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Abstract

Papyrus Cyperus papyrus )Lswamp is the most species rich habitat that i@y hydrological,
ecological, and economic roles in central tropevadl western African wetlands. However, the
existence of papyrus vegetation is endangered dueteénsification of agricultural use and
human encroachment. Techniques for modelling theiloution of papyrus swamps, quantity
and quality are therefore critical for the rapidessment and proactive management of papyrus
vegetation. In this regard, remote sensing teclasigprovide rapid, potentially cheap, and
relatively accurate strategies to accomplish ekt

This study advocates the development of technigased on hyperspectral remote sensing
technology to accurately map and predict biomagspirrus vegetation in a high mixed species
environment of St Lucia- South Africa which has memerlooked in scientific research. Our
approach was to investigate the potential of hypestgal remote sensing at two levels of
investigation: field level and airborne platfornvéd

First, the study provides an overview of the currese of both multispectral and
hyperspectral remote sensing techniques in mapiiiagquantity and the quality of wetland
vegetation as well as the challenges and the reeddrther research.

Second, the study explores whether papyrus cansbeardinated from each one of its co-
existence species (binary class). Our results stothat, at full canopy cover, papyrus
vegetation can be accurately discriminated fromeitsire co-existing species using a new
hierarchical method based on three integrated sisalgvels and field spectrometry under
natural field conditions. These positive resulterppted the need to test the use of canopy
hyperspectral data resampled to HYMAP resolutiod amo machine learning algorithms in
identifying key spectral bands that allowed fortbetliscrimination among papyrus and other
co-existing species (n = 3) (multi-class classtfam®. Results showed that the random forest
algorithm (RF) simplified the process by identifyithe minimum number of spectral bands that
provided the best overall accuracies. Narrow bamVNand SR-based vegetation indices
calculated from hyperspectral data as well as svegetation indices published in literature
were investigated to test their potential in impngvthe classification accuracy of wetland plant
species. The study also evaluated the robustnebssesinbility of RF as a variables selection



method and as a classification algorithm in idgmid key spectral bands that allowed for the
successful classification of wetland species.

Third, the focus was to upscale the results ofdfispectroscopy analysis to airborne
hyperspectral sensor (AISA eagle) to discriminapypus and it co-existing species. The results
indicated that specific wavelengths located in\ttsible, red-edge, and near-infrared region of
the electromagnetic spectrum have the highest pater discriminating papyrus from the other
species.

Finally, the study explored the ability of narrdMdVI-based vegetation indices calculated
from hyperspectral data in predicting the greenvabground biomass of papyrus. The results
demonstrated that papyrus biomass can be modeitadatatively low error of estimates using
a non-linear RF regression algorithm. This provigetbasis for the algorithm to be used in
mapping wetland biomass in highly complex environtae

Overall, the study has demonstrated the potemifaremote sensing techniques in
discriminating papyrus swamps and its co-existipgcges as well as in predicting biomass.
Compared to previous studies, the RF model appfietthis study has proved to be a robust,
accurate, and simple new method for variables 8efecclassification, and modelling of
hyperspectral data. The results are important éstablishing a baseline of the species

distributions in South African swamp wetlands foture monitoring and control efforts.
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CHAPTER ONE

General introduction



1.1 Papyrus swampsQyperus papyrus.L) in African wetlands

Cyperus papyrus ,Lcommonly called papyrus, belongs to the familyp&wyceae and is one of
the most important wetland species that play \htalrological, ecological, and economic roles
in central tropical and western African wetlandsSpecifically, papyrus is confined to a belt
across equatorial central Africa within the®I¥ and 29S latitudes (Jones and Muthuri, 1985).
In South Africa, papyrus co-occurs with some readd sedgege.g Phragmites australis
Echinocloa pyramidalis, P. mauritianus, C. divesd Typha capensjsin open and regularly
flooded areas of the Greater St Lucia Wetland RangZulu-Natal (Dahlberg, 2005; Adam and
Mutanga, 2009).

Papyrus swamps are capable of a high standing Bmnag@cumulating large quantities of
nutrients (Gaudet, 1980; Jones and Muthuri, 198mdimeet al, 2005; Boar, 2006), and they
are biologically diverse (Denny, 1997), with imgort landscape functions (Junk, 2003). Several
studies in tropical African wetlands have shownithportance of papyrus in hosting habitats for
wildlife and bird species (Harper, 1992; Owino dRgan, 2007) and offering high nutritive
grazing for livestock, especially in the dry seafiduthuri and Kinyamario, 1989). Papyrus also
has a high capacity to intercept or transform n@temoving from catchments to open waters
and therefore improving the water quality and stabilization (Denny, 1997; Azzz al, 2000).
Despite its relative importance, the existence apypus vegetation is endangered due to
intensification of agriculture and human encroachime many parts of Africa (Macleagt al,
2006; Owino and Ryan, 2007). In order to understaedspatial distribution of papyrus swamps
and to monitor their functions in the landscaperéehis a critical need to develop real-time
techniques for modelling the spatial distributiondapredicting its biomass for the rapid
assessment and proactive management of the papwammps. In this regard, the advent of
remote sensing, particularly hyperspectral remetasieig, has offered a unique technique to
accomplish this task because of its capabilitymavigle rapid, accurate, relatively inexpensive,
and near real-time data over large areas (OzestnBaoer, 2002; Schmidt and Skidmore, 2003;
Lu, 2006). Consequently, the challenge would bastgess and monitor both the distribution and
guantity (biomass) of papyrus species using rersetesing techniques in order to provide the
appropriate level of detail and accuracy for dédecand mapping purposes. This facilitates a

better understanding of the species-quantity ictera in a spatial context.



1.2 Hyperspectral remote sensing

The prefix, hyperis derived from Greeljuper, meaning above, excessive, or an exaggerated
amount. The prefix combined with the word “speétralnose meaning relates to colours, form
the word “hyperspectral” (Borengasssral, 2007). In remote sensing, the term ‘hyperspéctral
is synonymous with some other terms such as ‘speetery’, ‘spectroscopy’,
‘spectroradiometry’, and ‘ultraspectral imaging’ I§€k, 1999). Spectrometry or
spectroradiometry was originally developed fromcsfmephotometry; ‘spectrometry’ is a term
used in astronomy and is concerned with the meamne of photons as a function of
wavelength (Kumaret al, 2001). Spectroscopy is the branch of physics eowd with the
interactions between electromagnetic radiation raatter (Kumaret al, 2001). Spectroscopy is
the study of light as a function of wavelength thas been absorbed, reflected, or scattered from
the materials. The material properties that spetify response of the material at every
wavelength are called spectral properties (SuB83)L A spectrometer is an optical instrument
used for measuring the spectra emanating from aatsmrfaces in one or more fixed
wavelengths in a laboratory, field, aircraft, otedige (Kumaret al, 2001). In the 1970s, a
group of scientists (Knipling, 1970; Hunt, 1977;&wand Davis, 1978) were able to develop an
understanding of spectral properties of rocks, mailse and vegetation in terms of the underlying
guantum mechanical process in relation to the ckieyniof the reflecting object. It was
concluded that surface properties can possiblyisterduished by measuring the amount of light
that reflects from a surface. When an image is tcocted from imaging spectrometer data that
measure spectra from contiguous image pixels, ¢hms used are ‘imaging spectroscopy’,
'imaging spectrometry’, or ‘hyperspectral imagif@ark, 1999).

Hyperspectral imaging is a new technique that rhalreds of narrow continuous spectral
bands between 400 nm and 2500 nm, throughout #ikle/i(0.4 nm to 0.7 nm), near-infrared
(0.7 nm to 1 nm), and short wave infrared (1lnm f® 2m) portions of the electromagnetic
spectrum (Vaiphasat al, 2005; Govendeet al, 2009). These contiguous bands and narrow
ranges allow for obtaining a spectrum in each pwsiof the large array of the spatial positions
so that each single spectral wavelength can be tasethke a recognizable image (Figure 1.1)
(Clark, 1999; Mutanga, 2004). This greater s@aimensionality of hyperspectral remote
sensing allows for in-depth examination and disgration of vegetation types that would be

lost using other broad band multispectral scani€schrane, 2000; Mutangat al, 2003;
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Schmidt and Skidmore, 2003; Govendetr al, 2009). Therefore, it is hypothesised that
hyperspectral sensors could help to overcome liiaita of spatial and spectral methods when
using the broader bands of multispectral scannstesys, such as the mixed pixel problem in
mapping vegetation species and the saturation gmobt estimating biomass in more dense and
high canopy vegetated areas. In this study, twéerdift hyperspectral sensors were used.
Measurements were made at field level using thelydpnal Spectral Devices (ASD)
FieldSpec®3 spectrometer with 2151 spectral barade 850 nm to 2500 nm and at the airborne
platform level using the AISA Eagle sensor with ZpEctral bands from 393 nm to 900 nm.
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Figure 1.1. A narrow band IRIS (Infrared Intelligent Spectramadeter) spectrum for fresh

green vegetation compared with the discrete wawkbahmultispectral LANDSAT TMKumar
et al, 2001).

1.3 Challenges and opportunities: remote sensing papyrus vegetation

1.3.1 Discriminating papyrus vegetation using hyperspectral data

Papyrus swamps have increasingly been recognizbdiag the most habitat rich areas that play

ecological, hydrological, and economic roles irptcal wetlands in Africa. To sustain these vital



functions of papyrus swamps, a comprehensive utalelimg of species composition and
distribution is therefore critical for their rapassessment and proactive management (Nagendra,
2001; Schmidt and Skidmore, 2003). Traditionallyedes discrimination for floristic mapping
requires intensive fieldwork, including taxonomidaformation, collateral and ancillary data
analysis, and the visual estimation of percentagercfor each species. This method is labour-
intensive, time-consuming, expensive, and sometimagsplicable due to the poor accessibility
of papyrus swamps and is thus, practical only latiely small areas. In this context, remote
sensing techniques provide rapid, potentially cheapd relatively accurate strategies for
monitoring species composition and distribution.

However, wetland plant species, such as papyras)@ as easily detectable as terrestrial
plant species. This is for two reasons. First, &egbus wetland vegetation generally exhibits
high spectral and spatial variability because @f skeep environmental gradients that produce
short ecotones and sharp demarcations betweenetigtation units (Schmidt and Skidmore,
2003; Adam and Mutanga, 2009; Zonedral, 2009). Hence, it is often difficult to identifire
boundaries between vegetation community types. rf8gcthe reflectance spectra of wetland
vegetation canopies are often very similar andcarmabined with the reflectance spectra of the
underlying soil, hydrologic regime, and atmosph&apour (Guyot, 1990; Malthus and George,
1997; Yuan and Zhang, 2006). This combination uguwamplicates optical classification and
results in a decrease in the spectral reflectaagpecially in the near-to mid-infrared regions
where water absorption is relatively stronger (F20@03; Silveet al, 2008).Therefore, the broad
band satellites such as Landsat TM and SPOT, w#hect to the sharp ecological gradient with
narrow vegetation units in wetland ecosystems, hanaven insufficient for discriminating
vegetation species in detailed wetland environm@vitsy et al, 1997; Harvey and Hill, 2001,
McCarthyet al, 2005).

A significant step forward for remote sensing waadmwith the development of imaging
spectrometry and/or hyperspectral sensors. Thigldement in imaging spectrometry allowed
for significant improvement in the accurate detactof small wetland vegetation unit at species
level (Daughtry and Walthall, 1998; Schmidt and ddkore, 2003; Vaiphasat al, 2005).
However, even with the spectral and spatial cafisilof hyperspectral imaging to discriminate
between species, studies have shown that the taaflses of vegetation species are highly

correlated because of their similar biochemical aiogphysical properties (Portigat al, 1997).



Furthermore, these properties are directly infleehisy environmental factors and, therefore, the
possibility of a unique spectral signature of anplapecies has become questionable (Price,
1994). In addition, spectral variations can alscuoavithin a species because of age differences,
micro-climate, soil and water background, precimta topography, and stresses (Carter, 1994;
Portigalet al, 1997; Garcia and Ustin, 2001; Sméhal, 2004).

On the other hand, the high spectral resolutiorhyerspectral data comes with the
complexity of the high data dimensionality (Bajwaal, 2004).This redundant data might be
problematic in terms of image processing algorithars excessive demand for sufficient field
samples, high cost, and overfitting when using ivatliate statistical techniques (Bajcsy and
Groves, 2004; Borgest al, 2007; Mutanga and Kumar, 2007; Vaiphasal, 2007). Therefore,
it is imperative to identify the optimal bands regqd for discriminating and mapping wetland
species without losing any important informatioraj@&y and Groves, 2004; Vaiphastal,
2007). Various univariate and multivariate banduatgbn techniques have been developed, such
as RF, partial least square regressions, cladsificarees, discriminant analysis, principal
component analysis, and artificial neural netwadtks, therefore, important to understand the
advantages and disadvantages of band reductiomites and select accordingly. In this
context, the challenge would be to explore and tebuist methods and techniques for the
effective processing and classification of hypecsad data for better and more accurate
detecting and mapping of papyrus swamps. Furthernbese methods and techniques need to
be automated to some degree with limited humamvetdion to allow for critical evaluation
(Soh and Tsatsoulis, 1999).

1.3.2 Assessment of papyrus quantity using hyperspectral data

Papyrus vegetation is increasingly being recogniftedits accumulated large quantities of
nutrients (Gaudet, 1980) and high standing bion@mssluctivity (Muthuri and Kinyamario,
1989; Jones and Muthuri, 1997; Kansiieteal, 2005). The value of papyrus swamp in tropical
wetlands often depends on the status of its prodiyctEfficient techniques that can spatially
and temporally monitor the stability of papyrus guotivity and whether significant changes are
taking place in papyrus swamp are, therefore, requMeasuring the biophysical parameters of
papyrus vegetation, such as biomass, is impor@ntgfantifying the primary production or

carbon cycle of the swamp ecosystem (Jones anduvufl®97; Kansiimeet al, 2005). Direct



field methods for estimating biomass require frequiestructive harvesting (Lu, 2006). Such
traditional methods are expensive, time-consumatgur-intensive, and difficult to implement,
especially in such large and inaccessible areas @006). Remote sensing, particularly
spectroscopy, offers advanced and effective teci@sighat can provide the needed protocols for
monitoring papyrus biomass.

Based on broad band satellite images, vegetatidices such as Normalized Difference
Vegetation Index (NDVI) and Simple Ratio (RS) hdeen the most successful in quantifying
and monitoring wetland productivity over large are& open canopy scale (Moregtual, 2003;
Rendonga and Jiyuanb, 2004; Prayal, 2007).

In spite of these successes, vegetation indiceslleééd from broad band sensors can be
unstable, owing to the underlying soil colour, gapand leaf properties, and atmospheric
conditions (Huete and Jackson, 1988; Teddl, 1998). Furthermore, NDVI derived from broad
band satellite images such as NOAA or Landsat Thmasotically saturate after a certain
biomass density, and measurement accuracy droggdeoably (Tucker, 1977; Gaa al, 2000;
Thenkabailet al, 2000). Figure 1.2 shows a hypothetical illustiatiof this biomass-NDVI
relationship.

More recently, the appearance of hyperspectralossrisas opened new perspectives for
developing vegetation indices (VIs) using the pded additional narrow bands within the
visible, NIR, and short wave infrared (SWIR) wits$ than 10 nm bandwidths from visible to
SWIR (350 nm — 2500 nm) rather than focusing onréteand NIR broad band (Hansen and
Schjoerring, 2003; Mutanga and Skidmore, 2004a; &hal, 2007; Favaet al, 2009). The use
of NDVI calculated from narrow bands has been fotmte one possibility for overcoming or
reducing the data saturation problem (Mutanga aidn$re, 2004a). This capability of Vs
calculated from narrow bands needs to be testachproved for better estimation of papyrus
biomass in more densely vegetated and wetland .aheakis thesis, it is hypothesised that
hyperspectral remote sensing, with its capability résolve detailed spectral features, can

estimate papyrus biomass accurately.
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Figure 1.2. Relationship between NDVI and biomass. The satmrdével is usually reached at
about 0.3 g cm? (Mutanga, 2004).

1.4 Research objectives

The main aim of this study was to investigate tb&eptial of hyperspectral remote sensing to
discriminate papyrus vegetation from its co-exiptapecies and to estimate biomass of papyrus
at high canopy density or full canopy level in tBeeater St Lucia Wetland Park, South Africa.
The specific objectives in this study are as foBow
1. To explore the usefulness @h situ spectroscopic data in discriminating papyrus
vegetation from its co-existing species (binargsleechniques),
2. To investigate the usefulness wof situ spectroscopic data in discriminating among
papyrus vegetation and its co-existing speciest{rlalss techniques),
3. To determine if machine learning algorithms (RFh @ccurately discriminate among
papyrus and other co-existing species using resahiY MAP data,
4. To examine whether vegetation indices derived fepactroscopy data can be used to

enhance the separability and classification acgubativeen vegetation species,
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5. To test the reliability and robustness of the imdraccuracy assessment of the RF as a
variable selection and classification algorithndiscriminating between the species,

6. To investigate the potential of imaging spectrogcop discriminating among papyrus
and its co-existing species using airborne hypetspedata (AISA eagle), and

7. To explore the potential of hyperspectral datastineating biomass of papyrus at high

canopy density or full canopy levels.

1.5 Scope of the study

In this study, the potential use of hyperspecteamhote sensing techniques to discriminate and
estimate biomass of papyrus swamps in the GredtdruSia Wetland, South Africa was
investigated. Two classification methods were itigesed to discriminate papyrus from its co-
existing species: binary class which focused owmroiignating papyrus from each of its co-
existing species and multi-class for discriminatangong papyrus and its co-existing species.
The use of hyperspectral remote sensing techniguesstimating papyrus biomass was
subsequently evaluated.

Two hyperspectral levels were investigated: ddflevel using a hand-held spectrometer
data and at airborne platform level using AISA eatgta. In a follow-up study, the usefulness of
hyperspectral data was also evaluated for estigai@pyrus biomass at full canopy level. In this
context, relatively more emphasis was placed orpthdiction of papyrus biomass because it is
considered as the most limiting factor for the egaal, hydrological, and economic roles of
papyrus in a wetland ecosystem (Muthuri and Kinyamal989; Jones and Muthuri, 1997,
Kansiimeet al, 2005). The Greater St Lucia Wetland Park (GLWP$outh Africa was used as

a test site both for field and airborne spectroynetr

1.6 The study area

The Greater St Lucia Wetland Park is a protected &cated on the eastern coast of KwaZulu-
Natal Province, about 245 kilometres north of Darlouth Africa. The park stretches from the

southern Mozambiqucan coastal plain to KwaZulu-Natavering about 328 000 hectares

between longitudes 321 E and 3234 E and latitudes 284 S and 28 24 S (Figure 1.3).
Therefore, the GSWP is considered to be the lamgstrine system in Africa (Taylor, 1995).



The climate is sub-tropical with the mean annuadfall varying from 1500 mm on the eastern
shore to 700 mm on the western shore of the lakgl¢f, 1995). The GSWP is characterized by
a high diversity of ecosystems including marinéama lake, estuarine, forested dune, mangrove,
and coastal and swamp forest. The area is permwratiter wet or flooded with freshwater
throughout the year and is recognized as a UNES@@QdMeritage Site and a Ramsar wetland
of global significance. The park supports extraoady ecological and biological diversity due to
its location that is between tropical and sub-trapbiota.

Different wetland vegetation species cover the padkuding those in salt marshes (e.g.
Juncus krausii, Salicornia spp., and Ruppia ma@mSaline reed swampsPliragmites
mauritianug; Sedge Swamp E{eocharis limosp and Echinochloa floodplain grassland
(Echinochloa pyramidalis, Eriochloa spp., and Cypespp), but the most dominant species are
found in the freshwater swamps and are reed angrggPhragmites australi@and Cyperus
papyrud as well as Echinochloa pyramidali@nd Thelypteris interruptaln this study, four
study sites were focused on including Futululu $aréhe Dukuduku Indigenous Forest, Mfabeni
swamps and Mkuzi swamps (Figure 1.3). At thesessjtapyrus Qyperus papyruspccurs in
large areas between forested dunes and plantatiestfon organic and alluvial seiith mainly
three other species includiRhragmites australisEchinochloa pyramidalisand Thelypteris

interrupta (Adam and Mutanga, 2009)
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Figure 1.3.Location of the study area in KwaZulu-Natal Praérof South Africa.
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1.7 Thesis outline

To achieve the main objectives of this study, thesis is organized as a collection of 6 research
papers that have been submitted to peer reviewedhational journals. Of these 6 papers, 3
papers have already been published and 2 paperstiiren review and the remaining in
preparation. Each paper has been written as a-atand article that can be read separately from
the rest of the thesis but that draws separatelesinos that link to the overall research
objectives and questions. As a result, a numbewreflaps and replications occur in the sections
“Introduction” and “Method” in the different chapte This problem is deemed to be of little
significance when one considers the critical pesiew process and the fact that the different
chapters are papers that can be read separatdlgutvikosing the overall context. The thesis
consists of 8 chapters:

Chapter 2 contains a detailed literature revievthef relevant application of multispectral
and hyperspectral remote sensing in discriminaéing estimating some of the biophysical and
biochemical parameters of wetland vegetation. Sipa@levance to the objectives of this study
is highlighted in Section 2.6 (spectral discrimioatof wetland species using hyperspectral data)
and Section 2.7 (estimating biophysical and biodbhahparameters of wetland species). The
research gaps and challenges in the applicatiohypérspectral remote sensing in wetland
species are introduced.

Chapter 3 contains an investigation into the abiit hyperspectral data to discriminate
between papyrus vegetation and its co-existing ispedhe study determines if there is a
significant difference in the mean of reflectanegween the pairs of papyrus and each one of the
co-existing species (binary class) at each measuagelength from 350 nm to 2500nm. For the
wavelengths that are significantly differept< 0.001), it was tested whether some wavelengths
have more discriminating power than others and wb@&nd combinations can yield the lowest
misclassification rate.

Chapter 4 contains the findings of an investigatioto the potential use of machine
learning algorithms (RF) and resampled HYMAP dataatcurately discriminate between
papyrus and its co-existing species at canopy |évehis chapter, the work presented in Chapter
3 is extended from binary class classification toltirclass classification to assess the use of
spectroscopic data in discriminating between pagpwnd its co-existing species at canopy level

under natural field conditions using RF algorithamsl variables selection methods.
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Chapter 5 investigates the potential of several etagn indices derived from
hyperspectral data to better improve the discribmigaaccuracy between papyrus and other
species using RF ensembles. Specifically, the séxdynined the ability of widely used indices
(NDVI and SR) calculated from hyperspectral bataglentify the most important portions of
the electromagnetic spectrum that could yield ragburacy in discriminating between papyrus
and its co-existing species at canopy level. Sosgetation indices published in the literature
were also investigated and new indices were prapose

Chapter 6 is based on the observations and coonkisirawn from Chapter 3 to Chapter 5
to develop the best approach for discriminatingveen papyrus and its co-existing species
using airborne hyperspectral imagery (AISA eagle).

Chapter 7 evaluates the utility of the widely usedices (NDVI and SR) derived from
hyperspectral bands to identify the most sensitagrons of the electromagnetic spectrum that
could be used to estimate papyrus biomass at lsigbpy density. The RF regression algorithm
was implemented to test whether narrow band vegataidices could predict papyrus biomass
under field conditions.

Finally, a synthesis of the study is provided ira@ter 8. The findings are summarized and
conclusions are derived from the preceding chapSome relevant recommendations for future
research on the applications of remote sensingetiand vegetation mapping are outlined. A
special focus is directed towards the operatiosal of remote sensing techniques in mapping
and monitoring of papyrus swamps.

A single reference list is provided at the endhef thesis.
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CHAPTER TWO

Literature review

This chapter is based on:

Adam, E., Mutanga, O. and Rugege, D. (2009). Multis@and hyperspectral remote sensing
for identification and mapping of wetland vegetatiodVetland Ecology and Managemgent
18,281-296.
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Abstract

Wetland vegetation plays a key role in the edcklgfunctions of wetland environments.
Remote sensing techniques offer timely, up-to-datej relatively accurate information for
sustainable and effective management of wetlan@taéign. This article provides an overview
on the status of remote sensing applications iaridignating and mapping wetland vegetation,
and estimating some of the biochemical and bioglaysparameters of wetland vegetation.
Research needs for successful applications of ees®tsing in wetland vegetation mapping and
the major challenges are also discussed. The revemuses on providing fundamental
information relating to the spectral characterssti€ wetland vegetation, discriminating wetland
vegetation using broad and narrow bands, as walktisiating water content, biomass, and leaf
area index. It can be concluded that the remotsisgof wetland vegetation has some particular
challenges that require careful consideration geoto obtain successful results. These include
an in-depth understanding of the factors affectihg interaction between electromagnetic
radiation and wetland vegetation in a particulaviemment, selecting appropriate spatial and
spectral resolution as well as suitable processiolgniques for extracting spectral information of

wetland vegetation

Keywords: Biomass. Leaf area indeMapping. Remote sensingWater content. Wetland

vegetation
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2.1 Introduction

Wetland vegetation is an important component oflamet ecosystems that plays a vital role in
environmental function (Kokaly and Clark, 1999a;a¥vitand Zhang, 2006). It is also an excellent
indicator for early signs of any physical or cheahiclegradation in wetland environments
(Dennison et al., 1993).

Mapping and monitoring vegetation species distrdyyt quality, and quantity are
important technical tasks in sustainable manageroéntetlands. This task involves a wide
range of functions including natural resource ineen and assessment, fire control, wildlife
feeding, habitat characterization, and water quatitonitoring at a given time or over a
continuous period (Carpentet al, 1999). Moreover, it is essential to have up-atedspatial
information about the magnitude and the quality vefgetation cover in order to initiate
vegetation protection and restoration programmeseftal, 2005).

Traditionally, species discrimination for floristimapping requires intensive fieldwork,
including taxonomical information, collateral anchcdlary data analysis, and the visual
estimation of percentage cover for each specias; ith labour-intensive, costly, and time-
consuming and sometimes inapplicable due to the pocessibility, and is thus, only practical
on relatively small areas (Hardisley al, 1986; Lee and Lunetta, 1995; Klemas, 2001). Remot
sensing, on the other hand, offers a practicalemmhomical means to discriminate and estimate
the biochemical and biophysical parameters of tleland species, and it can make field
sampling more focused and efficient. Its repeatecage offers archive data for detection of
change over time, and its digital data can be yastkegrated into Geographic Information
System (GIS) for more analysis (Shaikih al, 2001; Ozesmi and Bauer, 2002). For this
advantage, many researchers have used both mattislpdata such as Landsat TM and SPOT
imagery to identify general vegetation classescoattempt to discriminate broad vegetation
communities (Mayet al, 1997; Harvey and Hill, 2001, Let al, 2005) as well as classify and
map wetland vegetation at the species level usypgispectral data (Schmidt and Skidmore,
2003; Rosscet al, 2005; Vaiphasaet al, 2005; Bellucoet al, 2006; Pengrat al, 2007).
Moreover, the use of remote sensing techniques e extended into measuring the
biophysical and biochemical properties such asdesd index (LAI), biomass, and water content
of wetland vegetation (Penuelesal, 1993a; Rendonga and Jiyuanb, 2004; Preisal, 2007).
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The rapid growth in the number of studies that havestigated the use of remote sensing
in studying wetland species makes it necessaryrduige an overview of the techniques that
have been used and to identify those aspects tihatezd further investigation. This would be
useful practically in wetland management and sifieally through highlighting the priorities
and challenges for further research.

Previous reviews on remote sensing of wetlandsides those by Silvat al. (2008) who
discussed the theoretical background and applitaitad remote sensing techniques in aquatic
plants in wetland and coastal ecosystems. OzesthBaner (2002) reviewed the classification
techniques used to map and delineate differentawéttypes using different remotely sensed
data. Lee and Lunetta (1995) reviewed the usetanddst of airborne and satellite sensors in the
inventory of and change detection in wetlands. Té@ew by Klemas (2001) addressed the
current use of remote sensing and its opportungesinent in monitoring the environmental
indicators in coastal ecosystems. Hardiskyl. (1986) reviewed different remotely sensed data
for coastal wetlands and estimating biomass.

The limitation of the above-mentioned reviews iattho specific aspect of the application
of remote sensing has been addressed individuatlyr@ost of the reviews have been focused on
the use of remote sensing in mapping and identidicaof wetland types at a broad level. There
has been no specific review on the use of both ispeetral and multispectral remote sensing in
discriminating wetland vegetation as well as edfinga its biophysical and biochemical
properties which is essential in wetland managentéemce, this review focuses specifically on
the application of remote sensing in discriminatingd estimating the biophysical and
biochemical properties of wetland vegetation.

The specific objectives of this study were to rewithe status of application of both
multispectral and hyperspectral remotely sensed ohatvetland vegetation with special focus
on: 1. discriminating and mapping wetland vegematih estimating some of the biophysical and
biochemical properties of wetland vegetation, andhighlighting the major challenges and

further research needed for a successful applicatioemote sensing in wetland vegetation.

2.2 Challenges in mapping wetland vegetation

Wetland plants and their properties are not adyedstectable as terrestrial plants, which occur

in large stratification. This is for two reasongsE herbaceous wetland vegetation exhibits high
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spectral and spatial variability because of thes&nvironmental gradients which produce short
ecotones and sharp demarcation between the vegetaits (Schmidt and Skidmore, 2003;
Adam and Mutanga, 2009; Zomet al, 2009). Hence, is often difficult to identify the
boundaries between vegetation community types. rf8gcthe reflectance spectra of wetland
vegetation canopies are often very similar and camabined with reflectance spectra of the
underlying soil , hydrologic regime, and atmospberapour (Guyot, 1990; Malthus and
George, 1997; Yuan and Zhang, 2006). This comlmnatisually complicates the optical
classification and results in a decrease in thetsgereflectance, especially in the near-to mid-
infrared regions where water absorption is strongegure 2.1) (Fyfe, 2003; Silvat al,
2008).Therefore, the current efforts which havenb&gccessful at mapping terrestrial vegetation
using optical remote sensing, may not be ableeeiipatially or spectrally, to effectively
distinguish the flooded wetland vegetation becahgseperformance of near- to mid-infrared
bands are attenuated by the occurrences of umgriyater and wet soil (Schmidt and
Skidmore, 2003; Hestiet al, 2008). However, hyperspectral narrow spectrahokbs offer the
potential to detect and map the spatial heterogerai wetland vegetation (Schmidt and
Skidmore, 2003; Vaiphasat al, 2007; Hestiet al, 2008).

—Mean reflectance of papyros
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Figure 2.1. Mean canopy reflectance spectraQyiperus papyru&. in swamp wetland with the
dominating factor influencing each interval of tharve. Most of the short wave infrared
wavelengths (water content wavelength) are affelsyeatmospheric noise.
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2.3 Factors affecting spectral characteristics of atland vegetation

When solar radiation interacts with leaves, it rhayreflected, absorbed, and/or transmitted. All
vegetation species contain the same basic compotigit contribute to its spectral reflectance,
including chlorophyll and other light-absorbing pignts, water, proteins, starches, waxes, and
structural biochemical molecules, such as lignid aellulose (Price, 1992; Kokaly and Clark,
1999b). Hence, the spectral separability of vegetatpecies is challenging due to those limiting
factors affecting the spectral response of vegetagpecies (Price, 1992; Rosstoal, 2005). In
general, the spectral differences among vegetapecies are normally derived from leaf optical
properties related to the biochemical and bioplaystatus of the plants. Leaf optical properties
depend on leaf surface and internal structure, tbaftkness, water content, biochemical
composition, and pigment concentration (Kureairal, 2001; Ross@t al, 2005). The spectral
reflectance of wetland vegetation is normally sulatlid into four domains. While vegetation
types generally have a high reflectance and tratemcie in the near-infrared region and strong
water absorption in the mid-infrared region (Fig@d), the spectral reflectance of wetland

vegetation is normally divided into four domainssaswn in Table 2.1.

Table 2.1: The spectral reflectance of green vegetation enfdlir regions of electromagnetic
spectrum defined by Kumat al (2001)

Wavelengths description Spectral reflectance of vegetation Refees

region (nm)

400-700 Visible Low reflectance and transmittance due {&umar et al, 2001,
chlorophyll and carotene absorption Rossoeet al, 2005)

680-750 Red-edge The reflectance is strongly correlatefClevers, 1999;
with plant biochemical and biophysicaMutanga and
parameters. Skidmore, 2007)

700-1300 Near-infrared High reflectance and transmittance, veiumar et al, 2001;

low absorption. The physical control iRossoet al, 2005)
internal leaf structures.

1300-2500 Mid-infrared Lower reflectance than other spectru@umaret al, 2001)
regions due to strong water absorption
and minor absorption of biochemical
content.
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The most important factors affecting the speciéiectance among wetland vegetation are
the biochemical and biophysical parameters of thetg’' leaves and canopy such as chlorophyll
a and b, carotene, and xanthophylls (Guyot, 1990n&tet al, 2001). Wetland species appear
to vary greatly in chlorophyll and biomass reflecta as a function of plant species and
hydrologic regime (Anderson, 1995). Spectral betvawvof wetland vegetation is also influenced
by leaf water content which determines the absomptif the mid-infrared region (Datt, 1999).
Red reflectance increases with leaf water stressugfn an association with a reduction in
chlorophyll concentration (Filella and Penuelas94)9The relationship between the increase of
near-infrared leaf reflectance and decrease of leafer content has also been reported
(Aldakheel and Danson, 1997). For example, Yuan Zmahg (2006) compared the laboratory
and field spectral characteristics of the submergadt (Vallisneriaspiralis) in the constructed
wetland at Shanghai in China. They found that frexsal reflectance measured by the ground-
based spectroradiometer sensor was a combinatiplamf spectra, segmental water, and fundus
spectrum.

Leaf area index is also a key variable in the cgmeflectance of the wetland vegetation.
The canopies with a high LAI reflect more than t@opies with medium or low LAI. However,
higher LAI canopies allow only little light radiam to reach to the mature leaves under
vegetation canopies and the soil background (AB&diman and Ahmed, 2008; Darvishzaééh
al., 2008). Studies show that the spectral signattiteopical wetland canopies is also affected
by the different seasons, plant architecture, dnchination angle (Cochrane, 2000; Artigas and
Yang, 2005; Darvishzadedt al, 2008).

2.4 Mapping wetland vegetation using multispectratiata

Historically, aerial photography was the first rameensing method to be employed for mapping
wetland vegetation (Seher and Tueller, 1973; Shetmal, 1976; Howland, 1980; Lehmann and
Lachavanne, 1997). These studies concluded thel adiotography is most useful for detailed
wetland mapping because of its minimum mapping (MMU). However, aerial photography is
not feasible for mapping and monitoring wetlandetatjon on a regional scale or for monitoring
that requires continual validation of informatioecause it is costly and time-consuming to

process.
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Currently, a variety of remotely sensed images available for mapping wetland
vegetation at different levels by a range of aingoand spaceborne sensors from multispectral
sensors to hyperspectral sensors which operaténwiith different optical spectra, with different
spatial resolutions ranging from sub-metre to kiddras and with different temporal frequencies
ranging from 30 minutes to weeks or months. Amdmant, aerial photography, Landsat TM,
and SPOT images were commonly investigated in nmgppegetation types in wetlands. The
common image analysis techniques used in mappintawdevegetation include digital image
classification (i.e. unsupervised and supervisesgsification) (Mayet al, 1997; Harvey and
Hill, 2001; McCarthyet al, 2005) and vegetation index clustering (Nagierl, 2001; Yang,
2007). Mayet al. (1997) compared Landsat TM and SPOT multispediatd in mapping shrub
and meadow vegetation in northern California. Tbeycluded that Landsat TM data were more
effective than SPOT data in separating shrubs freadows. However, neither Landsat TM nor
SPOT data were effective in distinguishing meadal-types. McCarthyet al. (2005) in
Botswana found that the high spatial and tempaaehtion in vegetation in the Okavango Delta
makes ecoregion classification from Landsat TM dataatisfactory for achieving land cover
classification. In Australian wetlands, Landsat TMs proven to be a potential source of
defining vegetation density, vigour, and moistuigLss, but not efficient in defining the species
composition (Johnston and Barson, 1993). Harvey Hilid(2001) in the Northern Territory,
Australia, compared aerial photographs, SPOT X8,laamdsat TM image data to determine the
accuracy and applicability of each data sourcetferspectral discrimination of vegetation types.
Their results demonstrated that aerial photograpéy clearly superior to SPOT XS and Landsat
TM imagery for detailed mapping of vegetation conmitigs in the tropical wetland. They also
found that the sensitivity of Landsat band 2 (gjeband 3 (red), band 4 (near-infrared, NIR),
and band 5 (mid-infrared, MIR) provided a more aateiclassification than SPOT. Ringrase
al. (2003) used NOAA-AVHRR and SPOT to map the edgkgconditions at the Okavango
delta in Botswana. They concluded that it wasidliff to discriminate grassed floodplain from
wooded peripheral drylands. Sawagiaal. (2003) at Minnesota in USA were able to map the
vegetation groups at a local scale using IKONOSgema with a high level of classification
accuracy (80%).

Imagery from the Landsat TM and SPOT satelliterumaents have proven insufficient for

discriminating vegetation species in detailed wetl@nvironments (Magt al, 1997; Harvey
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and Hill, 2001; Ringroset al, 2003; Sawayat al, 2003; McCarthyet al, 2005).This is due to:
1. the difficulties faced in distinguishing finecatogical divisions between certain vegetation
species, 2. the broad nature of the spectral wandsbavith respect to the sharp ecological
gradient with narrow vegetation units in wetland®stems, and 3. the lack of high spectral and
spatial resolution of optical multispectral imagevizich restricts the detection and mapping of
vegetation types beneath a canopy of vegetatiatemsely vegetated wetlands.

Although these studies produced reasonable resuolthapping wetland vegetation at a
regional scale and vegetation communities, morearet is needed to explore the benefits of
incorporating bathymetric and other auxiliary detamprove the accuracy of mapping wetland

vegetation at the species level.

2.5 Improving the accuracy of wetland vegetation elssification

Spectral discrimination between vegetation typesomplex environments is a challenging task,
because commonly different vegetation types maysgxss the same spectral signature in
remotely sensed images (Domag¢ and Sizen, 2006etS#a2008; Xieet al, 2008). Traditional
digital imagery from multispectral scanners is sgbjto limitations of spatial, spectral, and
temporal resolution. Moreover, applications of peel classifiers to images dominated by
mixed pixels are often incapable of performing Sattorily and produce inaccurate
classification (Zhang and Foody, 1998). Due to tenplexities involved, more powerful
techniques have been developed to improve the acgwf discriminating vegetation types in
remotely sensed data.

Domac¢ and Stzen (2006) in the Amanos Mountagggoon of southern-central Turkey
used knowledge-based classifications in which tleeynbined Landsat TM images with
environmental variables and forest management iogpoduce regional scale vegetation maps.
They were able to produce an overall high accuratyen compared with the traditional
maximum likelihood classification method. Anothexample for improving classification
accuracy by incorporating vegetation-related emvitental variables using GIS with remotely
sensed data was the work of Yang (2007) at HunégsidR in Australia. He used digital aerial
photographs, SPOT-4, and Landsat-7 ETM+ imagesrifiarian vegetation delineation and
mapping. The overall vegetation classification aacy was 81% for digital aerial photography,
63% for SPOT-4, and 53% for Landsat-7 ETM+. Thalgttevealed that the lack of spectral
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resolution of aerial photographs and the coarsgadpasolution of the current satellite images is
the major limiting factor for their application wetland vegetation mapping.

Artificial neural network (ANN) and fuzzy logic appaches were also investigated to
improve the accuracy of mapping vegetation typesomplex environments. ANN proved to be
valuable in mapping vegetation types in wetlandiremvwnents. One disadvantage of ANN,
however, is that ANN can be computationally demagdio train the network when large
datasets are dealt with (Carpergeial, 1999; Berberoglet al, 2000; Filippi and Jensen, 2006;
Xie et al, 2008). Berberoglet al. (2000) at the Cukurova Deltas in Turkey combiné¢éNAand
texture analysis on a per-field basis to classfydl cover from Landsat TM. They were able to
increase the accuracy achieved with maximum likelthclassification by 15%. Carpentdral.
(1999) compared conventional expert methods andAREMAP neural network method in
mapping vegetation types at the Sierra Nationaé$tan Northern California using Landsat TM
data. Their research illustrated that the accuveay improved from 78% in conventional expert
methods to 83% when the ARTMAP neural network meétivas used. The ARTMAP neural
network method was found to be less time-consuraimg) its production to be easily updated
with any new observation.

A fuzzy classification technique, which is a kinfippobability-based classification rather
than a crisp classification, is also useful in ndkatass areas and was investigated for solving the
problem of mapping complex vegetation. $aal (2008) at the Xilinhe River Basin in China
employed a hybrid fuzzy classifier (HFC) for mapgpinegetation on typical grassland using
Landsat ETM+ imagery. It was concluded that HFC wmasch better than conventional
supervised classification (CSC) with an accuraaggaage of 80.2% as compared to 69.0% for
the CSC. Promising results have also been achigveding fuzzy classification for suburban
land cover classification from Landsat TM and SPERV data by Zhang and Foody (1998) at
Edinburgh in Scotland. They concluded that fuzassification not only has advantages over
conventional hard methods and partially fuzzy apphes, but also is more feasible in
integrating remotely sensed data and ancillary.data

Decision tree (DT) classification has also showaonmsing results in mapping vegetation in
wetlands and complex environments. DT is a simpleé #exible non-parametric rule-based
classifier and it can handle data that are reptedeon different measurement scales. This is
useful especially when there is a need to integfaeenvironmental variables (e.g. slope, soll
type, and rainfall) in the mapping process &ual, 2005; Xieet al, 2008).Xu et al. (2005) at
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Syracuse in New York employed a decision tree agglession (DTR) algorithm to determine
class proportions within a pixel so as to produc# End cover classes from Landsat ETM.
Their results clearly demonstrate that DTR producessiderably higher soft classification
accuracy (74.45%) as compared to the conventioraatimum likelihood classifier (MLC)
(55.25%) and the fuzzy C-means supervised (FCM}(B4).

It has been revealed from the present review thatimgle classification algorithm can be
considered as an optimal methodology for improwegetation discrimination and mapping.
Hence, the use of advanced classifier algorithmstrba based on their suitability to achieve

certain objectives in specific areas.

2.6 Spectral discrimination of wetland species usghhyperspectral data

In remote sensing, the term ‘imaging spectroscapgynonymous with some other terms such
as ‘imaging spectrometry’ and ‘hyperspectral’ ottraspectral imaging’ (Clark, 1999). In
general, hyperspectral remote sensing has hundfedsrow continuous spectral bands between
400 nm and 2500 nm, throughout the visible (0.4tar@.7 nm), near-infrared (0.7 nm to 1 nm),
and short wave infrared (1nm to 2.5 nm) portionshef electromagnetic spectrum (Vaiphasa
al., 2005; Govendeet al, 2009). This greater spectral dimensionality opdrgpectral remote
sensing allows in-depth examination and discriniimaof vegetation types which would be lost
with other broad band multispectral scanners (Caoodr 2000; Mutangat al, 2003; Schmidt
and Skidmore, 2003; Govendet al, 2009). Hyperspectral remote sensing data is mostl
acquired using a hand-held spectrometer or airbeemsors. A hand-held spectrometer is an
optical instrument used for measuring the spectumnating from a target in one or more fixed
wavelengths in the laboratory and the field (Kuraetal, 2001). The accurate measurements of
the spectral reflectance in the field were esthblisin the 1960s as a result of the rapid growth
in airborne multispectral scanners (Miltehal, 2009). Historically, the application focused on
the structure of matter. Recently, however, thdiegion has been broadened, including other
aspects of electromagnetic and non- electromagratiation.

In the last twenty years, field spectrometry hasnbglaying vital roles in characterizing the
reflectance of vegetation typessitu, and providing a means of scaling up measurenidigld
(canopy and leaves) and laboratory levels (Mil&tnal, 2009). Many attempts have been

successfully made to discriminate and classify avetl species based on their fresh leaf
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reflectance at laboratory levels with the view twalgg it up to airborne remote sensing
(Vaiphasaet al, 2005; Vaiphasat al, 2007) and field reflectance at canopy scale (Best,
1981; Penuelast al, 1993b; Schmidt and Skidmore, 2003; Beckeral, 2005; Rosscet al,
2005).

The earliest effort on spectral discrimination oétland species was that of Anderson
(1970) who attempted to evaluate the discriminatibten marsh-plant species which dominated
a wetland in Chesapeake Bay using ISCO Model SRt&padiometer. He concluded that the
spectral difference between the species is mindhénvisible spectrum, but significant in the
near-infrared spectrum. The variation in the s@ctflectance with the changing seasons was
also reported in the study. Best al. (1981) investigated the use of four bands of Ectote
radiometer to discriminate between the vegetatypes which dominated the Prairie Pothole in
the Dakotas. The spectral measurements were tetentén common species during the periods
of early-emergent, flowering, early-seed, and ses@s phenological stages. Their findings
showed that the best period to discriminate amdmgeight species studied was during the
flowering and early-seed stages. However, it wdBcdit to differentiate reed §parganium
euryeapum)from the other species. It was also concluded ¢éhaingle species, in different
phenological stages, showed significant variationits spectral reflectance. Schmidt and
Skidmore (2003) used the spectral reflectance nnedsat canopy level with A GER 3700
spectrometer from 27 wetland species to evaluateptitential of mapping coastal saltmarsh
vegetation associations (mainly consisting of grassl herbaceous species) in the Dutch
Waddenzee wetland. It was found that the refleeamsix bands distributed in the visible, near-
infrared, and short wave infrared were the optifmahds for mapping saltmarsh vegetation
(Table 2.2). Fyfe (2003) attempted to discrimin#teee coastal wetland specieBogtera
capricorni, Posidonia australisand Halophila ovalig in Australia. Using a single-factor
analysis of variance and multivariate techniquesas possible to distinguish among the three
species by their reflectance in the wavelengthe/éet 530 nm-580 nm, 520 nm-530 nm, and
580 nm-600 nm. However, the differences were maeifcant between 570 and 590 nm.
Rossoet al. (2005) in California, USA, collected spectral egflance data from five species
(Salicornia, S. foliosa, S. alterniflorand Scirpus)using an Analytical Spectral Device (ASD)
full-range (0.35nm —2.5 nm) PS Il spectrometer gseas the separability of the marsh species

under controlled conditions. Spectral Mixture Arsady (SMA) and Multiple Endmember
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Spectral Mixture Analysis (MESMA) were used on tA¥IRIS data. Using both SMA and
MESMA, it was possible to distinguish between tipeces to achieve higher classification
accuracies. However, the MESMA technique appeardeetmore appropriate because it could
incorporate more than one endmember per classla8imork was also conducted by (&t al,
2005). They were able to use AVIRIS imagery to dmsmate three salt marsh species
(Salicornia, Grindelia,andSparting in China and in San Pablo Bay of California, USAey
developed a model that mixed the spectral angletheg with physically meaningful fraction
and the root mean square error. The results watisfactory considering the success in
discriminating the two marsh vegetation spectsaftinaandSalicornia) which covered 93.8%
of the marsh area. However, it was difficult to adisinate Grindelia from Spartina and
Salicorniadue to the spectral similarity between the sped@eskeret al. (2005) were able to
use a modified version of the slope-based derigatimalysis method to identify the optimal
spectral bands for the differentiation of coastaktland vegetation. They transformed
hyperspectral data measured by the SE-590 spetimarater at canopy level into a second-
derivative analysis. Six bands were found acrosswisible and near-infrared region to be
powerful for discriminating the coastal wetland Gps.

In Thailand, Vaiphasat al. (2005) were able to identify and distinguish l@&etation
types in a mangrove wetland in Chumporn provindeiffresearch was conducted by collecting
hyperspectral reflectance data using a spectraregter (FieldSpec Pro FR, Analytical Spectral
Device, Inc.), under laboratory conditions. Theulss of one-way ANOVA with a 95%
confidence level (p < 0.05), and Jeffries—Matugiid1) distance indicated that the best
discrimination of the 16 species is possible withrfbands located in the red-edge and near-
infrared and mid-infrared regions of the electrom&t@ spectrum (Table 2.2). Vaiphastal,
(2007) also used the same spectral data set toarentipe performance of genetic algorithms
(GA) and random selection using t-tests in selgckiay wavelengths that are most sensitive in
discriminating between the 16 species. The JM wdigtavas used as an evaluation tool. The
results showed that the separability of band coatlins selected by GA was significantly
higher than the class separability of randomly &ebk band combinations with a 95% level of
confidence ¢ = 0.05). Mangrove wetland species were also disndated and mapped in
Malaysia by Kamaruzaman and Kasawani (2007) whceevedle to use ASD Viewspec Pro-

Analysis to collect the spectral reflectance datenffive species at Kelantan and Terengganu,
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namely Rhizophora apiculataBruguiera cylindrica, Avicennia albdleritiera littoralis, and
Hibiscus tiliaceus.The canonical stepwise discriminant analysigealed that the five species
were spectrally separable at five wavelengths (@93 700 nm, 703 nm, 730 nm, and 731 nm)
located in the red-edge and near-infrared region.

Wanget al (2007) attempted to map highly mixed vegetatiosalt marshes in the lagoon
at Venice in Italy. Six significant bands of Comp#drborne Spectral Imager (CASI) were
selected using Spectral Reconstruction (SR).Thalteeshowed that accuracy of Vegetation
Community based Neural Network Classifier (VCNN@nhde used effectively in the situation
of mixed pixels, thus, it yielded accuracy high8d%) than the Neural Network Classifier
(84%). Another attempt in discriminating marsh spgaevas that by Artigas and Yang (2005) in
the Meadowlands District in north-eastern New JerdéSA. They conducted a study to
characterize the plant vigour gradient using hypectal remote sensing with field-collected
seasonal reflectance spectra of marsh speciesfiagmented coastal wetland. Their results
indicated that near-infrared and narrow wavelen@®7® nm-690 nm) in the visible region can
be used to discriminate between most marsh spddeesever, it was difficult to discriminate
between the tw&partinaspecies because they belong to the same genuas Itancluded that
these mixed pixels could be minimized using pixemixing techniques to discover the linear

combinations of spectra associated with the pixels.

27



Table 2.2: Frequency of wavelengths selected in some stddresiapping wetland vegetation

adapted into the four spectral domains defined bm&ret al. (2001)

Wavelengths regions (nm)

Reference Selected bzuna)s

Visible (400-700)

Red-edge (680-750)

Near-infrared (700-1300)

Mid-infrared (1300-2500)

Daughtry and Walthall (1998) 58500
Schmidt and Skidmore (2003) 404, 628

Vaiphasaet al(2005) 0
Thenkabaikt al. (2002) 490, 520, 550, 575, 660, 675
Thenkabaikt al (2004) 495, 555, 655, 675

Adam and Mutanga (2009) 0
Daughtry and Walthall (1998) 720
Schmidt and Skidmore (2003) 0

Vaiphaseaet al(2005) 720
Thenkabaikt al (2002) 700, 720
Thenkabaikt al (2004) 705, 735

Adam and Mutanga (2009) 745,746
Daughtry and Walthall (899 800
Schmidt and Skidmore (2003) 771

Vaiphaseet al(2005) 1277
Thenkabaikt al (2002) 845, 905, 920, 975
Thenkabaikt al (2004) 885,915,985,1085,1135, 1215,1245,1285

Adam and Mutanga (2009) 892, 932, 934,958,969, 98
Daughtry and Walthall (899 0
Schmidt and Skidmore, (2003) 1398, 1803, 2183

Vaiphasaet al(2005) 1415, 1644
Thenkabaikt al (2002) 0
Thenkabaikt al. (2004) 1445,1675, 1725, 2005, 2035, 2235, 229852

Adam and Mutanga (2009) 0

In summary, most of the previous studies sated that wetland vegetation has the greatest

variation in the near-infrared and red-edge regi@aughtry and Walthall, 1998; Cochrane,
2000; Schmidt and Skidmore, 2003; Vaiphataal, 2005). Hence, most of the wavelengths

selected to map wetland vegetation were mainlycated in near-infrared and red-edge regions

of the electromagnetic spectrum (Table 2.2).

More work is needed to build comprehensive spetbadries for different wetland plants.

Hyperspectral imagery proved to be useful in dimsorating wetland species with higher

accuracy. However, hyperspectral imagery is expeng acquire, time-consuming to process,

even when small areas are covered. Innovative nethads which take advantage of the
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relatively large coverage and high spatial resofutdf the fine sensors and the high spectral
resolution of hyperspectral sensors could resulimiore accurate discrimination models of

wetland species at a reasonable cost.

2.7 Estimating biophysical and biochemical paramets of wetland species

The main biochemical constituents found in vegetatire nitrogen, plant pigment, and water.
Whereas biophysical properties of the plant incluédé, canopy architecture and density, and
biomass (Govendeet al, 2009), estimating the biochemical and biophysisaiperties of

wetland vegetation is a critical factor for monibhgy the dynamics of the vegetation productivity,
vegetation stress, or nutrient cycles within wedlaatosystems (Asner, 1998; Mutanga and
Skidmore, 2004a). The most important biochemical liophysical properties that characterize
the wetland species are: chlorophyll and biomasscaatration, and leaf water content
(Anderson, 1995). Few studies, however, have besducted to study these properties that

affect wetland plant canopies using both multiséeind hyperspectral remote sensing.

2.7.1 Mapping wetland biomass

Estimating wetland biomass is necessary for stgdpiroductivity, carbon cycles, and nutrient
allocation (Zhenget al, 2004; Mutanga and Skidmore, 2004a). Many studfefgeld biomass
have used vegetation indices based on the ratiwazidband red and near-infrared reflectance.
Ramsey and Jensen (1996) in the USA used a haicputform to measure spectra of the
canopies of four species which dominated in sowtktw-lorida to describe the spectral and
structural change within and between the specidscammunity types. Reflectance values were
generated from the canopy spectral data to cornespath AVHRR (bands 1 and 2), Landsat
TM (bands 1-4), and XMS SPOT (bands 1-3) sensdrs.r&lationship between canopy structure
and reflectance showed the difficulties of discnation of mangrove species based on optical
properties alone. Moreover, species composition mascorrelated with any combination of
reflectance bands or vegetation index. However stbdy revealed the possibility of estimation
of vegetation biomass such as LAI using red and-iméiaared bands on various sensors.

Tanet al. (2003) used Landsat ETM bands 4, 3, and 2 falsksucoand field biomass
data to estimate wetland vegetation biomass inRbgang natural wetland, China. Linear

regression and statistical analyses were perfotmektermine the relationship among the field
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biomass data and some transformed data derivedtirerBTM data. Their results indicated that
sampling biomass data has the best positive ctimelto the Difference Vegetation Index (DVI)
data. The authors developed a linear regressiorehodstimate the total biomass of the whole
Poyang Lake natural conservation area. Similargnd®dnga and Jiyuanb (2004) at Poyang in
China, attempted to estimate the vegetation bionass large freshwater wetland using the
combination of Landsat ETM data, GIS (for analysesl projecting both the sampling and
Landsat ETM data), and GPS for (field biomass dathg results showed that the sampling of
biomass data was best relative to the ETM 4 dath thie highest coefficient of 0.86, at the
significance level of 0.05. The study revealed ttie near-infrared band could be used to
estimate the wetland vegetation biomass.

The use of coarser spatial resolution sensorg\éRR) IKONOS and AVHRR images has
also been investigated in estimating wetland bi@nBsoisyet al. (2007) created a new textural
analysis method in which they applied Fourier-ba3edatural Ordination (FOTO) in 1 m
panchromatic and 4 m infrared IKONOS images toneste and map high biomass in forest
wetland in French Guiana in the Amazon. Their wgekded accurate predictions of mangrove
total aboveground biomass from both 1 m and 4 mNK@ images. However, the best results
were obtained from 1 m panchromatic with the maximeoefficient determination @ above
0.87.

Moreauet al. (2003) investigated the potential and limits obtmethods to estimate the
biomass production of Andean wetland grasses irBtiiwian Northern Altiplano from NOAA/
AVHRR. The first method was based on monthly fieldmass measurement and the second one
was based on Bidirectional Reflectance Distributiumction (BRDF) normalized difference
vegetation index (NDVI). Their results showed tBRDF normalized NDVI was sensitive to
the green leaf or photosynthetically active biomd$® study also revealed that the optimal time
for estimating the biomass with remotely sense@ datwetland species is during the growing
season.

The limitations of using vegetation indices suchNi3VI for estimation of biomass,
especially where the soil is completely coveredthyy vegetation, have been reported in the
literature. This is due mainly to the saturationlpgem (Thenkabaiet al, 2000; Mutanga and
Skidmore, 2004a). Nevertheless, Mutanga and Skidr{2004a) developed a new technique to
resolve this saturation problem. They compared udee of band depth indices calculated from
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continuum-removed spectra with two narrow band N®dlculated using near-infrared and red
bands to estimat€enchrus ciliarishiomass in dense vegetation under laboratory tondi The
results clearly showed that band depth analysisoagh proved to be efficient with a high
coefficient in estimating biomass in densely vetgetaareas where NDVI values are restricted by

the saturation problem.

2.7.2 Estimation of leaf and canopy water content in wetland vegetation

Water availability is a critical factor in watld plants’ survival. There has been a rapid
growth in remote sensing research to assess thedat@m water content as an indicator for the
physiological status of plants, fire potential, awbsystem dynamics at both laboratory and field
levels using very high resolution spectrometerdhsae the ASD spectral device with spectral
sampling intervals of less than 2 nm (Lat al, 2004; Stimsoret al, 2005; Toomey and
Vierling, 2006). However, no significant researchshbeen carried out on estimating water
content in wetland plants especially. This is beeaihne studies using remote sensing on wetland
plants have been aimed mainly at discriminating arapping, rather than estimating plant
physiology such as water content and water stress.

Quite a number of different indices and technighase been developed for estimating
plant water content using the absorption featunesughout the mid-infrared region (1300 nm-
2500 nm) of the electromagnetic spectrum e.g. & Netherlands (Zhang and Foody, 1998),
Canada (Davidsoat al, 2006), and USA (Gao, 1996). The authors deterthihe canopy water
content by scaling the foliar water content (FWQ,wiih the specific leaf area (SLA), LAI, and
the percent canopy cover for a specific forest pgnbloweverCeccatcet al. (2001) noted that
this technique relies on estimation of SLA, whidrigs according to species and phenological
status.

Work by Penuelast al. (1993a) found the water band index (WI), which Heen
developed based on the ratio between the water ®addm and reflectance at 900 nm, to be
strongly correlated with relative plant water caritdJsing reflectance at 857 nm and 1241 nm,
Gao (1996) developed the normalized difference wigex (NDWI) in California, USA to
estimate vegetation water. The results showedth@tNDWI is less sensitive to atmospheric
scattering effects than NDVI, and it is useful negicting water stress in canopies and assessing

plant productivity. It was recommended that furthevestigation was needed in order to
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understand this index better by testing it with tieev generation of satellite instruments such as
MODIS and SPOT-VEGETATION. Less sensitive semi-emopl indices for atmospheric
scattering have also been developed by Datt (1999Jetermine the relationship between
spectral reflectance of sevemalicalyptusspecies and both the gravimetric water content and
equivalent water thickness (EWT). The results shibtveat EWT was significantly correlated
with reflectance in several wavelength regions. Eesv, no significant correlations could be
obtained between reflectance and gravimetric waietent.

The use of remote sensing in estimating plant wedetent is challenging because it is
difficult to distinguish the contribution made bglifir liquid water and atmospheric vapour on
the water-related absorption spectrum. This is Umeahe absorption band related to water
content is also affected by atmospheric vapouruieidl.1) (Liuet al, 2004). Attempts have
been made to minimize the atmospheric interferémceising the red-edge position which is
located outside the water absorption bands. In &hinu et al. (2004) found a significant
correlation between plant water content with thlbe@dge width in six different growth stages of
wheat plants. The correlation coefficients wereMeenn 0.62 and 0.72 at 0.999 confidence level.
The results were more reliable than those obtaus#n the WI and the NDWI. Similar results
were reported in the USA by Stimsenal. (2005) who correlated foliar water content witle th
red-edge position to evaluate the relationship betwfoliar water content and spectral signals in
two coniferous specie®inus edulisandJuniperus monospermahe results showed significant
correlations of R= 0.45 and R= 0.65 respectively.

As there has been no significant research on estighavater content and water stress of
wetland vegetation specifically, additional studies these aspects are needed to better
understand the spectral response of wetland pl@hes.results of such research could help the
researcher to develop accurate models for desgritiam example, the separability of wetland
plant varieties and for estimating foliar nutrieatsd developing indicators that can quantify the
integrated condition of wetland plants and can tifiemheir primary stressors across a range of

scales.

2.7.3 Estimating leaf area index of wetland vegetation

LAl is defined as the total one-sided area ofediMes in the canopy per unit ground surface area

(m?/m?) (Gonget al, 2003). Information on LAl is valuable for quantiig the energy and mass
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exchange characteristics of terrestrial ecosystesush as photosynthesis, respiration,
evapotranspiration, primary productivity, and cyegld (Kumaret al, 2001; Gonget al, 2003).
Research efforts on estimating LAI from spectrdllectance measurements have been focused
mainly on forests (Gongt al, 1995; Gonget al, 2003; Pwet al, 2005; Schlergt al, 2005; Davi

et al, 2006) and crops (Thenkabat al, 2000; Hansen and Schjoerring, 2003; Ragl, 2006).
However, regardless of the work that has been ddn®lajella National Park, in Italy by,
Darvishzadelet al. (2008) the estimation of LAl for heterogeneoussgraanopies has not been
done. Moreover, a few studies dealing specificadih estimating LAl of wetland species have
been conducted only in forest wetlands and mangveetéands (Greert al, 1997; Kovacset

al., 2004; Kovacst al, 2005).

In general, the above-mentioned studies have iigastl several analytical techniques to
estimate LAl using reflectance data. This can beuged into two main techniques: the
stochastic canopy radiation model and the empircadiel. The empirical model has been more
widely investigated than the stochastic canopy atémh model. The univariate regression
analysis with vegetation indices such as NDVI aintpe ratio, derived from visible and near-
infrared wavelengths, is the most widely used eitgdiodel and has been used in estimating
LAl (Gong et al, 1995; Greeret al, 1997; Thenkabaitt al, 2000; Gonget al, 2003; Kovacset
al., 2004; Kovacet al, 2005; Schlergt al, 2005).

Greenet al. (1997) in UK developed a model based on gap-tvactinalysis and NDVI
derived from Landsat TM and SPOT XS to estimate livdm three speciesRhizophora
mangle, Laguncularia racemosandAvicennia germinang a mangrove wetland in the West
Indies. The model produced a thematic map of LAhva high accuracy (88%) and low mean
difference between predicted and measured LAI (13%)

Vegetation indices derived from high spatial resoludata were shown to be effective in
monitoring LAl in mangrove forests. Kovaes al. (2004) tested the relationship betweesitu
estimates of LAl and vegetation indices derivednfitONOS imagery in a degraded mangrove
forest at Nayarit, Mexico. Regression analysis lté tn situ estimates showed strong linear
relationships between LAI and NDVI and simple ratMoreover, no significant differences
were found between the simple ratio and NDVI modielestimating LAI at both plot sizes. In
the same area, Kovaes al. (2005) examined the potential of IKONOS in mappmgngrove

LAI at the species level. A hand-held LAI-2000 semwas also evaluated for the collection of
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datain situ on the mangrove LAI as a non-destructive altemeator the field data collection
procedure. A strong significant relationship waand between NDVI, derived from IKONOS
data, andn situ LAI collected with a LAI-2000 sensor. It was comdéd that IKONOS satellite
data and the LAI- 2000 could be an ideal methodrfapping mangrove LAI at the species level.

Researchers have shown that vegetation indiceg (éisved from the narrow band could
be vital for providing additional information forugntifying the biophysical characteristics of
vegetation such as LAl (Blackburn and Pitman, 19®8Rjtanga and Skidmore, 2004a). In
wetland environments specifically, however, onlye awork, that by Darvishzadedt al. (2008)
at Majella National Park in Italy, has investightee use of hyperspectral data in estimating and
predicting LAI for heterogeneous grass canopie® Jtndy investigated the effects of dark and
light soil and plant architecture on the retrieeBLAl red and near-infrared reflectance. Using A
GER 3700 spectroradiometer, the spectral refleetamere measured from four different plant
species Asplenium nidus, Halimium umbellatum, Scheffleraboaicola Nora, and
Chrysalidocarpus decipiehswith different leaf shapes and sizes under lalboyaconditions;
then many VIs were calculated and tested. A stnonglationship was found between LAI and
narrow band Vls in light soil than in dark soil. Wever, the narrow band simple ratio vegetation
index (RVI) and second soil-adjusted vegetatiorrin(BAVI2) were found to be the best overall
choices in estimating LAI.

Although reasonable results were obtained fromomarband VIs in estimating LAl
(Thenkabailet al, 2000; Rayet al, 2006; Darvishzadeht al, 2008), some authors noted that
the strengths of a large number of hyperspectrati®dave not yet been exploited by these
methods because only two bands from red and né&areéd regions are used to formulate the
indices (Hansen and Schjoerring, 2003; Schéedl, 2005). A technique such as multiple linear
regression (MLR) which uses the advantages of itfie dimensionality of the hyperspectral data
to select optimal band combinations to formulats,Was shown to be effective at estimating
the biophysical and biochemical properties of vatjeh such as LAl (Thenkabaeit al, 2000;
Schlerfet al, 2005).

Despite some success in estimating the biochemarmalbiophysical parameters in some
ecosystems, estimation remains challenging in weétkenvironments where visible and near -

infrared canopy reflectance has been revealed &irbagly affected by the background of sall
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and water, and atmospheric conditions. Furtherarebeis needed to develop indices that can

reduce the effects of background and atmospheatitgu

2.8 Overall challenges and future research

Over the last few decades, considerable progresvéan made in applying sensor techniques
and data processing in discriminating, mapping, moditoring wetland species. However, there
are still challenges to be addressed in many aspé€atst, traditional digital imagery from
multispectral scanners is subject to limitationsspétial and spectral resolution compared to
narrow vegetation units that characterize wetlasabsgstems.

Second, despite the agreement on the effectiveonpeaince of hyperspectral data in
discriminating wetland species, the reflectancesnfrdifferent vegetation species are highly
correlated because of their similar biochemical braphysical properties. Furthermore, these
properties are directly influenced by environmerftadtors and therefore the unique spectral
signature of the plant species has become quebt®r(®rice, 1994). In addition, spectral
variations can also occur within a species becafisye differences, micro-climate, soil and
water background, precipitation, topography, anesses.

Third, measurement of the biophysical and biochahpcoperties of vegetation using VIs
derived from broad band sensors can be unstabléodtiee underlying soil types, canopy and
leaf properties, and atmospheric conditions. Fangde, NDVI asymptotically saturate after a
certain biomass density and for a certain rangeAdf(Mutanga and Skidmore, 2004a). Hence,
the measurement accuracy drops considerably éGaly 2000; Thenkabakt al, 2000).

A fourth research challenge is that in most Afmicauntries (e.g. South Africa) there are
only a handful of studies that have used hyperspledata to characterize savanna vegetation
due to high cost and poor accessibility (Mutamgal, 2003; Mutanga and Skidmore, 2004a;
Mutanga and Kumar, 2007; Mutanga and Skidmore, P8G50, no research has yet been carried
out on discriminating wetland vegetation and estiinga its biophysical and biochemical
parameters using process-based models that us¢éetgreensed data as input parameters.

Despite these shortcomings, there is no doubtrédmbte sensing technology could play a
vital role in effectively discriminating and monitog wetland species by selecting appropriate
spatial and spectral resolution as well as suitpbbeessing techniques for extracting spectral

information of species.
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From a research perspective, however, there asralanajor challenges in the application
of remote sensing in wetland species that neeé &ddressed.

First, the most current remote sensing techniquesnapping vegetation have been
undertaken in arid and semi-arid regions with loagetation cover and less complexity within
the vegetation unit. These techniques are, thexetdrlittle use for narrow vegetation units that
characterize wetland ecosystems. Additional rebeagtfort is needed to adopt more
classification techniques to improve the accuraicthe spatial resolution of the current sensors
which varies from 20 m to 30 m. Hyperspectral ratkters are considered to be the sensors of
choice in the future for mapping and monitoring levedl species. This has increased the need to
build comprehensive spectral libraries for diffdraretland plant species under different plant
conditions and environmental factors. Additionalthe fundamental understanding of the
relationship between the reflectance measuremesttand species’ canopy density, and bottom
reflectance parameters should be studied furtidre spectral libraries of wetland species will
help in discriminating not only between wetland @es, but also between wetland species and
upland species as there has been no specific chsdarnling with the difference in spectral
response of canopies of wetland species and uglaecies.

Second, in the southern African region, more reseas needed to enhance ability in
discriminating wetland vegetation and estimatirg iophysical and biochemical properties
which have been overlooked in the scientific redeaFor example, papyrus swamg@y/perus
papyrus L) (which characterize most of the tropical Africaretlands, with a high rate of
biomass production, a tremendous amount of comhiitedgen, that play vital roles in hosting
habitats for wildlife and birds) are omitted in thpplication of remote sensing in discriminating
wetland vegetation.

Third, although some studies have been undertakenestimating the vegetation
biophysical and biochemical parameters (e.g. LAlatew content, biomass, pigment
concentration, and nitrogen) in different ecosystethere is paucity of research on wetland
species. After the progress in the field of speusty, researchers began to measure vegetation
properties in complex ecosystems using new narrandhbindices (Mutanga and Skidmore,
2004a) and red-edge position (Mutanga and Skidnm®87). These efforts should be further
extended and developed so as to cope with wetlpadies environments where the saturation

and the atmospheric vapour affect the near-infraeggon. A fourth research prospect is the
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availability of hyperspectral sensors which couldva mapping both of species and their quality
in wetland ecosystems. This will enhance a fundaatemderstanding of the spatial distribution
of the quality and quantity of wetland species, alihcould lead to the development of early
warning systems to detect any subtle changes ilameesystems such as signs of stress and lead
to the development of techniques to classify wetlarea conditions (e.g. healthy or disturbed)

based on their species quality and quantity.
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CHAPTER THREE

Spectral discrimination of papyrus Cyperus papyrusL.) using a hand-held

spectrometer under field conditions

This chapter is based on

Adam, E., and Mutanga, O., 2009. Spectral discriminatodnpapyrus vegetationC{yperus

papyrus L) in swamp wetland using field spectrometi§PRS Journal of Photogrammetry and
Remote Sensing4, 612-620.
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Abstract

Techniques for mapping and monitoring wetland sgmeare critical for their sustainable
management. Papyru€yperus papyrug.) swamps are among the most important species rich
habitats that characterize the Greater St Lucidai@tPark (GSWP) in South Africa. This paper
investigates whether papyrus can be discriminataa its co-existing species using ASD field
spectrometer data ranging from 300 nm to 2500 neldipng a total of 2151 bands. Canopy
spectral measurements from papyrus and other speaes were collected situ in the Greater
St. Lucia Wetland Park, South Africa. A new hietacal method based on three integrated
analysis levels was proposed and implemented totrslg discriminate papyrus from other
species as well as to reduce and subsequentlytsefgonal bands for the potential
discrimination of papyrus. In the first level ofetlanalysis using ANOVA, we found that there
were statistically significant differences in spattreflectance between papyrus and other
species on 412 wavelengths located in differentiqgnos of the electromagnetic spectrum. Using
the selected 412 bands, we further investigatedutiee of classification and regression trees
(CART) in the second level of analysis to identitye most sensitive bands for spectral
discrimination. This analysis yielded eight bandkick are considered to be practical for
upscaling to airborne or spaceborne sensors fopmgpapyrus vegetation. The final sensitivity
analysis level involved the application of the def—Matusita (JM) distance to assess the
relative importance of the selected 8 bands inriisoating papyrus from other species. The
results indicate that the best discrimination gbypas from its co-existing species is possible
with six bands located in the red-edge and neaafiedl regions of the electromagnetic spectrum.
Overall, the study concluded that spectral reflectaof papyrus and its co-existing species is
statistically different, a promising result for thee of airborne and satellite sensors for mapping
papyrus. The three step hierarchical approach graglm this study could systematically reduce
the dimensionality of bands to manageable levelsogae towards operational implementation

with band specific sensors.

Keywords. Papyrus. Greater St Lucia Wetland Park. Fielccspmeter measurements. CART.
Jeffries—Matusita.
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3.1 Introduction

Papyrus Cyperus papyrus .l swamps characterizes most wetland areas ofreastel central
tropical Africa (Bemigisha, 2004). Specifically,etlswamp covers great areas in Uganda and
Sudan around the Lake Victoria and Nile basins @Bed 974). Other extensive areas are in the
Upemba basin, Zaire, and the Okavango Delta, Bataw@hompsoret al, 1979). Papyrus
swamps usually create a buffer zone between tealesind aquatic ecosystems and play
hydrological, ecological, and economic roles in #uatic systems (Gaudet, 1980; Mafabi,
2000).

Previous studies found that tropical papyrus swaangscharacterised by a tremendous
amount of combined nitrogen (Muthuri and Kinyamafi®89; Mwaura and Widdowson, 1992)
and a high rate of biomass production (Muthuri &nayamario, 1989). In this regard, papyrus
plays a vital role in hosting habitats for wildlifspecies such as the sitatunga antelope
(Tragelaphus spekeand African pythonKython sebge(Owino and Ryan, 2007Papyrus also
has some grazing potential and could be used aefadth high nutritive value especially in the
dry season when other forage is limited (Muthud &myamario, 1989).Further, studies found
that the highest species richness of birds in ntemshis associated with the areas where papyrus
and natural vegetation were plentiful (Harper, 199&%ino and Ryan, 2007). In addition to
providing habitat for wildlife, the high biomassopuction characterizing papyrus swamps has
been widely found to be useful for paper makinge Hygyptians for example, were the first
people who used papyrus to make paper more thantfisusand years ago (Bucci, 2004).
Recently, promising results have been obtainedsingupapyrus as an alternative source of fuel
in many countries in central Africa such as Rwafitznes, 1983a; Muthuri and Kinyamario,
1989).

Despite its relative importance, human encroasttnand intensified agricultural activities in
many parts of Africa have threatened the existasfceapyrus (Mafabi, 2000; Macleaet al,
2006; Owino and Ryan, 2007). The continued degiaalain papyrus habitat represents a
significant threat to biodiversity conservation tpararly for papyrus-specialist birds and other
papyrus-reliant species in many African countridagleanet al, 2006; Owino and Ryan,
2007).

To establish sustainable management of such imyporspecies, up-to-date spatial

information about the magnitude and distribution pEfpyrus swamps at several scales is
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essentially required (Nagendra, 2001; Schmidt akidin$ore, 2003). This can be achieved
through remote sensing techniques that can mothitochange in papyrus areas and assess the
species’ percentage covers as compared to the sjibeles.

Traditionally, species discrimination for floristimapping needs intensive fieldwork,
including taxonomical information and the visuatimsition of percentage cover for each
species. This is costly and time-consuming and #same inapplicable due to the poor
accessibility (Kent and Coker, 1994; Lee and Ltmel995). Remote sensing, on the other
hand, is a technique that gathers the data reguddndut the earth’s features without actually
being in direct contact with those features. Thennadvantages that make remote sensing
preferable than field-based methods in land colessdication, is that it has repeat coverage
which allows continuous monitoring, and its digitiéta can be easily integrated into Geographic
Information System (GIS) for more analysis whichleéss costly and less time-consuming
(Shaikhet al, 2001; Ozesmi and Bauer, 2002; Schmidt and Skidn&903; Mironga, 2004).

Both multispectral and hyperspectral remote sendechniques have been used to
discriminate and map wetland species. Multispedtiaia such as Landsat TM and SPOT
imagery have been used to identify general vegetatiasses or to attempt to discriminate just
broad vegetation communities (May al, 1997; Harvey and Hill, 2001; Let al, 2005), while
hyperspectral data have been successful in mappéignds vegetation at the species level
(Schmidt and Skidmore, 2003; Brown, 2004; Rosgoal, 2005; Bellucoet al, 2006;
Kamaruzaman and Kasawani, 2007; Pergral, 2007). Hyperspectral data have also been used
to study vegetation health, water content in veg®ta biomass, and other physico-chemical
properties (Greeret al, 1998; Ceccatceet al, 2001; Mutangaet al, 2003; Mutanga and
Skidmore, 2004a; Zarco-Tejadaal, 2005).

In general, the use of multispectral data in disgrating and mapping wetlands species is
challenging due to spectral overlap between théawes species and due to the lack of spectral
and spatial resolution of the multispectral datag$ et al, 2005). On the other hand,
hyperspectral data often consist of over 100 caotig bands of 10 nm or less bandwidth. These
contiguous bands and narrow ranges lead to theljildgsof discriminating and mapping
vegetation species more accurately and precisaly tile standard multispectral bands (Schmidt
and Skidmore, 2003; Ustet al, 2004; Borge®t al, 2007).
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A few previous attempts at using multispectral reaneensing in studies of papyrus
swamps have been concentrated mainly on econommefibeand management scenarios of
papyrus swamps, and promising results have beamnelbt (Bemigisha, 2004; Owino and Ryan,
2007). However, the spectral discrimination of pagy Cyperus papyrus b.has been
overlooked in scientific research. No attemptmyp knowledge, has been made to discriminate
papyrus swamps using field spectrometry, let alon&outh Africa where only a handful of
studies have used hyperspectral data to charaeteeigetation in general due to high cost and
poor accessibility (Mutanget al, 2004; Ismailet al, 2007).

Although hyperspectral data are critical in disgnating species, its high spectral
resolution contains redundant information at bawell (Kokalyet al, 2003; Bajweet al, 2004).
This high dimensional complexity of hyperspectratadcan be problematic in terms of image
processing algorithms, an excessive demand foricgrft field samples, high cost, and
overfitting when using multivariate statistical heques (Goetz, 1991; Bajcsy and Groves,
2004; Borgeset al, 2007; Mutanga and Kumar, 2007; Vaipha&taal, 2007). It is, therefore,
imperative to identify the optimal bands requiremt fliscriminating and mapping wetland
species without losing any important informationiff@ent univariate and multivariate
techniques for dimensionality reduction and baniécti®n with different performance levels
have been developed, such as canonical analysiRTCAliscriminant analysis, principal
component analysis, artificial neural network areffries- Matusita (JM) (Satterwhite and
Ponder Henley, 1987; Cochrane, 2000; Schmidt andn®ke, 2003; Vaiphasat al, 2005;
Milton et al, 2009). However, inconsistent results have bedairdd for different species and
environments, and the use of a single techniqueduncing data dimensionality to acceptable
operational levels has not been very successful.

This study is aimed at investigating whether fislgectrometry data could be used to
effectively discriminate papyrus species from otkgcies occurring in the swampy wetlands of
South Africa. In other words, spectral separabdityalysis was used to examine whether papyrus
swamps could spectrally be discriminated from eawh of its co-existing species using field
spectrometer measurements at canopy level as wakducing spectral data dimensionality.
More specifically, the objectives of this study eet. to determine whether there is a significant
difference between the mean reflectance at eactsurezh wavelength (from 350 nm to 2500

nm) for Cyperus papyrud. and each one of the other co-existing three spePBleragmites
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australis, Echinochloa pyramidalisand Thelypteris interrupts and 2. To identify key
wavelengths that are most sensitive in discrimnga€yperus papyrugrom each one of the
other three species. In order to achieve this, el a field spectrometer to measure the spectral
reflectance from papyrus swamps and the assocgtedes in the Greater St Lucia Wetland
Park in South Africa. To achieve an efficient omlnselection of bands, we propose a new
hierarchical method that integrates Analysis ofiaraze (first level), Classification regression
trees (second level), and finally the Jeffries-M#aidistance analysis (third level) to assess the

relative importance of the selected bands.

3.2 Material and methods
3.2.1 Field data collection
3.2.1.1 The identification of papyrus and its assted species

The most common plant species associated with papyrthe swamps wetland in the study
areas were identified in the field in the summeR@®7 under the supervision of an experienced
ecologist using field observation techniques. Thesecies were then recorded based on their
density and estimation of percentage cover (cogeainleast 40 % of the area). In total, three
species were identified as being the most co-exjsspecies with papyrus. These were

Phragmites australigEchinochloa pyramidalisand Thelypteris interruptgTable 3.1).

Table 3.1: The papyrus swamp and its associated speciesyutinber of sample plots and the

total number of measurements collected

Species hame Type code Nr of plots Nr of measemnesn
Cyperus papyrus CP 15 134
Phragmites australis PA 9 111
Echinochloa pyramidalis  EP 7 101
Thelypteris interrupta TI 10 113
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3.2.1.2 Spectral data acquisition

The Analytical Spectral Devices (ASD) FieldSpec®; 3ctrometer was used to measure the
spectral reflectance from papyrus and the otheciepeThis spectrometer has a wavelength
ranging from 350 nm to 2500 nm with a samplingnvéé of 1.4 nm for the spectral region 350
nm t01000 nm and 2.0 nm for the spectral regiorD10@ to 2500 nm, and a spectral resolution
of 3 nm to 10 nm (ASD Analytical Spectral Devicas.| 2005).

A combination of random sampling and purposive dargpvas used to select field sites.
Hawth’s Analysis Tool extension for ArcMap desigrtedperform spatial analysis was used to
generate random points in a land cover map develapgg ASTER image. These points were
then input in GPS to navigate to the field sitasrpBsive sampling was done when the random
point was not accessible, or to increase the vanaif reflectance measurements of the species.
Once the sampling location was indentified, a vatyat plot was defined to cover 3 m by 3 min
area of each species; then a total of 10 to 1% figlectrometer measurements were taken
randomly from nadir at about 1.5 m and with°di8ld of view above the vegetation species on
each plot. This resulted in a ground field of vielvabout 13 cm in diameter, which was large
enough to cover a cluster of species and to retheeffects of background such as soil and
water in thein situ spectral measurement (Table 3.1). All the measeinésnwere collected in
December 2007 between 10:00 am and 02:00 pm unoday nd cloudless conditions. A white
reference spectralon calibration panel was usedyei® to 15 measurements to offset any
change in the atmospheric condition and irradiaotehe sun. Metadata such as the site
description (coordinates and altitude, land covass) and general weather conditions were also
recorded to accompany field spectral measurememteach measured point (Miltoet al,
2009). Due to the atmospheric water absorptionenwoisthe reflectance spectra, a number of
bands around 1420 nm, 1940 nm, and 2400 nm weted®d:from the analysis.

3.2.2 Data processing

It was difficult to use one technique to identifyemsonable number of wavelengths that are most
sensitive from 350 nm to 2500 nm (n = 2151). Thigswbecause the dimensionality still
remained high when one technique was used (412 lerayths from analysis of variance).
Moreover, there is no single technique that hasearsally proven to be superior for the optimal

feature selection (Yangt al, 2005), and it is quite possible that more thae saobset of
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wavelengths can discriminate the data equally (#&dhget al, 2005). We, therefore, innovated

a new hierarchical method for spectral analysigthas three integrated levels.

3.3.2.1 First level (one-way ANOVA)

In the first level, we used one-way ANOVA to tekthe differences in the mean reflectance
between papyrus swamps and the other three speeresstatistically significant. We tested the
research hypothesis that the means of the refleethatween the pairs of papyrus swamp and
each one of the co-existing species (PA, EP, arjdwHre significantly different at each
measured wavelength, from 350 nm to 2500 nm, We.rull hypothesis Hq1l = u2, ul=p3,
ul= pd versus the alternate hypothesis Ha:# u2, ul # p3, ul# u4 where:ul, is the mean
reflectance values from papyrus arfj u3, andu4 the mean reflectance values fr&imragmites
australis Echinochloa pyramidaliand Thelypteris interruptaespectively.

One- way ANOVA was used with a post-hoc Scheffé aégach measured wavelength for
the individual class pair (Cks PA, CPvs EP, and CR/s Tl). We tested ANOVA with two

confidence levels: a 99% confidence level (p < }).ahd a 95% confidence level (p<0.05).

3.2.2.2 Classification and Regression Trees (CART)

We used CART in this second level of hierarchicatmds to further reduce the number of the
significant wavelengths obtained from ANOVA anatyswith the purpose of reducing data
dimensionality. CART, which was developed by Bremet al. (1984), is a non-parametric
statistical model that can select from a large skdtaf explanatory variableg)(those that are
best for the response variablg} (Yanget al, 2003; Questieet al, 2005). CART was preferred

in this study because the values of the predicoiables (spectral reflectance) are continuous, as
opposed to categorical target (plant species).

The CART model is built in accordance with the tjplg rule. This rule performs the
function of splitting the data into smaller partcarding to the reduction of the deviance from
the mean of the target variabMé () (or corrected total sum of the squares)) (¥ the target
variable of each dataset. The decision tree begsearch from a root node (parent node) derived
from all the predictors, and possible split poisish that the reduction in devian&e(total), is
maximized (terminal node) as follows (Breimetnal, 1984):
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D (total) = Y(Yi-Y pa) ° 1)

The cut point, or value, always splits the data imto child nodes, the left node and the right
node with maximum homogeneity. The reduction inialese is as shown in the following

equation:
Ajora = D (total) - O(L) + D(R) 2
WhereD(L) andD(R) are the deviances of the left and right nodes.

Hence, the algorithm begins searching for the mepdch (A jwora)) Over all the predictor
variables and the cut points subject to the comgtthat the number of the members in the left
and right nodes are larger than some criterionbsethe user. The algorithm repeats the
procedure of binary splitting for each node (leftdaight nodes) by treating each child node as a
parent node splitting until the tree has a maxinsize (Yanget al, 2003).

In this study, we used CART as the second levéhetierarchical method to select the
most sensitive wavelengths from the number of Sigamt wavelengths selected in the first level
(ANOVA). Therefore, CART generated the optimal bamy selecting only the spectral bands
that result in small misclassification rates tocdiminate each class pair (GB PA, CPvsEP,
and CPvsTI) individually. The bands which were common ach class pair were then selected

to get the optimal bands for all class pairs.

3.2.2.3 Distance analysis

After we had the optimal bands selected from th&RTAnalysis, additional analysis was needed
to identify the best band or band combinations tbatild be used for the best spectral
separability between papyrus and each one of tiee tdpecies. Hence, we tested the hypothesis
that some bands are relatively more important tbh#rers in discriminating papyrus. The
separability index used in this level of hierarethienethod was the JM distance analysis
(Schmidt and Skidmore, 2003; Ismatl al, 2007; Vaiphasa&t al, 2007). It was impossible to
run the JM distance analysis on all the significkahds (n = 412) from ANOVA analysis
because of the singularity problem of matrix inians(Vaiphasaet al, 2005; Ismailet al,

2007). Moreover, this high dimensional complexgwery costly, time-consuming, and beyond
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the capacity of the common image processing alyost(Schmidt and Skidmore, 2003; Borges
et al, 2007; Vaiphasat al, 2007). We, therefore, used the bands derived E&RT. The JM
distance between a pair of probability functionseégn as quantification of the mean distance
between the two class density functions (Richart sa, 2006). When classes are normally
distributed, this distance turns out to be the &ithtaryya (BH) distance (Schmidt and
Skidmore, 2003; Richards and Jia, 2006). The J¥dce has upper and lower bounds that vary

between 0 and?2 (= 1.414), with the higher values indicating the lta&gparability of the class
pairs in the bands being used (ERDAS, 2005; Richardl Jia, 2006). In this study, we decided
to use higher separability values 97 % as the JM distance threshold to identify rinest
important band or band combinations for best disicition of papyrus swamps. The formula for
computing the JM distance is as follows (ERDAS)20

_1 f(C+C Y 1 inJ’CJ‘/Z‘)
a—§04-u0( > J 04-#)+§m-75}25r 3)

IM; =/2(1-¢° (4

Where:
i andj = the two classes being compared
C, = the covariance matrix of signature
M = the mean vector of signature
Ln = the natural logarithm function

|C,|= the determinant o€, (matrix algebra).
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3.3 Results

3.3.1 First level: ANOVA test

ANOVA results indicate that there is no significalfference between the two class pairs (GP
EP, and CPvs TI) when a 99% confidence level (p< 0.01) was udddwever, the 95%
confidence level (p < 0.05) indicated that theraistatistically significant difference in the
spectral reflectance between all the class p@svs PA, CPvs EP, and CR/sTI) at n = 412
wavelengths. These significant wavelengths werélighted using a histogram for every
individual class pair. The results of ANOVA test feach class pair (C¥%s PA, CPvs EP, and
CPvsTI) are shown in Figure 3.@a, b, and c). The shaded areas show the wavekendtare
the spectral reflectance from the papyrus swamgtasstically different from the other three
species, with a 95% confidence level (p-value $0.0

The conclusions from the ANOVA test are that theameeflectance between papyrus and
the other three species is significantly differentnany measured wavelengths. These significant
wavelengths are located in three different regiohshe electromagnetic spectrum (red- edge,
near-infrared, and mid-infrared).

Table 3.2 shows the frequency of the significanhdsaadapted into the four spectral
domains which is widely used in the hyperspecteatiate sensing of vegetation (Kunetral,
2001). The table shows that there are no statistisggnificant wavelengths located in the
visible region for the class pairs @BEP, and CR/sTl. However, the class pair GB PA has
more significant wavelengths located all over thectral regions than any other class pair (CP
vs EP, and CR/isTI). All the wavelengths from 350 to 1300 (n = 9%0e significant for CR/s
PA as well as 49.95% (n = 600) of wavelengths kedan the mid-infrared region, whereas the
statistically significant wavelengths for the p&P vs Tl are located only in the red-edge and
near-infrared portions of the electromagnetic sp@ct(n = 449).
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Figure 3.1 ANOVA results for each class pair (a) CP vs. BA,CP vs. EP, and (c) CP vs. TI.
The grey areas show the wavebands where theragmmécant differences between the class

pairs within the electromagnetic spectrum.
Table 3.2: Frequency of significant bands for each class pdapted into the four spectral

domains defined by Kumait al. (2001)

Wavelength Description Band Significant bands

region (nm) No

CPvsPA % CPvsEP % CRssTI %
350-700 Visible 351 351 100.00 0.00 0.00 0.00 0.00
680-750 Red-edge 71 71 100.00 10 14.08 45 63.38
700-1300 Near-infrared 601 601 100.0660 93.18 451 74.04
1300-2500  Mid-infrared 1201 600 4995 367 30.55 00.0 0.00
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It can also be seen from Table 3.2 that the redealyd near-infrared are the most
important regions where each class pair has thd stasstically significant wavelengths. The
results can be clearly seen in the histogram inréi@.2 which shows by maximum grey shading
the wavelengths with the maximum frequency. Thégaificant wavelengths have the potential

to discriminate papyrus species from all other gse(PA, EP, and TI).

Frequency Fapyrus
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Figure 3.2. Frequency of statistical difference using ANOVAthwB5% confidence level (P <
0:05) between the mean reflectance of papyrus kadhar species. The maximum grey shading

shows the wavelengths where papyrus could be digwited from all the other three species.

Results of frequency analysis (Figure 3.2) revdddt tthere is no wavelength that
maximized the discrimination of papyrus from theestspecies in the visible region. There are
however, a few significant wavelengths locatedhe ted-edge (741-746) nm = (n = 6) and a
majority of wavelengths located in the near-infdapart of the electromagnetic spectrum (982-
1297) nm = (n = 406). Further analysis was thendooted to reduce the number of these

significant wavelengths (n = 412).

3.3.2 Second level: CART results

CART analysis was applied to reduce the numbersigfificant bands (n = 412) selected by
ANOVA analysis to fewer bands that could optimaligcriminate the papyrus from the other
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three species. The selection of the optimal wagghlenwas done for each individual class pair:
CPvsPA (n =17), CRvsEP (n = 13), and CRs Tl (n = 15). The misclassification rate was
0.014, 0.014, and 0.029 for each class respectiVélg results are shown in Table 3.3.

Table 3.3: Wavelengths selected by CART for each individudhsg pair and the
misclassification rate. Wavelengths that were dblaifferentiate between all three pairs of

classes are highlighted in grey

Class pair Wavelengths (nm) selected No of wavelengths Misclassification
(nm) rate

CPvsPA 741, 745, 746, 892, 932, 93417 0.014
958, 961, 985 989, 1037, 1107,
1120, 1125, 1130, 1153, 1291.

CPvsgEP 745, 746, 892, 932, 934, 95813 0.014
961, 989, 1056, 1119, 1123,
1124, 1153.

CPvsTI 741, 745, 746, 892, 932, 93415 0.029

958, 961, 989, 1010, 1038,
1056, 1119, 1130, 1146.

The common wavelengths among all class pairs€#PA, CPvs EP, and CR/sTI) were
then selected to find the optimal wavelengths fbclass pairs. It also interesting to note that in
Table 3.3 there are eight spectral bands that apgpesommonly in every class pair. These
spectral bands are: 745 nm, 746 nm, 892 nm, 93298 ,nm, 958 nm, 961 nm, and 989 nm.
From this analysis, these eight wavelengths cootérgially discriminate papyrus species from

all the three species.

3.3.3Third level: Distance analysis results

The Table 3.4 shows the results of the JM distaamtalysis. The band located at 892 nm
appeared to be the best single band because mgsdest separability when used individually
with a JM value of 1.342 (94.91%). Furthermorehds the highest frequency (100 %) by
appearing in every best band combination. Theectaldo reveals that the use of more bands
improves the separability of the papyrus. Wherdas gingle band (892 nm) produces an
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unacceptable JM value of 1.342, the acceptableageelM valuesX 97 %) are reached when
using three band combinations, which achieved 98.49he JM value then improved

considerably until it reached the best value whi best eight band combinations.

Table 3.4: The averages of JM distance analysis for all ineet class pair (CP vs PA, CP vs EP,
and CP vs TI). The symbol (X) indicates the setectof optimal bands in each band

combination

Best band 745 746 892 932 934 958 961 989 JM %
combinations value

Single band X 1.342 94.91
Two bands X X 1.362 96.32
Three bands X X X 1.378 97.45
Four bands X X X 1.386 98.01
Five bands X X X X X 1.393 98.51
Six bands X X X X X X 1.402 99.15
Seven bands X X X X X X X 1.409 99.65
Eight bands X X X X X X X X 1.411 99.79

Table 3.5 shows the JM distance values for eadhidwhl class pair (CRsPA, CPvsEP,
and CPvsTI) within each best band combination. For thesglpairs, CRsPA and CR/sTI, a
single band located at 892 nm produced an acceptd¥l distance value. However, the class
pair, CPvsEP, reached the acceptable value of JM distan& (%) only when using six band
combinations located at 745 nm, 746 nm, 892 nmnpABMH58 nm, and 961nm, where the other
two class pairs (CRsPA and CPvs Tl) reached total separability of 100% (upper Jalue).
Unlike the other two class pairs (B PA and CPvsTI), the CPvsEP pair does not reach the
total separability even when using all the eightdsa(JM distance value 1.405). However, total
separability starts for the other two class padB ysPA and CRvsTI) from using the best four
band combinations located at 892 nm, 934nm, 958amah,961nm.
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Table 3.5: The values of the JM distance for each individuass pair within the selected best

band combinations.

Best combination CP vs PA CP vs EP CPvs TI
JM % JM % JM value %
value value
892. 1.409 99.64 1.21085.57 1.408 99.58
892, 934. 1.412 99.86 1.2689.32 1.410 99.72
892, 934, 898. 1.413 99.93 1.3082.50 1.413 99.93
892,934, 958, 961. 1414 100.00 1.3Z8B.99 1414 100.00
745, 745, 892, 958, 961. 1.414 100.00 1.38%.55 1.414 100.00
745,745, 892, 934, 958, 961. 1.414 100.00 1.39B52 1.414 100.00
745, 746, 892, 932, 958, 961, 9809. 1.414 100.00 991.38.94 1.414 100.00

745, 746, 892, 932, 934, 958, 961, 989. 1.414 100.0.405 99.36 1.414 100.00

3.4 Discussion

The use of field spectrometry for species discration is widespread at both field measurement
and laboratory levels (Skidmoet al, 1988; Schmidt and Skidmore, 2003; Brown, 20045980

et al, 2005; Vaiphasat al, 2005; Bellucoet al, 2006; Pengrat al, 2007). The removal of
redundant data and identification of relevant daeacritical considerations in field spectrometry
data processing. One should seek to ensure ttlmtimensionality reduction would not cause
any loss of important information relevant to thgest under study. Various researchers have
used different techniques with inconsistent resuls identify important bands of the
electromagnetic spectrum for discriminating vedetaspecies.

In this paper, it was difficult to use one techragw identify a reasonable number of
wavelengths that are most sensitive from 2150 hamelsause the dimensionality remained still
high when only one technique was used (412 wavéisrfigom analysis of variance). This could
be explained by, firstly, the agreement that thisr@o single technique that has universally
proven superior for the optimal feature selectigar(g et al, 2005) and, secondly, the possible

existence of a different subset of features thetraninates the data equally well (Yargal,
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2005). Hence, a new hierarchical method was deeeldpased on the integration of three
analysis levels (ANOVA, CART, and JM) to reduce tfiemensionality in the collected field

spectrometry measurement data to discriminate papimom three other species. This is an
important prerequisite for mapping papyrus swamgiagiairborne and satellite hyperspectral
sensors. Results of this study show that the digndtion of papyrus from its associated species

is possible at the field level using field spectetn.

3.4.1 Differences in mean reflectance between papyrus and its associated species

The results from ANOVA test presented in Figure &t Table 3.2 have shown that there is a
significant difference in the mean reflectance lestw papyrus and each of the three species
studied (PA, EP, and TI) in the red-edge, neammf, and mid-infrared regions. The
wavelength regions with the greatest frequencyigriicant differences between papyrus and
other species can be seen in a histogram in F§@reThese significant wavelengths are located
in the red-edge region from 741nm to746 nm (n =) in the near-infrared region from 892
t01297 nm (n = 406). This confirms the results mvous studies that state that green leaves
have greatest variation in the near-infrared arttiedge regions (Asner, 1998; Daughtry and
Walthall, 1998; Cochrane, 2000; Schmidt and Skicdma2003; Thenkabaikt al, 2004,
Vaiphasaet al, 2005). Although no leaf biochemical propertiesevdirectly measured in this
study, it is likely that the occurrence of signifid wavelengths in the Red-edge region (680 nm
to 750 nm) is due to the variation between papyansl other species on chlorophyll
concentration, nitrogen concentration, and watertexdt (Curranet al, 1990; Curranet al,
1991; Filella and Penuelas, 1994; Mutanga and S&idm2007). This is because of the
physiological evidence that papyrus is charactdribg a tremendous amount of combined
nitrogen, higher chlorophyll concentration, andhag rates in biomass production than most
other wetlands species (Muthuri and Kinyamario,2®waura and Widdowson, 1992). Unlike
other species, papyrus is basically restricteti¢carea that is permanently either wet or flooded
throughout the year. This results in a higher watartent in a papyrus leaf compared to the
other species. It is, therefore, assumed thathl@aphyll and nitrogen concentrations and water
content vary significantly between papyrus and ofipecies. The significant wavelengths in the

near-infrared region, on the other hand, may be tdueariation between papyrus and other
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species in the canopy structure (Kumetr al, 2001; Schmidt and Skidmore, 2003). The

differences in canopy and leaf structure of théed#nt species are shown in Figure 3.3.

Figure 3.3.Variations in canopy and leaf structure in therfspecies: (aCyperus papyrugp)
Echinochloa pyramidalis(c) Phragmites australisand (d) Thelypteris interruptaSurface leaf

structure inCyperus papyruss relatively most different from the other spacie

3.4.2 Band selection using classification and regression trees (CART)

CART has helped to reduce dimensionality in thenifigant wavelengths (n = 412) obtained
from ANOVA as well as to identify the most sensitiwavelengths to discriminate papyrus

(Breimanet al, 1984; De'ath and Fabricius, 2000; Questieal, 2005; van Aardt and Norris-
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Rogers, 2008). As we aimed to discriminate onlyypap, CART was applied for each class pair
individually (CPvs PA, CPvs EP, and CR/is Tl). Table 3.3 shows the bands selected and the
misclassification error rate. Relative to otherd#ts, the misclassification error rate of this gtud
is very low (De'ath and Fabricius, 2000; Questaeral, 2005; van Aardt and Norris-Rogers,
2008). Therefore, we conclude that the selecteddanthis analysis level are optimal bands for
discriminating papyrus. The selected wavelengthewempared to wavelengths selected in the
other previous studies as shown in Table 2.2. Fi@ahble 2.2 one can note that the bands
selected not only in this study but also in thevyimes studies do not totally coincide with one
another. This is explained mainly by the variationconcentration of pigments and the other
optical properties and biochemical contents of lderes between species, which leads to the
different interactions within wavelengths of thearomagnetic regions (Asner, 1998; Kunear
al., 2001; Schmidt and Skidmore, 2003) However, gdriezad, especially within the red-edge
and near-infrared regions, does exist betweenttitdes which reveal the relative importance of
using different wavelengths of electromagnetic speae for species discrimination.

The study also confirms the advantages of CARTdheand Fabricius, 2000). This is can
be summarized as being : 1. a simple, easy, anddamparametric method regarding the input
data and output, 2. in variance to monotonic tramsétion of the explanatory variables, and 3.
flexible in handling different dependent variabBesd highly discriminatory data. This data can

be easily separated into individual classes orngghavithout influencing the predication.

3.4.3 The JM distance analysis

The JM distance analysis was used to assess ldtevegemportance of band combinations in
discriminating between papyrus and other speciés (€ PA, CP vs EP, and CP vs TI) using
bands selected by CART. We opted to use higheiptaiske separability values @7 %) rather
than> 95 % (Vaiphasat al, 2005). This was done in order to achieve a peestdection of the
most sensitive bands to discriminate papyrus. Wmad that some bands have more power for
discriminating between papyrus and the other tlspamzies by having higher values of the JM
distance. This is clearly shown in Table 3.4, whitlows that three bands located at 892 nm,
934 nm, and 989nm can produce acceptable averpgeabdity (97.45%). The two class pairs
(CPvs PA and CPvs TI) are spectrally more distant than the othes<lpair (CPvs EP) as is

shown in Table 3.5. Papyrus, therefore, has gregatemtial of being separable from these two
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species (PA and TI) even with a single band locaedB92nm.This is explained by the
differences in the distance separability betweenugetation species (Skidmageal, 1988).

As shown in Table 3.5, increasing the number ofdsaleads to an increase in the distance
between the class pairs. For example, the four dochted at 892nm, 934nm, 958nm, and
961nm show maximum JM values for the two classspa@Pvs PA and CPvs TIl. These
maximum values (as measured using the JM distaimckdate best discrimination between
papyrus and the two species at these selected .b@RdsndEP are similar in spectra. Therefore,
only six band combinations located at 961nm, 745 @84 nm, 746 nm, 892 nm, and 958 nm
have the acceptable separability for the class f&vs EP. These six bands have the potential
to discriminate papyrus from all its co-existingesjgs. These numbers of bands are consistent
with previous studies that state that the besbamd combinations have the greatest potential for
better species discrimination (Schmidt and Skidm@@03). The results from this distance
analysis predict the potential of correct discriation of papyrus from its co-existing species

using hyperspectral remote sensing (Schmidt andnsiie, 2003; Vaiphasat al, 2005).

3.5 Conclusions

From this study we can conclude that:

1. Field spectrometer measurements at canopy ¢ewebe used to discriminaByperus papyrus
L. from Phragmites australisEchinochloa pyramidalisand Thelypteris interruptaThis implies
that the mean spectral reflectance @fperus papyruds different from the other species
associated with it in the same ecosystem (swamjamast).

2. CART can be used to considerably reduce themsioaality and to select the most important
bands for discriminating papyrus from the othercggewith a low rate of misclassification.

3. The use of CART has revealed that the greatsstighination power for papyrus is located in
the red-edge and near-infrared regions, speciicll745 nm, 746 nm, 892 nm, 932 nm, 934
nm, 958nm, 961nm, and 989nm. This shows the impoetaf the red-edge and near-infrared
regions in species discrimination, thereby confirgnprevious studies that found strong spectral
variation among the vegetation species in thesemsgf the electromagnetic spectrum.

4. Although a single band located at 892 nm caaorahinateCyperus papyrugrom Phragmites
australisandThelypteris interruptaonly six bands located at 745 nm, 746 nm, 892984, nm,
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958nm, and 961nm, show the potential to discrineir@yperus papyrusrom Echinochloa
pyramidalis

Overall, results of this study offer the possipilof extending field measurements at
canopy level to airborne and satellite hyperspedemsors data for discriminatinQyperus
papyrusin swamp wetlands in South Africa. Further studies also necessary to investigate the
use of more advanced models such as the RF algotahdiscriminate among papyrus and its

co-existing species (multi-class classification).

Acknowledgement

We would like to thank the Herbarium at Univgr®f KwaZulu-Natal for the support in the
field planning and the identification of plant spec We extend our gratitude to Riky Taylor and
Nerosha Covender in GSLWP for providing excellesiditions for the success of the field data

collection. Our thanks go to Craig Morris and BEHaAbdel-Rahaman for facilitating the task.

58



CHAPTER FOUR

Spectral discrimination of papyrus Cyperus papyrusL.) and its co-existing

species using hyperspectral data

This chapter is based on:

1. Adam, E., Mutanga, O., Rugege, D., and Ismail, R., 2608ld spectrometry of papyrus
vegetation Cyperus papyrus . in swamp wetlands of St. Lucia, South Africa.
Proceedings of IEEE International Geoscience anth&e Sensing Symposiuia-260
—V-263.

2. Adam, E., Mutanga, O., Rugege, D., and Ismail, R., 2@iBcriminating the papyrus
vegetation Cyperus papyrus .). and its co-existent species using RF and hypetsq
data resampled to HYMARnternational Journal of Remote Sensifig press).
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Abstract

Techniques for discriminating swamp wetland speaiescritical for the rapid assessment and
proactive management of wetlands. In this study,tesed whether the RF algorithm could
discriminate between papyrus vegetation and itexastent speciesPfiragmites australis,
Echinochloa pyramidalisand Thelypteris interruptausingin situ canopy reflectance spectra.
Canopy spectral measurements were taken from tbaespusing Analytical Spectral Devices
but later resampled to Hyperspectral Mapper (HYMA®&golution. The RF algorithm and a
simple forward variable selection technique wereedugo identify key wavelengths for
discriminating papyrus swamp and its co-existingcsgs. The method yielded ten wavelengths
located in the visible and SWIR portions of thecal@magnetic spectrum with lowest out-of-bag
estimate error rate of 9.5 % and .632+ bootstrapreof 8.95 %. The use of RF as a
classification algorithm resulted in overall acayaf 90.5 % and a KHAT value of 0.87, with
individual class accuracies ranging from 93. 73074@0 %. Additionally, the results from this
study indicate that the RF algorithm produces battassification results than conventional
classification trees when using all HYMAP waveldrgg{n = 126) and when using wavelengths
selected by the forward variable selection techaiqu

Keywords: Papyrus swamp. Random forest. ClassificationstreeHYMAP sensor. Mapping,

Variable selection. .632+ bootstrap.
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4.1 Introduction

Wetland vegetation is an important component oflamet ecosystems that play hydrological,
ecological, and economic roles in aquatic systafokdly et al, 2003; Yuan and Zhang, 2006).
Wetland vegetation is an excellent indicator forlyeaigns of any physical, chemical, and
biological degradation in wetland environments (Bisan et al, 1993; Zomeret al, 2009).
Furthermore, the distribution of wetland vegetat®an important factor influencing the feeding
patterns and the distribution of wildlife in a wattl ecosystem. For example, in the Greater St
Lucia Wetland Park, South Africa, papyriyperus papyrus ).swamp forms critical habitats
for a large number of species and several comnasnguch as the Common Hippopotamus
(Hippopotamus amphibious)Nile crocodile Crocodylus niloticus) Great White Pelican
(Pelecanus onocrotallisand Pink-backed pelicafPélicanus rufescgn(Grenfell et al, 2009).
Researchers have also noted that papyrus swamps pigal role in intercepting the materials
moving from catchments to open water (Azaal, 2000; Serag, 2003; Kyambadee al,
2004). Moreover, promising results have been obthin using wetland species such as papyrus
as an alternative source of fuel in many countimesentral Africa, such as Rwanda (Jones,
1983a; Muthuri and Kinyamario, 1989).

Despite the remarkably rich biodiversity of papyrssamps, their conservation and
protection are a neglected issue in Africa (Owinad &Ryan, 2007). As a result, human
encroachment and intensified agricultural actigitie many parts of Africa have threatened the
existence of papyrus (Mafabi, 2000; Macleztnal, 2006; Owino and Ryan, 2007). Effective
techniques for mapping and monitoring papyrus swanpits co-existing vegetation species are
therefore critical for a better understanding @& thagnitude and the distribution of papyrus and
its co-existing species at several scales (Peegral, 2007). However, wetland areas are
generally difficult to map and to monitor due taop@accessibility, and sometimes they host both
dangerous wildlife and endemic diseases (Zoeteal, 2009). Additionally, traditional methods
available for mapping plant species require intendieldwork and laboratory analysis for
measuring the biochemical and biophysical properté vegetation species (Mutanga al,
2003).

This usually results in the collection and analysf data that are not generally
representative of the plant population, especidljarge and highly diverse areas such as
wetlands are investigated (Mutangfaal, 2003; Lawrencet al, 2006).
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Remote sensing potentially offers an economical atetnative method of discriminating
amongst papyrus swamp and its co-existent vegatapecies by reducing the intensive field
sampling and laboratory analysis required by trax#@ mapping techniques. However,
identifying wetland plant species is challengingngsmultispectral imagery due to the lack of
spatial resolution of most of the current satedlitdth respect to the small and sharp vegetation
units present in wetland environments (M&yal, 1997; Harvey and Hill, 2001; McCartley al,
2005). Hence, with multispectral imagery the mayorof pixels are mixtures of several
vegetation species in various proportions (Zomieal, 2009). Additionally, the use of broad
spectral bands of multispectral imagery for mappiregland species remains difficult due to the
spectral overlap between the species, becausdhealyetation species generally exhibit similar
spectral responses in the visible and near-infrasglon due to similar and limited basic
components that contribute to their spectral rédlece (Price, 1992; Kokalgt al, 2003).
Furthermore, the canopy reflectance spectra ofandti/egetation are combined with reflectance
spectra of the underlying soil and hydrologic regifWuan and Zhang, 2006). This combination
usually results in a decrease in the spectral atgitee, especially in the near-to mid-infrared
regions where water absorption is stronger (Fyf832 Silvaet al, 2008). Recent advances in
airborne imaging sensors, in particular high s@atsolution hyperspectral platforms, such as
HYMAP, offer the potential to discriminate wetlanggetation at species level due to the
availability of narrow spectral channels of lesartii0 nm (Schmidt and Skidmore, 2003; Ross0
et al, 2005; Vaiphasat al, 2005; Vaiphasat al, 2007). These narrow spectral channels permit
an in-depth detection of detailed vegetation sgewhich are otherwise masked by the broad
wavebands acquired using multispectral data (Mwagtgal, 2003; Vaiphasaet al, 2005).
However, the advantages of utilizing hyperspecttaia also come with challenges in data
processing and analysis which may lead to pooopadnce or even failure of the classification
algorithm (Kavzoglu and Mather, 2002; Tsaial, 2007).

The discriminating of papyrus from each one of dtsexisting species (binary class
classification) at canopy level has been achievsithgu spectrometer measurements with a
spectral sampling interval of less than 2 nm (Adamd Mutanga, 2009). Spectrometry (also
known as spectroscopy) data is mostly acquiredgusiand-held, airborne, and spaceborne
sensors. A hand-held spectroradiometer is an optissmument used for measuring the spectrum

emanating from a target in one or more fixed wawgiles in the laboratory and in the field
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(Mutanga, 2005). Nevertheless, the current opearatiairborne and spaceborne sensors, such as
HYMAP, lack fine spectral resolution (Mutanga, 2D0%herefore, it might be useful if the
potential of specific spectral bands of these sensodiscriminating among papyrus and it co-
existing species (Multi class classification) anwestigated, through resampling fine spectral
resolution data from spectrometers to coarser sglesolutions of the spaceborne sensors. If
the results are positive, the mapping and monigorof wetland plant species could be
operational on satellite platforms.

One of the most notable difficulties in hyperspaicttata processing is the increase of data
dimensionality, which requires sufficient trainisgmples (Borgest al, 2007; Hsu, 2007; Tsai
et al, 2007). Practically, in most of the hyperspeciagblications the number of training
samplesf) is limited with respect to the large number opésspectral bandp) (Hsu, 2007).
This ‘smalln largep problem’ has been termed the ‘curse of dimensignavhich leads to the
‘peaking phenomenon’ or ‘Hughes phenomenon’ (HsDQ72. The ‘Hughes phenomenon’
introduces multi-collinearity in the input data mwatwhich makes the estimation of statistical
parameters for the classifier performance inaceuaatl unreliable (Kavzoglu and Mather, 2002;
Hsu, 2007). Furthermore, computational requireméatsprocessing large hyperspectral data
sets might be prohibitive and time-consuming (Kajlmand Mather, 2002; Bajcsy and Groves,
2004). Therefore, techniques that reduce the ‘curselimensionality’ without sacrificing
significant information are highly sought and featuselection or extraction task is often
considered to be a practical and vital method ipeingpectral data processing and analysis (Shaw
and Manolakis, 2002; Pal, 2005; Borggsal, 2007).

Several hyperspectral feature or band selectiohniques have been proposed to reduce
the ‘curse of dimensionality’ and to identify thetimal bands required for discriminating and
mapping wetland species (Daughtry and Walthall,819%henkabailet al, 2002; Schmidt and
Skidmore, 2003; Thenkabadt al, 2004; Vaiphasat al, 2005; Vaiphasat al, 2007). These
methods can be classified into the wrapper orfdfgoroaches, based on whether or not they use
classification algorithms as part of the evaluatmnocess (Kavzoglu and Mather, 2002). The
wrapper approach is a feature selection algoritiemh $earches for the best subset of bands using
the classification algorithm as part of the evahratprocess. On the other hand, the filter
approach evaluates subsets of bands using théntyailata and without direct reference to the
classification algorithm (Kohavi and John, 1997;vKaglu and Mather, 2002). The filter
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approach is computationally more efficient and bhasn more commonly used than the wrapper
approach (Schmidt and Skidmore, 2003; Vaiphesal, 2005; Ismailet al, 2007). In the
application of high dimensionality data such asdrgpectral data, it is recommended that the
classification algorithm should be a part of thealale selection process (Granigb al, 2006).
It is therefore desirable to have an algorithm thféérs direct measuring of the importance of
variables at the same time of the classificatiacess of hyperspectral data (Ismail, 2009). This
method is more efficient in several respects: Lsis the full available training data with no
need for a validation set, 2. the method reachewlation faster by avoiding retraining a
predictor from scratch for every variable subseestigated (Guyon and Elisseeff, 2003).
Methods such as support vector machines, classifitand regression trees, and neural
networks have proved to be successful for the ifieason of hyperspectral data (Pal and
Mather, 2004; Mutanga and Skidmore, 2004b; Quegtenl, 2005). However, the major
shortcomings of support vector machines, classifipaand regression trees, and neural
networks is that they lack any insight regardihg bands that best contribute to the derived
classifier and are prone to overfitting and indtghithe latter with particular reference to
classification and regression trees (Archer anddsin2008). Alternatively, RF (Breiman, 2001)
is a bagging (bootstrap aggregation) operation &/haultiple classification trees are constructed
based on a random subset of samples derived frertrdming data. The multiple classification
trees then vote by plurality on the correct clasation (Breiman, 2001; Lawrene al, 2006).
Researchers have shown that this process dectbasesrelation between the trees in the forest
and yields an ensemble with low bias and low vaga(Diaz-Uriarte and de Andrés, 2006;
Archer and Kimes, 2008). Therefore, RF has manyatiges over conventional classification
tree-based approaches (Breiman, 2001). The stoppieg and pruning of trees is not necessary,
and the approach has been shown to be robust totbwg (Lawrenceet al, 2006). Overall, RF
is relatively easy to implement when compared ®dther ensemble classification methods and
requires the user to specify only the (i) numbetreés to be growm(ree and (i) number of
variables to split the nodes of individual treegrf) (Diaz-Uriarte and de Andrés, 2006). More
importantly, studies have shown that RF can beessfually used for feature selection as well as
for classification purposes (Svetrek al, 2003; Hamza and Larocque, 2005; Diaz-Uriartedand
Andrés, 2006; Granittet al, 2006; Haret al, 2007; Archer and Kimes, 2008). However, only a
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few remote sensing studies have applied RF forufeatelection and classification of
hyperspectral data (Lawreneeal, 2006; Chan and Paelinckx, 2008; Ismail, 2009).

Therefore, this study intends to investigate whetRE and canopy reflectance spectra
resampled to HYMAP spectral resolution can disangie amongst papyrus and its co-existing
species in The Greater St Lucia Wetland Park. Magrecifically, the objectives of the study
were to 1. Examine the utility of the RF wrappesdxh approach for selecting the optimal
number of hyperspectral wavebands in a multiclgggi@tion, 2. Examine if the RF algorithm
can accurately classify papyrus and its co-exis$geties in complex environments, where the
vegetation classes have similar spectral charatitayiand are affected by the underlying soils
and hydrological regime, and 3. Examine the rolesdrof the RF algorithm in an application

where the number of samples are less than the nushlariablesy) (i.e.,n < p).

4.2 Materials and methods

4.2.1 Spectral data acquisition and processing

Random points were generated on a land cover napvis derived from Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTERgagery. The sample points were
subsequently uploaded into a GPS and used to navigahe field sites i.e. Futululu Park, and
the Mfabeni and Mkuzi swamps. Purposive sampling d@ane when the random point was not
accessible, or to increase the variation of redlecé measurements. Once the sample site was
located, a 3 m by 3 m vegetation plot was creabedovver a homogenous area of the papyrus
swamp or its co-existing species, and then themaspectral reflectance was measured.

All the spectral measurements were collected inebder 2009 between 10:00 am and
02:00 pm under sunny and cloudless conditions usiegAnalytical Spectral Devices (ASD)
FieldSpec® 3 spectrometer. The spectrometer messuavelengths ranging from 350 nm to
2500 nm with a sampling interval of 1.4 nm for 8% nm to1000 nm spectral region, and a 2.0
nm sampling interval for the 1000 nm to 2500 nmc#@é region. The ASD has a spectral
resolution of between 3 nm and 10 nm (ASD Analyt8pectral Devices Inc., 2005). A white
reference spectralon calibration panel was usedyéveo 10 measurements to offset any change
in the atmospheric condition and irradiance of #gwe. Accompanying the field spectral

measurements, metadata such as the sites’ desurif@oordinates, altitude, and land cover
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class) and general weather conditions were alsoded (Miltonet al, 2009). Approximately 20

to 25 field spectrometer measurements were randtakgn at nadir from 1 m using afield of
view (Table 4.1). This resulted in a ground fiefdview of about 18 cm in diameter, which was
large enough to cover a cluster of papyrus andatsxisting species and reduce the background
effects caused by soil and water (Mutamrgal, 2004). These spectral measurements were then

averaged to obtain the final spectral measurenoergdich vegetation plot.

Table 4.1: The number of sample plots and the total numbepettral measurements collected
for papyrus and its associated species

Species hame Type code Number of plots Number asorements
Cyperus papyrus CP 55 1240
Phragmites australis PA 53 1166
Echinochloa pyramidalis EP 56 1288
Thelypteris interrupta TI 51 1130

The spectral measurements from each of the wettpedies (n = 4) were resampled to
HYMAP spectra using ENVI 4.3 image processing safev(Figure 4.1). The method used a
Gaussian model with a full width at half maximumWMAP) equal to the band spacing
provided (Mutanga, 2005). HYMAP is an airborne hgpectral imaging spectrometer,
comprising 126 wavelengths, operating over the tspeange between 436.5 nm — 2485 nm,
with average spectral resolutions of 15 nm (437-£813 nm), 13 nm (1409 nm — 1800 nm), and
17 nm (1953 nm — 2485 nm) (Clev al, 2007) . The spectral reflectance was resampleduse
the current operational airborne and spacebornsosersuch as HYMAP lack the fine spectral
resolution of the ASD spectral reflectance (Mutarifz05). Additionally, in view of the current
availability of airborne sensors in South Africajs of interest if the specific spectral bands of
these sensors can discriminate between papyrus pw&achits co-existing species. If the results
are positive, the mapping and monitoring of wetlgidnt species could be operational on

airborne hyperspectral platforms.
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Figure 4.1.Mean canopy reflectance of resampled HYMAP dat&Cigperus papyrus Land its

co-existing species: (Echinochlpgrramidalis Phragmites australissnd Thelypteris interrupta

4.2.2 Data analysis
4.2.2.1 Variables importance using the random foadgorithm

Random forest calculates three-variables importaneasures, namely, the number of times
each variable is selected, the Gini importance,taagermutation accuracy importance measure
(Strobl et al, 2007). The permutation of the variables, howeigionsidered to be the most
advanced measure because of its ability to evatbateariable importance by the mean decrease
in accuracy using the internal out-of-bag (OOB)ineates while the forests are constructed
(Breiman, 2001; Lawrencet al, 2006; Strobkt al, 2007).

In this study, we adopted the out-of-bag methodatoulate the importance of a specific

predictor variable (in our case wavelengths) irtiisinating papyrus swamp and its co-existent
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species (Cutleet al, 2007; Archer and Kimes, 2008; Chan and Paelin2R®8).The importance
of each variable (n =126) used in this study wdsuwtated based on how much worse the
classification accuracy (mean decrease in accuraoy)d be if that variable (wavelength) was
permuted randomly (Prasad al, 2006). The importance of each variable is eseghan the
following steps (i) the reflectance values of ea@velength is randomly permuted for the OOB
samples, and then this modified OOB data are pad®e@d each tree to get new predictions, (ii)
the difference between the misclassification ratettie modified and original OOB data over all
the trees that are grown in the forest are themageel, (iii) this average is a measure of the
importance of the variables and it is used as kimgnndex which can be used to identify the
wavelengths with relatively large importance in tassification process (Cutlet al, 2007;
Archer and Kimes, 2008; Chan and Paelinckx, 2008).

The optimization of the two parameterdréeandmtry) of the RF algorithm is necessary
to guarantee high accuracy of classification. lis legard, the big number of treadrée is
recommended to ensure that every input featurepyetticted several times (Kiet al, 2006).
We therefore optimized thareeby using different values based on out-of-bagesties of error
(Liaw and Wiener, 2002). We also optimized thi#y number by trying all possible values (the
default number is the square root of the numbevaniables). The RF library developed in R

statistical software (R Development Core Team, 2088 used to implement the RF algorithm.

4.2.2.2 Forward variable selection using the randomest algorithm

Although RF provides a measure of variables impméa it does not automatically choose the
optimal number of variables that yield the besssification accuracy. The question therefore
remains: What is the optimal number of wavelengiias can yield the smallest misclassification
error rate? In this regard, we implemented a sinig@ard variable selection (FVS) method to
identify the optimal subset of wavelengths with tbevest misclassification error. The FVS
method uses the ranking of wavelengths as detedhtiyethe RF algorithm. The FVS method
iteratively builds multiple random forests using tranked wavelengths, and for each iteration
five wavelengths were added to the model, and the gvas calculated using OOB estimates
error. Initially, the top five ranked wavelength® &elected and for the next iteration, the top 10
ranked wavelengths are selected. This process efsated for the maximum amount of

variables used in this study (n = 126). To validéke results from the OOB estimate error, we
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carried out a .632+ bootstrap method (n =100) (RIearte and de Andrés, 2006; Ismail, 2009).
The .632+ bootstrap method uses a weighted averfatpe resubstitution error (the error when
the RF classifier is applied to the training dedajl the error on samples not used to train the
predictor (the ‘leave-one-out’ error) (Diaz-Uriaged de Andrés, 2006). The optimal subsets of
wavelengths that yielded the smallest error ratéeisrmined by the OOB method and .632+

bootstrap method were then used for classifyingypegpand its co- existent species.

4.2.2.3 Classification and accuracy assessment

It has been reported that, with the RF algorithing not necessary to have cross validation or a
separate accuracy assessment data set, becau@®Bherror provides an unbiased estimate of
error (Lawrenceet al, 2006; Prinzie and Van den Poel, 2008). Therefeeeused OOB to
estimate the misclassification error. The confusioatrix was subsequently constructed to
compare the true class with the class assignedhéyclassifier and to calculate the overall
accuracy as well as the user and producer accurdeyrthermore, a discrete multivariate
technique called kappa analysis that usek {f¢HAT) statistic was also calculated to determine
if one error matrix is significantly different fromnother (Cohen, 1960). This statistic serves as
an indicator of the extent to which the percentaigeorrect values of an error matrix are due to
the actual agreement in the error matrix and trench agreement that is indicated by the row
and column totals (Congalton and Green, 1999hdfKHAT coefficients are one or close to one
then there is perfect agreement.

We also used the .632+ bootstrap method (n = IP@ptimate the misclassification error
rate of the RF algorithm (Diaz-Uriarte and de Amsdrg006; Granittet al, 2006). The .632+
bootstrap method was also applied to compare thar eate of RF with classification tree
algorithms as an alternative method using the sdata set. We used the ‘errorest library’
(Peterset al, 2002) from the R statistical software (R Develemtn Core Team, 2007) to

calculate the .632+ bootstrap error.
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4.3 Results

4.3.1 Effects of random forest input parameters on misclassification error

Before examining variable selection, it was essént evaluate the effect of the user defined
parametersnitry and ntree on the misclassification error. Figure 4.2 shaat the default
setting ofmtry (n = 11)proved to be the best choice in terms of the OQBreate (11. 5 %).
When examining thatree parameter, results showed that the OOB error ragge relatively
stable after 6000 trees (Figure 4.3), and we tbesefised the defauthtry and 6000 trees for

ntreefor all the further analyses.
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Figure 4.2. The effect of the number of variables tried athesplit fntry) on the performance of

RF using the OOB estimate of error.
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Figure 4.3. The effect of the number of treastree parameter on the performance of random

forest using the OOB estimate of error (%).

4.3.2 Variables selection using the OOB method

All the resampled HYMAP wavelengths (n = 126) wersed as input variables into the RF
algorithm (defaulimtry value of 11 and 6000 treest{ed. The RF algorithm yielded an OOB
error rate of 11.5 % for the entire model. The mdaarease in accuracy as calculated by the
OOB sample was then used to rank the wavelengigsrd-4.4 shows the importance of all
wavelengths as calculated by the RF algorithm. Reshowed that the wavelengths with the
highest mean decrease in accuracy are located mnedi®ly in the short wave infrared region
(i.e.1409 nm and 1424 nm) and the visible regia{LO nm and 437 nm). Additional important

wavelengths are located between 437 nm and 710 nm.
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Figure 4.4. Variables importance as determined by the RF dhlgor The important

wavelengths are those with the highest mean dexisacuracy.

4.3.3 Forward variables selection method (FVYS)

Figure 4.5 shows that the lowest misclassificatete as determined by both the .632+ bootstrap
method (8.95 %) and the OOB method (9.5 %) is abthwhen using 10 wavelengths located at
1409 nm, 710 nm, 437 nm, 464 nm, 452 nm,1424 nmnn2480 nm, 587 nm, and 603 nm (the
ranking is based on the importance measures). gugirwavelengths (n = 126) yielded a .632+
bootstrap error of 9.19 % and an OOB error estimétel.5 %. It is interesting to note that the
OOB and the .632+ bootstrap error rates follownailar trend (Figure 4.5). The top 10 bands
were then used as input variables into the finalnifelel to classify papyrus swamp and its co-

existent species.
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Figure 4.5. The forward variable selection method for identify the optimal subset of
wavelengths based on the OOB and .632+ bootstregr estimates. The best subset of

wavelengths with the lowest error rate is shownhgyblack arrow

4.3.4 Classification and accuracy assessment

the results as shown in Table 4.2 indicate thabtrerall OOB error rate for all the classes was
9.5% using the ten wavelengths selected by the Féghod compared to the 11.5% obtained
when all the wavelengths (n = 126) were used. discriminating individual species, the
confusion matrix shows that tHehragmites australiclass has the lowest error rate (96 %),
while the Echinochloa pyramidalisclass has the highest error rate (86 %). Followting
calculation of the overall OOB estimate of erroe subsequently used the confusion matrix
shown in Table 4.2 to examine the error rate betwsspyrus and its co-occurring species. We
examined the classification of each species @gperus papyrus, Echinochloa pyramidalis
Phragmites australiandThelypteris interruptawith every other species (Table 4.3).
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Table 4.2: The confusion matrix showing the overall classifion accuracy forCyperus
papyrusL. (CP), Echinochloa pyramidaligEP), Phragmites australiPA) and Thelypteris
interrupta(TI).

CP EP PA TI Class accuracy (%)
CP 45 1 1 3 90
EP 2 43 2 3 86
PA 1 1 48 0 96
Tl 3 2 0 45 90

Overallassification accuracy = 90.5%

Table 4.3 shows that the classification betweenctass pair oPhragmites australisnd
Thelypteris interruptéhas a classification accuracy of 100%. The seleat@velengths (n = 10)
also yielded a high classification accuracy betw€gperus papyrusind Thelypteris interrupta
(97.89%) ancEchinochloa pyramidali$96.7%) and betweerCyperus papyruandPhragmites
australis(93.75 %). Thelypteris interruptappears to be unigue amongst the other specied bas
on the highest classification accuracy (94.62 %4@0 %) obtained. The overall classification
accuracy obtained for all classes was 90.5 %. Tél3also presents an overall KHAT value of
0.87 which indicates that there is strong agreenbetdveen the observations and the model

predictions.
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Table 4.3: The confusion matrix showing the classificatianoe obtained for discrimination
amongst all possible species combinations (n = @)perus papyrus(CP), Echinochloa
pyramidalis (EP), Phragmites australigPA), andThelypteris interrupta(Tl) . The confusion
matrix includes the accuracy between classes (A@®),KHAT statistic, producer accuracy
(PA), and user accuracy (UA)

Classes ACC KHAT PA % UA % Row Column

% totals
totals

Presence Absence Presence Absence

CPvsEP  96.70 0.93 95.74 97.73 97.83 95.56 91 91
CPvsTI 97.89 0.96 97.83 97.96 97.83 97.96 95 95
CPvsPA  93.75 0.88 93.75 93.75 93.75 93.75 96 96
EPvsPA  96.81 0.94 97.73 96.00 95.56 97.97 94 94
EPvsTI 94.62 0.89 95.56 93.75 93.48 95.74 93 93
PAvsTl  100.00 1.00 100.00 100.00 100.00 100.00 93 93

All classes  90.50 0.87 88.24 91.49 90.00 86.00 200 200

We used the .632+ bootstrap method to compare ¢n@rmance of the RF algorithm
against the widely used classification trees (Clgorthm (Harb et al, 2009; Ismail and
Mutanga, 2009). The results of performance assedsnae shown in Figure 4.6 for both
machine learning methods using different subsetwafelengths. It is clear, over a range of
different subsets of wavelengths used, the overaitlassification error rates obtained by the RF
algorithm are much lower than the misclassificaoror rates obtained by the CT algorithm. It
is interesting that the use of the top 10 wavelen¢t409 nm, 710 nm, 437 nm, 464 nm, 452 nm,
1424 nm, 725 nm, 480 nm, 587 nm, and 603 nm) yiete lowest misclassification error rate
for both the CT algorithm (15.05 %) and RF (9.5&ay that the highest misclassification error
was obtained using the top 5 wavelengths for thealgérithm (11.74 %) and CT (18.56 %).

We also used the confusion matrix to compare théARKHalues and overall accuracy
between the two machine learning methods. TableHodvs that the RF model produces better
overall accuracy and KHAT value compared to clasaiion trees algorithm for all HYMAP
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wavelengths and the top 10 wavelengths. The ovariracy and KHAT values for the RF
algorithm were 90.5 % and 87 %, and for the CT rlgon were 84.5 % and 80 % respectively
when the top 10 wavelengths were used. The RF itigoralso yielded better classification
accuracy (88.44%) than the CT algorithm (80.47%gnvthe full data set (126 wavelengths) was

used.
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Figure 4.6. Comparison between the performance of the randanfdrest algorithm (RF) and
the classification tree algorithm (CT) using diffet subsets of wavelengths selected by RF. The

misclassification error rate was estimated usirg.@32+ bootstrap (n= 100).
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Table 4.4: The misclassification error for both machine leéagnmodels (RF and CT) using the
.632+ bootstrap method for error estimates andatt®iracy assessments using the top 10

wavelengths selected by the RF algorithm and adftkh set (126 wavelengths).

Algorithm  Top 10 wavelengths Full data set
Misclassification Overall KHAT  Misclassification Overall KHAT
error % error
Accuracy % accuracy %
RF 8.95 90.5 87 9.19 88.44 85
CT 12.05 84.5 80 13.75 80.47 78

4.4 Discussions

This study tested the utility of field spectromettgta resampled to HYMAP resolution and the
RF algorithm for variables selection and classtfa@aof Cyperus papyrugnd its co-existent
species Phragmites australisEchinochloa pyramidalisand Thelypteris interruptpalocated in
the St Lucia Wetlands Park, South Africa.

Overall, the results obtained in this study show lenefit of using the RF algorithm for
identifying key wavelengths as well as for prodgcirexcellent classification results.
Additionally, results show that when optimizing tR& algorithm the default setting oftry (in
our casemtry = 11) is sufficient. These results are identicaltiose of Diaz-Uriarte and de
Andrés (2006) and Liaw and Wiener (2002) who inidathe insensitivity of RF to the choice
of mtry and found that the highest accuracy can be aathibyeusing a large number of trees.
With this range of capabilities, RF offers powerhliternatives to traditional parametric and
semi-parametric statistical methods for the analgshyperspectral data.

However, the limitation of the RF algorithm wasttitadoes not automatically choose the
optimal number of variables that could yield thevést error rate. The FVS method used in this
study provided the optimal numbers of importantialdles (n = 10) that offer the lowest
misclassification error rate. Results show that fille HYMAP data set (n=126) produced an
overall accuracy of 88.44 % and a KHAT value of 90.8mpared to when the selected

wavelengths (n = 10) were used producing an ovacauracy of 90.5 % and a KHAT value of
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0.87. Using the selected wavelengths produced aritéase in classification accuracies. These
results obtained are comparable to those of Lawerenal. (2006) who found that using a full
data set of Probe-1 (128 bands) with the RF algariin classifying two invasive species
produced lower overall accuracy than when the datavas reduced. These results emphasize
the assertion that, in the model-based analysisintrease of hyperspectral bands could lead to
a decrease in the classification accuracy becausentise in the redundant data propagates
through the classification model (Benediktssbral, 1995; Bajcsy and Groves, 2004).Therefore,
the use of large and redundant numbers of hypergpéands (in our case n = 126) has resulted
in lower classification accuracy (overall accurd&8:44 %) and (OOB estimate error 11.5 %)
than processing a subset of relevant bands (incase n = 10) without redundancy (overall
accuracy 90.5 %) and OOB estimate error (9.5 %)er@ly the result shows the excellent
performance of the FVS method in dimensionalityuctsbn without sacrificing significant
spectral information.

Previous studies that have classified wetland \aiget using remotely sensed data have
shown the relative importance of the visible indcr(VIS) and short wave infrared (SWIR) in
discriminating wetland species (Daughtry and WallthE098; Schmidt and Skidmore, 2003;
Thenkabailet al, 2004; Vaiphas&t al, 2005). Similarly, the ten wavelengths selectedhis
study (1409 nm, 710 nm, 437 nm, 464 nm, 452 nm4 1R, 725 nm, 480 nm, 587 nm, and 603
nm) emphasized the potential usefulness of thebleisiegion and SWIR even at a coarser
HYMAP spectral resolution in discriminating the Vesid species . However, the results
produced higher classification accuracies when @etpto research carried out by Pergjral.
(2007) who achieved an overall accuracy of 81.b%fapping®Phragmites australisising EO-

1 Hyperion hyperspectral sensor. In this study Wiioed a classification accuracy of 96% for
Phragmites australisHowever, it should be noted that the results o #tudy are based on

resampled HYMAP data. Noise in the blue part of spectrum and atmospheric absorption,
especially around the selected bands (1409 nm 424 Aim) might present some problems when
upscaling the results to an airborne platform. Vékele that the techniques used in this study
should receive considerable additional testing wither airborne or spaceborne data.
Nevertheless, the results from this study demotesthee possibility of hyperspectral data to map

papyrus and its co-existent species in swamp watlan
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We compared the utility of the RF algorithm agaitiet widely used tree-based ensemble
classifier (classification trees algorithm) usihg t632+ bootstrap estimate error. Our evaluation
criteria included accuracy assessment using all APMvavelengths and wavelengths selected
by RF. In these experiments, we found that the Rforghm obtained higher overall
classification accuracy than the CT algorithm fihtlee wavelengths and selected wavelengths.
The results obtained in this study are consistetit those of Hamza and Larocque (2005) and
Pal (2005) who showed that the RF algorithm aclselie best classification accuracy compared
to other ensemble methods that use tree class#tetise base model. It is also interesting to note
that wavelengths selection by RF (n = 10) produogeer misclassification error (12.05 %) for
the CT algorithms than other different subsets ¥MAP wavelengths (Figure 4.6). This result
emphasizes the robustness and reliability of RFaasgariables selection method and for
producing the best classification accuracy.

4.5 Conclusions

This paper aimed at discriminatinGyperus papyrus Phragmites australis Echinochloa
pyramidalis,and Thelypteris interruptdocated in the Greater St Lucia Wetlands Padutl®
Africa, using RF and field spectrometry data resiachpo HYMAP sensor.
Our results have shown that:
1. The proposed method for variables selection atde to provide small sets of non-redundant
wavelengths while preserving highest classificagoouracy.
The study demonstrated the possibility to scalethg method to airborne sensors such as
HYMAP for discriminating swamp wetland species wéh overall accuracy of 90.5 %. We
believe that the techniques used in this study Ishi@ceive considerable additional testing with
other airborne or spaceborne data.
2. Based on relatively high accuracy, low cost {labdity of R statistics package is free of
charge), simplicity, and few parameters to be Bé&t,algorithms can be considered as a new
approach for the analysis of hyperspectral data.

Overall, the results from this study have revedhed RF algorithm is a robust and accurate
method for the combined purpose of variables seleciand for the classification of
hyperspectral data in an application where (i) tuenber of samples is limited (n < p), and

where (ii) vegetation species have similar speactinaracteristics affected by underlying wet soll
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and hydrology regime. However, further studies aeeessary for testing the stability and
reliability of the internal assessment of accurd@OB) in the RF algorithm using an

independent accuracy assessment data set. Giveprabéem of soil and water background
affecting the spectral reflectance of papyrus atmrospecies, it would be useful if the use of

vegetation indices in discriminating these speisdarther investigated in future studies.
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CHAPTER FIVE

Improving spectral discrimination of papyrus (Cyperus papyrusL.) and its co-

existing species using narrow band vegetation incks

This chapter is based bn

Adam, E., Mutanga, O., and Ismail, R., (in review). lmgng the spectral discriminating of
papyrus Cyperus papyrus L.and its co-existent species at canopy level withehspectral
indices and random forest algorithinternational Journal of Applied Earth Observatiamd

Geoinformation.
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Abstract

Recent advances in hyperspectral remote sensingdpropportunities to discriminate and map
wetland plant species. The shortcoming of individsmectral bands for discriminating wetland
plant species is their limited spectral informatiwhich might be inadequate for characterizing
the spectral reflectance of wetland vegetation wischighly correlated and combined with the
reflectance spectra of the underlying wet soil Apdrologic regime. The objective of this study
is to evaluate the potential of hyperspectral vaigmt indices for improving the spectral
discrimination of papyrus and three co-existingcsg® in the Greater St Lucia Wetland Park-
South Africa. In situ canopy reflectance measurements ranging from 8®n2500 nm were
taken from papyrus and the three co-existent speggng an analytical spectral devices
spectrometer. We calculated the normalized diffegevegetation index (NDVI) and a simple
ratio (SR) involving all possible two-band combinats of the 20 most important bands as
determined by the RF algorithm. In addition, weleated a number of hyperspectral indices (n
= 48) that were previously demonstrated to estim&at parameters such as biomass, leaf area
index (LAIl), chlorophylla andb, and nitrogen concentration. An analysis of vaseaand a
simple forward variable selection technique weredut® select optimal vegetation indices that
showed the highest potential to discriminate betwtbe wetland species. Three of the optimal
vegetation indices were previously published in literature (Plant Senescence Reflectance
Index, Blue/Green Index 1, and Pigment Index 4)leviihe other two optimal indices were
obtained from the modified NDVIs involving a combtion of a narrow band in the red portion
(655 nm) with two wavelengths in the red-edge p@si{697 nm and 705 nm). Finally, the RF
algorithm was used to classify the species usiegfitimal indices. An overall accuracy of 96%
was obtained using the out-of-bag data with indialdclass accuracies ranging from 93.7 % to
100 %. Our results clearly indicate that: 1. hypecdral indices might offer new possibilities of
discriminating plant species, and 2. the out-of-bBatp, as an internal estimate of accuracy in the
RF algorithm, provide a reliable and stable acop@gsessment so it might be unnecessary to

have independent accuracy assessment data whentlisiRF algorithm.

Keywords: Field spectrometer measurements. Papyrus. RandoestfoVegetation indices.

Variable selection. Wetland vegetation.
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5.1 Introduction

Mapping and monitoring wetland species such as mpapyYCyperus papyrus .. are key
requirements for a better understanding of the tfans and dynamics of wetland ecosystems
and are also critical for effective and sustainatiianagement of wetlands (Schmidt and
Skidmore, 2003; Zomeet al, 2009). Quantitative, accurate, and repeatablaniqones for
discriminating wetland vegetation at species lenelarge areas are therefore of self-evident
importance (Mutangat al, 2003; Bellucoet al, 2006; Lawrenceet al, 2006). Traditional
survey methods such as hand mapping and Globdiidtosg Systems (GPS) receiver mapping
have proven to be highly accurate for small managydnareas (Cooksey and Sheley, 1997).
However, these methods require intensive fieldwaricluding taxonomical information,
collateral and ancillary data analysis, and thesaliestimation of percentage cover for each
species, which might be economically, technicalipd logistically inadequate for wetland
environments because of their high diversity andrpxcessibility (Xieet al, 2008; Zomeret

al., 2009).

Hyperspectral remote sensing provides opportunitiesliscriminate and map wetland
vegetation at species level due to the availabdftparrow spectral channels of less than 10 nm
(Schmidt and Skidmore, 2003; Rossbal, 2005; Vaiphasat al, 2005; Bellucoet al, 2006;
Vaiphasaet al, 2007; Zomeret al, 2009). These narrow bandwidth data permit aneiptl
detection of detailed vegetation species which d¢datiherwise be masked when using the broad
wavebands of the Landsat TM or SPOT sensors (Btagl, 1997; Harvey and Hill, 2001;
McCarthy et al, 2005). However, while the high spectral resolutiof hyperspectral data
facilitates accurate detection and identificatitine high dimensionality of the data causes
substantial problems in analysing and processinmpbexity (Demir and Erturk, 2008).
Additionally, redundancy in the hyperspectral datasts due to strong correlation between
adjacent spectral bands (Jiaegal, 2004). The calculation of narrow band vegetaimices
offers a suitable method to overcome the problehiggh dimensionality and redundancy in the
hyperspectral data (Andrew and Ustin, 2006).

Additionally, the use of hyperspectral technoldgy discriminating wetland plant species
is challenging because the reflectance spectraetlbmd vegetation canopies, especially in the
visible and near-infrared region, are highly catetl due to their similar biochemical and
biophysical properties (Price, 1992; Kokakt al, 2003; Adam and Mutanga, 2009).
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Furthermore, when these properties are combindu neftectance spectra of the underlying soll
and hydrologic regime (Yuan and Zhang, 2006), there decrease in the spectral reflectance,
especially in the near- to mid-infrared regions whevater absorption is relatively stronger
(Fyfe, 2003; Silvaet al, 2008). Therefore, information in a single spdctrand might be
inadequate to characterize the vegetation progedreto identify the factors affecting their
spectral reflectance (Zhaa al, 2007).

In the past three decades, several spectral wagetadices (VIs) have been developed to
provide more sensitive measurements of plant bisighl parameters such as biomass, LAI,
water content, and chlorophyll (Greest al, 1997; Sims and Gamon, 2002; Mutanga and
Skidmore, 2004a; Stimsoet al, 2005; Zhaoet al, 2007; Darvishzadebt al, 2008; Xue and
Yang, 2009) to reduce external noise interfererstesh as those related to soil, atmosphere
condition, and sun view angles (Mutanga and Skiégm®@04a) and to enhance the variability of
spectral reflectance of vegetation (€&ial, 1995; Haboudanet al, 2002; Choet al, 2008).
These VIs were developed mathematically basedretthenarrow band spectral data or broad
band sensor such as Landsat TM and SPOT. Studiesdiwn that these VIs provide more
highly correlated relationships with vegetation gedies than individual bands (Tanriverdi,
2006).

The normalized difference vegetation index (NDVIuéker, 1979), and simple ratio (SR)

( Maxwell, 1976) are the most commonly used broad indices in correlating remote sensing
observations with the characteristics of vegetatidimao et al, 2007; Choet al, 2008). NDVI
calculation is based on the contrasting intenserophyll absorption in the red (670 to 680 nm)
against the high signal in the near-infrared wawgtle (750 nm to 850 nm) due to light scattering
by leaves (Mutanga and Skidmore, 2004a; €hal, 2008). NDVI calculated from broad band
sensors has been found useful in classifying wedaat coarse levels (Johnston and Barson,
1993) and estimating biomass (Tanal, 2003) and LAI of wetland vegetation (Greehal,
1997). However, attempts to discriminate vegetasipecies have not been possible because they
produce similar NDVI values (Nagendra, 2001). Femhore, the limitation of standard
vegetation indices constructed with red and nefmaied spectral measurements, particularly
NDVI, is that they yield poor estimates after atagr biomass density or LAl due to the

saturation problem (Mutanga and Skidmore, 2004a).
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Hyperspectral indices, on the other hand, have lseemwn to be significantly correlated
with biochemical and physiological properties ofgettion canopies and leaves. The
concentrations of these biochemical and physioldgproperties depend on factors such as
phenology, degree of canopy development, and typmaronment stress (Chet al, 2008).
Therefore, the difference in physiological concatitms of vegetation can be another source of
variation in plant spectral signatures (Bestl, 1981; Silvaet al, 2008). Because hyperspectral
indices developed in the visible and near-infraredion respond to these differences in
physiological status and environmental factorsvgsét al, 2008), therefore, it might offer the
possibility to map plant species or communities eshgfing on their differences in canopy
structures and biochemical compositions (Nagerzi@]; Choet al, 2008).

Studies involving variation in plant spectral sigmas based on different phenological
stages and physiological and biochemical conceot@have been conducted in a single species
or plant community and have not been carried outvéen different plant species and
communities (Beset al, 1981; Mutangaet al, 2003). Most of these studies investigated the use
of the novel spectral indices derived from leaflsgaeasurements and have rarely the indices
examined for species discrimination (Céibal, 2008). The canopy spectra indices have shown
better plant species discrimination as comparelkdb spectra indices using visible and near-
infrared wavelengths (400 nm to 900 nm) (Gt@l, 2008).

Methods such as support vector machines, clagsdit and regression trees, and neural
networks have proved to be successful for the ifieason of hyperspectral data (Pal and
Mather, 2004; Mutanga and Skidmore, 2004b; Quegternl, 2005). However, the major
shortcomings of support vector machines, classifipaand regression trees, and neural
networks is that they lack any insight regardihg bands that best contribute to the derived
classifier and are prone to overfitting and indtghithe latter with particular reference to
classification and regression trees (Archer and d62008). Alternatively, the RF algorithm
(Breiman, 2001) is a bagging (bootstrap aggregataperation where multiple classification
trees are constructed based on a random subsatmpies derived from the training data. The
multiple classification trees then vote by plusalin the correct classification (Breiman, 2001;
Lawrenceet al, 2006). Researchers have shown that this processeakes the correlation
between the trees in the forest and yields ensewititelow bias and low variance (Diaz-Uriarte
and de Andrés, 2006; Archer and Kimes, 2008). dfoee, the RF algorithm has many
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advantages over conventional classification tresetaapproaches (Breiman, 2001). The
stopping rules and pruning of trees is not necgssard the approach has been shown to be
robust to overfitting (Lawrencet al, 2006). Overall, the RF algorithm is relativelysgao
implement when compared to the other ensembleititat®n methods and requires the user to
specify only the (i) number of trees to be growtrg¢e and (i) number of variables to split the
nodes of individual treesmtry) (Diaz-Uriarte and de Andrés, 2006). More imputfig studies
have shown that RF can be successfully used faurieaelection as well as for classification
purposes (Svetnikt al, 2003; Diaz-Uriarte and de Andrés, 2006; Grargtt@l, 2006; Hanet
al., 2007; Archer and Kimes, 2008). However, only & femote sensing studies have applied
the algorithm for feature selection and classifaratof hyperspectral data (Lawrenet al,
2006; Chan and Paelinckx, 2008; Adatral, 2009; Adamet al, In press).

Therefore, the objective of this study was to ewpldhe performance of various
hyperspectral vegetation indices derived from cgnspale measurements in discriminating
papyrus and three other co-existent species. Wetsel and computed band ratios which have
been widely and successfully used in vegetatiodissu(Mutanga and Skidmore, 2004a). We
examined narrow band NDVI and SR involving all pbkstwo-band combinations of the top 20
bands measured with the RF algorithm. Some of xistieg hyperspectral indices (n = 48) that
were previously demonstrated to estimate plantmpaters such as biomass, LAI, chlorophyll a
and b, and nitrogen concentration were also corsidd-urther, we tested the reliability of the
internal accuracy assessment of the RF algorithngus independent accuracy assessment data

set.

5.2 Materials and methods

5.2.1 Canopy spectral measurements

Random points were generated on a land cowgp that was derived from Advanced
Spaceborne Thermal Emission and Reflection Radien{&STER) imagery. The sample points
were subsequently uploaded into a GPS and usealvigate to the field sites i.e. Futululu Park,
and the Mfabeni and Mkuzi swamps. Once the sami@esas located, a 3 m by 3 m vegetation
plot was created to cover a homogenous area opdbgrus swamp or its co-existing species,

and canopy spectral reflectance was then measured.
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All the spectral measurements were collecte@®@ecember 2009 between 10:00 am and
02:00 pm under sunny and cloudless conditions usiegAnalytical Spectral Devices (ASD)
FieldSpec® 3 spectrometer. The spectrometer measuagelengths ranging from 350 nm to
2500 nm with a sampling interval of 1.4 nm for 80 nm to1000 nm spectral region, and 2.0
nm sampling interval for the 1000 nm to 2500 nmcs@é region. The ASD has a spectral
resolution between 3 and 10 nm (ASD Analytical $@¢cDevices Inc., 2005). A white
reference spectralon calibration panel was usedyéveo 10 measurements to offset any change
in the atmospheric condition and irradiance of #gw. Accompanying the field spectral
measurements, metadata such as the sites’ desurif@oordinates, altitude, and land cover
class) and general weather conditions were alsoded (Miltonet al, 2009). Approximately 20
to 25 field spectrometer measurements were randtmkign at nadir from 1 m and using @ 5
field of view (Table 5.1). This resulted in a graufield of view of about 18 cm in diameter,
which was large enough to cover a cluster of papwand its co-existing species and reduce the
background effects caused by soil and water (Mwaneg al, 2004). These spectral
measurements were then averaged to obtain thedpeaitral measurement for each vegetation
plot.

Table 5.1: The number of sample plots and the total numbepettral measurements collected

for papyrus and its associated species

Species name Type code Number of plots Number asmrements
Cyperus papyrus CP 82 1476
Phragmites australis PA 83 1328
Echinochloa pyramidalis EP 86 1688
Thelypteris interrupta TI 80 1130

We randomly divided the spectral data for eachigsgdato two equal data sets (Lawrence
et al, 2006), and the models were developed using olieshahe data (n = 40), while the

withheld half of the data (n = 40) was used foiratependent accuracy assessment.
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5.2.2 Vegetation indices calculation

Two types of hyperspectral indices were testedhis $tudy: 1. Hyperspectral indices that were
previously demonstrated to estimate plant parametech as biomass, LAI, chlorophyll a and b,
and nitrogen concentration (Table 5.2), and 2. &arband vegetation indices computed
according to the principle of the NDVI (Eq.1) andR §Eg.2) from all possible two-band

combination indices involving 20 bands selectedtiy RF algorithm. This resulted in 800

indices, 400 NDVIs and 400 SRs.

Rim ~Rin
i T R
Riin
in)

Where R; ,and R ; ,, are the reflectance of any two bands from the 2ibaelected by the RF
algorithm for each species.
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Table 5.2:Vegetation indices used in this study

No Index name Abbreviation Formula* References
1 Normalized different vegetationNDVI (R830-R670)/ (Rouseet al, 1974)
index
(R830+R670)
2 Carter index Cl R760/R695 (Carter, 1994)
3 Gitelson and Merzylak Index GMI R750/R700 (Gitelson and Merzlyak,
1994)
4 Vogelman index VOG R740/R720 (Vogelmaetral, 1993)
5 Photochemical reflectance index PRI (R531-R570)/ (Penuela®t al, 1995)
(R531+R570)
6 Normalized Difference ND (R750-R705) (Gitelson and Merzlyak,
1994)
/(R750+R705)
7 Structure Insensitive Pigment Index  SIPI (R80OGR4 (Penuela®t al, 1995)
/(R800-R680)
8 Pigment Specific SR (chlorophylla) PSSRa R808MR6 (Blackburn, 1998)
9 Pigment Specific SR (chlorophyll b) PSSRb R80@MR6 (Blackburn, 1998)
10 Simple Ratio 1 SR1 R695/R420 (Carter, 1994)
11 Simple Ratio 2 SR2 R695/R760 (Carter, 1994)
12 Plant Senescence Reflectance Index PSRI (R680YA®/50 (Merzlyalet al, 1999)
13 Simple Ratio 3 SR3 R750/R710 (Gitelson and Merzlyak,
1994)
14 Modified Chlorophyll Absorption in MCARI1 [(R700-R670)- (Daughtryet al, 2000)
Reflectance Index 0.2(R700-R550)]
(R700/R670)
15  Transformed Chlorophyill TCARI 3[(R700-R670)- (Haboudaneet al, 2002)
Absorption in Reflectance Index 0.2(R700-
R550)(R700/R670)]
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Table 5.2:Vegetation indices used in this study (cont.)

No Index name Abbreviatio Formula* References
n
16 Optimized Soil-Adjusted Vegetation Index  OSAVI (1+0.16)(R800- (Rondeaux et al,
R670)/(R800+R670+0.16) 1996)
17 Modified Chlorophyll  Absorption in MCARI2 1.2[2.5(R800-R670)- (Haboudane et al,
Reflectance Index 1.3(R800/R550)] 2002)
18 Anthocyanin Reflectance Index 1 ARI 1 (1/R55D)R700) (Gitelsonet al, 2001)
19 Anthocyanin Reflectance Index 2 ARI 2 R800[(1BBB(1/R700)] (Gitelsonet al, 2001)
20 Blue/Green Index BGI 1 (R400)/(R550) (Zarco-Tejada et al,
2005)
21 Blue/Green Index BGI 2 (R450)/(R550) (Zarco-bejaet al,
2005)
22 Carotenoid Reflectance Index 1 CRI1 (1/R510R%50) (Gitelsoret al, 2002)
23 Carotenoid Reflectance Index 2 CRI 2 (1/R510RTD0) (Gitelsoret al, 2002)
24 Modified Red Edge Normalized DifferencéMNDVI (R750-R705)/(R750 (Sims and Gamon,
Vegetation Index 705 +R705-2R445) 2002)
25 Modified Red-Edge Simple Ratio Index MSR (R750-R445)/(R705-R445) (Sims and Gamon,
705 2002)
26 Moisture Stress Index MSI R1599/R819 (Hunt andikRk 1989)
27 Water Band index WBI R900/R970 (Penuahal, 1997)
28 Normalized Difference Water Index NDWI (R857-R1Y/(R857 (Gao, 1996)
+R1241)
29 Ratio Analysis of Reflectance Spectra RARSa 5R8700 (Chappelle et al,
1992)
30 Ratio Analysis of Reflectance Spectra RARSb RE&AEHOR700) (Chappelle et al,
1992)
31 Ratio Analysis of Reflectance Spectra RARSc RR600 (Chappelle et al,
1992)
32 Pigment Specific Simple Ratio PSSRa R800/R680 laci@®urn, 1998)
33 Normalized Difference Vegetation Index NDVI (RBR613)/ (Ma et al, 2001)
(R813+R613)
34 Green Normalized Difference VegetatioGNDVI (R875-R560)/ (Penuelagt al, 1995)
Index (R875+R560)
35 Normalized Pigment Chlorophyll RatioNPCI (R680-R430)/ (Gitelson and
Index Merzlyak, 1996)
(R680+R430)
36  Structurally Independent XanthophyllsSIXI (R430-R800)/ (Penuelagt al, 1995)
Index
(R680+R800)
37  Soil Adjusted Vegetation Index SAVI 1.5(R780-R§7 (Huete, 1988)
/(R780+R680+0.5)
38  Photochemical Reflectance Index PRI (R531-R570)/ (Rahmaret al, 2001)

(R531+R570)
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Table 5.2:Vegetation indices used in this study (cont.)

No Index name Abbreviation Formula* References
39 Red/Green Ratio RG (R600-R699)/ (Fuentest al, 2001)
(R500-R599)
40  Simple Ratio Pigment Index SRPI R430/R680 (Zaremda, 1998)
41 Normalized Phaeohytinization index NPQI (R4183R)/ (Zarco-Tejada, 1998)
(R415+R435)
42  Structure Intensive Pigment Index SIPI (R800H)A4 (Zarco-Tejada, 1998)
(R800-R680)
43  Pigment Index 1 Pl1 R695/R420 (Zarco-Tejada, 1998)
44  Pigment Index 2 P12 R695/R760 (Zarco-Tejada, 1998)
45  Pigment Index 3 P13 R440/R690 (Lichtenthaler et al,
1996b)
46  Pigment Index 4 Pl 4 R440/R740 (Lichtenthaler et al,
1996b)
47  Normalized Difference Nitrogen Index NDNI logl(680/R1510)/ (Serrancet al, 2002)
Log (1/R1680 R1510)
48  Normalized Difference Lignin Index NDLI log (R86G/R1754)/ (Serrancet al, 2002)

Log (1/R1680 R1754)

*R= reflectance measurements

5.2.3 Statistical analysis

5.2.3.1 The random forest algorithm

The random forest algorithm is a modified baggibgafstrap aggregation) classifier where

multiple classification trees are developed, and fimal classification is determined by a

majority vote. Each tree in the forest is trainedaobootstrapped sample (i.e. 2/3 of the original

observations) (Breiman, 2001), and at each nodedi¥idual trees, the RF algorithm searches

only across a random subset of the variables gpectral indices) to determine the split. The
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trees are then grown to maximum size without anynimg (Breiman, 2001; Lawrencst al,
2006). Additionally, RF has an intrinsic meansegiimate variable importance and to assess
accuracy by using the out-of-bag data. Researdisars commented that a separate test data set
may not be required for accuracy assessments (baeret al, 2006).The out-of-bag error
estimates (1/3 of the original data) are createthfthe data that are not in the bootstrap sample
used for each tree’s development (Breiman, 2004)gdarantee high accuracy of classification,
studies have recommended that the two parametd&E dfave to be optimized; these parameters
are the number of treest(ee grown in a forest and the number of variablagy) used in each
tree split (Breiman, 2001; Liaw and Wiener, 2002aDUriarte and de Andrés, 2006; Archer
and Kimes, 2008). The default valuerofry is the square root of the number of variableswiLia
and Wiener, 2002). However, a larggee value and default value ahtry are recommended
(Gislasonet al, 2006; Kimet al, 2006; Adamet al, 2009). We, therefore, developed the model
using anntree value of 10000, and the default numbernofry. The RF library (Liaw and
Wiener, 2002), developed in R statistical softw@eDevelopment Core Team, 2007), was used
to implement the RF algorithm.

5.2.3.2 Variables importance using the random foadgorithm

The RF algorithm calculates three variable imgmore measures, namely, the number of times
each variable is selected, the Gini importance,thagermutation accuracy importance measure
(Strobl et al, 2007). The permutation of a variable, howevercossidered to be the most
advanced measure because of its ability to evaltlaevariables importance by the mean
decrease in accuracy using the internal out-of-f@®B) estimates while the forests are
constructed (Breiman, 2001; Lawrerateal, 2006; Strobkt al, 2007).

In this study, we used mean decrease in accurising the internal OOB estimates (Cutler
et al, 2007; Archer and Kimes, 2008; Chan and Paelin@0Q8). The importance of each
variable (wavelength) used in this study was caled based on how much worse the
classification accuracy (mean decrease in accunaoyld be if the data of that variable were
permuted randomly (Prasaet al, 2006). To calculate the importance of wavelength
discriminating papyrus and its co-existent specibs, reflectance values of each wavelength
were randomly permuted for the OOB data, and themtodified OOB data were passed down

the tree to get a new classification. The diffeeehbetween the misclassification rate for the
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modified and original out-of-bag data over all tinees grown in the forest are then averaged.
The average, which is therefore a measure of tip@itance of the variable is used as a ranking
index (Cutleret al, 2007; Archer and Kimes, 2008; Chan and Paelin2R®8), that can be used
to identify the wavelengths with relatively largaportant scores for the calculation all possible
two-band combination indices. The top 20 wavelesgtimt showed the highest importance
based on mean decrease in accuracy were subseggseleitted for calculating the all possible

two-band combination indices (Guyon and Elissei1)3).

5.2.3.3 Variables selection: Filter approach

To assess the potential of the various VIs usetigstudy for species discrimination a one-way
analysis of variance (ANOVA ) was used as a fiipproach to test if the differences in the
spectral indices of papyrus and the other threeigpewnere statistically significant. In this
regard, the research hypothesis is that the spectlices between each class pair of the species
(CP,PA, EP, and TI) were significantly differentthe null hypothesis HQil = u2 = p3 = pu4
versus the alternate hypothesis Ha# p2 # u3 # u4 where:ul, u2, u3, andu4 are the spectral
indices values fromCyperus papyrus L(CP), Phragmites australis(PA), Echinochloa
pyramidalis(EP), and Thelypteris interruptaTl) respectively. We tested ANOVA with a 99%
confidence level (p < 0.01). Furthermore , a TukelfSD post hoc test was carried out in order
to determine if there was a difference in the mdsatween the various class pairs ( i.e.\GP
PA, CP vs. EP, CP vs. Tl, PA vs. EP, PA vs. Tl, &Rdvs. Tl). Histogram and matrix plots
were then used to examine which indices could rfreguently discriminate all the species. Vis
with no statistical significance were then discardehile the significant indices for all class

pairs were retained for further analysis.

5.2.3.4 Optimal subset of vegetation indices

Using an ANOVA with Tukey’'s HSD post hoc test isnited because the method does not
automatically select the optimal subset of Vis thate the strongest discriminatory power. In
other words the method examines each VI indivigual opposed to considering interaction
between VI's. The question, therefore, remains: ¥bBathe optimal number of significant

vegetation indices that can yield the smallest lassification error rate? In this regard, we
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applied a forward variable selection using the Rjerithm to identify the optimal subset of VIs
(Guyon and Elisseeff, 2003). The RF algorithm wseduto compute and rank the importance of
each significant VI in discriminating the speci@ae method involves iteratively fitting multiple
random forests (on the training data) and at ei@chtion building a RF after sequentially adding
the indices with the highest important values. idifli, the top ranked vegetation index is
selected, and for the next iteration the top twikeal indices are added and so on. The error for
each iteration is then calculated using the OOBpdasn The procedure was repeated for the
maximum number of significant vegetation indicegdisn this study. The optimal subset of
indices which yielded the smallest out-of-bag ewas then used for classifying papyrus and its

co- existent species.

5.2.3.5 Classification accuracy

To evaluate the prediction performance of an atborj the use of a large independent test data
set that has not been used in the training is revemded (Congalton and Green, 2008).
However, when the data are limited some typesagsralidation techniques are usually carried
out (Hawkinset al, 2003). In the RF algorithm, the OOB estimate mbreis considered to be
such a type of cross-validation technique (Breim2@01). Specifically, at each bootstrap
iteration a single tree is grown using a particubaiotstrap sample. Since bootstrapping is
sampling with the replacement from approximatelp-tirds of the training data (in our case
spectral indices), some of the variables will bié ¢eit of the sample and may not be used at all
in any growing tree, while some others will be amosnore than once (Breiman, 2001; Svetnik
et al, 2003). The variables that have not been usebddriree growing constitute the OOB and
are then used to estimate the prediction performaridhe classifier (Breiman, 2001). In this
study, we used the OOB method as internal estimiaégror using the one-third portion of the
data that was randomly excluded from the constuoadf each of the classification trees used. A
confusion matrix was subsequently constructed topaoe the true class with the class assigned
by the classifier and to calculate the overall aacy as well as the user and producer accuracy.
Furthermore, a discrete multivariate techniqueechkappa analysis that uses théKHAT)
statistic was also calculated to determine if on®rematrix is significantly different from
another (Cohen, 1960; Mutanga, 2005). This statsgtives as an indicator of the extent to which

the percentage of correct values of an error matrecdue to the actual agreement in the error
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matrix and the chance agreement that is indicayetthd row and column totals (Congalton and
Green, 2008). If the kappa coefficients are onelose to one then there is perfect agreement
between the observed and predicted class.

Lawrenceet al, (2006) recommended further testing for the rdiigbof OOB as an
internal accuracy assessment of the RF classifferefore, we used an independent test data set
and the OOB samples to assess the classificatmmaxy. The OOB accuracy assessment of the
training data was then compared to the accuratlyeopredications obtained when using the test
data set.

5.3 Results

5.3.1 Measuring the variables importance using the random forest algorithm

The RF algorithm was used to measure the importahéedividual wavelengths (n = 1706).
These wavelengths yielded an OOB error rate of ¥4.5The mean decrease in accuracy as
calculated by the OOB sample was then used to taekwavelengths (Figure 5.1). Results
clearly show that the top 20 wavelengths with tlghést mean decrease in accuracy are located
predominately in the red-edge portion (655 nm, 680 697 nm, 703 nm, 705 nm, 709 nm, 713
nm, 712 nm, 715 nm, 719 nm, 720 nm, and 721 nme) ngar-infrared region (1337 nm, 1341
nm, 1347 nm, 1350 nm, and 1538 nm), and mid-inéf§2203 nm, 2198 nm, and 2199 nm). The
top 20 wavelengths were then used to classify peeiss and yielded a lower OOB error rate of
8.5 %. In order to determine if VIs could yieldavier OOB error, we subsequently used these
wavelengths to compute all the possible two-band/N&hd SR combinations.
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Figure 5.1.Variables importance as determined by the RF algorfor 1706 wavelengths. The

important wavelengths are those with the highestmtiecrease in accuracy.

5.3.2 Variables selection using filter approach (ANOVA)

The top 20 wavelengths identified by the RF aldyonitallowed for the computation of 400
narrow band NDVIs and 400 narrow band SRs. Thasew band indices (n = 800) as well as
vegetation indices published in the literature (M8 were statistically analysed to test the
hypothesis that the mean values of the vegetatidites used to discriminate between papyrus
and the three other co-existent species were ggnily different. Results of the one-way
ANOVA indicate that there is a statistically sigoént difference among the species (p < 0.01).
The results of the multiple comparisons betweencthss pairs (CP vs. PA, CP vs. EP, CP vs.
Tl, PA vs. EP, PA vs. Tl, and EP vs. Tl) usingksible two-band combinations are shown in
(Figure 5.2). Figure 5.3 shows the results whenguhie published vegetation indices.
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Figure 5.2 Matrix plots show the significant difference, mked by presence of a colour, of
class pairs ( n = 6) in each narrow band NDVIg@a) narrow band SR (b) that were calculated
from all possible combinations involving the top B@nds. The red colour indicates the

vegetation indices that could discriminate betwaknlass pairs (n = 6) of the species.
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Figure 5.2 clearly shows that the majority oe tills (NDVI and SR) that could
discriminate between all class pairs (n = 6) wesrdcudated on all possible two-band
combinations located in red-edge portion ( 714 @&9 nm, 720 nm,712 nm, 713 nm, and 714
nm). Additionally, VIs that could discriminate theeen all class pairs were computed from a
red-edge wavelength located at 690 nm combined wislvelengths located in the water
absorption part of the spectrum (2203 nm, 22042188 nm, and 2199 nm) and a near-infrared
wavelength located at (1538 nm). In total, 27 NDaAid 28 SR narrow band indices could
discriminate between all class pairs (n = 6). Wekpect to the published vegetation indices,
that included GMI, ND, SRI, PSRI, ARI1, ARI2, BGRG2, CRI2, RARSD, PI1, PI3, and Pl4

(Figure 5.3) are most successful in discriminabegveen all class pairs.
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Figure 5.3.Frequency of statistically significant differendes all class pairs (CP vs. PA, CP vs.
EP, CP vs. TI, PA vs. EP, PA vs. Tl, and EP vs. The maximum frequency number (6)
indicates the vegetation indices that could discrate between all class pairs (n = 6) of the

species.

5.3.3 Forward variables selection

First, we used OOB to estimate the error rate i€dint combinations among the significant
indices (NDVIs, SRs, and published VIs) to retdia indices that yielded the smallest error for

forward variable selection. The OOB error ratehisven in Table 5.3.

Table 5.3: The OOB error rate for significant vegetation oeli considered in this study. The

random forest was built using defaultrofry and amtreevalue of 10000
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Significant Vegetation indicesNumber of significant indices ~ OOB error (%)

published Vls 13 15.5
Narrow band NDVIs 27 14
Narrow band SRs 28 16.5
Narrow band NDVIs and SRs 55 14
Narrow band NDVIs, SRs,68 12

and published Vis

As seen in Table 5.3, the combination involving tregerow band NDVIs, narrow band
SRs, and VIs published in the literature yieldesl lttwest OOB error (12 %). Therefore, forward
variable selection was carried out on this comimmadf VIs (n = 68) to select the optimal subset
of VIs with strong discriminatory power for furthetassification. The optimal subset with the

smallest error is shown in Figure 5.4.
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Figure 5.4. The forward variable selection method for identify the optimal subset of
vegetation indices using the OOB estimate of erate. The best subset of vegetation indices

with the lowest error rate is shown by the bladiowar

The results of the forward selection process em@i¢hat a subset consisting of only five
vegetation indices yielded the lowest OOB erroPg} Three of these vegetation indices are
from the VIs published in the literature (PSRI, BGand PI4), and the other two vegetation
indices are derived from the two-band combinatiorarfow band NDVIS) involving a
wavelength located in the red portion (655 nm) comd with two wavelengths located in the
red-edge position (697 nm and 705 nm). These viegetadices (n = 5) were then retained for
further classification. Noticeable in Figure 5.4 swthat the OOB error increases when the

numbers of vegetation indices increase.
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5.3.4 Classification assessment

The optimal subset of vegetation indices (n = 53 wsed as input variables in the RF classifier

to discriminate papyrus and its co-existing spedsoverall accuracy of 96%k(= 0.91) was
obtained for all class pairs (CP vs. PA, CP vs. EP,vs. Tl, PA vs. EP, PA vs. Tl, and EP vs.

TIl) as determined by the OOB estimate of erroe.radditionally, the producer’s accuracy for

the class pairs ranged from 95 % @yperus papyrus LandEchinochloa pyramidaliso 100 %

for Cyperus papyrus Land Thelypteris interrupta(Table 5.4). Utilizing all the significant

indices (n = 68) produced an overall accuracy %88 = 0.84) as estimated by the OOB

estimate of error rate (Table 5.4). It is als@iasting to note from Table 5.4 that all classgair

which involve Cyperus papyrus I(CP) had the highest class accuracies (93.7 % t86R9

Overall results indicate that the best discrimimatof Cyperus papyrus Lfrom its co-existing

species is possible with the selected vegetatidicés (n = 5). The performance of the out-of-

bag estimate of accuracy was compared with thanoindependent dataset using the optimal

subset of vegetation indices (n = 5) and full dagia(n = 68).Table 5.4 shows the results obtained

from the two accuracy assessment methods.

Table 5.4: Accuracies assessment for OOB estimates and indepetest data set based on the

top five vegetation indices and the full data set=(68). The assessment includes the kappa

statistic, overall accuracy (ACC), producer accyr@A), and user accuracy (UA).

Top five vegetation indices

Full data set (68 vatieh indices)

Out-of-bag accuracy Independent accuracy Out-of-bag accuracy Independent accuracy
assessment assessment assessment assessment
ACC Kappa PA UA | ACC Kappa PA UA | ACC Kappa PA UA | ACC Kappa PA UA
Classes % % % % % % % % % % % %
CPvseEP 937 087 957 917 944 089 926 96.2.2 92084 954 89.1 98 0.96 96.2 100
CPvsTI 99.0 098 100 97/8 93.3 0.86 100 86.2 98.0.98 100 97.6 89.8 0.80 926 86
CPvsPA 990 098 100 97/]8 100 100 100 100 98.3830 89.1 932 943 089 926 96
EP vs PA 100 1.00 100 100 100 1.00 100 100 100 1l.0I00 100 100 1.00 100 100
EP vs TI 959 092 978 93/8 96.6 093 100 929 391.0.83 954 87.2 926 0.85 100 86
PAvs TI 100 1.00 100 100 100 1.00 100 100 100 1.0@00 100| 94.6 0.89 90.3 100
Allclasses 960 091 97.0 89 945 091 936 §4.83.08 084 850 820 858 0.81 83.0 83.0
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5.4 Discussion

This study aimed at discriminating papyrus vegeta(Cyperus papyrus ).and three other co-
existing speciesRhragmites australis, Echinochloa pyramidabsid Thelypteris interruptathat
dominate the swamp wetland of the GSWP. The matingor the study was to investigate the
possibility of using the RF algorithm and hypergpadndices to improve discrimination among

vegetation species in a swamp wetland that exhabtismplex ecosystem and hydrology regime.

5.4.1 Variables importance using the random forest algorithm

Hyperspectral data are very rich in informatiomwéver, the large number of highly correlated
hyperspectral wavelengths poses many challengels ascthe computational requirement,
redundancy removal, and model accuracy assessmvamiables ranking is an effective
technique to select a fixed number of top rankedabées of hyperspectral data for better
classification (Pal, 2006). The results of thisdst confirm that the RF algorithm is an efficient
method of ranking wavelengths (Figure 5.1) and vadlofocusing on a small subset of
wavelengths (n= 20) for calculating the vegetatiogices (NDVI, SR) from all possible two-
band combinations (Figure 5.2). These top 20 wanghes (655 nm, 690 nm, 697 nm, 703 nm,
705 nm, 709 nm, 713 nm, 712 nm, 715 nm, 719 nm,nf@0721 nm, 1337 nm, 1341 nm, 1347
nm, 1350 nm, 1538 nm, 2203 nm, 2198 nm, and 219P arey within £ 10 nm from known
wavelengths that have been used in some otheresttdidiscriminate wetland species. These
are 1409 nm, 725 nm, and 710 nm (Adatral, 2009), 720 nm (Daughtry and Walthall, 1998;
Thenkabailet al, 2002; Vaiphasat al, 2005), and 705 nm (Thenkabatl al, 2004). Moreover,
the remarkable accuracy (96%) achieved in thisysprdved that this method is an effective
procedure for calculating vegetation indices invwwdv possible combinations between
hyperspectral bands, and it also helps in the temluof data dimensionality and therefore might
be valuable in terms of data processing and arsatgsiner than handling all the data (350 nm to

2500 nm) which is difficult to compute and to seld® relevant information

5.4.2 Significant difference in vegetation indices between the species

A one-way ANOVA with Tukey’'s HSD post hoc test wased to determine 1. whether there
were statistically significant differences in Vlalues among the four vegetation species, and 2.

whether it could be used as a baseline filter aggirdor limiting the total number of vegetation
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indices (n = 848). When comparing the two plotfNdfVI and SR in Figure 5.2, it is interesting
to note that the VI's that could discriminate @hss pairs (n= 6) were obtained by combining
narrow bands located in shorter wavelengths oféddeedge portion of electromagnetic spectrum
(712 nm, 713 nm, 714 nm, 719 nm, and 720 nm), and\weelength located in the red-edge (690
nm), and the wavelengths of mid-infrared region3@8m, 2198 nm, 2199 nm, and 2203 nm). It
is also interesting to note that most of the sigaiit differences in vegetation indices published
in the literature for full class pairs were obtalngy combining narrow bands from the shorter
wavelengths of the red-edge portion (700 nm to @80). This included the VIs such as GMI,
ND, SR2, RARSD, and PI2. Vis calculated from thebkerter wavelengths of the red-edge
portion are sensitive to variations in chlorophoghtent and green biomass (Lichtenthateal,
1996a; Mutanga and Skidmore, 2004a).

The differences in green wavelength peak (550 nanyehbeen used to successfully
discriminate vegetation species characterized Hferdnces in chlorophyll content (Pefa-
Barraganet al, 2006). This has been confirmed in this study Hwy tesults obtained by the
ANOVA that show that there is a high significantfelience between all class pairs when using
vegetation indices such as ARI1, ARI2, BGI1, andiBGhese VIs were calculated using 550
nm (green peak) with combinations of wavelengtltated at 400 nm, 450 nm, 700 nm, and 800
nm. It is therefore assumed that the hyperspediffdrence between the four speci€yferus
papyrus L. Phragmites australis, Echinochloa pyramidal&)d Thelypteris interruptamay be
attributed to significant variation in the relatiamount of chlorophyll content and green
biomass. This is supported by the assertion thélamae plant species appear to vary greatly in
chlorophyll content and biomass (Anderson, 1998)s Variation is considered to be one of the
variables affecting the spectral properties of papyand its co-existent species (Adam and
Mutanga, 2009).

5.4.3 Optimal vegetation indices

Given that there are statistically significant diffnces (p< 0.001) in VIs values among the four
vegetation species, what remains to be discoverdaei optimal subset of significant vegetation
indices that can yield smallest misclassificatioroe Results from this study confirm that the
combination of forward variable selection and tHe &gorithm is a useful approach to identify

the most important or information-rich vegetatiamdices, thereby allowing the significant
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vegetation indices (n = 68) to be reduced in sizeq). Our results as presented in Figure 5.4
show that five selected vegetation indices canridiscate among all the class pairs (CP vs. PA,
CP vs. EP, CP vs. Tl, PA vs. EP, PA vs. Tl, andVsPTI) with a 4 % OOB error rate in
comparison to 12 % OOB error rate obtained whelizimg all the VIs (n = 68). The results
obtained in this study are comparable to otheristuthat revealed that the subsets of variables
selected by the RF algorithm have produced higkeratl accuracy than utilizing the full data
set (Lawrenceet al, 2006; Adamet al, 2009; Ismail, 2009). These results emphasize the
assertion that, in the model-based analysis, ttrease of hyperspectral variables could lead to a
decrease in the classification accuracy becausentiige in the redundant data propagates
through the classification model (Benediktssbmal, 1995; Bajcsy and Groves, 2004).

Overall, the result shows the excellent performantehe forward variable selection
method applied in dimensionality reduction witheacrificing significant spectral information.
Hence, classifying papyrus and its co-existing ggecan be made on the basis of these optimal

vegetation indices (n = 5) to provide the highdsssification accuracy.

5.4.4 Classification assessment

The estimated overall accuracy from the OOB edenud error rate for optimal vegetation
indices was 96 % (kappa = 0.91). These resultparntcularly remarkable when compared to a
study by Adamet al. (2009) who used the RF algorithm and spectroméata resampled to
HYMAP resolution to classify the same species. Mistudy yielded an overall accuracy of
90.5% using 14 bands. This clearly shows that theradl accuracy has been improved in this
study with 5.5 % using only a small subset of Vs 5). The class accuracy was also
improved, for example; our results produced higtiassification accuracies when compared to
research carried out by Pengraakt (2007) who achieved an overall accuracy of 81.40%6
mapping Phragmites australisusing EO-1 Hyperion hyperspectral sensor. In dudys we
obtained a classification accuracy of 99% to 10Gd¥the class pairs involvin@hragmites
australis.

Our results in this study confirmed the power o RF algorithm in providing highest
classification accuracy (more than 90 %) of hypecs@al data (Lawrencet al, 2006; Pal, 2006;

Adam et al, 2009). It also shows the ability of vegetatiodiges in enhancing the possible
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difference in reflectance between the vegetati@atigs (Qiet al, 1995; Haboudanet al, 2002;
Pefa-Barragaat al, 2006; Cheet al, 2008).

Our evaluations of the reliability of the out-ofgh@&stimates of accuracy as an internal
method for accuracy assessment in RF have shownthisaestimate is reliable and stable,
especially with a high number of classificationeseThis can be clearly seen in Table 5.4 that
shows that the independent accuracy assessmergaidy ndentical to the OOB accuracy
assessment. In this aspect, our result is consigtiéim that obtained by Lawrencst al. (2006)
who found that the accuracy assessment using OOBeasly identical to an independent
accuracy assessment. Our results strengthen tleetiassthat with the RF algorithm it is not
necessary to have a separate accuracy assessrienteference data are protected against any
type of bias (Lawrencet al, 2006; Prinzie and Van den Poel, 2008). We beltbag this study
is protected against bias with a simple random $agpnethod applied for the reference data

collection (Lawrencet al, 2006; Congalton and Green, 2008).

5.5 Conclusions

This study aimed at improving discriminatin@yperus papyrus L.Phragmites australis
Echinochloa pyramidalisand Thelypteris interruptdocated in the Greater St Lucia Wetland
Park, South Africa, using the RF algorithm and hgpectral indices derived from field
spectrometry data.

Our results have shown that:

1- The proposed method for ranking variables imposarfor possible two-band
combinations and optimal subset of vegetation islitor species discriminating was
efficient in providing small sets of data while peeving highest classification accuracy.

2- The optimal subset of vegetation indices that ydlthe highest classification accuracy is
sensitive to the variation in chlorophyll contemtdagreen biomass. Since these
biochemical and biophysical variables were not mess in this study, it therefore
remains to be explained why the selected vegetatidices showed a relatively better
ability to discriminate between the species.

3- Based on relatively high overall accuracy (96 % tise of hyperspectral indices can be

considered as a new approach for discriminatingtpecies or communities.
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4- The RF algorithm provides a reliable predictionaacuracy by using the out-of-bag
samples. This could provide a tremendous savirngre and cost in data collection and
analysis in remote sensing applications comparedth® independent accuracy
assessments method.

Overall, the use of hyperspectral indices and tReaRjorithm for variables selection and
classification techniques in this study proved mahle tool to improve spectral discrimination
between wetland plant species. However, the methpgsed in Chapter one and two which
were developed from fine spectral resolution (ARh be made operational by investigating
their capability to discriminate between papyrusl ats co-existing species using relatively
coarser spectral resolution data such as AISA eaglectra. Future research could also
investigate the biochemical and biophysical vagahtihat affect the canopy reflectance of the
species studied.
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CHAPTER SIX

Classifying papyrus vegetation Cyperus papyrus L.) and its co-existing species
using hyperspectral imagery and the random forestlgorithm

This chapter is based on:

Adam, E., and Mutanga, O., (2010). Hyperspectral rersetesing of papyrus swamps. The 8th
Conference of the African Association of Remote st&m for the Environment (AARSE 2010).
25-29 October 2010. Addis-Ababa, Ethiopia.
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Abstract

Mapping wetland plant species using multispeceaiate sensing is challenging because of the
small and mixed vegetation units in a wetland. dbgctive of this study was to examine the
potential of airborne hyperspectral imagery to sifgspapyrus and its co-existing species in
swamp wetland in St Lucia Park- South Africa. Hgpectral image in 273 visible and near-
infrared wavelengths (from 398 nm to 900 nm) amd &patial resolution were acquired over the
Dukuduku area by an Airborne Imaging SpectrometerApplications (AISA) Eagle system.
The canopy features of the papyrus and its coiegispecies were identified using ground
points and pixel-based average spectral reflectaneach wavelength from the acquired image,
which was then used to develop a classificationehdthe RF classifier was used to classify the
imagery using the randomForest package in R staisprogram. The key wavelength
determined by the integrated methods involved theaRd forward variable selection proposed
in this study, and this could provide reasonabgesdification accuracy. Overall accuracy was
80.83 %, with class accuracies ranging from 86.6(0 400 % and a kappa statistic of 0.74. The
results also indicate that a subset of narrow heegetation indices calculated from wavelengths
allocated at the visible and red-edge portion @f spectrum could better improve the overall
accuracy to 88.98 % and the kappa statistic to.0l88 methods proposed in this study show
considerable promise in mapping wetland vegetatibrspecies level which is valuable for

effective management of wetland ecosystems.

Keywords: Hyperspectral imagery. Variable selection. Vegetatindices. Random forest.

Papyrus vegetation.
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6.1 Introduction

Cyperus papyrus L.commonly called papyrus, belongs to the familyp&wpceae and is one of
the most primary productive wetland plant specieseastern and central tropical Africa
(Kyambaddeet al, 2004; Mnayaet al, 2007). The natural distribution of papyrus swaraps
thought to be confined to a belt across equatedatral Africa within 17 N and 29 S (Mnaya

et al, 2007. The Greater St Lucia Wetland Park is within thedt and is one of the areas Iin
which most extensive papyrus wetlands and swam@sfamd in South Africa (Adam and
Mutanga, 2009). Papyrus commonly grows at the wdtiedge anchored to the substratum, or
sometimes creates extensive rafts of floating re® in the middle of the wetland and at the
lake-wetland interface (Kansiimet al, 2005). In these wetland areas, papyrus forms a
distinctive habitat type that supports a suite peécsalist bird species and wildlife (Owino and
Ryan, 2007; Grenfelét al, 2009). Papyrus also plays a vital role in intptoey the materials
moving from catchments to open water (Az#aal, 2000; Serag, 2003; Kyambadee al,
2004). Moreover, promising results have been obthim using wetland species, such as
papyrus, as an alternative source of fuel in mamyntries in central Africa, such as Rwanda
(Jones, 1983b; Muthuri and Kinyamario, 1989).

In most wetland habitats worldwide, human encroaatimn intensified agricultural
activities, and hydrological changes from constarciof ditches, roads, and bridges in many
parts of Africa have threatened the existence glypes (Mafabi, 2000; Macleaat al, 2006;
Owino and Ryan, 2007). As a result, this contindedradation in papyrus swamps represents a
significant threat to biodiversity conservation (l@w and Ryan, 2007) and an increase in the
sedimentation rates in the wetland areas (Greetelll, 2009). Therefore, there is a need for
accurate and quick field-wide monitoring for suchimportant plant species that could assist in
making decisions to initiate protection and regioraprogrammes in the right place and at the
right time (Heet al, 2005).

Mapping and monitoring wetland vegetation with ttiatal survey methods, such as hand
mapping and Global Positioning Systems (GPS) recemapping, have proven to be highly
accurate for small management areas (Cooksey artky5hM997). However, these methods
require intensive fieldwork ,including taxonomiciaformation, collateral and ancillary data
analysis, and the visual estimation of percentageerc for each species, which might be

economically, technically, and logistically inadedgi for wetland environments because of their

109



high diversity and poor accessibility (Xet al, 2008; Adamet al, 2009; Zomeret al, 2009).
Methods that take advantage of remote sensing ade a time- and cost-effective technique
to map and monitor such complex environments.

However, mapping wetland vegetation at specied lgsiag traditional remote sensing is
challenging because of the lack of spectral regwiufl to 7 bands), which limits the ability to
map plant types based on the reflection and alisarpf light at these few bands (Adagnhal,
2009). Furthermore, discrete wetland vegetationlhes are usually smaller than the pixel size in
most current spatial resolutions of multispectrabges (Artigas and Yang, 2005; Zonetral,
2009). Therefore, with multispectral images thearigy of pixels are a mixture of several plant
species in various proportions even at high spatiales (Zomeet al, 2009). Hyperspectral
sensors, on the other hand, enable the capturisgedftral data in many narrow bands (<10 nm)
in up to 200 or more contiguous wavebands acrassiltraviolet, visible, and infrared regions of
the electromagnetic spectrum (Lillesand and Kie2€f1). Images from these new sensors, such
as AISA and HYMAP, permit application of more complspectral analyses and spectral
unmixing techniques for a better separation of avetlvegetation at species level based on their
unique light reflectance and absorption charadtesiswhich can be especially useful for
mapping percentage cover of the plant speciesddstiand Yang, 2005; Bellucs al, 2006;
Wanget al, 2007; Adanet al, 2009; Zomeet al, 2009).

Previous attempts in classifying papyryperus papyrus L.using hyperspectral data
include those by Adam and Mutanga (2009) who weéte 8 implement a hierarchical method
which used one-way analysis of variance ANOVA, sifisation and regression tree (CART),
and distance analysis using hand-held spectrorat@ndata to discriminate papyrus from its
co-existing species (binary class) in the GreatdruSia Wetland Park - South Africa. Another
attempt in discriminating papyrus was that by Adeiral. (2009) They used the RF algorithm
and field spectrometry data resampled to HYMAP Ikggm to discriminate papyrus and its co-
existing species (multi-class classification). Threisults indicated that there is a possibility of
discriminating among papyrus and the other thresisg with an overall accuracy of 90.5 %.
This overall accuracy can be improved to 96.5 %hgisiegetation indices calculated from field
spectrometry data (Adam and Mutanga, In review).

The limitation of the above-mentioned studies &t tfhe current operational airborne and

spaceborne sensors, such as AISA and HYMAP, lagk $pectral resolution of the hand-held
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spectroradiometer which has a spectral range fr&® rBn to 2500 nm (Mutanga, 2005).
Therefore, it was recommended that the techniqueplemented using a hand-held
spectroradiometer should receive considerable iaddit testing with other airborne or
spaceborne data (Adaet al, 2009).

One of the most notable difficulties in hyperspakciiata processing is the large data
redundancy due to the strong correlation betweerehands that are adjacent (Shen, 2007). This
high dimensionality requires sufficient trainingrgales (Borge®t al, 2007) and computational
processing which might be time-consuming and pigkéin cost (Bajcsy and Groves, 2004).
Therefore, techniques that reduce the high dimea$ity without sacrificing significant
information are highly sought after and featureesgbn or extraction tasks are often considered
to be a practical and vital method in hyperspededh processing and analysis (Borgésl,
2007).

RF algorithm (RF), first developed by Breiman (2Q)0Ohas recently been used as a
classification and feature selection method to cedhie redundancy in hyperspectral data (Chan
and Paelinckx, 2008; Adarat al, 2009; Ismail, 2009). Random forest is a machewring
algorithm that employs a bagging (bootstrap agdregpoperation where a number of trees
(ntreg are constructed based on a random subset of eametived from the training data. Each
tree is independently grown to maximum size based bootstrap sample from the training data
set without any pruning, and each node is spiitguthe best among a subset of input variables
(mtry) (Breiman, 2001). The multiple classification gethen vote by plurality on the correct
classification (Breiman, 2001; Lawreneé al, 2006). The ensemble classifies the data that are
not in the trees (out-of-bag or OOB data) and bgraging the OOB error rates from all trees,
the random forest algorithm gives an error rateedahe OOB classification error for each input
variable (Breiman, 2001). Therefore, as part of thessification process, the RF algorithm
produces a measure of importance of each inpuaarby comparing how much the OOB error
increases when a variable is removed, whilst dlexst are left unchanged (Archer and Kimes,
2008). Studies have shown that the RF algorithmbsasuccessfully used in hyperspectral data
for feature selection as well as for classificatpurposes (Chan and Paelinckx, 2008; Adatm
al., 2009; Ismail, 2009) However, one of the shortaggei of the RF algorithm in selecting
variables from very fine spectral resolutions sush spectroscopic data is that the selected

relevant variables might still be auto-correlat8t@bl et al, 2007).
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The present study intends to examine the abilitthgberspectral imagery and the RF
algorithm to discriminate amongst papyrus and dsexisting species in the Greater St Lucia
wetland. More specifically, the objectives of thady were to: 1. examine the utility of the RF
wrapper based approach for selecting the optimalb&u of hyperspectral wavebands in a multi-
class application, 2. examine if the RF algoritham @ccurately classify papyrus and its co-
existing species in complex environments using hggectral airborne imagery, and 3. examine
further whether vegetation indices calculated frbgperspectral imagery can improve the
species classification using the RF algorithm.

6.2 Material and methods

6.2.1 mage acquisition and pre-processing

An Airborne Imaging Spectrometer for ApplicatiorsI$A) Eagle sensor was used to acquire
hyperspectral images over a section of the studg &he Dukuduku forest and Futululu forest)
in February 2009. The images were collected with 8patial resolution, 272 wavebands (393
nm — 994 nm), and 2.04 nm to 2.29 nm spectral uésol. Images were taken at an altitude of
approximately 1000 m above ground during cloudpessods in the daytime.

The image was atmospherically corrected using maoar calibration techniques. Field
spectral data of spectrally invariant targets (wdtedy, tarred road surface) were collected
during the flight campaign using an ASD spectroméfaalytical Spectra Device). The field
spectrometer senses in the range between 350 nf@5@@dnm incorporating the visible, near-
infrared and short wave infrared bands. The figdéctra were spectrally resampled to the
spectral configuration of the AISA sensor and usecbnvert the AISA radiance data to absolute
reflectance using the empirical line correctionl tmoENVI software. A second order Savitzky-
Golay function was used to smooth the AISA imagét gsesented some noise. A seven-band

window size was used for the smoothing.

6.2.2 Field data collection

In order to achieve an accurate reference arethéoclassifier training, fieldwork was carried
out concurrently with remote sensing campaigns cdtiect ground reference polygons of

papyrus Cyperus papyrus L.and three co-existing speciddhfagmites australisEchinochloa
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pyramidalis,and Thelypteris interruptpon February 2009. Leica Geosystems GS20 GPS 6enso
with multiple-bounce filtering and post-differeritieorrection was used to measure the position
of the target species in swamp wetland with an @a@guof 0 m to 0.25 m after the post-
processing differential correction. We randomlyatsx transect lines within the study sites and
sampled the target species (n = 4) randomly by diogv polygons along each transect by
circumnavigating patches with an extent of 6 m ton8vhere the species present were more
homogenous and unmixed. Ideally, a constraint ensike of the target species is that at least
one entire AISA pixel (2 m x 2 m) should fall wiach area covered by a homogenous species
(Wang et al, 2007). A point measurement of the central locatdd each polygon was also
recorded. This method was rather difficult to inmpént because of the small vegetation species
units with high spatial variability in a wetlandw@ronment (Adamet al, 2009). However, this
method resulted in 21 polygons for papyrus, 17 gohs forPhragmites australisl4 polygons

for Echinochloa pyramidalisand 19 polygons forl helypteris interruptaThese polygons were
then used as reference data to generate regioriatarkest (ROIS).GPS field data were
differentially corrected to enhance the accuraéggipost-processing techniques.

The field data polygons (ROIs) were overlaid ontitue colour composite AISA image to
extract the pixels’ spectra (6 m x 6 m) using EN¥dftware (ENVI, 2006). Only pixels that fell
entirely within the measured polygons were includedhe reference dataset, while the pixels
that partially fell inside the polygons were disted to avoid the problem of spectral mixing of
the other plant species (Wamg al, 2007). The reference values for each polygon ieze

averaged to represent one sample and used forogeneht of models.

6.2.3 Selection of the optimal Al SA spectral bands

Inter-band correlation exists in AISA imagery waiprovides redundant information. Reducing
this high dimensionality in the spectral bands difigs the model processing, decreases the
running time of learning algorithm, and may imprawe accuracy (Thenkabagt al, 2004;
Adam et al, 2009). The RF algorithm and forward variablekea®n (FVS) were used to
measure the importance of every AISA band in mappire species and to select the optimal
number of bands for better classification accurgagiam et al, 2009). The RF algorithm
developed by Breiman (2001) is a bagging (bootsaggregation) operation where multiple

classification trees are constructed based on domansubset of samples derived from the
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training data. The optimization of the two paramei®f RF includes the number of trees to be
grown ftree and the number of variables to split the nodemadividual trees ifitry) that have
firstly been optimized using the OOB estimates wbrerate to guarantee high classification
accuracy (Breiman, 2001; Adaet al, 2009). Thentreevalues were tested from the default (500
trees) setting to 5500 tress with an interval ddAQPrasackt al, 2006), while thentry values
were evaluated by creating RF ensembles for alsiptessmtry values (15). The setting that
yielded the lowest OOB error was then used forfanyer analysis.

The importance of each AISA band (n =272) usedis $tudy was calculated based on
how much worse the classification accuracy (meatredse in accuracy) would be if that
variable (band) was permuted randomly using therivat out-of-bag estimates (Breiman, 2001;
Lawrenceet al, 2006; Prasadt al, 2006; Strobkt al, 2007).The importance of each variable is
estimated as follows: 1. the reflectance valuesach wavelength is randomly permuted for the
OOB samples, and then the modified OOB data aresepaslown each tree to get new
predictions, 2. the difference between the misdiaation rate for the modified and original
OOB data over all the trees that are grown in tiredt are then averaged, 3. this average is a
measure of the importance of the variable andutsed as a ranking index which can be used to
identify the wavelengths with relatively large intfance in the classification process (Cuter
al., 2007; Archer and Kimes, 2008; Chan and Paelin2Rg8).

The FVS method was used to identify the optimalsstilof wavelengths with the lowest
misclassification error. The FVS method uses #mking of wavelengths as determined by the
RF algorithm. This method iteratively builds muléprandom forests using the ranked
wavelengths, and for each iteration two AISA bandse added to the model and the error was
calculated using the OOB estimates of error. liytighe top 2 ranked wavelengths are selected
and for the next iteration, and then the top 4 eginkands are selected (Ada&tal, 2009). This

process was repeated for the maximum number odblas (bands) used in this study (n = 272).

6.2.4 Narrow band vegetation indices

Since remotely sensed measurements of vegetatioopies are affected by factors such as
atmospheric absorptions, soil background and watagrmalization procedure using vegetation
indices was also carried out in this study to mimenthese influences ((Kokaly and Clark,

1999b; Mutanga and Skidmore, 2004a), and to enhdregossible difference in reflectance
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between the vegetation species @ial, 1995; Pefia-Barragaet al, 2006; Choet al, 2008;
Adam and Mutanga, In review). Only five vegetatindices computed from field spectrometry
data that yielded an overall accuracy of 96 % fmcriminating papyrus and other species
(Adam and Mutanga, In review) were adopted in thigdy. A full description of these
vegetation indices is shown in Table 6.1. The Rjodthm was then used in order to evaluate
the potential of these vegetation indices (n = d)iscriminate papyrus and its co-existing

species.

Table 6.1: Vegetation indices generated from AISA image agldded in this study

Vegetation indices Abbreviation Formula * Reference
Normalized Difference NDVI R655 — RE97 (Adam and Mutanga,
Vegetation Index R655 + R697 In review)

Normalized Difference NDVI R655 — R705

Vegetation Index R&55 +~ R705 (Adam and Mutanga,

In review)

Plant Senescence PSRI R680 — R500 (Merzlyak et al,

Reflectance Index R750 1999)

Blue/Green Index BGI 1 R400 (Zarco-Tejadaet al,
R550 2005)

Pigment Index 4 Pl 4 R440 (Lichtenthaler et al,
R740 1996b)

* R = reflectance

6.2.5 Image classification

The RandomForespackage in R software was used to classify the @nafl.iaw and Wiener,
2002). The bands that yielded the lowest OOB ansing FVS were used as input variables in
the RF model to classify the species. After opting the two parametersittee and mtry) of

RF, the model was developed with 6500 classificatiees iitre€ and with the default setting of
the number of the bands to be split at each trele ifotry). The RF model was developed using
the entire reference data set, and accuracy wdsaded using the internally generated out-of-
bag estimates of error. The out-of-bag estimatesrair were developed using the one- third
portion of the reference data set that was randawbjuded from development of each of the
6500 classification trees (Breiman, 2001; Lawreeical, 2006). Since OOB data are not used in
the construction on any of the classification treetherefore is considered to be a type of cross-
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validation to estimate the prediction performantéhe RF classifier (Breiman, 2001). The OOB
accuracy assessment has been shown to be reliabkable (Lawrencet al, 2006; Prinzie and
Van den Poel, 2008; Adam and Mutanga, In revieag DOB estimate of error was evaluated
based on correctly classified pixels, and the ceinfu matrix was subsequently constructed to
compare the true reference pixel with the pixelsgmed by the classifier and to calculate the
overall accuracy as well as the user and produmarracy. Furthermore, a discrete multivariate
technique called kappa statistics that uses th&KHA(T) statistic was also calculated to
determine if one error matrix is significantly difent from another (Cohen, 1960; Mutanga,
2005).

6.3 Results

6.3.1 Optimization of the random forest algorithm

The results of the RF parametendrée and mtry) optimization are shown in Figure 6-1. The
results show that the OOB error rate is decreasbstantially and becomes more stable as trees
are added to the model. The optimontry value was found to be the default setting (n =th&)
was suggested by Liaw and Weiner (2002). The myid&ded the lowest OOB error rate of 25.5
% with the defaulimtry (n = 15) and the hightree (3500 to 9500). Therefore the defanitry

and 3500ntree were appliedfor all further analyses. Overall, the results dig@ndicated that

changes in RF parametergreeandmtry) influence the classification accuracy.
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Figure 6.1. Optimizing random forest parametergrée and mtry) using the OOB estimate of
error rate. The black arrow shows the optimaty number at the definitetreenumber.

6.3.2 Variables selection

All AISA bands (n = 272) were included as potentiatriables for the RF model which was
developed using 35Qftreeand a default setting ofitry (15). The entire model yielded an OOB
error rate of 25.5 %. The importance of every lggand of AISA imagery in mapping papyrus
vegetation and the other species was calculatetyube OOB estimate of error rate (Figure
6.2). The OOB error rate clearly showed the impua¢aof each band based on how much the
decrease in the classification accuracy would béh& data for that band were permuted
randomly. Therefore, the high decrease in the aogumeans high importance and performance

of the variable in mapping the target species.
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Figure 6.2. The importance of AISA bands in mapping papymd #s co-existing species as
determined by the RF model that yielded 25.5 % GQfBOCerror rate. The black arrows show
some of the most important bands.

Figure 6.2 clearly indicates that the most impdrtzands are located in the green and red region
(e.g. 541nm, 543 nm, 416 nm, 539 nm, 535nm, andrB8Y and the red-edge portion of the
spectrum (680 nm to 740 nm). The bands that shevhighest importance in mapping papyrus
and the other species are at 739 nm, 737 nm, 7278nm, and 541 nm (the ranking is based
on the importance measures).
All the bands were then ranked according to tmeportance in mapping papyrus and the other
species, and a forward variable selection was imeiged in the top 100 bands which yielded an
OOB error of 28 % for selecting the optimal numbtbands as shown in Figure 6.3.

Results of forward variable selection (Figurg)&how that a subset including 8 bands located
at 739 nm, 737 nm, 721 nm, 734 nm, 541 nm, 543 46, nm, and 539 nm resulted in the
lowest OOB error rate of 19.17 % (misclassificattate) compared to 25.5 % when all bands (n
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= 272) were used. The top 8 bands were then usétpas variables in the final RF model to

map papyrus and its co-existing species.

B OBB estimate of error rates
40
35
30
o 25
e
T
Ty
@ 20
=]
Q .
o 15
10
L)
0 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
L B B T o Y o B e B o T e T R LT PR FI  FRAY =T =T R R R = o B = o T R = R =
Number of wavelengths

Figure 6.3 Selection of optimal number of variables (bands)ng the forward variable
selection method. The arrow shows the minimum nunalbdands that resulted in the lowest

OOB error rate.
6.3.3 Classification and accuracy assessment

6.3.3.1 Using selected AISA raw bands

The 8 bands (739 nm, 737 nm, 721 nm, 734 nm, 541543 nm, 416 nm, and 539 nm) were
retained to classify the papyrus and the otherispegsing the RF algorithm. The results
indicate that the overall OOB error rate for aisdes (CRsPA, CPvsEP, CPvsTI, PAVSEP,
PA vsTI, and EPvs Tl) was 19.17 %. The confusion matrix in Table 6l@arly indicates that
we could classify the papyrus vegetation and itsexisting species (n = 3) with an overall

accuracy of 80.83 %.
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Table 6.2: Testing the discriminatory performance of the édssifier using the selected bands
(n = 8) and the OOB method for estimating the erate. The confusion matrix includes the
overall accuracy, kappa statistic, user accuranyg, groducer accuracy faCyperus papyrus
(CP), Echinochloa pyramidali€EP),Phragmites australi$PA), andThelypteris interruptdTI)

Classes CP EP PA IT Row total

CP 24 2 4 0 30

EP 4 22 4 0 30

PA 2 2 26 0 30

IT 2 3 0 25 30
Column total 32 29 34 25 120
Producer accuracy = 75.86 % Overall accuracy =80.83 %
User accuracy = 73.33% Kappa =0.74

The high overall classification accuracy of 80.83a%d overall kappa statistic value of
0.74 achieved indicates the good performance of wgables selection method that was
implemented in this study which was able to imprtive overall accuracy using all 272 bands
that yielded an overall accuracy of 74.5 %.

With respect to the class pairs accuracies, thecta bands (n = 8) yielded producer’'s
accuracy that varied from 86. 67 % to 92.59 % asel’s accuracy that varied from 84.62 % to
100 % for the three class pairs involvi@gperus papyru§CPvs EP, CPvsPA, and CR/sTI).
The lowest producer’s accuracy and user's accuraclyieved were those that involved
Echinochloa pyramidalisand Phragmites australisand Cyperus papyrusand Echinochloa
pyramidalis(86.67 % and 84.62 a respectively), while the higheser’'s accuracy was for the
class pair that involve@yperus papyrus and Thelypteris interrupi®@%)Table 6.3.

Table 6.3: Class pairs accuracies using the selected band)rfor Cyperus papyrugCP),
Echinochloa pyramidali$EP),Phragmites australi§PA), andThelypteris interruptgTI)

Class pairs Producer’s accuracy User's accuracy rdlhaecuracy Kappa
CPvsEP 91.67 84.62 88.46 0.77
CPvsPA 86.67 92.86 89.29 0.79
CPvsTI 92.59 100.00 96.08 0.92
EPvsPA 86.67 92.86 88.89 0.78
EPvsTI 100.00 89.29 94.00 0.88
Tl vsPA 100.00 100.00 100.00 1.0
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6.3.3.2 Using narrow band vegetation indices

Estimated classification accuracy of the speciemfout-of-bag data for the vegetation indices
was 88.98 with a kappa statistic value of 0.85 ([@#&b4). As expected, the overall accuracy and
kappa value were increased by 8.15 % and 0.11reglgccompared with the use of raw bands.
Producer’'s accuracy and user's accuracy were aisceased by 10.81 % and 16.33 %

respectively.

Table 6.4: Testing the discriminatory performance of the RE&ssifier using the selected
vegetation indices (n = 5) and the OOB method &iimeating the error rate. The confusion
matrix includes the overall accuracy, kappa siatistser accuracy, and producer accuracy for
Cyperus papyrus(CP), Echinochloa pyramidalis(EP), Phragmites australis(PA), and
Thelypteris interruptdTI)

Classes CP EP PA IT Row total
CP 24 2 4 0 30
EP 3 26 0 0 29
PA 2 0 27 0 29
IT 0 2 0 28 30
Column total 29 30 31 28 118
Producer accuracy = 86.67 % Overall accuracy = &B%
User accuracy = 89.66 % Kappa =0.85

Producer’s accuracy and user’s accuracy, whichmemee meaningful for the individual classes,
are shown in Table 6.5. The results presented ileT&.5 show the feasibility of using the
vegetation indices in the designation of the RFssifecation algorithm, having improved the
producer’s and user’'s accuracy with the range 48 @ to 13.33 % and 0.24 % to 7.14 %
respectively for most of the class pairs in congmarito raw bands spectral classifications. For
comparison, the producer’s and user’s accuracyfalsine raw bands and vegetation indices are
presented in Figure 6.4.
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Table 6.5: Class pairs accuracies using the selected vegetatiices (n = 5) forCyperus

papyrus (CP), Echinochloa pyramidaliSEP), Phragmites australis(PA), and Thelypteris

interrupta(TI)
Class pairs Producer’s accuracy User’s accuracy %  Overall accuracyKappa
% %
CPvsEP 92.86 89.66 90.91 0.82
CPvsPA 87.10 93.10 89.47 0.79
CPvsTI 92.31 100.00 92.86 0.86
EPvsPA 100.00 100.00 100.00 1.00
EPvsTI 100.00 93.33 96.43 0.93
Tl vsPA 100.00 100.00 100.00 1.00
H PA Raw bands EUA Raw bands
m PA Vegetationindices m UA Vegetation indices
105

100 -

95 |

85 |

Accuracy assessment %
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CPvsEP CPvsPA CPvsTI EPvsPA EPvsTI Tl vs PA

class pairs

Figure 6.4: Producer’s accuracy (PA) and user’s accuracy (geerated from the use of AISA
raw bands (n = 8) and vegetation indices (n = 5)efach class pair of the speciégperus
papyrus (CP), Echinochloa pyramidaliSEP), Phragmites australis(PA), and Thelypteris
interrupta(TI))
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6.4 Discussion

Effective management of wetland vegetation spe@gsires accurate knowledge of their spatial
distribution and density to assist in the efforptotect and sustain this valuable ecosystem. This
can be achieved to different degrees by the prowgsd different remotely sensed data. This
study attempted to scale up the method proposektaynet al (2009) to an airborne sensor for
mapping papyrus and its co-existing species. Wedethe utility of the AISA imagery with a
spectral resolution of 272 visible and near-infdafIR) wavebands and a spatial resolution of 2
m to map papyrus and its three co-existing speicies swamp wetland in Greater St Lucia
Wetlands Park —South Africa. Our results demonstiahat papyrus vegetation and its co-
existing species can be separated from each oftieavinigh level of overall accura¢§0.83%).

The study emphasized the main obstacle in clasgifgnd characterizing the distribution
of papyrus vegetation and its associated plantispedhis included collecting sufficiently
accurate and enough ground truth points for trginiata in the image, since spatial variation and
diversity in the wetland vegetation is very highdanot easily accessible (Bajjoek al, 1998;
Adam et al, 2009; Artigas and Pechmann, 2010). This obsteai#¢d result negatively on the
classification accuracy, since a shift of one pmaly induce a significant error, and therefore the
overall results will not be reliable (Artigas andddmann, 2010). We believe, however, that this
problem was overcome by ensuring the selectiorratfigd reference area (ROIs) that contain a
single species over more than 80 % of the areaamedarger than the pixel size of AISA
imagery (2 m). Moreover, the boundaries of the R@isre accurately delimited using
differential GPS with a minimum accuracy of + 1 ¢Bellucoet al, 2006).

Results from this study show that 8 bands of Ak®fected as the optimal number using
the separability statistics method developed is #iudy yielded classification accuracies that
were better than those obtained when the entirerspectral bands (n = 272) were put into the
RF classifier algorithm. This is beneficial for t@ffective wetland vegetation mapping in terms
of reducing the time and space needed to procekstare the hyperspectral data. Moreover, the
variables selection method used in this study whitkgrated RF and FVS allowed direct
measuring of the importance of variables (bandf)i@same time as the classification process of
hyperspectral data which is recommended in remetsisg techniques (Guyon and Elisseeff,
2003; Granittoet al, 2006; Adamet al, 2009; Ismail, 2009)We believe that our remarkable

results in this regard show the usefulness of tRealgorithm as a technique for reducing the
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dimensionality of hyperspectral data. It is, theref worth considering RF as a useful technique
for variables selection in hyperspectral remotess®nin the future.

Among the bands selected in this study, many asatéa in the red-edge portion of the
spectrum (739 nm, 737 nm, 721 nm, and 734 nm).& baads are within £+ 12 nm from known
bands that are selected for discriminating the sapeeies in other studies. These are 710 nm
and 725 nm (Adanet al, 2009) 745 nm, and 746 nm (Adam and Mutanga, 2@®jer studies
have also reported the usefulness of the red-edggop for mapping wetland vegetation
(Daughtry and Walthall, 1998; Thenkabail al, 2002; Vaiphasat al, 2005). The red-edge
portion has been found to be sensitive to chlorb@mnd biomass variation (Sims and Gamon,
2002; Mutanga and Skidmore, 2007). The rest ofbdnads selected in this study are located in
the visible region of the spectrum (541 nm, 543 A4 nm, and 539 nm) which are £ 12 nm
from the known visible bands selected for mappirggland vegetation in previous studies such
as 550 nm (Daughtry and Walthall, 1998; Thenkabgtial, 2002) and 404 nm (Schmidt and
Skidmore, 2003). According to Tucker (1977), theriattons in the vegetation spectra
reflectance in the visible region are primarily etetined by the concentration of chlorophylls
and carotenoids.

As we expected, the RF classifier adopted in thiglys produced high classification
accuracies (85%). The RF classier has also beeanttgcapplied successfully in the
classification of hyperspectral remote sensing ,dama overall accuracies of more than 80 %
have also been reported (Gislasgimal, 2006; Lawrencest al, 2006; Adamet al, 2009). The
method has many advantages such as that it iseneitise to the noise or overtraining and only
two user defined parameters are needed. ThergfmdRF classifier could be considered to be a
very desirable method for classification of hypexdpal remote sensing data (Lawrersteal,
2006). The reliability of the internal method oetOB estimate of accuracy (Gislasenal,
2006; Lawrenceet al, 2006) that was adopted in this study has provalé@mendous saving of
time and labour to collect separate accuracy assggsdata which was difficult under the
conditions of the study sites located in the swavefland.

The overall classification accuracy (80 %) we aeéikin this study using AISA bands is
9.5 % lower than that which has been reported bgmet al (2009). This can be explained by
the fact that the AISA airborne sensor used in shisly lacks the fine spectral resolution of the
ASD.
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To further increase the classification accuracythe species, we tested the utility of a
subset of vegetation indices (Adam and MutangagWmew). These vegetation indices include
Plant Senescence Reflectance Index, Blue/Greemxindeigment Index4, and the modified
NDVIs involving a combination of a narrow band ihetred portion (655 nm) with two
wavelengths in the red-edge position (697 nm aridnif). An interesting result from this study
is the finding that these vegetation indices welée &0 increase the overall classification
accuracy of papyrus and its co-existing species f8©.83.5% to 88.98 % and to increase the
overall kappa statistic from 0.74 to 0.85 (Tab[2 &nd 6.4). This result is identical to the finding
of Adam and Mutanga ( in review) who reported thatrow band vegetation indices preformed
better than the selected raw bands in discrimigaéimong papyrus and its co-existing species
using field spectrometery data. This better perforoe of the vegetation indices could possibly
be explained by the fact that vegetation indicelsaane the possible difference in reflectance
between the vegetation species éDal, 1995; Pefia-Barragast al, 2006; Cheet al, 2008) and
minimize the influences of atmospheric absorpti@wl| background, and water on vegetation
canopies (Kokaly and Clark, 1999b; Mutanga and ®kia, 2004a).Since leaf biochemical and
biophysical features were not measured in thisysttieere is therefore the need to explain why
these vegetation indices showed a higher accuraayiscriminating papyrus and its co-existing

species.

6.5 Conclusions

The RF classifier was appropriate for this studgduse it does not require a separate accuracy
assessment data set. This was useful becausevthsra tremendous saving of time and labour
in collecting more ground truth points in such syaaneas, which are not easily accessible. We
caution, however, that because RF is a supervissdification technique for working with areas
of mixed vegetation species unbiased sampling anefd fieldwork is necessary for acquiring
accurate information of training samples in oraegét reliable classification results

The results from this study demonstrate that airbdryperspectral imagery can be a useful
source of data for distinguishing papyrus and asexisting plant species. However, in order to
better understand the spatial variations of papyguentity and quality, it would be useful if
estimation of biophysical and biochemical paransetef papyrus such as biomass is also

investigated in further studies.
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In summary, the methods and procedures presenttisistudy can be used for mapping
other wetland plant species. The RF algorithm a&plplo hyperspectral data was able to provide
high accuracy in the classification model. It remsato be tested in regression model using

hyperspectral data.
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CHAPTER SEVEN

Estimating papyrus (Cyperus papyrus L.) biomass using narrow band

vegetation indices and the random forest regressicaigorithm

This chapter is based on:

Adam, E., Mutanga, O., and Ismail, R., (accepted).r&asting papyrusGyperus papyrys
biomass using narrow band vegetation indices amdahdom forest regression algorithm.
ISPRS Journal of Photogrammetry and Remote Sensing.
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Abstract

Accurate estimates and mapping of wetland vegetafility such as biomass have increasingly
been identified as critical components for an effit wetland monitoring and management
system. Traditionally, biomass predictions are masiag direct field measurement methods.
These methods do not offer real-time data, andirmadequate for poorly accessible areas.
Methods that take advantage of remote sensing &fan powerful techniques for predicting
vegetation biomass. In this study, we investigdted use of vegetation indices derived from
field spectrometry data to estimate papyi@gperus papyrus ).biomass. Papyrus characterizes
most of the wetlands in tropical Africa. Spectratilaabove ground biomass measurements were
collected at three different areas in the GreatelL®ia Wetland Park, South Africa. We
evaluated the potential of narrow band normalizefferénce vegetation index (NDVI)
calculated from all possible two-band combinatiobstween 700 nm and 1000 nm.
Subsequently, we utilized the RF (RF) algorithmaamodelling tool for predicting papyrus
biomass. The results showed that papyrus biomasbeastimated at full canopy level under
swamp wetland conditions {R= 0.73; RMSEP = 276 g/fm8.6 % of the mean). From our
results, the RF algorithm has proved to be a rofeattire selection method in identifying the
minimum number (n = 4) of narrow band NDVIs thafeoéd the best overall predictive
accuracy. This lowest prediction error (RMSEP = 2j1f; 8.6 % of the mean) was obtained
using four NDVIs computed from bands at (740 nm &8 nm), (741 nm and 853 nm), (741nm
and 847 nm), and (749 nm and 776 nm). It was revended that these promising results can
be upscaled to spaceborne or airborne sensors asid¢hYMAP or Hyperion for predicting

vegetation biomass in wetland areas using remstziged data.

Keywords. Above ground biomass. Field spectrometer measuresmBIDVI. Random forest.
Variables selection.
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7.1 Introduction

Papyrus Cyperus papyrus L.is increasingly being recognized as the most besrproductive
plant species in the tropical wetlands in Africauiuri and Kinyamario, 1989). Papyrus plays a
vital role in hosting habitats for wildlife specié®wino and Ryan, 2007), and it has a major
influence on the grazing distribution patternsieé$tock especially in dry seasons (Muthuri and
Kinyamario, 1989). Furthermore, promising resulévédn been obtained in using papyrus as an
alternative source of fuel in many countries intcanAfrica such as Rwanda (Jones, 1983b;
Muthuri and Kinyamario, 1989).

Despite the relative importance of papyrus, humarcreachment and intensified
agricultural activities in many parts of Africa lethreatened the existence of papyrus functions
(Mafabi, 2000; Maclearet al, 2006; Owino and Ryan, 2007). The continued degrad in
papyrus habitat represents a significant threabitwiversity conservation particularly for
papyrus-specialist birds and other papyrus-rekgeicies in many African countries (Maclestn
al., 2006; Owino and Ryan, 2007). Therefore, efficiéethniques that can spatially and
temporally monitor the stability of the productivitof papyrus ecosystems and whether
significant changes are taking place in these swaogsystems are required. Such techniques
require up-to-date spatial information on the disition of papyrus vegetation. Also, the
variation in the quality and quantity of papyrugetation is critical for a better understanding of
the productivity and functioning of papyrus swam@slam and Mutanga, 2009). Previous
studies have shown the possibility of discrimingtpapyrus from its co-existent species using
hyperspectral remote sensing (Adam and Mutanga9;2@0amet al, 2009). However, timely
assessment and mapping of both papyrus speciesbave ground biomass (AGB) variation is
needed to facilitate a better understanding of gpecies-quality interaction in their spatial
distribution (Mutanga, 2004).

Traditional methods such as field measurements haee used to estimate papyrus AGB
(Jones and Muthuri, 1997; Serag, 2003; Boar, 2086yvever, these traditional methods require
sufficient numbers of samples which is expensiwveetconsuming, and difficult to implement,
especially in large and inaccessible areas (Lu,6R0Biomass estimation based on remote
sensing has increasingly attracted scientific @debecause of its cost-effectiveness and benefit
of repetitively collecting digital data. Additiorig) researchers have shown that there are high

correlations between spectral bands and vegethimmass (Lu, 2006). In this regard, broad
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band remote sensing has been widely used to mbedekpatial and temporal variability of
vegetation biomass over large wetland areas (RamsdyJensen, 1996; Moreat al, 2003;
Rendonga and Jiyuanb, 2004; Progtyal, 2007). The shortcoming of broad band satellitea da
is that the high spectral variation and shadowsealby canopy and topography may create
difficulty in developing an accurate biomass estiora model that can differentiate between
vegetation and the soil background (Lu, 2006; Namett al, 2008). Some studies have
demonstrated that vegetation indices (VI) have pbéential of overcoming some of these
problems (Elvidge and Chen, 1995; Toetdal, 1998). The most commonly used vegetation
indices, which are sensitive to biophysical anctcb@mical variation in vegetation, are computed
from the red and near-infrared (NIR) portions & #ectromagnetic spectrum (Asrar, 1989; Cho
et al, 2007). These vegetation indices respond to tfieredhce between the reflectance in the
visible portion because of the chlorophyll absanptand high reflectance in the NIR due to the
multiple scattering effects of vegetation (Elvidgal Chen, 1995).

The normalized difference vegetation index (ND\Rp(seet al, 1973) has been widely
used during the last decades for modelling theiapaariability of AGB based on broad band
sensors (50 nm-100 nm) such as NOAA and Landsan&he Mapper (Moreaet al, 2003; Lu
et al, 2004). However, the major limitation of NDVI ikdt the broad band NDVI uses average
spectral information over a wide range of the speaet which results in loss of critical
information (Hansen and Schjoerring, 2003; Nun®tal, 2008). Furthermore, NDVI calculated
from broad band sensors asymptotically approacht@ation level after a certain AGB (about
15 kgm? ) or vegetation age (15 years in tropical for¢Steininger, 2000; Lu and Batistella,
2005). Therefore, NDVI yields poor estimates duniegk growing seasons and in more densely
vegetated areas (Thenkabatl al, 2000; Mutanga and Skidmore, 2004a). In gendhal
estimation of AGB is still a challenging task, esipdly in those study areas with mixed species,
densely vegetated environments, and complicatedpgsastructure (Adanet al, 2010). Given
these limitations and challenges, there is a needetvelop or to improve techniques for better
estimation of AGB in highly diverse and densely e&ged areas such as wetlands where there is
almost 100 % vegetation cover.

More recently, the development of field hyperspgctemote sensing has opened new
perspectives for investigating the most powerfutea bands to be used in VIs formulation and

for maximizing the sensibility of VIs to AGB based the whole electromagnetic spectrum (350
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nm — 2500 nm) rather than focusing on the red alri binds (Hansen and Schjoerring, 2003;
Mutanga and Skidmore, 2004a; Céioal, 2007; Favaet al, 2009). The use of NDVI calculated
from narrow bands has been found to be one poi$gitol reduce the data saturation problem
(Mutanga and Skidmore, 2004a). However, some asithote that the strengths of the rich
hyperspectral bands have not be exploited becaugdveo bands from the red and near-infrared
regions are used to formulate the indices (@hoal, 2007). Alternatively, multiple linear
regression (MLR) methods based on more than twad&ave been shown to be effective in
estimating AGB (Lu, 2006). However, identifying s&able variables for developing a multiple
regression model is often critical because sommbigs are weakly correlated with AGB or are
highly correlated to each other (Lu, 2006). Givdms tproblem, a powerful method for
identifying the most useful narrow band indicesmprove the prediction of AGB is essentially
required (Lu, 2006).

Ensemble methods like RF (Breiman, 2001) have hessd to enhance the prediction
accuracy in the field of ecology (Prasatlal, 2006; Grimmet al, 2008). Results from these
studies concluded that the RF algorithm and bagdiage similar abilities for improving
prediction accuracy, with slightly better performanby the RF. From the field of remote
sensing, ensemble approaches have been widelyedpiplidifferent fields as a classification
algorithm (Hamet al, 2005; Pal, 2005; Gislasat al, 2006; Lawrencet al, 2006; Adamet al,
2009). To the best of our knowledge, only Ismad &utanga (2009) investigated the use of the
RF algorithm in regression type applications faeddctingS. noctilioinduced water stress
patula trees using hyperspectral data. Results from thdysshowed that the RF algorithm
outperformed bagging and boostingf @R0.73). Therefore, in this study we further inigsted
the performance of regression tree ensembles oables selection and for predicting AGB of
papyrus in a complex environment which has beenl@sieed in scientific research.

Thus, the research objectives were: (i) to evaltteeutility of narrow band NDVI derived
from field spectrometry measurements for estimapagyrus AGB in complex and densely
vegetated canopies, and (ii) to test the performaot the RF algorithm in a regression
application (i.e. identifying the best hyperspedindices and predicting AGB). To achieve these
tasks, a field experiment was planned to collecBAgBId spectral data from papyrus vegetation
in the summer of 2009 at the Greater St Lucia Widtl@ark, South Africa, which is

characterized by a composition of mixed speciese Megetation indices (NDVI) were
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calculated, and the predictive performance of #grassion tree ensembles was then determined

using training or calibration and test data sets.

7.2 Material and methods

7.2.1 Field spectral measurements and biomass harvesting

Random sampling was adopted in this study. Hawfralysis tool was used to generate 50
random points on a land cover map developed fromaAded Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) imagery. The danpoints were subsequently uploaded
into a GPS that was used to navigate to the figé$ $.e. Futululu Park, and the Mfabeni and
Mkuzi swamps. Once the sample site was locate@,ra By 30 m vegetation plot was created to
cover a homogenous area of the papyrus. Three asb@d m x 1 m) were then randomly
selected within each plot to measure the specfigatance.

All the spectral measurements were collected irstremer of 2009 between 10:00 am and
02:00 pm under sunny and cloudless conditions usiegAnalytical Spectral Devices (ASD)
FieldSpec® 3 spectrometer. The spectrometer messuavelengths ranging from 350 nm to
2500 nm with a sampling interval of 1.4 nm for 8% nm to1000 nm spectral region, and a 2.0
nm sampling interval for the 1000 nm to 2500 nmctjeé region. The ASD has a spectral
resolution of between 3 nm and 10 nm (ASD Analyt8pectral Devices Inc., 2005). A white
reference spectralon calibration panel was used/é/&o 10 measurements to offset any change
in the atmospheric condition and irradiance of #gwe. Accompanying the field spectral
measurements, metadata such as the sites’ desorif@oordinates, altitude, and land cover
class) and general weather conditions were alsorded (Milton et al, 2009). From each
subplot (1 m x 1 m) approximately 5 to 10 field cpemeter measurements were randomly
taken at nadir from 1 m using & field of view. This resulted in a ground field vitw of about
18 cm in diameter, which was large enough to cavesluster of papyrus and reduce the
background effects caused by soil and water (Mwaseg al, 2004). These spectral
measurements were then averaged to obtain thedpeaitral measurement for each vegetation
plot (30 m x 30 m).

After spectral measurements, AGB was clipped withie subplots (1 m x 1 m). All dry

material was removed from the clipped plants aedhitbiomass was then measured immediately
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using a digital weighing scale. Average fresh A@#8 plot was then calculated from the three

subplot measurements (Cho and Skidmore, 2009).
7.2.2 Data analysis
7.2.2.1 Narrow band indices

The narrow band NDVI-based vegetation indices vearaputed in this study from all possible
two-band combinations using all the red, red-edgel NIR bands (i.e. 600 nm to 1000 nm).
These indices and spectral regions were selecteaube they are the most commonly used in
estimating biomass and crop yield (Thenkakaidl, 2000; Mutanga and Skidmore, 2004a; Cho
et al, 2007). The discrete 401 narrow bands allowedrapcation of N*N = 160,801 narrow
band indices using the principle of the NDVI caldidn as follows:

NDVI = Rim ~Rim
Rim * Rijm
Where R, , and R, , are the reflectance of any two bands from the sadebands for spectral
sample (n).

7.2.2.2 Random forest regression ensemble

The RF algorithm (Breiman, 2001) was used in thislgto predict the AGB of papyrus (g
The RF algorithm was developed to reduce the iiflgtand the variance of a single regression
tree. The algorithm generates multiple bootstrapmeas from the original training data set with
replacement to create multiple regression treé®4). The model allows these regression trees
to grow to maximum size without pruning. Each tisegrown in RF with a randomized subset of
predictors try) to determine the best split at each node ofrige (Breiman, 2001). The results
from each aggregation are then averaged to geivibeall prediction accuracy. Because there is
a large number of trees, RF achieves low bias and/ariance (Grimnet al, 2008).

When a bootstrap sample is drawn, about 37 % oflttaset is excluded from the sample
and the remaining data are replicated to bringdidtaset to full size. This dataset is defined as
‘in bag’ data, while the excluded dataset (appr@tety 37 %) is known as the ‘out-of-bag’ data
(OOB) (Breiman, 1996). For each tree in the ensemibtle RF algorithm also calculates the
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mean square error as the difference between pi@uscfi.e. mean square error) made using the
OOB data and the ‘in bag’ data, known as the OOBrgiPrasacet al, 2006; Palmeet al,
2007). The OOB estimate of error is considered @oabreliable assessment of predictive
accuracy since the OOB data were not used to bailghrune any regression trees in the
ensemble. The OOB error estimate is consideree t@ form of cross-validation (Svetngk al,
2003) and provides a good and reliable internaiege of error (Breiman, 1996, 2001; Prasad
al., 2006; Grimmet al, 2008; Ismail and Mutanga, 2009). Some researdfars suggested that
it may not be necessary to have an independertatalg dataset (Lawrened al, 2006).This is

of particular interest regarding wetland areasgesidata collection is difficult due to the poor
accessibility of areas. Additionally, the OOB datkw for the evaluation of the importance of
each variable in the prediction by determining howch the prediction error would increase if
the OOB data of that variable were permuted (Prasat, 2006).

In the RF algorithm there are two parameters whiedd to be optimized by the user: the
number of treesnfree in the forest and the randomly selected numbefraofbles tried at each
node (ntry) (Breiman, 2001). The default value mtfeeis 500, while the defautntry value for
regression applications is one-third of the totaimber of predictors. In this study, timree
values were tested from the default setting 5065@0 with an interval of 1000 (Prasatal.,
2006), while themtry was evaluated by creating RF ensembles for aliptesmtry values (20)
(Ismail and Mutanga, 2009). The optimal valuesxwée andmtry were then selected based on
the lowest root mean square error of calibratiokl§EC).

The randomforestlibrary (Liaw and Wiener, 2002) developed in the pckage for
statistical analysis (R Development Core Team, 200@s employed to implement the RF
algorithm.

To validate the performance of the RF algorithmwitenceet al, 2006), the data were
randomly divided into 70 % training or calibratiand 30 % test data samples (n = 32 and 14
respectively). Regression analyses were performredhe calibration dataset using the OOB
estimates of error. The test data set was usecalidate the predictive performance of the RF
algorithm (Lawrenceet al, 2006; Ismail and Mutanga, 2009). A one-to-onatrehship between
measured and predicted biomass values was theligiséal. The coefficients of determination
(R?) for calibration and prediction as well as RMSE®@ aoot mean square error of prediction

(RMSEP) values were reported.
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7.2.2.3 Selection of the predictive variables

The narrow band indices NDVIs computed from allgdole two-band combinations of 401
bands were ranked based on the correlation costfici r (R = coefficient of determination).
The top 20 NDVIs that yielded the highestviRere then selected for further analysis in order to
simplify the modelling process (Mutanga and Skidep@004a).

In order to simplify the modelling process, it wascessary to identify the smallest number
of NDVIs that offered the best predictive perforroarfor AGB. The RF procedure measured
the importance of the top 20 band combinations ftbentraining dataset (70 %) based on the
mean decrease in accuracy. The variables wereedaakcording to their importance. We
subsequently used this ranking to indentify theusege in which to discard the least important
variables (NDVI) using backward elimination functiqlsmail and Mutanga, 2009). The
backward variable selection process iterativelydsumultiple random forests for regression. At
each iteration, a new forest was developed afidwglly eliminating one of the least promising
narrow band NDVIs (n = 20), and RMSEC was calcaaWe further evaluated the selection of
the best subset using an independent test dataskayi and John, 1997). We compared the
performance of OOB with both the hold out test gdatand the 10 fold cross-validation (Ismalil
and Mutanga, 2009). The nested subset of varighlB¥1) that yielded the lowest RMSEC was

then selected as the optimal variable for biomasdigtion.

7.3 Results

As a precursor to examining the relationship betw&&B and NDVIs, descriptive statistics of

biomass were generated and the results are showabie 7.1.

Table 7.1:Descriptive statistics of the measured above grduiochass.

Sample  Unit Mean S.D. Minimum  Maximum  Range
No
Biomass 47 g/nt 3221.362 562.3853 2367 4305 1938
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7.3.1 Hyperspectral indices (NDVI) and biomass

The reflectance values of narrow band hyperspedeash contained 401 discrete channels
located in the red or far- red and NIR (600 nm 8QLé&m) allowed the computation of 160,801
NDVIs for biomass estimation. Analysis of the ctation coefficients, R between the entire
possible two narrow band NDVIs (n = 160,801) andBAG papyrus is shown in Figure 7.1. It
can be clearly seen from this figure that thera 8ide variation in strength of the relationship
between NDVIs and AGB. The’Ralues range between 0.00 and 0.83. The band cauitris
involving the far-red-edge bands located from 720 to 850 nm range yielded the strongest
correlations (0.73 to 0.83).

The NDVIs were then ranked based on their coratatioefficients, and the top 20 two-
band combinations that yielded the highe$tv&ues were then selected and recorded as shown

in Table 7.2 for further analysis.
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Figure 7.1. Contour plot representing the correlation coeéiits () of the linear regression
between above ground green biomass and NDVIs dataiinom all possible two-band

combinations using bands located from 600 nm tdX00.

137



Table 7.2: The top 20 NDVIs that yielded the highest corielatcoefficients for papyrus

biomass
Rank Wavelength 1 (nm) Wavelength 2 (nm) R R
1 741 853 0.910 0.829
2 740 853 0.910 0.828
3 741 847 0.910 0.828
4 749 776 0.910 0.828
5 741 845 0.910 0.828
6 740 865 0.910 0.828
7 740 849 0.910 0.828
8 749 778 0.910 0.827
9 750 773 0.910 0.827
10 740 840 0.908 0.825
11 749 771 0.908 0.825
12 752 773 0.908 0.825
13 743 809 0.908 0.825
14 745 803 0.904 0.818
15 739 895 0.904 0.817
16 739 822 0.904 0.817
17 740 800 0.904 0.817
18 754 770 0.904 0.817
19 744 774 0.904 0.817
20 752 784 0.900 0.810

7.3.2 Parameters optimization of the random forest regression model

The results of optimizing RF parametensrée andmtry) are shown in Figure 7.2. Based
on the lowest RMSEC, the default value rofry, which is one-third of the total number of
variables (in this study = 7is often the best choice with different valuesntfee With respect
to ntreevalues, the results show that the model perforniteb@ow RMSEC) when thatree
value is high ftree = 5500) (Figure 7.2). Overall, the results showkdt tchanges in the
parameters of the RF regressiotr¢eandmtry) affect the error of prediction of the model.
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Figure 7.2.Determining the best random forest parametersy(artd ntree) as determined by the

root mean square error of prediction (RMSEP). Theelb arrow shows the lowest RMSEC

value.

7.3.3 Determination of predictor variables

In order to simplify the modelling process, it wascessary to identify the smallest number
of NDVIs that would offer the best predictive perfance for AGB. The RF procedure
measured the importance of the top 20 combinatims the training dataset (70 %) based on
the mean decrease in the accuracy (Figure 7.3).v@hables were ranked according to their
importance. We subsequently used this ranking eatity the sequence in which to discard the
least important variables (NDVIs) using the backivalimination function.

Figure 7.4 shows the results of the variablesctele using the backward elimination
function. It is interesting to note that the RMSBénerally decreased while the least important
variables were discarded progressively by the bac#tvelimination method. The best model
developed using four NDVIs achieved the lowest RI@SEing the OOB sample (269 ¢)ml10
fold cross- validation (271 gffnand hold out test dataset (276 g§/nThese four NDVIs involve
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a combination of wavelengths located in the NIB3®m, 853 nm, 847 nm, and 776 nm) and

shorter wavelengths of the red-edge (741 nm, 7407drh nm, and 749 nm) respectively.
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Figure 7.3. Variables importance measurement determined by @O® the training dataset
using the RF algorithm with default settingrofry and 550tree The most important variables

are shown by black arrows.

140



300

295

290

285

280 A

RMSEC

275

270 4

265

260 -

255

25'] T T T T T T T T T T T T T T T T T T
1 3 5 7 9 11 13 15 17 19
Number of wvariables

Figure 7.4. The optimal predictive variables selection using backward elimination process.
The RMSEC is calculated from the training dataset 33) using OOB method, 10 fold cross-
validation, and the test dataset (n = 14). The &WRMSEC obtained is shown by the black

arrow.

7.3.4 Development of the prediction model

The selected four narrow band NDVIs were useddbttee performance of the RF regression in
predicting the above ground biomass. Table 7.3 shibe RF prediction performance of the best
selected NDVIs (n = 4) based on the coefficiend@termination and root mean square error for
calibration and validation. TH&® values and root mean square error for calibrafion 32) and
test (n = 14) datasets indicate the best prediggarormance of the RF model obtained when
using the selected four NDVIs: NDVI (853 nm, 741nMNpPVI (853 nm, 740 nm), NDVI (847
nm, 741 nm), and NDVI (749 nm, 76 nm).

The performance of the best selected NDVIs (n wa&y compared to those obtained by the
standard NDVI calculated from a near-infrared (883 and red band (680 nm) (Tucker, 1977),
the best NDVI computed in this study (853 nm and W), and the top 20 NDVIs listed in
Table 7.2. Where Table 7.3 and Figure 7.5 cledrbysthat the regression model involving the
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combination of the best four NDVIs yielded the fegh R (0.77) for the calibration and’R
(0.73) for the prediction as well as the lowest RAMS(266 g/m = 8.2 % of the mean) and
RMSEP (276 g/m= 8.6 % of the mean) compared with the top 20 NDWtich yielded a
RMSEC value of 280 g/fmand a RMSEP value of 305 inThe lowest R ( 0.026) and Rv
(0.015) and the highest RMSEC (539 gjnmand RMSEP( 694 g/fh were obtained with the

standard NDVI calculated from 833 nm and 680 nme Ploor performance of the standard

NDVI can be clearly noted on the almost flat sagtlet in Figure 7. 5-A for both calibration (n

= 32) and independent validation (n = 14).

Table 7.3: The performance of the random forest model for iptemh of papyrus biomass in the
Greater St Lucia Wetland Park using different stde€NDVIs

Calibration (n = 33) Independent validat{ars 14)
R’ actual vs. | RMSEC | Mean| R* actual vs. | RMSEP | Mean
Predicted g/m2 % predicted g/m %
Standard NDVI(833nm and 680 nim) 0.026 539 16.7 %.01 694 21.5
Best NDVI (741 nm and 853 nm) 0.72 295 912 0.66 06 3 9.5
Selected NDVIs (n = 4) 0.77 266 8.2 0.73 276 6 8.
Top 20 NDVIs 0.69 301 9.3] 0.66 312 9.7
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Figure 7.5. One-to-one relationships between actual and petlipapyrus biomass for (i)
calibration (n = 32) and (ii) independent validatim = 14). Random forest was developed using
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the best narrow band NDVI developed in this stuoijputed from 853 nm and 741 nm, and (c)
the best four narrow band NDVIs computed from (868 and 741 nm), (853 nm and 740 nm),
(847 nm and 741 nm), and (776 nm and 749 nm). &ch enodel, R RMSEC, and RMSEP are
reported.

7.4 Discussion

The use of remote sensing techniques in estimaiimmass from dense vegetation or high leaf
area index (LAI) has been constrained by the asgtigpsaturation of vegetation indices such as
NDVI (Tucker, 1977; Kumaet al, 2001; Mutanga and Skidmore, 2004a). This is paldrly
true for wetland environments, where the vegetatioows very densely (Let al, 2007).
Therefore, there is an increase in NIR region otdlece due to multiple scattering effects while
the absorption in the red region between 660 nm &B® nm reaches a peak (Kumetral,
2001). This imbalance between saturation of retitligbsorption and high NIR reflectance
causes the poor performance of the widely used tedynsensed indices such as broad band
NDVI in estimating the wetland biomass becauseuichssituations the NDVI reflects mainly
canopy properties rather than the trunk propefflesker, 1977; Liet al, 2007). The present
study showed that papyrus biomass can be estimatedemarkable accuracy in areas of high
dense vegetation using the RF regression algomthena narrow band NDVI calculated from the

red-edge and NIR regions of electromagnetic spettru

7.4.1 Relationship between the narrow band NDVIs and biomass

The model developed in this study indicated thateghs considerable information on the status
of papyrus biomass contained in the red-edge aadin&ared wavelengths. The narrow band
NDVI combinations calculated from these wavelengt®ulted in a relatively wide variation in

R? values (0.0 to 0.82) for estimating papyrus biom&kswvever, the high correlation between
AGB and NDVIs obtained in this study (Table 7.2hsisted of a narrow band NDVI calculated
from shorter wavelengths of the near-red-edge @omif the electromagnetic spectrum (700 nm
to 750 nm), which is associated with change in rdgbyll content (Filella and Penuelas, 1994;
Lichtenthaleret al, 1996a), and the longer wavelengths of the rec €@§0 nm to 800 nm).

This result is consistent with the findings of pgoms studies (Mutanga and Skidmore, 2004a,;
Cho et al, 2007; Cho and Skidmore, 2009; Fastaal, 2009). Additionally, the wavelengths
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used to develop the best NDVIs (n = 20) (Table h2bhis study are within + 10 nm of the
known wavelengths that have strong relationshipgh Wwiomass prediction as reported in other
studies. These are 740 nm, (G¥aal, 2007), 746 nm (Mutanga and Skidmore, 2004a), 78t

nm (Kawamureet al, 2008).

7.4.2 Parameter optimization of the random forest model

In recent years the RF algorithm has proven to peveerful classification method in the field of
remote sensing (Gislas@at al, 2006; Lawrencet al, 2006; Adanet al, 2009). Our remarkable
results from this study confirm the utility of R a robust, unbiased measure of error rate and
an accurate regression approach for predicting &ssm(Grimmet al, 2008; Ismail and
Mutanga, 2009).

In order to improve the prediction performanceled RF algorithm, it was first necessary
to optimize the settings of the RF parametersee and mtry) using the RMSEC (Breiman,
2001; Grimmet al, 2008). We used all the possible valuesrfary (The default value is one-
third of the total number of variables), while theerval value of 1000 trees was used for
optimizing ntree (the default setting of thetreeis 500). The results of this study revealed that
the lowest RMSEC could be achieved using the defatdy values. This is consistent with
previous studies (Liaw and Wiener, 2002; Diaz-Ueisand de Andrés, 2006; Grimst al,
2008) which reported that the defaditry is often the best choice. With respect to titree
optimization, the results of this study showed drefiredictive performance of the RF model
with increasingntree values This supports the assertions made in the otheliegtuhat the
highest accuracy and stability of the RF algorittam be achieved by using a large number of
trees (Diaz-Uriarte and de Andrés, 2006; Adztral, 2009). This could be explained by the fact
that a forest consisting of a high number of tréesed allows for the utilization of more
variables in the dataset. It is, therefore, moablstand less prone to prediction errors caused by
data perturbations (Breiman, 1996; Archer and Kir2@88; Zhang and Wang, 2009).

7.4.3 Variables selection

It has been noted that the use of the standard Nbight not be able to explore the strength of
the large number of hyperspectral bands becausetwnl bands from red and NIR are used to
formulate the NDVI (Hansen and Schjoerring, 200&h18rf et al, 2005). In the present study,

145



the results of calculating the narrow band NDVlenir all possible two-band combinations
between red and NIR and then correlating it withBA@/n") improved an understanding of the
relationship between the wavelength regions anohags estimation at full canopy cover, as well
as presented a possibility to explore the rich rmfation content in the hyperspectral
wavelengths (Thenkabagt al, 2000; Mutanga and Skidmore, 2004a). This studyatestrates
the validity and significance of NDVI in estimatingGB. However, selection of the best
wavelengths is an important task for the formulataf the NDVI. Our results as shown in
Figure 7.1 explored and ranked all the possible elemgth combinations, then the best
combination of wavelengths (n = 20) was selectesthan the strong correlation with AGB for
further analysis. Besides ranking and selectingoés narrow band combinations (n = 20) that
yielded the highest correlation with biomass, ughmg RF algorithm with backward elimination
search function facilitated the selection of thedst most important predictive variables (n = 4)
for a simple modelling process and best predicaeeuracy. The consistency of the three
methods (OOB, 10 fold cross-validation, and thé tiesaset) proposed in this study to identify
the optimal number of the predictive variables (d)=demonstrates the reliability of OOB as an
internal estimate of error rate in the RF algoriti®ur finding in this regard is identical to those
of other studies that tested the reliability of th®B estimate error in the classification model
(Lawrenceet al, 2006; Adam and Mutanga, In review) and the regoesmodel (Ismail and
Mutanga, 2009).

7.4.4 The predictive performance of the random forest model

The present study showed that papyrus biomasseastimated at full canopy level in complex
swamp wetland environments using narrow band NRMIsved from spectrometry data and the
RF regression algorithm. The higher accuracy obthin this study demonstrated the utility of
the RF algorithm as a feature selection method (eaeeet al, 2006; Adanet al, 2009) and its
application as a regression model (Ismail and Mgaar2009). The relatively high?Rand low
RMSEC and RMSEP as shown in Table 7.3 indicatesthigaselected NDVIs (n = 4) improved
the predictive performance of the model comparethéouse of the entire top 20 NDVIs. The
increase in number of predictive variables coulddldo a decrease in the model accuracy
because the noise in the redundant data propatatesgh the model performance (Bajcsy and

Groves, 2004). Our results in this regard indidhtd the variables selection method developed
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in this study was able to refine the performancehefRF regression model. The poor predictive
performance of the standard NDVI shown in Figuf® ig.consistent with the finding of Cho et
al. (2007), involving grass/herb in the Majella NMatl Park in Italy, and of Mutanga and
Skidmore (2004a), involving blue buffalo grasSetchrus Ciliari$ grown under controlled
conditions in a greenhouse. This could be expthimg the saturation problem of the standard
NDVI at the high biomass or leaf area index whiels been reported in several studies (Tucker,
1977; Mutanga and Skidmore, 2004a).

In summary, the RF regression model was able twigworemarkable accuracy in
estimating biomass in wetland areas. The poteasialof this method which was developed from
fine spectral resolution (ASD) can be made openatiby further work to explore the capability
to estimate papyrus biomass using relatively coaspectral data such as Hyperion or the
HYMAP spectra.

7.5 Conclusions

We conclude that:

1. NDVI computed from a combination of narrow bandhe shorter wavelengths of red-edge
or far-red (700 nm-750 nm) and the longer wavelesigff NIR (750 nm -1000 nm) perform
better in predicting biomass as compared to thedstal NDVI when there is high canopy
density.

2. The RF ensemble reduced the redundancy of hypdrapdata and simplified the modelling
process by identifying the optimal number of narrand NDVIs that offer the best
predictive accuracy.

3. Based on our relatively high accuracies, it is Wardnsidering the RF ensemble as a robust
method for remote sensing regression type appdieatin the future. Our study offers the
foundation for the possible upscaling of these Itesto coarser spectral data such as
Hyperion or the HYMAP image data.

Overall, this study has revealed that it is possifol predict dense papyrus biomass at
canopy level using filed spectrometry measuremeéntaddition, the developed model provides

a better understanding of (i) those narrow bandorsgthat are most sensitive for papyrus

biomass estimation and (ii) the potential of RFesnisle as a feature selection and regression
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type model in remote sensing applications This jitsrthe upscaling of the model to spaceborne
or airborne sensors such as HYMAP and Hyperion.
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CHAPTER EIGHT

Remote sensing of papyrus vegetatiorCyperus papyrusL.) in a swamp
wetland: A synthesis
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8.1 Introduction

Why do we need to map and monitor papyr@yperus papyrus )? Research in wetland
ecology and management has revealed@yaerus papyrus Lis the most important species in
tropical African wetlands that plays fundamentadlegical, hydrological, and economic roles in
the tropical African wetlands (Grenfedit al, 2009). The existence of papyrus, however, is
threatened by human encroachment and intensiveudigiial activities in many tropical African
wetlands (Macleaet al, 2006; Owino and Ryan, 2007).Therefore, detectind monitoring the
existence and quantity (biomass) of papyrus at $ip&tial scales is critically important for the
wetland manager and decision makers when implengrgifective wetland management
practices. In this regard, remote sensing is widédyved as being a near-real-time and cost-
efficient technology that has the ability to splyigoroceed with large scale detecting and
monitoring of the vegetation parameters.

However, detecting and mapping wetland plants saaglpapyrus is challenging for two
reasons. Firstly, herbaceous wetland vegetationb#ghhigh spectral and spatial variability
because of the steep environmental gradients wipidduce short ecotones and sharp
demarcations between the vegetation units (SchamdtSkidmore, 2003; Adam and Mutanga,
2009; Zomeret al, 2009). Hence, it is often difficult to identifjne boundaries between
vegetation community types. Secondly, the reflextaspectra of wetland vegetation canopies
are often very similar and are combined with thitectance spectra of the underlying soil,
hydrologic regime, and atmospheric vapour (Guye8Qt Malthus and George, 1997; Yuan and
Zhang, 2006). This combination further complicaties optical classification and results in a
decrease in the spectral reflectance, especialthenmnear-to mid-infrared regions where water
absorption is relatively stronger (Fyfe, 2003; Siét al, 2008). Another problem that limits the
ability of remote sensing to map papyrus quantiiprfass) is that the use of remotely sensed
indices such as NDVI calculated from the broad bhad been bedeviled by the saturation
problem at high canopy density and after certagmiaiss and LAl measurement (Thenkaleail
al., 2000; Mutanga and Skidmore, 2004a). The challengberefore, to develop techniques that
can focus on mapping papyrus and predicting acelyrés quantity (biomass) at canopy level.

In this thesis, the objectives were:
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1. To explore the usefulness a@h situ spectroscopic data in discriminating papyrus
vegetation from its co-existing species (binarysslgechniques),

2. To investigate the usefulness wof situ spectroscopic data in discriminating among
papyrus vegetation and its co-existing speciest{atkats techniques),

3. To determine if machine learning algorithms (randonest) can accurately discriminate
among papyrus and other co-existing species usisgmpled HYMAP data,

4. To examine whether vegetation indices derived fspactroscopy data can be used to
enhance the separability and classification acgubatween vegetation species,

5. To test the reliability and robustness of the iméraccuracy assessment of the RF
algorithm as a variable selection and classificatgorithm in discriminating between
the species,

6. To investigate the potential of imaging spectrogcop discriminating among papyrus
and its co-existing species using airborne hypetsaledata (AISA eagle), and

7. To explore the potential of hyperspectral datastingating biomass of papyrus at high

canopy density or full canopy levels.

8.2 Spectral discrimination of papyrus under full @anopy cover

In hyperspectral remote sensing of vegetation theme two different schools of thought
regarding the possibility of species discriminatitimee believers and the sceptics. The sceptics
argue that several species may actually have aitatarely similar spectrum which is a mixture
of physical and chemical properties that can chaug®rding to various environmental factors
and therefore the uniqueness of the vegetationtrspex questionable (Anderson, 1970; Price,
1994; Portigakt al, 1997). Moreover, this spectral reflectance isticled by a limited number

of independent variables such as chlorophyithlorophyllb and the carotenoids in the visible
regions. Therefore, they argue that the reflectammderegetation of different species are highly
correlated (Price, 1992; Danson and Plummer, 1995).

On the other hand, the group of scientists whoelelthat spectral reflectance can be used
to discriminate species has argued strongly thgpiteethe challenges and the non-unique nature
of the spectral response, the potential for disicrating different plant species based on foliar
reflectance does exist because the spectral respstils provides enough information to

discriminate between the species (Cochrane, 2@a0jhermore, hyperspectral remote sensing
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enables the quantification of all the independeariables mentioned by Price (1992), such as
chlorophyll content of plants (Blackburn and Pitmd®99), biochemical variables such as
nitrogen and lignin (Curraet al, 1990; Mutanga, 2005), crop moisture variationsn{ielaset

al., 1993a), and leaf pigment concentrations (Blackpl998).

In this thesis we have attempted to answer thestgue can the papyrus plant be
discriminated from its co-existing species in twiscdmination levels; one to discriminate
papyrus from each one of its co-existing speciasafly class classification), and to discriminate
among papyrus and its co-existing species (mudissciclassification). The binary class focused
on discriminating papyrus and the broader co-exgstipecies, while the multi class focused on
detailed discrimination for papyrus and its co-8ris species. This allowed one to test the

influence of the level of discrimination detailtime classification accuracy.

8.2.1 Spectral discrimination of papyrus from its co-excising species (binary class)

The evaluation of hyperspectral data (350 nm to02&@) measured in the field at full canopy
level shows that we can successfully discriminapypus from each one of its co-existing
species (binary class classification) (ChapterT8)e utility of a new hierarchical method that
integrates three analysis levels ( ANOVA, CART, alistance analysis) indicates that there is a
significant differenceg < 0.001) between the mean spectral reflectancpdpyrus and the three
co-existing species, with a large number of sigatfit wavelengths (n= 412) located in the near-
infrared and red-edge regions of the electromagrsgtectrum .The majority of the significant
bands (98 %) are located in the near-infrared (@82 nm to 1297 nm) of the electromagnetic
spectrum, and the remainder of the significant wengths are located in the red-edge part.
CART analysis was able to identify the most sewsitbands for the spectral discrimination.
Specifically, these bands are located in the regeethd near-infrared region at 745 nm, 746 nm,
892 nm, 932 nm, 934 nm, 958 nm, 961 nm, 989 nm.sEmsitivity analysis involving Jeffries-
Matusita (JM) distance was then used to deternmtieebest combinations of these bands for
discriminating papyrus from its co-existing speciBesults show that, although a single band
located in 892 nm can discriminate Cyperus papfmus Phragmites australi@nd Thelypteris
interrupta, with JM value of 1.409 (99.64 %) and 1.408 (99%Brespectively, only six bands
located at 745 nm, 746 nm, 892 nm, 934 nm, 958nmd, @61nm, show the potential to
discriminateCyperus papyrusrom Echinochloa pyramidalisvith a JM value of 1.379 (97.52)
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(Table 8.1). This six band combination produces@eptable JM separability (99.15 %) for the

discrimination of papyrus from all the three costixig species.

Table 8.1: The values of the JM distance for each individiass pair within the selected best
band combinations

Best combination CP vs PA CPvs EP CPvsTI
JM % JM % JM value %
value value
892. 1.409 99.64 1.21085.57 1.408 99.58
892, 934. 1.412 99.86 1.2689.32 1.410 99.72
892, 934, 898. 1.413 99.93 1.3082.50 1.413 99.93
892,934, 958, 961, 1414 100.00 1.3ZB.99 1414 100.00
745, 745, 892, 958, 961. 1.414 100.00 1.38%.55 1.414 100.00
745,745, 892, 934, 958, 961. 1.414 100.00 1.39B52 1.414 100.00
745, 746, 892, 932, 958, 961, 9809. 1.414 100.00 991.38.94 1.414 100.00

745, 746, 892, 932, 934, 958, 961, 989. 1.414 100.0.405 99.36 1.414 100.00

The results from this study provide the basis fdurfe powerful algorithms that can be
used to discriminate among papyrus and the threexisting species (multi-class classification)

at full canopy level.

8.2.2 Spectral discrimination of papyrus and its co-existing species (multi-class
classification)

We assessed the potential of discriminating amamyms and the different co-existing species
(multi-class classification) using machine learniatgorithms (random forest) and canopy
reflectance measured under field conditions andmgsed to HYMAP resolution (Chapter 4).
The approach of using a wrapper (forward varialelection) and .632+ bootstrap methiod
tandem with the RF algorithm was able to providealsreets of non-redundant wavelengths
while preserving higher classification accuracyntiibe full HYMAP wavelengths (n = 126)
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(Table 8.2). More specifically, 10 of the HYMAP walengths located at 1409 nm, 710 nm, 437
nm, 464 nm, 452 nm, 1424 nm, 725 nm, 480 nm, 587amu 603 nm have the greatest potential
for discriminating among all classes (n = 6) inwoty papyrus and the different co-existing
species. The RF algorithm also yielded better #laaon accuracy (88.44%) than the

classification tree (CT) algorithm (80.47%) where flull data set (126 wavelengths) was used
(Table 8.3).

Table 8.2: The confusion matrix showing the classificationoe obtained for discrimination
amongst all possible species combinations (n = @)perus papyrus(CP), Echinochloa
pyramidalis (EP), Phragmites australigPA), and Thelypteris interrupta(Tl). The confusion

matrix includes the accuracy between classes (ABEAT statistic, producer accuracy (PA),
and user accuracy (UA).

Classes ACC KHAT PA % UA % Row Column

% totals
totals

Presence Absence Presence Absence

CPvseP  96.70 0.93 95.74 97.73 97.83 95.56 91 91
CPvsTI 97.89 0.96 97.83 97.96 97.83 97.96 95 95
CPvsPA  93.75 0.88 93.75 93.75 93.75 93.75 96 96
EPvsPA  96.81 0.94 97.73 96.00 95.56 97.97 94 94
EPvsTI 94.62 0.89 95.56 93.75 93.48 95.74 93 93
PAvsTl  100.00 1.00 100.00 100.00 100.00 100.00 93 93

All classes  90.50 0.87 88.24 91.49 90.00 86.00 200 200
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Table 8.3: The misclassification error for both the machiearhing models (RF and CT) using
the .632+ bootstrap method for error estimates arxliracy assessments using the top 10

wavelengths selected by RF and a full data set {@&&lengths).

Algorithm Top 10 wavelengths Full data set
Misclassification  Overall KHAT Misclassification Overall KHAT
error % error
Accuracy % accuracy %
RF 8.95 90.5 87 9.19 88.44 85
CT 12.05 845 80 13.75 80.47 78

Our findings in this study provetiat the RF algorithm is a robust and accurate atketbr
the combined purpose of variables selection andhi®classification of hyperspectral data in an
application where (i) the number of samples istiei(n < p), and where (ii) vegetation species
have similar spectral characteristics affected bgeulying wet soil and hydrology regime
However, more investigation is required to test dl@bility and stability of the RF algorithm

(Lawrenceet al, 2006).

8.3 Improving the spectral discrimination of papyrus vegetation

The problems of the high dimensionality of hyperip®@ remote sensing, the small and high
correlated absorption features present in the plapectra, and the background effects (Price,
1992; Danson and Plummer, 1995), were address#usithesis (Chapter 5) by evaluating the
potential of vegetation indices in discriminatingpgrus and its co-existing species (Filella and
Penuelas, 1994; @it al, 1995; Greeret al, 1997; Haboudanet al, 2002; Stimsoret al, 2005;
Choet al, 2008; Darvishzadeét al, 2008).

We tested the utility of using narrow band vegetatindices to improve the spectral
separability among papyrus and its co-existing igse&nd the classification accuracy. The utility
of widely used vegetation indices particularly, NB\And SRs, involving all possible two-band
combinations of the 20 most important bands asreéted by the RF algorithm were tested. In

addition, we evaluated a number of hyperspectrdices (n = 48) that were previously
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demonstrated to estimate plant parameters. Thefikding presented in this chapter is that
spectral separability among papyrus vegetationitsnmb-existing species may be improved from
90.5 % overall accuracy (Chapter 4) to 96 % oveaatluracy by 5 optimal vegetation indices
(Table 8.4). Three of these indices were published the literature (Plant Senescence
Reflectance Index, Blue/Green Index 1, and Pigniedex 4) while the other two optimal

indices were obtained from the modified NDVIs inialy a combination of a narrow band in the
red portion (655 nm) with two wavelengths in the-sglge position (697 nm, and 705 nm).
Based on relatively high overall accuracy (96 %) use of hyperspectral indices may be

considered as a new approach for discriminatingtgpecies

Table 8.4: Accuracies assessment for the OOB estimates alegp@mdent test data set based on
the top five vegetation indices and the full dagt(s = 68). The assessment includes the kappa
statistic, overall accuracy (ACC), producer accurd@?), and user accuracy (UA).

Top five vegetation indices Full data set (68 vatien indices)
Out-of-bag accuracy Independent accuracy Out-of-bag accuracy Independent accuracy
assessment assessment assessment assessment
ACC Kappa PA UA | ACC Kappa PA UA | ACC Kappa PA UA | ACC Kappa PA UA
Classes % % % % % % % % % % % %

CPvs EP 93.7 087 957 917 944 089 92,6 96.22 920.84 954 89.1 98 096 96.2 100
CPvsTI 99 0.98 100 978 933 086 100 86.2 98.9.980 100 97.6) 89.8 0.80 926 86

CP vs PA 99 0.98 100 97)8 100 1.00 100 00 983 30.89.1 932 943 089 926 96

EP vs PA 100 1.00 100 100 100 1.00 100 00 100 1.a00 100 100 1.00 100 100
EP vs Tl 959 092 978 938 96.6 093 100 929 391.0.83 954 87.2 926 0.85 100 86
PAvs Tl 100 1.00 100 100 100 1.00 100 00 100 1.0000 100| 94.6 0.89 90.3 100
All classes 96 091 9700 89 945 091 936 8§43 88.84 85 82 85.8 0.81 83 83

o B2 0 1\ o

8.4 Airborne hyperspectral remote sensing of papyrsi vegetation

The last aspect in this thesis was to scale umtethod applied as discussed in the previous
Chapters (3, 4, and 5) to an airborne hyperspestrador to discriminate among papyrus and its
co-existing species.

We tested the potential use of AISA eagle datagormninate between papyrus and its co-
existing species (Chapter 6). AISA eagle scene® waequired in February 2009 over a section

of the study area (the Dukuduku forest and Futulatast). The images were collected with 2 m
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spatial resolution, 272 wavebands (393 nm — 994, anjl 2.04 nm to 2.29 nm spectral
resolution. Images were taken at an altitude ofr@pmately 1000 m above ground during
cloudless periods in the daytime. A RF ensemble emagloyed to reduce the redundancy in the
complex hyperspectral AISA data and to classify ypap and its co-existing species. The
optimal vegetation indices selected (Chapter 5)ewaso tested to improve the discriminatory
power of the hyperspectral data. The RF classifinainodel consisted of 8 bands (739 nm, 737
nm, 721 nm, 734 nm, 541 nm, 543 nm, 416 nm, and 589 and showed 80.83 % overall
accuracy and kappa value of 0.74, while the clesgibn model that included the optimal
vegetation indices (Plant Senescence Reflectarsx]mBlue/Green Index 1, and Pigment Index
4, NDVI (655, 705), and NDVI (655, 697)) was aliteimprove the overall accuracy up to
88.98 % and kappa value of 0.85 (Table 8.5, 8.@) affrigure 8.1). The relatively high
classification accuracy of the developed models atestrated the potential of hyperspectral
AISA data for discriminating the difference in tepectra among papyrus and its co-existing

species.

Table 8.5: Testing the discriminatory performance of the dissifier using the selected bands
(n = 8) and the OOB method for estimating the erate. The confusion matrix includes the
overall accuracy, kappa statistic, user accurany, producer accuracy faCyperus papyrus

(CP), Echinochloa pyramidali€EP),Phragmites australi$PA), andThelypteris interruptdTI)

Classes CP EP PA IT Row total

CP 24 2 4 0 30

EP 4 22 4 0 30

PA 2 2 26 0 30

IT 2 3 0 25 30

Column total 32 29 34 25 120

Producer accuracy = 75.86 % Overall accurac$0.83 %
User accuracy = 73.33% Kappa =0.74

Table 8.6: Testing the discriminatory performance of the RE&ssifier using the selected
vegetation indices (n = 5) and OOB method for eatiing the error rate. The confusion matrix
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includes the overall accuracy, kappa statistic maseuracy, and producer accuracy @yperus
papyrus (CP), Echinochloa pyramidaliSEP), Phragmites australis(PA), and Thelypteris
interrupta(TI)

Classes CP EP PA IT Row total

CP 24 2 4 0 30

EP 3 26 0 0 29

PA 2 0 27 0 29

IT 0 2 0 28 30
Column total 29 30 31 28 118
Producer accuracy = 86.67 % Overall accurac$8.98 %
User accuracy = 89.66 % Kappa =0.85

8.5 Predicting papyrus biomass using narrow band \getation indices

In order to better understand papyrus quantityniaiss) interactions with the spatial distribution,
we evaluated the potential of using narrow bancetaggn indices and the RF regression model
in predicting biomass o€yperus papyrus Lmeasured at high canopy density (Chapter 7).
More specifically, the utility of the widely usedDVI involving all the possible two-band

combinations in the red, red-edge, and NIR banés §00 nm to 1000 nm) were investigated.
These indices and spectrum region were selecteglubedhey are the most commonly used in
estimating biomass and crop yield (Thenkabkaidl, 2000; Mutanga and Skidmore, 2004a; Cho
et al, 2007). The discrete 401 narrow bands allowedrapcation of N*N = 160,801 narrow

band NDVIs for biomass prediction. Results of thiglysis are shown ig* for each two-band

combinations in Figure 8.2. All possible two-bamnbinations applied in this study to compute
NDViIs allowed exploring the strength of the largember of hyperspectral bands rather than
focusing on the standard NDVI where only two bafidsr red and NIR are used to compute the
index. On the other hand, the RF ensemble and kaackweature elimination allowed for the
reduction of redundancy of hyperspectral data amglgying the modelling process used in this
study by identifying the optimal number of narroarol NDVIs that offer the best predictive

accuracy. The RF algorithm was also used to devalmpass prediction models.
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Figure 8.2. Contour plot representing the correlation coeéfits (R) of the linear regression
between above ground green biomass and NDVIs aatafnom all possible two band

combinations using bands located from 600 nm td@10q.

Our finding in this study is that four NDVIs invohg the combination of wavelengths located in
the NIR (853 nm, 853 nm, 847 nm, and 776 nm) cdediwith shorter wavelengths of the red-
edge (741 nm, 740 nm, 741 nm, and 749 nm) resgdgtihave the best prediction performance
of papyrus biomass than the standard NDVI (833nch@&B0 nm). Using these selected NDVIs
(n = 4), papyrus biomass can be estimated at hagiogy density (R= 0.73, RMSEP = 276
g/m’; 8.6 % of the mean) (Table 8.7).
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Table 8.7: The performance of the random forest model for iptemh of papyrus biomass in the
Greater St Lucia Wetland Park using different stde€NDVIs

Calibration (n = 33) Independent validat{ars 14)
R? actual vs. | RMSEC | Mean| R*actual vs. | RMSEP | Mean
Predicted g/m2 % predicted g/m %
Standard NDVI(833nm and 680 nim) 0.026 539 16.7 9.01 694 21.5
Best NDVI (741 nm and 853 nm) 0.72 295 912 0.66 06 3 9.5
Selected NDVIs (n = 4) 0.77 266 8.2 0.73 276 6 8.
Top 20 NDVIs 0.69 301 9.3] 0.66 312 9.7

In recent years, the RF has proven to be a poweldskification method in the field of
remote sensing (Gislas@at al, 2006; Lawrencet al, 2006). To the best of our knowledge, only
one study by Ismail and Mutanga (2009) investéidahe use of the RF algorithm in regression
type applications for predicting. noctilio induced water stress iR. patula trees using
hyperspectral data. The important finding in thesgnt studying is that the machine learning RF
algorithm is deemed to be a robust, unbiased meastirerror rate for feature selection.
Therefore, the RF algorithm is worth considering aagobust method for remote sensing

regression type applications in the future.

8.6 Evaluating the reliability and robustness of radom forest algorithms for
hyperspectral remote sensing classification and regssion

Hyperspectral data tend to be relatively more difi to process due to the geometrical and
statistical properties associated with high dimemai data which requires sufficient training
samples (Borgest al, 2007; Hsu, 2007; Tsaget al, 2007). Practically, in most of the
hyperspectral applications, the number of traingagnples is limited compared to the large
number of hyperspectral bands (Hsu, 200h)s is particularly true in papyrus swamps, where
collecting such sufficient training and test samspke difficult due to poor accessibility. Given
these problems, the challenge was to develop astdrdbust methods and techniques for the
effective processing and classification of hypecsaé data.

In this thesis (Chapter 4 to Chapter 7) we testedutility of the RF algorithm as a new
approach for variable selection to reduce redunglanthe complex hyperspectral data set for an

accurate classification and regression model. Gndirfgs, which are consistent with other
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studies, indicate that the new approach outperfootteer common techniques, such as

classification and regression trees in that:

1.

The RF algorithm can rank the importance of bahds best contribute in the classification
and regression model (Lawreneeal, 2006),

The algorithm is faster in training when comparedhte ensemble methods and requires the
user to specify only the number of trees to be grgviree and the number of variables to
split the nodes of individual trees{ry) (Breiman, 2001; Diaz-Uriarte and de Andrés,
2006),

The RF algorithm can also detect outliers, which loa very useful when some of the cases
may be mislabeled (Gislaseh al, 2006);

The effects of bias, variance, and instability vihicsually occur in other ensembles and
single classification and regression trees is mimgoh in the RF algorithm because the
multiple classification trees are constructed baseda random subset of samples derived
from the training data which then vote by pluralitly the correct classification (Breiman,
2001; Lawrencet al, 2006),

The stopping rules and pruning of trees is noessary, and the algorithm has been shown
to be robust to overfitting (Pal, 2005; Granigtibal, 2006; Lawrencet al, 2006), and,

More importantly, with the RF algorithm, it is noecessary to have cross-validation or a
separate accuracy assessment data set, becau®@®Berror rate provides an unbiased
estimate of error (Lawrencet al, 2006; Prinzie and Van den Poel, 2008). Our figdin
indicate that the internal assessment of accuradyearor rates from the RF algorithm was
nearly identical to independent test data setiold cross-validation, and .632+ bootstrap
for variable selection (Figure 8.1; 8.2), classifion (Table 8.4), and regression models
(Table 8.7) .
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Furthermore, an important finding in this study @&pter 5) is that most of the overall and
class accuracies based on the OOB estimates me#edless than 2 % of the estimates of the
independent test datasets (Table 8.4). Therefoie combination of reliable and robust method
for accuracy assessment, which obviates the neecbltect a separate test dataset and of
relatively high accuracies of the RF algorithm, cha considered to be desirable for
hyperspectral remote sensing applications espgdimltomplex environments such as swamp

wetland areas where usually no convenient or seffidield data are available.

8.7 conclusions

The main aim of this study was to investigate tl¢eptial of hyperspectral remote sensing

techniques in discriminating spectral differenceoamCyperus papyrus Land three other co-

existing species and in predicting biomas<gperus papyrus in high density canopies. The
findings reported in this thesis are that the infation contained in hyperspectral data can
accomplish these tasks. These findings contributad research in general and to the feasibility
of applying remote sensing technologies in mapm@ngd monitoring the distribution and the
guantity (biomass) of papyrus swamps.

The main conclusions are based on the followingifigs from the different objectives
addressed in this study:

1. Canopy reflectanceneasured at field level can be used to discririatperus papyrus L.
from P. australis, E. pyramidalisand T. interrupta (binary classification) using six
wavelengths located in the red-edge and near-gdraiegions of the electromagnetic
spectrum. This implies that the mean spectral ctdlece ofCyperus papyrus lis different
from the other species associated with it in theesacosystem (swamp wetlands).

2. Using the field spectrometry data resampled to HYMApectral resolution, the RF
algorithm could also discriminate the spectralatéhce amon@yperus papyrus Land the
other co-existing specie@. australis, E. pyramidalisand T. interrupta) (multi-class
classification). This result permitted the extensiof field measurements to airborne
hyperspectral images for mapping papyrus and itextsting species in swamp wetlands.
The resampled data also showed the importanceeafetihedge and near-infrared regions in

mapping wetland plants species.
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3. We have shown that hyperspectral indices can ingtbe spectral discrimination between
papyrus and its co-existing species. Therefore, ube of narrow band indices can be
considered as a new approach for discriminatindgawetplants

4. The new integrated approach developed in this stualyinvolves the RF, as a data reduction
and classification algorithm, and forward selectimnld discriminate among papyrus and its
co-existing species with an overall accuracy 0080% using airborne hyperspectral data
(AISA eagle).

5. We have shown that at high canopy density, papyrsass could be predicted accurately
using narrow band vegetation indices computed framcombination of the shorter
wavelengths of red or far-red (700 nm-750 nm) amtyér wavelengths of NIR (750 nm -
1000 nm), compared to the standard NDVI involvingirang chlorophyll absorption band in
the red trough and a near-infrared band.

6. The machine learning RF algorithm is worth considgas a desirable technique for feature
selection that can be used to reduce redundantyeiromplex hyperspectral data set and
that can provide powerful classification and regi@s applications especially in complex
environments such as swamp wetland areas wherdlyusoaconvenient or sufficient field

data are available.

8.8 The Future

The results from this study provide an alternatimethod for discriminating and mapping
papyrus and its co-existing species. In the futuigh) the operational launch of South Africa
ZASat-003 satellite that will carry a hyperspecsahsor, the findings of this study will easily
improve the understanding of wetland managers iaeldping an effective management
programme for wetland ecosystems. Our findings etsdribute in building the spectral libraries
for different wetland plant species which will hetpdiscriminating not only between wetland
species, but also between wetland species and digpecies as there has been no specific
research dealing with the difference in spectraposse of canopies of wetland species and
upland species. Furthermore, the availability opdrgpectral sensors will allow mapping of
species quality in wetland ecosystems. This indutie biochemical variables that are important
in monitoring the health of papyrus swamps suchitegen, water content, water stress, and

chlorophyll. This will help to establish a fundami& understanding of the spatial distribution of
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papyrus swamps functions and quality which coultiléo the development of early warning
systems to detect any subtle changes in the swasipnss, such as signs of stress, and could
lead to the development of techniques to classigtlamd area conditions (e.g. healthy or
disturbed) based on their species quality and ¢yant

This study focused mainly on highlighting the opinmspectral resolution for better
discrimination among papyrus and other three cetig species. In order for remote sensing
methods to become operational for mapping papymdsogher species, it is critical to investigate
the optimal spatial resolution and pixel size tbatild better map papyrus and its co-existing
species in highly diverse environments. It is recwmnded that future research focuses on
methods that consider papyrus and its co-existperies at their optimal spatial resolution
(Marceauet al, 1994). This will allow an increase of the infortioa content per pixel
(Atkinson, 1997).

The performance and robustness of the RF ensemblelassification models using
complex hyperspectral data where the number of ksgxceeds the variables (snralargep)
is fully understood (Hanet al, 2005; Pal, 2005; Gislasat al, 2006; Lawrencest al, 2006;
Adam et al, In press). However, to the best of our knowledgé/ two studies (Ismail and
Mutanga, 2009; Adam, In review) examined the us¢éhefRF algorithm in regression models
using hyperspectral data. It is recommended thairdustudies compare the validity and
reliability of the RF ensemble against other treedd ensembles (e.g. bagging and boosting).
Additionally, the RF ensemble should also be testgdinst other methods such as artificial
neural networks which have proved to be successfutemote sensing regression model
(Mutanga and Skidmore, 2004b).
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