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THESIS OUTLINE 

The principal findings of this PhD research study have been compiled into an article format 

and presented as a thesis by manuscript.  

Chapter One  Provides background information with a brief review of selected topics relevant 

to the study. Study aims and objectives, hypotheses and potential benefits of 

this research are also highlighted.   

Chapter Two Forms part of the literature review and describes maternal nutritional 

manipulation and programming of reproductive functions. This manuscript is 

currently under review (REPBIO-S-20-00344) in Reproductive Biology.  

Chapter Three Reports on diet induced oxidative stress in direct consumers and diet naïve 

offspring. This forms study 1 of the PhD experimental research and is currently 

under review by Heliyon (HELIYON-D-20-07205).  

Chapter Four Forms part of study 2 to investigate the impact of maternal HFD on reproductive 

profile of diet naïve offspring. This manuscript is currently under review by Life 

Sciences (LFS-D-20-06711).  

Chapter Five Titled “Primed sensitization to low-grade neuroinflammatory changes in rats 

prenatally exposed to high fat diet”.  

Chapter Six This chapter forms the last chapter of the thesis and it provides the synthesis of 

all experimental findings, conclusion, limitations of study and recommendation 

for future research.   
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THESIS ABSTRACT 

The increasing prevalence of infertility and obesity over the last few decades have become a 

major public health challenge among individuals within the reproductive age. Consumption of 

a high-fat diet (HFD) is a harbinger for many metabolic alterations and diseases including 

infertility and subfertility. Studies have shown that the reproductive health of an individual can 

be programmed prior birth since exposure to certain environmental factors especially during 

intrauterine life play significant roles in transcriptional and epigenetic alterations in pivotal 

genes. However, understanding the molecular mechanisms linking oxidative stress caused by 

adverse environmental conditions to intrauterine alterations at critical periods of development 

might help in the clinical management of diet-induced infertility problems. This study therefore 

aimed at investigating the impact of maternal HFD consumption on sex-linked differences in 

the reproductive hormone profiles of diet unexposed offspring and examined the therapeutic 

potential of 150 mg/kg Quercetin-3-O-rutinoside (QR) against the HFD-induced biological 

changes. Adult female Sprague Dawley rats were randomly divided into two groups and fed 

either 45% HFD or normal diet (ND) for eight weeks before mating with male rats fed ND. 

Thereafter, the pregnant rats were divided into four dietary treatment groups: ND, HFD, 

ND+QR, and HFD+QR. At gestation day 19 (GD19), n=7 animals per group were sacrificed. 

Blood and tissue samples were collected and stored at -800C for biochemical and molecular 

analyses. The remaining dams were allowed to litter naturally and sacrificed. The pups were 

also sacrificed at postnatal day (PND) 21, 28 and 35. Blood and tissue samples were collected 

and stored for subsequent analyses. Using standard laboratory procedures, we measured 

oxidative changes in the liver, placenta and brain tissues by assessing levels of 

malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), catalase 

and nitric oxide (NO). Concentrations of hypothalamic gonadotropin releasing hormone 

(GnRH), serum luteinizing hormone (LH), testicular testosterone, and brain tumour necrosis 

factor (TNF-α) and glucagon-like peptide 1 (GLP-1) were assessed via enzyme linked 

immunosorbent assay (ELISA) technique. HFD-induced transcriptional changes in chemerin, 

chemokine-like receptor (CMKLR 1), TNF-α, GLP-1, interleukin-1 (IL-1β) and nuclear factor 

kappa B (NFκB) in the hypothalamic and testicular tissues were assessed by reverse 

transcriptase polymerase chain reaction (RT-PCR). After eight weeks of maternal HFD 

consumption, lipogram test indicated decreased plasma total cholesterol (TC) level, 

hypertriglyceridemia and increased low-density lipoprotein (LDL) levels. Our findings also 
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showed that offspring of HFD-fed dams had delayed fur appearance and lower body weight 

compared to those from the control (ND) dams. These morphological changes were 

accompanied by elevated MDA levels in placenta, liver and brain tissues of HFD-fed dams and 

their diet-naïve offspring. Furthermore, there was evidence of hepatic nitrosative stress, time-

dependent and sex-linked differences in hepatic SOD and brain GSH levels in the offspring. 

Also, hypothalamic GnRH and serum LH levels were significantly reduced at PND 28 and 35 

in the offspring. Moreover, testicular testosterone was decreased at PND 35 in offspring of 

HFD-fed dams. Upregulation of chemerin, TNF-α, IL-1β mRNA transcripts in the 

hypothalamic-gonadal axis of male offspring indicates possible HFD-induced tissue 

inflammation and consequences for dysregulated steroidogenic and/or reproductive functions. 

Elevated brain GLP-1 may be linked to activated bioenergetic and homeostatic responses to 

HFD-induced oxidative stress. Overall, maternal HFD exposure led to induced oxidative stress, 

low-grade tissue inflammation and decreased levels of gonadotropins and androgens in their 

diet naïve offspring, whereas QR has little or no significant effects on these parameters.  

Keywords: Developmental programming, High-fat diet, Oxidative stress, infertility, male 

reproduction, quercetin-3-O-rutinoside, Chemerin, CMKLR1, TNF-α, GLP-
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CHAPTER ONE 

LITERATURE REVIEW 

1.1 Background of the Study 

Over the last four decades, the concept of developmental origins of health and disease 

(DOHaD) has received heightened attention in epidemiological and animal studies owing to 

the prevalent increase in onset of certain diseases and metabolic disorders at later childhood 

and adult life. Developmental origins of health and disease explains the link between maternal 

diseased state, nutritional imbalance, environmental changes, stress, lifestyle choices, (1, 2) 

and programming of metabolic disorders which leads to epigenomic modification and altered 

phenotype in the naïve offspring. Compounding this health challenge is the relationship 

between the foetus and intrauterine environment which further breeds phenotypic alterations 

that may consequently affect the health status of the offspring. Some of these changes may 

present immediately after birth. Maternal nutrition and lifestyle play crucial roles during the 

periconceptual period, which is a highly controlled and timed period for the offspring. Several 

epidemiological and animal studies have explained the scourge of maternal nutritional 

imbalance and adverse intrauterine environment during the periconceptual period. There is a 

constellation of evidence that maternal obesity and lifestyle changes engrain significant effects 

on several systems of the body which forms the nidus for metabolic disorders and diseases such 

as diabetes, obesity, neurodevelopment, cardiovascular, gastrointestinal and liver diseases in 

the offspring at critical developmental window periods (3).  

During mitosis, through interaction with the environment the homogenous genes gives rise to 

stable structural and functional heterogenous heritable traits without alteration to the DNA 

sequence, during fetal development and even in matured adult under environmental influence, 

this process is referred to as epigenetics (4, 5). It is used to describe fixed changes or alterations 

in gene expression. Epigenetics which literally means ‘outside the normal genetics’ (5, 6) was 

coined by Conard H. Waddington a developmental biologist after his experiment using 

drosophila pupae. In his study, he exposed the pupae to heat for a while and noticed that there 

was an alteration in the wing vein pattern. These alterations did not only become permanent in 

the adult drosophila, it was also pass on to subsequent generations (5, 7-9), it is however not 

clear how long it takes for the heritable phenotype to emerge during critical windows of 

development. Histone modifications, DNA methylation and small-interfering RNAs are the 

three major mechanisms involved in epigenetic modifications which are also inheritable across 
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generations. Epigenetic modifications clearly reveal the link between gene expressions and 

disease vulnerability (10). Therefore, early disease diagnosis, management, and proper 

treatment will be easier with a broader understanding of the osmotic relationship between 

epigenetic processes and endogenous or exogenous stressors. Alterations in DNA methylation 

patterns has been linked to aging (11), maternal or environmental stressors (5, 10) provides a 

strong evidence to support for  its association in the development of adult diseases.  

Chemerin is a novel pleiotropic acting chemoattractant adipokine encoded by the retinoic acid 

receptor responder 2 (RARRES2) gene. It plays a significant varying degree of impact on the 

immune system (anti and pro-inflammatory properties), glucose metabolism and adipocyte 

differentiation (12-14). Chemerin is largely expressed in the liver, moderately expressed in the 

lungs with low expression in the heart, kidney and ovaries (15, 16). Interest in this novel 

adipokine was kindled by its multilevel effect and association with the metabolic syndrome, 

obesity and its comorbidities including; diabetes and cardiovascular diseases and regulation of 

reproductive functions (17) through a G protein- coupled receptor called chemokine-like 

receptor 1 (CMKLR1). It is therefore important to also study its novel role in obesity and 

regulation of the hypothalamic pituitary gonadal axis. DNA methylation controls the 

constitutive expression of chemerin. There was low methylation of Chemerin in unstimulated 

adipocyte and hepatocytes of murine in relation to IL-1β cytokines(12, 18). Its novel role was 

also observed in the decrease of pancreatogenic diabetes mellitus in human and mice with 

increased serum level of tumour necrosis factor (TNF-α) and IL-1β which was upregulated by 

treatment with chemerin-9 and CMKLR1 agonist. Chemerin plays an important role in the 

modulation of adipokine secretion from the adipose tissue following treatment with TNF-α, 

there was a significant increase in gene expression of chemerin  with a consequent decrease in 

CMKLR1 levels in bovine adipocyte (13) and bovine intramuscular matured adipocyte(19) 

with increased cellular lipid droplets preadipocyte differentiation (16). With increased mRNA 

expression and decreased DNA methylation in neonate foreskin tissues, chemerin was also 

shown to be a possible link between later life obesity and maternal smoking during gestation 

(20) and as an implicit therapeutic target for obesity (21). A study conducted in children with 

obesity and metabolic syndrome shows elevated levels of chemerin in obese children compared 

to normal children irrespective of age and gender. In addition, decreased level of chemerin was 

associated with weight loss and significant improvement in the parameters of metabolic 

syndrome (22, 23). The expression of chemerin was assayed in the placenta of female Sprague 
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Dawley rats at gestation days 8, 12, 16,19 and 21 and found that its serum level was higher at 

the early stage of gestation and it decreased significantly as gestation advances from day 19 

(24). This study is suggestive of the crucial metabolic role of chemerin in maintaining 

maternal-fetal energy homeostasis during gestation(17). It is however not clear whether the 

expression of chemerin is mediated by sex steroids or other endocrine chemicals in relation to 

gonadal functions. Although, in gonadectomised rats there was a divergent expression of the 

ligand and its receptor with an independent increase at post pubertal compared with pre 

pubertal rats (21). 

1.2 Developmental Programming 

Programming which refers to the process by which an external stimulus at critical periods of 

development gives rise to permanent changes with effects on the structure and function of the 

organism, was first introduced by Lucas Alan in 1991 (1, 25, 26) when he examined the long-

term effect of early nutrition in man. In his study, Lucas stated that ‘programming may occur 

as a normal part of biological development or in response to unphysiological events, it may 

also occur under the influence of genetically determined triggers or due to external stimuli at 

critical periods’ (25). However, it is important to note that the concept of programming was 

first identified in a descriptive study carried out by a group of ethologists, psychologist and 

zoologist on the imprinting of bird’s behaviour between 1873- 1953 where one of the scientist, 

Spalding D.A, examined why and how physical and behavioural (learned and instinctive) 

determinants are inherited (1, 27). The ‘Developmental origin of health and disease’ or ‘fetal 

origin of adult disease’ hypothesis proposed by Baker gained much impulse after the Dutch 

famine cohort epidemiological studies between October 1944 – April 1945 (28, 29). Their 

study showed a correlation between maternal starvation and increased risk of metabolic and 

cardiovascular diseases in offspring when maternal nutrient supply does not commensurate 

with nutrient demand. It was recorded that offspring with low birth weight developed coronary 

heart disease and other biological risk factors such as; stroke, hypertension and type II diabetes 

(non- insulin dependent diabetes mellitus) which was made possible via plasticity (30-32).  

Subsequent research further unveiled the importance of maternal nutrition during fetal tissue 

and organ differentiation at critical periods of development. The alteration in a single genotype 

at early life gives rise to several inheritable phenotypic (physical and functional) and 

morphological changes in response to environment changes, referred to as developmental 

plasticity (1, 32). This scourge of scarce nutrient strips some organs of essential nutrients 



4 

 

necessary for development. The body therefore naturally responds in a prudent manner by 

diverting available nutrient to the development of some critical organs. This phenomenon is 

referred to as the ‘thrifty’ hypothesis. In a study using rodent models (33, 34), maternal 

undernutrition during gestation and overfeeding at postpartum led to altered glucose- insulin 

metabolism in offspring. Furthermore, to fully unmask the effect of perinatal life insult, another 

adverse condition/ insult is required at postnatal life for the development of adult diseased 

condition, this is referred to as the ‘2-hit’ hypothesis. Genetic vulnerability together with 

perinatal life insult leads to alteration in organ system structuring which may not be enough to 

alter adult phenotype is referred to as the first hit. Insults/stressors at postnatal life may result 

in endocrine imbalance which then unveils underlying diseased condition is the second hit. The 

two hit hypothesis has been implicated in Alzheimer’s disease, it was reported that either 

oxidative stress or  mitotic disruption play a crucial role in the pathogenesis of Alzheimer’s 

disease (35, 36). The pathogenesis of polycystic ovarian syndrome (PCOS) was explained 

using the two hit hypothesis, because there is a perinatal and postnatal event necessary for 

activation of PCOS (37). Furthermore, there appears to be a synergistic relationship between 

the ‘2-hit’ hypothesis and the theory of mismatch. As the organism develops, it adopts a 

phenotype to match supposed demands at later life, such that at adult life, the individual 

remains healthy. There is however a mismatch theory where the adopted phenotype does not 

meet up with demands at later life due to stressors, environmental changes, lifestyle, and diet. 

With a mismatch, there is a very high chance of susceptibility to disease risk at adult life (5, 

38).  

1.3 Nutritional drift and Developmental Programming.  

Over the last decades, rapid increase in maternal obesity and its associated non-communicable 

metabolic diseases have become a global public health challenge (39, 40) with increase in 

premature mortality and morbidity rate (41). Changes in lifestyle and diet has been primarily 

attributed to be the leading cause of obesity, diabetes and other related metabolic disorders 

(42). Over the years, incidence of obesity or overweight among the affluent people in urban 

cities in Africa has greatly increased. Studies have shown that in both African and white 

population, there is a link between obesity and prevalence of its associated metabolic disorders 

such as diabetes (43), cardiovascular diseases (44-46) and premature mortality (47).  

Interestingly, there has also been a surge of this public health challenge among South African 

women due to the rapid promotion and acceptance of unhealthy western diet and lifestyle. This 
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lifestyle is perceived to be a show of affluence among most South African while some 

ignorantly imbibe this unhealthy lifestyle. Unfortunately, the prevalence of obesity will 

continue to increase in South Africa (39, 48) until its citizens are properly enlightened and 

realise the imminent dangers it ingrains on transgenerational health status.  

A wide range of epidemiological and animal studies have highlighted that physiological 

adaptations take place within the body of nutritionally manipulated naïve offspring to maintain 

homeostatic energy balance for survival. For instance, maternal undernutrition during early 

gestation to mid-gestation was shown to affect adipose tissue development in the fetus by 

increasing the number of adipocyte precursor cells (49). An increase in neurotensin, a localised 

enteroendocrine  amino acid was correlated with risk of diabetes, cardiovascular diseases and 

mortality following a high fat diet (50, 51). Interestingly, in a study by Rincel et al., 2016 on 

impact of maternal high fat diet on programming of stress in offspring. They found out that 

maternal high fat diet alleviated stress in offspring separated from their mothers (52) 

Liang et al. (2010) reported that consumption of high saturated fat diet prior to conception and 

throughout pregnancy may result in insulin resistance and placental vascular damage and that 

these abnormalities could result mainly from underlying oxidative stress (53). Chronic 

consumption of high fat diets has also been reported to cause significant decrease in uterine 

blood flow, placental inflammation and an increased fetal risk of developing non-alcoholic 

fatty liver disease, as evidenced by increased levels of liver triglycerides and increased hepatic 

oxidative stress (54, 55). Maternal obesity can also cause accelerated aging (56) and alterations 

in metabolic and endocrine system of naïve offspring in a sex dependent manner. In a study 

conducted by Rodriguez-Gonzalez G.L et al, 2019, programmed early and rapid aging in a 

gender specific manner was observed in the progenies of  female obese wistar rat fed 20.5% 

high fat diet (57). Sixty percent (60%) high saturated fat diet administered throughout 

pregnancy and lactation was used to assess the risk of adult onset of diseases in C57BL/6 mice. 

They found out that offspring developed hypertension, hyperglycaemia, insulin resistance, and 

adult obesity at 6-12 months after birth (58, 59). Several studies have used percentages different 

of fat diet and duration to establish a model of maternal obesity and, it is therefore evident that 

energy content of maternal diet during the pre-and-periconception periods seems to play key 

roles in fetal development, cellular programming, and associated functions.  
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1.4 The Role of Oxidative Stress in Developmental Programming 

Studies have shown that oxidative stress could be the possible link between developmental 

programming and increased risk of metabolic syndrome, obesity, and other disorder in 

offspring at early childhood or later life. Although the precise association between fetal energy 

imbalance and the resulting metabolic disorder has been established, the mechanism linking 

oxidative stress, adverse fetal growth and later risk of developing metabolic syndrome is yet to 

be fully understood.  It is believed that oxidative stress can cause modulation of gene 

expression and or direct damage to cell membrane and other molecules during critical 

developmental period (60). Oxidative stress occurs as a result of an imbalance between oxidant 

and antioxidant defence system. It indicates an imbalance between the production of reactive 

oxygen species (ROS) and detoxification of reactive intermediates (61, 62). For instance, from 

a study on the antioxidant defence system in using umbilical cord blood taken during delivery, 

oxidative stress was shown to be increased in infants born small for gestational age (SGA) 

when compared with those born appropriate for gestational age (AGA). There was a significant 

decrease in the activities of superoxide dismutase and glutathione (intrinsic antioxidants) with 

an accompanying increase in the activity of malondialdehyde (MDA- marker of lipid 

peroxidation) (63, 64). Deficiency in nitric oxide (NO) system was also implicated in the 

programming of hypertension and kidney disease. Intervention to target the NO pathway could 

lead to reprogramming to alleviate programming of hypertension and kidney disease (65). Due 

to the low enzymatic antioxidant defence system of the pancreatic β cells (66), oxidative stress 

has been shown to alter insulin secretion which could eventually result in low-grade 

inflammation, metabolic syndrome (60, 67), cardiovascular diseases (68) and other related 

metabolic disorders. Although the precise association between fetal energy imbalance and the 

resulting metabolic disorder has been established, the mechanism linking oxidative stress, 

adverse fetal growth and later risk of developing metabolic and reproductive alterations is yet 

to be fully understood. 

1.5 Programming of the Hypothalamic- Pituitary Gonadal (HPG) Axis 

It was believed that humans are born as ‘tabula rasa’ or ‘clean slates’.  However, this is no 

longer the case as evidences from human and animal studies shows that experiences are gained 

during the periconceptual period (69). Studies have shown that nutritional challenge during 

intrauterine life will primarily affect placental and fetal hyperplasia and only impacts fetal 

weight at a later stage of gestation (70-72). Adverse fetal environment is the nidus for altered 
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reproductive functions in the offspring at later life. The HPG axis is one of the systems of the 

body that is adversely affected by altered growth rate. The hypothalamus, specifically the 

hypothalamus arcuate nucleus (ARC), plays a key role in the regulation of metabolic and 

reproductive functions which makes it a target organ of early life insult. It secrets gonadotropin 

releasing hormone (GnRH) which controls the release of luteinising hormone and follicle 

stimulating hormone from the anterior pituitary gland which are responsible for the synthesis 

of steroids in both sexes, folliculogenesis in female and spermatogenesis in male (69, 73, 74). 

In a particular study, dehydroepiandrosterone (DHEA) which was used to induce polycystic 

ovarian syndrome and HFDs caused metabolic alterations alongside reproductive alterations 

which includes, polycystic ovaries, irregular cycles, and hyperandrogenism in the 45% and 

60% HFD rat models (75). Also, in a transgenerational study, 45% HFD fed to F0 mother had 

significant alterations in metabolic and reproductive changes in the intra testicular germ cell 

transcriptome although, it still remains unclear how long these effects could last (76).  

Furthermore, it has been well documented in animal studies that fetal exposure to stressors 

early in life can lead to programming of not only the hypothalamic pituitary adrenal axis but 

also the hypothalamic pituitary gonadal axis. Studies have shown that kisspeptin together with 

other subset of neurons in the ARC referred to as KNDy neurons- kisspeptin (KP), neurokinin 

B (NKB), and dynorphin (DYN) act together to regulate reproductive functions (69, 74). To 

determine the effect of high fat diet on onset of puberty and regularity of oestrous cycle, 60% 

high fat diet was fed postnatally to three different groups of female rats. They observed 30% 

of the offspring exposed to HFD postnatally had irregular oestrous cycles also Kisspeptin (an 

upstream regulator of HPG axis) produced in the hypothalamus signals the release of 

luteinising hormone, follicle stimulating hormone and sex steroids was not affected by 

postnatal treatment of 60% HFD. Although, Rahim Ullah et al, 2017 observed that diet 

composition rather than the increased body weight increased expression of Kisspeptin which 

led to precocious puberty in pup fed 45% HFD postnatally (77-79). HFD fed offspring had 

increased oestradiol concentration and decreased luteinising hormone at 6 months. This study 

clearly indicates that maternal and post-parturition weaning on a high fat diet program affects 

the reproductive profile (HPG axis) in their female offspring (80). To have a better 

understanding of reproductive alterations and diseases, it is important to pay more attention to 

exposures and modulatory changes at their early life. 
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1.6 Animal Models of High Fat Diet 

High dietary fat diet accounts for most of the reported cases of increased adiposity. Studies 

have shown that diet containing ≥ 30% of its energy from fat is capable of inducing obesity in 

humans and animal models (81). In view of this, we used 45% HFD in animal model for this 

study. Several animal models of high fat diet have been developed basically to mimic the same 

condition in humans. In animal studies it is easier to understand disease etiology, monitor 

disease progression and be able to pinpoint the various stages of programming at critical 

periods of development. This also allows for the use of interventions to improve the inherited 

pathophysiology. In the study of the DOHaD, rats (most common strain: Wistar rats or Sprague 

Dawley rats ) are preferred to mouse due to its several advantages which could probably be 

due to its ability to withstand insult, easier to handle and fetal size is bigger (82) hence, we 

decided to use rats for this study. Different models have been used to study the effect of 

programming on the reproductive axis. However, for our study the choice of our model was 

based on the average consumption of a western high fat diet by a woman at reproductive period. 

Sprague Dawley rats have  shown to be effective models for high fat diet and DOHaD (83, 84) 

1.7 Intervention 

Several studies have focused on interventions targeted towards reprogramming of programmed 

metabolic disorders in mother and their naïve offspring. Dietary modification as an intervention 

has gained heightened attention. Dietary interventions including; diet modification, use of 

nutritional supplements (56), herbs and lifestyle changes. Studies using nutritional supplements 

which are rich in antioxidants has been used to accurately access beneficial long-term intake. 

Quercetin-3-O-rutinoside which is commonly called Rutin and also known as Rutoside or 

Sophrin is a bioflavonoid (85, 86) found in certain plants, vegetable and fruits. It is found in 

apples, citrus fruits, green tea, black tea and buckwheat. The dietary supplement database label 

database lists over 860 products containing Quercetin-3-O-rutinoside that are currently 

marketed in the United States (DSLD, 2016). 

Quercetin-3-O-rutinoside is a very potent antioxidant (87-92) which also scavenges radiation 

induced free radicals (93, 94). Research has shown its multispectral pharmacological benefits 

for the treatment of various chronic diseases, such as cancer, diabetes, hypertension, and 

hypercholesterolemia (95, 96) Quercetin-3-O-rutinoside ameliorates high fat diet induced 

obesity (97, 98), prevents metabolic changes such as abdominal fat pads, glucose intolerance 

and reversed oxidative stress and inflammation (89) and diabetes (99, 100). Quercetin-3-O-
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rutinoside exhibits significant antidiabetic activity, presumably by inhibiting inflammatory 

cytokines, and improved the antioxidant and plasma lipid profiles in high fat diet + 

streptozotocin-induced type 2 diabetic model (101, 102). 

According to Jahan et al, 2016, Quercetin-3-O-rutinoside reduced hyperglycaemia and 

hyperlipidaemia. In their study, adult female Sprague Dawley rats were used to assess the 

ameliorative effect of Quercetin-3-O-rutinoside (100mg/kg and 150 mg/kg) against metabolic, 

biochemical and hormonal disturbances in polycystic ovary syndrome. They observed a dose 

dependent ameliorative response of Quercetin-3-O-rutinoside against clinical and biochemical 

features of polycystic ovarian syndrome (92). Recent studies have also shown the 

cytoprotective effect of rutin on Boaz sperm against oxidative attack (103), it alleviated 

testicular histopathological dysfunction and improved the testicular functions attenuation of  

inhibited testosterone and penile cGMP content in diabetic male rats (104). However, there 

appears to be a dearth of knowledge on the role of Quercetin-3-o-rutinoside on developmental 

programming associated with metabolic and reproductive alterations especially the sex steroids 

at critical developmental periods in high fat diet naïve rat offspring.  

 

1.8 Rationale of Study 

With the prevalent increase in the consumption of diets rich in high-fat and adoption of western 

lifestyle, descendants of high-fat consumers are more vulnerable to developing metabolic 

alterations leading to reproductive health issues and other diseases at a later stage in life. Of 

concern are the prevailing cases of male infertility which now presents a huge challenge in 

global health. Even though impact by constellation of factors including environmental and 

lifestyle changes have been theorized, but the underlined mechanisms linking male infertility 

to HFD-induced transcriptional and metabolic alterations, tissue oxidative stress and 

dysregulation in chemical signalling along the hypothalamic-gonadal axis remain poorly 

understood.  Understanding the exact timing of alterations during developmental window 

periods would shed more light on the cryptic conditions associated with HFD-induced 

metabolic and reproductive pathologies. Also, Quercetin-3-0-rutinoside has been reported to 

have cytoprotective and antioxidant properties, but its therapeutic potential against HFD-

induced trans-generational changes on reproductive profiles is yet to be validated. 
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1.9 Aim of the Study 

The current study aimed to evaluate the effect of QR on the impact of maternal HFD 

consumption on sex-linked differences in the reproductive hormone profiles of diet unexposed 

offspring rats.  

1.10 Objectives of the Study 

We formulated six objectives for this study and are as follows:  

1. To validate an existing rodent model of HFD-induced metabolic dysregulation using 

45% high-fat and investigate whether maternal consumption of HFD throughout 

gestation could impact on the health of their progenies.  

2. To examine changes in plasma lipid content (TC, HDL, LDL and TG), tissue oxidative 

and inflammatory changes and possible alterations in the expression of chemerin and 

CMKLR1 genes in the placenta, hypothalamus, and testes of diet-naïve offspring rats, 

influenced by maternal HFD consumption.   

3. To investigate whether QR supplementation could possibly reverse the HFD-induced 

metabolic alterations and changes in reproductive hormone profile (GnRH, LH, 

testosterone) of offspring rats that were prenatally exposed to maternal HFD.  

1.11 Brief overview of Methodology and Study Design 

Sprague Dawley rats was the preferred choice for this project based on its suitability as reported 

in the literature (83, 84). Standard laboratory procedures and methods were strictly followed 

as illustrated in Chapters 3, 4 and 5. The animal experimental work was carried out at the 

Biomedical Resource Unit (BRU) as approved by the animal ethics committee (AREC) of 

University of KwaZulu-Natal (Approval no: AREC/005/018D) following guidelines of 

National Institutes of Health for the care and use of laboratory animals in South Africa. The 

overall study design is shown in the figure below: 
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Fig 1.1: Showing the experimental design and workflow. As shown in the figure, two groups 

of Sprague Dawley female rats were fed either HFD or ND for eight weeks and paired with 

their male counterpart for mating (ratio 2:1). After conception, the female rats were further 

divided into four groups – two of which continued with their previous diets (ND and HFD) 

while the remaining two received diets supplemented with QR. At postnatal day (PND) 19, 

pregnant dams (n=7 per group) were sacrificed, while the remaining dams were allowed to 

litter naturally, and their pups were weaned and sacrificed (n=6) at different time points (PND 
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21, 28 and 35). In all killing time points, blood and tissue samples were collected and stored 

for subsequent biochemical analyses.  

1.12 Potential Benefits of this research  

The potential roles of QR on intrauterine development and postnatal health associated with 

HFD-induced alterations in metabolic programming is not clearly understood. It is therefore 

anticipated that the outcome of the present research study will provide beneficial information 

that may help improve progenitors’ health and prevent lineal metabolic and biochemical 

changes in the offspring during active developmental window period. 
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CHAPTER TWO 

This current chapter reviews the significance of maternal nutritional status and developmental 

programming of the hypothalamic-pituitary gonadal axis. It is presented in manuscript format 

titled: “Nutritional Manipulation and Programming of Reproductive Functions” which 

has been submitted for publication in Reproductive biology (Manuscript Number: REPBIO-

D-20-00258) and is currently under review. 
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ABSTRACT 

The detrimental effects of energy imbalance due to maternal nutritional drift are not limited to 

the mothers but may also impact the vulnerability of their offspring to develop certain 

metabolic disorders. Fetal programming, early life exposure and environmental factors 

converge to influence gene expression patterns in the adult-onset of health and diseases. 

Although certain epidemiological and animal model studies have explained the link between 

fetal programming and early life exposure to maternal nutritional imbalances, while other 

studies have attempted to unravel the putative mechanism involved in the developmental origin 

of health and diseases (DOHaD), the exact and unifying mechanism of action of nutrition and 

metabolic disorders in different organs remains unclear. Using human and animal model data, 

in this review, we discuss the possible links between high-fat diet-induced obesity, subfertility, 

infertility, and other reproductive functions. Furthermore, we also reported possible 

mechanisms involved in the programming of metabolic disorders of the reproductive functions 

such as oxidative stress, insulin resistance, and its link to the hypothalamic pituitary-gonadal 

axis. We concluded that reproductive functions could be programmed through various prenatal 

life pathways, and maternal high fat diet forms the nidus of altered offspring reproductive 

functions.   

 

Keywords: Nutritional manipulation, Hypothalamic-pituitary Gonadal axis, Developmental 

Programming, Metabolic disorder, High-fat diet.  
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Background 

The concept of Developmental Origin of Health and Diseases (DOHaD), as postulated by 

Baker and colleagues in the 1900s, established that there is a strong relationship between early 

life nutrition, infant mortality, and the development of cardiovascular diseases (Ischemic heart 

diseases) (1). They hypothesized that the intrauterine environment is essential in influencing 

the offspring's susceptibility to developing diseases at later childhood or adulthood, which 

implies a lifetime risk for obesity, diabetes, cardiovascular diseases, liver and kidney 

dysfunctions (1). Forsdahl in the 1970s used official statistical data on Norwegian counties and 

reported that poverty during adolescence, followed by prosperity, was positively correlated 

with the risk of death from coronary heart disease (2). Although Forsdahl did not observe any 

biological mechanism, he speculated that some form of permanent damage caused by the 

nutritional deficit might be involved. In 1986, Barker and colleagues began publishing reports 

on the association between an adverse intrauterine environment as determined primarily by 

low birth weight and an increased risk of coronary heart disease later in life (3). Dietary 

restriction during the periconceptional period has also been shown to shorten gestation, induce 

hypertension, and abnormal hypothalamic-pituitary-adrenal functions (4). 

The underlying mechanism through which maternal nutrition and energy imbalance relates to 

developmental programming of reproductive functions is not fully understood. However, 

studies have shown that disruption of the endocrine milieu, hypothalamic neuronal circuits, 

and intrauterine epigenetic modifications at critical developmental periods translate to the 

programming of reproductive functions in naïve offspring (5).  This review attempts to unravel 

current thoughts on the impact of maternal high fat diet-induced nutritional drifts on sex 

steroids, hypothalamic pituitary-gonadal axis at critical periods of development on 

reproductive functions in diet naïve offspring using data from epidemiological and animal 

model studies. It also further explains the underlying mechanisms involved in the offspring's 

developmental programming and reproductive health and diseases. 

Maternal nutrition and fetal development 

The offspring's predisposition to metabolic and reproductive alterations results from maternal 

consumption of a high-fat diet before and throughout gestation and lactation(3, 5-7).  Maternal 

high-fat diet feeding has been shown to increase the risk of obesity, metabolic syndrome, and 

impaired glucose tolerance in the offspring at later life (8-11). Hyperphagia was noticed in 10 
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weeks old offspring of rats fed junk food diet (rich in energy, fat, and sugar) during gestation 

and lactation (12-14). On the cardiovascular system, Taylor et al., 2005 also described an 

association between maternal high fat diet consumption and the cardiovascular system. There 

was reduced mitochondrial gene expression in the aorta of the six-month-old offspring of high 

fat-fed rat, which preceded a decline in whole-body insulin sensitivity (10). According to a 

cross-sectional study carried out in humans to ascertain the role of some markers of metabolic 

syndrome, hyperglycaemia, insulin resistance, and increased blood pressure on cognitive 

functions, the result showed that individuals with type 2 diabetes performed poorly in cognitive 

functions compared with those with prediabetes, which can be explained by hyperglycaemia 

and increased blood pressure. However, early glycaemic control can be a therapeutic way for 

the prevention of diabetes-related decrement in cognitive performance (15).  

However, there is a growing body of evidence that reproductive functions are imparted during 

fetal development (5). The male and female reproductive functions are severely impacted by 

the environmental/intrauterine environment. Connor et al. (2012), in their study on the female 

offspring of rats prenatally exposed to the maternal high fat diet, had longer oestrus cycle 

(prolonged proestrus), and early maturation was reported (16). Less study has been conducted 

to investigate the impact of prenatal fat exposure on male offspring fertility, especially in 

animal models.  Decreased sperm count and the decreased reproductive outcome was recently 

reported in male rat offspring prenatally exposed to a high-fat diet (17). Metabolic syndrome 

is strongly associated with the pathogenesis of infertility in males (18). 

Definitions and Prevalence of Metabolic syndrome. 

In the wake of global development and urbanization, high-fat diet-induced metabolic syndrome 

(MS) remains a major clinical and public health challenge. Metabolic syndrome is defined as 

a multiplex disease caused by several factors arising from insulin resistance, obesity, 

hyperglycemia, hypertension, and dyslipidemia. The International Diabetes Foundation 

defined metabolic syndrome as central obesity with ethnic variations plus any two of the 

following factors; raised triglycerides (> 150mg/dl), raised blood pressure (systolic BP > 130 

or diastolic BP > 85 mmHg), reduced High-Density Lipoprotein (<40mg/dl in males and <50 

mg/dl in females) and raised fasting plasma glucose (FPG > 100 mg/dl) (19). According to 

statistics, it is estimated that 22% of United States adults have metabolic syndrome (20). The 
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International Diabetes Federation also estimated that 25% of the world's adult population has 

metabolic syndrome.  

It is reported that there is an increase in the prevalence of metabolic syndrome in young adults 

within the sixth and seventh grade of life in males and females (21) and a high prevalence 

among postmenopausal women between 32.6% to 41.5% (22). It is estimated that in the year 

2030, up to 57.8% of the world's adult population (3.3 billion people) will be overweight or 

obese as a result of high-fat diet consumption (23).  

Until recently, metabolic syndrome has been attributed to be a disease whose manifestation is 

seen in adulthood. (24). Although the estimation of all the symptoms of metabolic syndrome 

at childhood and early adolescence is difficult, the prevalence of obesity (which predisposes to 

metabolic syndrome) increases at adolescence (25). It is worthy of note that the symptoms and 

manifestations of this syndrome also present in childhood (26-28) (29). Metabolic syndrome 

started as a concept rather than a diagnosis, with over forty definitions reported in the literature 

(30). Kylin in the 1920s demonstrated the association between high blood pressure 

(hypertension), high blood glucose (hyperglycemia), and gout (31). Other scientists found out 

that upper body obesity (male type obesity) was associated with cardiovascular diseases, type 

2 diabetes mellitus, and metabolic dysfunction (32, 33).  In 1988, Gerald Reaven presented a 

lecture on the role of insulin resistance in human disease. He described the metabolic syndrome 

as a cluster of various conditions and named it "Syndrome X." with the emergence of different 

names for the metabolic syndrome, there have also been different definitions. Reaven described 

it in adult obese for the first time as a link between insulin resistance, hypertension, 

dyslipidemia, impaired glucose tolerance, and other metabolic abnormalities associated with 

the risk for atherosclerotic and cardiovascular diseases (34). It was renamed by another scientist 

as "Deadly Quartet" (35) and "Insulin Resistant Syndrome" (36). For a unifying definition of 

metabolic syndrome, in May 2004, the International Diabetes Federation held a workshop in 

the United kingdom sponsored by an educational grant from AstraZeneca Pharmaceuticals with 

participants from each of the five continents, World Health Organisation, National Cholesterol 

Education Program- Third Adult Treatment Panel (NCEP-ATP III) and experts from the field 

of diabetes, public health, epidemiology, lipidology, genetics, metabolism, nutrition, and 

cardiology (37). There was a consensus on a unifying definition from the constellation of 

different definitions by associations during the workshop. All groups agreed on the core 

components of metabolic syndrome as: obesity, insulin resistance, dyslipidaemia and 
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hypertension (37, 38) (Fig. 2.1). However, this definition might not be acceptable in all cases 

considering the current emergence of metabolic syndrome in children and adolescents (19, 39). 

According to Marie NG et al. (2014), about 2.1 billion adults are obese or overweight, and 

women of childbearing age occupy 38% of this population (40). 

 

Fig. 2.1 showing metabolic syndrome and associated disease pathways. Either through genetic 

or environmental factors, most of the symptoms of metabolic syndrome, which includes 

obesity/weight gain, increased tissue insulin resistance, and glucose intolerance, increased 

tissue leptin and free fatty acid (FFA). In the muscles and liver, causes dyslipidaemia, arterial 

smooth muscle hypertrophy, increased cardiac output, blood pressure in the heart causes 

hypertension. All these are expressed either in the tissue or specific organs. 
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Nutritional manipulation phenotype induced by reprogramming of offspring machinery.  

Developmental changes arising before implantation are likely to affect many cell lineages. 

However, adaptations occur later during gestation, such as upregulation of placental nutrient 

and oxygen (O2) transport to compensate for the early defects and normalize birth weight (41). 

Once placentation has begun, environmental signals' programming effects may be mediated 

via changes in placental development (42). 

Programming of health and diseases is mostly due to placental insufficiency due to insufficient 

supply of nutrients, oxygen, and blood flow through and to the placenta (Fig. 2.2). Reduced 

oxygen delivery to maternal and fetal blood is accompanied by hypoxemia (43-45) and 

embolism of the umbilical artery (46-49), which is stress-induced due to maternal 

undernutrition or overnutrition. Pregnant rats that were exposed to a low protein diet had 

reduced pancreatic  cell mass at birth. They also had reduced insulin secretion in later life 

which may be due to dietary-induced reduction in proliferation rate and increased apoptosis of 

pancreatic  cells (50). Human and animal studies have shown that intrauterine life exposure 

to high sugar diets increases the risk of metabolic syndrome (51, 52). Diabetes during gestation 

places the offspring at risk of developing glucose intolerance and obesity in later life. In an 

epidemiological study of women born of diabetic mothers, 18-27 years old women had a risk 

of overweight, increased blood glucose, and high risk of metabolic syndrome compared with 

those born to non-diabetic mothers (53-55).  

According to a study using rats, intrauterine life protein diet restriction may be the reason for 

later life preferences for fatty foods (56). Lipids and lipids disorders play a central role in 

developing metabolic syndrome and its associated diseases (57). Observational studies were 

performed in humans that consumed a high-fat diet during pregnancy and the effect on the 

health of the offspring. The risk of spontaneous abortion and miscarriages was associated with 

the consumption of high fats, butter, and oil where spontaneous abortion was inversely and 

significantly related to consumption of green vegetables, milk, cheese, eggs, fruit and fish 

while fat showed a direct association with risk of miscarriage(58). Oxidative stress is believed 

to link adverse fetal growth and later elevated risk of metabolic syndrome and other diseases. 

Oxidative stress results from an imbalance in the production and inactivation of reactive 

oxygen species. It can cause modulation of gene expression and direct damage to cell 

membranes and other molecules at critical developmental windows disorders (59). Multiple 

lines of inquiries indicate that oxidative stress is the link between adverse intrauterine 
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environment and phenotypic alterations. Liang et al. (2010) established that oxidative stress 

may link fetal exposure to metabolic syndrome. They developed a dietary-induced gestational 

diabetes mouse model, which demonstrated that consumption of a high saturated fat diet before 

conception and throughout pregnancy could result in insulin resistance and placental vascular 

damages, which could be a result of oxidative stress (60). The mechanism through which this 

occurs is not fully understood; however, obesity and inflammation have been implicated to be 

the signaling precursor for oxidative stress and its impact on the reproductive system (17, 61). 

An understanding of the mechanisms involved might provide a possible means for treating 

high-fat diet-induced fetal programming. 

 

Figure 2.2: showing the impact of the maternal metabolic disordered environment on the health 

of the offspring. These impacts can be modified by the timing of exposure, diet, and lifestyle 

of the mother and offspring: HFD-high fat diet, NAFLD-non-alcoholic fatty liver disease. 
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Oxidative stress and reproductive functions 

It has been proposed that oxidative stress and reactive oxygen species (ROS) account for one 

of the major idiopathic causes of infertility, miscarriage, pre-eclampsia, fetal growth 

restrictions, and pre-term labor (62, 63). Oxidative stress decreases fertility and facilitates poor 

embryonic development (64). According to a study by Desi et al. (2009), semen assessment of 

infertile men with high ROS levels had significantly lower sperm quality. High levels of ROS 

also altered the DNA sperm integrity because the spermatozoa have a limited defense against 

ROS induced DNA damage (65). It is worthy of note that the generation of reactive oxygen 

species at the normal level is beneficial to male fertility. It promotes capacitation, acrosome 

reaction, and sperm motility in mature sperm (66). A recent survey by Peters et al. (2020) on 

female fertility and oxidative stress found a strong link between autophagy, oxidative stress, 

and female fertility. They concluded that an understanding of the connection between 

autophagy and oxidative stress might provide a link to the pathology of oocyte aging (67). 

There is currently no unifying method for evaluating oxidative stress and the generation of 

metabolic disorders (62, 68). 

HFD-induced insulin resistance and associated reproductive alterations.  

Insulin is an anabolic hormone, that favors glycolysis and reduces gluconeogenesis and 

glycogenesis, secreted by the beta cells of the islet of Langerhans of the pancreas. It functions 

mainly in the mobilization of glucose from the circulation into the liver, muscle, and adipose 

tissue for conversion to fat and storage as glycogen through phosphorylation of glucose. Insulin 

is secreted mostly after a meal (mainly carbohydrate meal), and its action could either be within 

a few seconds, minutes, or hours after its secretion depending on the target. Insulin performs 

three (3) major functions in the cell; 1. It facilitates cell membrane permeability to glucose 

uptake into the cell by activating glucose transporter 4 (GLUT4) (mainly in skeletal muscle 

and adipose tissue), 2. Insulin alters cytosolic metabolic machinery, and 3. It also alters gene 

expression, leading to cell proliferation, growth, and differentiation through the activation of 

the mitogen-activated protein kinase pathway, which may link insulin resistance and 

programming of metabolic disorders in offspring (69, 70). In the adipose tissue, insulin 

increases the number of glucose transporters on the cell membrane, facilitating increased 

glucose uptake, fatty acid synthesis, glycerol phosphate synthesis, and potassium uptake 

(causing hypokalaemia) and activation of lipoprotein lipase (70). Insulin increases the glucose's 

entry into the liver (fig 2) by increasing the phosphorylation of glucoseglucokinasea  activanase 
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(69). The liver cell membrane is permeable to glucose, which is made possible because of 

glucose transporter 2 (GLUT 2).  

Studies have shown a sexually dimorphic effect of insulin resistance and reproductive 

functions' programming in the offspring. The male offspring of undernourished ewes increased 

the propensity to reduce insulin levels (71, 72). The male brain is more sensitive to insulin 

resistance and nutritional alterations compared to the female offspring. These alterations were 

linked to decreased expression of proopiomelanocortin in the hypothalamus. In females, insulin 

is regulated by estrogen, which elicits a compensatory to circumvent the effect of nutritional 

alterations (73, 74). In a recent study epidemiological study conducted by Ahmed et al. (2020), 

using 50 infertile male (idiopathic) patients aged 25-50 years and 50 healthy males as control, 

they observed a significant link between insulin resistance (using HOMA-IR), obesity, and 

idiopathic male infertility (75).  Insulin resistance has been the underlying cause of obesity. 

Hyperinsulinemia and hyperandrogenism are associated with the manifestation of the 

polycystic ovarian syndrome (PCOS) by acting via insulin-like growth factor-I (IGF-I) secreted 

by the ovarian tissues with its receptors located on the ovaries (76). Another mechanism 

through which hyperinsulinemia affects steroidogenesis is exerting a stimulatory effect of the 

stromal cells over the synthesis of androgen- estradiol and lipid metabolism (77) through its 

receptors on the theca cells to produce androgens (76, 78). 

Obesity and Programming of hypothalamic pituitary gonadal Axis. 

Maternal nutritional status plays a significant role in the programming of health and diseases 

in their diet, naïve offspring. According to Black et al., 2008, maternal and child undernutrition 

is the cause of 3.5 million deaths globally (46). Data from epidemiological studies and animal 

models show that later life development of metabolic disorders is majorly caused by early-life 

exposure to maternal undernutrition or overnutrition (79-81). Increased nutritional availability 

to the offspring at postnatal like can also lead to the development of metabolic syndrome (82). 

Two-third of the women in the United States are overweight or obese at the time of conception 

(41, 83-85). Obesity, which results in an imbalance between food intake and energy 

expenditure, is considered a significant metabolic syndrome marker, and it is gradually 

becoming a worldwide pandemic. Central obesity (mainly abdominal obesity) is now a 

significant outbreak among children and adults due to a sedentary lifestyle, diet, and low energy 

output (86).  
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Nutritional insults from the mother to the offspring has been linked to perturbations in the 

appetite regulatory systems in the hypothalamus; hence, the development of obesity in the 

offspring is programmed by early stimulation of key neuronal circuits located in the arcuate 

nucleus of the hypothalamus responsible for appetite control (87, 88). The mechanism 

underlying this process was suggested to be the neurotransmitter signaling pathway such as the 

serotonergic (89) and dopaminergic routes (90) through the influence of circulating 

inflammatory cytokines, hormone (leptin and insulin), and key macronutrients (fatty acids, 

glucose, and triglycerides).  

There appears to be an osmotic relationship between the early trigger of the neuronal circuits 

and obesity in naïve offspring. Obesity forms nidus for several metabolic disorders. It is 

generally associated with increased risk of depression, anxiety (91, 92), type 2 diabetes, 

cardiovascular diseases (19), and reproductive dysfunction (5, 93). Proopiomelanocortin 

(Pomc) enhancer region in the arcuate nucleus of the hypothalamus has been implicated in the 

programming of obesity and metabolic disorders in offspring exposed to maternal malnutrition 

early life (94). In a study using Sprague Dawley rats, female Sprague Dawley rats' progeny fed 

a high-fat diet throughout gestation. Lactation had increased body weight, increased adiposity, 

and hyperleptinemia. Offspring on high fat diet till weanling showed hypermethylation of the 

ARC Pomc gene (nPE1 and nPE2) enhancer region and not the promoter region which 

mediates the effect of leptin (94). Studies have shown that sex steroids regulate leptin and 

lipoprotein lipase through genomic or nongenomic mechanisms (93). 

A study carried out in rodents showed that increased prevalence of metabolic disorders at 

menopause in correlation with the reduced incidence of metabolic diseases in women at 

reproductive age (less than 50 years) suggests a strong influence of steroid hormones. 

Ovariectomized female rats showed an increase in adipose tissue and increased lipoprotein 

lipase activity, which was decreased by estrogen replacement (95-100). Progesterone and 

androgen were also shown to increase the activity of adipose lipoprotein lipase (93). Leptin 

plays an important role in regulating food intake, body weight, sex steroid distribution within 

the adipose tissue, and energy expenditure. However, it is not clear if sex steroids regulate these 

effects. Leptin receptors have been reported in gonadal tissues and affect fertility and 

reproductive functions (101, 102). A high concentration of leptin has been reported in infertile 

males (103), and suppression of the arcuate nucleus by leptin inhibits the secretion of 

gonadotropin (103, 104).  There appears to be a sexually dimorphic effect of leptin, as observed 
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in humans, which coincides with puberty. A cross-sectional study in humans showed that leptin 

is positively correlated with an increase in estrogen level and negatively correlated with 

testosterone levels (96, 105). Another study showed that sex steroids regulate the distribution 

of adipose tissue through the sex steroid receptors (genomic effect) and second messenger 

(nongenomic effect) that are present in the adipocytes which exists in most tissues (106, 107). 

The transcriptional effect of the sex steroid in the adipose tissue could either be up regulated 

or down regulated depending on the gene and the protein activated.  

Effects of placental insufficiency on intrauterine growth 

During intrauterine development, the placenta plays a vital role in exchanging substances 

between the mother and the fetus. It serves as the channel of communication between the 

mother and the developing fetus. The primary substance required for the fetus's development, 

among others, includes; oxygen, fatty acid, amino acids, etc. (108). The transport of these 

substances depends on the placenta's morphology, size, blood flow and vascularity, 

transporters' availability, apoptosis (physiologic cell death), autophagy, and insulin-like growth 

factors. Changes in the morphology and function of the placental results in a consequent 

decrease in fetal growth and intrauterine growth restriction (IUGR) (108). Failure of the 

placenta to deliver adequate nutrients to the developing fetus is called placental insufficiency, 

which results in intrauterine growth restriction affecting up to 5%-10% of pregnancies in 

developed countries (109, 110). 

In placental insufficiency and intrauterine growth restriction, placental morphology, epithelial 

sites, oxygen supply, blood flow, and vascularity seem underdeveloped, leading to a reduction 

in oxygen and nutrient supply to the fetus (111, 112). There is also increased expression of 

insulin-like growth factors enhanced apoptotic factors (BAX, p53, and decreased expression 

of anti-apoptotic B- cell lymphoma 2) (113), increased expression of transporters like; FABPs 

(114), and reduced expression of some amino acid transporters (115) in placenta insufficiency. 

However, there are differences associated with the pattern of placental changes, as observed in 

human and animal models concerning placental insufficiency and IUGR (108). Developmental 

changes are altered at different critical periods of the developmental window, depending on the 

species. Various species have different responses to an external stimulus, duration of 

pregnancy, maturation of offspring, and birth. Humans are monotocous and altricial species. 

They give birth to one fetus that is matured at birth. Humans and nonhuman primates are also 
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referred to as precocial species. Rodents are altricial species, i.e., giving birth to many offspring 

following a short gestational period (116-119). 

 

Dietary restriction and Developmental Programming of Reproductive functions 

The reproductive system is the system in the body that is involved with producing offspring. 

Experimental research carried out in the early 1970s on nutrition and reproductive 

programming described the maternal and intrauterine environment's effect on offspring 

reproductive functions (5, 120-122). Prenatal exposure to stress has a programming effect on 

the offspring's reproductive health. In a study where rats were treated with glucocorticoids, the 

disappearance of sexual dimorphism of aromatase activity was observed in the offspring's 

hypothalamic preoptic area in early postnatal life. The critical period for sexual differentiation 

of the rodent's brain extends from late fetal life (gestational day 14-21) through the first two 

weeks of postnatal life. There was also a surge in testosterone's testicular secretion, which is 

essential for the masculinization of the brain on the 18th and 19th fetal days (123). Insulin 

resistance is associated with impaired female reproductive functions, which is involved in the 

pathogenesis of polycystic ovarian syndrome (124). Menstrual disorders and infertility are a 

result of insulin resistance and obesity. Insulin-resistant knockout female mice in 

gonadotropin- secreting pituitary cells showed increased infertility (125), and reduced serum 

level of luteinizing hormone was seen in mice that lacked the IRS-2 (126). There is evidence 

that shows that insulin in the brain has a direct impact on reproductive functions according to 

the study of Burks et al. (2000) using the NIRKO mice; they displayed hypothalamic 

hypogonadism and decreased fertility due to hypothalamic dysregulation of luteinizing 

hormone (124).  

Human epidemiological and animal experimental studies have shown that overexposure to 

maternal stressors at an early stage of development negatively impacts male and female sexual 

development and reproductive functions (5). Maternal nutritional alterations can lead to the 

generation of oxidative stress, a proinflammatory state, and hence programming of metabolic 

syndrome and naïve offspring reproductive capacity alteration (127-135). However, it is now 

clear that offspring phenotypic changes in offspring include impaired reproductive functions 

(fig. 2.2). In animal models, hypocaloric maternal undernutrition produces DNA oxidative 

damage in fetal ovine oocytes (136) and delayed puberty in rat pups (137) and lowers fertility 
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in ewe lamb offspring (122, 138) as well as follicular and neuroendocrine alterations (137, 139, 

140) in female pups. Maternal protein restriction during lactation reduces testicular weight 

when compared with testicular/body weight ratio in weanling rat offspring (141) and an ovarian 

development (135).  

It is also important to note that the time and duration of exposure of stressors during and post 

intrauterine life influence the impact on the reproductive functions. Maternal nutritional drifts 

negatively impact the reproductive system through different mechanisms and time of exposure. 

The vulnerability of the reproductive system to intrauterine stress due to maternal dietary drift 

is mostly dependent on the insult's time and duration, which is species-specific. However, it is 

important to note that irrespective of the species type- either altricial species (rodent) or 

precocial species (human) are exposed and vulnerable to change in the internal milieu at 

different timing (135, 142). Early sexual maturation and longer proestrus phase were observed 

in female offspring of rats fed a high-fat diet throughout gestation and lactation. Studies on 

maternal nutritional stress and reproductive functions in humans are scarce; however, 

nutritional stress has been linked to cancer development, polycystic ovary, and ovarian cancer 

(5).   In a rodent study, there was a delay in the testes' descent, reduced relative expression of 

P450 side-chain cleavage on postnatal day 21, and relative reduction in luteinizing hormone, 

sperm count, and fertility in adulthood (5, 135). Maternal obesity during pregnancy and 

lactation decreased sperm mobility, viability, and concentration in adult male offspring, 

increasing malondialdehyde levels, and reduced levels of superoxide dismutase and glutathione 

peroxidase production during intrauterine life (143).  

Therefore, we conclude that maternal nutritional status before and during gestation and 

lactation forms the nidus for programming the reproductive status of their diet naïve offspring. 

However, male fertility requires more study/attention. There also appears to be a sexual 

dimorphic programming effect on the diet naïve offspring, which time dependent. 
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CHAPTER THREE 

The study in this chapter has been accepted for publication in Heliyon (manuscript no: 

HELIYON-D-20-07205). Manuscript title: “Maternal high-fat diet consumption induced 

persistent oxidative stress and developmental changes in the offspring”. The current 

chapter examines high fat diet induced oxidative stress and biochemical alterations in direct 

consumers and diet naïve offspring.  
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ABSTRACT 

Oxidative stress is usually associated with prolonged intake of high-fat diet (HFD). However, 

the impact of maternal HFD on endogenous modulation of antioxidant-defence-enzyme-

network, its link to adverse fetal growth, and overall effects of Quercetin-3-o-rutinoside (QR) 

supplementation requires further investigation. Sprague-Dawley rats were initially assigned to 

ND or HFD for 8 weeks then mated. Post-conception, rats were further divided into four 

groups, of which two groups had diets supplemented with QR while others continued with their 

respective diets until delivery. Measurements include food and water consumption, physical 

parameters (body weight, BMI and fur appearance), oral glucose tolerance, lipid profiles, and 

placental/ liver oxidative changes. We observed that water consumption was significantly 

increased in dams fed HFD (p<0.05) without marked differences in food intake, body weight, 

BMI and glucose tolerance (P>0.05). Surprisingly, offspring of HFD-fed dams had reduced 

body weight marked by delayed fur appearance compared to the ND offspring. In dams, there 

were alterations in lipid profile. Lipid peroxidation was increased (p<0.05) in the placenta and 

liver of GD19 HFD-fed dams and their PND21 male offspring. There was evidence of HFD-

induced nitrosative stress in dams and PND28 female offspring. Adaptive defence indicate 

decreased placenta and liver superoxide dismutase levels as well as differential changes in total 

antioxidant capacity and catalase activity in HFD treated dams and their progenies. Overall, 

the results indicate that intrauterine metabolic alterations associated with maternal high-fat 

consumption may induce persistent oxidative challenge in the offspring accompanied by mild 

developmental consequences, while QR supplementation has little or no beneficial effects.  

 

Keywords: High fat diet, oxidative stress, metabolic changes, intrauterine, developmental 

alterations, quercetin-3-O-rutinoside.  
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1.0 Introduction 

Studies have established the link between certain phenotypic alterations that result from early 

adverse life exposures and intergenerational susceptibility to poor health outcomes [1-3]. 

Increasing evidence clearly indicate that modulation of phenotypic traits is also of direct 

relevance to maternal nutritional imbalance with profound implications involving transmissible 

imprints and early life programming that could provoke metabolic dysfunctional states in the 

progenies [4-7]. Indeed, extensive experimental data suggests that maternal experience, such 

as chronic exposure to high-fat diet (HFD), may not only influence programmed effects in the 

fetus but also accompanied by dysregulated placenta development and renal functions [6], 

cardiovascular disorder [8] and other related metabolic dysfunctions including type II diabetes  

mellitus [9] and fetal obesity [10, 11]. 

Prolonged intake of HFD is commonly associated with cellular oxidative stress. Recent study 

by Yu et al (2018) showed that HFD-induced oxidative stress impaired lipid homeostasis in 

mice by blocking the activity of hepatic nuclear factor 4α, downregulated apolipoprotein B and 

reduced very-low density lipoprotein (VLDL) secretion [12]. These changes are linked to 

development of non-alcoholic fatty liver disease. On the other hand, rats fed on HFD and/or 

high-fructose diet can develop cluster of physiological abnormalities which include 

hyperglycaemia, hyperinsulinemia, glucose intolerance, hypercholesterolemia, 

hypertriglyceridemia and hypertension [13-15]. Other studies have shown that intrinsic 

antioxidant defence enzyme system, proteins and other essential cellular components are also 

compromised by poor and/or imbalanced maternal nutrition during gestation which leads to 

significant alterations in the balance between oxidative and antioxidant factors, coupled with 

excessive production of free radicals, leading to compromised fetal development [16, 17]. 

Although the precise association between fetal energy imbalance and the resulting metabolic 

disorder has been established, the mechanism linking oxidative stress, adverse fetal growth and 

later risk of developing metabolic syndrome is yet to be fully understood. An understanding of 

HFD-induced placental and/or in-utero oxidative and metabolic changes may hence help 

unravel the mechanisms involving maternal-foetal transmission. 

Quercetin-3-O-rutinoside (QR) is a flavonoid glycoside popularly known for its antioxidant 

potential and has been used as nutritional supplements in the treatment of variety of diseases. 

Using voltammetric and flow cytometric methods, Zhang et al (2011) showed that quercetin 

increased the production of total antioxidant capacity (TAC) and decreased reactive oxygen 
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species (ROS) and nitric oxide (NO) production in lipopolysaccharide-stimulated human THP-

1 acute monocytic leukemia cells [18]. Another study demonstrated that daily consumption of 

monoglucosyl-rutin inhibited HFD-induced visceral fat accumulation and prevented excessive 

weight gain by suppressing gastric inhibitory polypeptide secretion in mice [19]. It is worth 

noting that QR data from animal studies at times contradicts reports from human studies [20], 

hence further investigation is merited.  

The current study aimed at investigating the impact of HFD-induced oxidative changes in the 

placenta and liver of Sprague Dawley rats [21] and addressed how in utero exposure to HFD 

influences offspring glucose homeostasis and lipid profiles, antioxidant enzyme network and 

fetal development. Overall effects of QR supplementation on HFD-induced metabolic and 

developmental alterations were also examined.  

1.2 Materials and Methods 

This study was carried out in accordance with the approved protocol (AREC/005/018D) by 

Animal Research Ethics Committee of the University of KwaZulu-Natal (UKZN), South 

Africa. 

1.2.1 Animals and diets  

Male and female Sprague-Dawley rats (180-200g) used in this study were obtained from the 

Biomedical Resource Unit (UKZN). They were bred and housed under standard laboratory 

conditions (50-60% humidity, 23±2˚C room temperature, and 12h light/dark cycle with lights 

on at 06h00). Regular rat chow (ND) and modified diet containing energy from dietary lard-

based fat were used in this study. The normal rat chow was composed of grain and grain by-

products, forage products, plant protein products, animal protein products, oils and fats, 

minerals, vitamins and registered stock remedies, with approximately 18% protein, 2.5% fat, 

6.0% fibre, 1.8% calcium, 0.7% phosphorus and 12% moisture (EPOL, South Africa). The 

pelleted lard-based diet which is hereafter referred to as HFD was composed of normal food 

and sugar containing approximately 45% fat, 20% protein and 35% carbohydrate (Tshwane 

University of Technology, South Africa) [22, 23]. Rats had free access to their diets and water, 

except where mentioned otherwise. Food and water intake were recorded during the first eight 

weeks of dietary treatments.  
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Table 3.1: Composition of Lard fat  

Lard Nutritional Value per 100g 

Saturated 39.2g 

Monounsaturated 45.1g 

Polyunsaturated 11.2g 

Energy 4730 (kcal/kg) 

Sugar (including NLEA) 0 

Fat  45% 

Protein 20% 

Carbohydrate 35% 

*NLEA: The Nutritional Labeling and Educational Act, g: Gram, kcal: kilocalorie, kg: 

Kilogram 

1.2.2 Experimental design 

After two weeks acclimatization, the female rats were randomized to two treatment groups 

(n=28 per group) that either received ND or HFD for eight weeks and body weight changes 

were monitored. At estrus, the nulliparous female rats were paired with their male counterparts 

(previously fed ND) at a ratio of 2:1 (two females to one male per cage) for mating. Pregnancy 

was confirmed by the presence of spermatozoa in the vaginal smear when viewed under light 

microscope. Thereafter, the male rats were removed, and the dams were housed individually. 

After fertilization, some of the pregnant rats continued with their respective diets (ND or HFD; 

n=7 per group), while the remaining group of rats received QR (150 mg/kg) orally as co-

treatment (ND+QR and HFD+QR; n=7 per group), until delivery (Fig. 1). Half of the pregnant 

rats (n=7 per group) were sacrificed on gestation day 19 (GD19) and tissues were collected. 

The remaining female rats gave birth at approximately 21 days post-conception, littering was 

carefully monitored to ensure age matching while QR treatment was discontinued and the rats 

were maintained on ND. Post weaning, the pups were fed normal diet, and housed by gender. 

After weaning, post-partum (PP) day 21 dams were killed and their offspring were sacrificed 

at postnatal day (PND) 21, 28 and 35.  
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1.3 Tissue collection 

Rats were killed by inhalation of anaesthesia (Isofor) in an airtight chamber, and both placentas 

(GD19 dams) and livers (GD19 dams, PP21 dams and all offspring) were collected, weighed 

and snap-frozen in liquid nitrogen for subsequent protein and biochemical analyses. 

 

1.4 Oral glucose tolerance test (OGTT) 

OGTT was performed before and after 8-week HFD treatment. After an overnight fast female 

rats (n=10 per group) randomly selected from ND and HFD groups were mildly bled by 

puncturing the tail vein and blood glucose was determined using Accu-chek active glucometer 

(USA) at baseline, 15, 30, 60 and 120 mins. Between the basal and the 15 min time interval, 

the rats were given oral glucose solution (2g/kg bw) to induce spiking effect.  

1.5 Quantification of plasma lipid content 

Blood was also collected into lithium heparinized or plain tubes by milking the punctured tails 

[24] of ND and HFD female rats. Blood samples were used for total cholesterol (TC), 

triglyceride (TG), high density lipoprotein (HDL) and low-density lipoprotein (LDL), 

performed by Global Clinical and Viral Laboratories, Durban.  

1.6 Measurement of lipid peroxidation in liver and placenta 

Lipid peroxidation in the rats was determined using a standard laboratory procedure to assay 

for the concentration of malondialdehyde (MDA). MDA levels was assayed using thiobabituric 

acid reactive substance (TBARS) colorimetric method [25, 26]. Tissues were homogenised 

with 0.2% phosphoric acid and centrifuged for 10 mins at 10000rpm. Phosphoric acid (2% and 

7%), butylated hydroxyl toluene and thiobabituric acid (TBA) solution were added while the 

resultant solution was transferred to a water bath and heated at 100℃ for 15 mins. Thereafter, 

butanol was added, and the top phase was transferred to 96 well plate in triplicate. Absorbance 

was measured at 532nm and 600nm. Final concentration was calculated using the formula 

below:  

       

 

 

Concentration = A532-A600 

 

Where A = Absorbance. 

 

     1.56 
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1.7 Quantification of antioxidant defence system in liver and placenta  

1.7.1 Superoxide Dismutase 

The tissue was homogenised and centrifuged in a cold centrifuge at 10000 rpm for 10 mins to 

obtain the supernatant. Determination of superoxide dismutase activity was based on the 

premise that hydrogen peroxide produced from the dismutation of superoxide ion by SOD 

oxidized 6-hydroxydopamine (6-HD) to produce a coloured product and 0.1mM 

diethylenetriaminepentaacetic acid (DETAPAC) was used to inhibit aerobic autoxidation of 6-

HD. 1.6mM 6-HD was prepared using Miliq water  and hydrochloric acid which was sonicated 

to remove air bubbles by negative pressure. The resulting 1.6mM 6-HD was wrapped in 

aluminium foil and stored on ice for immediate use. SOD assay buffer was used for blank. 

Absorbance at 490nm  was recorded for 5 minutes in 1 minute interval using at 

spectrophotometer 96 well plate reader [27, 28]. The activity of SOD was calculated using the 

following formula:  

Activity = 1000 x {(A1-Ab) / ɛ490} x 0.5 nmol/min/μg protein. 

ɛ490=Molar absorptivity at 490nm= 1.742/m/M/cm, A1 and Ab= reaction rate for sample and 

blank respectively.  

1.7.2 Catalase 

Assessment of catalase activity was based on the principle that dichromate in acetic acid is 

reduced to chromic acetate when heated in the presence of hydrogen peroxide, and perchromic 

acid (unstable) is formed as an intermediate compound. The catalase preparation could split 

hydrogen peroxide from different time. Chromate/acetic acid mixture was added to stop the 

reaction while the remaining hydrogen peroxide mixture was determined by measuring 

chromic acetate colorimetric after heating the reaction mixture for 10 mins in boiling water. 

Standard concentrations at 10, 20, 30, 40, 60, 80 and 100 µmoles hydrogen peroxide was used. 

Absorbance was read at 570nm. A standard curve was plotted and catalase activity was 

extrapolated from the standard curve [27, 29]. 

1.7.3 Reduced glutathione concentration 

Reduced glutathione (GSH) assay was based on a previously modified method by Oyebode et 

al. 2018 [27]. After precipitating with 10% trichloroacetic acid (TCA), supernatants were 

transferred to 96-well plate. 0.5mM DTNB (5,5’-dithio-bis (2-nitrobenzoic acid)) and 0.2M 
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sodium phosphate buffer (pH 7.8) were added to supernatant or standard and incubated for 15 

mins. Absorbance was read at 415nm. The concentration of GSH was extrapolated from the 

standard graph.  

1.7.4 Determination of nitric oxide 

An indirect diazotization technique was used to assay for NO concentration in placenta and 

liver tissues. Briefly, the concentration of nitrites in the tissue homogenates were measured 

based on Griess reaction method, as previously described [30]. 

1.8 Total antioxidant capacity 

The concentration of total antioxidant in placenta and liver tissues were determined using 

commercially obtained enzyme linked immunosorbent assay (ELISA) kit (Elabscience 

Biotechnology, USA. Catalog No: E-BC-K225). The kit uses the FRAP (ferric reducing 

antioxidant power) method for colorimetric quantification of antioxidant levels, such that Fe-

TPTZ (2,4,6-tripyridyl-s-triazine) are reduced by antioxidants under acid conditions. Total 

antioxidant capacity (TAC) in the samples were detected at 593nm wavelength. 

1.9 Statistical analysis 

Results are presented as mean ± SEM and were statistically analysed using Student’s t-test 

(water intake and lipogram), one-way analysis of variance (ANOVA) (MDA, NO, TAC, SOD, 

GSH, and catalase in placenta), two-way ANOVA (food intake, body weight, BMI, OGTT), 

and two-way repeated measures ANOVA (MDA, NO, TAC, SOD, GSH and catalase at PND 

21, 28 and 35), followed by Bonferroni post-hoc analysis, where appropriate. Shapiro-Wilk 

normality test was used to test if the data were normally distributed. Values were considered 

statistically significant when p<0.05. Statistical procedures were performed using GraphPad 

Prism software (version 5.0, USA).  
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Fig 3.1: Schematic showing experimental design and timeline of the study. Female Sprague 

Dawley rats were randomly assigned to dietary treatment groups, ND-fed or HFD-fed groups 

(n=28/group) for approximately 8 weeks. Thereafter, these groups of rats were mated with their 

male counterparts who received normal rat chow and regrouped after conception, based on the 

dietary treatments supplemented with or without QR. It is worth noting that dietary treatments 

continued throughout gestation. Half set of the pregnant rats (n=7/group) were killed at 

gestation day 19 (GD19), their placenta and liver were harvested. The remaining pregnant rats 

were allowed to litter naturally and hereafter referred to as PP21 dams. Both PP21 dams and 

one-third of their progenies were sacrificed at postnatal day 21 after weaning. The remaining 

two-third of the offspring were sacrificed at PND 28 and 35 (n=6 per group). At all the killing 

time-points, liver was removed and preserved for subsequent biochemical analyses.   
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1.10 RESULTS 

1.10.1 HFD-induced changes in food and water consumption, body weight composition 

and fur appearance.  

To confirm the hypothesis that QR treatment could protect against transgenerational 

homeostatic imbalance owing to maternal nutritional drift through exclusive high-fat intake, 

we initially exposed adult female Sprague-Dawley rats to ND or HFD for 8 weeks, mated and 

subsequently fed with QR supplemented diets. Fig. 3.2 a indicates no significant difference in 

the amount of food consumed by both ND (control) and HFD-treated rats during the first 8 

weeks of dietary exposure (p>0.05). Surprisingly, water consumption during this period was 

greatly increased in dams fed with HFD compared to the control dams (p=0.0006; Fig. 3.2 b). 

Moreover, we observed time-related progressive increases in body weight of both HFD fed 

dams and the controls (F(8, 96) = 376.1, p=0.001; Fig. 3.2d) without marked differences in their 

weight gain and body mass index (p>0.05; Fig. 3.2d, 3.2c). Strikingly, two-way ANOVA 

detected significant interaction (F(6, 40) = 2.885, p=0.0197; Fig. 3.2e) between effects of HFD 

and time on body weight gain in male offspring rats (HFD treatment, F(3, 40) = 15.07, p<0.0001; 

time, F(2, 40) = 607.2, p<0.0001; Fig. 3.2e), but not in the females (F(6, 40) = 2.166, p=0.0667; 

Fig. 3.2f). However, body weights of all male and female offspring of HFD-treated dams were 

significantly lower than offspring of control dams (ND and ND+QR) when assessed post-

weaning to early adulthood (p<0.05; Fig. 3.2e, 3.2f). No difference in body weight composition 

was observed between the offspring of HFD and HFD+QR-treated dams (p>0.05; Fig. 3.2e, 

3.2f), suggesting that maternal 150 mg/kg QR treatment has no impact on HFD-induced weight 

changes in the progenies.  

Differences in diet composition of the offspring rats also coincide with changes in their fur 

appearance. After birth, almost all offspring of HFD or HFD+QR dams had delayed fur 

appearance that persisted till PND 28 (Fig. 3.2gii), as opposed to normal fur appearance in 

offspring belonging to ND or ND/QR groups (Fig. 3.2gi).  
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Fig. 2.2: Indicate food intake (a) and total water consumed (b) by dams during 8 weeks of HFD 

exposure. Also, body weight (d) and body mass index (c) of dams, and differences in body 

weight of male (e) and female (f) offspring rats were measured at PND 21, 28 and 35. 

Differences in fur appearance of offspring of control dams (ND or ND+QR; gi and HFD-fed 

dams (HFD or HFD+QR; gii) observed at PND 28. Data shown represents mean ± SEM; dams, 

n= 6 or 7 per group; offspring, n=6 per group. *P<0.05, ND vs. HFD, HFD+QR; ɸP<0.05, 

HFD vs. ND/QR; ‡P<0.05, ND+QR vs. HFD/QR; Student’s t-test; Two-way ANOVA, 
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followed by Bonferroni post hoc comparison test. Arrows indicate regions of late fur 

appearance.  

1.10.2 Effects of HFD on fasting blood glucose levels and plasma lipid profiles of dams 

We also examined the impact of HFD consumption on glucose homeostasis and plasma lipid 

profiles. After 8 weeks of dietary treatments, fasted blood glucose levels in HFD-treated rats 

were similar to those of ND-fed rats, indicating that glucose tolerance was unaffected by 45% 

lard-based high-fat during the test period (p>0.05, Fig. 3.3a). Lipid analyses indicated that 

HFD-fed dams exhibited hypertriglyceridemia accompanied by high plasma level of low-

density lipoprotein (LDL), when compared to control dams (p<0.05; Fig. 3.3c, 3.3e). Whereas, 

plasma total cholesterol and high-density lipoprotein (HDL) levels are significantly lower in 

HFD-fed dams compared to ND-fed dams (p<0.05; Fig. 3.3 b, 3.3.d).  
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Fig. 3.3: OGTT and lipogram results obtained from dams after 8 weeks of HFD consumption. 

Fasting blood glucose (a), total cholesterol (b), triglycerides (c), high-density lipoprotein 

(HDL) (d) and low-density lipoprotein (LDL) (e) levels in dam’s blood post high fat meal. Data 

shown represents mean ± SEM; OGTT, n=10 per group; Lipids, n=4 per group. *P<0.05, HFD 

versus ND; Student’s t-test; Two-way ANOVA, followed by Bonferroni post hoc comparison 

test. 
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1.10.3 MDA levels in placenta and liver 

MDA concentration was measured in GD19 dams’ placenta and liver as well in the liver of 

PP21 dams and their offspring. Our findings show that MDA concentration was significantly 

increased by HFD in placenta and liver of GD19 dams compared to ND-treated group (p<0.05; 

Fig. 3.4 a, 3.4 b). Also, liver and placenta MDA levels were significantly reduced in groups 

fed with QR supplemented diets compared to HFD-fed rats (p<0.05; Fig. 3.4 a, 3.4 b), whereas 

QR treatments did not reverse HFD-induced changes in these groups of rats (p>0.05; Fig. 3.4 

a, 3.4 b). Moreover, both HFD and QR supplement had no effect on MDA concentration in the 

liver of PP21 dams (p>0.05; Fig. 3.4 b). Strikingly, only PND 21 male offspring of HFD-fed 

dams exhibited significantly elevated hepatic MDA levels which was depressed in offspring of 

all QR-treated dams (p<0.0001; Fig. 3.4 c). This variable was not altered in the female 

offspring (p>0.05; Fig. 3.4 d).  
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Fig. 3.4: Lipid peroxidation profile indicating MDA concentration in (a) placenta, (b) liver 

tissues of GD19 and PP21 dams, (c) liver of male and (d) female offspring rats at PND 21, 28 

and 35. Data shown represents mean ± SEM; n=6 per group. *P<0.05, ***P<0.0001 compared 

to ND; ɸP<0.05 compared to HFD; ‡P<0.05, ND+QR vs. HFD+QR; One-Way or Two-way 

ANOVA, followed by Bonferroni post hoc comparison test.  
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1.10.4 Placenta and liver NO concentration in dams and offspring 

Our data showed significant main effect of treatments on NO concentration in GD19 placenta 

(F = 8.051, p<0.001; Fig. 3.5a), while comparison test indicated only significant decrease in 

placenta NO of HFD/QR (p<0.05; Fig. 3.5a) and not HFD group compared to ND-fed rats 

(p>0.05; Fig. 3.5a). This suggest that placenta NO was unaffected by maternal HFD 

consumption. However, this was not the case in GD19 and PP21 dams’ liver as HFD 

consumption provoked NO production which appears prevented by QR treatment (p<0.05; Fig. 

3.5b). Overall, NO concentration was greater in GD19 liver compared to PP21 (Fig. 3.5b). 

Similar to dams, hepatic NO was also significantly increased only in PND 28 female offspring 

of HFD-dams and decreased in offspring of QR-treated dams compared to control, ND 

(p<0.05; Fig. 3.5d). There was no change in liver NO of all groups of male offspring (p>0.05; 

Fig. 3.5c).  
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Fig. 3.5: Concentration of nitric oxide in (a) placenta, (b) liver tissues of GD21 and PP21 dams, 

(c) liver of male and (d) female offspring rats at PND 21, 28 and 35. Data shown represents 

mean ± SEM; n=6 per group. *P<0.05, ***P<0.001 compared to ND; ɸP<0.05 compared to 

HFD; One-Way or Two-way ANOVA, followed by Bonferroni post hoc comparison test.  
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1.10.5 Antioxidant status of dams and offspring 

As shown in table II, we observed significant decrease in placenta SOD concentration of all 

HFD and QR-treated GD19 dams compared to ND (p<0.05), without any change in placenta 

CAT, GSH and TAC (p>0.05). Also, GD19 liver SOD concentration was similar to the placenta 

profile, indicating decreased liver SOD in HFD and QR treated dams (p<0.05, Table III). In 

contrast, liver SOD was significantly increased in PP21 dams fed either HFD or diets 

supplemented with QR (p<0.05, Table III). In the offspring, liver SOD was significantly 

increased in PND 35 HFD females only compared to ND group (p<0.05, Table IV), without 

significant change in other groups (p>0.05, Table IV). We also observed that co-exposure to 

HFD and QR significantly increased liver CAT and TAC in GD19 and PP21 dams, 

respectively, compared to ND-fed dams (p<0.05, Table III). Male offspring of HFD-fed dams 

had increased liver concentration of CAT and TAC at PND 21 and 28, respectively (p<0.05, 

Table IV), while liver GSH was significantly increased in offspring of all HFD-fed dams only 

at PND 28 and 35 (p<0.05, Table IV). Moreover, there was also a significant increase in liver 

GSH of PND 21 and 35 male offspring of dams that received normal diets supplemented with 

QR (ND/QR group) compared to ND group (p<0.05, Table IV). In the female offspring, there 

was no significant alterations in liver CAT, GSH and TAC levels at PND 21, 28 and 35, except 

an observed significant increase in liver TAC concentration of PND 35 female offspring of 

HFD-fed dams (p<0.001, Table IV).   
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Table 3.2: Antioxidant profile in Placenta of GD19 dams 

       

Parameters   ND  HFD  ND+QR  HFD+QR   

CAT (H2O2/ mg protein)   53.44±1.1540 52.57±2.3540 55.47±0.4080 56.24±1.1250  

SOD (nmol/min/µg protein) 81.74±9.6030 41.26±3.573* 43.41±12.42* 16.50±1.456**  

GSH (mM)  0.0255±0.0003 0.0256±0.0002 0.0252±0.0000 0.0254±0.0002  

TAC (µM)  0.5693±0.0185 0.8257±0.1325 0.6887±0.0837 0.6267±0.0800  

Values are presented as mean±SEM (n=6 per group). *p<0.05, **p<0.01, ***p<0.001 (vs. ND).   
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Table 3.3: Liver antioxidant profile of GD19 and PP21 dams 

 

Parameters     GD19        PP21  

ND  HFD  ND+QR  HFD+QR  ND  HFD  ND+QR  HFD+QR 

CAT (H2O2/ mg protein)   37.07±2.5230 40.77±0.9503 33.97±1.5980 73.57±7.4850*‡ɸ 26.31±1.665 41.32±2.792* 34.08±5.018 35.04±3.210 

SOD (nmol/min/µg protein) 763.8±56.47 583.4±25.49* 498.3±36.02** 520.9±25.08** 159.3±32.01 449.1±23.90* 562.3±32.96** 245.2±77.22‡ 

GSH (mM)  0.0283±0.0009 0.0287±0.0003 0.0277±0.0010 0.0306±0.0019 0.0309±0.0012 0.0331±0.0020 0.0324±0.0000 0.0276±0.0006‡  

TAC (µM)  1.367±0.0511 1.689±0.0365 1.211±0.1338 1.626±0.0726 0.8533±0.0353 1.003±0.0599 0.6240±0.1461 1.977±0.1753*** 

Values are presented as mean±SEM (n=6 per group). *p<0.05, **p<0.01, ***p<0.001 (vs. ND); ɸP<0.05 (vs. HFD); ‡P<0.05 (ND+QR vs. HFD+QR).  
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Table 3.4: Liver antioxidant profile of male and female offspring rats.  

 

Parameters     Male       Female 

ND  HFD  ND+QR  HFD+QR  ND  HFD  ND+QR  HFD+QR 

CAT (H2O2/ mg protein)   31.61±1.109 38.77±4.638* 34.77±2.232 31.11±5.696 15.64±3.922 24.31±3.949 9.707±1.291 19.91±5.370  

SOD (nmol/min/µg protein) 104.8±17.02 101.9±6.999 128.1±15.26 126.8±32.27 30.92±5.644 31.86±7.014 37.68±1.760 24.23±3.181 

GSH (mM)  0.0246±0.0004 0.0252±0.0003 0.0349±0.0027*** 0.0250±0.0006 0.0209±0.0004 0.0218±0.0055 0.0223±0.0014 0.0217±0.0003 

TAC (µM)  0.7047±0.0243 0.7254±0.0712 1.093±0.1018 0.8877±0.0296 0.1333±0.0456 0.0747±0.0362 0.4510±0.0769 0.1763±0.0484 

 

CAT (H2O2/ mg protein)   30.77±1.896 30.04±3.725 38.31±2.751 27.54±1.552 10.64±0.1934 9.573±0.8044 9.173±0.2951 8.173±0.0422  

SOD (nmol/min/µg protein) 348.9±87.28 449.9±89.99 359.7±34.62 322.1±94.99 59.05±10.48 65.50±19.97 47.36±8.428 58.86±5.927 

GSH (mM)  0.0304±0.0010 0.0251±0.0003** 0.0291±0.0013 0.0256±0.0004** 0.0222±0.0007 0.0231±0.0007 0.0212±0.0002 0.0232±0.0000 

TAC (µM)  1.077±0.0404 1.162±0.1513 1.382±0.0207 1.108±0.0736 0.4133±0.0509 0.5530±0.0563 0.4030±0.0147 0.4917±0.0165 
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CAT (H2O2/ mg protein)   54.61±2.106 62.37±10.46 48.11±3.115 34.74±1.818 9.040±0.1265 11.84±0.8764 10.24±1.409 10.37±1.106  

SOD (nmol/min/µg protein) 718.9±32.55 829.2±18.57 629.8±146.2 529.6±83.65 45.87±2.368 97.82±9.809*** 24.59±1.087 33.33±6.699 

GSH (mM)  0.0272±0.0006 0.0311±0.0009* 0.0313±0.0008* 0.0310±0.0010* 0.0222±0.0005 0.0219±0.0002 0.0221±0.0004 0.0229±0.0003 

TAC (µM)  1.655±0.2479 1.601±0.0776 1.178±0.1080 1.288±0.0440 0.5007±0.0320 0.9393±0.0592** 0.4917±0.0345 0.4920±0.1085 

Values are presented as mean±SEM (n=6 per group). *p<0.05, **p<0.01, ***p<0.001 (vs. ND).   
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1.11 DISCUSSION 

The current study comparatively examined HFD-induced oxidative changes in the placenta and 

liver of obesity-resistant rats and addressed how in utero exposure to HFD influences offspring 

glucose homeostasis, lipid profiles, fetal growth and antioxidant enzymes. Potential alleviation 

of HFD-induced metabolic and developmental alterations by QR was also investigated. 

As documented in the literature, body weight gain and abdominal obesity are prominent 

features of metabolic syndrome (MS) generally associated with excess consumption of fat [31]. 

Here, we show that food consumption by Sprague Dawley (SD) rats that had exclusive access 

to 45% HFD for 8 weeks matched those of the control rats fed normal chow. These observations 

partly contrast with previous findings that SD rats fed lard-based HFD or diets rich in high-fat 

and high-sugar for either 4 or 8 weeks had lower food intake but consumed more calories, 

accumulated fat mass and exhibited increased body weight gain than rats fed with control diet 

[31]. Even though the 45% fat content used in this study falls within the range of 30-60% 

energy from saturated fat recommended for use in animal models [32, 33], it appears still that 

the fat content is not extreme enough to provoke severe metabolic disorder as many other 

studies that reported significant metabolic and weight changes actually used higher energy 

content and allowed prolonged consumption. There is also accumulating evidence that SD rats 

adapt to long-term feeding of high fat or high fructose diets without significant weight changes 

or prominent features of metabolic disorder [34], thus suggesting another possible reason for 

lack of morphometric changes in the current study. To further support this claim, several animal 

studies have indicated that rat strains vary widely in their propensity for diet-induced weight 

gain [14, 35], most especially outbred SD rats known to exhibit bimodal weight gain pattern 

[35]. Despite no significant differences in the physical parameters of dams, we observed that 

HFD offspring had delayed fur appearance and reduced weight gain which may suggest 

transgenerational impact of maternal fat consumption on neurobiological development of the 

pups. In agreement with our findings, Santillan and colleagues (2010) have previously 

observed that female mice fed soy oil-enriched diet (SOD) or sunflower oil-enriched diet 

(SFOD) throughout gestation and lactation were not different in food consumption and body 

weight compared to mice fed commercial diet, however both SOD and SFOD offspring had 
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shorter length and exhibited early simple reflexes while pubertal onset was delayed only in 

SFOD offspring [36].  

Most earlier studies have reported the adverse effect of consumption of high-fat and/or high 

sugar diets on glucose metabolism and lipid profiles. For example, Huang et al (2004) fed SD 

rats with 20% lard-based high-fat or 60% high-fructose diets for 8 weeks and observed 

increased plasma glucose concentrations in both groups of mice from the seventh week, while 

high-fat diet increased plasma cholesterol level and amylase activity group fed high-fructose 

diet showed higher fasting insulin and triglyceride concentrations [15]. Another study reported 

that C57BL/6 mice fed 58% HFD for 20 weeks had increased fasting blood glucose, 

pronounced glucose intolerance, and were more insulin resistant than mice fed 11% low fat-

diet [37]. Unexpectedly, our OGTT result showed that rats fed HFD for 8 weeks did not develop 

glucose intolerance but exhibited decreased plasma cholesterol and HDL accompanied by 

hypertriglyceridemia and increased LDL. Undisturbed glucose homeostasis in this study may 

suggest intact functioning of the pancreatic β-cells and non-resistance of the liver and other 

peripheral tissues to insulin signal following chronic high-fat consumption. Our data also 

suggest that critical threshold concentration of fat needed to induce adiposity in peripheral 

tissues may not have been reached by consumption of 45% high-fat for 8 weeks. HFD-induced 

changes in blood triglyceride, HDL and LDL are clear indications of underlying mild 

pathological and/or metabolic alterations.  

Long-lasting metabolic perturbations induced by high-fat feeding also implicate cellular 

dynamics involving changes in tissue oxidative state and mitochondria bioenergetics [38, 39]. 

Indeed, high levels of oxidative damage markers, most especially lipid peroxidation, and 

decreased antioxidant defences are often associated with oxidative imbalance in animal models 

of HFD. Milagro et al (2012) previously demonstrated that liver MDA concentrations were 

increased in male Wistar rats fed HFD for 56 days (8 weeks), and that the MDA levels 

correlated positively with body weight gain, serum leptin and homeostasis model assessment 

[40]. Similarly, we show that consumption of HFD for more than 8 weeks induced lipid 

peroxidation (increased MDA levels) in the placenta and liver of GD19 dams but without any 

correlation with body weight. Insignificant changes in PP21 liver MDA levels further support 
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previous observation that SD rats adapt to prolonged high fat feeding [34]. However, increased 

liver MDA concentration in HFD offspring clearly suggest persistent in-utero HFD-induced 

oxidative changes. This further indicates that lipid deposition in the placenta and hepatic fatty 

infiltration may contribute to harmful prenatal/perinatal changes, as previously posited [41]. 

HFD-induced increases in liver NO concentration of GD19 and PP21 dams agree with a 

previous study which supports that increased plasma and hepatic NO levels contribute to 

nitrosative stress in animal models of HFD [42]. While NO flux at PND 28 in female HFD 

offspring may be linked to developmental and/or pubertal changes, future studies should 

address sexual dimorphic effects of nitric oxide synthase activity in HFD models of metabolic 

syndrome. Consistent with previous studies [43], the observed increase in oxidative stress 

parameters (MDA and NO) might be associated with decreased placenta and liver SOD and 

increased TAC/CAT activity in HFD treated dams and their progenies. Differentially increased 

SOD activity in the PP21 dams may also indicate normalisation of hepatic response to the high-

fat challenge subject to adaptive changes. Like SOD, GSH is another crucial antioxidant 

produced naturally to reduce oxidative stress. We thought that GSH activity would be 

decreased by chronic consumption of HFD, as previously reported, and reversed by QR 

treatment. Contrary to our expectations, the current data show that GSH activity was not altered 

by HFD in direct consumers, however, unexplained are observed increases in liver GSH 

activities in the offspring of dams fed HFD and those supplemented with QR. The stability of 

GSH has been correlated to these changes partly provide additional support for possible 

adaptive responses to prolonged high-fat consumption.  

Several studies have reported the beneficial effects of quercetin in animal models of HFD, these 

include modulation of gut microbiota to prevent development of non-alcoholic fatty liver 

disease and obesity [44, 45], amelioration of steatohepatitis [46], reduction of HFD-induced 

fat accumulation, inflammation and oxidative stress [47-49]. Despite this, the current study 

indicates that QR has little or no effect on HFD-induced changes in physical parameters and 

tissue homeostasis. These observations agree with the previous report of McAnulty et al (2008) 

that chronic quercetin ingestion does not protect trained athletes from exercise-induced 

oxidative stress and inflammation [20]. Although, strain and dose differences can be attributed 
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to response changes in our study compared to human and other in vivo experiments. It is also 

possible that lack of impact by test compound QR may result from unaltered baseline metabolic 

parameters particularly in the HFD+QR groups.  

In conclusion, this investigation provides evidence that chronic consumption of HFD may not 

induce prominent obesity and/or MS-related features in SD rats, however maternal HFD 

exposure engages metabolic and pathological alterations in-utero leading to persistent 

oxidative changes accompanied by mild developmental consequences. Whereas, 150 mg/kg 

dose of QR tested in this study has very little or no beneficial effects on HFD-induced metabolic 

and/or oxidative changes.   
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CHAPTER FOUR 

This current chapter examined the effect of HFD-induced inflammatory and hormonal changes 

linked to alterations in hypothalamic-pituitary-gonadal functions in male rats while seeking to 

understand the therapeutic roles of QR in this phenomenon. This current chapter has been 

presented in an article format titled: “Evaluation of maternal high-fat diet and Quercetin-

3-O-rutinoside treatment on the reproductive profile of diet naïve male offspring”. This 

article has been published in Life Sciences.  
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ABSTARCT 

Male infertility and reproductive dysfunction have become a major global health. Several 

factors are involved in male infertility or subfertility although, the developmental environment 

of the offspring together with alterations in chemical transmitters seems to play a significant 

role. In this present study, we sought to investigate the putative role of Quercetin-3-O-

rutinoside (QR) and relationship between sex steroid hormones, adipokines, and pro-

inflammatory cytokines on developmental male infertility. Fifty-six pregnant rats (previously 

fed normal diet (ND) or 45% high-fat diet (HFD) were maintained on supplemented chow (plus 

150mg/kg QR administered orally) – ND/QR, HFD/QR throughout gestation. Subsequently, 

dams (n=7) and offspring (n=6) were sacrificed at post-natal day (PND) 21,28 and 35 

respectively, and the blood, placenta, hypothalamus (HT), testis samples were processed for 

Gonadotropin-releasing hormone (GnRH), Luteinizing hormone (LH), testosterone 

biochemical analysis and expression of chemerin, CMKLR1, TNF-α, IL-1β and NF-κB. We 

observed a significant decrease in GnRH level in the HFD group at PND21 and PND28 in male 

offspring and PND21 in female offspring and treatment with QR significantly reduced GnRH. 

There was a significant reduction in LH levels in the HFD group at PND21 in the male 

offspring accompanied by a significant decrease in testosterone level (p<0.05) at PND 28 and 

PND35 which appears to be age dependent. In the HT, chemerin and CMKLR1 was 

significantly (p<0.05) upregulated in the HFD group at PND 21 and PND 35 respectively while 

CMKLR1 was significantly (p<0.05) downregulated in the HFD group of the placenta and 

testis at PND 21. TNF-α, IL-1β and NF-κB were also expressed in the placenta, HT and testis 

at PND 21. In conclusion, male fertility is affected by maternal HFD and treatment with QR 

had little or no ameliorative effect.   

 

 

Keywords: Male fertility, Developmental Programming, High-fat diet, Sex hormones, pro-

inflammatory cytokines, Adipokines.  
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Introduction 

Multiple lines of inquiry indicate that obesity can adversely impact reproductive functions 

associated with cases of subfertility and infertility (1-3). Obesity impacts fertility through 

various pathways, some of which include adipokines (4), sex steroids (5), leptin and localized 

or systemic oxidative stress (2). Since the mid-1900s, there has been a progressive inverse 

relationship between sperm count and a global increase in obesity. A clinical study conducted 

by Lui Y. and Ding Z. (2017), they showed that obese or overweight men had reduced sperm 

quality, including sperm concentration, sperm motility, decreased acrosome reaction, increased 

DNA damage, and lower embryo implantation rates compared to men with normal BMI (2). It 

is worthy of note that male infertility accounts for 70% of infertility cases as sperm count has 

decreased by over 50% over the last 40 years in western countries (6, 7). Although the primary 

reason for this decline in male fertility has not been fully established but has been however 

attributed to the effect of perinatal life environmental modifications which could be direct or 

through epigenetic modifications (8). According to an extensive epidemiological study 

conducted by Skakkebaek N.E et al, (2015), they observed that issues related to male fertility 

are relatively consistent with changes including environmental and lifestyle factors rather than 

a build up of inherited genetic alterations (8-10).   

Epigenetically, exposure to high dietary fat could possibly affect components of sperm and 

endocrine contents of the seminal fluid which consequently impacts early life development 

(11). Connor et al. (2012) had previously investigated the relationship between 45% high-fat 

diet (HFD) consumption throughout gestation and lactation on maternal care and reproductive 

functions in dams and their offspring. The authors observed that female offspring of HFD fed 

dams had more fat mass accompanied by altered and prolonged estrous cycle associated with 

ovarian aging and infertility. Their study supports the hypothesis that the nutritional 

environment plays a significant role in offspring development with probable impact on 

reproductive functions (12, 13). Another related study revealed that HFD induced maternal 

obesity during gestation and lactation caused testicular and sperm oxidative stress in the male 

progenies, marked by significant alterations in the sex steroid hormones (14). Aromatisation 

and reduction of testosterone to 5α- dihydrotestosterone (DHT) is an important step in male 
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sexual functions (15). However, a decline in testosterone occurs via the negative feedback loop 

when the excessive production of oestrogen inhibits the secretion of pituitary gonadotropins, 

mainly follicle stimulating hormone (FSH) and luteinizing hormone (LH), and hypothalamic 

gonadotropin- releasing hormone (GnRH) due to hyperactivity of aromatase- cytochrome P450 

(16).    

Also, it has been reported that adipokines play significant roles in the regulation of fertility and 

reproductive disorders (17). Recent studies have shown that the novel adipokine-chemerin and 

its receptors are associated with obesity and reproductive functions through endocrine or 

paracrine routes (18-20). The mechanism involved in male subfertility, infertility, and increase 

adiposity remains poorly understood. Chemerin’s expression and its receptor in human and 

animal hypothalamic-pituitary-gonadal axis (HPG axis) have been shown to regulate the 

secretion of GnRH and other sex steroid hormones (4, 17). Long-term treatment of human 

Sertoli cells with chemerin, irisin, nicotinamide phosphoribosyltransferase (Nampt), resistin 

and progranulin in high concentration similar to what is observed in vitro in obese male 

significantly downregulated the expression of FSH and upregulated cytochrome P450 

CYP26A1 which induced the characteristic phenotype of pre-puberty (18). These cytokines 

negatively impacted Sertoli cells’ maturation and the manifestation of testicular dysfunction 

associated with obesity (18). Chemerin and its receptor chemokine-like receptor 1 (CMKLR1) 

also plays a vital role in the regulation of male steroidogenesis. Li et al. (2014) reported that 

chemerin and its receptors are developmentally regulated and highly expressed in the Leydig 

cells of rat’s testis while treatment with human chorionic gonadotropin (HCG) induced 

testosterone production from the Leydig cells (19). 

 In addition, pro-inflammation cytokines have been linked to some of the several factors 

involved in male subfertility or infertility (21, 22). Pro-inflammatory cytokines such as tumour 

necrosis factor- alpha (TNF-α) and interleukin-1 have physiological roles in male reproduction 

(23), when secreted at normal levels. Extreme production of these cytokines could provoke 

inflammatory changes that may affect spermatogenesis (24) which could be as a result of 

impairment of accessory gland function, obstruction to sperm transport and dysregulation of 

sperm formation. TNF-α and IL-1 are produced in the Leydig and Sertoli cells of the testis. 
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Inflammation in the reproductive tract is also associated with increased oxidative stress. 

Increased level of IL-1 was associated with decreased sperm quality accompanied by increase 

in oxidative stress and lipid peroxidation (25).  

Quercetin-3-O-rutinoside (QR), also known as rutin (26), is a flavonoid with potent antioxidant 

properties (27). Only few studies have highlighted the effects of QR on male reproductive 

functions. Jahan et al (2016) studied the ameliorative effect of QR (100mg/kg and 150mg/kg) 

on metabolic and hormonal imbalances in polycystic ovarian syndrome (PCOS) in adult female 

Sprague dawley rats (28). They observed a dose dependent ameliorative response in the 

animals on the clinical features of PCOS. Inhibition of testosterone and penile cGMP content 

by QR was observed in diabetic male rats (29) and the cytoprotective role of QR was observed 

in Boaz sperm against oxidative damage (30). A limited study has been carried out to 

investigate the role of chemerin and its receptor-CMKLR1 and androgens on developmental 

programming of male reproduction (4). This study was therefore undertaken to investigate the 

developmental expression of chemerin, CMKLR1 receptor and pro-inflammatory cytokines on 

HFD induced maternal reproductive alterations in diet naïve male offspring rats. We further 

investigated the cytoprotective role of QR on HFD induced reproductive alterations.  

Materials and Methods 

Ethics and Animal Treatment 

All animal procedures were ethically approved by the Animal Research Ethics Committee 

(AREC) of the University of KwaZulu-Natal (approval no: AREC/005/018D). Fifty-six adult 

female Sprague Dawley rats weighing between 180g-200g obtained from the Biomedical 

Resource Unit (BRU) of the University of KwaZulu-Natal, were used for this study. All 

animals were housed in plastic cages within the test room and allowed to acclimatize for two 

weeks prior to the start of the experiment. Standard laboratory conditions of 23±2 ˚C room 

temperature, 50-60% humidity and 12h light/dark cycle with lights on at 06h00 were 

maintained throughout the study period. The animals had unrestricted access to food and water. 
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Drug and Dietary Treatment  

The animals were acclimatized for two weeks. Thereafter they were divided into two groups. 

The first group were fed the standard rat chow (ND) while the other group was fed 45% high 

fat diet for eight weeks. They were mated with ND fed male and diet supplemented with 

150mg/kg QR which was administered to the animals orally throughout the period of gestation. 

Experimental Design 

Fifty-six female Sprague Dawley rats (180-200g) were divided into 2 groups (n=28/group) and 

they were fed either normal diet (ND) or 45% high fat diet HFD for eight (8) weeks (fig 1). 

The oestrous cycle of the animals was monitored. After the eighth week, the animals were 

mated on a ratio 2:1 (two females to one male) with male Sprague Dawley rats who were fed 

the normal diet (ND). Day one pregnancy was taken on the day of appearance of spermatozoa 

in the vaginal smear as seen under a microscope and the pregnant dams were housed 

individually. Post conception, rats were then further divided into four (4) groups each, of which 

two (2) groups continued with ND or HFD while the remaining two (2) groups received either 

ND + 150mg/kg of Quercetin-3-O-Rutinoside (QR) or HFD+QR. The dams were sacrificed 

with anaesthesia in batches with the first set (n=28) on gestation day (GD) 19, this group 

constituted the Placenta group. The animals were euthanised with Isofor and we harvested the 

placenta from the dams. The second batch which constitute the dams that were allowed to litter 

naturally and sacrificed on post-partum day 21, their pups (n=6/gender) were fasted for 12 

hours and sacrificed at postnatal day (PND) 21, 28 and 35 respectively. The testis and 

hypothalamus were harvested and immediately snap frozen in liquid nitrogen and later 

transferred to -80oc bio-freezer for biochemical analysis.  

Determination of hormonal profile using Enzyme-Linked Immunosorbent Assay 

(ELISA) Technique. 

Gonadotropin releasing hormone (GnRH), Luteinising hormone (LH) and Testosterone in 

tissue supernatants were determined using sandwich ELISA kits (Elabscience Biotechnology, 

USA. Catalog No: E-EL-R0450, E-EL-R0026, and E-EL-0072 respectively). Tissue samples 
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were homogenised and prepared according to the assay procedures provided. Optical density 

(OD) value was determined using a microplate reader set to 450 nm. 

Analysis of mRNA expression  

Total mRNA was extracted from the placenta, HT and testis using the modified Trizol reagent 

(Zymo Research Corp.) protocol (31, 32). Tri reagent was used to isolate total RNA which 

effectively dissolves DNA, RNA and protein when homogenised. 1ml of trizol per 50-100 mg 

of tissue was used to homogenise thereafter, chloroform was added and centrifuge at 13500rpm 

for 5 minutes at 40C. The mixture separates into 3 phases and RNA is contained in the clear 

aqueous upper phase which was transferred to a clean test tubes for extraction and washing of 

the RNA using isopropanol and 75% ethanol respectively. RNA purity and concentration were 

determined using the thermoscientific nanodrop 1000 spectrophotometer. Total RNA of 1μg 

was reverse transcribed to cDNA using the iScript cDNA synthesis kit (Bio-Rad Laboratory 

(Pty) Ltd. USA) using the manufacturer’s protocol. 

Real time polymerase chain reaction (RT-PCR) was done using the lightcycler 96® (Roche 

Diagnostic Germany). For the RT-PCR the mixture was subjected to 95oc 

denaturation/preincubation cycle for 10 minutes, three- steps amplification (45 cycles at 950c 

for 15s, 60oc for 20s and 72oc for 20s) with a single fluorescent measurement. SYBR Green 

(Luna universal qPCR master mix, New England BioLabs Inc.) used as fluorescent dye and 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the house keeping gene. 

The Cq values were chosen within linear range while differences in expression between 

samples were determined using comparative Cq method as previously described (33). 
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Table 4.1: Oligonucleotide primer sequence.  

Genes     Forward Primer            Reverse Primer 

TNF-α      5’- CAGCCGATTTGCCATTTCA -3’              5’- AGGGCTCTTGATGGCAGAGA -3’ 

IL-1β      5’- TGACAGACCCCAAAAGATTAAGG -3’               5’- CTCATCTGGACAGCCCAAGTC-3’ 

Chemerin    5’- TGTGCAGTGGGCCTTCCA-3’                             5’- CAAAGGTGCCAGCTGAGAAGA-3’ 

CMKLR1   5’- CAAGCAAACAGCCACTACCA-3’                       5’- CAAGCAAACAGCCACTACCA-3’ 

NF-κB         5’-GCGGCCAAGCTTAAGATCTGCCGCCGAG        5’-CGCTGCTCTAGAGAACACAATGGCCACTTG-3’ 

                        TAAAC-3’  

 

GAPDH      5’-TGACAACTCCCTCAAGATTGTCA-3’                 5’-GGCATGGACTGTGGTCATGA-3’  

 

 

STATISTICAL ANALYSIS. 

Data was analysed using GraphPad Prism statistical software version 5.0. All values are 

presented as means ±SEM and data were analysed using analysis of variance (ANOVA) 

followed by post-hoc tests (either Bonferroni or Dunnett’s tests as appropriate) for multiple 

comparison, Shapiro-Wilk normality test was used to test if the data were normally distributed, 

and the level of significance was set at p<0.05  
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RESULTS 

Expression of TNF-α, IL-1β, and NFκB. 

We investigated the effect of maternal HFD treatment on TNF-α, IL-1, and NFκB expression 

in the placenta, HT and testis. In the placenta, we observed a significant increase (F(3,20)=32.32, 

p<0.0001) in the expression of TNF-α in the HFD group when compared to the other groups 

(Fig.4.1a) which was accompanied by a non-significant decrease of TNF-α in the HFD+QR 

group compared to control. At PND 21 TNF-α expression was significantly increased 

(F(3,20)=6.756, p<0.0001) in the HT when compared with other groups (Fig.4.1b), while at PND 

35 QR treatment alone caused a significant increase (F(3,20)=6.578, p<0.0001) in TNF-α 

expression with no significant changes in TNF-α expression in the HFD group when compared 

with the other groups (Fig.4.1c). In the testis, TNF-α was significantly expressed (F(3,18)=12.30, 

p< 0.001) in the HFD group at PND 21 (Fig.4.1d), which was accompanied by a non-significant 

increase in TNF-α expression in HFD group at PND 35 (Fig.4.1e). Furthermore, we observed 

a significant increase (F(3,20)=33.93, p<0.0001) in the expression of IL-1β in the HFD group in 

the placenta (Fig.4.1f). There was a non-significant increase in the expression of hypothalamic 

IL-1β in the HFD group at PND 21 (Fig.4.1g) accompanied by a non-significant decrease in 

IL-1β expression in the HFD group compared to the control group at PND 35 (Fig.4.1h). In the 

testis, we observed a non-significant increase in the expression of IL-1β in the HFD group 

when compared to the control at PND 21 (Fig.4.1i) and PND 35 (Fig.4.1j). In addition, NFκB 

was significantly expressed (F(3,20)=33.09, p< 0.0001) in the HFD+QR group of the placenta 

when compared with other groups (Fig.4.1k). In the HT, NFκB expression was significantly 

decreased (F(3,20)=34.78, p<0.0001) in the HFD group at PND 21 (Fig.4.1L), while at PND 35 

there was no significant change in NFκB expression in the groups (Fig.4.1m). We also observed 

a non-significant increase in the expression of NFκB in the testis at PND 21 (fig.4.1n) and PND 

35 (fig.4.1o).    
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Fig. 4.1: Showing mRNA expression of inflammatory markers in the placenta of HFD fed 

dams, hypothalamus (HT) and testis of HFD naïve male offspring. Gene expression changes in 

placental TNF-α (Fig. 4.1a), IL-1β (Fig.4. 1f) and NFκB (Fig4. 1k) transcripts are indicated 

above. Also, transcriptional changes in hippocampal TNF-α, IL-1β and NFκB in the male 

offspring at PND 21 (b, g and l) and 35 (c, h and m), respectively. Whereas, similar changes in 

testicular TNF-α, IL-1β and NFκB in PND 21 (d, i and n) and 35 (e, j and o) were also 

examined. n=6 per group; *p<0.05, **p<0.01, ***p<0.001.  

 

Effects of maternal HFD and QR treatments on GnRH, LH and testosterone levels in the 

male offspring rats 

To investigate the effects of maternal HFD consumption and impact of QR supplementation 

on the reproductive hormonal profile of their offspring, we measured tissue levels of GnRH, 

LH and testosterone in the male offspring rats. There appears to be a significant interaction (F 

(6,24) = 123.4, p<0.0001) between time (F (2,24) =94.11, p<0.0001) and treatment (F (3,24) =20.34, 

p<0.0001) using two-way ANOVA. As shown in Fig.4.2b, we observed that maternal HFD 

significantly reduced the level of GnRH in the offspring rats at early childhood (PND 21) and 

adolescent stage (PND 28), compared to control. Surprisingly, QR supplementation further 

decreased the GnRH levels at PND 28 (p<0.0001) and 35 (p<0.05) when compared to the HFD 

group (Fig. 4.2a). Assessment of tissue LH concentration in the naïve offspring (Fig. 4.2c) 

indicates significant interaction (F (6,24) =3.994, p=0.0065) between treatment (F (3,24) =9.934, 

p=0.0014) and time (F (2,24) =1202, p<0.0001). There was a significant decrease in LH at PND 

21 across all treatment groups compared to control (p<0.01, Fig. 4.2c). Whereas at PND 28 

and 35 there was no significant change observed in the HFD groups compared to control except 

that HFD+QR group displayed a higher LH levels compared to HFD and QR groups at PND 

28 (Fig. 4.2c). Having established that the impact of maternal HFD consumption on the levels 

of GnRH and LH in the naïve male offspring, we decided to investigate further the effects of 

the treatments (maternal HFD consumption and QR supplementation) on the offspring 

testosterone levels. We observed a significant interaction (F (6,24) =7.831, p<0.0001) with 

Testes 
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treatment effects (F (3,24) =12.78, p=0.0005, Fig. 4.2d). Our data indicated an increase in 

testosterone levels in offspring of HFD/QR fed dams (p<0.001) and a significant reduction in 

testosterone level in QR group (p<0.001) at PND 21, while offspring of dams fed only HFD 

displayed significant decrease in testosterone levels at PND 28 compared to control (p<0.001)  

and other treatment groups (p<0.01, Fig. 4.2d). No differences were observed in testosterone 

levels at PND 35 (p>0.05, Fig. 4.2d).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.2: Shows the effect of maternal HFD consumption on GnRH, LH and testosterone in 

male offspring at PND 21, 28 and 35. The link between the hypothalamic-pituitary gonadal 

axis in the regulation of reproductive hormone through positive or negative feedback 

mechanism is shown in fig.4.2a above. Expression of GnRH (fig.4.2b), LH (fig.4.2c), and 

testosterone (fig.4.2d) at PND- D21, D28 and D35 in the male HT, plasma and testis of the 

male offspring are shown in the figure above respectively.    
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HFD-induced changes in hypothalamic-gonadal chemerin/CMKLR1 expression  

There is substantial evidence that adipokines, especially chemerin, could affect reproductive 

functions by modulating GnRH-induced LH and FSH release from the anterior pituitary cells 

(34). However, the biological functions of chemerin/CMKLR1signaling associated with HFD-

induced transgenerational changes in the reproductive profiles of F1 offspring remains unclear. 

To unravel the biological functions, we quantified mRNA transcripts of chemerin and 

CMKLR1 in the dams’ placenta and offspring’s hypothalamic and testicular tissues (Fig. 4.3a). 

As shown in Fig. 4.3b, there was no significant change in the expression of placental chemerin 

mRNA of HFD-fed dams when compared to ND group (p>0.05). Moreover, ANOVA indicates 

significant effects of HFD-treatment on hypothalamic expression of chemerin (F(3,20)=231.2, 

p<0.0001) which was greatly increased in the HFD group only at PND 21 compared to ND and 

other treatment groups (p<0.0001, Fig.4.3d), without significant changes at PND 35 (p>0.05, 

Fig. 4.3f). Surprisingly, we observed downregulation of CMKLR1 expression in the placenta 

(p<0.001, Fig. 4.3c) and testicular tissues of all HFD and QR offspring at PND 21 (p<0.01, 

Fig. 4.3i) without any change in the HT of PND 21 offspring (p>0.05, Fig. 4.3e). On the 

contrary, offspring of HFD dams displayed significant increase in hypothalamic CMKLR1 

mRNA expression compared to other groups (p<0.01, Fig. 4.3g). At PND 35, QR group 

exhibited increased CMKLR1 expression (p<0.05) while maternal HFD exposure had no 

significant impact on the testicular CMKLR1 changes at this time (p>0.05, Fig. 4.3k).  
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Fig. 4.3: Shows the mRNA expression of chemerin and its receptor CMKLR1 in the HT and 

testis of HFD naïve male offspring and placenta of HFD fed dams. The expression of chemerin 
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and CMKLR1 in the placenta was shown in fig.4.3b and fig.4.3c respectively. Expression of 

chemerin in the HT at PND 21 and PND35 is shown in fig.4.3d and fig.4.3f respectively while 

fig.4.3h and fig.4.3j shows the expression of chemerin in the testis at PND 35. CMKLR1 

expression in the HT at PND 21 and PND 35 is shown in fig.4.3e and fig.4.3i. Expression of 

CMKLR1 in the testis at PND 21 and PND 35 was shown in fig.4.3i and fig.4.3k respectively. 

Values are expressed as mean ± SEM and level of significance set at p<0.05.  

 

DISCUSSION 

In this present study, we investigated the impact of maternal HFD induced reproductive 

alterations in male offspring and further examined the potential benefit(s) of QR. We also 

investigated the possible role of certain adipocytes (chemerin and its receptor CMKLR1) and 

inflammatory markers in the regulation of male fertility. Studies have shown that alterations in 

maternal diet prior to or during gestation and lactation can lead to altered reproductive 

functions in their diet naïve offspring (35, 36).   

We observed that TNF-α and IL-1β were significantly expressed in the placenta with no 

significant change in the expression of NFκB. This suggests the presence of inflammation in 

the placenta which could be due to HFD. In the offspring, there was a significant expression of 

TNF-α with no changes in the level of IL in the HT and testis at PND 21. Pro- inflammatory 

cytokines have been reported to be involved in the normal functioning of the male gonads and 

they are produced locally (24). It has been reported that, the excessive production of pro 

inflammatory cytokines such as TNF-α, IL-1 in the male reproductive system could be an 

indication of infertility (37). TNF-α inhibits the expression of steroidogenic enzyme in the 

Leydig cells through the activation of NFκB (38, 39) which in turn leads to the reduction in the 

secretion of testosterone (38). However, in this study, there was no significant change in the 

production of NFκB in the placenta and testes although testosterone was reduced which 

suggests that a different pathway aside activation of NFκB may be responsible for the reduction 

in testosterone.  
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Reproductive functions and fertility is controlled by a complex and highly coordinated 

neuroendocrine axis (14). Gonadotropins and androgens secreted by the hypothalamus and 

gonads respectively are controlled via the negative feedback loop and any alteration or poor 

regulation affects reproductive functions (40). From our study, we observed that there was a 

significant reduction in hypothalamic GnRH level at PND 21 and 28 in the male offspring. Our 

observations are consistent with a previous study by Rodriguez-Gonzalez et al (2014) which 

reported that HFD or maternal obesity potentially decreased testosterone and LH serum levels 

in the offspring and progressed with advancement in age (14). Similarly, the current study 

demonstrated a significant reduction in the LH levels of HFD offspring at PND 21. At the 

gonadal level, LH stimulates the Leydig cells to produce testosterone. It has been established 

that the pulsatile release of GnRH from the arcuate nucleus of the hypothalamus controls sperm 

formation by stimulating the release of pituitary LH regulated via the negative feedback loop 

modulated by testosterone (40, 41). Sex steroid induced negative feedback regulation of HPG 

functions (42-45) could possibly account for the observed decrease in GnRH and LH levels 

owing to increased testicular testosterone production at PND 21. In a study by Wang et al 

(2017), mice were treated with HFD and rutin to investigate the ameliorative effects of rutin 

on body weight and reproductive impairment. The authors found that rutin could protect against 

HFD induced reproductive impairment on epididymal cell structure and sperm motility (46). 

This is also in line with the result from our findings which indicated a potential for QR in 

restoring LH activity while maintaining testosterone levels.  

Furthermore, chemerin was significantly expressed in the HT at PND 21 in the male offspring 

which could be a possible reason for the decreased level of GnRH at PND 21 whereas there 

was no significant change at PND 35. Surprisingly we observed an upregulation in the 

expression of CMKLR1in the HT at PND35 with a non- significant downregulation at PND 

21. The exact reason for the inverse expression of the chemokine and its receptor is not fully 

understood. This could be a compensatory or protective mechanism where elevated levels of 

chemerin could trigger downregulation of its receptor as a protective mechanism although,  our 

study indicated that testosterone was decreased at PND 35 and increased at PND 21. It is 

worthy of note that, chemerin and CMKLR1 are not uniformly expressed in the HT and its role 
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depends on the area where it is expressed (47). Although, it has been established that they are 

closely associated with the appetite control regions in the hypothalamus, It was reported that 

chemerin and CMKLR1 transcripts were found in the ependymal cells and tanycytes lining the 

third ventricle and that it also extends into the arcuate nucleus (48). Our study suggests that the 

upregulation of chemerin in the hypothalamus also regulates (reduces) the release of GnRH. 

Although, more studies are required to narrow down the expression of chemerin and its receptor 

to areas of the hypothalamus involved in regulation of reproductive functions in the male 

offspring. 

Male fertility is dependent on a well-controlled hypothalamic pituitary-gonadal axis (fig.4.2a). 

Studies have shown that decline in testosterone level is also associated with aging (14, 49). In 

this study, we observed that at the transition phase to puberty (PND 28) and adulthood (PND 

35) there was a decline in the serum level of testosterone in the HFD group when compared to 

the control group. Maternal HFD consumption or obesity and their male offspring fertility has 

been linked to alterations in testosterone level (35). Studies carried out in mice and human 

revealed that maternal HFD consumption or obesity stimulates the aromatization of 

testosterone to estradiol (E2) which consequently reduces the level of testosterone via impaired 

spermatogenesis (50), this finding also supports the reduced testosterone level observed in our 

study. In addition, Dupont et al (2014) carried out a study in rats to determine the concentration 

of testosterone in hyperlipidemic and hypercholesterolemic (HH) fed rabbit. They observed 

that serum free testosterone concentrations were decreased in the HH males which supports the 

link between maternal nutritional status and male fertility (14, 51).  

Furthermore, we investigated the role of chemerin and its receptor CMKLR1 in the testis and 

HT of diet naïve male offspring. The link between HFD direct consumers (dams) and indirect 

consumers (offspring) was established by investigating the expression of chemerin and 

CMKLR1 receptor in the placenta (fig.4.3a). From our study, it appears that maternal HFD can 

cause an increase in the expression of chemerin accompanied by a decrease in the expression 

of its receptor. In a study carried out to investigate the putative role of chemerin in the placenta 

of rat and human throughout gestation, they observed an up regulation in the mRNA expression 

of chemerin in the placenta which is similar to what we observed in our study (20, 52). It has 
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been reported that chemerin acts via different signaling pathways and its effect could be time 

and dose dependent (17). Similar studies have also reported significantly increased levels of 

chemerin (20, 53, 54) in obese or diabetic conditions. In line with other studies, we also 

established that chemerin and its receptor CMKLR1 are expressed in the rat testis (19). 

Furthermore, we observed a non - significant up regulation/ expression of chemerin in the testis 

of the offspring at PND 21 and PND 35 in the HFD group which was accompanied by a 

decreased expression (p<0.05) of  CMKLR1 at PND 21. The upregulation of chemerin could 

be the possible explanation for the observed decrease in testosterone level at PND 35. It has 

been established that chemerin function through its receptor- CMKLR1 in male steroidogenesis 

(4). In a study conducted by Li. L et al, (2014) using cultured rat Leydig cells, this was the only 

study till date that investigated the presence of  chemerin and its receptors within the Leydig 

cells. They suggested that chemerin has a suppressive effect on testosterone synthesis (19, 55) 

and also established that chemerin is a peripherally acting molecule in the testis. From this 

study, there appears to be a relationship between the novel adipokine- chemerin and 

steroidogenesis although more studies is required to further elucidate its pathway of action 

along the HPG axis.  

In conclusion, from this current study we were able to establish that chemerin, CMKLR1, TNF-

α, Il-1β, and aging affect steroidogenesis of HFD naïve male offspring, although the pathway 

linking them to male infertility has not been fully established. Whereas, QR supplementation 

had little or no significant effect on steroidogenesis in the offspring. 
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CHAPTER FIVE 

In this article, HFD-induced oxidative and inflammatory changes in the brain linked to the 

regulatory roles of GLP-1 incretin hormone was examined. This is in a manuscript format 

titled: “Biochemical changes in the brain of rats prenatally exposed to high-fat diet”. 
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ABSTRACT 

The mechanistic link between maternal high-fat feeding and postnatally induced sex-dependent 

neurochemical alterations in diet-naïve offspring’s brain is not completely understood. In this 

study, we examined the molecular underpinnings of quercetin-3-O-rutinoside (QR) and 

glucagon-like peptide 1 (GLP-1) regulatory effects on high-fat diet (HFD) induced 

neuroinflammatory and/or biochemical changes in direct consumers and diet-naïve 

descendants. Pregnant rats (previously fed normal diet (ND) or 45% HFD) were maintained on 

supplemented chow (plus 150 mg/kg QR administered orally) – ND/QR, HFD/QR throughout 

gestation. Subsequently, the animals were sacrificed, and brain samples were processed for 

expression of TNF-α, GLP-1, MDA and GSH/NO content. The data show that chronic 

consumption of HFD by dams failed to alter significantly the brain TNF-α levels in dams and 

offspring at postnatal day (PND) 21. However, a non-significant increase in TNF-α levels that 

appears suppressed by QR was observed in the female offspring rats of HFD-fed dams at PND 

28. Surprisingly, HFD-fed dams exhibited non-significant increase in brain MDA levels 

accompanied by time and sex-dependent changes in lipid peroxidation in their progenies. NO 

and GSH levels were not directly affected by maternal HFD treatment, whereas brain GSH 

concentration increased significantly in the female offspring of HFD-fed dams at PND 28. 

Moreover, GLP-1 expression significantly increased in dams that received QR supplemented 

chow, but not in the offspring. In conclusion, the current findings indicate that maternal 

consumption of 45% HFD only produced biochemical changes in the brain which can 

potentially trigger neuroinflammatory changes in the progenies.  

 

 

Keywords: High-fat diet; neuroinflammation; sex differences; quercetin-3-o rutinoside; 

glucagon-like peptide-1; sensitization.  
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Introduction 

Several animal studies have demonstrated that prolonged feeding of high-fat diet (HFD) to 

normal rats can be used to induce obese phenotypes (Graf et al 2016, Srinivasan et al 2006, 

Vuong et al 2017) like what is obtainable in the western societies. This dietary practice may 

have immediate and long-term consequences such as altered energy homeostasis, generalized 

metabolic syndrome, dysregulated neuro-energetic circuitry and chronic inflammatory 

responses (Buettner et al 2007, Kang et al 2014, White et al 2009). In addition, there is 

accumulating evidence that consumption of HFD may not directly activate central 

inflammatory pathways but mostly initiate sensitization process that provokes amplified 

proinflammatory cytokine signaling (mostly TNF-α and IL-1β) and production of chemokines, 

reactive oxygen species (ROS) and secondary messengers (prostaglandins and nitric oxide) by 

the central innate immune cells (Norden et al 2016). Amongst the HFD-induced changes, 

increased oxidative and inflammatory signaling have been widely implicated in several disease 

pathologies (White et al 2009). 

Srinivasan and colleagues have established the relationship between maternal HFD 

consumption and altered fetal programming with severe consequences on offspring 

vulnerability to developing metabolic syndrome-like phenotype (Srinivasan et al 2006). 

Similar correlations also exist between prenatal exposure to HFD and postnatal development 

of neurobehavioral deficits and/or psychiatric changes. For instance, White et al (2009) 

reported that progenies of dams that were fed HFD for about 20 weeks performed poorly on 

memory function test and further manifested significant increases in inducible nitric oxide 

synthase (iNOS) and markers of inflammation (IL-6, Iba-1 and GFAP) (White et al 2009). 

Importantly, this implies that maternal environmental insult or nutritional drift can adversely 

affect neurodevelopment during and after pregnancy and subsequent offspring behaviour. 

Since most reported studies engaged both dams and their offspring in the HFD treatment plan, 

it therefore remains unclear the impact of maternal HFD consumption on neurodevelopmental 

changes in diet-naïve offspring post-weaning. 
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Moreover, it has been demonstrated that quercetin-3-O- rutinoside (QR) has neuroprotective 

effects on the brain. Its administration caused diminished ischemic neural apoptosis by 

increasing endogenous defence enzymes thus attenuating lipid peroxidation (Bhandary et al 

2012). It has also been found to be useful in hypoxic conditions by reducing the levels of 

oxidative stress (Pu et al 2007). Although less information exists in the literature on the 

efficiency of QR as a potent antioxidant or suitable anti-inflammatory candidate against HFD-

induced neural damage, previous studies have shown that QR potentially reduced inflammation 

in rats’ brain with sporadic dementia of Alzheimer type by decreasing microglial expression of 

proinflammatory cytokines TNF-α and IL-1β (Ganeshpurkar & Saluja 2017, Javed et al 2012). 

In addition, there is accumulating evidence that brain glucagon-like peptide-1 (GLP-1) is 

involved in nutrient metabolism and homeostasis and further regulate inflammatory processes 

in the brain (Bae & Song 2017, Daniele et al 2015, Kim et al 2017). Of interest is the study by 

Gaballah et al (2017) which demonstrated that co-treatments of quercetin and GLP-1 analogue 

liraglutide enhanced significant improvements in HFD-induced biochemical, oxidative and 

histopathological changes in obese rats (Gaballah et al 2017). Another study by Scudiero and 

Verderame (2017) also underlined the importance of estrogen receptors (ERα and ERβ) in the 

regulation of HFD-induced modulation in brain energetic metabolism (Scudiero & Verderame 

2017). Despite these significant advances, our understanding of the molecular underpinnings 

of GLP-1 neuroprotective effects against sex differences in postnatally induced oxidative or 

neuroinflammatory responses to maternal HFD exposure remains incomplete. Also, the 

complementary roles of QR and enhanced GLP-1 signaling effects on HFD-induced alterations 

in brain homeostasis requires further investigation.  

This study was undertaken to investigate the impact of HFD consumption on the brain 

chemistry of direct consumers and diet-naïve progenies with core interest in sex differences 

associated with oxidative and pro-inflammatory changes. We further investigated the potential 

benefits of QR and GLP-1 regulatory effects on HFD-induced central inflammation and 

metabolic changes.  
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Materials and Methods 

Ethics Statement 

All animal procedures were approved by the University of KwaZulu-Natal’s Animal ethics 

committee (approval number AREC/005/018D) in accordance with National Institute of Health 

(NIH) guidelines for the care and use of laboratory animals. Approval for the retrieval and 

usage of animal tissues was granted by the Nelson Mandela University Animal Ethics 

Committee (approval number A19-SCI-PHS-001). 

Rats, Dietary Treatments and Sacrifice 

Adult Sprague Dawley rats (Females, N=56, Males, N=28) weighing 180-200g were purchased 

from and housed within the animal holding facility of Biomedical Resource Unit, BRU 

(University of KwaZulu-Natal, South Africa). Post weight randomization, the female rats were 

divided into two groups (n=28/group) and fed either normal diet (ND; BRU) or 45% HFD (diet 

sourced from Prof. D. Katerere’s Laboratory at Tshwane University of Technology, Pretoria) 

for eight weeks. Thereafter, the female rats were mated with their male counterparts fed ND. 

Post conception, the pregnant rats were further divided into four groups of which two groups 

continued with either ND or HFD whereas the remaining groups were fed either ND+150 

mg/kg quercetin-3-o-rutinoside (QR) or HFD+150 mg/kg QR. Please note that QR was 

administered orally to the animals. After birth, the dams continued with their respective diets 

and sacrificed via inhalation of Isofor in an air-tight chamber along with half of the offspring 

at postnatal day (PND) 21. The remaining half of the offspring were weaned, continued ND, 

and later sacrificed at PND 28. At both killing time points, the brain samples were harvested 

using appropriate bone forceps and stored at -80oC in bio-freezer. The preserved brain tissues 

were transferred to Physiology laboratory at Nelson Mandela University (South Africa) for 

further biochemical and molecular processing. 

Enzyme-Linked Immunosorbent Assay (ELISA) Analysis 

Proinflammatory cytokine TNF-α and incretin-like GLP-1 levels in tissue supernatants were 

determined using sandwich ELISA kits (Elabscience Biotechnology, USA) after whole brain 
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homogenization with bullet blender (Next Advance, USA). Briefly, samples were added to the 

flat bottom 96-well ELISA plates pre-coated with appropriate capturing antibodies specific to 

proteins of interest. Appropriate biotinylated secondary antibodies specific for rat TNF-α/GLP-

1 and avidin-horseradish peroxidase conjugate were added followed by incubation and several 

washes. Spectrophotometrically, absorbance was determined using microtiter plate reader 

(Multi-scan GP, Thermo Fischer Scientific, UK). 

Determination of TBARS in Brain Samples 

Lipid peroxidation is an indicator of degenerative process commonly associated with endo-

cyclization of oxygenated fatty acids with potential neurotoxic activity (Montine et al 2002). 

In this study, malondialdehyde (MDA) an intermediate product of lipoperoxidation (Hipkiss et 

al 1997) was determined by measuring its biochemical equivalent thiobarbituric-acid-reacting 

substances (TBARS) in rats brain as previously described (Berkiks et al 2019). Brain tissue 

was homogenised with 0.2% phosphoric acid, centrifuged at 1000 rpm for 10 mins and the 

supernatant (200 μL) was pipetted into test tubes while the following reagents were added: 500 

μL 2% phosphoric acid, 200 μL 7% phosphoric acid, 400 μL BHT/TBA solution, 100 μL 1M 

HCL. The mixture was vortexed, heated at 100oC for 15 mins and allowed to cool at room 

temperature. 2ml butanol was later added to all samples and vortexed again. After vortexing, 

TBARS were determined by measuring absorbance at 532nm and 600nm. The concentration 

was calculated using the formula: 

 

 

 

Reduced Glutathione (GSH) and Nitric Oxide (NO) Content in the Brain 

Assessment of total GSH content in the brain samples was based on oxidation of sulfhydryl 

reagent 0.5mM 5,5’-dithio-bis (2-nitrobenzoic acid) (DTNB) to form 5’- thio-2-nitroenzoic 

acid (TNB) (Ellman 1959). At first, sample proteins were precipitated with 10% trichloroacetic 

acid (TCA). Thereafter, 0.5 mM DTNB and 0.2 M sodium phosphate buffer (contains 0.2 mM 

Concentration= A532-A600 

 

A= Absorbance. 

 

1.56 
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mono-and-dibasic sodium phosphate solutions) were added to the supernatants of tissue 

homogenates and incubated for 15 mins. Total glutathione was assayed at 415 nm absorbance. 

NO levels were estimated using Griess technique based on two-step diazotization reaction 

resulting in formation of chromophoric azo-derivative (Bryan & Grisham 2007). Equal 

volumes of tissue homogenate and Griess reagent were mixed and incubated in the dark for 30 

min at room temperature. Absorbance was measured at 548 nm. 

Statistical Analysis 

Data were analysed using GraphPad Prism software (version 5.0). Shapiro–Wilk normality test 

was used to determine if the data was normally distributed or not. Where distribution was 

normal, data were analysed using one-way analysis of variance (ANOVA) for TNF-α, MDA, 

GSH, NO, and GLP-1 in the brain tissues of dams. Two-way ANOVA was used to analyse 

results for TNF-α, MDA, GSH, NO, and GLP-1 in the offspring at PND 21 and 28. 

Comparisons between groups were performed by Bonferroni post-hoc test and student t-

test.  All data are reported as mean ± SEM, while P<0.05 was considered statistically 

significant 

Results 

Maternal HFD consumption altered postnatal neuroinflammatory response in diet-naïve 

descendants. 

To investigate the impact of HFD on inflammatory response changes in the brain, we used 

ELISA assay technique to determine the concentration of proinflammatory cytokine TNF-α in 

the whole brain of rats after 8 weeks of HFD consumption. One-Way ANOVA indicates 

significant effects of HFD on maternal brain health (F(3,23) = 3.228; p=0.0443, Fig. 5.1b). 

However, Bonferroni post hoc test indicates no significant differences in the brain TNF-α levels 

within the treatment groups (p>0.05, Fig. 5.1b). We further examined the brains of diet-naïve 

offspring rats for possible inflammatory response changes at PND 21 and 28 via TNF-α 

expression and sought to establish whether the postnatally induced changes are sex-dependent 

or not. The data indicated no significant main effects of maternal HFD consumption (F(3,24) = 

0.7962; p=0.5080) and sex differences (F(1,24) = 0.4639; p=0.5023) on TNF-α production in the 
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brains of PND 21 male and female offspring (Fig. 5.1c). In contrast, two-way ANOVA 

demonstrated significant effects of prenatal HFD exposure on central induction of 

proinflammatory TNF-α in PND 28 offspring (F(3,16) = 3.688; p=0.0343, Fig. 5.1d). The data 

also show that the postnatally induced brain TNF-α was significantly suppressed by QR only 

in the female offspring (p<0.05, Fig. 5.1d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1: The figures above show (a) timeline illustrating the treatment protocols; 

Pg=pregnancy, Tx=treatment/supplement, WN=weaning, E=euthanasia, AD=adolescence, (b) 

TNF-α concentration in dams’ brain after 8 weeks HFD consumption, (c-d) postnatally induced 

sex-dependent TNF-α production in the offspring’s brain at PND 21 and 28. Data shown 

represents mean ± SEM; n=6 per group. *P<0.05 compared to ND; One-way or two-way 

ANOVA, followed by Bonferroni post hoc comparison test.  
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Postnatally induced lipo-peroxidative changes are time dependent.  

To explore the neuroinflammatory changes associated with HFD consumption, lipid 

peroxidation parameters were further analysed in the brain samples of both dams and offspring 

via assessment of MDA concentration using TBARS as previously described (Berkiks et al., 

2019). The data indicate non-significant increase or decrease in MDA concentration in the 

brains of HFD-fed or QR treated dams, respectively (p>0.05, Fig. 5.2a). Overall, one-way 

ANOVA demonstrate no significant impact of either treatment on lipid peroxidation in the 

neural tissues. (p>0.05, Fig. 5.2a). Surprisingly, two-Way ANOVA demonstrated significant 

effects of maternal HFD consumption on central MDA concentration in PND21 and 28 

offspring (p<0.05, Fig. 5.2b, 5.2c) and significant differences between the genders (p<0.001, 

Fig. 5.2b, 5.2c) at these time points. PND21 female offspring displayed significantly higher 

levels of lipid peroxidation than their male counterparts (p=0.0280), while postnatally induced 

lipid peroxidation was significantly increased by quercetin only in the female offspring 

(p<0.001, Fig. 5.2b). In contrast, lipid peroxidation was significantly higher in male than 

female offspring at PND 28 (p=0.0089, Fig. 5.2c). 
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Fig. 5.2: Lipid peroxidation changes in the brain (a) impact of HFD consumption on MDA 

concentration in dam’s brain, (b-c) Sex-dependent changes at PND 21 and 28. Data shown 

represents mean ± SEM; n=6 per group. *P<0.05 compared to ND; One-way or two-way 

ANOVA, followed by Bonferroni post hoc comparison test.  

 

Glutathione and Nitric oxide levels  

GSH represents one of the intracellular antioxidant systems employed to scavenge and convert 

ROS to non-reactive forms. In the current study, antioxidant capacity of endogenous brain GSH 

in dams previously exposed to HFD and QR treatments and impact on their progenies were 

assessed. ANOVA demonstrated no significant impact of HFD consumption on GSH 

concentration in the dams’ brain (p>0.05, Fig. 5.3a). However, there were non-significant 

decrease or increases in brain GSH levels in HFD-fed or QR treated dams, respectively 
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(p>0.05, Fig. 5.3a). Our data also indicate no significant main effects of maternal HFD 

consumption and sex differences on brain GSH antioxidant levels of PND 21 male and female 

offspring (p>0.05, Fig. 5.3b). However, further data analysis show that female offspring of 

HFD-fed dams expressed higher concentration of total brain GSH compared to their male 

counterparts at PND 28 (p=0.0403, Fig. 5.3c). To investigate the impact of maternal HFD 

consumption on NO-mediated cerebral blood flow and regulation of neuronal metabolic status, 

NO production in dams’ brain was assayed using Griess reagent. Data analysis revealed 

significant main effects of treatments on NO production in the dams’ brain (F(3,23) = 1.694; 

p=0.0017), while Bonferroni post hoc comparison test only demonstrated a non-significantly 

increased NO concentration in HFD+QR group compared to ND (p>0.05, Fig. 5.3d). We 

further assessed NO activity in the brains of the progenies subject to sexual dimorphic effects. 

Our findings show that there were only significant effects of maternal treatment on NO 

concentration in the brains of PND21 offspring (F(3,40) = 3.242; p=0.0319, Fig. 5.3e), but no 

gender effect (p>0.05, Fig. 5.3e). Both the diet and gender had no significant impact on the 

offspring NO activities at PND28 (p>0.05, Fig. 5.3f). 
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Fig. 5.3: Endogenous brain GSH and NO levels in HFD-fed dams and their progenies. (a-c) 

brain GSH content in dams, PND 21 and 28 offspring respectively, (d-e) brain NO levels in 

dams and sex-dependent NO activity in PND 21 and 28 offspring respectively. Data shown 

represents mean ± SEM; n=6 per group. *P<0.05 compared to ND; One-way or two-way 

ANOVA, followed by Bonferroni post hoc comparison test.  
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Quercetin-3-o-rutinoside potentiates brain GLP-1 signalling in HFD-fed dams. 

We next investigated the impact of HFD consumption on brain glucose metabolism via 

expression of incretin hormone GLP-1. Our findings show that there were significant effects 

of HFD alone on GLP-1 in the maternal brain, whereas ANOVA indicated mild significant 

difference between ND and HFD+QR (p<0.05, Fig. 5.4a). Moreover, neither HFD or QR alone 

caused any changes (p>0.05, Fig. 5.4a). Also, the impact of maternal exposure to HFD and 

sexual dimorphism on brain GLP-1 signalling in the offspring was further assessed. Two-way 

ANOVA indicates no significant main effects of maternal HFD consumption and sex 

differences on GLP-1 expression in the brains of PND 21 (p>0.05, Fig. 5.4b, 5.6b) and 28 

(p>0.05, Fig. 5.4c) male and female offspring. 

 

                                        

N
D

H
FD

Q
R

H
FD

+Q
R

0.0

0.2

0.4

0.6

*

G
L

P
-1

 c
o

n
c

e
n

tr
a

ti
o

n
 (

n
g

/m
L

)

 

Male P21 Female P21
0.0

0.1

0.2

0.3

0.4

G
L

P
-1

 c
o

n
c

e
n

tr
a

ti
o

n
 (

n
g

/m
L

)

 

b 

Male P28 Female P28
0.0

0.1

0.2

0.3

0.4

0.5
ND

HFD

QR

HFD+QR

G
L

P
-1

 c
o

n
c

e
n

tr
a

ti
o

n
 (

n
g

/m
L

)

 

a 

c 



117 

 

 

 

 

Fig 5.4: The above graphs show (a) endogenous expression of brain GLP-1 in dams following 

HFD consumption, (b-c) sex-dependent changes in GLP-1 concentration in the brains of diet-

naïve offspring at PND 21 and 28. Data shown represents mean ± SEM; n=6 per group. 

*P<0.05 compared to ND; One-way or two-way ANOVA, followed by Bonferroni post hoc 

comparison test.  

Discussion 

In this study, we investigated the impact of maternal HFD consumption on neurodevelopmental 

changes and postnatal alterations in the brain chemistry of diet-naïve descendants. We further 

sought to unravel the pathophysiology associated with HFD-induced neuroinflammation as 

well as the therapeutic roles of QR.  

There is growing evidence that nutritional challenge imposed by exposure to HFD may 

indirectly induce central inflammatory responses primed by structural and phenotypic 

alterations in central innate immune cells and exaggerated cytokine production (Sobesky et al 

2014). TNF-α is one of the important proinflammatory cytokines released in large amounts by 

CNS microglia and exerts both homeostatic and pathophysiological roles (Baranowska-Bik et 

al 2008, Taipa et al 2018). In the current study, we observed that adult female rats that 

consumed HFD for eleven weeks did not exhibit significant change in brain TNF-α expression. 

Our findings are not in line with a previous study by Zhang et al (2004) who reported that 

consumption of HFD elicited neural inflammatory responses marked by elevated NF-κB in the 

cerebral cortex of male Sprague-Dawley rats (Zhang et al 2005). In our study, it appears that 

lack of TNF-α expression in the dams may be attributed to duration of HFD consumption not 

long enough to induce obese phenotypes and significant central immune responses. These 

observations agree with previous studies that demonstrated that consumption of HFD by young 

adult rodents consequentially provoke an overt circulatory and peripheral low-grade 

inflammation (Cano et al 2009, Xu et al 2002) whereas the ability to directly induce central 

inflammation strongly depends on manifestation of diabetes-like symptoms usually associated 

with an extreme prolonged HFD consumption (Jeon et al 2012). Despite the insignificant 

changes in TNF-α expression in the dams, our data further indicated the possibility that 
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maternal HFD exposure served as a trigger that primed the induction of low-grade 

neuroinflammatory changes in the diet-naïve female offspring rats particularly at PND 28, even 

without prior immune challenge. Also, Scudiero and Verderame (2017) have previously 

reported that the estrogen-17β sex hormone regulates brain bioenergetics and demonstrated 

that expression of its active receptor subunits (ERα and ERβ) are affected by HFD in a time-

dependent manner (Scudiero & Verderame 2017). Since other studies have widely documented 

the neuroprotective roles of estrogen in various disease pathologies (Behl 2002, Bryant & 

Dorsa 2010, Suzuki et al 2009), it may be assumed that the observed decrease in brain TNF-α 

in the female offspring of dams treated with QR in the present study may be attributed to the 

hormonal changes that occurred during transit to adolescence which appears independent of 

the energetic metabolism. 

Recent demonstration by Maciejczyk et al (2018) showed that chronic consumption of HFD 

induced insulin resistance in most tissues, resulting in redox imbalance, and enhanced neural 

oxidative damage followed by alternations in enzymatic and non-enzymatic brain antioxidants 

(Maciejczyk et al 2018). We observed that HFD consumption did not cause significant changes 

in central lipid peroxidation, GSH and NO concentrations in the dams. This further confirms 

that little or insignificant neural damage is associated with consumption of 45% HFD for 

approximately eleven weeks. Interestingly, our findings further indicate sex-dependent 

postnatally induced differential changes in brain MDA concentration. It is still unclear the 

reason for this wide variations particularly in the female rats, but we suggest that the alternate 

changes in MDA levels may be caused by either ‘primed sensitization’ (Sobesky et al 2014) 

associated with maternal diet experience or developmental and hormonal changes occurring 

during transition to adulthood. For instance, a previous research reported that serum estradiol 

in mice showed a marked increase between PND 26 and PND 29 (Ahima et al 1997) and thus 

may account for the overall decrease in brain MDA in our female rats at PND 28 compared to 

increase at PND 21.  

In a study conducted by Kim et al (2017), it was shown that GLP-1 receptor (GLP-1R) agonist 

exendin-4 reduced ROS accumulation and lipid peroxidation thus preventing DNA oxidative 

damage and protected the neural tissues against ischemia and induced neuroinflammation (Kim 
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et al 2017). In the current study, increased expression of GLP-1 in the brains of HFD+QR dams 

could be an indication of activated oxygen and glucose delivery to the brain in response to 

underlying metabolic changes. Even though we expected that QR will exert neuroprotective 

effects against HFD-induced oxidative challenges by activating the neuropeptidergic circuits, 

but in this case, it appears that endogenous GLP-1 expression is further influenced by QR 

treatment which possibly activate mechanisms for mitigating the underpinned biochemical 

changes. According to a study by Zhang et al (2017), GLP-1 has been shown to promote 

regulation of cholesterol metabolism and has the ability to ameliorate lipotoxic oxidative stress. 

Moreover, the observed mild changes in GLP-1 concentration in the brain of HFD+QR fed 

dams may suggest complementary effects of QR on GLP-1 signaling without influence by HFD 

treatment.  

In conclusion, the results of this investigation clearly show that consumption of 45% HFD for 

eleven weeks is not sufficient to produce a valid model of diet-induced neuroinflammation or 

brain oxidative stress. Despite lack of detectable changes in CNS pro-inflammatory markers, 

there was evidence for biochemical changes in the brain. QR is a well-researched anti-

inflammatory agent but its beneficial roles strongly depend on its dosage. In this study, we 

could not fully establish the neuroprotective roles of QR since only a single dose of 150mg/kg 

was considered and may not account for the protective mechanisms of GLP-1 against HFD-

induced biochemical changes. Therefore, future studies are required to ascertain the exact dose 

of QR that is beneficial to neural cells, epigenetic mechanisms associated with pathophysiology 

of HFD and its transgenerational impact.  
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CHAPTER SIX 

SYNTHESIS AND CONCLUSION 

6.1 Synthesis 

Over the last few decades, there has been a global decline in fertility among couples with a 

concurrent increase in obesity (1, 2) which suggests a possible link between obesity and 

infertility (3, 4). Several factors contribute to the etiology of obesity (5) and one of the major 

factor is the consumption of an energy dense food such as a high fat diet . It is worthy of note 

that programming of health and diseases in offspring has been reported to be mostly due to 

environmental factors (during perinatal life) rather than genetic factors (6). Therefore, maternal 

nutrition prior to or during gestation and lactation may be a harbinger to the reproductive health 

of their diet naïve offspring to illuminate on the mechanisms involved and possible intervention 

at critical periods of development. This study was carried out to investigate the impact of 

maternal high-fat diet on metabolic and reproductive profile with a major focus on the 

hypothalamic-pituitary axis at different critical periods of development in their diet naïve 

offspring and gonadal axis in the male offspring. Studies have shown that oxidative stress could 

be the link between adverse fetal growth and later health alterations (7, 8). Therefore, we sought 

to examine the putative role of Quercetin-3-O-rutinoside (a potent antioxidant) on fetal and 

maternal transcriptional, biochemical changes and offspring reproductive profile. The 

regulatory role of adipokines and cytokines on sex steroids in diet naïve male offspring was 

also investigated.  

This study was carried out using the following objectives:  

4. To validate an existing rodent model of HFD-induced metabolic dysregulation using 

45% high-fat and investigate whether maternal consumption of HFD throughout 

gestation could impact on the health of their progenies.  

5. To examine changes in plasma lipid content (TC, HDL, LDL and TG), tissue oxidative 

and inflammatory changes and possible alterations in the expression of chemerin and 

CMKLR1 genes in the placenta, hypothalamus, and testes of diet-naïve offspring rats, 

influenced by maternal HFD consumption.   
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6. To investigate whether QR supplementation could possibly reverse the HFD-induced 

metabolic alterations and changes in reproductive hormone profile (GnRH, LH, 

testosterone) of offspring rats that were prenatally exposed to maternal HFD.  

 

6.1.1 The relationship between Maternal High Fat diet and offspring fertility  

A comprehensive review of the literature on developmental programming of the reproductive 

health of offspring was conducted to elucidate the association between maternal consumption 

of a high fat diet (HFD) and reproductive health of their offspring. This was discussed 

extensively in chapter 2 where we identified some progress and shortcomings in the study of 

the etiology of fertility. Some of the shortcomings in the conventional experimental approach 

to the study of developmental programming is the critical periods of development which 

includes the transition from childhood to early adulthood. This necessitated the study of 

reproductive and metabolic changes that occurs as development progresses from weanling- 

postnatal day (PND) 21, PND 28 to early adulthood PND 35 in rat models of high fat diet 

throughout the study. We also review the putative role of the major organ of the fetal placental 

unit (placenta) cannot be overemphasised. It forms the major means of transfer of nutrient and 

other substances from the mother to the developing child. In this study, we examined all 

biochemical and transcriptional markers in the placenta which provides the link between the 

dams and offspring. From the review, we also discovered that there is a dearth of knowledge 

on how maternal high fat diet affects the diet naïve male offspring. In view of this, the effect 

of maternal high fat diet on the hypothalamic pituitary gonadal axis was examined in the male 

offspring (chapter four).  

6.1.2 High fat diet induced transgenerational oxidative stress 

 Oxidative stress has been implicated in the development programming and epigenetic 

alterations. To therefore build on previous knowledge, chapter three (objectives 1 and 2) forms 

an extensive study on the transgenerational impact of HFD on oxidative stress and lipid profile 

of Sprague dawley rats fed 45% HFD eights weeks prior to gestation and throughout lactation. 
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As an intervention, their diet was supplemented with Quercetin-3-O-rutinoside throughout 

lactation. The lipid profile of high fat diet dams was examined eight weeks after HFD, the 

placenta and liver of dams and offspring (at PND 21, PND 28 and PND 35) were harvested for 

biochemical analysis. We also monitored the food and water intake of the dams for eight weeks 

prior mating. We found out that:  

1. High fat diet fed rats consumed more water daily with no marked changes in food 

intake compared to their counterparts fed the control diet.  

2. After eight weeks of HFD consumption, there was no marked difference in body 

weight, body mass index (BMI), and glucose tolerance in the HFD fed rats.  

3. Hypertriglyceridemia, increased Low-density lipoprotein (LDL) level, a decrease in 

plasma cholesterol, and High-density lipoprotein (HDL) level in rats fed HFD for eight 

weeks.   

4. However, we observed certain phenotypic changes in the HFD naïve male and female 

offspring. They had delayed fur appearance with reduced body weight compared to the 

offspring of the normal diet fed dams.  

5. Lipid peroxidation noted in the placenta and liver of HFD fed dams and in the liver of 

PND 21 male offspring of HFD dams. There was also evidence of hepatic nitrosative 

stress in the female offspring at PND 28.   

6. Oxidative stress parameters (reduced glutathione, superoxide dismutase, catalase, and 

total antioxidant capacity) showed evidence that HFD may lead to persistent hepatic 

oxidative damage in diet naïve offspring and treatment with QR has insignificant 

ameliorative effect which could probably be due to the duration of treatment and 

dosage.  

Overall, we concluded that mater HFD can induce persistent hepatic oxidative damage in their 

diet naïve offspring with minimal effect of 150mg/kg QR.  
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6.1.3 The link between Maternal HFD and HPG axis of Offspring.  

To achieve objective 3  (chapter four), we first assessed the hormonal profile of both male and 

female diet naïve offspring. Using the Enzyme linked immunosorbent assay method, we 

quantified the levels hypothalamic expression of gonadotropin releasing hormone (GnRH), 

serum levels of Luteinising hormone (LH) in both male and female offspring at PND 21, 28 

and 35 and testicular testosterone levels in the male offspring. We observed that the male 

offspring appeared more vulnerable to the impact of maternal HFD exposure during 

intrauterine life. Previous studies have shown that oestrogen seems to have a protective effect 

(9, 10) and the etiology of male infertility is not fully understood as its cause seems idiopathic 

(11). To further probe into the possible etiology of male infertility and its association with 

adipokines and cytokines, Real time qualitative polymerase chain reaction method was used to 

quantify the tissue expression of the novel adipokine chemerin and its receptor CMKLR1, pro 

inflammatory cytokine IL-1β, TNF-α and NFκB in the hypothalamus and testis of the male 

offspring at childhood and early adulthood. Our findings revealed that:  

1. GnRH and LH levels were reduced in both male (PND 21 and PND 28) and female 

(PND 21) offspring. While testosterone levels were reduced at transition from 

adolescence to adulthood.  

2. CMKLR1 receptor was significant downregulated in the testis at PND 35 and 

downregulation of chemerin which further establish its link in male steroidogenesis. 

3. Pro inflammatory cytokines were significantly expressed in the placenta, testis and 

hypothalamus. High levels of pro inflammatory cytokines in the male gonad is an 

indication of infertility (12). 

4. Surprisingly, QR treatment seems to further exacerbate the effect of HFD on HPG axis.  

From objective 3 , we can therefore conclude that HFD has a significant effect on sex steroids, 

local adipokines and cytokines with minimal ameliorative effects of QR treatment.  
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6.1.4 Biochemical changes in the brain of rats prenatally exposed to high-fat diet 

We also further examined the metabolic and pro inflammatory status of the whole brain in 

chapter five. This forms part of a collaborative study with Physiology Department, Faculty of 

Science, Nelson Mandela University. Here we assessed the molecular underpinnings of HFD 

induced neuroinflammatory (TNF-α) and biochemical changes (reduced glutathione, 

Superoxide dismutase, catalase and malondialdehyde) in direct consumers (dams) and diet 

naïve offspring. Glucagon like peptide-1 (GLP-1) expression was increased in direct 

consumers which is indicative of increased oxygen delivery to the brain due to oxidative 

damage. There a time and gender dependent lipid peroxidation in diet naïve offspring 

accompanied by a non-significant increase in TNF-α level. Though the TNF-α in direct 

consumers was not significantly affected the diet naïve PND 28 female offspring were affected 

which could be due to primed sensitization during intrauterine life. Even through there is 

evidence of GLP-1 induced bioenergetic changes.  

6.2 Conclusion 

In conclusion, this study investigates the etiology of developmental programming of 

reproductive functions in diet naïve offspring. We were able to establish that maternal high fat 

diet can induce persistent oxidative stress in their diet naïve offspring which is a major marker 

of epigenetic alterations. The expression of inflammatory cytokines in the brain, hypothalamic 

and testicular tissues further supports the link between inflammation, oxidative stress and 

reduced steroidogenesis at adulthood. There was evidence of GLP-1 induced bioenergetic 

activities in the brain tissues of diet naïve offspring. The presence of increased pro 

inflammatory cytokines in the testis is anti-fertility (12). Furthermore, we also observed that 

maternal HFD can program the infertility in their offspring especially the male offspring 

through the regulation of the release of gonadotropins and androgens along the HPG axis. In 

addition, this study also shows that there might be a relationship between the novel chemerin, 

CMKLR1, and TNF-α in the regulation of male steroidogenesis. Surprisingly, treatment with 
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QR had little or no significant effect on the molecular and biochemical underpinnings of 

maternal HFD induced biochemical and reproductive profile of their diet naïve offspring.  

This current study holds promising answer to understanding some of the idiopathic causes of 

male infertility. However, there were some limitations. One major limitation is that we did not 

do a comparative analysis of QR treatment using different dosage. The duration of exposure to 

HFD prior gestation could have been longer with a higher of HFD. We therefore recommend 

that future study could: 

1. Use a higher dose of QR and treat the animals on HFD for longer period before 

gestation. A higher percentage of HFD may present more metabolic and reproductive 

alterations in their offspring.  

2. Access the impact of maternal HFD on the sperm quality (sperm motility, sperm 

viability, sperm count) and integrity.  

3. Further examine the impact of maternal HFD on diet naïve male offspring at cellular 

(Sertoli and Leydig cells) level for an in-depth understanding of its spermatogenic and 

steroidogenic impact. 

4. Investigate the impact of paternal HFD on reproductive and biochemical profile of their 

diet naïve offspring. 
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