with one neonate larva inoculated per cell. Cells were generously 

covered with sago to prevent the escape of larvae (Figure 2.2d). Trays were then 

placed into the rearing facility for 27 days. 

After 27 days, larvae were removed from their respective diets, and larval weight and 

larval survival was measured and recorded for each diet. 
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Table 2.3 Diets used in the Chilo partellus diet suitability experiments using vials, where the control diet is the standard diet used at 

SASRI for rearing C. partellus. Amounts shown are to make up 1 L of diet.  

 

 

Control

1 2 3 4 5 1 2

Control

1 2 3 4

Control

1 2 3 4

FRACTION A

Distilled water (ml) 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400

Brewer's yeast (g) 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

Sorbic acid (g) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Nipagin (g) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Ethanol (ml) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Ascorbic acid (g) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Vitamin E (Cold water soluble) (g) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Cane leaf whorl powder (g) 25 35 45 55 65 65 65 25 65 65 45 25 65 65 45

Chickpea (g) 90 70 52.5 35.5 18 18 18 90 18 18 52.5 90 18 18 52.5

Sucrose (g) 35 35 35 35 35 35 25.5 35 35 35 35 35 35 35 35

Non-fat milk powder (g) 0 0 0 0 0 0 23.5 0 0 23.5 0 0 0 23.5 0

Whole egg powder (g) 0 10 17.5 24.5 32 32 32 0 32 17.5 17.5 0 32 17.5 17.5

FRACTION B

Agar (g) 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

Distilled water (ml) 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400

FRACTION C

Formaldehyde (ml) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

1 Litre diet

Experiment 1 Experiment 2 Experiment 3 Experiment 4
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Table 2.4 Diets used in the Chilo partellus diet suitability experiments using 500 ml plastic jars, where the control diet is the 

standard diet used at SASRI for rearing C. partellus. Amounts shown are to make up 1 L of diet. 

 

Control 

1 2 3 4 1 2 

FRACTION A Sterilized eggs Non-sterilized eggs 

Distilled water (ml) 400 400 400 400 400 400 

Brewer's yeast (g) 23 23 23 23 23 23 

Sorbic acid (g) 0.6 0.6 0.6 0.6 0.6 0.6 

Nipagin (g) 1.5 1.5 1.5 1.5 1.5 1.5 

Ethanol (ml) 5 5 5 5 5 5 

Ascorbic acid (g) 2.5 2.5 2.5 2.5 2.5 2.5 

Vitamin E (Cold water soluble) (g) 2 2 2 2 2 2 

Cane leaf whorl powder (g) 25 65 65 45 65 65 

Chickpea (g) 90 18 18 52.5 18 18 

Sucrose (g) 35 35 35 35 35 35 

Non-fat milk powder (g) 0 0 23.5 0 23.5 23.5 

Whole egg powder (g) 0 32 17.5 17.5 17.5 17.5 

FRACTION B 

Agar (g) 12.5 12.5 12.5 12.5 12.5 12.5 

Distilled water (ml) 400 400 400 400 400 400 

FRACTION C 

Formaldehyde (ml) 3 3 3 3 3 3 

1 Litre diet 

Experiment 4a and 4b Experiment 5 
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Table 2.5 Diets used in the Chilo partellus diet suitability experiments using multicell 

trays. Amounts shown are to make up 1 L of diet. 

 

1 

 

2 

 

3 

 

FRACTION A 

Distilled water (ml) 400 400 400 

Brewer's yeast (g) 23 23 23 

Sorbic acid (g) 0.6 0.6 0.6 

Nipagin (g) 1.5 1.5 1.5 

Ethanol (ml) 5 5 5 

Ascorbic acid (g) 2.5 2.5 2.5 

Vitamin E (Cold water soluble) (g) 2 2 2 

Cane leaf whorl powder (g) 25 65 65 

Chickpea (g) 90 18 18 

Sucrose (g) 35 35 25.5 

Non-fat milk powder (g) 0 0 23.5 

Whole egg powder (g) 0 32 17.5 

FRACTION B 

Agar (g) 12.5 12.5 12.5 

Distilled water (ml) 400 400 400 

FRACTION C 

Formaldehyde (ml) 3 3 3 

1 Litre diet 

Experiment 6 



79 
 

 

 

 

 

Figure 2.2 Different techniques used for rearing Chilo partellus (a) 25 ml vials with 

guazed lids; (b) Whatman No. 1 filter paper on lid of plastic jar with 50 C. partellus 

sterilized black-head stage eggs; (c) 500 ml plastic jars;  (d) Multicell trays. 

 

a. 

b. 

.. 

d. 

c. 
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2.2.6 Statistical analysis 

Software used to analyse data was GenStat release 14th edition (VSN International, 

Hemel Hempstead, UK) (Payne et al., 2011). Mean larval weights and larval survival 

for each diet was used for statistical analysis. Prior to analysis, the W-test for 

normality (Shapiro and Wilk, 1965) was used on the data for each parameter. These 

were subjected to log10 or square root transformations where necessary. The data for 

mean larval weight was subjected to Residual Maximum Likelihood (REML) variance 

component analysis (Harville, 1977) and means separated by the Sidak test (Abdi, 

2007). Mean larval survival number was analysed using General Linear Mixed Model 

(GLMM) analysis (Breslow, 1993) and the Sidak test used to separate means. The 

standard error of the mean (SEM) was calculated for each parameter and presented 

in tables along with the means. 

 

2.3 Results 

2.3.1 Chilo partellus host identification 

The hosts identified at the three sites surveyed for C. partellus included wild sorghum 

(Sorghum halapense (L.) Pers.) (Figure 2.3a) and Job’s tears (Coix lacryma-jobi L.) 

(Figure 2.3b). 

Figure 2.3 Observed hosts of Chilo partellus (a) wild sorghum (Sorghum halepense 

(L.) Pers.); (b) Job’s tears (Coix lacryma-jobi L.) 

a b 



81 
 

2.3.2 Chilo partellus identification using molecular phylogeny 

The samples collected from the three different sites were PCR amplified using 

standard COI primers (LCO forward and HCO reverse), and the sequences 

generated from this study were submitted to BOLD / BLAST (Ratnasingham and 

Hebert, 2007) for comparative analysis against the BOLD / BLAST database. The 

sequences obtained from the specimens from the three different sites were all 

identical and the BLAST / BOLD search confirmed the species collected to be that of 

C. partellus. C. partellus isolates grouped together with the C. partellus reference 

strain (KINS091-10.COI-5P, BOLD) in the neighbour-joining tree, and showed 100 

percent bootstrap support (Figure 2.4). Furthermore, COI gene sequences were able 

to differentiate between Chilo species, separating C. partellus and C. sacchariphagus 

into two different groupings (Figure 2.4). The phylogeny shows a closer relationship 

between the Lepidoptera species sharing the same genus (viz. C. partellus and C. 

sacchariphagus), versus E. saccharina which falls out of this group.  

 

 

 

 

 

 

 

 

Figure 2.4 A neighbour-joining tree showing Chilo phylogeny based on the COI gene 

sequence for Chilo partellus obtained in KwaZulu-Natal (red) and Chilo reference 

sequences  from BOLD (black). The scale bar represents 2 estimated changes per 

100 nucleotides. Eldana saccharina was used as out-group.  

* C. sacchariphagus from Kediri, East Java 28-1-2010, Adult moths, collected by 

Mike Way, Chilo sacchariphagus (96.98 BOLD Status = early release) 

                consensus sequence) 
 

               Mt Edgecombe)  

              (Tinley Manor) 
 

                     -      -     

              (Sezela) 

  

                   (J 066748) 
 

                   (Mauritius)   

  

               (M446 D 486916.1) 
 

               (S442 D 486923)  

 

100 

100 

100 

0.02 
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2.3.3 Optimization of the Chilo partellus artificial diet 

In Experiment One; there was a significant difference between diets with respect to 

mean larval weight (Appendix 2.1). Diets One and Two differed significantly from 

Diets Three and Four in terms of mean larval weight (Table 2.6). Mean larval weight 

was significantly higher for Diets Three and Four, which had cane leaf powder of 45g 

and 55g per 1L, respectively. There was no significant difference between diets with 

respect to larval survival in Experiment One (Appendix 2.2). However, Diet Three 

gave the highest survival percentage (50.83%) (Table 2.6). 

There was a significant difference between diets for mean larval weight in 

Experiment Two (Appendix 2.3). Diet Two, which incorporated non-fat milk powder, 

resulted in a significantly higher larval weight than Diet One, which had a zero level 

of non-fat milk powder (Table 2.6). However, there was no significant difference 

between the diets in terms of larval survival (Appendix 2.4), although Diet Two gave 

a higher survival percentage (45%) than Diet One (30.17%) (Table 2.6). 

In Experiment Three a, there was a significant difference between diets with respect 

to mean larval weight (Appendix 2.5). Diet Two had a significantly lower mean larval 

weight, whilst Diet Four had a significantly higher mean larval weight compared to the 

rest of the diets (Table 2.6). There was no significant difference in mean larval weight 

between Diets One and Three, although Diet Three gave a higher larval weight than 

Diet One (Table 2.6). There was also a significant difference between diets with 

respect to survival percentage for this experiment (Appendix 2.6). Diets Three and 

Four resulted in significantly higher survival percentages than did Diets One and 

Two, with Diet Three (65g cane leaf powder + 23.5g non-fat milk powder + 17.5g 

whole egg powder in 1L) resulting in the highest survival percentage of larvae 

(73.3%) (Table 2.6).  

Again, there was a significant difference between diets with respect to mean larval 

weight for Experiment Three b (repeat of Experiment Three a) (Appendix 2.7), where 

Diet Three gave a significantly higher mean larval weight compared to the rest of the 

diets, and Diet Two gave a significantly lower mean larval weight than Diets Three 

and Four (Table 2.6). These results concurred with those of Experiment Three a. 

There was also a significant difference between diets for larval survival (Appendix 

2.8), where Diet Four resulted in a significantly lower larval survival percentage than 
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Diet Three, which showed the highest larval survival percentage (45.83%) (Table 

2.6). 

In Experiment Four a, using the 500 ml plastic jars, there was a significant difference 

between diets for mean larval weight (Appendix 2.9). Diet three (65g cane leaf 

powder + 23.5g non-fat milk powder + 17.5g whole egg powder in1L) gave a 

significantly higher mean larval weight than the other diets (Table 2.7). Diets One and 

Two gave the lowest mean larval weights, although they did not differ significantly 

from larvae living on Diet Four. Again, in Experiment Four b there was a significant 

difference between diets for mean larval weight (Appendix 2.10). As with Experiment 

Four a, diet three (65g cane leaf powder + 23.5g non-fat milk powder + 17.5g whole 

egg powder in 1L) gave a significantly higher mean larval weight compared to the 

rest of the diets. Experiment Five, which was used to compare the use of sterilized 

versus non-sterilized eggs, there were no significant differences between the two 

methods, with mean larval weight being very similar for both methods (Table 2.7).  

There was a significant difference between diets with respect to larval weight for 

Experiment Six when using multicell trays (Appendix 2.12). Diet Three (65g cane leaf 

powder of NCo376 + 23.5 g non-fat milk powder + 17.5g whole egg powder in 1L) 

gave a significantly higher mean larval weight compared to the other diets (Table 

2.8). No significant difference between diets for larval survival was found for 

Experiment Six (Table 2.8).  

Overall, vials gave higher larval survival percentages than the plastic jars and 

multicell trays, which gave very low larval survival percentages. The diets with 

increased proportions of cane leaf powder and with the incorporation of non-fat milk 

powder and egg powder gave higher mean larval weights than the standard diet in all 

inoculation techniques tested. The diet containing 65 g cane leaf powder + 17.5 g 

egg powder + 23.5 g milk powder in 1L total was the best diet overall because it 

consistently gave a high mean larval weight and larval survival percentages in 

Experiments Two, Three, Four, Five, Six and Eight. Larval survival percentage was 

also better for the diet containing 65 g cane leaf powder + 17.5 g egg powder + 23.5 

g milk powder in 1L compared to the other diets when tested in all of the 

experiments, and gave the highest overall larval survival percentage (73.3%) in 

Experiment Three a when using vials. 
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Table 2.6 Effect of different artificial diets in vials on the survival and weight of Chilo 

partellus larvae. Larval weight data was subjected to REML variance component 

analysis and survival data was subjected to GLMM analysis, the Sidak test was used 

to separate means, and log10 or square root transformation was used where 

necessary. Untransformed data is presented here. 

 

Experiment Diet Mean larval weight (g) Survival No. (%) 

1 1 0.03939 ± 0.0040a 40 ± 4.491a 

 

2 0.04838 ± 0.0061a 36.67 ± 4.418a 

 

3 0.09324 ± 0.0052b 50.83 ± 4.583a 

 

4 0.07446 ± 0.0261b 38.33 ± 4.457a 

 

5 0.04512 ± 0.0037a 41.67 ± 4.519a 

2 1 0.00778 ± 0.0013a 39.17 ± 4.475a 

 

2 0.0492 ± 0.0035a 45 ± 4.561a 

3 1 0.05434 ± 0.0108b 25 ± 3.969a 

 

2 0.00386 ± 0.0014a 12.5 ± 3.032a 

 

3 0.06686 ± 0.0038b 73.3 ± 4.054b 

 

4 0.1158 ± 0.0051c 62.5 ± 4.438b 

4 1 0.03146  ± 0.0042ab 30 ± 4.201ab 

 

2 0.01937  ± 0.0025a 34.17 ± 4.348ab 

 

3 0.07046  ± 0.0109c 45.83 ± 4.568b 

 

4 0.03732  ± 0.0038b 28.33 ± 4.131a 

Mean ± SE, values in a column followed by the same letter are not significantly different using the 

Sidak test (P = 0.05) 
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Table 2.7 Effect of different artificial diets and inoculation techniques using 500 ml 

plastic jars on the weight of Chilo partellus larvae. Larval weight and survival number 

were collected 27 days after inoculation. Larval weaight data was subjected to REML 

variance component analysis, Sidak test, and log10 transformation was used where 

necessary. Untransformed data is presented here. 

 

Experiment Diet 

Mean larval weight 

(g) 

Survival No. (%) 

5 1  0.0283 ± 0.005a 2.8  

 

2 0.0141 ± 0.0044a 3.6  

 

3 0.0756 ± 0.0069b 14  

 

4 0.0429 ± 0.0045a 16.4  

6 1 0.0184 ± 0.0030a 22  

 

2 0.0126 ± 0.0079a 3.6  

 

3 0.0852 ± 0.0103b 4.4  

 

4 0.0141 ± 0.0055a 5.2  

7 1 0.0241 ± 0.0026a 7.4  

  2 0.0227 ± 0.0018a 8.6  

Mean ± SE, values in a column followed by the same letter are not significantly different using the 

Sidak test (P = 0.05) 

 

 

Table 2.8 Effect of different artificial diets using multicell trays on the mean larval 

weight of Chilo partellus. Larval weight data was subjected to REML variance 

component analysis and survival data was subjected to GLMM analysis, the Sidak 

test was used to separate means, and log10 or square root transformation was used 

where necessary. Untransformed data is presented here. 

Experiment Diet  Survival No. (%) Mean larval weight (g) 

8 1  5.556 ± 2.214a 0.079 ± 0.0102b 

 

2  1.852 ± 1.303a 0.0319 ± 0.0173a 

 

3  16.667 ± 3.603a 0.1231 ± 0.0127d 

Mean ± SE, values in a column followed by the same letter are not significantly different using the 

Sidak test (P = 0.05) 
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2.4 Discussion  

2.4.1 Chilo partellus host identification and colony establishment 

Borer larvae collected from the selected sugarcane agro-ecosystems in KwaZulu-

Natal were confirmed to be C. partellus.  This may indicate that C. partellus poses a 

similar threat to that shown by E. saccharina before it became a serious pest of 

sugarcane in South Africa. The two plant species that were found to host C. partellus 

surrounding sugarcane fields in KwaZulu-Natal concur with the literature (Arabjafari 

and Jalali, 2007; Hutchison et al., 2008). In a paper published by Birkett et al. (2006) 

it is stated that the larva of borers such as C .partellus and B. fusca are polyphagous, 

in that they attack a wide range of wild and cultivated grasses (Poaceae), (Ong’amo 

et al., 2006; Calatayud et al., 2014; Moolman et al., 2014).  Similiarly, hosts of E. 

saccharina also include a number of wild and cultivated grasses and wetland sedges 

(Potgieter et al., 2012). The populations of the wild grasses surrounding sugarcane 

fields are therefore very important in managing stem borers in Africa. Although C. 

partellus is not yet a serious pest of sugarcane in South Africa, it has been found in 

sugarcane bordering maize fields in southern Africa, and also has been found to be a 

predominant pest of sugarcane in Ethiopia (Way and Kfir, 1997; Assefa and Conlong, 

2009). 

As expected, C. partellus and C. sacchariphagus show a closer genetic relationship 

compared to that with E. saccharina Both C. sacchariphagus and C. partellus feed on 

the whorl of the plant, after which they become top-borers (Sarup et al., 1985; Way 

and Turner, 1999; Hutchison et al., 2008). These similar feeding mechanisms and a 

close relationship support that C. partellus is better suited for resistance screening 

studies carried out in South Africa for determining C. sacchariphagus resistance in 

sugarcane  

With an efficient insectary in place at SASRI, more efficient research can take place 

as good quality insects can be supplied in sufficient quantities, and at the necessary 

developmental stages, for specific research requirements such as screening large 

numbers of progeny for cultivar resistance (Tende et al., 2010).  
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2.4.2 Optimization of the Chilo partellus artificial diet 

The results show that the vials gave a better larval survival percentage than the 

plastic jars or multicell trays. The low larval survival percentage in the multicell trays 

could be due to the larvae escaping from the small cells within the trays. The sago 

covering the diet was used to prevent this, but due to C. partellus larva being 

positively phototrophic, they were still able to escape from the cells towards the light 

(Scheltes, 1978).The reason for the lower larval survival in the plastic jars could be 

due to a possible requirement that the larvae encounter the side of the container 

before entering the diet. This would be more likely to occur in the much lower 

diameter vials.  

The incorporation of cane leaf whorl powder into an artificial diet appears useful for 

testing sugarcane varieties in a controlled manner (Kumar et al., 2006).  Increasing 

the cane leaf powder in the diet will allow for the quantification of the whorl based 

constitutive antibiosis component of resistance in sugarcane varieties against C. 

partellus larvae.  

Whole egg powder was initially incorporated into the diets with increased proportions 

of cane leaf powder in order to maintain the nitrogen content of the diets for 

comparative purposes. However, it can be seen from the results of Experiment One, 

that Diet Five, which had the highest whole egg powder content (32 g) was toxic to 

the larvae and mean larval weight and survival decreased. Therefore, non-fat milk 

powder was incorporated into a diet to diversify sources of nitrogen, and the whole 

egg powder content was reduced. Approximately 65 g cane leaf powder together with 

whole egg powder and non-fat milk powder was found to be more optimal in 1L of the 

artificial diet of C. partellus, as opposed to the standard diet containing 25 g cane leaf 

powder and no whole egg powder and non-fat milk powder per 1 L used for routine 

rearing. From these results it is clear that the source of nutrients has an effect on 

insect growth and development. Carpenter and Bloem (2002) suggest that the type 

or source of protein and sugars from specific ingredients in the diet are more 

important in making an artificial diet better suited for an insect, than the actual 

amount of protein within the diet. The results also show that there is a general 

increase in mean larval weight with an increase in the cane leaf powder component 

within the diet. This could be due to an increase in the plant tissue within the diet, 
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which is more favourable for the larvae to feed on and more similar to the natural diet 

of the borer, reducing the ‘bottleneck effect’ which is commonly observed (Kega et 

al., 2010) 

After analysing the results, it was decided that the diet containing the 65 g cane leaf 

powder + 23.5 g non-fat milk powder + 17.5 g whole egg powder per 1L food (Table 

2.9), in vials that would be used to carry out experiments for varietal comparisons 

using the artificial diet of C. partellus. This diet gave consistently good mean larval 

weights and survival percentages across all experiments.  

Table 2.9 The diet established for Chilo partellus for carrying out varietal constitutive 

resistance comparisons. 

FRACTION A Amount per 1 Litre 

Distilled water (ml) 400 

Brewer's yeast (g) 23 

Sorbic acid (g) 0.6 

Nipagin (g) 1.5 

Ethanol (ml) 5 

Ascorbic acid (g) 2.5 

Vitamin E (cold water soluble) (g) 2 

Cane leaf whorl powder (g) 65 

Chickpea (g) 18 

Sucrose (g) 35 

Non-fat milk powder (g) 23.5 

Whole egg powder (g) 17.5 

FRACTION B 

 Agar (g) 12.5 

Distilled water (ml) 400 

FRACTION C 

 Formaldehyde (40%) (ml) 3 
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2.6 Appendix 

Appendix 2.1 Results of REML for mean larval weight (g) for Experiment One 

Fixed term Wald statistic n.d.f. F static d.d.f. F pr 

Diet 63.26 4 15.81 244 <0.001 
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Appendix 2.2 Results of GLMM for larval survival percentage (%) for Experiment One 

Fixed term Wald statistic n.d.f. F static d.d.f. F pr 

Diet 5.96 4 1.49 595 0.203 

 

Appendix 2.3 Results of REML for mean larval weight (g) for Experiment Two 

Fixed term Wald statistic n.d.f. F static d.d.f. F pr 

Diet 109.02 1 109.02 99 <0.001 

 

Appendix 2.4 Results of GLMM for larval survival percentage (%) for Experiment Two 

Fixed term Wald statistic n.d.f. F static d.d.f. F pr 

Diet 0.83 1 0.83 238 0.363 

 

Appendix 2.5 Results of REML for mean larval weight (g) for Experiment Three 

Fixed term Wald statistic n.d.f. F static d.d.f. F pr 

Diet 111.75 3 37.25 204 <0.001 

 

Appendix 2.6 Results of GLMM for larval survival percentage (%) for Experiment Three 

Fixed term Wald statistic n.d.f. F static d.d.f. F pr 

Diet 105.63 3 35.21 476 <0.001 

 

Appendix 2.7 Results of REML for mean larval weight (g) for Experiment Four 

Fixed term Wald statistic n.d.f. F static d.d.f. F pr 

Diet 53.28 3 17.76 162 <0.001 

 

Appendix 2.8 Results of GLMM for larval survival percentage (%) for Experiment Four 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Diet 9.67 3 3.22 476 0.022 
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Appendix 2.9 Results of REML for mean larval weight (g) for Experiment Five 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Diet 44.11 3 14.7 99 <0.001 

 

Appendix 2.10 Results of REML for mean larval weight (g) for Experiment Six 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Diet 66.33 3 22.11 77 <0.001 

 

Appendix 2.11 Results of REML for mean larval weight (g) for Experiment Seven 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Diet 1.4 1 1.4 124.6 0.238 

 

Appendix 2.12 Results of GLMM for mean larval weight (g) for Experiment Eight 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Diet 384.43 2 192.21 567.8 <0.001 
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Abstract 

Stalk borers feed on crops such as sugarcane, maize and sorghum in sub-Saharan 

Africa. Chilo partellus and Chilo sacchariphagus are serious pests on a number of 

hosts, and pose threats to the sugarcane industry in South Africa. The use of host-

plant resistance may become important in controlling these pests, and new and 

improved varieties are important in maintaining good yields. Constitutive antibiosis 

resistance to C. partellus larvae was explored in a diverse collection of 20 sugarcane 

varieties, by incorporating crushed dried leaf powder into an artificial diet. There were 

significant differences in larval weight, total weight and larval survival in diets 

incorporating leaf powder from different sugarcane varieties. Feeding with diets 

containing M1135/64 and N24 leaf powders consistently gave lower larval weights 

and larval survival, whereas varieties M1025/70, R573 and N25 gave higher larval 

weights and larval survival.This suggests that M1025/70, R573 and N25 could be 

more susceptible, with little to no constitutive resistance against C. partellus.  The 

concept of insect surrogacy was also explored, whereby known ratings of specific 

sugarcane varieties to C. sacchariphagus were compared to the results obtained for 
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constitutive resistance against C. partellus from this study using artificial diets. Some 

correlations were observed for specific sugarcane varieties, such as N25 and R570, 

with respect to C. partellus and C. sacchariphagus resistance. However, further 

investigations using different resistance screening methods will be required to 

determine different components of resistance in these sugarcane varieties. 

Keywords: sugarcane; Chilo partellus; Chilo sacchariphagus; antibiosis; constitutive 

resistance; artificial diet; insect surrogacy. 

 

3.1 Introduction 

Stalk borers are one of the most serious insect pests of grass crops such as 

sugarcane (Saccharum officinarum L), maize (Zea mays L.) and sorghum (Sorghum 

bicolor L. Moench) in sub-Saharan Africa (Kfir et al., 2002). Chilo partellus (Swinhoe) 

(Lepidoptera: Crambidae) is found in India, Pakistan, Kenya, Somalia, Tanzania and 

South Africa (Kumar, 1997). Chilo sacchariphagus Bojer (Lepidoptera: Crambidae) is 

a major pest in Mozambique, Mauritius, Reunion and Madagascar (Goebel and Way, 

2009). Borer damage can result in the total loss of a crop in a very short time, as well 

as reduce the quality of the crop (Fenton, 1952). C. partellus and C. sacchariphagus 

are serious pests on a number of hosts and pose threats to the sugarcane industry in 

South Africa. Chemical and biological control of these pests would be expensive, 

whereas host-plant resistance offers a safe and relatively cheap method of control 

(Epidi et al., 2004). 

There are a number of different factors affecting the establishment of insects in 

plants. These include non-preference for ovipositing, factors affecting feeding, 

difficulty in metabolizing ingested food, and reduced growth and fecundity of the 

insect (Kumar et al., 2006; Panchal and Kachole, 2013). Constitutive resistance in 

plants can be structural, morphological, or chemical in nature and does not require 

the attack of the insect to be expressed, unlike induced resistance which requires the 

recognition of an invader in order for resistance to occur (Keen, 1999). Preformed 

chemicals synthesized via secondary metabolism are found in plants, and include 

phenolics, terpenoids and steroids, which may have a toxic effect on insect 

herbivores (Keen, 1999; War et al., 2012). A good knowledge of the different 
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mechanisms of resistance in plants is vital for the effective use of resistant sources in 

improving crop management.  Due to large genotype x environment interactions, the 

use of field trials makes it difficult to quantify the different mechanisms of resistance 

in plants (Kumar et al., 2006). The incorporation of leaf powder of different sugarcane 

varieties into an insect’s artificial diet is therefore very useful in quantifying any 

constitutive antibiosis resistance mechanisms present within sugarcane varieties. 

The level of resistance of varieties determined using this method may differ to the 

level of resistance of varieties determined in the field, due to the lack of strong 

genotype x environment interactions (Kumar, 1997). However, according to Padmaja 

et al. (2012), the analyses of resistance of certain sugarcane varieties by 

incorporating them into artificial diets, is a useful method in comparing varieties under 

uniform conditions, without any variations from the environment. The incorporation of 

freeze-dried leaf powder into the artificial diet of C. partellus has been done in an 

experiment to study the antibiosis resistance mechanism of 20 sorghum varieties 

(Kumar et al., 2006). A similar study was conducted by Epidi et al. (2004), also using 

sorghum varieties in the artificial diet of C. partellus. Williams and Buckley (2008) 

conducted a study whereby lyophilized leaf tissue of 20 maize varieties, varying in 

resistance, were incorporated into an artificial diet to determine their effects on the 

growth of fall armyworm (Spodoptera frugiperda (J.E. Smith) (Lepidoptera: 

Noctuidae)) and the southwestern corn borer (Diatraea grandiosella Dyar 

(Lepidoptera: Crambidae)). Differences in growth of these insects were observed 

between resistant and susceptible maize varieties incorporated into diets.  

Most host-plant resistance studies on borers focus on the resistance mechanisms 

within the stalk because this is where majority of the damage is caused, which results 

in yield losses. However, young larvae of C. sacchariphagus and C. partellus also 

feed on the leaves before entering the stalk of the plant and this ultimately results in 

leaf lesions. Although these leaf lesions do not always significantly impact on the 

crop economically, they can generate an estimate of the borer populations and can 

confirm whether leaf resistance occurs, which ultimately contributes to a reduction in 

borer populations (Nibouche and Tibere, 2009). It has been found that leaves of 

sorghum contain resistance to C. partellus larvae, and in maize, leaf resistance 

occurs against borers such as Ostrinia nubilalis Hübner (Lepidoptera: Crambidae), C. 

partellus and Diatraea spp. (Guthrie et al., 1970; Pathak 1990).  
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In this study, leaf powder from a selected range of resistant and susceptible 

sugarcane varieties was incorporated into the established artificial diet of C. partellus, 

and used to determine any constitutive antibiosis resistance mechanisms in the 

selected sugarcane varieties to C. partellus. Constitutive resistance effects of 

sugarcane varieties were expressed in terms of larval weight, larval survival and 

pupal numbers. Results from this study were compared to existing C. 

sacchariphagus ratings of specific sugarcane varieties based on previous studies, to 

determine if correlations between C. partellus and C. sacchariphagus resistance and 

susceptible sugarcane varieties occur. C. sacchariphagus has not yet been found in 

South Africa, and therefore cannot be used to carry out host-plant resistance studies 

in the country, unless under quarantine. If sugarcane varieties which appear to be 

resistant to C. partellus are also resistant to C. sacchariphagus then the concept of 

‘surrogate insect resistance screening’ will prove effective.  Among the few South 

African varieties with known resistance or susceptibility to C. sacchariphagus, there 

appears to be a correlation with Fulmekiola serrata Kobus (Thysanoptera: Thripidae) 

rankings (See Chapter 1, Page 35). All of these pests feed on the whorl of the plant, 

and therefore similar resistance mechanisms within the plant may act against them. 

Additionally, C. partellus and C. sacchariphagus are both top borers belonging to the 

same genus. The concept of ‘surrogate insect resistance screening’ has proven 

successful within the borer genus Ostrinia on maize (Overman, 1994). 

 

3.2 Methods and materials 

3.2.1 Selection of sugarcane varieties  

Twenty sugarcane varieties were selected for this study (Table 3.1). Sugarcane 

varieties N22, N28, N25, N26 and N32 were selected based on C. sacchariphagus 

leaf feeding index ratings (CLI) and from information obtained on C. sacchariphagus 

ratings from the paper published by Conlong et al. (2004). The ‘leaf feeding index’ is 

a non-destructive measurement of damage by borers used to assess their leaf 

feeding behaviour and to determine susceptibility or resistance of different maize and 

sorghum varieties to the borers C. partellus and Busseola fusca (Fuller) (Lepidoptera: 

Noctuidae). The remaining sugarcane varieties were selected based on numbers of 

F. serrata obtained from field trials run by the South African Sugar Research Institute 
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(SASRI, KwaZulu-Natal, South Africa). R570 and R576 are resistant and susceptible 

sugarcane varieties to C. sacchariphagus respectively, according to a study done by 

Nibouche and Tibere (2010), and were therefore also used in this study. NCo376 

was used as a control variety because it is the standard variety being used in the 

artificial diet of C. partellus at SASRI.  

Table 3.1 Sugarcane varieties incorporated into the artificial diet of Chilo partellus for 

constitutive antibiosis resistance mechanism studies. R = Resistant, S = Susceptible. 

Variety 
Av. No. Thrips/ leaf 
whorl 

C. sacchariphagus 
leaf Index ) (Conlong 
et al., 2004) 

Total C. s Rating (low 
value = R; high value = 
S) (Conlong et al., 2004) 

Co1287 21 
  Co6505 67 
  R 576 27 
  R 573 45 
  R 570 49 
  R 572 127 
  R 568 153 
  N24 38 
  N22 40 13.9 23(I) 

N28 47 7.1 6 (R) 
N25 70 15.5 36 (S) 
N26 74 30.2 44(S) 
N31 91 

  M1135/64 19 
  M861/60 21 
  M1025/70 58 
  N27 120 
  N21 165 
 

22(I) 
N32 19                1.8 19(IR) 
NCo376       

 

3.2.2 Incorporation of selected sugarcane varieties into an artificial diet 

of Chilo partellus 

The selected sugarcane varieties were collected from field trials established at 

SASRI (KwaZulu-Natal, South Africa). Sugarcane was six months of age when 

collected because this was representative of the age that C. sacchariphagus usually 

attacks sugarcane, which is three to seven months old (Goebel, 2006; Bezuidenhout 

et al., 2008). Five stalks were collected per variety, and the leaves removed from the 

growing point for each stalk. Leaves were cut into small pieces using secateurs, and 

placed into brown paper bags (WOLFF Wholesalers, Edenvale, South Africa) for 

drying. Leaves were dried using a Scientific Series 9000 incubator (TriLab, Pinetown, 

South Africa) at 65oC for 24 hours, after which they were sent to the mill at SASRI for 
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crushing into a powder. The cane leaf powder was then incorporated into the new 

diet which had previously been established and can be seen in Table 3.2. 20 artificial 

diets could not all be made in one day due to equipment and time constraints and 

therefore sugarcane varieties were divided into five batches, where cane leaf powder 

from each variety in a particular batch was incorporated into the artificial diet on the 

same day (Table 3.3). The variety NCo376, used as the standard variety in the 

artificial diet of C. partellus at SASRI, was used as a control for each batch for 

comparative purposes. 

The method for diet preparation was as follows: The Brewer’s yeast (NCP, 

Johannesburg, South Africa), sorbic acid (Sigma Life sciences, United States), 

ascorbic acid (Warren Chem Specialities, Cape Town, South Africa), vitamin E 

(Polychem Supplies cc, Congella), ground chickpea (S.E. Mart, Durban, South 

Africa), sucrose (Huletts, Durban, South Africa), non-fat milk powder (Lactalis 

Ingredients, Bourgbarre, France), whole egg powder (Sunspray Food Ingredients 

(PTY) Ltd., Johannesburg, South Africa) and crushed cane tops and leaves (SASRI, 

KwaZulu-Natal, South Africa) for a specific genotypic from fraction A were weighed 

and mixed together thoroughly. The nipagin (Sharon Laboratories, Israel) was 

dissolved in the ethanol from fraction A. The distilled water from fraction A was 

autoclaved and then allowed to cool to 60-70oC. It was then added, together with the 

dissolved nipagin, to the dry ingredients from fraction A and mixed together for 3 

minutes in the blender (6.7 Litre bowl capacity) (Kenwood, United Kingdom). The 

agar powder (Polychem supplies cc, Congella) and distilled water in fraction B were 

mixed together, autoclaved and allowed to cool to 60-70oC. Fraction A and fraction B 

ingredients were mixed together, after which the formaldehyde 40% (Merck (PTY) 

Ltd., Johannesburg, South Africa) from fraction C was added and mixing in the 

blender took place for a further 3 minutes. 8 ml of diet was dispensed into 25 ml 

sized vials (Lasec, Durban, South Africa) and placed open on the laminar bench 

where they were exposed to UV light for 1 hour.  

Three replications of 20 vials each were used for each variety in a completely 

randomized design (CRD). After each batch of diets were made, vials for each diet 

made up using a specific variety  were placed into a zip lock plastic bag (Glenpak, 

Johannesburg, South Africa), which were labelled with the variety name, and sealed 

and stored in a refrigerator at 4oC overnight. The following day, plastic bags were 
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removed from the fridge and warmed to room temperature before being inoculated 

with C. partellus larvae. Larvae for inoculations were obtained from the established 

colony at SASRI. The surface of the diet in each vial was punctured once with the 

end of a sterilized plastic rod to facilitate penetration of larvae. Two active neonate 

larvae were transferred into a single 25 ml vial using a clean, sterilized paintbrush 

(Winsor and Newton, London, UK). Each vial was sealed with a ventilated lid. The 

vials and ventilated lids were sterilized in a 4.3% solution of Jik (Protea Chemicals, 

Johannesburg, South Africa) and water to prevent contamination. Vials were then 

placed upside down in plastic containers and kept in a larval growth room maintained 

at 27 +/- 2oC, 65 +/- 5% and an 8 hour light: 16 hour dark photophase provided by 65 

watt colour 19 Triphos fluorescent tubes for 27 days.  

After the larvae had been feeding on the diet for 27 days, they were removed from 

the diet in the vials, and larval number, pupal number, pupal weight and larval weight 

were recorded for all larvae recovered. 

 

Table 3.2 The artificial diet used in constitutive resistance mechanism studies  

FRACTION A Amount per 1 Litre 

Distilled water (ml) 400 

Brewer's yeast (g) 23 

Sorbic acid (g) 0.6 

Nipagin (g) 1.5 

Ethanol (ml) 5 

Ascorbic acid (g) 2.5 

Vitamin E (Cold water soluble) (g) 2 

Cane leaf whorl powder (g) 65 

Chickpea (g) 18 

Sucrose (g) 35 

Non-fat milk powder (g) 23.5 

Whole egg powder (g) 17.5 

FRACTION B 
 Agar (g) 12.5 

Distilled water (ml) 400 

FRACTION C 
 Formaldehyde (ml) 3 
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Table 3.3 Leaf whorl powders of different sugarcane varieties were incorporated into 

artificial diet, and inoculated with Chilo partellus larvae on the same day. Varieties 

were tested in batches due to equipment constraints (different batches are colour 

coded) 

Variety Batch 
Control 1 (NCo376) 1 
N31 1 
N28 1 
R572 1 
M861/60 1 
M1025/70 1 
Control 2 (NCo376) 2 
M1135/64 2 
N24 2 
N32 2 
R568 2 
N25 2 
Control 3 (NCo376) 3 
N26 3 
R570 3 
Co1287 3 
R576 3 
Control 4 (NCo376) 4 
Co6505 4 
N21 4 
Control 5 (NCo376) 5 
N27 5 
N22 5 
R573 5 

 

 

3.2.3 Statistical analysis  

Software used to analyse data was GenStat release 14th edition (VSN International, 

Hemel, Hempstead, UK) (Payne et al., 2011). Mean larval weight, mean total C. 

partellus (pupae plus larvae) weight and larval survival were used for statistical 

analysis in GenStat. Prior to analysis, the W-test for normality (Shapiro and Wilk, 

1965) was used on the data for each parameter, and it was subjected to log10 

transformation where necessary. The data for mean larval weight was subjected to 

Residual Maximum Likelihood (REML) variance component analysis (Harville, 1977) 

and means were separated using the Sidak test (Abdi, 2007). Mean larval survival 

number was analysed using General Linear Mixed Model (GLMM) analysis (Breslow, 

1993) and the Sidak test used to separate means. The standard error of the mean 
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(SEM) was calculated for each parameter and presented in tables along with the 

means. 

 

3.3 Results 

Mean larval weight, total (larvae plus pupae) C. partellus weight and larval survival of 

C. partellus larvae reared on artificial diet incorporating cane leaf powder of 20 

sugarcane  varieties showed significant differences between the varieties tested 

(Appendix 3.1, 3.2 and 3.3). For the diets where pupae were found, mean pupal 

weight was calculated. However, there was no significant difference for mean pupal 

weight between diets incorporating cane tops from different sugarcane varieties 

(Appendix 3.4).  

Varieties were ranked from lowest larval weight to highest larval weight in Table 3.4, 

with varieties highlighted in the same colour being from the same batch. There was 

no significant difference for mean larval weight between sugarcane varieties Co6505, 

the control diets (NCo376), M1135/64, N27 and N24. All these varieties had the 

lowest larval weights. Varieties N31, N25, R572, R568, M1025/70, N28 and M861/60 

did not differ significantly from each other. M861/60 had a significantly higher mean 

larval weight compared to all sugarcane varieties, except to N31, N25, R572, R568 

and N28. Mean total weight showed a similar trend to that of mean larval weight 

(Table 3.4).  

Larval survival percentage was ranked lowest to highest (Table 3.5). The diet 

incorporating the variety R573 showed the highest larval survival percentage of 85%, 

which was significantly higher than the larval survival percentages of diets 

incorporating varieties NCo376 (controls from batch 3 and batch 1), N24, N26 and 

M1135/64, which had the lowest larval survival percentages. While N27 gave the 

second highest larval survival percentage of 82.5% (Table 3.5), it was ranked with 

one of the lower mean larval weights (Table 3.4). Similarly, R568 gave a fairly high 

mean larval weight, whilst its larval survival percentage was below 80%. The number 

of pupae found in each diet was shown to be higher in diets which gave a higher 

mean larval weight (Table 3.4). N28 gave the highest pupal number with 12 pupae 

recovered in total, followed by M1025/70 which had seven pupae recovered from the 
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diet in total. Zero pupa were found in diets incorporating sugarcane varieties Co6505, 

NCo376, Co1287, N21, N32, R573 and N31.   
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Table 3.4 Effect of leaf powders in artificial diet from 20 different sugarcane varieties on Chilo partellus larval and pupal weights (g). 

(NCo376 was used as a control variety for each batch – colour coded). The data was subjected to REML variance component 

analysis, Sidak test and log10 transformation was used where necessary. Untransformed data is presented here. 

Variety Mean larval weight (g) 
Number of 
Pupae 

Mean pupal 
weight (g) 

Mean total Chilo weight (g) 

NCo376* 0.0609 0   0.0609 

Co6505 0.04847 ± 0.002573a 0 * 0.04847 ± 0.002573a 
Control 1 0.05931 ± 0.003818ab 0 * 0.05931 ± 0.003818ab 
Control 5 0.05997 ± 0.004478ab 0 0.0685 0.06006 ± 0.004432ab 
Control 3 0.06027 ± 0.004007ab 0 * 0.06027 ± 0.004007abc 
Control 2 0.06243 ± 0.005477abc 0 * 0.06243 ± 0.005477abc 
Control 4 0.06251 ± 0.003781abcd 0 * 0.06251 ± 0.003781abc 
M1135/64 0.06531 ± 0.005702abcde 3 0.0761 0.06574 ± 0.005486abc 
N27 0.07227 ± 0.004283abcdef 1 0.0688 0.07224 ± 0.00424abcd 
N24 0.07515 ± 0.005569abcdefg 1 0.0616 0.07495 ± 0.005493abcde 
R 570 0.07661 ± 0.004117bcdefg 1 0.0564 0.07636 ± 0.004073bcde 
Co1287 0.07825 ± 0.005154bcdefg 0 * 0.07825 ± 0.005154bcde 
N21 0.07825 ± 0.003472bcdefg 0 * 0.07825 ± 0.003472bcde 
N22 0.07941 ± 0.004835bcdefg 2 0.04695 0.07873 ± 0.004758bcde 
N26 0.08124 ± 0.005051bcdefg 2 0.05305 0.08048 ± 0.004943bcdef 
N32 0.08253 ± 0.004311bcdefg 0 * 0.08253 ± 0.004311bcdef 
R 576 0.08897 ± 0.004359cefgh 2 0.05365 0.08811 ± 0.004295cdefg 
R 573 0.09587 ± 0.004274fghi 0 * 0.09587 ± 0.004274defgh 
N31 0.10245 ± 0.008625ghij 0 * 0.10245 ± 0.008625efgh 
N25 0.11 ± 0.005462hij 7 0.0553 0.1065 ± 0.005278fgh 
R 572 0.11234 ± 0.004562hij 2 0.05505 0.1111 ± 0.004549gh 
R 568 0.11285 ± 0.005757hij 5 0.07626 0.1107 ± 0.005562gh 
M1025/70 0.11503 ± 0.004555ij 5 0.05872 0.11213 ± 0.004507gh 
N28 0.12142 ± 0.008054ij 12 0.06479 0.11361 ± 0.007257gh 
M861/60 0.1233 ± 0.005226j 7 0.06911 0.11904 ± 0.005093h 

Mean 0.09 
 

0.061 
  

SD 0.022 
 

0.009 
  

CV% 24.94   14.63     

Mean ± SE, values in a column followed by the same letter are not significantly different using the Sidak test (P = 0.05)  
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Table 3.5 Effect of leaf powders in artificial diet from 20 different sugarcane varieties 

on Chilo partellus survival percentage. (NCo376 was used as a control variety for 

each batch - colour coded). Mean larval survival number was analysed using GLMM 

analysis and the Sidak test (F pr. < 0.001, Appendix 3.3). 

Variety Survival % 

NCo376* 67.82 

Control 3 55.8 ± 4.552a 

N24 59 ± 4.506ab 

N26 61.67 ± 4.457abc 

Control 1 61.7 ± 4.457abc 

M1135/64 62.5 ± 4.438abc 

N31 63.3 ± 4.418abcd 

Control 2 65 ± 4.372abcd 

R 570 65.8 ± 4.348abcd 

R 576 68.3 ± 4.264abcd 

Co1287 70 ± 4.201abcd 

R 568 70.8 ± 4.167abcd 

N32 71.7 ± 4.131abcd 

N28 71.7 ± 4.131abcd 

M861/60 74 ± 4.054abcd 

Co6505 75.8 ± 3.877abcd 

Control 4 77.5 ± 3.828abcd 

R 572 77.5 ± 3.828abcd 

Control 5 79.1 ± 3.723bcd 

N22 79.1 ± 3.723bcd 

N21 80 ± 3.416cd 

N25 80.8 ± 3.608bcd 

M1025/70 80.8 ± 3.608bcd 

N27 82.5 ± 3.483cd 

R 573 85 ± 3.273d 

Mean 72.41 

SD 8.3189 

CV% 11.49 

Mean ± SE, values in a column followed by the same letter are not significantly different using the 
Sidak test (P = 0.05) 

 

 

3.4 Discussion  

There were variations in larval weight, total C. partellus weight and larval survival in 

the diets incorporating cane leaf powder from different sugarcane varieties. In a 



108 
 

similar study conducted by Kumar et al (2006), differences in larval survival, larval 

weight, pupal weight and other larval parameters were also observed when 

incorporating leaf powders of different sorghum varieties into a diet for C. partellus. 

Sugarcane varieties M1135/64, R570, N26 and N24 gave consistently lower larval 

weights and larval survival when they were incorporated into the artificial diet of C. 

partellus. This suggests that these sugarcane varieties do not promote larval growth 

and therefore have a higher constitutive resistance to C. partellus larvae when 

compared to the other sugarcane varieties. Conversely, varieties M1025/70, R573 

and N25 gave higher mean larval weights and larval survivals when incorporated into 

the diet, which suggests that they are more susceptible varieties, which have little to 

no constitutive resistance against C. partellus.  This indicates that the more 

susceptible varieties meet the nutritional requirements required by the larvae to 

ensure the larval growth can be completed in a shorter time frame (Arabjafari and 

Jalali, 2007). The mechanisms in plants accounting for the negative effects on larval 

survival and growth are non-preference and antibiosis (Davis et al., 1999). The 

antibiosis resistance mechanisms present in resistant sugarcane varieties may be 

because of secondary plant substances in the leaves or also due to low nutritional 

quality of the food (Kumar et al., 2006). In a study conducted by Kumar (1997), to 

determine the effect of dry leaf powders and fresh leaf juices on C. partellus larval 

development, it was suggested that non-nutritional factors (allelochemicals) in plant 

tissues are lost during the preparation of the diet, due to the heat involved. Therefore, 

the survival and development of larvae was directly related to nutritional factors in the 

plant tissues.  C. partellus resistance in sorghum is associated with low sugar content 

and an increased level of amino acids, tannins, total phenols, neutral detergent fiber 

(NDF), acid detergent fiber (ADF) and lignins in the plant (Kumar et al., 2006). Plants 

may contain large amounts of preformed chemicals produced through secondary 

metabolism, such as various phenolics, terpenoids and steroids. In some tissues, 

these chemicals may be in high concentrations, which can be very toxic to insects 

(Keen, 1999).  In artificial diet bioassays conducted by Kumar et al. (1993a, b), it was 

shown that C. partellus larvae displayed feeding non-preference, indicated by the low 

amounts of food ingested by resistant maize varieties compared to a susceptible 

variety. 



109 
 

Not all of the sugarcane varieties showed a correlation between larval weight and 

larval survival.  Varieties N27 and N21 gave high survival percentages of 82.5% and 

80% respectively, whereas their mean larval weights were relatively low compared to 

other varieties (0.07227 g and 0.07825 g respectively). This could be due to more 

competition between larvae in vials, resulting in less available food for individual 

larvae to feed on. Another explanation could be that antibiosis had an effect on the 

larvae, stunting their weight, however this is more unlikely as antibiosis also reduces 

survival of the insect (Sharma, 1997; Padmaja et al., 2012). On the other hand, N26 

and N31 had low larval survival percentages (61.67% and 63.3% respectively), 

whereas their larval weights were high.  The lower number of larvae could have 

reduced competition for food within the vials and therefore more food was available 

for individual larvae.  

When comparing some of the results from this study to the ratings shown for C. 

sacchariphagus in a study conducted by Conlong et al (2004), some interesting 

observations could be made. N25 gave a fairly high Chilo leaf feeding index (CLI) 

and C. sacchariphagus rating (the higher the rating the more susceptible the variety) 

compared to the other varieties (Table 3.1), which correlates with the results from this 

study, where N25 gave high larval weight and larval survival for C. partellus 

compared to other sugarcane varieties, indicating its lower constitutive resistance. 

Moreover, F. serrata numbers obtained for N25 were fairly high (Table 3.1) as well. 

This backs the concept of insect surrogacy, where similar feeding mechanisms of C. 

sacchariphagus, C. partellus and F. serrata result in plants having similar resistance 

mechanisms acting against them. However, N26 was shown to have a very high CLI 

and C. sacchariphagus rating by Conlong et al (2004), as well as high F. serrata 

numbers, whereas in this study C. partellus had a fairly low larval survival (61.67%) 

and an intermediate larval weight (0.08124 g) when reared on diet incorporating cane 

tops from N26.  This could indicate that N26 has a poor constitutive resistance but a 

strong induced resistance against C. partellus, if the concept of insect surrogacy for 

C. partellus and C. sacchariphagus is used. According to the Chilo leaf feeding index 

and ratings obtained for the variety N28 (Conlong et al., 2004), it was shown to be 

the most resistant variety to C. sacchariphagus. However, a high larval weight and 

larval survival for C. partellus was observed when larvae were reared on the diet 

incorporating N28 cane leaf powder. This could suggest that the mechanism of 



110 
 

resistance for N28 is not that of the constitutive type, but rather that of antixenosis 

present on the surface of the leaves, or that of induced resistance, which requires the 

insect to come into contact with the plant, which in turn results in compounds such as 

phytoalexins or pathogenesis related (PR) proteins being produced (Ahman, 2006). 

R570 is fairly resistant to C. sacchariphagus according to Nibouche and Tibere 

(2009); and in this study, C. partellus gave a relatively low larval survival and mean 

larval weight in the diet containing R570, indicating that it has strong constitutive 

resistance against C. partellus.  

There seemed to be a correlation between pupal number and mean larval weight, 

where the diets resulting in higher larval weight also resulted in a higher number of 

pupae being found and vice versa. This suggests that the diets with high larval 

weights and pupal numbers result in faster growth of the borer, while those diets with 

low larval weights and pupal numbers reduce larval growth. Antibiosis is also shown 

by reduced pupal weight and reduced pupation and adult emergence (Kumar et al., 

2006).  

The incorporation of cane leaf powder of different sugarcane varieties into the 

artificial diet of C. partellus is useful in overcoming the variation of infestation that 

would be seen under field conditions and allows one to test different sugarcane 

varieties under uniform conditions (Kumar et al., 2006). The use of an artificial diet to 

establish mechanisms of resistance to borers can be used, but should not replace 

conventional field trials for screening germplasm. The resistance level of sugarcane 

varieties established using this technique may not conform to those in the field due to 

the absence of strong genotype x environment interactions (Kumar, 1997). The 

results from this study suggest that specific sugarcane varieties do contain some 

degree of constitutive antibiosis as a resistance mechanism against C. partellus 

larvae. However, it is a complex interaction of factors that determine the resistance or 

susceptibility of sugarcane varieties to stem borers, which needs to be explored 

further. Sugarcane varieties, such as Co1287, M1135/64, R570, N26 and N24, which 

show some form of constitutive antibiosis resistance to C. partellus in this study, 

should be tested further, and have the potential to be used in resistance breeding 

programmes to increase the diversity of resistance to C. partellus, and ultimately C. 

sacchariphagus.  
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3.6 Appendix 

Appendix 3.1 Results of REML analysis for mean larval weight (g) for comparisons 

of 20 sugarcane varieties in Chilo partellus artificial diet 

Fixed 

term 

Wald 

statistic 

n.d.f. F 

statistic 

d.d.f. F pr 

Variety 461.9 23 20.08 1995 <0.001 
 

Appendix 3.2 Results of REML analysis for mean total weight (g) for comparisons of 

20 sugarcane varieties in Chilo partellus artificial diet 

Fixed 

term 

Wald 

statistic 

n.d.f. F 

statistic 

d.d.f. F pr 

Variety 421.62 23 18.33 2046 <0.001 
 

Appendix 3.3 Results of GLMM analysis for larval survival percentage (%) for 

comparisons of 20 sugarcane varieties in Chilo partellus artificial diet 

Fixed 

term 

Wald 

statistic 

n.d.f. F 

statistic 

d.d.f. F pr 

Variety 94.38 23 4.1 2837 <0.001 
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Appendix 3.4 Results of REML analysis for mean pupal weight (g) for comparisons 

of 20 sugarcane varieties in Chilo partellus artificial diet 

Fixed 

term 

Wald 

statistic 

n.d.f. F 

statistic 

d.d.f. F pr 

Variety 11.12 13 0.86 37 0.603 
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Abstract 

Chilo partellus and Chilo sacchariphagus are both top borers that pose a threat to the 

sugarcane industry in South Africa. C. partellus was used as a surrogate insect for C. 

sacchariphagus in ovipositionalstudies on sugarcane because C. sacchariphagus is 

not yet present in South Africa. Both pests belong to the same family and have the 

same feeding mechanisms; therefore similar defense mechanisms in plants may 

operate against them. The concept of ovipositional antixenosis behaviour of insects 

is based on the theory that female insects will choose their hosts in a hierarchal 

manner, laying most of their eggs on the preferred plant. This could be due to 

characteristics of the plant which either fail to allow for ovipositing, including essential 

stimuli (attractants), or containing ovipositional-inhibiting stimuli (repellents). In this 

study, differences in 20 selected sugarcane varieties with respect to ovipositing of C. 

partellus moths were investigated. Two experiments were conducted, whereby the 20 

sugarcane varieties were planted into 98 well trays in a completely randomized 

design and replicated five and 10 times for Experiment One and Two, respectively. 



117 
 

Individual trays were placed into BugDorm® rearing tents when plants were still in 

their seedling stage and moths placed into the cages for ovipositing to take place. No 

statistically significant differences were found between sugarcane varieties for both 

egg number and batch number for both experiments (F pr > 0.05). However, 

sugarcane varieties N28, Co1287 and M1025/70 gave the highest egg and batch 

numbers consistently for both experiments, whereas N32 and R573 gave 

consistently low egg and batch numbers. Keywords: Chilo partellus, Chilo 

sacchariphagus, sugarcane, surrogate, oviposition, antixenosis. 

 

4.1 Introduction 

Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) is a serious pest of sorghum and 

maize in Eastern and Southern Africa. Chilo sacchariphagus Bojer (Lepidoptera: 

Crambidae) originated in south East Asia and has been a serious insect pest of 

sugarcane since the 19th century in Reunion, Mauritius and Madagascar (Rochat et 

al., 2001; Conlong and Goebel, 2002). Larvae of these borers cause damage to 

plants by initially feeding on the leaves, and later by boring into the stalk, which 

ultimately weakens the plant (Midega et al., 2010). “Deadhearts” are also formed due 

to damage caused to the growing points by the feeding larvae, and this leads to 

eventual death of the plant (Midega et al., 2010). Although C. sacchariphagus has 

not spread outside Mozambique into adjacent countries, the potential for an invasion 

by C. sacchariphagus into South Africa poses a great risk to the South African 

sugarcane industry (Goebel, 2006; Bezuidenhout et al., 2008). The control of this 

borer is very important and would save large amounts of money worldwide if it is 

controlled in the early stages (Bezuidenhout et al., 2008). C. partellus has adapted to 

sugarcane in Ethiopia and is present in the South African sugarcane agro-ecosystem 

(Way and Kfir, 1997; Assefa and Conlong, 2009). C. partellus may represent a threat 

similar to the one once posed by Eldana saccharina Walker (Lepidoptera: Pyralidae) 

before it added sugarcane to its list of host plants. Chemical and biological control of 

these pests can be expensive and harmful to the environment; whereas host-plant 

resistance offers a safe and relatively cheap method of control (Epidi et al., 2004).  

The concept of ovipositional antixenosis behaviour is based on the idea that female 

insects will choose their hosts in a hierarchal manner, laying most of their eggs on 
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the preferred plant (Thompson and Pellmyr, 1991). This in turn will have an effect on 

the process of establishment of the insect on the plant (Varshney et al., 2007). It has 

not yet been confirmed whether host-preference directly effects larval performance, 

but in some cases there has been a strong correlation between host preference and 

larval performance. This could be as a result of females basing their choice of host 

on plant properties (morphological and chemical), that could influence larval 

behaviour (Midega et al., 2010). Resistance of plants to ovipositing is caused by 

characteristics of the plant which either fail to support ovipositing, including stimuli 

(attractants), or by plants containing ovipositional-inhibiting stimuli (repellents) 

(Kumarasinghe and Jepson, 2003). The surface of a plant is important in deterring or 

attracting other organisms, and it is where organisms first come into contact with the 

plant in order to establish themselves on the plant, and therefore physical and 

chemical structures on the plant surface are important in contributing to pest 

resistance (Howe and Schaller, 2008). Trichomes and/or hairs on the surface of 

plants have been used to give rise to insect-resistant cultivars (Peter et al., 1995). 

Trichomes can either be non-glandular, tiny hairs which physically deter insects, or 

they may be specialized glandular trichomes, morphological and chemical in nature, 

whereby they secrete substances which are stored or volatilized on the surface of the 

plant and are used to repel pests and prevent them from feeding (Johnson, 1975; 

Fernandes, 1994; Larkin et al., 2003, Martin and Glover, 2007; Howe and Schaller, 

2008).  

Chemical compounds may influence the choice of plant for ovipositing and the 

response of the female to the plant (Thompson and Pellmyr, 1991). Papilio machaon 

Linnaeus (Lepidoptera: Papilionoidae) (Swallowtail butterflies) show ovipositional 

responses to plants containing differing proportions of compounds, where only one 

compound present shows a weak ovipositional response, but when all compounds 

are present strong responses are observed (Thompson and Pellmyr, 1991). Odour, 

reflectance (i.e. colour of the host to the insect) and shape of the host plant also 

influence the behaviour of an insect to a plant for ovipositing (Kumarasinghe and 

Jepson, 2003). In some cases, ovipositional antixenosis effects have been used to 

develop resistant cultivars. An example can be seen in rice, where a cultivar resistant 

to rice folder Cnaphalocrocis medinalis Guenee (Lepidoptera: Crambidae) was 

developed after a susceptible cultivar was crossed with an antixenotic wild rice Oryza 
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brachyantha Roehr. Ovipositional responses to plants can also be seen in Chilo 

infuscatellus Snell which prefer to lay their eggs on 45 day old plants and in C. 

sacchariphagus which prefer to lay their eggs on the upper surface of leaves 

(Kumarasinghe and Jepson, 2003). In C. partellus, it has been shown that the female 

moths prefer to oviposit on Napier grass (Pennisetum purpureum Schumach) rather 

than on maize (Zea mays L.), even though subsequent larval development on Napier 

grass is poor (Midega et al., 2010). This observation has been used to develop a 

push-pull management strategy for controlling the pest in maize fields. 

C. sacchariphagus has not yet been found in South Africa and therefore cannot be 

used to carry out host-plant resistance studies in the country, unless under 

quarantine. If sugarcane varieties which appear to be resistant to C. partellus are 

also resistant to C. sacchariphagus then the concept of ‘surrogate insect resistance 

screening’ will prove effective.  Among the few South African varieties with known 

resistance or susceptibility to C. sacchariphagus, there appears to be a correlation 

with Fulmekiola serrata Kobus (Thysanoptera: Thripidae) (thrips) rankings (Chapter 

One, Page 35). All of these pests feed on the whorl of the plant and therefore similar 

resistance mechanisms within the plant may act against them. Additionally, C. 

partellus and C. sacchariphagus are both top borers. The concept of ‘surrogate 

insect resistance screening’ has proven successful within the borer genus Ostrinia on 

maize (Overman, 1994).  

Most host-preference studies using ovipositing Lepidoptera have been based on the 

use of simultaneous choice trials (Thompson and Pellmyr, 1991).  In this study, C. 

partellus moths are used to test 20 selected sugarcane varieties at their seedling 

stage, in a series of simultaneous choice trials, for any ovipositional antixenosis 

resistance mechanisms. C. partellus eggs are laid on both the upper and under sides 

of the leaves, as well as on the stem. They are usually laid in clusters of 

approximately 100 eggs per female (Hutchison et al., 2008). Sugarcane varieties 

were discriminated based on the number of eggs and number of egg batches laid on 

them by female moths of C. partellus. 
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4.2 Materials and methods 

4.2.1 Selection of sugarcane varieties  

Twenty sugarcane varieties were selected for this study (Table 4.1). Varieties N22, 

N28, N25, N26 and N32 were selected based on C. sacchariphagus leaf feeding 

index ratings and from information obtained on C. sacchariphagus ratings from the 

paper published by Conlong et al., (2004). The ‘leaf feeding index’ is a non-

destructive measurement of damage by borers used to assess their leaf feeding 

behaviour and to determine susceptibility or resistance of different maize and 

sorghum varieties to C. partellus and Busseola fusca Fuller (Lepidoptera: Noctuidae) 

borers. The remaining varieties were selected based on F. serrata numbers obtained 

from a field trial run by the South African Sugar Research Institute (SASRI, KwaZulu-

Natal, South Africa). Thrips has a similar feeding mechanism to Chilo spp. (both feed 

on the whorl of the plant), and therefore similar resistance mechanisms in plants 

could act against all of these pests. R570 and R576 are resistant and susceptible 

varieties to C. sacchariphagus, respectively, according to a study done by Nibouche 

and Tibere (2010) and were therefore also used in this study. 

Table 4.1 Sugarcane varieties selected to be incorporated into the artificial diet of Chilo 

partellus for ovipositional (antixenosis) resistance mechanism studies. R = Resistant, S 

= Susceptible. 

Variety 
Av. No. Thrips/ leaf 
whorl 

C. sacchariphagus 
leaf feeding index) 
(Conlong et al., 2004) 

Total C. s Rating (low 
value = R; high value = S) 
(Conlong et al., 2004) 

Co1287 21 
  Co6505 67 
  R 576 27 
  R 573 45 
  R 570 49 
  R 572 127 
  R 568 153 
  N24 38 
  N22 40 13.9 23 (I) 

N28 47 7.1  6  (R) 
N25 70 15.5 36 (S) 
N26 74 30.2 44 (S) 
N31 91 

  M1135/64 19 
  M861/60 21 
  M1025/70 58 
  N27 120 
  N21 165 
 

22 (I) 
N32 19                1.8 19 (I) 
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4.2.2 Oviposition experiments using Chilo partellus moths in a controlled 

environment  

Antixenosis for ovipositing was studied under multi-choice conditions in a controlled 

environment ideal for that of C. partellus moths. The room used to conduct 

experiments was maintained at 27 +/- 2oC, 70 +/- 5% and an 8 hour light: 16 hour 

dark photophase provided by 65 watt colour Triphos fluorescent tubes. Light was 

also supplemented by natural lighting from windows. Insects were obtained from the 

colony established at the South African Sugar Research Institute (SASRI, Kwazulu-

Natal, South Africa). Stalks from the selected sugarcane varieties were collected 

from established field trials at SASRI and used for planting. Stalks were cut into 

single budded setts using secateurs, and then hot water treated at 50oC for 30 

minutes in a water bath (Lasec, Durban, South Africa). The setts were planted into 98 

well trays (Hygrotech, Pretoria, South Africa) for germination to take place. The 

medium in which they were planted was a 1:1 ratio of potting mix (Grovida, Durban, 

South Africa) and vermiculite (Grovida, Durban, South Africa). Trays were kept in a 

glasshouse and manually watered on a daily basis. Twenty-day-old seedlings were 

used for experiments because this is the stage when female stem borer moths lay 

eggs on plants under natural conditions (Kumar et al., 2007). The method used for 

experiments can be seen in Figure 4.1.  

Two different ovipositional experiments were conducted, with the number of moth 

pairs used differing for each one. Twenty seedlings of the 20 selected varieties were 

planted per 98 well tray in a completely randomized design, with one row and one 

column of wells left empty between varieties (Appendix 4.1). There were five 

replications in the first experiment, with each replication consisting of one tray. 

Research randomizer (Urbaniak, 1997) was used to obtain the random design. Trays 

were placed into BugDorm® insect rearing tents (BugDorm-2400, Megaview Science 

Co. Ltd., Taiwan), with each BugDorm® housing one tray. Five pairs of newly 

emerged C. partellus moths were released into each BugDorm® rearing tent for the 

first experiment. The moths were provided with water in a cotton swab (Shanghai 

Ristea Industries Co. Ltd., China). Moths were allowed five days for mating and 

ovipositing, after which trays were removed from the BugDorms, and egg number 
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and egg batch number counted per variety for each replication. A Niko SMZ 1500 

stereoscopic zoom microscope was used to count the eggs on the leaves more 

precisely (Nikon, New York, USA). A Nikon DS-Fi1 camera (Nikon, New York, USA) 

fitted to the microscope was used to take stereo images of C. partellus eggs and egg 

batches on leaves. Experiment Two was conducted in exactly the same way as 

Experiment One, except 10 pairs of C. partellus moths were used in each BugDorm® 

tent, with 10 replications. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Method used for ovipositional experiments using Chilo partellus moths 

 

4.2.3 Statistical analysis  

Software used to analyse data was GenStat release 14th edition (VSN International, 

Hemel Hempstead, UK) (Payne et al., 2011). Number of eggs and number of egg 

batches were used for statistical analysis for all experiments.. Prior to analysis, the 

W-test for normality (Shapiro and Wilk, 1965) was used on the data and it was 

Twenty-day-old varieties 
randomly planted in trays  

Then placed in bug dorms in a 
controlled room with male and female 
moths which were allowed to mate 

Egg numbers and egg batches 
counted under microscope after 5 
days 

Leaf surface 
with 2 batches Leaf surface with 

65 eggs 

Two experiments conducted: 

1. 20 genotypes per tray (5 reps) + 

5 pairs of moths 

2. 20 genotypes per tray (10 reps) 

+ 10 pairs of moths  
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subjected to log10 transformations where necessary. The data was subjected to 

general analysis of variance (ANOVA) (Shapiro and Wilk, 1965) and means were 

separated using the Sidak test (Abdi, 2007). The standard error of the mean (SEM) 

was calculated for each parameter and presented in tables.  

 

4.3 Results 

There were no statistically significant differences between sugarcane varieties for the 

mean number of eggs laid and for the mean number of egg batches for both 

Experiments One and Two, where F pr. values were all greater than 0.05 

(Appendices 4.2, 4.3, 4.4 and 4.5). However, tendencies in the mean number of eggs 

and mean batch numbers between varieties were still observed. In Experiment One, 

where five pairs of moths were used, the variety R568 gave the highest mean 

number of eggs across replications (115.6), closely followed by N24 (113.8), N27 

(103.8) and Co1287 (99.8) (Table 4.2). The least number of mean eggs in 

Experiment One was shown by varieties N32 (23.6), followed by R574 (26.6), 

M1135/64 (29.4) and R576 (36.6) (Table 4.2). Similar results were shown for mean 

batch numbers per variety for Experiment One. In Experiment Two, where 10 pairs of 

moths were used, N28 gave the highest mean number of eggs of 143, followed by 

Co1287 (134.6) and M1025/70 (114.6) (Table 4.2). R573 gave a very low mean 

batch number in Experiment Two of 11.4, followed by N32 (34.6) and R570 (35.4) 

(Table 4.2).  
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Table 4.2 Mean Chilo partellus egg batch and egg numbers per plant for Experiments 

One and Two. General ANOVA was used to analyse the data, means are followed by 

their standard error (SE) values (Exp 1 egg number F pr = 0.833, Appendix 4.2, Exp 1 

batch number F pr. = 0.886, Appendix 4.3, Exp. 2 egg number F pr. = 0.439, Appendix 

4.4, Exp 2 batch number F pr. = 0.195, Appendix 4.5). 

  Mean batch number  Mean egg number 

  Experiment Experiment 

Variety 1 2 1 2 

CO1287 3.6±1.887 6.4±2.638 99.8±39.65 134.6±50.24 

CO6505 2±1.304 3.4±1.208 52±30.4 93.6±45.92 

M1025/70 3±1.14 4.4±2.315 83±29.63 114.6±64.55 

M1135/64 1.4±0.678 3.4±1.536 29.4±18.53 83.8±39.35 

M861/60 2.8±1.158 4.4±0.748 69±28.2 110±25.18 

N21 2.8±1.715 3.4±1.536 72.8±38.67 68±23.83 

N22 3.8±1.158 2±0.447 73.8±27.7 35±7.04 

N24 3.4±0.98 3.2±1.855 113.8±36.12 96.2±51.09 

N25 4.6±2.293 3.2±1.02 75±37.59 79.4±28.96 

N26 2.4±0.872 2.6±1.166 70±30.19 73.8±35.16 

N27 5±3.114 2.4±0.51 103.8±40.57 69.2±17.81 

N28 3.4±1.778 6±1.871 73.4±28.06 143±46.22 

N31 3.4±2.676 4±1.949 62.8±52.08 96.4±40.18 

N32 1.2±0.374 0.8±0.374 23.6±9.35 34.6±16.41 

R568 5±3.146 2.2±0.917 115.6±81.03 48.4±22.91 

R570 2.6±0.927 1.2±0.735 74.6±26.51 35.4±20.48 

R572 2±0.548 4.6±1.778 42.4±14.52 91±31.73 

R573 1.4±0.4 0.6±0.245 67±27.88 11.4±6.46 

R574 1.4±0.678 3.8±1.828 26.6±14.04 94.6±45.05 

R576 1.2±0.735 4.8±1.393 36.6±16.43 91.8±30.08 

Mean 2.82 3.34 68.25 80.24 

SD
a
 1.22 1.56 27.30 34.28 

a
 SD =standard deviation 
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4.4 Discussion 

No statistically significant differences occurred between varieties with respect to the 

number of batches and the number of eggs laid by C. partellus moths, and therefore 

no substantial conclusions can be made. . The experimental plan used in this study, 

whereby groups of female and male insects were placed into a cage with test plants, 

and the final number of eggs laid counted, is a common method for determining 

oviposition behaviour. However, this method may not be the ideal method because 

the final distribution of eggs could be represented by a combination of females that 

have different degrees of preference and ranking of host plants for oviposition. 

Furthermore, there may be competition among females for sites of oviposition which 

would ultimately result in a more uniform distribution of eggs (Thompson and Pellmyr, 

1991).  
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4.6 Appendix 

Appendix 4.1 Layout and randomization of sugarcane varieties in trays for 

ovipositional experiments using C. partellus moths
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Genotype name Co1287 Co6505 R576 R573 R570 R572 R574 R568 N24 N22
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Genotype name N28 N25 N26 N31 M1135/64 M861/60 M1025/70 N27 N21 N32
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Appendix 4.2 Experiment One (five pairs of moths): Results of ANOVA for egg 

number 
 
Source of 
variation 

d.f. s.s. m.s. v.r. F pr. CV% 

Rep stratum 4 66660 16665 3.01 

 

42.3 

  

      Rep.*Units* 
stratum 

     
109 

Variety 19 70820 3727 0.67 0.833 

 Residual 76 420566 5534 

 

  

   

      
Total 

          
99 

558047 
  

  
  

 

Appendix 4.3 Experiment One (five pairs of moths): Results of ANOVA for batch 

number 

Source of 
variation 

d.f. s.s. m.s. v.r. F pr. CV% 

Rep stratum 4 119.76 29.94 2.47 

 
43.4 

  

      Rep.*Units* 
stratum 

     
123.4 

Variety 19 140.76 7.41 0.61 0.886 

 Residual 76 920.24 12.11 

 

  

   

      Total 99 1180.76         
 

Appendix 4.4 Experiment Two (10 pairs of moths): Results of ANOVA for egg 

number 

Source of 
variation 

d.f. s.s. m.s. v.r. F pr. CV% 

Rep stratum 4 77051 19263 3.38 

 

38.7 

  

      Rep.*Units* 
stratum 

      Variety 19 111648 5876 1.03 0.439 94.1 

Residual 76 433603 5705 

 

  

   

      Total 99 622302         
 



131 
 

Appendix 4.5 Experiment Two (10 pairs of moths): Results of ANOVA for batch 

number 

Source of 
variation 

d.f. s.s. m.s. v.r. F pr. CV% 

Rep stratum 4 155.14 38.785 4.22 
 

41.7 
  

      Rep.*Units* 
stratum       Variety 19 230.84 12.149 1.32 0.195 90.8 

Residual 76 698.46 9.19 
 

  
   

      Total 99 1084.44         
 

Appendix 4.6 Experiment One and Two combined: Results of ANOVA for batch 

number 

Source of variation d.f. s.s. m.s. v.r. F pr. 

Rep stratum 4  224.42  56.11  5.24   
  
Rep.*Units* stratum 
Exp 1  13.52  13.52  1.26  0.263 
Variety 19  200.32  10.54  0.99  0.481 
Exp.Variety 19  171.28  9.01  0.84  0.654 
Residual 156  1669.18  10.70     
  
Total 199  2278.72 

   
 
Appendix 4.7 Experiment One and Two combined: Results of ANOVA for egg 
number 
 
Source of variation d.f. s.s. m.s. v.r. F pr. 

Rep stratum 4  126882.  31721.  5.68   
  
Rep.*Units* stratum 
Exp 1  7188.  7188.  1.29  0.258 
Variety 19  97355.  5124.  0.92  0.562 
Exp.Variety 19  85114.  4480.  0.80  0.702 
Residual 156  870998.  5583.     
  
Total 199  1187537.       
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Abstract 

Chilo sacchariphagus and Chilo partellus are two borers which are a threat to the 

South African sugarcane industry.  C. partellus and C. sacchariphagus both initially 

feed on the whorl of their hosts before boring into the stalk, resulting in destruction to 

the growing point and extensive stalk damage. Host-plant resistance plays a pivotal 

role in controlling such pests and therefore it is important to identify sugarcane 

varieties that could have resistance against them. Glasshouse trials conducted in 

pots were used to compare 21 sugarcane varieties for their resistance or 

susceptibility to C. partellus. Leaf whorls of 21 day old plants were inoculated with 10 

neonate larvae, and after 30 days varieties were assessed for various damage 

parameters. Results from these trials give preliminary indications as to whether 

Fulmekiola serrata and Chilo resistances are correlated; whether C. partellus or F. 

serrata could serve as surrogates in assessing resistance to C. sacchariphagus; and 

whether C. partellus itself poses a threat to sugarcane in South Africa. There was a 

significant difference between sugarcane varieties for the mean number of 
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shotholes/lesions, mean number of borings and mean number of larvae recovered. 

Results from this study indicate that N32, N28 and R570 show high levels of 

resistance against C. partellus, which concur with C. sacchariphagus ratings 

obtained from previous studies. Similarly, the variety R576 gave a susceptible rating 

to C. sacchariphagus, and an intermediate-suscpetible rating to C. partellus. 

Correlations of shotholes versus thrips numbers gave poor Pearson r values, 

however specific varieties such as N21, R568, and R572 which had high thrips 

numbers were also shown to be susceptible or to have intermediate ratings to C. 

partellus in the pot trials.  

Keywords: Chilo partellus, Chilo sacchariphagus, sugarcane, host-plant resistance, 

sugarcane varieties, Fulmekiola serrata, surrogates. 

 

5.1 Introduction 

Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) is one of the most important 

pests of sorghum (Sorghum bicolor L. Moench) and maize (Zea mays L.) worldwide 

and can cause serious damage to these crops (Kumar et al., 2007). Chilo 

sacchariphagus Bojer (Lepidoptera: Crambidae) is a serious pest of sugarcane 

(Saccharum L.) in Asia, on islands of the Indian Ocean and in Mozambique 

(Nibouche and Tibere, 2010). Damage caused by C. sacchariphagus to sugarcane in 

Reunion can result in losses of up to 25% in cane yield (Nibouche and Tibere, 2010). 

C. partellus and C. sacchariphagus are top borers that both pose a threat to the 

South African sugar industry. Early detection and control of these borers is therefore 

a biosecurity imperative (Conlong and Goebel, 2002; Bezuidenhout et al., 2008). 

C. partellus and C. sacchariphagus have similar feeding mechanisms, whereby they 

feed directly from the vegetative tissue where sucrose is stored, which in turn has an 

effect on yield and quality (Vercambre et al., 2001). Larvae of these borers initially 

feed on the leaf whorl of their host, resulting in shotholes in the emerging leaves, 

which eventually become elongated lesions on fully elongated leaves (Padmaja et 

al., 2012). Older larvae then bore into the stem and damage the growing point of the 

plant resulting in ‘deadhearts’ (Kumar et al., 2007). Larvae continue to feed within the 

stem resulting in extensive tunnelling (Kumar et al., 2007; Padmaja et al., 2012). The 
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consequence is reduced foliage, early leaf senescence, interruption of translocation 

of nutrients and metabolites, decreased plant vigour, lodging and eventual death 

(Padmaja et al., 2012). 

The use of resistant varieties is the most essential part of an integrated pest 

management (IPM) system. IPM has been used successfully to control a number of 

pests in sugarcane, including Diatraea saccharalis Fabricius (Lepidoptera: 

Crambidae) (Vercambre et al., 2001) and more recently Eldana saccharina Walker 

(Lepidoptera: Pyralidae) (Rutherford, 2014). The use of resistant varieties reduces 

the amount of insecticides required in controlling these pests, which in turn allows for 

natural enemy populations to be sustained (Vercambre et al., 2001). Naturally 

occurring pest resistant traits in plants can be of either induced or constitutive 

resistance (Broekgaarden et al., 2011).  Induced resistance requires the plant to 

recognize that there is an invader, which in turn results in the plant producing 

proteins or metabolites that restrict the invader (Keen, 1999; Underwood and 

Rausher, 2002). Constitutive resistance is the level of resistance already present in 

the plant and is not dependent on the attack of a pest (Do Vale et al., 2001). It can be 

morphological, structural or chemical in nature (Keen, 1999; Underwood and 

Rausher, 2002).  There are three components of plant resistance to insect 

herbivores, namely, antixenosis, antibiosis and tolerance (Thayumanavan and 

Sadasivm, 2003). One or more of these mechanisms may be present in a resistant 

plant; however it is favourable for all three mechanisms to be present in a resistant 

variety (Ahman, 2006). A summary of these resistance mechanisms can be seen in 

Table 5.1. In sugarcane, three main types of resistance mechanisms have been 

thought to act against borer populations. These include ovipositional antixenosis, 

difficulty in larvae entering a plant either due to resistance in the stalk or due to 

resistance on the leaves where larvae feed initially and antibiosis acting against 

already established larvae (Mathes and Charpentier, 1969). 
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Table 5.1 Type of insect resistance mechanisms in plants and their related 

responses (adapted from Kumar, 1997) 

Type of resistance 
mechanism 

Response of insect or plant 

Antixenosis 
Repulsion of insects: avoidance or departure from plants 
Feeding: inhibition  
Oviposition: inhibition 

Antibiosis 
Metabolism of food ingested by insects: nutrition, metabolic disturbance 
Negative impact on larval development 
Reduced survival of larvae and adults 

Tolerance Repair, regeneration of damaged tissue of plants 

 

In this study, 21 selected and diverse sugarcane varieties were whorl inoculated with 

C. partellus larvae under glasshouse conditions. A leaf feeding injury assessment 

was made and larval survival and the extent of subsequent borings were also 

assessed. This study  also aimed to give a better indication as to whether C. partellus 

may pose a threat to the sugarcane industry, and to give preliminary indications as to 

whether it could be used as a surrogate insect in assessing resistance to C. 

sacchariphagus, by comparing results to previous ratings of sugarcane varieties to C. 

sacchariphagus. There is also a possibility that Fulmekiola serrata Kobus 

(Thysanoptera: Thripidae) (thrips) can be used as a surrogate because it also feeds 

on the whorl of the plant, and because there may be a correlation between resistance 

rankings for C. sacchariphagus and thrips (see Chapter 1, Page 35). 

 

5.2 Materials and methods 

5.2.1 Selection of sugarcane varieties 

Twenty one sugarcane varieties were selected for this study (Table 5.2). Sugarcane 

varieties N22, N28, N25, N26 and N32 were selected based on C. sacchariphagus 

leaf feeding index ratings and from information obtained on C. sacchariphagus 

ratings from a paper published by Conlong et al., (2004). The ‘leaf feeding index’ is a 

non-destructive measurement of damage by borers used to assess their leaf feeding 

behaviour, and to determine the susceptibility or resistance of different maize and 

sorghum varieties to C. partellus and Busseola fusca Fuller (Lepidoptera: Noctuidae) 

borers (Van den Berg and Van der Westhuizen, 1998). The remaining sugarcane 
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varieties were selected based on F. serrata numbers obtained from a field trial run by 

the South African Sugar Research Institute (SASRI, KwaZulu-Natal, South Africa). 

R570 and R576 are resistant and susceptible sugarcane varieties to C. 

sacchariphagus, respectively, according to a study done by Nibouche and Tibere 

(2010) and were therefore also used in this study. The glasshouse trial was 

performed twice. R574 was not available from the field for planting in the second trial, 

therefore it was decided that NCo376 would be used because it is the standard 

variety used in the artificial diet of C. partellus at SASRI. 

 

Table 5.2 Sugarcane varieties used in glasshouse screening studies for resistance to 

Chilo partellus. R = Resistant, S = Susceptible. 

Variety 
Av. No. Thrips/ leaf 
whorl 

C. sacchariphagus 
leaf feeding index) 
(Conlong et al., 2004) 

Total C. s Rating (low 
value = R; high value = S) 
(Conlong et al., 2004) 

Co1287 21 
  Co6505 67 
  R 576 27 
  R 573 45 
  R 570 49 
  R 572 127 
  R 568 153 
  N24 38 
  N22 40 13.9 23  (I) 

N28 47 7.1   6 (R) 
N25 70 15.5 36 (S) 
N26 74 30.2 44 (S) 
N31 91 

  M1135/64 19 
  M861/60 21 
  M1025/70 58 
  N27 120 
  N21 165 
 

22  (I) 
N32 19                1.8 19  (I) 

 

 

5.2.2 Pot trials used to evaluate damage on sugarcane by Chilo partellus 

under glasshouse conditions 

This experiment took place in a glasshouse at the South African Sugar Research 

Institute (SASRI, KwaZulu-Natal, South Africa). Stalks from the selected sugarcane 

varieties were collected from established field trials at SASRI and used for planting. 

Stalks were cut into single budded setts using secateurs, and then hot water treated 

in a water bath (Lasec, Durban, South Africa) at 50oC for 30 minutes. Setts were 
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planted into 25 Litre PVC pots (30 cm diameter and 45 cm deep) (Grovida, Durban, 

South Africa) containing cleaned, coarse Umgeni river sand (Chain sands, Durban, 

South Africa). Pots were placed into troughs (Wardkiss, Durban, South Africa) filled 

with water to ensure that they would not dry out and that ants could not predate 

inoculated larvae. The experiment was laid out in a completely randomized design, 

with a total of five replications (Appendix 5.1). Each replication consisted of 20 pots 

representing all 20 sugarcane varieties (Figure 5.1b). Pots were arranged in double 

rows of 10 pots each for each replication, and spaced so that they did not come into 

contact with each other, to avoid contact between neighbouring plants.  Planting was 

done over three weeks, with one sett being planted in each pot per week, until a total 

of three setts of the same variety were planted in each pot (Figure 5.1a). Planting 

was done in this manner for inoculation purposes. Pots were labelled with the variety 

name using pot labels (Wardkiss, Durban, South Africa). They were watered 

manually on a daily basis until inoculation of larvae took place, after which troughs 

were maintained to always be filled with water. Plants were fertilized monthly with 

4:1:1 (44) N:P:K fertilizer (16 g/pot) (Grovida, Durban, South Africa). 

When each plant reached 21 days of age, inoculations were performed. This is the 

stage when female stem borer moths lay eggs on plants under natural conditions 

(Kumar et al., 2007). Neonate larvae of C. partellus were provided by the established 

colony at SASRI. Inoculations took place over a period of three weeks, with the first-

planted plant per pot being inoculated in the first week, the second in the second 

week, and the third plant in the third week until all the plants in the pot trial had been 

inoculated (Figure 5.1a). Each plant was inoculated with 10 neonate C. partellus 

(Nibouche and Tibere, 2010) larvae, and they were released directly into the central 

whorl of each plant with a camel hair brush (Winsor and Newton, London, UK). 

According to Sharma (1997), five to seven larvae usually causes a sufficient amount 

of damage to susceptible sugarcane varieties. Inoculated plants were labelled with 

the date using white labels (Wardkiss, Durban, South Africa). Inoculations took place 

in the early morning between 07h00 and 11h00 to avoid larval death due to high 

temperatures. 

Thirty days after inoculating, damage assessments were made. Plants were cut at 

their base and used for analysis. The number of entry/exit holes (borings) due to 

larvae was counted (Figure 5.2a). Stalks were split open throughout their entire 
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length and the total length of tunnels in each stem was recorded (Figure 5.2b). Upon 

dissection of the plants, the number of larvae and pupae found were counted. Live 

larvae that were found on the outside of the plant were considered established. 

Larval weight of recovered larva was also recorded. The number of damaged leaves 

and the number of shotholes or lesions per leaf were counted and recorded (Figure 

5.2c). Two different leaf feeding damage rating scales were used. One of the rating 

scales was on a scale of 0 to 4 (Figure 5.3), where 0 = no visible leaf injury, 1 = few 

shotholes or lesions observed on leaves, 2 = medium damage, 3 = heavy damage, 

and 4 = extensive and severe damage to leaves.  The second rating scale was based 

on a method used by Conlong et al. (2004), which uses the number of damaged 

leaves and the number of feeding holes as part of a rating system on a scale of 1 to 

9. A stalk damage rating system was also used, based on the same scale as that of 

the leaf feeding damage rating on a scale of 0 to 4 (Figure 5.4). An overall rating was 

given to each variety, based on the total number of borings, total number of larvae 

recovered and mean number of shotholes/lesions over the two pot trials that were 

carried outThis was a subjective rating whereby R = resistant, IR = intermediate-

resistant, I = intermediate, IS = intermediate-susceptible, and S = susceptible 

After the first pot trial was complete, a second pot trial was conducted in the exact 

same way. However, the Variety R574 was replaced with Variety NCo376 as there 

was no R574 planting material available from the field. The glasshouse was fogged 

using Doom Fogger (Checkers Hyper, Durban, South Africa) to kill off any predators 

or moths that may have an effect on the trial.  
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a. 

Figure 5.1 Layout of (a) individual pots and (b) a replication from the pot trial used for 

Chilo partellus resistance studies 

 

Figure 5.2 Damage parameters used to assess Chilo partellus damage to sugarcane 

varieties (a) entry/exit holes (borings) (b) tunnel length and (c) Shotholes or lesions 

b. 

Sett 1 

 

Sett 3 Sett 2 

Planted at week 1 

1st inoculated 

Planted at week 3 

3rd inoculated 

Planted at week 2 

2nd inoculated 
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Figure 5.3 Examples of damage caused to sugarcane leaves by Chilo partellus used 

as a visual leaf rating system on a scale of 0 to 4 

 

Figure 5.4 Examples of damage caused to sugarcane stalks by Chilo partellus used 

as a visual stalk rating system on a scale of 0 to 4 
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5.2.3 Statistical analysis  

Software used to analyse data was GenStat release 14th edition (VSN International, 

Hemel Hempstead, UK) (Payne et al., 2011). The two pot trials conducted were 

analysed separately. Prior to analysis, the W-test for normality (Shapiro and Wilk, 

1965) was used on the data for each parameter, and it was subjected to log10 or 

square root transformations where necessary. The data was subjected to Residual 

Maximum Likelihood (REML) variance component analysis (Harville, 1977) and 

means were separated using the Sidak test (Abdi, 2007). The standard error of the 

mean (SEM) was calculated and presented in tables alongside the means for each 

parameter.   

 

5.3 Results 

5.3.1 Damage assessment of sugarcane varieties for the first pot trial 

 

There was a significant difference between sugarcane varieties for the mean number 

of shotholes/lesions, mean number of borings, and mean number of larvae counted 

in the first pot trial (Appendices 5.2, 5.3, 5.4). A summary of the damage parameters 

for all the sugarcane varieties for the first pot trial can be seen in Table 5.3. Variety 

M1025/70 had a higher mean number of shotholes/lesions than the other sugarcane 

varieties, significantly higher than N21, N24 and N32, which had the lowest mean 

number of shotholes/lesions. R576 also had a significantly higher mean 

shothole/lesion number compared to N32, which had the lowest mean number of 

shotholes/lesions.  R576 had a significantly higher mean number of borings 

compared to all the sugarcane varieties, with the exception of sugarcane 

varietyM1025/70. M1025/70 had a significantly higher mean number of borings 

compared to R570, R574, Co1287, M1135/64 and N32, which all had the least mean 

number of borings. R570 and N32 were the only two sugarcane varieties found to 

have no borings. A total of 52 borings were counted for R576 across all replications, 

followed by N31 and M1025/70 of which 27 and 24 borings were counted, 

respectively. R576 had a significantly higher mean number of larvae compared to 

N32, where no larvae were found. The remaining sugarcane varieties did not differ 
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significantly from each other with respect to the mean number of larvae. The highest 

number of larvae found was for R576, with a total of 14 larvae found across all 

replications, followed by R568 with a total of 13 larvae counted across all 

replications. No larvae were found for R570, R574, M1134/64 and N32. No 

significant differences occurred between sugarcane varieties for mean larval weight 

and mean tunnel length (Appendices 5.5, 5.6). However, tunnel length was highest in 

N31 (14.125 cm), R572 (13.5 cm) and N27 (9.167 cm).  

Pupae were recovered from stalks of varieties R572, R574, R576 and N25, with 

R574 and R576 having the highest number of pupae found (Table 5.3).  

The mean leaf feeding scores can also be seen in Table 5.3. Varieties having a 

mean leaf feeding score of above 3 (heavy damage), when using the scale of 0-4, 

included R576 and M1025/70. This seems to concur with results from the other 

damage parameters which show the same varieties to have higher numbers of 

borings and larvae. Varieties showing a leaf feeding score of below 2 (few 

shotholes/lesions on leaves) included R570, R573, M1135/64, N24 and N32. When 

using the second leaf feeding rating system, score of of 1-9, similar results were 

observed. Again sugarcane varieties R576, Co6505, N31 and N22, had the highest 

scores, whilst R570, R573, M1135/64, N21, N24 and N32 had the lowest leaf feeding 

scores. Overall, the mean stalk feeding scores were a lot lower than the mean leaf 

feeding scores, using a scale of 0-4. The highest scores were observed for 

M1025/70, N21, N22, N27 and R568, while a stalk damage score of 0 was observed 

for R570 and N32 (Table 5.3). 

In a study conducted by Conlong et al. (2004), an objective was to determine 

whether the assessment of leaf damage (i.e shotholes) could be used to replace the 

laborious task of destructive stalk splitting and the counting of borings. Similarly, in 

this study we wanted to determine if there was a correlation between the number of 

stalk borings and the number of shotholes on the leaves which could indicate 

whether the counting of shotholes could replace the laborious task of assessing stalk 

damage (Figure 5.5). A significant correlation between the two parameters was found 

with a Pearson r of 0.682 (p < 0.05) for Pot Trial One. 
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Table 5.3 Comparison of damage parameters caused by Chilo partellus larvae on 20 selected sugarcane varieties of sugarcane 

grown in Pot Trial One. The data was subjected to REML variance component analysis, Sidak test, and data log10 or square root 

transformation used where necessary. Untransformed data is presented here. 

Variety 

Mean no. 

shotholes per 
variety

a
 

Total 

no. 
borings

b
 

Mean 

borings per 
variety

a
 

Total 

no. 
larvae

b
 

Mean no. larvae 

per variety
a
 

Mean larval 

weight (g)
a
 

Mean  

tunnel  
length (cm)

a
 

Total 

no. 
pupae

b
 

Mean leaf 

feeding 
score (0-4)

a
 

Leaf feeding 

score (1-9) 

Mean stalk 
feeding 

score (0-
4)

a
 

R568 25.46±3.482abc 7 0.4667±0.2153ab 13 0.8667±0.3634ab 0.01009±0.00449 1.875±0.718 0 2.7 3 0.8 

R570 15.71±2.708abc 0 0a 0 0ab 0 0 0 1.8 2 0 

R572 28.46±4.75abc 5 0.3333±0.2323ab 3 0.2±0.1447ab 0.03575±0.02075 13.5±5.5 1 2.5 3 0.6 

R573 17.2±3.303abc 6 0.4±0.2726ab 2 0.1333±0.0909ab 0.0115±0.0114 0 0 1.8 2 0.4 

R574 23.67±4.929abc 1 0.0667±0.0667a 0 0ab 0.06667±0.00667 20±* 3 2.1 3 0.5 

R576 43.92±4.438bc 52 3.4667±1.2105c 14 0.875±0.2562b 0.04662±0.01669 5.411±1.513 3 3.3 5 2 

Co1287 27±5.302abc 5 0.3333±0.3333a 2 0.1333±0.1333ab 0.017±0.0067 0.75±0.25 0 2.0 3 0.5 

Co6505 31.92±8.324abc 14 0.9333±0.4194ab 1 0.0667±0.0667ab 0.0167±* 2.5±* 0 2.5 4 0.7 

M1025/70 49.72±6.311c 24 1.6±0.3879bc 5 0.3333±0.126ab 0.06696±0.02044 6.667±2.25 0 3.2 5 2 

M1135/64 14.48±4.031abc 1 0.0667±0.0667a 0 0ab 0 5±* 0 1.6 2 0.1 

M861/60 21.5±2.619abc 18 1.2±0.4598ab 1 0.0667±0.0667ab 0.0234±* 30±* 0 2.6 3 0.4 

N21 14.64±1.847ab 12 0.8±0.4047ab 5 0.333±0.2108ab 0.04726±0.02698 2±0.5 0 2.2 2 0.8 

N22 31.85±4.92abc 10 0.6667±0.1869ab 7 0.4667±0.2153ab 0.02899±0.01586 2.167±0.441 0 2.8 4 0.8 

N24 11.82±11.82ab 11 0.7333±0.3305ab 2 0.1333±0.0909ab 0.00525±0.00515 1.75±0.25 0 1.8 2 0.3 

N25 24.06±4.974abc 12 0.8±0.4276ab 5 0.3125±0.176ab 0.01482±0.00726 2±* 1 2.1 3 0.4 

N26 23.85±2.713abc 12 0.8±0.3546ab 4 0.2667±0.2063ab 0.01155±0.00804 0 0 2.1 3 0.3 

N27 27.36±6.641abc 7 0.4667±0.2906ab 2 0.1333±0.0909ab 0.165±0.0408 9.167±5.419 0 2.0 3 0.9 

N28 23.73±6.633abc 7 0.4667±0.2153ab 1 0.0667±0.0667ab 0.0001±* 0 0 2.2 3 0.3 

N31 31.28±4.302abc 27 1.8±0.579bc 13 0.8667±0.3065ab 0.03303±0.00791 14.125±4.185 0 2.8 4 1.8 

N32 11.42±1.953a 0 0a 0 0a 0 0 0 1.3 2 0 

mean 24.95 11.55 0.77 4.00 0.26 0.03 5.85 0.40 2.24 3.05 0.68 

SD 9.91 12.03 0.80 4.48 0.29 0.04 7.97 0.94 0.54 0.94 0.60 

Mean ± SE, values in a column followed by the same letter are not significantly different using the Sidak test (P = 0.05); *Standard errors could not be 
calculated due to only one recording; 

a
 mean over all plants per pot (inoculations) for all replications per variety;

b
 Total over all plants per pot (inoculations) for 

all replications per variety  
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Figure 5.5 A significant correlation between the total number of Chilo partellus 

borings and the mean number of shotholes for 20 sugarcane varieties grown in Pot 

Trial One (PT1 Pearson correlation r = 0.682; p < 0.05).  

 

5.3.2 Damage assessment of sugarcane varieties for the second pot trial 

 

There was a significant difference between sugarcane varieties with respect to the 

mean number of shotholes/lesions, mean number of borings and mean number of 

larvae (Appendices 5.7, 5.8, 5.9). A summary of the damage parameters for all the 

sugarcane varieties for the second pot trial can be seen in Table 5.4. N22 and N25 

had the highest mean number of shotholes/lesions, being significantly higher than 

N24 and R573 which had the least mean number of shotholes/lesions. Co1287 also 

had significantly higher mean number of shotholes than N24 and R573. The 

remaining sugarcane varieties did not differ significantly from each other with respect 

to the mean number of shotholes/lesions. M1025/70 had the highest mean number of 

borings and was significantly higher than the majority of the sugarcane varieties. 

M861/60 had the least mean number of borings and was significantly lower to that of 

M1025/70, N22 and N31. M1025/70 gave the highest number of total borings (47), 
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followed by N22 and N31 which had 28 and 26 borings in total respectively. The 

highest mean number of larvae was found in M1025/70, R572, Co6505, N21 and 

N31, while the lowest was found in M861/60, R570, Co1287, M1135/64, N24 and 

N25. There was no significant difference found between sugarcane varieties for 

mean larval weight and mean tunnel length (Appendices 5.10, 5.11). 

Pupae were recovered from stalks of sugarcane varieties R568, Co1287, M1025/70 

and N25. However, the maximum number of pupae recovered was one per variety, 

which was not significant enough to draw any relevant conclusions. 

The mean leaf feeding scores can also be seen in Table 5.4. Sugarcane varieties 

having a mean leaf feeding score of above 3 (heavy damage), when using the scale 

of 0-4, included M1025/70 and N22. This seems to correlate with results from the 

other damage parameters which show the same varieties to have higher numbers of 

borings and larvae. Varieties showing a leaf feeding score of below 2 (few 

shotholes/lesions on leaves) included R573, R570, M1135/64, M861/60, N24 and 

N32. When using the second leaf feeding score rating system, of 1-9, similar results 

were observed. Sugarcane varieties R568, Co1287, M1025/70, N21, N25 and N22, 

had the highest scores, whilst R570, R573, R576, M1135/64, M861/60, N26, N28 

and N32 gave the lowest leaf feeding scores. With respect to the mean stalk feeding 

score, varieties R570, M1135/64, M861/60, N24, N28 and N32 gave scores below 1, 

while M1025/70 gave the highest score of 2.6 (Table 5.4). 

A correlation occurred between for the mean number of shotholes/lesions and the 

total number of borings found and is shown in Figure 5.6. A high number of larvae 

were associated with an increase in the number of borings and mean number of 

shotholes/lesions.
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Table 5.4 Comparison of damage parameters caused by Chilo partellus larvae on 20 selected sugarcane varieties of sugarcane 

grown in Pot Trial Two. The data was subjected to REML variance component analysis, Sidak test, and data log10 or square root 

transformation used where necessary. Untransformed data is presented here. 

 

Mean ± SE, values in a column followed by the same letter are not significantly different using the Sidak test (P = 0.05); *Standard errors could not be 
calculated due to only one recording ;

a
 mean over all plants per pot (inoculations) for all replications per variety; 

b
 Total over all plants per pot (inoculations) for 

all replications per variety  

Variety 
Mean no. 
shotholes per 
variety

a
 

Total 
no. 
borings

b
 

Avg 
borings per 
variety

a
 

Total 
no. 
larvae

b
 

Mean no. larvae 
per variety

a
 

Mean larva 
weight (g)

a
 

Mean  
tunnel  
length (cm)

a
 

Total 
no. 
pupae 

found
b
 

Mean leaf 
feeding 
score (0-4)

c
 

Leaf feeding 
score (1-9) 

Mean stalk 
feeding 
score (0-

4)
a
 

R568 35.12±5.608b 17 1.1333±0.2906abc 6 0.4286±0.1373ab 0.0465±0.00798 10.545±2.155 1 2.6 4 1.8 

R570 18.43±4.578ab 20 1.3333±0.8819ab 2 0.1333±0.0909a 0.1285±0.00855 9.8±2.871 0 1.6 2 0.8 

R572 29.68±5.476ab 15 1.6±0.636abc 12 1.2±0.2906bc 0.03475±0.00694 8.444±2.28 0 2.4 3 2 

R573 10±3.928ab 8 0.5333±0.2557ab 4 0.2667±0.1182a 0.0255±0.00911 3.667±1.382 0 1.3 2 1 

R576 17.11±4.988ab 9 0.6±0.235ab 7 0.4667±0.1919ab 0.03165±0.01353 6.167±1.833 0 2 2 1.4 

Co1287 40.21±9.156ab 12 0.8±0.3677ab 2 0.1333±0.0909a 0.09343±0.05148 12.5±5.994 1 2.4 4 1.7 

Co6505 18.57±4.458ab 17 1.1333±0.3887abc 12 0.8±0.3117abc 0.05331±0.01327 9.357±1.543 0 2.3 2 1.6 

M1025/70 33.14±4.672b 47 3.1333±0.5595c 21 1.3125±0.2366c 0.05658±0.01013 11.5±2.014 1 3.2 4 2.6 

M1135/64 13.45±6.131a 4 0.2667±0.1817ab 2 0.1333±0.0909a 0.06055±0.00055 10.333±5.044 0 1.0 2 0.8 

M861/60 10.35±5.021ab 3 0.2±0.2a 0 0a 0 3±* 0 0.9 2 0.2 

N21 32.31±6.667ab 22 1.6±0.3491abc 12 0.8±0.1447abc 0.02573±0.00655 4.646±0.905 0 2.3 4 1 

N22 46.33±6.285ab 28 1.8667±0.4667abc 7 0.4667±0.1652ab 0.02476±0.00634 7.842±1.298 0 3.1 5 2 

N24 10.4±3.305ab 3 0.2±0.1069ab 2 0.1333±0.0909a 0.0296±0.0295 2.25±0.25 0 1.6 2 0.1 

N25 46.03±7.307ab 8 0.5333±0.3362ab 1 0.0667±0.0667a 0.0661±0.0066 16.667±3.073 1 2.7 5 2 

N26 20.61±4.561ab 11 0.7333±0.3003ab 7 0.4667±0.1919ab 0.03331±0.01131 5.75±1.493 0 2.0 2 0.9 

N27 28.8±5.447ab 8 0.4667±0.1652ab 7 0.4667±0.1919ab 0.02164±0.00649 8.571±2.581 0 2.5 3 1 

N28 17.23±4.413ab 6 0.4±0.2138ab 4 0.2667±0.1533a 0.00907±0.00897 8.75±3.614 0 2 2 0.6 

N31 28.62±4.461ab 26 1.7333±0.3838bc 12 0.8±0.1447abc 0.04104±0.00807 9.25±2.842 0 2.9 3 1.7 

N32 20.42±6.518ab 10 0.7333±0.3446ab 4 0.2667±0.1182a 0.00873±0.0037 2.6±0.245 0 1.4 2 0.6 

NCo376 30.22±8.904ab 7 0.4667±0.2153ab 4 0.2667±0.1182a 0.02917±0.01321 4.833±1.108 0 2 3 1 

mean 25.35 14.05 0.97 6.40 0.44 0.04 7.82 0.20 2.08 2.90 1.24 

SD 11.38 10.67 0.73 5.18 0.37 0.03 3.72 0.41 0.66 1.07 0.67 
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Figure 5.6 A significant correlation between total number of Chilo partellus borings 

and mean number of shotholes for 20 sugarcane varieties grown in Pot Trial Two  

(PT2 Pearson correlation r =0.472; p < 0.05). 

 

5.3.3 Comparison of Pot Trial One versus Pot Trial Two  

Sugarcane varieties N31, Co6505 and M1025/70 gave consistently high number of 

borings, above both trial means for both pot trials (labelled in red in Figure 5.7). 

M1135/64, N32, R573, N27, N28, N24 and Co1287 gave consistently low number of 

borings for both trials (labelled in blue in Figure 5.7). However, not all varieties 

performed consistently between trials, with R570 having no borings in the first pot 

trial and 20 borings in the second pot trial. Similarly, M861/60 had a high number of 

borings for the first pot trial and a low number of borings for the second pot trial 

(Figure 5.7). 

Eleven sugarcane varieties were shown to perform consistently between both pot 

trials with respect to the total number of larvae recovered per variety (Figure 5.8). 

Again, M1025/70 and N31 gave a consistently high number of larvae for both pot 
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trials and N32, N28, N24, R573 and M861/60 gave consistently low numbers of 

larvae (Figure 5.8).  

Sugarcane varieties having a consistently high number of mean shotholes/lesions for 

both trials were labelled in red and included M1025/70, N31, Co1287, R568, R572, 

N27 and N22 (Figure 5.9). Consistently low mean number of shotholes/lesions was 

seen for M861/60, N28, R570, M1135/64, N24, N32, R573 and N26 (Figure 5.9).  

Sugarcane varieties to perform consistently for all of the above mentioned 

parameters across both pot trials were M1025/70 and N31, giving consistently high 

values, and M1135/64 and N32, giving very low values for all of the damage 

parameters (circled in Figures 5.7-5.9).  

In Table 5.5 varieties are classified into resistant, intermediate, or susceptible 

groupings, based on the mean number of shotholes/lesions, total number of larvae 

recovered and the total number of borings for Pot Trial One and Pot Trial Two. With 

regards to the overall rating, two varieties were classified as susceptible, five as 

intermediate-susceptible, four as intermediate, one as intermediate-resistant and 

nine as resistant. The two susceptible varieties were M1025/70 and N31, while the 

nine resistant varieties were R570, R573, R574, Co1287, M1135/64, M861/60, N24, 

N28, and N32.  
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Figure 5.7 Total number of Chilo partellus borings per variety for Pot Trial One (PT1) 

versus Pot Trial Two (PT2) 

 

Figure 5.8 Total number of Chilo partellus larvae per sugarcane variety for Pot Trial 

One (PT1) versus Pot Trial Two (PT2) 
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Figure 5.9 Mean number of shotholes/lesions made by larvae of Chilo partellus per 

sugarcane variety for Pot Trial One (PT1) versus Pot Trial Two (PT2) 

 

Table 5.5 Subjective overall ratings based on the balance of the three statistically 

significant damage parameters for Pot Trial One and Pot Trial Two. R = resistant 

(Highlighted in peach); IR = intermediate-resistant; I = intermediate; IS = 

intermediate-susceptible; S = susceptible (Highlighted in yellow). 

Variety 
Borings 

Trial 1, Trial 2 
 

Larvae 
Trial 1, Trial 2 

 

Shot-holes 
Trial 1, Trial 2 Overall Rating 

R 568 R,I S,I I,S IS 

R 570 R,S R,R I,I R 

R 572 R,I R,S I,S I 

R 573 R,R R,R R,R R 
R 574 R,- R,- I,- R 

R 576 S,I S,I S,R IS 

Co1287 R,I R,R I,S R 

Co6505 I,I R,S S,I IS 

M1025/70 S,S I,S S,S S 

M1135/64 R,R R,R R,R R 
M861/60 I,R R,R I,R R 

N21 I,S I,S R,S IS 

N22 I,S I,I I,S IS 

N24 I,R R,R R.R R 

N25 I,I I,R I,S I 

N26 I,I I,I I,I I 
N27 R,R R,I I,I IR 
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5.3.4 Comparison between Chilo sacchariphagus, Chilo partellus, 

and Fulmekiola serrata ratings 

Ratings obtained for C. sacchariphagus (from Conlong et al., (2004), and Nibouche 

and Tibere, (2010)) and C. partellus for Natal and Reunion varieties can be seen in 

Table 5.6. Variety N28 is resistant to both C. sacchariphagus and C. partellus. 

Variety N32 is intermediate-resistant to C. sacchariphagus whilst it was one of the 

most resistant to to C. partellus. Ratings for N21 and N22 are intermediate to C. 

sacchariphagus and intermediate-susceptible to C. partellus respectively. Varieties 

N25 and N26 are susceptible to C. sacchariphagus whilst intermediate ratings were 

obtained for C. partellus. The variety R570 is resistant to both C. sacchariphagus and 

C. partellus, and R576 is susceptible to C. sacchariphagus and rates as 

intermediate-susceptible to C. partellus in this study. 

The correlation between the mean number of shotholes/lesions per variety versus the 

mean number of thrips per leaf whorl was poor where pearson r values of 0.037 and 

0.381 were obtained for Pot Trial One and Pot Trial Two respectively (Figure 5.10).  

 

Table 5.6 Comparison of resistance ratings for Chilo sacchariphagus and Chilo 

partellus for those varieties with data for both. 

 

 

 

 

 

 

 

 

Variety 

C. sacchariphagus 
total ratings for N 
varieties (Conlong et 
al., 2004) 

C. sacchariphagus 
ratings for R 
varieties (Nibouche 
and Tibere, 2010) 

C. partellus 
overall rating 
(Table 5.5) 

R570       -            -  R R 
N28       6          R - R 
N32     19           I - R 
N21     22           I - IS 
N22     23           I - IS 
N25     36          S - I 
N26     44          S - I 
R576 -        -  S IS 
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Figure 5.10 Correlation plot of the mean number of shotholes/lesions made by Chilo 

partellus larvae per variety from pot trial two (PT2) versus the mean number of thrips 

per leaf whorl for the same varieties, obtained from a field trial run by the South 

African Sugar Research Institute. (PT1 Pearson correlation r = 0.037; p > 0.1, not 

significant). 

 

5.4 Discussion 

The results from the pot trials, regarding the various damage parameters, indicated 

that the screening method used was able to discriminate between varieties for 

resistance to C. partellus larvae. Varieties differed significantly for all damage 

parameters recorded, except for mean tunnel length and mean larval weight 

(Appendices 5.2-5.11).   

Although ten neonate larvae were inoculated into the whorl of each plant, the final 

number of larvae found to be established was relatively low across all sugarcane 

varieties. In the first pot trial, the highest total number of larvae found across all 

replications was 14 on Variety R576, and in the second pot trial, a total of 21 larvae 

were found for Variety M1025/70. A total of 150 larvae were inoculated per variety 
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per pot trial. Sharma (1997) recommended that five to seven neonate larvae should 

be used to inoculate plants, however, it is indicated from this study that higher 

numbers of larvae (30-40) should be used for inoculations for sugarcane varieties. 

The tougher leaf tissue and differing structure of the whorl of sugarcane compared to 

sorghum could be a contributing factor to the higher number of larvae required for 

inoculations.  

No dead larvae were recovered from on or inside the plants or in the pots. The 

inability of larvae to feed and survive on the plant whorl of most of the varieties is a 

possible reason for low numbers of larvae being established. This could be due to 

chemical or physical properties of the leaf which inhibit larval growth (Kamala et al., 

2012). Antixenosis effects of specific sugarcane varieties could also have had an 

effect on larval feeding initiation (Thayumanavan and Sadasivm, 2003). Low 

numbers of larvae found on R570, M1135/64, N32 and M861/60, in both pot trials, 

could indicate that these varieties have some form of resistance (antibiosis or 

antixenosis; constitutive or induced) against C. partellus. In a study conducted by 

Kumar (1995), it was found that the percentage of larvae recovered from resistant 

maize varieties was significantly lower than that of a susceptible variety. This could 

be due to antibiotic effects of certain chemicals in the plant tissues, or the inability of 

the larvae to feed on the plant due to structural features (Kamala et al., 2012).  

The more susceptible sugarcane varieties had a higher larval population of C. 

partellus, as well as a higher mean tunnel length and number of borings. This 

concurs with results recorded by Nazir (2009) where maize varieties with higher C. 

partellus larval populations had longer tunnel lengths. The same can be observed for 

the number of shotholes/lesions on a specific variety, where a higher number of 

shotholes/lesions also indicate a higher number of larvae present on the plant and a 

higher tunnel length. It has been shown that young C. sacchariphagus larvae feed on 

the terminal leaves before entering the stalk and this in turn results in leaf lesions. 

These leaf lesions give a good indication of the borer populations on the plant 

(Nibouche and Tibere, 2009). Moreover, in a study conducted by Kumar (1997), it 

was found that there was a direct correlation between the number of borings 

(entry/exit holes) and tunnel length caused by C. partellus larvae on maize. 

Therefore, by counting the number of borings, the laborious exercise of dissecting 

the stalk to measure tunnel length can be avoided. The number of borings on a plant 
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is a good criterion for assessing resistance to borers as it indicates the suitability of 

the variety for the larvae to complete its growth and ultimately emerge from the stalk 

for pupation (Padmaja et al., 2012). The low numbers of borings in specific varieties 

could be due to the hardness of the stalk (Kumar, 1997). 

On some sugarcane varieties larvae were recovered, but there was a low number of 

borings and little to no stalk damage. This was possibly due to the larvae being found 

on the outside of the plant (on the leaves or stalk), and therefore the larvae never in 

fact entered the stalk. This can be seen in the first pot trial for R573, N26 and N28, 

where the number of larvae recovered were two, four and seven, respectively, and 

the tunnel length was 0 cm for all of them. Even though a few borings were initiated, 

no tunnel damage was observed, suggesting that there was incompatibility of the 

larvae when attempting to feed inside the stalk. The same can be observed for the 

second pot trial for sugarcane varieties N32 and R573, where there was very little 

stalk damage. This suggests that there was some form of resistance in the stalk of 

the plant in these specific sugarcane varieties. The mechanical characteristics of the 

cane stalk are determined by the structure of plant tissues and properties of the cell 

walls such as lignins and silicate; and have been shown to play a part in resistance 

against C. sacchariphagus (Rochat et al., 2001). Larval weight also seemed to be 

less for all of these sugarcane varieties, suggesting antibiosis leading to slower 

growthrates. It has been found that C. partellus larval development is slower on 

resistant varieties (Kumar, 1997). 

According to Conlong et al. (2004), the use of a non-destructive leaf rating system is 

useful in determining differences between sugarcane varieties for resistance to C. 

saccharphagus. A correlation with a stalk dissection method was shown. In this study 

statistically significant correlations can be seen for the mean number of 

shotholes/lesions and the total number of borings where a high number of borings 

were associated with a high number of shotholes/lesions. Therefore there is potential 

for the use of shothole assessments in the rapid mass screening of sugarcane 

genotypes for resistance to C. partellus within the plant breeding programme.  

According to the mean leaf feeding scores used in this study, it is evident that none 

of the sugarcane varieties tested had complete resistance to C. partellus. However, 

varieties M1025/70 and N31 showed a high degree of susceptibility to C. partellus 
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larvae in both pot trials conducted, particularly in the first pot trial, where M1025/70 

had the highest number of shotholes/lesions and borings compared to other varieties. 

Conversely, N32 gave the lowest leaf feeding score, along with the other damage 

parameters, for both pot trials, indicating it is the least susceptible variety to C. 

partellus. The role of leaves in resistance against stalk borers for sorghum and maize 

is well known (Pathak, 1990). The good correlation between the mean numbers of 

shotholes/lesions with the number of borings, suggests that the resistance 

mechanism of the leaves plays a vital role prior to the establishment of the larvae and 

ultimately determines their populations. In a study conducted by Afzal et al. (2009), it 

was found that the most contributing factors to the resistance of maize varieties 

against C. partellus were leaf trichomes, followed by stem diameter.  

Conlong et al. (2004) reported Variety N26 to have a C. sacchariphagus leaf feeding 

index of 30.2 and a resistance rating of 44 (highly susceptible). According to this 

investigation, N26 was intermediate in resistance rating to C. partellus and it gave 

fairly high numbers for all the damage parameters in both pot trials.  

Similarly, varieties R576 and N22 were found to be susceptible and intermediate in 

resistance to C. sacchariphagus respectively (Conlong et al., 2004; Nibouche and 

Tibere, 2010). According to this study R576 and N22 are both intermediate-

susceptible to C. partellus.  

N28 was reported to be resistant to C. sacchariphagus by Conlong et al. (2004). This 

concurs with the results from the first pot trial conducted in this study, where N28 had 

only one larva found on the outside of the plant, with no tunnelling in any of the plants 

across all replicates. N28 seemed to be one of the more resistant sugarcane 

varieties across both trials and had below mean values for Pot Trial One and Two.  

Conlong et al. (2004) reported N32 to be one of the most resistant varieties against 

C. sacchariphagus, and the pot trials conducted in this study suggest the same for 

N32 against C. partellus. N32 showed low amounts of damage for all damage 

parameters measured in the first pot trial and was also one of the less susceptible 

sugarcane varieties in the second pot trial, having a low number of larvae recovered 

across all replications.  
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According to a study conducted by Nibouche and Tibere (2009), R570 was the most 

resistant variety against C. sacchariphagus and should be used as a reference for 

resistance against this borer. In the trials conducted in this study, R570 was also 

seen to be one of the least susceptible varieties to C. partellus. In the first pot trial 

conducted, R570, together with N32, were the only two varieties to have no larvae 

recovered, zero borings and zero tunnelling. The number of shotholes/lesions was 

also low. In the paper published by Nibouche and Tibere (2010), it was confirmed 

that the resistance of R570 is due to a reduced establishment of larvae on the plant 

within the first 48 hours after infestation and laboratory bioassays revealed that it was 

due to larval antixenosis on the abaxial surface of the leaf sheath.  

With regard to F. serrata numbers, correlations between the mean numbers of 

shotholes per variety and the mean number of thrips per leaf whorl for the same 

varieties gave poor Pearson r values for both pot trials. This implies that thrips would 

not be a reliable surrogate insect for C. sacchariphagus in host-plant resistance 

screening studies given that C. partellus may be of use as a surrogate for C. 

sacchariphagus (Table 5.6). However, when looking at specific varieties, interesting 

observations can be made. For example, varieties N21, R568 and R572 had the 

highest F. serrata numbers in a trial conducted by SASRI. All of these sugarcane 

varieties were shown to be susceptible or to have an intermediate rating to C. 

partellus in the pot trials. R568 was shown to be one of the more susceptible 

varieties to C. partellus according to both pot trials conducted in this study. M1135/64 

had the lowest F. serrata numbers recorded. This concurs with the results from the 

pot trials conducted in this study. M1135/64 was shown to have little damage caused 

to it by C. partellus in both pot trials.  

Results from this study indicate that R570, R573, R574, Co1287, M861/60, N24, 

N28, N32 and M1135/64 show the highest levels of resistance against C. partellus.   

A correlation with C. sacchariphagus ratings obtained from previous studies is also 

indicated in Table 5.6. Further trials should be carried out using these sugarcane 

varieties to determine the biochemical basis of resistance mechanisms of these 

sugarcane varieties. The involvement of plant secondary compounds which are 

known to impact on larval behaviour could also be investigated further. 
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5.6 Appendix 

Appendix 5.1 Layout of the pot trials for Chilo partellus resistance screening studies 

in the glasshouse 
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Appendix 5.2 Results for REML analysis of the number of shotholes for Pot Trial 

One 

Fixed 
term 

Wald 
statistic 

n.d.f. F 
statistic 

d.d.f. F pr 

Variety 45.78 19 2.41 83.6 0.003 
 

Appendix 5.3 Results for REML analysis of the number of borings for Pot Trial One 

Fixed 
term 

Wald 
statistic 

n.d.f. F 
statistic 

d.d.f. F pr 

Variety 89.35 19 4.7 280 <0.001 
 

Appendix 5.4 Results for REML analysis of larvae number for Pot Trial One 

Fixed 
term 

Wald 
statistic 

n.d.f. F 
statistic 

d.d.f. F pr 

Variety 47.4 19 2.49 77.9 0.003 
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Appendix 5.5 REML analysis for larvae weight for Pot Trial One 

Fixed 
term 

Wald 
statistic 

n.d.f. F 
statistic 

d.d.f. F pr 

Variety 28.06 16 1.72 14.4 0.153 
 

Appendix 5.6 REML analysis for tunnel length for Pot Trial One 

Fixed 
term 

Wald 
statistic 

n.d.f. F 
statistic 

d.d.f. F pr 

Variety 48.52 14 3.47 22.1 0.189 
 

Appendix 5.7 REML analysis for shothole number for Pot Trial Two 

Fixed 
term 

Wald 
statistic 

n.d.f. F 
statistic 

d.d.f. F pr 

Variety 52.81 19 2.78 76.4 <0.001 
 

Appendix 5.8 REML analysis for number of borings for Pot Trial Two 

Fixed 
term 

Wald 
statistic 

n.d.f. F 
statistic 

d.d.f. F pr 

Variety 84.36 19 4.44 76.2 <0.001 
 

Appendix 5.9 REML analysis for number of larvae for Pot Trial Two 

Fixed 
term 

Wald 
statistic 

n.d.f. F 
statistic 

d.d.f. F pr 

Variety 95.7 19 5.04 275 <0.001 
 

Appendix 5.10 REML analysis for larvae weight for Pot Trial Two 

Fixed 
term 

Wald 
statistic 

n.d.f. F 
statistic 

d.d.f. F pr 

Variety 28.5 18 1.58 53.2 0.101 
 

Appendix 5.11 REML analysis for tunnel length for Pot Trial Two 

Fixed 
term 

Wald 
statistic 

n.d.f. F 
statistic 

d.d.f. F pr 

Variety 23.23 19 1.22 48.9 0.281 
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CHAPTER 6 

FEASIBILITY STUDIES ON THE USE OF NEAR-INFRARED 

REFLECTANCE SPECTROSCOPY (NIRS) AS A RAPID SCREENING 

TOOL FOR EVALUATING AND PREDICTING FOR RESISTANCE TO 

CHILO SPP. (LEPIDOPTERA: CRAMBIDAE) AND FULMEKIOLA 

SERRATA (THYSANOPTERA: THRIPIDIA) IN SUGARCANE 

BREEDING PROGRAMMES 
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Abstract 

Eldana saccharina and Fulmekiola serrata (thrips) are serious pests of sugarcane in 

South Africa. The potential for an invasion by the borer Chilo sacchariphagus from 

Mozambique poses a great risk to the South African sugarcane industry. Chilo 

partellus represents a threat similar to the one once posed by E. saccharina before it 

adapted to feeding on sugarcane.  F. serrata, C. partellus, and C. sacchariphagus all 

feed on the whorl of their hosts, and therefore similar resistance mechanisms of 

sugarcane varieties may act against them. Rating of sugarcane varieties for damage 

caused by these pests can be difficult and expensive, and it can take up to 15 years 

before varieties are released. This study describes the process for developing a 

rapid, non-destructive, on-site technique for predicting sugarcane varieties for 

resistance to pests such as Chilo spp. and F. serrata. The technique is based on 

near-infrared reflectance spectroscopy (NIRS), which can be used to examine the 
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interaction between sugarcane and its herbivores. Near infrared (NIR) reflectance 

spectra obtained from intact surfaces reflect biochemical and structural differences 

within the leaf, since NIR can penetrate up to 2.5 mm into plant material. Therefore 

spectral data was obtained from intact leaf surfaces from 21 selected sugarcane 

varieties using a portable handheld spectrometer. Correlations between NIR spectral 

data and reference values obtained for C. partellus and F. serrata were developed 

using partial least squares (PLS) regression with full cross validation. Validation plots 

were useful in discriminating between sugarcane varieties for either constitutive or 

induced resistance based on predicted and actual reference value data. Test 

validation was conducted on selected reference material using a validation set of five 

samples. Test validations gave fair results, with the best predictions observed for the 

mean number of shotholes per variety (R2 of 0.75, SEP of 8.1). Results indicate that a 

larger calibration and validation sample set incorporating more sugarcane varieties is 

required for models to have an improved predictive ability. Reference data directly 

related to the surface of the leaf gave better model performance than reference data 

that were influenced by other factors. 

Keywords: Eldana saccharina, Fulmekiola serrata, Chilo sacchariphagus, Chilo 

partellus, sugarcane, near-infrared reflectance spectroscopy (NIRS), portable 

handheld spectrometer, partial least squares (PLS) regression, calibrations, full cross 

validation, test validation 

 

6.1 Introduction 

There are over 1,500 insect species that attack sugarcane worldwide (ul-Hussnain et 

al., 2007). Stalk borers are some of the most serious insect pests of crops such as 

sugarcane (Saccharum L), maize (Zea mays L.) and sorghum (Sorghum bicolor L. 

Moench) (Kfir et al., 2002). In South Africa Busseola fusca Fuller (Lepidoptera: 

Noctuidae) and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) are the two 

major stem borers on maize and sorghum, while Eldana saccharina Walker 

(Lepidoptera: Pyrialidae) and Fulmekiola serrata (Thysanoptera: Thripidae) (thrips) 

are the most serious pests of sugarcane (Kfir et al., 2002). Extreme changes in 

climate and increasing global trade results in the spread of pests and diseases more 

easily and causes them to establish in new, previously unaffected countries (Goebel 
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and Sallam, 2011). The potential for an invasion by the borer Chilo sacchariphagus 

Bojer (Lepidoptera: Crambidae) from Mozambique into South Africa poses a great 

risk to the South African sugarcane industry. Although it has not yet entered South 

African territory, studies on climatic conditions suited for the pest show that the 

coastline of KwaZulu-Natal and neighbouring river valleys, particularly northwards are 

suitable for the pest’s establishment (Goebel, 2006; Bezuidenhout et al., 2008). C. 

partellus has adapted to sugarcane in North Africa and is present in the South 

African sugarcane agro-ecosystem (Assefa et al., 2009). C. partellus may represent a 

threat similar to the one once posed by E. saccharina before it added sugarcane to 

its list of host plants. C. sacchariphagus and C. partellus larva feed on the whorl of 

the plant before becoming top borers, while all life stages of F. serrata take place in 

the leaf spindle suggesting that similar resistance mechanisms may act against them. 

Among the few South African sugarcane varieties with known resistance or 

susceptibility to C. sacchariphagus, there appears to be a correlation between F. 

serrata and C. sacchariphagus rankings (Figure 1.9; Chapter One). With an 

increasing number of potential pests of sugarcane in South Africa, the need for a 

rapid and less costly method to screen varieties increases in importance. 

The development of new varieties can take up to 15 years and is a resource intensive 

process (Purcell et al., 2010b). Screening for pest and disease resistance can only 

take place in much later selection stages when plant numbers are less, due to space 

and cost limitations (Rutherford, 1998; Purcell et al., 2010b).  The use of field trials is 

also difficult due to variable pest populations, or lack of infection (Purcell et al., 2005). 

Near-infrared reflectance spectroscopy (NIRS) is a rapid, non-destructive and reliable 

technique that can be used in the field. NIRS will allow for earlier screening of 

varieties which will have a positive effect on the number of clones being brought 

forward to later stages in a selection programme, a reduction in the need for field 

trials, which will in turn allow for better resource management and generation of 

reliable data that can be used in future research projects (Purcell et al., 2005). 

Calibration of near-infrared spectrometers involves acquiring spectra of 

representative samples, reference analysis of samples using laboratory or traditional 

methods and model building using chemometrics (Table 6.1) (Blanco and Villarroya, 

2002; Chen et al., 2002).  
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Table 6.1 The basic steps involved in near-infrared reflectance (NIR) model 

construction and their associated purposes (adapted from Blanco and Villarroya, 

2002) 

Step Purpose 

1 Select calibration samples  Should be representative of the component of interest, with a 

good range  

2. Obtain reference data 

(traditionally/wet chemistry) 

Obtain a value for the component of interest in an accurate 

manner 

3. Obtain spectral data Scan samples in a reproducible manner 

4. Averaging and pre-treatments of 

spectra 

To reduce unwanted effects such as scatter effects and particle 

size on spectra 

5. Constructing a model (calibration) 

using multivariate methods 

To determine the relationship between predicted data and 

reference data 

6. Validation  Using independent samples to ensure the model accurately 

predicts the property of interest  

7. Real time use in the industry Predict unknown samples  

 

NIRS has been applied in numerous industries, including the likes of the sugarcane 

industry. Rutherford and Van Staden (1996) developed near-infrared (NIR) 

techniques to predict for E. saccharina resistance by building a stepwise linear 

multiple regression model using surface stalk waxes. Purcell et al. (2003, 2004) also 

analysed sugarcane surface waxes using gas chromatography (GC) and 

spectroscopy and were able to differentiate between plant properties. In an 

experiment conducted by Purcell et al. (2010b), 31 sugarcane samples were used for 

a validation trial. NIRS was used to obtain the spectra from stalk bud tissue which 

were then pre-treated and analysed using chemometrics. The smut ratings based on 

NIR were compared to ratings from field trials. The results obtained were promising 

and showed good potential for using NIRS as an early screening method for 

resistance in sugarcane to smut (Purcell et al., 2010b). NIRS has also been used to 

scan intact sugarcane leaves in order to predict pre-challenge constitutive resistance 

to Fiji Leaf Gall Virus (Purcell et al., 2009). Pest resistant eucalypt species have also 
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been identified using NIRS, and it has been found that plant resistance to pests can 

be due to physical, chemical, or ecological components of plants (Henery et al., 

2008). Physical traits may be leaf toughness or the presence of hairs, while chemical 

traits can be components within the plant tissues which act as toxins or antifeedants 

that effect insects (Purcell et al., 2005). Young C. partellus larvae feed on the leaf 

whorl during the seedling stage, after which the adult larvae leave the whorl to bore 

into the stalk of the plant (Kumar et al., 2006). Therefore, observed differences in 

sugarcane varieties in terms of resistance may in part be due to biochemical and 

physical characteristics of the leaf. Wax components on the surface of sugarcane 

stalks have been shown to be involved in resistance to E. saccharina using NIR 

(Rutherford and Van Staden, 1996). However sub-surface characteristics can also be 

probed using NIR, shown in a study whereby NIRS was used to relate spectra 

obtained from foliage samples of Eucalyptus grandis  to damage caused by the 

beetle Paropsis atomaria (Coleoptera: Chrysomelidae)  (Henery et al., 2008). It has 

been shown that NIR can penetrate up to 2.5 mm into plant material which suggests 

that NIR spectra should represent the biochemical and structural differences of the 

leaf (Purcell et al., 2010a).  

With regards to the success of the above studies in constructing inferential methods 

to predict results from laboratory or traditional analysis conducted on sugarcane, we 

hypothesized that the same methods could be used to predict the performance of 

sugarcane varieties with respect to pest resistance. The main objective of this study 

was to develop fibre-optic NIR methods to predict resistance of sugarcane varieties 

to Chilo spp. and F. serrata using reflectance/transflectance spectra from intact 

leaves. Such a method would allow for rapid screening of sugarcane varieties for 

resistance to these pests, without the need for artificial infestation or the use of field 

trials. 

 

6.2 Materials and methods 

6.2.1 Reference data 

A set of 21 selected sugarcane varieties were used to obtain reference data to build 

NIR calibrations and validation models. The sugarcane varieties were tested for their 
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resistance and susceptibility to C. partellus and F. serrata using different screening 

methods.  

6.2.1.1 Artificial diet bioassays  

Crushed leaf powder from 20 selected sugarcane varieties were incorporated into an 

established artificial diet of C. partellus using 8 ml vials (Lasec, Durban, South 

Africa). Each diet cell was inoculated with two neonate larvae (obtained from the 

South African Research Sugar Institute (SASRI) (KwaZulu-Natal, South Africa) which 

were allowed to feed on the diet for 27 days, after which larval weight and larval 

survival was measured. A rating score was developed based on larval survival 

percentage (Table 6.2). These parameters were used to compare sugarcane 

varieties for any constitutive resistance differences and were used as reference 

material in building NIR calibrations for predicting for C. partellus resistance (Table 

6.3). 

 

Table 6.2 Rating score based on larval survival of Chilo partellus fed on artificial diets 

incorporating sugarcane varieties 

Survival (%) Rating (1-6) 

55-60 1 

61-65 2 

66-70 3 

71-75 4 

76-80 5 

81-85 6 
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Table 6.3 Reference values from artificial diet bioassays used in building NIR 

calibration and validation models for predicting Chilo partellus resistance of 

sugarcane varieties 

  Artificial diet bioassays 

Variety 
Mean 
larval weight (g) Mean larval survival % 

Survival 
rating score 
(1-6) 

NCo376 0.061 67.82 3 

Co6505 0.048 75.8 5 

M1135/64 0.065 62.5 2 

N27 0.072 82.5 6 

N24 0.075 59 1 

R570 0.077 65.8 3 

Co1287 0.078 70 4 

N21 0.078 80 5 

N22 0.079 79.1 5 

N26 0.081 61.67 2 

N32 0.083 71.7 4 

R576 0.089 68.3 3 

R573 0.096 85 6 

N31 0.102 63.3 2 

N25 0.110 80.8 6 

R572 0.112 77.5 5 

R568 0.113 70.8 4 

M1025/70 0.115 80.8 6 

N28 0.121 71.7 4 

M861/60 0.123 74 4 

 

6.2.1.2 Ovipositional experiments 

Experiments were conducted whereby 20 selected sugarcane varieties were 

randomly planted into replicated trays and placed into BugDorm® rearing tents 

(BugDorm-2400, Megaview science Co. Ltd., Taiwan). C. partellus moths (SASRI, 

KwaZulu-Natal, South Africa) were placed into the individual tents and allowed to 

oviposit for five days. Egg number and egg batch number were counted per variety 

and used to determine any antixenosis ovipositional resistance differences between 

them. Egg number and egg batch number for the two experiments conducted were 

used as reference material in building NIR calibrations (Table 6.4). 
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Table 6.4 Reference values from Chilo partellus ovipositional experiments used in 

building NIR calibration and validation models 

 
Ovipositional experiments 

Variety 

Mean batch  
number 
Exp. 1 

Mean batch  
number 
Exp. 2 

Mean egg 
 number 
Exp. 1 

Mean egg  
number 
Exp. 2 

Mean total 
batch  
number 
Exp. 1 and 2 

Mean total 
egg 
number  
Exp. 1 and 2 

Co1287 3.6 6.4 99.8 134.6 24.5 586 

Co6505 2 3.4 52 93.6 13.5 349.5 

M1025/70 3 4.4 83 114.6 18.5 492.5 

M1135/64 1.4 3.4 29.4 83.8 12 283 

M861/60 2.8 4.4 69 110 18 465.5 

N21 2.8 3.4 72.8 68 15.5 322.5 

N22 3.8 2 73.8 35 14.5 272 

N24 3.4 3.2 113.8 96.2 16.5 511 

N25 4.6 3.2 75 79.4 19.5 386 

N26 2.4 2.6 70 73.8 13 359.5 

N27 5 2.4 103.8 69.2 18.5 432.5 

N28 3.4 6 73.4 143 23.5 526 

N31 3.4 4 62.8 96.4 18.5 398 

N32 1.2 0.8 23.6 34.6 5 120.5 

R568 5 2.2 115.6 48.4 18 410 

R570 2.6 1.2 74.6 35.4 9.5 275 

R572 2 4.6 42.4 91 16.5 333.5 

R573 1.4 0.6 67 11.4 5 196 

R574 1.4 3.8 26.6 94.6 13.5 303 

R576 1.2 4.8 36.6 91.8 15 318 

 

6.2.1.3 Glasshouse studies 

Three plants of each of the 20 selected sugarcane varieties were planted into 

individual pots in a completely randomized design, replicated five times. The whorl of 

the plants was inoculated with 10 neonate C. partellus larvae. 30 days after 

inoculations, damage parameters were measured to compare sugarcane varieties for 

resistance or susceptibility and were used in building NIR calibration and validation 

models for predicting for resistance to C. partellus (Table 6.5). The pot trial was 

repeated twice. 
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Table 6.5 Reference values obtained from glasshouse trials for sugarcane varieties 

used in building NIR calibration and validation models 

 
Pot Trial 1 Pot Trial 2 

Variety 

Total no. 
borings 

Mean 
number  
of 
shotholes 

Total 
no. 
larvae 

 
Total no. 
borings 

Mean 
number  
of  
shotholes 

Total 
no. 
larvae 

 

R570 0 15.71 0  20 18.43 2  

N32 0 11.42 0  10 20.42 4  

R574
a
 1 23.67 0  - - -  

M1135/64 1 14.48 0  4 13.45 2  

R572 5 28.46 3  15 29.68 12  

Co1287 5 27 2  12 40.21 2  

R573 6 17.2 2  8 10 4  

R568 7 25.46 13  17 35.12 6  

N27 7 27.36 2  8 28.8 7  

N28 7 23.73 1  6 17.23 4  

N22 10 31.85 7  28 46.33 7  

N24 11 11.82 2  3 10.4 2  

N21 12 14.64 5  22 32.31 12  

N25 12 24.06 5  8 46.03 1  

N26 12 23.85 4  11 20.61 7  

Co6505 14 31.92 1  17 18.57 12  

M861/60 18 21.5 1  3 10.35 0  

M1025/70 24 49.72 5  47 33.14 21  

N31 27 31.28 13  26 28.62 12  

R576 52 43.92 14  9 17.11 7  

NCo376
a
 - - -  7 30.22 4  

a
R574 was replaced by NCo376 in the second pot trial due to lack of planting material 

 

 
6.2.1.4 Fulmekiola serrata trials 

Thrips trials were conducted by the South African Sugar Research Institute (SASRI, 

KwaZulu-Natal, South Africa) by plant breeders to determine F. serrata numbers and 

ratings of sugarcane varieties (Table 6.6) (Joshi, personal communication). The 

ratings are based on the International Society of Sugar Cane Technologists 

recommended rating system, whereby highly resistant clones are given a rating of 1 

and the most susceptible clones are rated at 9 (Hutchinson, 1970). 
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Table 6.6 Reference values obtained from Fulmekiola serrata trials used in building 

NIR calibration and validation models 

Variety 
Thrips 
ratings 

R570 3 

N32 1 

R574 7 

M1135/64 1 

R572 7 

Co1287 2 

R573 3 

R568 8 

N27 4 

N28 3 

N22 2 

N24 2 

N21 9 

N25 4 

N26 4 

Co6505 4 

M861/60 2 

M1025/70 4 

N31 5 

R576 2 

 

 

6.2.2 Plant sampling 

The same set of selected sugarcane varieties used to obtain reference data were 

used to obtain spectral data. Varieties were grown in a pot trial in a completely 

randomized design. Each pot (experimental unit) consisted of three plants of the 

same variety, replicated five times, resulting in a total of 15 plants per variety. The 

adaxial surface of the half unfurled leaf from the leaf spindle was used to perform 

scans, at two different positions, 20 cm above the leaf ligule. This position for 

sampling was established by Purcell et al. (2005). The leaf area is also where C. 

partellus larva initially feed and oviposits on the plant. Therefore, any resistance or 

susceptibility of a variety could be directly related to the preference of the larvae to 

the leaves on which it initially feeds (Purcell et al., 2005). Two scans were acquired 

for each plant, achieving a total of 30 scans per variety. This pot trial was repeated 
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twice, so two separate spectral data sets were acquired (viz. Pot Trial One and Pot 

Trial Two). A handheld (portable) Brimrose Luminar 5030 spectrometer (Brimrose 

Corp, MD, USA) with a fibre optic probe was used to acquire reflectance spectra, 

with near-infrared radiation from 1100 to 2500 nm at 1 nm intervals. Collected 

spectra were shown in the absorbance mode (log (1 / R)), where R is the reflectance 

from leaf samples. 

 

6.2.3 Chemometric methods 

6.2.3.1 Calibration  

The 30 scans acquired per variety from each pot trial were averaged using WinISI 

(version 4.5, Infrasoft International) to provide a final spectrum for each pot trial. 

Spectra were averaged by co-adding individual spectra in order to improve the signal 

to noise ratio. Mean scans from the first pot trial were used for building calibration 

models using the reference material from the first pot trial, while mean scans from the 

second pot trial were used with reference material from the second pot trial to build 

calibrations. Scans from both pot trials (60 scans per variety) were also combined 

then averaged, and used to build models using reference material from the diet 

bioassays, ovipositional experiments and F. serrata trials. For chemometrics 

processing, Unscrambler® X (version 10.3 (32-bit), CAMO, Trondheim, Norway) was 

used. Mathematical pre-treatments applied to the averaged spectral data were 

Savitzky-Golay derivative smoothing (using the 1st derivative, polynomial order of 2 

and a smoothing point of 5) (Savitzky and Golay, 1964) and standard normal variate 

(SNV) (Barnes et al., 1989) to determine their usefulness in removing unnecessary 

information from the spectra. Savitzky-Golay smoothing is a derivative method which 

removes overlapping peaks and corrects the baseline. SNV transformation accounts 

for the slope variation of the spectra as a result of scatter variation and particle size 

(Jørgensen, 2000). Averaged NIR spectral data (untreated and pre-treated) was 

analysed using partial least squares (PLS) regression. This technique seems to 

perform best for predictive purposes (Purcell et al., 2009). PLS includes both 

dependent and independent variables in the data analysis (Purcell et al., 2009). It 

involves a calibration step and a validation step whereby unknowns are fitted to the 

calibration. All calibration models developed were evaluated by means of full cross 
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validation. Unscrambler® X (version 10.3 (32-bit), accurately describes the process 

of full cross validation, which involves the same samples that are used for calibration 

and estimation. Samples are left out from the calibration data set one by one and the 

model is calibrated using the remaining samples. This process is repeated until all 

samples have been deleted from the calibration once. The values for the left-out 

samples are predicted and the prediction residuals are computed. Calibrations and 

cross-validations using treated and untreated spectral data sets,  together with 

different reference material were judged based on their coefficient of determination 

for calibration and cross validation (R2, defined as the proportion of variance in the 

reference data which is explained by the variance in the spectral data) (Williams, 

2001), standard error of calibration (SEC, defined as the error due to differences 

between reference values and NIRS-predicted values within the calibration sample 

set), the standard error of cross validation (SECV, defined as the error due to 

differences between reference values and NIRS predicted values within cross-

validation sets) (André and Lawler, 2003) and the root mean square error of 

calibration or validation (RMSEC or RMSECV, gives a measure of how efficient the 

calibration is) (Williams, 2001). The optimum number of factors (F) used for the PLS 

regression calibrations was determined by the RMSECV for cross-validation. The F 

with the smallest RMSECV was selected for PLS regression models (He et al., 

2005). The data pre-treatment to give the best model performance based on these 

statistics were used to present results for each reference parameter obtained from 

the different resistance screening methods for C. partellus and F. serrata.  

 

6.2.3.2 Test validation 

Reference parameters which gave the better performing calibration models during 

the feasibility study were used for test set validation, and included survival rating from 

diet bioassays, mean number of shotholes from Pot Trial Two, mean batch number 

from Experiment One of ovipositional experiments and F. serrata ratings derived from 

field trials. Test set validation tests the calibration model on a subset of samples, 

which are not present in the computation of model parameters. The predicted Y-

values are then compared to the reference Y-values, resulting in a prediction residual 

that can be used to compute a validation residual variance. The data for reference 
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material chosen for test validation was separated into a calibration subset using 15 of 

the sugarcane varieties and a validation set using the remaining five sugarcane 

varieties. The validation subset was selected to ensure a well-spaced range of 

reference values was chosen and are shown in Table 6.7. Statistics used to assess 

the model performance were the SEC, R2, the standard error of prediction (SEP, 

defined as errors due to differences between reference values and NIRS-predicted 

values of spectra obtained outside the calibration set) and the ratio of prediction to 

deviation (RPD, Ratio of SEP to the standard Deviation (SD)) (André and Lawler, 

2003). 

 

Table 6.7 Validation data sets and their associated reference values 

Screening 
method Reference parameter 

Varieties for test 
validation 

Reference 
value 

Diet bioassays Survival rating N22 5 

  
N32 4 

  
R570 3 

  
M1135/64 2 

    R573 6 

Pot trial 2 Mean number of shotholes N22 46.33 

  
NCo376 30.22 

  
R576 17.11 

  
M1135/64 13.45 

    N32 20.42 

Oviposition  Mean batch number N22 3.8 
Experiment One 

 
N32 1.2 

  
R570 2.6 

  
R573 1.4 

  
N28 3.4 

Thrips trials Thrips ratings N22 2 

  
R568 3 

  
R572 5 

  
R573 8 

    N31 7 

 

 

6.3 Results 

 

6.3.1 Calibration and full cross validation  

 

Spectral data pre-treated with Savitzky-Golay derivative and SNV gave the best 

calibration performances across all the reference parameters and were therefore 

used to present results. 
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Calibration and cross-validation equations developed for the various reference 

parameters of sugarcane varieties from different screening methods were 

characterized by their R2 values, SEC and SECV (Table 6.8). When building PLS 

calibrations using diet bioassay results as reference values, the R2 values ranged 

from 0.19 for mean larval weight to 0.81 for the larval survival rating. The best 

calibration was observed when using survival rating as the response variable, which 

gave a SEC of 0.66. With respect to the first pot trial conducted, the R2 values ranged 

from 0.44 to 0.59, with high SEC values for all the reference parameters. A fairly 

good calibration was observed when using the reference values for mean number of 

shotholes per variety obtained from Pot Trial Two, giving a R2 value of 0.82 and a 

SEC of 4.85. PLS regression calibrations with R2 values below 0.8 were observed 

when using the ovipositional experiment reference data. When using F. serrata 

numbers and F. serrata ratings as reference values in PLS regression calibrations, 

fairly good performance was observed with R2 values of 0.83 and 0.78 and SEC 

values of 18.9 and 1.1 observed respectively. Low R2 values and relatively high 

SECV values for cross validation were observed for all the reference parameters.  

 

Calibration and cross validation plots provide a visual perspective of the outcome of 

this investigation for reference parameters which gave the better performing 

calibrations (Figure 6.1 to 6.4). In terms of the larval survival rating scores obtained 

from the diet bioassays, it was shown by the cross validation model that Variety N24 

was predicted to have a high survival rating of almost 4 whereas its actual rating was 

1 and N22 was predicted to have a rating of almost 2 that was much lower than its 

actual rating of 5. The majority of the varieties were predicted to have higher ratings 

than their actual ratings, with varieties N28, N26, R576 and M861/60 having 

predicted ratings close to their actual ratings (Figure 6.1). Cross validation models 

predicting the mean number of shotholes from Pot Trial Two showed sugarcane 

varieties N24, M1135/64, M861/60 and R573 predicted to have a high number of 

shotholes, whereas their actual numbers of shotholes were low. Sugarcane varieties 

N27, R568, NCo376 and R576 had similar predicted and actual ratings, but no 

sugarcane varieties were predicted one hundred percent accurately (Figure 6.2). 

Cross validation models predicting the mean batch number from ovipositon trials  

showed sugarcane varieties R568, M861/60, M1025/70 and R572 predicted to have 
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a lower mean batch number than their actual mean batch numbers, and varieties 

M1135/64 and R574 were predicted to have higher mean batch numbers than their 

actual mean batch numbers (Figure 6.3).  

 

With respect to the cross-validation model results for F. serrata ratings, the 

correlation between predicted and reference values becomes negative. This could be 

due to the skewed reference data i.e most varieties are resistant with only a few 

being susceptible. When a susceptible one is left out for cross validation, the effect 

on the predictive model is too great. Many more varieties are needed and equal 

numbers of resistant, intermediate and susceptible should be used for calibration 

(Figure 6.4).  

 

The reference parameters highlighted in red in Table 6.8 were used for test validation 

using PLS regression and external test validation sets as shown in Table 6.7. 
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Table 6.8 Summary of near-infrared reflectance spectroscopy (NIRS) calibration and cross validation results using PLS regression 

for different reference parameters of sugarcane varieties obtained from Chilo partellus and Fulmekiola serrata screening trials 

  

 

    
Calibration Full cross validation 

Screening 
method 

Reference parameter 
Factor
Level 

Min Max SD N R 
2
 SEC RMSEC SECV RMSECV R 

2
 

Artificial diet 
bioassays 

Mean larval weight (g) 3 0.048 0.123 25 20 0.19 0.019 0.019 0.02 0.02 0 

Larval survival (%) 3 55.8 8.85 8.3 20 0.76 3.8 3.65 7.68 7.52 0.08 

Survival rating (1-6) 3 1 6 1.5 20 0.81 0.66 0.64 1.44 1.42 0.18 

Pot Trial 1 

Total borings  3 0 52 12.03 20 0.59 7.73 7.54 15.83 15.34 0.04 

Mean number of shotholes  3 11.4 49.7 9.91 20 0.59 6.33 6.18 13.39 13.04 0.06 

Total larvae per sugarcane varieties 3 0 14 4.48 20 0.44 3.37 3.28 6.16 5.99 0.2 

Pot Trial 2 

Total borings  3 3 47 10.67 20 0.75 5.33 5.2 13 12.6 0 

Mean number of shotholes 3 10 46.3 11.38 20 0.82 4.85 4.73 10.75 10.4 0.21 

Total larvae  3 0 21 5.18 20 0.75 2.61 2.55 6.38 6.16 0 

Ovipositional 
trials 

Mean batch number exp. 1 3 1.2 5 1.22 20 0.77 0.58 0.57 1.11 1.08 0.25 

Mean batch number exp. 2 3 1.2 6 1.56 20 0.53 1.07 1.01 1.9 1.84 0.01 

Mean egg number exp. 1 3 23.6 115.6 27.3 20 0.51 19.03 18.55 27.71 26.96 0.04 

Mean egg number exp. 2 3 35 114.6 34.28 20 0.56 22.8 22.23 41.77 40.46 0.01 

Total batch number mean exp. 1 and 2 3 5 23.5 5.1 20 0.79 2.3 2.25 6.05 5.84 0 

Total egg number mean exp. 1 and 2 3 120.5 586 115 20 0.72 61.32 59.76 136.66 132.17 0 
Thrips field 
trials Thrips ratings (1-9) 

 
3 

 
1 

 
9 2.3 20 0.78 1.1 1.04 3.18 3.11 0.45* 

SD = standard deviation; N = number of samples in the calibration set; SEC = standard error of calibration; RMSEC = root mean square error of calibration; 

SECV = standard error of cross validation; RMSECV = root mean square error of cross validation, R
2
 = coefficient of determination. * correlation in cross-

validation is negative (see Figure 6.4)
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Figure 6.1 Calibration and cross validation plot of near-infrared reflectance 

spectroscopy (NIRS) predicted survival rating scores (1-6) of Chilo partellus versus 

measured survival rating scores (1-6) obtained during diet bioassays of selected 

sugarcane varieties. The blue line is the regression line for calibration and the red 

line is the regression line for validation. 

 

Figure 6.2 Calibration and cross validation plots of predicted mean number of 

shotholes caused by larvae of Chilo partellus per variety obtained from near infrared 

reflectance spectroscopy (NIRS) versus measured mean number of shotholes per 

variety obtained from the second pot trial analysis. The blue line is the regression line 

for calibration and the red line is the regression line for validation. 
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Figure 6.3 Calibration and cross validation plot of predicted mean number of batches 

of Chilo partellus eggs per variety obtained from near infrared reflectance 

spectroscopy (NIRS) versus measured mean number of batches per variety obtained 

from the oviposition experiment One. The blue line is the regression line for 

calibration and the red line is the regression line for validation. 

 

Figure 6.4 Calibration and cross validation plots of predicted F. serrata ratings 

obtained from near infrared reflectance spectroscopy (NIRS) versus measured F. 

serrata ratings (1-9). The blue line is the regression line for calibration and the red 

line is the regression line for validation 
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6.3.2 Test validations for selected reference data 

 

The SEP, R2 value and the RPD (Table 6.9) were used to assess the accuracy of 

calibrations by performing test validations on a subset of five sugarcane varieties, 

using the selected reference parameters based on their PLS regression models in 

the calibration feasibility studies. R2 values of above 0.8 and fairly low SEC values 

were obtained for all the calibration models when using 15 samples in the calibration 

set (Table 6.9). However, the R2 values for the test validations were not as good, with 

none of the models having an R2 value of above 0.8. The highest R2 value of 0.75 

was obtained for the model predicting the mean number of shotholes per variety, 

while the SEC and SEP were 3.88 and 8.1 respectively. The highest RPD of 1.4 was 

also achieved by this model. The mean number of shotholes was predicted fairly well 

for sugarcane varieties M1135/64 and R570, but was predicted too low by the model 

for NCo376 and N22 and too high for N32 (Figure 6.6). The model used to predict 

survival rating of C. partellus larva obtained from artificial diet bioassays, gave an R2 

value of 0.63 and a SEP of 2.9. Sugarcane varieties M1135/64 and R570 with low 

measured survival ratings were predicted accurately by the model, whereas N22 was 

predicted to have a lower survival rating than its measured one (Figure 6.5). The test 

validation model for predicting batch numbers obtained during Experiment One of 

oviposition experiments gave and R2 value of 0.63 and an SEP of 0.96. None of the 

varieties had batch bumbers predicted accurately by the model, with all the varieties 

having slightly higher predicted batch numbers than their actual batch numbers, with 

the exception of N28 which had a lower predicted batch number (Figure 6.7). Test 

validation models for predicting F. serrata numbers and F. serrata ratings were not as 

fit, with R2 values of 0.28 and 0.3 respectively. All the sugarcane varieties were 

predicted to have higher F. serrata ratings than their actual F. serrata ratings, except 

for N22 which was predicted to have a lower F. serrata rating (Figure 6.7).  
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Table 6.9 Summary of test validation statistics for reference parameters of 

sugarcane varieties obtained in Chilo partellus and Fulmekiola serrata screening 

trials 

Screening method Reference value 
Calibration Test validation 

SD Nc R2 SEC Nv R2 SEP RPD 

Diet Bioassays Survival rating (1-6) 1.5 15 0.94 0.4 5 0.63 2.9 0.52 

Pot Trial 2 Mean number of 
Shotholes 

11.38 15 0.88 3.88 5 0.75 8.1 1.40 

Oviposition Exp. 
One 

Mean batch number 1.22 15 0.87 0.42 5 0.63 1.17 0.96 

Thrips trials Thrips ratings (1-9) 2.3 15 0.85 0.83 5 0.3 2.2 1.05 

SD = standard deviation; Nc = number of samples in the calibration set; SEC = standard error of 
calibration, Nv = number of samples in the validation set; SEP = standard error of prediction; RPD = 
ratio of SEP to SD; R2 = coefficient of determination 

 

 

Figure 6.5 Scatter plot of near-infrared reflectance spectroscopy (NIRS) predicted 

survival rating scores (1-6) of Chilo partellus versus measured survival rating scores 

(1-6) obtained during diet bioassays of leaf whorl powders. Values for the external 

validation set are shown in red. 
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Figure 6.6 Scatter plot of predicted mean number of shotholes obtained from near 

infrared reflectance spectroscopy (NIRS) versus measured mean number of 

shotholes obtained from the second pot trial, caused by larvae of Chilo partellus. 

Values for the external validation set are shown in red. 

 

Figure 6.7 Scatter plot of near-infrared reflectance spectroscopy (NIRS) predicted 

batch number versus measured batch number obtained from Chilo partellus 

oviposition experiment one. Values for the external validation set are shown in red. 
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Figure 6.8 Scatter plot of near-infrared reflectance spectroscopy (NIRS) predicted 

Fulmekiola serrata ratings (1-9) versus measured F. serrata ratings (1-9) obtained in 

field trials run by SASRI. Values for the external validation set are shown in red. 

 

 

6.4 Discussion 

 

Observed differences in sugarcane varieties in terms of resistance may be due to 

biochemical differences in the leaves. This study aimed to predict differences 

between sugarcane varieties with respect to pest resistance based on NIR spectra 

obtained from their intact leaf surfaces and reference values obtained from various 

screening techniques. Previous studies have shown that NIR can penetrate up to 2.5 

mm into plant material which infers that NIR spectra should represent the 

biochemical and structural composition of the leaf that could be related to sugarcane 

resistance to pests such as C. partellus and F. serrata which feed on them (Purcell et 

al., 2010a). Although the results from this investigation are preliminary in nature, 

some of the calibrations do show a degree of potential for the development of 

predictive models for F. serrata and Chilo spp. resistance in sugarcane. 

 

Although the PLS regression calibrations were fairly good for certain reference 

parameters, with R2 values higher than 0.8 achieved,  results obtained from the 
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majority of the cross validation models (leave one out method) were discouraging. 

This is probably due to the calibration data sett being too small. When a sample is 

left out for cross validation, the effect on the predictive model is too great resulting in 

a prediction that differs greatly from that of the completely inclusive calibration model 

(Table 6.8).  

 

Calibrations and cross validations for all reference values obtained during oviposition 

experiments were particularly poor, indicating that no correlation occurred between 

the spectral data and the measured values for ovipositing. This could be due to the 

lack of any significant differences between varieties for egg number and batch 

number found during oviposition experiments, suggesting poor quality reference data 

and consequently a poor predictive model. Perhaps the differences in sugarcane 

varieties with respect to ovipositing behaviour were a result of olfactory stimuli 

(Thompson and Pellmyr, 1991). Herbivore induced plant volatiles include terpenoids, 

benzenoids, and green leaf volatiles which are released from the plant to either 

attract or repel insects. It has been shown that ovipostion by herbivorous insects on 

plants can result in a change in volatile emissions which may deter further deposition 

of eggs (De Moraes et al., 2001; Fatouros et al., 2012).  

 

Results from the test validations were more promising than those from the cross-

validations for the selected reference parameters. The mean number of shotholes 

from Pot Trial Two used as a reference parameter was shown to have the best 

calibration and test validation performance, with 75% of the variation in the reference 

data being accounted for by the spectral data obtained from leaf surfaces. Perhaps it 

is because the number of shotholes is a direct measurement of damage caused to 

the leaves by larva and is therefore more closely related to spectral data taken from 

the leaves than other parameters measured. The mean number of shotholes is a 

good indication of susceptibility of sugarcane varieties to C. sacchariphagus and C. 

partellus and has been shown to be a non-destructive measure by which to rate 

sugarcane varieties (Conlong et al., 2004). Using this parameter to develop NIR 

models for predicting for resistance may be very useful in the future because it 

indicates that compounds in the leaf effect larval feeding and should be explored 

further. The mean number of shotholes was predicted to be fairly close to the actual 

number of shotholes for sugarcane varieties M1135/64 and R570, indicating that they 
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could possibly have a strong constitutive resistance against C. partellus larvae. Test 

validation models built using larval survival ratings of C. partellus from diet bioassays 

gave an R2 value of 0.63 and a SEP of 2.9. Field based ratings are known to have an 

associated error of +/- 1 units, indicating that the SEP for survival rating is too high 

and is therefore unsatisfactory to  be used for screening purposes (Purcell et al., 

2009). Similarly, a high SEP of 2.2 was observed for the test validation model using 

F. serrata ratings as reference values. High SEP values could be attributed to a poor 

or skewed range of values within the sample set (Edney et al., 1994). 

 

In general terms, for NIR calibrations to be of use in the prediction of unknown 

samples (e.g. for total wheat nitrogen (N) content), R2 values for calibration and 

validation should be greater than 0.80. If R2 values are between 0.7 and 0.8 then the 

calibration can be used for rough prediction or classification, while R2 values less 

than 0.7 require further calibration development (Williams, 2001). The SEC and 

SECV should be as small as possible for good calibrations, while a large gap 

between SEC and SECV or SEP indicates that the sample sett is too small 

(Dardenne, 2010). Acceptable predictions are characterized by low SEP values and 

high R2 and RPD values (Chen et al., 2002). 

 

However, unlike analyses such as total N content, the determination of reference 

resistance ratings using live plant inoculation assays quantifies total resistance, 

whereas NIR scans of undamaged plant material can only be linked to constitutive 

preformed resistance. Since the inducible component of resistance is not accounted 

for, high R2 values in calibration or validation should not be expected when calibrating 

against total resistance reference values determined in live plant bioassays. If an 

equal contribution of constitutive and induced resistance were assumed, then an R2 

in calibration of 0.5 would be reasonable. 

 

Relatively low R2 values are still useful in plant breeding programmes where the aim 

might be to discard all susceptible clones at an early stage in the selection process. 

Due to large numbers, conventional screening at early selection stages is not 

possible. According to calculations made by Schenk and Westerhaus (1993), clones 

predicted as susceptible (of the three groupings; resistant, intermediate, and 

susceptible) would include only 4% of actual resistant clones, based on a R2 during 



186 
 

cross-validation in the region of 0.5 (Table 6.10). The selected population would be 

enriched for constitutive resistance. 

 

Table 6.10 Relationship between R-squared and the classification of predicted 

samples into three groupings e.g. resistant, intermediate and susceptible (adapted 

from Shenk and Westerhaus, 1993). 

R squared in calibration 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Predicted in correct group 43 47 51 55 59 63 68 74 81 

Predicted in adjacent 
group 

43 42 41 38 37 34 31 26 19 

Predicted R when actually 
S (and vice-versa) 

14 11 8 6 4 3 1 0 0 

 

 

Results from this study suggest that an expanded calibration sett (i.e., more 

sugarcane varieties) would result in better calibrations. A calibration set should 

ideally be large enough so that all the variation (physical or chemical) within a 

population has been sampled (Rutherford and Van Staden, 1996). Incorporating 

more sugarcane varieties with known ratings or response variables into the 

calibration set would most likely improve the models. However, since there were only 

21 sugarcane varieties with known ratings and damage parameters for C. partellus 

and F. serrata in this study, the calibration set could not be extended any further. The 

same problem was observed in a study by Smyth et al. (2008) when attempting to 

use NIRS to measure volatile compounds in wine. In a study conducted by 

Rutherford and Van Staden (1996), it was shown that by expanding the size of a 

model, the correlation coefficient began to stabilize. According to Williams (2001) the 

ratio of samples used for calibration to validation should be 3:1, and if calibration 

sample sets are too small, the calibration will be highly sensitive to the addition of 

new samples and will show large differences in predictions. 

 

It was observed that some sugarcane varieties were predicted to have higher or 

lower ratings than their actual ratings within calibrations or in validation. For example, 

in Figure 6.6 the variety NCo376 is predicted to suffer less shothole damage than its 

actual reference value. This suggests a strong constitutive component of resistance, 

perhaps with a muted induced response resulting in more damage than predicted. 
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N28 on the other hand is predicted to suffer more damage than its reference value 

suggesting poor constitutive resistance. In this case the resultant lower damge level 

would be due to a strong inducible component (unseen by NIR scans of undamaged 

leaves). That NCo376 has strong constitutive resistance whilst N28 does not, is 

borne out by the results of the diet inclusion study described in Chapter 3. 

 

Clearly there are a number of issues that still need to be addressed before NIRS 

calibrations and validations based on leaf material can be used as a technique for 

predicting resistance of sugarcane varieties to Chilo spp. and F. serrata. NIR spectra 

need to be reproducible, with respect to the plant age, the sampling position and 

environmental effects (Purcell et al., 2005). The SEP needs to be compared to 

acceptable errors when using field, laboratory and glasshouse methods, and these 

errors need to be established. The accuracy and precision of the reference method is 

highly important, and errors in these methods can be reflected in the calibration 

models developed (Edney et al., 1994; Williams, 2001). 

 

According to this study, it would be worthwhile to include a larger number of 

sugarcane varieties into the calibration and validation sets with known reference 

values in order to obtain improved models. Partial validations were achieved using 

the mean number of shotholes. Reference material directly related to the leaf 

surface, such as the mean number of shotholes caused by insect feeding, larval 

survival in diets incorporating cane leaf powder, or F. serrata populations on leaves 

seem to be more ideal in building calibrations based on leaf scans. NIRS does offer 

the potential to be used as a rapid technique for discriminating between resistant or 

susceptible sugarcane varieties and for gaining some insight as to mechanisms of 

resistance. Obtaining scans from leaf surfaces is a non-destructive technique, and 

hundreds of leaves can be scanned in one day.  
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DISSERTATION OVERVIEW 

There is an increasing number of potential pests in the South African sugarcane 

industry, such as Chilo sacchariphagus Bojer and Chilo partellus (Swinhoe) 

(Lepidoptera: Crambidae) due to an increase in globalisation and climate change 

(Way et al., 2011). Before they develop into major pests of sugarcane in South 

Africa, it is desirable to determine the susceptibility of current sugarcane varieties to 

these pests. Since C. sacchariphagus is not yet present in South Africa, it is not 

possible to screen sugarcane varieties for resistance against it, unless under 

quarantine conditions. Not all research stations have quarantine facilities available to 

them in which to conduct such trials. To this end, surrogate insect resistance 

screening can be used, for example, where C. partellus is used as a surrogate for C. 

sacchariphagus in resistance screening studies. Both of these pests are top borers 

that initially feed on the whorl of the plant before boring into the stalk, and therefore 

similar resistance mechanisms may act against them. Similarly, Fulmekiola serrata 

Kobus (Thysanoptera: Thripidae), is also a serious pest in the South African 

sugarcane industry and its entire life cycle is spent in the whorl of the plant (Way et 

al., 2006; Way et al., 2010). Among the few South African sugarcane varieties with 

known resistance ratings for C. sacchariphagus, there appears to be a correlation 

with F. serrata resistance ratings (shown in this thesis, Chapter 1, Page 35. Figure 

1.9). Screening for resistance to pests and diseases is currently limited to selection at 

the late stages of a plant breeding programme, due to the cost of field screening for 

insect resistance, and logistical factors (Rutherford, 1998; Purcell et al., 2010). The 

application of new screening tools at earlier selection stages would result in cost 

savings, productivity benefits, and an increased number of resistant clones 

progressing to later selection stages (Purcell et al., 2005). Near infrared reflectance 

spectroscopy (NIRS) is a non-invasive, non-destructive method that has the potential 

to determine the relationship between sugarcane varieties and their attackers. 

The investigations undertaken in this research dissertation were comprehensive, and 

included the development of rearing methods and an improved artificial diet for C. 

partellus, exploring the concept of insect surrogacy for resistance screening, the 

development of methods for screening sugarcane varieties for resistance to C. 

partellus, and obtaining preliminary indications as to whether NIRS could be used to 
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build predictive models for constitutive resistance to pests. The key outcomes of this 

project were: 

 It was determined that C. partellus is present in the sugarcane agro-

ecosystem in KwaZulu-Natal, and given that it has adapted to sugarcane in 

Ethiopia, it therefore has the potential to become a pest of sugarcane in South 

Africa. In varieties R572, R574, R576, N25, R568 and M1025/70 development 

through to the pupal stage was recorded in pot trials. 

 

 A new and improved diet  was established for C .partellus incorporating 6.5% 

cane leaf powder (as opposed to the previous standard of 2.5% cane leaf 

powder), and the incorporation of non-fat milk powder and whole egg powder. 

This diet was ideal for use in C .partellus artificial diet bioassays incorporating 

sugarcane varieties, in order to screen for the presence of any constitutive 

resistance differences between them. 

 

 Sugarcane varieties M1135/64, N24, and R570 gave consistently lower larval 

weights and larval survival when they were incorporated into the artificial diet 

of C. partellus. This suggests that these varieties do not promote larval growth 

and development, and therefore have a higher constitutive antibiosis 

resistance to C. partellus larvae when compared to the other varieties. 

Conversely, varieties M1025/70, R573, and N25 gave higher average larval 

weights and larval survival when incorporated into the diet, which suggests 

that they have little to no constitutive antibiosis resistance against C. partellus.   

 

 No statistically significant differences were observed between varieties for 

both egg number and batch number during oviposition studies using C. 

partellus moths. However, varieties N28, Co1287, and M1025/70 had the 

highest egg number and batch numbers consistently for both experiments, 

whereas N32 and R573 had consistently low egg numbers and batch numbers 

for both experiments.  
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 In glasshouse trials varieties N32, N24, N28, R570, R573, R574, Co1287, 

M861/60and M1135/64 show the highest levels of resistance against C. 

partellus, while M1025/70 and N31 show the highest susceptibility. 

 

 Reviewing all the resistance screening methods together some inferences can 

be made for varieties as to their resistance mechanisms (Table 1). It is 

suspected that the variety R570 has strong constitutive antixenosis and 

antibiosis resistance against C. partellus, given that it rates as resistant in diet 

bioassay and in oviposition experiments.   

 

 Varieties N32 and R573 were more susceptible in diet bioassays, but were 

among the most resistant varieties in oviposition and pot trial studies. This 

could indicate that they have more of an induced resistance component acting 

against C. partellus, rather than constitutive resistance.  

 

 Varieties N28, R568, M861/60 and Co1287 were rated as susceptible in 

artificial diet bioassays and oviposition studies, but suffered little to no damage 

by C. partellus in inoculated live plant pot trials conducted in the glasshouse. 

This suggests that these varieties have low levels of constitutive antibiosis and 

antixenosis acting against C. partellus, but rather have high levels of inducible 

resistance.  

 

 Varieties M1025/70 and N31 appear to have no resistance mechanisms acting 

against C. partellus moths or larvae, and were consistently highly susceptible.  

 

 Intermediate-susceptible and susceptible varieties N21, N22 and N31 

constitute biosecurity risks to the South African sugarcane industry in terms of 

the possibility that C. partellus might adapt to sugarcane through them, and 

due to their known susceptibility or likely susceptibility to C. sacchariphagus 

(M, Co and R varieties are not commercially grown in South Africa). 
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Table 1 Inferred resistance mechanisms of sugarcane varieties to C. partellus based 

on a series of resistance screening experiments involving variety comparisons in 

artificial diet, oviposition experiments, and pot trials (pink represents susceptibility; 

green indicates intermediate; and blue indicates resistance). ‘+’ indicates variety is 

likely to be positive for resistance mechanism; ‘-‘indicates the variety is likely to be 

negative for resistance mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The overall performance of the NIRS models was promising to fairly good, 

given the small numbers of samples used. However, they are not yet robust 

enough to be used for screening purposes. For calibration models to be 

suitably robust, a much larger number of varieties, ideally 200 to 300, need to 

be screened for resistance to Chilo spp. and F. serrata before incorporating 

their NIR scans into calibration and validation sets. 

 

 
Diet 
Bioassays 

Ovipositon 
Experiments 

Pot Trials 
(PT) 

Resistance Mechanism 
against C. partellus 

Variety 

Mean 
Larval 
Weight as 
% of 
Control 

Mean Total 
Batch No. 
Combined 
Experiments 

Overall 
Rating  

Constitutive Induced 

Co6505 79.64 13.5 IS + - 

M1135/64 107.24 12 R ++ + 

N27 118.72 18.5 IR + + 

N24 123.48 16.5 R + ++ 

R570 125.78 9.5 R +++ - 

N21 128.57 15.5 IS + - 

Co1287 128.57 24.5 R + ++ 

N22 130.38 14.5 IS + - 

N26 133.33 13 I + - 

N32 135.47 5 R ++ + 

R576 146.14 15 IS + - 

R573 157.47 5 R + ++ 

N31 168.23 18.5 S - - 

N25 180.62 19.5 I - + 

R572 184.47 16.5 I - + 

R568 185.3 18 IR - ++ 

M1025/70 188.88 18.5 S - - 

N28 199.38 23.5 R - +++ 

M861/60 202.46 18 R - +++ 
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 Reference material should be representative of the pest of interest, and should 

relate to the surface from which the spectra are obtained. NIRS does offer the 

potential to be used as a rapid technique for discriminating between resistant 

or susceptible sugarcane varieties, and the resistance mechanisms involved. 

Obtaining scans from leaf surfaces is a non-destructive technique, and 

hundreds of leaves can be scanned in one day.  

 

 With respect to the NIR models built, it was observed that some sugarcane 

varieties were predicted to have higher or lower ratings than their actual 

ratings within calibrations or in validation. This can be used to infer 

mechanisms of resistance. For example, in Figure 6.6 the variety NCo376 is 

predicted to suffer less shothole damage than its actual reference value. This 

suggests a strong constitutive component of resistance, perhaps with a muted 

induced response resulting in more damage than predicted. N28 on the other 

hand is predicted to suffer more damage than its reference value suggesting 

poor constitutive resistance. In this case the resultant lower damage level 

would be due to a strong inducible component (unseen by NIR scans of 

undamaged leaves). That NCo376 has strong constitutive resistance whilst 

N28 does not, is borne out by the results of the diet inclusion study described 

in Chapter 3. 

 

 The concept of surrogacy between C. sacchariphagus and C. partellus 

received some support in the various screening studies. For example, N28 

and N32 were reported to be fairly resistant to C. sacchariphagus by Conlong 

et al. (2004). This concurred with the results from the pot trials conducted in 

the glasshouse trials, where N28 and N32 were among the more resistant 

varieties, having below average values for C. partellus damage parameters for 

both pot trials conducted. Variety R570 is fairly resistant to C. sacchariphagus 

according to Nibouche and Tibere (2009). In these studies, R570 showed 

relatively little damage from C. partellus, also indicating that it is one of the 

more resistant varieties (Table 5.6).  
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Conclusions and future research 

 

From the research conducted in this study it was shown that it is often necessary to 

combine a number of screening methods in order to characterise the resistance 

mechanisms of a specific variety to a pest (Vercambre et al., 2001). The biochemical 

and physiological basis of resistance to Chilo spp. should be further explored which 

could yield improved methods for phenotyping resistance in plant breeding 

programmes (Nibouche and Tibere, 2010). Additionally, the role of certain secondary 

compounds that are known to have an effect on larval feeding and development 

could be investigated. The concept of insect surrogacy has been shown to be worthy 

of further research. Further studies on the panel of varieties used in this project could 

be carried out in a country where C. sacchariphagus is endemic, e.g. Mozambique, 

Reunion Island or Mauritius.  

 

Although the future of NIRS as a screening tool for pest resistance is a positive one, 

it has been confirmed that the development of NIRS calibration models requires 

many samples of different varieties. Ultimately, the quality of NIRS models for 

predictions depends on the quality of the reference material and the spectral patterns 

used to generate the model. Critically, accurate, robust calibration models require a 

large enough sample sett to include the entire spectrum of variation of physical 

and/or chemical properties of the populations of interest (Rutherford and Van Staden, 

1996). In the future, a larger number of sugarcane varieties should be screened 

accurately for a particular trait, and this population of varieties should be used 

together with optimally obtained spectra (correct sampling position and plant part) to 

obtain robust calibration models for predictions.  
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