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Abstract 

 

 

The majority of the world’s energy consumption and electricity generation is derived 

from fossil fuel sources. Their consumption has a negative environmental impact, thus 

the need for renewable energies. Hydrogen being a high energy zero carbon fuel 

source presents a profound appeal. Hydrogen may be produced biologically via 

various methods, this work involves dark fermentative hydrogen production (DFHP). 

A review of literature on the physicochemical parameters affecting fermentative 

hydrogen bioprocess was conducted. Bioreactor design was identified as a 

fundamental component that regulates the overall process outcome and was therefore 

analysed at length. The review highlighted that existing reactor configurations are 

unable to sustain a comprehensive criteria of efficient DFHP. A consolidation of 

biomass retention and non-invasive agitation were distinguished as crucial. The need 

for a novel reactor configuration possessing these attributes was consequently 

accentuated.  

This study focuses on the design, implementation and assessment of novel bioreactor 

configuration for DFHP. The vessel was formed from a 2L glass and fitted with ports. 

Three 3D-printed permeable cartridges enclosed immobilized microbial cells and 

functioned as baffles. The localization and motion of the cartridges promoted improved 

exposure between microbial cells and substrate. Agitation was accomplished by 

rocking the vessel at 180°. All the control set points were adjustable, presenting the 

option of evaluating diverse control regimes. The implemented reactor showed a 35% 

increase in the peak hydrogen fraction and a 58% reduction in lag time compared to 

the control shake flask reactor. These findings showed that the novel reactor 

configuration, by means of the cartridge structure supporting the immobilized cells, 

enhanced the biohydrogen production process. 

Subsequently, a preliminary scale up of the cartridge concept was implemented and 

incorporated into a continuous stirred tank reactor (CSTR). The cartridge 

(46x40x300mm) consisted of perforated hollow rectangular tubes, joined to form a 
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single amalgamation. This unit was used as substitute for the standard impellers of 

the CSTR and aligned at 120° laterally to the agitating shaft. The modified reactor 

prepared with Immobilized cells in cartridge (ICC) was comparatively assessed with 

the standard CSTR operated with suspended cells in reactor (SCR) and immobilized 

cells in reactor (ICR). ICC reduced fermentation time by 52 and 65% compared to 

SCR and ICR respectively. Gompertz model coefficients indicated a 98 and 37% 

increase in the maximum hydrogen production rate (Rm) using the ICC compared to 

the SCR and ICR fermentations respectively. ICC also showed better pH buffering 

capacity and complete glucose degradation. These findings further demonstrated that 

the scale up reactor configuration with the cartridge structure improved biohydrogen 

productivity, yield and process economics. 

The novel configuration reduced process time, improved Hydrogen yield and ensured 

complete substrate degradation. Furthermore, the structural integrity of immobilized 

cells was maintained. These findings demonstrated that the novel bioreactor design 

improved biohydrogen production and showed potential for further DFHP research and 

development. 

Keywords: Novel biogas bioreactor, Dark fermentation, Biohydrogen, 3D Printing, 

Cell immobilization, CSTR. 
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Chapter 1 

General Introduction 

 

 

 The need for renewable energy sources 

Majority of the world’s fuel originates from fossil sources, whether natural gas, oil or 

coal. According to the annual BP statistical review (2020) the global proved reserves 

of oil is sufficient to meet 50 years of global production. The global power generation 

also relies mainly on fossil fuels, most of the world primarily uses coal and natural gas 

followed by hydroelectricity (Figure 1). This year for the first time, renewable energy 

has surpassed nuclear energy (BP, 2020).  

  

Figure 1: Share of global electricity generation by fuel (BP, 2020) 

Different regions of the World utilise different fuels for electricity generation according 

to accessibility and natural resources. Hydroelectricity dominates central and south 

America whilst natural gas is mainly used in the Middle East and the commonwealth 

of independent states (Figure 2). Nuclear energy is quite common in Europe even 

though it is closely followed by renewables (Figure 2), coal forms 58% of the Asia 
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Pacific’s electricity generation (Figure 2). Even though natural gas is cited as Africa’s 

largest source of electricity, South Africa mainly uses coal for this purpose (BP, 2020). 

North, South and Central America dominate the World’s biofuel production, grossing 

more than 67% (BP, 2020). 

 

 

Figure 2: Regional electricity generation by oil, natural gas, coal, nuclear energy, 

renewables, hydroelectricity and other (adapted from BP, 2020) 

 

According to the Intergovernmental Panel on Climate Change (IPCC), (Hoegh-

Guldberg et al., 2018) human induced global warming has intensified temperatures in 

land and ocean regions. A 1.5°C increase in global temperature was reported 

compared to the pre-industrial period (Hoegh-Guldberg et al., 2018). Marine 

environments have shown an increased frequency and duration of marine heat waves 

causing changes in environmental habitats as well as other natural and human 

systems (Hoegh-Guldberg et al., 2018). Fossil fuel derived energy sources are the key 

reason for environmental decline and a salient form in global warming, greenhouse 

gas emissions and depletion of the ozone layer (Baldwin and Lenton, 2020; Last, 

1993). Repercussions of global warming include an increase in the number of heat 

wave days, high fire danger days and reduced soil moisture availability (Engelbrecht 

et al., 2015). Monitored temperatures within the sub tropics and central tropics of Africa 
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over a period of 5 decades show a rise in temperature of greater than two times the 

global rate (Engelbrecht et al., 2015). Cumulative effects of environmental change 

could destabilize the economy of Africa as there are millions of farmers that rely on 

natural rainfall for production of crops used locally and imported to increase revenue. 

South Africa has suffered its driest years in recorded history during 2015 and 2016, 

the average rainfall in 2015 was 403mm compared to the years between 1904 and 

2015 which was 608mm (Stoddard, 2016). The South African citrus export industry, 

second largest in the world, was impeded as a result of water restrictions, thus, 

jeopardising a multi-billion-rand trade (Stoddard, 2016). The meteorological office of 

the United Kingdom has predicted that the year 2020 will witness one of the greatest 

surges in atmospheric carbon dioxide since the start of record keeping (Baynes, 2020). 

The drastic increase was attributed to the ongoing devastating wildfires in Australia, 

which has burned over sixteen million acres during its three month reign until the end 

of January 2020 (Tarabay, 2020). These fires not only increase atmospheric CO2, but 

burns through vegetation which would customarily soak up CO2 (Baynes, 2020). 

Inception of this devastating cycle of destruction lays at the door of human induced 

global warming, and was supplemented by the El Niño events, which caused drastic 

temperature fluctuations globally (Baynes, 2020). It was inferred that the El Niño 

events contributed to the drought in South Africa, flooding in South America and 

intensive hurricanes in the eastern tropical pacific (Buis, 2015).  In addition to the 

considerable negative effects that fossil fuels have on the environment, the source of 

majority of the world’s oil reserves is beset by war and instability. Fluctuations in cost 

are prevalent as a result of attacks on tankers transporting oil as well as the recent 

drone attacks on various production facilities (Marcus and Prescott, 2019). This further 

reinforces the need for alternative energy sources. 

 Hydrogen as an alternative energy source 

Hydrogen presents immense potential as a clean and renewable energy source, as it 

has the highest gravimetric energy of any known fuel (Levin et al., 2004). Researching 

techniques to enhance the production, distribution and storage of hydrogen is required 

to improve economic feasibility (Dunn, 2002). Furthermore hydrogen is congruent with 

electrochemical and combustion processes to convert energy in a manner that does 

participate in environmental pollution and climate change via carbon based emissions 

(Levin et al., 2004). Ausubel (2000) stated that “The trend toward “decarbonization” is 
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the heart of understanding the evolution of the energy system”. Biological hydrogen 

production can be carried out via three primary methods; photodecomposition of 

organic composites, biophotolysis of water, and fermentation of organic wastes 

(Hallenbeck and Ghosh, 2009). Fermentation of organic wastes occurs at a higher 

rate, utilizes waste materials and possesses the potential to be integrated with other 

processes (Chandrasekhar et al., 2015; Guo et al., 2010; Kumar et al., 2017). The 

highest theoretical yield of hydrogen is 4 mol H2 mol-1 glucose with 2 mol acetate as a 

by-product (O-Thong et al., 2019), as shown below. 

C6H12O6 +  2H2O →  2CH3COOH +  2CO2  +  4H2  

Furthermore dark fermentative hydrogen production (DFHP) can serve the dual 

purpose of producing clean energy and treating organic waste (Lalit Babu et al., 2009), 

and this may be achieved at a cheaper cost than other methods (Waligórska, 2012). 

The process is however governed by various physicochemical factors and may be 

restricted by decreased hydrogen yields (Nath and Das, 2004; Waligórska, 2012). 

These factors include temperature, pH, hydraulic retention time (HRT), hydrogen 

partial pressure, inoculum type, preparation and state, substrate type amongst other 

physicochemical influences (Jung et al., 2011). Bioreactor configuration and operation 

directly impacts the microenvironment of the reactor, such as hydrodynamic 

performance, microbial population and the mass transfer between substrate and 

inoculum (Cresson et al., 2008; Jung et al., 2011; Venkata Mohan et al., 2007).  

 Research motivation/Problem statement 

Bioreactors are central to fermentation processes and they provide a regulated 

microclimate enabling peak cellular growth and/or product formation (Najafpour, 

2007). Batch mode of operation was recommended as it retains higher suitability for 

initial optimization studies (Balachandar et al., 2013; Davila-Vazquez et al., 2008; 

Hallenbeck and Ghosh, 2009; Kapdan and Kargi, 2006; Saratale et al., 2019). At a 

laboratory scale, shake flask reactors in shaking waterbaths or rotary shakers are 

commonly used for DFHP (Chen et al., 2015; Mandal et al., 2006; Lo et al., 2008). 

During process scale up, continuous stirred tank reactors (CSTR) are employed (Chu 

et al., 2016, Zhang et al., 2006, Salem et al., 2017). These standard configurations 

are plagued with various challenges for biohydrogen research and production. The 
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shake flask reactor is of a simple design and widely available, however it has poor gas 

and mass transfer resulting from inefficient agitation (Kennedy and Krouse, 1999). 

Considering the importance of laboratory scale studies, it is vital to generate accurate 

and reliable process data from the earliest possible stage. The CSTR has various 

advantages including highly effective mixing, thus advanced mass transfer (Chu et al., 

2016; Balachandar et al., 2013; Saratale et al., 2019), however, this comes at a cost 

of excessive sheer stress and biomass washout. The CSTR is incapable of 

maintaining immobilized microbial cells (Balachandar et al., 2013; Saratale et al., 

2019). Bioreactor configurations capable of handling immobilized cells have shown a 

low efficiency for heat and mass transfer, reduced substrate conversion and 

decreased hydrogen production (Show et al., 2011; Balachandar et al., 2013; Saratale 

et al., 2019). Standard reactor configurations that are available are inadequate for 

DFHP as they are unable to meet the complete criteria of efficient DFHP. A specialized 

reactor design could improve hydrogen yield and process stability (Hallenbeck and 

Ghosh, 2009). It would benefit the design to incorporate biomass retention capabilities 

with high mass transfer in order to optimise product formation (Najafpour, 2007). 

 

 Aims and objectives 

The aim of this study was to design a novel bioreactor configuration for fermentative 

biohydrogen production, implement the design into effect and assess its potential 

compared to existing bioreactor configurations. 

The following detailed objectives were undertaken: 

i. A laboratory scale 2 L bioreactor optimized for heat and mass transfer, and 

biomass retention was designed using OpenSCAD software. 

 

ii. Internal structures of the 2L reactor were 3D-printed in the laboratory using 

Polylactic acid (PLA) filament in a REPRAP 3D printing machine. 

 

iii. The 2L laboratory reactor was comparatively assessed with a shake flask 

reactor of same volume at standard operational process conditions. 
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iv. Based on the initial configuration above, a 13L semi pilot scale prototype was 

designed and implemented using a modified CSTR. 

 

v. The semi pilot prototype was comparatively assessed with a standard CSTR 

under uniform conditions of temperature, inoculum concentration and process 

pH. 

 

 Outline of dissertation/Thesis structure 

This dissertation contains five chapters presented in research paper format, each 

chapter is self-contained, comprising an introduction, materials and methods, results 

and discussion, conclusion and references. Bioreactor design and assessment are 

pivotal to all chapters. 

Chapter 2 discusses a literature review of physicochemical parameters affecting dark 

fermentative biohydrogen production. Bioreactor configurations used in biohydrogen 

production are described. Their advantages and limitations are detailed.  

Chapter 3 focuses on the design, fabrication and assessment of a novel laboratory 

scale bioreactor. The novel configuration was compared experimentally to a shake 

flask reactor for dark fermentative hydrogen production.  

In Chapter 4 a semi pilot scale prototype was developed based on the results achieved 

at a laboratory scale (Chapter 3). The design of the cartridge concept was modified 

and incorporated into a continuous stirred tank reactor (CSTR), the resulting hybrid 

was assessed in comparison to a standard CSTR. 

The final chapter, Chapter 5 integrates aspects of the study and provides concluding 

remarks and future suggestions pertaining to the novel bioreactor designs formulated 

herein. 
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Chapter 2 

Review of physicochemical parameters and bioreactor 

configurations influencing dark fermentative biohydrogen 

production 

 

 

 Abstract 

This review provides a synopsis of the physicochemical parameters effecting dark 

fermentative hydrogen production. Microbial inoculum, substrate type, hydrogen 

partial pressure, temperature, pH, hydraulic retention time and volatile fatty acids 

production were identified as being key to the chemical processes. Various bioreactor 

configurations commonly used for dark fermentative hydrogen (such as the continuous 

stirred tank reactor, membrane reactor, packed and fluidized bed reactors, and the up-

flow anaerobic sludge blanket reactor) are examined and the pros and cons of each 

highlighted. In addition, the prospect of configurations not commonly used for 

hydrogen production is discussed. The potential of enhancing biogas production by 

developing a novel bioreactor design is examined 

 

 Introduction  

The rapid depletion of fossil fuel reserves and the adverse environmental impact 

associated with their use necessitate renewable and non-toxic fuel sources (Chopra 

et al., 2020). Hydrogen has a comparatively high energy yield, amounting to 122kJg-1 

which is 2.75 times more than hydrocarbon fuels (Kapdan and Kargi, 2006).  There 

are no adverse side effects or harmful by-products formed upon hydrogen combustion, 

as only water is produced (Nath and Das, 2004). Three approaches for biological 

hydrogen production have been reported. Photodecomposition of organic composites, 

biophotolysis of water and fermentation of organic wastes (Hallenbeck and Ghosh, 

2009).  Photodecomposition and biophotolysis depend primarily on solar energy and 

require expensive photobioreactors (Hallenbeck and Ghosh, 2009). Hydrogen 
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production via fermentation of organic materials is independent of light and utilizes 

waste materials (Nath and Das, 2004; Lalit Babu et al., 2009), thus serving a dual 

purpose. This approach has the potential to reduce the cost of waste disposal and 

convert the waste material to a high value product. Sustainability and self-sufficiency 

in dark fermentative hydrogen production (DFHP) may be enhanced by means of 

merging the optimum parameters of various experimental studies to streamline the 

overall process. Physicochemical conditions that need to be optimised include 

inoculum type, preparation and state; temperature; hydraulic retention time (HRT); 

hydrogen partial pressure; pH; substrate type and bioreactor configuration (Jung et 

al., 2011). Continuing research of these factors contributes to our knowledge of DFHP 

and helps to optimize the process (Fang and Liu 2002; Venkata Mohan et al., 2007a; 

Guo et al., 2010; Chong et al., 2009; O-Thong et al., 2009; Lee et al., 2006; Fan et al., 

2006; Zhang et al., 2006; Mandal et al., 2006; Mizuno et al., 2000). 

Fermentation substrates and microbial inocula are selected based on availability and 

cost. Mesophillic temperatures are generally preferred to reduce the energy input and 

pH is determined by the choice of inoculum. Hydraulic retention time, mass transfer 

and hydrogen partial pressure are factors that affect all biohydrogen processes. Short 

hydraulic retention times promote increased hydrogen production (Jung et al., 2011). 

HRTs of between 8-12 hours was suggested for liquid substrates (Hawkes et al., 2002) 

although times as short as 6 hours were previously used with added benefits (Zhang 

et al., 2006). Microbial cell immobilization allows microbial growth independence over 

hydraulic retention time (Wu et al., 2006; Hallenbeck, 2009; Hallenbeck and Ghosh, 

2009). This allows for biomass retention in dynamic systems running continuous 

processes. The effects of mass transfer and hydrogen partial pressure are similar to 

those of agitation. Bioreactor configurations impacts on cell growth and product 

formation. Various features of a bioreactor impact the chemical processes that occur 

within, for example, the agitation of a reactor directly influence the state of 

homogeneity and mass transfer the reactor is able to maintain. Agitation indirectly 

affects the hydrogen partial pressure (Kraemer and Bagley, 2007), as the rate of 

agitation plays a structural part in the transfer of metabolic gasses across the liquid to 

gas phase (Hawkes et al., 2007). Continued expulsion of Hydrogen enables this gas 

to exit the reactor and reduce the Hydrogen partial pressure, which when accumulated 

inhibits further hydrogen production. The bioreactor design is fundamental, as it 
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impacts on cell physiology and product formation. This chapter aims to give a basic 

overview of the factors that affect biohydrogen production with special emphasis on 

existing bioreactor configurations and their favourable attributes.   

 

 Impact of physico-chemical factors on biohydrogen production 

2.3.1. Type of microbial inoculum 

The type of microorganisms used impacts the hydrogen yield, its purity and the cost 

of the operation (Ntaikou et al., 2010). Aseptic conditions are necessary when pure 

cultures are used, complicating the design of the system. A higher hydrogen 

production efficiency and reduced by-product formation are benefits of pure cultures 

(Waligórska, 2012). Such systems have higher cost indications and are highly 

susceptible to contamination over long-term operation.  The use of mixed cultures is 

more practical due to their flexibility as far as growth conditions and operational 

parameters are concerned. Non-sterile conditions would also be acceptable, thus 

decreasing the cost and complexity of the operation (Waligórska, 2012). Mixed 

cultures also use a greater variety of substrate types as the microbial community within 

might assist in the degradation of complex organic molecules even if they are 

incapable of producing hydrogen themselves (Hung et al., 2011). They could also use 

up any existing oxygen in the reactor and enhance the formation of biomass granules 

essentially leading to superior productivity of hydrogen (Hung et al., 2011). 

Nevertheless, if the mixed culture contains microorganisms that compete for the 

carbon source or consume hydrogen, such inoculum would have to undergo various 

physical or chemical pre-treatments like heat, acidification, alkylation, chloroform or 

acetylene treatment prior to  hydrogen production (Akutsu et al., 2009; Kang et al., 

2012; Hu and Chen, 2007; Ren et al., 2008; Zhu and Beland, 2006). Pure cultures of 

Clostridium spp. and Enterobacter spp. are commonly used in biohydrogen 

production; several other genus have also been used (Table 1). Mixed cultures used 

for biohydrogen production are commonly sourced from sewage sludge, either human 

or animal (Table1). 
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2.3.2. Substrate 

First generation biofuels are made from crops associated to food supply which makes 

them an undesirable choice for hydrogen production (Waligórska, 2012). Second 

generation biofuel production can be made from plants such as sweet sorghum 

(Sorghum bicolor (L.)  Moench), switch grass (Panicum virgatum L.) and miscanthus 

(Miscanthus×giganteus Greef et Deuter) which are known to grow in less demanding 

soil conditions (Alexopoulou et al., 2015; Reddy et al., 2005; Waligórska, 2012). 

Lignocellulose substrates of woody origin may also be sometimes used. Their high 

cellulose, lignin and hemicellulose content make them somewhat more difficult to 

break down, and it is during such fermentations that mixed cultures of inoculum 

become especially useful (Waligórska, 2012). Substrates are chosen based on their 

price and availability. Pure substrates such as glucose, sucrose, lactose, xylose and 

starch (Table 1) are commonly used in experimental studies for the purposes of 

experimental reproducibility. Wastes, such as cellulosic biomass, sewage sludge, 

chitinous waste and molasses (Table 1) are more likely to be used in industry, as they 

would be more cost effective. 
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Table 1: Inoculum involved in Hydrogen Production via Dark Fermentation 

Inoculum Type Substrate Type Hydrogen Yield Reference  

Clostridium acetobutylicum Glucose  2.0 mol mol-1 glucose Chin et al.,2003 

Clostridium butyricum CGS5 Xylose 0.73 mol mol-1 xylose Lo et al., 2008 

Clostridium butyricum Glucose  1.4- 2.3 mol mol-1 glucose Kataoka  et al., 1997 

Clostridium pasteurianum CH4 Sucrose  2.07 mol mol-1 hexose Lo et al., 2008 

Clostridium paraputrificum M-21 Chitinous wastes 2.2 mol mol-1 substrate Evvyernie et al., 2001 

Clostridium thermocellum 27405 Cellulosic biomass 2.3 mol mol-1 glucose Levin et al., 2006 

Clostridium thermolacticum Lactose  3.0 mol mol-1 lactose Collet et al., 2004 

Enterobacter aerogenes Starch  1.09 mol mol-1 starch Fabiano and Perego, 2002 

Enterobacter aerogenes E 82005 Molasses  3.5 mol mol-1 sugar Tanisho and Ishiwata, 1995 

Enterobacter cloacae IIT-BT 08 Sucrose 6 mol mol-1 sucrose Kumar and Das, 2000 

Enterobacter cloacae IIT-BT 08 Cellobiose 5.4 mol mol-1 cellobiose Kumar and Das, 2000 

Thermoanaerobacterium 

thermosaccharolyticum KU001 
Glucose  2.4 mol mol-1 glucose Ueno et al., 2001 

Thermotoga elfii Glucose  84.9 mmol L-1 medium van Niel et al., 2002 

Ruminococcus albus Glucose  2.52 mol mol-1 glucose Ntaikou et al., 2008 

Citrobacter amalonaticus Y19 Glucose  8.7 mol mol-1 glucose Oh et al., 2008 

Ethanoligenens harbinense YUAN-3 Glucose  1.93 mol mol-1 glucose Xing et al., 2008 

Digested sludge Glucose  1.8 mol mol-1 glucose Wang and Wan, 2008 

Enterobacter aerogenes HU-101 Glucose  1.17 mol mol-1 glucose Mahyudin et al., 1997 

Digested wastewater sludge Sucrose  6.12 mol mol-1 sucrose Zhu and Béland, 2006 

Rhodopseudomonas Glucose  2.76 mol mol-1 glucose Oh et al., 2002 

Cattle manure sludge Glucose  1.0 mol mol-1 glucose Cheong and Hansen, 2006 

Enterobacter aerogenes Molasses  1.58 mol mol-1 molasses Tanisho et al., 1998 

Mixed mesophillic microflora Sewage sludge 1.7 mol mol-1 substrate Lin and Chang, 1999 

Methanogenic granules Glucose  1.2 mol mol-1 glucose Hu and Chen, 2007 

Anaerobic sludge Dairy waste 0.0317 mmol g-1 COD Mohan et al., 2008 
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2.3.3. Hydrogen Partial Pressure (HPP) 

A high hydrogen partial pressure within the reactor negatively impacts hydrogen 

production by influencing the metabolisms of the microorganisms toward the synthesis 

of reduced compounds rather than hydrogen (Waligórska, 2012). As the concentration 

of hydrogen increases in the liquid phase fermentation broth the hydrogenase enzyme 

tasked with producing hydrogen is inhibited and the thermodynamics become 

unfavourable (Jung et al., 2011; Show et al., 2011; Tiwari et al., 2006). Various 

strategies have been employed to control the hydrogen partial pressure in 

fermentations ranging from gas sparging, the use of a submerged membrane, use of 

a vacuum, to thermodynamic regulation (Hussy et al., 2003; Hussy et al., 2005; 

Kataoka et al., 1997; Kim et al., 2006; Kraemer and Bagley, 2006; Kraemer and 

Bagley, 2007; Kyazze et al., 2006; Liu et al., 2006; Mandal et al., 2006; Mizuno et al., 

2000). The presence of nitrogen gas in the bioreactor has many benefits on the 

hydrogen producing reactions, as it displaces the carbon dioxide within the void 

spaces of the reactor, thereby inhibiting any potential acetogenic hydrogen consuming 

reactions (Mizuno et al., 2000). Unfortunately, continuous sparging also results in 

incomplete glucose consumption (Kim et al., 2006). Agitation facilitates the transfer of 

metabolic gases from the fermentation broth to the reactor headspace (Hawkes et al., 

2007; Hawkes et al., 2002). Since this occurs repeatedly, especially during the 

exponential hydrogen production phase, the gas produced is swiftly transferred from 

the fermentation broth to the headspace and subsequently out the reactor into the 

analysis equipment (Hawkes et al., 2002). This succession of events promotes the 

expulsion of hydrogen gas from the reactor, thus continually reducing the hydrogen 

partial pressure (Hawkes et al., 2002).  

2.3.4. Temperature 

The temperatures of the reactions for hydrogen production depend on the type of 

microorganisms used in the inoculum. Thermophillic organisms are less susceptible 

to the effect of hydrogen partial pressure and contamination (Waligórska, 2012). 

Additionally, inoculum pre-treatment may be omitted as it has been reported that 

methanogens were inactive at thermophillic temperatures (Shin et al., 2004; Valdez- 

Vazquez et al., 2005). Temperature ranges of between 50-60°C have been used to 

optimise biohydrogen using thermophillic microorganisms (Jung et al., 2011). 
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Generally, thermophillic organisms have been found to yield a smaller hydrogen 

volume as compared to mesophillic organisms; this would make it necessary to scale 

up the size of the reactors, thus increasing the overall cost (Hallenbeck, 2009). 

Coupling thermophillic process in tandem with an exothermic process via a heat 

exchanger would be economically viable, since running such a process independently 

would be very demanding practically and economically (Hawkes et al., 2007). 

Temperatures between 33°C and 41°C have been shown to improve energetic 

efficiency within mesophillic organisms (Mu et al., 2006a,b).Varying heat treatments 

are also used to treat inoculum to harvest the hydrogen producing population from a 

mixed culture (Logan et al., 2002).  

2.3.5. pH 

The pH of the system affects the enzymes employed by the inoculum, thus in a domino 

effect affects the organism’s metabolism, community structure and product formation 

(Ye et al., 2007). The origin of the inoculum used as well as the substrate used also 

plays a role in the optimum pH chosen. The suggested pH for substrates such as food 

waste falls between 5 and 6 (Guo et al., 2010). Optimal pH for animal manure and 

agricultural waste substrates falls within the neutral region (Guo et al., 2010). It may 

be advised that experimentation be done to determine the optimal pH of the process 

being studied as the composition of waste substrates as well as inoculum varies 

considerably. Running processes at lower pH values could also assist in decreasing 

the growth of methanogens, known for consuming hydrogen (Hawkes et al., 2002). 

2.3.6. Hydraulic retention time (HRT) 

During continuous process the hydraulic retention time affects the yield of 

biohydrogen. Short HRT promotes hydrogen producing microorganisms (Jung et al., 

2011), times between 8-12 hours was found to be optimum for liquid media. The time 

increases depending on the structural complexity and viscosity of the substrate used 

(Hawkes et al., 2002). Short HRT also inhibits the growth of methanogenic 

microorganisms as they require longer times to grow which is an added advantage for 

optimizing biohydrogen production (Jung et al., 2011).  

 

 



18 
 

2.3.7. Volatile fatty acids 

The presence of various compounds within the effluent of a fermentation process 

provides useful indicators of the various metabolic pathways that occurred within. 

Metabolic pathways favouring the production of acetic acid are most favourable for the 

production of hydrogen gas (Hawkes et al., 2002; Hawkes et al., 2007; Kraemer and 

Bagley, 2007). This pathway has the highest molar hydrogen yield (Kraemer and 

Bagley, 2007; Hawkes et al., 2007). The production of butyrate is less preferred 

(Kraemer and Bagley, 2007), as more hydrogen atoms are used in the molecule and 

therefore less hydrogen gas is produced. However, the production of butyrate or 

butyric acid is still preferred over propionate and lactate as these by-products indicate 

that no hydrogen gas was produced (Hawkes et al., 2002). The production of alcohols 

are least preferred as these molecules also contain more hydrogen and would 

therefore be present in pathways yielding less hydrogen gas (Hawkes et al., 2002). 

Additionally, alcohols such as ethanol inhibit growth and hydrogen gas production 

rates (Hawkes et al., 2002). Reduced fermentation products, such as ethanol, butanol, 

and lactate are a representation of hydrogen that has not been liberated as a gas but 

has been bound in the molecule, these products should be avoided (Hawkes et al., 

2002). It has been suggested that volatile fatty acids are the preferred by-product as 

metabolic pathways that yield them concurrently yield hydrogen gas (Hawkes et al., 

2002; Lay, 2000). Lamed et al. (1988) determined that mixing decreases the ethanol 

to acetate ratio that occurs during a fermentation process, this is an indication that 

agitation would therefore improve hydrogen production as acetate and hydrogen are 

produced simultaneously and ethanol is an inhibitor of this process. The production of 

alcohols occurs immediately after the peak phase of hydrogen production and volatile 

fatty acids (Lay, 2000; Lay et al., 1999; Lay, 2001), in the late growth phase (Lay, 

2000). This was unanimous for a pure Clostridia culture and mixed cultures obtained 

from municipal solid waste and heat-treated sludge (Lay, 2000; Lay et al., 1999; Lay, 

2001). 

 Biohydrogen yield 

A theoretical hydrogen yield of 4 mol H2 mol-1 hexose is possible, if acetic acid is the 

only by product (Hawkes et al., 2007; Kraemer and Bagley, 2007). In laboratory 

experiments carbohydrate substrates are also utilized for cellular proliferation and 
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formation of alternative by-products (Hawkes et al., 2007), consequently decreasing 

product formation. Additionally, mixed cultures contain an assortment of 

microorganisms and their respective metabolic pathways may sometimes vary. This 

would cause the molar hydrogen yield to differ depending on which microorganisms 

are selected via varying pre-treatment techniques (Yang et al., 2019). Molar yield may 

be improved by channelling the effluent (containing by-products) of stage one 

fermentation into stage two fermentation, as the substrate (Hawkes et al., 2007). 

Agitation of the reaction medium within the bioreactor improves hydrogen yield 

(Hawkes et al., 2002; Kraemer and Bagley, 2007; Lamed et al., 1988; Lay, 2000). 

Photo-fermentation or utilization of efficient microbial fuel cells was proposed to 

improve overall hydrogen yield mol-1 hexose in a secondary fermentation (Hawkes et 

al., 2007; Hawkes et al., 2002). A second stage of fermentation yielding other useful 

and high energy end products, like fertilizer rich in nitrogen/phosphorus and methane, 

may be considered to improve the overall economics and practicality of the process 

(Hawkes et al., 2002).  

 Bioreactor configurations used for biohydrogen production 

The bioreactor type used impacts the growth of the microorganism and in essence the 

yield and quality of the product formed. Therefore, the selected reactor configuration 

needs to meet the requirements of the microorganism and yet show maximum product 

yield as well. Among the various parameters that determine the hydrogen production 

efficiency, the reactor design plays a key role in optimizing hydrogen production yield 

(Venkata mohan et al., 2007b; Cresson et al., 2008). Bioreactor design also has a 

major influence on the interaction between microorganism and substrate, the amounts 

of microorganisms present and the hydrodynamic behaviour of the solutions within the 

reactor (Venkata mohan et al., 2007b; Cresson et al., 2008). Essential requirements 

such as temperature, gas exposure and pH play a role in ensuring harmonious internal 

environment within the reactor. 

2.5.1. Continuous stirred tank reactor (CSTR) 

The continuous stirred tank reactor (Figure 1) vessels are designed to ensure efficient 

mixing of the substrate within the reactor; preventing settling of nutrients and 

promoting efficient mass transfer (Ntaikou et al., 2010). This reactor type is commonly 

employed in conjunction with a continuous flow mode (Yu et al., 2003). Challenges 
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encountered herein depend on the hydraulic retention time (HRT), if it is too short wash 

out of biomass may occur, if it is too long promotion of methanogenic hydrogen 

consuming bacteria may be promoted (Waligórska, 2012). Even though this reactor 

type has the most efficient mixing capabilities, the impeller system used can result in 

cell shearing and lysis, therefore leading to a lower biomass concentration (Zhong et 

al., 1994), and by extension a decreased hydrogen yield. Studies using CSTR with 

10g L-1 glucose at a pH of 5.5 and temperature of 37°C had a biohydrogen yield of 

1.81ml H2 mol-1 (Show et al., 2011) at a production rate of 3.20 L h-1 L -1 (Show et al., 

2007; Zang et al., 2007). Other studies using sucrose had a hydrogen production rate 

of up to 15 L h-1 L-1 (Wu et al., 2006).  

Figure 1 shows a diagrammatic representation of a continuous stirred tank reactor. 

The agitation system consists of the motor, blender/impeller and the baffles. 

 

Figure 1: Schematic diagram of a continuous stirred tank reactor (Zhu et al., 2013). 

2.5.2. The membrane bioreactor (MBR) 

The membrane bioreactor consists of a membrane upon which the inoculum is 

immobilized (Figure 2); this benefits product formation as it prevents biomass washout 

because the cells are fixed to the reactor (Show et al., 2008). The aforementioned 

system can be inefficient if the microorganisms produce extra polymeric substances 

(EPS) which result in fouling of the membrane. This is one of the key reasons that the 

reactor type is not used industrially (Show et al., 2008). Due to the biomass being fixed 

onto the membrane, the emanating effluent would thus contain greatly reduced levels 
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of the microbial population. Additionally, the reactors can be smaller in size since this 

reactor type is more efficient at consuming organic substrates and is able to produce 

hydrogen at a faster rate (Oh et al., 2004). A disadvantage of this system is that a long 

solids retention time (SRT) can result in a swift increase in biomass and a decrease in 

the rate and efficiency of the hydrogen production (Lee et al., 2011). Studies using a 

membrane bioreactor have yielded a hydrogen production rate of between 0.50 to 0.64 

L h-1 L-1 using a HRT of 3.3 hours (Oh et al., 2004). 

 

Figure 2: Schematic diagram of a flat sheet membrane bioreactor (Fazeli et al., 

2012) 

Figure 2 shows a diagrammatic representation of a membrane bioreactor. Note 

should be taken of component 6, the membrane of the module, which was the 

unique feature of this bioreactor configuration.1- Reservoir, 2- baffle plate, 3- PLC, 4- 

sensor, 5- bioreactor, 6- membrane module, 7- vacuum gauge, 8- suction pump, 9- 

flow meter, 10- permeate, 11- blower and 12- waste sludge. 

2.5.3. Packed bed reactors (PBR) 

Packed bed reactors are configured to allow entry of substrate from the bottom and 

exit from the top (Figure 3), the cellular biomass is generally immobilized either on 

biofilms or granules captured on packed media (Kothari et al., 2012). The support 

media generally consist of either granular activated carbon (GAC), sponge, 
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polyethylene-octane elastomer, ceramic ball, alginate gel or expanded clay (Show et 

al., 2011). The key downfall of this reactor type is that the substrate supply is less 

efficient compared to the other reactor types previously described. The lack of efficient 

substrate results in a reduced substrate usage leading to a decreased hydrogen yield 

(Show et al., 2011); which may be attributed to the system lacking proficient mixing, 

so as to unify the substrate concentration throughout the reactor equally. The supply 

of substrate to the reaction vessel could be enhanced by recycling the substrate back 

into the reactor. Studies have shown that this technique has further enhanced the 

hydrogen production yield and efficiency (Kumar and Das, 2001). Show et al. (2011) 

indicated that using this reactor configuration at an HRT of 1.08 hours a hydrogen 

production rate of 1.60L h-1 L-1 was achieved. Furthermore, it was also established 

that the hydrogen production efficiency improved when the substrate was recycled 

through the reactor repeatedly. 

Figure 3 shows that the inside of the packed reactor consists of immovable packaging, 

the motion of the substrate moves through the packaging to allow the microbial cells 

trapped within access to a homogenous flow of nutrients. Any product formed, exits at 

the fluid out port. Alternatively, a special gas exit port will need to be inserted above 

the substrate level for a gas product. 

 

Figure 3: Schematic diagram of a packed bed reactor (Fernandes, 2010). 
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2.5.4. Fluidized bed reactors (FBR) 

Fluidized bed reactor systems (Figure 4) require large amounts of gas or liquid to be 

pumped into the reactor to facilitate the mixing of the contents (Waligórska, 2012). The 

biomass generally gets immobilized onto materials similar to those used in the packed 

bed reactor configuration (Waligórska, 2012). However, these materials are smaller in 

size so as to allow ready fluidization and to increase the surface area of the 

immobilization particles so that the microorganisms entrapped therein would be 

exposed to a greater degree, thus promoting a better mass transfer and higher 

hydrogen yield (Barros et al., 2010). This reactor configuration is also well known for 

its highly proficient mixing abilities. Especially high hydrogen yields have been noted 

from cells immobilized on granular activated carbon (GAC) (Zang et al., 2007) 

compared to other materials used for immobilization. Lin et al. (2009) found that a rate 

of 1.821 L h-1 L-1 hydrogen was produced from a sucrose substrate with a yield of 4.26 

mol H2 mol-1 sucrose with a HRT of 2 to 6 hours at steady state. 

Figure 4 indicates that the immobilization matrix within the bioreactor moves with the 

momentum of the surrounding media thus the agitation affects both the immobilized 

cells and the media within the bioreactor. 

 

Figure 4: Schematic diagram of a fluidized bed reactor (Fernandes, 2010). 
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2.5.5. Up-flow anaerobic sludge blanket (UASB) reactor 

The up-flow anaerobic sludge blanket reactor (Figure 5) employs a system that allows 

the entry of the effluent in the form of substrate to enter the reactor from the bottom 

and the exit of the treated materials form the top (Seghezzo et al., 1998) .This reactor 

type had most commonly been used in conjugation with methane production 

(Waligórska, 2012). The most pronounced disadvantage of this system is the time 

factor involved prior to the start of the reaction processes (Wang et al., 2007). Some 

studies indicate that the reactor needs up to 5 months to form the blanket of 

immobilized cells in order for the reactor to function optimally (Wang et al., 2007). This 

process can however be sped up by encouraging granulation within a CSTR and 

thereafter transferring the materials to a USAB for the actual digestion (Waligórska, 

2012). In industrial processes, time is essential and more often than not waiting 5 

months for a reactor to stabilise is far too long especially if there are more timeous and 

less tedious means of achieving the same objective (Wang et al., 2007). A hydrogen 

production rate of 0.25 L h-1 L-1 was reported whilst using a UASB reactor fed with a 

sucrose substrate at a HRT of between 8 to 20 hours the hydrogen yield was 1.5 mol 

H2 mol-1 sucrose (Chang and Lin, 2004). 

Figure 5 shows effluent entering form the bottom of the reactor, being treated by the 

sludge granules formed over time naturally, treated water exists from the top of the 

reactor. 
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Figure 5: Up-flow anaerobic sludge blanket (UASB) reactor (Tilley et al., 2014). 

2.5.6. Temporary immersion reactor 

Temporary immersion bioreactors, commonly referred to as temporary immersion 

systems (TIS), are reactors that allow the inoculating organisms’ exposure to air and 

a liquid substrate at sequential intervals (Georgiev et al., 2014). Various similar 

designs exist to achieve this objective (Watt, 2012). The earliest design consisted of 

using two separate vessels connected via tubing (Figure 6). One vessel contained the 

immobilized growth organism and the other a liquid substrate (Figure 6). The operation 

system in this early twin-flask design (Figure 6) was pneumatic and individually 

controlled by clocks that initiated the transfer of the substrate from the holding flask to 

immerse the growing cells and back to the holding flask again.  Some other TIS 

designs include the Ebb-and-flow, RITA (recipient for automated temporary 

immersion), rotating drum and wave bioreactor, these configurations utilize an array 

of agitation techniques ranging between pneumatic, gravity, hydraulic and mechanical  

(Georgiev et al., 2014).TISs are commonly used for tissue culture work, particularly 

plant culturing (Etienne and Berthouly, 2002; Robert et al., 2006). Their purpose was 

to assist in reducing the plant exposure to toxic quantities of water and increase the 

oxygen availability, to prevent hyperhydricity and asphyxia (Debnath, 2011). 
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Unimpeded contact between the air and plant material reduces the resistance between 

interface boundary layers (gas-liquid and liquid-solid interfaces) (Curtis and Tuerk, 

2008). Therefore atmospheric oxygen is able to enter the culture cells with greater 

ease than if the culture cells were within a submersion fluid (Georgiev et al., 2014). 

The inversion of this characteristic is what holds hypothetical prospect for hydrogen 

production. If the direct contact of air to inoculating cells allows them unhindered 

access to gaseous nutrients present in the air, relatively they would be able to release 

gaseous product into the air with the same ease, as opposed to being exclusively 

submerged. Furthermore, the motion of the submersion and drainage causes 

enhanced turbulence, increased exposure between inoculum and substrate and 

thorough homogenisation of the bioreactors macro and micro environments. The 

agitation system also utilizes gravity to aid its function in some designs (Robert et al., 

2006), thereby reducing energy input requirements. The reactors dynamics, internal 

constituents, preparatory procedures and frequency of submersion would have to be 

modified to cater to the specific requirements of biogas/hydrogen production. 

Figure 6 shows the a stepwise process of the operation of the twin-flask system, A-

growth organisms experiencing exposure to air, B- liquid substrate being transferred 

to immobilized growth organism, C- growth organism experiencing an immersion 

period, D- liquid substrate being transferred back to holding flask. 
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Figure 6: Twin-flask temporary immersion system (Georgiev et al., 2014)  

 

 Process mode 

There are various opinions expressed in literature as to which mode of fermentation 

would be most beneficial for optimal hydrogen production. Some researchers are of 

the opinion that a batch mode is appropriate for research purposes and give a 

satisfactory indication of the growth capabilities of the inoculum in question 

(Waligórska, 2012). Continuous flow reactors are appropriate for industrial purposes 

due to the large volumes of waste that require treatment and the large volume of 

product that are necessary (Ntaikou et al., 2010). In contrast to this view some 

researches are of the opinion that the batch mode produces inefficient and stunted 

data (Show et al., 2008). They suggest that it is incapable of providing a good 

indication of the best hydrogen production rates, and that a semi-continuous mode 

would be a better comparison to an industrial production (Show et al., 2008). 

Processes involving a form of semi-continuous mode with a mixed population of 
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microorganisms from activated sludge were undertaken by Cohen et al. (1985). A 

series of timeous feed interruptions were enacted on the process to investigate its 

effect on the metabolic products formed in the reactor. The team theorised, based on 

the results of their investigation that the metabolisms of these anaerobic organisms 

shifted from spore forming butyrate/H2 producers to non-spore forming propionate 

producers. This change occurred despite the range of interruption patterns utilized in 

the investigation. This is an indication that the semi-continuous mode of operation 

might be problematic when a mixed consortia of microorganisms is employed as the 

inoculum source. Batch mode process are considered more suitable for initial 

optimization studies (Hallenbeck and Ghosh, 2009) as it is easier to determine the 

degree of optimization and whether said optimisation is as a result of the novel reactor 

configuration rather than a variation in the operating conditions of a bioreactor vessel. 

As the scale of the operation increases the mode of the process would have to be run 

as a continuous feed (Hallenbeck and Ghosh, 2009) to cater to the large volumes of 

wastewater. Additionally, production of a reasonable quantity of hydrogen gas is 

required to allow the production plant independent operation and contribute to the local 

power grid. 

 

 Some considerations for an effective bioreactor for biogas production 

The process employed to produce hydrogen is influenced by various chemical and 

physical parameters. Suitable mixing determines the level of exposure the inoculating 

organisms has to the heterogeneous substrate, the state of the hydrogen partial 

pressure, the volatile fatty acids produced, hydraulic retention time and the level of 

homogeneity in the pH and temperature. Immobilization of microorganisms liberates 

growth rate from hydraulic retention time, which prevents inoculum washout. Reactors 

that are designed to immobilization often lack suitable agitation for DFHP and rely on 

air or natural substrate flow to expose the inoculum to the substrate. Ineffective 

agitation with heterogeneous substrates may also lead to elevated hydrogen 

concentrations in the liquid phase. The HRT of the process would also have to be 

increased to allow adequate substrate degradation. Immobilized microorganisms 

require more agitation than suspended organisms to be suitably exposed to the 

substrate. The degree of agitation cannot however be so vigorous so as to disintegrate 
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the immobilised structures or to dislodge the microbial cells from the immobilization 

matrix. Various bioreactor designs commonly used in experiments for fermentative 

hydrogen production can either allow suitable agitation at the cost of compromised 

immobilization. Alternatively they immobilize cells with insufficient agitation, ineffective 

mass transfer and an accumulation of hydrogen gas in the liquid phase. Based on 

these observations, a novel bioreactor configuration to encapsulate immobilization 

and effective non-invasive agitation is necessary. A novel bioreactor design has the 

potential to enhance biogas production. The combination of immobilization, efficient 

agitation, reduced hydrogen partial pressure, superior exposure of inoculum to 

substrate and continued thorough homogenisation of the fermentation broth may 

improve the yield and rate of hydrogen production substantially.  

 

 Conclusion  

A variety of chemical parameters and bioreactor configurations were reviewed. In 

conclusion immobilization of inoculum has many benefits to improve biohydrogen 

production and short hydraulic retention times have a positive impact on overall yield. 

The continuous stirred tank reactor maintains highly efficient agitation but may require 

modifications to conduct processes with effective immobilization. Other reactor 

configurations with the capability to maintain immobilized cells efficiently, like the 

packed bed reactor and anaerobic sludge blanket reactor may lack an adequate 

mixing ability for high throughput dark fermentative hydrogen production. A reactor 

configuration that aims to merge effective immobilization and efficient agitation is 

necessary. Such a design would be a highly commendable dynamic immobilized 

system. Furthermore, this reactor would be suitable for other industrial processes that 

would benefit from immobilization with substantial and effective agitation. 
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Chapter 3 

Design, implementation and assessment of a novel bioreactor for 

fermentative biohydrogen process development 

 

 

This chapter has been published with the title: Design, implementation and 

assessment of a novel bioreactor for fermentative biohydrogen process development 

in the International Journal of Hydrogen Energy (2016; 41: 10136-10144) 

The article is presented in the following pages. 
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2. Materials and methods 
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Figure 3: Bioreactor designed structures: (A) external vessel (B) lid internal surfaces; 

(C) cartridge support; (D) lid clamps; (E) bioreactor supporting stand; (F) assembled 

cartridges with supporting material; (G) single hollow perforated cartridge. 

Figure 1 
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Figure 4: Implemented structures of the bioreactor: (A) reactor glass vessel; (B) lid 

internal surface; (C) vesconite clamps; (D) 3D-printed cartridge support structure; (E) 

3D-printed cartridges; (F) stainless steel support stand; (G) assembled bioreactor. 

Figure 2 
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3. Results and discussion 
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Figure 5: Comparative assessment of implemented bioreactor and control flask using 

immobilized microbial cells: (A) hydrogen and carbon dioxide profile for a 48 h 

fermentation period; (B) Glucose consumption profile; (C) cartridge before 

fermentation; (D) biofilm that formed on the surface of cartridge after fermentation. 

Figure 3 
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Table 2: COD for substrate and effluent from implemented reactor and control flask. 

Table 1 

Figure 6: Hydrogen and Carbon Dioxide evolution from implemented reactor in real-

time using immobilized cells. 

Figure 4 

 

 

 

 

 

 

 

 

 

Figure 7: Comparative assessment of implemented bioreactor and control flask using 

suspended cells: (A) hydrogen and carbon dioxide profile for a 48 h fermentation 

period; (B) glucose consumption profile 

Figure 5 
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Figure 8: Scanning electron micrograph of a cross section from a sludge alginate 

beads (A) before fermentation at 5000x, (B) after fermentation from the shake flask 

control at 5000x, and (C) after fermentation from the implemented bioreactor 

cartridge at 8000x. 

Figure 6 
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Chapter 4 

Adaptation of cell immobilization cartridge unit to continuous 

stirred tank reactor improves dark fermentative hydrogen 

production 

 

 

This chapter has been submitted to Renewable Energy with the title: Adaptation of cell 

Immobilization Cartridge unit to Continuous Stirred Tank Reactor Improves dark 
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Adaptation of cell Immobilization Cartridge unit to Continuous Stirred Tank Reactor 

Improves dark fermentative hydrogen production 

 

M.B. Hassan Khan, E.B. Gueguim Kana*1 

Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal, 

Private Bag XO1, Scottsville, 3209 Pietermaritzburg, South Africa 

Abstract  

Challenges associated with biohydrogen production in a continuous stirred tank 

reactor (CSTR) using immobilized cells include bead floatation due to gas 

accumulation, excessive sheer stress and biomass washout in continuous processes. 

Thus, the need for a novel reactor configuration. In this study, a three-part cartridge 

structure was incorporated into a standard CSTR. The cartridge (46x40x300 mm) was 

made up of perforated hollow rectangular tubes aligned at 120° along the agitating 

shaft.  The designed structure houses the immobilized inoculum and also served as 

impellers. This structure was fabricated using laboratory grade stainless steel. A 

comparative assessment of the cartridge and standard CSTR with suspended and 

immobilized mixed microbial culture was carried out.  Fermentation process using the 

Immobilized Cells in Cartridge (ICC) showed an improved hydrogen yield of 3.9 fold 

and 2.8 fold compared to the Suspended Cells in Reactor (SCR) and Immobilized 

Cells in Reactor (ICR) processes. ICC decreased fermentation time by 52 and 65% 

compared to SCR and ICR respectively. Gompertz model coefficients showed a 98 

and 37% improvement in the maximum hydrogen production rate (Rm) using the ICC 

compared to the SCR and ICR fermentations. Additionally, the ICC showed improved 

pH buffering capacity and complete glucose degradation. These findings demonstrate 

that the developed ICC concept holds innovative proficiencies to improve fermentative 

biohydrogen productivity, yield and process economics. 

Keywords: Hybrid biogas bioreactor, Dark fermentation, Biohydrogen, CSTR, cell 

immobilization 
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Highlights: 

 The use of immobilized cells with the cartridge unit improved hydrogen yield  

 The developed system prevented damage or destruction of the immobilized 

matrix 

 Challenge of bead floatation associated with gas production was eliminated. 

 Improved pH buffering capacity and complete glucose degradation was 

achieved. 

 

1. Introduction 

The environmental impact of fossil fuel usage ensues in increased greenhouse gas 

emissions and depletion of the ozone layer. Mitigation of these impacts can be 

achieved by harnessing an inexhaustible environmentally friendly low-cost energy 

source such as biohydrogen. Hydrogen is also the only known fuel that is free from 

carbon, and will therefore not contribute to acid rain, the greenhouse effect and ozone 

depletion upon combustion [1]. Combustion of hydrogen results in water vapour and 

energy making it the ideal innocuous fuel [1]. Hydrogen has a chemical energy of      

142 MJ kg-1 per mass, this is a minimum of three times the equivalent of other chemical 

fuels [2]. The three core methods of biological hydrogen production include 

biophotolysis of water, photodecomposition of organic composites and fermentation 

of organic wastes [3]. Fermentation of organic wastes transpires at a higher rate and 

has extensive applicability and integration prospects [4, 5]. The dark fermentative 

hydrogen production bioprocess is sensitive to various physicochemical process 

parameters. These include inoculum type, preparation and state, temperature, 

hydraulic retention time (HRT), hydrogen partial pressure, pH, substrate type and 

bioreactor configuration and operation amongst other physicochemical influences [6]. 

Biomass retention, heat and mass transfer have significant impact of biohydrogen 

yield [3, 7, 8], both of which depend predominantly on bioreactor design [9]. The 

primary objective of a bioreactor is to provide a controlled microclimate optimal to 

cellular growth and/or product formation [10]. A suitable bioreactor for dark 

fermentation should maintain an adequate biomass concentration, efficient mixing with 

reduced shear stress, facilitate homogenous nutrient supply and be proficient at 

product formation and extraction, amongst other standard functions [10]. Biohydrogen 

production using a continuous stirred tank reactor (CSTR) was previously reported 

[11, 12, 13]. This configuration possesses an outstanding mixing ability, which plays a 
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significant role in maintaining homeostasis in the physicochemical parameters of a 

fermentation process. The mixing mechanism of the CSTR accommodates a 

conglomeration of substrates, particularly waste materials, ranging from highly viscous 

mixtures to heterogeneous composites with insoluble factions. The hydrodynamics 

and superior mass transfer of the CSTR are exceedingly commendable attributes of 

this configuration [11]. The intrinsic design of the CSTR is not compatible with 

protecting biomass washout during short HRT, which is essential for optimum 

hydrogen production, due to excessive sheer stress and biomass washout [3, 11, 14]. 

Less turbulent mixing systems with a greater potential to maintain immobilized 

biomass, viz. fixed bed reactors, up flow reactors, anaerobic granular sludge bed 

bioreactors and membrane reactors are alternative configurations commonly used in 

dark fermentative biohydrogen production [11]. However, impaired mass transfer, 

reduced substrate conversion rates and decreased hydrogen production have been 

identified as major limitations in these immobilized reactors [15], thus accentuating the 

need for a novel bioreactor configuration for biohydrogen production [16]. 

Cell immobilization is the physical restriction or isolation of whole cells to a distinct 

area to carry out a chosen purpose [17]. Enhanced hydrogen production was reported 

using immobilized cell systems [18]. Immobilization influences the microbial 

inoculum’s tolerance to metabolic strain in terms of temperature, pH, organic loading 

rate and hydraulic retention time [3, 18]. The major methods for microbial cells 

immobilization include encapsulation, adsorption and polymer-based entrapment [18]. 

Adsorption involves the physical attachment of bacterial cells to a support matrix via 

bonding of positive and negative charges [18], an example is the use of coir in a 

packed bed reactor [19]. The ionic charge of the reaction mixture impacts the integrity 

of the attachment, therefore a change in the pH may affect the immobilization process. 

Encapsulation is a process wherein bacterial cells are enclosed within a semi-

permeable membrane [18], e.g. the use of polyvinylidene fluoride (PVDF) in a serum 

glass bottle [20]. This technique minimises the escape of bacterial cells into the 

reaction mixture, reducing downstream processing of effluent [18]. The entrapment of 

bacterial cells, the most common and preferred technique, entails the incorporation of 

bacterial cells into a porous matrix [18]. The matrix may be biodegradable, e.g. 

alginate or agar, or non-biodegradable, e.g. acrylic, latex or silicone [18]. The most 

suitable choice depends on various factors, namely, the nature of the fermentation, 
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the physicochemical characteristics of the substrate, metabolism of inoculum and the 

bioreactor chosen to orchestrate the fermentation process.  Zhao et al. [21] reported 

a 41% increase in the hydrogen production rate compared to the control using 

mycelium pellets to immobilize Clostridium species in a CSTR. Adsorption and 

entrapment on substances such as polyurethane and silicone are commonly used in 

fluidized bed reactors [22, 23]. Granular activated carbon may be used independently 

or as an auxiliary ingredient in immobilization matrices [24, 25]. Immobilized cell 

technology was reported in dark fermentative hydrogen generation as a means of 

increasing productivity via cell retention. For example, an improvement of 71% on the 

rate of hydrogen production was reported using immobilized pure cultures [26]. 

Similarly, immobilized mixed microbial cultures have shown an improvement in the 

rate of hydrogen production within the range of 52 - 213% [13, 27]. Enhanced 

substrate conversion and pH buffering are benefits of immobilization that aid in 

hydrogen productivity [26, 28]. The mechanical strength of alginate matrices is 

susceptible to collapse, and gas producing immobilized beads are prone to float as 

gas production progresses [27], which ultimately impedes mass transfer. Salem et al. 

[13] suggested that the method of immobilization must harmonise with the bioreactor 

design to improve fermentation dynamics. Inappropriate matrices could impede mass 

transfer and have an adverse effect on product formation. Moreover the collusion of 

the carrier against the walls or the reactor may cause the microorganisms to become 

dislodged and lost into the fermentation broth [13]. These observations suggest the 

need to investigate for more appropriate bioreactor configuration for biohydrogen 

production using immobilized cells.  

In this study a novel cartridge structure for cell immobilization is designed and adapted 

to the CSTR, Immobilized Cells in Cartridge (ICC). The developed reactor is 

comparatively assessed against the standard CSTR on dark fermentations using 

Suspended Cells in Reactor (SCR) and Immobilized Cells in Reactor (ICR). 
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2. Materials and methods 

2.1. Bioreactor modification and design of the cartridge unit 

The standard CSTR reactor used in this study was a 13 L INFORS HT Labfors 3 (Infors 

AG, Switzerland). The CSTR was modified by the addition of a cell immobilization 

cartridge (Figure 1).  The cartridge was designed using the CAD modelling software 

OpenSCAD version 2015.03 (http://www.openscad.org).  It constituted of three 

rectangular perforated ducts of 46 mm x 40 mm x 300 mm size (Figure 1A). The pore 

size was 3 mm in diameter (Figure 1A). The total volume of the cartridge was 1656 

ml. The three ducts were aligned at 120° around a central pipe with an external 

diameter of 15 mm, followed by a shift of +7,5 mm on the x-plane and -15 mm on the 

y-plane (Figure 1B). This was necessary in order to minimise the outer rotation 

diameter of the cartridge, whilst ensuring the placement of the reactor shaft (Figure 

1B). The top and bottom cover plates enclosed the structure at both ends (Figure 1C). 

These cover plates have a central opening of 15.5 mm to enable the passage of an 

agitation shaft. Grub screws held the complex together and attached it to the agitating 

shaft simultaneously (Figure 2B). Dynamic stability was achieved by ensuring that the 

cartridge fitted precisely around the reactor shaft. Other designed considerations were: 

maximising the cartridge size to allow a variety of inoculum concentrations, promoting 

enhanced exposure between inoculum and substrate and ensuring that the cartridge 

was able to integrate within the standard reactor unobtrusively during agitation. The 

cartridge structure was removable and could be interchanged with other standard 

impellers. The material used to fabricate the cartridge unit was a 1.2 mm thick stainless 

steel sheet (316-2B) (Figure 1C).  

The developed reactor was comparatively assessed against the standard CSTR on 

dark fermentations using suspended and immobilized mixed microbial cells. 
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Figure 1: Cartridge turbine for housing of immobilized microorganisms: (A) design 
and dimensions; (B) Placement of three ducts that from the cartridge; (C) Fabricated 
cartridge using stainless steel. 

(A) 

(B) 

(C) 
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2.2. Assessment of the developed bioreactors for fermentative 

biohydrogen production 

2.2.1. Inoculum and culture medium preparation 

The inoculum consisted of anaerobic sludge acquired from Darville wastewater 

treatment facility in Pietermaritzburg, South Africa. A heat pre-treatment was carried 

out at 121°C for 10 min following a 24 hour incubation at pH 8 at 25°C [29] to deactivate 

hydrogen consumers. Sodium alginate (Sigma) was mixed with the pre-treated 

anaerobic sludge to make a final 3% alginate solution, containing a 20:80 alginate to 

sludge ratio. 0.2% granular activated carbon was added to increase bead porosity [25]. 

The alginate sludge mixture was then trickled through a peristaltic pump (Watson-

marlow 503U) into a 0.2 M CaCl2•2H2O solution which enabled the alginate to cross-

link into small beads 3 mm in diameter. The fermentation medium consisted of 1.5 g 

L-1 KH2PO4, 2 g L-1 (NH4)2SO4, 0.157 g L-1 FeCl2•4H2O, 0.1 g L-1 CaCl2•2H2O, 0.085 

g L-1 MnCl2•4H2O, 0.178 g L-1 ZnSO4•7H2O, 0.072 g L-1 Na2MoO4•2H2O and 10 g L-1 

C6H12O6 [29].  

2.2.2. Bioreactor operation 

Hydrogen was produced with an 8 litre working volume utilising a 10% inoculum size 

(800 ml). Operational conditions of 37°C and 180 rpm were used for temperature and 

agitation respectively with an initial pH of 6.8. 

Three fermentation setups were carried out in batch mode. These encompassed, (1) 

Suspended Cells in Reactor (SCR), wherein suspended cells was placed directly into 

the substrate. (2) Immobilized Cells in Reactor (ICR), wherein immobilized cells were 

placed directly into the substrate. (3) Immobilized Cells in Cartridge (ICC), wherein 

immobilized cells was placed equally into the three rectangular perforated ducts of the 

cartridge structure. The setup 1 and 2 were carried out in 13 L Infors bioreactor 

equipped with two Rushton turbine impellers (Figure 2A). The setup 3 used a similar 

bioreactor vessel, but without impellers as the cartridge system ensured the mixing 

process (Figure 2B). 

The reactor was sparged with nitrogen gas for 6 min directly prior to each start-up. 

Fermentations were run for the duration of hydrogen production. 



57 
 

    

Figure 2: Continuous stirred tank reactor: (A) before modification, Rushton turbine 
impellers present; (B) after modification with removable cartridge turbine 

2.3. Analytical methods   

2.3.1. Gas and liquid phase  

The total biogas produced was monitored in real time using f-lab software [30] via 

Bluesens sensors for Hydrogen, Methane and Carbon Dioxide (Bluesens, Germany) 

and a MILLIGASCOUNTER® (Ritter, Germany) under standard temperature and 

pressure. The molar hydrogen yield was calculated according to equation (1). 

HY = N H,F / (N g, i – N g,f)    (1) 

Where HY is the molar hydrogen yield, NH,F is the cumulative hydrogen volume in 

moles, Ng,i and Ng,f represents the initial and final glucose concentration in moles, for 

each run respectively.  

(A) (B) 
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The cumulative volume of hydrogen produced was calculated according to the 

equation (2) 

VH,i = VH,i -1 + CH,i (VG,i - VG,i -1) + VH (CH,i – CH,i -1) (2) 

VH,i and VH,i-1 are cumulative hydrogen gas volume at the current (i) and previous (i-1) 

time intervals, VG,i and VG,i-1 the total biogas volumes in the current and previous time 

intervals, CH,i and CH,i -1 are the fraction of hydrogen gas in the headspace of the 

bioreactor in the current and previous intervals, and VH the total volume of the 

headspace in the bioreactor. 

The modified Gompertz model was used to assess the kinetics of biohydrogen 

production for SCR, ICR and ICC batch fermentations using equation (3). 

𝐻(𝑡) = 𝑃 ∙ 𝑒𝑥𝑝 { −𝑒𝑥𝑝 [
𝑅𝑚 ∙ 𝑒

𝑃
(𝜆 − t) + 1] }     (3) 

Where H(t) represented the cumulative volume of hydrogen production (ml), P is the 

hydrogen production potential (ml), Rm is the maximum hydrogen production rate (ml 

h-1), λ is the lag-phase time (h), t is incubation time (h), and e = 2.718. 

The parameters P, Rm and λ were derived using the least squares method using 

CurveExpert V1.5.5 software. 

Glucose and pH were monitored at 6 hour intervals and analysed using a Glucose 

analyser (YSI 2700) and a pH meter (Crison) respectively. The chemical oxygen 

demand (COD) of the substrate and effluent was assessed using COD cell test kits 

(Merck). 

The SCR, ICR and ICC batch fermentations were comparatively assessed in terms of 

total gas produced, hydrogen fraction, cumulative hydrogen volume, total fermentation 

time, hydrogen yield, glucose consumption, pH change and COD reduction. The 

percentage differences between some of these process modes was expressed using 

equation (4). 

Percentage change = (Cp-Rp)/Rp x 100                                                             (4) 

Where Cp is the ICC parameters and Rp is the SCR or ICR parameters.  Parameters 

include hydrogen fraction, total fermentation time, maximum hydrogen production rate, 

exponential hydrogen production phase, glucose consumption, pH change and COD 

reduction. 
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2.3.2. Microscopic inoculum analysis 

The pre-treated inoculum anaerobic sludge, sludge-beads and the effluent beads from 

the SCR and ICC fermentations were observed under scanning electron microscopy. 

The pre-treated anaerobic sludge was homogenised and a single drop placed onto a 

filter and air dried within a fume hood (ESCO Frontier). The filter disk was then affixed 

to a copper stub via carbon tape and coated with gold in an Eiko IB-3 ion coater. The 

beads were placed in 3% buffered Gluteraldehyde for 2 hours and washed in 0.05 M 

Sodium Cocodylate buffer twice for 5 min each. Sequential dehydration was performed 

with 10, 30, 50, 70, 90 and 100% ethanol for 10 min each. The beads were then dried 

in a Quorum K850 critical point dryer, mounted on carbon tape, attached to copper 

stubs and coated with gold in an Eiko IB-3 ion coater and viewed under a Zeiss EVO 

LS15 scanning electron microscope [29]. 

 

3. Results and discussion  

3.1. Bioreactor design and implementation 

Stainless steel 316-2B, was used for cartridge fabrication. It has a high resistance to 

corrosion in chloride environments [31] and can withstand repeated cycles of heat 

sterilization at 121°C for 20 min, required for bioreactor components. The perforations 

and the orientation of the cartridges maximise the exposure of the cells to the liquid 

substrate. The structure and alignment of the cartridges, together with the baffles 

promoted turbulence and prevented a vortex formation. The cartridges were attached 

to each other at 120° to maximise the volume of the cartridges whilst ensuring stable 

agitation without damaging the various probes. The rotation movement of the cartridge 

enhanced mass and heat transfer with reduced shear damage on the immobilizing 

matrix. This improved the reusability of immobilized cells. This configuration could also 

be advantageous for processes with short hydraulic retention times, and would 

therefore benefit hydrogen fermentations [32]. Additionally, stabilizing the inoculum 

beads in the cartridge structure also prevented them from clogging the sensors or 

blocking the sampling ports in the bioreactor, thus enhancing process monitoring.  
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3.2. Comparative assessment of SCR, ICR and ICC for hydrogen 

production, glucose consumption and pH change 

The SCR, ICR and ICC fermentation process modes were comparatively assessed.  

The total biogas volume from SCR, ICR and ICC were 1209, 1359 and 8210ml 

respectively with maximum biohydrogen fractions of 42.93, 46.92 and 30.30% (Figure 

3A) corresponding to hydrogen volumes of 275.56, 383.16 and 1402.21ml (Figure 3B) 

respectively. The ICC system showed an improvement of 6.8 fold and 6 fold for the 

accumulated total biogas compared to SCR and ICR, indicating a greater degree of 

biological activity. Furthermore the ICC showed an increase in the cumulative 

biohydrogen volume of 5.1 fold compared to the SCR and 3.7 fold compared to the 

ICR. Despite the lower hydrogen fraction observed in ICC, the fermentation process 

in this system lasted for 25 hours against 52 hours in SCR and 71 hours in the ICR 

and resulted in an overall higher yield in ICC compared to both SCR and ICR 

processes (Figure 3A). The ICC reduced fermentation time by 52% and 65% 

compared to the SCR and ICR processes respectively (Table 1). Hydrogen yields were 

0.288, 0.400 and 1.13 mol H2 mol-1 glucose for the SCR, ICR and ICC processes 

respectively. This amounts to a 3.9 fold and 2.8 fold increase in the ICC compared to 

the SCR and ICR processes respectively. 

A combination of a high hydrogen fraction with the low cumulative hydrogen volumes 

observed in the SCR and ICR processes could be indicative of hydrogen production 

inhibition by high hydrogen partial pressure [6, 15]. A high hydrogen concentration 

inhibits acetogenic bacteria that produce hydrogen [33]. The use of the cartridges 

created a greater degree of turbulence, thus preventing supersaturation of hydrogen 

gas in the liquid phase, therefore maintaining a low hydrogen partial pressure and 

preventing its negative effect on hydrogen production [6]. Although all processes were 

operated at the same mixing rate (180 rpm) the ICC process retained a greater mixing 

efficiency.  Doran [34] states that replacing Rushton turbines with larger diameter 

turbines substantially reduces fluid compartmentalization and improves bulk mixing. 
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The modified Gompertz model kinetic coefficients are shown in Equations 5, 6 and 7 

for SCR, ICR and ICC respectively 

𝐻(𝑡) = 276 ∙ 𝑒𝑥𝑝 { −𝑒𝑥𝑝 [
125∙ 𝑒

276
(9,8 − t) + 1] }             (5) 

𝐻(𝑡) = 384 ∙ 𝑒𝑥𝑝 { −𝑒𝑥𝑝 [
181∙ 𝑒

384
(13,8 − t) + 1] }           (6) 

𝐻(𝑡) = 1532 ∙ 𝑒𝑥𝑝 { −𝑒𝑥𝑝 [
248∙ 𝑒

1532
(12,8 − t) + 1] }         (7) 

The regression curves gave coefficients of determination (r2) values of 0.99, hence the 

models satisfactorily illustrated biohydrogen production for SCR, ICR and ICC 

fermentations. Table 1 shows the P, Rm and λ values for the SCR, ICR and ICC 

processes. The maximum hydrogen production rate (Rm) was 125, 181 and 248ml h-1 

for the SCR, ICR and ICC processes respectively. This indicates that the ICC made a 

98% improvement on the SCR process and a 37% improvement on the ICR process. 

The lag time (λ) of the SCR processes was the shortest (9.8 h), as was expected, due 

to the ease of availability of substrate to the cells. The ICC design was able to reduce 

the lag time (λ) by one hour compared to the ICR process (12.8h and 13.8h 

respectively), resulting from an improved mass transfer within the ICC. The hydrogen 

production potential (P) of the SCR, ICR and ICC processes were 276, 384 and 1532 

ml  respectively, thus 5.6 and 4 folds improvements by the ICC batch fermentation 

compared to SCR and ICR respectively. The lag time duration in dark fermentation 

under mesophilic conditions using anaerobic sludge are reported in the range of      

4.29 h and 69.3 h [35, 36]. Lag times may fluctuate depending on pre-fermentation 

inoculum concentration, type and complexity of the substrate used. Short lag times do 

not necessarily result in a high Rm and P values. Kargi et al. [35] observed an Rm 

value of 1.53 ml h-1 and a P value of 98.1ml compared to Cakır et al. [36] with Rm and 

P values of 1.38ml h-1 and 125ml. Nath et al. [37] used a pure culture of Enterobacter 

cloacae DM11 and showed a P value of 927.64ml with a lag time of 2.05h and an Rm 

value of 17.65 ml h-1. The maximum hydrogen production rate (Rm) and hydrogen 

production potential (P) are influenced by the substrate concentration, inoculum type 

and could vary depending on the favourability of the conditions within the reactor, i.e. 

reactor pH, VFA accumulation and hydrogen partial pressure. Agitation and mass 

transfer influence hydrogen production potential (P), maximum hydrogen production 

rate (Rm) and lag time (λ).  The physicochemical conditions of fermentation like, the 
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inoculum/substrate type, methods of pre-treatment, concentration and physical state 

alongside constant pH and temperature conditions contribute to fluctuations in the P, 

Rm and λ. 

The exponential time of hydrogen production lasted 6 hours for the SCR and ICR 

processes and 11 hours for the ICC process (Figure 3B). The rate of glucose 

degradation was proportional to hydrogen production in all three fermentation process. 

High glucose consumption rates were observed during the first 12 hours of 

fermentation in SCR and ICR, and 18 hours for ICC. This corresponded to high and 

stable production of hydrogen in these processes. Incomplete glucose degradation 

was observed in the SCR and ICR processes as the hydrogen production ceased after 

52 and 71 hours respectively and these processes were terminated (Figure 3C). ICC 

process had a uniform rate of glucose consumption for the duration of fermentation, 

reducing the glucose concentration to a residual value of 0.049 g L-1. A residual 

glucose concentration of 2.3g L-1 was obtained for SCR and ICR processes at the end 

of fermentation process unlike the ICC process mode. ICC process mode improved 

the glucose consumption by 29% compared to SCR and ICR processes. 

Fermentations were initiated at pH of 6.8, and a steeper decline of this value was 

observed in SCR and ICR compared to ICC over time. The final pH of the effluents 

were 4.35, 4.68 and 4.8 for the SCR, ICR and ICC processes respectively (Figure 3D).  

Thus, pH change was 19 and 10% lower in ICC compared to SCR and ICR 

respectively. This indicates that the ICC concept has buffering potential, which may 

have contributed to the enhanced hydrogen production. Hu et al. [38] indicated that 

the incomplete substrate degradation and consequent lower hydrogen yields may be 

attributed to a decrease in pH from acids production.
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Table 1: Percentage change and fold improvements of the immobilized cells in cartridge (ICC) processes compared to the 

suspended cells in reactor (SCR) and immobilized cells in reactor (ICR) processes 

Parameters Suspended 

cells in 

reactor 

(SCR) 

Immobilized 

cells in 

reactor 

(ICR) 

Immobilized 

cells in 

cartridge 

(ICC) 

%  Change 

of ICC to 

Fold improvement 

of ICC to 

SCR ICR SCR ICR 

Total Gas volume (ml) 1209 1359 8209,5   6,8 6,0 

Max. H2 fraction (%) 42,93 46,92 30,30 -29 -35   

H2 Volume (ml) 275,56 383,16 1402,21   5,1 3,7 

Time (h) 52 71 25 -52 -65   

HY (mol H2 mol-1 glucose) 0,288 0,4 1,13   3,9 2,8 

Exponential H2 production phase (h) 6 6 11 83 83   

Glucose degradation (g) 7,7 7,7 9,951 29 29   

pH change 2,46 2,21 1,997 -19 -10   

COD reduced (g L-1) 5,361 5,329 5,914 10 11   

P (ml) _ H2 production potential 276 384 1532   5,6 4,0 

Rm (ml h-1) _ max. H2 production rate 125 181 248 98 37   

λ (h) _ lag phase time 9,8 13,8 12,8 31 -7   
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Figure 3: Comparative assessment of standard CSTR operated with SCR and ICR and the ICC design. Duration of fermentation varied.                     

(A) Hydrogen fraction profiles; (B) Cumulative hydrogen volume profiles; (C) Glucose degradation profiles; (D) pH evolution profiles. (●: SCR;       

▼: ICR; ■: ICC)
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3.3. Chemical oxygen demand (COD) 

The chemical oxygen demand of the substrate was reduced in all the three 

fermentations (Table 2). SCR, ICR and ICC fermentations reduced the COD of the 

substrate by 5,36; 5,33 and 5,91 g L-1 respectively. The ICC process had reduced the 

COD of the effluent by 10,3% and 11% more than the fermentation with SCR and ICR 

respectively. COD reduction and hydrogen production have a proportional relationship 

[38]. Bioreactor pH has an impact on COD reduction [38]. The wastewater and sludge 

had a COD of 12,73 and 15,3 g L-1 respectively (Table 2). 

Table 2: Chemical oxygen demand of the substrate and effluent of the SCR, ICR and 

ICC processes, wastewater substrate and sludge and the COD reduction of the 

respective fermentation runs. 

Sample Chemical oxygen demand (COD) (g L-1) 

Substrate Effluent  Reduction 

SCR 12,991 7,63 5,361 

ICR 12,734 7,405 5,329 

ICC 12,734 6,82 5,914 

Wastewater substrate 12,734 12,734 - 

Sludge 15,3 15,3 - 

 

3.4. Electron microscopy (SEM) of sludge-alginate beads 

The anaerobic sludge used in the fermentations showed the presence of various cocci 

and rod shaped microorganisms (Figure 4), as well as non-microbial components. 

Alginate beads from ICR and ICC process modes were observed. Beads from ICC 

mode retained better structural integrity compared to ICR beads, which were 

fractionated into various sizes. For the ICR processes, clusters of microbial cells were 

present in the ruptured beads (Figure 5), though majority of the surface area revealed 

the porous nature of the sodium alginate matrix. The beads from the ICC processes 

had fused via a cream coloured film, acquiring the shape of the cartridge. The cream 

coloured film showed a very dense population of rod shaped microorganisms 

approximately 2 μm in length (Figure 6A). The surface of the ICC beads had a uniform 

spread of varying microorganisms, ranging from small cocci, 1-2 μm in diameter, to 

rod microorganisms, 2-3 μm in diameter, vibrio microorganisms, 3 μm in length can 
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also be seen (Figure 6B). Micro cracks found sporadically on the surface of some ICC 

beads show the alginate cross links abundant in a rod shaped organisms, some of 

them appear to be joined and may represent Diplobacillus or Streptobacillus 

conformations (Figure 6C). A cross section of an ICC bead is shown in Figure 7D. In 

this micrograph some rod shaped microorganisms appear to be amidst various steps 

that occur in mitosis (Figure 6D). In light of this being an area that was completely 

enclosed during fermentation, it may indicate improved mass transfer in the ICC 

process to have cells appear to be in active stages of growth. 

 

 

Figure 4: Anaerobic sludge prior to fermentation with rod shaped microorganisms 

present at 10 000x 
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Figure 5: Sludge-alginate beads after ICR fermentation with microorganisms present 

in fragmented beads at 5 000x 
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Figure 6: Sludge-alginate beads from within ICC fermentation: (A) film between fused beads at 5 000x; (B) exterior surface at 5 000x; (C) natural 
chasm on surface at 8 000x; (D) cross section of interior surface of beads fractured during SEM preparation at 5 000x

B. 

C. 

A. B. 

C. D. 
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4. Conclusion  

To address the challenges associated with the use of immobilized cells for 

biohydrogen production in a CSTR, a novel reactor configuration was developed using 

a cartridge system and comparatively assessed with the standard CSTR. The ICC 

process improved hydrogen yield by 3.9 and 2.8 folds and reduced fermentation time 

by 52 and 65% compared to the SCR and ICR process respectively. Kinetics studies 

using the modified Gompertz model revealed that the ICC process had a 4 fold 

increase in hydrogen production potential (P) compared to the ICR process. Complete 

glucose degradation was observed in the ICC process, which showed a 29% 

improvement compared to SRC and ICR processes. These findings indicate that the 

developed ICC concept holds innovative proficiencies to improve fermentative 

biohydrogen productivity, yield and process economics. 
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Chapter 5 

Conclusions and recommendations for further research 

 

 

 Conclusions and implications 

 

This study designed, implemented a novel bioreactor configuration. This novel reactor 

was assessed on various fermentative biohydrogen production processes. Based on 

the findings, the following conclusions were drawn: 

5.1.1. The novel 2L lab scale bioreactor was comparatively assessed with an 

equal volume shake flask reactor. Dark fermentation process with 

immobilized cells using the novel 2L lab scale bioreactor showed a 

reduced lag time of 58%, and an increased biohydrogen volume of 74% 

compared to the shake flask reactor. The novel reactor configuration 

showed a substantial improvement in hydrogen production. 

 

5.1.2. The 13L novel bioreactor was compared with the standard CSTR under 

different fermentation modes. The standard CTSR was operated with 

suspended cells (SCR) and immobilized cells (ICR) and the novel reactor 

used immobilized cells (ICC). ICC showed a 5,1 fold improvement in the 

hydrogen volume, a 52% reduction in the total process time and a 3,9 fold 

increase in the hydrogen yield compared to SCR. In comparison with ICR, 

ICC showed a 3,7 fold increase in the hydrogen volume, a 65% reduction 

in the total process time and a 2.8 fold increase in the hydrogen yield.  

 

5.1.3. ICC showed marked improvements in biohydrogen production 

compared to SCR and ICR. The study demonstrated that the cartridge 

concept was capable of improving hydrogen production with immobilized 

cells. 
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 Recommendations for future studies 

 

5.2.1. Further comparisons with the newly designed reactor and other 

configurations will provide insights into optimal bioreactor configuration to 

maximize hydrogen production.  

 

5.2.2. Operating the novel reactor configuration using fed-batch or continuous 

modes would provide insights about the effect of hydraulic retention time 

on biomass retention and hydrogen yield. Additionally, the data achieved 

can be compared to existing configurations.  

 

5.2.3. Computational fluid dynamics (CFD) analysis on the novel bioreactor 

configurations would enhance the understanding of these reactor 

configurations in regards to mass transfer, gas-liquid transfer, sheer stress 

and heat transfer as well the impact on cell physiology. Additionally CFD 

is typically done to study the dynamic behaviour of stirred systems with 

diverse impeller conformations.  

 

5.2.4. Applying the novel reactor configuration in other areas of biotechnology 

to investigate the efficiency of the designed reactor on other fermentation 

processes that require biomass retention. 

 

5.2.5. Advanced studies on this novel bioreactor configuration can be 

undertaken to enhance biomethane and other biofuels production on a 

large range of organic waste substrates. 




