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i
Abstract

The main aim of this project was the development of a particle-in-cell (PIC)
plasma simulation code. While particle-in-cell simulations are not new, they
have largely focused on using an initial Maxwellian particle loading. The
new feature the code implemented for this project is the use of kappa distri-
butions as an initial loading. This specialises the code for the investigation
of waves and instabilities in space plasmas having kappa-type velocity dis-
tributions. The kappa distribution has been found to provide a better fit to
space plasma particle velocity distributions than the Maxwellian in a wide
variety of situations. In particular, it possesses a power law tail which is a
frequent feature of charged particle velocity distributions in space plasmas.

Traditionally, the treatment of such out-of-equilibrium velocity distributions
has been via a summation over several Maxwellians with different tempera-
tures and average number densities. Instead, the approach used in this work
is guided by recent advances in non-extensive statistical mechanics, which
provide a rigorous underpinning for the existence of kappa distributions.

As case studies, the simulation code was used to investigate the ion-acoustic
instability as well as electrostatic Bernstein waves in both Maxwellian and
kappa plasmas. Results were compared to kinetic theory and the differences
in the Maxwellian and kappa plasma behaviours are discussed. To analyse
the instabilities various diagnostics were used, including Fourier analysis of
the wave fields to determine the dispersion relation, and particle binning
to determine the particle velocity distributions. Both the Maxwellian and
kappa particle loading algorithms were found to agree well with the theoret-
ical velocity distributions and the dispersion relations were found to agree
with kinetic theory for both kappa and Maxwellian plasmas.

The code was developed in the C programming language using an incre-
mental approach that enabled careful testing after each new level of sophis-
tication was added. A version of the code was parallelised using Message
Passing Interface (MPI) to take advantage of the distributed supercomput-
ing environment provided by the CHPC.
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Chapter 1

Introduction

Space plasmas are a rich source of waves and instabilities. Owing to the
dynamic nature of the space plasma environment, sources of free energy are
abundant and plasma waves and instabilities are spontaneously produced.
The investigation of plasma waves and instabilities is vital to a proper un-
derstanding of space plasma dynamics and the interpretation of satellite
observations. Kinetic theory considers the particle velocity distribution for
each plasma species and provides the most comprehensive description of the
plasma, but also the most complex (Swanson, 2003).

The thermodynamic equilibrium state, modelled by the Maxwellian distri-
bution, is often used in the kinetic investigation of plasma waves. However,
space plasmas are seldom in an equilibrium state and non-Maxwellian veloc-
ity distributions are often observed (Treumann et al., 2004; Leubner, 2004;
Livadiotis and McComas, 2009). These non-Maxwellian velocity distribu-
tions often exhibit power law tails owing to an over abundance of high energy,
or suprathermal particles (Parker and Tidman, 1958). It has generally been
suggested that the suprathermal particles gain energy as a result of Fermi
acceleration at collisionless shocks (Parker and Tidman, 1958; Drury, 1983),
but other mechanisms are also known to lead to similar energisation.

Vasyliunas (1968) introduced the kappa distribution function as a fit to ob-
served space plasma velocity distributions, and successfully modelled satel-
lite OGO 1 and OGO 3 solar wind electron data. The isotropic three-
dimensional kappa distribution, in the form given by Summers and Thorne
(1991), is
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where 0% = 2[(k — 3/2)/k)(T/m) = 2[(k — 3/2) /k]v?, is known as the gener-
alised thermal speed, I" is the gamma function and the parameter x shapes
the tail of the distribution, with x — oo producing the Maxwellian distribu-
tion. On the other hand, for low & values, the kappa distribution reduces to
a power law distribution. Thus, the kappa distribution enables one to study
a wide range of velocity distributions, ranging from the Lorentzian (for low
values of k) to the Maxwellian (for kK — c0).

The family of kappa distributions, Equation (1.1), have generally been found
to provide a more realistic representation of observed particle velocity dis-
tributions in space plasmas than the Maxwellian distribution, or sums of
Maxwellians (Pierrard and Lazar, 2010). In situ satellite observations have
found kappa velocity distributions, with 2 < k < 6, for the solar wind
ions (Gloeckler et al., 1992) and electrons (Maksimovic et al., 1997), for the
ions in the terrestrial magnetosphere (Gloeckler and Hamilton, 1987) as well
as for the terrestrial plasmasheet electrons and ions (Christon et al., 1988,
1989). The kappa distribution also has a significant theoretical foundation
provided by Tsallis statistical mechanics (Tsallis, 1988), which provides a
theoretical framework for describing and analysing systems out of equilib-
rium. The kappa distribution is thus an effective tool in the study of space
plasma phenomena.

The use of kappa velocity distributions has become widespread in the ana-
lytical investigation of space plasmas. Both the modified plasma dispersion
function Z}, valid only for integer values of £ (Summers and Thorne, 1991),
and the generalised plasma dispersion function Z,, valid for arbitrary real
k values (Mace and Hellberg, 1995), have been successfully used to study
waves and instabilities in plasmas with excess suprathermals. Thorne and
Summers (1991), Meng et al. (1992) and Mace et al. (1998) investigated ion-
acoustic waves in a kappa plasma and showed that the ion-acoustic speed
was kappa dependent and that the growth rate of the instability was altered.
Thermal fluctuations were also found to be enhanced in the kappa plasma
(Mace et al., 1998). Further, Bryant (1996) and Mace et al. (1998) showed
that the Debye shielding length depends significantly on the parameter s
of the kappa distribution. Mace (2003, 2004) and Henning et al. (2011)
investigated Bernstein waves in a kappa plasma and showed that the dis-
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persion relation of electron Bernstein modes had strong dependence on the
parameter k.

Although the kappa distribution has been successfully used in many analyti-
cal studies of space plasmas, it has yet to become as widespread in computer
simulation studies of space plasmas. One of the goals of this research project
will be to model and simulate plasmas having kappa distributions.

1.1 The computational simulation of plasmas

The use of computer simulations to model and investigate plasmas started in
the late 1950s, with the large scale systematic effort to model fusion plasmas
(Tajima, 1989), and has since provided an effective means to study plasma
wave phenomena. They are especially useful as a tool to study the non-
linear regime of plasma wave evolution where analytical investigation may
be difficult (Matsumoto and Omura, 1993). The analytical modelling of plas-
mas often employs simplification and approximation, i.e., analysis usually
assumes linearity or weak non-linearity or symmetry characteristics (Daw-
son, 1983; Matsumoto and Omura, 1984; Dawson et al., 1993; Treumann
and Baumjohann, 1997). Conversely, computer simulations maintain high
levels of physical detail and can describe, with minimal approximation, the
non-linear regime of plasma wave instabilities, from growing modes to even-
tual saturation and quenching of the instabilities, producing new equilib-
rium states (Forslund, 1985; Tajima, 1989; Dawson et al., 1993). Thus,
plasma simulation extends and complements linear analysis and can provide
a deeper understanding of plasma waves and instabilities. The rapid emer-
gence, and ready availability, of fast modern computing and the increase in
memory capacity further motivates the use of the computer as a tool in the
study of plasma waves and instabilities as increasingly large scale plasma
simulations become feasible (Dawson, 1985; Forslund, 1985; Dawson et al.,
1993).

The numerical simulation of plasmas can be broadly classified into different
types, each of which describes the plasma in varying levels of detail and
resolution.

In magnetohydrodynamic (MHD) simulations, the plasma is modelled as a
continuous fluid and the evolution of the fluid in its self-consistent electro-
magnetic field is followed (Matsumoto and Omura, 1984). The magnetohy-
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drodynamic fluid equations (see Chen, 2006, p. 184) are used to describe
the plasma dynamics and together with the appropriate set of Maxwellian
equations, are numerically solved in the simulation (Birdsall and Langdon,
1985; Matsumoto and Omura, 1993). Simple fluid (MHD) models coarse
grain the single particle effects and kinetic phenomena such as damping and
non-linear saturation of microinstabilities are not resolvable (Winske and
Omidi, 1996). Thus, MHD simulations are useful in the understanding of
the long time macroscopic, global-scale dynamics of plasmas (Matsumoto
and Omura, 1984; Tajima, 1989; Matsumoto and Omura, 1993) and have
been used to investigate large scale plasma systems, e.g., the Earth’s mag-
netosphere was simulated by Leboeuf et al. (1978, 1981) in two and three
dimensions to produce an interplanetary magnetic field and the interaction
of the solar wind with the magnetosphere was simulated by Brecht et al.
(1981, 1982) and Groth et al. (2000).

Kinetic simulations provide the most detailed description of the plasma and
consider the interaction between the plasma particles and the electromag-
netic fields (Birdsall and Langdon, 1985; Tajima, 1989; Winske and Omidi,
1996). These simulations are required when single particle effects such
as wave particle interactions, particle heating and acceleration and wave
saturation are important (Matsumoto and Omura, 1984; Forslund, 1985;
Winske and Omidi, 1996). Kinetic simulations include Vlasov simulations,
which directly solve the Vlasov equation on a phase space grid (Bertrand,
2005), and particle-in-cell simulations, which model the plasma as being
composed of particles and follows the trajectories of each particle through-
out the simulation (Hockney and Eastwood, 1981; Birdsall and Langdon,
1985). Matsumoto and Omura (1984), Kasaba et al. (2001), Hellinger et al.
(2004) and Lu et al. (2005) have used kinetic simulations to investigate the
excitation and non-linear evolution of plasma waves and instabilities, us-
ing plasma beams to excite instabilities such as the ion-acoustic and the
electron-acoustic instability.

Hybrid simulations refer to those which model part of the plasma using an
individual particle approach, as done in PIC, and part as a fluid, as done
in MHD (Winske and Omidi, 1996; Giacalone, 2006). The most common
type of hybrid simulation of space plasmas, models the ions as particles,
with electrons modelled as a singly charged, neutralising, mass-less fluid,
thus allowing the investigation of phenomena on the slower ion time scales
(Matsumoto and Omura, 1993; Dawson et al., 1993; Winske and Omidji,
1996). Examples of the application of hybrid simulations can be found in
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the simulation studies of the Earth’s bow shock, where time scales of interest
are usually on the order of the ions, such as those carried out by Winske
(1985), Quest (1988), Omidi and Winske (1990), Matsumoto and Omura
(1993) and Burgess (2006), among others.

1.2 The particle-in-cell simulation technique

The aim of this research project was to create plasma simulation codes using
the particle-in-cell (PIC) simulation technique, where the PIC technique
models the plasma as being composed of individual particles. The advantage
of the PIC technique is its ability to simulate plasma micro-instabilities
and their non-linear evolution (Matsumoto and Omura, 1984; Birdsall and
Langdon, 1985; Forslund, 1985; Tajima, 1989). Presented in this section is a
general description of the particle-in-cell technique as well a brief history of
particle-in-cell simulations, outlining the development in the sophistication
of the models used, from the early one dimensional electrostatic models to
the massively parallel, electromagnetic simulations run today. A detailed
description of the simulation code developed for this thesis is presented in
Chapter 2.

In the particle-in-cell method, simulation particles are initialised by assign-
ing to each an initial position and velocity, according to some given sta-
tistical distribution. The trajectories of the particles are then calculated
using the Newton-Lorentz equations, employing the self-consistent electro-
magnetic fields, which are determined from Maxwell’s equations (Hockney
and Eastwood, 1981; Birdsall and Langdon, 1985; Tajima, 1989). Externally
applied fields are readily taken into account. Limitations in early comput-
ing power, however, greatly reduced the sophistication of the early plasma
simulation models, i.e., early simulations were one dimensional and often re-
lied on the electrostatic approximation, the particles usually took the form
of charged sheets and the fields were calculated directly from the particle
positions (Birdsall, 1991).

Even with the early lack of sophistication, particle simulation was still an
effective tool in the study of plasmas. In one of the first papers on parti-
cle simulations, Buneman (1959) simulated cold electrons drifting through
cold ions and showed that the electron beam loses its drift motion in the
produced instability. The loss in drift motion amounted to an effective col-
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lision rate, on the order of the growth rate of the instability, and was a
possible explanation for the mechanism of electron-cooling in low pressure
RF discharges. Dawson (1962) simulated warm particles in the form of neg-
atively charged sheets, using 5 to 20 sheets per Debye length, embedded
in a uniform neutralising background of positive charge. The properties of
the plasma system, such as the velocity distribution of the particles, the
thermalising properties of the plasma, diffusion in velocity space and the
drag on fast and slow sheets were examined and found to be in agreement
with theoretical predictions. The results of Dawson (1962) showed that the
kinetic behaviour of plasmas could be observed in one dimensional simula-
tions using only a small number of particles per Debye length. Furthermore,
Dawson (1964) demonstrated the effects of Landau damping (Landau, 1946)
of electrostatic waves which, at the time, was predicted by theory but had
not yet been observed experimentally.

As mentioned above, in the particle-in-cell method the particle dynamics
and fields are governed by Newton’s and Maxwell’s equations, respectively.
These equations are numerically integrated in time throughout the simula-
tion and this numerical integration places limits on the allowable time steps,
ensuring stability of the method (Hockney and Eastwood, 1981; Birdsall and
Langdon, 1985). These stability constraints make the particle-in-cell tech-
nique computationally expensive, as a number of calculations are computed
for every particle at every time step and the number of time steps required
to produce a significant degree of plasma evolution is high. Thus, the do-
main of the simulated plasma is usually confined to a small region of interest
(Dawson, 1983; Forslund, 1985).

To reduce computation time, the domain of the simulation, known as the
simulation box (Birdsall and Langdon, 1985), is partitioned into cells of
(usually) equal size, Az. This refinement was introduced to make two-
dimensional simulations more practical, by Yu et al. (1965) and Hockney
(1965, 1966). The simulation particles are free to move through the grid,
depositing charge and current densities to the grid points, located at the
center of each cell (Hockney and Eastwood, 1981; Dawson, 1983; Birdsall
and Langdon, 1985). Usually, a predefined weighting scheme, such as the
nearest-grid-point (NGP) scheme, used by Hockney (1965, 1966), is used to
determine how the charge and current densities are assigned to grid points.
In the NGP scheme, the charge density is accumulated at a grid point by
combining the charge from every particle lying within the associated cell.
The charge and current densities at the grid points then provide the sources
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for Maxwell’s equations, which are solved in discrete form on the grid, as
opposed to being calculated directly from the particle positions. This re-
duces the number of calculations performed, as there are usually fewer grid
points than there are number of particles, and the number of calculations
computed per time step is reduced from N2 to N logN (Dawson, 1983).
Since the particle positions no longer coincide with the positions at which
the fields are known, a weighting scheme is required to interpolate the elec-
tromagnetic fields, at the grid points, back to the particle positions to obtain
the electromagnetic force on each particle.

The simulation cells are not required to be of equal size. Berger and Oliger
(1984) developed the adaptive mesh refinement technique for particle simu-
lations. Here the spatial grids in the simulation could be redefined and more
grid points could be added to regions of interest. This allowed the resolution
of the plasma spatial domain to be dynamically defined. Brackbill (1993)
created the moving mesh adaptation method which can be used to move
grid points to regions of interest, from other regions.

Particles moving in and out of the simulation cells, in the nearest-grid-point
scheme, had the effect of producing noisy electromagnetic fields, due to the
drastic changes in charge density at the grid points (Forslund, 1985; Bird-
sall and Langdon, 1985). High levels of noise in a simulation can distort or
disguise important physical processes under investigation. To reduce the in-
herent noise and enhanced fluctuations and collisionality in the simulations,
the finite-size macro-particle technique was constructed, independently, by
Birdsall and Fuss (1969) and Morse and Nielson (1969). Birdsall and Fuss
(1969) introduced the cloud-in-cell (CIC) scheme and Morse and Nielson
(1969) introduced the particle-in-cell (PIC) scheme (not to be confused with
the particle-in-cell simulation technique which is the name given to a class
of simulations). Birdsall and Fuss (1969) assumed the simulation particles
were finite sized, tenuous “clouds” of uniform charge density, with an effec-
tive particle shape. The charged clouds were allowed to pass freely through
each other and the charge assigned to a grid point was taken as the over-
lap of the cloud with a cell. Coulomb interactions on scales smaller than
a particle’s size were smoothed out and the assignment of charge to the
grid points produced less noisy electromagnetic fields. Okuda and Birdsall
(1970) showed that collision cross sections were greatly reduced when using
the cloud-in-cell scheme over the nearest-grid-point scheme when the size
of the clouds were made comparable to the Debye length. Morse and Niel-
son (1969) assumed no shape or size for their simulation particles; however,



8 CHAPTER 1. INTRODUCTION

each particle distributed its charge between the two nearest grid points, in
a one dimensional simulation, using linear interpolation. The linear inter-
polation was also found to reduce noise in the simulation when compared to
the nearest-grid-point scheme.

Noise in the simulation is not only attributed to the weighting scheme used,
but also arises due to the random loading of particles in the simulation. Ran-
domly loading particles in phase space can produce plasmas with fully de-
veloped fluctuation levels which can be enhanced when too few particles are
used (Birdsall and Langdon, 1985; Sydora, 1999). In general, the noise in the

simulation decreases as N, 1 2, where N, is the total number of simulation
particles (Dawson, 1983). Byers and Grewal (1970) implemented the quiet
start technique which attempts to load the plasma particles as smoothly as
possible in phase space, reducing the noise produced by the random loading
of particles, by imposing an order on their initial conditions. However, quiet
starts only reduce noise briefly, as the plasma simulation deteriorates from
the quiet start and becomes noisy again (Dawson, 1983; Lapenta, 2012).
Aydemir (1994) and Denton and Kotschenreuther (1995) implemented the
0 f PIC algorithm which greatly reduces noise in the simulation. The § f PIC
algorithm separates the total particle distribution into a background part fy
and perturbed part ¢ f, i.e., the total distribution function is f = fo +df.
The perturbed part of the distribution is represented using the simulation
particles and the background part is represented analytically. Charge and
current densities are then computed analytically from fy and statistically
from Jf using the usual particle-in-cell techniques. The §f PIC algorithm
allows for more accurate determination of growth and saturation of weak
kinetic micro-instabilities than the usual PIC technique (Sydora, 1999).

Plasma phenomena usually encompass multiple time scales. Stable particle-
in-cell simulations, however, usually require the resolution of the high elec-
tron plasma frequency, or cyclotron frequency, and the Debye length (Hock-
ney and Eastwood, 1981; Birdsall and Langdon, 1985). Cohen et al. (1982)
analysed implicit time-differencing techniques for particle-in-cell simulations,
which solve equations in the simulation implicitly in time and were found to
remain stable even when a large time step was used. Implicit time differenc-
ing afforded the investigation of plasma phenomena on slower time scales
without the need to resort to long simulation runs. Adam et al. (1982) de-
veloped the electron sub-cycling technique, due to the disparate dynamics of
particles of varying mass. Standard particle updating was used, such as the
leap-frog method; however, the lighter electrons were advanced on a time
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step that was a fraction of that of the heavier ions. For each complete cycle
of time integration there is one cycle for the ions and several sub-cycles for
the electrons. Thus, the plasma species are allowed to be resolved at their
own natural time scales of motion and computation time is saved as the
dynamics of the heavier ion species are not updated as often as the lighter
electron species.

Out of the need to run larger scale simulations, using millions of particles
without resorting to prohibitively long simulation runs, particle-in-cell sim-
ulations were ported to the parallel computing environment. Huff et al.
(1982) began early work in parallelisation of particle simulations, which al-
lowed concurrent computation of the simulation equations and resulted in
increased execution speeds. Two types of computer memory exists in par-
allel architectures, these are, shared and distributed memory. In shared
memory systems all processors have access to the same memory block and
inter-processor communication is usually done via the shared main memory.
In distributed memory systems each processor is independently assigned
a memory block and inter-processor communication is done via message
passing. Horowitz et al. (1989) developed the first parallel particle-in-cell
simulation to run on a shared memory system, such as the Cray computer.
Jackson and Zaidman (1987) utilised message passing interface (MPI) and
developed simulations, in LISP, which could run on distributed memory sys-
tems such as the Connection Machine. Due to their high computing power
and capability for massive data parallelism, simulation codes were also made
to work on graphical processing units (GPUs) by Stanchev et al. (2009), De-
cyk and Singh (2011) and Abreu et al. (2011). NVIDIA GPUs were used
with CUDA (Compute Unified Device Architecture) and simulations could
be conducted using many millions of particles.

Generally, in the parallelisation of the simulation code, one of two meth-
ods are used (Dawson et al., 1993). In the first method, implemented by
Liewer et al. (1988), particles are divided among the processors and all other
quantities are replicated on each processor. The distribution of particle cal-
culations among the available processors works well only on a small number
of processors (approximately 10) and does not efficiently scale to the use of
a larger number of processors (Dawson et al., 1993). In the second method,
implemented by Liewer and Decyk (1989), both particles and field quantities
are distributed among the available processors. Each processor is assigned a
region of the simulation box and all particles and field values associated with
that region. The parallelisation scheme used by Liewer and Decyk (1989)
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was found to efficiently run very large scale simulations using millions of
particles on a large number of processors.

Liewer et al. (1990) increased the parallel efficiency of the simulation code
of Liewer and Decyk (1989) by dynamically balancing the work done on
each processor. Dynamic load balancing allows spatial boundaries to change
during the course of the simulation in order to maintain an equal number
of particles on each processor. Increasing the efficiency of the parallelisa-
tion scheme allowed simulations to run faster. Bettencourt and Greenwood
(2008) investigated the parallel efficiency of particle-in-cell simulations, and
observed that not only the performance of the CPU used, but also memory
access patterns affected the execution speeds of the simulation.



Chapter 2

Simulation model and basic
equations

The particle-in-cell (PIC) simulation code created and described in this the-
sis was written using the C programming language. The simulation code is
one dimensional, i.e., fields and sources vary only in one dimension x and
only the z component of the particle position vector is relevant; however,
all three components of its velocity are retained and are necessary when a
magnetic field, directed at an angle to x, is present. The simulation code is
electrostatic but allows for a uniform, static magnetic field B, which can
be directed at arbitrary angles with respect to x. In all simulations carried
out and presented in this thesis, periodic boundary conditions were used for
the particles and fields.

An overview of our particle-in-cell simulation code is given in the schematic
diagram in Figure 2.1. The simulation starts (at time ty) by loading all
plasma particles into the simulation box with a chosen velocity and spatial
density distribution [see Figure 2.1 (a)].

During the initialisation phase [Figure 2.1 (b)], the particle velocities are
stepped forward from time tg to to + At/2, where At is the length of the
time step used in the simulation. The particle velocities are stepped forward
by firstly interpolating the initial particle positions to the discrete grid and
accumulating charge density at the grid points [Figure 2.1 (c)]. Second, the
electric field is calculated on the discrete grid using the accumulated charge
density [Figure 2.1 (d)]. The electric field is then interpolated from the

11
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discrete grid points to the particle positions [Figure 2.1 (e)] and the particle
velocities are stepped forward to time ¢y + At/2, using the interpolated
electric field [Figure 2.1 (f)]. The particle velocities are then evaluated at
half integer time steps, to+ (n+1/2)At, for the remainder of the simulation.
This enables the implementation of the leap-frog technique to update the
particle positions from the particle velocities during the simulation, i.e., in
the particle pusher [Figure 2.1 (f)].

After this initial synchronising call to the simulation cycle in Figures 2.1 (c)
to (f), the particle velocities are stepped forward for the full time step At for
the remainder of the simulation run, i.e., the particle velocities are evaluated
at the times tg+(n+1/2)At, wheren = 0, 1,2, - - -. The particle positions are
updated using the leap-frog technique and the velocities at the half integer
time steps, and the simulation progresses through the repetition of the cycle
in Figures 2.1 (c) to (f), solving Newton’s and Poisson’s equations in discrete
form at each time step to the end of the simulation run.

Details for each of the steps in Figure 2.1 (a) and Figures 2.1 (¢) to (f) are
presented in the subsequent sections.

2.1 Loading particles into the simulation box

The code we developed is designed to simulate multi-species plasmas. Each
plasma species used in the simulation is created by reading in, from an
input file, its number of particles, its plasma frequency, charge-to-mass ratio,
thermal speed and species drift. After all species are formally created, every
plasma particle is loaded into the simulation box by allocating to each initial
conditions in phase space, i.e., every particle is given an initial position x and
velocity v by sampling from a chosen distribution (Hockney and Eastwood,
1981; Dawson, 1983; Birdsall and Langdon, 1985; Tajima, 1989). Although
the simulation is one dimensional, all three components of velocity can be
used. This type of simulation is known as a one-and-two-halves dimensional
simulation, with x being the full dimension and y and z the half dimensions
(Dawson, 1983; Tajima, 1989).

In all simulations carried out and presented in this thesis, particle positions
are loaded uniformly throughout the simulation box using the C intrinsic
function random(), provided by the UNIX system. The function random()
creates a set of pseudo-random numbers, uniformly distributed over the
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Figure 2.1: Schematic diagram of our one dimensional particle-in-cell sim-
ulation. Once (a) all particles are loaded into the simulation box, (b) the
initialisation phase is used to step forward the particle velocities by half
the time step, enabling the implementation of the leap-frog technique. The
velocities are stepped forward using the simulation cycle described by (c) to
(f). After the initial call to the simulation cycle (c¢) to (f) to step the par-
ticle velocities to the half time step, the particle velocities will be stepped
forward for the full time step. The simulation then reduces to the repetition
of the cycle (c) to (f) at each iteration of the simulation until the end of the

simulation run.



14 CHAPTER 2. SIMULATION MODEL AND BASIC EQUATIONS

range 0 — 2147483647, with a period of 16 x (23! —1). The random numbers
are then normalised to 2147483647, giving a uniformly distributed random
number with the range 0 — 1. By multiplying these uniformly distributed
deviates by the box length L, we allocate to the particle a position on the
interval [0, L].

Our simulation allows each species to have one of two initial states. Ei-
ther the equilibrium state, governed by the Maxwellian distribution, or the
metastable state, governed by the kappa distribution, is used. Initial states
having such velocity distributions are created by generating random devi-
ates from either the Maxwellian or the kappa distribution using the methods
described in the following subsections.

2.1.1 Generating Maxwellian distributed random deviates

The Maxwellian distribution is widely used to model velocity distributions
in plasmas which are in, or near, an equilibrium state. The one dimensional,
drifting Maxwellian velocity distribution is given by (Ishihara, 1971),

o) = () e [0t (2.1)

2mug, 2 Vg,

where vy is the drift velocity of the plasma and vy, = (T'/m)"/? is the thermal
velocity of the particles. We measure particle temperature in energy units,
thus, here and throughout this thesis, we omit the Boltzmann constant when
temperatures appear.

The Maxwellian particle loader used in our simulation code generates ran-
dom deviates from the Maxwellian distribution using the Box-Muller trans-
form (Box and Muller, 1958). The Box-Muller transform is a transformation
method for generating pairs of standard, normal distributed random devi-
ates, from uniformly distributed random deviates.

To generate Maxwellian distributed random deviates, first, two deviates,
a; and ag, uniformly distributed on the interval [0, 1], are transformed into
two independent, normal distributed random deviates, b; and bs, using the
equations (Press et al., 2007, p. 364),
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by = +/—2In ay cos(2mwaz),
bg = —2In aq sin(27ra2).

A derivation of Equations (2.2) and (2.3) is given in Appendix A. Appro-
priate random deviates vy from the Maxwellian distribution, with arbi-
trary mean (drift velocity vy) and temperature T [thermal velocity vy, =
(T/m)'/?], are then obtained by applying the following linear transforma-
tion to each of the standard, normal deviates generated by Equations (2.2)
and (2.3) (Press et al., 2007; Walck, 2007)

V1,2 = Vg + Vgpb1 2. (2.4)

2.1.2 Generating kappa distributed random deviates

The kappa distribution is used to model the non-Maxwellian velocity dis-
tributions typically observed in space plasma populations having an over
abundance of suprathermal particles (Vasyliunas, 1968; Maksimovic et al.,
1997; Schippers et al., 2008). The isotropic one dimensional kappa distribu-
tion, in the form given by Summers and Thorne (1991), is

K w2\ "
f(vz):(ww?)—lﬂr(iim <1+Kgg> , (2.5)

where 62 = 2[(k — 3/2)/k](T/m) = 2[(k — 3/2)/k]v?, is known as the gen-
eralised thermal speed, k is the spectral index which shapes the tail of the
kappa distribution, and I is the gamma function. For the kinetic tempera-
ture to remain finite, we require x > 3/2, as can be seen from the definition
of f above. In the limit as k — oo the kappa distribution, Equation (2.5), re-
duces to the one dimensional Maxwellian distribution, Equation (2.1), with
vg = 0.

A plot of the one dimensional kappa distribution, Equation (2.5), for dif-
ferent values of the index k, i.e., k = 2;5;8 and 20, as well as the one
dimensional Maxwellian distribution, Equation (2.1), is given in Figure 2.2,
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Figure 2.2: The one dimensional kappa distribution, Equation (2.5), shown
for different values of the index k, i.e., kK = 2;5;8 and 20, as well as the one
dimensional Maxwellian distribution (corresponding to k = o0), Equation
(2.1). Low values of s give rise to significant power law tails and as the
value of k increases the distribution approaches the Maxwellian distribution,
corresponding to kK = oo.

each having unit thermal velocity, vy, = 1, and zero drift. The family of
kappa distributions have a Maxwellian-like core at low |v, /vy, |, with a high
-2 (see Figure 2.2
for low values of k). The power law tail of the kappa distribution is unlike
the Maxwellian tail which falls off exponentially (compare the tail regions
of the Maxwellian and k = 2 plots in Figure 2.2). Thus the kappa distri-
bution provides a better fit to observed space plasma velocity distributions
exhibiting power law tails (Vasyliunas, 1968; Christon et al., 1988; Gloeck-
ler et al., 1992). As the parameter x increases, the tail of the distribution
progressively decays and the kappa distribution approaches the Maxwellian
distribution, as seen in the tail regions of the plots in Figure 2.2 where the
number of high velocity particles decrease as k increases.

energy tail component which falls off as a power law x v
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Only a few particle-in-cell simulations have used kappa distributions to
model particle velocities in phase space, e.g., see Lu et al. (2010, 2011) and
Koen et al. (2012b). The majority of PIC simulations use the Maxwellian
distribution, or one of its variants such as the bi-Maxwellian or drifting
Maxwellian, or sums of these. One of the aims of this research was to create
a particle loader using the kappa distribution and to use it to simulate and
investigate the behaviour of non-Maxwellian plasmas. The kappa particle
loader we devised uses deviates generated from the closely related Student
t distribution (Press et al., 2007, p. 323), as opposed to using the rejection
method employed by Koen et al. (2012b).

The univariate form of the Student ¢ distribution is given by (Press et al.,
2007; Shaw and Lee, 2008)

(v+1)

1+ % <t;“>1 - , (2.6)

where 1 is the mean of the distribution, with the variance given by vo? /(v —
2), and v represents the number of degrees of freedom, which shapes the tail
of the Student ¢ distribution. Analogous to the kappa distribution, the
Student ¢ distribution has a power law distribution at significantly small v.
As v increases the power-law tail of the Student ¢ distribution decays more
rapidly and the distribution approaches the normal distribution (Press et al.,
2007, p. 323).

1 or(e)
I'(3)

p(t) =

(vm)o

To illustrate the relation between the kappa and Student ¢ distributions, we
let the mean p = 0 in the Student ¢ distribution in Equation (2.6) and define
v and o2, respectively, as

v = 2k-—1, (2.7)
9 K62
= . 2.
7 2 — 1 (28)

Substituting Equations (2.7) and (2.8) into the equation for the Student ¢
distribution, Equation (2.6), yields
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_ 1 2k — 1 F(z—“) 2 (26—1) —3(2x)
M= \/;r (ﬁi%) [H 2= 1) o
1 I'(x) 21"
Va2 T (k —1/2) [1+] '

s (2.9)

Equation (2.9) is equivalent to the definition for the one dimensional kappa
distribution, Equation (2.5). Thus, having demonstrated how the Student
t distribution, Equation (2.6), reduces to the one dimensional kappa dis-
tribution, Equation (2.5), we can use the well known method of generating
deviates from the Student ¢ distribution (Press et al., 2007, p. 371) to obtain
deviates from the kappa distribution, by using the definitions in Equations
(2.7) and (2.8).

The method for generating Student ¢ deviates is similar to the Box-Muller
transform described in the previous section. Two uniformly distributed
deviates a1 and as are transformed into a deviate from the Student ¢ distri-
bution by first generating the deviate ¢, using an equation analogous to the
Equations (2.2) and (2.3) (Press et al., 2007, p. 371)

c= V(al_z/y — 1) cos(2maz). (2.10)

In this case, however, only one deviate is generated at a time, unlike the Box-
Muller transform which generates two (Bailey, 1994; Press et al., 2007). The
appropriate deviate from the Student ¢ distribution v, with arbitrary mean
and standard deviation, is obtained via (Press et al., 2007, p. 371)

vy = p+oc. (2.11)

Using the definitions of v and o2, in Equations (2.7) and (2.8), respectively,
Equations (2.10) and (2.11) can be used to generate deviates from the kappa
distribution. An arbitrary drift speed can be accounted for by setting u = vq,
as in the Maxwellian case [see Equation (2.4)]. A derivation of Equation
(2.10) is given in Appendix B.
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2.2 Particle and field interpolation

To represent the electric field E, as well as the charge density p, the particle-
in-cell technique employs a discrete sampling of the spatial domain (Hockney
and Eastwood, 1981; Dawson, 1983; Matsumoto and Omura, 1984; Tajima,
1989). The spatial domain (or box) of the simulation is divided into cells of
width Az and the quantities E and p are stored only at the grid points j,
located at the centre of each cell. Since the particle positions are not subject
to discrete sampling, the particles are able to freely move through the spatial
grid, depositing charge density at the grid points (Birdsall and Fuss, 1969;
Birdsall and Langdon, 1985; Forslund, 1985). Hence some method must
be devised for particles to deposit charge information onto and take field
information from the grid.

In the particle-in-cell technique, an interpolation scheme is used to assign
charge to the grid points in the vicinity of a particle. Conversely, to deter-
mine the force on a particle requires knowledge of the electric field at its
position z. Since the electric field is known only at the discrete locations,
separated spatially by a distance Az, to determine the field at an arbitrary
location, x, requires a further interpolation step. To avoid self forces, and
conserve particle momentum, both particle and field interpolation schemes
must be identical (Hockney and Eastwood, 1981; Dawson, 1983).

In the simulation code described in this thesis, we use the first-order weight-
ing scheme, in one dimension, to assign charge from the particles to the
grid (Birdsall and Fuss, 1969; Hockney and Eastwood, 1981; Birdsall and
Langdon, 1985). The first-order weighting scheme divides the charge ¢; of
particle ¢, at position x;, amongst its two nearest grid points j and j + 1,
at the positions X; and X1, respectively, using linear interpolation. In
particular, the charge assigned to grid points j and j + 1, respectively, by a
particle located at z; is given by (Birdsall and Langdon, 1985, p. 20)

o = a7 (2.12)
i— X
Qi1 = G [a: A J]- (2.13)

Alternatively, the linear interpolation scheme can be viewed as regarding the
simulation particles as having finite size. In terms of this scheme, particles
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located at x;, are seen to be equivalent to finite sized, rigid clouds of uniform
charge density, Ax wide and centred at z;, which may pass freely through
each other (Birdsall and Fuss, 1969). The assignment of charge to a grid
point, in this interpolation scheme, corresponds to the amount of overlap
between the cloud of uniform charge density and the grid cell corresponding
to that grid point (Birdsall and Fuss, 1969), [see Figure 2.3 (a)].

The linear interpolation scheme can also be seen to produce an effective tri-
angular particle shape function S(x) of width 2Ax (Hockney and Eastwood,
1981; Dawson, 1983; Forslund, 1985), given as (Ueda et al., 1994)

S(:c)—l{ 1—|z|/Az, if|z| <Az (2.14)

- Az 0, otherwise

The amount of charge density assigned to a grid point X;, by a particle
located at z; is therefore determined by the value of S(X; — x;) [see Figure
2.3 (b)]. In particular, for a total of N, particles, each having the coordinate
x;, the total contribution to the charge density at X; is

pi =D aiS(X; = ). (2.15)

The first order weighting scheme comes at some computational expense as
two grid points need to be accessed per particle for every time step; how-
ever, fluctuations in the charge density, and ultimately the electric field, are
reduced (Birdsall and Fuss, 1969; Hockney and Eastwood, 1981; Dawson,
1983; Forslund, 1985; Birdsall and Langdon, 1985).

Once all particles have deposited their charge on the grid, by evaluating
Equations (2.12) and (2.13) for each particle, the electric field is calculated,
using the accumulated charge density, and is stored in a separate grid.

A second interpolation is then required to map the calculated electric field
on the grid back to the position of the particles, enabling a particle’s position
and velocity to be updated. Our simulation code uses a similar weighting
scheme to the one used to interpolate the particle charge to the grid, to
interpolate the electric field back to the particle positions, i.e., the electric
field at the particle’s position x; is calculated from the electric field stored
at the two nearest grid points to that particle.
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The linear interpolation scheme used to map the electric field values E;
and E,(;;1), at the grid points, j and j + 1, corresponding to positions X;
and X1, respectively, back to the position of a particle at x;, is given by
(Birdsall and Langdon, 1985, p. 22)

X — Iy T — X
Ey(zi) = Exi = [sz] Ey; + [ij] Ei(j+1)- (2.16)

Equation (2.16) should be compared with Equations (2.12) and (2.13) for
the charge density case. It is this interpolated value of the electric field
component F,; that we use to update the particle velocities, which will be
discussed later.

In general, a mixed set of particle interpolation and field interpolation
schemes may be used, as long as the field interpolation calculations are of a
lower order than that of the charge interpolation calculations; however, mo-
mentum will not be conserved exactly in this case (Hockney and Eastwood,
1981, p. 128).

2.3 Solutions of the field equations

As mentioned in the previous section, charge density from the particles is
accumulated on the grid via linear interpolation. This charge density on
the grid then provides the source term in Maxwell’s equation which is used
to obtain the electric field. Maxwell’s equation, for our one dimensional
simulation, is

dE, p
= 2.1
dx €’ (2.17)

where F, is the x component of the electric field, p is the charge density
and €g is the permittivity of free space. Particle-in-cell simulations usually
employ a system of units such that the value of ¢y can be arbitrarily chosen,
while satisfying (Matsumoto and Omura, 1984; Omura, 2007)
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(a) Cloud of uniform
charge density

F— ax

N

j*1 {

(b) Shape function

\ 24x \

Figure 2.3: In the linear interpolation scheme, point particles take the form
of (a) clouds of uniform charge density of width Az. The charge assigned
to a grid point is seen as the amount of the clouds charge density lying
within the cell belonging to that grid point. Consequently, this scheme
produces (b) an effective triangular shape function S(x) of width 2Az. The
charge assigned to a grid point is thus proportional to the value of the shape
function at the location of the grid point.
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where p is the permeability of free space and c is the speed of light. For
simplicity we set ¢g = 1 in our simulation code. Further justification for
using ¢g = 1 is given in Appendix C, where the value ¢g = 1 arises as a
result of using normalised parameters in our simulations.

We now write the variables E, and p, at the grid point j, as E,(X;) and
p(X;), respectively. We then define, in accordance with the electrostatic
approximation,

(2.18)

where ¢(X;) is a scalar potential. Substituting Equation (2.18) into Equa-
tion (2.17) yields

2 . ;
d ﬁi}zfj) _ _M;’;&)j (2.19)

which is Poisson’s equation in one dimension.

We employ periodic boundary conditions for the fields and particles in our
simulation code and hence Poisson’s equation is amenable to solution via
Fourier techniques (Cooley and Turkey, 1965). In our simulation code we
employ the fast Fourier transform which is based on the discrete Fourier
transform. Our code utilises the Fastest Fourier Transform in the West
(FFTW) library to compute the Fourier transforms in our simulation code.
The FFTW library defines the discrete Fourier transform and inverse Fourier
transform as

N-1 '
F(k‘) — f(n)ef27mkn/N’
n=0
1 N-1
_ 2mwikn/N
) =y 3 FwET,

where f(n) is a function sampled at the discrete points nA and F'(k) is its
Fourier transform. We now assume the real space grid quantities E,(X;),
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p(X;) and ¢(X;) have the Fourier transforms E,(k), p(k) and ¢(k), respec-
tively. Thus the electric field can be calculated in Fourier space using the
Fourier space equivalent of Equation (2.18) (Dawson, 1983; Birdsall and
Langdon, 1985; Tajima, 1989)

E.(k) = —iko(k), (2.20)
where
_ plk)
o(k) = o2 (2.21)

To illustrate the method for solving Equations (2.20) and (2.21) using finite
difference methods we first write the centred difference forms of Equations
(2.18) and (2.19) as

Bu(X,) = _¢(Xj+1)2;j(Xj—1), (2.22)

O(Xjr1) —20(Xj) +6(X;-1) _ p(Xj)
(Az)? €

(2.23)

We now write
XjJrl = Xj + Al‘,

and assume all quantities in Equations (2.22) and (2.23) will vary in Fourier
space as o« f(k) exp (ikX), as suggested by Tajima (1989). Thus Equation
(2.23) can be written in Fourier space as

d(k) explik(X; + Ax)] — 2¢(k) exp(ikX;) + ¢(k) explik(X; — Ax)]
(Boy?
) exp(ikAx) — 2 + exp(—ikAx)
¢(k) exp(ikX;) [ (Ax)? }

exp(tkAx) — 2 + exp(—ikAx
ot [ERUS) =2 (ke

p(k) exp(ikX;)

€0

p(k) exp(ikX;)

oli)

€0

€0

(2.24)
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Using the identity (Stewart, 2003)

_ exp(i0) + exp(—if)

cos(0) 5 ,

Equation (2.24) can be written as

—2+2cos(kAx)|  p(k)

o) { (Az)? ] <
1 — cos(kAx) p(k)
Using the half angle formula (Stewart, 2003)
sin?(0) 1- cos(29)7
2
Equation (2.25) becomes
in2 (kAz
16(k) 22 (55%) _ k) (2.26)

(Az)? €0

Equation (2.26) can be written in the form given by Birdsall and Langdon
(1985) and Tajima (1989) by defining

i (1)

A% =
(Az)?
- (kAz) 12
sin (25E
= k? [k(m?)] : (2.27)
2
Thus Equation (2.26) becomes
p(k
(k) = 60(A>2. (2.28)
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Similarly, it can be shown that Equation (2.22) can be written as

Bo(k) = —iad(k), (2.29)

where we have defined

- [Sin(k:Am)] |

—_— 2.30
kAx (2:30)
Equations (2.28) and (2.29) are used to calculate the electric field, in Fourier
space, in our simulation code. In comparing Equations (2.20) and (2.21) to
Equations (2.28) and (2.29), the variables A% and « can be seen to represent

the centred difference form of the gradient operator in Fourier space (Birdsall
and Langdon, 1985; Tajima, 1989).

2.4 Integrating the equations of motion

At every time step in the simulation, the equations of motion governing the
dynamics of the particles are integrated in time. The position x; and velocity
v; of particle i are then updated (Dawson, 1983; Matsumoto and Omura,
1984; Birdsall and Langdon, 1985; Tajima, 1989). Newton’s equations are
used to model the dynamics of the particles which, in the one-and-two-halves
dimensional simulation problem, are given by

d’UZ' . Fl

= 2.31
T (2.31)
d:IIZ'
= = vy, 2.32
praiakl (2.32)

where the force F'; in Equation (2.31) on particle i is provided by the elec-
trostatic fields E(z;,t) and By, and is calculated using the Lorentz force
equation

F; = q;[E(z;,t) + v; X Bo], (2.33)
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where Bj is the constant magnetic field and E(z;,t) is the electric field at
the position of particle ¢, at time t. The coupled set of differential equa-
tions, Equations (2.31) to (2.33), are numerically solved in the simulation
using finite difference techniques, which will be described in the subsequent
subsections

2.4.1 Updating the particle velocities

To update the particle velocities in our simulation we use the Boris method
(Boris, 1970), which evaluates Equations (2.31) and (2.33) in finite difference
form. The Boris method (Boris, 1970) is time centred and second order
accurate and involves the decoupling of the electric force component and
the magnetic force component in Equations (2.31) and (2.33) (Birdsall and
Langdon, 1985; Sydora, 1999; Omura, 2007).

The method for solving Equations (2.31) and (2.33) in finite difference form
using the Boris method is done as follows. First, using the superscript n to
denote the time step nAt, we introduce the notation

o2 = w((n+1/2)Ab),
E" = E(x;,nAt),
Bg’ = Bo(xi,nAt).

The centred difference form of Equations (2.31) and (2.33) is given by

n+1/2 _ ,n—1/2 n+1/2 n—1/2
L ;”’ « Bl | (2.34)

where v™ has been approximated by (v"+1/2 4 v"~1/2)/2. Boris (1970)
suggested separating the electric and magnetic forces in Equation (2.34) by
defining the velocities v~ and v* via

n_1/2 :'U_ — qEng
m 2

E™ At
" H/2 — gt 250 (2.36)
m 2

v , (2.35)
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Substituting Equations (2.35) and (2.36) into Equation (2.34) yields

+ .-
,UTtU = im (’U+ + 'U_) X Bn, (237)

which contains no explicit mention of the electric field. Equations (2.35)
and (2.36) and Equation (3.37) therefore decouple the electric and magnetic
forces on the charged particle.

The terms containing the electric field, Equations (2.35) and (2.36), describe
an acceleration of a charged particle by the electric field. On the other hand,
Equation (2.37) describes a rotation of the momentum of a particle about an
axis parallel to By, through an angle of p = —2 tan~!(q¢ByAt/2m) (Birdsall
and Langdon, 1985; Sydora, 1999).

The Boris method can thus be seen as defining a three step procedure to
solve Equation (2.34), for v"+1/2, using Equations (2.35) to (2.37), and hence
update a particle’s velocity. These steps are as follows:

1. A particle with velocity v™1/2 is initially accelerated by the electric

field E™ for half of the time step, At/2, and a new velocity, v™, is
obtained using Equation (2.35), i.e., v"~ /2 = v~.

2. The rotation of the new particle velocity, v~, by the magnetic field is
then calculated using Equation (2.37) for the full time step, At, i.e.,
v — vt

3. Finally the particle is accelerated for another half of the time step
using Equation (2.36) and the updated particle velocity is obtained,
ie., vt — o tY2,

To accomplish this sequence of events, specifically to evaluate Equation
(2.37), Boris (1970) described a two step method to solve Equation (2.37)
for v, using the equations

v =v v xt, (2.38)

vt =v 40 xs, (2.39)
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where v’ is an intermediate velocity and t and s are respectively given by

_ qByAt 2t

t d = —F.
) an s i+

2m

As stated before, the magnetic field provides purely a rotation of the velocity
vector, from v~ to v ™, through an angle specified by ¢ = —2 tan~!(qByAt/2m)
(Sydora, 1999). Thus, the magnitude of the vector should remain unchanged
during the rotation defined by Equation (2.37) [or Equations (2.38) and
(2.39)]. The parameter s in Equation (2.39) is a scaled version of ¢ (de-
fined above), which is scaled to satisfy the requirement that the magnitudes
of v~ and v are equal (Birdsall and Langdon, 1985, p. 62). With v™
obtained using Equations (2.38) and (2.39) the updated particle velocity
v"*+1/2 is readily obtained via Equation (2.36). We provide a derivation of
the Equations (2.38) and (2.39) in Appendix D.

2.4.2 Updating the particle positions

The standard leapfrog technique is used to update the position of a particle
using the velocity of the particle. The leapfrog technique provides a method
to numerically integrate Equation (2.32) in time, which is both second order
accurate (Hockney and Eastwood, 1981, p. 97) and is as computationally
intensive as the first order Euler method (Birdsall and Langdon, 1985, p.
12). Thus, to update the particle positions we use

— T
_ ,Un+l/2

g = g Y2 A (2.40)

2.5 The stability of the numerical techniques

Due to the discretisation of space and time in particle-in-cell simulations as
well as the numerical techniques employed to solve the differential equations,
numerical artefacts can arise that affect numerical accuracy and stability of
the simulation. Unphysical instabilities generally arise due to temporal or
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spatial aliasing of the plasma dynamics owing to improper choices of the time
step At and the cell sizes Az (Dawson, 1983; Forslund, 1985). Round-off
errors, arising due to the finite word-length of numbers stored in a computer
are usually not a major source of error in particle-in-cell simulations and can
usually be made negligible (Hockney and Eastwood, 1981).

2.5.1 Choice of the cell size

Birdsall and Langdon (1985, ch. 8) analysed in detail the finite grid insta-
bility which is a numeric effect arising due to the aliasing of Fourier modes
in the simulation. The particle interpolation scheme used in the simulation
was found to contribute to the aliasing, where the higher order cloud-in-cell
scheme (or first order linear interpolation scheme) was found to reduce this
aliasing effect, when compared to using the nearest-grid-point scheme. For
the linear interpolation scheme, the growth rate of the finite grid instability
was found to be made negligible by restricting the cell size Az by (Birdsall
and Langdon, 1985; Lapenta, 2012)

Az < TApe, (2.41)
where A\p, = (GoTe/TLQe€2)1/ 2 is the electron Debye length. The cell size
Ax used in our simulations are defined to strictly adhere to this stability
condition, Equation (2.41).

2.5.2 Choice of the time step

To illustrate the stability of the leapfrog scheme, Equation (2.40), we follow
Birdsall and Langdon (1985) and Verboncoeur (2005) and analyse it using
simple harmonic motion as model paradigm. The equation governing the
dynamics of a one dimensional simple harmonic oscillator is

2
O = —uhr, (2.42)

where z is the displacement of the oscillator from its equilibrium position
and wg is the natural frequency of the system. With z™ = z(nAt), the
centred difference approximation to Equation (2.42) is given by
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xn-{-l — 2™ & xn—l
(A2 = —wiz". (2.43)

Assuming solutions of the form

, (2.44)

where w is an angular frequency, to be determined, and A is an amplitude,
Equation (2.43) yields

Ae—iw(n—i-l)At — 9 Ae—wnit + Ae—iw(n—l)At
At?

e

_nge—zwnAt

—iwAt 2+ 6+iwAt

A = —wp. (2.45)

Using the identity (Stewart, 2003)

_exp(if)) + exp(—if)
cos(f) = 5 ,

Equation (2.45) becomes

—2 42 cos (WAt) 9
At?

1— cos (WAL) = . (2.46)

Using the half angle formula (Stewart, 2003)

1 —cos(20)

.9
sin“(0) 5 ,

Equation (2.46) becomes
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5 sin? wAt _ wiAt?
2
sin wAt _ iwoAt
2 2
A A
—“"Qt — +sin! <w°2 t>, (2.47)

where sin~!(z) in Equation (2.47) can be evaluated, for #2 < 1, using (Grad-
shteyn and Ryzhik, 2007)

sin~!(z) =z + 3+ z° + ..., (2.48)

2.3 2:4-5

Thus Equation (2.47) becomes,

woAt 1 [woAt 5 3 woAt >
— — 24
2 + 6 < 2 ) * 40 2 + ’ (2:49)

Clearly if “’JOTN‘ < 1 we can truncate the series, yielding

(A)At:i
2

wAt ~ 4 woAt
2 2

w =~ twy. (2.50)

In this case w is purely real and w ~ 4wy, as desired. However if “’OZAt > 1,

then Equation (2.47) clearly predicts complex values of w. In that case
Equation (2.44) will be either growing or decaying exponentially with time,
a feature inconsistent with the original simple harmonic model. This is
indicative of numerical instability.

Based on the above simplified analysis we infer that for the leapfrog scheme
to be stable we require

wpAt < 2, (2.51)
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where w,, is the highest natural frequency of the plasma (Hockney and East-
wood, 1981; Birdsall and Langdon, 1985). In practice

wyAt < 0.5 (2.52)

is commonly used for reasonable accuracy and stability (Hockney and East-
wood, 1981; Winske and Omidi, 1996). We use a time step At in our simula-
tions which is defined to strictly adhere to the stability condition Equation
(2.52).

When incorporating electromagnetic fields a further restriction on the time
step must be made to maintain stability and accuracy. While not a consider-
ation for the simulation described in this thesis, we nevertheless briefly point
out the source of this instability for completeness. This restriction is demon-
strated by looking at plane electromagnetic waves propagating in a vacuum
(Birdsall and Langdon, 1985; Sydora, 1999). Using Maxwell’s equations, the
temporal evolution of the transverse component of electromagnetic fields in
Fourier space is given, in cgs-units, as (Sydora, 1999)

‘W = ick x Br(k,t) — AnJr(k, 1), (2.53)
8375(;“”5) — —ick x Er(k,t), (2.54)

where the subscript T denotes transverse components. For the vacuum
case, JT = 0, the longitudinal component of the electric field Ej, is found
by solving Poisson’s equation and there is no longitudinal component of
B due to V- B = 0. Equations (2.53) and (2.54) are numerically solved
by staggering Bt and Ep in time. Evaluating Br at times (n — 1/2)At
and evaluating Ep at times nAt, the time centred finite difference form of
Equations (2.53) and (2.54) are given by (Sydora, 1999)

ElM (k) = ER(k)+icAtk x B2 (k), (2.55)
BIT2(k) = BITYR(k) —icAtk x ER(k), (2.56)

where we have used
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E}(k) = Er(k,nAt),
Bi'Y2(k) = Br(k, (n+1/2)At).

Assuming the fields in Equations (2.55) and (2.56) have the form

Ep(k) = Bo(k)e ", (2.57)
B;H/z(k) = By(k)e wn-1/2At (2.58)

and substituting the field Equations (2.57) to (2.58) into the finite difference
Equations (2.55) and (2.56) yields (Sydora, 1999)

;2
9,9  sSin“(wAt/2)
e el 2.
c°k Bt (2.59)
where k = ||k||. Equation (2.59) is only satisfied for real w if (Dawson, 1983;

Sydora, 1999)
ckAt < 2. (2.60)

The inequality in Equation (2.60) is known as the Courant-Friedrichs-Levy
(CFL) condition, and the violation of this inequality will produce numerical
instability. Equation (2.60) is equivalent to the condition that the time step
be small enough to resolve the smallest photon oscillation period (Sydora,
1999).

2.6 Parallelisation of the simulation code

Simulating a plasma with millions of individual charged particles has the
drawback of being computationally expensive and can make large scale sim-
ulations unfeasible (Dawson et al., 1993). This problem has been somewhat
reduced by the advent and ready availability of high performance computing
and parallel computing environments. Distributed memory systems, such as
that provided by the Centre for High Performance Computing (CHPC) in
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South Africa, may be used to run large scale simulations in a parallel envi-
ronment.

Message Passing Interface (MPI) was utilised to parallelise our simula-
tion code using the particle decomposition technique of PIC parallelisation
(Liewer et al., 1988; Dawson et al., 1993; Martino et al., 2001; Qiang and
Xiaoye, 2010). The use of Message Passing Interface allowed our simulation
code to run on distributed memory systems.

In the particle decomposition technique, the particle data is distributed
among the available processors and all other quantities, such as those as-
sociated with the fields (typically the state vector), are replicated on each
processor. Particle calculations, such as particle position and velocity up-
dating as well as charge deposition onto the grid, are carried out in parallel,
independently on each processor, using only the particles assigned to that
processor. Inter-processor communication, however, is required at each time
step to add the charge density grids from all processors so that the global
electric field can be calculated for the entire plasma, i.e., after each processor
accumulates a charge density on its allocated local grid, a global operation
is performed in the simulation to combine all the charge density grids from
each processor, forming the global charge density. Once the global charge
density grid is formed, the global electric field is calculated from this, using
the methods described in Section 2.3 (p. 21). The global electric field then
gets replicated on each processor and it is this global electric field which will
be used to update the position and velocity of a particle, as described in
Section 2.4 (p. 26).

This method works well in the one dimensional electrostatic case considered
here as the particle calculations are more computationally expensive than
the field calculations. Thus, field calculation parallelisation is not needed
and load balancing algorithms are not required, as processor loads remain
balanced due to an equal number of particles being assigned to each proces-
Sor.

An obstacle we encountered in our simulations when using the particle
decomposition scheme, occurred when particle diagnostics needed to be
printed. We assigned only one processor to carry out diagnostics using
data gathered from all the processors. When computationally demanding
particle diagnostics needed to be carried out, the simulation is briefly halted
until the processor in charge of gathering the distributed data and printing
out the diagnostic has completed its execution. Only then can the global op-
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eration, which accumulates the charge density from each grid (as described
previously), be performed.

The phase space configuration plots for the plasma particles, which are ex-
ported in image format at regular intervals and combined into a movie clip
at the end of the simulation, were found to be the most computationally in-
tensive and thus was the biggest obstacle to parallelism. Here computation
times for the phase space plots increased with the number of particles being
simulated. The incorporation of phase space plots drastically increased the
simulation time and was therefore only used occasionally to view the plasma
dynamics.

To improve on the parallel efficiency and decrease simulation run times
when phase space plots were needed, the Manager-Workers pattern (Ortega-
Arjona, 2004) for parallel programming was implemented. The Manager-
Workers pattern is a variant of the Master-Slave pattern (Buschmann et al.,
1996) and uses the activity parallelism approach, where activities carried
out by the processors are grouped and the activities are run in parallel. The
Manager-Workers pattern is generally considered as a basic organisation of
tasks for parallel computation (Mani et al., 1992; Kleiman et al., 1996).

The Manager-Workers pattern divides the N available processors into a
single Manager processor and a group of independent, identical Worker pro-
cessors. The tasks of the manager and workers in our PIC simulation are as
follows:

e Manager: The responsibilities of the manager processor (usually pro-
cessor 0) are to read in the input file, initialise the simulation param-
eters and to split the particle data evenly among the workers. The
manager is also responsible for carrying out all diagnostics using the
relevant data provided by the worker processors, at specified time in-
tervals.

e Workers: The responsibilities of the worker processors (processors 1
— N — 1) are to carry out all the particle and field calculations. The
particle decomposition scheme described above is effectively carried
out among the workers only. Diagnostic data such as the particle
state vector is sent to the Manager processor, at specified times, for
diagnostics to be carried out.
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The benefit of this method is that continual computation of particle and field
data is achieved concurrently with diagnostic output. The Manager-Workers
pattern works best when computation times for the Manager activities and
the Worker activities are balanced, i.e., new diagnostic data is sent to the
manager as soon as the previous diagnostic has been carried out. Prelimi-
nary results from the implementation of the Manager-Workers pattern with
the particle decomposition technique showed a decrease in the simulation run
times, when compared to using only the particle decomposition technique.
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Chapter 3

Simulation of the
ion-acoustic instability

As an initial case study, to test the one dimensional particle-in-cell sim-
ulation code developed and reported on in this thesis, the current-driven
ion-acoustic instability was investigated for an electron-ion plasma. Two
simulations of the ion-acoustic instability were run. In the first, the velocity
distributions of the plasma ions and electrons were modelled by Maxwellian
distributions. In the second, the velocity distributions of the plasma ions and
electrons were modelled by kappa distributions with a low value of kappa,
K= 2.

The results of the simulations are presented in the subsequent sections, start-
ing with the simulation for a plasma having a Maxwellian velocity distribu-
tion and followed by the simulation for a plasma having a kappa velocity
distribution. The results of both simulations are compared and analysed
using kinetic theory, and differences in the behaviour of the ion-acoustic
instability for the two simulations are discussed.

3.1 Overview of ion-acoustic waves

As the name suggests, ion-acoustic waves propagate in an analogous manner
to acoustic waves in air, i.e., they are dispersionless longitudinal waves.

39
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Contrary to acoustic wave propagation in air, however, the ions in the plasma
transmit vibrations to each other through the intermediary of an electric
field. The ions provide the inertia for the wave, which is thus a low frequency
wave, on the order of the ion plasma frequency wy; (Chen, 2006, pp. 95-
99). On the other hand, the electrons, due to their higher mobility, are able
to move to screen out electrostatic potentials formed by the bunching of
the ions in the plasma at small wavenumbers kAp. < 1. As a result, the
collective mode of the ions is described by the screened plasma frequency
(Ichimaru, 1973, p. 72)

w2

2 i
=B 3.1
S Y VR (3.1)

where wy; = (noie?/ eom;)'/? is the ion plasma frequency for singly charged
ions, k is the wavenumber and Ap. = (e9Te/ noeeZ)l/ 2 is the electron Debye
length. However, at larger wavenumbers, i.e., where kAp, > 1, the screening
is less effective and the ion oscillations are effectively un-shielded (Ichimaru,
1973; Chen, 2006), as can be seen by Equation (3.1), which reduces to w? ~
w?; in this limit.

The ion-acoustic wave can be driven unstable by electron currents or by
ion beams flowing through the plasma and are thus observed in a num-
ber of space plasma environments where field aligned currents are present
(Treumann and Baumjohann, 1997; Swanson, 2003).

Gurnett and Frank (1978), based on earlier work by Gurnett and Anderson
(1977), used wavelength measurements provided by the Imp 6 spacecraft
to interpret the occurrences of electric field turbulence in the solar wind
at frequencies between the electron and ion plasma frequency. These were
interpreted as short-wavelength ion-acoustic waves Doppler-shifted up in
frequency by the motion of the solar wind.

Ton-acoustic waves occurring simultaneously with ion beams have been ob-
served by ISEE-1 and ISEE-2 and have been associated with energetic par-
ticle streams coming from the Earth’s bow shock (Anderson et al., 1981).

Cairns et al. (1995) interpreted the solitary structures, involving density
depletion, observed in the upper ionosphere by the Freja satellite as ion-
acoustic solitons. By showing that the structure of the ion-acoustic solitons
were changed by the presence of non-thermal electrons, Cairns et al. (1995)
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were able to ascertain the existence of solitary structures similar to those
observed in the ionosphere by Freja.

Huba et al. (2000) reported on a model for the generation of ion-acoustic
waves in the topside ionosphere. The model of Huba et al. (2000) suggests
that waves are excited at sunrise, due to rapid photo-electron heating, pro-
ducing plasma flow and ultimately ion-acoustic waves, and at sunset, due to
rapid cooling of the lower ionosphere.

Satellites often observe plasma instabilities which have already evolved to
a non-linear, turbulent state. Due to the analytical difficulties encountered
in the study of the non-linear evolution of plasma instabilities, computer
simulations have been effectively used to study the non-linear evolution of
the ion-acoustic instability.

Dum et al. (1974) investigated ion-acoustic turbulence using particle-in-cell
simulations. A constant electric field was applied to drive a current in the
plasma and produce instability, which eventually evolved to a turbulent
state. The simulations by Dum et al. (1974) illustrated that high energy ion
tails were formed by ion-acoustic turbulence. A suggested mechanism for
the production of the high energy ion tails was the non-resonant interaction
between ions and the wave, bringing enough cold ions up to resonance with
the wave. Dum et al. (1974) also suggested that linear Landau damping on
the ion tail was sufficient to eventually quench the ion-acoustic instability.
Appert and Vaclavik (1981) undertook a numerical investigation, using a one
dimensional quasi-linear model, in an effort to reproduce the results of Dum
et al. (1974). They confirmed the appearance of hot ions during current
driven ion-acoustic turbulence; however, the quenching of the instability by
the hot ions was not observed until a model which included two dimensional
effects was used.

Sato and Okuda (1980) ran simulations of electron drift driven ion-acoustic
double layers in a plasma where the initial electron drift velocity was less
than the thermal velocity of the ions. Sato and Okuda (1980) were able
to observe double layers, contrary to earlier work by DeGroot et al. (1977)
which suggested that the electron drift velocity should exceed the ion ther-
mal velocity for ion-acoustic double layers to occur. Sato and Okuda (1980),
using a sufficiently long spatial system, found that no matter how small the
anomalous resistivity caused by the ion-acoustic instability, the dc potential
buildup associated with the localised resistivity becomes large enough to ac-
celerate electrons. The accelerated electrons, in turn, enhance the original
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instability and a new phase of the instability takes place.

Watt et al. (2002) used both a Vlasov simulation and a particle-in-cell simu-
lation to investigate the resistivity due to the current-driven ion-acoustic in-
stability. The simulations of Watt et al. (2002) used ions and electrons with
similar temperatures, appropriate for the magnetopause and low-latitude
boundary layer. The results from both the Vlasov and PIC simulations gave
values for resistivity which were orders of magnitude greater than earlier
analytical estimates given by Labelle and Treumann (1988) for the magne-
topause. Watt et al. (2002) deduced that the discrepancy in the results from
simulation and those from analytical studies arose due to analysis assuming
weak non-linearity, i.e., assuming there is little deviation of the distribution
from the Maxwellian, as well as due to the assumption T, > T;. That the
former assumption is violated could be inferred from the simulation results,
which clearly showed the formation of a plateau in the electron velocity dis-
tribution. Watt et al. (2002) suggested a revision of the analytical method
to adequately account for wave-particle interactions.

In the simulations carried out by the above authors, as well as many other
plasma simulations not reported on here, the velocity distributions of the
space plasma species are modelled by the Maxwellian distribution. This,
despite the fact that non-Maxwellian plasmas are often observed in space,
e.g., see Christon et al. (1988), Christon et al. (1989), Maksimovic et al.
(1997), Leubner (2004) and Pierrard and Lazar (2010), to name a few. Pre-
sented below is an investigation and comparison of the behaviour of the
ion-acoustic instability when the plasma velocity distribution is modelled
by (1) a Maxwellian distribution and (2) a kappa distribution.

3.2 Dispersion relation for the ion-acoustic wave

3.2.1 Maxwellian case

The well known dispersion relation for the ion-acoustic wave, in an electron-
ion plasma where both species have a Maxwellian velocity distribution, is
given by (Chen, 2006, p. 98)

T, 1 T;
2 2 [ 7
w'=k(———--x—s—+3— 2

(mi1+kz2)\2De 3mi>’ (3 )
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where T, and T; are the temperatures for the electron and ion species, re-
spectively, m. and m; are the masses of an electron and an ion, respectively,
and Ap. is the electron Debye length. We have set v = 3 for the ion fluid,
corresponding to one dimensional compression, as suggested by kinetic the-
ory. Equation (3.2) is a more general version of Equation (3.1), presented
earlier, which takes into account finite ion temperature. At small wavenum-
bers, kAp. < 1, Equation (3.2) reduces to

where the ion-acoustic speed v, is defined by

Te 112 1/2
v5:<+3 ) . (3.3)

my myg

Since T; <« T, is a requirement for the weakly-damped ion-acoustic wave,
which is the case we shall be considering here, the T; term is usually neglected
in the definition of the ion-acoustic speed, Equation (3.3), giving

o= ()" (5.4

Thus Equation (3.2) can often be written in the simplified alternate form,
neglecting the T; term

2,2
2 kvs

w'=—2 (3.5)
1+ k2)3,,

By dividing the numerator and the denominator by k:z)\QDe it is easily seen
that Equation (3.5) is equivalent to Equation (3.1) presented earlier.
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3.2.2 Kappa case

For an electron-ion plasma where both species have a kappa velocity distri-
bution, the dispersion relation for the ion-acoustic wave is given by (Meng
et al., 1992; Mace et al., 1998)

2

2 m
w* = TF 1/ (3.6)

w

where

ke —3/2\ €T, 1Y?
Ane - |:< / ) 0 2:| ) (37)
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is the Debye length for electrons having a kappa velocity distribution (Bryant,
1996; Mace et al., 1998) and k. is the kappa index for the electron species.
Equation (3.6) can be written in the alternative form as

YUTIERIZ, T 1k ‘

where the ion-acoustic speed in a plasma having a kappa velocity distribution
is defined by

Equation (3.8) for a kappa plasma is of the same form as Equation (3.5)
for a Maxwellian plasma. Indeed, the plasma dynamics of the ion-acoustic
wave in a kappa plasma are identical to that of a Maxwellian one, except
for the modified shielding length which arises in the kappa plasma (Meng
et al., 1992; Mace et al., 1998). Note that, in general the ion sound speed
in the kappa plasma, Equation (3.9), will be different to Equation (3.4) for
a Maxwellian plasma. However, it is seen that as k. — 0o, Equation (3.7)
reduces to the usual Debye length for electrons and Equation (3.9) reduces
to Equation (3.4).
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3.3 PIC simulation for a Maxwellian plasma

3.3.1 Simulation run parameters

In the first of two simulations of the ion-acoustic instability, the initial state
of each plasma species is modelled by a drifting Maxwellian velocity dis-
tribution, using the particle loader described in Section 2.1.1 (p. 14). All
particle positions are loaded uniformly throughout the simulation box.

In our simulation, all parameters are given with reference to those of the
electron species. Times are measured in terms of the reciprocal of the elec-
tron plasma frequency and lengths are measured in terms of the electron
Debye length, i.e., ' = wpet and 2’ = x/Ap., where primed variables are
the simulation parameters and unprimed values denote ordinary S.I. values,
see Appendix C. Consequently, velocities in our simulation are measured in
terms of the electron thermal velocity vine = wWpeApe, 1-€., V' = v/Vipe.

For this study we have opted to use a reduced ion-to-electron mass ra-
tio of m;/m. = 100. This value allows one to fully resolve both plasma
species’ dynamics without resorting to unnecessarily long simulation run
times (Hockney and Eastwood, 1981; Dawson, 1983; Birdsall and Langdon,
1985). Qualitatively similar behaviour of the ion-acoustic instability is, how-
ever, expected when a realistic ion-to-electron mass ratio is used (Biskamp
and Chodura, 1971; Okuda and Ashour-Abdulla, 1988).

In our simulation, no external fields are applied to the plasma. The ion-
acoustic instability is excited by creating an initial state where the hot
electrons drift through a background of stationary cool ions. The tem-
perature ratio between the electrons and ions was set to T./7; = 100 to
reduce ion Landau damping. Detailed theoretical kinetic studies show that
the ion-acoustic wave can be destabilised when the electrons have a drift
speed vy in excess of the ion-acoustic speed vs (or v5 for a kappa plasma)
(Krall and Trivelpiece, 1973; Treumann and Baumjohann, 1997). Thus, in
our simulation run for the ion-acoustic instability, we use a supersonic elec-
tron drift. With our choice of parameters, the ion-acoustic speed, Equation
(3.4), is vs = 0.1vgpe. The chosen drift velocity for the electron species was
vg = 6vgs = 0.6vye. This choice of electron drift allows the ion-acoustic speed
to coincide with the positive slope of the electron velocity distribution and
thus the ion-acoustic wave is unstable (Meng et al., 1992; Treumann and
Baumjohann, 1997; Chen, 2006). It also produces a growth rate sufficiently
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Electron species Ion species
9437184 particles 9437184 particles
Wpe = 1 Wps = 0.1
q/me =—1 q/m; = 0.01
Vthe = 1 Vthi — 0.01
Varift = 0.6 Varift = 0

Table 3.1: The species parameters for the simulation of the ion-acoustic
instability.

high that the nonlinear phase of the instability can be observed without the
need for an unusually large number of time steps. A summary of the species
parameters used in the simulation run is given in Table 3.1.

The simulation run used a box length of L = 512\p. with a cell size of
Ax = 0.25)\pe, corresponding to a total of 2048 cells. The evolution of the
simulation run was tracked to wp.t = 5000, using a time step At satisfying
wpeAt = 0.1. Periodic boundary conditions were used for both fields and
particles.

3.3.2 Results of the simulation run

Figures 3.1 (a) and (b) compare (in green) the initial velocity distributions
obtained for the electron and ion species, respectively, via our numerical
loading algorithm [Section 2.1.1 (p. 14)], with the Maxwellian distribution,
Equation (2.1), using our simulation run parameters, which is superimposed
in black. The numerical approximation to the velocity distribution is ob-
tained from each discrete plasma species using the method of “particle bin-
ning” described in Appendix E. Figures 3.1 (a) and (b) demonstrate very
good agreement between the loaded velocity distributions of the plasma
species and the Maxwellian distribution defined by Equation (2.1), which
confirms the correctness of our particle loading algorithm.

An important check on the validity of the simulation run results is the
conservation of total energy (Hockney and Eastwood, 1981; Dawson, 1983;
Birdsall and Langdon, 1985; Forslund, 1985). In our simulation of the ion-
acoustic instability, the plasma system is isolated from any external forces
and periodic boundary conditions were used; thus, the total energy in the
system should remain constant.
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Figure 3.1: The measured initial velocity distribution (in green) for (a) the
electron species and (b) the ion species along with the drifting Maxwellian
distribution, Equation (2.1) (in black), for the parameters listed in Table 3.1.
The agreement between the measured velocity distributions and the drifting
Maxwellian for both the electron and ion species confirms the correctness of
our particle loading.
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Figure 3.2 illustrates the time evolution of the electric field energy Ey/T,
[Figure 3.2 (a)], the kinetic energy of the electron species E. /T, [Figure 3.2
(b)], the kinetic energy of the ion species E; /T, [Figure 3.2 (c¢)] and the total
energy Ejio /T in the plasma [Figure 3.2 (d)], all expressed in terms of the
initial thermal energy of the electrons. It is observed that, indeed, the total
energy does remain approximately constant throughout the simulation, as
seen in Figure 3.2 (d), to within the errors of the simulation techniques and
fluctuations arising due to using discrete particles. This gives us a high
degree of confidence in the validity of our results for this simulation.

Inspection of the electric field energy shown in Figure 3.2 (a), and the kinetic
energies of the electron and ion species, Figures 3.2 (b) and (c), respectively,
suggests that the ion-acoustic instability evolves in three phases, which we
shall elaborate on below. That the waves observed in the simulation are of
the ion-acoustic type will be verified through analysis of the electric field
intensity spectra, which will be presented later in Figure 3.6.

In the first phase, seen on the interval 0 < wp.t < 1230 in Figure 3.2, the
electric field energy, in Figure 3.2 (a), increases exponentially in time. This
corresponds to exponential growth of the ion-acoustic wave out of the back-
ground of random thermal fluctuations (Treumann and Baumjohann, 1997;
Crumley et al., 2001), to a level equivalent to the initial electron thermal
energy T.. The excited ion-acoustic waves gain energy and grow through the
process of inverse Landau damping of the electron species (Treumann and
Baumjohann, 1997), i.e., electrons with velocities close to the ion-acoustic
phase speed are able to resonantly interact with the ion-acoustic wave, feed-
ing energy into it, which will be shown later. As a result, during the wave
growth phase there is a corresponding exponential decrease in the energy of
the electron species, as seen in Figure 3.2 (b) on the interval 0 < wpet < 1230.
The ion species is observed to be accelerated by the growing wave and thus
there is a gain in the kinetic energy of the ion species, as seen in Figure 3.2
(c) on the interval 0 < wpet < 1230. Towards the end of this phase, signs of
ion trapping are evident, signalling the onset of significant nonlinear effects,
which will be discussed later.

In the second phase, defined on the interval 1230 < wy.t < 1700 in Figure
3.2, the instability is saturated through the depletion of the free energy
source (Hellinger et al., 2004). The beginning of this phase is marked by
the point, wpet ~ 1230, at which the electric field energy ceases to grow.
Immediately after this the electric field energy exhibits a decreasing trend
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which ends at wpet =~ 1700. During the interval 1230 < wpet < 1700, the
kinetic energies of the ions and electrons and the electric field energy are
redistributed. This occurs prior to the onset of a quasi-equilibrium state,
phase 3, discussed below.

Finally, in the third phase, at times wpet > 1700 in Figure 3.2, the system
settles into a quasi-equilibrium state, marked by relative constancy of the
individual energies. The electric field energy, Figure 3.2 (a), as well as the
kinetic energies of the electron and ion species, Figures 3.2 (b) and (c),
respectively, remain approximately constant during this phase. The small
fluctuations observed in the energies, at time wp.t > 1700 in Figures 3.2 (a)
to (c), are consistent with what is to be expected of a system comprised of
discrete particles. These small fluctuations also occur due to the acceleration
and deceleration of trapped particles in the electrostatic potential of the
wave structures observed in the electric field (Treumann and Baumjohann,
1997). These wave structures will be discussed later.

In comparing the energies at wpet = 0 and wpt = 5000 (averaged by its
peak-to-peak fluctuation level), it should be noted that during the evolution
of the instability, the kinetic energy of the electron species exhibits a net
decrease of A(E./T¢) ~ 7, as seen in Figure 3.2 (b). While the energy in the
electric field and the kinetic energy of the ion species exhibit a net increase
of A(E;/T.) ~ 0.4 and A(E;/T¢) ~ 6.6, respectively, as seen in Figures 3.2
(a) and (c), respectively. Thus the net loss in kinetic energy of the electron
species is compensated for by a gain in kinetic energy of the ion species,
plus a relatively small gain in the electric field energy. It is noteworthy that
the loss or gain of particle kinetic energy greatly exceeds the increase in the
overall electric field energy. Therefore, the ion-acoustic instability can be
viewed as the facilitating mechanism to redistribute energy in the plasma,
by transferring energy from one species to another.

Figure 3.3 illustrates the phase space configuration plots, generated during
the simulation, at the times wyt = 0; 684; 1203 and 4899, respectively. The
top panel (blue colour) in each of the diagrams in Figures 3.3 (a) to (d),
respectively, represents the electron phase space. The middle panel (green
colour) in each diagram in Figures 3.3 (a) to (d) represents the ion phase
space and the lower panel illustrates the electric field as a function of /A pe.
Due to the normalisation scheme used, the electric field in the simulation
E' is expressed as E' = E, /(nopeTe/ 60)1/ 2 where E, is the z component of
the electric field in S.I. units, see Appendix C.
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Figure 3.2: The time evolution of (a) the electric field energy E¢/T., (b)
the kinetic energy of the electron species F. /T, (c) the kinetic energy of
the ion species E;/T. and (d) the total energy Fin/T. in the Maxwellian
plasma. Three phases in the evolution of the ion-acoustic wave are observed.
In the first phase, at times 0 < wpet < 1230, the wave energy, (a), grows
through resonant interaction with the electron velocity distribution. In the
second phase, at times 1230 < wp.t < 1700, the wave energy saturates, stops
growing and begins to decrease, seen in (a) at times 1230 < wpt < 1700.
In the final phase, at times wpt > 1700, the system settles to a quasi-
equilibrium state and wave energy remains approximately constant.
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During this simulation, a number of these phase space plots for each species
along with plots of the electric field were exported in image format. These
were then combined into the movie clip named ton-acoustic-mazwellian.mpg,
which is supplied with this thesis. This movie clip enables a time-lapsed
viewing of the plasma dynamics as well as the evolution to the electric field.

Figure 3.3 (a) illustrates the initial phase space configuration of the electron
and ion species (the top and middle panels, respectively) as well as the initial
electric field present in the plasma (lower panel). Figure 3.3 (a) serves as
a reference plot and aids in the observation of the changes to the plasma
system.

The plots of Figure 3.3 (b) were generated at wy.t = 684, corresponding to
a time during the growth phase of the ion-acoustic wave. Ion-acoustic wave
packets are observed in the electric field, e.g., at z/Ape &~ 310, compare the
lower panels of Figures 3.3 (a) and (b). At the location of the forming wave
packets, ion acceleration is also observed, as can be seen by the “fingers”
evident in the ion phase space, the middle panel of Figure 3.3 (b), at /Ape =~
310. This ion acceleration by the electric field is responsible for the increase
in the kinetic energy of the ion species observed earlier in Figure 3.2 (c).

The ion-acoustic wave packet amplitudes grow in time and eventually the
wave amplitude becomes large enough, through the deepening of the poten-
tial well and the widening of the wave resonance, to trap the ions in the
electrostatic potential. This is evident in the ion phase space plot, seen in
the middle panel of Figure 3.3 (c), generated at time wp.t = 1203, where a
phase space vortex structure emerges at x/Ape =~ 330. This vortex structure
corresponds to ions oscillating in the well of an ion-acoustic solitary wave.
The vortex structure leads to ion mixing in phase space, which will reduce
wave coherence and hence the effect of trapping. The emergence of the
soliton-like structures in the electric field, with accompanying ion trapping
is a sign of significant nonlinearity.

The concomitant heating of the ion species gives rise to a broadening of the
velocity distribution in the phase space of the ions (Lu et al., 2005), as can
be seen by comparing the ion phase space (middle panel) of Figure 3.3 (c),
generated at wpt = 1203, with that of Figure 3.3 (d), generated at the time
wpet = 4899 (corresponding to the quasi-equilibrium phase). At this later
time, the amplitude of the solitary wave structures are observed to have
decreased, as seen by comparing the electric fields (lower panels) in Figures
3.3 (c) and (d) around z/Ap, ~ 330.
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Although it is difficult to observe changes in the electron velocity distribution
in the electron phase space plots [top panels in Figures 3.3 (a) to (d)], the
electron velocity distribution does undergo changes. In the vicinity of the
ion-acoustic speed a significant amount of plateau formation in the electron
velocity distribution, arises, which will be discussed later.

Figures 3.4 (a) illustrates the evolution of the electron velocity distribution
during the initial growth phase of the instability, up to times just after
maximum electric field energy is attained, i.e., during 0 < wp.t < 1250.
The ion-acoustic speed, predicted by our parameters to be v = 0.1vsp and
indicated by the dashed vertical line, initially coincides with the positive
slope of the initial electron velocity distribution [see velocity distribution plot
at wpet = 0 in Figure 3.4 (a)]. Thus, resonant electrons will supply energy
to the wave through the process of inverse Landau damping (Treumann
and Baumjohann, 1997; Chen, 2006). As a result, a depletion in particle
numbers around the ion-acoustic speed is observed in the electron velocity
distribution, as seen in the velocity distribution plots in Figure 3.4 (a) for
the times 250 < wyt < 1250, where a visible plateau develops. At the same
time, the number of particles travelling slower than the wave is observed to
gradually increase as electrons lose energy to the waves. This redistribution
of electron energies eventually leads to a state, as seen at wpet = 1250, where
the slope of the the electron velocity distribution, at the ion-acoustic speed
vg = 0.1vspe, is negative. This causes the onset of Landau damping, causing
the dissipation of the wave energy and leads to saturation of the instability.

Figure 3.4 (b) illustrates the evolution of the electron velocity distribution
during a time corresponding to the quasi-equilibrium phase of the simula-
tion, i.e., at times wpt > 2000. The electron velocity distribution is now flat
topped with a shoulder in the distribution, formed near v, /vy ~ 2. The
source of instability, a positive value of df /dv at v, is now removed and the
electron velocity distribution is observed to remain approximately constant
during this time, consistent with the quasi-equilibrium phase.

Figure 3.5 illustrates the evolution of the ion velocity distribution through-
out the duration of the simulation. The increase in the spread of the velocity
distribution as the simulation progresses indicates bulk heating of the ion
species (Lu et al., 2005). This spread was also observed in the ion phase
space in Figure 3.3 (d). One also observes a shift in the mean velocity
towards a positive value in Figure 3.5, indicating that the ions develop a
net drift velocity, vg &~ 0.01vspe, in the direction of the electron drift, after
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Figure 3.3: The electron phase space [top panel in each plot (a) to (d)],
ion phase space [middle panel in each plot (a) to (d)] and electric field as a
function of x/Ape [lower panel in each plot (a) to (d)] for the Maxwellian
plasma, generated at the times wy,.t = 0; 684; 1203 and 4899, respectively.
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saturation of the ion-acoustic instability.

A series of plots are presented in Figure 3.6. The plots on the left hand
side of Figure 3.6 represent the electric field (wave) intensity during the
simulation run. The plots on the right hand side of Figure 3.6 are those
with the analytic dispersion relation for the ion-acoustic wave, Equation
(3.5), superimposed.

The electric field intensity, as a function of w and k, in the simulation is
given in Figure 3.6 (a) for the time interval 0 < wpet < 800, corresponding
to wave growth. The theoretical dispersion relation for ion-acoustic waves,
Equation (3.5), is superimposed on the plot in the right-hand panel. The
maximum wave intensities, egE? ~ 10%ng.T., seen as darker red regions
in the plots of Figure 3.6 (a), coincide with the linear dispersion relation,
Equation (3.5). This indicates that the maximum wave energy during this
phase is concentrated in the ion-acoustic wave.

The right-hand panel of Figure 3.6 (a) shows that at 0 < kAp. < 0.5, the
dominant wave energy density lies where the wave is essentially acoustic
in nature, having w/k ~ v,, as seen in the right hand plot of Figure 3.6
(a) where this line is superimposed. However, Figure 3.6 (a) also indicates
significant levels of wave activity at wavenumbers up to kAp. =~ 3 and at
frequencies approaching the ion plasma frequency, wp; = w/wpe = 0.1.

Figure 3.6 (b) illustrates the electric field intensity over the interval 800 <
wpet < 1600, i.e., just prior to the simulation progressing to the quasi-
equilibrium phase. Areas of high electric field intensity are seen to be present
over a larger frequency range as well as over a larger range of kAp. values,
than seen in Figure 3.6 (a). While some of the strongest wave activity
still occurs along the branches of the ion-acoustic wave, Equation (3.5),
the maximum electric field intensity is no longer concentrated just in the
ion-acoustic mode, as other modes, not described by the linear dispersion
relation receive energy. The enhanced levels of fluctuations that do not
follow this linear relation are indicative of the presence of nonlinear effects.
Significant wave energy is observed to lie also around a beam-like mode,
as can be seen in the right-hand panel of Figure 3.6 (b), where we have
overplotted the relation w = vpk, where v, = 2vy. This corresponds to the
shoulder observed in the velocity distribution of the electron species seen in
Figure 3.4.

Figure 3.6 (c) illustrates the electric field intensity over the interval 4000 <
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Figure 3.4: The evolution of the electron velocity distribution (a) over the
growth and saturation phase of the ion-acoustic instability, illustrating the
resonant interaction between the electron species and the wave, at the ion-
acoustic speed (indicated by the dashed vertical line), and (b) over the

quasi-equilibrium phase of the simulation, for the Maxwellian plasma.



56 CHAPTER 3. THE ION-ACOUSTIC INSTABILITY

lon species velocity distribution

45 : : :
Wpet =0
40 Wpet = 1000 |
351 Wpet = 2000 1
Wpet = 3000
30t 1
 wyet = 4000
—
[
S 25) 1
=
~
3
= 20f 1
=
15} 1
10 1
sl J
o ‘ ‘
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Vg /Uthe

Figure 3.5: The evolution of the ion velocity distribution throughout the
simulation for the Maxwellian plasma. The spread of the velocity distri-
bution indicates bulk heating of the ion species and the shift in the mean
velocity indicates that the ion species gains a net positive drift after satura-
tion of the ion-acoustic instability.
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wpet < 4800, corresponding to the quasi-equilibrium phase. During this pe-
riod the wave intensity distribution narrows in frequency and wavenumber
as sources of instability are quenched and the plasma settles to a quasi-
equilibrium state. As is seen in the right-hand panel of Figure 3.6 (c), the
dark red regions of the electric field intensity coincide with the linear dis-
persion relation, Equation (3.5). A weak beam-like mode having w = vpk
is also visible in the right-hand panel of Figure 3.6 (c), where vy = 2vpe,
corresponding to the velocity at the shoulder of the electron velocity distri-
bution [see Figure 3.4 (b)]. While the cause of this beam mode is uncertain
at present, we do note that the overall electron velocity distribution in Fig-
ure 3.4 (b) can be thought of as arising from a drifting Maxwellian beam,
Vg & 2Ugpe, superimposed on a flat-topped core of stationary electrons.

3.4 PIC simulation for a kappa plasma

3.4.1 Simulation run parameters

The simulation runs carried out and described in this chapter were aimed at
investigating the ion-acoustic instability under two conditions. In the first,
the velocity distributions of the plasma electrons and ions were modelled by
Maxwellian distributions (corresponding k = o0). In the second, the velocity
distributions of the electrons and ions were modelled by kappa distributions
(with equal kappa indices k. = k; = 2).

Presented here are the results of the simulation run for the plasma in which
the initial state for each plasma species, electrons and ions, was modelled
by kappa velocity distributions. The particle loader described in Section
2.1.2 (p. 15) was used to load plasma particles in phase space having an
initial kappa velocity distribution, with drift if necessary. All particle po-
sitions were loaded uniformly throughout the simulation box, akin to the
Maxwellian simulation run.

To investigate the effects of the kappa distribution on the ion-acoustic in-
stability, all run parameters in the present simulation were made identical
to those of the Maxwellian simulation run described in Section 3.3 (p. 45).
A box length of L =512\p, was used with a total of 2048 cells. The simu-
lation employed a time step At satisfying wp.At = 0.1, and the simulation
was evolved up to time wpt = 5000.
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Figure 3.6: The electric field intensity of the ion-acoustic wave in the
Maxwellian plasma for the time interval corresponding to (a) the ion-
acoustic wave growth phase 0 < wp.t < 800, (b) the wave saturation phase
800 < wpet < 1600 and (c) the quasi-equilibrium phase 4000 < wpt < 4800.
The linear dispersion relation is superimposed on the adjacent diagrams in
(a) to (c) and is found to agree with the maximum intensities of the wave.
Beam modes are also visible in (b) and (c).
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The plasma species parameters were also kept identical to those of the
Maxwellian simulation run, i.e., a stationary ion species and drifting elec-
tron species was used, see Table 3.1 (p. 46). However, to destabilise the
ion-acoustic wave in an analogous manner to the Maxwellian simulation
run, which used an initial electron drift velocity of vg = 6vs = 0.6V, the
initial electron drift velocity used in the kappa plasma was vy = 6v5. With
our choice of species parameters and the definition of the ion-acoustic speed
v¥ in Equation (3.9), v%¥ = 0.058vs.. Thus the present simulation employed
the initial electron drift velocity of vg = 6v5 = 0.348vpe.

3.4.2 Results of the simulation run

Figures 3.7 (a) and (b) compare (in green) the initial velocity distributions
obtained for the electron and ion species, respectively, via our numerical
loading algorithm [Section 2.1.2 (p. 15)] with the kappa distribution, Equa-~
tion (2.5), using our simulation run parameters, which is superimposed in
black. As with the Maxwellian simulation, the numerical approximation to
the velocity distribution is obtained from each discrete plasma species using
the method of “particle binning” described in Appendix E. Figures 3.7 (a)
and (b) demonstrate very good agreement between the loaded velocity dis-
tributions of the plasma species and the kappa distribution, Equation (2.5),
which confirms the correctness of our particle loading algorithm.

The dynamics of the plasma during the evolution of the ion-acoustic instabil-
ity in the kappa plasma are expected to be similar to those of the Maxwellian
plasma. Thus, as in the Maxwellian case, the ion-acoustic instability in the
kappa plasma is expected to evolve over three distinct phases.

Figure 3.8 illustrates the time evolution of the electric field energy E¢/T.
[Figure 3.8 (a)], the kinetic energy of the electron species E. /T, [Figure 3.8
(b)], the kinetic energy of the ion species E;/T. [Figure 3.8 (c¢)] and the
total energy Ey¢ /T, in the plasma [Figure 3.8 (d)]. As with the Maxwellian
simulation run described in Section 3.3 (p. 45), all energies for this, the
kappa simulation run, are expressed in terms of the initial electron thermal
energy T.

Characteristics of the initial phase of ion-acoustic wave growth are clearly
observed, during the interval 0 < wyt < 860, in the evolution of the kinetic
energies of both the electron and ion species, as seen in Figures 3.8 (b) and
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Figure 3.7: The measured initial velocity distribution (in green) for (a) the
electron species and (b) the ion species along with the kappa distribution,
Equation (2.5) (in black), for the parameters listed in Table 3.1. The agree-
ment between the measured velocity distributions and the kappa for both
the electron and ion species confirms the correctness of our particle loading.
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(c). There is an exponential decrease in the kinetic energy of the electron
species E. /T, [as seen in Figure 3.8 (b)] and a corresponding exponential
increase in the kinetic energy of the ion species E;/T, [as seen in Figure 3.8
(c)]. That the forming waves here are also of the ion acoustic type will be
verified through analysis of the electric field intensity spectra, which will be
presented later in Figure 3.12.

Large amplitude fluctuations are, however, seen to dominate the electric field
energy Ey/T, during the initial stages 0 < wpet < 570, as seen in Figure 3.8
(a). These fluctuations obscure the exponential growth of the electric field
energy with time, which was so clearly evident in the Maxwellian case, seen
in Figure 3.2 (a) (p. 50). The amplitudes of the fluctuations in the electric
field energy are also observed to be approximately the same size as those
observed in the kinetic energy of the electron species during this period
[compare Figures 3.8 (a) and (b) during 0 < wpet < 570]. The amplitude of
fluctuation in both the electric field energy as well as the kinetic energy of
the electron species start out with a peak-to-peak amplitude of E/T, ~ 0.9
and decrease as the simulation progresses. This level of fluctuations was not
observed in the Maxwellian simulation run [see Figure 3.2 (a) (p. 50)]. It
is noteworthy pointing out that Mace et al. (1998) investigated electrostatic
fluctuations in plasmas with particles modelled by kappa velocity distribu-
tions and found that thermal fluctuations were enhanced, relative to the
equivalent Maxwellian case, for low values of k.

In other simulation runs of the ion-acoustic instability (not presented here),
the use of a smaller number of particles, 2097152 and 4194304 particles
per species, was found to increase the level of noise and fluctuations in the
simulation. This is likely due to the inequality nAp > 1 (or n)\?jj > 1in 3-D)
being poorly satisfied in these cases, where n is the number of particles. The
enhanced importance of discreteness effects in this case raises the level of
thermal fluctuations. On the other hand, increasing the number of particles
to over 2'2 particles per cell sufficiently decreased the noise levels in our
Maxwellian simulations; however, noise was still present in the simulation
for the kappa plasma, during the interval 0 < wpet < 570, when the same
number of particles was used [compare Figure 3.2 (a) (p. 50) with that of
Figure 3.8 (a)]. A further increase to 23 particles per cell had little effect
on reducing the fluctuation levels in the kappa case. This is due to Ape,
in the Maxwellian plasma, being larger than its appropriate generalisation,
Are, in the kappa plasma. Thus, for the same n, the inequality nA3, > 1
is more poorly satisfied for the kappa plasma, compared to the equivalent
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Maxwellian plasma. Thus, single particle behaviour is expected to play an
enhanced role in the kappa plasma, and will lead to the enhancement of
thermal fluctuations and higher levels of noise, as suggested by Mace et al.
(1998).

The amplitude of the fluctuations seen in the electric field energy in Figure
3.8 (a) decreases with time and a local maximum in the electric field energy
is attained at wpet ~ 860, corresponding to the end of the growth phase
of the ion-acoustic instability. This local peak in the energy of the electric
field, followed by a downward trend during 860 < wypet < 1200, corresponds
to saturation of the instability. It should be noted that the peak in the
electric field energy at wp.t ~ 860 in the kappa plasma, occurred earlier
than it did in the Maxwellian plasma, which occurred at time wpt ~ 1230.
Also, the peak in the electric field energy corresponded Ef/T, ~ 0.5, in
the kappa plasma, and Ef/T. ~ 1 in the Maxwellian plasma [see Figure
3.2 (a) (p- 50)]. This suggests that the free energy in the kappa plasma
becomes depleted and redistributed faster than it did in the Maxwellian
plasma, perhaps due to faster instability growth rate. This is due to the
kappa plasma having more resonant particles to interact with the wave than
the Maxwellian had, which will be shown later. Thus more energy is given to
the wave through the process of inverse Landau damping. This more rapid
energy transfer between the particles and the wave, produces a spectrum of
waves which are able to react back on the electron velocity distribution and
erase the source of instability by plateau formation, which will be shown
later.

Consequently, the kappa plasma settles to a quasi-equilibrium phase ear-
lier, at times wpet > 1200, than it did in the Maxwellian plasma, which
occurred at times wpet > 1700. The amplitudes of the fluctuations observed
in the electric field energy during the quasi-equilibrium phase are observed
to be smaller in the kappa plasma than they were in the Maxwellian plasma
[compare Figure 3.8 (a) with that of Figure 3.2 (a) during their respec-
tive quasi-equilibrium phases]. This is likely due to the wave structures in
the electric field having a relatively smaller amplitude in the kappa plasma,
which will be shown later. A comparison of the saturation electric field en-
ergy in Figure 3.2 (a) and Figure 3.8 (a) shows that E¢/T. ~ 0.65 in the
Maxwellian case, whereas E¢/T. ~ 0.1 in the kappa case, in agreement with
the previous statement.

Figure 3.8 (d) shows that the total energy in the kappa plasma, during
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the simulation run, was conserved, i.e., the energy remained approximately
constant to within the errors of the simulation techniques and fluctuations
arising due to using discrete particles. This gives us a high degree of confi-
dence in the results obtained in this simulation run.

Figure 3.9 illustrates the electron and ion phase space configurations [top
and middle panels of Figures 3.9 (a) to (d)] and the electric field [lower panels
of Figures 3.9 (a) to (d)], at various times during the kappa simulation run.
As with the Maxwellian simulation run, the electric field, due to our choice
of normalisation scheme, is E,, = E,/(noer, /€0)"/?, see Appendix C.

A movie clip named ion-acoustic-kappa.mpg was generated by combining a
number of these plots produced during the simulation and is provided on
the accompanying compact disk.

Figure 3.9 (a) shows the state of the electron and ion phase space, as well
as the electric field at time wpt = 0. The larger number of high energy
particles modelled by the kappa distribution is seen as a wider spread of the
electrons and ions in the velocity range, than they were in the Maxwellian
plasma [compare the top two panels of Figure 3.3 (p. 53) with those of
Figure 3.9].

Ion-acoustic wave packets in the electric field can be seen at x/Ap. =~ 80 and
2 /Ape =~ 380 in the lower panel of Figure 3.9 (b), which was generated at
wpet = 450. Owing to the faster growth rate of the ion-acoustic instability in
the present case, ion-acoustic wave packets in the electric field were observed
to occur sooner, at wpet ~ 450, compared with wy.t ~ 684 as observed in
the Maxwellian plasma [see Figure 3.3 (b) (p. 53)].

As in the Maxwellian case, the ion acoustic wave packets grow in amplitude
over time, as can be seen by comparing the lower panels of Figures 3.9
(b) and (c) at /Ape =~ 100 and z/Ap. =~ 390, which were generated at
wpet = 684 and wy,.t = 804, respectively. However, the amplitudes of these
growing waves, during the time just prior to saturation, are smaller in the
kappa plasma than they were in the Maxwellian plasma. In the former the
fluctuating electric field satisfied —0.3 < E, /(ngeTs/€e0)'/? < 0.3, whereas in
the latter (Maxwellian) it satisfied —0.5 < F,/(no.T./€0)? < 0.5. Visual
confirmation of this difference can be gained by comparing the lower panels
of the plots generated just prior to the onset of the saturation phase of the
ion-acoustic instability in the kappa plasma [see Figure 3.9 (c¢) at x/A\p. =~
100 and 390] and in the Maxwellian plasma [see Figure 3.3 (c) at x/Ape =~
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Figure 3.8: The time evolution of (a) the electric field energy E¢/T,, (b) the
kinetic energy of the electron species E./Te, (c) kinetic energy of the ion
species E;/T, and (d) the total energy Fy./T, in the kappa plasma. Three
phases of the evolution of the ion-acoustic instability are observed, i.e., wave
growth during the interval 0 < wp.t < 860, saturation of the instability
during the interval 860 < wp.t < 1200 and a settling of the plasma to a
quasi-equilibrium state at times wpt > 1200.
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300], respectively. Ion trapping by these growing ion-acoustic wave packets
is now less likely due to the larger number of energetic particles provided
by the tail of the kappa distribution. Thus the same level of ion trapping
by the growing waves was not observed in the ion phase space of the kappa
plasma, as it was in the Maxwellian plasma, i.e., no vortex like structures
were observed to form in the ion phase space of the kappa plasma whereas
they did in the Maxwellian plasma [see Figure 3.3 (c¢) (p. 53), centre panel].

As in the Maxwellian case, when the kappa plasma settles to a quasi-
equilibrium state, the amplitude of the ion acoustic wave packets decreases
due to the depletion and redistribution of free energy in the plasma [com-
pare the lower panels of Figure 3.9 (c) (generated at wp. = 804) and Figure
3.9 (d) (generated at wpe = 4986)]. The amplitude of the ion acoustic wave
packets during the equilibrium phase are also smaller than they were in the
Maxwellian plasma, as can be seen when comparing Figure 3.9 (d) with that
of Figure 3.3 (d) during their respective quasi-equilibrium phases.

A slight broadening of the ion phase space with time is observed when
comparing the middle panels of Figures 3.9 (c¢) and (d). Similar to the
Maxwellian simulation run, we speculate that this is due to the acceleration
of the ion species by the excited waves in the kappa plasma and is the reason
for the increase in the kinetic energy of the ion species observed earlier in
Figure 3.8 (c).

Figures 3.10 (a) and (b) illustrate the evolution of the electron velocity dis-
tribution during the simulation run. Figure 3.10 (a) illustrates the evolution
of the electron velocity distribution during the growth phase and up to times
just after maximum field energy is attained, i.e., during 0 < wp.t < 1000.
The ion-acoustic speed for the kappa plasma, predicted by our choice of run
parameters to be vf = 0.058vy,., is indicated by the dashed vertical line.
The ion-acoustic speed is observed to coincide with the positive slope of the
initial electron velocity distribution, as seen on the curve in Figure 3.10 (a)
for the plot at wp.t = 0. Thus, wave growth occurs due to inverse Landau
damping in the same way as it did in the Maxwellian case.

The ion-acoustic speed in the kappa plasma now, however, coincides with
a steeper slope on the electron velocity distribution than it did in the
Maxwellian plasma. This can be seen by comparing the slope of the initial
electron velocity distribution at the ion-acoustic speeds, in the Maxwellian
plasma [the plot at wpet = 0 in Figure 3.4 (a) (p. 55)] with that of the
kappa plasma [the plot at wpet = 0 in Figure 3.10 (a)]. Thus, there are more
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Figure 3.9: The electron phase space [top panel in each plot (a) to (d)],
ion phase space [middle panel in each plot (a) to (d)] and electric field as a
function of x/Ap, [lower panel in each plot (a) to (d)] for the kappa plasma,
generated at the times wyet = 0; 450; 804 and 4986 respectively.
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particles available to resonantly interact with the wave in the kappa plasma
and the effects of wave-particle interactions are enhanced. The resonant
wave-particle interaction results in amplified waves whose back-reaction on
the electron species results in the formation of a plateau in the electron ve-
locity distribution, seen in Figure 3.10 (a). At the same time, the number
of particles travelling slower than the wave is observed to gradually increase
as the electrons lose energy to the wave. The redistribution of energy leads
to a state, as seen at wpet = 1000 in Figure 3.10 (a), where the slope of the
electron velocity distribution at the ion-acoustic speed, is negative. This
causes the onset of Landau damping and dissipation of free energy in the
plasma.

Figure 3.10 (b) illustrates the evolution of the electron velocity distribu-
tion during 1500 < wypet < 5000, i.e., a time interval corresponding to the
quasi-equilibrium phase of the ion-acoustic instability. Here the source of
instability, i.e., the positive slope at the ion-acoustic speed, has been effec-
tively removed by wave-particle interaction resulting in an electron velocity
distribution that is flat topped with a shoulder in the distribution at the
velocity v/vipe &~ 1. This shoulder in the electron velocity distribution was
also observed in the Maxwellian simulation run; however, it occurred at
the velocity v/vine =~ 2 in that case. The electron velocity distribution re-
mains approximately constant during the time interval 1500 < wp.t < 5000,
consistent with the quasi-equilibrium phase.

Figure 3.11 illustrates the evolution of the ion velocity distribution through-
out the simulation run. Similar to the Maxwellian simulation run, bulk
heating of the ion species in the kappa plasma occurs as the instability
evolves, seen as the spread of the ion velocity distribution with time. Also,
the ions in the kappa plasma gain a small net drift of v/v ~ 0.0025, as
seen by the shift in the mean value of the ion velocity distribution at time
wpet = 5000.

A series of plots of electric field (wave) intensity, generated during the sim-
ulation run, are presented in Figure 3.12. The plots on the left hand side
represent the raw data, while those on the right-hand side have the analytic
dispersion relation, Equation (3.8), superimposed.

Figure 3.12 (a) illustrates the electric field intensity, as a function of w
and £, during 0 < wpet < 500, i.e., a time interval corresponding to wave
growth. In the right hand panel of Figure 3.12 (a), the dispersion relation for
ion-acoustic waves, Equation (3.8) is superimposed. The maximum electric



68 CHAPTER 3. THE ION-ACOUSTIC INSTABILITY
(a)
Electron species velocity distribution
0.7 T y T
| Wpet =0
o6t V% Joine = 0.058 i/ Wyt = 250 -
Wpet = 500
05[ Wpet = 750 |
wpet = 1000
73 04f 1
20
>
~
3]
= o03r |
=
0.2 4
0.1 7
o L
-6 2 4 6
(% /Uthe
(b)
Electron species velocity distribution
T T T
Wpelt = 1500
0.6T Wpet = 2000 -
Wpet = 3000
05y Wpel = 4000
wpet = 5000
“Soar 1
5
S
= 03f B
—
0.2 7
0.1 7
0 1 L 1 L
-6 -4 -2 0 2 4 6
Vg /Uthe

Figure 3.10: The evolution of the measured electron velocity distribution
in the kappa plasma for (a) the growth and saturation phase of the ion-
acoustic instability, showing resonant interaction and plateau formation at
the ion-acoustic speed (indicated by the dashed vertical line) and (b) the
quasi-equilibrium phase of the simulation.
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Figure 3.11: The evolution of ion velocity distribution throughout the sim-
ulation of the kappa plasma. Bulk ion heating is evident from the spread in
the ion velocity distribution. The ions also attain a positive drift after the
ion-acoustic instability saturates, indicated by the shift in the mean velocity
to a positive value.
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field intensities, egE? ~ 108n0.T., seen as the dark red regions in the plots
of Figure 3.12 (a), are observed to agree fairly well with the linear dispersion
relation given by Equation (3.8). This indicates that the maximum wave
energy is concentrated in the ion-acoustic modes during this time interval.

As with the Maxwellian plasma case presented in Section 3.3 (p. 45), en-
hanced fluctuations in wave energy density during this time interval are
observed to lie in the small wavenumber regime, 0 < kAp. < 2.5. Signifi-
cantly, we observe that enhanced levels of fluctuations occur at kAp. < 1,
where the ion-acoustic wave is truly acoustic. The acoustic regime of the
wave now, however, satisfies w ~ vi'k, with v§ the ion sound speed in a
kappa plasma, Equation (3.9), as seen in the right hand plot of Figure 3.12
(a) where this line is superimposed. In the Maxwellian plasma, the acoustic
regime of the wave satisfied w ~ vsk, where v is defined in Equation (3.4).
In this initial phase of the instability, significant levels of wave intensity are
also observed to occur at frequencies approaching the ion plasma frequency
wpi = 0.1wpe.

Figure 3.12 (b) illustrates the electric field intensity during the interval 500 <
wpet < 1000, i.e., during the phase of the instability just prior to saturation.
The areas of high electric field intensity are observed to be present over a
larger frequency range, as well as over a larger range of kAp, values [compare
the plots of Figures 3.12 (a) and (b)]. Some of the strongest wave activity
still occurs along the linear ion-acoustic wave mode, as seen in the right hand
plot of Figure 3.12 (b), where the dispersion relation defined by Equation
(3.8) is superimposed. However, widespread levels of enhanced fluctuations
that do not follow this linear dispersion relation are present and indicate
non-linear effects. Significant wave energy is observed to also lie in the
region around the beam-like mode defined by w = vk, where v, = lvgpe,
corresponding to the shoulder observed in the electron velocity distribution
in Figure 3.10. This can be seen in the right hand plot of Figure 3.12 (b)
where the relation w = vpk is overplotted.

Figure 3.12 (c) illustrates the electric field intensity during 4000 < wpet <
4500, i.e., a time interval corresponding to the quasi-equilibrium phase of the
ion-acoustic instability. During this period, the wave intensity distribution
narrows in frequency and wavenumber as sources of instability are quenched
and the plasma settles to a quasi-equilibrium state. As seen in the right
hand plot of Figure 3.12 (c¢), the dark red regions of maximum electric
field intensity once again follow the w and k values predicted by the linear
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dispersion relation, Equation (3.8). Traces of the beam-like mode, observed
earlier, are also visible in Figure 3.12 (c), where the relation w = vk is
overplotted in the right-hand panel, showing good agreement with the wave
intensity distribution. However, this mode is no longer as intense as it was
in Figure 3.12 (b), and occurs in a much narrower band of w and k. As in
the Maxwellian simulation run, the cause of this beam mode is uncertain at
present, but we speculate that its presence has to do with the shoulder at
v & Ugpe Observed on the electron velocity distribution, post saturation.
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Figure 3.12: The electric field intensity of the ion-acoustic wave in the kappa
plasma during the time interval corresponding to (a) the ion-acoustic wave
growth phase 0 < wpet < 500, (b) the wave saturation phase 500 < wpet <
1000 and (c) the quasi-equilibrium phase 4000 < wpet < 4500. The linear
dispersion relation for the ion-acoustic wave is superimposed on the right
hand panels in (a) to (¢) and is found to agree with the maximum intensities
of the wave. The beam modes are also visible in (b) and (c).



Chapter 4

Simulation of electrostatic
Bernstein waves

As a further case study, electrostatic waves propagating perpendicular to a
static magnetic field By, directed along the z axis, were investigated. The
incorporation of a finite By necessitates a one-and-two-halves dimensional
simulation to adequately describe the dynamics of the plasma. That is,
although only the z component of the particle position vector is relevant,
owing to the presence of the magnetic field, both its v, and v, are dynami-
cally essential. The one-and-two-halves dimensional simulations carried out
and presented in this chapter were, as before, for a plasma in which the
electrons and ions were modelled by either an isotropic Maxwellian, or an
isotropic kappa velocity distribution. The electric field (wave) intensities, as
a function of w and k, were computed through taking the Fourier transform
of the electric field in space and time, and were found to agree well with the
analytic linear dispersion curves for electrostatic Bernstein waves derived
by Mace (2003, 2004). The dispersion characteristics of the Bernstein waves
and their relationship to the observed field fluctuations will be discussed in
this chapter.

73
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4.1 Overview of electrostatic Bernstein waves

The motion of a charged particle in a uniform magnetic field, projected
onto a plane perpendicular to the magnetic field, is circular motion with an
angular frequency w, = ¢B/m and Larmor radius Ry = v} /w.. Thus, the
introduction of a magnetic field in a plasma will produce finite Larmor orbit
effects (Swanson, 2003). When the plasma particles perform orbits strictly
perpendicular to the magnetic field, a class of longitudinal waves known as
electrostatic Bernstein waves are produced (Bernstein, 1958).

Due to the disparate masses and mobility of the electrons and ions, two
types of Bernstein waves can propagate in electron-ion plasmas. The first
type is governed by electron dynamics and is called the electron Bernstein
wave. These waves have frequencies in excess of the electron cyclotron fre-
quency we and wavelengths short compared to the Debye length (Crawford,
1965). Electron Bernstein waves propagate between harmonics of the elec-
tron cyclotron frequency.

The second type is governed primarily by ion dynamics and is called the ion
Bernstein wave. However, in the ion Bernstein wave, the electrons contribute
a small first order effect in the form of an additional screening (Ichimaru,
1973). These waves have frequencies in excess of the ion cyclotron frequency
and propagate between the harmonics of the ion cyclotron frequency we;.

The electron and ion Bernstein waves coexist in an electron-ion plasma, when
1 S wl/wz, S 10 (Fredricks, 1968), and the behaviour of both the electro-
static electron and ion Bernstein waves are qualitatively similar (Crawford,

1965; Fredricks, 1968).

Electrostatic waves propagating exactly perpendicularly to a static mag-
netic field are generally undamped in non-relativistic Maxwellian theory;
however, in the presence of a vanishing magnetic field, wave solutions indi-
cating damping may be observed (Bernstein, 1958). This phenomenon has
been analytically investigated by Baldwin and Rowlands (1966) and compu-
tationally investigated by Kamimura et al. (1978). Baldwin and Rowlands
(1966) investigated the damping mechanism for electron Bernstein waves.
The results of Baldwin and Rowlands (1966) illustrated that the individual
electron Bernstein waves are not themselves damped; however, in the limit
as the magnetic field approaches zero, the Bernstein modes collectively act
as a single quasi-mode. It is this quasi-mode which damps according to
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the usual damping rate for electrostatic waves in the absence of an applied
magnetic field. The damping arises due to phase mixing of an infinite set of
closely spaced real frequencies, which are nearly all harmonics of the elec-
tron cyclotron frequency. Kamimura et al. (1978) investigated the transport
of heat across a plasma caused by the emission and damping of waves prop-
agating perpendicularly to a uniform magnetic field, using two dimensional
electrostatic particle-in-cell simulations. Kamimura et al. (1978) computed
the autocorrelation function for the electric field spectrum and observed
early phase mixing damping, occurring on a time interval small compared
to 2m/wee. Phase coherence was found to be re-established each cyclotron
period, in the form of a recurrence peak in the autocorrelation function, in
agreement with the work carried out by Baldwin and Rowlands (1966).

In the simulations of Kamimura et al. (1978) a single electron species was
used with ions forming a neutralising background. Toida et al. (2003),
Yoshiya et al. (2004) and Toida et al. (2004) extended the work of Kamimura
et al. (1978) and employed particle-in-cell simulations to investigate the
damping of ion Bernstein waves in a single and multi-ion species plasma.
For the single ion species case, Toida et al. (2003) computed the autocorre-
lation function, which displayed periodic behaviour on the order of the ion
cyclotron period. The recurrence peaks in the autocorrelation function were
observed to re-establish and almost return to their initial values, indicating
the re-establishment of phase coherence. When multiple ion species were
used, however, the recurrence peaks did not return to their initial values
(Toida et al., 2003; Yoshiya et al., 2004; Toida et al., 2004).

Being a purely kinetic wave, i.e., Bernstein type waves do not exist in a
plasma modelled as a fluid, the dispersion relations of the individual Bern-
stein modes are sensitive to the plasma particle velocity distributions (Swan-
son, 2003). Tataronis and Crawford (1970) explored the dispersion char-
acteristics of perpendicularly propagating electron Bernstein waves for a
set of electron velocity distributions, including the Maxwellian, ring and
spherical velocity distributions. The ring and spherical distributions were
found to contain enough free energy to destabilise the electron Bernstein
modes under certain conditions. No instability, however, was found for the
Maxwellian distribution. The necessary condition to destabilise cyclotron
harmonic waves is dfy/0v; > 0, over some range of v, , for the equilibrium
velocity distribution fy (Tataronis and Crawford, 1970).

Gary et al. (2010) studied the properties of the ion Bernstein instability,
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driven by a proton velocity distribution modelled as the difference of two
isotropic Maxwellian distributions with different densities and temperatures,
i.e., they used a subtracted Maxwellian distribution f,(v) = fi(v) — fa(v),
where f), satisfied the condition for instability, 0 f,(v, )/0v, > 0. However, it
is important to note that propagation close to 90°, with respect to the mag-
netic field, was used in their calculations, instead of exactly 90° . This work
was motivated by observations in the terrestrial magnetosphere, near the
plasma sheet boundary layer, of enhanced field fluctuation spectra (Denton
et al., 2010). These fluctuation spectra are believed to be produced by ion
Bernstein waves. Lui et al. (2011) performed fully electromagnetic particle-
in-cell simulations to study the temporal development of an ion Bernstein
instability driven by a proton velocity distribution, with a positive slope in
the perpendicular velocity distribution. The subtracted Maxwellian distri-
bution was first used to produce the positive slope, in accordance with earlier
work by Gary et al. (2010), to compare simulation results with that from
kinetic theory. Good agreement between the simulation results and theory
was achieved. Furthermore, the ion shell distribution was used, with finite
thermal spread and a cold ion background. The results of the simulations
conducted by Lui et al. (2011) resembled the observed fast magnetosonic
waves found in different regions of the magnetosphere, consistent with their
theoretical model.

Banded emissions, which are naturally occurring electrostatic plasma emis-
sions, are frequently observed in the Earth’s magnetosphere [see Kennel
and Ashour-Abdalla (1982)]. These emissions occur at frequencies between
harmonics of the electron cyclotron frequency and are observed to be most
intense near the magnetic equator, suggestive of near perpendicular propaga-
tion. Thus, banded emissions are generally attributed to electron Bernstein
waves, although alternative interpretations exist (Benson et al., 2001). En-
hanced magnetic and electric field fluctuations at frequencies between the
ion cyclotron and lower hybrid frequencies, at propagation nearly perpen-
dicular to the magnetic field, are also observed near the equatorial plane of
the terrestrial magnetosphere. These enhanced fluctuations were initially
referred to as equatorial noise (Russel et al., 1970), but more recently have
been termed magnetosonic waves (Perraut et al., 1982; Horne et al., 2000)
or more appropriately, for low proton beta 3, < 1, are described by the ion
Bernstein instability (Janhunen et al., 2003; Gary et al., 2010).

Crary et al. (2001) carried out large scale, massively parallel, two dimen-
sional electrostatic particle-in-cell simulations, producing bipolar electro-
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static structures and, at later times, ion Bernstein waves with peak inten-
sities at frequencies between multiples of the ion cyclotron frequency. The
simulations were found to agree with observations made by the FAST space-
craft of such bipolar structures as well as of waves with frequencies between
ion cyclotron harmonics (Carlson et al., 1998; Ergun et al., 1998), which
were identified as ion Bernstein modes.

Absorption studies of particles in cyclotron motion have shown that plas-
mas can absorb energy at its cyclotron harmonics. Support for this came
when satellite studies of the ionosphere, using pulsed transmitters of variable
frequencies, induced resonance phenomena in the plasma, at its cyclotron
frequencies, with ringing persisting for many periods after the end of the
transmitter pulse. Such sounding experiments were carried out in the iono-
sphere by sounder space craft such as Alouette (Dougherty and Monaghan,
1966) and analogous experiments were carried out in the magnetosphere
by the Radio Plasma Imager (RPI) aboard the IMAGE satellite (Benson
et al., 2003). These experiments use an electromagnetic impulse to stimu-
late short-range plasma wave echoes and plasma emissions known as plasma
resonances. The resonances measured by the space craft are believed to
be produced by, among other things, a vanishing group velocity Bernstein
wave packet, excited by the electromagnetic impulses (Dougherty and Mon-
aghan, 1966). The stimulated electromagnetic resonances have been found
to depend on a number of plasma parameters, as well as those of the pump.
Thus, they can be used as a diagnostic tool and may provide the local elec-
tron density n. and the magnetic field strength |B|. Scales et al. (1997)
conducted one dimensional electromagnetic particle-in-cell simulations to
investigate the stimulated electromagnetic emission (SEE) produced during
ionospheric heating experiments. Scales et al. (1997) used an external oscil-
lating magnetic field to represent the long wavelength electromagnetic pump
field in the simulations. The oscillating magnetic field was then varied in
frequency and amplitude and the resulting stimulated power spectrum was
analysed. Qualitatively similar behaviour between the frequency spectrum
from the simulation results and the behaviour of stimulated electromagnetic
emission in the ionosphere was observed.

Analytic studies of Bernstein waves have been carried out for plasmas hav-
ing kappa velocity distributions, e.g., see Mace (2003, 2004) and Henning
et al. (2011). However, the works involving simulations mentioned above,
and many others not mentioned here, have used either the Maxwellian ve-
locity distribution, loss cone, ring or spherical shell distributions. Presented
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below are the results of simulations of electrostatic Bernstein waves of both
electron and ion types, where the electron and ion species are modelled by
(a) Maxwellian and (b) kappa velocity distributions.

4.2 Dispersion relation for Bernstein waves

4.2.1 The Maxwellian case

The dispersion relation for electrostatic Bernstein waves in a multi-species
plasma, where each species is modelled by a Maxwellian velocity distribu-
tion, is given by, using the form derived by Mace (2003),

ca Wea

1 1 w w

where the sum is over each particle species represented by «, k is the
wavenumber, oFy[---] is the generalised hypergeometric function, weo =
daB/mq is the cyclotron frequency for species o and

k2 v?
Ao = t} ;ha. (4.2)

The alternate, and more familiar, form of the dispersion relation for elec-
trostatic Bernstein waves in a Maxwellian plasma is given by (Krall and
Trivelpiece, 1973)

1- 22 k2)\2 Z eXp(_Aa)In(Aa)ﬁ =0, (4.3)

anl cx

where I,() is the modified Bessel function of order n. Stix (1992, p. 295)
defined the function (g, A) such that

=2 Z exp(—NTn(\) 55— (4.4)
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where ¢ = w/w,, whose expansion in ascending powers of \ is given by (Stix,
1992, p. 295)

(4.)) = A, 1.3\ N 1-3-5)\3 N
AT o) T (@ -2 -2 (- 12)(¢2 - 2) (¢ - )
(4.5)
In terms of ¢(gq,\), Equation (4.3) can be written as
=3 ol M) = 0. (4.6)
k2X%,,

07

It is easily shown that the function defined by Stix (1992), ¢(g, A) in Equa-
tion (4.4), is precisely 9F»[1/2,1;1+ ¢,1 — g; —2\] — 1, thus illustrating the
equivalence of the dispersion relations Equations (4.1) and (4.6) [or Equation
(4.3)]. That is, recalling the definition of 9 F» (Mace, 2003)

)

> 1/2)n(D)pn (=22
Z((/)() (—2))

1
i, 1L14+q1—q -2\ =
222 b } T4 Qn(l—q)n 7l

n=0

where the Pochhammer symbol (a),, is given by (Mace, 2003)

(a)0=1, (a)n:a(a+1)(a+2)...(a+n71):

and as shown in Mace (2003)

(1+2),(1—x), = { 212 _;2)(22 —2)(32—22)---(n? = 2?), n>0.

Using the last three equations it is an easy exercise to show that
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1
o Fy 5,1;1+q,1—q;—2/\

AL 1-3\2 N 1-3-5)3
(*=12) (¢ -1)(*—2%) (¢ —1%)(¢*> —2%)(¢* — 3%)’

=1+

which should be compared to the expansion of ¢(g, A), Equation (4.5) above.
We thus deduce that

1
¢(q,\) =2 I3 5,1;1+q,1—q;—2>\ -1,

and the equivalence of Equations (4.1) and (4.6) is established.

Now, the cold plasma approximation to the dispersion relation in Equation
(4.6) is obtained by letting vine — 0, and keeping the lowest order term in
the expansion of ¢(qq, Aa), Equation(4.5), where A\, is given in Equation
(4.2). The higher order terms in the expansion, Equation (4.5), vanish
because v — 0. Thus, for an electron-ion plasma, Equation (4.6), in the
limit v — 0, becomes

L Ao 1 A Y
k203, (w2 /w2, — 1) k2X3), (w?/w? —1)
2 2
Wpe Wi _
- - — 0, (@)
ce Ccl

where we have used Equation (4.2) and vipe = Apawpe in the last step of
Equation (4.7). The solutions to Equation (4.7) are the lower and upper
hybrid frequencies. The upper hybrid frequency is well in excess of w.; and
wpi. Hence, neglecting the contribution from the ions in Equation (4.7) we
obtain

2 2 2
Wuh = wpe + Wee) (48)
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where w,;, denotes the upper hybrid frequency. On the other hand, assuming
wzi < w? <K w?:e, we obtain the lower hybrid frequency solution wyy,, given
via

1 1

1
— = + . 4.9
w?h WeeWei wf)i ( )

The hybrid frequencies are important to the analysis of the dispersion char-
acteristics of the electron and ion Bernstein waves, as they provide a dividing
line that separates regions in which the Bernstein waves show qualitatively
different dispersion relations (Puri et al., 1973). This will be shown later.

4.2.2 The kappa case

The dispersion relation for electrostatic Bernstein waves in a multi-species
plasma, where each plasma species is modelled by a kappa velocity distri-
bution is given by (Mace, 2003)

1 11 w w ,
1+ ——— 91 —2F3 |1, == —Kq, 1 + —,1 — ;2)\]
g, {12 [y e e e,
2 e (w w > D(ka + DT(1/2 — kq)
Wea Wea ) T(ka +3/2 4 w/wea)T(ka + 3/2 — w/weq)

, 3 3 ,
X (20,) 12 By [ma Flikat ot ko Y ;2Aa] } =0,

2 Wea 2 Wea
(4.10)
where the sum is over each plasma species represented by «, oF3[ -] and
1F5[- - -] are the generalised hypergeometric functions and
! 3 3 2 UtQha
)\04: K}a—i )\Ot: /ia—i kJ_ wga. (411)

Mace (2003) demonstrated that the expansion of the dispersion relation,
Equation (4.10), to O[(2\')?], when both plasma species, in an electron-ion
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plasma, are modelled by kappa velocity distributions with x > 5/2, results in
the simplified approximate form of the dispersion relation, Equation (4.10),

1 11 w w /
1+5 ——— 1—17P,;—5,L+ 11— QA}}:Q 4.12
where (Mace, 2003)
11 w w /
F311, == — 1 1-— : 2
2 3|:7272 Ras +Wco¢’ Wca, a:|
Ko —3/2\ k%v3, Ka — 3/2 kvl /3
=1 a 3 a Ol(2X .
(i) o+ (1) Ty Ol
(4.13)

Substituting Equation (4.13) into Equation (4.12) and ignoring thermal ef-
fects, i.e., letting v — 0, leads to

[ —— N — (4.14)

Equation (4.14) is identical to Equation (4.7). Thus, Equation (4.14) has
the upper and lower hybrid solutions, Equations (4.8) and (4.9), respec-
tively. This illustrates that the hybrid frequencies are unaffected by the
kappa distribution, i.e., the hybrid frequencies are identical in Maxwellian
and kappa plasmas. Since qualitatively similar general behaviour of the
Bernstein waves in Maxwellian and kappa plasmas is expected (Bernstein,
1958; Crawford, 1965; Fredricks, 1968; Mace, 2004), the hybrid frequencies
again separate different types of Bernstein wave dispersion behaviour in the
kappa plasma.
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4.3 PIC simulation for a Maxwellian plasma

4.3.1 Simulation run parameters

As in the simulations carried out for the ion-acoustic instability, described
in Chapter 3 (p. 39), all simulation run parameters considered in this chap-
ter are given with reference to those for the electron species. Times are
given with reference to the reciprocal of the electron plasma frequency,
t" = wpet, lengths are given with reference to the electron Debye length,
x' = x/Ape and velocities are given with reference to the electron thermal
velocity, v/ = v/vype (where primed variables denote simulation values and
unprimed variables denote ordinary S.I. values).

The aim of this chapter is to investigate electrostatic Bernstein waves pro-
duced in a plasma containing no free energy sources. The simulation results
presented in this section are those which used run parameters describing a
plasma consisting of two stationary species, electrons and ions, both mod-
elled by Maxwellian velocity distributions, and in thermal equilibrium, i.e.,
with equal temperatures T, = T;. A uniform, static magnetic field with mag-
nitude specified by By = weeme/e is present and is directed perpendicular
to the direction of the x axis.

In our simulation, we use the reduced ion-to-electron mass ratio of m;/me =
100. This allows sufficient separation of the electron and ion time scales,
while still allowing the dynamics of both plasma species to be tracked with-
out resorting to prohibitively long simulation runs. A summary of the
plasma species run parameters are given in Table 4.1.

In our simulations we use wpe/wee = 2. With our choice of normalisation
scheme, see Appendix C, the magnitude of the magnetic field present in
the plasma is By/(wpeme/e) = 0.5. The simulation was run for a time long
enough, up to the time wy.t = 16000, to allow ion Bernstein waves to be
resolved. This simulation run duration enables the ions to perform about
13 cyclotron orbits. In a statistical investigation of banded magnetospheric
emissions, conducted by Labelle et al. (1999), the ratio wpe/wee = 2 is, how-
ever, given as the lower limit in a number of sampled observations of banded
magnetospheric emission data, observed by the Active Magnetospheric Par-
ticle Tracer Experiment/Ion Release Module (AMPTE/IRM) [see Figure 6
of Labelle et al. (1999)].
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Electron species Ion species
4194304 particles 4194304 particles
Wpe = 1 Wps = 0.1
Wee = 0.5 we; = 0.005
q/me=—1 q/m; = 0.01
Vthe = 1 vepi = 0.1
Varift =0 Varift =0

Table 4.1: The electrostatic Bernstein wave simulation run parameters.

The simulation employs a box length of L = 512Ap, with a cell size of
Az = 0.125\ p., corresponding to a total of 4096 cells. The time step At used
in the simulation was chosen to satisfy wpcAt = 0.1 and the simulation was
run for a total of 160000 time steps, corresponding to the time wy,t = 16000.

4.3.2 Results of the simulation run

Figure 4.1 illustrates the electric field (wave) intensity as a function of
w and k, over the range 0 < w/we < 5.5 and 0 < kApe < 4.5. As
before, the electric field, due to our choice of normalisation scheme, is
E = E,/(noeT./e0)'/?, see Appendix C. The dispersion relation for Bern-
stein waves, generated by evaluating Equation (4.1) using the software pack-
age MATHEMATICA, is superimposed and displayed in Figure 4.1 (b). The
maximum electric field intensities, 107 < egE?/no.T. < 10'? (corresponding
to the red, orange and yellow areas) are observed to agree well with the
linear dispersion relation, Equation (4.1). The regions of enhanced levels
of wave activity are observed to occur between frequency bands bound by
harmonics of the electron cyclotron frequency, as seen in Figure 4.1. Thus,
these waves are of the electron Bernstein type.

While a plot of w/wce versus kRy. may provide a physically more revealing
view of Bernstein wave behaviour, our choice to plot w/wee versus kApe is
one of convenience and for consistency with the other dispersion curves in
this thesis. Since kRre = (Wpe/Wee)kADe and wpe/wee = 2 in our case, the
kRre dependence can be gleaned by multiplying the z—axis values by 2.
When this is done it is seen that the peak frequency of the Bernstein wave
in the upper hybrid frequency band occurs at kR, ~ 1.

As kXpe increases, the regions of strongest wave activity in Figure 4.1 are
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observed to trace out five distinct paths in w — k space. These correspond
to the first five electron Bernstein modes, with the lowest order electron
Bernstein mode having a frequency w/we = 2 at vanishing kAp.. The
broad area of enhanced wave activity levels with 107 < eqE?/ng.T. < 10!
below the lowest order electron Bernstein wave is attributed to waves of the
ion Bernstein type, which will be discussed later.

Distinctly different electrostatic electron Bernstein wave behaviour is known
to occur for waves with frequencies, respectively, below and above the upper
hybrid frequency, Equation (4.8), (Bernstein, 1958; Crawford, 1965; Tataro-
nis and Crawford, 1970; Puri et al., 1973). Given our choice of run parame-
ters, see Table 4.1, the upper hybrid frequency for the current simulation is
Wuh/Wee = 2.23.

The strongest wave activity below the upper hybrid frequency is observed
to agree well with the Bernstein mode having the frequency w/we = 2
at vanishing kAp.. As kApe increases, the intensity gradually decreases
while the frequency asymptotically approaches the first electron cyclotron
harmonic. This decrease in frequency of enhanced wave activity levels, from
W = 2Wee — Wee 1S monotonic, i.e., no frequency peaks are observed over
the whole kAp. range, and the entire intraharmonic range is covered in
an asymptotic sense, i.e., enhanced wave activity occurs at all frequencies
between harmonics of the electron cyclotron frequency, over the range of
kEADe.

The strongest wave activity having frequencies above the upper hybrid fre-
quency is also seen to agree well with the linear Bernstein mode dispersion
relation, Equation (4.1), as seen in Figure 4.1 (b). Each mode is observed
to approach a harmonic of the electron cyclotron frequency, w = nwee, at
vanishing kAp.. Enhanced levels of wave activity here are observed to oc-
cur at frequencies increasing to a local maximum within the intraharmonic
range, at an intermediate kXA pe value. Beyond this maximum, the regions of
enhanced wave activity are observed to occur at frequencies asymptotically
approaching the harmonic on which the mode started, i.e., w = nwe. The
frequencies spanned by the strongest wave activity here do not cover the
entire intraharmonic range and are also observed to occupy a diminishing
range of frequencies as the order n of the wave increases [compare the fre-
quency range spanned by the wave with w/w. = 3, with that of the wave
with w/we = 5, at vanishing kAp,, in Figure 4.1]. The maximum frequency
attained between each electron cyclotron harmonic corresponds to the con-
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dition of vanishing group velocity, i.e., dw/ dk = 0. The significance of this
will be discussed later in Section 4.4.2.

For the mode lying within the upper hybrid frequency band, i.e., the wave
with frequencies between 2 < w/we < 3 in Figure 4.1, the strongest wave
activity is observed to have the frequency wy /wee = 2.23 at vanishing kA p,.
Enhanced levels of wave activity are then observed to occur at frequencies
increasing to w/we & 2.5 at kApe ~ 0.25, and thereafter for kAp. > 0.25,
at frequencies decreasing asymptotically to the harmonic of the electron
cyclotron frequency directly below the upper hybrid frequency, i.e., w/wee =
2.

Also evident in Figure 4.1 are weaker excitations at approximately twice
the frequency of the main (stronger) Bernstein modes. We believe these to
arise due to nonlinear effects that produce harmonics of the original wave
frequency. However, whether these are of physical origin or are as a result
of some nonlinearity or aliasing in the numerical techniques is unknown at
present.

Figure 4.2 illustrates the electric field intensity, as a function of w and k,
over the range 0 < w/we < 0.18 and 0 < kApe < 1.05, i.e., the region
below the lowest order electron Bernstein wave. The dispersion relation for
Bernstein waves, generated again by evaluating Equation (4.1), over this
range, using the software package MATHEMATICA, is superimposed and
displayed in Figure 4.2 (b). The maximum intensities, 107 < egE?/ng.T. <
10*! (corresponding to the red and orange areas) are seen to agree well with
the dispersion relation, Equation (4.1), as well, in this low frequency range
[see Figure 4.2 (b)].

In our simulation run we employed the ion-to-electron mass ratio m;/me =
100, resulting in an ion cyclotron frequency of we = 0.01lwe.. In Figure 4.2,
the regions of strongest wave activity are observed to occur at frequencies
between harmonics of we; = 0.01w,,, indicative of ion Bernstein waves.

The enhanced levels of wave activity are observed to trace out seventeen
separate paths in w — k space as kApe increases, as seen in Figure 4.2.
These are the first seventeen ion Bernstein waves, with the lowest order
wave having w = 0.02w.. = 2w,; at vanishing kApe.

Detailed kinetic theory suggests that the behaviour of the ion Bernstein
waves are qualitatively similar to the electron Bernstein waves (Crawford,
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Figure 4.1: (a) The electron Bernstein wave intensity for a Maxwellian plas-
mas with (b) the dispersion relation for electron Bernstein waves, Equation
(4.1), superimposed.
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1965; Fredricks, 1968). Thus, as with the electrostatic electron Bernstein
waves, described above, qualitatively different electrostatic ion Bernstein
wave behaviour is expected to occur above and below the dividing line which
now lies at the lower hybrid frequency, Equation (4.9). With our choice
of simulation run parameters the value of the lower hybrid frequency is
wip /wee = 0.09.

For the ion Bernstein waves with frequencies below the lower hybrid fre-
quency, seen in Figure 4.2, the areas of strongest wave activity are observed
to approach frequencies equal to a harmonic of the ion cyclotron frequency
w = nwe; (where n = 2,3,---,8), at vanishing kApe. As kAp. is increased,
enhanced levels of wave activity are observed at frequencies decreasing mono-
tonically to the ion cyclotron harmonic below the one at which it started,
ie,w=(n—1)wey.

In Figure 4.2, the areas of strongest wave activity at frequencies in excess of
the lower hybrid frequency are observed to agree well with the ion Bernstein
modes. These modes approach a harmonic of the ion cyclotron frequency
w = nwe; (where n = 9,10,---,17), at vanishing kAp.. As kAp. increases,
the frequencies of enhanced wave activity increase to a maximum value
within the intraharmonic band, at an intermediate kAp, value, after which
they decrease to the harmonic at which they started, w = nw;, at large
kEADe.

Figure 4.3 illustrates the time evolution of the the electric field energy E¢ /T,
[Figure 4.3 (a)], kinetic energy of the electron species E. /T, [Figure 4.3 (b)],
kinetic energy of the ion species E; /T, [Figure 4.3 (c¢)] and the sum of these
energies Eio /T, [Figure 4.3 (d)], for the Maxwellian plasma. Energies here
are given with reference to the initial electron thermal energy, as they were
in the simulations carried out in Chapter 3 (p. 39).

The simulation run carried out and presented in this section was for a plasma,
with no externally perturbing forces or free energy to drive an instability. By
virtue of the thermal fluctuations of the plasma particles, stable electrostatic
Bernstein waves were produced [see Figure 4.3 (a)].

As expected, the electric field energy as well as the kinetic energies of the ion
and electron species remain appropriately level during the simulation run,
as seen in Figures 4.3 (a) to (c), respectively. This is indicative of a plasma
in equilibrium. The observed fluctuations in the energies are produced by
the natural random thermal fluctuations of the discrete simulation particles.
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Figure 4.2: (a) The ion Bernstein wave intensity for a Maxwellian plasma
with (b) the dispersion relation for ion Bernstein waves, Equation (4.1),

superimposed.
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Importantly, the total energy is conserved throughout the simulation run to
within the error of the simulation techniques, as seen in Figure 4.3 (d),
assuring the validity of the simulation results.

4.4 PIC simulation for a kappa plasma

4.4.1 Simulation run parameters

Presented in this section are the results of the simulation run for the plasma
where the plasma electrons and ions are modelled by kappa velocity distri-
butions, having equal kappa indices k. = k; = 2. To investigate the effects
the kappa distribution has on the dispersion behaviour of the Bernstein
waves, we use identical species parameters to those used in the Maxwellian
simulation run, see Table 4.1 (p. 84).

The simulation uses a box length of L = 512Ap. with 4096 cells, as well as
a time step At satisfying wp.At = 0.1, for 160000 time steps, identical to
the Maxwellian simulation run parameters.

4.4.2 Results of the simulation run

Figure 4.4 illustrates the electric field (wave) intensity for the kappa sim-
ulation run, over the range 0 < w/we < 5.5 and 0 < kAp. < 4.5. The
dispersion curves for Bernstein waves, generated by evaluating Equation
(4.10) using the software package MATHEMATICA, is superimposed and
displayed Figure 4.4 (b). The maximum electric field intensities here, 107 <
€0E?/noeT. < 102 i.e., areas of red, orange and yellow in Figure 4.4, are
observed to agree well with the analytical dispersion curves, Equation (4.10),
[see Figure 4.4 (b)]. Since the maximum intensities are observed to occur be-
tween frequencies bounded by harmonics of we., we identify these as electron
Bernstein waves.

The behaviour of the electron Bernstein waves here are observed to be qual-
itatively similar to those in the Maxwellian plasma, as expected (Mace,
2003, 2004), compare Figure 4.4 with that of Figure 4.1 (p. 87). As kAp.
increases, the regions of strongest wave activity are observed to trace out
five separate paths, in w — k space, corresponding to the first five electron
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Figure 4.3: The time evolution of (a) the electric field energy E¢/T., (b)
kinetic energy of the electron species E./T, (c) kinetic energy of the ion
species E; /T, and (d) the sum of these energies Fi/Te, for the Maxwellian
plasma.
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Bernstein waves. The distinction between the different types of behaviour of
electrostatic electron Bernstein wave, here, is also defined at the upper hy-
brid frequency, where the value of the upper hybrid frequency is equivalent
to that for the Maxwellian plasma described previously, i.e., wyp/wee = 2.23.
Similar to the Maxwellian simulation run described in Section 4.3 (p. 83),
the high intensity region, with 107 < eoEg/nOBTe < 10", below the lowest
order electron Bernstein wave in Figure 4.4, is attributed to ion Bernstein
waves, which will be discussed later.

For the electron Bernstein wave propagating below the upper hybrid fre-
quency in Figure 4.4, the areas of strongest wave activity are observed at
w/wee = 2, for vanishing kAp.. The intensity levels of the wave gradually
decrease as kAp. increases, with the frequencies decreasing monotonically
to w/wee = 1.

Strong wave activity in the upper hybrid frequency band occurs at the up-
per hybrid frequency, wyp/wee = 2.23, at vanishing kApe, and increases to
w/wee = 2.4 at kApe =~ 0.5. As kApe increases further, kAp. > 0.5, the
intensity of the wave gradually decreases and the frequencies decrease to
w/wee = 2, as seen in Figure 4.4.

For the electron Bernstein waves propagating above the upper hybrid fre-
quency in Figure 4.4, the regions of strongest wave activity are observed to
agree well with the electron Bernstein modes. These approach a harmonic of
the electron cyclotron frequency w = nwe (where n = 3,4,5), for vanishing
kApe. The frequencies then rise to a local maximum between the electron
cyclotron harmonics, at an intermediate kAp. value, after which they de-
crease to the cyclotron harmonic on which the mode started, w = nwee, at
large kApe.

Figure 4.5 illustrates the dispersion relations for electron Bernstein waves
in the Maxwellian plasma, Equation (4.1), and the kappa plasma, Equation
(4.10). Although the electron Bernstein waves exhibited similar qualita-
tive dispersion behaviour, differences in their dispersion characteristics are
observed.

For the electron Bernstein wave below the upper hybrid frequency, the low
value of kappa gives rise to a weak dependence on wavenumber and a slower
frequency fall off to the harmonic below, compared to the Maxwellian. All
frequencies in the entire intraharmonic band are still, however, occupied in
both cases, compare the bottom curves in Figure 4.5.
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Figure 4.4: (a) The electron Bernstein wave intensity in the kappa plasma
with (b) the dispersion relation for Bernstein waves, Equation (4.10), super-
imposed.
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The frequencies spanned by the waves propagating at, and above, the up-
per hybrid frequency, are observed to occupy a diminished range above the
nearest electron cyclotron harmonic for the kappa plasma, compared to the
Maxwellian [see the top four curves in Figure 4.5]. The frequency peaks for
these waves are also observed to shift to higher kAp. values in the kappa
plasma. This is clearly seen for the wave in the upper hybrid frequency
band, which had its peak frequency at kAp. &~ 0.5 in the kappa plasma and
kApe =~ 0.25 in the Maxwellian plasma [see Figure 4.5].

Figure 4.6 illustrates the electric field intensity, as a function of w and k, over
the range 0 < w/wee < 0.18 and 0 < kAp. < 1.05. The dispersion relation
for Bernstein waves, generated again by evaluating Equation (4.10) using
the software package MATHEMATICA, is superimposed and displayed in
Figure 4.6 (b). Due to the evaluation of the dispersion relation, Equation
(4.10), for this frequency range, at kApe > 0.6, producing results which were
in error, i.e., fluctuating dispersion curves, even when using a precision of up
to 500 digits, the dispersion relation was only evaluated up to kApe = 0.6.

The maximum intensities in this frequency range, 107 < egE?/ng.T. < 101,
i.e., the red, orange and yellow regions, are seen to agree well with the
dispersion relation, Equation (4.10), as seen in Figure 4.6 (b) and we identify
these as the ion Bernstein modes.

The first seventeen ion Bernstein waves are displayed in Figure 4.6, where the
lowest order ion Bernstein wave is observed to occur at w = 0.02wee = 2w,
at vanishing kAp.. The ion Bernstein wave behaviour here is qualitatively
similar to that of the Maxwellian plasma, compare Figure 4.2 (p. 89) with
that of Figure 4.6, and the lower hybrid frequency for the kappa plasma
equals that for the Maxwellian plasma, i.e., wip/wee = 0.09.

As with the Maxwellian plasma, the ion Bernstein waves below the lower
hybrid frequency exhibit regions of strongest wave activity at frequencies
equal to a harmonic of the ion cyclotron frequency w = nw (where n =
2,3,---,8) at vanishing kAp,. [see Figure 4.6]. The frequencies are then
observed to decrease monotonically to the ion cyclotron directly below, i.e.,
w = (n — 1)wei, as kAp, increases.

The strongest wave activity above the lower hybrid frequency is observed
to agree well with the ion Bernstein modes approaching a harmonic of the
ion cyclotron frequency, w = nw; (where n = 9,10,---,17), at vanishing
kApe. High levels of wave activity then increase to a local maximum between
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Figure 4.5: Comparison of the electron Bernstein dispersion relations for
waves in Maxwellian and kappa plasmas, Equations (4.1) and (4.10), re-

spectively.
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ion cyclotron harmonics, at an intermediate kAp. value. After attaining the
local maximum, the frequencies decrease to the harmonic on which it started
W = Nwe;, for large kApe.

Figure 4.7 illustrates the dispersion relations for the ion Bernstein waves in
the Maxwellian plasma, Equation (4.1), and the kappa plasma, Equation
(4.10). Differences in the dispersion characteristics of the ion Bernstein
modes are observed when comparing each case. These differences in the
ion Bernstein mode behaviours are qualitatively similar to the differences
observed for the electron Bernstein modes, compare Figures 4.5 and 4.7.

Below the lower hybrid frequency, wi,/wee = 0.09, the waves are observed
to have a slower frequency fall off to the ion cyclotron harmonic directly
below it in the kappa plasma (compare the bottom eight curves in Figure
4.7). This trend is also observed for the wave at the lower hybrid frequency.
The frequency range spanned by the waves above the lower hybrid frequency
is observed to be condensed for the kappa plasma, and the location of the
points of vanishing group velocity are observed to move to higher kAp.
values compared to the Maxwellian plasma.

The points of zero Bernstein wave group velocity, have been cited as being
important to the long time echoes observed in ionospheric topside sounder
experiments (Dougherty and Monaghan, 1966). Since we observed a shift in
kApe of the points of zero group velocity, the interpretations of the plasma
echoes may potentially be exploited to provide a reverse diagnostic, pro-
viding insights into the particle velocity distributions (Mace, 2004; Vinas
et al., 2005), i.e., interpretations of the plasma echoes my establish that the
particle velocity distributions are of the kappa type.

Figure 4.8 illustrates the time evolution of the electric field energy E¢/T.
[Figure 4.8 (a)], kinetic energy of the electron species E. /T, [Figure 4.8 (b)],
kinetic energy of the ion species E;/T, [Figure 4.8 (c)] and the sum of these
energies Fiot/Te, for the kappa plasma [Figure 4.8 (d)].

No free energy sources, in the form of drifting plasma species, temperature
anisotropy or an externally perturbing field, was present in the simulation
run. Thus, stable Bernstein waves were expected to form in the kappa
plasma.

However, unlike the (approximately) level energy plots produced in the
Maxwellian simulation run [see Figure 4.3 (p. 91)], a decrease in the kinetic
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Figure 4.6: (a) The ion Bernstein wave intensity for a kappa plasma, along
with (b) the ion Bernstein dispersion relation, Equation (4.10), superim-

posed



98 CHAPTER 4. BERNSTEIN MODE WAVES

The ion Bernstein wave

0.16 [

O O s R ==
—__P—=
) ___"/__’______,———\:—

_—— Maxwellian

il m

"-"']f Wee

“r &
T K
U &_

I I I L I L
0.1 0.2 0.3 0.4 05 06

k ‘\De

Figure 4.7: Comparison of the ion Bernstein dispersion relations for waves
in Maxwellian and kappa plasmas, Equations (4.1) and (4.10), respectively.
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energy of the electron species E./T, is observed, during 0 < wpt < 1000,
with a corresponding increase in the electric field energy E¢/T,, as seen in
Figures 4.8 (a) and (b), respectively. During the times 1000 < wpt < 2000
a downward trend is observed in the electric field energy, with an upward
trend in the kinetic energy of the electron species [see Figures 4.8 (a) and
(b)]. At wpet > 2000 the kinetic energy of the electron species remains ap-
proximately constant, to within the natural fluctuation levels arising due
to using discrete simulation particles, and a gradual decrease in the electric
field energy is observed.

The ion species, on the other hand, is observed to increase in kinetic en-
ergy over the period 1000 < wpt < 6000, after which the energy remains
approximately constant, to within expected levels [see Figure 4.8 (c)]. The
exact cause of the energy transfer observed in the kappa simulation run is
uncertain at present, as plasma instability was not expected.

It is well known that the Bernstein waves are purely kinetic waves (Swanson,
2003), i.e., they arise due to the discrete particle nature of the plasma.
We speculate that the enhanced discreteness effects and fluctuations in the
kappa plasma, demonstrated in the simulations of Chapter 3 (p. 39), could
be a possible influence on this energy transfer.
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Figure 4.8: The time evolution of (a) the electric field energy E¢/T., (b)
kinetic energy of the electron species E./Te, (c) kinetic energy of the ion
species E;/T; and (d) the sum of these energies Fio/Te.



Chapter 5

Summary and conclusions

The aim of this research project was to develop a particle-in-cell simulation
code, using the C programming language, and to use it to investigate space
plasma wave phenomena. The simulation code we developed is one dimen-
sional, allowing parameters to vary only along the x axis. It is electrostatic,
but allows for a uniform ambient magnetic field which may be directed at
arbitrary angles with respect to the x axis.

Message Passing Interface (MPI) was utilised to parallelise our simulation
code for a distributed memory system using the particle decomposition tech-
nique (Liewer et al., 1988; Dawson et al., 1993; Martino et al., 2001; Qiang
and Xiaoye, 2010). This allowed large scale simulations to be run using mil-
lions of plasma particles. To further increase the efficiency of our paralleli-
sation scheme, we employed the Manager-Workers pattern (Ortega-Arjona,
2004), described in Section 2.6 (p. 34). The Manager-Workers pattern
was used to organise the simulation computations on an activity basis, i.e.,
processors were assigned different tasks in the simulation run [see Section
2.6 (p. 34)]. Preliminary results showed a decrease in the simulation run
times when using the Manager-Workers pattern, compared to using only the
particle decomposition technique, when a large number of computationally
intensive diagnostics were carried out.

Our particle-in-cell simulation code incorporated a kappa distributed veloc-
ity loader, which we devised [see Section 2.1.2 (p. 15)]. Although not many
particle-in-cell simulations model their plasma particles using kappa velocity
distributions, the kappa distribution has, however, been generally found to
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provide a more realistic representation of observed particle distributions in
space (Gloeckler and Hamilton, 1987; Christon et al., 1988; Leubner, 2004;
Pierrard and Lazar, 2010). Our kappa velocity loader relies on the closely
related Student ¢ distribution (Press et al., 2007), which was found to reduce
to the one dimensional kappa distribution, Equation (2.5), by making the
substitutions in Equations (2.7) and (2.8). Thus we were able to employ
the known method for generating deviates from the Student ¢ distribution
(Press et al., 2007, p. 371) to obtain deviates from the kappa distribution
[see Section 2.1.2 (p. 15)]. Good agreement between the measured particle
velocity distributions, loaded using the method described in Section 2.1.2
(p.- 15), and the kappa distribution, Equation (2.5), was obtained, as seen
in Figure 3.7 (p. 60).

We mention parenthetically that Koen et al. (2012a,b) have undertaken
studies of electron-acoustic and electron plasma waves in kappa plasmas.
While those studies have little bearing on the results of this thesis, we point
out that the main difference between the code of Koen et al. (2012a,b) and
the code developed for this thesis is that we developed a kappa loader which
relies on the Student ¢ distribution, while Koen et al. (2012a,b) used the
more complicated rejection method for their kappa loader. Also, our code
was parallelised using MPI and employed the Manager-Workers pattern,
while Koen et al. (2012a,b) used OpenMP to parallelise their code.

The developed particle-in-cell simulation code and kappa particle loader
were first used to investigate the ion-acoustic instability, excited by a drifting
electron species [see Chapter 3 (p. 39)]. Simulations were run for (a) an
electron-ion plasma modelled by Maxwellian velocity distributions and (b)
an electron-ion plasma modelled by kappa velocity distributions (having
equal kappa indices k. = k; = 2). Both simulations employed identical
run parameters. However, to provide the same destabilising influence to
the ion-acoustic wave in both simulations, a super sonic electron drift vy
of vg = 6vs = 0.6vy,. was used for the Maxwellian simulation run and
v = 6vy = 0.35v4, was used for the kappa simulation run. This electron
drift speed also provided an ion-acoustic growth rate sufficiently high so
that the non-linear phase of the ion-acoustic instability could be observed
without resorting to an unreasonable number of time steps. The simulation
results were compared to kinetic theory and the behaviour of the ion-acoustic
instability in each of the plasmas was discussed.

The electric field intensity spectrum, as a function of w and k, was analysed
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in each simulation run to establish the existence of waves of the ion-acoustic
type in the plasma. Confirmation of ion-acoustic waves is given in Figures
3.6 (p. 58) and 3.12 (p. 72) for the Maxwellian and kappa plasmas, respec-
tively. Areas of strong wave activity, in these figures, were found to agree
well with the linear dispersion relations for ion-acoustic waves, Equation
(3.5) for the Maxwellian plasma, and Equation (3.8) for the kappa plasma.
The behaviour of the ion-acoustic waves were found to be generally similar
in both the Maxwellian and kappa plasmas; however, enhanced discreteness
effects and thermal fluctuations were observed in the kappa plasma, as pre-
dicted by (Mace et al., 1998). Thus, higher levels of noise were observed in
the kappa simulation run, described Section 3.4 (p. 57).

In both the kappa and Maxwellian simulations runs, the total energy was
conserved, to within the expected errors in the simulation techniques, con-
firming the validity of the simulation runs.

Analysis of the energy plots for both the Maxwellian and kappa simulation
runs, Figures 3.2 (p. 50) and 3.8 (p. 64), respectively, indicated that the
ion-acoustic instability evolved in three phases. During the first phase, the
ion-acoustic waves grew out of the background of random thermal fluctua-
tions. This was seen as an exponential increase in the electric field energy
in the Maxwellian plasma [see Figure 3.2 (a) during 0 < wpt < 1230].
However, enhanced levels of fluctuations were observed to obscure the expo-
nential growth of electric field energy in the kappa plasma [see Figure 3.8 (a)
during 0 < wpet < 860]. Examination of the the kinetic energy of the elec-
tron species, Figures 3.2 (b) and 3.8 (b), respectively, as well as the electron
velocity distributions, Figures 3.4 (p. 55) and 3.10 (p. 68), respectively, in-
dicated that the waves grew as a result of electrons resonantly feeding energy
into them. Thus, the kinetic energy of the electron species decreased and
plateau formation occurred in the electron velocity distributions, for both
the Maxwellian and kappa plasmas, during the initial phase. For our choice
of simulation run parameters, the kappa distribution was found to have a
steeper positive slope, at a velocity corresponding to the ion-acoustic speed
than the Maxwellian (compare the positive slopes of Figures 3.4 (p. 55) and
3.10 (p. 68) at their respective ion-acoustic speeds). Thus the kappa distri-
bution provided more electrons to resonantly interact with the wave. Vortex
structures, arising due to ion trapping by the growing ion-acoustic waves,
was observed in the ion phase space of the Maxwellian plasma [see Figure
3.3 (p. 53)]; however, this degree of particle trapping was not observed in
the kappa plasma [see Figure 3.9 (p. 66)].
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The second phase was defined on the interval 1230 < wpet < 1700 for the
Maxwellian plasma and 860 < wp.t < 1200 for the kappa plasma. The
electric field energy, Figures 3.2 (a) (p. 50) and 3.8 (a) (p. 64) for the
Maxwellian and kappa plasmas, respectively, during this phase, stopped
growing, due to a depletion of the free energy source in the electron velocity
distributions via plateau formation [see Figures 3.4 (p. 55) and 3.10 (68),
respectively]. This occurred sooner in the kappa plasma, at the time wpt ~
860, than it did in the Maxwellian plasma, where it occurred at the time
wpet =~ 1230. This is likely due to a faster instability growth rate in the
kappa plasma.

The final phase of each instability was defined on the interval wy,.t > 1700 for
the Maxwellian plasma and wy.t > 1200 for the kappa plasma. During this
phase, the kinetic energies of both the electron and ion species, as well as the
electric field energy, remained approximately constant, as seen in Figures 3.2
(p. 50) and 3.8 (64), indicative of plasmas in equilibrium. Fluctuations in
the energies, arising as a consequence of using discrete simulation particles,
were, however, observed. In both the Maxwellian and kappa plasmas, a
shoulder was observed in the post-saturation electron velocity distribution,
at v/vge ~ 2 and v/vge ~ 1 in the Maxwellian and kappa plasmas, re-
spectively. Beam-like modes were observed in the wave intensity plots for
the Maxwellian and kappa plasmas, Figures 3.6 (p. 58) and 3.12 (p. 72),
respectively. We speculate that these beam-like modes are associated with
the shoulders observed in the electron velocity distributions; however, the
source of these shoulders is uncertain at present. As time progressed, the ion
velocity distributions were observed to become broader, indicating particle
heating, and developed a small net drift of v/ve = 0.01 and v/vipe =~ 0.0025
in the Maxwellian and kappa plasmas, Figures 3.5 (p. 56) and 3.11 (p. 69),
respectively.

Another noteworthy observation was that the net gain or loss in the particle
kinetic energies were found to greatly exceed the overall increase in the field
energy. This suggests that the ion-acoustic instability provides a means to
transfer energy from one plasma species to another.

As a further case study, electrostatic Bernstein waves were investigated in
a stable electron-ion plasma. A static magnetic field, directed perpendicu-
larly to the x direction, the direction of wave propagation, was included in
the simulation. To investigate the effect the kappa distribution has on the
dispersion properties of the Bernstein waves, simulations were run for (a) an
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electron-ion plasma modelled by Maxwellian velocity distributions and (b)
an electron-ion plasma modelled by kappa velocity distributions.

The spectrum of electric field intensities, as functions of w and k, was then
analysed. The regions of strongest wave activity were found to agree well
with the linear dispersion relations for generalised Bernstein waves, Equa-
tions (4.1) and (4.10), for the Maxwellian and kappa plasmas, respectively,
which were derived by Mace (2003, 2004). In the simulation runs we used a
reduced ion-to-electron mass ratio of m;/m. = 100, which allowed sufficient
separation of the electron and ion time scales, but permitted both electron
and ion Bernstein waves to be resolved simultaneously.

The intensity plots of Figures 4.1 (p. 87) and 4.4 (p. 93), for the Maxwellian
and kappa plasmas respectively, illustrated five electron Bernstein waves,
i.e., those which propagate between harmonics of the electron cyclotron
frequency. The kappa distribution was found to produce a change in the
wave behaviour in all frequency domains for these waves, when compared
to that of the Maxwellian. The kappa distribution, however, had no effect
on the upper hybrid frequency, i.e., the upper hybrid frequency in both the
Maxwellian and kappa plasmas was equal, as expected.

In both plasmas, the single wave observed to propagate below the upper
hybrid frequency displayed enhanced levels of wave activity occurring at
frequencies decreasing monotonically from w/wee = 2 to w/wee = 1, as kApe
increased. This wave in the kappa plasma, however, exhibited a slower
monotonic decrease to w/we = 1, when compared to the Maxwellian [see
Figures 4.1 (p. 87) and 4.4 (p. 93), as well as the dispersion relations in
Figure 4.5 (p. 95)].

For the wave propagating within the upper hybrid frequency band, as well
as those in the three harmonic bands above it, the regions of strong wave
activity in the kappa plasma were observed to occupy a diminished range of
frequencies, over the whole range of kAp. values, when compared to their
Maxwellian counterparts. Also, a shift in the location of the peak frequencies
of observed enhanced wave activity, to higher values of kAp. was observed
in the kappa plasma, when compared to those in the Maxwellian plasma
[see Figures 4.1 (p. 87) and 4.4 (p. 93), as well as the dispersion relations
in Figure 4.5 (p. 95)].

The intensity plots of Figures 4.2 (p. 89) and 4.6 (p. 97), for the Maxwellian
and kappa plasmas respectively, illustrated seventeen ion Bernstein waves.
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The general behaviour of the ion Bernstein waves was found to be similar
to that of the electron Bernstein type. The differences between the ion
Bernstein and electron Bernstein waves are that the electron Bernstein wave
frequencies are governed by we, while the ion Bernstein wave frequencies
are governed by wg;. Second, the electron Bernstein wave wavelengths are
governed by Ry, while the ion Bernstein wave wavelengths are governed by
Ryp;. Finally, the frequency dividing the two types of dispersion behaviour
for electron Bernstein waves is w,y, while that for ion Bernstein waves is wyp,
The lower hybrid frequency, in our simulations, equalled the 9th harmonic of
the ion cyclotron frequency, w;;, = 9w, in both the Maxwellian and kappa
plasmas.

The kappa distribution was found to produce a change in the wave be-
haviour, in all frequency domains, for ion Bernstein waves as well. En-
hanced levels of wave activity were observed to occur at frequencies de-
creasing monotonically from w = nwy to w = (n — 1)we, for the waves
propagating below the lower hybrid frequency band, as kAp. increased. A
slower fall off of these waves was observed in the kappa plasma, when com-
pared to those in the Maxwellian plasma [see Figures 4.2 (p. 89) and 4.6 (p.
97), as well as the dispersion relations in Figure 4.7 (p. 98)]. This trend was
also observed for the wave propagating within the lower hybrid frequency
band in the kappa plasma.

Enhanced levels of wave activity were also observed to occupy a diminished
range of frequencies, over the range of kAp. values, for the waves propagating
above the lower hybrid frequency band in the kappa plasma. The regions of
strong wave activity were also observed to occur at peak frequencies shifted
to higher values of kX p. in the kappa plasma, when compared to those in the
Maxwellian [see Figures 4.2 (p. 89) and 4.6 (p. 97), as well as the dispersion
relations in Figure 4.7 (p. 98)].

Figures 4.3 (p. 91) and 4.8 (p. 100) illustrated the energies in the Maxwellian
and kappa plasmas, respectively. Although stable Bernstein waves were ex-
pected in both plasmas, the kappa plasma exhibited energy exchange be-
tween its species [see Figure 4.8 (p. 100)], indicative of a plasma not in
equilibrium. The cause of this energy exchange is unknown at present; how-
ever, we speculate that the enhanced thermal fluctuations, associated with
the kappa plasma, had some effect on this.

The results of the simulations presented in this thesis give us considerable
confidence of the correctness of our particle-in-cell simulation code. They



also validate the simulation technique as a means to investigate space plasma
phenomena, and readily provide insights into the nonlinear regime of plasma
wave evolution. The results also demonstrate the usefulness of the kappa
loader that we devised, making more realistic approximations to actual ob-
served particle distributions a reality.
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Appendix A

In the particle-in-cell simulation code described in this thesis, the plasma
species are loaded into the simulation box with either Maxwellian or kappa
velocity distributions. To achieve the relevant loading, the particle velocities
are assigned random deviates generated from the chosen distribution.

Deviates from the Maxwellian distribution are generated using the Box-
Muller transform (Box and Muller, 1958), described in Section 2.1.1 (p.
14). The Box-Muller transform generates the normal distributed random
deviates y; and yo2 using the equations (Press et al., 2007, p. 364)

y1 =/ —2 In x; cos(2mxs), (A.1)
Y2 = v/ —2 In x; sin(27x9), (A.2)

where x1 and x5 are two uniformly distributed random deviates. The two
normal distributed deviates, y; and ys, are then used to generate deviates
from the Maxwellian distribution [see Section 2.1.1 (p. 14) or Press et al.
(2007, p. 364)]. Presented here is a derivation of Equations (A.1) and (A.2).

The standard normal distribution p(y) is given by (Press et al., 2007, p.
364)

1
p(y)dy = Nors 24y, (A.3)

By employing the independence property, the joint probability distribution
for two quantities y; and yo is given by
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Py, y2)dyrdys = p(y1)dyr - p(y2)dya

1
= e W)/ 2qy, dy,. (A4)
2T

Now, treating the variables y; and o as representing the coordinates of a
point in a Cartesian coordinate system, the corresponding coordinates of
the point in a polar coordinate system (r,6) are related via

r? =y +us, (A.5)
§ = tan (yz) (A.6)
Y1

with the inverse relations given by

y1 = rcosdb, (A7)
y2 = rsinéf. (A.8)

The Jacobian determinant for this transformation of coordinates is thus
(Gradshteyn and Ryzhik, 2007, p. 1078)

9yr 9
or a0 9 . 9
Jy = =r cos“0 +r sin“f = r. (A.9)
Oy2 Oy
or a0

Hence, the polar form of Equation (A.4) is

1
p(r,0)drdf = 2—6_T2/27“drd9. (A.10)
7r

Now, to obtain the values of  and 6 we first find the marginal probabilities of
Equation (A.10). The marginal probability distribution of Equation (A.10)
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with respect to r, i.e., p(r)dr, is obtained via an integration of Equation
(A.10) with respect to 6, from 0 — 27. That is,

(r)dr = / T 240 ar
p o 0 27T

— o2y
27

= re "/ 2dr. (A.11)

The marginal probability distribution of Equation (A.10) with respect to 6,
i.e., p(#)de, is obtained via an integration of Equation (A.10) with respect
to 7, from 0 — oo. That is,

_ ([T e
p(6)do </0 5-¢ dr) do

1
= —db A2
= (A.12)
where we used the substitutions v = —r2/2 and du = —rdr to evaluate the

integral in Equation (A.12).

It should be noted that the fundamental transformation law of probabilities
states that if v is a random deviate with the probability distribution p(v)dwv,
and if there exists w which is a function of v, then the probability distribution
of w is given by (Press et al., 2007, p. 362)

dv

— | dw. Al
T | (A.13)

p(w)dw = p(v)

Furthermore, if v is a deviate defined to be uniformly distributed on the
interval [0, 1], then Equation (A.13) becomes (Press et al., 2007, p. 362)

dw. (A.14)




Thus, if we let r and 6 be functions of the deviates x; and x2, respectively,
and define z1 and 3 to be uniformly distributed on the interval [0, 1], then
the marginal probabilities in Equations (A.11) and (A.12) can be written,
using Equation (A.14), as

p(r)dr = % dr, (A.15)
p(0)do = % do. (A.16)

Having derived the distributions in Equations (A.15) and (A.16) we may now
obtain equations for » and # in terms of the uniformly distributed deviates
x1 and x9, respectively. Integrating Equation (A.15) up to an arbitrary rl,
yields

/ /

dl’l

p(r)dr = / dr

| o =

/'re_TZ/er = |z

0

1—e U2 = ). (A.17)

Since x1 is defined strictly to be positive, i.e., x1 is defined on the interval
[0, 1], inverting Equation (A.17) yields, where we may omit the prime,

1—e ™2 = 5,
T2 = 1= T1
—r? = 2In(l —z;)
r o= —2 In(1 —z7)

r = +/—2Inxy, (A.18)

where the last step in Equation (A.18) follows from the fact that 1 — x;
and x1, respectively, have the same distribution, i.e., both are uniformly
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distributed on the interval [0,1]. Similarly, integrating Equation (A.16) up
to an arbitrary ', yields

0’ 0’
dl’g
0)do = —|do
/Op() /0 20
9/
1
0 2T
9/

Inverting Equation (A.19) yields, omitting the prime,

0 = 27rac2. (A.QO)

¥ =

Therefore, having the definitions for r» and € in terms of the uniformly dis-
tributed deviates x; and za, Equations (A.18) and (A.20), respectively, we
get equations for the variables y; and y» using Equations (A.7) and (A.8).
Substituting Equations (A.18) and (A.20) into Equations (A.7) and (A.8)
yields

y1 = /—2In 21 cos(2mza), (A.21)
y2 = +/—2ln x; sin(27mxe), (A.22)

which are identical to the Box-Muller Equations (A.1) and (A.2). Thus if
x1 and z9 are deviates uniformly distributed on the interval [0, 1], then two
random deviates y; and yo from the normal distribution may be generated
using Equations (A.1) and (A.2).
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Appendix B

In Appendix A, a derivation of the equations used to generate the Box-Muller
deviates was presented. Presented here is a derivation of the equation used
to generate a Student ¢ deviate.

Random deviates from the kappa distribution are generated in our simula-
tion using the closely related Student ¢ distribution, as described in Section
2.1.2 (p. 15). A deviate from the Student ¢ distribution is generated by first
generating the deviate y using the equation (Press et al., 2007, p. 371)

y = V(u1_2/y — 1) cos(2muz), (B.1)

where w1 and us are two uniformly distributed random deviates and v shapes
the tail of the Student ¢ distribution. The deviate y is then used to generate
a deviate from the Student ¢ distribution [see Section 2.1.2 (p. 15) or (Press
et al., 2007, p. 371)].

Equation (B.1) can be derived in a manner similar to the derivation of the
Box-Muller equations derived in Appendix A; however, only one deviate is
generated at a time, unlike the Box-Muller transform which generates two
(Bailey, 1994; Press et al., 2007).

The multivariate form of the Student-t distribution, with mean p = 0 and
o =1, is given by (Shaw and Lee, 2008)

L34 VIR ( yTRy>_(V+q)/2
Y2 oo Y )y dyn...dyy = p(y)dy = —2 1+
P(Y1, Y2, s Yn)dyr1dysa...dyn = p(y)dy () Voint y

(B.2)
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where y” is the transpose of the vector y = (y1,%2, ..., Yn), ¢ is the dimen-
sionality of the distribution, R is a matrix characterising the correlation
between the variables and v is a positive real number known as the shape
parameter. The bivariate form of Equation (B.2), i.e., ¢ = 2 in Equation
(B.2), with zero correlation between the variables, i.e., R is a ¢ X ¢ identity
matrix, is

p(y1, y2)dyidys = — dy1dys

1 2 2\ —(r+2)/2
= (1 + yl—:yg> dy1dysz, (B.3)

where we used the following property of the gamma function in the last step
of Equation (B.3)

I(z+1) =zI'(2).

As before, we now treat the quantities y; and 9 as the coordinates of a point
in a Cartesian coordinate system. The coordinates of the corresponding
point in a polar coordinate system are related via

2 =y 4ys, (B.4)
0 = tan (yg), (B.5)
n
with the inverses
y1 = 1 cos 0, (B.6
y2 = rsinéf. (B.7)

This transformation yields the polar form of Equation (B.3) as
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. 2\ ~(r+2)/2
p(r,0)drdd = 2<1+> drdf. (B.8)

s v

The values of r and 6 are obtained by first finding the marginal probabilities
of Equation (B.8). The marginal probability distribution of Equation (B.8)
with respect to r, i.e., p(r)dr, is obtained via an integration of Equation
(B.8) with respect to 6, from 0 — 2x. That is,

2 . 2 —(v+2)/2
p(r)dr = / 5 <1+V) do| dr
0 ™

o\ —(v+2)/2
- o <1 + 7;) dr

2 —(v+2)/2
= r (1 + ” ) dr. (B.9)

The marginal probability distribution of Equation (B.8) with respect to 6,
i.e., p(f)do, is obtained via an integration of Equation (B.8) with respect to
r, from 0 — oco. That is,

< . F2\ ~(vt2)/2
p(0)do = Py 1+; dr| df. (B.10)
0 s

Equation (B.10) is evaluated using the standard integral (Gradshteyn and
Ryzhik, 2007, p. 325 ch. 3.251 Eq. 11)

o0 1 _»
/ 2" L(1 + BaP) "dx = -B » B <“,n - “) , (B.11)
0 p p p

where the Beta function B(z,y) is defined as



Thus setting =2, p=2, f =1/v and n = (v + 2)/2 in Equation (B.11),
Equation (B.10) reduces to

1 v

14
O = 2B (1, 51— 1) do

v M()I(v/2)
Ar T'(1+4v/2)

= idl9. (B.12)
2

Analogously to the derivation in Appendix A, we let r and 6 be functions
of two deviates u; and us which are uniformly distributed on the interval
[0,1]. Thus the marginal probabilities in Equations (B.9) and (B.12) can be
written as

duy

p(r)dr = o dr, (B.13)
p(0)do = % do. (B.14)

The equations for r» and @ in terms of u; and wueo, respectively, are obtained
by integrating Equations (B.13) and (B.14). Taking the integral of Equation
(B.13) up to 7 yields,

/ /

| vt = |

0 0
r! ’1“2 —(v+2)/2

/ r<1—l—> dr = |uy|
0 12

"2 —v/2
1 <1+ (Ty) ) — |, (B.15)

where we used the following standard integral in the last step of Equation
(B.15) (Gradshteyn and Ryzhik, 2007, p. 71 ch. 2.124 Eq. 2)

du1

d
drr
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1
/x(a + bz Mdx = “%(m = 1)(a + b2y (B.16)

Since w; is defined to be positive, i.e., uy is distributed on the interval [0,1],
inverting Equation (B.15) yields (omitting the prime)

o\ —V/2
1—O+T) S
1%

1+f,: (1— )2
:2 = v[(1—uy) " —1]
ro= V-2 -]
ro= Jr Y - 1), (B.17)

where the last step in Equation (B.17) follows from the fact that 1 —u; and
up are both are uniformly distributed on the interval [0,1]. Similarly, taking
the integral of Equation (B.14) to 6" yields

0’ 0’
dus
0
1
9/
o=l (B.18)

Inverting Equation (B.18), taking positive ug, yields (omitting the prime)

0

— = uy

2m
0 = 27mug. (B.19)

Finally, substituting Equations (B.17) and Equation (B.19) into Equation
(B.6) yields
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y= V(ul_2/y — 1) cos(2mug), (B.20)

which is identical to Equation (B.1). Thus, using the uniformly distributed
deviates u; and ug, Equation (B.1) can be used to generate a deviate from

the Student ¢ distribution using the method described in Section 2.1.2 (p.
15).
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Appendix C

In particle-in-cell simulations, a set of Newton’s and Maxwell’s equations are
solved in discrete form at each time step of the simulation run, updating the
dynamics of the simulation particles as well as the electromagnetic fields.
The basic equations governing the dynamics of the plasma system, for our
electrostatic simulation, are, for the particle dynamics,

d:l?l(t) N -
— = uilt), (C.1)
mid”;t(t) = ¢ |E(zi(t),t) + vi(t) X By, (C.2)

where x; and v; are the position and velocity of a particle ¢ with mass m;
and charge ¢;, E(x;(t),t) is the electric field and By is a static, uniform
magnetic field, and, for the electric field,

V. E(z;,t) = ;Zni(a:i,t)qi, (C.3)
0~

where n;(x;,t) is the number density. The Equations (C.1) to (C.3) are
strictly valid for S.I. units; however, particle-in-cell simulations often employ
parameters in units more appropriate for physical interpretation. Our goal is
to now rewrite Equations (C.1) to (C.3 ) in terms of units more appropriate
for physical interpretation.

In particle-in-cell simulations, it is frequently useful to measure distance and
time with respect to the natural length and time scales that appear in the
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problem of interest. Choosing an arbitrary species a as an example, we
introduce the dimensionless parameters

T

t
t' = — = wpal, and x} (C.4)

Tpa ADa

where 7,4 = 1/wpq is the reciprocal of the plasma frequency for the species
a and Ap, is the Debye length of species a.

At a more formal level, the relations given in Equation (C.4) can be written
as functions

Ty

t'(t) = wpat, and zi(x;) = , (C.5)
>\Da
and we can write formally, for the position of the ith particle,
z;(t) = z,(t' (t)) A\pa- (C.6)

Now we wish to re-write Equation (C.1) in terms of Equations (C.5) and
(C.6). First, consider the left hand side of Equation (C.1)

dei(t) d _dxi(t") at’

— . / P —_—
g~ g O)Apa = =g G Ana; (C.7)
and by Equation (C.5) we have
dx;(t) dxi(t)) dx(t')
dt = dt, wpa)\pa = dt/ Uth,ow (08)
By substituting Equation (C.8) into Equation (C.1) we obtain
dx(t')
dt’ Uth,a = ’Ui(t). (C 9)

If we now introduce, by analogy with Equation (C.6)
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vi(t) = Vi (' (1)) ven,a; (C.10)

then Equation (C.9) reduces to

dx(t')
dt’

= (1)), (C.11)

which is identical in form to the original Equation (C.1) but is now written
in units given by Equation (C.4) where

v = (C.12)

Vth,a

We now turn our attention to Equation (C.2). By Equation (C.10) we have

dvi(t)  dvi(t') d—t,v _dui(t)
. dt! dt T T ar

WpaUth,as (C.13)

where the last step follows from Equation (C.5). Substituting this relation
into Equation (C.2) yields

dvj(t') g
;— = E(x;(t),t i(t Byl . .14
= A B0t x Bl (C14)
Using
o Noa Lo 1/2
Wpavth,a_TZL< 060 ) ) (C.15)

Equation (C.14) can be written as
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d’U/-(t/) qiMa €0 12 qi
— = E(x;(t),t) + ——— |v;(t B
" at’ qa ( ( ) ) WpaVth,o ['U ( ) % 0]

— q””a< €0 >1/2E(aci(t),t)—|— [Ui(t) x 1 Bo}

qa noalo Uth,a Wpa
gma [« \’ vi(t)  gima  Ga
_ ( ) Blai(t),0) + [ x BO] .
qa nOaTa Uth, o Ga WpaMq
(C.16)

A dimensionless electric and magnetic field can be introduced by noting that
the units of ¢y are C2/N.m? and hence the units of the factor (eo/noaTx)"/?,
in Equation (C.16), are easily checked to be C/N, which represents the recip-
rocal of the electric field units in S.I. units. Hence the quantity (ngaT,/€o)"/?
represents an electric field strength and can be used as an appropriate unit
to introduce a dimensionless electric field

E(.’Bi, t)

E'(z;(x;), ' (t)) = (noaTa /e

(2

(C.17)

Also, the term ¢n/(wpama), in Equation (C.16), has the units of C.s/ kg
which is the reciprocal of the magnetic field units in S.I. units. Hence the
quantity (wpama)/ga represents a magnetic field strength and can be used
as an appropriate unit to introduce a dimensionless magnetic field

By
B =" Nl
0= (paa) /0 (C.18)

Thus, using Equation (C.17) and (C.18) in Equation (C.16) we obtain

o)t
i

= [E'(z},t") + vi(t') x By, (C.19)

where we have used Equation (C.12) and have introduced the dimensionless
mass and charge as
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/
mi - 5
My
/ qi
q9G = —-
o

Equation (C.19) is identical in form to Equation (C.2), but is now written
in terms of variables from the species a and the dimensionless fields given
in Equations (C.17) and (C.18).

Finally, turning our attention to Equation (C.3), using Equation (C.17) we
obtain

ox; oy 0z
_ (m0aTa " OB (@) (@:), ¢'(1) x'  OE(w(@i). (1)) 0y’
N €0 ox’ ox oy’ oy
L OB (@), (1)) 0
0z 0z
1/2
noalo 1 A AV
— E (2
(M) VB @)
:nOaQa \val (x{ t/)
60 17 )

where Equation (C.5) was used in the third step. Thus Equation (C.3) can
be written as

1 qi
V' E'(z),t)= —ni(x;, t)—. C.20
(ot = 3 et (C.20)

Introducing the dimensionless number density n}(x},¢') through

ni(@i, t) = noan; (i (a:), (),
Equation (C.20) reduces to
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v E'(m;,t') = Zn;@;,t')qg,
[

which is the dimensionless form of Equation (C.3).
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Appendix D

The particle-in-cell simulation code described in this thesis uses the Boris
method (Boris, 1970) for updating particle velocities. As discussed in Section
2.4.1 (p. 27), the Boris method describes a three step procedure for updating
the velocity of a particle. These three steps are as follows:

1. The particle, with the initial velocity v" /2, is accelerated by the

electric field E for half of the time step, At/2, and the intermediate
velocity, v~, is obtained, i.e., v" /2 — v~.

2. The rotation of the new particle velocity, v—, by the magnetic field
By is then calculated for the full time step, At, producing the velocity
vt ie, v = v,

3. Finally the particle is accelerated for another half of the time step and
the updated particle velocity is obtained, i.e., v — v T1/2,

Further details for the Boris method is given in Section 2.4.1 (p. 27) and can
also be found in the works by Boris (1970), Hockney and Eastwood (1981)
and Birdsall and Langdon (1985). The rotation computed in step two is
calculated using

————=—(v"+v7) xB. (D.1)

Boris (1970) further described a two step method to perform the calculation
in Equation (D.1) using the equations
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v = v 4+v Xt,

—~
w o
S~—

vt = v+ xs, (D

where v in Equations (D.2) and (D.3) is an intermediate velocity and t is
given by

=488 o
m

and s is a scaled version of t given by

2t
== D.
s= (D.5)

Even though Boris (1970) used geometry to derive Equations (D.2) and
(D.3), presented here is a derivation of an equivalent equation using tensor
analysis.

First we write the variables as

= (U1_7U2_’U3_)’
to= (Ufﬂvg_?U;)’
t = (t1,t2,t3).

Thus, performing the calculations given in Equations (D.2) and (D.3) yields
the results (omitting the steps)

(14t —t5 — t3)v; +2[(tita + t3)vy — (t2 + tits)v; ]
(1 =8 + 15 — t3)vy + 2[(trita — t3)v] + (t1 + tots)vy ]

(1 — 3 — 3+ 3)vg + 2[(tats + t2)v] — (t1 + tatz)vy ]
(D.6)

1

+ = -
1+ [[¢]?
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We shall now show that the result given in Equation (D.6) can be reproduced
using tensor analysis to evaluate Equation (D.1). We now rewrite Equation

(D.1) as

Using Cartesian tensor notation, Equation (D.7) becomes

where €51, the Levi-Civita symbol, is defined via (Aris, 1989)

+1,

€ijk =

Equation (D.8) can now be written in the simplified form, as

(0i5 — Ez'jktk)v;_ = (0 + €ijrtr)vy

where 6;; is the Kronecker delta tensor. By defining

Equation (D.9) becomes

or in matrix notation

v, =

+:v_+('v++v_) X t.

for an even permutation of (i, j, k),
for an odd permutation of (3, j, k),
ifi=jorj=kork=1.

mi; = Oij — €ijktk,

nij = 0y + €ktr,

+ T
mijvj = nwvj,

MVt =NV".
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v; + €ijkV; tr + €ijkV; ik,

(D.7)

(D.8)

(D.10)

(D.11)



Thus

Vt=MINV". (D.12)

Using the definitions of m;; and n;;, the matrices M and N are respectively
given by

1 —t3 1y
M=1 t3 1 —t ], (D.13)
—ty 1
and
1 t3 —ty
N=|-t3 1 t1 ]. (D.14)
to —11

We now use the following definition for matrix inversion

_ 1 .
1= Wad} (M), (D.15)

where the determinant of matrix M, Equation (D.13), is given by

det(M) = (1+13)+t3(t3 — ti1ta) + ta(tits + to)
= 1+ +15 — titats + titats + 13
= 14+t34+13+13
= 1+t (D.16)

and the classical adjoint of matrix M, adj(M), is a matrix constructed from
M by replacing each element in M by its cofactor and transposing (Aris,
1989). Thus, the classical adjoint of matrix M is given by
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1+17  titg+1t3 tity —to
adj(M) = | tita —t3  1+t3  totz3+1
t1ts +to tots — t1 1+ t%

Thus, Equation (D.15), the inverse of matrix M, is

14+t tita+ty titz —to
titg —ts  1+1t3  totz+t1 | . (D.17)
tits +ta totg —t; 1+t

1

M1t=—"_
1+ |22

Substituting the expressions for the matrices M !, Equation (D.17), and
N, Equation (D.14), into Equation (D.12) yields

1 14+t tito+t3 btz —to 1ty —t2\ [v]
vt = TV ae tito—ts  14+t3 tots+t1 | [—ts 1 # vy
t1ts +to tots —t1 1+ t% ta  —1t1 1 Uy
' [(1+t] — 15 — t3)vy + 2[(t1ta + t3)vy — (ta + tits)vy ]
= TR (1 — ]+ 13 — 13 vy + 2[(t1ta — t3)vy + (t1 + tatz)vz ]| ,
L(1— 8] = 5 + 83)vg + 2[(trts + to)oy — (t1 + tatz)v, |
(D.18)

which is identical to Equation (D.6). Thus using tensor analysis to evaluate
Equation (D.1) we have reproduced an equivalent result to using the Boris
equations, Equations (D.2) and (D.3).
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Appendix E

The particle-in-cell technique models a plasma as being composed of a large
number of particles. A state vector, containing a position and a velocity, is
then created for each particle. One advantage of this is that the evolution
of the velocity distributions can be tracked throughout the simulation and
kinetic effects, such as plateau formation on the velocity distribution can be
observed.

To obtain the velocity distribution of each plasma species, we appeal to the
definition of the one dimensional velocity distribution as given in kinetic
theory. The one dimensional velocity distribution f(x,v,) is defined so that

dN = f(z,v,) dx dv,, (E.1)

is the number of particles with a position x* satisfying ¢ < 2* < x 4+ dx and
whose velocity v} lies in the range vy < v} < vy + dv,. We are interested
primarily in the case when the velocity distribution is uniform in space. In
this case, f(z,v,) is independent of x and we can write, with some abuse of
notation,

AN = UOL Flvg) dac] dvy = Lf(vy) dvg, (E.2)

where AN now represents the number of particles, contained within the
entire (one dimensional) volume L, having a velocity v} that lies in the
range vy < Ui < Uy + dvy.

To adapt Equation (E.2) for our purposes, we partition the velocity space
into M equal intervals of size Av over the range of interest. We denote the
lower limit of this range by vy, and the upper limit by vyax. Then

Umax — Umin
Ay= —"F———, E.3
v M (E-3)
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We denote the lower limit of the ith interval by
V; = Umin + 1AV (t1=0,....,.M —1). (E.4)
Thus, the range of velocities v, spanned by the interval i satisfy
v; < v < v + Av. (E.5)

By counting the number of particles AN, in the simulation box with a
velocity v, satisfying Equation (E.5), i.e., whose velocity lies within the ith
velocity “bin”, we obtain, according to Equation (E.2),

where true equality is approached in the limit of infinitesimal Av. Equation
(E.6) is readily rearranged to provide us with an estimate for the velocity
distribution f(v;) evaluated at the discrete points v;, defined in Equation
(E.4). Thus we obtain the estimate

AN;
LAv’

fvi) = (E.7)
where AN; is the number of particles in the simulation box with v, satisfying
Equation (E.5), L is the size of the box and Awv is given by Equation (E.3).

However, the velocity distributions in Equations (2.1) and (2.5), the Maxwellian
and kappa distributions, respectively, are normalised velocity distributions,
usually denoted by f(v,), which is related to f(vy) by

flve) = = fw),

where i = N/L is the average number density in one dimension. Thus
for direct comparison with Equations (2.1) and (2.5), we need to divide
Equation (E.7) by 7, which yields our final result

. AN;/N
flo) = Al{

. (E.8)

Thus, using Equation (E.8) we are able to probe the velocity distributions
of each plasma species present in the plasma. Note that in Equations (2.1)
and (2.5) the “hat” on f has been omitted, as is done throughout this thesis
when using Equation (E.8).
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Appendix F

Overview of the simulation code, directories and
files

A one dimensional particle-in-cell simulation code was created, using the C
programming language, and described in this thesis. The simulation code
is contained in the folder labelled ESPIC (Electrostatic Particle-In-Cell)
provided on the accompanying compact disk. Presented below is a brief
description of the particle-in-cell simulation code we created.

The computation of the simulation was broken up into segments and each
segment was written to a separate file. Each file, thus, contains functions
written to control a specific portion of the simulation computations, each
of which will be described below. This was done to provide a separation of
concerns in the simulation code, aiding in the testing of the code at each
stage of development. Contained in the folder ESPIC are the following files:

e main.c: controls the flow of the simulation by calling the functions
contained in the other files, when needed.

e field solver.c and the header file field solver.h: contain the
functions concerned with calculating the electric field at the simulation
grid points, using discrete Fourier transforms.

e movie.c and the header file movie.h: contain the functions concerned
with creating the phase space configuration plots for every plasma
species, as well as the plot of the electric field as a function of z/Ap,.
These plots are combined into a movie clip at the end of the simulation
run.
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e plasma.c and the header file plasma.h: contain the functions con-
cerned with controlling the dynamics of each plasma species. This
includes loading each plasma species into the simulation box and up-
dating the position and velocity of each plasma particle at every time
step.

e simulation.c and the header file simulation.h: contain the func-
tions concerned with initialising and resetting the simulation grids,
correcting the grid quantities at the simulation boundaries as well as
creating the simulation output directories (described later).

e xmltools.c and the header file xmltools.h: contain the functions
concerned with reading in data from an input file. Our simulation
code utilises input files which are given in .xml format, where the
input parameter values are given between parameter name tags (see
the sample input file displayed below). The parameter name tags are
read first, after which the associated parameter value is assigned to
the simulation variable corresponding to the name tag.

The folder ESPIC also contains a Makefile, used to build the simulation
code, creating the executable run file espic, and the directory input, used
to store all the simulation input files (in .xml format). A sample input file
is given below,

<espic_params>
<run_control>
<num_cells>1024.0</num_cells>
<box_length>512.0</box_length>
<timestep>0.1</timestep>
<iterations>60000</iterations>
<write_energy>50</write_energy>
<write_ptc1_state>250</write_ptcl_state>
<movie_interval>10</movie_interval>
<E_plot_bounds_min>-1.0</E_plot_bounds_min>
<E_plot_bounds_max>1.0</E_plot_bounds_max>
<cyclotron_freq>-0.5</cyclotron_freq>
<theta>90.0</theta>
<phi>0.0</phi>
</run_control>
<plasma>
<species>
<name>electrons</name>
<vel_dist>kappa</vel_dist>
<kappa_val>2.0</kappa_val>
<num_ptcl>2097152</num_ptcl>
<plasma_freq>1.0</plasma_freq>
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<charge_to_mass>-1.0</charge_to_mass>
<thermal_speed>1.0</thermal_speed>
<drift_speed>0.0</drift_speed>
<vel_plot_bounds_min>-20.0</vel_plot_bounds_min>
<vel_plot_bounds_max>20.0</vel_plot_bounds_max>

</species>

<species>
<name>ions</name>
<vel_dist>kappa</vel_dist>
<kappa_val>2.0</kappa_val>
<num_ptcl>2097152</num_ptcl>
<plasma_freq>0.1</plasma_freqg>
<charge_to_mass>0.01</charge_to_mass>
<therma1_speed>0.01</therma1_speed>
<drift_speed>0.0</drift_speed>
<vel_plot_bounds_min>—0.5</ve1_plot_bounds_min>
<vel_plot_bounds_max>0.5</vel_plot_bounds_max>

</species>

</plasma>
</espic_params>

The simulation run parameter values are given between the starting tag,

<param name>, and end tag, </param name>. The <run_control>...</run_control>
tags encapsulate the parameters associated with the simulation box and di-
agnostic output. These are

e num cells: the number of cells in the simulation box.

e box_length: the length of the simulation box.

e timestep: the time step used in the simulation.

e iterations: the number of time steps the simulation will be run for.

e write_energy: the interval at which the energies in the plasma are
written to file, i.e., every 50 time steps here.

e write_ptcl_state: the interval at which the particle state vector, in
the form [z, vy, vy, v.], is written to file, i.e., every 250 time steps here.

e movie_interval: the interval at which the phase space configuration
plots are exported in image format, i.e., every 10 time steps here.

e E plot_bounds min and E_plot_bounds_max: the upper and lower bounds
in the plot of the electric field, i.e., the plot will be created between
[E_plot_bounds min , E_plot _bounds max |, over the range of z/Ape
values.
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e cyclotron_freq: the cyclotron frequency of one of the plasma species,
we = q¢B/m. The magnetic field in the plasma is then calculated using
the cyclotron frequency, i.e., B = w.m/q.

e theta: the angle of inclination of the magnetic field, in degrees, given
with reference to the x axis.

e phi: the azimuthal angle of the magnetic field in the x — y plane, in
degrees, given with reference to the z axis.

The <species>...</species> tags encapsulate the plasma species param-
eters, where any number of plasma species may be present. These are,

e name: a name given to the plasma species.

e vel dist: the velocity distribution used to model the particles (maxwellian
or kappa).

e kappa val: the value of k, used when the particles are modelled by a
kappa velocity distribution. If the Maxwellian distribution is chosen,
this parameter will not be read.

e plasma _freq: the natural frequency of the plasma species.

e charge to mass: the charge to mass ratio, ¢/m, for the plasma species.
e thermal _speed: the thermal velocity of the particles.

e drift_speed: the drift velocity of the particles.

e vel plot_bounds min and vel_plot_bounds_max: the upper and lower
bounds used in the phase space configuration plot for this species, .i.e.,
the plot will be created between [ vel_plot_bounds min, vel plot_bounds max],
over the range of z/Ap. values.

Implementation of the Manager-Workers pattern

Our simulation code was parallelised using Message Passing Interface (MPT).
This allowed the code to be run on a distributed memory system. Inter-
processor communication, when using MPI, is controlled by the default MPI
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communication object MPI_COMM_WORLD, which includes all the processors in
the communication.

In our simulation code, we implemented the Manager-Workers pattern as
an improvement to our parallelisation scheme. This involved the separation
of tasks in our simulation (see Section 2.6 (p. 34) for a description of the
Manager and Worker tasks). To achieve the separation of tasks, a separate
workers communication object was required, in addition to the default MPI
communicator. This was to allow independent communication between the
workers, set apart from the manager processor. Defining a new communica-
tion object in MPI is done as follows,

int num_proc; // the number of processors
int my_rank; // the rank of each processor
int root_rank = 0;

/* Initialise MPI */
MPI_Init( &argc, &argv );

/* assign a value to num_proc and my_rank */
MPI_Comm_size ( MPI_COMM_WORLD, &num_proc );
MPI_Comm_rank ( MPI_COMM_WORLD, &my_rank );

MPI_Group group_world, group_worker;
MPI_Comm comm_worker;

/* Creates the worker group and communicator */
MPI_Comm_group ( MPI_COMM_WORLD, &group_world);
MPI_Group_excl ( group_world, 1, &root_rank, &group_worker );
MPI_Comm_create( MPI_COMM_WORLD, group_worker, &comm_worker );

where the created communication object comm worker controls the inter-
processor communication between the Workers.

The kappa velocity loader

Our particle-in-cell simulation code incorporated a kappa distributed veloc-
ity loader. The kappa loader we devised generates deviates from the kappa
distribution by sampling from the closely related Student ¢ distribution,
using the method described in Section 2.1.2 (p. 15). This is done as follows,
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/*

* The kappa velocity loader

* inputs are the initial thermal velocity (vth) and the kappa indicie (kp)
*

*/
static double kappa_random_deviate ( double vth, double kp )
{
double kappa = kp;
double mu = 0.0;
double nu = (2 * kappa) - 1;
double ul = uniform_random_deviate ( );
double u2 = uniform_random_deviate ( );
double sigma = sqrt((kappa - 1.5)/(kappa - 0.5)) * vth;
double y = sqrt(nu * (pow(ul, -2/nu) - 1)) * cos(2 * M_PI * u2);
double deviate;
deviate = mu + (sigma * y);
return deviate;
}

Code dependencies

Our simulation code was written using the C programming language, thus a
C compiler, such as gcc, is required to compile the simulation code. Further-
more, the Open MPI library is required to compile and run the parallelised
simulation code. Our code utilises the Fastest Fourier Transform in the
West (FFTW) library, to perform the Fourier transforms and the PLPLOT
library is used to produce the phase space configuration plots during the
simulation run.

Running the code

Presented here are instructions to run our simulation code, provided on the
accompanying compact disk, from a UNIX terminal. To run the simulation
code requires that the folder ESPIC be copied from the compact disk to the
home directory on you computer. This can be done by issuing the following
command in a terminal,

cp -r /media/cdrom/ESPIC /home/<user_name>
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To build the code requires you to be in the same directory as the Makefile,
which contains the commands necessary to build the simulation code, and is
located in the ESPIC directory. This is done by first issuing the command,

cd /home/<user_name>/ESPIC

to move into the ESPIC directory and

make

to build the code, creating the object files as well as the executable file
espic. If no errors were displayed when building the code, you may execute
the file espic and run the simulation using the following MPI command

mpi-exec -np <number_of_processors> ./espic <input_file_name>

where <number_of _processors> is the number of processors on which the
simulation code will be run and <input_file name> is the name of the input
file, without the .xml extension.

When the simulation is started, the input directory is searched for the input
file. If the file is found and is of the correct format, the simulation will
progress, alternatively, if it is not found, an error will be displayed and
execution of the simulation will stop. If, however, no errors are displayed,
a number of output folders are created which will contain the simulation
diagnostic outputs. The root folder for the diagnostic outputs is created in
the same directory as ESPIC and is given a name corresponding to the name
of the input file, followed by the time stamp corresponding to the start of the
simulation execution. The simulation then runs for the allocated amount of
steps.

A series of simulations may also be set to run consecutively using shell
scripting. An example of running two simulations using such a scripting file
is,

#! /bin/bash

make clean
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make
mpi-exec -np <number_of_processors> ./espic <input_file_namel>

make clean

make
mpi-exec -np <number_of_processors> ./espic <input_file_name2>
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