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Abstract 

Papyrus (Cyperus papyrus .L) swamp is the most species rich habitat that play vital hydrological, 

ecological, and economic roles in central tropical and western African wetlands. However, the 

existence of papyrus vegetation is endangered due to intensification of agricultural use and 

human encroachment.  Techniques for modelling the distribution of papyrus swamps, quantity 

and quality are therefore critical for the rapid assessment and proactive management of papyrus 

vegetation. In this regard, remote sensing techniques provide rapid, potentially cheap, and 

relatively accurate strategies to accomplish this task. 

This study advocates the development of techniques based on hyperspectral remote sensing 

technology to accurately map and predict biomass of papyrus vegetation in a high mixed species 

environment of St Lucia- South Africa which has been overlooked in scientific research. Our 

approach was to investigate the potential of hyperspectral remote sensing at two levels of 

investigation: field level and airborne platform level. 

First, the study provides an overview of the current use of both multispectral and 

hyperspectral remote sensing techniques in mapping the quantity and the quality of wetland 

vegetation as well as the challenges and the need for further research.    

Second, the study explores whether papyrus can be discriminated from each one of its co-

existence species (binary class).  Our results showed that, at full canopy cover, papyrus 

vegetation can be accurately discriminated from its entire co-existing species using a new 

hierarchical method based on three integrated analysis levels and field spectrometry under 

natural field conditions. These positive results prompted the need to test the use of canopy 

hyperspectral data resampled to HYMAP resolution and two machine learning algorithms in 

identifying key spectral bands that allowed for better discrimination among papyrus and other 

co-existing species (n = 3) (multi-class classification). Results showed that the random forest 

algorithm (RF) simplified the process by identifying the minimum number of spectral bands that 

provided the best overall accuracies. Narrow band NDVI and SR-based vegetation indices 

calculated from hyperspectral data as well as some vegetation indices published in literature 

were investigated to test their potential in improving the classification accuracy of wetland plant 

species. The study also evaluated the robustness and reliability of RF as a variables selection 
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method and as a classification algorithm in identifying key spectral bands that allowed for the 

successful classification of wetland species.  

Third, the focus was to upscale the results of field spectroscopy analysis to airborne 

hyperspectral sensor (AISA eagle) to discriminate papyrus and it co-existing species. The results 

indicated that specific wavelengths located in the visible, red-edge, and near-infrared region of 

the electromagnetic spectrum have the highest potential of discriminating papyrus from the other 

species.  

 Finally, the study explored the ability of narrow NDVI-based vegetation indices calculated 

from hyperspectral data in predicting the green above ground biomass of papyrus. The results 

demonstrated that papyrus biomass can be modelled with relatively low error of estimates using 

a non-linear RF regression algorithm. This provided a basis for the algorithm to be used in 

mapping wetland biomass in highly complex environments.  

 Overall, the study has demonstrated the potential of remote sensing techniques in 

discriminating papyrus swamps and its co-existing species as well as in predicting biomass. 

Compared to previous studies, the RF model applied in this study has proved to be a robust, 

accurate, and simple new method for variables selection, classification, and modelling of 

hyperspectral data.  The results are important for establishing a baseline of the species 

distributions in South African swamp wetlands for future monitoring and control efforts. 
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1.1 Papyrus swamps (Cyperus papyrus .L) in African wetlands  

Cyperus papyrus .L, commonly called papyrus, belongs to the family Cyperaceae and is one of 

the most important wetland species that play vital hydrological, ecological, and economic roles 

in central tropical and western African wetlands.   Specifically, papyrus is confined to a belt 

across equatorial central Africa within the 17⁰ N and 29⁰S latitudes (Jones and Muthuri, 1985). 

In South Africa, papyrus co-occurs with some reeds and sedges (e.g. Phragmites australis, 

Echinocloa pyramidalis, P. mauritianus, C. dives, and Typha capensis) in open and regularly 

flooded areas of the Greater St Lucia Wetland Park, KwaZulu-Natal (Dahlberg, 2005; Adam and 

Mutanga, 2009).  

Papyrus swamps are capable of a high standing biomass, accumulating large quantities of 

nutrients (Gaudet, 1980; Jones and Muthuri, 1985; Kansiime et al., 2005; Boar, 2006), and they 

are biologically diverse (Denny, 1997), with important landscape functions (Junk, 2003). Several 

studies in tropical African wetlands have shown the importance of papyrus in hosting habitats for 

wildlife and bird species  (Harper, 1992; Owino and Ryan, 2007) and offering high nutritive 

grazing for livestock, especially in the dry season (Muthuri and Kinyamario, 1989). Papyrus also 

has a high capacity to intercept or transform materials moving from catchments to open waters 

and therefore improving the water quality and soil stabilization (Denny, 1997; Azza et al., 2000). 

Despite its relative importance, the existence of papyrus vegetation is endangered due to 

intensification of agriculture and human encroachment in many parts of Africa (Maclean et al., 

2006; Owino and Ryan, 2007). In order to understand the spatial distribution of papyrus swamps 

and to monitor their functions in the landscape, there is a critical need to develop real-time 

techniques for modelling the spatial distribution and predicting its biomass for the rapid 

assessment and proactive management of the papyrus swamps. In this regard, the advent of 

remote sensing, particularly hyperspectral remote sensing, has offered a unique technique to 

accomplish this task because of its capability to provide rapid, accurate, relatively inexpensive, 

and near real-time data over large areas (Ozesmi and Bauer, 2002; Schmidt and Skidmore, 2003; 

Lu, 2006). Consequently, the challenge would be to assess and monitor both the distribution and 

quantity (biomass) of papyrus species using remote sensing techniques in order to provide the 

appropriate level of detail and accuracy for detection and mapping purposes. This facilitates a 

better understanding of the species-quantity interaction in a spatial context. 
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1.2 Hyperspectral remote sensing  

The prefix, hyper, is derived from Greek, huper, meaning above, excessive, or an exaggerated 

amount. The prefix combined with the word “spectral”, whose meaning relates to colours, form 

the word “hyperspectral” (Borengasser et al., 2007). In remote sensing, the term ‘hyperspectral’ 

is synonymous with some other terms such as ‘spectrometery’, ‘spectroscopy’, 

‘spectroradiometry’, and ‘ultraspectral imaging’ (Clark, 1999). Spectrometry or 

spectroradiometry was originally developed from spectro-photometry; ‘spectrometry’ is a term 

used in astronomy and is concerned with the measurement of photons as a function of 

wavelength (Kumar et al., 2001). Spectroscopy is the branch of physics concerned with the 

interactions between electromagnetic radiation and matter (Kumar et al., 2001). Spectroscopy is 

the study of light as a function of wavelength that has been absorbed, reflected, or scattered from 

the materials. The material properties that specify the response of the material at every 

wavelength are called spectral properties (Suits, 1983). A spectrometer is an optical instrument 

used for measuring the spectra emanating from natural surfaces in one or more fixed 

wavelengths in a laboratory, field, aircraft, or satellite (Kumar et al., 2001).  In the 1970s, a 

group of scientists (Knipling, 1970; Hunt, 1977; Swain and Davis, 1978) were able to develop an 

understanding of spectral properties of rocks, minerals, and vegetation in terms of the underlying 

quantum mechanical process in relation to the chemistry of the reflecting object. It was 

concluded that surface properties can possibly be distinguished by measuring the amount of light 

that reflects from a surface. When an image is constructed from imaging spectrometer data that 

measure spectra from contiguous image pixels, the terms used are ‘imaging spectroscopy’, 

’imaging spectrometry‘, or  ‘hyperspectral imaging’(Clark, 1999). 

Hyperspectral imaging is a new technique that  has hundreds of narrow continuous spectral 

bands between 400 nm and 2500 nm, throughout the visible (0.4 nm to 0.7 nm), near-infrared 

(0.7 nm to 1 nm), and short wave infrared (1nm to 2.5 nm) portions of the electromagnetic 

spectrum (Vaiphasa et al., 2005; Govender et al., 2009). These contiguous bands and narrow 

ranges allow for obtaining a spectrum in each position of the large array of the spatial positions 

so that each single spectral wavelength can be used to make a recognizable image (Figure 1.1) 

(Clark, 1999; Mutanga, 2004).   This greater spectral dimensionality of hyperspectral remote 

sensing allows for in-depth examination and discrimination of vegetation types that would be 

lost using other broad band multispectral scanners (Cochrane, 2000; Mutanga et al., 2003; 
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Schmidt and Skidmore, 2003; Govender et al., 2009). Therefore, it is hypothesised that 

hyperspectral sensors could help to overcome limitations of spatial and spectral methods when 

using the broader bands of multispectral scanner systems, such as the mixed pixel problem in 

mapping vegetation species and the saturation problem in estimating biomass in more dense and 

high canopy vegetated areas. In this study, two different hyperspectral sensors were used. 

Measurements were made at field level using the Analytical Spectral Devices (ASD) 

FieldSpec®3 spectrometer with 2151 spectral bands from 350 nm to 2500 nm and at the airborne 

platform level using the AISA Eagle sensor with 231 spectral bands from 393 nm to 900 nm.  

 

 

Figure 1.1. A narrow band IRIS (Infrared Intelligent Spectroradiometer) spectrum for fresh 

green vegetation compared with the discrete wavebands of multispectral LANDSAT TM (Kumar 

et al., 2001). 

1.3 Challenges and opportunities: remote sensing of papyrus vegetation  

 1.3.1 Discriminating papyrus vegetation using hyperspectral data 

Papyrus swamps have increasingly been recognized as being the most habitat rich areas that play 

ecological, hydrological, and economic roles in tropical wetlands in Africa. To sustain these vital 
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functions of papyrus swamps, a comprehensive understanding of species composition and 

distribution is therefore critical for their rapid assessment and proactive management (Nagendra, 

2001; Schmidt and Skidmore, 2003). Traditionally, species discrimination for floristic mapping 

requires intensive fieldwork, including taxonomical information, collateral and ancillary data 

analysis, and the visual estimation of percentage cover for each species. This method is labour-

intensive, time-consuming, expensive, and sometimes inapplicable due to the poor accessibility 

of papyrus swamps and is thus, practical only in relatively small areas. In this context, remote 

sensing techniques provide rapid, potentially cheap, and relatively accurate strategies for 

monitoring species composition and distribution.  

 However, wetland plant species, such as papyrus, are not as easily detectable as terrestrial 

plant species. This is for two reasons. First, herbaceous wetland vegetation generally exhibits 

high spectral and spatial variability because of the steep environmental gradients that produce 

short ecotones and sharp demarcations between the vegetation units (Schmidt and Skidmore, 

2003; Adam and Mutanga, 2009; Zomer et al., 2009). Hence, it is often difficult to identify the 

boundaries between vegetation community types. Second, the reflectance spectra of wetland 

vegetation canopies are often very similar and are combined with the reflectance spectra of the 

underlying soil, hydrologic regime, and atmospheric vapour (Guyot, 1990; Malthus and George, 

1997; Yuan and Zhang, 2006). This combination usually complicates optical classification and 

results in a decrease in the spectral reflectance, especially in the near-to mid-infrared regions 

where water absorption is relatively stronger (Fyfe, 2003; Silva et al., 2008).Therefore, the broad 

band satellites such as Landsat TM and SPOT, with respect to the sharp ecological gradient with 

narrow vegetation units in wetland ecosystems, have proven insufficient for discriminating 

vegetation species in detailed wetland environments (May et al., 1997; Harvey and Hill, 2001; 

McCarthy et al., 2005).  

A significant step forward for remote sensing was made with the development of imaging 

spectrometry and/or hyperspectral sensors. This development in imaging spectrometry allowed 

for significant improvement in the accurate detection of small wetland vegetation unit at species 

level (Daughtry and Walthall, 1998; Schmidt and Skidmore, 2003; Vaiphasa et al., 2005).  

However, even with the spectral and spatial capabilities of hyperspectral imaging to discriminate 

between species, studies have shown that the reflectances of vegetation species are highly 

correlated because of their similar biochemical and biophysical properties (Portigal et al., 1997). 
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Furthermore, these properties are directly influenced by environmental factors and, therefore, the 

possibility of a unique spectral signature of a plant species has become questionable (Price, 

1994). In addition, spectral variations can also occur within a species because of age differences, 

micro-climate, soil and water background, precipitation, topography, and stresses (Carter, 1994; 

Portigal et al., 1997; Garcia and Ustin, 2001; Smith et al., 2004). 

On the other hand, the high spectral resolution of hyperspectral data comes with the 

complexity of the high data dimensionality (Bajwa et al., 2004).This redundant data might be 

problematic in terms of image processing algorithms, an excessive demand for sufficient field 

samples, high cost, and overfitting when using multivariate statistical techniques (Bajcsy and 

Groves, 2004; Borges et al., 2007; Mutanga and Kumar, 2007; Vaiphasa et al., 2007). Therefore, 

it is imperative to identify the optimal bands required for discriminating and mapping wetland 

species without losing any important information (Bajcsy and Groves, 2004; Vaiphasa et al., 

2007). Various univariate and multivariate band reduction techniques have been developed, such 

as RF, partial least square regressions, classification trees, discriminant analysis, principal 

component analysis, and artificial neural network. It is, therefore, important to understand the 

advantages and disadvantages of band reduction techniques and select accordingly. In this 

context, the challenge would be to explore and test robust methods and techniques for the 

effective processing and classification of hyperspectral data for better and more accurate 

detecting and mapping of papyrus swamps. Furthermore, these methods and techniques need to 

be automated to some degree with limited human intervention to allow for critical evaluation 

(Soh and Tsatsoulis, 1999). 

1.3.2 Assessment of papyrus quantity using hyperspectral data 

Papyrus vegetation is increasingly being recognized for its accumulated large quantities of 

nutrients (Gaudet, 1980) and high standing biomass productivity (Muthuri and Kinyamario, 

1989; Jones and Muthuri, 1997; Kansiime et al., 2005). The value of papyrus swamp in tropical 

wetlands often depends on the status of its productivity. Efficient techniques that can spatially 

and temporally monitor the stability of papyrus productivity and whether significant changes are 

taking place in papyrus swamp are, therefore, required. Measuring the biophysical parameters of 

papyrus vegetation, such as biomass, is important for quantifying the primary production or 

carbon cycle of the swamp ecosystem (Jones and Muthuri, 1997; Kansiime et al., 2005). Direct 
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field methods for estimating biomass require frequent destructive harvesting (Lu, 2006). Such 

traditional methods are expensive, time-consuming, labour-intensive, and difficult to implement, 

especially in such large and inaccessible areas (Lu, 2006). Remote sensing, particularly 

spectroscopy, offers advanced and effective techniques that can provide the needed protocols for 

monitoring papyrus biomass. 

Based on broad band satellite images, vegetation indices such as Normalized Difference 

Vegetation Index (NDVI) and Simple Ratio (RS) have been the most successful in quantifying 

and monitoring wetland productivity over large areas at open canopy scale (Moreau et al., 2003; 

Rendonga and Jiyuanb, 2004; Proisy et al., 2007).  

In spite of these successes, vegetation indices calculated from broad band sensors can be 

unstable, owing to the underlying soil colour, canopy and leaf properties, and atmospheric 

conditions (Huete and Jackson, 1988; Todd et al., 1998). Furthermore, NDVI derived from broad 

band satellite images such as NOAA or Landsat TM asymptotically saturate after a certain 

biomass density, and measurement accuracy drops considerably (Tucker, 1977; Gao et al., 2000; 

Thenkabail et al., 2000). Figure 1.2 shows a hypothetical illustration of this biomass-NDVI 

relationship. 

More recently, the appearance of hyperspectral sensors has opened new perspectives for 

developing vegetation indices (VIs) using the provided additional narrow bands within the 

visible, NIR, and short wave infrared (SWIR) with less than 10 nm bandwidths from visible to 

SWIR (350 nm – 2500 nm) rather than focusing on the red and NIR broad band (Hansen and 

Schjoerring, 2003; Mutanga and Skidmore, 2004a; Cho et al., 2007; Fava et al., 2009). The use 

of NDVI calculated from narrow bands has been found to be one possibility for overcoming or 

reducing the data saturation problem (Mutanga and Skidmore, 2004a). This capability of VIs 

calculated from narrow bands needs to be tested or improved for better estimation of papyrus 

biomass in more densely vegetated and wetland areas. In this thesis, it is hypothesised that 

hyperspectral remote sensing, with its capability to resolve detailed spectral features, can 

estimate papyrus biomass accurately. 
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Figure 1.2. Relationship between NDVI and biomass. The saturation level is usually reached at 
about 0.3 g cm –2 (Mutanga, 2004). 

 1.4 Research objectives 

The main aim of this study was to investigate the potential of hyperspectral remote sensing to 

discriminate papyrus vegetation from its co-existing species and to estimate biomass of papyrus 

at high canopy density or full canopy level in the Greater St Lucia Wetland Park, South Africa. 

The specific objectives in this study are as follows: 

1. To explore the usefulness of in situ spectroscopic data in discriminating papyrus 

vegetation from its co-existing species (binary class techniques),  

2. To investigate the usefulness of in situ spectroscopic data in discriminating among 

papyrus vegetation and its co-existing species (multi-class techniques), 

3. To determine if machine learning algorithms (RF) can accurately discriminate among 

papyrus and other co-existing species using resampled HYMAP data, 

4. To examine whether vegetation indices derived from spectroscopy data can be used to 

enhance the separability and classification accuracy between vegetation species, 
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5. To test the reliability and robustness of the internal accuracy assessment of the RF as a 

variable selection and classification algorithm in discriminating between the species,  

6. To investigate the potential of imaging spectroscopy in discriminating among papyrus 

and its co-existing species using airborne hyperspectral data (AISA eagle), and 

7. To explore the potential of hyperspectral data in estimating biomass of papyrus at high 

canopy density or full canopy levels. 

1.5 Scope of the study 

In this study, the potential use of hyperspectral remote sensing techniques to discriminate and 

estimate biomass of papyrus swamps in the Greater St Lucia Wetland, South Africa was 

investigated. Two classification methods were investigated to discriminate papyrus from its co-

existing species: binary class which focused on discriminating papyrus from each of its co-

existing species and multi-class for discriminating among papyrus and its co-existing species. 

The use of hyperspectral remote sensing techniques in estimating papyrus biomass was 

subsequently evaluated. 

Two hyperspectral levels were investigated:  at field level using a hand-held spectrometer 

data and at airborne platform level using AISA eagle data. In a follow-up study, the usefulness of 

hyperspectral data was also evaluated for estimating papyrus biomass at full canopy level. In this 

context, relatively more emphasis was placed on the prediction of papyrus biomass because it is 

considered as the most limiting factor for the ecological, hydrological, and economic roles of 

papyrus in a wetland ecosystem (Muthuri and Kinyamario, 1989; Jones and Muthuri, 1997; 

Kansiime et al., 2005). The Greater St Lucia Wetland Park (GLWP) in South Africa was used as 

a test site both for field and airborne spectrometry.     

1.6 The study area 

The Greater St Lucia Wetland Park is a protected area located on the eastern coast of KwaZulu-

Natal Province, about 245 kilometres north of Durban, South Africa. The park stretches from the 

southern Mozambiqucan coastal plain to KwaZulu-Natal, covering about 328 000 hectares 

between longitudes 32
o
21' E and 32

o
34' E and latitudes 27

o
34'  S and 28

o
 24' S (Figure 1.3). 

Therefore, the GSWP is considered to be the largest estuarine system in Africa (Taylor, 1995). 
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The climate is sub-tropical with the mean annual rainfall varying from 1500 mm on the eastern 

shore to 700 mm on the western shore of the lake (Taylor, 1995). The GSWP is characterized by 

a high diversity of ecosystems including marine, inland lake, estuarine, forested dune, mangrove, 

and coastal and swamp forest. The area is permanently either wet or flooded with freshwater 

throughout the year and is recognized as a UNESCO World Heritage Site and a Ramsar wetland 

of global significance. The park supports extraordinary ecological and biological diversity due to 

its location that is between tropical and sub-tropical biota. 

Different wetland vegetation species cover the park including those in salt marshes (e.g. 

Juncus krausii, Salicornia spp., and Ruppia maritima); Saline reed swamps (Phragmites 

mauritianus); Sedge Swamp (Eleocharis limosa), and Echinochloa floodplain grassland 

(Echinochloa pyramidalis, Eriochloa spp., and Cyperus spp.), but the most dominant species are 

found in the freshwater swamps and are reed and papyrus (Phragmites australis and Cyperus 

papyrus) as well as  Echinochloa pyramidalis and Thelypteris interrupta. In this study, four 

study sites were focused on including Futululu forest, the Dukuduku Indigenous Forest, Mfabeni 

swamps and Mkuzi swamps (Figure 1.3). At these sites, papyrus (Cyperus papyrus) occurs in 

large areas between forested dunes and plantation forest on organic and alluvial soil with mainly 

three other species including Phragmites australis, Echinochloa pyramidalis, and Thelypteris 

interrupta (Adam and Mutanga, 2009).  
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Figure 1.3. Location of the study area in KwaZulu-Natal Province of South Africa. 
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1.7 Thesis outline  

To achieve the main objectives of this study, the thesis is organized as a collection of 6 research 

papers that have been submitted to peer reviewed international journals. Of these 6 papers, 3 

papers have already been published and 2 papers are still in review and the remaining in 

preparation. Each paper has been written as a stand-alone article that can be read separately from 

the rest of the thesis but that draws separate conclusions that link to the overall research 

objectives and questions. As a result, a number of overlaps and replications occur in the sections 

“Introduction” and “Method” in the different chapters. This problem is deemed to be of little 

significance when one considers the critical peer review process and the fact that the different 

chapters are papers that can be read separately without losing the overall context. The thesis 

consists of 8 chapters: 

Chapter 2 contains a detailed literature review of the relevant application of multispectral 

and hyperspectral remote sensing in discriminating and estimating some of the biophysical and 

biochemical parameters of wetland vegetation. Specific relevance to the objectives of this study 

is highlighted in Section 2.6 (spectral discrimination of wetland species using hyperspectral data) 

and Section 2.7 (estimating biophysical and biochemical parameters of wetland species). The 

research gaps and challenges in the application of hyperspectral remote sensing in wetland 

species are introduced.  

Chapter 3 contains an investigation into the ability of hyperspectral data to discriminate 

between papyrus vegetation and its co-existing species. The study determines if there is a 

significant difference in the mean of reflectance between the pairs of papyrus and each one of the 

co-existing species (binary class) at each measured wavelength from 350 nm to 2500nm. For the 

wavelengths that are significantly different (p < 0.001), it was tested whether some wavelengths 

have more discriminating power than others and which band combinations can yield the lowest 

misclassification rate.  

Chapter 4 contains the findings of an investigation into the potential use of machine 

learning algorithms (RF) and resampled HYMAP data to accurately discriminate between 

papyrus and its co-existing species at canopy level. In this chapter, the work presented in Chapter 

3 is extended from binary class classification to multi-class classification to assess the use of 

spectroscopic data in discriminating between papyrus and its co-existing species at canopy level 

under natural field conditions using RF algorithms and variables selection methods. 
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Chapter 5 investigates the potential of several vegetation indices derived from 

hyperspectral data to better improve the discriminating accuracy between papyrus and other 

species using RF ensembles. Specifically, the study examined the ability of widely used indices 

(NDVI and SR)  calculated from hyperspectral bands to identify the most important portions of 

the electromagnetic spectrum that could yield high accuracy in discriminating between papyrus 

and its co-existing species at canopy level. Some vegetation indices published in the literature 

were also investigated and new indices were proposed. 

Chapter 6 is based on the observations and conclusions drawn from Chapter 3 to Chapter 5 

to develop the best approach for discriminating between papyrus and its co-existing species 

using airborne hyperspectral imagery (AISA eagle). 

Chapter 7 evaluates the utility of the widely used indices (NDVI and SR) derived from 

hyperspectral bands to identify the most sensitive regions of the electromagnetic spectrum that 

could be used to estimate papyrus biomass at high canopy density. The RF regression algorithm 

was implemented to test whether narrow band vegetation indices could predict papyrus biomass 

under field conditions. 

Finally, a synthesis of the study is provided in Chapter 8. The findings are summarized and 

conclusions are derived from the preceding chapters. Some relevant recommendations for future 

research on the applications of remote sensing in wetland vegetation mapping are outlined. A 

special focus is directed towards the operational use of remote sensing techniques in mapping 

and monitoring of papyrus swamps. 

A single reference list is provided at the end of the thesis. 
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Abstract  

  Wetland vegetation plays a key role in the ecological functions of wetland environments. 

Remote sensing techniques offer timely, up-to-date, and relatively accurate information for 

sustainable and effective management of wetland vegetation. This article provides an overview 

on the status of remote sensing applications in discriminating and mapping wetland vegetation, 

and estimating some of the biochemical and biophysical parameters of wetland vegetation. 

Research needs for successful applications of remote sensing in wetland vegetation mapping and 

the major challenges are also discussed. The review focuses on providing fundamental 

information relating to the spectral characteristics of wetland vegetation, discriminating wetland 

vegetation using broad and narrow bands, as well as estimating water content, biomass, and leaf 

area index. It can be concluded that the remote sensing of wetland vegetation has some particular 

challenges that require careful consideration in order to obtain successful results. These include 

an in-depth understanding of the factors affecting the interaction between electromagnetic 

radiation and wetland vegetation in a particular environment, selecting appropriate spatial and 

spectral resolution as well as suitable processing techniques for extracting spectral information of 

wetland vegetation 

Keywords:  Biomass. Leaf area index. Mapping. Remote sensing. Water content. Wetland 

vegetation. 
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2.1 Introduction  

Wetland vegetation is an important component of wetland ecosystems that plays a vital role in 

environmental function (Kokaly and Clark, 1999a; Yuan and Zhang, 2006). It is also an excellent 

indicator for early signs of any physical or chemical degradation in wetland environments 

(Dennison et al., 1993). 

Mapping and monitoring vegetation species distribution, quality, and quantity are 

important technical tasks in sustainable management of wetlands. This task involves a wide 

range of functions including natural resource inventory and assessment, fire control, wildlife 

feeding, habitat characterization, and water quality monitoring at a given time or over a 

continuous period (Carpenter et al., 1999).  Moreover, it is essential to have up-to-date spatial 

information about the magnitude and the quality of vegetation cover in order to initiate 

vegetation protection and restoration programmes (He et al., 2005). 

Traditionally, species discrimination for floristic mapping requires intensive fieldwork, 

including taxonomical information, collateral and ancillary data analysis, and the visual 

estimation of percentage cover for each species; this is labour-intensive, costly, and time-

consuming and sometimes inapplicable due to the poor accessibility, and is thus, only practical 

on relatively small areas (Hardisky et al., 1986; Lee and Lunetta, 1995; Klemas, 2001). Remote 

sensing, on the other hand, offers a practical and economical means to discriminate and estimate 

the biochemical and biophysical parameters of the wetland species, and it can make field 

sampling more focused and efficient. Its repeat coverage offers archive data for detection of 

change over time, and its digital data can be easily integrated into Geographic Information 

System (GIS) for more analysis (Shaikh et al., 2001; Ozesmi and Bauer, 2002). For this 

advantage, many researchers have used both multispectral data such as Landsat TM and SPOT 

imagery to identify general vegetation classes or to attempt to discriminate broad vegetation 

communities (May et al., 1997; Harvey and Hill, 2001; Li et al., 2005) as well as classify and  

map wetland vegetation at the species level using hyperspectral data (Schmidt and Skidmore, 

2003; Rosso et al., 2005; Vaiphasa et al., 2005; Belluco et al., 2006; Pengra et al., 2007). 

Moreover, the use of remote sensing techniques has been extended into measuring the 

biophysical and biochemical properties such as leaf area index (LAI), biomass, and water content 

of wetland vegetation (Penuelas et al., 1993a; Rendonga and Jiyuanb, 2004; Proisy et al., 2007). 
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The rapid growth in the number of studies that have investigated the use of remote sensing 

in studying wetland species makes it necessary to provide an overview of the techniques that 

have been used and to identify those aspects that still need further investigation. This would be 

useful practically in wetland management and scientifically through highlighting the priorities 

and challenges for further research. 

Previous reviews on remote sensing of wetlands included those by Silva et al. (2008) who 

discussed the theoretical background and applications of remote sensing techniques in aquatic 

plants in wetland and coastal ecosystems. Ozesmi and Bauer (2002) reviewed the classification 

techniques used to map and delineate different wetland types using different remotely sensed 

data. Lee and Lunetta (1995) reviewed the use and the cost of airborne and satellite sensors in the 

inventory of and change detection in wetlands. The review by Klemas (2001) addressed the 

current use of remote sensing and its opportunities pertinent in monitoring the environmental 

indicators in coastal ecosystems. Hardisky et al. (1986) reviewed different remotely sensed data 

for coastal wetlands and estimating biomass.  

The limitation of the above-mentioned reviews is that no specific aspect of the application 

of remote sensing has been addressed individually and most of the reviews have been focused on 

the use of remote sensing in mapping and identification of wetland types at a broad level. There 

has been no specific review on the use of both hyperspectral and multispectral remote sensing in 

discriminating wetland vegetation as well as estimating its biophysical and biochemical 

properties which is essential in wetland management. Hence, this review focuses specifically on 

the application of remote sensing in discriminating and estimating the biophysical and 

biochemical properties of wetland vegetation.  

The specific objectives of this study were to review the status of application of both 

multispectral and hyperspectral remotely sensed data in wetland vegetation with special focus 

on: 1. discriminating and mapping wetland vegetation, 2. estimating some of the biophysical and 

biochemical properties of wetland vegetation, and 3. highlighting the major challenges and 

further research needed for a successful application of remote sensing in wetland vegetation.  

2.2 Challenges in mapping wetland vegetation   

Wetland plants and their properties are not as easily detectable as terrestrial plants, which occur 

in large stratification. This is for two reasons. First, herbaceous wetland vegetation exhibits high 
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spectral and spatial variability because of the steep environmental gradients which produce short 

ecotones and sharp demarcation between the vegetation units (Schmidt and Skidmore, 2003; 

Adam and Mutanga, 2009; Zomer et al., 2009). Hence, is often difficult to identify the 

boundaries between vegetation community types. Second, the reflectance spectra of wetland 

vegetation canopies are often very similar and are combined with reflectance spectra of the 

underlying soil , hydrologic regime, and atmospheric vapour  (Guyot, 1990; Malthus and 

George, 1997; Yuan and Zhang, 2006). This combination usually complicates the optical 

classification and results in a decrease in the spectral reflectance, especially in the near-to mid-

infrared regions where water absorption is stronger (Figure 2.1) (Fyfe, 2003; Silva et al., 

2008).Therefore, the current efforts which have been successful at mapping terrestrial vegetation 

using optical remote sensing, may not be able, either spatially or spectrally, to effectively 

distinguish the flooded wetland vegetation  because the performance of near- to mid-infrared 

bands  are attenuated by the occurrences of underlying water and wet soil (Schmidt and 

Skidmore, 2003; Hestir et al., 2008). However, hyperspectral narrow spectral channels offer the 

potential to detect and map the spatial heterogeneity of wetland vegetation (Schmidt and 

Skidmore, 2003; Vaiphasa et al., 2007; Hestir et al., 2008). 

 

Figure 2.1. Mean canopy reflectance spectra of Cyperus papyrus L. in swamp wetland with the 

dominating factor influencing each interval of the curve. Most of the short wave infrared 

wavelengths (water content wavelength) are affected by atmospheric noise. 
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2.3 Factors affecting spectral characteristics of wetland vegetation 

When solar radiation interacts with leaves, it may be reflected, absorbed, and/or transmitted. All 

vegetation species contain the same basic components that contribute to its spectral reflectance, 

including chlorophyll and other light-absorbing pigments, water, proteins, starches, waxes, and 

structural biochemical molecules, such as lignin and cellulose (Price, 1992; Kokaly and Clark, 

1999b). Hence, the spectral separability of vegetation species is challenging due to those limiting 

factors affecting the spectral response of vegetation species (Price, 1992; Rosso et al., 2005). In 

general, the spectral differences among vegetation species are normally derived from leaf optical 

properties related to the biochemical and biophysical status of the plants. Leaf optical properties 

depend on leaf surface and internal structure, leaf thickness, water content, biochemical 

composition, and pigment concentration (Kumar et al., 2001; Rosso et al., 2005). The spectral 

reflectance of wetland vegetation is normally subdivided into four domains. While vegetation 

types generally have a high reflectance and transmittance in the near-infrared region and strong 

water absorption in the mid-infrared region (Figure 2.1), the spectral reflectance of wetland 

vegetation is normally divided into four domains as shown in Table 2.1. 

Table 2.1: The spectral reflectance of green vegetation on the four regions of electromagnetic 

spectrum defined by Kumar et al. (2001)   

Wavelengths 
region (nm) 

description Spectral reflectance of vegetation References  

400-700 Visible Low reflectance and transmittance due to 
chlorophyll and carotene absorption 

(Kumar et al., 2001; 
Rosso et al., 2005) 

680-750 Red-edge The reflectance is strongly correlated 
with plant biochemical and biophysical 
parameters. 

(Clevers, 1999; 
Mutanga and 
Skidmore, 2007) 

700-1300 Near-infrared High reflectance and transmittance, very 
low absorption.  The physical control is 
internal leaf structures. 

(Kumar et al., 2001; 
Rosso et al., 2005) 

1300-2500 Mid-infrared Lower reflectance than other spectrum 
regions due to strong water absorption 
and minor absorption of biochemical 
content. 

(Kumar et al., 2001) 
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The most important factors affecting the spectral reflectance among wetland vegetation are 

the biochemical and biophysical parameters of the plants’ leaves and canopy such as chlorophyll 

a and b, carotene, and xanthophylls (Guyot, 1990; Kumar et al., 2001). Wetland species appear 

to vary greatly in chlorophyll and biomass reflectance as a function of plant species and 

hydrologic regime (Anderson, 1995). Spectral behaviour of wetland vegetation is also influenced 

by leaf water content which determines the absorption of the mid-infrared region (Datt, 1999). 

Red reflectance increases with leaf water stress through an association with a reduction in 

chlorophyll concentration (Filella and Penuelas, 1994).The relationship between the increase of 

near-infrared leaf reflectance and decrease of leaf water content has also been reported 

(Aldakheel and Danson, 1997). For example, Yuan and Zhang (2006) compared the laboratory 

and field spectral characteristics of the submerged plant (Vallisneria spiralis) in the constructed 

wetland at Shanghai in China. They found that the spectral reflectance measured by the ground-

based spectroradiometer sensor was a combination of plant spectra, segmental water, and fundus 

spectrum.  

Leaf area index is also a key variable in the canopy reflectance of the wetland vegetation. 

The canopies with a high LAI reflect more than the canopies with medium or low LAI. However, 

higher LAI canopies allow only little light radiation to reach to the mature leaves under 

vegetation canopies and the soil background (Abdel-Rahman and Ahmed, 2008; Darvishzadeh et 

al., 2008). Studies show that the spectral signature of tropical wetland canopies is also affected 

by the different seasons, plant architecture, and illumination angle (Cochrane, 2000; Artigas and 

Yang, 2005; Darvishzadeh et al., 2008). 

 2.4 Mapping wetland vegetation using multispectral data  

Historically, aerial photography was the first remote sensing method to be employed for mapping 

wetland vegetation (Seher and Tueller, 1973; Shima et al., 1976; Howland, 1980; Lehmann and 

Lachavanne, 1997). These studies concluded that aerial photography is most useful for detailed 

wetland mapping because of its minimum mapping unit (MMU). However, aerial photography is 

not feasible for mapping and monitoring wetland vegetation on a regional scale or for monitoring 

that requires continual validation of information because it is costly and time-consuming to 

process.   
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Currently, a variety of remotely sensed images are available for mapping wetland 

vegetation at different levels by a range of airborne and spaceborne sensors from multispectral 

sensors to hyperspectral sensors which operate within the different optical spectra, with different 

spatial resolutions ranging from sub-metre to kilometres and with different temporal frequencies 

ranging from 30 minutes to weeks or months. Among them, aerial photography, Landsat TM, 

and SPOT images were commonly investigated in mapping vegetation types in wetlands. The 

common image analysis techniques used in mapping wetland vegetation include digital image 

classification (i.e. unsupervised and supervised classification) (May et al., 1997; Harvey and 

Hill, 2001; McCarthy et al., 2005) and vegetation index clustering (Nagler et al., 2001; Yang, 

2007). May et al. (1997) compared Landsat TM and SPOT multispectral data in mapping shrub 

and meadow vegetation in northern California. They concluded that Landsat TM data were more 

effective than SPOT data in separating shrubs from meadows. However, neither Landsat TM nor 

SPOT data were effective in distinguishing meadow sub-types. McCarthy et al. (2005) in 

Botswana found that the high spatial and temporal variation in vegetation in the Okavango Delta 

makes ecoregion classification from Landsat TM data unsatisfactory for achieving land cover 

classification. In Australian wetlands, Landsat TM has proven to be a potential source of 

defining vegetation density, vigour, and moisture status, but not efficient in defining the species 

composition (Johnston and Barson, 1993). Harvey and Hill (2001) in the Northern Territory, 

Australia, compared aerial photographs, SPOT XS, and Landsat TM image data to determine the 

accuracy and applicability of each data source for the spectral discrimination of vegetation types. 

Their results demonstrated that aerial photography was clearly superior to SPOT XS and Landsat 

TM imagery for detailed mapping of vegetation communities in the tropical wetland. They also 

found that the sensitivity of Landsat band 2 (green), band 3 (red), band 4 (near-infrared, NIR), 

and band 5 (mid-infrared, MIR) provided a more accurate classification than SPOT. Ringrose et 

al. (2003) used NOAA-AVHRR and SPOT to map the ecological conditions at the Okavango 

delta in Botswana.  They concluded that it was difficult to discriminate grassed floodplain from 

wooded peripheral drylands. Sawaya et al. (2003) at Minnesota in USA were able to map the 

vegetation groups at a local scale using IKONOS imagery with a high level of classification 

accuracy (80%). 

Imagery from the Landsat TM and SPOT satellite instruments have proven insufficient for 

discriminating vegetation species in detailed wetland environments (May et al., 1997; Harvey 
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and Hill, 2001; Ringrose et al., 2003; Sawaya et al., 2003; McCarthy et al., 2005).This is due to: 

1. the difficulties faced in distinguishing fine, ecological divisions between certain vegetation 

species, 2. the broad nature of the spectral wavebands with respect to the sharp ecological 

gradient with narrow vegetation units in wetland ecosystems, and 3. the lack of high spectral and 

spatial resolution of optical multispectral imagery which restricts the detection and mapping of 

vegetation types beneath a canopy of vegetation, in densely vegetated wetlands.  

Although these studies produced reasonable results on mapping wetland vegetation at a 

regional scale and vegetation communities, more research is needed to explore the benefits of 

incorporating bathymetric and other auxiliary data to improve the accuracy of mapping wetland 

vegetation at the species level. 

2.5 Improving the accuracy of wetland vegetation classification  

 Spectral discrimination between vegetation types in complex environments is a challenging task, 

because commonly different vegetation types may possess the same spectral signature in 

remotely sensed images (Domaç and Süzen, 2006; Sha et al., 2008; Xie et al., 2008). Traditional 

digital imagery from multispectral scanners is subject to limitations of spatial, spectral, and 

temporal resolution. Moreover, applications of per-pixel classifiers to images dominated by 

mixed pixels are often incapable of performing satisfactorily and produce inaccurate 

classification (Zhang and Foody, 1998). Due to the complexities involved, more powerful 

techniques have been developed to improve the accuracy of discriminating vegetation types in 

remotely sensed data.  

   Domaç and Süzen (2006) in the Amanos Mountains region of southern-central Turkey 

used knowledge-based classifications in which they combined Landsat TM images with 

environmental variables and forest management maps to produce regional scale vegetation maps. 

They were able to produce an overall high accuracy when compared with the traditional 

maximum likelihood classification method. Another example for improving classification 

accuracy by incorporating vegetation-related environmental variables using GIS with remotely 

sensed data was the work of Yang (2007) at Hunter Region in Australia. He used digital aerial 

photographs, SPOT-4, and Landsat-7 ETM+ images for riparian vegetation delineation and 

mapping. The overall vegetation classification accuracy was 81% for digital aerial photography, 

63% for SPOT-4, and 53% for Landsat-7 ETM+. The study revealed that the lack of spectral 
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resolution of aerial photographs and the coarse spatial resolution of the current satellite images is 

the major limiting factor for their application in wetland vegetation mapping. 

Artificial neural network (ANN) and fuzzy logic approaches were also investigated to 

improve the accuracy of mapping vegetation types in complex environments. ANN proved to be 

valuable in mapping vegetation types in wetland environments. One disadvantage of ANN, 

however, is that ANN can be computationally demanding to train the network when large 

datasets are dealt with (Carpenter et al., 1999; Berberoglu et al., 2000; Filippi and Jensen, 2006; 

Xie et al., 2008). Berberoglu et al. (2000) at the Cukurova Deltas in Turkey combined ANN and 

texture analysis on a per-field basis to classify land cover from Landsat TM. They were able to 

increase the accuracy achieved with maximum likelihood classification by 15%.  Carpenter et al. 

(1999) compared conventional expert methods and the ARTMAP neural network method in 

mapping vegetation types at the Sierra National Forest in Northern California using Landsat TM 

data. Their research illustrated that the accuracy was improved from 78% in conventional expert 

methods to 83% when the ARTMAP neural network method was used. The ARTMAP neural 

network method was found to be less time-consuming and its production to be easily updated 

with any new observation. 

A fuzzy classification technique, which is a kind of probability-based classification rather 

than a crisp classification, is also useful in mixed-class areas and was investigated for solving the 

problem of mapping complex vegetation. Sha et al. (2008) at the Xilinhe River Basin in China 

employed a hybrid fuzzy classifier (HFC) for mapping vegetation on typical grassland using 

Landsat ETM+ imagery. It was concluded that HFC was much better than conventional 

supervised classification (CSC) with an accuracy percentage of 80.2% as compared to 69.0% for 

the CSC. Promising results have also been achieved in using fuzzy classification for suburban 

land cover classification from Landsat TM and SPOT HRV data by Zhang and Foody (1998) at 

Edinburgh in Scotland. They concluded that fuzzy classification not only has advantages over 

conventional hard methods and partially fuzzy approaches, but also is more feasible in 

integrating remotely sensed data and ancillary data.  

Decision tree (DT) classification has also shown promising results in mapping vegetation in 
wetlands and complex environments. DT is a simple and flexible non-parametric rule-based 
classifier and it can handle data that are represented on different measurement scales. This is 
useful especially when there is a need to integrate the environmental variables (e.g. slope, soil 
type, and rainfall) in the mapping process (Xu et al., 2005; Xie et al., 2008). Xu et al. (2005) at 
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Syracuse in New York employed a decision tree and regression (DTR) algorithm to determine 
class proportions within a pixel so as to produce soft land cover classes from Landsat ETM. 
Their results clearly demonstrate that DTR produces considerably higher soft classification 
accuracy (74.45%) as compared to the conventional maximum likelihood classifier (MLC) 
(55.25%) and the fuzzy C-means supervised (FCM) (54.40%).  

It has been revealed from the present review that no single classification algorithm can be 

considered as an optimal methodology for improving vegetation discrimination and mapping. 

Hence, the use of advanced classifier algorithms must be based on their suitability to achieve 

certain objectives in specific areas.   

2.6 Spectral discrimination of wetland species using hyperspectral data 

In remote sensing, the term ‘imaging spectroscopy’ is synonymous with some other terms such 

as ‘imaging spectrometry’ and ‘hyperspectral’ or ‘ultraspectral imaging’ (Clark, 1999). In 

general, hyperspectral remote sensing has hundreds of narrow continuous spectral bands between 

400 nm and 2500 nm, throughout the visible (0.4 nm to 0.7 nm), near-infrared (0.7 nm to 1 nm), 

and short wave infrared (1nm to 2.5 nm) portions of the electromagnetic spectrum (Vaiphasa et 

al., 2005; Govender et al., 2009). This greater spectral dimensionality of hyperspectral remote 

sensing allows in-depth examination and discrimination of vegetation types which would be lost 

with other broad band multispectral scanners (Cochrane, 2000; Mutanga et al., 2003; Schmidt 

and Skidmore, 2003; Govender et al., 2009). Hyperspectral remote sensing data is mostly 

acquired using a hand-held spectrometer or airborne sensors. A hand-held spectrometer is an 

optical instrument used for measuring the spectrum emanating from a target in one or more fixed 

wavelengths in the laboratory and the field (Kumar et al., 2001). The accurate measurements of 

the spectral reflectance in the field were established in the 1960s as a result of the rapid growth 

in airborne multispectral scanners (Milton et al., 2009). Historically, the application focused on 

the structure of matter. Recently, however, the application has been broadened, including other 

aspects of electromagnetic and non- electromagnetic radiation.  

In the last twenty years, field spectrometry has been playing vital roles in characterizing the 

reflectance of vegetation types in situ, and providing a means of scaling up measurement at field 

(canopy and leaves) and laboratory levels (Milton et al., 2009). Many attempts have been 

successfully made to discriminate and classify wetland species based on their fresh leaf 
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reflectance at laboratory levels with the view to scaling it up to airborne remote sensing 

(Vaiphasa et al., 2005; Vaiphasa et al., 2007) and field reflectance at canopy scale (Best et al., 

1981; Penuelas et al., 1993b; Schmidt and Skidmore, 2003; Becker et al., 2005; Rosso et al., 

2005). 

The earliest effort on spectral discrimination of wetland species was that of Anderson 

(1970) who attempted to evaluate the discrimination of ten marsh-plant species which dominated 

a wetland in Chesapeake Bay using ISCO Model SR Spectroradiometer. He concluded that the 

spectral difference between the species is minor in the visible spectrum, but significant in the 

near-infrared spectrum. The variation in the spectral reflectance with the changing seasons was 

also reported in the study. Best et al. (1981) investigated the use of four bands of Exotech 

radiometer to discriminate between the vegetation types which dominated the Prairie Pothole in 

the Dakotas. The spectral measurements were taken from ten common species during the periods 

of early-emergent, flowering, early-seed, and senescent phenological stages. Their findings 

showed that the best period to discriminate among the eight species studied was during the 

flowering and early-seed stages. However, it was difficult to differentiate reed (Sparganium 

euryeapum) from the other species. It was also concluded that a single species, in different 

phenological stages, showed significant variation in its spectral reflectance. Schmidt and 

Skidmore (2003) used the spectral reflectance measured at canopy level with A GER 3700 

spectrometer from 27 wetland species to evaluate the potential of mapping coastal saltmarsh 

vegetation associations (mainly consisting of grass and herbaceous species) in the Dutch 

Waddenzee wetland. It was found that the reflectance in six bands distributed in the visible, near-

infrared, and short wave infrared were the optimal bands for mapping saltmarsh vegetation 

(Table 2.2). Fyfe (2003) attempted to discriminate three coastal wetland species (Zostera 

capricorni, Posidonia australis, and Halophila ovalis) in Australia. Using a single-factor 

analysis of variance and multivariate techniques, it was possible to distinguish among the three 

species by their reflectance in the wavelengths between 530 nm–580 nm, 520 nm–530 nm, and 

580 nm–600 nm. However, the differences were more significant between 570 and 590 nm. 

Rosso et al. (2005) in California, USA, collected spectral reflectance data from five species 

(Salicornia, S. foliosa, S. alterniflora, and Scirpus) using an Analytical Spectral Device (ASD) 

full-range (0.35nm –2.5 nm) PS II spectrometer to assess the separability of the marsh species 

under controlled conditions. Spectral Mixture Analysis (SMA) and Multiple Endmember 
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Spectral Mixture Analysis (MESMA) were used on the AVIRIS data. Using both SMA and 

MESMA, it was possible to distinguish between the species to achieve higher classification 

accuracies. However, the MESMA technique appeared to be more appropriate because it could 

incorporate more than one endmember per class. Similar work was also conducted by (Li et al., 

2005). They were able to use AVIRIS imagery to discriminate three salt marsh species 

(Salicornia, Grindelia, and Spartina) in China and in San Pablo Bay of California, USA. They 

developed a model that mixed the spectral angle together with physically meaningful fraction 

and the root mean square error.  The results were satisfactory considering the success in 

discriminating the two marsh vegetation species (Spartina and Salicornia), which covered 93.8% 

of the marsh area. However, it was difficult to discriminate Grindelia from Spartina and 

Salicornia due to the spectral similarity between the species. Becker et al. (2005) were able to 

use a modified version of the slope-based derivative analysis method to identify the optimal 

spectral bands for the differentiation of coastal wetland vegetation. They transformed 

hyperspectral data measured by the SE-590 spectroradiometer at canopy level into a second-

derivative analysis. Six bands were found across the visible and near-infrared region to be 

powerful for discriminating the coastal wetland species. 

In Thailand, Vaiphasa et al. (2005) were able to identify and distinguish 16 vegetation 

types in a mangrove wetland in Chumporn province. Their research was conducted by collecting 

hyperspectral reflectance data using a spectroradiometer (FieldSpec Pro FR, Analytical Spectral 

Device, Inc.), under laboratory conditions. The results of one-way ANOVA with a 95% 

confidence level (p < 0.05), and Jeffries–Matusita (JM) distance indicated that the best 

discrimination of the 16 species is possible with four bands  located in the red-edge and near-

infrared and mid-infrared regions of the electromagnetic spectrum (Table 2.2). Vaiphasa et al., 

(2007) also used the same spectral data set to compare the performance of genetic algorithms 

(GA) and random selection using t-tests in selecting key wavelengths that are most sensitive in 

discriminating between the 16 species. The JM distance was used as an evaluation tool. The 

results showed that the separability of band combinations selected by GA was significantly 

higher than the class separability of randomly selected band combinations with a 95% level of 

confidence (α = 0.05). Mangrove wetland species were also discriminated and mapped in 

Malaysia by Kamaruzaman and Kasawani (2007) who were able to use ASD Viewspec Pro-

Analysis to collect the spectral reflectance data from five species at Kelantan and Terengganu, 
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namely Rhizophora apiculata, Bruguiera cylindrica, Avicennia alba, Heritiera littoralis, and 

Hibiscus tiliaceus. The canonical stepwise discriminant analysis revealed that the five species 

were spectrally separable at five wavelengths (693 nm, 700 nm, 703 nm, 730 nm, and 731 nm) 

located in the red-edge and near-infrared region.  

Wang et al. (2007) attempted to map highly mixed vegetation in salt marshes in the lagoon 

at Venice in Italy. Six significant bands of Compact Airborne Spectral Imager (CASI) were 

selected using Spectral Reconstruction (SR).The results showed that accuracy of Vegetation 

Community based Neural Network Classifier (VCNNC) can be used effectively in the situation 

of mixed pixels, thus, it yielded accuracy higher (91%) than the Neural Network Classifier 

(84%). Another attempt in discriminating marsh species was that by Artigas and Yang (2005) in 

the Meadowlands District in north-eastern New Jersey, USA. They conducted a study to 

characterize the plant vigour gradient using hyperspectral remote sensing with field-collected 

seasonal reflectance spectra of marsh species in a fragmented coastal wetland. Their results 

indicated that near-infrared and narrow wavelengths (670 nm-690 nm) in the visible region can 

be used to discriminate between most marsh species. However, it was difficult to discriminate 

between the two Spartina species because they belong to the same genus. It was concluded that 

these mixed pixels could be minimized using pixel unmixing techniques to discover the linear 

combinations of spectra associated with the pixels. 

 

 

 

 

 

 

 

 



28 

 

Table 2.2: Frequency of wavelengths selected in some studies for mapping wetland vegetation 

adapted into the four spectral domains defined by Kumar et al. (2001)  

Wavelengths regions (nm) Reference  Selected bands (nm) 

Visible  (400-700) Daughtry and Walthall (1998) 550, 670 

  Schmidt and Skidmore (2003) 404, 628 

  Vaiphasa et al.(2005) 0 

  Thenkabail et al. (2002) 490, 520, 550, 575, 660, 675 

  Thenkabail et al. (2004) 495, 555, 655, 675 

  Adam and Mutanga (2009) 0 

Red-edge (680-750) Daughtry and Walthall (1998) 720 

  Schmidt and Skidmore (2003) 0 

  Vaiphasa et al.(2005) 720 

  Thenkabail et al. (2002) 700, 720 

  Thenkabail et al. (2004) 705, 735 

  Adam and Mutanga (2009) 745,746 

Near-infrared (700-1300) Daughtry and Walthall (1998) 800 

  Schmidt and Skidmore (2003) 771 

  Vaiphasa et al.(2005) 1277 

  Thenkabail et al. (2002) 845, 905, 920, 975 

  Thenkabail et al. (2004) 885,915,985,1085,1135, 1215,1245,1285 

  Adam and Mutanga (2009) 892, 932, 934,958,961, 989 

Mid-infrared (1300-2500) Daughtry and Walthall (1998) 0 

  Schmidt and Skidmore, (2003) 1398, 1803, 2183 

  Vaiphasa et al.(2005) 1415, 1644 

  Thenkabail et al. (2002) 0 

  Thenkabail et al. (2004) 1445,1675, 1725, 2005, 2035, 2235, 2295, 2345 

  Adam and Mutanga (2009) 0 

 

      In summary, most of the previous studies have stated that wetland vegetation has the greatest 

variation in the near-infrared and red-edge regions (Daughtry and Walthall, 1998; Cochrane, 

2000; Schmidt and Skidmore, 2003; Vaiphasa et al., 2005). Hence, most of the wavelengths 

selected to map wetland vegetation were mainly allocated in near-infrared and red-edge regions 

of the electromagnetic spectrum (Table 2.2). 

More work is needed to build comprehensive spectral libraries for different wetland plants. 

Hyperspectral imagery proved to be useful in discriminating wetland species with higher 

accuracy. However, hyperspectral imagery is expensive to acquire, time-consuming to process, 

even when small areas are covered. Innovative new methods which take advantage of the 
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relatively large coverage and high spatial resolution of the fine sensors and the high spectral 

resolution of hyperspectral sensors could result in more accurate discrimination models of 

wetland species at a reasonable cost. 

2.7 Estimating biophysical and biochemical parameters of wetland species  

The main biochemical constituents found in vegetation are nitrogen, plant pigment, and water. 

Whereas biophysical properties of the plant include LAI, canopy architecture and density, and 

biomass (Govender et al., 2009), estimating the biochemical and biophysical properties of 

wetland vegetation is a critical factor for monitoring the dynamics of the vegetation productivity, 

vegetation stress, or nutrient cycles within wetland ecosystems (Asner, 1998; Mutanga and 

Skidmore, 2004a). The most important biochemical and biophysical properties that characterize 

the wetland species are: chlorophyll and biomass concentration, and leaf water content 

(Anderson, 1995). Few studies, however, have been conducted to study these properties that 

affect wetland plant canopies using both multispectral and hyperspectral remote sensing.  

2.7.1 Mapping wetland biomass 

Estimating wetland biomass is necessary for studying productivity, carbon cycles, and nutrient 

allocation (Zheng et al., 2004; Mutanga and Skidmore, 2004a). Many studies of field biomass 

have used vegetation indices based on the ratio of broadband red and near-infrared reflectance. 

Ramsey and Jensen (1996) in the USA used a helicopter platform to measure spectra of the 

canopies of four species which dominated in south-west Florida to describe the spectral and 

structural change within and between the species and community types. Reflectance values were 

generated from the canopy spectral data to correspond with AVHRR (bands 1 and 2), Landsat 

TM (bands 1-4), and XMS SPOT (bands 1-3) sensors. The relationship between canopy structure 

and reflectance showed the difficulties of discrimination of mangrove species based on optical 

properties alone. Moreover, species composition was not correlated with any combination of 

reflectance bands or vegetation index. However, the study revealed the possibility of estimation 

of vegetation biomass such as LAI using red and near-infrared bands on various sensors. 

    Tan et al. (2003) used Landsat ETM bands 4, 3, and 2 false colour, and field biomass 

data to estimate wetland vegetation biomass in the Poyang natural wetland, China. Linear 

regression and statistical analyses were performed to determine the relationship among the field 
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biomass data and some transformed data derived from the ETM data. Their results indicated that 

sampling biomass data has the best positive correlation to the Difference Vegetation Index (DVI) 

data. The authors developed a linear regression model to estimate the total biomass of the whole 

Poyang Lake natural conservation area. Similarly, Rendonga and Jiyuanb (2004) at Poyang in 

China, attempted to estimate the vegetation biomass in a large freshwater wetland using the 

combination of Landsat ETM data, GIS (for analyses and projecting both the sampling and 

Landsat ETM data), and GPS for (field biomass data). The results showed that the sampling of 

biomass data was best relative to the ETM 4 data with the highest coefficient of 0.86, at the 

significance level of 0.05. The study revealed that the near-infrared band could be used to 

estimate the wetland vegetation biomass. 

The use of coarser spatial resolution sensors e.g. (VHR) IKONOS and AVHRR images has 

also been investigated in estimating wetland biomass. Proisy et al. (2007) created a new textural 

analysis method in which they applied Fourier-based Textural Ordination (FOTO) in 1 m 

panchromatic and 4 m infrared IKONOS images to estimate and map high biomass in forest 

wetland in French Guiana in the Amazon. Their work yielded accurate predictions of mangrove 

total aboveground biomass from both 1 m and 4 m IKONOS images. However, the best results 

were obtained from 1 m panchromatic with the maximum coefficient determination (R2) above 

0.87. 

Moreau et al. (2003) investigated the potential and limits of two methods to estimate the 

biomass production of Andean wetland grasses in the Bolivian Northern Altiplano from NOAA/ 

AVHRR. The first method was based on monthly field biomass measurement and the second one 

was based on Bidirectional Reflectance Distribution Function (BRDF) normalized difference 

vegetation index (NDVI). Their results showed that BRDF normalized NDVI was sensitive to 

the green leaf or photosynthetically active biomass. The study also revealed that the optimal time 

for estimating the biomass with remotely sensed data in wetland species is during the growing 

season. 

The limitations of using vegetation indices such as NDVI for estimation of biomass, 

especially where the soil is completely covered by the vegetation, have been reported in the 

literature. This is due mainly to the saturation problem (Thenkabail et al., 2000; Mutanga and 

Skidmore, 2004a). Nevertheless, Mutanga and Skidmore (2004a) developed a new technique to 

resolve this saturation problem. They compared  the use  of band depth indices calculated from 
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continuum-removed spectra with two narrow band NDVIs calculated using near-infrared and red 

bands to estimate Cenchrus ciliaris biomass in dense vegetation under laboratory conditions. The 

results clearly showed that band depth analysis approach proved to be efficient with a high 

coefficient in estimating biomass in densely vegetated areas where NDVI values are restricted by 

the saturation problem. 

2.7.2 Estimation of leaf and canopy water content in wetland vegetation   

    Water availability is a critical factor in wetland plants’ survival. There has been a rapid 

growth in remote sensing research to assess the vegetation water content as an indicator for the 

physiological status of plants, fire potential, and ecosystem dynamics at both laboratory and field 

levels using very high resolution spectrometers such as the ASD spectral device with spectral 

sampling intervals of less than 2 nm (Liu et al., 2004; Stimson et al., 2005; Toomey and 

Vierling, 2006). However, no significant research has been carried out on estimating water 

content in wetland plants especially. This is because the studies using remote sensing on wetland 

plants have been aimed mainly at discriminating and mapping, rather than estimating plant 

physiology such as water content and water stress.  

Quite a number of different indices and techniques have been developed for estimating 

plant water content using the absorption features throughout the mid-infrared region (1300 nm-

2500 nm) of the electromagnetic spectrum e.g. in the Netherlands (Zhang and Foody, 1998),  

Canada (Davidson et al., 2006), and USA (Gao, 1996). The authors determined the canopy water 

content by scaling the foliar water content (FWC, %) with the specific leaf area (SLA), LAI, and 

the percent canopy cover for a specific forest canopy. However, Ceccato et al. (2001) noted that 

this technique relies on estimation of SLA, which varies according to species and phenological 

status. 

Work by Penuelas et al. (1993a) found the water band index (WI), which has been 

developed based on the ratio between the water band 970 nm and reflectance at 900 nm, to be 

strongly correlated with relative plant water content. Using reflectance at 857 nm and 1241 nm, 

Gao (1996) developed the normalized difference water index (NDWI) in California, USA to 

estimate vegetation water. The results showed that the NDWI is less sensitive to atmospheric 

scattering effects than NDVI, and it is useful in predicting water stress in canopies and assessing 

plant productivity. It was recommended that further investigation was needed in order to 
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understand this index better by testing it with the new generation of satellite instruments such as 

MODIS and SPOT-VEGETATION. Less sensitive semi-empirical indices for atmospheric 

scattering have also been developed by Datt (1999) to determine the relationship between 

spectral reflectance of several Eucalyptus species and both the gravimetric water content and 

equivalent water thickness (EWT). The results showed that EWT was significantly correlated 

with reflectance in several wavelength regions. However, no significant correlations could be 

obtained between reflectance and gravimetric water content. 

The use of remote sensing in estimating plant water content is challenging because it is 

difficult to distinguish the contribution made by foliar liquid water and atmospheric vapour on 

the water-related absorption spectrum. This is because the absorption band related to water 

content is also affected by atmospheric vapour (Figure 1.1) (Liu et al., 2004). Attempts have 

been made to minimize the atmospheric interference by using the red-edge position which is 

located outside the water absorption bands. In China, Liu et al. (2004) found a significant 

correlation between plant water content with the red-edge width in six different growth stages of 

wheat plants. The correlation coefficients were between 0.62 and 0.72 at 0.999 confidence level. 

The results were more reliable than those obtained using the WI and the NDWI. Similar results 

were reported in the USA by Stimson et al. (2005) who correlated foliar water content with the 

red-edge position to evaluate the relationship between foliar water content and spectral signals in 

two coniferous species: Pinus edulis and Juniperus monosperma. The results showed significant 

correlations of R2 = 0.45 and R2 = 0.65 respectively. 

As there has been no significant research on estimating water content and water stress of 

wetland vegetation specifically, additional studies on these aspects are needed to better 

understand the spectral response of wetland plants. The results of such research could help the 

researcher to develop accurate models for describing, for example, the separability of wetland 

plant varieties and for estimating foliar nutrients and developing indicators that can quantify the 

integrated condition of wetland plants and can identify their primary stressors across a range of 

scales. 

2.7.3 Estimating leaf area index of wetland vegetation  

LAI is defined as the total one-sided area of all leaves in the canopy per unit ground surface area 

(m2/m2) (Gong et al., 2003). Information on LAI is valuable for quantifying the energy and mass 
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exchange characteristics of terrestrial ecosystems such as photosynthesis, respiration, 

evapotranspiration, primary productivity, and crop yield (Kumar et al., 2001; Gong et al., 2003). 

Research efforts on estimating LAI from spectral reflectance measurements have been focused 

mainly on forests (Gong et al., 1995; Gong et al., 2003; Pu et al., 2005; Schlerf et al., 2005; Davi 

et al., 2006) and crops (Thenkabail et al., 2000; Hansen and Schjoerring, 2003; Ray et al., 2006).  

However, regardless of the work that has been done at Majella National Park, in Italy by, 

Darvishzadeh et al. (2008) the estimation of LAI for heterogeneous grass canopies has not been 

done.  Moreover, a few studies dealing specifically with estimating LAI of wetland species have 

been conducted only in forest wetlands and mangrove wetlands (Green et al., 1997; Kovacs et 

al., 2004; Kovacs et al., 2005). 

In general, the above-mentioned studies have investigated several analytical techniques to 

estimate LAI using reflectance data. This can be grouped into two main techniques: the 

stochastic canopy radiation model and the empirical model. The empirical model has been more 

widely investigated than the stochastic canopy radiation model. The univariate regression 

analysis with vegetation indices such as NDVI and simple ratio, derived from visible and near-

infrared wavelengths, is the most widely used empirical model and has been used in estimating 

LAI (Gong et al., 1995; Green et al., 1997; Thenkabail et al., 2000; Gong et al., 2003; Kovacs et 

al., 2004; Kovacs et al., 2005; Schlerf et al., 2005). 

Green et al. (1997) in UK developed a model based on gap-fraction analysis and NDVI 

derived from Landsat TM and SPOT XS to estimate LAI from three species: Rhizophora 

mangle, Laguncularia racemosa, and Avicennia germinans in a mangrove wetland in the West 

Indies. The model produced a thematic map of LAI with a high accuracy (88%) and low mean 

difference between predicted and measured LAI (13%).  

Vegetation indices derived from high spatial resolution data were shown to be effective in 

monitoring LAI in mangrove forests. Kovacs et al. (2004) tested the relationship between in situ 

estimates of LAI and vegetation indices derived from IKONOS imagery in a degraded mangrove 

forest at Nayarit, Mexico. Regression analysis of the in situ estimates showed strong linear 

relationships between LAI and NDVI and simple ratio. Moreover, no significant differences 

were found between the simple ratio and NDVI models in estimating LAI at both plot sizes. In 

the same area, Kovacs et al. (2005) examined the potential of IKONOS in mapping mangrove 

LAI at the species level. A hand-held LAI-2000 sensor was also evaluated for the collection of 
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data in situ on the mangrove LAI as a non-destructive alternative for the field data collection 

procedure. A strong significant relationship was found between NDVI, derived from IKONOS 

data, and in situ LAI collected with a LAI-2000 sensor. It was concluded that IKONOS satellite 

data and the LAI- 2000 could be an ideal method for mapping mangrove LAI at the species level. 

Researchers have shown that vegetation indices (VIs) derived from the narrow band could 

be vital for providing additional information for quantifying the biophysical characteristics of 

vegetation such as LAI (Blackburn and Pitman, 1999; Mutanga and Skidmore, 2004a). In 

wetland environments specifically, however, only one work, that by Darvishzadeh et al. (2008) 

at Majella National Park in Italy,  has investigated the use of hyperspectral data in estimating and 

predicting LAI for heterogeneous grass canopies. The study investigated the effects of dark and 

light soil and plant architecture on the retrieval of LAI red and near-infrared reflectance. Using A 

GER 3700 spectroradiometer, the spectral reflectances were measured from four different plant 

species (Asplenium nidus, Halimium umbellatum, Schefflera arboricola Nora, and 

Chrysalidocarpus decipiens) with different leaf shapes and sizes under laboratory conditions; 

then many VIs were calculated and tested. A stronger relationship was found between LAI and 

narrow band VIs in light soil than in dark soil. However, the narrow band simple ratio vegetation 

index (RVI) and second soil-adjusted vegetation index (SAVI2) were found to be the best overall 

choices in estimating LAI. 

Although reasonable results were obtained from narrow band VIs in estimating LAI 

(Thenkabail et al., 2000; Ray et al., 2006; Darvishzadeh et al., 2008), some authors noted that 

the strengths of a large number of hyperspectral bands have not yet been exploited by these 

methods because only two bands from red and near-infrared regions are used to formulate the 

indices (Hansen and Schjoerring, 2003; Schlerf et al., 2005). A technique such as multiple linear 

regression (MLR) which uses the advantages of the high dimensionality of the hyperspectral data 

to select optimal band combinations to formulate VIs, was shown to be effective at estimating 

the biophysical and biochemical properties of vegetation such as LAI (Thenkabail et al., 2000; 

Schlerf et al., 2005). 

Despite some success in estimating the biochemical and biophysical parameters in some 

ecosystems, estimation remains challenging in wetland environments where visible and near -

infrared canopy reflectance has been revealed to be strongly affected by the background of soil 
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and water, and atmospheric conditions. Further research is needed to develop indices that can 

reduce the effects of background and atmospheric quality. 

2.8 Overall challenges and future research 

Over the last few decades, considerable progress has been made in applying sensor techniques 

and data processing in discriminating, mapping, and monitoring wetland species. However, there 

are still challenges to be addressed in many aspects. First, traditional digital imagery from 

multispectral scanners is subject to limitations of spatial and spectral resolution compared to 

narrow vegetation units that characterize wetland ecosystems.  

Second, despite the agreement on the effective performance of hyperspectral data in 

discriminating wetland species, the reflectances from different vegetation species are highly 

correlated because of their similar biochemical and biophysical properties. Furthermore, these 

properties are directly influenced by environmental factors and therefore the unique spectral 

signature of the plant species has become questionable (Price, 1994). In addition, spectral 

variations can also occur within a species because of age differences, micro-climate, soil and 

water background, precipitation, topography, and stresses. 

Third, measurement of the biophysical and biochemical properties of vegetation using VIs 

derived from broad band sensors can be unstable due to the underlying soil types, canopy and 

leaf properties, and atmospheric conditions. For example, NDVI asymptotically saturate after a 

certain biomass density and for a certain range of LAI (Mutanga and Skidmore, 2004a). Hence, 

the measurement accuracy drops considerably (Gao et al., 2000; Thenkabail et al., 2000).    

A fourth  research challenge is that in most African countries (e.g. South Africa) there are 

only a handful of studies that have used hyperspectral data to characterize savanna vegetation 

due to high cost and poor accessibility (Mutanga et al., 2003; Mutanga and Skidmore, 2004a; 

Mutanga and Kumar, 2007; Mutanga and Skidmore, 2007) Also, no research has yet been carried 

out on discriminating wetland vegetation and estimating its biophysical and biochemical 

parameters using process-based models that use remotely sensed data as input parameters.  

Despite these shortcomings, there is no doubt that remote sensing technology could play a 

vital role in effectively discriminating and monitoring wetland species by selecting appropriate 

spatial and spectral resolution as well as suitable processing techniques for extracting spectral 

information of species. 
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From a research perspective, however, there are several major challenges in the application 

of remote sensing in wetland species that need to be addressed. 

First, the most current remote sensing techniques in mapping vegetation have been 

undertaken in arid and semi-arid regions with low vegetation cover and less complexity within 

the vegetation unit. These techniques are, therefore, of little use for narrow vegetation units that 

characterize wetland ecosystems. Additional research effort is needed to adopt more 

classification techniques to improve the accuracy of the spatial resolution of the current sensors 

which varies from 20 m to 30 m. Hyperspectral radiometers are considered to be the sensors of 

choice in the future for mapping and monitoring wetland species. This has increased the need to 

build comprehensive spectral libraries for different wetland plant species under different plant 

conditions and environmental factors. Additionally, the fundamental understanding of the 

relationship between the reflectance measurements, wetland species’ canopy density, and bottom 

reflectance parameters should be studied further.  The spectral libraries of wetland species will 

help in discriminating not only between wetland species, but also between wetland species and 

upland species as there has been no specific research dealing with the difference in spectral 

response of canopies of wetland species and upland species. 

Second, in the southern African region, more research is needed to enhance ability in 

discriminating wetland vegetation and estimating its biophysical and biochemical properties 

which have been overlooked in the scientific research. For example, papyrus swamps (Cyperus 

papyrus L.) (which characterize most of the tropical African wetlands, with a high rate of 

biomass production, a tremendous amount of combined nitrogen, that play vital roles in hosting 

habitats for wildlife and birds) are omitted in the application of remote sensing in discriminating 

wetland vegetation. 

Third, although some studies have been undertaken on estimating the vegetation 

biophysical and biochemical parameters (e.g. LAI, water content, biomass, pigment 

concentration, and nitrogen) in different ecosystems, there is paucity of research on wetland 

species. After the progress in the field of spectrometry, researchers began to measure vegetation 

properties in complex ecosystems using new narrow band indices (Mutanga and Skidmore, 

2004a) and red-edge position (Mutanga and Skidmore, 2007). These efforts should be further 

extended and developed so as to cope with wetland species environments where the saturation 

and the atmospheric vapour affect the near-infrared region. A fourth research prospect is the 
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availability of hyperspectral sensors which could allow mapping both of species and their quality 

in wetland ecosystems. This will enhance a fundamental understanding of the spatial distribution 

of the quality and quantity of wetland species, which could lead to the development of early 

warning systems to detect any subtle changes in wetland systems such as signs of stress and lead 

to the development of techniques to classify wetland area conditions (e.g. healthy or disturbed) 

based on their species quality and quantity.  
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CHAPTER THREE 

Spectral discrimination of papyrus (Cyperus papyrus L.) using a hand-held 

spectrometer under field conditions 
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Abstract 

Techniques for mapping and monitoring wetland species are critical for their sustainable 

management. Papyrus (Cyperus papyrus L.) swamps are among the most important species rich 

habitats that characterize the Greater St Lucia Wetland Park (GSWP) in South Africa. This paper 

investigates whether papyrus can be discriminated from its co-existing species using ASD field 

spectrometer data ranging from 300 nm to 2500 nm, yielding a total of 2151 bands. Canopy 

spectral measurements from papyrus and other three species were collected in situ in the Greater 

St. Lucia Wetland Park, South Africa. A new hierarchical method based on three integrated 

analysis levels was proposed and implemented to spectrally discriminate papyrus from other 

species as well as to reduce and subsequently select optimal bands for the potential 

discrimination of papyrus. In the first level of the analysis using ANOVA, we found that there 

were statistically significant differences in spectral reflectance between papyrus and other 

species on 412 wavelengths located in different portions of the electromagnetic spectrum. Using 

the selected 412 bands, we further investigated the use of classification and regression trees 

(CART) in the second level of analysis to identify the most sensitive bands for spectral 

discrimination. This analysis yielded eight bands which are considered to be practical for 

upscaling to airborne or spaceborne sensors for mapping papyrus vegetation. The final sensitivity 

analysis level involved the application of the Jeffries–Matusita (JM) distance to assess the 

relative importance of the selected 8 bands in discriminating papyrus from other species. The 

results indicate that the best discrimination of papyrus from its co-existing species is possible 

with six bands located in the red-edge and near-infrared regions of the electromagnetic spectrum. 

Overall, the study concluded that spectral reflectance of papyrus and its co-existing species is 

statistically different, a promising result for the use of airborne and satellite sensors for mapping 

papyrus. The three step hierarchical approach employed in this study could systematically reduce 

the dimensionality of bands to manageable levels, a move towards operational implementation 

with band specific sensors. 

Keywords: Papyrus. Greater St Lucia Wetland Park. Field spectrometer measurements. CART. 

Jeffries–Matusita. 
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3.1 Introduction  

Papyrus (Cyperus papyrus L.) swamps characterizes most wetland areas of eastern and central 

tropical Africa (Bemigisha, 2004). Specifically, the swamp covers great areas in Uganda and 

Sudan around the Lake Victoria and Nile basins (Beadle, 1974). Other extensive areas are in the 

Upemba basin, Zaire, and the Okavango Delta, Botswana (Thompson et al., 1979). Papyrus 

swamps usually create a buffer zone between terrestrial and aquatic ecosystems and play 

hydrological, ecological, and economic roles in the aquatic systems (Gaudet, 1980; Mafabi, 

2000).  

Previous studies found that tropical papyrus swamps are characterised by a tremendous 

amount of combined nitrogen (Muthuri and Kinyamario, 1989; Mwaura and Widdowson, 1992) 

and a high rate of biomass production (Muthuri and Kinyamario, 1989). In this regard, papyrus 

plays a vital role in hosting habitats for wildlife species such as the sitatunga antelope 

(Tragelaphus spekei) and African python (Python sebae) (Owino and Ryan, 2007). Papyrus also 

has some grazing potential and could be used as fodder with high nutritive value especially in the 

dry season when other forage is limited (Muthuri and Kinyamario, 1989).  Further, studies found 

that the highest species richness of birds in marshland is associated with the areas where papyrus 

and natural vegetation were plentiful (Harper, 1992; Owino and Ryan, 2007). In addition to 

providing habitat for wildlife, the high biomass production characterizing papyrus swamps has 

been widely found to be useful for paper making. The Egyptians for example, were the first 

people who used papyrus to make paper more than five thousand years ago (Bucci, 2004). 

Recently, promising results have been obtained in using papyrus as an alternative source of fuel 

in many countries in central Africa such as Rwanda (Jones, 1983a; Muthuri and Kinyamario, 

1989). 

   Despite its relative importance, human encroachment and intensified agricultural activities in 

many parts of Africa have threatened the existence of papyrus (Mafabi, 2000; Maclean et al., 

2006; Owino and Ryan, 2007). The continued degradation in papyrus habitat represents a 

significant threat to biodiversity conservation particularly for papyrus-specialist birds and other 

papyrus-reliant species in many African countries (Maclean et al., 2006; Owino and Ryan, 

2007).  

To establish sustainable management of such important species, up-to-date spatial 

information about the magnitude and distribution of papyrus swamps at several scales is 
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essentially required (Nagendra, 2001; Schmidt and Skidmore, 2003). This can be achieved 

through remote sensing techniques that can monitor the change in papyrus areas and assess the 

species’ percentage covers as compared to the other species. 

Traditionally, species discrimination for floristic mapping needs intensive fieldwork, 

including taxonomical information and the visual estimation of percentage cover for each 

species. This is costly and time-consuming and sometimes inapplicable due to the poor 

accessibility  (Kent and Coker, 1994; Lee and Lunetta, 1995).   Remote sensing, on the other 

hand, is a technique that gathers the data regularly about the earth’s features without actually 

being in direct contact with those features. The main advantages that make remote sensing 

preferable than field-based methods in land cover classification, is that it has repeat coverage 

which allows continuous monitoring, and its digital data can be easily integrated into Geographic 

Information System (GIS) for more analysis which is less costly and less time-consuming 

(Shaikh et al., 2001; Ozesmi and Bauer, 2002; Schmidt and Skidmore, 2003; Mironga, 2004). 

Both multispectral and hyperspectral remote sensing techniques have been used to 

discriminate and map wetland species. Multispectral data such as Landsat TM and SPOT 

imagery have been used to identify general vegetation classes or to attempt to discriminate just 

broad vegetation communities (May et al., 1997; Harvey and Hill, 2001; Li et al., 2005), while 

hyperspectral data have been successful in mapping wetlands vegetation at the species level 

(Schmidt and Skidmore, 2003; Brown, 2004; Rosso et al., 2005; Belluco et al., 2006; 

Kamaruzaman and Kasawani, 2007; Pengra et al., 2007). Hyperspectral data have also been used 

to study vegetation health, water content in vegetation, biomass, and other physico-chemical 

properties (Green et al., 1998; Ceccato et al., 2001; Mutanga et al., 2003; Mutanga and 

Skidmore, 2004a; Zarco-Tejada et al., 2005). 

In general, the use of multispectral data in discriminating and mapping wetlands species is 

challenging due to spectral overlap between the wetlands species and due to the lack of spectral 

and spatial resolution of the multispectral data (Rosso et al., 2005). On the other hand, 

hyperspectral data often consist of over 100 contiguous bands of 10 nm or less bandwidth. These 

contiguous bands and narrow ranges lead to the possibility of discriminating and mapping 

vegetation species more accurately and precisely than the standard multispectral bands (Schmidt 

and Skidmore, 2003; Ustin et al., 2004; Borges et al., 2007).  



42 

 

A few previous attempts at using multispectral remote sensing in studies of papyrus 

swamps have been concentrated mainly on economic benefit and management scenarios of 

papyrus swamps, and promising results have been obtained (Bemigisha, 2004; Owino and Ryan, 

2007). However, the spectral discrimination of papyrus (Cyperus papyrus L.) has been 

overlooked in scientific research.  No attempt, to my knowledge, has been made to discriminate 

papyrus swamps using field spectrometry, let alone in South Africa where only a handful of 

studies have used  hyperspectral data to characterize vegetation in general due to high cost and 

poor accessibility (Mutanga et al., 2004; Ismail et al., 2007). 

 Although hyperspectral data are critical in discriminating species, its high spectral 

resolution contains redundant information at band level (Kokaly et al., 2003; Bajwa et al., 2004). 

This high dimensional complexity of hyperspectral data can be problematic in terms of image 

processing algorithms, an excessive demand for sufficient field samples, high cost, and 

overfitting when using multivariate statistical techniques (Goetz, 1991; Bajcsy and Groves, 

2004; Borges et al., 2007; Mutanga and Kumar, 2007; Vaiphasa et al., 2007). It is, therefore, 

imperative to identify the optimal bands required for discriminating and mapping wetland 

species without losing any important information. Different univariate and multivariate 

techniques for dimensionality reduction and band selection with different performance levels 

have been developed, such as canonical analysis, CART, discriminant analysis, principal 

component analysis, artificial neural network and Jeffries- Matusita (JM) (Satterwhite and 

Ponder Henley, 1987; Cochrane, 2000; Schmidt and Skidmore, 2003; Vaiphasa et al., 2005; 

Milton et al., 2009). However, inconsistent results have been obtained for different species and 

environments, and the use of a single technique in reducing data dimensionality to acceptable 

operational levels has not been very successful. 

This study is aimed at investigating whether field spectrometry data could be used to 

effectively discriminate papyrus species from other species occurring in the swampy wetlands of 

South Africa. In other words, spectral separability analysis was used to examine whether papyrus 

swamps could spectrally be discriminated from each one of its co-existing species using field 

spectrometer measurements at canopy level as well as reducing spectral data dimensionality. 

More specifically, the objectives of this study were: 1. to determine whether there is a significant 

difference between the mean reflectance at each measured wavelength (from 350 nm to 2500 

nm) for Cyperus papyrus L. and each one of the other co-existing three species (Phragmites 
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australis, Echinochloa pyramidalis, and Thelypteris interrupta), and 2. To identify key 

wavelengths that are most sensitive in discriminating Cyperus papyrus from each one of the 

other three species. In order to achieve this, we used a field spectrometer to measure the spectral 

reflectance from papyrus swamps and the associated species in the Greater St Lucia Wetland 

Park in South Africa. To achieve an efficient optimal selection of bands, we propose a new 

hierarchical method that integrates Analysis of variance (first level), Classification regression 

trees (second level), and finally the Jeffries-Matusita distance analysis (third level) to assess the 

relative importance of the selected bands. 

3.2 Material and methods 

3.2.1 Field data collection 

3.2.1.1 The identification of papyrus and its associated species  

The most common plant species associated with papyrus in the swamps wetland in the study 

areas were identified in the field in the summer of 2007 under the supervision of an experienced 

ecologist using field observation techniques. These species were then recorded based on their 

density and estimation of percentage cover (covering at least 40 % of the area). In total, three 

species were identified as being the most co-existing species with papyrus. These were 

Phragmites australis, Echinochloa pyramidalis, and Thelypteris interrupta (Table 3.1). 

Table 3.1: The papyrus swamp and its associated species, the number of sample plots and the 

total number of measurements collected 

Species name  Type code  Nr of plots Nr of measurements 

Cyperus papyrus  CP 15 134 

Phragmites australis PA 9 111 

Echinochloa pyramidalis  EP 7 101 

Thelypteris interrupta TI 10 113 
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3.2.1.2 Spectral data acquisition 

The Analytical Spectral Devices (ASD) FieldSpec® 3 spectrometer was used to measure the 

spectral reflectance from papyrus and the other species. This spectrometer has a wavelength 

ranging from 350 nm to 2500 nm with a sampling interval of 1.4 nm for the spectral region 350 

nm to1000 nm and 2.0 nm for the spectral region 1000 nm to 2500 nm, and a spectral resolution 

of 3 nm to 10 nm (ASD Analytical Spectral Devices Inc., 2005).  

A combination of random sampling and purposive sampling was used to select field sites. 

Hawth’s Analysis Tool extension for ArcMap designed to perform spatial analysis was used to 

generate random points in a land cover map developed using ASTER image.  These points were 

then input in GPS to navigate to the field sites. Purposive sampling was done when the random 

point was not accessible, or to increase the variation of reflectance measurements of the species. 

Once the sampling location was indentified, a vegetation plot was defined to cover 3 m by 3 m in 

area of each species; then a total of 10 to 15 field spectrometer measurements were taken 

randomly from nadir at about 1.5 m and with a 5o field of view above the vegetation species on 

each plot. This resulted in a ground field of view of about 13 cm in diameter, which was large 

enough to cover a cluster of species and to reduce the effects of background such as soil and 

water in the in situ spectral measurement (Table 3.1). All the measurements were collected in 

December 2007 between 10:00 am and 02:00 pm under sunny and cloudless conditions. A white 

reference spectralon calibration panel was used every 10 to 15 measurements to offset any 

change in the atmospheric condition and irradiance of the sun. Metadata such as the site 

description (coordinates and altitude, land cover class) and general weather conditions were also 

recorded to accompany field spectral measurements on each measured point (Milton et al., 

2009). Due to the atmospheric water absorption noise in the reflectance spectra, a number of 

bands around 1420 nm, 1940 nm, and 2400 nm were excluded from the analysis. 

3.2.2 Data processing  

It was difficult to use one technique to identify a reasonable number of wavelengths that are most 

sensitive from 350 nm to 2500 nm (n = 2151). This was because the dimensionality still 

remained high when one technique was used (412 wavelengths from analysis of variance). 

Moreover, there is no single technique that has universally proven to be superior for the optimal 

feature selection (Yang et al., 2005), and it is quite possible that more than one subset of 
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wavelengths can discriminate the data equally well (Yang et al., 2005). We, therefore, innovated 

a new hierarchical method for spectral analysis based on three integrated levels.  

3.3.2.1 First level (one-way ANOVA) 

In the first level, we used one-way ANOVA to test if the differences in the mean reflectance 

between papyrus swamps and the other three species were statistically significant. We tested the 

research hypothesis that the means of the reflectance between the pairs of papyrus swamp and 

each one of the co-existing species (PA, EP, and TI) were significantly different at each 

measured wavelength, from 350 nm to 2500 nm, viz. the null hypothesis Ho: µ1 = µ2, µ1=µ3, 

µ1= µ4 versus the alternate hypothesis Ha: µ1 ≠ µ2, µ1 ≠ µ3, µ1≠ µ4 where: µ1, is the mean 

reflectance values from papyrus and µ2, µ3, and µ4 the mean reflectance values from Phragmites 

australis, Echinochloa pyramidalis, and Thelypteris interrupta respectively. 

One- way ANOVA was used with a post-hoc Scheffé test at each measured wavelength for 

the individual class pair (CP vs PA, CP vs EP, and CP vs TI). We tested ANOVA with two 

confidence levels: a 99% confidence level (p < 0.01), and a 95% confidence level (p<0.05).  

3.2.2.2 Classification and Regression Trees (CART) 

We used CART in this second level of hierarchical methods to further reduce the number of the 

significant wavelengths obtained from ANOVA analysis, with the purpose of reducing data 

dimensionality. CART, which was developed by Breiman et al. (1984), is a non-parametric 

statistical model that can select from a large dataset of explanatory variables (x) those that are 

best for the response variables (y) (Yang et al., 2003; Questier et al., 2005). CART was preferred 

in this study because the values of the predictor variables (spectral reflectance) are continuous, as 

opposed to categorical target (plant species). 

The CART model is built in accordance with the splitting rule. This rule performs the 

function of splitting the data into smaller parts according to the reduction of the deviance from 

the mean of the target variable (Y bar) (or corrected total sum of the squares). (Yi) is the target 

variable of each dataset. The decision tree begins a search from a root node (parent node) derived 

from all the predictors, and possible split points such that the reduction in deviance, D (total), is 

maximized (terminal node) as follows (Breiman et al., 1984): 
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D (total) = ∑(Y i-Y bar)
 2                                                               (1) 

The cut point, or value, always splits the data into two child nodes, the left node and the right 

node with maximum homogeneity. The reduction in deviance is as shown in the following 

equation: 

∆ j,total = D (total) - (D(L) + D(R)                                             (2) 

Where D(L) and D(R) are the deviances of the left and right nodes.  

Hence, the algorithm begins searching for the maximized (∆ j,total) over all the predictor 

variables and the cut points subject to the constraint that the number of the members in the left 

and right nodes are larger than some criterion set by the user. The algorithm repeats the 

procedure of binary splitting for each node (left and right nodes) by treating each child node as a 

parent node splitting until the tree has a maximum size (Yang et al., 2003). 

In this study, we used CART as the second level of the hierarchical method to select the 

most sensitive wavelengths from the number of significant wavelengths selected in the first level 

(ANOVA). Therefore, CART generated the optimal bands by selecting only the spectral bands 

that result in small misclassification rates to discriminate each class pair (CP vs PA, CP vs EP, 

and CP vs TI) individually. The bands which were common in each class pair were then selected 

to get the optimal bands for all class pairs.  

3.2.2.3 Distance analysis 

After we had the optimal bands selected from the CART analysis, additional analysis was needed 

to identify the best band or band combinations that could be used for the best spectral 

separability between papyrus and each one of the three species. Hence, we tested the hypothesis 

that some bands are relatively more important than others in discriminating papyrus. The 

separability index used in this level of hierarchical method was the JM distance analysis 

(Schmidt and Skidmore, 2003; Ismail et al., 2007; Vaiphasa et al., 2007). It was impossible to 

run the JM distance analysis on all the significant bands (n = 412) from ANOVA analysis 

because of the singularity problem of matrix inversion (Vaiphasa et al., 2005; Ismail et al., 

2007). Moreover, this high dimensional complexity is very costly, time-consuming, and beyond 
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the capacity of the common image processing algorithms (Schmidt and Skidmore, 2003; Borges 

et al., 2007; Vaiphasa et al., 2007). We, therefore, used the bands derived from CART.  The JM 

distance between a pair of probability functions is seen as quantification of the mean distance 

between the two class density functions (Richards and Jia, 2006). When classes are normally 

distributed, this distance turns out to be the Bhattacharyya (BH) distance (Schmidt and 

Skidmore, 2003; Richards and Jia, 2006). The JM distance has upper and lower bounds that vary 

between 0 and2  (≈ 1.414), with the higher values indicating the total separability of the class 

pairs in the bands being used (ERDAS, 2005; Richards and Jia, 2006). In this study, we decided 

to use higher separability values  ≥  97 % as the JM distance threshold to identify the most 

important band or band combinations for best discrimination of papyrus swamps. The formula for 

computing  the JM distance is as follows (ERDAS, 2005): 
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Where: 

  i and j = the  two classes being compared 

            iC  = the covariance matrix of signature i 

 iµ = the mean vector of signature i 

  Ln = the natural logarithm function 

            iC = the determinant of iC  (matrix algebra).     
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3.3 Results  

3.3.1 First level: ANOVA test 

ANOVA results indicate that there is no significant difference between the two class pairs (CP vs 

EP, and CP vs TI) when a 99% confidence level (p< 0.01) was used. However, the 95% 

confidence level (p < 0.05) indicated that there is a statistically significant difference  in the 

spectral reflectance  between all the class pairs (CP vs PA, CP vs EP, and CP vs TI) at n = 412 

wavelengths. These significant wavelengths were highlighted using a histogram for every 

individual class pair. The results of ANOVA test for each class pair (CP vs PA, CP vs EP, and 

CP vs TI) are shown in Figure 3.1 (a, b, and c). The shaded areas show the wavelengths where 

the spectral reflectance from the papyrus swamp is statistically different from the other three 

species, with a 95% confidence level (p-value < 0.05). 

The conclusions from the ANOVA test are that the mean reflectance between papyrus and 

the other three species is significantly different in many measured wavelengths. These significant 

wavelengths are located in three different regions of the electromagnetic spectrum (red- edge, 

near-infrared, and mid-infrared).  

Table 3.2 shows the frequency of the significant bands adapted into the four spectral 

domains which is widely used in the hyperspectral remote sensing of vegetation (Kumar et al., 

2001). The table shows that there are no statistically significant wavelengths located in the 

visible region for the class pairs CP vs EP, and CP vs TI. However, the class pair CP vs PA has 

more significant wavelengths located all over the spectral regions than any other class pair (CP 

vs EP, and CP vs TI). All the wavelengths from 350 to 1300 (n = 950) are significant for CP vs 

PA as well as 49.95% (n = 600) of wavelengths located in the mid-infrared region, whereas the 

statistically significant wavelengths for the pair CP vs TI are located only in the red-edge and 

near-infrared portions of the electromagnetic spectrum (n = 449). 
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a    b  

c  

Figure 3.1.  ANOVA results for each class pair (a) CP vs. PA, (b) CP vs. EP, and (c) CP vs. TI. 

The grey areas show the wavebands where there are significant differences between the class 

pairs within the electromagnetic spectrum. 

Table 3.2: Frequency of significant bands for each class pair adapted into the four spectral 

domains defined by Kumar et al. (2001)         

Wavelength 
region (nm) 

Description Band 
No 

Significant bands 

CP vs PA % CP vs EP % CP vs TI % 

350-700 Visible  351 351 100.00 0.00 0.00 0.00 0.00  

680-750 Red-edge 71 71 100.00 10 14.08 45 63.38 

700-1300 Near-infrared 601 601 100.00  560 93.18 451 74. 04 

1300-2500 Mid-infrared 1201 600 49.95 367 30.55 0.00 0.00 
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It can also be seen from Table 3.2 that the red-edge and near-infrared are the most 

important regions where each class pair has the most statistically significant wavelengths. The 

results can be clearly seen in the histogram in Figure 3.2 which shows by maximum grey shading 

the wavelengths with the maximum frequency. These significant wavelengths have the potential 

to discriminate papyrus species from all other species (PA, EP, and TI). 

 

Figure 3.2. Frequency of statistical difference using ANOVA with 95% confidence level (P < 

0:05) between the mean reflectance of papyrus and all other species. The maximum grey shading 

shows the wavelengths where papyrus could be discriminated from all the other three species. 

 

Results of frequency analysis (Figure 3.2) reveal that there is no wavelength that 

maximized the discrimination of papyrus from the other species in the visible region. There are 

however, a few significant wavelengths located in the red-edge (741-746) nm = (n = 6) and a 

majority of wavelengths located in the near-infrared part of the electromagnetic spectrum (982-

1297) nm = (n = 406). Further analysis was then conducted to reduce the number of these 

significant wavelengths (n = 412).   

3.3.2 Second level: CART results 

CART analysis was applied to reduce the numbers of significant bands (n = 412) selected by 

ANOVA analysis to fewer bands that could optimally discriminate the papyrus from the other 
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three species. The selection of the optimal wavelengths was done for each individual class pair: 

CP vs PA (n = 17), CP vs EP (n = 13), and CP vs TI (n = 15). The misclassification rate was 

0.014, 0.014, and 0.029 for each class respectively. The results are shown in Table 3.3.  

Table 3.3: Wavelengths selected by CART for each individual class pair and the 

misclassification rate. Wavelengths that were able to differentiate between all three pairs of 

classes are highlighted in grey    

Class pair Wavelengths (nm) selected  No of wavelengths 
(nm) 

Misclassification 
rate 

CP vs PA 741, 745, 746, 892, 932, 934, 
958, 961, 985 989, 1037, 1107, 
1120, 1125, 1130, 1153, 1291. 

17 0.014 

CP vs EP  745, 746, 892, 932, 934,  958, 
961, 989, 1056, 1119,   1123, 
1124, 1153.  

13 0.014 

CP vs TI 741, 745, 746, 892, 932, 934, 
958, 961, 989, 1010, 1038, 
1056, 1119, 1130, 1146.  

15 0.029 

 

The common wavelengths among all class pairs (CP vs PA, CP vs EP, and CP vs TI) were 

then selected to find the optimal wavelengths for all class pairs. It also interesting to note that in 

Table 3.3 there are eight spectral bands that appeared commonly in every class pair. These 

spectral bands are: 745 nm, 746 nm, 892 nm, 932 nm, 934 nm, 958 nm, 961 nm, and 989 nm. 

From this analysis, these eight wavelengths could potentially discriminate papyrus species from 

all the three species.   

3.3.3 Third level: Distance analysis results 

The Table 3.4 shows the results of the JM distance analysis. The band located at 892 nm 

appeared to be the best single band because it produces best separability when used individually 

with a JM value of 1.342 (94.91%). Furthermore, it has the highest frequency (100 %) by 

appearing in every best band combination.  The table also reveals that the use of more bands 

improves the separability of the papyrus. Whereas the single band (892 nm) produces an 
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unacceptable JM value of 1.342, the acceptable average JM values (≥  97 %) are reached when 

using three band combinations, which achieved 97.45%. The JM value then improved 

considerably until it reached the best value with the best eight band combinations. 

Table 3.4: The averages of JM distance analysis for all the three class pair (CP vs PA, CP vs EP, 

and CP vs TI). The symbol (X) indicates the selection of optimal bands in each band 

combination  

Best band 
combinations 

745 746 892 932 934 958 961 989 JM 
value 

% 

Single band   X      1.342 94.91 

Two bands   X  X    1.362 96.32 

Three bands   X  X   X 1.378 97.45 

Four bands   X  X X X  1.386 98.01 

Five bands X X X   X X  1.393 98.51 

Six bands X X X  X X X  1.402 99.15 

Seven bands X X X X  X X X 1.409 99.65 

Eight bands X X X X X X X X 1.411 99.79 

 

Table 3.5 shows the JM distance values for each individual class pair (CP vs PA, CP vs EP, 

and CP vs TI) within each best band combination.  For the class pairs, CP vs PA and CP vs TI, a 

single band located at 892 nm produced an acceptable JM distance value. However, the class 

pair, CP vs EP,  reached the acceptable value of JM distance (≥  97 %) only  when using six band 

combinations located at 745 nm, 746 nm, 892 nm, 934nm, 958 nm, and 961nm, where the other 

two class pairs (CP vs PA and CP vs TI) reached total separability  of 100% (upper JM value). 

Unlike the other two class pairs (CP vs PA and CP vs TI), the CP vs EP pair does not reach the 

total separability even when using all the eight bands (JM distance value 1.405). However, total 

separability starts for the other two class pairs (CP vs PA and CP vs TI) from using the best four 

band combinations located at 892 nm, 934nm, 958 nm, and 961nm. 
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Table 3.5: The values of the JM distance for each individual class pair within the selected best 

band combinations. 

Best combination CP vs PA CP vs EP CP vs TI 

JM 
value 

% JM 
value 

% JM value % 

892. 1.409 99.64 1.210 85.57 1.408 99.58 

892, 934. 1.412 99.86 1.263 89.32 1.410 99.72 

892, 934, 898. 1.413 99.93 1.308 92.50 1.413 99.93 

892,934, 958, 961. 1.414 100.00 1.329 93.99 1.414 100.00 

745, 745, 892, 958, 961. 1.414 100.00 1.351 95.55 1.414 100.00 

745,745, 892, 934, 958, 961. 1.414 100.00 1.379 97.52 1.414 100.00 

745, 746, 892, 932, 958, 961, 989. 1.414 100.00 1.399 98.94 1.414 100.00 

745, 746, 892, 932, 934, 958, 961, 989. 1.414 100.00 1.405 99.36 1.414 100.00 

3.4 Discussion 

The use of field spectrometry for species discrimination is widespread at both field measurement 

and laboratory levels (Skidmore et al., 1988; Schmidt and Skidmore, 2003; Brown, 2004; Rosso 

et al., 2005; Vaiphasa et al., 2005; Belluco et al., 2006; Pengra et al., 2007). The removal of 

redundant data and identification of relevant data are critical considerations in field spectrometry 

data processing. One should seek to ensure that this dimensionality reduction would not cause 

any loss of important information relevant to the object under study. Various researchers have 

used different techniques with inconsistent results to identify important bands of the 

electromagnetic spectrum for discriminating vegetation species.  

In this paper, it was difficult to use one technique to identify a reasonable number of 

wavelengths that are most sensitive from 2150 bands, because the dimensionality remained still 

high when only one technique was used (412 wavelengths from analysis of variance). This could 

be explained by, firstly, the agreement that there is no single technique that has universally 

proven superior for the optimal feature selection (Yang et al., 2005) and, secondly, the possible 

existence of a different subset of features that discriminates the data equally well (Yang et al., 
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2005). Hence, a new hierarchical method was developed based on the integration of three 

analysis levels (ANOVA, CART, and JM) to reduce the dimensionality in the collected field 

spectrometry measurement data to discriminate papyrus from three other species. This is an 

important prerequisite for mapping papyrus swamps using airborne and satellite hyperspectral 

sensors. Results of this study show that the discrimination of papyrus from its associated species 

is possible at the field level using field spectrometry.  

 3.4.1 Differences in mean reflectance between papyrus and its associated species 

The results from ANOVA test presented in Figure 3.1 and Table 3.2 have shown that there is a 

significant difference in the mean reflectance between papyrus and each of the three species 

studied (PA, EP, and TI) in the red-edge, near-infrared, and mid-infrared regions. The 

wavelength regions with the greatest frequency of significant differences between papyrus and 

other species can be seen in a histogram in Figure 3.2. These significant wavelengths are located 

in the red-edge region from 741nm to746 nm (n = 6) and in the near-infrared region from 892 

to1297 nm (n = 406). This confirms the results of previous studies that state that green leaves 

have greatest variation in the near-infrared and red-edge regions (Asner, 1998; Daughtry and 

Walthall, 1998; Cochrane, 2000; Schmidt and Skidmore, 2003; Thenkabail et al., 2004; 

Vaiphasa et al., 2005). Although no leaf biochemical properties were directly measured in this 

study, it is likely that the occurrence of significant wavelengths in the Red-edge region (680 nm 

to 750 nm) is due to the variation between papyrus and other species on chlorophyll 

concentration, nitrogen concentration, and water content (Curran et al., 1990; Curran et al., 

1991; Filella and Penuelas, 1994; Mutanga and Skidmore, 2007). This is because of the 

physiological evidence that papyrus is characterized by a tremendous amount of combined 

nitrogen, higher chlorophyll concentration, and higher rates in biomass production than most 

other wetlands species (Muthuri and Kinyamario, 1989; Mwaura and Widdowson, 1992). Unlike 

other species,   papyrus is basically restricted to the area that is permanently either wet or flooded 

throughout the year. This results in a higher water content in a papyrus leaf compared to the 

other species. It is, therefore, assumed that the chlorophyll and nitrogen concentrations and water 

content vary significantly between papyrus and other species. The significant wavelengths in the 

near-infrared region, on the other hand, may be due to variation between papyrus and other 
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species in the canopy structure (Kumar et al., 2001; Schmidt and Skidmore, 2003). The 

differences in canopy and leaf structure of the different species are shown in Figure 3.3.    

 

Figure 3.3. Variations in canopy and leaf structure in the four species: (a) Cyperus papyrus, (b) 

Echinochloa pyramidalis, (c) Phragmites australis, and (d) Thelypteris interrupta. Surface leaf 

structure in Cyperus papyrus is relatively most different from the other species. 

3.4.2 Band selection using classification and regression trees (CART)  

CART has helped to reduce dimensionality in the significant wavelengths (n = 412) obtained 

from ANOVA as well as to identify the most sensitive wavelengths to discriminate papyrus 

(Breiman et al., 1984; De'ath and Fabricius, 2000; Questier et al., 2005; van Aardt and Norris-

a b 

c d 
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Rogers, 2008). As we aimed to discriminate only papyrus, CART was applied for each class pair 

individually (CP vs PA, CP vs EP, and CP vs TI). Table 3.3 shows the bands selected and the 

misclassification error rate. Relative to other studies, the misclassification error rate of this study 

is very low (De'ath and Fabricius, 2000; Questier et al., 2005; van Aardt and Norris-Rogers, 

2008). Therefore, we conclude that the selected bands in this analysis level are optimal bands for 

discriminating papyrus. The selected wavelengths were compared to wavelengths selected in the 

other previous studies as shown in Table 2.2. From Table 2.2 one can note that the bands 

selected not only in this study but also in the previous studies do not totally coincide with one 

another. This is explained mainly by the variation in concentration of pigments and the other 

optical properties and biochemical contents of the leaves between species, which leads to the 

different interactions within wavelengths of the electromagnetic regions (Asner, 1998; Kumar et 

al., 2001; Schmidt and Skidmore, 2003) However, general trend, especially within the red-edge 

and near-infrared regions, does exist between the studies which reveal the relative importance of 

using different wavelengths of electromagnetic spectrum for species discrimination. 

The study also confirms the advantages of CART (De'ath and Fabricius, 2000). This is can 

be summarized as being : 1. a simple, easy, and fast nonparametric method regarding the input 

data and output, 2. in variance to monotonic transformation of the explanatory variables, and 3. 

flexible in handling different dependent variables and highly discriminatory data. This data can 

be easily separated into individual classes or ignored without influencing the predication.  

3.4.3 The JM distance analysis 

 The JM distance analysis was used to assess the relative importance of band combinations in 

discriminating between papyrus and other species (CP vs PA, CP vs EP, and CP vs TI) using 

bands selected by CART. We opted to use higher acceptable separability values (≥ 97 %) rather 

than ≥ 95 % (Vaiphasa et al., 2005). This was done in order to achieve a precise selection of the 

most sensitive bands to discriminate papyrus.  We found that some bands have more power for 

discriminating between papyrus and the other three species by having higher values of the JM 

distance. This is clearly shown in Table 3.4, which shows that three bands located at 892 nm, 

934 nm, and 989nm can produce acceptable average separability (97.45%). The two class pairs 

(CP vs PA and CP vs TI) are spectrally more distant than the other class pair (CP vs EP) as is 

shown in Table 3.5. Papyrus, therefore, has greater potential of being separable from these two 
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species (PA and TI) even with a single band located at 892nm.This is explained by the 

differences in the distance separability between the vegetation species (Skidmore et al., 1988). 

As shown in Table 3.5, increasing the number of bands leads to an increase in the distance 

between the class pairs. For example, the four bands located at 892nm, 934nm, 958nm, and 

961nm show maximum JM values for the two class pairs, CP vs PA and CP vs TI. These 

maximum values (as measured using the JM distance) indicate best discrimination between 

papyrus and the two species at these selected bands. CP and EP are similar in spectra. Therefore, 

only six band combinations located at 961nm, 745 nm, 934 nm, 746 nm, 892 nm, and 958 nm 

have the acceptable separability for the class pair, CP vs EP. These six bands have the potential 

to discriminate papyrus from all its co-existing species. These numbers of bands are consistent 

with previous studies that state that the best six band combinations have the greatest potential for 

better species discrimination (Schmidt and Skidmore, 2003). The results from this distance 

analysis predict the potential of correct discrimination of papyrus from its co-existing species 

using hyperspectral remote sensing (Schmidt and Skidmore, 2003; Vaiphasa et al., 2005).   

 3.5 Conclusions 

 From this study we can conclude that:  

1. Field spectrometer measurements at canopy level can be used to discriminate Cyperus papyrus 

L. from Phragmites australis, Echinochloa pyramidalis, and Thelypteris interrupta. This implies 

that the mean spectral reflectance of Cyperus papyrus is different from the other species 

associated with it in the same ecosystem (swamp wetlands).  

2. CART can be used to considerably reduce the dimensionality and to select the most important 

bands for discriminating papyrus from the other species with a low rate of misclassification.  

3. The use of CART has revealed that the greatest discrimination power for papyrus is located in 

the red-edge and near-infrared regions, specifically at 745 nm, 746 nm, 892 nm, 932 nm, 934 

nm, 958nm, 961nm, and 989nm. This shows the importance of the red-edge and near-infrared 

regions in species discrimination, thereby confirming previous studies that found strong spectral 

variation among the vegetation species in these regions of the electromagnetic spectrum. 

4.  Although a single band located at 892 nm can discriminate Cyperus papyrus from Phragmites 

australis and Thelypteris interrupta, only six bands located at 745 nm, 746 nm, 892 nm, 934 nm, 
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958nm, and 961nm, show the potential to discriminate Cyperus papyrus from Echinochloa 

pyramidalis.   

Overall, results of this study offer the possibility of extending field measurements at 

canopy level to airborne and satellite hyperspectral sensors data for discriminating Cyperus 

papyrus in swamp wetlands in South Africa. Further studies are also necessary to investigate the 

use of more advanced models such as the RF algorithm to discriminate among papyrus and its 

co-existing species (multi-class classification).      
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CHAPTER FOUR 

 

Spectral discrimination of papyrus (Cyperus papyrus L.) and its co-existing 

species using hyperspectral data 
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Abstract 

Techniques for discriminating swamp wetland species are critical for the rapid assessment and 

proactive management of wetlands. In this study, we tested whether the RF algorithm could 

discriminate between papyrus vegetation and its co-existent species (Phragmites australis, 

Echinochloa pyramidalis, and Thelypteris interrupta) using in situ canopy reflectance spectra. 

Canopy spectral measurements were taken from the species using Analytical Spectral Devices 

but later resampled to Hyperspectral Mapper (HYMAP) resolution. The RF algorithm and a 

simple forward variable selection technique were used to identify key wavelengths for 

discriminating papyrus swamp and its co-existing species. The method yielded ten wavelengths 

located in the visible and SWIR portions of the electromagnetic spectrum with lowest out-of-bag 

estimate error rate of 9.5 % and .632+ bootstrap error of 8.95 %. The use of RF as a 

classification algorithm resulted in overall accuracy of 90.5 % and a KHAT value of 0.87, with 

individual class accuracies ranging from 93. 73 % to 100 %. Additionally, the results from this 

study indicate that the RF algorithm produces better classification results than conventional 

classification trees when using all HYMAP wavelengths (n = 126) and when  using wavelengths 

selected by the forward variable selection technique.  

 

Keywords:  Papyrus swamp. Random forest. Classification trees,   HYMAP sensor. Mapping, 

Variable selection. .632+ bootstrap. 
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4.1 Introduction   

Wetland vegetation is an important component of wetland ecosystems that play hydrological, 

ecological, and economic roles in aquatic systems (Kokaly et al., 2003; Yuan and Zhang, 2006). 

Wetland vegetation is an excellent indicator for early signs of any physical, chemical, and 

biological degradation in wetland environments (Dennison et al., 1993; Zomer et al., 2009). 

Furthermore, the distribution of wetland vegetation is an important factor influencing the feeding 

patterns and the distribution of wildlife in a wetland ecosystem. For example, in the Greater St 

Lucia Wetland Park, South Africa, papyrus (Cyperus papyrus L.) swamp forms critical habitats 

for a large number of species and several communities such as the Common Hippopotamus 

(Hippopotamus amphibious), Nile crocodile (Crocodylus niloticus), Great White Pelican 

(Pelecanus onocrotalus), and Pink-backed pelican (Pelicanus rufescen) (Grenfell et al., 2009). 

Researchers have also noted that papyrus swamps play a vital role in intercepting the materials 

moving from catchments to open water (Azza et al., 2000; Serag, 2003; Kyambadde et al., 

2004). Moreover, promising results have been obtained in using wetland species such as papyrus 

as an alternative source of fuel in many countries in central Africa, such as Rwanda (Jones, 

1983a; Muthuri and Kinyamario, 1989).  

Despite the remarkably rich biodiversity of papyrus swamps, their conservation and 

protection are a neglected issue in Africa (Owino and Ryan, 2007). As a result, human 

encroachment and intensified agricultural activities in many parts of Africa have threatened the 

existence of papyrus (Mafabi, 2000; Maclean et al., 2006; Owino and Ryan, 2007). Effective 

techniques for mapping and monitoring papyrus swamp and its co-existing vegetation species are 

therefore critical for a better understanding of the magnitude and the distribution of papyrus and 

its co-existing species at several scales (Pengra et al., 2007). However, wetland areas are 

generally difficult to map and to monitor due to poor accessibility, and sometimes they host both 

dangerous wildlife and endemic diseases (Zomer et al., 2009). Additionally, traditional methods 

available for mapping plant species require intensive fieldwork and laboratory analysis for 

measuring the biochemical and biophysical properties of vegetation species (Mutanga et al., 

2003). 

This usually results in the collection and analysis of data that are not generally 

representative of the plant population, especially if large and highly diverse areas such as 

wetlands are investigated (Mutanga et al., 2003; Lawrence et al., 2006). 
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Remote sensing potentially offers an economical and alternative method of discriminating 

amongst papyrus swamp and its co-existent vegetation species by reducing the intensive field 

sampling and laboratory analysis required by traditional mapping techniques. However, 

identifying wetland plant species is challenging using multispectral imagery due to the lack of 

spatial resolution of most of the current satellites with respect to the small and sharp vegetation 

units present in wetland environments (May et al., 1997; Harvey and Hill, 2001; McCarthy et al., 

2005). Hence, with multispectral imagery the majority of pixels are mixtures of several 

vegetation species in various proportions (Zomer et al., 2009).  Additionally, the use of broad 

spectral bands of multispectral imagery for mapping wetland species remains difficult due to the 

spectral overlap between the species, because healthy vegetation species generally exhibit similar 

spectral responses in the visible and near-infrared region due to similar and limited basic 

components that contribute to their spectral reflectance (Price, 1992; Kokaly et al., 2003). 

Furthermore, the canopy reflectance spectra of wetland vegetation are combined with reflectance 

spectra of the underlying soil and hydrologic regime (Yuan and Zhang, 2006). This combination 

usually results in a decrease in the spectral reflectance, especially in the near-to mid-infrared 

regions where water absorption is stronger (Fyfe, 2003; Silva et al., 2008). Recent advances in 

airborne imaging sensors, in particular high spectral resolution hyperspectral platforms, such as 

HYMAP, offer the potential to discriminate wetland vegetation at species level due to the 

availability of narrow spectral channels of less than 10 nm (Schmidt and Skidmore, 2003; Rosso 

et al., 2005; Vaiphasa et al., 2005; Vaiphasa et al., 2007). These narrow spectral channels permit 

an in-depth detection of detailed vegetation species which are otherwise masked by the broad 

wavebands acquired using multispectral data (Mutanga et al., 2003; Vaiphasa et al., 2005). 

However, the advantages of utilizing hyperspectral data also come with challenges in data 

processing and analysis which may lead to poor performance or even failure of the classification 

algorithm (Kavzoglu and Mather, 2002; Tsai et al., 2007). 

The discriminating of papyrus from each one of its co-existing species (binary class 

classification) at canopy level has been achieved using spectrometer measurements with a 

spectral sampling interval of less than 2 nm (Adam and Mutanga, 2009). Spectrometry (also 

known as spectroscopy) data is mostly acquired using hand-held, airborne, and spaceborne 

sensors. A hand-held spectroradiometer is an optical instrument used for measuring the spectrum 

emanating from a target in one or more fixed wavelengths in the laboratory and in the field 
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(Mutanga, 2005). Nevertheless, the current operational airborne and spaceborne sensors, such as 

HYMAP, lack fine spectral resolution (Mutanga, 2005). Therefore, it might be useful if the 

potential of specific spectral bands of these sensors in discriminating among papyrus and it co-

existing species (Multi class classification) are investigated, through resampling fine spectral 

resolution data from spectrometers to coarser spectral resolutions of the spaceborne sensors. If 

the results are positive, the mapping and monitoring of wetland plant species could be 

operational on satellite platforms. 

One of the most notable difficulties in hyperspectral data processing is the increase of data 

dimensionality, which requires sufficient training samples (Borges et al., 2007; Hsu, 2007; Tsai 

et al., 2007). Practically, in most of the hyperspectral applications the number of training 

samples (n) is limited with respect to the large number of hyperspectral bands (p) (Hsu, 2007). 

This ‘small n large p problem’ has been termed the ‘curse of dimensionality’ which leads to the 

‘peaking phenomenon’ or ‘Hughes phenomenon’ (Hsu, 2007). The ‘Hughes phenomenon’ 

introduces multi-collinearity in the input data matrix which makes the estimation of statistical 

parameters for the classifier performance inaccurate and unreliable (Kavzoglu and Mather, 2002; 

Hsu, 2007). Furthermore, computational requirements for processing large hyperspectral data 

sets might be prohibitive and time-consuming (Kavzoglu and Mather, 2002; Bajcsy and Groves, 

2004). Therefore, techniques that reduce the ‘curse of dimensionality’ without sacrificing 

significant information are highly sought and feature selection or extraction task is often 

considered to be a practical and vital method in hyperspectral data processing and analysis (Shaw 

and Manolakis, 2002; Pal, 2005; Borges et al., 2007). 

Several hyperspectral feature or band selection techniques have been proposed to reduce 

the ‘curse of dimensionality’ and to identify the optimal bands required for discriminating and 

mapping wetland species (Daughtry and Walthall, 1998; Thenkabail et al., 2002; Schmidt and 

Skidmore, 2003; Thenkabail et al., 2004; Vaiphasa et al., 2005; Vaiphasa et al., 2007). These 

methods can be classified into the wrapper or filter approaches, based on whether or not they use 

classification algorithms as part of the evaluation process (Kavzoglu and Mather, 2002). The 

wrapper approach is a feature selection algorithm that searches for the best subset of bands using 

the classification algorithm as part of the evaluation process. On the other hand, the filter 

approach evaluates subsets of bands using the training data and without direct reference to the 

classification algorithm (Kohavi and John, 1997; Kavzoglu and Mather, 2002). The filter 
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approach is computationally more efficient and has been more commonly used than the wrapper 

approach (Schmidt and Skidmore, 2003; Vaiphasa et al., 2005; Ismail et al., 2007). In the 

application of high dimensionality data such as hyperspectral data, it is recommended that the 

classification algorithm should be a part of the variable selection process (Granitto et al., 2006). 

It is therefore desirable to have an algorithm that offers direct measuring of the importance of 

variables at the same time of the classification process of hyperspectral data (Ismail, 2009). This 

method is more efficient in several respects: 1. it uses the full available training data with no 

need for a validation set, 2. the method reaches a solution faster by avoiding retraining a 

predictor from scratch for every variable subset investigated (Guyon and Elisseeff, 2003). 

Methods such as support vector machines, classification and regression trees, and neural 

networks have proved to be successful for the classification of hyperspectral data (Pal and 

Mather, 2004; Mutanga and Skidmore, 2004b; Questier et al., 2005). However, the major 

shortcomings of support vector machines, classification and regression trees, and neural 

networks is that  they lack any insight regarding the bands that best contribute to the derived 

classifier and are prone to overfitting and instability, the latter with particular reference to 

classification and regression trees (Archer and Kimes, 2008). Alternatively, RF (Breiman, 2001) 

is a bagging (bootstrap aggregation) operation where multiple classification trees are constructed 

based on a random subset of samples derived from the training data. The multiple classification 

trees then vote by plurality on the correct classification (Breiman, 2001; Lawrence et al., 2006). 

Researchers have shown that this process decreases the correlation between the trees in the forest 

and yields an ensemble with low bias and low variance (Díaz-Uriarte and de Andrés, 2006; 

Archer and Kimes, 2008). Therefore, RF has many advantages over conventional classification 

tree-based approaches (Breiman, 2001). The stopping rules and pruning of trees is not necessary, 

and the approach has been shown to be robust to overfitting (Lawrence et al., 2006). Overall,  RF 

is relatively easy to implement when compared to the other ensemble classification methods and 

requires the user to specify only the (i) number of trees to be grown (ntree) and (ii)  number of 

variables to split the nodes of individual trees (mtry) (Díaz-Uriarte and de Andrés, 2006).  More 

importantly, studies have shown that RF can be successfully used for feature selection as well as 

for classification purposes (Svetnik et al., 2003; Hamza and Larocque, 2005; Díaz-Uriarte and de 

Andrés, 2006; Granitto et al., 2006; Han et al., 2007; Archer and Kimes, 2008). However, only a 
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few remote sensing studies have applied RF for feature selection and classification of 

hyperspectral data (Lawrence et al., 2006; Chan and Paelinckx, 2008; Ismail, 2009). 

Therefore, this study intends to investigate whether RF and canopy reflectance spectra 

resampled to HYMAP spectral resolution can discriminate amongst papyrus and its co-existing 

species in The Greater St Lucia Wetland Park. More specifically, the objectives of the study 

were to 1. Examine the utility of the RF wrapper based approach for selecting the optimal 

number of hyperspectral wavebands in a multiclass application, 2. Examine if the RF algorithm 

can accurately classify papyrus and its co-existent species in complex environments, where the 

vegetation classes have similar spectral characteristics and are affected by the underlying soils 

and hydrological regime, and 3. Examine the robustness of the RF algorithm in an application 

where the number of samples are less than the number of variables (p) (i.e., n < p). 

4.2 Materials and methods 

4.2.1 Spectral data acquisition and processing  

Random points were generated on a land cover map that was derived from Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) imagery. The sample points were 

subsequently uploaded into a GPS and used to navigate to the field sites i.e.  Futululu Park, and 

the Mfabeni and Mkuzi swamps. Purposive sampling was done when the random point was not 

accessible, or to increase the variation of reflectance measurements. Once the sample site was 

located, a 3 m by 3 m vegetation plot was created to cover a homogenous area of the papyrus 

swamp or its co-existing species, and then the canopy spectral reflectance was measured. 

All the spectral measurements were collected in December 2009 between 10:00 am and 

02:00 pm under sunny and cloudless conditions using the Analytical Spectral Devices (ASD) 

FieldSpec® 3 spectrometer. The  spectrometer measures wavelengths ranging from 350 nm to 

2500 nm with a sampling interval of 1.4 nm for the 350 nm to1000 nm spectral region, and a 2.0 

nm sampling interval for the 1000 nm to 2500 nm spectral region. The ASD has a spectral 

resolution of between 3 nm and 10 nm (ASD Analytical Spectral Devices Inc., 2005). A white 

reference spectralon calibration panel was used every 5 to 10 measurements to offset any change 

in the atmospheric condition and irradiance of the sun. Accompanying the field spectral 

measurements, metadata such as the sites’ description (coordinates, altitude, and land cover 
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class) and general weather conditions were also recorded (Milton et al., 2009). Approximately 20 

to 25 field spectrometer measurements were randomly taken at nadir from 1 m using a 5o field of 

view (Table 4.1). This resulted in a ground field of view of about 18 cm in diameter, which was 

large enough to cover a cluster of papyrus and its co-existing species and reduce the background 

effects caused by soil and water (Mutanga et al., 2004). These spectral measurements were then 

averaged to obtain the final spectral measurement for each vegetation plot.  

Table 4.1:  The number of sample plots and the total number of spectral measurements collected 

for papyrus and its associated species 

Species name Type code Number of plots Number of measurements 

Cyperus papyrus CP 55 1240 

Phragmites australis PA 53 1166 

Echinochloa pyramidalis EP 56 1288 

Thelypteris interrupta TI 51 1130 

 

The spectral measurements from each of the wetland species (n = 4) were resampled to 

HYMAP spectra using ENVI 4.3 image processing software (Figure 4.1).   The method used a 

Gaussian model with a full width at half maximum (FWMAP) equal to the band spacing 

provided (Mutanga, 2005). HYMAP is an airborne hyperspectral imaging spectrometer, 

comprising 126 wavelengths, operating over the spectral range between 436.5 nm – 2485 nm, 

with average spectral resolutions of 15 nm (437 nm -1313 nm), 13 nm (1409 nm – 1800 nm), and 

17 nm (1953 nm – 2485 nm) (Cho et al., 2007) . The spectral reflectance was resampled because 

the current operational airborne and spaceborne sensors such as HYMAP lack the fine spectral 

resolution of the ASD spectral reflectance (Mutanga, 2005). Additionally, in view of the current 

availability of airborne sensors in South Africa, it is of interest if the specific spectral bands of 

these sensors can discriminate between papyrus swamp and its co-existing species. If the results 

are positive, the mapping and monitoring of wetland plant species could be operational on 

airborne hyperspectral platforms. 



67 

 

 

Figure 4.1. Mean canopy reflectance of resampled HYMAP data for Cyperus papyrus L. and its 

co-existing species: (Echinochloa pyramidalis, Phragmites australis, and Thelypteris interrupta).  

4.2.2 Data analysis 

4.2.2.1 Variables importance using the random forest algorithm 

Random forest calculates three-variables importance measures, namely, the number of times 

each variable is selected, the Gini importance, and the permutation accuracy importance measure 

(Strobl et al., 2007). The permutation of the variables, however, is considered to be the most 

advanced measure because of its ability to evaluate the variable importance by the mean decrease 

in accuracy using the internal out-of-bag (OOB) estimates while the forests are constructed  

(Breiman, 2001; Lawrence et al., 2006; Strobl et al., 2007). 

 In this study, we adopted the out-of-bag method to calculate the importance of a specific 

predictor variable (in our case wavelengths) in discriminating papyrus swamp and its co-existent 
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species (Cutler et al., 2007; Archer and Kimes, 2008; Chan and Paelinckx, 2008).The importance 

of each variable (n =126) used in this study was calculated based on how much worse the 

classification accuracy (mean decrease in accuracy) would be if that variable (wavelength) was 

permuted randomly (Prasad et al., 2006). The importance of each variable is estimated in  the 

following steps (i) the reflectance values of each wavelength is  randomly permuted for the OOB 

samples, and then this modified OOB data are passed down each tree to get new predictions, (ii) 

the difference between the misclassification rate for the modified and original OOB data over all 

the trees that are grown in the forest are then averaged, (iii)  this average is a measure of the 

importance of the variables and it is used as a ranking index which can be used to identify the 

wavelengths with relatively large importance in the classification process (Cutler et al., 2007; 

Archer and Kimes, 2008; Chan and Paelinckx, 2008). 

The optimization of the two parameters (ntree and mtry) of the RF algorithm is necessary 

to guarantee high accuracy of classification. In this regard, the big number of trees (ntree) is 

recommended to ensure that every input feature gets predicted several times (Kim et al., 2006). 

We therefore optimized the ntree by using different values based on out-of-bag estimates of error 

(Liaw and Wiener, 2002). We also optimized the mtry number by trying all possible values (the 

default number is the square root of the number of variables). The RF library developed in R 

statistical software (R Development Core Team, 2007) was used to implement the RF algorithm.  

4.2.2.2 Forward variable selection using the random forest algorithm 

 Although RF provides a measure of variables importance, it does not automatically choose the 

optimal number of variables that yield the best classification accuracy. The question therefore 

remains: What is the optimal number of wavelengths that can yield the smallest misclassification 

error rate? In this regard, we implemented a simple forward variable selection (FVS) method to 

identify the optimal subset of wavelengths with the lowest misclassification error.  The FVS 

method uses the ranking of wavelengths as determined by the RF algorithm. The FVS method 

iteratively builds multiple random forests using the ranked wavelengths, and for each iteration 

five wavelengths were added to the model, and the error was calculated using OOB estimates 

error. Initially, the top five ranked wavelengths are selected and for the next iteration, the top 10 

ranked wavelengths are selected. This process was repeated for the maximum amount of 

variables used in this study (n = 126). To validate the results from the OOB estimate error, we 
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carried out a .632+ bootstrap method (n =100) (Díaz-Uriarte and de Andrés, 2006; Ismail, 2009). 

The .632+ bootstrap method uses a weighted average of the resubstitution error (the error when 

the RF classifier is applied to the training data) and the error on samples not used to train the 

predictor (the ‘leave-one-out’ error) (Díaz-Uriarte and de Andrés, 2006). The optimal subsets of 

wavelengths that yielded the smallest error rate as determined by the OOB method and .632+ 

bootstrap method were then used for classifying papyrus and its co- existent species. 

4.2.2.3 Classification and accuracy assessment  

  It has been reported that, with the RF algorithm, it is not necessary to have cross validation or a 

separate accuracy assessment data set, because the OOB error provides an unbiased estimate of 

error (Lawrence et al., 2006; Prinzie and Van den Poel, 2008). Therefore we used OOB to 

estimate the misclassification error. The confusion matrix was subsequently constructed to 

compare the true class with the class assigned by the classifier and to calculate the overall 

accuracy as well as the user and producer accuracy.  Furthermore, a discrete multivariate 

technique called kappa analysis that uses the k (KHAT) statistic was also calculated to determine 

if one error matrix is significantly different from another (Cohen, 1960). This statistic serves as 

an indicator of the extent to which the percentage of correct values of an error matrix are due to 

the actual agreement in the error matrix and the chance agreement that is indicated by the row 

and column totals (Congalton and Green, 1999). If the KHAT coefficients are one or close to one 

then there is perfect agreement.  

We also used the .632+ bootstrap method (n = 100) to estimate the misclassification error 

rate of the RF algorithm (Díaz-Uriarte and de Andrés, 2006; Granitto et al., 2006). The .632+ 

bootstrap method was also applied to compare the error rate of RF with classification tree 

algorithms as an alternative method using the same data set. We used the ‘errorest library’ 

(Peters et al., 2002) from the R statistical software (R Development Core Team, 2007) to 

calculate the .632+ bootstrap error. 
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4.3 Results  

4.3.1 Effects of random forest input parameters on misclassification error 

Before examining variable selection, it was essential to evaluate the effect of the user defined 

parameters (mtry and ntree) on the misclassification error. Figure 4.2 shows that the default 

setting of mtry (n = 11) proved to be the best choice in terms of the OOB error rate (11. 5 %). 

When examining the ntree parameter, results showed that the OOB error rates were relatively 

stable after 6000 trees (Figure 4.3), and we therefore used the default mtry and 6000 trees for 

ntree for all the further analyses. 
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Figure 4.2.  The effect of the number of variables tried at each split (mtry) on the performance of 

RF using the OOB estimate of error.  
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Figure 4.3. The effect of the number of trees (ntree) parameter on the performance of random 

forest using the OOB estimate of error (%).  

4.3.2 Variables selection using the OOB method 

All the resampled HYMAP wavelengths (n = 126) were used as input variables into the RF 

algorithm (default mtry value of 11 and 6000 trees (ntree). The RF algorithm yielded an OOB 

error rate of 11.5 % for the entire model. The mean decrease in accuracy as calculated by the 

OOB sample was then used to rank the wavelengths. Figure 4.4 shows the importance of all 

wavelengths as calculated by the RF algorithm. Results showed that the wavelengths with the 

highest mean decrease in accuracy are located predominately in the short wave infrared region 

(i.e.1409 nm and 1424 nm) and the visible region (i.e.710 nm and 437 nm). Additional important 

wavelengths are located between 437 nm and 710 nm.  
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Figure 4.4. Variables importance as determined by the RF algorithm. The important 

wavelengths are those with the highest mean decrease in accuracy.  

4.3.3 Forward variables selection method (FVS) 

Figure 4.5 shows that the lowest misclassification rate as determined by both the .632+ bootstrap 

method (8.95 %) and the OOB method (9.5 %) is obtained when using 10 wavelengths located at 

1409 nm, 710 nm, 437 nm, 464 nm, 452 nm,1424 nm,725 nm,480 nm, 587 nm, and 603 nm (the 

ranking is based on the importance measures).  Using all wavelengths (n = 126) yielded a .632+ 

bootstrap error of 9.19 % and an OOB error estimate of 11.5 %. It is interesting to note that the 

OOB and the .632+ bootstrap error rates follow a similar trend (Figure 4.5). The top 10 bands 

were then used as input variables into the final RF model to classify papyrus swamp and its co-

existent species. 
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Figure 4.5. The forward variable selection method for identifying the optimal subset of 

wavelengths based on the OOB and .632+ bootstrap error estimates. The best subset of 

wavelengths with the lowest error rate is shown by the black arrow.  

4.3.4 Classification and accuracy assessment 

the results as shown in Table 4.2 indicate that the overall OOB error rate for all the classes was 

9.5% using the ten wavelengths selected by the FVS method compared to the 11.5% obtained 

when all the wavelengths (n = 126) were used.  For discriminating individual species, the 

confusion matrix shows that the Phragmites australis class has the lowest error rate (96 %), 

while the Echinochloa pyramidalis class has the highest error rate (86 %). Following the 

calculation of the overall OOB estimate of error, we subsequently used the confusion matrix 

shown in Table 4.2 to examine the error rate between papyrus and its co-occurring species. We 

examined the classification of each species (i.e. Cyperus papyrus, Echinochloa pyramidalis, 

Phragmites australis and Thelypteris interrupta) with every other species (Table 4.3). 
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Table 4.2: The confusion matrix showing the overall classification accuracy for Cyperus 

papyrus L. (CP),  Echinochloa pyramidalis (EP), Phragmites australis (PA) and  Thelypteris 

interrupta (TI). 

 CP EP PA TI Class accuracy (%) 

CP 45 1 1 3 90 

EP 2 43 2 3 86 

PA 1 1 48 0 96 

TI 3 2 0 45 90 

                                                                                           Overall  classification accuracy = 90.5% 

 

Table 4.3 shows that the classification between the class pair of Phragmites australis and 

Thelypteris interrupta has a classification accuracy of 100%. The selected wavelengths (n = 10) 

also yielded a high classification accuracy between Cyperus papyrus and Thelypteris interrupta 

(97.89%) and Echinochloa pyramidalis (96.7%), and between Cyperus papyrus and Phragmites 

australis (93.75 %).  Thelypteris interrupta appears to be unique amongst the other species based 

on the highest classification accuracy (94.62 % to 100 %) obtained. The overall classification 

accuracy obtained for all classes was 90.5 %. Table 4.3 also presents an overall KHAT value of 

0.87 which indicates that there is strong agreement between the observations and the model 

predictions.  
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Table 4.3:  The confusion matrix showing the classification error obtained for discrimination 

amongst all possible species combinations (n = 6). Cyperus papyrus (CP), Echinochloa 

pyramidalis (EP), Phragmites australis (PA), and Thelypteris interrupta (TI) . The confusion 

matrix includes the accuracy between classes (ACC), the KHAT statistic, producer accuracy 

(PA), and user accuracy (UA) 

Classes ACC 
% 

KHAT PA % UA % Row 
totals 

Column 

totals 

   Presence Absence Presence Absence   

CP vs EP 96.70 0.93 95.74 97.73 97.83 95.56 91 91 

CP vs TI 97.89 0.96 97.83 97.96 97.83 97.96 95 95 

CP vs PA 93.75 0.88 93.75 93.75 93.75 93.75 96 96 

EP vs PA 96.81 0.94 97.73 96.00 95.56 97.97 94 94 

EP vs TI 94.62 0.89 95.56 93.75 93.48 95.74 93 93 

PA vs TI 100.00 1.00 100.00 100.00 100.00 100.00 93 93 

All classes 90.50 0.87 88.24 91.49 90.00 86.00 200 200 

     

We used the .632+ bootstrap method to compare the performance of the RF algorithm 

against the widely used classification trees (CT) algorithm (Harb et al., 2009; Ismail and 

Mutanga, 2009). The results of performance assessments are shown in Figure 4.6 for both 

machine learning methods using different subsets of wavelengths. It is clear, over a range of 

different subsets of wavelengths used, the overall misclassification error rates obtained by the RF 

algorithm are much lower than the misclassification error rates obtained by the CT algorithm. It 

is interesting that the use of the top 10 wavelengths (1409 nm, 710 nm, 437 nm, 464 nm, 452 nm, 

1424 nm, 725 nm, 480 nm, 587 nm, and 603 nm) yielded the lowest misclassification error rate 

for both the CT algorithm (15.05 %) and RF (9.5 %) and that the highest misclassification error 

was obtained using the top 5 wavelengths for the RF algorithm (11.74 %) and CT (18.56 %). 

We also used the confusion matrix to compare the KHAT values and overall accuracy 

between the two machine learning methods. Table 4.4 shows that the RF model produces better 

overall accuracy and KHAT value compared to classification trees algorithm for all HYMAP 
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wavelengths and the top 10 wavelengths. The overall accuracy and KHAT values for the RF 

algorithm were 90.5 % and 87 %, and for the CT algorithm were 84.5 % and 80 % respectively 

when the top 10 wavelengths were used. The RF algorithm also yielded better classification 

accuracy (88.44%) than the CT algorithm (80.47%) when the full data set (126 wavelengths) was 

used.  
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Figure 4.6. Comparison between the performance of the random the forest algorithm (RF) and 

the  classification tree algorithm (CT) using different subsets of wavelengths selected by RF. The 

misclassification error rate was estimated using the .632+ bootstrap (n= 100). 
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Table 4.4: The misclassification error for both machine learning models (RF and CT) using the 

.632+ bootstrap method for error estimates and the accuracy assessments using the top 10 

wavelengths selected by the RF algorithm and a full data set (126 wavelengths). 

Algorithm Top 10 wavelengths Full data set 

 Misclassification 
error % 

Overall 

Accuracy 

KHAT 

% 

Misclassification 
error 

Overall 

accuracy 

KHAT 

% 

RF 8.95 90.5 87 9.19 88.44 85 

CT 12.05 84.5 80 13.75 80.47 78 

 

4.4 Discussions 

This study tested the utility of field spectrometry data resampled to HYMAP resolution and the 

RF algorithm for variables selection and classification of Cyperus papyrus and its co-existent 

species (Phragmites australis, Echinochloa pyramidalis, and Thelypteris interrupta) located in 

the St Lucia Wetlands Park, South Africa.  

Overall, the results obtained in this study show the benefit of using the RF algorithm for 

identifying key wavelengths as well as for producing excellent classification results.  

Additionally, results show that when optimizing the RF algorithm the default setting of mtry (in 

our case mtry = 11) is sufficient. These results are identical to those of Díaz-Uriarte and de 

Andrés (2006) and Liaw and Wiener (2002) who indicated the insensitivity of RF to the choice 

of mtry and found that the highest accuracy can be achieved by using a large number of trees. 

With this range of capabilities, RF offers powerful alternatives to traditional parametric and 

semi-parametric statistical methods for the analysis of hyperspectral data. 

However, the limitation of the RF algorithm was that it does not automatically choose the 

optimal number of variables that could yield the lowest error rate.  The FVS method used in this 

study provided the optimal numbers of important variables (n = 10) that offer the lowest 

misclassification error rate. Results show that the full HYMAP data set (n=126) produced an 

overall accuracy of 88.44 % and a KHAT value of 0.85 compared to when the selected 

wavelengths (n = 10) were used producing an overall accuracy of 90.5 % and a KHAT value of 
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0.87. Using the selected wavelengths produced a 2 % increase in classification accuracies. These  

results obtained are comparable to those of Lawrence et al. (2006) who found that  using a  full 

data set of Probe-1 (128 bands) with the RF algorithm in classifying two invasive species 

produced lower overall accuracy than when the data set was reduced. These results emphasize 

the assertion that, in the model-based analysis, the increase of hyperspectral bands could lead to 

a decrease in the classification accuracy because the noise in the redundant data propagates 

through the classification model (Benediktsson et al., 1995; Bajcsy and Groves, 2004).Therefore, 

the use of large and redundant numbers of hyperspectral bands (in our case n = 126) has resulted 

in lower classification accuracy (overall accuracy 88.44 %) and (OOB estimate error 11.5 %) 

than processing a subset of relevant bands (in our case n = 10) without redundancy (overall 

accuracy 90.5 %) and OOB estimate error (9.5 %). Overall, the result shows the excellent 

performance of the FVS method in dimensionality reduction without sacrificing significant 

spectral information. 

Previous studies that have classified wetland vegetation using remotely sensed data have 

shown the relative importance of the visible infrared (VIS) and short wave infrared (SWIR) in 

discriminating wetland species (Daughtry and Walthall, 1998; Schmidt and Skidmore, 2003; 

Thenkabail et al., 2004; Vaiphasa et al., 2005).  Similarly, the ten wavelengths selected in this 

study (1409 nm, 710 nm, 437 nm, 464 nm, 452 nm, 1424 nm, 725 nm, 480 nm, 587 nm, and 603 

nm) emphasized the potential usefulness of the visible region and SWIR even at a coarser 

HYMAP spectral resolution in discriminating the wetland species . However, the results 

produced higher classification accuracies when compared to research carried out by Pengra et al. 

(2007) who achieved an overall accuracy of 81.4 % for mapping Phragmites australis using EO-

1 Hyperion hyperspectral sensor. In this study we obtained a classification accuracy of 96% for 

Phragmites australis. However, it should be noted that the results of this study are based on 

resampled HYMAP data. Noise in the blue part of the spectrum and atmospheric absorption, 

especially around the selected bands (1409 nm and 1424 nm) might present some problems when 

upscaling the results to an airborne platform. We believe that the techniques used in this study 

should receive considerable additional testing with other airborne or spaceborne data. 

Nevertheless, the results from this study demonstrate the possibility of hyperspectral data to map 

papyrus and its co-existent species in swamp wetlands.  
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We compared the utility of the RF algorithm against the widely used tree-based ensemble 

classifier (classification trees algorithm) using the .632+ bootstrap estimate error. Our evaluation 

criteria included accuracy assessment using all HYMAP wavelengths and wavelengths selected 

by RF. In these experiments, we found that the RF algorithm obtained higher overall 

classification accuracy than the CT algorithm for all the wavelengths and selected wavelengths. 

The results obtained in this study are consistent with those of Hamza and Larocque (2005) and 

Pal (2005) who showed that the RF algorithm achieves the best classification accuracy compared 

to other ensemble methods that use tree classifiers as the base model. It is also interesting to note 

that wavelengths selection by RF (n = 10) produced lower misclassification error (12.05 %) for 

the CT algorithms than other different subsets of HYMAP wavelengths (Figure 4.6). This result 

emphasizes the robustness and reliability of RF as a variables selection method and for 

producing the best classification accuracy.  

4.5 Conclusions 

This paper aimed at discriminating Cyperus papyrus, Phragmites australis, Echinochloa 

pyramidalis, and Thelypteris interrupta located in the   Greater St Lucia Wetlands Park, South 

Africa, using RF and field spectrometry data resampled to HYMAP sensor.  

Our results have shown that: 

1. The proposed method for variables selection was able to provide small sets of non-redundant 

wavelengths while preserving highest classification accuracy.  

The study demonstrated the possibility to scale up the method to airborne sensors such as 

HYMAP for discriminating swamp wetland species with an overall accuracy of 90.5 %. We 

believe that the techniques used in this study should receive considerable additional testing with 

other airborne or spaceborne data.  

2. Based on relatively high accuracy, low cost (availability of R statistics package is free of 

charge), simplicity, and few parameters to be set, RF algorithms can be considered as a new 

approach for the analysis of hyperspectral data.   

Overall, the results from this study have revealed that RF algorithm is a robust and accurate 

method for the combined purpose of variables selection and for the classification of 

hyperspectral data in an application where (i) the number of samples is limited (n < p), and 

where (ii) vegetation species have similar spectral characteristics affected by underlying wet soil 



80 

 

and hydrology regime. However, further studies are necessary for testing the stability and 

reliability of the internal assessment of accuracy (OOB) in the RF algorithm using an 

independent accuracy assessment data set. Given the problem of soil and water background 

affecting the spectral reflectance of papyrus and other species, it would be useful if the use of 

vegetation indices in discriminating these species is further investigated in future studies.   
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Improving spectral discrimination of papyrus (Cyperus papyrus L.) and its co-

existing species using narrow band vegetation indices 
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Abstract  

Recent advances in hyperspectral remote sensing provide opportunities to discriminate and map 

wetland plant species. The shortcoming of individual spectral bands for discriminating wetland 

plant species is their limited spectral information which might be inadequate for characterizing 

the spectral reflectance of wetland vegetation which is highly correlated and combined with the 

reflectance spectra of the underlying wet soil and hydrologic regime. The objective of this study 

is to evaluate the potential of hyperspectral vegetation indices for improving the spectral 

discrimination of papyrus and three co-existing species in the Greater St Lucia Wetland Park- 

South Africa.  In situ canopy reflectance measurements ranging from 350 nm to 2500 nm were 

taken from papyrus and the three co-existent species using an analytical spectral devices 

spectrometer. We calculated the  normalized difference vegetation index (NDVI) and a simple 

ratio (SR) involving all possible two-band combinations of the 20 most important bands as 

determined by the RF algorithm. In addition, we evaluated a number of hyperspectral indices (n 

= 48) that were previously demonstrated to estimate plant parameters such as biomass, leaf area 

index (LAI), chlorophyll a and b, and nitrogen concentration.  An analysis of variance and a 

simple forward variable selection technique were used to select optimal vegetation indices that 

showed the highest potential to discriminate between the wetland species. Three of the optimal 

vegetation indices were previously published in the literature (Plant Senescence Reflectance 

Index, Blue/Green Index 1, and Pigment Index 4) while the other two optimal indices were 

obtained from the modified NDVIs involving a combination of a narrow band in the red portion 

(655 nm) with two wavelengths in the red-edge position (697 nm and 705 nm).  Finally, the RF 

algorithm was used to classify the species using the optimal indices. An overall accuracy of 96% 

was obtained using the out-of-bag data with individual class accuracies ranging from 93.7 % to 

100 %. Our results clearly indicate that: 1. hyperspectral indices might offer new possibilities of 

discriminating plant species, and 2. the out-of-bag data, as an internal estimate of accuracy in the 

RF algorithm, provide a reliable and stable accuracy assessment so it might be unnecessary to 

have independent accuracy assessment data when using the RF algorithm.  

Keywords: Field spectrometer measurements. Papyrus. Random forest. Vegetation indices. 

Variable selection. Wetland vegetation.  
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5.1 Introduction 

Mapping and monitoring wetland species such as papyrus (Cyperus papyrus L.) are key 

requirements for a better understanding of the functions and dynamics of wetland ecosystems 

and are also critical for effective and sustainable management of wetlands (Schmidt and 

Skidmore, 2003; Zomer et al., 2009). Quantitative, accurate, and repeatable techniques for 

discriminating wetland vegetation at species level in large areas are therefore of self-evident 

importance (Mutanga et al., 2003; Belluco et al., 2006; Lawrence et al., 2006). Traditional 

survey methods such as hand mapping and Global Positioning Systems (GPS) receiver mapping 

have proven to be highly accurate for small management areas (Cooksey and Sheley, 1997). 

However, these methods require intensive fieldwork ,including taxonomical information, 

collateral and ancillary data analysis, and the visual estimation of percentage cover for each 

species, which might be economically, technically, and logistically inadequate for wetland 

environments because of their high diversity and poor accessibility (Xie et al., 2008; Zomer et 

al., 2009).  

Hyperspectral remote sensing provides opportunities to discriminate and map wetland 

vegetation at species level due to the availability of narrow spectral channels of less than 10 nm 

(Schmidt and Skidmore, 2003; Rosso et al., 2005; Vaiphasa et al., 2005; Belluco et al., 2006; 

Vaiphasa et al., 2007; Zomer et al., 2009). These narrow bandwidth data permit an in-depth 

detection of detailed vegetation species which could otherwise be masked when using the broad 

wavebands of the Landsat TM or SPOT sensors (May et al., 1997; Harvey and Hill, 2001; 

McCarthy et al., 2005). However, while the high spectral resolution of hyperspectral data 

facilitates accurate detection and identification, the high dimensionality of the data causes 

substantial problems in analysing and processing complexity (Demir and Ertürk, 2008). 

Additionally, redundancy in the hyperspectral data exists due to strong correlation between 

adjacent spectral bands (Jiang et al., 2004). The calculation of narrow band vegetation indices 

offers a suitable method to overcome the problems of high dimensionality and redundancy in the 

hyperspectral data (Andrew and Ustin, 2006).   

 Additionally, the use of hyperspectral technology for discriminating wetland plant species 

is challenging because the reflectance spectra of wetland vegetation canopies, especially in the 

visible and near-infrared region, are highly correlated  due to their similar biochemical and 

biophysical properties (Price, 1992; Kokaly et al., 2003; Adam and Mutanga, 2009). 
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Furthermore, when these properties are combined with reflectance spectra of the underlying soil 

and hydrologic regime (Yuan and Zhang, 2006), there is a decrease in the spectral reflectance, 

especially in the near- to mid-infrared regions where water absorption is relatively stronger 

(Fyfe, 2003; Silva et al., 2008). Therefore, information in a single spectral band might be 

inadequate to characterize the vegetation properties or to identify the factors affecting their 

spectral reflectance (Zhao et al., 2007). 

 In the past three decades, several spectral vegetation indices (VIs) have been developed to 

provide more sensitive measurements of plant biophysical parameters such as biomass, LAI, 

water content, and chlorophyll (Green et al., 1997; Sims and Gamon, 2002; Mutanga and 

Skidmore, 2004a; Stimson et al., 2005; Zhao et al., 2007; Darvishzadeh et al., 2008; Xue and 

Yang, 2009) to reduce external noise interferences such as those related to soil, atmosphere 

condition, and sun view angles (Mutanga and Skidmore, 2004a) and to enhance the variability of 

spectral reflectance of vegetation (Qi et al., 1995; Haboudane et al., 2002; Cho et al., 2008). 

These VIs were developed mathematically based either on narrow band spectral data or broad 

band sensor such as Landsat TM and SPOT. Studies have shown that these VIs provide more 

highly correlated relationships with vegetation properties than individual bands (Tanriverdi, 

2006).     

The normalized difference vegetation index (NDVI) (Tucker, 1979), and simple ratio (SR) 

( Maxwell, 1976)  are the most commonly used broad band indices in correlating remote sensing 

observations with the characteristics of vegetation (Zhao et al., 2007; Cho et al., 2008). NDVI 

calculation is based on the contrasting intense chlorophyll absorption in the red (670 to 680 nm) 

against the high signal in the near-infrared wavelength (750 nm to 850 nm) due to light scattering 

by leaves (Mutanga and Skidmore, 2004a; Cho et al., 2008). NDVI calculated from broad band 

sensors has been found useful in classifying wetlands at coarse levels (Johnston and Barson, 

1993) and estimating biomass (Tan et al., 2003) and LAI of wetland vegetation (Green et al., 

1997). However, attempts to discriminate vegetation species have not been possible because they 

produce similar NDVI values (Nagendra, 2001). Furthermore, the limitation of standard 

vegetation indices constructed with red and near-infrared spectral measurements, particularly 

NDVI, is that they yield poor estimates after a certain biomass density or LAI due to the 

saturation problem (Mutanga and Skidmore, 2004a). 
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Hyperspectral indices, on the other hand, have been shown to be significantly correlated 

with biochemical and physiological properties of vegetation canopies and leaves. The 

concentrations of these biochemical and physiological properties depend on factors such as 

phenology, degree of canopy development, and type of environment stress (Cho et al., 2008). 

Therefore, the difference in physiological concentrations of vegetation can be another source of 

variation in plant spectral signatures (Best et al., 1981; Silva et al., 2008). Because hyperspectral 

indices developed in the visible and near-infrared region respond to these differences in 

physiological status and environmental factors (Silva et al., 2008), therefore, it might offer the 

possibility to map plant species or communities depending on their differences in canopy 

structures and biochemical compositions (Nagendra, 2001; Cho et al., 2008).  

Studies involving variation in plant spectral signatures based on different phenological 

stages and physiological and biochemical concentrations have been conducted in a single species 

or plant community and have not been carried out between different plant species and 

communities (Best et al., 1981; Mutanga et al., 2003). Most of these studies investigated the use 

of the novel spectral indices derived from leaf scale measurements and have rarely the indices 

examined for species discrimination (Cho et al., 2008). The canopy spectra indices have shown 

better plant species discrimination as compared to leaf spectra indices using visible and near-

infrared wavelengths (400 nm to 900 nm) (Cho et al., 2008).   

 Methods such as support vector machines, classification and regression trees, and neural 

networks have proved to be successful for the classification of hyperspectral data (Pal and 

Mather, 2004; Mutanga and Skidmore, 2004b; Questier et al., 2005). However, the major 

shortcomings of support vector machines, classification and regression trees, and neural 

networks is that  they lack any insight regarding the bands that best contribute to the derived 

classifier and are prone to overfitting and instability, the latter with particular reference to 

classification and regression trees (Archer and Kimes, 2008). Alternatively, the RF algorithm 

(Breiman, 2001) is a bagging (bootstrap aggregation) operation where multiple classification 

trees are constructed based on a random subset of samples derived from the training data. The 

multiple classification trees then vote by plurality on the correct classification (Breiman, 2001; 

Lawrence et al., 2006). Researchers have shown that this process decreases the correlation 

between the trees in the forest and yields ensemble with low bias and low variance (Díaz-Uriarte 

and de Andrés, 2006; Archer and Kimes, 2008).  Therefore, the RF algorithm has many 
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advantages over conventional classification tree-based approaches (Breiman, 2001). The 

stopping rules and pruning of trees is not necessary, and the approach has been shown to be 

robust to overfitting (Lawrence et al., 2006). Overall, the RF algorithm is relatively easy to 

implement when compared to the other ensemble classification methods and requires the user to 

specify only the (i) number of trees to be grown (ntree) and (ii)  number of variables to split the 

nodes of individual trees (mtry) (Díaz-Uriarte and de Andrés, 2006).  More importantly, studies 

have shown that RF can be successfully used for feature selection as well as for classification 

purposes (Svetnik et al., 2003; Díaz-Uriarte and de Andrés, 2006; Granitto et al., 2006; Han et 

al., 2007; Archer and Kimes, 2008). However, only a few remote sensing studies have applied 

the algorithm for feature selection and classification of hyperspectral data (Lawrence et al., 

2006; Chan and Paelinckx, 2008; Adam et al., 2009; Adam et al., In press). 

Therefore, the objective of this study was to explore the performance of various 

hyperspectral vegetation indices derived from canopy scale measurements in discriminating 

papyrus and three other co-existent species. We selected and computed band ratios which have 

been widely and successfully used in vegetation studies (Mutanga and Skidmore, 2004a). We 

examined narrow band NDVI and SR involving all possible two-band combinations of the top 20 

bands measured with the RF algorithm. Some of the existing hyperspectral indices (n = 48) that 

were previously demonstrated to estimate plant parameters such as biomass, LAI, chlorophyll a 

and b, and nitrogen concentration were also considered. Further, we tested the reliability of the 

internal accuracy assessment of the RF algorithm using an independent accuracy assessment data 

set. 

5.2 Materials and methods 

5.2.1 Canopy spectral measurements  

      Random points were generated on a land cover map that was derived from Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. The sample points 

were subsequently uploaded into a GPS and used to navigate to the field sites i.e.  Futululu Park, 

and the Mfabeni and Mkuzi swamps. Once the sample site was located, a 3 m by 3 m vegetation 

plot was created to cover a homogenous area of the papyrus swamp or its co-existing species, 

and canopy spectral reflectance was then measured.  



87 

 

       All the spectral measurements were collected in December 2009 between 10:00 am and 

02:00 pm under sunny and cloudless conditions using the Analytical Spectral Devices (ASD) 

FieldSpec® 3 spectrometer. The spectrometer measures wavelengths ranging from 350 nm to 

2500 nm with a sampling interval of 1.4 nm for the 350 nm to1000 nm spectral region, and 2.0 

nm sampling interval for the 1000 nm to 2500 nm spectral region. The ASD has a spectral 

resolution between 3 and 10 nm (ASD Analytical Spectral Devices Inc., 2005). A white 

reference spectralon calibration panel was used every 5 to 10 measurements to offset any change 

in the atmospheric condition and irradiance of the sun. Accompanying the field spectral 

measurements, metadata such as the sites’ description (coordinates, altitude, and land cover 

class) and general weather conditions were also recorded (Milton et al., 2009). Approximately 20 

to 25 field spectrometer measurements were randomly taken at nadir from 1 m and using a 5o 

field of view (Table 5.1). This resulted in a ground field of view of about 18 cm in diameter, 

which was large enough to cover a cluster of papyrus and its co-existing species and reduce the 

background effects caused by soil and water (Mutanga et al., 2004).  These spectral 

measurements were then averaged to obtain the final spectral measurement for each vegetation 

plot.  

Table 5.1: The number of sample plots and the total number of spectral measurements collected 

for papyrus and its associated species 

Species name Type code Number of plots Number of measurements 

Cyperus papyrus CP 82 1476 

Phragmites australis PA 83 1328 

Echinochloa pyramidalis EP 86 1688 

Thelypteris interrupta TI 80 1130 

 

We randomly divided the spectral data for each species into two equal data sets (Lawrence 

et al., 2006), and the models were developed using one-half of the data (n = 40), while the 

withheld half of the data (n = 40) was used for an independent accuracy assessment. 
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5.2.2 Vegetation indices calculation 

Two types of hyperspectral indices were tested in this study: 1. Hyperspectral indices that were 

previously demonstrated to estimate plant parameters such as biomass, LAI, chlorophyll a and b, 

and nitrogen concentration (Table 5.2), and 2. Narrow band vegetation indices computed 

according to the principle of the NDVI (Eq.1) and SR (Eq.2) from all possible two-band 

combination indices involving 20 bands selected by the RF algorithm. This resulted in 800 

indices, 400 NDVIs and 400 SRs.  
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Table 5.2: Vegetation indices used in this study 

No  Index name Abbreviation Formula* References 

1 Normalized different vegetation 
index 

NDVI (R830-R670)/ 

(R830+R670) 

(Rouse et al., 1974) 

2 Carter index  CI R760/R695 (Carter, 1994) 

3 Gitelson and Merzylak Index GMI R750/R700 (Gitelson and Merzlyak, 
1994) 

4 Vogelman index VOG R740/R720 (Vogelmann et al., 1993) 

5 Photochemical reflectance index  PRI (R531-R570)/ 

(R531+R570) 

(Penuelas et al., 1995) 

6 Normalized Difference ND (R750-R705) 

/(R750+R705) 

(Gitelson and Merzlyak, 
1994) 

7 Structure Insensitive Pigment Index SIPI (R800-R445) 

/(R800-R680) 

(Penuelas et al., 1995) 

8 Pigment Specific SR (chlorophyll a) PSSRa R800/R680 (Blackburn, 1998) 

9 Pigment Specific SR (chlorophyll b) PSSRb R800/R635 (Blackburn, 1998) 

10 Simple Ratio 1 SR1 R695/R420 (Carter, 1994) 

11 Simple Ratio 2 SR2 R695/R760 (Carter, 1994) 

12 Plant Senescence Reflectance Index PSRI (R680-R500)/R750 (Merzlyak et al., 1999) 

13 Simple Ratio 3  SR3 R750/R710 (Gitelson and Merzlyak, 
1994) 

14 Modified Chlorophyll Absorption in 
Reflectance Index 

MCARI1 [(R700-R670)-
0.2(R700-R550)] 

(R700/R670) 

(Daughtry et al., 2000) 

15 Transformed Chlorophyll 
Absorption in Reflectance Index  

 

TCARI 3[(R700-R670)-
0.2(R700-
R550)(R700/R670)] 

(Haboudane et al., 2002) 

 

 

 



90 

 

Table 5.2: Vegetation indices used in this study (cont.) 

No  Index name Abbreviatio
n 

Formula* References 

16 Optimized Soil-Adjusted Vegetation Index  OSAVI (1+0.16)(R800-
R670)/(R800+R670+0.16) 

(Rondeaux et al., 
1996) 

17 Modified Chlorophyll Absorption in 
Reflectance Index  

MCARI2 
 

1.2[2.5(R800-R670)-
1.3(R800/R550)] 

(Haboudane et al., 
2002) 

18 Anthocyanin Reflectance Index 1  ARI 1 (1/R550)-(1/R700) 
 

(Gitelson et al., 2001) 

19 Anthocyanin Reflectance Index 2 ARI 2 R800[(1/R550)-(1/R700)] 
 

(Gitelson et al., 2001) 

20 Blue/Green Index BGI 1 (R400)/(R550) 
 

(Zarco-Tejada et al., 
2005) 

21 Blue/Green Index BGI 2 (R450)/(R550) (Zarco-Tejada et al., 
2005) 

22 Carotenoid Reflectance Index 1 CRI 1 (1/R510)-(1/R550) (Gitelson et al., 2002) 
23 Carotenoid Reflectance Index 2 CRI 2 (1/R510)-(1/R700) (Gitelson et al., 2002) 
24 Modified Red Edge Normalized Difference 

Vegetation Index 
 

MNDVI 
705 

(R750-R705)/(R750 
+R705-2R445) 

(Sims and Gamon, 
2002) 

25 Modified Red-Edge Simple Ratio Index MSR 
705 

(R750-R445)/(R705-R445) (Sims and Gamon, 
2002) 

26 Moisture Stress Index MSI R1599/R819 (Hunt and Rock, 1989) 
27 Water Band index WBI R900/R970 (Penuelas et al., 1997) 
28 Normalized Difference Water Index NDWI (R857-R1241)/(R857 

+R1241) 
(Gao, 1996) 

29 Ratio Analysis of Reflectance Spectra  RARSa R675/R700 (Chappelle et al., 
1992) 

30 Ratio Analysis of Reflectance Spectra RARSb R675/(R650R700) (Chappelle et al., 
1992) 

31 Ratio Analysis of Reflectance Spectra RARSc R760/R500 (Chappelle et al., 
1992) 
 

32 Pigment Specific Simple Ratio PSSRa R800/R680 (Blackburn, 1998) 
33 Normalized Difference Vegetation Index NDVI (R813-R613)/ 

(R813+R613) 
(Ma et al., 2001) 

34 Green Normalized Difference Vegetation 
Index 

GNDVI (R875-R560)/ 
(R875+R560) 

(Penuelas et al., 1995) 

35 Normalized Pigment Chlorophyll Ratio 
Index 

NPCI (R680-R430)/ 

(R680+R430) 

(Gitelson and 
Merzlyak, 1996) 

36 Structurally Independent Xanthophylls 
Index 

SIXI (R430-R800)/ 

(R680+R800) 

(Penuelas et al., 1995) 

37 Soil Adjusted Vegetation Index SAVI 1.5(R780-R670) 

/(R780+R680+0.5) 

(Huete, 1988) 

38 Photochemical Reflectance Index PRI (R531-R570)/ 

(R531+R570) 

(Rahman et al., 2001) 
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Table 5.2: Vegetation indices used in this study (cont.) 

No  Index name Abbreviation Formula* References 

39 Red/Green Ratio RG (R600-R699)/ 

(R500-R599) 

(Fuentes et al., 2001) 

40 Simple Ratio Pigment Index SRPI R430/R680 (Zarco-Tejada, 1998) 

41 Normalized Phaeohytinization  index NPQI (R415-R435)/ 

(R415+R435) 

(Zarco-Tejada, 1998) 

42 Structure Intensive Pigment Index SIPI (R800-R445)/ 

(R800-R680) 

(Zarco-Tejada, 1998) 

43 Pigment Index 1 PI 1 R695/R420 

 

(Zarco-Tejada, 1998) 

44 Pigment Index 2 PI 2 R695/R760 

 

(Zarco-Tejada, 1998) 

45 Pigment Index 3 PI 3 R440/R690 (Lichtenthaler et al., 
1996b) 

46 Pigment Index 4 PI 4 R440/R740 (Lichtenthaler et al., 
1996b) 

47 Normalized Difference Nitrogen Index NDNI log (R1680/R1510)/ 

Log (1/R1680 R1510) 

(Serrano et al., 2002) 

48 Normalized Difference Lignin Index NDLI log (R1680/R1754)/ 

Log (1/R1680 R1754) 

(Serrano et al., 2002) 

*R= reflectance measurements 

5.2.3 Statistical analysis 

5.2.3.1 The random forest algorithm  

The random forest algorithm is a modified bagging (bootstrap aggregation) classifier where 

multiple classification trees are developed, and the final classification is determined by a 

majority vote. Each tree in the forest is trained on a bootstrapped sample (i.e. 2/3 of the original 

observations) (Breiman, 2001), and at each node of individual trees, the RF algorithm searches 

only across a random subset of the variables (i.e. spectral indices) to determine the split. The 
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trees are then grown to maximum size without any pruning (Breiman, 2001; Lawrence et al., 

2006).  Additionally, RF has an intrinsic means to estimate variable importance and to assess 

accuracy by using the out-of-bag data. Researchers have commented that a separate test data set 

may not be required for accuracy assessments (Lawrence et al., 2006).The out-of-bag error 

estimates (1/3 of the original data) are created from the data that are not in the bootstrap sample 

used for each tree’s development (Breiman, 2001). To guarantee high accuracy of classification, 

studies have recommended that the two parameters of RF have to be optimized; these parameters 

are the number of trees (ntree) grown in a forest and the number of variables (mtry) used in each 

tree split (Breiman, 2001; Liaw and Wiener, 2002; Díaz-Uriarte and de Andrés, 2006; Archer 

and Kimes, 2008). The default value of mtry is the square root of the number of variables (Liaw 

and Wiener, 2002). However, a large ntree value and default value of mtry are recommended 

(Gislason et al., 2006; Kim et al., 2006; Adam et al., 2009). We, therefore, developed the model 

using an ntree value of 10000, and the default number of mtry. The RF library (Liaw and 

Wiener, 2002), developed in R statistical software (R Development Core Team, 2007), was used 

to implement the RF algorithm.  

5.2.3.2 Variables importance using the random forest algorithm 

  The RF algorithm calculates three variable importance measures, namely, the number of times 

each variable is selected, the Gini importance, and the permutation accuracy importance measure 

(Strobl et al., 2007). The permutation of a variable, however, is considered to be the most 

advanced measure because of its ability to evaluate the variables importance by the mean 

decrease in accuracy using the internal out-of-bag (OOB) estimates while the forests are 

constructed  (Breiman, 2001; Lawrence et al., 2006; Strobl et al., 2007). 

 In this study, we used mean decrease in accuracy using the internal OOB estimates (Cutler 

et al., 2007; Archer and Kimes, 2008; Chan and Paelinckx, 2008). The importance of each 

variable (wavelength) used in this study was calculated based on how much worse the 

classification accuracy (mean decrease in accuracy) would be if the data of that variable were 

permuted randomly (Prasad et al., 2006). To calculate the importance of wavelength in 

discriminating papyrus and its co-existent species, the reflectance values of each wavelength 

were randomly permuted for the OOB data, and then the modified OOB data were passed down 

the tree to get a new classification. The difference between the misclassification rate for the 
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modified and original out-of-bag data over all the trees grown in the forest are then averaged. 

The average, which is therefore a measure of the importance of the variable is used as a ranking 

index (Cutler et al., 2007; Archer and Kimes, 2008; Chan and Paelinckx, 2008), that can be used 

to identify the wavelengths with relatively large important scores for the calculation all possible 

two-band combination indices. The top 20 wavelengths that showed the highest importance 

based on mean decrease in accuracy were subsequently selected for calculating the all possible 

two-band combination indices (Guyon and Elisseeff, 2003).    

5.2.3.3 Variables selection:  Filter approach  

 To assess the potential of the various VIs used in this study for species discrimination a one-way  

analysis of variance (ANOVA ) was used as a filter approach to test if the differences in the 

spectral indices of papyrus and the other three species were statistically significant.  In this 

regard,  the research hypothesis is that the spectral indices between each class pair of the species 

(CP,PA, EP, and TI) were significantly different ,  the null hypothesis Ho: µ1 = µ2 = µ3 = µ4 

versus the alternate hypothesis Ha: µ1 ≠ µ2 ≠ µ3 ≠ µ4 where: µ1, µ2, µ3, and µ4 are the spectral 

indices values from Cyperus papyrus L (CP), Phragmites australis (PA), Echinochloa 

pyramidalis (EP), and Thelypteris interrupta (TI) respectively. We tested ANOVA with a 99% 

confidence level (p < 0.01). Furthermore , a Tukey’s HSD post hoc test was carried out in order 

to  determine if there was a difference in the mean  between the various class pairs ( i.e. CP vs. 

PA, CP vs. EP, CP vs. TI, PA vs. EP, PA vs. TI, and EP vs. TI).  Histogram and matrix plots 

were then used to examine which indices could most frequently discriminate all the species. VIs 

with no statistical significance were then discarded, while the significant indices for all class 

pairs were retained for further analysis. 

5.2.3.4 Optimal subset of vegetation indices 

Using an ANOVA with Tukey’s HSD post hoc test is limited because the method does not 

automatically select the optimal subset of VIs that have the strongest discriminatory power. In 

other words the method examines each VI individually as opposed to considering interaction 

between VI’s. The question, therefore, remains: What is the optimal number of significant 

vegetation indices that can yield the smallest misclassification error rate? In this regard, we 
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applied a forward variable selection using the RF algorithm to identify the optimal subset of VIs 

(Guyon and Elisseeff, 2003). The RF algorithm was used to compute and rank the importance of 

each significant VI in discriminating the species. The method involves iteratively fitting multiple 

random forests (on the training data) and at each iteration building a RF after sequentially adding 

the indices with the highest important values. Initially, the top ranked vegetation index is 

selected, and for the next iteration the top two ranked indices are added and so on. The error for 

each iteration is then calculated using the OOB samples. The procedure was repeated for the 

maximum number of significant vegetation indices used in this study. The optimal subset of 

indices which yielded the smallest out-of-bag error was then used for classifying papyrus and its 

co- existent species. 

5.2.3.5 Classification accuracy  

To evaluate the prediction performance of an algorithm, the use of a large independent test data 

set that has not been used in the training is recommended (Congalton and Green, 2008). 

However, when the data are limited some types of cross-validation techniques are usually carried 

out (Hawkins et al., 2003). In the RF algorithm, the OOB estimate of error is considered to be 

such a type of cross-validation technique (Breiman, 2001). Specifically, at each bootstrap 

iteration a single tree is grown using a particular bootstrap sample. Since bootstrapping is 

sampling with the replacement from approximately two-thirds of the training data (in our case 

spectral indices), some of the variables will be left out of the sample and may not be used at all 

in any growing tree, while some others will be chosen more than once (Breiman, 2001; Svetnik 

et al., 2003). The variables that have not been used in the tree growing constitute the OOB and 

are then used to estimate the prediction performance of the classifier (Breiman, 2001). In this 

study, we used the OOB method as internal estimate of error using the one-third portion of the 

data that was randomly excluded from the construction of each of the classification trees used. A 

confusion matrix was subsequently constructed to compare the true class with the class assigned 

by the classifier and to calculate the overall accuracy as well as the user and producer accuracy.  

Furthermore, a discrete multivariate technique called kappa analysis that uses the k (KHAT) 

statistic was also calculated to determine if one error matrix is significantly different from 

another (Cohen, 1960; Mutanga, 2005). This statistic serves as an indicator of the extent to which 

the percentage of correct values of an error matrix are due to the actual agreement in the error 
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matrix and the chance agreement that is indicated by the row and column totals (Congalton and 

Green, 2008). If the kappa coefficients are one or close to one then there is perfect agreement 

between the observed and predicted class. 

 Lawrence et al., (2006) recommended further testing for the reliability of OOB as an 

internal accuracy assessment of the RF classifier. Therefore, we used an independent test data set 

and the OOB samples to assess the classification accuracy. The OOB accuracy assessment of the 

training data was then compared to the accuracy of the predications obtained when using the test 

data set. 

5.3 Results  

5.3.1 Measuring the variables importance using the random forest algorithm  

The RF algorithm was used to measure the importance of individual wavelengths (n = 1706).  

These wavelengths yielded an OOB error rate of 14.5 %. The mean decrease in accuracy as 

calculated by the OOB sample was then used to rank the wavelengths (Figure 5.1). Results 

clearly show that the top 20 wavelengths with the highest mean decrease in accuracy are located 

predominately in the red-edge portion (655 nm, 690 nm, 697 nm, 703 nm, 705 nm, 709 nm, 713 

nm, 712 nm, 715 nm, 719 nm, 720 nm, and 721 nm), the near-infrared region (1337 nm, 1341 

nm, 1347 nm, 1350 nm, and 1538 nm), and mid-infrared (2203 nm, 2198 nm, and 2199 nm). The 

top 20 wavelengths were then used to classify the species and yielded a lower OOB error rate of 

8.5 %. In order to determine if VIs could yield a lower OOB error, we subsequently used these 

wavelengths to compute all the possible two-band NDVI and SR combinations.  
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Figure 5.1. Variables importance as determined by the RF algorithm for 1706 wavelengths. The 

important wavelengths are those with the highest mean decrease in accuracy.  

5.3.2 Variables selection using filter approach (ANOVA)  

The top 20 wavelengths identified by the RF algorithm allowed for the computation of 400 

narrow band NDVIs and 400 narrow band SRs.  These narrow band indices (n = 800) as well as 

vegetation indices published in the literature (n = 48) were statistically analysed to test the 

hypothesis that the mean values of the vegetation indices used to discriminate between papyrus 

and the three other co-existent species were significantly different. Results of the one-way 

ANOVA indicate that there is a statistically significant difference among the species (p < 0.01). 

The results of the multiple comparisons between the class pairs (CP vs. PA, CP vs. EP, CP vs. 

TI, PA vs. EP, PA vs. TI, and EP vs. TI) using all possible two-band combinations are shown in 

(Figure 5.2). Figure 5.3 shows the results when using the published vegetation indices.  
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a  

b  

Figure 5.2.  Matrix plots show the significant difference, marked by presence of a colour, of 

class pairs ( n = 6) in  each narrow band NDVI (a) and narrow band SR (b) that were calculated 

from all possible combinations involving the top 20 bands. The red colour indicates the 

vegetation indices that could discriminate between all class pairs (n = 6) of the species.  
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 Figure 5.2 clearly shows  that the majority  of the VIs (NDVI and SR) that could 

discriminate between all class pairs (n = 6) were calculated on all possible two-band 

combinations located in red-edge portion ( 714 nm, 719 nm, 720 nm,712 nm, 713 nm, and 714 

nm). Additionally,  VIs  that could discriminate between all class pairs were computed from a 

red-edge wavelength located at 690 nm combined with wavelengths located in the water 

absorption part of the spectrum (2203 nm, 2204 nm, 2198 nm, and 2199 nm)  and a near-infrared 

wavelength located at (1538 nm). In total, 27 NDVI and 28 SR narrow band indices could 

discriminate between all class pairs (n = 6). With respect to the published vegetation indices,  

that included  GMI, ND, SRI, PSRI, ARI1, ARI2, BG1, BG2, CRI2, RARSb, PI1, PI3, and  PI4  

(Figure 5.3)  are most successful in discriminating between all class pairs.  

 

Figure 5.3. Frequency of statistically significant differences for all class pairs (CP vs. PA, CP vs. 

EP, CP vs. TI, PA vs. EP, PA vs. TI, and EP vs. TI). The maximum frequency number (6) 

indicates the vegetation indices that could discriminate between all class pairs (n = 6) of the 

species.  

5.3.3 Forward variables selection  

First, we used OOB to estimate the error rate of different combinations among the significant 

indices (NDVIs, SRs, and published VIs) to retain the indices that yielded the smallest error for 

forward variable selection. The OOB error rate is shown in Table 5.3. 

Table 5.3: The OOB error rate for significant vegetation indices considered in this study. The 

random forest was built using default of mtry and an ntree value of 10000 
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 Significant Vegetation indices  Number of significant indices OOB error (%) 

published VIs  13 15.5 

Narrow band NDVIs 27 14 

 Narrow band SRs 28 16.5 

Narrow band NDVIs and SRs 55 14 

Narrow band NDVIs, SRs, 
and published VIs  

68 12 

 

As seen in Table 5.3, the combination involving the narrow band NDVIs, narrow band 

SRs, and VIs published in the literature yielded the lowest OOB error (12 %). Therefore, forward 

variable selection was carried out on this combination of VIs (n = 68) to select the optimal subset 

of VIs with strong discriminatory power for further classification. The optimal subset with the 

smallest error is shown in Figure 5.4.  
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Figure 5.4. The forward variable selection method for identifying the optimal subset of 

vegetation indices using the OOB estimate of error rate. The best subset of vegetation indices 

with the lowest error rate is shown by the black arrow. 

The results of the  forward selection process indicate that a subset consisting of only five 

vegetation indices  yielded the lowest OOB error (4 %). Three of these vegetation indices are 

from the VIs published in the literature (PSRI, BGI1, and PI4), and the other two vegetation 

indices are derived from the two-band combination (narrow band NDVIs) involving a 

wavelength located in the red portion (655 nm) combined with two wavelengths located in the  

red-edge position (697 nm and 705 nm). These vegetation indices (n = 5) were then retained for 

further classification. Noticeable in Figure 5.4 was that the OOB error increases when the 

numbers of vegetation indices increase. 
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5.3.4 Classification assessment 

The optimal subset of vegetation indices (n = 5) was used as input variables in the RF classifier 

to discriminate papyrus and its co-existing species. An overall accuracy  of 96% ( k = 0.91)  was 

obtained for all class pairs (CP vs. PA, CP vs. EP, CP vs. TI, PA vs. EP, PA vs. TI, and EP vs. 

TI)  as determined by the OOB estimate of error rate. Additionally, the producer’s accuracy for 

the class pairs ranged from 95 % for Cyperus papyrus L. and Echinochloa pyramidalis to 100 % 

for Cyperus papyrus L. and Thelypteris interrupta (Table 5.4). Utilizing all the significant 

indices (n = 68) produced an overall accuracy of 88% (k = 0.84) as estimated by the OOB 

estimate of error rate (Table 5.4).  It is also interesting to note from Table 5.4 that all class pairs 

which involve Cyperus papyrus L (CP) had the highest class accuracies (93.7 % to 99 %). 

Overall results indicate that the best discrimination of Cyperus papyrus L. from its co-existing 

species is possible with the selected vegetation indices (n = 5).  The performance of the out-of-

bag estimate of accuracy was compared with that of an independent dataset using the optimal 

subset of vegetation indices (n = 5) and full data set (n = 68).Table 5.4 shows the results obtained 

from the two accuracy assessment methods. 

Table 5.4: Accuracies assessment for OOB estimates and independent test data set based on the 

top five vegetation indices and the full data set (n = 68). The assessment includes the kappa 

statistic, overall accuracy (ACC), producer accuracy (PA), and user accuracy (UA). 

Top five vegetation indices Full data set (68 vegetation indices) 
 

Out-of-bag  accuracy 
assessment 

 
Independent accuracy 

assessment 

 
Out-of-bag  accuracy 

assessment 

 
Independent accuracy 

assessment 

Classes 
ACC 

% 
Kappa PA 

% 
UA 
% 

ACC 
% 

Kappa PA 
% 

UA 
% 

ACC 
% 

Kappa PA 
% 

UA 
% 

ACC 
% 

Kappa PA 
% 

UA 
% 

CP vs EP 93.7 0.87 95.7 91.7 94.4 0.89 92.6 96.2 92.2 0.84 95.4 89.1 98 0.96 96.2 100 

CP vs TI 99.0 0.98 100 97.8 93.3 0.86 100 86.2 98.9 0.98 100 97.6 89.8 0.80 92.6 86 

CP vs PA 99.0 0.98 100 97.8 100 1.00 100 100 98.3 0.83 89.1 93.2 94.3 0.89 92.6 96 

EP vs PA 100 1.00 100 100 100 1.00 100 100 100 1.00 100 100 100 1.00 100 100 

EP vs TI 95.9 0.92 97.8 93.8 96.6 0.93 100 92.9 91.3 0.83 95.4 87.2 92.6 0.85 100 86 

PA vs TI 100 1.00 100 100 100 1.00 100 100 100 1.00 100 100 94.6 0.89 90.3 100 

All classes 96.0 0.91 97.0 89 94.5 0.91 93.6 84.3 88.0 0.84 85.0 82.0 85.8 0.81 83.0 83.0 
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5.4 Discussion  

 This study aimed at discriminating papyrus vegetation (Cyperus papyrus L.) and three other co-

existing species (Phragmites australis, Echinochloa pyramidalis, and Thelypteris interrupta) that 

dominate the swamp wetland of the GSWP. The motivation for the study was to investigate the 

possibility of using the RF algorithm and hyperspectral indices to improve discrimination among 

vegetation species in a swamp wetland that exhibits a complex ecosystem and hydrology regime.  

5.4.1 Variables importance using the random forest algorithm 

 Hyperspectral data are very rich in information. However, the large number of highly correlated 

hyperspectral wavelengths poses many challenges such as the computational requirement, 

redundancy removal, and model accuracy assessment. Variables ranking is an effective 

technique to select a fixed number of top ranked variables of hyperspectral data for better 

classification (Pal, 2006).  The results of this study confirm that the RF algorithm is an efficient 

method of ranking wavelengths (Figure 5.1) and allows focusing on a small subset of 

wavelengths (n= 20) for calculating the vegetation indices (NDVI, SR) from all possible two-

band combinations (Figure 5.2). These top 20 wavelengths (655 nm, 690 nm, 697 nm, 703 nm, 

705 nm, 709 nm, 713 nm, 712 nm, 715 nm, 719 nm, 720 nm, 721 nm, 1337 nm, 1341 nm, 1347 

nm, 1350 nm, 1538 nm, 2203 nm, 2198 nm, and 2199 nm) are within ± 10 nm from known 

wavelengths that have been used in some other studies to discriminate wetland species.  These 

are 1409 nm, 725 nm, and 710 nm (Adam et al., 2009), 720 nm (Daughtry and Walthall, 1998; 

Thenkabail et al., 2002; Vaiphasa et al., 2005), and 705 nm (Thenkabail et al., 2004). Moreover, 

the remarkable accuracy (96%) achieved in this study proved that this method is an effective 

procedure for calculating vegetation indices involving possible combinations between 

hyperspectral bands, and it also helps in the reduction of data dimensionality and therefore might 

be valuable in terms of data processing and analysis rather than  handling all the data (350 nm to 

2500 nm) which is difficult to compute and to select the relevant information 

5.4.2 Significant difference in vegetation indices between the species 

 A one-way ANOVA with Tukey’s HSD post hoc test was used to determine 1. whether there 

were statistically significant differences in VIs values among the four vegetation species, and 2. 

whether it could be used as a baseline filter approach for limiting the total number of vegetation 
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indices (n = 848). When comparing the two plots of NDVI and SR in Figure 5.2, it is interesting 

to note that the VI’s that  could discriminate all class pairs (n= 6) were obtained by combining 

narrow bands located in shorter wavelengths of the red-edge portion of electromagnetic spectrum 

(712 nm, 713 nm, 714 nm, 719 nm, and 720 nm), and a wavelength located in the red-edge (690 

nm), and the wavelengths of mid-infrared region (1538 nm, 2198 nm, 2199 nm, and 2203 nm). It 

is also interesting to note that most of the significant differences in vegetation indices published 

in the literature for full class pairs were obtained by combining narrow bands from the shorter 

wavelengths of the red-edge portion (700 nm to 760 nm). This included the VIs such as GMI, 

ND, SR2, RARSb, and PI2.  VIs calculated from these shorter wavelengths of the red-edge 

portion are sensitive to variations in chlorophyll content and green biomass (Lichtenthaler et al., 

1996a; Mutanga and Skidmore, 2004a).  

The differences in green wavelength peak (550 nm) have been used to successfully 

discriminate vegetation species characterized by differences in chlorophyll content (Peña-

Barragán et al., 2006). This has been confirmed in this study by the results obtained by the 

ANOVA that show that there is a high significant difference between all class pairs when using 

vegetation indices such as ARI1, ARI2, BGI1, and BGI2. These VIs were calculated using 550 

nm (green peak) with combinations of wavelengths located at 400 nm, 450 nm, 700 nm, and 800 

nm. It is therefore assumed that the hyperspectral difference between the four species (Cyperus 

papyrus L, Phragmites australis, Echinochloa pyramidalis, and Thelypteris interrupta) may be 

attributed to significant variation in the relative amount of chlorophyll content and green 

biomass. This is supported by the assertion that wetland plant species appear to vary greatly in 

chlorophyll content and biomass (Anderson, 1995). This variation is considered to be one of the 

variables affecting the spectral properties of papyrus and its co-existent species (Adam and 

Mutanga, 2009).  

5.4.3 Optimal vegetation indices  

Given that there are statistically significant differences (p< 0.001) in VIs values among the four 

vegetation species, what remains to be discovered is the optimal subset of significant vegetation 

indices that can yield smallest misclassification error. Results from this study confirm that the 

combination of forward variable selection and the RF algorithm is a useful approach to identify 

the most important or information-rich vegetation indices, thereby allowing the significant 
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vegetation indices (n = 68) to be reduced in size (n =5). Our results as presented in Figure  5.4 

show that five selected vegetation indices can discriminate among all the class pairs (CP vs. PA, 

CP vs. EP, CP vs. TI, PA vs. EP, PA vs. TI, and EP vs. TI)   with a 4 % OOB error rate in 

comparison to 12 % OOB error rate obtained when utilizing   all the VIs (n = 68). The results 

obtained in this study are comparable to other studies that revealed that the subsets of variables 

selected by the RF algorithm have produced higher overall accuracy than utilizing the full data 

set (Lawrence et al., 2006; Adam et al., 2009; Ismail, 2009). These results emphasize the 

assertion that, in the model-based analysis, the increase of hyperspectral variables could lead to a 

decrease in the classification accuracy because the noise in the redundant data propagates 

through the classification model (Benediktsson et al., 1995; Bajcsy and Groves, 2004).  

Overall, the result shows the excellent performance of the forward variable selection 

method applied in dimensionality reduction without sacrificing significant spectral information. 

Hence, classifying papyrus and its co-existing species can be made on the basis of these optimal 

vegetation indices (n = 5) to provide the highest classification accuracy.   

5.4.4 Classification assessment 

 The estimated overall accuracy from the OOB estimate of error rate for optimal vegetation 

indices was 96 % (kappa = 0.91). These results are particularly remarkable when compared to a 

study by Adam et al. (2009) who used the RF algorithm and spectrometry data resampled to 

HYMAP resolution to classify the same species. Their study yielded an overall accuracy of 

90.5% using 14 bands. This clearly shows that the overall accuracy has been improved in this 

study with 5.5 % using only a small subset of VIs (n = 5).  The class accuracy was also 

improved, for example; our results produced higher classification accuracies when compared to 

research carried out by Pengra et al. (2007) who achieved an overall accuracy of 81.4 % for 

mapping Phragmites australis using EO-1 Hyperion hyperspectral sensor. In our study we 

obtained a classification accuracy of 99% to 100 % for the class pairs involving Phragmites 

australis. 

Our results in this study confirmed the power of the RF algorithm in providing highest 

classification accuracy (more than 90 %) of hyperspectral data (Lawrence et al., 2006; Pal, 2006; 

Adam et al., 2009). It also shows the ability of vegetation indices in enhancing the possible 
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difference in reflectance between the vegetation species (Qi et al., 1995; Haboudane et al., 2002; 

Peña-Barragán et al., 2006; Cho et al., 2008).  

Our evaluations of the reliability of the out-of-bag estimates of accuracy as an internal 

method for accuracy assessment in RF have shown that this estimate is reliable and stable, 

especially with a high number of classification trees. This can be clearly seen in Table 5.4 that 

shows that the independent accuracy assessment is nearly identical to the OOB accuracy 

assessment. In this aspect, our result is consistent with that obtained by Lawrence et al. (2006) 

who found that the accuracy assessment using OOB is nearly identical to an independent 

accuracy assessment. Our results strengthen the assertion that with the RF algorithm it is not 

necessary to have a separate accuracy assessment if the reference data are protected against any 

type of bias (Lawrence et al., 2006; Prinzie and Van den Poel, 2008). We believe that this study 

is protected against bias with a simple random sampling method applied for the reference data 

collection (Lawrence et al., 2006; Congalton and Green, 2008).  

5.5 Conclusions 

This study aimed at improving discriminating Cyperus papyrus L., Phragmites australis, 

Echinochloa pyramidalis, and Thelypteris interrupta located in the   Greater St Lucia Wetland 

Park, South Africa, using the RF algorithm and hyperspectral indices derived from field 

spectrometry data.  

Our results have shown that: 

1- The proposed method for ranking variables importance for possible two-band 

combinations and optimal subset of vegetation indices for species discriminating was 

efficient in providing small sets of data while preserving highest classification accuracy. 

2- The optimal subset of vegetation indices that yielded the highest classification accuracy is 

sensitive to the variation in chlorophyll content and green biomass. Since these 

biochemical and biophysical variables were not measured in this study, it therefore 

remains to be explained why the selected vegetation indices showed a relatively better 

ability to discriminate between the species.     

3- Based on relatively high overall accuracy (96 %), the use of hyperspectral indices can be 

considered as a new approach for discriminating plant species or communities. 
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4-  The RF algorithm provides a reliable prediction of accuracy by using the out-of-bag 

samples. This could provide a tremendous saving of time and cost in data collection and 

analysis in remote sensing applications compared to the independent accuracy 

assessments method. 

Overall, the use of hyperspectral indices and the RF algorithm for variables selection and 

classification techniques in this study proved a valuable tool to improve spectral discrimination 

between wetland plant species. However, the methods applied in Chapter one and two which 

were developed from fine spectral resolution (ASD) can be made operational by investigating 

their capability to discriminate between papyrus and its co-existing species using relatively 

coarser spectral resolution data such as AISA eagle spectra. Future research could also 

investigate the biochemical and biophysical variables that affect the canopy reflectance of the 

species studied. 
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CHAPTER SIX 

 

Classifying papyrus vegetation (Cyperus papyrus L.) and its co-existing species 

using hyperspectral imagery and the random forest algorithm   
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Abstract 

Mapping wetland plant species using multispectral remote sensing is challenging because of the 

small and mixed vegetation units in a wetland. The objective of this study was to examine the 

potential of airborne hyperspectral imagery to classify papyrus and its co-existing species in 

swamp wetland in St Lucia Park- South Africa. Hyperspectral image in 273 visible and near- 

infrared wavelengths (from 398 nm to 900 nm) and 2 m spatial resolution were acquired over the 

Dukuduku area by an Airborne Imaging Spectrometer for Applications (AISA) Eagle system. 

The canopy features of the papyrus and its co-existing species were identified using ground 

points and pixel-based average spectral reflectance at each wavelength from the acquired image, 

which was then used to develop a classification model. The RF classifier was used to classify the 

imagery using the randomForest package in R statistical program. The key wavelength 

determined by the integrated methods involved the RF and forward variable selection proposed 

in this study, and this could provide reasonable classification accuracy. Overall accuracy was 

80.83 %, with class accuracies ranging from 86.67 % to 100 % and a kappa statistic of 0.74. The 

results also indicate that a subset of narrow band vegetation indices calculated from wavelengths 

allocated at the visible and red-edge portion of the spectrum could better improve the overall 

accuracy to 88.98 % and the kappa statistic to 0.85. The methods proposed in this study show 

considerable promise in mapping wetland vegetation at species level which is valuable for 

effective management of wetland ecosystems.  

 

Keywords: Hyperspectral imagery. Variable selection. Vegetation indices. Random forest. 

Papyrus vegetation.  
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6.1 Introduction  

Cyperus papyrus L., commonly called papyrus, belongs to the family Cyperaceae and is one of 

the most primary productive wetland plant species in eastern and central tropical Africa 

(Kyambadde et al., 2004; Mnaya et al., 2007). The natural distribution of papyrus swamps are 

thought to be confined to a belt across equatorial central Africa within 17o N and 29o S (Mnaya 

et al., 2007). The Greater St Lucia Wetland Park is within this belt and is one of the areas in 

which most extensive papyrus wetlands and swamps are found in South Africa (Adam and 

Mutanga, 2009). Papyrus commonly grows at the wetland edge anchored to the substratum, or 

sometimes creates extensive rafts of floating rhizomes in the middle of the wetland and at the 

lake-wetland interface (Kansiime et al., 2005).  In these wetland areas, papyrus forms a 

distinctive habitat type that supports a suite of specialist bird species and wildlife (Owino and 

Ryan, 2007; Grenfell et al., 2009). Papyrus also plays a vital role in intercepting the materials 

moving from catchments to open water (Azza et al., 2000; Serag, 2003; Kyambadde et al., 

2004). Moreover, promising results have been obtained in using wetland species, such as 

papyrus, as an alternative source of fuel in many countries in central Africa, such as Rwanda 

(Jones, 1983b; Muthuri and Kinyamario, 1989).  

In most wetland habitats worldwide, human encroachment, intensified agricultural 

activities, and hydrological changes from construction of ditches, roads, and bridges in many 

parts of Africa have threatened the existence of papyrus (Mafabi, 2000; Maclean et al., 2006; 

Owino and Ryan, 2007). As a result, this continued degradation in papyrus swamps represents a 

significant threat to biodiversity conservation (Owino and Ryan, 2007) and an increase in the 

sedimentation rates in the wetland areas (Grenfell et al., 2009). Therefore, there is a need for 

accurate and quick field-wide monitoring for such an important plant species that could assist in 

making decisions to initiate protection and restoration programmes in the right place and at the 

right time (He et al., 2005).  

Mapping and monitoring wetland vegetation with traditional survey methods, such as hand 

mapping and Global Positioning Systems (GPS) receiver mapping, have proven to be highly 

accurate for small management areas (Cooksey and Sheley, 1997). However, these methods 

require intensive fieldwork ,including taxonomical information, collateral and ancillary data 

analysis, and the visual estimation of percentage cover for each species, which might be 

economically, technically, and logistically inadequate for wetland environments because of their 
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high diversity and poor accessibility (Xie et al., 2008; Adam et al., 2009; Zomer et al., 2009). 

Methods that take advantage of remote sensing can provide a time- and cost-effective technique 

to map and monitor such complex environments.  

However, mapping wetland vegetation at species level using traditional remote sensing is 

challenging because of the lack of spectral resolution (1 to 7 bands), which limits the ability to 

map plant types based on the reflection and absorption of light at these few bands (Adam et al., 

2009). Furthermore, discrete wetland vegetation patches are usually smaller than the pixel size in 

most current spatial resolutions of multispectral images (Artigas and Yang, 2005; Zomer et al., 

2009). Therefore, with multispectral images the majority of pixels are a mixture of several plant 

species in various proportions even at high spatial scales (Zomer et al., 2009).  Hyperspectral 

sensors, on the other hand, enable the capturing of spectral data in many narrow bands (<10 nm) 

in up to 200 or more contiguous wavebands across the ultraviolet, visible, and infrared regions of 

the electromagnetic spectrum (Lillesand and Kiefer, 2001). Images from these new sensors, such 

as AISA and HYMAP, permit application of more complex spectral analyses and spectral 

unmixing techniques for a better separation of wetland vegetation at species level based on their 

unique light reflectance and absorption characteristics which can be especially useful for 

mapping percentage cover of the plant species (Artigas and Yang, 2005; Belluco et al., 2006; 

Wang et al., 2007; Adam et al., 2009; Zomer et al., 2009).  

Previous attempts in classifying papyrus (Cyperus papyrus L.) using hyperspectral data 

include those by Adam and Mutanga (2009) who were able to implement a hierarchical method 

which used one-way analysis of variance ANOVA, classification and regression tree (CART), 

and distance analysis using hand-held spectroradiometer data to  discriminate papyrus from its 

co-existing species (binary class) in the Greater St Lucia Wetland Park - South Africa.  Another 

attempt in discriminating papyrus was that by Adam et al. (2009) They used the RF algorithm 

and field spectrometry data resampled to HYMAP resolution to discriminate papyrus and its co-

existing species (multi-class classification). Their results indicated that there is a possibility of 

discriminating among papyrus and the other three species with an overall accuracy of 90.5 %.  

This overall accuracy can be improved to 96.5 % using vegetation indices calculated from field 

spectrometry data (Adam and Mutanga, In review). 

The limitation of the above-mentioned studies is that the current operational airborne and 

spaceborne sensors, such as AISA and HYMAP, lack fine spectral resolution of the hand-held 



111 

 

spectroradiometer which has a spectral range from 350 nm to 2500 nm (Mutanga, 2005). 

Therefore, it was recommended that the techniques implemented using a hand-held 

spectroradiometer should receive considerable additional testing with other airborne or 

spaceborne data (Adam et al., 2009). 

One of the most notable difficulties in hyperspectral data processing is the large data 

redundancy due to the strong correlation between wavebands that are adjacent (Shen, 2007). This 

high dimensionality requires sufficient training samples (Borges et al., 2007)  and computational 

processing which might be time-consuming and prohibitive in cost (Bajcsy and Groves, 2004). 

Therefore, techniques that reduce the high dimensionality without sacrificing significant 

information are highly sought after and feature selection or extraction tasks are often considered 

to be a practical and vital method in hyperspectral data processing and analysis (Borges et al., 

2007). 

RF algorithm (RF), first developed by Breiman (2001), has recently been used as a 

classification and feature selection method to reduce the redundancy in hyperspectral data (Chan 

and Paelinckx, 2008; Adam et al., 2009; Ismail, 2009). Random forest is a machine learning 

algorithm that employs a bagging (bootstrap aggregation) operation where a number of trees 

(ntree) are constructed based on a random subset of samples derived from the training data. Each 

tree is independently grown to maximum size based on a bootstrap sample from the training data 

set without any pruning, and  each node is split using the best among a subset of  input variables 

(mtry) (Breiman, 2001). The multiple classification trees then vote by plurality on the correct 

classification (Breiman, 2001; Lawrence et al., 2006). The ensemble classifies the data that are 

not in the trees (out-of-bag or OOB data) and by averaging the OOB error rates from all trees, 

the random forest algorithm gives an error rate called the OOB classification error for each input 

variable (Breiman, 2001). Therefore, as part of the classification process, the RF algorithm 

produces a measure of importance of each input variable by comparing how much the OOB error 

increases when a variable is removed, whilst all others are left unchanged (Archer and Kimes, 

2008).  Studies have shown that the RF algorithm can be successfully used in hyperspectral data 

for feature selection as well as for classification purposes (Chan and Paelinckx, 2008; Adam et 

al., 2009; Ismail, 2009) However, one of the shortcomings of the RF algorithm in selecting 

variables from very fine spectral resolutions such as spectroscopic data is that the selected 

relevant variables might still be auto-correlated (Strobl et al., 2007). 
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The present study intends to examine the ability of hyperspectral imagery and the RF 

algorithm to discriminate amongst papyrus and its co-existing species in the Greater St Lucia 

wetland. More specifically, the objectives of the study were to: 1. examine the utility of the RF 

wrapper based approach for selecting the optimal number of hyperspectral wavebands in a multi-

class application, 2. examine if the RF algorithm can accurately classify papyrus and its co-

existing species in complex environments using hyperspectral airborne imagery, and 3. examine 

further whether vegetation indices calculated from hyperspectral imagery can improve the 

species classification using the RF algorithm.   

6.2 Material and methods 

6.2.1 Image acquisition and pre-processing 

An Airborne Imaging Spectrometer for Applications (AISA) Eagle sensor was used to acquire 

hyperspectral images over a section of the study area (the Dukuduku forest and Futululu forest) 

in February 2009. The images were collected with 2 m spatial resolution, 272 wavebands (393 

nm – 994 nm), and 2.04 nm to 2.29 nm spectral resolution. Images were taken at an altitude of 

approximately 1000 m above ground during cloudless periods in the daytime. 

The image was atmospherically corrected using vicarious calibration techniques. Field 

spectral data of spectrally invariant targets (water body, tarred road surface) were collected 

during the flight campaign using an ASD spectrometer (Analytical Spectra Device). The field 

spectrometer senses in the range between 350 nm and 2500 nm incorporating the visible, near-

infrared and short wave infrared bands. The field spectra were spectrally resampled to the 

spectral configuration of the AISA sensor and used to convert the AISA radiance data to absolute 

reflectance using the empirical line correction tool in ENVI software. A second order Savitzky-

Golay function was used to smooth the AISA image as it presented some noise. A seven-band 

window size was used for the smoothing. 

6.2.2 Field data collection 

In order to achieve an accurate reference area for the classifier training, fieldwork was carried 

out concurrently with remote sensing campaigns  to collect ground reference polygons of 

papyrus (Cyperus papyrus L.) and three co-existing species (Phragmites australis, Echinochloa 
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pyramidalis, and Thelypteris interrupta) on February 2009. Leica Geosystems GS20 GPS Sensor 

with multiple-bounce filtering and post-differential correction was used to measure the position 

of the target species in swamp wetland with an accuracy of 0 m to 0.25 m after the post-

processing differential correction. We randomly located transect lines within the study sites and 

sampled the target species (n = 4) randomly by drowning polygons along each transect by 

circumnavigating patches with an extent of 6 m to 8 m where the species present were more 

homogenous and unmixed. Ideally, a constraint on the size of the target species is that at least 

one entire AISA pixel (2 m × 2 m) should fall with each area covered by a homogenous species 

(Wang et al., 2007). A point measurement of the central location of each polygon was also 

recorded. This method was rather difficult to implement because of the small vegetation species 

units with high spatial variability in a wetland environment (Adam et al., 2009). However, this 

method resulted in 21 polygons for papyrus, 17 polygons for Phragmites australis, 14 polygons 

for Echinochloa pyramidalis, and 19 polygons for Thelypteris interrupta .These polygons were 

then used as reference data to generate regions of interest (ROIs). GPS field data were 

differentially corrected to enhance the accuracy using post-processing techniques. 

The field data polygons (ROIs) were overlaid on the true colour composite AISA image to 

extract the pixels’ spectra (6 m × 6 m) using ENVI software (ENVI, 2006). Only pixels that fell 

entirely within the measured polygons were included in the reference dataset, while the pixels 

that partially fell inside the polygons were discarded to avoid the problem of spectral mixing of 

the other plant species (Wang et al., 2007). The reference values for each polygon were then 

averaged to represent one sample and used for development of models. 

6.2.3 Selection of the optimal AISA spectral bands 

  Inter-band correlation exists in AISA imagery which provides redundant information. Reducing 

this high dimensionality in the spectral bands simplifies the model processing, decreases the 

running time of learning algorithm, and may improve the accuracy (Thenkabail et al., 2004; 

Adam et al., 2009).  The RF algorithm and forward variables selection (FVS) were used to 

measure the importance of every AISA band in mapping the species and to select the optimal 

number of bands for better classification accuracy (Adam et al., 2009). The RF algorithm 

developed by Breiman (2001) is a bagging (bootstrap aggregation) operation where multiple 

classification trees are constructed based on a random subset of samples derived from the 
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training data. The optimization of the two parameters of RF includes the number of trees to be 

grown (ntree) and the number of variables to split the nodes of individual trees (mtry) that have 

firstly been optimized using the OOB estimates of error rate to guarantee high classification 

accuracy (Breiman, 2001; Adam et al., 2009). The ntree values were tested from the default (500 

trees) setting to 5500 tress with an interval of 1000 (Prasad et al., 2006), while the mtry values 

were evaluated by creating RF ensembles for all possible mtry values (15). The setting that 

yielded the lowest OOB error was then used for any further analysis.   

The importance of each AISA band (n =272) used in this study was calculated based on 

how much worse the classification accuracy (mean decrease in accuracy) would be if that 

variable (band) was permuted randomly using the internal out-of-bag estimates (Breiman, 2001; 

Lawrence et al., 2006; Prasad et al., 2006; Strobl et al., 2007).The importance of each variable is 

estimated as  follows: 1. the reflectance values of each wavelength is  randomly permuted for the 

OOB samples, and then the modified OOB data are passed down each tree to get new 

predictions, 2. the difference between the misclassification rate for the modified and original 

OOB data over all the trees that are grown in the forest are then averaged, 3.  this average is a 

measure of the importance of the variable and it is used as a ranking index which can be used to 

identify the wavelengths with relatively large importance in the classification process (Cutler et 

al., 2007; Archer and Kimes, 2008; Chan and Paelinckx, 2008).   

The FVS method was used to identify the optimal subset of wavelengths with the lowest 

misclassification error.  The FVS method uses the ranking of wavelengths as determined by the 

RF algorithm. This method iteratively builds multiple random forests using the ranked 

wavelengths, and for each iteration two AISA bands were added to the model and the error was 

calculated using the OOB estimates of error. Initially, the top 2 ranked wavelengths are selected 

and for the next iteration, and then the top 4 ranked bands are selected (Adam et al., 2009). This 

process was repeated for the maximum number of variables (bands) used in this study (n = 272). 

6.2.4 Narrow band vegetation indices   

Since remotely sensed measurements of vegetation canopies are affected by factors such as 

atmospheric absorptions, soil background and water, a normalization procedure using vegetation 

indices was also carried out in this study to minimize these influences ((Kokaly and Clark, 

1999b; Mutanga and Skidmore, 2004a), and to enhance the possible difference in reflectance 
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between the vegetation species (Qi et al., 1995; Peña-Barragán et al., 2006; Cho et al., 2008; 

Adam and Mutanga, In review). Only five vegetation indices computed from field spectrometry 

data that yielded an overall accuracy of 96 % for discriminating papyrus and other species 

(Adam and Mutanga, In review) were adopted in this study. A full description of these 

vegetation indices is shown in Table 6.1. The RF algorithm was then used in order to evaluate 

the potential of these vegetation indices (n = 5) to discriminate papyrus and its co-existing 

species.   

Table 6.1: Vegetation indices generated from AISA image and selected in this study 

Vegetation indices Abbreviation Formula * Reference 
Normalized  Difference 
Vegetation  Index 

NDVI 

 

(Adam and Mutanga, 
In review) 

Normalized  Difference 
Vegetation  Index 

NDVI 

 
 

 
(Adam and Mutanga, 
In review) 

Plant Senescence 
Reflectance Index 

PSRI 

 

(Merzlyak et al., 
1999) 

Blue/Green Index BGI 1 

 

(Zarco-Tejada et al., 
2005) 

Pigment Index 4 PI 4 

 

(Lichtenthaler et al., 
1996b) 

* R = reflectance 

6.2.5 Image classification  

The RandomForest package in R software was used to classify the imagery (Liaw and Wiener, 

2002). The bands that yielded the lowest OOB error using FVS were used as input variables in 

the RF model to classify the species.  After optimizing the two parameters (ntree and mtry) of 

RF, the model was developed with 6500 classification trees (ntree) and with the default setting of 

the number of the bands to be split at each tree node (mtry). The RF model was developed using 

the entire reference data set, and accuracy was evaluated using the internally generated out-of-

bag estimates of error. The out-of-bag estimates of error were developed using the one- third 

portion of the reference data set that was randomly excluded from development of each of the 

6500 classification trees (Breiman, 2001; Lawrence et al., 2006). Since OOB data are not used in 

the construction on any of the classification trees, it therefore is considered to be a type of cross-
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validation to estimate the prediction performance of the RF classifier (Breiman, 2001). The OOB 

accuracy assessment has been shown to be reliable and stable (Lawrence et al., 2006; Prinzie and 

Van den Poel, 2008; Adam and Mutanga, In review). The OOB estimate of error was evaluated 

based on correctly classified pixels, and the confusion matrix was subsequently constructed to 

compare the true reference pixel with the pixels assigned by the classifier and to calculate the 

overall accuracy as well as the user and producer accuracy.  Furthermore, a discrete multivariate 

technique called kappa statistics that uses the k (KHAT) statistic was also calculated to 

determine if one error matrix is significantly different from another (Cohen, 1960; Mutanga, 

2005). 

6.3 Results 

6.3.1 Optimization of the random forest algorithm 

The results of the RF parameters (ntree and mtry) optimization are shown in Figure 6-1.  The 

results show that the OOB error rate is decreased substantially and becomes more stable as trees 

are added to the model. The optimum mtry value was found to be the default setting (n = 15) that 

was suggested by Liaw and Weiner (2002). The model yielded the lowest OOB error rate of 25.5 

% with the default mtry (n = 15) and the high ntree (3500 to 9500). Therefore the default mtry 

and 3500 ntree were applied for all further analyses. Overall, the results clearly indicated that 

changes in RF parameters (ntree and mtry) influence the classification accuracy.  
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Figure 6.1. Optimizing random forest parameters (ntree and mtry) using the OOB estimate of 

error rate. The black arrow shows the optimal mtry number at the definite ntree number. 

6.3.2 Variables selection 

All AISA bands (n = 272) were included as potential variables for the RF model which was 

developed using  3500 ntree and a default setting of mtry (15). The entire model yielded an OOB 

error rate of 25.5 %.  The importance of every single band of AISA imagery in mapping papyrus 

vegetation and the other species was calculated using the OOB estimate of error rate (Figure 

6.2). The OOB error rate clearly showed the importance of each band based on how much the 

decrease in the classification accuracy would be if the data for that band were permuted 

randomly. Therefore, the high decrease in the accuracy means high importance and performance 

of the variable in mapping the target species.   
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Figure 6.2.  The importance of AISA bands in mapping papyrus and its co-existing species as 

determined by the RF model that yielded 25.5 % of OOB error rate. The black arrows show 

some of the most important bands. 

 

Figure 6.2 clearly indicates that the most important bands are located in the green and red region 

(e.g. 541nm, 543 nm, 416 nm, 539 nm, 535nm, and 537 nm) and the red-edge portion of the 

spectrum (680 nm to 740 nm).  The bands that show the highest importance in mapping papyrus 

and the other species are at 739 nm, 737 nm, 721 nm, 734 nm, and 541 nm (the ranking is based 

on the importance measures). 

 All the bands were then ranked according to their importance in mapping papyrus and the other 

species, and a forward variable selection was implemented in the top 100 bands which yielded an 

OOB error of 28 % for selecting the optimal number of bands as shown in Figure 6.3. 

    Results of forward variable selection (Figure 6.3) show that a subset including 8 bands located 

at 739 nm, 737 nm, 721 nm, 734 nm, 541 nm, 543 nm, 416 nm, and 539 nm  resulted in the 

lowest OOB error rate of 19.17 % (misclassification rate) compared to 25.5 % when all bands (n 
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= 272) were used. The top 8 bands were then used as input variables in the final RF model to 

map papyrus and its co-existing species.  

   

 

 

Figure 6.3: Selection of optimal number of variables (bands) using the forward variable 

selection method. The arrow shows the minimum number of bands that resulted in the lowest 

OOB error rate.  

6.3.3 Classification and accuracy assessment 

6.3.3.1 Using selected AISA raw bands 

The 8 bands (739 nm, 737 nm, 721 nm, 734 nm, 541 nm, 543 nm, 416 nm, and 539 nm) were 

retained to classify the papyrus and the other species using the RF algorithm.  The results 

indicate that the overall OOB error rate for all classes (CP vs PA, CP vs EP, CP vs TI, PA vs EP, 

PA vs TI, and EP vs TI) was 19.17 %. The confusion matrix in Table 6.2 clearly indicates that 

we could classify the papyrus vegetation and its co-existing species (n = 3) with an overall 

accuracy of 80.83 %. 
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Table 6.2:  Testing the discriminatory performance of the RF classifier using the selected bands 

(n = 8) and the OOB method for estimating the error rate. The confusion matrix includes the 

overall accuracy, kappa statistic, user accuracy, and producer accuracy for Cyperus papyrus 

(CP), Echinochloa pyramidalis (EP), Phragmites australis (PA), and Thelypteris interrupta (TI) 

Classes CP EP PA IT Row total 
CP 24 2 4 0 30 
EP 4 22 4 0 30 
PA 2 2 26 0 30 
IT 2 3 0 25 30 

Column total 32 29 34 25 120 
Producer accuracy  =  75.86 %                                  Overall accuracy  = 80.83 % 
User accuracy         =  73.33 %                                  Kappa                   = 0.74 

The high overall classification accuracy of 80.83 % and overall kappa statistic value of 

0.74 achieved indicates the good performance of the variables selection method that was 

implemented in this study which was able to improve the overall accuracy using all 272 bands 

that yielded an overall accuracy of 74.5 %.   

With respect to the class pairs accuracies, the selected bands (n = 8) yielded producer’s 

accuracy that varied from 86. 67 % to 92.59 % and user’s accuracy that varied from 84.62 % to 

100 % for the three class pairs involving Cyperus papyrus (CP vs EP, CP vs PA, and CP vs TI). 

The lowest producer’s accuracy and user’s accuracy achieved were those that involved 

Echinochloa pyramidalis and Phragmites australis, and Cyperus papyrus and Echinochloa 

pyramidalis (86.67 % and 84.62 a respectively), while the highest user’s accuracy was for the 

class pair that involved Cyperus papyrus and Thelypteris interrupta (100%) Table 6.3. 

Table 6.3: Class pairs accuracies using the selected band (n =8) for Cyperus papyrus (CP), 

Echinochloa pyramidalis (EP), Phragmites australis (PA), and Thelypteris interrupta (TI) 

Class pairs Producer’s accuracy User’s accuracy Overall accuracy Kappa 

CP vs EP 91.67 84.62 88.46 0.77 
CP vs PA 86.67 92.86 89.29 0.79 
CP vs TI 92.59 100.00 96.08 0.92 
EP vs PA 86.67 92.86 88.89 0.78 
EP vs TI 100.00 89.29 94.00 0.88 
TI vs PA 100.00 100.00 100.00 1.0 
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6.3.3.2 Using narrow band vegetation indices 

Estimated classification accuracy of the species from out-of-bag data for the vegetation indices 

was 88.98 with a kappa statistic value of 0.85 (Table 6.4). As expected, the overall accuracy and 

kappa value were increased by 8.15 % and 0.11respectively compared with the use of raw bands. 

Producer’s accuracy and user’s accuracy were also increased by 10.81 % and 16.33 % 

respectively.  

 

Table 6.4: Testing the discriminatory performance of the RF classifier using the selected 

vegetation indices (n = 5) and the OOB method for estimating the error rate. The confusion 

matrix includes the overall accuracy, kappa statistic, user accuracy, and producer accuracy for 

Cyperus papyrus (CP), Echinochloa pyramidalis (EP), Phragmites australis (PA), and 

Thelypteris interrupta (TI) 

Classes CP EP PA IT Row total 
CP 24 2 4 0 30 
EP 3 26 0 0 29 
PA 2 0 27 0 29 
IT 0 2 0 28 30 

Column total 29 30 31 28 118 
Producer accuracy  =  86.67 %                                                Overall accuracy  =  88.98 % 
User accuracy         =  89.66 %                                                 Kappa                  = 0.85  

 

Producer’s accuracy and user’s accuracy, which are more meaningful for the individual classes, 

are shown in Table 6.5. The results presented in Table 6.5 show the feasibility of using the 

vegetation indices in the designation of the RF classification algorithm, having improved the 

producer’s and user’s accuracy with the range of 0.43 % to 13.33 % and 0.24 %  to 7.14 % 

respectively for most of the class pairs in comparison to raw bands spectral classifications. For 

comparison, the producer’s and user’s accuracy also for the raw bands and vegetation indices are 

presented in Figure 6.4. 
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Table 6.5: Class pairs accuracies using the selected vegetation indices (n = 5) for Cyperus 

papyrus (CP), Echinochloa pyramidalis (EP), Phragmites australis (PA), and Thelypteris 

interrupta (TI) 

Class pairs Producer’s accuracy 
% 

User’s accuracy % Overall accuracy 
% 

Kappa 

CP vs EP 92.86 89.66 90.91 0.82 
CP vs PA 87.10 93.10 89.47 0.79 
CP vs TI 92.31 100.00 92.86 0.86 
EP vs PA 100.00 100.00 100.00 1.00 
EP vs TI 100.00 93.33 96.43 0.93 
TI vs PA 100.00 100.00 100.00 1.00 
 
 

 

Figure 6.4: Producer’s accuracy (PA) and user’s accuracy (UA) generated from the use of AISA 

raw bands (n = 8) and vegetation indices (n = 5) for each class pair of the species Cyperus 

papyrus (CP), Echinochloa pyramidalis (EP), Phragmites australis (PA), and Thelypteris 

interrupta (TI))  
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6.4 Discussion  

Effective management of wetland vegetation species requires accurate knowledge of their spatial 

distribution and density to assist in the effort to protect and sustain this valuable ecosystem. This 

can be achieved to different degrees by the processing of different remotely sensed data. This 

study attempted to scale up the method proposed by Adam et al. (2009) to an airborne sensor for 

mapping papyrus and its co-existing species. We tested the utility of the AISA imagery with a 

spectral resolution of 272 visible and near-infrared (NIR) wavebands and a spatial resolution of 2 

m to map papyrus and its three co-existing species in a swamp wetland in Greater St Lucia 

Wetlands Park –South Africa. Our results demonstrated that papyrus vegetation and its co- 

existing species can be separated from each other with a high level of overall accuracy (80.83 %). 

The study emphasized the main obstacle in classifying and characterizing the distribution 

of papyrus vegetation and its associated plant species. This included collecting sufficiently 

accurate and enough ground truth points for training data in the image, since spatial variation and 

diversity in the wetland vegetation is very high, and not easily accessible (Bajjouk et al., 1998; 

Adam et al., 2009; Artigas and Pechmann, 2010). This obstacle could result negatively on the 

classification accuracy, since a shift of one pixel may induce a significant error, and therefore the 

overall results will not be reliable (Artigas and Pechmann, 2010). We believe, however, that this 

problem was overcome by ensuring the selection of ground reference area (ROIs) that contain a 

single species over more than 80 % of the area and are larger than the pixel size of AISA 

imagery (2 m). Moreover, the boundaries of the ROIs were accurately delimited using 

differential GPS with a minimum accuracy of ± 1 cm (Belluco et al., 2006).     

 Results from this study show that 8 bands of AISA selected as the optimal number using 

the separability statistics method developed in this study yielded classification accuracies that 

were better than those obtained when the entire hyperspectral bands (n = 272) were put into the 

RF classifier algorithm. This is beneficial for cost-effective wetland vegetation mapping in terms 

of reducing the time and space needed to process and store the hyperspectral data. Moreover, the 

variables selection method used in this study which integrated RF and FVS allowed direct 

measuring of the importance of variables (bands) at the same time as the classification process of 

hyperspectral data which is recommended in remote sensing techniques (Guyon and Elisseeff, 

2003; Granitto et al., 2006; Adam et al., 2009; Ismail, 2009). We believe that our remarkable 

results in this regard show the usefulness of the RF algorithm as a technique for reducing the 
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dimensionality of hyperspectral data. It is, therefore, worth considering RF as a useful technique 

for variables selection in hyperspectral remote sensing in the future.  

Among the bands selected in this study, many are located in the red-edge portion of the 

spectrum (739 nm, 737 nm, 721 nm, and 734 nm). These bands are within ± 12 nm from known 

bands that are selected for discriminating the same species in other studies.  These are 710 nm 

and 725 nm (Adam et al., 2009) 745 nm, and 746 nm (Adam and Mutanga, 2009). Other studies 

have also reported the usefulness of the red-edge portion for mapping wetland vegetation 

(Daughtry and Walthall, 1998; Thenkabail et al., 2002; Vaiphasa et al., 2005). The red-edge 

portion has been found to be sensitive to chlorophyll and biomass variation (Sims and Gamon, 

2002; Mutanga and Skidmore, 2007). The rest of the bands selected in this study are located in 

the visible region of the spectrum (541 nm, 543 nm, 416 nm, and 539 nm) which are ± 12 nm 

from the known visible bands selected for mapping wetland vegetation in previous studies such 

as 550 nm (Daughtry and Walthall, 1998; Thenkabail et al., 2002) and 404 nm (Schmidt and 

Skidmore, 2003). According to Tucker (1977), the variations in the vegetation spectra 

reflectance in the visible region are primarily determined by the concentration of chlorophylls 

and carotenoids. 

As we expected, the RF classifier adopted in this study produced high classification 

accuracies (85%). The RF classier has also been recently applied successfully in the 

classification of hyperspectral remote sensing data, and overall accuracies of more than 80 % 

have also been reported (Gislason et al., 2006; Lawrence et al., 2006; Adam et al., 2009). The 

method has many advantages such as that it is not sensitive to the noise or overtraining and only 

two user defined parameters are needed. Therefore, the RF classifier could be considered to be a 

very desirable method for classification of hyperspectral remote sensing data (Lawrence et al., 

2006). The reliability of the internal method of the OOB estimate of accuracy (Gislason et al., 

2006; Lawrence et al., 2006) that was adopted in this study has provided a tremendous saving of 

time and labour to collect separate accuracy assessment data which was difficult under the 

conditions of the study sites located in the swamp wetland.   

The overall classification accuracy (80 %) we achieved in this study using AISA bands is 

9.5 % lower than that which has been reported by Adam et al. (2009). This can be explained by 

the fact that the AISA airborne sensor used in this study lacks the fine spectral resolution of the 

ASD.  
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To further increase the classification accuracy of the species, we tested the utility of a 

subset of vegetation indices (Adam and Mutanga, In review). These vegetation indices include 

Plant Senescence Reflectance Index, Blue/Green Index1, Pigment Index4, and the modified 

NDVIs involving a combination of a narrow band in the red portion (655 nm) with two 

wavelengths in the red-edge position (697 nm and 705 nm).  An interesting result from this study 

is the finding that these vegetation indices were able to increase the overall classification 

accuracy of papyrus and its co-existing species from 80.83.5% to 88.98 % and to increase the 

overall kappa statistic from 0.74 to 0.85 (Table 6.2 and 6.4). This result is identical to the finding 

of Adam and Mutanga ( in review) who reported that narrow band vegetation indices preformed 

better than the selected raw bands in discriminating among papyrus and its co-existing species 

using field spectrometery data. This better performance of the vegetation indices could possibly 

be explained by the fact that vegetation indices enhance the possible difference in reflectance 

between the vegetation species (Qi et al., 1995; Peña-Barragán et al., 2006; Cho et al., 2008) and 

minimize the influences of atmospheric absorptions, soil background, and water on vegetation 

canopies (Kokaly and Clark, 1999b; Mutanga and Skidmore, 2004a).Since leaf biochemical and 

biophysical features were not measured in this study, there is therefore the need to explain why 

these vegetation indices showed a higher accuracy in  discriminating papyrus and its co-existing 

species.      

6.5 Conclusions 

The RF classifier was appropriate for this study because it does not require a separate accuracy 

assessment data set. This was useful because there was a tremendous saving of time and labour 

in collecting more ground truth points in such swamp areas, which are not easily accessible. We 

caution, however, that because RF is a supervised classification technique for working with areas 

of mixed vegetation species unbiased sampling and careful fieldwork is necessary for acquiring 

accurate information of training samples in order to get reliable classification results. 

The results from this study demonstrate that airborne hyperspectral imagery can be a useful 

source of data for distinguishing papyrus and its co-existing plant species. However, in order to 

better understand the spatial variations of papyrus quantity and quality, it would be useful if 

estimation of biophysical and biochemical parameters of papyrus such as biomass is also 

investigated in further studies.  
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In summary, the methods and procedures presented in this study can be used for mapping 

other wetland plant species. The RF algorithm applied to hyperspectral data was able to provide 

high accuracy in the classification model. It remains to be tested in regression model using 

hyperspectral data. 
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CHAPTER SEVEN 

Estimating papyrus (Cyperus papyrus L.) biomass using narrow band 

vegetation indices and the random forest regression algorithm 
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Abstract  

Accurate estimates and mapping of wetland vegetation quality such as biomass have increasingly 

been identified as critical components for an efficient wetland monitoring and management 

system. Traditionally, biomass predictions are made using direct field measurement methods. 

These methods do not offer real-time data, and are inadequate for poorly accessible areas. 

Methods that take advantage of remote sensing can offer powerful techniques for predicting 

vegetation biomass.  In this study, we investigated the use of vegetation indices derived from 

field spectrometry data to estimate papyrus (Cyperus papyrus L.) biomass. Papyrus characterizes 

most of the wetlands in tropical Africa. Spectral and above ground biomass measurements were 

collected at three different areas in the Greater St Lucia Wetland Park, South Africa. We 

evaluated the potential of narrow band normalized difference vegetation index (NDVI) 

calculated from all possible two-band combinations between 700 nm and 1000 nm. 

Subsequently, we utilized the RF (RF) algorithm as a modelling tool for predicting papyrus 

biomass. The results showed that papyrus biomass can be estimated at full canopy level under 

swamp wetland conditions (R2 = 0.73; RMSEP = 276 g/m2; 8.6 % of the mean). From our 

results, the RF algorithm has proved to be a robust feature selection method in identifying the 

minimum number (n = 4) of narrow band NDVIs that offered the best overall predictive 

accuracy. This lowest prediction error (RMSEP = 276 g/m2; 8.6 % of the mean) was obtained 

using four NDVIs computed from bands at (740 nm and 853 nm), (741 nm and 853 nm), (741nm 

and 847 nm), and (749 nm and 776 nm).  It was recommended that these promising results can 

be upscaled to spaceborne or airborne sensors such as HYMAP or Hyperion for predicting 

vegetation biomass in wetland areas using remotely sensed data. 

 

 Keywords: Above ground biomass. Field spectrometer measurements. NDVI. Random forest. 

Variables selection. 
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7.1 Introduction  

Papyrus (Cyperus papyrus L.) is increasingly being recognized as the most biomass productive 

plant species in the tropical wetlands in Africa (Muthuri and Kinyamario, 1989). Papyrus plays a 

vital role in hosting habitats for wildlife species (Owino and Ryan, 2007), and it has a major 

influence on the grazing distribution patterns of livestock especially in dry seasons (Muthuri and 

Kinyamario, 1989). Furthermore, promising results have been obtained in using papyrus as an 

alternative source of fuel in many countries in central Africa such as Rwanda (Jones, 1983b; 

Muthuri and Kinyamario, 1989). 

Despite the relative importance of papyrus, human encroachment and intensified 

agricultural activities in many parts of Africa have threatened the existence of papyrus functions 

(Mafabi, 2000; Maclean et al., 2006; Owino and Ryan, 2007). The continued degradation in 

papyrus habitat represents a significant threat to biodiversity conservation particularly for 

papyrus-specialist birds and other papyrus-reliant species in many African countries (Maclean et 

al., 2006; Owino and Ryan, 2007). Therefore, efficient techniques that can spatially and 

temporally monitor the stability of the productivity of papyrus ecosystems and whether 

significant changes are taking place in these swamp ecosystems are required. Such techniques 

require up-to-date spatial information on the distribution of papyrus vegetation.  Also, the 

variation in the quality and quantity of papyrus vegetation is critical for a better understanding of 

the productivity and functioning of papyrus swamps (Adam and Mutanga, 2009). Previous 

studies have shown the possibility of discriminating papyrus from its co-existent species using 

hyperspectral remote sensing (Adam and Mutanga, 2009; Adam et al., 2009). However, timely 

assessment and mapping of both papyrus species and above ground biomass (AGB) variation is 

needed to facilitate a better understanding of the species-quality interaction in their spatial 

distribution (Mutanga, 2004). 

Traditional methods such as field measurements have been used to estimate papyrus AGB 

(Jones and Muthuri, 1997; Serag, 2003; Boar, 2006). However, these traditional methods require 

sufficient numbers of samples which is expensive, time-consuming, and difficult to implement, 

especially in large and inaccessible areas (Lu, 2006). Biomass estimation based on remote 

sensing has increasingly attracted scientific interest because of its cost-effectiveness and benefit 

of repetitively collecting digital data. Additionally, researchers have shown that there are high 

correlations between spectral bands and vegetation biomass (Lu, 2006). In this regard, broad 
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band remote sensing has been widely used to model the spatial and temporal variability of 

vegetation biomass over large wetland areas (Ramsey and Jensen, 1996; Moreau et al., 2003; 

Rendonga and Jiyuanb, 2004; Proisy et al., 2007). The shortcoming of broad band satellite data 

is that the high spectral variation and shadows caused by canopy and topography may create 

difficulty in developing an accurate biomass estimation model that can differentiate between 

vegetation and the soil background (Lu, 2006; Numata et al., 2008). Some studies have 

demonstrated that vegetation indices (VI) have the potential of overcoming some of these 

problems (Elvidge and Chen, 1995; Todd et al., 1998). The most commonly used vegetation 

indices, which are sensitive to biophysical and biochemical variation in vegetation, are computed 

from the red and near-infrared (NIR) portions of the electromagnetic spectrum (Asrar, 1989; Cho 

et al., 2007). These vegetation indices respond to the difference between the reflectance in the 

visible portion because of the chlorophyll absorption and high reflectance in the NIR due to the 

multiple scattering effects of vegetation (Elvidge and Chen, 1995). 

The normalized difference vegetation index (NDVI) (Rouse et al., 1973) has  been widely 

used during the last decades for modelling the spatial variability of AGB based on broad band 

sensors (50 nm-100 nm) such as NOAA and Landsat Thematic Mapper (Moreau et al., 2003; Lu 

et al., 2004). However, the major limitation of NDVI is that the broad band NDVI uses average 

spectral information over a wide range of the spectrum  which results in loss of critical 

information (Hansen and Schjoerring, 2003; Numata et al., 2008). Furthermore, NDVI calculated 

from broad band sensors asymptotically approach a saturation level after a certain AGB (about 

15 kgm-2 ) or vegetation age (15 years in tropical forest) (Steininger, 2000; Lu and Batistella, 

2005). Therefore, NDVI yields poor estimates during peak growing seasons and in more densely 

vegetated areas (Thenkabail et al., 2000; Mutanga and Skidmore, 2004a).    In general, the 

estimation of AGB is still a challenging task, especially in those study areas with mixed species, 

densely vegetated environments, and complicated canopy structure (Adam et al., 2010). Given 

these limitations and challenges, there is a need to develop or to improve techniques for better 

estimation of AGB in highly diverse and densely vegetated areas such as wetlands where there is 

almost 100 % vegetation cover.  

More recently, the development of field hyperspectral remote sensing has opened new 

perspectives for investigating the most powerful narrow bands to be used in VIs formulation and 

for maximizing the sensibility of VIs to AGB based on the whole electromagnetic spectrum (350 
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nm – 2500 nm) rather than focusing on the red and NIR bands (Hansen and Schjoerring, 2003; 

Mutanga and Skidmore, 2004a; Cho et al., 2007; Fava et al., 2009). The use of NDVI calculated 

from narrow bands has been found to be one possibility to reduce the data saturation problem 

(Mutanga and Skidmore, 2004a). However, some authors note that the strengths of the rich 

hyperspectral bands have not be exploited because only two bands from the red and near-infrared 

regions are used to formulate the indices (Cho et al., 2007). Alternatively, multiple linear 

regression (MLR) methods based on more than two bands have been shown to be effective in 

estimating AGB (Lu, 2006). However, identifying suitable variables for developing a multiple 

regression model is often critical because some variables are weakly correlated with AGB or are 

highly correlated to each other (Lu, 2006). Given this problem, a powerful method for 

identifying the most useful narrow band indices to improve the prediction of AGB is essentially 

required (Lu, 2006).  

Ensemble methods like RF (Breiman, 2001) have been used to enhance the prediction 

accuracy in the field of ecology (Prasad et al., 2006; Grimm et al., 2008). Results from these 

studies concluded that the RF algorithm and bagging have similar abilities for improving 

prediction accuracy, with slightly better performance by the RF. From the field of remote 

sensing, ensemble approaches have been widely applied in different fields as a classification 

algorithm (Ham et al., 2005; Pal, 2005; Gislason et al., 2006; Lawrence et al., 2006; Adam et al., 

2009). To the best of our knowledge, only Ismail and Mutanga (2009) investigated the use of the 

RF algorithm in regression type applications for predicting S. noctilio induced water stress in P. 

patula trees using hyperspectral data. Results from the study showed that the RF algorithm 

outperformed bagging and boosting (R2 = 0.73). Therefore, in this study we further investigated 

the performance of regression tree ensembles on variables selection and for predicting AGB of 

papyrus in a complex environment which has been overlooked in scientific research. 

Thus, the research objectives were: (i) to evaluate the utility of narrow band NDVI derived 

from field spectrometry measurements for estimating papyrus AGB in complex and densely 

vegetated canopies, and (ii) to test the performance of the RF algorithm in a regression 

application (i.e. identifying the best hyperspectral indices and predicting AGB). To achieve these 

tasks, a field experiment was planned to collect AGB and spectral data from papyrus vegetation 

in the summer of 2009 at the Greater St Lucia Wetland Park, South Africa, which is 

characterized by a composition of mixed species. The vegetation indices (NDVI) were 
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calculated, and the predictive performance of the regression tree ensembles was then determined 

using training or calibration and test data sets. 

7.2 Material and methods 

7.2.1 Field spectral measurements and biomass harvesting 

Random sampling was adopted in this study. Hawth’s Analysis tool was used to generate 50 

random points on a land cover map developed from Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER) imagery. The sample points were subsequently uploaded 

into a GPS that was used to navigate to the field sites i.e.  Futululu Park, and the Mfabeni and 

Mkuzi swamps. Once the sample site was located, a 30 m by 30 m vegetation plot was created to 

cover a homogenous area of the papyrus. Three subplots (1 m × 1 m) were then randomly 

selected within each plot to measure the spectral reflectance.  

All the spectral measurements were collected in the summer of 2009 between 10:00 am and 

02:00 pm under sunny and cloudless conditions using the Analytical Spectral Devices (ASD) 

FieldSpec® 3 spectrometer. The  spectrometer measures wavelengths ranging from 350 nm to 

2500 nm with a sampling interval of 1.4 nm for the 350 nm to1000 nm spectral region, and a 2.0 

nm sampling interval for the 1000 nm to 2500 nm spectral region. The ASD has a spectral 

resolution of between 3 nm and 10 nm (ASD Analytical Spectral Devices Inc., 2005). A white 

reference spectralon calibration panel was used every 5 to 10 measurements to offset any change 

in the atmospheric condition and irradiance of the sun. Accompanying the field spectral 

measurements, metadata such as the sites’ description (coordinates, altitude, and land cover 

class) and general weather conditions were also recorded (Milton et al., 2009). From each 

subplot (1 m × 1 m) approximately 5 to 10 field spectrometer measurements were randomly 

taken at nadir from 1 m using a 5o field of view. This resulted in a ground field of view of about 

18 cm in diameter, which was large enough to cover a cluster of papyrus and reduce the 

background effects caused by soil and water (Mutanga et al., 2004).  These spectral 

measurements were then averaged to obtain the final spectral measurement for each vegetation 

plot (30 m × 30 m). 

After spectral measurements, AGB was clipped within the subplots (1 m × 1 m). All dry 

material was removed from the clipped plants and fresh biomass was then measured immediately 
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using a digital weighing scale.  Average fresh AGB per plot was then calculated from the three 

subplot measurements (Cho and Skidmore, 2009).  

7.2.2 Data analysis 

7.2.2.1 Narrow band indices 

The narrow band NDVI-based vegetation indices were computed in this study from all possible 

two-band combinations using all the red, red-edge, and NIR bands (i.e. 600 nm to 1000 nm). 

These indices and spectral regions were selected because they are the most commonly used in 

estimating biomass and crop yield (Thenkabail et al., 2000; Mutanga and Skidmore, 2004a; Cho 

et al., 2007). The discrete 401 narrow bands allowed a computation of N*N = 160,801 narrow 

band indices using the principle of the NDVI calculation as follows: 
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Where ),( niR and ),( njR are the reflectance of any two bands from the selected bands for spectral 

sample (n). 

 7.2.2.2 Random forest regression ensemble 

The RF algorithm (Breiman, 2001) was used in this study to predict the AGB of papyrus (g m-1). 

The RF algorithm was developed to reduce the instability and the variance of a single regression 

tree. The algorithm generates multiple bootstrap samples from the original training data set with 

replacement to create multiple regression trees (ntree). The model allows these regression trees 

to grow to maximum size without pruning. Each tree is grown in RF with a randomized subset of 

predictors (mtry) to determine the best split at each node of the tree (Breiman, 2001). The results 

from each aggregation are then averaged to get the overall prediction accuracy. Because there is 

a large number of trees, RF achieves low bias and low variance (Grimm et al., 2008).  

When a bootstrap sample is drawn, about 37 % of the dataset is excluded from the sample 

and the remaining data are replicated to bring the dataset to full size. This dataset is defined as 

‘in bag’ data, while the excluded dataset (approximately 37 %) is known as the ‘out-of-bag’ data 

(OOB) (Breiman, 1996). For each tree in the ensemble, the RF algorithm also calculates the 
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mean square error as the difference between predictions (i.e. mean square error) made using the 

OOB data and the ‘in bag’ data, known as the OOB error (Prasad et al., 2006; Palmer et al., 

2007). The OOB estimate of error is considered to be a reliable assessment of predictive 

accuracy since the OOB data were not used to build or prune any regression trees in the 

ensemble. The OOB error estimate is considered to be a form of cross-validation (Svetnik et al., 

2003) and provides a good and reliable internal estimate of error (Breiman, 1996, 2001; Prasad et 

al., 2006; Grimm et al., 2008; Ismail and Mutanga, 2009). Some researchers have suggested that 

it may not be necessary to have an independent validating dataset (Lawrence et al., 2006).This is 

of particular interest regarding wetland areas, since data collection is difficult due to the poor 

accessibility of areas. Additionally, the OOB data allow for the evaluation of the importance of 

each variable in the prediction by determining how much the prediction error would increase if 

the OOB data of that variable were permuted (Prasad et al., 2006). 

 In the RF algorithm there are two parameters which need to be optimized by the user: the 

number of trees (ntree) in the forest and the randomly selected number of variables tried at each 

node (mtry) (Breiman, 2001). The default value of ntree is 500, while the default mtry value for 

regression applications is one-third of the total number of predictors. In this study, the ntree 

values were tested from the default setting 500 to 5500 with an interval of 1000 (Prasad et al., 

2006), while the mtry was evaluated by creating RF ensembles for all possible mtry values (20) 

(Ismail and Mutanga, 2009). The optimal values of ntree and mtry were then selected based on 

the lowest root mean square error of calibration (RMSEC).  

The randomforest library (Liaw and Wiener, 2002) developed in the R package for 

statistical analysis (R Development Core Team, 2007) was employed to implement the RF 

algorithm.   

To validate the performance of the RF algorithm (Lawrence et al., 2006), the data were 

randomly divided into 70 % training or calibration and 30 % test data samples (n = 32 and 14 

respectively). Regression analyses were performed on the calibration dataset using the OOB 

estimates of error. The test data set was used to validate the predictive performance of the RF 

algorithm (Lawrence et al., 2006; Ismail and Mutanga, 2009). A one-to-one relationship between 

measured and predicted biomass values was then established. The coefficients of determination 

(R2) for calibration and prediction as well as RMSEC and root mean square error of prediction 

(RMSEP) values were reported. 
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7.2.2.3 Selection of the predictive variables 

The narrow band indices NDVIs computed from all possible two-band combinations of 401 

bands were ranked based on the correlation coefficient = r (R2 = coefficient of determination). 

The top 20 NDVIs that yielded the highest R2 were then selected for further analysis in order to 

simplify the modelling process (Mutanga and Skidmore, 2004a). 

In order to simplify the modelling process, it was necessary to identify the smallest number 

of NDVIs that offered the best predictive performance for AGB.  The RF procedure measured 

the importance of the top 20 band combinations from the training dataset (70 %) based on the 

mean decrease in accuracy.  The variables were ranked according to their importance. We 

subsequently used this ranking to indentify the sequence in which to discard the least important 

variables (NDVI) using backward elimination function (Ismail and Mutanga, 2009).  The 

backward variable selection process iteratively builds multiple random forests for regression. At 

each iteration, a new forest was developed after gradually eliminating one of the least promising 

narrow band NDVIs (n = 20), and RMSEC was calculated. We further evaluated the selection of 

the best subset using an independent test dataset (Kohavi and John, 1997). We compared the 

performance of OOB with both the hold out test dataset and the 10 fold cross-validation (Ismail 

and Mutanga, 2009). The nested subset of variables (NDVI) that yielded the lowest RMSEC was 

then selected as the optimal variable for biomass prediction.     

7.3 Results 

As a precursor to examining the relationship between AGB and NDVIs, descriptive statistics of 

biomass were generated and the results are shown in Table 7.1.  

Table 7.1: Descriptive statistics of the measured above ground biomass. 

 Sample 
No 

Unit Mean S.D. Minimum Maximum Range 

Biomass 47 g/m2 3221.362 562.3853 2367 4305 1938 
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7.3.1 Hyperspectral indices (NDVI) and biomass 

The reflectance values of narrow band hyperspectral data contained 401 discrete channels 

located in the red or far- red and NIR (600 nm – 1000 nm) allowed the computation of 160,801 

NDVIs for biomass estimation. Analysis of the correlation coefficients, R2, between the entire 

possible two narrow band NDVIs (n = 160,801) and AGB of papyrus is shown in Figure 7.1. It 

can be clearly seen from this figure that there is a wide variation in strength of the relationship 

between NDVIs and AGB. The R2 values range between 0.00 and 0.83. The band combinations 

involving the far-red-edge bands located from 720 nm to 850 nm range yielded the strongest 

correlations (0.73 to 0.83).  

The NDVIs were then ranked based on their correlation coefficients, and the top 20 two- 

band combinations that yielded the highest R2 values were then selected and recorded as shown 

in Table 7.2 for further analysis.  
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Figure 7.1. Contour plot representing the correlation coefficients (R2) of the linear regression 

between above ground green biomass and NDVIs obtained from all possible two-band 

combinations using bands located from 600 nm to 1000 nm.  
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Table 7.2: The top 20 NDVIs that yielded the highest correlation coefficients for papyrus 

biomass 

Rank Wavelength 1 (nm) Wavelength 2 (nm) R R2 
1 741 853 0.910 0.829 
2 740 853 0.910 0.828 
3 741 847 0.910 0.828 
4 749 776 0.910 0.828 
5 741 845 0.910 0.828 
6 740 865 0.910 0.828 
7 740 849 0.910 0.828 
8 749 778 0.910 0.827 
9 750 773 0.910 0.827 
10 740 840 0.908 0.825 
11 749 771 0.908 0.825 
12 752 773 0.908 0.825 
13 743 809 0.908 0.825 
14 745 803 0.904 0.818 
15 739 895 0.904 0.817 
16 739 822 0.904 0.817 
17 740 800 0.904 0.817 
18 754 770 0.904 0.817 
19 744 774 0.904 0.817 
20 752 784 0.900 0.810 

 

7.3.2 Parameters optimization of the random forest regression model 

The results of optimizing RF parameters (ntree and mtry) are shown in Figure 7.2.  Based 

on the lowest RMSEC, the default value of mtry, which is one-third of the total number of 

variables (in this study = 7), is often the best choice with different values of ntree. With respect 

to ntree values, the results show that the model performs better (low RMSEC) when the ntree 

value is high (ntree = 5500) (Figure 7.2). Overall, the results showed that changes in the 

parameters of the RF regression (ntree and mtry) affect the error of prediction of the model.  

 



139 

 

 

Figure 7.2. Determining the best random forest parameters (mtry and ntree) as determined by the 

root mean square error of prediction (RMSEP). The black arrow shows the lowest RMSEC 

value.  

7.3.3 Determination of predictor variables  

In order to simplify the modelling process, it was necessary to identify the smallest number 

of NDVIs that would offer the best predictive performance for AGB.  The RF procedure 

measured the importance of the top 20 combinations from the training dataset (70 %) based on 

the mean decrease in the accuracy (Figure 7.3). The variables were ranked according to their 

importance. We subsequently used this ranking to identify the sequence in which to discard the 

least important variables (NDVIs) using the backward elimination function. 

 Figure 7.4 shows the results of the variables selection using the backward elimination 

function.  It is interesting to note that the RMSEC generally decreased while the least important 

variables were discarded progressively by the backward elimination method. The best model 

developed using four NDVIs achieved the lowest RMSEC using the OOB sample (269 g/m2), 10 

fold cross- validation (271 g/m2) and hold out test dataset (276 g/m2). These four NDVIs involve 
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a  combination of wavelengths located in the NIR (853 nm, 853 nm, 847 nm, and 776 nm) and  

shorter wavelengths of the red-edge (741 nm, 740 nm, 741 nm, and 749 nm) respectively.   

 

 

Figure 7.3. Variables importance measurement determined by OOB from the training dataset 

using the RF algorithm with default setting of mtry and 5500 ntree. The most important variables 

are shown by black arrows.   



141 

 

 

Figure 7.4. The optimal predictive variables selection using the backward elimination process. 

The RMSEC is calculated from the training dataset (n = 33) using OOB method, 10 fold cross- 

validation, and the test dataset (n = 14). The lowest RMSEC obtained is shown by the black 

arrow. 

7.3.4 Development of the prediction model 

The selected four narrow band NDVIs were used to test the performance of the RF regression in 

predicting the above ground biomass. Table 7.3 shows the RF prediction performance of the best 

selected NDVIs (n = 4) based on the coefficient of determination and root mean square error for 

calibration and validation. The R2 values and root mean square error for calibration (n = 32) and 

test (n = 14) datasets indicate the best predictive performance of the RF model obtained when 

using the selected four NDVIs: NDVI (853 nm, 741nm), NDVI (853 nm, 740 nm), NDVI (847 

nm, 741 nm), and NDVI (749 nm, 76 nm).  

The performance of the best selected NDVIs (n = 4) was compared to those obtained by the 

standard NDVI calculated from a near-infrared (833 nm) and red band (680 nm) (Tucker, 1977), 

the best NDVI computed in this study (853 nm and 741 nm), and the top 20 NDVIs listed in 

Table 7.2. Where Table 7.3 and Figure 7.5 clearly show that the regression model involving the 
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combination of the best four NDVIs yielded the highest R2 (0.77) for the calibration and R2 

(0.73) for the prediction as well as the lowest RMSEC (266 g/m2 = 8.2 % of the mean) and 

RMSEP (276 g/m2 = 8.6 % of the mean) compared with the top 20 NDVIs which yielded a 

RMSEC value of 280 g/m2 and a RMSEP value of 305 g/m2. The lowest R2 ( 0.026) and R2cv 

(0.015) and  the highest RMSEC (539 g/m2 ) and RMSEP( 694 g/m2) were obtained with the 

standard NDVI calculated from 833 nm and 680 nm. The poor performance of the standard 

NDVI can be clearly noted on the almost flat scatter plot in Figure 7. 5-A for both calibration (n 

= 32) and independent validation (n = 14).  

Table 7.3: The performance of the random forest model for prediction of papyrus biomass in the 

Greater St Lucia Wetland Park using different subsets of NDVIs  

       Calibration (n = 33) Independent validation (n = 14) 
 R2 actual vs. 

 Predicted 
RMSEC 
g/m2 

Mean 
% 

R2 actual vs. 
 predicted 

RMSEP 
g/m 

Mean 
% 

Standard NDVI(833nm and 680 nm) 0.026 539 16.7 0.015 694 21.5 
Best NDVI (741 nm and 853 nm) 0.72 295   9.2 0.66 306   9.5 
Selected NDVIs (n = 4) 0.77 266   8.2 0.73 276   8.6 
Top 20 NDVIs 0.69 301   9.3 0.66 312   9.7 
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A            (i)                                                                                (ii) 

B   

C   

  
 

Figure 7.5. One-to-one relationships between actual and predicted papyrus biomass for (i) 

calibration (n = 32) and (ii) independent validation (n = 14). Random forest was developed using 

(a) the standard NDVI computed from a near-infrared band (833 nm) and red band (680 nm), (b) 
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the best narrow band NDVI developed in this study computed from 853 nm and 741 nm, and (c) 

the best four narrow band NDVIs computed from (853 nm and 741 nm), (853 nm and 740 nm), 

(847 nm and 741 nm), and (776 nm and 749 nm). For each model, R2, RMSEC, and RMSEP are 

reported.      

7.4 Discussion 

The use of remote sensing techniques in estimating biomass from dense vegetation or high leaf 

area index (LAI) has been constrained by the asymptotic saturation of vegetation indices such as 

NDVI (Tucker, 1977; Kumar et al., 2001; Mutanga and Skidmore, 2004a). This is particularly 

true for wetland environments, where the vegetation grows very densely (Li et al., 2007). 

Therefore, there is an increase in NIR region reflectance due to multiple scattering effects while 

the absorption in the red region between 660 nm and 680 nm reaches a peak (Kumar et al., 

2001). This imbalance between saturation of red light absorption and high NIR reflectance 

causes the poor performance of the widely used remotely sensed indices such as broad band 

NDVI in estimating the wetland biomass because in such situations the NDVI reflects mainly 

canopy properties rather than the trunk properties (Tucker, 1977; Li et al., 2007). The present 

study showed that papyrus biomass can be estimated with remarkable accuracy in areas of high 

dense vegetation using the RF regression algorithm and a narrow band NDVI calculated from the 

red-edge and NIR regions of electromagnetic spectrum.  

7.4.1 Relationship between the narrow band NDVIs and biomass    

The model developed in this study indicated that there is considerable information on the status 

of papyrus biomass contained in the red-edge and near-infrared wavelengths. The narrow band 

NDVI combinations calculated from these wavelengths resulted in a relatively wide variation in 

R2 values (0.0 to 0.82) for estimating papyrus biomass. However, the high correlation between 

AGB and NDVIs obtained in this study (Table 7.2) consisted of a narrow band NDVI calculated 

from shorter wavelengths of the near-red-edge portion of the electromagnetic spectrum (700 nm 

to 750 nm), which is associated with change in chlorophyll content (Filella and Penuelas, 1994; 

Lichtenthaler et al., 1996a), and the longer wavelengths of the red edge (750 nm to 800 nm). 

This result is consistent with the findings of previous studies (Mutanga and Skidmore, 2004a; 

Cho et al., 2007; Cho and Skidmore, 2009; Fava et al., 2009). Additionally, the wavelengths 
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used to develop the best NDVIs (n = 20) (Table 7.2) in this study are within ± 10 nm of the 

known wavelengths that have strong relationships with biomass prediction as reported in other 

studies.  These are 740 nm, (Cho et al., 2007), 746 nm (Mutanga and Skidmore, 2004a), and 775 

nm (Kawamura et al., 2008). 

7.4.2 Parameter optimization of the random forest model  

In recent years the RF algorithm has proven to be a powerful classification method in the field of 

remote sensing (Gislason et al., 2006; Lawrence et al., 2006; Adam et al., 2009). Our remarkable 

results from this study confirm the utility of RF as a robust, unbiased measure of error rate and 

an accurate regression approach for predicting biomass (Grimm et al., 2008; Ismail and 

Mutanga, 2009). 

In order to improve the prediction performance of the RF algorithm, it was first necessary 

to optimize the settings of the RF parameters (ntree and mtry) using the RMSEC (Breiman, 

2001; Grimm et al., 2008). We used all the possible values for mtry (The default value is one-

third of the total number of variables), while the interval value of 1000 trees was used for 

optimizing ntree (the default setting of the ntree is 500). The results of this study revealed that 

the lowest RMSEC could be achieved using the default mtry values. This is consistent with 

previous studies (Liaw and Wiener, 2002; Díaz-Uriarte and de Andrés, 2006; Grimm et al., 

2008) which reported that the default mtry is often the best choice.  With respect to the ntree 

optimization, the results of this study showed better predictive performance of the RF model 

with increasing ntree values. This supports the assertions made in the other studies that the 

highest accuracy and stability of the RF algorithm can be achieved by using a large number of 

trees (Díaz-Uriarte and de Andrés, 2006; Adam et al., 2009).  This could be explained by the fact 

that a forest consisting of a high number of trees (ntree) allows for the utilization of more 

variables in the dataset. It is, therefore, more stable and less prone to prediction errors caused by 

data perturbations (Breiman, 1996; Archer and Kimes, 2008; Zhang and Wang, 2009).  

7.4.3 Variables selection  

It has been noted that the use of the standard NDVI might not be able to explore the strength of 

the large number of hyperspectral bands because only two bands from red and NIR are used to 

formulate the NDVI (Hansen and Schjoerring, 2003; Schlerf et al., 2005). In the present study, 



146 

 

the results of calculating the narrow band NDVIs from all possible two-band combinations 

between red and NIR and then correlating it with AGB (g/m2) improved an understanding of the 

relationship between the wavelength regions and biomass estimation at full canopy cover, as well 

as presented a possibility to explore the rich information content in the hyperspectral 

wavelengths (Thenkabail et al., 2000; Mutanga and Skidmore, 2004a). This study demonstrates 

the validity and significance of NDVI in estimating AGB. However, selection of the best 

wavelengths is an important task for the formulation of the NDVI.  Our results as shown in 

Figure 7.1 explored and ranked all the possible wavelength combinations, then the best 

combination of wavelengths (n = 20) was selected based on the strong correlation with AGB for 

further analysis. Besides ranking and selecting the best narrow band combinations (n = 20) that 

yielded the highest correlation with biomass, using the RF algorithm with backward elimination 

search function facilitated the selection of the fewest most important predictive variables (n = 4) 

for a simple modelling process and best predictive accuracy. The consistency of the three 

methods (OOB, 10 fold cross-validation, and the test dataset) proposed in this study to identify 

the optimal number of the predictive variables (n = 4) demonstrates the reliability of OOB as an 

internal estimate of error rate in the RF algorithm. Our finding in this regard is identical to those 

of other studies that tested the reliability of the OOB estimate error in the classification model 

(Lawrence et al., 2006; Adam and Mutanga, In review) and the regression model (Ismail and 

Mutanga, 2009).  

7.4.4 The predictive performance of the random forest model 

The present study showed that papyrus biomass can be estimated at full canopy level in complex 

swamp wetland environments using narrow band NDVIs derived from spectrometry data and the 

RF regression algorithm. The higher accuracy obtained in this study demonstrated the utility of 

the RF algorithm as a feature selection method (Lawrence et al., 2006; Adam et al., 2009) and its 

application as a regression model (Ismail and Mutanga, 2009). The relatively high R2 and low 

RMSEC and RMSEP as shown in Table 7.3 indicates that the selected NDVIs (n = 4) improved 

the predictive performance of the model compared to the use of the entire top 20 NDVIs. The 

increase in number of predictive variables could lead to a decrease in the model accuracy 

because the noise in the redundant data propagates through the model performance (Bajcsy and 

Groves, 2004). Our results in this regard indicate that the variables selection method developed 



147 

 

in this study was able to refine the performance of the RF regression model. The poor predictive 

performance of the standard NDVI shown in Figure 7.5 is consistent with the finding of Cho et 

al. (2007), involving grass/herb in the Majella National Park in Italy, and of Mutanga and 

Skidmore (2004a), involving blue buffalo grass (Cenchrus Ciliaris) grown under controlled 

conditions in a greenhouse.  This could be explained by the saturation problem of the standard 

NDVI at the high biomass or leaf area index which has been reported in several studies (Tucker, 

1977; Mutanga and Skidmore, 2004a).  

In summary, the RF regression model was able to provide remarkable accuracy in 

estimating biomass in wetland areas. The potential use of this method which was developed from 

fine spectral resolution (ASD) can be made operational by further work to explore the capability 

to estimate papyrus biomass using relatively coarser spectral data such as Hyperion or the 

HYMAP spectra.      

7.5 Conclusions 

We conclude that: 

1.  NDVI computed from a combination of narrow band in the shorter wavelengths of red-edge 

or far-red (700 nm-750 nm) and the longer wavelengths of NIR (750 nm -1000 nm) perform 

better in predicting biomass as compared to the standard NDVI when there is high canopy 

density. 

2. The RF ensemble reduced the redundancy of hyperspectral data and simplified the modelling 

process by identifying the optimal number of narrow band NDVIs that offer the best 

predictive accuracy. 

3. Based on our relatively high accuracies, it is worth considering the RF ensemble as a robust 

method for remote sensing regression type applications in the future. Our study offers the 

foundation for the possible upscaling of these results to coarser spectral data such as 

Hyperion or the HYMAP image data. 

Overall, this study has revealed that it is possible to predict dense papyrus biomass at 

canopy level using filed spectrometry measurements. In addition, the developed model provides 

a better understanding of (i) those narrow band regions that are most sensitive for papyrus 

biomass estimation and (ii) the potential of RF ensemble as a feature selection and regression 
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type model in remote sensing applications This permits the upscaling of the model to spaceborne 

or airborne sensors such as HYMAP and Hyperion.  
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CHAPTER EIGHT 

Remote sensing of papyrus vegetation (Cyperus papyrus L.) in a swamp 

wetland: A synthesis 
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8.1 Introduction  

Why do we need to map and monitor papyrus (Cyperus papyrus L.)? Research in wetland 

ecology and management has revealed that Cyperus papyrus L. is the most important species in 

tropical African wetlands that plays fundamental ecological, hydrological, and economic roles in 

the tropical African wetlands (Grenfell et al., 2009). The existence of papyrus, however, is 

threatened by human encroachment and intensive agricultural activities in many tropical African 

wetlands (Maclean et al., 2006; Owino and Ryan, 2007).Therefore, detecting and monitoring the 

existence and quantity (biomass) of papyrus at fine spatial scales is critically important for the 

wetland manager and decision makers when implementing effective wetland management 

practices. In this regard, remote sensing is widely viewed as being a near-real-time and cost- 

efficient technology that has the ability to spatially proceed with large scale detecting and 

monitoring of the vegetation parameters.   

However, detecting and mapping wetland plants such as papyrus is challenging for two 

reasons. Firstly, herbaceous wetland vegetation exhibits high spectral and spatial variability 

because of the steep environmental gradients which produce short ecotones and sharp 

demarcations between the vegetation units (Schmidt and Skidmore, 2003; Adam and Mutanga, 

2009; Zomer et al., 2009). Hence, it is often difficult to identify the boundaries between 

vegetation community types. Secondly, the reflectance spectra of wetland vegetation canopies 

are often very similar and are combined with the reflectance spectra of the underlying soil, 

hydrologic regime, and atmospheric vapour (Guyot, 1990; Malthus and George, 1997; Yuan and 

Zhang, 2006). This combination further complicates the optical classification and results in a 

decrease in the spectral reflectance, especially in the near-to mid-infrared regions where water 

absorption is relatively stronger (Fyfe, 2003; Silva et al., 2008). Another problem that limits the 

ability of remote sensing to map papyrus quantity (biomass) is that the use of remotely sensed 

indices such as NDVI calculated from the broad band has been bedeviled by the saturation 

problem at high canopy density and after certain biomass and LAI measurement (Thenkabail et 

al., 2000; Mutanga and Skidmore, 2004a). The challenge is, therefore, to develop techniques that 

can focus on mapping papyrus and predicting accurately its quantity (biomass) at canopy level.  

In this thesis, the objectives were:   
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1. To explore the usefulness of in situ spectroscopic data in discriminating papyrus 

vegetation from its co-existing species (binary class techniques),  

2. To investigate the usefulness of in situ spectroscopic data in discriminating among 

papyrus vegetation and its co-existing species (multiclass techniques), 

3. To determine if machine learning algorithms (random forest) can accurately discriminate 

among papyrus and other co-existing species using resampled HYMAP data, 

4. To examine whether vegetation indices derived from spectroscopy data can be used to 

enhance the separability and classification accuracy between vegetation species, 

5. To test the reliability and robustness of the internal accuracy assessment of the RF 

algorithm as a variable selection and classification algorithm in discriminating between 

the species,  

6. To investigate the potential of imaging spectroscopy in discriminating among papyrus 

and its co-existing species using airborne hyperspectral data (AISA eagle), and 

7. To explore the potential of hyperspectral data in estimating biomass of papyrus at high 

canopy density or full canopy levels. 

8.2 Spectral discrimination of papyrus under full canopy cover  

In hyperspectral remote sensing of vegetation there are two different schools of thought 

regarding the possibility of species discrimination: the believers and the sceptics. The sceptics 

argue that several species may actually have a quantitatively similar spectrum which is a mixture 

of physical and chemical properties that can change according to various environmental factors 

and therefore the uniqueness of the vegetation spectra is questionable (Anderson, 1970; Price, 

1994; Portigal et al., 1997). Moreover, this spectral reflectance is controlled by a limited number 

of independent variables such as chlorophyll a, chlorophyll b and the carotenoids in the visible 

regions. Therefore, they argue that the reflectances of vegetation of different species are highly 

correlated (Price, 1992; Danson and Plummer, 1995). 

On the other hand, the group of scientists who believe that spectral reflectance can be used 

to discriminate species has argued strongly that despite the challenges and the non-unique nature 

of the spectral response, the potential for discriminating different plant species based on foliar 

reflectance does exist because the spectral response still provides enough information to 

discriminate between the species (Cochrane, 2000). Furthermore, hyperspectral remote sensing 
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enables the quantification of all the independent variables mentioned by Price (1992), such as 

chlorophyll content of plants (Blackburn and Pitman, 1999), biochemical variables such as 

nitrogen and lignin (Curran et al., 1990; Mutanga, 2005), crop moisture variations (Penuelas et 

al., 1993a), and leaf pigment concentrations (Blackburn, 1998). 

 In this thesis we have attempted to answer the question:  can the papyrus plant be 

discriminated from its co-existing species in two discrimination levels; one to discriminate 

papyrus from each one of its co-existing species (binary class classification), and to discriminate 

among papyrus and its co-existing species (multi-class classification). The binary class focused 

on discriminating papyrus and the broader co-existing species, while the multi class focused on 

detailed discrimination for papyrus and its co-existing species. This allowed one to test the 

influence of the level of discrimination detail in the classification accuracy. 

8.2.1 Spectral discrimination of papyrus from its co-excising species (binary class)  

The evaluation of hyperspectral data (350 nm to 2500 nm) measured in the field at full canopy 

level shows that we can successfully discriminate papyrus from each one of its co-existing 

species (binary class classification) (Chapter 3). The utility of a new hierarchical method that 

integrates three analysis levels ( ANOVA, CART, and distance analysis) indicates that there is a 

significant difference (p < 0.001) between the mean spectral reflectance for papyrus and the three 

co-existing species, with a large number of significant wavelengths (n= 412) located in the near-

infrared and red-edge regions of the electromagnetic spectrum .The majority of the significant 

bands (98 %) are located in the near-infrared part (982 nm to 1297 nm) of the electromagnetic 

spectrum, and the remainder of the significant wavelengths are located in the red-edge part. 

CART analysis was able to identify the most sensitive bands for the spectral discrimination. 

Specifically, these bands are located in the red-edge and near-infrared region at 745 nm, 746 nm, 

892 nm, 932 nm, 934 nm, 958 nm, 961 nm, 989 nm. The sensitivity analysis involving Jeffries-

Matusita (JM) distance was then used to determine the best combinations of these bands for 

discriminating papyrus from its co-existing species. Results show that, although a single band 

located in 892 nm can discriminate Cyperus papyrus from Phragmites australis and Thelypteris 

interrupta, with JM value of 1.409 (99.64 %) and 1.408 (99.58 %) respectively, only six bands 

located at 745 nm, 746 nm, 892 nm, 934 nm, 958nm, and 961nm, show the potential to 

discriminate Cyperus papyrus from Echinochloa pyramidalis with a JM value of 1.379 (97.52) 
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(Table 8.1). This six band combination produces an acceptable JM separability (99.15 %) for the 

discrimination of papyrus from all the three co-existing species. 

 

Table 8.1: The values of the JM distance for each individual class pair within the selected best 

band combinations 

Best combination CP vs PA CP vs EP CP vs TI 

JM 
value 

% JM 
value 

% JM value % 

892. 1.409 99.64 1.210 85.57 1.408 99.58 

892, 934. 1.412 99.86 1.263 89.32 1.410 99.72 

892, 934, 898. 1.413 99.93 1.308 92.50 1.413 99.93 

892,934, 958, 961, 1.414 100.00 1.329 93.99 1.414 100.00 

745, 745, 892, 958, 961. 1.414 100.00 1.351 95.55 1.414 100.00 

745,745, 892, 934, 958, 961. 1.414 100.00 1.379 97.52 1.414 100.00 

745, 746, 892, 932, 958, 961, 989. 1.414 100.00 1.399 98.94 1.414 100.00 

745, 746, 892, 932, 934, 958, 961, 989. 1.414 100.00 1.405 99.36 1.414 100.00 

 

The results from this study provide the basis for future powerful algorithms that can be 

used to discriminate among papyrus and the three co-existing species (multi-class classification) 

at full canopy level. 

8.2.2 Spectral discrimination of papyrus and its co-existing species (multi-class 
classification) 

We assessed the potential of discriminating among papyrus and the different co-existing species 

(multi-class classification) using machine learning algorithms (random forest) and canopy 

reflectance measured under field conditions and resampled to HYMAP resolution (Chapter 4). 

The approach of using a wrapper (forward variable selection) and .632+ bootstrap method in 

tandem with the RF algorithm was able to provide small sets of non-redundant wavelengths 

while preserving higher classification accuracy than the full HYMAP wavelengths (n = 126) 
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(Table 8.2). More specifically, 10 of the HYMAP wavelengths located at 1409 nm, 710 nm, 437 

nm, 464 nm, 452 nm, 1424 nm, 725 nm, 480 nm, 587 nm, and 603 nm have the greatest potential 

for discriminating among all classes (n = 6) involving papyrus and the different co-existing 

species. The RF algorithm also yielded better classification accuracy (88.44%) than the 

classification tree (CT) algorithm (80.47%) when the full data set (126 wavelengths) was used 

(Table 8.3).  

 

Table 8.2:  The confusion matrix showing the classification error obtained for discrimination 

amongst all possible species combinations (n = 6). Cyperus papyrus (CP), Echinochloa 

pyramidalis (EP), Phragmites australis (PA), and Thelypteris interrupta (TI). The confusion 

matrix includes the accuracy between classes (ACC), KHAT statistic, producer accuracy (PA), 

and user accuracy (UA). 

Classes ACC 
% 

KHAT PA % UA % Row 
totals 

Column 

totals 

   Presence Absence Presence Absence   

CP vs EP 96.70 0.93 95.74 97.73 97.83 95.56 91 91 

CP vs TI 97.89 0.96 97.83 97.96 97.83 97.96 95 95 

CP vs PA 93.75 0.88 93.75 93.75 93.75 93.75 96 96 

EP vs PA 96.81 0.94 97.73 96.00 95.56 97.97 94 94 

EP vs TI 94.62 0.89 95.56 93.75 93.48 95.74 93 93 

PA vs TI 100.00 1.00 100.00 100.00 100.00 100.00 93 93 

All classes 90.50 0.87 88.24 91.49 90.00 86.00 200 200 
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Table 8.3: The misclassification error for both the machine learning models (RF and CT) using 

the .632+ bootstrap method for error estimates and accuracy assessments using the top 10 

wavelengths selected by RF and a full data set (126 wavelengths). 

Algorithm Top 10 wavelengths Full data set 

 Misclassification 
error % 

Overall 

Accuracy 

KHAT 

% 

Misclassification 
error 

Overall 

accuracy 

KHAT 

% 

RF 8.95 90.5 87 9.19 88.44 85 

CT 12.05 84.5 80 13.75 80.47 78 

 

Our findings in this study proved that the RF algorithm is a robust and accurate method for 

the combined purpose of variables selection and for the classification of hyperspectral data in an 

application where (i) the number of samples is limited (n < p), and where (ii) vegetation species 

have similar spectral characteristics affected by underlying wet soil and hydrology regime. 

However, more investigation is required to test the reliability and stability of the RF algorithm 

(Lawrence et al., 2006).   

8.3 Improving the spectral discrimination of papyrus vegetation 

The problems of the high dimensionality of hyperspectral remote sensing, the small and high 

correlated absorption features present in the plants spectra, and the background effects (Price, 

1992; Danson and Plummer, 1995), were addressed in this thesis (Chapter 5) by evaluating the 

potential of vegetation indices in discriminating papyrus and its co-existing species (Filella and 

Penuelas, 1994; Qi et al., 1995; Green et al., 1997; Haboudane et al., 2002; Stimson et al., 2005; 

Cho et al., 2008; Darvishzadeh et al., 2008).   

We tested the utility of using narrow band vegetation indices to improve the spectral 

separability among papyrus and its co-existing species and the classification accuracy. The utility 

of widely used vegetation indices particularly, NDVIs and SRs, involving all possible two-band 

combinations of the 20 most important bands as determined by the RF algorithm were tested. In 

addition, we evaluated a number of hyperspectral indices (n = 48) that were previously 
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demonstrated to estimate plant parameters. The key finding presented in this chapter is that 

spectral separability among papyrus vegetation and its co-existing species may be improved from 

90.5 % overall accuracy (Chapter 4) to 96 % overall accuracy by 5 optimal vegetation indices 

(Table 8.4). Three of these indices were published  in the literature (Plant Senescence 

Reflectance Index, Blue/Green Index 1, and Pigment Index 4) while the other two optimal 

indices were obtained from the modified NDVIs involving a combination of a narrow band in the 

red portion (655 nm) with two wavelengths in the red-edge position (697 nm, and 705 nm). 

Based on relatively high overall accuracy (96 %), the use of hyperspectral indices may be 

considered as a new approach for discriminating plant species.  

 

Table 8.4: Accuracies assessment for the OOB estimates and independent test data set based on 

the top five vegetation indices and the full data set (n = 68). The assessment includes the kappa 

statistic, overall accuracy (ACC), producer accuracy (PA), and user accuracy (UA). 

 Top five vegetation indices Full data set (68 vegetation indices) 

 

 
Out-of-bag  accuracy 

assessment 

 
Independent accuracy 

assessment 

 
Out-of-bag  accuracy 

assessment 

 
Independent accuracy 

assessment 

Classes 
ACC 

% 
Kappa PA 

% 
UA 
% 

ACC 
% 

Kappa PA 
% 

UA 
% 

ACC 
% 

Kappa PA 
% 

UA 
% 

ACC 
% 

Kappa PA 
% 

UA 
% 

CP vs EP 93.7 0.87 95.7 91.7 94.4 0.89 92.6 96.2 92.2 0.84 95.4 89.1 98 0.96 96.2 100 

CP vs TI 99 0.98 100 97.8 93.3 0.86 100 86.2 98.9 0.98 100 97.6 89.8 0.80 92.6 86 

CP vs PA 99 0.98 100 97.8 100 1.00 100 100 98.3 0.83 89.1 93.2 94.3 0.89 92.6 96 

EP vs PA 100 1.00 100 100 100 1.00 100 100 100 1.00 100 100 100 1.00 100 100 

EP vs TI 95.9 0.92 97.8 93.8 96.6 0.93 100 92.9 91.3 0.83 95.4 87.2 92.6 0.85 100 86 

PA vs TI 100 1.00 100 100 100 1.00 100 100 100 1.00 100 100 94.6 0.89 90.3 100 

All classes 96 0.91 97.00 89 94.5 0.91 93.6 84.3 88 0.84 85 82 85.8 0.81 83 83 

8.4 Airborne hyperspectral remote sensing of papyrus vegetation 

The last aspect in this thesis was to scale up the method applied as discussed in the previous 

Chapters (3, 4, and 5) to an airborne hyperspectral sensor to discriminate among papyrus and its 

co-existing species.  

We tested the potential use of AISA eagle data to discriminate between papyrus and its co-

existing species (Chapter 6). AISA eagle scenes were acquired in February 2009 over a section 

of the study area (the Dukuduku forest and Futululu forest). The images were collected with 2 m 
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spatial resolution, 272 wavebands (393 nm – 994 nm), and 2.04 nm to 2.29 nm spectral 

resolution. Images were taken at an altitude of approximately 1000 m above ground during 

cloudless periods in the daytime. A RF ensemble was employed to reduce the redundancy in the 

complex hyperspectral AISA data and to classify papyrus and its co-existing species. The 

optimal vegetation indices selected (Chapter 5) were also tested to improve the discriminatory 

power of the hyperspectral data. The RF classification model consisted of 8 bands (739 nm, 737 

nm, 721 nm, 734 nm, 541 nm, 543 nm, 416 nm, and 539 nm) and showed 80.83 % overall 

accuracy and kappa value of 0.74, while the classification model that included the optimal 

vegetation indices (Plant Senescence Reflectance Index, Blue/Green Index 1, and Pigment Index 

4, NDVI (655, 705), and NDVI (655, 697))  was able to improve the overall accuracy up to 

88.98 % and kappa value of 0.85 (Table 8.5, 8.6) and  (Figure 8.1).  The relatively high 

classification accuracy of the developed models demonstrated the potential of hyperspectral 

AISA data for discriminating the difference in the spectra among papyrus and its co-existing 

species.   

 

Table 8.5:  Testing the discriminatory performance of the RF classifier using the selected bands 

(n = 8) and the OOB method for estimating the error rate. The confusion matrix includes the 

overall accuracy, kappa statistic, user accuracy, and producer accuracy for Cyperus papyrus 

(CP), Echinochloa pyramidalis (EP), Phragmites australis (PA), and Thelypteris interrupta (TI) 

Classes CP EP PA IT Row total 
CP 24 2 4 0 30 
EP 4 22 4 0 30 
PA 2 2 26 0 30 
IT 2 3 0 25 30 
Column total 32 29 34 25 120 
Producer accuracy  =  75.86 %                                                         Overall accuracy = 80.83 % 
 User accuracy        =  73.33 %                                                         Kappa                  = 0.74 

 

 

 

 

Table 8.6: Testing the discriminatory performance of the RF classifier using the selected 

vegetation indices (n = 5) and OOB method for estimating the error rate. The confusion matrix 
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includes the overall accuracy, kappa statistic, user accuracy, and producer accuracy for Cyperus 

papyrus (CP), Echinochloa pyramidalis (EP), Phragmites australis (PA), and Thelypteris 

interrupta (TI) 

Classes CP EP PA IT Row total 
CP 24 2 4 0 30 
EP 3 26 0 0 29 
PA 2 0 27 0 29 
IT 0 2 0 28 30 

Column total 29 30 31 28 118 
Producer accuracy  =  86.67 %                                                        Overall accuracy = 88.98 % 
User accuracy         =  89.66 %                                                        Kappa                  = 0.85  

 

8.5 Predicting papyrus biomass using narrow band vegetation indices  

In order to better understand papyrus quantity (biomass) interactions with the spatial distribution, 

we evaluated the potential of using narrow band vegetation indices and the RF regression model 

in predicting biomass of Cyperus papyrus L. measured at high canopy density (Chapter 7).    

More specifically, the utility of the widely used NDVI involving all the possible two-band 

combinations in the red, red-edge, and NIR bands (i.e. 600 nm to 1000 nm) were investigated. 

These indices and spectrum region were selected because they are the most commonly used in 

estimating biomass and crop yield (Thenkabail et al., 2000; Mutanga and Skidmore, 2004a; Cho 

et al., 2007). The discrete 401 narrow bands allowed a computation of N*N = 160,801 narrow 

band NDVIs for biomass prediction. Results of this analysis are shown in  for each two-band 

combinations in Figure 8.2. All possible two-band combinations applied in this study to compute 

NDVIs allowed exploring the strength of the large number of hyperspectral bands rather than 

focusing on the standard NDVI where only  two bands from red and NIR are used to compute the 

index. On the other hand, the RF ensemble and backward feature elimination allowed for the 

reduction of redundancy of hyperspectral data and simplifying the modelling process used in this 

study by identifying the optimal number of narrow-band NDVIs that offer the best predictive 

accuracy. The RF algorithm was also used to develop biomass prediction models. 
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Figure 8.2. Contour plot representing the correlation coefficients (R2) of the linear regression 

between above ground green biomass and NDVIs obtained from all possible two band 

combinations using bands located from 600 nm to 1000 nm.  

Our finding in this study is that four NDVIs involving the combination of wavelengths located in 

the NIR (853 nm, 853 nm, 847 nm, and 776 nm) coincided with shorter wavelengths of the red-

edge (741 nm, 740 nm, 741 nm, and 749 nm) respectively have the best prediction performance 

of papyrus biomass than the standard NDVI (833nm and 680 nm). Using these selected NDVIs 

(n = 4), papyrus biomass can be estimated at high canopy density (R2 = 0.73, RMSEP = 276 

g/m2; 8.6 % of the mean) (Table 8.7).  
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Table 8.7: The performance of the random forest model for prediction of papyrus biomass in the 

Greater St Lucia Wetland Park using different subsets of NDVIs  

       Calibration (n = 33) Independent validation (n = 14) 
 R2 actual vs. 

 Predicted 
RMSEC 
g/m2 

Mean 
% 

R2 actual vs. 
 predicted 

RMSEP 
g/m 

Mean 
% 

Standard NDVI(833nm and 680 nm) 0.026 539 16.7 0.015 694 21.5 
Best NDVI (741 nm and 853 nm) 0.72 295   9.2 0.66 306   9.5 
Selected NDVIs (n = 4) 0.77 266   8.2 0.73 276   8.6 
Top 20 NDVIs 0.69 301   9.3 0.66 312   9.7 
 

In recent years, the RF has proven to be a powerful classification method in the field of 

remote sensing (Gislason et al., 2006; Lawrence et al., 2006). To the best of our knowledge, only 

one study   by Ismail and Mutanga (2009) investigated the use of the RF algorithm in regression 

type applications for predicting S. noctilio induced water stress in P. patula trees using 

hyperspectral data. The important finding in the present studying is that the machine learning RF 

algorithm is deemed to be a robust, unbiased measure of error rate for feature selection. 

Therefore, the RF algorithm is worth considering as a robust method for remote sensing 

regression type applications in the future.  

8.6 Evaluating the reliability and robustness of random forest algorithms for 
hyperspectral remote sensing classification and regression 

Hyperspectral data tend to be relatively more difficult to process due to the geometrical and 

statistical properties associated with high dimensional data which requires sufficient training 

samples (Borges et al., 2007; Hsu, 2007; Tsai et al., 2007). Practically, in most of the 

hyperspectral applications, the number of training samples is limited compared to the large 

number of hyperspectral bands (Hsu, 2007). This is particularly true in papyrus swamps, where 

collecting such sufficient training and test samples is difficult due to poor accessibility. Given 

these problems, the challenge was to develop and test robust methods and techniques for the 

effective processing and classification of hyperspectral data.  

In this thesis (Chapter 4 to Chapter 7) we tested the utility of the RF algorithm as a new 

approach for variable selection to reduce redundancy in the complex hyperspectral data set for an 

accurate classification and regression model. Our findings, which are consistent with other 
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studies, indicate that the new approach outperforms other common techniques, such as 

classification and regression trees in that:   

1. The RF algorithm can rank the importance of bands that best contribute in the classification 

and regression model (Lawrence et al., 2006), 

2. The algorithm is faster in training when compared to the ensemble methods and requires the 

user to specify only the number of trees to be grown (ntree) and the number of variables to 

split the nodes of individual trees (mtry) (Breiman, 2001; Díaz-Uriarte and de Andrés, 

2006), 

3. The RF algorithm can also detect outliers, which can be very useful when some of the cases 

may be mislabeled (Gislason et al., 2006); 

4. The effects of bias, variance, and instability which usually occur  in other ensembles and 

single classification and regression trees is minimized in the RF algorithm because the 

multiple classification trees are constructed based on a random subset of samples derived 

from the training data which then vote by plurality on the correct classification (Breiman, 

2001; Lawrence et al., 2006),    

5.  The stopping rules and pruning of trees is not necessary, and the algorithm has been shown 

to be robust to overfitting (Pal, 2005; Granitto et al., 2006; Lawrence et al., 2006), and, 

6. More importantly, with the RF algorithm, it is not necessary to have cross-validation or a 

separate accuracy assessment data set, because the OOB error rate provides an unbiased 

estimate of error (Lawrence et al., 2006; Prinzie and Van den Poel, 2008). Our findings 

indicate that the internal assessment of accuracy and error rates from the RF algorithm was 

nearly identical to  independent test data set, 10 fold cross-validation, and .632+ bootstrap 

for variable selection (Figure 8.1; 8.2), classification (Table 8.4),  and regression models 

(Table 8.7)  .  
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Figure 8.6. The forward variables selection method for identifying the optimal subset of 

wavelengths based on the OOB and .632+ bootstrap error estimates. The best subset of 

wavelengths with the lowest error rate is shown by the black arrow. 

 

 

Figure 8.7. The optimal predictive variables selection using the backward elimination process. 

The RMSEC is calculated from the training dataset (n = 33) using OOB method, 10 fold cross 

validation, and the test dataset (n = 14). The lowest RMSEC obtained is shown by the black 

arrow. 
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Furthermore, an important finding in this study (Chapter 5) is that most of the overall and 

class accuracies based on the OOB estimates method were less than 2 % of the estimates of the 

independent test datasets (Table 8.4). Therefore, this combination of reliable and robust method 

for accuracy assessment, which obviates the need to collect a separate test dataset and of 

relatively high accuracies of the RF algorithm, can be considered to be desirable for 

hyperspectral remote sensing applications especially in complex environments such as swamp 

wetland areas where usually no convenient or sufficient field data are available. 

8.7 conclusions  

The main aim of this study was to investigate the potential of hyperspectral remote sensing 

techniques in discriminating spectral difference among Cyperus papyrus L. and three other co-

existing species and in predicting biomass of Cyperus papyrus L in high density canopies. The 

findings reported in this thesis are that the information contained in hyperspectral data can 

accomplish these tasks. These findings contribute to the research in general and to the feasibility 

of applying remote sensing technologies in mapping and monitoring the distribution and the 

quantity (biomass) of papyrus swamps.  

The main conclusions are based on the following findings from the different objectives 

addressed in this study:  

1. Canopy reflectance measured at field level can be used to discriminate Cyperus papyrus L. 

from P. australis, E. pyramidalis, and T. interrupta (binary classification) using six 

wavelengths located in the red-edge and near-infrared regions of the electromagnetic 

spectrum. This implies that the mean spectral reflectance of Cyperus papyrus L is different 

from the other species associated with it in the same ecosystem (swamp wetlands). 

2. Using the field spectrometry data resampled to HYMAP spectral resolution, the RF 

algorithm could also discriminate the spectral difference among Cyperus papyrus L. and the 

other co-existing species (P. australis, E. pyramidalis, and T. interrupta) (multi-class 

classification). This result permitted the extension of field measurements to airborne 

hyperspectral images for mapping papyrus and its co-existing species in swamp wetlands. 

The resampled data also showed the importance of the red-edge and near-infrared regions in 

mapping wetland plants species. 
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3. We have shown that hyperspectral indices can improve the spectral discrimination between 

papyrus and its co-existing species. Therefore, the use of narrow band indices can be 

considered as a new approach for discriminating wetland plants.  

4. The new integrated approach developed in this study that involves the RF, as a data reduction 

and classification algorithm, and forward selection could discriminate among papyrus and its 

co-existing species with an overall accuracy of 80.98 % using airborne hyperspectral data 

(AISA eagle).  

5. We have shown that at high canopy density, papyrus biomass could be predicted accurately 

using narrow band vegetation indices computed from a combination of the shorter 

wavelengths of red or far-red (700 nm-750 nm) and longer wavelengths of NIR (750 nm -

1000 nm), compared to the standard NDVI involving a strong chlorophyll absorption band in 

the red trough and a near-infrared band. 

6. The machine learning RF algorithm is worth considering as a desirable technique for feature 

selection that can be used to reduce redundancy in the complex hyperspectral data set and 

that can provide powerful classification and regression applications especially in complex 

environments such as swamp wetland areas where usually no convenient or sufficient field 

data are available. 

8.8 The Future  

The results from this study provide an alternative method for discriminating and mapping 

papyrus and its co-existing species. In the future, with the operational launch of South Africa 

ZASat-003 satellite that will carry a hyperspectral sensor, the findings of this study will easily 

improve the understanding of wetland managers in developing an effective management 

programme for wetland ecosystems. Our findings also contribute in building the spectral libraries 

for different wetland plant species which will help in discriminating not only between wetland 

species, but also between wetland species and upland species as there has been no specific 

research dealing with the difference in spectral response of canopies of wetland species and 

upland species. Furthermore, the availability of hyperspectral sensors will allow mapping of 

species quality in wetland ecosystems. This includes the biochemical variables that are important 

in monitoring the health of papyrus swamps such as nitrogen, water content, water stress, and 

chlorophyll.  This will help to establish a fundamental understanding of the spatial distribution of 
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papyrus swamps functions and quality which could lead to the development of early warning 

systems to detect any subtle changes in the swamp systems, such as signs of stress, and could 

lead to the development of techniques to classify wetland area conditions (e.g. healthy or 

disturbed) based on their species quality and quantity. 

This study focused mainly on highlighting the optimal spectral resolution for better 

discrimination among papyrus and other three co-existing species. In order for remote sensing 

methods to become operational for mapping papyrus and other species, it is critical to investigate 

the optimal spatial resolution and pixel size that could better map papyrus and its co-existing 

species in highly diverse environments. It is recommended that future research focuses on 

methods that consider papyrus and its co-existing species at their optimal spatial resolution 

(Marceau et al., 1994). This will allow an increase of the information content per pixel 

(Atkinson, 1997).  

The performance and robustness of the RF ensemble in classification models using 

complex hyperspectral data where the number of samples exceeds the variables (small n large p) 

is fully understood (Ham et al., 2005; Pal, 2005; Gislason et al., 2006; Lawrence et al., 2006; 

Adam et al., In press). However, to the best of our knowledge only two studies (Ismail and 

Mutanga, 2009; Adam, In review) examined the use of the RF algorithm in regression models 

using hyperspectral data. It is recommended that future studies compare the validity and 

reliability of the RF ensemble against other tree-based ensembles (e.g. bagging and boosting). 

Additionally, the RF ensemble should also be tested against other methods such as artificial 

neural networks which have proved to be successful in remote sensing regression model 

(Mutanga and Skidmore, 2004b). 
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