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ABSTRACT 
 
Policy makers, water managers, farmers and many other sectors of the society in 

southern Africa are confronting increasingly complex decisions as a result of the 

marked day-to-day, intra-seasonal and inter-annual variability of climate. Hence, 

forecasts of hydro-climatic variables with lead times of days to seasons ahead are 

becoming increasingly important to them in making more informed risk-based 

management decisions. With improved representations of atmospheric processes 

and advances in computer technology, a major improvement has been made by 

institutions such as the South African Weather Service, the University of Pretoria 

and the University of Cape Town in forecasting southern Africa’s weather at short 

lead times and its various climatic statistics for longer time ranges. In spite of 

these improvements, the operational utility of weather and climate forecasts, 

especially in agricultural and water management decision making, is still limited. 

This is so mainly because of a lack of reliability in their accuracy and the fact that 

they are not suited directly to the requirements of agrohydrological models with 

respect to their spatial and temporal scales and formats.  

 
As a result, the need has arisen to develop a GIS based framework in which the 

“translation” of weather and climate forecasts into more tangible agrohydrological 

forecasts such as streamflows, reservoir levels or crop yields is facilitated for 

enhanced economic, environmental and societal decision making over southern 

Africa in general, and in selected catchments in particular. This study focuses on 

the development of such a framework. As a precursor to describing and evaluating 

this framework, however, one important objective was to review the potential 

impacts of climate variability on water resources and agriculture, as well as 

assessing current approaches to managing climate variability and minimising risks 

from a hydrological perspective. With the aim of understanding the broad range of 

forecasting systems, the review was extended to the current state of hydro-climatic 

forecasting techniques and their potential applications in order to reduce 

vulnerability in the management of water resources and agricultural systems. This 

was followed by a brief review of some challenges and approaches to maximising 

benefits from these hydro-climatic forecasts.  
 



A GIS based framework has been developed to serve as an aid to process all the 

computations required to translate near real time rainfall fields estimated by 

remotely sensed tools, as well as daily rainfall forecasts with a range of lead times 

provided by Numerical Weather Prediction (NWP) models into daily quantitative 

values which are suitable for application with hydrological or crop models. Another 

major component of the framework was the development of two methodologies, 

viz. the Historical Sequence Method and the Ensemble Re-ordering Based Method 

for the translation of a triplet of categorical monthly and seasonal rainfall forecasts 

(i.e. Above, Near and Below Normal) into daily quantitative values, as such a 

triplet of probabilities cannot be applied in its original published form into 

hydrological/crop models which operate on a daily time step.  
 

The outputs of various near real time observations, of weather and climate 

models, as well as of downscaling methodologies were evaluated against 

observations in the Mgeni catchment in KwaZulu-Natal, South Africa, both in terms 

of rainfall characteristics as well as of streamflows simulated with the daily time 

step ACRU model. A comparative study of rainfall derived from daily reporting 

raingauges, ground based radars, satellites and merged fields indicated that the 

raingauge and merged rainfall fields displayed relatively realistic results and they 

may be used to simulate the “now state” of a catchment at the beginning of a 

forecast period. The performance of three NWP models, viz. the C-CAM, UM and 

NCEP-MRF, were found to vary from one event to another. However, the C-CAM 

model showed a general tendency of under-estimation whereas the UM and 

NCEP-MRF models suffered from significant over-estimation of the summer 

rainfall over the Mgeni catchment. Ensembles of simulated streamflows with the 

ACRU model using ensembles of rainfalls derived from both the Historical 

Sequence Method and the Ensemble Re-ordering Based Method showed 

reasonably good results for most of the selected months and seasons for which 

they were tested, which indicates that the two methods of transforming categorical 

seasonal forecasts into ensembles of daily quantitative rainfall values are useful 

for various agrohydrological applications in South Africa and possibly elsewhere. 

The use of the Ensemble Re-ordering Based Method was also found to be quite 

effective in generating the transitional probabilities of rain days and dry days as 

well as the persistence of dry and wet spells within forecast cycles, all of which are 



important in the evaluation and forecasting of streamflows and crop yields, as well 

as droughts and floods.  

 

Finally, future areas of research which could facilitate the practical implementation 

of the framework were identified. 
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1. INTRODUCTION  
 
Uncertainty about hydro-climatic conditions in the immediate future (today), as well 

as the near (up to one week) and more distant futures (up to one season) remains 

a fundamental problem challenging decision makers in fields such as water 

resources, agriculture and many other water sensitive sectors in southern Africa, 
where the climate is highly variable both temporally and spatially. Many critical 

agricultural and water management decisions that depend on climatic conditions 

must be made in advance, based on climate information and assumptions, before 

the actual impacts of the climate materialise (Hansen, 2002). Hence, water 

resource managers and agriculturalists in southern Africa need to be advised of 

likely climatic and hydrological conditions well in advance by producing skilful 

hydro-climatic forecasts that have the potential to reduce risk in both the near and 

long terms, and to provide valuable support to meet the increasing and competing 

demands for limited water resources.  

 
In South Africa, several institutions such as the South African Weather Service 

(SAWS), the University of Pretoria and the University of Cape Town have been 

actively involved in providing short (1 - 3 day) and medium (4 - 14 day), as well as 

long (up to 6 month) term rainfall forecasts across a range of space scales, which 

could potentially be applied to benefit agriculture, water resources and many other 

climate sensitive sectors. The scientific application of these forecasts in 

operational decision-making in water resources management could potentially 

save affected water related industries millions of Rand annually and may also 

spare hardship as well as loss of life (Schulze, 2002). Research into, and targeted 

application of, weather and climate forecasts in the management of agricultural 

and water resources decisions is, however, not simple, and remains an area which 

requires significant research effort.  
 
1.1 Rationale for the Study 
 
A Water Research Commission (WRC) project K5/1646 titled "Applications of 

Rainfall Forecasts for Agriculturally Related Decision Making in Selected 

Catchments" is currently (2005 - 2010) being undertaken by a consortium of six 

institutions, viz. the University of KwaZulu-Natal (UKZN) as the lead organisation, 
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the University of the Free State (UFS), the University of Pretoria (UP), the 

Agricultural Research Council (ARC), the University of Cape Town (UCT) and the 

South African Weather Service (SAWS). The project aims to address the gaps that 

exist between the weather and climate forecasts and the links (via agrohydrology 

models) into targeted applications in agricultural and water related decision 

making. The rationale for the project includes the following: 

 
• The climate in southern Africa is generally highly variable both in time and 

space. Climate variability is likely to be amplified with the climate change in 

the future. 

• Climate variability has a profound impact on agriculture and water resource 

management. 

• Many agricultural decisions are made, based on climate information (short, 

medium and long term) and on assumptions relating to weather and climate 

in the near future. 

• Forecasting with different lead times from one day, through multiple days, 

one month and one season has the potential to reduce risk in the long term 

and to provide valuable support to meet the increasing and competing 

demands for limited water resources. 

• However, gaps exist between the weather and climate forecasts, both in 

linking them to the agrohydrology models, and in application of forecasted 

information for targeted agricultural and water related decision-making. 

 
1.2 Limitations in the Use of Weather/Climate Forecasts 
 
There are many scientific problems that need to be addressed in the use of 

weather/climate forecasts for applications with agrohydrological models. Some of 

the problems identified in this study are:   

 
• the skill level of the current weather and climate forecasts, which is highly 

dependent on the geographic locations and seasonality, 

•  the mismatch in scales between the output from weather/climate models and 

the spatial scale at which hydrological models are applied, 

• climate products that are not in the form that can be used directly in 

agrohydrological models, and 
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• the lack of information transfer on how end users can apply the various 

forecast types. 

 

1.3 Objective and Specific Tasks of the Study 
 
The overall objective of this study is to develop, test and operationalise the 

translation of weather (i.e. short to medium term) and climate (i.e. long term) 

forecasts into integrated, time-varying and self-correcting agrohydrological 

forecasts for enhanced economic, environmental and societal decision making 

over South Africa in general, and in selected catchments in particular, in order to 

reduce risks to the agricultural and water sectors which are associated with 

vagaries of day-to-day to seasonal climate variability. This study forms part of a 

wider ranging WRC funded research project which encompasses three major 

components, viz. 

 
• the collation of weather and climate forecasts, including their downscaling to 

appropriate spatial and temporal scales, 

• the “translation” of the weather and climate forecasts into agrohydrological 

forecasts, and 

• the applications of the forecasts to targeted end users. 

 
This study addresses in particular the second component, focusing on 

development of a framework for “translating” weather and climate forecasts into 

agrohydrological forecasts. In this research it is hypothesised that, if short, 

medium and long lead time daily to seasonal rainfall forecasts can be made with a 

degree of confidence, these forecasts can be transformed into short to long term 

agrohydrological forecasts and that such information would be beneficial to 

farmers, water managers as well as catchment and disaster risk managers in 

southern Africa in order to make operational decisions from one day up to several 

months ahead of time. In this context, agrohydrological forecasts encompass 

variables that are most required in planning and management/operation of water 

and agricultural sectors. These forecasts include, but are not limited to:   

 
• streamflows, 

• soil water contents of the top- and subsoil,  
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• irrigation requirements, 

• reservoir levels, and 

• crop yields. 

 
Within the study, some new methodologies have been developed and tested to 

translate available near real time values of rainfall from radar/satellite images as 

well as daily and multiple day forecasts through to seasonal rainfall forecasts, into 

quantitative values which can be input into the daily time step ACRU 

agrohydrological simulation model as well as into other daily models. This 

facilitates the generation of agrohydrological forecasts suitable for use in 

operational decisions of water resources systems such as water releases from 

dams, water rationing, flood warnings or hydropower generation projects, as well 

as for agricultural decisions such as crop selection, planting decision, pest control, 

fertilizer application, irrigation scheduling, or implementation of soil and water 

conservation programmes. This study has, furthermore, made a contribution to 

some new knowledge of forecasting on issues related to model verification 

strategies and uncertainty analysis by estimating errors that cascade through the 

translation of weather/climate forecasts into streamflow forecasts.  

 

Climate variability affects many socio-economic activities in southern Africa at the 

present time, yet it receives relatively little attention of the public when compared 

to the awareness of people to future climate change impacts. This study therefore 

commences in Chapter 2 with a brief review of literature on southern Africa’s 

climate variability and its potential impacts on water resources and agriculture. In 

the chapter the two most frequently occurring hydrological hazards, viz. droughts 

and floods are also discussed. The economic, social and environmental impacts of 

these hazards are described within the context of southern Africa. The chapter 

ends with a review of the current approaches to managing climate variability and 

minimising risks from a hydrological perspective.  

 
In Chapter 3 the role of hydro-climatic forecasting in decisions to modify the 

vulnerability of human beings and properties to the adverse of impacts of climate 

variability is described briefly. In this chapter, an attempt has been made to review 

the types of agrohydrological forecasts and their potential applications to modify 
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vulnerability in water resources and agricultural water management, followed by a 

brief review of the current state of climate and hydrological forecasting techniques, 

as well as their qualities and limitations. Challenges and approaches to maximise 

benefits from hydro-climatic forecasts are presented in Chapter 4.  Key elements 

of the review are the techniques developed to improve forecast quality, the 

impediments in communicating the information and the application of forecasts to 

modifying decisions, (i.e. forecast value). 

 
Chapter 5 commences with the motivation behind the development of a GIS based 

framework for the agrohydrological forecasting system, followed by a brief 

description on how to use the outputs of the weather/climate models imbedded 

within the framework. This is followed in Chapter 6 by some general background 

on the test catchment, viz. the Mgeni catchment and the set up of the ACRU 

model for streamflow simulations. The evaluation of rainfall information from a 

network of daily reporting gauges, radars, satellite images and merged fields is 

discussed in Chapter 7, followed in Chapter 8 by an evaluation of the short and 

medium term rainfall forecasts from three selected Numerical Weather Prediction 

(NWP) models. Chapters 9 and 10 are devoted, respectively, for the verification of 

two temporal downscaling methodologies, viz. the Historical Sequence Method 

and the Ensemble Re-ordering Based Method, which are developed in this study 

to translate the categorical monthly and seasonal (i.e. 3 months) rainfall forecasts 

into daily quantitative rainfall values.  

 
A summary and conclusions, followed by recommendations for further research, 

are presented in Chapter 11.  
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2. IMPACTS OF CLIMATE VARIABILITY ON WATER RESOURCE AND 
AGRICULTURAL SYSTEMS, WITH A FOCUS ON SOUTHERN AFRICA 

 
Climate drives virtually all biophysical processes (e.g. runoff, droughts, floods, fire, 

frost, snowmelt, erosion, photosynthesis), and climate variability has, therefore, 

always been a major determinant of the socio-economic activities of humankind 

(Jose et al., 1996; Sauchyn, 2000). How people dress, how they build their homes, 

when they go on vacation, what kind of crops they grow, as well as many other 

human activities are dependent on climate variability (Kinuthia, 1999). Before end 

users use any climate information from hydro-climatic forecasts, they must be 

made aware of climate risks and their impacts on them. In this chapter a review of 

the impacts of climatic variability on two of the most sensitive climate determined 

sectors, viz. water resources and agriculture, is presented with reference to 

southern Africa. Following that, current approaches to manage climate variability 

and minimising risks from hydrological perspective, with a focus on the two most 

frequently occurring hydrological hazards in southern Africa, (i.e. floods and 

droughts) are briefly described, in order to demonstrate the importance of 

integrated time-varying agrohydrological forecasting as a tool to reduce 

vulnerability to climate hazards in these two sectors, and to manage the risk of  

droughts and floods through anticipatory actions.   

 
2.1 Short Term Variability of Climate in Southern Africa 
 
Climate is a function of global wind patterns, amount and variability of precipitation 

and rates of evaporation (Van Zyl, 2003). Climate has never been stable for any 

extended period of time (Kabat and Bates, 2002). Natural external causes of 

climate variability include variations in the amount of energy emitted by the sun, 

changes in the distance between the earth and the sun and presence of volcanic 

pollution in the upper atmosphere. Internal variations of the climate system also 

produce fluctuations through the feedback processes that connect various 

components of the climate system. These variations arise when the more rapidly 

varying atmospheric conditions “force” the so-called slow components of the 

system such as internal variations in the ocean or biosphere. The El Niño - 

Southern Oscillation (ENSO) phenomenon is a good example of slow internal 

climate variability (Kabat and Bates, 2002).    
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There is sometimes confusion between the two terms climate variability and 

climate change. However, distinguishing the long term climate change from the 

shorter term climate variability is the point of departure in understanding the way in 

which weather patterns are changing over time, and in reducing the impacts that 

extreme events have on life and property. Climate variability can be defined as any 

deviation from a long-term expected value, calculated typically from 30 years of 

time series data (Schulze, 2003). Unlike climate change, climate variability is an 

entirely natural phenomenon, is reversible and is non-permanent (IPCC, 2001; 

Schulze, 2003). Although, climate variability is an inherent feature of the natural 

climate system, it may be exacerbated as a result of global warming (IPCC, 2001; 

Kabat and Bates, 2002; Schulze, 2003).   According to Schulze (2003) climate 

variability has time scales ranging from  

 
• diurnal (within the course of a day, e.g. time of occurrence of convective 

thunderstorms), to 

• daily (i.e. variations from one day to the next), to 

• intra-seasonal (e.g. monthly climate variations), to  

• inter-annual (e.g. year-to-year variability), and 

• decadal (e.g. consecutive wet years or dry years). 

 
Climate change, on the other hand, may be defined in a contemporary context as 

a change which is attributed directly or indirectly to human activities, through which 

the composition of the global atmosphere is altered and which is, in addition to 

natural climate variability, observed over comparable time periods (Kabat and 

Bates, 2002).  Climate change is irreversible and permanent, and occurs where a 

trend over time (either positive or negative) is superimposed over naturally 

occurring variability. The time scale of climate change is decades to centuries and 

the trend is more likely to occur in steps than linearly over time (Schulze, 2003). 

Even though climate variability is likely to be amplified with climate change, this 

chapter concentrates on present day shorter term climate variability that often 

creates a need for natural resource management strategies, or natural hazard 

mitigation, over southern Africa. Southern Africa, as used in the context of this 

study, is defined to include Swaziland and Lesotho in addition to the Republic of 

South Africa. 
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Southern Africa is sandwiched between sub-tropical high pressure cells to the 

west and east (the Atlantic Ocean and Indian Ocean anticyclones), by virtue of 

which it becomes prone to frequent droughts and an uneven rainfall distribution in 

time and in space (Tyson, 1990; Kinuthia, 1999; Dyson and Van Heerden, 2002; 

Dyson et al., 2002; Hallowes, 2002). Variations in the positions and intensity of the 

two high pressure systems play an important role in the rainfall distribution over 

southern Africa (Dyson and Van Heerden, 2002). The mid-latitude westerly 

circulation, extending northward to these high pressure systems, controls the 

weather of southern Africa to a large extent. During the summer months, the 

influence of the westerly circulation is diminished as the high pressure systems 

migrate southwards and invade southern Africa in the form of tropical cyclones or 

easterly waves (Taljaard, 1994; Kinuthia, 1999; Dyson and Van Heerden, 2002). 

Invading tropical weather systems are often associated with heavy rainfall and 

flooding (Dyson and Van Heerden, 2002).  

 
Generally, six main climate regions may be identified in southern Africa, viz. the 

hot humid and high summer rainfall eastern coast region, the southwestern winter 

rainfall region, the all year rainfall south coast, the dry western coast, the semi-arid 

Karoo with late summer rains and the sub-humid northeastern central summer 

rainfall territory (Schulze, 1997; Van Zyl, 2003). However, extensive research has 

shown that large parts of southern Africa experience amongst the most highly 

variable rainfall worldwide (Haines et al., 1988; Schulze, 1997; Schulze, 2003). 

Over the western interior the annual average rainfall varies between 100 and 

200 mm. Over the remainder of the interior the annual average rainfall fluctuates 

between 200 and 700 mm with only the elevated mountain areas receiving more 

than 1 000 mm of rain annually (Taljaad, 1996; Schulze, 1997). The rainfall over 

many areas is often concentrated within a short period of time and displays a high 

inter-seasonal and inter-annual variability (Tyson, 1990; Schulze, 1997). 

Consequently, southern Africa experiences exceptionally high coefficients of 

variation in runoff (Schulze, 1997). Research conducted by Schulze (1997) has 

indicated that the coefficient of variation (CoV%) of annual rainfall over parts of 

southern Africa is in excess of 40%, which is high by world standards. The ratio of 

the conversion of rainfall to runoff over approximately half of South Africa is less 

than 5%, which is low in comparison to the world mean of 35%. 
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Year - to - year climate variations over southern Africa are strongly influenced by 

interactions between the atmosphere and the underlying ocean and land surfaces 

(Landman and Klopper, 1998; Hansen, 2002). Although the atmospheric 

conditions may fluctuate quite rapidly, surface characteristics such as surface 

temperature and soil moisture change more slowly and are capable of influencing 

climate over longer periods. The ENSO, the largest source of natural variability in 

the global climate system, is responsible for a large portion of the inter-annual 

rainfall variability over southern Africa (Landman and Klopper, 1998). It is an 

anomalous large-scale ocean-atmosphere system associated with an irregular 

cycle of warming and cooling of sea surface temperatures (SSTs) in the tropical 

Pacific Ocean (Mason, 1990; Mason et al., 1996; Kabat and Bates, 2002). The 

variability in seasonal rainfall over southern Africa is also related to sea surface 

temperature variations over the Atlantic and Indian Oceans (Mason, 1990). The 

associations between rainfall and sea surface temperature vary over the summer 

rainfall season. According to Landman and Klopper (1998), the Arabian Sea area 

and the equatorial Pacific Ocean show significant associations with December 

rainfall. Similarly, the central equatorial Indian Ocean is highly associated with 

February and March rainfall, while January rainfall has a poor association with sea 

surface temperatures.  

 
Uncertainty about future climatic conditions creates a major risk not only to natural 

resources such as water, agriculture, forestry or fisheries, but also to other climate 

sensitive sectors such as traffic, energy, city planning and environmental 

protection. Agriculture and water resources are, however, considered as the most 

dependent of all human activities on weather and climate (Hansen, 2002; Maini et 

al., 2004). The marked intra-seasonal and inter-annual variabilities of climate over 

southern Africa result in a high-risk environment for water resources and 

agriculture decision takers because these variabilities affect the major drivers of 

the hydrological system and certain processes within it (Kunz, 1993; Schulze, 

1997). In turn, changes in the hydrological system may impact soil moisture, 

extreme events (floods and droughts), reservoir storage, groundwater recharge, 

water quality and rainfed agriculture (Kunz, 1993). It is the variability of rainfall and 

runoff from season to season, and within a season, rather than averaged amounts, 
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that cause many of the complexities and uncertainties in the management of 

agricultural and water systems in southern Africa (Schulze, 2003). 

 
The two main climatic elements that affect the hydrological cycle are rainfall 

variability (spatial and temporal distribution) and temperature fluctuations. In this 

study, however, more emphasis is given to rainfall variability, since the amplitude 

of rainfall fluctuations are more evident than those of temperature fluctuations. 

 
2.2 Potential Impacts of Climate Variability on Water Resources 
 
Water is considered to be one of the most critical sectors associated with climate 

variability and change (Perks, 2001). The economic well-being of southern Africa 

is critically dependent upon the available water resources and the variability in 

rainfall patterns imposes stresses on the natural system, which can result in major 

social and economic dislocations. In southern Africa, summer season convective 

storms are the major source of most of water supply, both directly to crops and 

indirectly by way of farm dams, larger reservoirs and streams, all of which are also 

utilised to meet demands for water (NWRS, 2002). The following sections contain 

a review of how the supply and demand, availability, quality as well as the spatial 

and temporal distribution of southern Africa’s water resources are affected by 

climate variability.   

 
2.2.1 Impacts on Water Supply and Demand  
 
Southern Africa experiences a high inter-annual variability of rainfall and runoff, 

thereby placing significant demands on surface and groundwater resources 

(Perks, 2001). Over the past century, complex water related infrastructures have 

been built to provide clean water for drinking and for industries, for disposal of 

wastes, to facilitate transportation, generate electricity, irrigate crops and to reduce 

the risks of floods and droughts (Garbrecht and Schneider, 2004).  However, water 

demand and use have also been increased markedly as a result of a growing 

population, higher standards of living, industrial development, supplemental 

agricultural irrigation, and growing power generation in southern Africa (Van 

Jaarsveld and Chown, 2001; NWRS, 2002).  The demand for water must be met 

by the limited available water. Most reservoirs have substantial conservation 
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storage capacities and dependable yields to bridge persistent dry periods. 

However, the dependable water supplies from rainfed aquifers and withdrawals 

from uncontrolled streamflows can be substantially reduced during persistent dry 

periods (NWRS, 2002).  It is believed that municipalities, industries and agriculture 

which rely on these sources for all or part of their water supply may be vulnerable 

to shortages during persistent dry periods. This is particularly pertinent for the arid 

and semi-arid regions of southern Africa, where demands frequently exceed 

supply. During the 1980s and 1990s, for example, urban areas and industry were 

severely affected by drought. Most water dependent industries in southern Africa 

were forced to reduce their activities after water reservoirs fell to critically low 

levels (UNEP, 1997). 

 
Changes in hydrological variables (e.g. precipitation and evapotranspiration) can 

affect water availability in soils, rivers, dams and aquifers, with implications for 

water supplies for domestic, industrial and agricultural uses, as well as for 

ecological requirements (IPCC, 1996; Perks, 2001). Climate variability can also 

affect the complex water related infrastructure and systems, including reservoir 

operations, hydro-electric generation and navigation (Gleick, 2000). Research 

conducted in the USA, for example, has indicated that the additional costs 

imposed by climate variability are considerably larger than the additional costs 

imposed by industrial changes, or changes in agricultural water demands (Gleick, 

2000). According to Smithers et al. (2001), the February 2000 rainfall event in 

some parts of the Sabie catchment South Africa exceeded the 200 year return 

period event and resulted in disastrous flooding and severe damage to 

infrastructure. More recent research conducted in Portugal by Cunha et al. (2005) 

has also indicated that relatively small changes in the inflow to reservoirs due to 

climate variability may cause large changes in the reliability of water yields from 

those reservoirs. 

 
2.2.2 Impacts on Water Quality 
 
Water quality could deteriorate from impacts of climate variability, either directly or 

indirectly. The indirect impacts of climate variability may result of an increase or 

decrease in runoff. Both types of hydrological extremes have been shown in 

studies to negatively affect the quality of water. During low flow events, increased 
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concentrations of pollutants, toxins, bacterial contaminants and nuisance algae are 

common, whereas heavy flow events have been shown to increase soil erosion, 

chemical leaching, transport of livestock wastes and nutrients into the source 

water systems (Cunha et al., 2005). An assessment of water quality conducted by 

Faniran et al. (2001) on the Isinuka springs in the Eastern Cape indicated that the 

measured water quality variables (e.g. TDS, turbidity, NH4
+, SO4

2-, Cl-) were found 

to show seasonal fluctuations depending on the magnitude of flow events. Schulz 

et al. (2001) reached a similar conclusion in the Western Cape orchard areas, 

where pesticides, total phosphates and total suspended solids were measured in 

the Lourens River at the beginning of April 1999 prior to the first rainfall of the 

season and in the middle of April during high discharge periods. Pre-runoff season 

samples indicated only contamination with total endosulfan (α, ß, sulphate) at 

levels up to 0.06 ug/l. Runoff during the first rainfall event resulted in an increase 

in the levels of endosulfan, chloropyrifos and azinphos-methyl. 

 
Certain direct impacts may result from an increase of water temperature as a 

consequence of climate change, causing a decrease in the actual level of 

dissolved oxygen in water and interfering with chemical and biological processes 

occurring in water bodies, such as eutrophication processes (Cunha et al., 2005). 

 
2.2.3 Impacts on Groundwater Recharge 
 
Groundwater is an important source of water supply for domestic, industrial and 

agricultural use, particularly in the rural and the more arid areas of southern Africa 

(Basson, 1997). Impacts of climate variability on groundwater are poorly 

understood, and the relationships between climate variables and groundwater are 

more complicated than those of surface water, as the influence of climate 

variability on groundwater levels cannot be detected immediately (Chen et al., 

2004). In addition, groundwater responses to climatic fluctuations are complicated 

by factors such as proximity to rivers, times of heavy pumping, degree of 

saturation, as well as the effective porosity and permeability of the soil. These 

factors are responsible for a delay in response of the groundwater table to rain 

(Soveri and Ahlberg, 1989; Van Kleef, 2003). 
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However, the impact of climate variability on groundwater levels can be 

investigated by analysing the relationship between historical climate records and 

groundwater level fluctuations (Chen et al., 2004). Groundwater resources are 

related to climate variability and change through hydrological processes such as 

precipitation and evapotranspiration, and through interaction with surface water. 

With increased evapotranspiration and decreased precipitation, the impact of 

climate variability could result in declining groundwater levels, which would cause 

some wells to become dry or be less productive owing to the loss of available 

drawdown (Rutulis, 1989; Van Kleef, 2003; Chen et al., 2004). During the 1982/83 

El Niño season over southern Africa, for example, recharge to groundwater zone 

was less than 20% of the median recharge, since recharge takes place only 

following either individual large events or sustained rainfalls (Schulze, 2003). 

Research conducted in Finland by Soveri and Ahlberg (1989) has shown that 

groundwater storage changes from season to season as a consequence of 

different precipitation and evapotranspiration patterns. Similarly, studies conducted 

in Canada (e.g. Rutulis, 1989; Chen et al., 2002, Chen et al., 2004) have shown 

that under natural conditions, annual groundwater level fluctuation and long-term 

trends depend on net groundwater recharge, which is a function of precipitation 

and evapotranspiration. Long lasting severe dry weather conditions may also alter 

hydraulic properties of an aquifer and could alter recharge rates for aquifer 

systems (Chen et al., 2004).  

 
2.2.4 Impacts on Irrigation Demand 
 
Agriculture of any kind is strongly influenced by the availability and quality of water 

(Olesen and Bindi, 2002). Irrigation is the largest consumer of water resources, 

particularly in semi-arid regions of southern Africa (Basson, 1997). Irrigated 

agriculture is less vulnerable to climate variability and change than rainfed 

agriculture, provided that there is a sufficient supply of water. The amount of water 

required to irrigate a crop depends principally on crop evapotranspiration (Perks, 

2001). The demand for water for irrigation use tends to rise in a warmer or drier 

climate conditions (Schulze, 1997), thereby increasing the competition for 

available water between agriculture and other users (Arnell, 1999). Peak irrigation 
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demands are also predicted to rise as a result of more severe heat waves that 

affect crop evapotranspiration (Olesen and Bindi, 2002).  

 
2.3 Potential Impacts on Rainfed Agriculture 
 
Agricultural output is highly sensitive to year-to-year climate variability. One reason 

for climate variability so often being devastating to rainfed agriculture is that 

farmers do not know what to expect in the upcoming growing season. Thus, 

farmers and other decision makers in agriculture tend to be unprepared for the 

climate conditions that do occur, and make decisions based on their 

understanding of general climate patterns for their regions (Jones et al., 2000).  

The impact of climate variability is felt by farmers wanting to optimise agricultural 

production, by agribusiness managers wanting to best manage their inventories or 

commodity marketing strategies, and by governments wanting to best manage 

taxation and to enact drought relief policies (Hammer and Nicholls, 1996).  

 
Droughts and heavy storms are the major climatic threats to agricultural 

production, and they affect the livelihoods of millions of people annually around the 

world (FAO, 2004). Rainfall variability, which includes erratic and unpredictable 

seasonal rainfall as well as the occurrences of floods and droughts, contributes to 

the risks in managing water resources and agricultural production across southern 

Africa, particularly in marginal rainfed agricultural areas characterised by low and 

variable precipitation. Extended periods of drought or, alternatively, unusually high 

rainfall with associated flooding, can have devastating effects on the already 

marginal levels of production, placing subsistence farming at increased risk. The 

drought over southern Africa during the 1982/1983 El Niño caused estimated 

damages about US$ 1 billion (Moura et al., 1992; cited by Landman et al., 2001). 

The impact of this event was made worse by the major drought experienced 

during 1991/1992, which exacerbated social and economic problems, and also 

reduced the overall livelihood security of the society (Kinuthia, 1999; Klopper, 

1999; Landman et al., 2001; FAO, 2004). The loss in GDP in South Africa during 

the 1991/1992 drought was estimated to be at about 1.8%, equivalent US$ 500 

million (FAO, 2004). In contrast to this, major flooding events in southern Africa 

that lasted several days during 1984, 1988 and 2000 equally caused significant 

loss of life and of livestock. Large areas of agricultural land were submerged, as 
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were livestock and farming implements. Hundreds of hectares of fertile alluvial soil 

were reduced to bare rock beds (Landman et al., 2001; FAO, 2004). 

 
Within a more complex environment and through sophisticated production 

systems, people, livestock, crops and wildlife are competing for increasingly 

scarce resources. Over time, pressures on land and intensification of agricultural 

practices will lead to greater susceptibility of farmers to future droughts and floods, 

resulting in possible further degradation of resources and loss of productivity. 

Climate uncertainty often leads to conservative strategies which then sacrifice 

some productivity in order to reduce the risk of losses in poor years (Jones et al., 

2000).  In southern Africa, the majority of the land area is currently used for 

agriculture, but this is diminishing with the expansion of afforestation, urban and 

industrial areas. The combined effects of a growing demand for, and the shrinking 

area of, agricultural land are forcing agriculture into more marginal areas with ever 

greater sensitivity to climate variability (Schulze et al., 1993). Climate variability 

could impact agriculture in many ways, including the following: 

 
• planning of farm operations (e.g. land preparation, planting decision, crop 

selection, fertilizer applications, pests/disease control operations, firebreak 

burning and infield machinery operation) could become more difficult (Ogallo, 

et al., 2000; Schulze, 2005), 

• yields in rainfed and irrigated agriculture could become more variable than in 

average years (Kinuthia, 1999; Ogallo et al., 2000), 

• pests and vector-borne could spread into areas where they were previously 

unknown (Olesen and Bindi, 2002), 

• the cost of production and marketing could be affected (Ogallo et al., 2000), 

• biological diversity would be reduced (Olesen and Bindi, 2002), 

• livestock production, such as milk output (volume / unit time) and live-weight 

gain over a year may face the problem of poor and variable rangeland 

productivity and desertification processes (Kinuthia, 1999),  

• afforestation activities could be negatively affected by deficient rainfall and 

runoff (Kinuthia, 1999; Glieck, 2000), 

• distributions and quantities of fish and sea-foods could change markedly, and 
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• decimation of wildlife populations could occur through recurrent droughts 

(Kinuthia, 1999). 

 
In summary, climate variability has both direct and indirect impacts on many water 

resources operations such as water releases from dams, water rationing for 

domestic, irrigation and industrial uses, flood warning and hydro-electric 

generation, and on many agricultural activities such as land preparation, sowing 

and harvesting times, crop selection, consistency in yield, cost of production, 

irrigation needs, transportation, storage, pest and disease control and marketing. 

Many researchers (e.g. Rowlston, 2003; Schulze, 2003) have asserted that the 

climate in southern Africa varies highly within a year, and from year to year, even 

without the additional uncertainties brought about by climate change. 

Understanding the dynamics of climate variability over southern Africa and 

assessing the impacts of climate extremes on water resources and agriculture 

provide a base for exploring opportunities in assisting decision makers to better 

manage their resources through appropriate use of timely and skilful hydro-climatic 

forecasts. In addition to the implications of climate variability, however, full 

knowledge of the magnitude and timing of the climate hazards, as well as other 

factors of vulnerability such as social, technical and financial coping capacities of 

exposed communities are also needed in order to reduce the loss of human life 

and economic disruption associated with extreme climatic fluctuations. A brief 

review of hydrological hazards, followed by an overview of strategies to risk 

management from a more of hydrological perspective, is presented in the sub-

section which follows. 

 
2.4 Managing Climate Variability Impacts from a Hydrological Perspective 
 
Climate variability impacts the lives of human beings in many ways, some positive 

and many negative (Bogardi et al., 2005). The impacts of inter-seasonal and inter-

annual climate variability, especially of the more extreme events, are often 

devastating, especially in less developed regions where technological adaptations 

are still minimal (Ogallo et al., 2000; Tychon et al., 2003).  

 
Responses to climate variability can be of two broad types (Schulze, 2001; Fischer 

et al., 2002). The first employs adaptive measures to reduce the impacts of risks 
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and maximise the benefits and opportunities of climate variability by assessing 

hazards, vulnerability, and impacts of disasters. The second employs mitigation 

measures by avoiding hazards and modifying vulnerability to climate hazards 

(Schulze, 2001). The ultimate objective of climate risk management is to minimise 

the probability that damage will occur from an event to as close to zero as 

possible. However, climate variability, which usually cannot be predicted or 

accounted for, can lead to uncertainty (Hallowes, 2002; UKCIP, 2003). Uncertainty 

may be construed as a component of risk, if its consequences have an impact on 

human activities (Hallowes, 2002; UKCIP, 2003). Hydro-climatic forecasting is an 

integral part of climatic risk management methods that reduces vulnerability to 

climate hazards in agriculture and water resources management operations 

(Schulze, 2001). Advance warning of future expected meteorological events (e.g. 

related to rainfall, temperature, humidity, wind, tornadoes) and agrohydrological 

variables (e.g. soil moisture status, streamflow, reservoir levels and crop yield) at 

time scales of days to several months would, therefore, be extremely important in 

order to enable agricultural and water resource operations to take maximum 

advantage of any future expected climate anomalies. However, it is essential to 

first know all the elements contributing to risk and disaster. This section has, 

therefore, been divided into three sub-sections in order to adequately address the 

risks of climate variability. The first two sub-sections review the concepts of 

hazard, disaster, vulnerability and risk within a context of hydrological risk 

management, while the third sub-section contains a review of the current state of 

risk management techniques used to prevent and reduce climate related risks. 

 
2.4.1 Hazard and Disaster in the Context of Climate Variability 
 
A hazard may be defined as the probability of occurrence of a damaging event in a 

given period of time (Tychon et al., 2003). Such events could be naturally 

occurring (e.g. a cyclone, hurricane, earthquake, flood, drought, wildfire), or be 

human induced (e.g. deforestation), or be accidental (e.g. a dam failure, 

contamination of water). The event has to have the potential to create damage 

(Hallowes, 2002; Tychon et al., 2003).  
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All hazards do not necessarily produce disasters. Disaster is an extreme form of 

hazard realisation which causes widespread human, material, economic or 

environmental losses that exceed the ability of the affected community to cope 

when using its own resources (Hallowes, 2002). Databases from the Centre for 

Research in the Epidemiology of Disaster, CRED (2002) reveal that more than 

2 200 major and minor water related disasters occurred in the world during the 

period 1991-2000. Of these, floods accounted for half of the total disasters, water-

borne and vector disease outbreaks accounted for 28% and drought accounted for 

11% of the total disasters. Of these disasters, 35% occurred in Asia, 29% in Africa, 

20% in the Americas and 13% in Europe and the rest of Oceania. According to the 

first report of World Water Assessment Programme, WWAP (2003), the economic 

losses from water disasters are currently equivalent to 20% of new investment 

needs in water related infrastructures. Although disasters are associated with a 

wide range of hazard types, hydro-meteorological events account for a very 

significant part of disaster loss each year. According to Kishore (2002), hurricanes, 

flooding, drought, hail storms and storm driven wave action account over 70% of 

economic losses from all disasters, with a far higher relative incidence 

experienced in the developing countries.  

 
Figure 2.1 compares reported hydro-meteorological and geophysical disasters 

worldwide for the period 1991-2000.  
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Figure 2.1 Reported hydro-meteorological and geophysical disasters worldwide 

 from 1991-2000 (after CRED, 2002) 
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While the number of reported disasters associated with geophysical events such 

as volcanic eruptions and earthquakes remained remarkably constant, those 

associated with hydro-meteorological events such as floods, drought, forest fires 

and storms have demonstrated a curve of exponential growth. The number of 

reported hydro-meteorological disasters in 2001 was approximately double the 

figure reported in 1996 (Kishore, 2002). This triggers an increased attention in the 

scientific community to place more emphasis on understanding the cause and 

extent of hydro-meteorological hazards for a better predictability of hydro-climatic 

fluctuations at the spatial scales of impacts and at which decisions are made.   

 
Of the hydro-meteorological hazards, droughts and floods are normally recurring 

events that affect the livelihoods of millions of people in southern Africa. Flooding 

has resulted in significant damage to infrastructures such as dams, roads, bridges 

and natural vegetation, in addition to the loss of life. The agricultural sector has 

also been affected by variations in onset, timing and amount of rainfalls as well as 

temperature fluctuations, with devastating effects on the economy of the region.  

These two hydrological hazards are reviewed in more detail below. 

 
2.4.1.1 Droughts 

 
Drought is a slow-onset, creeping natural hazard that occurs in virtually all regions 

of the world. It results in serous economic, social, and environmental impacts 

(Wilhite, 2000; Wilhite et al., 2000; FAO, 2004). Drought occurs in high as well as 

in low rainfall areas and is a temporary aberration, in contrast to aridity, which is a 

permanent feature of the climate and is restricted to areas of low rainfall. Drought 

is related to the timing of rains (e.g. season of occurrence, delays in the start of 

the rainy season, occurrence of rain in relation to crop growth stages) and the 

effectiveness of the rains (e.g. rainfall amounts, intensities, number of rainfall 

events). Thus, each drought has unique climatic characteristics and differs in its 

interpretation relative to their impacts (Wilhite et al., 2000). Generally, four 

categories of drought may be identified (Wilhite and Glantz, 1985; FAO, 2004): 

 
Meteorological Drought: This occurs with a reduction in rainfall supply over an 

extended period compared with the long term average conditions.  

 

 19  



Agricultural Drought: This implies a reduction in water availability below the 

optimal level required by a crop during each of its different growth stages, resulting 

in impaired growth and reduced yields. Agricultural drought is highly influenced by 

other variables such as the crop water requirement, the water holding capacity of 

the soil and the magnitude of evaporation. 

 
Hydrological Drought: This consists of a substantial reduction/deficit in natural and 

artificial surface and subsurface water resources in a specified area.  

 
Socio-Economic Drought: This implies the direct or indirect impacts of drought on 

human activities. It relates to extreme climatic events outside of their normal 

range, which affect production and, thereby, the wider economy. A good example 

is the 1991/1992 drought in South Africa during which about 50 000 jobs were lost 

in the agricultural sector alone (FAO, 2004). 

 
The impacts of droughts are largely non-structural and usually spread over a 

larger geographical area than are impacts from other natural hazards (Wilhite et 

al., 2000). Like any other hazards, the impacts of drought can be reduced through 

assessment and mitigation measures (Wilhite et al., 2000; Schulze, 2003). 

 
2.4.1.2 Floods 
 
Floods constitute the second frequently recurring natural hazard, causing 

significant loss of life and damage to property. The major flooding events in 

southern Africa, each of which lasted for several days during 1984, 1988, 1999 

and 2000 are examples of devastating floods in the region. Factors that cause 

floods are either natural phenomena like tsunamis, earthquakes or extreme rainfall 

events, or structural failure such as dam or levee failure (Hallowes, 2002). 

According to Hoyt and Langbein (1995), there are four different types of floods: 

 
Flash Floods: This type of localised flooding is hazardous and destructive and 
occurs within minutes or a few hours of heavy local rainfall or failure of dams, or of 

levees, or releases of ice jams.  
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River Floods: This is the most common type of flooding. The actual amount of 

runoff from the rainfall or snowmelt exceeds the capacity of channels or 

depressions and water overflows onto the adjacent low-lying floodplains. 

 
Urban Floods: In most formal urban areas, paved roads and roofs drain into storm 

water systems which are connected directly the streams. With heavy rain, a large 

fraction of rain water falling onto impervious areas is not infiltrated into the ground 

and thus leads to urban floods. 

 
Coastal Floods: These usually occur along coastal areas, when there are 

hurricanes and tropical or other local storms which produce heavy waves, or large 

waves are created by volcanoes or earthquakes, with ocean water then driven 

onto the coastal areas and causing coastal floods.  

 
It is important to remember that floods can also play a positive role within our 

ecosystems and the environment at large, as floodwaters carry nutrients that 

create fertile floodplains which are important not only for agriculture, but also for 

various aquatic species (WWAP, 2003). 

 
2.4.2 The Multi-Dimensionality of Vulnerability 
 
Vulnerability is a multi-dimensional concept (Hossain, 2001, Bogardi et al., 2005) 

and varies widely across communities, sectors and regions (Coburn et al., 1994). 

There are various concepts of vulnerability such as social vulnerability, economic 

vulnerability, environmental vulnerability, vulnerability to food security, vulnerability 

to natural hazards or vulnerability to climate variability and change (Hossain, 

2001).  

 
Although vulnerability is an intuitively simple notation, it is surprisingly difficult to 

define, quantify and operationalise (Hossain, 2001). Vulnerability has no 

universally accepted definitions (Downing et al., 2003). Nevertheless, the literature 

on vulnerability has grown enormously over the past years. It has been defined in 

many studies according to the consequences of the hazards affecting the 

operations of concern. A sample of definitions on vulnerability is summarised 

below:  

 

 21  



• Blaikie et al. (1994), cited by Hossain (2001), define vulnerability in terms of 

sociological characteristics, such as ethnicity, religion, gender and age which 

influence access to power and resources. 

• Bohle et al. (1994) define vulnerability as “an aggregate measure of human 

welfare that integrates environmental, social, economic and political 

exposure to a range of harmful perturbations”.  

• Coburn et al. (1994) regard vulnerability as “the degree of loss to a given 

element at risk, or set of elements, resulting from a given hazard at a given 

severity level”. 

• In a particular context of Food Security Information and Early Warnings 

System, FSIEWS (2000), vulnerability is defined as “a measure of the 

susceptibility of some groups of persons or regions to food insecurity”.   

• Downing and Lüdeke (2002) used the term vulnerability in the sense of 

assessment methods. They defined vulnerability as “a set of relationships 

between exposure to an extent threat (e.g. extended drought) and its 

consequences (e.g. human mortality due to starvation)”. 

• The IPCC (2001) defines vulnerability as “the degree to which a system is 

susceptible, or unable to cope with, adverse effects of climate change, 

including climate variations and extremes”. Under this framework, a highly 

vulnerable system would be one that is highly sensitive to modest changes in 

climate.  

• In contrast to the definitions presented by the IPCC (2001), the International 

Strategy for Disaster Reduction, ISDR (2004) defines vulnerability as “the set 

of conditions and processes resulting from physical, social, economic and 

environmental factors, which increase the susceptibility of a community to the 

impact of hazards”. 

 
Whatever definition of vulnerability is adopted, within the context of climate 

variability it is a function of the characteristics, magnitude, and rate of climate 

variation to which a system is exposed, and its sensitivity and adaptive capacity 

(Schulze, 2003; Bogardi et al., 2005). It deals mainly with two elements, viz. 

exposure to hazard and the coping ability of the people.  People having more 

capability to cope with extreme events are naturally less vulnerable to a given 

hazard (Hossain, 2001; Schulze, 2003; Bogardi et al., 2005). This was 
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substantiated by Hossain (2001) who reported that the people in the USA are 

three times more exposed to certain natural hazards than those of Bangladesh, 

but they are far less affected because of their better coping capacity. The degree 

of vulnerability can, therefore, be considered as the combination of existing 

conditions of such communities, or systems that make them prone to being 

affected when the external event manifests itself (Schulze, 2003; Bogardi et al., 

2005).  

 
 
According to Hossain (2001) vulnerability relates to the consequences of 

perturbations, rather than the agent of the perturbation per se. People are more 

vulnerable to loss of life, livelihood, assets and income than to specific agents of 

hazards such as drought and floods. Thus vulnerability is explicitly a social 

phenomenon, a threat to human value system rather than the nature or magnitude 

of the hazard itself.  

 
2.4.3 The Multi-Dimensionality of Risk 
 
Risk is the product of hazard and vulnerability. It increases with increasing 

occurrence of damaging events and with the vulnerability of a population (Schulze, 

2003; Tychon et al., 2003; Baethgen et al., 2004). It may be defined as: 

 

Risks as a result of disasters arise from combinations of hazardousness and 

vulnerability that vary over seasonal to decadal timescales as well as 

geographically. Smith (1996) identified three possible scenarios that give rise to 

risk over time, and Schulze (2003) added one more scenario that can increase or 

decrease the risk over time. These four scenarios are illustrated in Figure 2.2.  

 
• In Scenario 1, the band of tolerance to a hazard and its variability remain 

constant, but the mean value of the hazard changes to beyond the tolerance 

limits as result of variations in the physical system. The frequency of 

extreme events at one end of the tolerance scale also increases, as would 

be the case of decreases in runoff associated with changes in land use such 

as upstream afforestation.  
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• Scenario 2 represents a scenario where both the mean of the hazard and 

the band of tolerance remain constant, but the variability increases (e.g. 

enhanced variability due to climate change). In Scenario 2, the frequency of 

damage producing events increases at both ends of the tolerance scale.  

• In Scenario 3 the physical variable (e.g. runoff) does not change, but the 

band of tolerance narrows due to an increase in vulnerability to extreme 

climate hazards (e.g. vulnerability increases as poor people migrate to 

floodplains and other flood-prone areas). In this particular scenario, the 

frequency of extreme events increases at both end of the tolerance scale.  

• Scenario 4 shows a sudden change in both the variability and tolerance of a 

system, as would be the case with alterations in downstream flow 

characteristics following the construction of a dam across a river. Risk may 

increase or decrease in this particular scenario. 

 
 

Figure 2.2 A schematic illustration in which risk varies as a result of changes in 

the physical and socio-economic systems (after, Smith, 1996; 

Schulze, 2003) 

 
2.4.4 Risk Management from a Hydrological Perspective 
 
The term risk refers to the expected losses from a given hazard to a given element 

of risk, over a specified future time period. According to the way in which the 

element at risk is defined, the risk may be measured in terms of expected 

economic losses, or in terms of numbers of lives lost, or the extent of physical 

damage to property (Coburn et al., 1994). Natural risks may be unavoidable, but 
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with better understanding, planning and prevention (i.e. risk management) their 

impacts can be reduced (WWAP, 2003).  

 
In agricultural activities, risk management requires the distinction between, and 

understanding of, different types of risks (e.g. production risks, market risks, 

institutional risks, financial risks, asset risks), as the actions required to reduce 

each of them are different (Baethgen et al., 2004). Kundzewicz (2001) states that 

“it is impossible to design a system that never fails. What is needed is to design a 

system that fails in a safe way”. This acknowledges that in water utilities, both the 

possible structural failure (e.g. of a dam) and non-structural failure (e.g. unreliable 

or unsafe water supply to water users) need to be considered in order to make 

good management decisions in situations where adversity and loss are possible 

(Plate, 2002; Schulze, 2003; WWAP, 2003).  

 
There are many risk management paradigms (e.g. Grigg, 2000; Plate, 2002; 

UNDP, 2002; Baethgen et al., 2004) to consider in hydrological hazards which 

threaten agricultural and water resource systems. However, these actions reduce 

to a few essential steps (Levitt, 1997), viz. 

 
• identifying present and future hazards, 

• measuring hazards, 

• reducing hazards to their lowest practical levels, and 

• devising means to deal with unavoidable and uncontrollable risks. 

 
It is beyond the scope of this document to review each step of risk management. 

However, if hydro-climatic forecasting is going to be worth pursuing, a more 

complete understanding of the full procedures and practices to risk management 

from a more hydrological perspective is required. In attempts to the respond the 

negative impacts of hydrological hazards such as flooding and drought, Schulze 

(2001), using multiple source of information, developed a schematic overview of 

approaches to risk management from a more hydrological perspective (Figure 

2.3), and classified the elements of risk management under two broad themes, viz. 

risk assessment and risk mitigation and control. 

 

 

 25  



 
 Risk Management 

Hydrological Perspective  
 
 

Risk Assessment 
In a Socio-Politico-Economic Context 

Risk Mitigation and Control 
Prevention/ Reduction/ Coping 

 
 
 
 
 
 Hazard 

Determination 
Risk 

Evaluation 
Hazard 

 Modification 
Vulnerability 
Modification  

 
 
 Hazard Identification 

Present/ Future 
Risk Perception 
 

Primary Hazard Event 
Modification  

 
 
 
 

 
 
Figure 2.3 A schematic overview of approaches to risk management, developed 

from multiple sources (after Schulze, 2001) 

 

2.4.4.1 Risk assessment within a socio-politico-economic context 

 
The term risk assessment has been defined by many researchers (e.g. Smith, 

1996; Hossain, 2001; Plate, 2002; UNDP, 2002; WWAP, 2003) in many various 

ways. Schulze (2003) recently defined risk assessment from a more generic 

perspective as “the process of assigning magnitudes and probabilities to the 

adverse effects of natural catastrophes or human activities using rigorous, formal 

and consistent forms of measurement and testing, to quantify the relationship 

between the hazard event and the responding effects, while acknowledging the 

inherent uncertainties involved”. Risk assessment therefore includes objective 

determinations of both present hazards and future one (e.g. through increased 

variability in the future climates), and risk evaluation, which comprises of risk 

perception, acceptable risks and uncertainties (Schulze, 2001; Schulze, 2003). 

Risk assessment forms the necessary basis for the development of risk mitigation 

and control measures (WWAP, 2003). 
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2.4.4.2 Risk mitigation and control: Modifying hazards and vulnerability 

 
Risk mitigation and control make up the second major component of risk 

management (Plate, 2002; Schulze, 2003), in which alternatives for possible risk 

measures are considered. Strategies for the mitigation and control of risk can be 

broadly classified into two categories (Smith, 1996; Schulze; 2001; Schulze; 

2003), viz. hazard modification and vulnerability modification. According to  Smith 

(1996) and Schulze (2003), hazard modification concentrates on modifying the 

physical processes that create the hazard either by modifying the primary 

processes (e.g. cloud seeding in situations of trying to modify rainfall) or the 

secondary processes (e.g. diverting the floodwater, land use planning).  

 

Vulnerability modification is primarily concerned with reducing the impact of the 

event by rendering the human environment less vulnerable to, more prepared for, 

the event. Vulnerability modification has three different components (cf. Figure 

2.3), viz. preparedness, forecasting/early warning systems and legal/financial 

measures. Preparedness includes the pre-arranged emergency measures which 

should be taken to minimise the loss of life and property damage following the 

onset of a hazard (Schulze, 2003). Forecasting/early warning, which has the 

potential to modify vulnerability in shorter and longer term planning, is briefly 

reviewed in the next chapter. Legal/financial instruments are designed to prevent 

certain activities in areas of high risks (e.g. building shacks in floodplain areas), or 

to provide aid that is able to accelerate the recovery of affected communities (e.g. 

insurance; Smith, 1996; Schulze, 2003). 

 
2.5 Concluding Thoughts 
 
This chapter commenced by defining climate variability and climate changes in 

order to obtain a better understanding of the mechanisms of climate variability and 

their relationships with hydrological extremes such as floods and droughts. This 

was followed by a discussion on climatic variations over southern Africa and their 

consequences on two of the most climate sensitive sectors, viz. the water and 

agriculture sectors. Even though it is difficult to quantify how extreme events have 

impacted these climate sensitive sectors, this chapter contained brief discussion 

on the impacts that climate variability can have on humans, property and the wider 
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economy by affecting the hydrological cycle. In many places in southern Africa, 

both agriculture and water resources face high risks, owing to the growing 

competition for water across economic sectors, and the natural variability of the 

hydrological system. The impacts may vary from one geographical region to the 

next, depending on the degree of vulnerability associated with different 

communities and societies. In order to manage such risks, current approaches to 

risk management were presented, first by defining and describing basic concepts 

such as hazard, vulnerability and risk. Finally, a conceptual framework for risk 

management, as presented by Schulze (2001), was reviewed in order to highlight 

the importance of the management strategies, procedures and practices that seek 

to minimise risks from a hydrological perspective.  

 
Hydro-climatic forecasting is a crucial part of risk management and is discussed 

briefly in the following Chapter, in which an attempt is made to distinguish between 

key points on forecasting such as types of forecasts (e.g. short, medium, long), 

certainty of the forecasts (e.g. skill, accuracy, reliability) and the lead times of the 

forecast (e.g. days, months), as well as applications and limitations of the different 

types of forecasts. 
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3. FORECASTING AS A STRATEGY FOR VULNERABILITY MODIFICATION 
IN  THE MANAGEMENT OF AGRICULTURAL AND WATER RESOURCE 

SYSTEMS 
 

Vulnerability is not a consequence only of the year-to-year variability of climate per 

se, but also of its less predictability. Many critical agricultural and water resource 

decisions that interact with climatic conditions must be made in advance, based on 

available climate information and assumptions (Hansen, 2002). The emerging 

ability to provide timely and skilful short, medium and longer term hydro-climatic 

forecasts has the potential to reduce risk in the long term and to provide valuable 

support to meet the competing demands for increasingly scarce fresh water and 

agricultural resources. The incorporation of forecasting within the framework of risk 

management has, therefore, been acknowledged to play a vital role in modifying 

decisions, to either prepare for expected adverse conditions or to take advantage 

of expected favourable conditions (Hammer et al., 2001; Hansen, 2002). 

Connecting climate forecasts with applications such as the management of 

agricultural and water resources decisions is, however, not straightforward, and 

remains an area in which much needs yet to be learned. While there has been a 

growing literature on potential applications of climate forecasts to mitigate risks in 

agricultural and water resources systems, there has been relatively little research 

done on the issue of applying climate forecasts in decisions to modify the 

vulnerability of humans and properties to the adverse impacts of climate variability. 

In this chapter, current forecast types and techniques are briefly reviewed.  

 
3.1 Types of Forecasting  
 
Although a considerable literature distinguishes between the terms forecasts, 

outlooks and predictions (e.g. Maidment, 1993; Schulze, 2003), in practice there 

are no naming conventions (Hartmann et al., 1999). Forecasting is generally 

considered as being the estimation of conditions at a specific future time, or during 

a specific time interval, while prediction is the estimation of future conditions, 

without reference to a specific time. For very long lead times, however, the 

distinction between forecasting and predictions is blurred, as forecasting accuracy 

decreases with increases in lead times (Lettenmaier and Wood, 1993). There 

should, however, be a clear distinction between so-called official, operational, 
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experimental and research forecasts, as users can have direct access to all of 

these forecast types (Hartmann et al., 1999). Forecasting techniques exist along a 

continuum of sophistication, ranging from simple implicit subjective processes (e.g. 

“feeling” that tomorrow’s condition will be much like today’s condition), to complex 

objective techniques which require many types of data, representations of the 

physical processes, and teams of scientific experts (Hartmann et al., 1999). The 

broad range of forecasting encompasses various products (e.g. weather forecasts, 

crop forecasts, fire hazard forecasts, hydrological forecasts, marine forecasts, 

domestic aviation forecasts), with time scales ranging from minutes to seasons, 

and hence lead times from minutes to over a year. Therefore, the wide variety of 

forecast products and techniques can be categorised, according to several 

different perspectives (Hartmann et al., 1999) which are discussed below.  

 
3.1.1 Weather vs. Climate Forecasts 
 
Although this chapter concentrates on agrohydrological forecasts, the distinction 

between weather, climate and agrohydrological forecasts is first highlighted in 

order to obtain a better understanding on issues of applying the various 

forecasting techniques and products. 

 
According to commonly used definitions, weather forecasts track the movement 

and evolution of specific air masses and cover periods approaching less than one 

month, while climate forecasts are usually considered as extended weather 

outlooks and cover periods of one month and longer, i.e. climate forecasts 

describe the predictability of weather statistics, and not day-to-day variations in 

weather (Hartmann et al., 1999; Kabat and Bates, 2002).  Because the climate 

system is so complex, it is almost impossible to take all the factors that determine 

the future seasonal climate into account. Therefore, climate forecasts are 

generally provided in terms of the probability that the rainfall or temperature will be 

either below normal, near normal or above normal (Kabat and Bates, 2002).  

 
3.1.2 Agrohydrological Forecasts: Types and Potential Applications 
 
Weather and climate forecasts are critical inputs to agrohydrological forecasts. 

Agrohydrological forecasts are predictable on scales equivalent to both weather 
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and climate forecasts owing to integrative behaviour of hydrological processes 

(Hartmann et al., 1999). Although any classification of forecasts is subject to some 

overlap, there are four types of agrohydrological forecasting, depending on the 

lead times. These four types of forecasts and the potential usefulness of such 

forecasts are briefly presented on the sub-sections which follow.  
 
3.1.2.1 Near real time agrohydrological forecasts 
 
The temporal coverage of near real time agrohydrological forecasts varies from 

hourly to daily, with lead times from minutes up to several days in advance 

(Lettenmaier and Wood, 1993). These forecasts are most often used for flood 

warning purposes and for real time water resources and agricultural operations. 

Real time agrohydrological information is very important in areas of fast response 

because, as people place more pressure on the vulnerable areas (e.g. floodplains) 

for habitation or agriculture or other businesses, so there is a greater potential for 

loss of life and damage to property by catastrophic events such as flash floods 

(Pegram and Sinclair, 2002). The information received from automatic weather 

stations, together with information obtained from satellite and radar images, is 

integrated into hydrological models to produce near real time agrohydrological 

forecasts. Pegram and Sinclair (2002), for example, developed a linear catchment 

model for real time flood forecasting which accepts satellite, radar and raingauge 

data as input. The model has been installed in the Umgeni Water headquarter 

offices in Pietermaritzburg to provide flood warnings for disaster management 

operations (Umgeni Water is the water utility serving the Durban-Pietermaritzburg 

region with bulk water supplies).  

 
Since structural measures are often insufficient to reduce risks associated with 

extreme events at the required local level, an important role is played by non-

structural measures (Toth et al., 1999). Some of the potential applications of near 

real time agrohydrological forecasts in agriculture and water resources include:  
 
• dissemination of warning messages regarding the extent of extreme events, 

such as floods (Hossain, 2003), 

• evacuation of people and mobile assets (e.g. pump equipment and 

machinery) from threatened high risk areas (Hossain, 2003; Schulze, 2005), 
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• providing information on the status of inflows into dams, such as timing of 

peak flows (Schulze, 2005), 

• reservoir safety releases (Schulze, 2005), 

• mobilisation of resources and planning relief and rehabilitation measures 

(Hossain, 2003), 

• hydro-power scheduling (Lettenmaier and Wood, 1993), and 

• precautionary measures (e.g. establishing embankments) to divert floods 

either into, or away from, agricultural areas, depending on the soil moisture 

status of the area. 

 
3.1.2.2 Short and medium term agrohydrological forecasts 
 
Short term agrohydrological forecasts are taken to be those with a temporal 

coverage from one day up to about three days, while medium agrohydrological 

forecasts cover time scales usually up to two weeks. The lead times of short and 

medium term agrohydrological forecasts vary from a day up to several days or a 

few weeks. Such forecasts are useful to making adjustments to agricultural 

planning and water management, for example, by allowing a farming community to 

react on time, especially at planting and harvesting times (Webster and Grossman, 

2003). In addition, it provides a sufficient forewarning for catchment and disaster 

managers by allowing early decisions for flood mitigation and disaster 

management.  
 
Some of the potential actions that can be taken by responding to the short and 

medium term agrohydrological forecasts in water resource operations include the 

following (Schulze, 2005): 
 
• reservoir regulation decisions (e.g. formulation of reservoir release 

strategies), 

• reservoir safety releases, 

• environmental flow releases (e.g. freshettes), 

• irrigation scheduling, and 

• planning for water poverty relief, rehabilitation and reconstruction. 
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Some of the potential applications of short and medium term agrohydrological 

forecasts in agricultural operations are (Schulze, 2005): 

 
• tillage, planting, transplanting and harvesting decisions, 

• fertilizer and pest control application decisions, 

• taking precautionary measures to protect assets, livestock and agricultural 

infrastructures, such as forage silos, embankments, roads etc (Hossain, 

2003), 

• firebreak burning operations,  

• labour and equipment planning, and  

• crop yield estimates. 

 
3.1.2.3 Long term (seasonal) agrohydrological forecasts 

 
Long term agrohydrological forecasts are those with longer lead times and time 

scales, usually up to several months ahead. At present, little forecast skill is 

possible for agrohydrological variables when forecast lead times extend beyond 

three months (Lettenmaier and Wood, 1993; SAWS, 2005). Reliable long term 

agrohydrological forecasts can improve the decisions in the management of water 

resource and agricultural systems by reducing risks associated with inter-seasonal 

and inter-annual climate variability. Some of the potential uses and benefits of long 

term agrohydrological forecasts include the following: 

 
• reservoir management, such as status reviews and/or curtailment planning 

(Chiew et al., 2003; Schulze, 2005), 

• allocation of irrigation water and planning of irrigation timing, depending on 

forecasts such as soil moisture and streamflow (Lettenmaier and Wood, 

1993; Schulze, 2005), 

• greater efficiency in power generation and negotiation of hydro-power sales 

contracts (Lettenmaier and Wood, 1993; Collischonn et al., 2005), 

• planning for water poverty relief, rehabilitation and reconstruction (Hossain, 

2003; Schulze, 2005), 

• evaluation and implementation of mitigation measures, such as water 

conservation during droughts (Lettenmaier and Wood, 1993), and 
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• environmental flow releases, which depend on forecasted reservoir status or 

streamflow levels (Schulze, 2005). 

 
Long term agrohydrological forecasts can assist farmers, agribusiness managers 

and governments in many ways to best manage their properties, strategies and 

short and long term policies. The potential applications in agricultural activities 

include (Klopper, 1999; Hossain, 2003; Schulze, 2005): 

 
• crop variety selection (e.g. introduction of fast growing varieties), 

• planting and harvesting decisions (delayed or earlier), 

• conservative use of fertilizers, insecticides and pesticides, 

• maintenance of conservation structures, 

• fertilizer, planting and harvesting equipment orders, 

• reducing stock (e.g. selling cattle before the drought season started), 

• labour and equipment planning, 

• transport and storage scheduling, 

• crop yield estimates, 

• planning national food import, storage and distribution programmes, 

• adjustment of risk profiles, and 

• development of drought and flood response policies. 

 
3.1.3 Conclusions on Agrohydrological Forecasts 
 
This section has outlined the potential measures that may be taken in agricultural 

and water resource management to decrease unwanted impacts and take 

advantage of expected favourable conditions, provided that skilful and timely 

agrohydrological forecasts, ranging from days to seasons were available in 

advance at the location of concern. The ability to forecast climate variability has 

progressed significantly in recent years. Despite the progress made in climate 

predictions, however, there appears little explicit application as yet of climate 

forecasts in the management of water resources and agricultural operations. The 

challenge to hydrologists and agriculturalists is on how to link the weather and 

climate forecasts with agrohydrological models in order for decision makers to 

benefit more fully from those climate forecasts. As a step towards addressing this 
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problem, the current techniques used to obtain agrohydrological forecasts from 

climate forecasts are briefly reviewed in order to obtain an idea of the complexity, 

uncertainty and applicability of these techniques that would help in the selection of 

an appropriate technique (or techniques) for use in the operation of agricultural 

and water resources decisions.   
 
3.2 Agrohydrological Forecasting Techniques 
 
Agrohydrological forecasting techniques may be categorised into two types, viz. 

short term forecasting and long term forecasting techniques. 
 
3.2.1 Techniques for Short Term Agrohydrological Forecasting 
 
Short term agrohydrological forecasts (e.g. streamflows, peak flows) may be made 

either by channel routing methods or by rainfall-runoff modelling. Channel routing 

methods simulate the routing of water down a river channel by using various 

hydrodynamic equations. Of the channel routing models the Dynamic Wave, 

Diffusion Equation, Muskingum, Kinematic Wave and Impulse Response Function 

are commonly used techniques around the world (Lettenmaier and Wood, 1993).  

Rainfall-runoff techniques represent the various water storage terms (e.g. 

interception, soil moisture and surface storage) and flux terms (e.g. infiltration, 

evapotranspiration, surface runoff, interflow, baseflow) with varying levels of 

complexity (Lettenmaier and Wood, 1993). There are numerous rainfall-runoff 

methods available. It is beyond the scope of this document to review each of these 

methods. However, it is helpful to discuss the criteria required to select an 

appropriate method for any particular application.  

 
In many applications forecasts based on channel routing are preferred because of 

their simplicity (Collischonn et al., 2005). Nevertheless, forecasting by rainfall-

runoff models has been found to be more accurate, especially whenever the 

forecast lead time is significantly longer than the time taken to route flow along a 

river channel (Lettenmaier and Wood, 1993; Collischonn et al., 2005). According 

to Lettenmaier and Wood (1993) the selection of short term hydrological 

forecasting methods depends on two criteria. The first relates the required forecast 

lead time, Tf, to the total time of concentration of the catchment at the forecast 

point. The total time of concentration includes both the hydrological response time, 
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Tc, which is the time of travel from the farthest point in the catchment to the 

forecast point, and the flood propagation time through the channel or river system, 

Tr. The second criterion is the ratio of the spatial scale of the meteorological event 

(e.g. rainfall) to the spatial scale of the catchment, Rs. Lettenmaier and Wood 

(1993) clarified by considering four cases. 
 
Case 1: If the forecast lead time is larger than the time of concentration (Tf  > Tc + 

Tr), then rainfall observations alone are not sufficient for forecasting purposes, 

since some of the water which is included in the flow forecast has yet to fall as 

precipitation on the catchment at the time the forecast is made. Some estimate of 

future rainfall is, therefore, required if flow forecasts are to be compiled up to the 

end of the lead time. Quantitative  Precipitation Forecasts (QPFs), which can be 

supplied by Numerical Weather Prediction (NWP) models, are suitable for this 

purpose, provided that these are sufficiently accurate (Collischonn et al., 2005). 
 
Case 2: If the forecast lead time is shorter than the total time of concentration and 

the total time of concentration is dominated by the routing time of the flood wave 

through the channel system (Tf  < Tc  + Tr and Tc < Tr), then streamflow forecasts 

can be based on observed flows at upstream gauged locations. For such systems, 

streamflow forecasts can be based on channel routing methods. This is often the 

situation for large river systems. 
 
Case 3: If the forecast lead time is shorter than the total time of concentration and 

the total time of concentration is dominated by the hydrological response time of 

the catchment (Tf  < Tc  + Tr and Tr < Tc), then hydrological forecasts can be 

simulated with rainfall-runoff models based on observed rainfall from a network of 

raingauges. This is a typical situation for small catchments and urban areas.  
 
Case 4: If the ratio of the spatial scale of the meteorological event (e.g. rainfall) to 

the spatial scale of the catchment Rs is < 0.7, then rainfall-runoff models that 

assume spatially uniform rainfall will not be able to produce accurate hydrological 

forecasts. This is a problem in large catchments. In such cases the catchment 

should be divided into subcatchments. The upstream catchment can be then 

forecasted by rainfall-runoff models, while the downstream channel flows can be 

forecasted using the channel routing methods.  
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3.2.2 Techniques for Long Term Agrohydrological Forecasting 
 
Long term, i.e. seasonal, agrohydrological forecasting techniques in use nowadays 

are of two types (Landman et al., 2001, Hallowes, 2002), viz.  

 
• the direct method, which consists of statistical downscaling of atmospheric 

variability to agrohydrological variables (e.g. streamflow, soil moisture), and 

•  the indirect method, in which agrohydrological variables are generated from 

climate forecasts using a hydrological model.   

 
Before reviewing these two methods, it is useful to first highlight the sources and 

current approaches behind the seasonal climate forecasts.  

 

3.2.2.1 Approaches to seasonal climate forecasting 
 
Approaches to seasonal forecasting rely on the fact that lower boundary forcing, 

which gives rise to atmospheric perturbations, evolves more slowly than the 

atmospheric perturbations and that the response of the atmosphere to this forcing 

is detectable (Murphy et al., 2001). For long term atmospheric predictability, 

oceanic boundary forcing is the most important type of boundary forcing and it is 

normally monitored in the form of sea surface temperature (SST) and Southern 

Oscillation Index (SOI) anomalies (Landman et al., 2001; Murphy et al., 2001). A 

recurrent, quasi-periodic appearance of warm SSTs in the central and eastern 

equatorial Pacific Ocean is the El Niño phenomenon. An opposite phase, when the 

water in the central and eastern equatorial Pacific Ocean is cooler, it is termed the 

La Liña. The underlying atmospheric activity that drives El Niño events is the 

Southern Oscillation (Piechota et al., 1998). El Niño and the Southern Oscillation 

combine to form the El Niño - Southern Oscillation, or ENSO phenomenon (UNEP, 

1992; Sarachik, 1996; Piechota et al., 1998).  

 
The ENSO phenomenon remains the foundation of long term (seasonal) climate 

forecasting methods (Hammer et al., 1996). Although the ENSO is the main 

source of atmospheric predictability at global scale, seasonal climate variability 

around the world has also been shown to be related to the North Atlantic 

Oscillation, NAO, the Pacific Decadal Oscillation, PDO, and the Indian Ocean 
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Dipole, IOD (Landman et al., 2001; Kabat and Bates, 2002).  The NAO, usually 

defined by an oscillation in sea-level pressure between stations in Iceland and the 

Azores, is responsible for a large portion of climate anomalies in Europe, North 

Africa, the Middle East and eastern North America (Hurrell, 1995; Hammer et al., 

2001).  Southern African seasonal rainfall variability is also well identified as 

having connections to sea surface temperature anomalies in the central south 

Atlantic and western equatorial Indian Oceans (Mason, 1990; Landman and 

Klopper, 1998; Landman et al., 2001). 

 
3.2.2.2 Climate forecasting techniques 

 
Climate forecasting techniques can be broadly divided into two categories, viz. 

statistical and dynamical (Hammer et al., 1996; Landman et al., 2001; Murphy et 

al., 2001).  A wide range of statistical techniques has been developed which relate 

predictand (e.g. seasonal rainfall) to predictor variables (e.g. SST, SOI). The 

commonly used statistical models include a linear statistical model, canonical 

correlation analysis (e.g. Landman and Mason, 1999), quadratic discriminant 

analysis, which is a non-linear statistical model (e.g. Mason, 1998) and Artifical 

Neural Networks, which are capable of modelling extremely complex functions 

(e.g. Hastenrath et al., 1995). All statistical models are based on the basic 

principle of minimising the least-squares between predicted and observed 

variables (Murphy et al., 2001). 

 
Dynamical methods employ a fundamentally different approach to seasonal 

prediction (Hammer et al., 1996; Landman et al., 2001; Murphy et al., 2001). In the 

case of the statistical models, SST persistence is assumed and observed SSTs 

are used to forecast the predictand. Dynamical methods, on the other hand, use a 

fully coupled ocean-atmosphere to mathematically model both the ocean and the 

atmosphere, thereby allowing SSTs to evolve (Hammer et al., 1996).  These 

evolved fields are then incorporated in a physically based model of the 

atmosphere system, known as General Circulation Models (GCMs), which are 

then used to simulate atmospheric variables.  

 
The output from the statistical or dynamic models can be then used to generate 

hydrological variables (e.g. streamflow, soil moisture) either directly by 
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downscaling model outputs statistically, or indirectly by employing 

agrohydrological models (Figure 3.1). The two methods are described in more 

detail in the sub-sections which follow. 

 
3.2.2.3 The direct method 

 
The direct method employs stochastic methods to generate agrohydrological 

forecasts (e.g. streamflow), either based only on past history of measured 

agrohydrological variables (e.g. streamflow, reservoir storage) or from predictor 

variables (e.g. SST), thereby preserving the statistical properties that exist 

between the input and output variables. In the latter case, the predictors may be 

obtained either from the statistical climate models or the dynamical models or 

both, the output of which is then downscaled statistically to agrohydrological 

variables such as streamflow (cf. Figure 3.1).  The most widely used stochastic 

models that are employed to generate agrohydrological forecasts based only on 

historical observed agrohydrological variables are time series models. 
 
 

                            

         
 
Direct method  - - - - -                        Indirect method   _____         

 

Figure 3.1 Methodologies used to generate long term agrohydrological 

forecasts (after Hallowes, 2002; with modification by the author) 

Climate Forecasts 
(e.g. rainfall, temperature) 

Agrohydrological Model 
(e.g. ACRU) 

Ocean-Atmosphere Data 
(Initial state of the atmosphere, SST, SOI) 

Statistical Model Dy  namical Model

Agrohydrological Forecasts 
(e.g. streamflow, baseflow, 

reservoir status, soil moisture) 

Historical Observed Data 
(e.g. streamflow, rainfall, temperature) 
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The use of Markov chains is a good example of time series models that have been 

applied for the generations of short, medium and long synthetic agrohydrological 

variables (Yapo et al., 1993). In the recent past, considerable attention has been 

focused on the time series models because of their simplicity. Yapo et al. (1993), 

for example, developed a streamflow forecasting model based on a Markov chain 

approach. The model relies on past information of streamflows to make forecasts. 

The concept here is that the forecasts consist of the probabilities that the next 

streamflow will be within specified flow ranges, where the probabilities are 

conditioned on the present state of the river.  

 
The second option employs statistical models that have the ability to seek 

relationship between the predictand and predictors. As has been stated above, the 

predictors may be obtained from either, or both, the statistical climate models and 

the dynamical models. The basic premise is that if rainfall is strongly related to the 

predictors such as SST or SOI, then agrohydrological variables such as 

streamflow may also be related to these predictors in the same manner. Piechota 

et al. (1998) developed a seasonal forecast model based partially on the 

relationship between ENSO and streamflow. The model uses an optimal linear 

combination of four empirical statistical models, viz. climatology, persistence 

Linear Discriminant Analysis (LDA), SOI LDA and winter Sea Surface 

Temperature, SSTw, to obtain a consensus forecast. Similarly, Landman et al. 

(2001) developed a multi-tiered procedure to simulate real time operational 

seasonal forecasts of categorised (below-normal, near-normal, above-normal) 

streamflows at the inlets of 12 dams of the Vaal and upper Thukela river 

catchments in South Africa. A GCM model called COLA T30 was used to simulate 

atmospheric variability over southern Africa, the output of which was then 

statistically downscaled to streamflow using a perfect prognosis approach. 

 
The major limitations of the statistical models are that they depend only on climatic 

factors such as precipitation and evapotranspiration. The non-climatic factors such 

as vegetation cover, land management, or soil characteristics which play an 

important role in the hydrological processes (Schulze, 1997) are not considered in 

the statistical relationship between the atmospheric variability and hydrological 

variables. The accuracy of such models also depends heavily on the quality of 
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observed data. Most of these models require reasonable periods of good quality of 

climatic and flow data (Kienzle et al., 1997; Hallowes, 2002). Most statistical 

models are based on linear statistics and do not take into account the non-linear 

physical processes (Landman et al., 2001; Hallowes, 2002). However, many 

important climate processes demonstrate strong non-linearities, and the forecast 

skill of statistical models is restricted owing to the exclusion of these important 

processes (Barnston et al., 1994; Landman et al., 2001). Algorithms are usually 

identified for a specific location, making algorithm transfers to other areas 

unsuitable (Kienzle et al., 1997).  

 
3.2.2.4 The indirect method 
 
This method employs agrohydrological models to generate agrohydrological 

forecasts from climate forecasts (Hallowes, 2002). The models run up to the time 

of forecast with observed climatological inputs (e.g. rainfall, temperature). During 

the forecast period the climatological inputs can be of several forms (Lettenmaier 

and Wood, 1993). They are obtained either from: 

 
• a forecast of future conditions predicted by climate models; 

• observed historical data set which is similar to conditions up to the time of 

forecast; or 

• models that generate synthetic sequences of future weather conditions. 

 
A major advantage of the indirect method is the representation of physical 

hydrological processes in the model which can simulate the conversion of rainfall 

to runoff by using well established mathematical relationships. This method 

therefore tends to be applicable under diverse catchment conditions (Hallowes, 

2002). Accurate information about the climate forecasts and representations of 

rainfall-runoff processes by the hydrological models are critical to the success of 

the indirect method of forecasting agrohydrological variables. Conceptual models, 

for example, represent a partial understanding of rainfall-runoff processes, in 

which the various catchment characteristics (e.g. soils, vegetation, terrain) are 

usually spatially averaged (Schulze, 1998). Deterministic models, on the other 

hand, represent the various spatial components and temporal variations in 

catchment hydrological processes (Kienzle et al., 1997). Consequently, 
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deterministic models are expected to display relatively more accurate 

agrohydrological forecasts than simpler conceptual models. Although most 

physical-conceptual based models require reasonable periods of good quality flow 

data for verification purposes, they are considerably less reliant on good flow data 

sets when compared to statistical models (Hallowes, 2002).   

 
In hydrologically heterogeneous regions such as southern Africa, forecasting by a 

suitable agrohydrological model would lead to improved estimates of 

agrohydrological outputs such as streamflows, reservoir status, irrigation demands 

and soil moisture status when compared with forecasting using the simple 

conventional statistical methods. Despite the many advantages of the indirect 

method, the use of rainfall forecasts as input to an agrohydrological model, 

thereby enabling the forecasting of agrohydrological variables across a range of 

time scales and lead times, is relatively new.  As has been mentioned in the 

introduction, the main reasons for this are due to the gaps that exist between the 

products of weather and climate forecasts, and their practical use in 

hydrological/crop models.  

 
3.3 Conclusions 
 
In this chapter the review was on types of agrohydrological forecasts and their 

potential applications to reduce vulnerability in the management of water resource 

and agricultural systems. Many other water related sectors in southern Africa may 

also benefit from the provision of an integrated time-varying agrohydrological 

forecast system. With the aim to understand the broad range of forecasting 

systems, a brief review was also conducted of the current state of climate and 

agrohydrological forecasting techniques. Key elements of the review were the 

techniques used to generate short and long term agrohydrological forecasts, and 

their qualities and limitations when used for operational decisions. 

 
In Chapter 4 prerequisites, approaches and challenges related to forecasting are 

reviewed briefly for effective use of agrohydrological forecasts in agricultural and 

water resources decisions. 
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4. CHALLENGES AND APPROACHES TO MAXIMISE BENEFITS FROM 
HYDRO-CLIMATIC FORECASTS 

 
In Chapter 3, a brief description was provided on the role that forecasting could 

play in modifying decisions, to either reduce expected adverse conditions or to 

take advantage of favourable conditions. However, the availability of hydro-climatic 

forecasts per se is not sufficient to ensure that decision makers will mitigate the 

potential negative consequences of climate variability or, alternatively, capitalise 

on potentially beneficial events (Podestá et al., 2002). Benefits only arise when the 

use of hydro-climatic forecasts results in decisions that improve management of 

climate related risks in water resources and agricultural operations. According to 

many researchers (e.g. Pielke, 2000; Hansen, 2002; Podestá et al., 2002), 

sustained and effective application of hydro-climatic forecasts requires three 

components to occur simultaneously, viz.   

 
• the generation of skilful and timely hydro-climatic forecasts (i.e. forecast 

quality), 

• the effective communication of that information, and 

• the application of that climate information to modify decisions or policies (i.e. 

forecast value). 

 
In practice however, the application of these components is not straightforward, let 

alone applying them simultaneously. Thus, it is important to explore the 

prerequisites, approaches and impediments associated with each of these 

components as a means of maximising the benefits from hydro-climatic forecasts.  

 
4.1 Forecast Quality  
 
Hydro-climatic forecasts should, in the first instance, be statistically valid (Ritchie 

et al., 2004) and the information should be both 

 
• prognostic (what is likely to happen?) and 

• diagnostic (what has happened in the recent past, or what is happening 

now?).   
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The reason for latter is that diagnostic information can provide a relevant context 

within which to interpret a climate forecast (Podestá et al., 2002). Sources of 

uncertainty and methods to evaluate forecast quality are therefore described 

briefly, as forecast quality is a central issue for anyone wishing to use hydro-

climatic forecasts.  
 
4.1.1 Sources of Uncertainty in Forecasting 
 
Improved understanding of ocean-atmosphere interactions, more powerful remote 

sensing tools and the advances in simulation of complex non-linear systems with 

powerful computers has facilitated the generation of hydro-climate forecasts with 

increasingly more accuracy. However, there are some unavoidable errors in the 

generation of weather, climate and agrohydrological forecasts. These errors arise 

from three sources (Lettenmaier and Wood, 1993), viz.  
 
• model errors,  

• data errors, and  

• forecast errors. 
 
4.1.1.1 Model errors 
 
Errors in agrohydrological models often arise from an incorrect conceptualisation 

of the rainfall-runoff processes by the agrohydrological model (Lettenmaier and 

Wood, 1993). As has been highlighted in Chapter 3, agrohydrological models are 

limited by their representation of the local spatial heterogeneities and non-

stationarities of rainfall-runoff processes. Errors arising out of inadequate model 

conceptualisation are ideally improved by research on relevant processes and 

incorporating the findings in improved algorithms (UKCIP, 2003; Schulze, 2007). 

Alternatively, as an interim solution when adequate agrohydrological observations 

are available good simulations of agrohydrological outputs may be obtained, by 

changing values of some internal variables or parameters (UKCIP, 2003; 

Collischonn et al., 2005). 

 
4.1.1.2 Data errors 

 
With hydro-climatic data it is often difficult to asses the “truth” of observed data 

because of several factors. Sources of errors in the observations include random 
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and biased errors as well as sampling errors. Errors in model inputs such as 

precipitation as a result of sparseness of the raingauge network, observer errors, 

raingauge splash errors and extrapolation errors will be amplified, for example, 

through the agrohydrological forecasts (Lettenmaier and Wood, 1993; Schulze, 

1995a, UKCIP, 2003). 

 
4.1.1.3 Forecast errors 

 
Advances in computing and improved understanding of the atmosphere-ocean 

system, have enabled NWP and GCM models to respectively predict the weather 

in the near and more distant future. These models use equations of fluid motion, 

which are initialised with present conditions to predict the movement and evolution 

of disturbances such as frontal systems and tropical cyclones that cause rainfall 

(Ganguly and Bras, 2003). Despite the progress made in these models, weather 

forecasts have, as yet, obtained only limited success, i.e. their skill drops off with 

lead time and varies from one location to another. The reason for this is their 

limited representation of meso-scale atmospheric processes, terrain, land and sea 

distribution (Mecklenburg et al., 2000; Schmidli et al., 2006).  

 
Moreover, no matter how good atmospheric models may become, the forecasts 

will always fail up to a point because the atmosphere is a chaotic dynamical 

system, and any error in the initial condition will lead to increasing errors in the 

forecast, eventually leading to a greater or smaller loss of predictability after a 

certain period of time (Toth et al., 1997). The rate of the error growth depends on 

factors such as the circulation regime, season and geographic domain (Toth et al., 

1997). Thus, rainfall forecasts are still limited by the resolution of the simulated 

atmospheric dynamics and the sensitivity of sub-grid scale parameterisations of 

the rainfall forming processes (Lettenmaier and Wood, 1993; Toth et al., 1997; 

Pappenberger et al., 2005).  

 
4.1.2 Improving the Quality of Forecasts 
 
As was mentioned above, uncertainty is inherent in the forecasting process. 

However, minimising these uncertainties to acceptable levels promotes the value 

of the forecast.  A technique termed “ensemble forecasting” has been developed 
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by many weather forecasting centres around the world in order to assess the 

forecast uncertainty due to errors in the initial conditions of the atmosphere. In 

order to address the problems related with spatial resolution, several statistical 

and dynamical models have also been developed. These techniques are 

described in more detail in the sub-sections which follow. 

 
4.1.2.1 Ensemble forecasting systems 

 
Ensemble forecasting is a technique developed to assess the flow-dependent 

predictability of the atmosphere by running a NWP model several times, with 

slightly perturbed initial conditions which lie within the estimated cloud of 

uncertainty that surrounds the control analysis (Toth et al., 1998). In non-linear 

dynamical systems this approach offers the best possible forecast with the 

maximum information content. In a statistical sense, averaging the ensemble 

members provides a more reliable forecast than simply using any one of the single 

forecasts, including that started from the control analysis (Toth et al., 1997). 

Ensemble forecasting has become a common practice to assess the flow-

dependent predictability of the atmosphere, and to create quantitative probabilistic 

forecasts at many NWP centres around the world, e.g. at the National Center for 

Environmental Prediction (NCEP) in the USA, the European Centre for Medium-

Range Weather Forecasts (ECMWF), the Canadian Meteorological Centre (CMC), 

the Japan Meteorological Agency (JMA) and the SAWS (Toth et al., 1997; Toth et 

al., 2005).  However, questions relating to the generation of adequate sampling of 

initial perturbations, and to estimating the analysis error in a probabilistic sense, 

remain major research issues for an ensemble forecasting system (Wei et al., 

2005).  

 
According to Toth et al. (1997) and Wei et al. (2005) initial perturbation techniques 

are broadly classified into either as first or second generation techniques. The first 

generation initial perturbation techniques are commonly used at different centres 

for initial perturbations. These methods include the following:  

 
Singular vectors: These have been developed at ECMWF, and identify the 

direction of fastest forecast error growth for a 2 day period at the beginning of the 

forecast (Toth et al., 1997; Wei et al., 2005). The estimation is neither explicit nor 
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flow-dependent. This technique would be the best sampling strategy if all possible 

analysis errors had occurred with the same probability. In this ensemble strategy 

initial perturbations are not consistent with the data assimilation systems that 

generate the analysis fields (Wei et al., 2005). 

 
Breeding: The so-called breeding technique has been developed at NCEP and 

has been adopted at many other NWP centres (e.g. SAWS, JMA, CMC). This 

technique captures the fastest growing errors that are most likely to be responsible 

for the error in the control forecast. The error in the short range forecast is the 

perturbation which is periodically rescaled at each analysis time by blending 

observations with the estimate (Toth et al., 1997; Toth and Kalnay, 1997; Wei et 

al., 2005). Breeding also cannot accurately assess the analysis errors as there are 

generally not enough observations to eliminate all errors from the short range 

forecast that is subsequently generated as the first estimate for the next analysis. 

Consistencies between ensembles and data assimilation are poor, owing to the 

use of fixed estimates of the analysis error variance and the lack of an 

orthogonalisation in the breeding procedure (Wei et al., 2005).  

 
Perturbed Observations: These have been developed at the CMC and generate 

initial conditions by assimilating randomly perturbed observations using different 

models in a number of separate analysis cycles. All observations are perturbed 

with random noise representing the error in observations. Similar to breeding, 

perturbed observations capture patterns that can occur in the analysis as errors. 

Breeding does not, however, take into consideration patterns that initially are not 

growing. The initial perturbations generated by the perturbed observation 

technique are, therefore, more representative of analysis uncertainties in 

comparison with the singular vectors and breeding techniques (Wei et al., 2005). 

 
The Ensemble Transform Kalman Filter (ETKF), Ensemble Transform (ET), ET 

with breeding and singular vectors with Hessian norm can be classified as the 

second generation initial perturbation techniques (Wei et al., 2005). A common 

feature of the second generation techniques is that the initial perturbations are 

more consistent with the data assimilation systems when compared with the first 

generation initial perturbation techniques. Even though the ET with rescaling 

method looks the most promising one, with better consistency and efficient 
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computation the breeding method established at NCEP is widely used at many 

centres (Toth et al., 2005; Wei et al., 2005).   

 

4.1.2.2 Techniques for spatial downscaling 

 
Knowledge of precipitation fields at fine resolution is a vital ingredient for 

agrohydrological forecasting. In the absence of full deterministic modelling of 

small-scale rainfall, it is common practice to use a spatial downscaling procedure 

(Rebora et al., 2005). Many techniques have been developed for the spatial 

downscaling of rainfall. According to Schmidli et al. (2006) and Wood et al. (2004), 

the spatial downscaling methods that have been most widely used are categorised 

broadly into either  

 
• statistical (e.g. Canonical Correlation Analysis, CCA; Multiple Linear 

Regression, MLR; Multivariate Autoregressive Model, MAR; Conditional 

Weather Generator, CWG; or Climate analogue), or 

• dynamical (e.g. CHRM, HadRM3, HIRHAM). 

 
Statistical downscaling methods use the observed relationships between large-

scale circulation and the local climates to set up statistical models that attempt to 

translate anomalies of the large-scale flow into anomalies of some local climate 

variable (Zorita and von Storch, 1999; Schmidli et al., 2006). Statistical 

downscaling methods are commonly used because of their relative simplicity and 

lower costs when compared with dynamical methods (Zorita and von Storch, 1999; 

Wood et al., 2004). The climate analogue method is considered to be the simplest 

of the downscaling schemes and it compares the large-scale atmospheric 

circulation simulated by a GCM to historical observations. The most similar 

analogue is selected and simultaneously observed local weather data are then 

associated to the simulated large-scale pattern. A major problem associated with 

the climate analogue method is the need for accurate and long observations 

(Zorita and von Storch, 1999). 

 
Dynamical models use the so-called Limited Area Models (LAMs) to account the 

regional and local characteristics such as topography, which influence rainfall 

patterns. These LAMs are atmospheric or oceanic models of limited geographical 

 48  



area with finer horizontal resolutions than GCMs, but which use the large-scale 

fields simulated by the GCMs as boundary conditions and the local variables to 

provide weather forecasts at a regional scale (Zorita and von Storch, 1999; Wood 

et al., 2004; Rebora et al., 2005; Schmidli et al., 2006). The LAMs are capable of 

simulating the regional climate conditions such as orographically induced 

precipitation. However, some systematic errors still exist in these models due to 

errors in sub-grid parameterisations, which are taken over from the parent GCMs 

(Zorita and von Storch, 1999).  

 
Several researchers (e.g. Zorita and von Storch, 1999; Wood et al., 2004; Rebora 

et al., 2005; Schmidli et al., 2006) have evaluated the differences between various 

statistical and dynamical downscaling methods, based on their implications for 

hydrological forecasts. For example, Wood et al. (2004) compared three statistical 

downscaling methods, viz. Linear Interpolation (LI), Spatial Disaggregation (SD) 

and Bias Corrected Spatial Disaggregation (BCSD), by using climate simulations 

produced by the Parallel Climate Model (PCM). Each method was applied to both 

PCM output directly and to dynamically downscaled PCM output with a Regional 

Climate Model (RCM). They concluded that dynamical downscaling does not lead 

to large improvements in hydrological simulations relative to the direct use of PCM 

output when BCSD was used. With LI of PCM and RCM outputs, the hydrological 

simulations were found to be poor, while applying SD improved sub-grid spatial 

variability and displayed better hydrological simulations (Wood et al., 2004).  

 
It should be noted that a rainfall field generated by any spatial downscaling 

method is one possible realization of the small scale field and should not be 

considered as providing the “true” rainfall distribution (Rebora et al., 2005). 

 
4.1.3 Verification of Forecasts 
 
The quality of hydro-climatic forecasts is highly dependent on geographic location, 

season and lead times. Routine forecast quality control is usually performed by 

model developers and/or the forecast providers themselves. However, the quality 

of a forecast does not necessarily address its practical usefulness for a decision 

maker. The quality of hydro-climatic forecasts produced by various models needs 

to be assessed from users’ perspectives before the products would have any 
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relevance to them. Hence, forecast performance assessments should include 

measures that express relevant properties of forecasts that help users to judge the 

usefulness of forecasts for their specific purposes (Hartmann et al., 2002; Mailier 

et al., 2006). Although research in forecast verification is continually growing, the 

nature of forecast products, the wide range of customer requirements and the 

different nature of delivery systems have complicated the development of standard 

measurements that would be useful to all the people making decisions (Mailier et 

al., 2006). According to Jolliffe and Stephenson (2003), the three important 

reasons to verify the quality of forecasts are to: 

 
• improve forecast quality by identifying the problems associated with the 

forecasts, 

• compare the quality of different forecast systems in order to know to what 

extent one forecast system gives better results than another, and to 

• monitor forecast quality in order to find out how accurate the forecasts are 

when compared to actual observations and to asses the degree of 

improvement over time.  

 
Mailier et al. (2006) proposes the following points as being good practice in quality 

assessments: 

 
• the assessment procedures should be clearly and full described, including 

descriptions/definitions of all technical terms used, 

• forecast formats should be suitable to objective quality assessment, with 

qualitative terms avoided wherever feasible, 

• the assessment methodology should, in principle, be repeatable by a user, 

• the assessment methodology should be carefully chosen to produce 

information that is meaningful to the user, 

• uncertainty about the forecasts should be presented in a simple format that 

the user can easily understand, 

• users should be aware of the statistical properties and possible deficiencies 

of the methods used in the assessment, 

• assessments should include the different facets of forecast performance, 

and 
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• the choice of the sample used for the assessment should be justified, in 

order  to provide stable and representative estimates. 

 
An assessment of forecast quality depends on the type of forecast, i.e. whether it 

is deterministic (i.e. non probabilistic), qualitative (e.g. scattered showers) or 

probabilistic (e.g. categorical, continuous). Qualitative forecasts are difficult to 

verify as different users will likely interpret them differently. Hence there is always 

a subjective interpretation, whether or not a forecast is a good one. Qualitative 

forecasts can only be verified in circumstances where a technical definition 

underlies a descriptive forecast (Mailier et al., 2006).  Most forecast techniques 

have some strengths, but all have some weaknesses (Jolliffe and Stephenson, 

2003). This implies that more than one score (measure) is often needed for better 

decision making. The evaluation should consider all aspects of correspondence 

between forecasts and observations. In this regard, Murphy (1993) describes the 

following relevant terms 

 
• bias: the correspondence between the average forecast and the average 

 observation, 

• association: the strength of the linear relationship between the forecasts and 

the observations, 

• accuracy: the degree of correspondence between forecasts and 

observations,  

• skill:  the accuracy of forecasts compared to other forecasts produced using 

a standard strategy, 

• consistency: the degree of correspondence between the forecaster’s 

judgement and the forecast 

• reliability: the correctness of forecast uncertainty, 

• resolution: the extent to which outcomes differ from  given forecasts, 

• discrimination: the extent to which forecast depart from given observations,  

• sharpness: the extent to which forecast depart from climatology, and 

• uncertainty: variability of observations regardless of the forecast. 
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These are major attributes that contribute to the evaluation of forecast quality. A 

short definition of commonly used verification scores that can be used to assess 

the skill of continuous and categorical forecasts is given in this section.  

 
In regard to continuous verification scores, bias, relative bias, correlation 

coefficient, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are 

commonly used and they provide statistics on how much the forecast values differ 

from the observations. Most continuous verification scores are sensitive to large 

errors (Lettenmaier and Wood, 1993; Nurmi, 2003). 

 
Bias measures systematic error in the forecast. It measures the degree to which 

the forecast is consistently above or below the observed value (Lettenmaier and 

Wood, 1993; Nurmi, 2003). It is expressed as 
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where 
 

Fi = forecast value of day i or pixel i, 

 Oi = observed value of day i or pixel i, and 

 N = total number of days or pixels. 

 
The correlation coefficient measures the degree of linear association between the 

forecast and the observed values. However, it is important to bear in mind that the 

correlation coefficient evaluates forecast accuracy in terms of random error only 

(Lettenmaier and Wood, 1993). Thus, forecast errors could be large, even with a 

near-perfect correlation, if appreciable bias is present (Lettenmaier and Wood, 

1993; Mason, 2000). The correlation coefficient is expressed as 
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where 

 r = correlation coefficient 

Fi = forecast value of day i or pixel i, 

 52  



F = average forecast value of all days or pixels, 

 Oi = observed value of day i or pixel i, 

O  = average observed value of all days or pixels, and 

 N = total number of days or pixels. 

 

RMSE measures the average error magnitude while MAE measures the average 

squared error magnitude and both methods measure systematic and random 

errors (Lettenmaier and Wood, 1993; Mason, 2000; Nurmi, 2003). They are 

expressed as 
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where 

Fi = forecast value of day i or pixel i, 

Oi = observed value of day i or pixel i, and 

N = total number of days or pixels. 

 
The pixel-by-pixel scoring criteria, viz. the Critical Success Index, CSI, the 

Probability of Detection, POD and the False Alarm Ratio, FAR are also commonly 

used to assess the overall degree of positional accuracy over a selected area 

(Wilks, 1995). These statistics are calculated as follows:   
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where 

 CSI = the Critical Success Index, 

 POD = the Probability of Detection, i.e. the Hit Rate, 
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 FAR = the False Alarm Ratio, 

 H = number of pixels for which both the estimated and observed              

   values exceed a specified threshold, 

M = number of pixels for which only the observed values exceed a 

 specified threshold, and  

FA = number of pixels where only the estimated values exceed a             

  specified threshold.  

 
A variety of categorical verification scores are used operationally to verify hydro-

climatic forecasts. There are many textbooks, research papers and technical 

papers providing detailed information of these scores (e.g. Wilks, 1995; Potts et 

al., 1996; Zhang and Casey, 1999; Joliffe and Stephenson, 2003; Livezey, 2003; 

Nurmi, 2003; Mailier et al., 2006). What follows below, however, focuses on the 

discussion of the five more commonly used scoring methods, viz. the  

 
• Heidke Score (HS),  

• Revised True Skill Statistics (RTSS), 

• Linear Errors in Probability Space (LEPS),  

• Brier Score (BS), and  

• Ranked Probability Skill (RPS).  

 
Categorical forecasts are usually assessed by reducing them to a series of binary 

(i.e. yes and no) forecasts (Livezey, 2003). Often a 2 x 2 contingency table is 

constructed to transform categorical probabilistic forecasts into binary events 

based on decision probability thresholds (Table 4.1).  

 
Table 4. 1 Schematic contingency table for categorical forecasts of a binary            

event, with the number of observations in each category being 

represented by A, B, C, D and N (Source: Livezey, 2003) 

 
 

Forecast 
Observed  

Total Yes No 
Yes A B A+B 
No C D C+D 

Total A + C B + D A +B +C + D = N 
 

 54  



Given a set of forecasts, it is possible to calculate the number of times that the 

forecast was correct. The HS (Equation 4.8) is a simple measure of forecast 

accuracy for binary (i.e. yes or no) forecasts. It is simply the sum of points scored, 

divided by the total number of forecasts (Mason, 2000).  

 

100×
N

D+A
=HS                                                        4.8 

where 
 
 HS = the Heidke Score, 

 A = number of hits, 

 D = number of correct rejections, and 

 N = total number of observations. 

 
The problem with the HS is that a high score is achievable both if the forecasted 

event is rare or extremely common (Mason, 2000). The HS is often compared with 

some reference forecasts such as climatology, persistence or random chance to 

form a single index called Heidke Skill Score, HSS (Mason, 2000; Banitz, 2001), 

which is expressed as  

 

100×
E-N
E -A

=HSS                                                      4.9 

 
where 
 
 HSS = the Heidke Skill Score, 

 A = number of hits, 

 E = number of forecasts expected to be correct, based on a            

   reference such as climatology, persistence or random chance, 

   and 

 N = total number of observations. 

 
The RTSS is another technique similar to the HSS. However, the RTSS score 

(Equation 4.10) measures the fraction of correct forecasts after eliminating those 

forecasts which would be correct due purely to random chance. It gives the best 

estimates on an “unequal” trial basis as it gives equal emphasis to the ability to 

forecast events and non-events (Zhang and Casey, 1999).  The RTSS is given as 
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where A, B, C, D, and N are the components in the Table 4.1 and 
 
 RTSS = the True Skill Statistics, 

N = total number of observations, 

NCM = number of correct forecasts from the forecast model, i.e. 

 (A+D), 

 NCCM = number of correct forecasts that could be achieved by chance, 

   i.e. (A+C)* Pyes + (B+D)* Pno,  

 NCCO = number of observed events that can be correctly forecasted       

   by chance, i.e. (A+B)* Pyes + (C+D)* Pno. 

Pyes = climatological probabilities, i.e. (A+B)/N, and 

 Pno = climatological probabilities, i.e. (C+D)/N, 

 
It is important to bear in mind that the HS and RTSS scores do not penalise the 

errors in terms of their severity between each categories.  

 
The LEPS scoring matrices are calculated from the distance between the 

forecasts and observations in continuous cumulative probability space (Figure 

4.1). It rewards good forecasts, and penalises two-category misses much more 

than one-category misses (Zhang and Casey, 1999; Klopper and Landman, 2003; 

Livezey, 2003).  

 

LEPS is then computed by the following equation (Equation 4.11): 
 

|)O(CDF-)F(CDF|
N
1

=LEPS ioi

N

1=i
o∑                                     4.11 

 
where 

 LEPS = the Linear Error in Probability Space, 

 CDFo = cumulative probability density function of observations,             

   obtained from an appropriate climatology, 

 Fi = forecast value of category i, 

 Oi = observed value of category i. 
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Figure 4.1 Schematic diagram for calculating the Linear Errors in Probability  

  Space (Source: http://www.bom.gov.au) 

 
Potts et al. (1996) derived an improved version of the LEPS score that does not 

discourage forecasting extreme values if they are warranted. It is given by: 
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In the LEPS matrix, a score of +100% will indicate perfect hits and a 0 score 

indicates a result as good as the climatology, while a score of -100% shows no 

hits. LEPS has been developed for continuous variables as well (Livezey, 2003).  

 
The BS and RPS provide combined measures of reliability and sharpness. The 

RPS is similar to the BS, but is used for more than two categories (Mason, 2000). 

The BS and RPS measure the sum of squared differences in cumulative 

probability space for two categories and multi-category probabilistic forecasts 

respectively. They penalise forecasts more severely if the weight of the forecasts 

are not closer to the actual observed distribution (Zhang and Casey, 1999; Nurmi, 

2003). RPS is given by 
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where 
 

M = number of categories, 

Fi = the forecasted probability in forecast category i, and 

Oi = an indicator (0 = no, 1 = yes) for observation in category i. 

 
The BS and RPS can also be expressed as skill scores indicating the fractional 

improvement relative to a reference forecast (Mason, 2000). Hence, 

 

reference

forecast

reference

referenceforecast

RPS
RPS

-1=
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RPS-RPS
=RPSS                                    4.14 

 
where 
 

RPSS  = the Ranked Probability Score Skill (fraction), 

RPSforecast = the probabilistic forecasted RPS (fraction), and 

RPSreference = the RPS expected from the reference forecast               

   (fraction). 

 
The RPSS ranges from -∞ to 1, with a score less than or equal to 0 indicating no 

skill when compared to the reference forecast, and a score of 1 indicating a perfect 

forecast. The RPSS is, however, highly unstable when applied to small data sets 

(Mason, 2000). 

 
The above categorical verification techniques measure the skill, sharpness and 

reliability of forecasts relative to the quality of some other forecasts produced by 

standard procedures. Reliability addresses the questions as to whether repeated 

application of forecast procedures will produce similar results. It measures the 

forecaster’s level of confidence to produce reliable forecasts (Scott and Collopy, 

1992; Mason, 2000; Schneider and Garbrecht, 2003). According to Mason (2000), 

perfect reliability occurs if: 

 
• forecasts are statistically consistent with the observations, but it does not 

necessarily mean that the forecasts are accurate, and 

 58  



• the forecaster’s confidence is appropriate. 

 
Climatology, random, persistence and median values are simple forecast 

strategies used for a reference strategy (Mason, 2000; Hallowes, 2002). The 

forecast skill is usually defined as the percentage improvement in accuracy over 

the reference forecast (Zhang and Casey, 1999; Mason, 2000). Care should be 

taken to select appropriate reference forecasts so that the computed skill reflects 

the true usefulness of the forecast (Mailier et al., 2006).  

 
Not all categorical verification techniques account for possible near-misses across 

category boundaries, and they do not account for the accuracy of the forecasts 

within a category (Mason, 2000). In addition, part of the information from 

categorical forecasts will be lost during the transformation to binary forms (Zhang 

and Casey, 1999).  

 
4.1.4 Procedures for Updating Forecasts 
 
Most hydrological models use mathematical equations to describe the various 

components of spatially and temporally varying catchment hydrological processes. 

In most conceptual and parameter optimising hydrological models, the forecast 

errors may result from inadquecies in the model structure, incorrect 

conceptualisation of the model parameter and errors in the data, as well as errors 

induced by the lack of knowledge of the future rainfall (Toth et al., 1999; Xiong et 

al., 2004). When any hydrological model is intended for use in a real time 

forecasting system, it will be associated with explicit or implicit updating 

procedures whereby, at the time of making the forecast, errors already observed in 

recent forecasts will be used to modify the forecast (Xiong et al., 2004).  

 
Univariate linear statistical models such as the AutoRegressive (AR), the 

AutoRegressive Integrated Moving Average (ARIMA), the Linear Transfer Function 

(LTF) or, alternatively, Artifical Neural Networks (ANN), which is a non-linear 

statistical model, are  commonly used in the updating mode to post-process the 

forecasts made by the conceptual or physically based hydrological model. 

Descriptions of these models are widely available in research papers (e.g. Toth et 

al., 1999; Madsen and Jacobsen, 2001; Xiong et al., 2004; Goswami et al., 2005). 

These statistical models are not alternatives to deterministic or conceptual models, 
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rather they are used to predict simulation errors induced by unsatisfactory model 

paramaterisation, or errors cascaded from rainfall forecasts. Various types of 

updating schemes may be implemented that may compensate for the deficiencies 

of the hydrological models. According to Anctil et al. (2003) and Goswami et al. 

(2005), four types of updating procedures exist. They are described below. 

 
Updating of Input Variables: Additional input information from the most recently 

measured variables can be used in the updating procedure. Thus, the forecasting 

system can be corrected as and when daily observed rainfall, temperature and 

runoff data become available, in order to account for any spatio-temporal errors 

that may have occurred in previous forecasts. 

 
Updating of State Variables: Day-to-day catchment state variables deviate from 

the the so-called average conditions simulated with a conceptual hydrological 

model (Anctil et al., 2003). The catchment state variables need to be calibrated or 

updated continuously to render the potential of agrohydrological forecasting more 

useful to decisions in water resource and agricultural operations. Schulze et al. 

(1998) identified the following state variables that need day-to-day updates in the 

ACRU model (Schulze, 1995a and updates): 

 
• baseflow store and baseflow releases, 

• stormflow store and stormflow releases, 

• soil moisture in the topsoil and subsoil, 

• dam levels, abstractions, water transfers and return flows, and 

• irrigation abstractions and return flows. 

 
Updating of Model Parameters: This is the least favoured updating scheme 

because it is not sound practice to modify model parameters at each time step. 

Moreover, this is an iterative process, quite time consuming and computational 

demading, especially when the model includes a large number of parameters 

(Toth et al., 1999; Anctil et al., 2003; Goswami et al., 2005). 

 
Updating of Output Variables: This updating scheme is commonly used. Toth et al. 

(1999), for example, applied six different stochastic models, aimed at updating the 

discharge forecasts produced by a conceptual rainfall-runoff modelling called ADM 
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(Franchini, 1996). They found that all the six updating models were more efficient 

than the ADM model. Similar results have also been reported by Xiong et al. 

(2004) after three updating schemes using ANN discharge forecasting had been 

applied on ten catchments in various countries. The statistical models attempt to 

predict the simulation series error produced by the conceptual or deterministic 

hydrological models. The updated forecast is then the sum of the simulated plus 

the predicted error values (Toth et al., 1999; Anctil et al., 2003; Xiong et al., 2004). 

 
The selection of the updating scheme depends on what is considered by the 

modeller to be the main cause of any discrepancy between observed and 

forecasted values (Anctil et al., 2003). In this study, updating with daily observed 

rainfall values was used for simulating one day streamflow forecasts with the 

ACRU model (Schulze, 1995a), in order to correct for any errors that may have 

occurred by the lack of knowledge in the forecast of the previous day. A 

description and evaluation of the updating procedure is presented in Chapter 8. 

 
4.2 Communication of Hydro-Climatic Information 
 
The communication process is the second component of an effective hydro-

climatic system and it includes preparation of weather forecasts for public and 

private interests, as well as educating end users about forecast issues (e.g. 

contents, formats, limitations and dissemination). Communication using 

participatory approaches and collaborative learning is an important step in 

promoting use of hydro-climatic forecasts (Podestá et al., 2002). Communication 

should flow in both directions, i.e. from scientists to practitioners or decision 

makers and vice versa, in order to create opportunities for mutual learning. 

Information received at one step may produce a demand for other information. 

Feedback is important as an indicator of users’ reactions that allow scientists to 

improve forecasts for specific purposes, and stakeholders to learn about 

capabilities and limitations of hydro-climatic forecasts (Hobbs, 1980; Klopper, 

1999; Podestá et al., 2002).   

 

The wide range of users and increasing demand for hydro-climatic forecasts 

implies a similarly broad range of requirements and expectations of the forecasts. 
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Requirements may vary in terms of the desired weather format and spatio-

temporal scales (Hobbs, 1980).  

 

The nature and speed of forecast dissemination are major issues that may 

influence the usefulness of forecasts. Advances in technology have facilitated the 

transmission of forecasts in a real time mode. Newspapers, radio, television, 

cellphone and the internet are important devices for the forecast dissemination to 

users. However, misinterpretation of the forecast by users and the media is a 

major problem (Hobbs, 1980). A survey conducted by Klopper (1999) indicates 

that some users do not fully understand the definition of the hydro-climatic forecast 

terms. Moreover, some believed the newspapers to be more desirable while 

others preferred to listen to radio or television broadcasts. The media may also be 

more interested in the style and attractiveness of the forecasts than the accuracy. 

These types of confusion indicate that the news media and end users should be 

educated on how the forecasts should be interpreted. Technical advices on how to 

respond to hydro-climatic forecasts should ideally come from trusted sources such 

as agricultural extension agents or technical consultants, and not directly from 

forecast provider institutions. The reason for this is that end users (e.g. farmers) 

may evaluate the credibility of forecasts based on its source. Usually they act 

positively when the information comes from sources that they already know and 

trust (Hobbs, 1980; Hansen, 2002). 

 
The communication process is a challenging issue and is often impeded by 

financial, technical and cultural barriers (Glantz, 1996; Podestá et al., 2002). Many 

societies have had long traditions of using a variety of different indicators to predict 

the weather conditions. However, more efforts must be made to ensure closer 

articulation with end users. Such interaction will provide better insights of their 

needs and expectations. It would also promote trust building communication 

between forecasters and end users (Podestá et al., 2002) 

 
4.3 Application of Hydro-climatic Information 
 
Hydro-climatic forecasts must ideally contribute to a change in decisions, which 

leads to desirable outcomes, regardless of how accurate and well communicated 

the forecast is (Hammer et al., 2001; Hansen, 2002; Podestá et al., 2002; Ritchie 
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et al., 2004). If a forecast system is validated, but fails to generate changed 

decisions, the information will have only academic value. However, if the forecast 

system has a positive value of information, but has not been statistically validated, 

then the system is not useful, as the value may be the result of chance (Ritchie et 

al., 2004).   

 
Decision makers should be able to examine the value of forecasts for a specific 

purpose, and evaluate its economic return in terms of cost-loss ratio analysis. In 

fact, it is not easy for a decision maker to make a rational decision that minimises 

the expected losses and maximises the expected benefits under uncertain 

forecasts. According to Podestá et al. (2002), changes in decision making 

processes depend on the following conditions: 

 
• the quality of hydro-climatic forecasts, with appropriate lead time and 

geographic and temporal resolution, 

• the feasibility of alternative actions that can be taken in response to a 

hydro-climatic forecast, 

• the ability of decision makers to evaluate the outcomes of those alternative 

actions, and 

• the willingness of decision makers to change their decisions in an already 

complicated decision-making environment. 

 
A decision support system is another key element that can facilitate the use of 

hydro-climatic forecasts. Decision support tools allow the exploration of multi-

dimensional decision space that would help decision makers to evaluate the 

consequences of alternative management in respond to forecasts (Podestá et al., 

2002). Recognising the importance of the three components, Hansen (2002) 

proposed a framework that represents the opportunity to benefit from hydro-

climatic forecasts. The opportunity to benefit falls within the intersection of human 

vulnerability, hydro-climatic forecasting and decision capacity, as shown in Figure 

4.2. 
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Hydro-climatic Human 

Decision Capacity 

Forecasting Vulnerability 
Potential 
to Benefit 

 

Figure 4.2 Determinants of the potential for human populations to benefit from    

  hydro-climatic forecasts (after Hansen, 2002) 

 
4.4 Concluding Remarks 
 
This chapter commenced by outlining the approaches required to maximise 

benefits from the use of hydro-climatic forecasts.  It was found that the benefits 

which might accrue do not only depend on the scientific advances of hydro-

climatic forecasts, but also on an effective way of dissemination as well as on 

appropriate education of forecast presenters and decision makers. Apart from 

forecast quality considerations, the format and speed of dissemination of 

forecasts, as well as the willingness and ability of decision makers to make a 

change, are critical elements in the usefulness of forecasts. Nonetheless, the 

production of skilful and timely forecasts continues to be one of the major issues 

challenging to hydrometeorologists. Owing to the inherent uncertainties in the 

weather and model limitations to account for the local rain-bearing features, 

weather and climate forecasts are not as accurate as desired. The accuracy of 

such forecasts will further be degraded during the rainfall-runoff transformation by 

hydrological models. The reason for this is that the complex and non-linear rainfall-

runoff processes are not explicitly represented by most hydrological models.  

 
A brief review was presented of some of the elements that contribute towards 

forecast uncertainties and techniques developed to minimise forecast errors, 
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followed by the description of some commonly used verification techniques for 

assessing forecast quality. The chapter further described the potential application 

of forecast updating by the combined use of conceptual physically based models 

in simulation mode plus stochastic models in the updating mode, in order to 

eliminate, or minimise, errors resulting from inadequecies in the hydrological 

model or the incorrect estimation of rainfall forecast by weather prediction models. 

Finally, the challenges and approaches in cummunication process and use of 

hydro-climatic forecasts to modify decisions were described briefly.  

 
A brief outline of the GIS based framework for agrohydrological forecasting  

system is presented in Chapter 5.  
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5. A GIS BASED FRAMEWORK FOR AN AGROHYDROLOGICAL 
FORECASTING SYSTEM 

 
An effective, operational agrohydrological forecasting system should provide the 

right information, at the right time, to address the needs of decision makers and 

operational users in agricultural and water resources management. Thus, the main 

aim of this study is to develop a framework that facilitates the application of near 

real, plus daily, multi-day to seasonal rainfall forecasts as a nested set of inputs to 

agrohydrological and/or crop yield models, thereby enabling the forecasting of 

agrohydrological variables across a range of time scales and lead times in 

southern Africa, defined here as the RSA plus Lesotho and Swaziland.  This aim is 

to be achieved by integrating different sources of forecast information from radar, 

satellite, and weather/climate models. Generic methodologies are also developed 

for temporal downscaling of probabilistic categorical seasonal forecasts to a daily 

time series of values suitable for agrohydrological models. This chapter highlights 

the motivation behind the development of a GIS based framework in the 

agrohydrological forecasting system, followed by a brief description on how to use 

the outputs of the weather/climate models imbedded within the framework.   

 
5.1 The Need for a GIS Based Framework 
 
The effective and efficient management of water resource and agricultural 

operations relies on skilful and timely forecasts of agrohydrological variables such 

as streamflows, soil moisture, crop yields or reservoir levels. In turn, a key factor 

for accurate agrohydrological forecasts are accurate and prompt weather/climate 

forecasts on, for example, rainfall and temperature, as input to the 

agrohydrological model. Weather and climate forecasts (e.g. SAWS forecasts) for 

southern Africa have been shown to posses certain levels of skill when they are 

compared against observations (Klopper and Landman, 2003).  The challenge, 

however, still lies in the improvement of the spatial and temporal resolution of the 

weather and climate forecasts, and the “translation” of these forecasts into suitable 

scales and forms that are required by agrohydrological models. These challenges 

must be addressed if hydrological and/or crop yield models are to contribute to the 

task of transformation of weather/climate forecasts into more tangible attributes 
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such as soil water content, streamflows, irrigation requirements, reservoir levels 

and crop yields.  

 
This calls for the development of generic methodologies to link the outputs of 

weather and climate models with agrohydrological models. Owing to the 

complexity and iterative calculations of the translation process from climate to 

agrohydrological forecasts, manual calculations and data extractions are out of 

question. A Geographic Information System (GIS) based framework, therefore, 

becomes a very important platform for gathering, filtering, translating and 

generating information that can be used directly with agrohydrological models for 

an effective agrohydrological forecasting system. Within this framework, GIS 

organises spatial information, provides techniques for pre-processing data 

(including spatial disaggregation), provides data structure and format conversion 

and displays post-processed information through reformatting, tabulation, mapping 

and report generation. A schematic flow chart demonstrating the structure of the 

GIS based framework for the agrohydrological forecasting system developed in 

this project is provided by Figure 5.1. 

 

Forecast Processes
- Spatial downscaling
- Temporal downscaling
- Format converting
- Extracting

AgroHydrological Forecasts
- Soil moisture
- Streamflow
- Irrigation demand
- Reservoir status
- Crop yield

Forecasted Rainfall and Temperture
Short, Medium, Long Term

Observed Rainfall and
Temperature

Quaternary/Quinary
Catchment Database

Output Process

GIS

Synoptic
Station Updates

Satellite, radar
Reporting Stations

Update

Daily Monthly

Hydrological/Crop Model
e.g. ACRU, CERES-Maize

 
Figure 5.1 A schematic flow chart demonstrating the structure of the 

agrohydrological forecasting framework 
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Currently a number of different institutions are involved in producing weather and 

climate forecasts that could potentially benefit end users. At the present time 

(2007), forecasts issued by the South African Weather Service (SAWS) and the 

University of Pretoria (UP) are adopted for the generation of agrohydrological 

forecasts within this framework. In the future, it seems reasonable to also consider 

other institutions’ forecast products, as different forecasters use different weather 

and climate models that may perform better than others under particular conditions 

and/or for specific locations. However, with so many providers and different 

formats, there is real potential for confusion among users as to which forecasts to 

use, especially when the forecasts are not similar. Weather and climate forecasts 

encompass a broad range of variables (e.g. rainfall, temperature, solar radiation, 

frost), but at this stage rainfall is the key variable of interest in this framework as it 

is the main determinant of both hydrological and agricultural responses in southern 

Africa. In the future, the development of the framework is therefore expected to 

continue beyond the current stage in order to incorporate other weather variables 

and forecast products issued by other institutions. 

 
Based on the above framework, a GIS based computer program has been 

developed using the Visual Basic programming language that links to GIS and 

processes all the calculations required to translate the multi-day, monthly and/or to 

seasonal climate forecasts into daily quantitative values suitable for application 

with daily time step hydrological or crop yield models. The program runs on the 

Windows operating system. Once the program is initiated, the user has options to 

select the forecast types in the main window (Figure 5.2). In its present state the 

program is designed to operate at the spatial scale of 1 946 Quaternary 

Catchments (QCs) into which South Africa has been delineated by the Department 

of Water Affairs and Forestry (DWAF) for operational decision making. The 

program has three major components, viz.  

 

• near real time observations derived from radar, satellite and daily reporting 

weather stations,  

• short (up to 4 days) and medium term (up to 14 days) forecasts from various 

Numerical Weather Prediction (NWP) models, and 

• monthly and long term (up to 3 months) forecasts from climate models.  
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These components are described in more detail in the sections which follow. A 

brief explanation has been made on how to use the GIS based program. However, 

it has not been written in the conventional style of a software user manual. In a 

later section, the ACRU agrohydrological modelling system (Schulze, 1995a and 

updates), which was selected in this research to generate agrohydrological 

forecasts, is also described briefly.  

 

 
 

Figure 5.2 The main window showing options for near real time, short and 

medium as well as long range forecasting in the GIS based 

framework for the agrohydrological forecasting system 

 
5.2 Near Real Time Estimates of Precipitation Derived from Satellite, 

Radar and Raingauge Data 
 
Near real time weather information is, of necessity, required by hydrologists for 

nowcasting, especially in areas of fast hydrological response, and also to simulate 

the “now state” of various hydrological state variables such as soil moisture 

contents, streamflows, reservoir levels. Approaches for nowcasting are based 

mainly on rainfall estimated by conventional ground stations, radars, satellites and 

NWP models. These data and information sources have their respective strengths 
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and weaknesses. The use of conventional ground stations has become less 

efficient to meet the existing and anticipated management requirements in 

agricultural and water resources management because their distribution is sparse 

and data are frequently not available in mountainous where runoff is often 

generated, nor in other remote areas (Budhakooncharoen, 2003; Deyzel et al., 

2004; Kroese, 2004). For the above reasons, the use of near real time remotely 

sensed observations  from radar reflectivity measurements and satellite images 

has, therefore, been acknowledged to play a key role in agrohydrological 

applications, assisting in more timely decision making operations, especially for 

flash flood related disaster management. Presently, however, the outputs from 

satellite and radar images, although providing useful information on precipitation 

patterns, do not seem able to provide accurate rainfall values at the temporal and 

spatial resolution required by many hydrological models (Toth et al., 2000). This is 

mainly so because of the problems related to ground clutter and false 

accumulation of rain fields when totals of rainfall are required. The raingauge 

networks then play a vital role in investigations regarding the elimination of ground 

clutter and also in verifications of radar and satellite derived rainfall on the ground 

(Deyzel et al., 2004; Kroese, 2004).  

 
By taking into consideration the merits and limitations of these data sources, the 

METSYS group of the SAWS and the School of Civil Engineering of University of 

KwaZulu-Natal, in collaboration with the Department of Water Affairs and Forestry 

(DWAF) and the national electricity utility ESKOM, have developed a new rainfall 

monitoring system termed SIMAR, i.e. Spatial Interpolation and MApping of 

Rainfall. The system integrates raingauge, radar and satellite derived data in the 

production of daily rainfall maps of 24 hour accumulated rainfall at a resolution of 

one arc minute, i.e. approximately 1.7 km х 1.7 km over the southern Africa region. 

These maps are accessible on the Internet. A detailed description of these data 

sources is presented in Chapter 7. 

 
The SIMAR project aims at producing one rainfall field that is acceptable by all 

water users (Deyzel et al., 2004; Pegram, 2004). The generation of the merged 

radar/satellite/gauge rainfall field is a three step process, starting with the merging 

of the radar and raingauge fields followed by the merging of satellite and 
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raingauge fields. Thereafter the two resultant merged fields are combined 

(Pegram, 2004). In order to convert these maps into a suitable format and to 

downscale them to a particular location of interest (e.g. Quaternary Catchment) 

and use them as input into agrohydrological models, the following steps are 

required: 

 
1. Downloading rainfall maps 

The accumulated rainfall for 24 hours, derived from daily reporting stations, 

radar and satellite across southern Africa arrives at the METSYS office in 

Bethlehem in the Free State by 09:00 daily. Daily rainfall maps from the 

radar, gauge and satellite information, together with the merged fields, are 

then completed by 11:30 and the results are posted on the METSYS 

website (Pegram, 2004). At this stage, however, these maps are 

considered to be demonstration versions which cannot be accessed in GIS. 

The accessible rainfall maps, which are given in ASCII format, can be 

downloaded from the SAWS ftp server on a daily basis. 
 

2. Converting formats 

From the main window (Figure 5.2), clicking on the SIMAR Rainfall Fields 

option button initiates the ASCII to Grid window (Figure 5.3) to allow an 

ASCII format conversion to a grid format. This can be done by browsing the 

location into which the ASCII file is saved, and by specifying the output 

name and output directory, as shown in Figure 5.3. The grid layer will then 

be saved on the specified directory. 

 

 
 

Figure 5.3 The ASCII to Grid window for format conversion  
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3. Running ArcMap  

Once the format conversion has been completed, the Forecasting tool 

developed in the ArcMap shell automatically pops up. Clicking on the 

SIMAR button initiates the SIMAR window (Figure 5.4). The converted grid 

layer and shape file are added by browsing its path.   
 

 
 

Figure 5.4 The screen for adding a grid layer for extracting daily rainfall values 

over a selected catchment  

 
4. Calculating catchment mean value and Joining of the Data 

The joining of the data can be done by averaging the points falling within 

each subcatchment of the chosen shape layer. Then the output is displayed 

automatically in “excel” format in the working directory. 
 

5. Converting  to ACRU format 

By inputting the forecast date as “yyyy/mm/dd” format in Figure 5.5, rainfall 

values representing each location will be extracted from the layer to 

respective ACRU model formatted input text files.  
 

 
 

Figure 5.5 The screen for extracting daily rainfall values to ACRU formatted 

rainfall files  
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5.3 Short and Medium Forecasts from Weather Prediction Models 
 
The SAWS is currently employing the Unified Model (UM) for short range weather 

forecasts (up to 2 days) and the National Center for Environmental Prediction for 

Medium Range Forecasting (NCEP-MRF) model for medium and extended range 

forecasts (up to 14 days) across the southern Africa. The rainfall forecasts from 

these two models and the forecasts issued by the University of Pretoria (UP) using 

the Conformal-Cubic Atmospheric Model (C-CAM) have, to date, been 

incorporated in the framework for short and medium range agrohydrological 

forecasting systems (Figure 5.6). The resolution, uncertainty and challenges 

associated with these models, as well as the procedures constructed to convert 

these forecasts into a suitable form, are described in detail in the sub-sections 

which follow. 

 

 
 

Figure 5.6 A screen showing the short and medium range forecasting model 

options 

 
5.3.1 The C-CAM Rainfall Forecasts 
 
Significant progress has been made at the University of Pretoria (UP) in simulating 

rainfall over southern Africa using the Conformal-Cubic Atmospheric Model (C-

CAM). This progress had been made in collaboration with scientists in Australia. 

C-CAM is a relatively recent global model developed by the CSIRO Marine and 

Atmospheric Research in Melbourne, Australia (Reason et al., 2006).  A key 

feature of C-CAM is its ability to stretch the model grid in order to focus the model 

resolution over any particular area of interest (Katzfey and McGregor, 2003; 

Engelbrecht, 2005; Reason et al., 2006).  Initially, the model produces a coarse 
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resolution forecast with a grid spacing of 60 km over tropical and southern Africa. 

Far-field nudging is then used in order to force the higher resolution runs towards 

the low resolution portions and to dynamically downscale the 9-day global forecast 

with 60 km resolution into 4-day regional forecasts with a 15 km resolution. Further 

stretching of the model grid to an 8 km by 8 km resolution over the southern 

African region is currently under way (Engelbrecht, 2007). Although simulations 

are performed at a time step of five minutes, results are aggregated and issued on 

a daily basis. The 15 km resolution rainfall forecasts of four days’ lead time are 

incorporated in this framework for application in the short term agrohydrological 

forecast system. 

 

5.3.2 The UM Rainfall Forecasts 
 
The UM is a non-hydrostatic weather forecasting model which had been 

developed in the UK Meteorological Office by the end of 1980s, but was introduced 

into operational service in 1992 (UK Met Office, 2007). The formulation of the 

model supports global and regional domains and is applicable to a wide range of 

temporal and spatial scales that allow it to be used for both numerical weather 

prediction and climate modelling as well as a variety of related research activities 

(Kershaw, 2006). The UM is designed to run either in atmosphere or ocean mode 

separately, or in a coupled mode. In each mode a run consists of an optional 

period of data assimilation followed by a prediction phase. Forecasts of a few days 

ahead are required for numerical weather prediction, while for climate modelling 

the prediction phase may be for tens, hundreds or even thousands of years (UK 

Office, 2007). The SAWS adopted the model for the southern Africa region in 

2006. The UM model is run four times per day, providing model forecast guidance 

at a 12 km resolution for up to 2 days ahead (van Hemert, 2007). 

 
5.3.3 The NCEP-MRF Rainfall Forecasts 
 
At the NCEP the ensemble forecasting approach has been applied operationally 

for the short range forecasts by applying the ETA and Regional Spectral Models, 

and for the medium and extended range by using the Medium Range Forecast 

Model (MRF). Different ensemble based products have been generated and these 
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are distributed via File Transfer Protocol (ftp), to a wide range of users both 

nationally and internationally (Toth et al., 1997).  

 

Since 2003 the NCEP-MRF forecasts at grid spacing of 2.5º resolution with 22 

ensemble members has been used operationally in South Africa for medium range 

forecasts up to 14 days ahead (Tennant et al., 2006).  At the present time, 

however, the SAWS has also been downloading a 1º х 1º grid spaced NCEP-MRF 

forecasts with 60 ensemble members every day, in addition to these 2.5º scaled 

forecasts (Tennant, 2007). One of the most challenging aspects of incorporating 

the NCEP-MRF rainfall forecasts into the framework for the agrohydrological 

forecasting system is that of condensing the vast amounts of model output and 

information into an operationally relevant and useful form. Currently, the SAWS 

are using the 2.5º grid spaced forecasts to produce one or two week lead time 

probabilistic rainfall forecasts by calculating the forecast probability that 24 hour 

precipitation amounts exceeding certain threshold values (usually 5 mm and 

20 mm) over 2.5º by 2.5º grid boxes (Figure 5.7). For each day, 345 sets (i.e. 15 

days and 23 ensembles) of unique forecasts are generated at each of the 2.5º by 

2.5º grid boxes. Each ensemble represents an average probabilistic quantitative 

precipitation forecast (PQPF) for that 2.5º grid box. 

 

 

Figure 5.7 An example of a one week lead time probabilistic forecast from 

NCEP-MRF ensemble rainfall forecasts at 2.5º resolution over 

southern Africa (Source: SAWS, 2005) 
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At each grid box the number of ensemble members having a 24-hour precipitation 

amounts greater than the threshold limit are counted and the forecast probability is 

expressed as follows (Tennant, 2005): 

 

100×
23
M

=FP                                                         5.1 

 
where 

 FP  = forecast probability (%), and 

 M = number of ensembles greater than a given threshold limit. 
 
 
In order to take full advantage of the ensemble system, similar procedures should 

also be followed in the simulation of agrohydrological forecasts. However, most 

agrohydrological models run at a much finer spatial resolution than 2.5º or 1º and 

each ensemble member should be represented as geospatial (i.e. raster) data to 

be downscaled to the relevant catchment scale. By considering the computation 

time and file space required in the downscaling process, use of 23 or 60 ensemble 

forecasts becomes extremely cumbersome and difficult to comprehend. Hence, a 

single mean value of the ensemble members for each 2.5º or 1º grid box for a 

forecast lead time of 1 day up to 14 days will be used in the simulation of 

agrohydrological forecasts. Many studies (e.g. Toth et al., 1997; Ebert, 2001) have 

shown that averaging the ensemble members allows not only the reduction of data 

sets and computational requirement, but also provides a more accurate forecast 

than any of the single ensemble forecasts. The evaluation of the ensemble 

forecast system to explain the uncertainties associated with selected forecasts is 

presented in Chapter 8, Sub-section 8.3.3.  

 
5.3.4 Transferring and Reformatting of Forecasts 
 
In May 2007 members of the WRC forecasting project (K5/1646) decided that all 

weather and climate forecasts would be fed to the University of Cape Town (UCT) 

in ASCII text format and the coarse spaced forecasts would be interpolated via 

cubic spline to a Quaternary (i.e. ~0.25º) or Quinary (i.e. ~0.1º) catchment scale. 

Forecasts would then be imported in ASCII format from the UCT for the application 

of agrohydrological forecasts.  
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The C-CAM, UM and NCEP-MRF rainfall forecasts are given in ASCII format in 

separated text files for each day. Each file contains X and Y coordinates with 

rainfall values for each lead time in separated columns. A program has been 

developed within this framework to convert these ASCII text file to a Data Base 

File (dbf) format in order to access it in GIS. The following steps are required to 

convert the C-CAM, UM and NCEP-MRF rainfall forecasts into suitable formats 

and to downscale them over a particular location of interest (a QC in this study) 

and use them as input in agrohydrological models: 

 
1. Downloading rainfall forecasts 

Rainfall forecasts should be imported or downloaded from the UCT ftp 

server on a daily basis. 

 
2. Selecting the model option 

From the main window of observation and forecast options in Figure 5.2, 

clicking on the Short and Medium Forecasts option initiates the Short and 

Medium Range Forecasting window which is nested in the ArcMap shell 

(Figure 5.6).   

 
3. Browsing the location of a file and converting to a DBF file  

After selecting one of the models in Figures 5.6, the location into which the 

data and shape files can be browsed by clicking on the Browse buttons. 

The text file will then be converted to a DBF file and the coarse spaced 

forecasts would be interpolated via Inverse Distance Weight (IDW) to a 

Quaternary (i.e. ~0.25º) or Quinary (i.e. ~0.1º) catchment scale.  

 
From Section 5.2, steps 4 and 5 should be then followed to calculate catchment 

mean rainfall values, to join data to selected layer and, finally, to extract the rainfall 

forecasts to ACRU model formatted text input files.  

 
Owing to their coarse spatial resolution, the NCEP-MRF rainfall forecasts are 

generally recommended for large scale agrohydrological forecasts. For small scale 

applications, dynamically downscaled rainfall forecasts from the C-CAM and UM 

models should be used. The high spatial and temporal resolution of the C-CAM 
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and UM forecasts allows the identification of features such as topography, land-

sea distribution and land uses that influences the development of rainfall patterns 

over a particular region. Hence, the rainfall forecasts obtained from those models 

are expected to be more skilful than the forecasts made by NCEP-MRF model.  

However, since different GCM models exhibit different skill levels, the confidence 

that may be placed in downscaled rainfall forecasts is dependent foremost on the 

validity of the parent GCM model used to generate the large-scale fields. It must 

be noted that there is ongoing research (2007) at the University of the Free State 

(UFS) and University of Pretoria (UP) to combine dynamical downscaling with one 

or more statistical downscaling models. In the near future (2008), these models 

can then be incorporated in this framework. 

  
5.4 Categorical Seasonal Forecasts from Climate Models 
 
In southern Africa, seasonal (3-6 months) hydro-climatic forecasts are frequently 

required by different sectors of society as the region is severely affected by 

droughts and floods. Among the various sectors, water resources and agriculture 

obviously can benefit considerably from such long term forecasts.  

 
As was described briefly in Chapter 3, Sub-section 3.2.2.2, a wide range of 

statistical and dynamical models have been developed by a number of institutions 

to issue seasonal forecasts for southern Africa. Until the recent past, the statistical 

models were most dominantly used in seasonal forecasts for southern Africa. 

Major improvements have been made in recent years in understanding southern 

Africa’s seasonal climate by shifting from using only the empirical-statistical 

methods to more sophisticated forecast schemes involving the use of dynamical 

models (Landman and Goddard, 2005). In addition, the feasibility of producing 

probabilistic seasonal rainfall forecast skill for five equi-probable categories is in 

progress (Landman et al., 2005). General Climate Models (GCMs) as forecast 

tools over southern Africa are currently available. GCMs are, however, unable to 

represent local sub-grid processes and tend to over-estimate rainfall over southern 

Africa. Moreover, the sub-gird representation of rainfall at mid-latitudes is highly 

complicated and may not be explicitly estimated by a GCM (Reason et al., 2006). 

Recalibrated GCM output to regional levels was developed to overcome such 

systematic biases and this has the potential to outscore simple statistical models 
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(Landman et al., 2001; Bartman et al., 2003). Currently the SAWS compiles 

seasonal rainfall outlooks by combining output from Canonical Correlation 

Analysis (CCA), Quadratic Discriminant Analysis (QDA) and Atmospheric General 

Circulation Models (AGCMs). Results have shown that a combination of these 

different models consistently deliver a more skilful forecast than any individual 

model on its own (Klopper and Landman, 2003). Regional Climate Models (RCMs) 

have been used operationally in southern Africa since 2006 and they have the 

potential to simulate the seasonal rainfall variability and can subsequently be used 

to provide operational seasonal rainfall forecasts in the future (Reason et al., 

2006). 

 
Seasonal forecasts of climate variables such as rainfall and temperature are often 

expressed as probabilities of occurrence within the above, near and below normal 

categories (Zhang and Casey, 1999). This approach has been adopted because of 

the inherent variability of the atmosphere and a lack of understanding of all the 

various components of the climate system (SAWS, 2005). A probability is 

assigned to each category, indicating the chance of a particular category to occur 

during the target season. The subsequent forecast probabilities indicate the 

direction of the forecast as well as the degree of confidence in the forecast. The 

higher the confidence in the forecast, the higher the assigned probability will be for 

that specific category. When there is no confidence in the forecast, climatological 

probabilities (33.3%) are assigned to each of the three categories (SAWS, 2005).  

 

The SAWS has been producing seasonal forecasts in three equi-probable 

categories of below normal, near normal and above normal rainfalls for monthly 

and three consecutive months. These forecasts are available routinely on the 

SAWS website. However, production of seasonal climate forecasts in itself will not 

be enough for operational hydrological and agricultural decision making. Often in 

operational agrohydrological services, there is a need to estimate the 

consequences of seasonal climate forecasts with respect to agrohydrological 

variables that are closer to the actual problems faced by society such as 

streamflow amounts, reservoir levels, soil moisture contents and crop yield 

estimates. Hence, generic methodologies were developed in this framework for 
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temporal downscaling of categorical seasonal forecasts into a daily time series of 

values suitable for agrohydrological models.    

 
5.4.1 Methods of Temporal Downscaling  
 

Basically, weather generators and analogue methods are the most widely used 

methods for generating time series data that can be used as input to 

agrohydrological models. A stochastic weather generator employs stochastic 

methods to generate synthetic sequences of weather (Clark et al., 2004). 

Stochastic weather generators have been used widely for simulating climate 

variables (e.g. precipitation, temperature, solar radiation) in climate change 

studies, but relatively little research had been done in relation to seasonal 

prediction (Feddersen and Andersen, 2005). The Markov Chain model is a widely 

used statistical technique to generate the sequence of rainy and dry (no rain) 

days.  It is based on the assumption that the state of any particular day is 

conditioned by the states of the previous day, or sequence of days. A distribution 

(e.g. Gamma) is fitted to the observed rainfall amounts for the target site. For the 

rainy days, rainfall values are sampled from the fitted distribution. Another set of 

weather generator methods generates weather by resampling data from historical 

records several times (e.g. Clark et al., 2004).  

 
The second, relatively simple, approach is the analogue method which considers 

the assumption that a current synoptic situation will likely develop in the similar 

way as similar past synoptic situations have (WMO, 1992). Indices of climatic 

information, such as the ENSO status, SST or SOI and daily mean sea level 

pressure can be used to select analogue years from past records which had a 

similar status to that of the current situation, provided that these indices are well 

established for the target region. For example, indices of ENSO and SOI have 

been used in Ethiopia (e.g. Bekele, 1992) and Australia (e.g. Piechota et al., 1998; 

Chiew et al., 2003; Ritchie et al., 2004) for similar purposes. The analogue 

approach has been used previously by several researchers in South Africa (e.g. 

Schulze et al., 1998; Lumsden, 2000; Hallowes, 2002; Bezuidenhout, 2005) by 

first ranking the historical rainfall records in ascending order. The ranked rainfall 

totals are then grouped into three categories of seasonal rainfalls, viz. below 

normal, near normal and above normal. One approach is to select the median year 
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in each category as the analogue year and daily rainfall values representing the 

selected forecast season are then extracted from the selected median years.  

 

The temporal downscaling method developed in this framework uses both the 

analogue and weather generator approaches. The analogue method used in this 

framework is also based on ranking of historical rainfall records, but analogue 

years are selected randomly, conditioned by the probability assigned to each 

category. Each category is weighted, based on the level of the confidence in the 

forecast. The higher the assigned probability, the higher the number of analogue 

years that will be sampled from that particular category. To generate the daily 

rainfall values representing the selected forecast season from each of the selected 

analogue years, two methods, viz. the Historical Sequence Method and the 

Ensemble Re-ordering Based Method (also termed the “Schaake shuffle”) have 

been adopted in this study.  

 
The Historical Sequence Method is based on the assumption that “daily rainfall 

values within the forecast season develop in similar sequences developed in the 

selected analogue years representing each category” (Schulze et al., 1998). This 

approach provides one possible realisation of the past climate which is likely to 

occur in the future and attempts to preserve the historical temporal persistence of 

the past weather conditions that occurred in the selected analogue years. The 

Historical Sequence Method is described and evaluated in detail in Chapter 9. 

 
Synthetic sequences of rainfall that are statistically consistent (in terms of the 

mean, variance, skew, long term persistency) with the observed characteristics of 

the historical data can provide alternative realisations that are equally likely to 

occur in the future and which can then be used to quantify uncertainty associated 

with climate variability. The synthetic sequences method randomly generates 

unique replicates (sequences), i.e. sequences of rain that have not observed. 

However, the approach should preserve the statistical moments of the historical 

time series from which they are populated (Clark et al., 2004; Chiew et al., 2005).  

The “Ensemble Re-ordering” approach was applied by Clark et al. (2004) and uses 

random chance as the determining factor for an observation to be included in the 

sample that represent the forecast day. In this respect, the ensembles used to 
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populate the sequences are randomly selected from a mix of different dates of all 

historical years, or from a subset of preferentially selected years. For each 

forecast day, the ensemble members are re-ordered so as to preserve the spatio-

temporal variability in the historical records. A description and evaluation of the 

Ensemble Re-ordering Based Method is presented in Chapter 10. 

 
An algorithm has been coded within the framework that enables the processing of 

all the steps required for conditioning the random selection of analogue years on 

the probability assigned to each category (Figure 5.8).  Moreover, the program has 

been designed to automatically extract daily data sets that represent estimates of 

future conditions for the targeted forecast season based on the Historical 

Sequence and Ensemble Re-ordering Based Methods (Figure 5.9). The following 

steps are contained in the algorithm and are applicable to both the monthly and 

seasonal (3 months) categorical climate forecasts: 

 

 
 
Figure 5.8 A window for translating seasonal categorical rainfall forecasts into         

  daily time series values based on the analogue method 
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1. Ranking of daily rainfall totals 

Quality checked daily rainfall totals for the 54 years period from 1950 to 

2003 are ranked for monthly and any three consecutive months (e.g. 

October-November-December) in ascending (lowest to highest) order. The 

first 18 ranked rainfall totals are then categorised as representing “below 

normal” seasonal rainfalls, the next 18 rankings as “near normal” and the 

highest 18 as “above normal” seasonal rainfalls. 

 
2. Assigning inputs and selecting analogue years 

First, a season (e.g. October-November-December), the Primary 

Catchment (PC) and a Quaternary Catchment (QC) within the PC, as well 

as categorical probability rainfall forecasts obtained from various institutions 

(e.g. from SAWS) are selected from their respective drop down menus 

(Figure 5.8). Thereafter analogue years are randomly sampled, based on 

the probability assigned to each category. Since probabilities of categorical 

climate forecasts are usually given in multiples of 5 percentiles, the 

analogue years that represent each category are obtained by dividing the 

probability forecast by 5. In each run, therefore, 20 analogue years in total 

will be selected to represent the probability assigned to the three categories 

(Figure 5.8). For example, for each of the three categories, if the 

probabilities of above, near and below normal rainfall are 35%, 40% and 

25% (as in Figure 5.8), the respective number of analogue years will be 7, 8 

and 5. 

  
3. Extracting daily rainfall values from selected analogue years 

Daily rainfall values representing the selected forecast season can then be 

extracted based on either the Historical Sequence Method or the Ensemble 

Re-ordering Based Method (Figure 5.9).  

 
If the Historical Sequence Method is selected, 20 independent daily rainfall 

files from each of the analogue years will be generated. Each file has daily 

data sets extracted from the same dates in the historical records of the 

analogue years, and these files are then automatically used as the daily 

rainfall files for agrohydrological models. 
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If the Ensemble Re-ordering Based Method is chosen (Figure 5.9), the daily 

rainfall values from each of the selected analogue years for the target 

season are collected in a temporal array. The program then randomly 

resamples ten ensemble members for each forecast day of a given season 

from a mix of dates in the temporal array. Another random selection of 

dates from all historical years (1950-2003) of the same season is then used 

to re-order the temporal correlation structure of the ensembles selected 

from the preferentially selected analogue years. The random selection of 

dates from the historical records is only used for the first forecast day, and 

is persisted with for the subsequent forecast lead times. The re-ordered 

ensemble members can then be used as inputs into agrohydrological 

models. Unlike many other weather generator models, the temporal 

persistence is not preserved intrinsically, but is constructed as a post-

processing step (Clark et al., 2004). The concepts contained in the 

Ensemble Re-ordering Based Method are described more fully, and 

assessed quantitatively, in Chapter 10. 

 

 
 

Figure 5.9 A window for extracting daily rainfall values from randomly selected 

  analogue years 

 
The main objective of developing the framework for southern Africa is to facilitate 

the translation of state-of the-art weather and climate forecasts into suitable 

 84  



quantitative values which can be input into the daily time step hydrological and 

crop models. Once the translation process is completed, the subsequent step is 

the generation of agrohydrologically related forecasts (e.g. streamflows, reservoir 

levels, crop yields). For this purpose, the ACRU agrohydrological modelling 

system (Schulze, 1995a and updates) is employed in this study to generate 

agrohydrological forecasts. At a later stage it is envisaged that other daily models, 

such as CERES-Maize, will be imbedded within the framework. A brief overview of 

the ACRU model follows below. 

 
5.5 The ACRU Agrohydrological Modelling System 
 
5.5.1 Reasons for Selecting the ACRU Model 
 

ACRU is a daily time step, multi-purpose and multi-level conceptual-physical 

agrohydrological simulation model. It was selected for this study because it has 

been widely verified under highly varying hydrological regimes on gauged 

catchments in southern Africa (cf. reviews by Schulze, 1995a; Schulze and 

Smithers, 2004) and elsewhere (e.g. Dunsmore et al., 1986; Ghile, 2004). 

Furthermore, for southern Africa, ACRU is linked to extensive databases 

containing quality controlled daily rainfall, minimum and maximum temperatures 

for the period of 1950 to 2000 as well as to baseline land cover and soil 

information for each of the 1 946 hydrologically interlinked Quaternary Catchments 

(QCs) that make up southern Africa (Schulze, 2006).  

 
The linking of the ACRU model to the databases is known as the Quaternary 

Catchments Database, QCD. A detailed description of the ACRU model in terms 

of inputs, simulation options and outputs is provided by Schulze (1995a) and 

Smithers and Schulze (1995; 2004). In the section which follows, only a brief 

overview of the concepts imbedded in the ACRU model is presented.  

 
5.5.2 A Brief Description of the ACRU Model 
 
As a conceptual-physical water budget model, ACRU (Schulze, 1995a and 

updates) integrates various water budgeting and runoff producing components of 

the terrestrial hydrological system, as well as operational aspects of water 

resource management, all with risk analysis (Schulze, 1995a; Schulze and 
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Smithers, 2004). The model was designed as a daily time-step, two layer soil 

water budgeting model which has been structured to be sensitive to land use 

changes on soil moisture, evaporative rates and runoff regimes. The model has 

been considerably updated from original versions to its present status (Schulze 

and Smithers, 2004) in order to simulate those components and processes of the 

hydrological cycle which are affected by the soil water budget, such as stormflow, 

baseflow, irrigation demand, sediment yield or crop yield, and to output any of 

those components on a daily basis (where relevant), or as monthly and annual 

totals of the daily values.  

 
A summary of the concepts of the ACRU model with respect to inputs, operational 

modes, simulation options and objectives is given in Figure 5.10. Figure 5.11 

represents a schematic of the multi-layer soil water budgeting by partitioning and 

redistribution of soil water, as conceptualised in the ACRU model.  

 

 
 
Figure 5.10 The ACRU agrohydrological model: Schematic of inputs, modes of 

operation, simulation options and objectives/ components (after 

Schulze, 1995a) 
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Figure 5.11 The ACRU agrohydrological model: Schematic of its multi-layer soil 

water budgeting and partitioning and redistribution of soil water (after 

Schulze, 1995a) 

 
5.6 Summary 
 
The development of effective procedures for the application of weather and 

climate forecasts into forecasts of various agrohydrological variables (e.g. 

streamflows, soil moisture, crop yields) plays a prominent role in operational 

decision-making in the agriculture and water sectors. For this purpose, a GIS 

based framework was developed to serve as an aid to process all the 

computations required in the translation of the daily to seasonal climate forecasts 

into daily quantitative values suitable as input in hydrological or crop models.  The 

framework was, and is being further, designed to include generic windows which 

allow users to process the near real time rainfall fields estimated by remotely 

sensed tools, as well as forecasts of weather/climate models into suitable scales 

and formats that are needed by many daily time step agrohydrological models. 

The key features of the framework are that it: 

 
•  facilitates the selection of near real time remotely sensed observations, as 

well as short term, medium term and longer term forecasts supplied by 
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various weather and climate models from different institutions across a 

range of time scales;  

• links to comprehensive GIS functionality that provides tools for spatial 

disaggregation, data structure and reformatting, as well as for post-

processing of data/information through tabulation, mapping and report 

generation; 

• translates categorical seasonal forecasts into a daily time series of values 

suitable for agrohydrological models through generic algorithms developed 

within the framework; 

• converts ensembles of rainfall forecasts into suitable formats which are 

understood by GIS; 

• downscales grid layers to Quaternary Catchments; and  

• finally, extracts rainfall data to ACRU formatted text input files. 

 
The application of near real, plus daily to seasonal rainfall forecasts as a nested 

input to one or more agrohydrological models, thereby enabling the forecasting of 

agrohydrological variables across a range of time scales and lead times, is a new 

concept in southern African context.  With further development and refinement, 

this framework has the potential to play an important role in bridging the gaps that 

exist between outputs of weather and climate models and their practical 

application in agrohydrological models. The development of the framework is an 

ongoing process and is expected to continue beyond the current stage, in order to 

incorporate other weather variables and forecast products issued by other 

institutions. 

 
The outputs from the framework in which multiple forecasts are downscaled 

spatially to Quaternary Catchments and temporally to daily values needs to be 

evaluated either hydrologically or agriculturally. In this study a hydrological 

evaluation in a tested catchment has been opted for. A general background on the 

test catchment from a hydrological perspective, followed by a description of inputs 

required by the ACRU model for streamflow simulations is presented in Chapter 6. 
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6. CASE STUDY: CONFIGURATION OF THE MGENI CATCHMENT FOR 
SIMULATION MODELLING WITH THE ACRU MODEL 

 
It is widely accepted within the forecasting community that the skill of weather and 

climate models to realistically estimate the rainfall forecasts varies from storm to 

storm, from season to season, and from region to region (Seo et al., 2000). The 

daily individual and merged rainfall fields derived from a network of daily reporting 

raingauges, radars and satellite images, as well as the estimated rainfall forecasts 

from the C-CAM, UM and NCEP-MRF models, are still experimental. Furthermore, 

the temporal downscaling methodologies developed in this study to translate the 

categorical rainfall forecasts into daily quantitative rainfall values are also new and 

untested in southern Africa. Verifications of the outputs of these weather and 

climate models and the two downscaling methodologies under a range of spatial 

and temporal scales are, therefore, of utmost importance if they are to be applied 

in decisions that improve management of climate related risks in water resources 

and agricultural operations.   

 
For a comprehensive verification exercise, catchments representing a wide range 

of climates with complete hydrological and climatic data are, therefore, ideally 

needed for continuous assessment of the reliability of these models. In this study 

the Mgeni catchment was selected to serve as a point of departure in the 

verification phase, largely because of the availability and completeness of rainfall 

data from a relatively dense network of raingauges. Apart from its suitability for 

verification, the Mgeni is of major socio-economic importance in South Africa (cf. 

Section 6.1.1), making agrohydrological forecasting within the Mgeni catchment 

vital for many applications in climate sensitive sectors. The verification study will, 

at a later stage and beyond the timeframe of this thesis, be extended to other 

operational catchments of South Africa, in order to fully test the usefulness of the 

rainfall information/forecasts. As part of a wider WRC funded research 

programme, the configuration and collection of hydro-climatic data for the Modder, 

Berg, Mkomati and the Olifants catchments are currently underway by other 

researchers from other institutions, with the aim of conducting more detailed tests 

that will facilitate the operational use of these agrohydrological forecasts for the 

entire southern African region.  
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What follows in the next section is a general background on the Mgeni catchment 

from a hydrological perspective. A description of inputs required by the ACRU 

model for streamflow simulations and some concluding remarks are given in the 

subsequent sections.  

 
6.1 General Background on the Mgeni Catchment 
 
6.1.1 Location 
 
The Mgeni catchment is home to over 5 million people in the Durban-

Pietermaritzburg metropolitan area and produces approximately 20% of South 

Africa’s gross national product (Schäfer and van Rooyen, 1993) from only 0.35% 

of the country’s area. It is one of the South Africa’s tertiary level catchments which 

have been delineated by the Department of Water Affairs and Forestry (DWAF). 

The catchment is located from 29º 13′ - 29º 46′ S and 29º 46′ - 30º 54′ E (Figure 

6.1). The catchment, with an area of 4 469 km2, ranges in altitude from zero to 

2 103 m (Schulze et al., 2004). 

 

 
 

Figure 6.1 Overview of the Mgeni and its Quaternary Catchments  
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6.1.2 Climate and Hydrology 

ainfall is strongly seasonal and varies from 680 mm near the coast to 1 200 mm 

he Mgeni catchment is characterised by high spatial and temporal variability of 

.1.3 Vegetation and Land Use  

s shown in Figure 6.2, approximately 37% of the Mgeni catchment is under 

 

R

in the more rugged western parts of the Mgeni catchment, with 80% of the inland 

rainfall occurring largely as convective storms in the summer months (October-

March), while along the coast lower intensity general rains in summer make up 65-

70% of annual total (Schulze et al., 2004). The catchment mean annual 

precipitation is 902 mm (Schulze et al., 2004). Maximum daily temperatures are 

experienced in summer from December to February and minimum daily 

temperatures in winter in June and July (Schulze, 1997).  Mean daily midwinter 

(July) maximum temperature increases from 12 ºC in the inland to 24 ºC on the 

coast on average, while means of daily maxima in midsummer (January) increase 

from  25 ºC in the inland to 28 ºC along the coast (Schulze, 1997). The catchment’s 

mean annual temperature ranges form 16 to 18 ºC (DWAF, 2001).  Snow occurs 

occasionally in winter at the higher altitudes of above 1 200 m near the 

Drakensberg, while the risk of hail also increases with proximity to the mountains 

(Rural Development Services, 2002). 

 

T

rainfalls and streamflows and is subjected to periodic droughts and heavy flooding 

(Kienzle et al., 1997; Schulze, 1997; Schulze and Perks, 2000). Research 

conducted by Schulze (1997) has indicated that the inter- annual coefficient of 

variation (CoV%) over the Mgeni catchment ranges between 25 and 30%, while 

that of the annual runoff is between 50 and 100%. The conversion ratio of mean 

annual rainfall to mean catchment runoff is 18%. Climatically the Mgeni catchment 

is classified as a sub-humid zone (e.g. Van Zyl, 2003). However, considering the 

strong rainfall seasonality, low rainfall to runoff conversion and high ratio of annual 

evaporative demand, an extended area of the Mgeni catchment may be regarded 

as hydrologically semi-arid (Schulze, 1997).  

 
6
 
A

agriculture, consisting mainly of commercial production forestry, sugarcane 

plantations and subsistence farming, with some temporary commercial dryland 
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and irrigated agriculture. About 3% of the catchment consists of degraded 

bushland and shrubland, while 52% remains under natural vegetations and is 

comprised of grassland, bushland, and natural forest. Roughly 8% of the 

catchment land cover is urban, mostly residential, industrial, and commercial 

development associated with the cities of Durban at the coast and 

Pietermaritzburg inland (DEAT, 2001). 

 

 
 

igure 6.2 Catchment land cover and land use (Source: DEAT, 2001) 

.1.4 Water Use 

 number of large storage dams have been constructed along the length of the 

F
 

6
 
A

Mgeni river from which water is abstracted and supplied to demand centres via 

various supply routes (Schäfer and van Rooyen, 1993; Kienzle et al., 1997; 

Kjeldsen and Rosbjerg, 2001). The Mgeni river is approximately 232 km long 

(DEAT, 2001). The water resources of the Mgeni river basin are utilised for the 

supply of water to the Durban and Pietermaritzburg metropolitan complex, which is 

the third largest industrial and urban consumer base in southern Africa after 

Johannesburg and Cape Town (Schäfer and van Rooyen, 1993).  
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Since the mid 1980s, Umgeni Water, the authorised water board responsible for 

the management and bulk water supply of water, has supplied a mean volume of 

20 million m3 annually to consumers living within and adjacent to the Mgeni 

catchment area (Schulze et al., 2004). Irrigation and afforestation are also the 

major water users in the Mgeni catchment. In addition to the surface water 

resources there are also groundwater resources which supply a considerable 

number of boreholes in the catchment.  

 

Rapid rural, urban and industrial development within the Mgeni catchment, 

together with a predicted growth in the population to between 9 and 12 million by 

2025, will increase water demand to be in excess of the available water resources 

(Tarboton and Schulze 1993; Kjeldsen and Rosbjerg, 2001). On the other hand, 

water quality of the streams, rivers and dams within the Mgeni river catchment has 

also been at risk. This is due mainly to the occurrence of irrigated and urban return 

flows, intensified agricultural practices and the unorganised growth of large 

informal settlements. Transport of suspended solids, pathogens and phosphorus 

during frequent convective thunderstorms is also common, leading to a severe 

deterioration of the water quality of the Mgeni river system (Kienzle et al., 1997). 

Mean annual sediment yield within the Mgeni catchment ranges from 500-700 

tonnes/km2 (DWAF, 2001). 

 
Considering the above water related problems, the DWAF and Umgeni Water 

have carried out a number of feasibility studies to assess how water could be 

transferred from other catchments to the Mgeni river system. Several alternatives 

have been attempted, including transfers of water from Mkomazi river. However, to 

date only the transfer of water from the Mearns diversion weir in the Mooi river to a 

tributary of the Mgeni river has proved to be economically viable (Fair, 1999; 

DWAF, 2004). 

 

6.1.5 Geology  
 
The geology of the Mgeni area is dominated by different types of sedimentary 

rocks with different strata of rock being exposed at varying altitudes.  The majority 

of the western and central areas of the catchment are covered by arenitic and 
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argillitic rocks, with tillites in the centre of middle altitude range.  The broad pattern 

of sedimentary rocks has, however, been altered by intrusions of undifferentiated 

assemblages of dolerites. The area near the mouth of the Mgeni river is exposed 

to a mixture of tillites, shales and sandstones (Rural Development Services, 2002).  
 

6.2 Input Data to the ACRU Model for Streamflow Simulation 
 
ACRU is a physical-conceptual (rather than a calibration model) and simulations 

are conducted based on measurable and/or derivable catchment characteristics 

(Schulze, 1995a).  As already mentioned in Chapter 5 (Section 5.5), the ACRU 

model is linked to the Quaternary Catchment Database (QCD) which covers all of 

South Africa, Swaziland and Lesotho. The QCD has been automated through a 

Graphic User Interface (GUI) in the development of the ACRU Agrohydrological 

Modelling System (AAHMS), whereby information for a selected area can be 

automatically read into the ACRU model’s input menu for the model to run 

(Smithers et al., 2004). ACRU, being a multi-purpose model, can be used in the 

transformation rainfall forecasts into a range of agrohydrological forecasts. 

However, this case study focuses only on streamflow forecasts. Data, other than 

rainfall, which are required by the ACRU model for streamflow simulations at the 

exit of each of the QCs within the Mgeni catchment, were extracted from the QCD 

as described in the sub-sections which follow.   

 
6.2.1 Subcatchment Information 
 
As already stated in Chapter 5 (Section 5.5), ACRU is a multi-layer soil budgeting 

model in which the streamflow generation process is based on the premise that, 

after satisfying the initial abstractions (through interception, depression storage 

and infiltration before runoff commences), the streamflow produced is a function of 

the magnitude of rainfall and the soil water deficit from a critical response depth of 

the soil (Schulze, 1995a; Smithers and Schulze, 1995). Hence, detailed 

information on soils, land use and climate are required by ACRU to realistically 

simulate the soil water deficit antecedent to rainfall events on a daily basis.  
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In order to integrate the spatial variability of rainfall, soils and land cover in the 

Mgeni catchment, the ACRU model was configured in “distributed” mode with data 

from the QCD being extracted at the level of QCs. Although each QC is assumed 

to represent a relatively homogenous hydrological response unit, more than one 

soil type or land cover may still exist within it. In such cases, area-weighted values 

were assigned according to their respective areas within a QC (Smithers and 

Schulze, 1995).   

 
Physiographic information for each of the 12 QC that make up the Mgeni 

catchment is shown in Table 6.1. Rainfall and temperatures in the Mgeni area tend 

to be closely related to altitude, with higher parts receiving higher amount of 

rainfalls and lower values of temperature. In addition to altitude, aspect has a 

major bearing on rainfall. The reason for this is that moist air enters the area from 

the southeast, and as a result the southeasterly slopes tend to be wetter than the 

northwesterly ones (Rural Development Services, 2002). 
 

Table 6.1 Subcatchment physiographic information of the Mgeni catchment 

(after Schulze, 1997) 

 

Quaternary Latitude Longitude Altitude Area MAP
Catchment (Degree. Minutes) (Degree. Minutes) (m) (km2) (mm)
U20A 29º 32′ 29º 57′ 1595.1 295.0 1007
U20B 29º 24′ 30º 03′ 1420.2 355.0 989
U20C 29º 35′ 30º 08′ 1204.9 280.6 931
U20D 29º 21′ 30º 13′ 1318.7 340.4 1040
U20E 29º 29′ 30º 19′ 945.7 392.4 974
U20F 29º 19′ 30º 28′ 908.3 437.8 981
U20G 29º 31′ 30º 34′ 778.3 497.3 895
U20H 29º 41′ 30º 08′ 1270.0 221.0 942
U20J 29º 40′ 30º 29′ 761.1 683.0 840
U20K 29º 20′ 30º 43′ 778.7 272.9 952
U20L 29º 40′ 30º 46′ 437.4 331.0 808
U20M 29º 45′ 30º 52′ 262.6 362.7 923  

 

The ACRU model was configured to simulate accumulated streamflows from 

subcatchments cascading downstream at the exit of each QC. Figure 6.3 shows 

the subcatchment configuration and flow cascading pattern of the Mgeni 

catchment. The shaded boxes are those QCs with major dams and with water 

flowing in from upstream. 
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Figure 6.3 Subcatchment configuration and streamflow cascading pattern of the 

Mgeni catchment 

 

6.2.2 Climate 
 
The ACRU model operates at a daily time step and requires an input data file 

containing daily hydro-climatic values when simulating the hydrological processes. 

However, certain less sensitive variables (e.g. temperature) for which values can 

be input on a monthly basis if daily values are not available, are transformed 

internally in ACRU to daily values by Fourier analysis (Schulze, 1995a; Smithers 

and Schulze, 1995).  

 
6.2.2.1 Rainfall 

 
Rainfall is the fundamental driving force input behind most hydrological processes. 

This implies that the success of hydrological simulation studies depends to a large 

extent on the accuracy with which the rainfall data are observed temporally and 

spatially (Schulze et al., 1995a). Two approaches, viz. the so-called “driver station 

method” and the “areal rainfall method” were used in this study, with the selection 

of the method based on the nature of rainfall information/forecasts.  
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The approach followed in the verification of the monthly and seasonal streamflow 

forecasts was the so-called “driver station method”, in which one rainfall station 

per QC was selected to “drive” the hydrological response of a subcatchment. The 

reason for this is that the temporal downscaling of categorical rainfall forecasts into 

daily rainfall values for each QC is performed on the basis of the historical rainfall 

records measured by these driver stations. Rainfall files from these driver stations 

which represent each of the QC were updated to construct a complete daily record 

from January 1950 to March 2007. The issue of temporal downscaling, data 

extraction and format conversion of categorical rainfall forecasts are presented in 

detail in Chapters 9 and 10.   

 
The SIMAR rainfall values as well as the short and medium range rainfall forecasts 

derived from the various Numerical Weather Prediction (NWP) models are given 

as daily averaged values over a grid box (pixel).  One means of verifying this type 

of rainfall information is to extract pixel values of rainfall from each data source 

across the location of the driver stations. However, this limits the number of rainfall 

pixels used for evaluation purposes to only 12. The second alternative is to 

estimate areal rainfall from all the pixels falling within each of the QC.  This option 

was chosen for this study in order to include all rainfall pixels within the evaluation 

statistics and to obtain a better idea of subcatchment areal rainfalls. Daily 

subcatchment average areal rainfalls were derived from the SIMAR data as well 

as from the outputs of NWP models for the selected evaluation period, and were 

successively converted into ACRU formatted rainfall input files.  

 

For the purpose of their verification, observed areal rainfalls were estimated from 

point rainfall data measured by around 30 raingauges (including the 12 driver 

stations) distributed across the Mgeni catchment. The Natural Neighbours 

technique was employed for purposes of interpolation. This is discussed in more 

detail in Chapters 7 and 8. 

 
6.2.2.2 Temperature and potential evaporation 

 
Reference potential evaporation estimates are a second important climate input 

required by ACRU to simulate the soil water budget accurately, as most of the 
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rainfall is transformed into evaporation either through the soil or through the plant 

(Schulze and Kunz, 1995). Evaporation estimates have to be generated either 

directly from a pan or via surrogate means by physically based or empirical 

equations. However, since pan evaporation estimate is susceptible to 

measurement errors and are usually not available at the location of concern, it is a 

common practice in hydrology to use temperature information as a surrogate for 

estimating potential evaporation (Schulze and Kunz, 1995).  

 

Like rainfall, daily to seasonal temperature forecasts can be obtained either from 

weather/climate models or from stochastic weather generator methods for use as 

input into the ACRU model for the simulation of streamflows. This case study, 

however, aims at evaluating the rainfall information/forecasts alone. Temperature 

forecasts were therefore not included in the streamflow simulations in order to 

avoid undesirable biases that could possibly affect the evaluation processes of the 

rainfall forecasts.  

 
ACRU, being a multilevel model, contains a range of different options for deriving 

potential evaporation. One option in the absence of accurate pan evaporation or 

daily maximum and minimum temperature data is to use means of monthly totals 

of A-pan equivalent potential evaporation and monthly means of daily maximum 

and minimum temperatures, which can obtained from the “South African Atlas of 

Agrohydrology and –Climatology” (Schulze, 1997; Schulze, 2006). Each of the 

1 946 QCs that make up southern Africa has been assigned areal-weighted values 

of monthly means of daily maximum and minimum temperatures, as well as 

means of monthly totals of A-pan equivalent potential evaporation. These 

parameters were clipped from the QCD for each of the QCs in the Mgeni 

catchment (Table 6.2). 
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Table 6.2 Monthly means of daily maximum and minimum temperatures (oC) 

and means of monthly totals of A-pan equivalent potential 

evaporation (mm) for the 12 Quaternary Catchments of the Mgeni 

catchment, as input into the ACRU model (after Schulze, 1997) 

 
Monthly Means of Daily Maximum Temperature, TMAX (ºC)

QC Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
U20A 23.4 23.4 22.4 20.6 18.7 16.4 16.7 18.4 20.1 20.6 21.4 23.1
U20B 24.4 24.4 23.4 21.6 19.6 17.3 17.6 19.3 21.0 21.6 22.4 24.1
U20C 25.4 25.4 24.6 22.7 20.7 18.3 18.6 20.2 21.9 22.5 23.3 25.1
U20D 24.7 24.7 23.8 22.0 20.1 17.8 18.1 19.7 21.4 21.9 22.6 24.4
U20E 26.6 26.6 25.9 24.1 22.1 19.8 20.0 21.5 23.1 23.7 24.5 26.3
U20F 26.5 26.5 25.9 24.1 22.2 20.0 20.2 21.6 23.1 23.7 24.3 26.2
U20G 26.7 26.8 26.2 24.5 22.6 20.5 20.6 21.9 23.2 23.8 24.5 26.4
U20H 24.8 24.9 24.1 22.3 20.3 18.0 18.3 19.8 21.4 22.0 22.8 24.5
U20J 26.9 27.0 26.4 24.7 22.7 20.6 20.7 22.0 23.4 24.0 24.8 26.6
U20K 26.2 26.3 25.8 24.1 22.4 20.3 20.4 21.6 22.8 23.3 24.0 25.8
U20L 27.7 27.9 27.4 25.7 24.1 22.1 22.0 23.0 24.0 24.7 25.5 27.3
U20M 27.4 27.6 27.2 25.6 24.2 22.3 22.2 22.9 23.6 24.1 25.0 26.9

Monthly Means of Daily Minimum Temperature, TMIN (ºC)
QC Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
U20A 12.5 12.4 11.3 8.4 5.8 3.2 3.0 4.8 7.0 8.5 10.0 11.6
U20B 13.5 13.4 12.2 9.3 6.4 3.7 3.5 5.3 7.8 9.4 10.9 12.5
U20C 14.5 14.5 13.3 10.3 7.3 4.5 4.3 6.2 8.7 10.3 11.9 13.6
U20D 13.9 13.8 12.7 9.8 7.1 4.3 4.2 6.0 8.3 9.8 11.4 13.0
U20E 15.7 15.8 14.6 11.7 8.5 5.5 5.4 7.5 9.9 11.6 13.1 14.8
U20F 15.8 15.8 14.8 11.9 8.7 5.6 5.6 7.7 10.1 11.7 13.2 14.9
U20G 16.5 16.6 15.6 12.8 9.7 6.8 6.7 8.5 10.8 12.4 13.9 15.6
U20H 14.1 14.1 13.0 10.1 7.4 4.6 4.4 6.2 8.5 10.0 11.6 13.2
U20J 16.5 16.7 15.6 12.7 9.6 6.6 6.5 8.4 10.8 12.4 14.0 15.6
U20K 16.5 16.6 15.7 13.2 10.4 7.7 7.6 8.9 11.1 12.5 14.0 15.6
U20L 18.3 18.5 17.6 15.0 12.1 9.2 9.0 10.5 12.7 14.2 15.7 17.4
U20M 19.0 19.3 18.4 16.0 13.1 10.5 10.2 11.2 13.5 15.0 16.5 18.1

Means of Monthly Totals of A-Pan Equivalent Evaporation, E (mm) 
QC Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
U20A 164.7 140.3 135.3 117.5 100.3 97.8 107.6 127.7 143.9 148.8 147.1 171.5
U20B 172.3 146.4 141.0 119.6 102.0 96.5 106.8 129.2 146.3 154.6 153.2 177.3
U20C 179.0 153.5 145.5 121.3 103.3 95.8 105.6 129.4 146.5 158.4 157.9 182.3
U20D 172.2 146.4 141.4 120.0 102.8 97.0 107.0 129.5 145.9 154.3 152.5 176.6
U20E 181.4 155.8 149.3 124.8 105.6 94.9 105.6 132.0 150.0 160.5 161.1 185.3
U20F 177.8 153.3 147.9 125.4 107.1 95.7 106.6 131.8 149.9 160.2 160.7 183.9
U20G 175.4 154.9 147.6 123.3 106.8 95.1 104.7 127.5 145.5 158.7 160.7 183.2
U20H 174.7 149.6 143.0 120.4 102.0 96.2 106.2 128.2 144.2 154.0 153.4 178.9
U20J 178.5 157.7 148.7 123.2 106.0 94.6 104.1 128.1 146.0 158.4 161.8 185.1
U20K 169.2 152.4 145.5 121.4 106.5 95.1 104.5 123.8 141.4 158.5 158.5 179.9
U20L 177.7 162.0 151.3 122.7 107.5 93.5 101.4 121.3 140.0 159.7 163.5 185.8
U20M 168.8 156.8 149.5 120.0 106.1 92.4 98.5 112.5 130.4 157.8 160.1 181.3  
 

6.2.3 Soils 
 
Soil is a prime regulator through which many hydrological processes operate 

within a catchment (Schulze et al., 1995b). The soils information contained in the 

QCD used in this study is derived from the Institute of Soil, Climate and Water’s 

(ISCW) 84 Broad Natural Homogeneous Soil Zones. This soil information was 

converted into hydrological information which can be utilised by ACRU (Smithers 

and Schulze, 1995). The following soils variables are utilised in the ACRU soil 
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water budgeting routines for modelling the hydrological responses (Smithers and 

Schulze, 1995, 2004): 

 
• Respective thicknesses of the topsoil (DEPAHO) and subsoil (DEPBHO); 

• Soil water content at the permanent wilting point for the topsoil (WP1) and 

subsoil (WP2); 

• Soil water content at the drained upper limit for the topsoil (FC1) and 

subsoil (FC2); 

• Soil water content at saturation for the topsoil (PO1) and subsoil (PO2); 

• Fraction of “saturated” soil water to be redistributed daily from the topsoil 

into the subsoil when the topsoil’s water content is above its drained upper 

limit (ABRESP); and 

• Fraction of “saturated” soil water to be redistributed daily from the subsoil 

into the intermediate/groundwater store when the subsoil’s water content is 

above its drained upper limit (BFRESP). 

 
Areal-weighted values of the above soil variables were assigned to each of the 

1 946 QCs covering southern Africa (Schulze, 1997). The values for these 

variables were “clipped” from the QCD for each of the QC in the Mgeni catchment 

to be used as input into the ACRU model (Table 6.3). 

 
Table 6.3 Horizon thicknesses (m),  critical soil  water retention constants 

(m.m-1) and redistribution fractions for typical top- and subsoil 

horizons in the Mgeni catchment, as input into the ACRU model 

(Source: Schulze, 1997) 

 
DEPAHO DEPBHO WP1 WP2 FC1 FC2 PO1 PO2 ABRESP BFRESP

QC (m) (m) (m.m-1) (m.m-1) (m.m-1) (m.m-1) (m.m-1) (m.m-1) (fraction) (fraction)
U20A 0.28 0.49 0.15 0.20 0.25 0.29 0.42 0.41 0.39 0.39
U20B 0.30 0.55 0.16 0.21 0.25 0.31 0.42 0.42 0.42 0.42
U20C 0.27 0.48 0.15 0.20 0.24 0.29 0.39 0.40 0.35 0.35
U20D 0.31 0.55 0.17 0.22 0.27 0.33 0.40 0.42 0.38 0.38
U20E 0.28 0.50 0.16 0.20 0.25 0.30 0.39 0.40 0.34 0.34
U20F 0.30 0.57 0.15 0.20 0.25 0.30 0.42 0.42 0.39 0.39
U20G 0.29 0.51 0.15 0.18 0.24 0.27 0.44 0.42 0.39 0.39
U20H 0.30 0.53 0.16 0.20 0.25 0.30 0.42 0.42 0.40 0.40
U20J 0.28 0.46 0.16 0.20 0.26 0.29 0.42 0.42 0.35 0.35
U20K 0.29 0.53 0.14 0.17 0.23 0.26 0.44 0.42 0.42 0.42
U20L 0.25 0.38 0.13 0.15 0.22 0.23 0.41 0.39 0.37 0.37
U20M 0.24 0.40 0.15 0.15 0.24 0.24 0.44 0.43 0.41 0.41  
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6.2.4 Land Use Information 
 
Land use and treatment measures play a significant role in altering the 

hydrological processes by influencing the interception, infiltration as well as the 

evaporation processes (Schulze, 1984). In order to account for these components 

of the hydrological cycle, ACRU requires the following land use related attributes 

for a variety of crops and/or land covers (Smithers and Schulze, 1995; 2004): 

 
• A crop (i.e. water use) coefficient (CAY) that accounts for the vegetative 

water use relative to a reference potential evaporation in a given month; 

• A land use/cover’s canopy interception loss value (VEGINT). This monthly 

variable may be estimated by a number of methods in ACRU and accounts 

for the estimated interception loss by a plant canopy on a given day with 

rainfall; 

• A fraction of the root system (ROOTA) that is actively extracting soil water 

from the topsoil in a given month; and 

• A coefficient of initial abstraction (COIAM), which is used in the computation 

of the initial amounts of rainfall that do not contribute to the generation 

stormflow. This variable may change on a monthly or seasonal basis based 

on climatic and land use attributes. 

 
In the case of the Mgeni catchment, in which 37% of the area is under intensive 

agriculture (cf. Section 6.1.3), the principal changes in agricultural crops and their 

level of management, as well as the rapid changes of land uses to residential and 

industrial lands as a result of population growth, migration and economic 

development, need to be considered explicitly, in order to realistically simulate the 

elements of streamflow. For this study, such updated changes in land use and 

managments were not readily available for the Mgeni catchment. Several options, 

however, exist for baseline land cover information to be derived for the above 

mentioned hydrological attributes through the ACRU Menubuilder. In this study the 

classification used to represent natural land cover conditions for the Mgeni 

catchment was that of Acocks’ (1988) Veld Types (Figure 6.4), and area-weighted 

hydrological attributes for each of Acocks’ Veld Types found in the Mgeni 

catchment were retrieved from the QCD (Table 6.4). No human land use 
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catchment or in-channel activities, such as irrigation abstractions, return flows or 

and dams were considered in this study.  

 

Table 6.4 Land cover information used in the ACRU model for each of the 

Quaternary Catchments in the Mgeni catchment 

 
Monthly Means of Crop Coefficients, CAY (fraction)

QC Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
U20A 0.70 0.70 0.70 0.50 0.31 0.20 0.20 0.20 0.50 0.65 0.70 0.70
U20B 0.70 0.70 0.70 0.50 0.31 0.21 0.20 0.20 0.51 0.66 0.70 0.70
U20C 0.73 0.73 0.73 0.50 0.36 0.20 0.20 0.20 0.53 0.68 0.73 0.73
U20D 0.70 0.70 0.70 0.50 0.32 0.22 0.20 0.20 0.52 0.67 0.70 0.70
U20E 0.71 0.71 0.71 0.50 0.38 0.23 0.20 0.21 0.55 0.70 0.71 0.71
U20F 0.70 0.70 0.70 0.50 0.35 0.24 0.20 0.20 0.55 0.70 0.70 0.70
U20G 0.71 0.71 0.71 0.61 0.50 0.33 0.32 0.41 0.58 0.69 0.69 0.71
U20H 0.70 0.70 0.70 0.51 0.36 0.26 0.23 0.24 0.54 0.67 0.69 0.70
U20J 0.73 0.73 0.73 0.59 0.49 0.30 0.29 0.37 0.58 0.69 0.71 0.73
U20K 0.71 0.71 0.71 0.61 0.49 0.36 0.35 0.42 0.58 0.68 0.68 0.71
U20L 0.76 0.76 0.76 0.69 0.59 0.33 0.33 0.49 0.65 0.75 0.75 0.76
U20M 0.82 0.82 0.82 0.79 0.69 0.53 0.53 0.66 0.78 0.82 0.82 0.82

Canopy Interception Loss, VEGINT (mm.rainday-1)
QC Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
U20A 1.60 1.60 1.60 1.42 1.24 1.05 1.05 1.05 1.32 1.60 1.60 1.60
U20B 1.56 1.56 1.56 1.37 1.17 1.04 1.04 1.04 1.33 1.56 1.56 1.56
U20C 1.58 1.58 1.58 1.51 1.37 1.26 1.26 1.26 1.43 1.58 1.58 1.58
U20D 1.54 1.54 1.54 1.34 1.14 1.05 1.05 1.05 1.35 1.54 1.54 1.54
U20E 1.56 1.56 1.56 1.44 1.27 1.24 1.23 1.23 1.46 1.56 1.56 1.56
U20F 1.53 1.53 1.53 1.33 1.13 1.13 1.13 1.13 1.43 1.53 1.53 1.53
U20G 1.81 1.81 1.81 1.66 1.50 1.46 1.42 1.46 1.68 1.81 1.81 1.81
U20H 1.52 1.52 1.52 1.35 1.16 1.09 1.09 1.10 1.37 1.52 1.52 1.52
U20J 1.79 1.79 1.79 1.69 1.55 1.49 1.46 1.49 1.66 1.79 1.79 1.79
U20K 1.67 1.67 1.67 1.55 1.40 1.35 1.33 1.38 1.58 1.67 1.67 1.67
U20L 2.49 2.49 2.49 2.29 2.01 1.89 1.83 1.95 2.29 2.49 2.49 2.49
U20M 2.94 2.94 2.94 2.87 2.37 1.99 1.97 2.34 2.87 2.94 2.94 2.94

Fraction of Active Root System in Topsoil Horizon, ROOTA (fraction)
QC Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
U20A 0.90 0.90 0.90 0.95 0.99 1.00 1.00 1.00 0.95 0.90 0.90 0.90
U20B 0.90 0.90 0.90 0.94 0.98 1.00 1.00 1.00 0.95 0.90 0.90 0.90
U20C 0.90 0.90 0.90 0.94 0.96 0.99 0.99 0.99 0.94 0.90 0.90 0.90
U20D 0.90 0.90 0.90 0.94 0.97 1.00 1.00 1.00 0.95 0.90 0.90 0.90
U20E 0.89 0.89 0.89 0.93 0.95 0.99 0.99 0.99 0.94 0.89 0.89 0.89
U20F 0.89 0.89 0.89 0.93 0.95 0.99 0.99 0.99 0.94 0.89 0.89 0.89
U20G 0.86 0.86 0.86 0.89 0.93 0.97 0.97 0.96 0.91 0.86 0.86 0.86
U20H 0.90 0.90 0.90 0.93 0.97 0.99 0.99 0.99 0.94 0.90 0.90 0.90
U20J 0.87 0.87 0.87 0.90 0.93 0.98 0.98 0.96 0.91 0.87 0.87 0.87
U20K 0.87 0.87 0.87 0.89 0.94 0.97 0.97 0.96 0.91 0.87 0.87 0.87
U20L 0.80 0.80 0.80 0.83 0.87 0.93 0.93 0.90 0.86 0.80 0.80 0.80
U20M 0.76 0.76 0.76 0.77 0.78 0.81 0.81 0.80 0.78 0.76 0.76 0.76

Coefficient of Initial Abstraction, COIAM (fraction)
QC Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
U20A 0.15 0.15 0.24 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.20 0.15
U20B 0.15 0.15 0.23 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.20 0.15
U20C 0.15 0.15 0.21 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.20 0.15
U20D 0.15 0.15 0.22 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.20 0.15
U20E 0.15 0.15 0.20 0.30 0.30 0.30 0.30 0.30 0.30 0.29 0.20 0.15
U20F 0.15 0.15 0.20 0.30 0.30 0.30 0.30 0.30 0.30 0.29 0.20 0.15
U20G 0.18 0.18 0.23 0.30 0.30 0.30 0.30 0.30 0.30 0.28 0.22 0.18
U20H 0.15 0.15 0.22 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.20 0.15
U20J 0.18 0.18 0.23 0.30 0.30 0.30 0.30 0.30 0.30 0.28 0.21 0.18
U20K 0.18 0.18 0.23 0.30 0.30 0.30 0.30 0.30 0.30 0.28 0.22 0.18
U20L 0.22 0.22 0.26 0.30 0.30 0.30 0.30 0.30 0.30 0.26 0.22 0.22
U20M 0.27 0.27 0.28 0.30 0.30 0.30 0.30 0.30 0.30 0.28 0.27 0.27  
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Figure 6.4 Baseline land cover in the Mgeni catchment, represented by Acocks’ 

(1988) Veld Types 

 

6.2.5 Streamflow Simulation Control Variables 
 
In the ACRU model streamflow is derived from two components, viz. baseflow and 

stormflow, with the stormflow component consisting of a quickflow response, i.e. 

that fraction of stormflow generated which is released into a stream on the same 

day as the rainfall event, and a delayed stormflow response, i.e. the remaining 

stormflow entering a stream over several days due to interflow. Baseflow is 

derived from slow releases from the intermediate and groundwater stores which 

are recharged by the drainage out of the lower soil horizon when its water content 

exceeds the upper drained limit (Schulze, 1995b). 

 
In regard to streamflow simulation, the following control variables are required by 

the ACRU model (Smithers and Schulze, 1995; 2004): 
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• The fraction of the total stormflow generated on a given day that will run off 

from a catchment or a subcatchment on the same day as the rainfall event 

that generated that stormflow (QFRESP); 

• The fraction of water from the intermediate/groundwater store that becomes 

streamflow on a particular day (COFRU); 

• The effective (critical) depth of the soil (m) from which stormflow is 

generated (SMDDEP); 

• A variable to request the inclusion or exclusion of baseflow from the 

simulation of streamflow (IRUN); 

• The fraction of the catchment which is occupied by adjunct impervious 

areas which are connected directly to a watercourse, from which 

precipitation contributes directly to quickflow (ADJIMP); 

• The fraction of the catchment which is occupied by disjunct impervious 

areas which are not connected directly to a watercourse. Precipitation 

falling on these impervious areas does not contributes directly to 

streamflow, but is assumed to re-infiltrate on the adjunct pervious portion of 

the catchment (DISIMP); and  

• The impervious surface’s storage capacity (i.e. depression storage), which 

needs to be filled before stormflow commences (STOIMP). 

 
Table 6.5 shows the streamflow simulation control variables for each of the QCs in 

the Mgeni catchment, which were extracted from the QCD. 

 
Table 6.5 ACRU model streamflow simulation control variables for each of the 

Quaternary Catchments in the Mgeni catchment 

 
QFRESP COFRU SMDDEP IRUN (0=No ADJIMP DISIMP STOIMP

QC (fraction) (fraction) (m) or 1=Yes) (fraction) (fraction) (mm)
U20A 0.3 0.009 0.28 1 0.03 0.12 1.00
U20B 0.3 0.009 0.30 1 0.02 0.07 1.00
U20C 0.3 0.009 0.27 1 0.01 0.05 1.00
U20D 0.3 0.009 0.31 1 0.02 0.07 1.00
U20E 0.3 0.009 0.28 1 0.01 0.04 1.00
U20F 0.3 0.009 0.30 1 0.01 0.04 1.00
U20G 0.3 0.009 0.29 1 0.01 0.02 1.00
U20H 0.3 0.009 0.30 1 0.01 0.04 1.00
U20J 0.3 0.009 0.28 1 0.01 0.04 1.00
U20K 0.3 0.009 0.29 1 0.01 0.03 1.00
U20L 0.3 0.009 0.25 1 0.02 0.05 1.00
U20M 0.3 0.009 0.24 1 0.02 0.03 1.00  
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6.2.6 Verification of Simulated Streamflows   
 
In order to generate confidence in the output of hydrological simulations, 

verification against observations is required. In this study, however, for the 

analysis of the streamflow forecasts simulated by ACRU when using the rainfall 

forecasts provided by the different weather/climate models, the streamflow series 

used as the reference was not a series of observed streamflows, but the daily 

streamflows simulated by the ACRU model using as inputs the quality checked 

observed rainfalls (i.e. so-called “true” rainfalls). This approach was chosen for the 

following reasons: 

 
• There are no complete flow data at the exits of each of the QCs within the 

Mgeni catchment for the selected evaluation periods; 

• The Mgeni catchment was assumed for purpose of these simulations to be 

covered by natural vegetation, without any anthropogenic interference such 

as domestic or irrigation abstractions from dams, return flows and inter-

catchment transfers; and 

• The effects of any simulation errors induced by possible inadequacies in the 

process representation in the ACRU model were to play no role in 

verifications because the aim of this case study was to independently verify 

the various rainfall inputs/forecasts against a reference streamflow from 

quality checked observed rainfalls, and not to verify streamflow output per 

se.  

 
The above points deserve future attention if streamflow forecasts are needed to be 

fairly treated in a comparison against observed flows. It is, therefore, important to 

bear in mind that wherever the term “observed” flows is used in this study, these 

are in fact made up of values simulated with the ACRU model using the observed 

quality controlled rainfalls, while “simulated” values are those derived from the 

various rainfall estimation or forecasting models.  

 
6.3 Concluding Remarks 
 
The routine availability of near real time to seasonal agrohydrological forecasts is 

not sufficient to ensure that they can be applied in decisions that benefit the water 
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resources and agricultural sectors. The usefulness of such forecasts will be 

enhanced by verifying them against observations for a wide range of 

environmental conditions. The Mgeni catchment was selected in this study as a 

starting point towards the operational use of these forecasts because, in addition 

to the availability of quality checked rainfall data from a relatively dense network of 

raingauges monitored by the South African Weather Service (SAWS), the 

Department of Water Affairs and Forestry (DWAF), the Agricultural Research 

Council (ARC) and Umgeni Water, this catchment is of major socio-economic 

importance in South Africa. The application of the various agrohydrological 

forecasts within the Mgeni catchment therefore plays a significant role in improved 

decision making in the agriculture and water sectors. 

 
The distributed version of the ACRU model (Schulze, 1995a and updates) was 

employed for simulating the rainfall-streamflow transformation. The input data 

(other than rainfall), which were used for the streamflow simulations, were 

extracted from the Quaternary Catchments Database (QCD).  The ACRU model 

was applied with a baseline land cover and it was decided to compare the 

simulated streamflows from the various rainfall forecasts against those 

streamflows simulated with the ACRU model using observed rainfalls as input.  

 
In the chapters which follow a more detailed description is provided on how each 

of the rainfall forecasts was verified against the observed reference. The 

verification commences with the daily individual and merged rainfall maps from a 

network of radar and daily reporting raingauges as well as satellite images 

(Chapter 7) and is then followed in Chapter 8 by the verification of short and 

medium rainfall forecasts from Numerical Weather Models. Chapters 9 and 10 

then cover, respectively, the verification of the two temporal downscaling methods, 

viz. the Historical Sequence Method and the Ensemble Re-ordering Based 

Method.  
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7. EVALUATING THE PERFORMANCE OF RAINGAUGE, RADAR, 
SATELLITE AND MERGED RAINFALL FIELDS 

 
7.1 Introduction 
 
Raingauge data are still widely used as the most abundant and precise sources of 

rainfall information for many applications in climatology, hydrology, agriculture and 

other environmental sciences. However, their uneven and often sparse networks, 

their limited sampling area and problems inherent in point measurements 

represent a substantial problem when dealing with effective spatial coverage of 

rainfall over a large area (Schulze, 1995a; Deyzel et al., 2004; Pegram et al., 

2004; Schulze, 2006). Radar and satellite-derived rainfall estimates are widely 

accepted as promising strategies to address the above limitations, primarily 

because of much greater detail in their spatial and temporal resolutions over a 

catchment.  

 
Weather radar has enormous potential to offer rainfall estimates in real time with 

high spatial resolution and temporal continuity (for example, Sun et al., 2000). 

However, the accuracy of its quantitative estimation is highly sensitive to 

atmospheric conditions, sampling height of the radar beam, beam blocking, 

variations in the reflectivity-rainfall rate relationships, ground echoes and distance 

from the radar (Deyzel et al., 2004; Jordan et al., 2004; Pegram, 2004; Piccolo and 

Chirico, 2005).  

 
On the other hand, the concept of real time rainfall estimates using satellite data 

provides a means of estimating rainfall at any point or area on the Earth’s surface, 

regardless of country boundaries and/or unfavourable atmospheric conditions 

(Deyzel et al., 2004; Pegram et al., 2004). Satellites data are therefore essential in 

compensating for the lack of rainfall information over oceans as well as over 

remote and mountainous areas which are not covered by an adequate raingauge 

network and/or radars (Laurent et al., 1998; Deyzel et al., 2004; Pegram et al., 

2004). Unfortunately, satellites also suffer from some inherent shortcomings, 

although they display some useful information on rainfall patterns. The main 

reason for the errors is the assumption that precipitation at the surface is a 

function of cloud-top temperature. Identifying precipitating and non-precipitating 
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clouds is seen as a major constraint. Even if the precipitating clouds are correctly 

identified, the estimated rainfall amounts may still contain a substantial random 

error, largely because of the different dynamical processes occurring inside clouds 

(Deyzel et al., 2004).   

 
In 2002 the METSYS group of the SAWS and their collaborators launched a 

project called Spatial Interpolation and MApping of Rainfall (SIMAR) that aimed at 

developing a near real time, spatially high resolution rainfall measuring and 

mapping system for southern Africa, based on both the surface raingauge 

networks and remote sensing techniques. The ultimate goal of the SIMAR project 

was to improve the outstanding issues of data quality and integrity that can be 

derived from daily reporting raingauge networks, radar networks and satellite 

images (Deyzel et al., 2004; Kroese, 2004; Pegram, 2004). Daily individual and 

merged rainfall maps from these data sources are now available on a daily basis 

at a resolution of 1.7 km for the entire southern African subcontinent. The 

incorporation of these products into the framework of an agrohydrological 

forecasting system is thus of fundamental importance for many applications in 

agrohydrology. Their availability in near real time is a vital input in simulating the 

“now state” (i.e. of “this morning”) of various hydrological fluxes such as effective 

rainfalls, soil moisture contents, streamflows, groundwater flows and reservoir 

levels on a daily basis. This, in turn, has the potential to improve the accuracy of 

near real time agrohydrological forecasts that provide guidance to decision makers 

in agriculture and water management, as well as to disaster managers issuing 

flood forecasts and warnings.  

 
The incorporation of the SIMAR products into the framework for the 

agrohydrological forecasting system under development was one of the primary 

objectives of this study. For these products to be applied operationally in 

agrohydrology, the critical issue is to be able to estimate the expected magnitude 

of errors, not only in respect of accumulated rainfall depths, but also from an 

agrohydrological perspective. The aim of this chapter is therefore twofold. First, it 

makes a comparison of the rain fields estimated from reporting raingauges, radar, 

satellite as well as the merged rain fields against rainfall measured by independent 

synoptic rainfall stations, and assesses the accuracy and reliability of the SIMAR 
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products using various statistical measures. The second aim is to transform these 

rainfall estimates into streamflows using the ACRU model (Schulze, 1995a) and to 

investigate the significance of uncertainty that cascades from these rainfall 

estimates through the ACRU model to the streamflow simulations.  

 
This chapter commences with a general description of the SIMAR products 

(Section 7.2). A comparison of the performances of the various rainfall fields is 

then presented, and a discussion ensues whether they can produce accurate 

simulations of streamflow for the Mgeni, which is used as a test catchment 

(Section 7.3). Finally, a conclusion in light of the results obtained is presented in 

Section 7.4. 

 
7.2 General Description of the SIMAR Products  
 

The SIMAR programme comprises of three major component projects. Detailed 

information pertaining to these components is given in three volumes, viz. 

 
• Maintenance and upgrading of radar and raingauge infrastructure (Kroese, 

2004); 

• Radar and satellite products (Deyzel et al., 2004); and 

• Data merging for rainfall map production (Pegram, 2004). 

 
Although an understanding of all the processes by which raingauge, radar, and 

satellite information is used to estimate rainfall is important to fully understand the 

SIMAR products, it is beyond the scope of this project to review all that detail. In 

this section, therefore, emphasis is given to the factors which have been shown to 

critically influence the quality of the daily rainfall fields generated from each of 

these data sources.  

 
7.2.1 Kriged Raingauge Rainfall Field 
 

Raingauges are simple, inexpensive and by far the most common method used to 

measure rainfall (Curtis and Humphery, 1995). They estimate rainfall at a point, 

but the measurements are often subjected to errors. Wind effects, calibration 

errors, the inclination of the gauge, splash into and out of the gauge funnel, 

evaporation of water inside the gauge and observer errors can all affect the 
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accuracy of raingauge rainfall measurement (Schulze, 1995a; Deyzel et al., 2004). 

Areal rainfall is estimated indirectly by making assumptions regarding the amounts 

of rain falling between gauges (Curtis and Humphery, 1995). In order to accurately 

capture the estimates of areal rainfall, a very dense raingauge network is required. 

In southern Africa, the density of the current daily reporting raingauge network 

used in the process of producing daily rainfall maps is far less than the density 

needed to adequately cover the entire region (cf. Figure 7.1).  

 

 
 

Figure 7.1 An example of the kriged raingauge rainfall field over southern Africa 

from the daily reporting raingauges of SAWS for 05 December 2005, 

with red squares corresponding to the daily reporting stations 

(Source: http://metsys.weathersa.co.za, 2007) 
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The raingauges number approximately 300 and are spaced unevenly. Of these 

daily reporting stations, 120 are automatic hourly reporting tipping bucket 

raingauges. Not all of the stations’ data are available on an everyday basis, owing 

to occasional communication problems and/or absence of observers over 

weekends (Deyzel et al., 2004). 

 
In order to produce continuous rainfall fields, the point measurements of surface 

rainfall are converted to a spatial resolution of 1 minute longitude by 1 minute 

latitude (i.e. 1024 by 1024 grids) using the Nearest Neighbourhood method 

(Deyzel et al., 2004). The irregularly gridded raingauge field is then interpolated 

with the kriging algorithm using radar covariance information to produce a kriged 

raingauge field (Deyzel et al., 2004; Pegram, 2004). In areas with scattered 

reporting raingauges, the accuracy of the interpolated rainfall value suffers in that 

it does not adequately represent the spatial variability of rainfall (Figure 7.1). 

According to Kroese (2004), various initiatives have been undertaken by the 

SAWS to extend the daily reporting raingauges, principally by incorporating data 

from different sources such as the Department of Water Affairs and Forestry 

(DWAF), the Agricultural Research Council (ARC), Farmers’ Co-Operatives and 

Agricultural Organisations (FCAO) and the Southern African Development 

Community (SADC). Unfortunately, to date, these data sources are not linked to 

the operation of SIMAR project due to various practical and political reasons. The 

SAWS initiative to replace the second and third order climate stations with a 

downscaled version of Automatic Weather Stations (AWS) is underway (Kroese, 

2004). These new AWS data are expected to provide a sound foundation to 

secure a real time national database in the future for utilisation in the SIMAR and 

other projects.  

 
7.2.2 Kriged Radar Rainfall Fields 
 
Weather radar employs a fundamentally different approach to that of raingauges in 

estimating the amount of rain falling over a catchment. Radar is used to indirectly 

estimate rainfall amounts from direct areal measurements over a very wide area 

(Curtis and Humphery, 1995).  Radar has many advantages when compared to 

raingauge networks, as single radar is able to scan an area of hundreds of square 

kilometres in a few seconds, with the ability to make informed “nowcasts” of future 
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rainfall (Jordan et al., 2004; Piccolo and Chirico, 2005). Its ability to observe the 

three-dimensional structure of the system generating the rainfall provides 

improved information over raingauges in regard to the spatial and temporal 

variability of the rainfall (Deyzel et al., 2004). However, the estimation of the 

rainfall from radar measurements is affected by technical problems and different 

sources of errors (Deyzel et al., 2004; Jordan et al., 2004; Piccolo and Chirico, 

2005), as was mentioned in the introductory section of this chapter. According to 

Jordan et al. (2000), radar errors may be subdivided into three categories, viz. 

 
• Error sources due to ground clutter, anomalous propagation and beam 

blocking, which can be removed by simply adjusting the radar reflectivity 

techniques; 

• Systematic errors due, for example, to poor electronic calibration of the 

radar or contaminations in radar reflectivity measurements, where this type 

of error can be removed by making long term comparisons between radar 

derived rainfall and accumulated rainfall from a raingauge network over a 

large area; and 

•  Residual random errors caused mostly by temporal spacing of, for 

example, the radar scans, spatial sampling and height sampling. 

 
The residual errors are the ones that have been least understood and are the most 

difficult to remove in their effects on rainfall measurement (Jordan et al., 2000). 

During the course of the SIMAR project, a successful research application was 

conducted by Deyzel et al. (2004) to filter the negative impacts of ground clutter, to 

improve the conversion algorithm of radar reflectivity into the rain rate and to 

generate a merged rain field from rain fields generated at the individual radars. 

However, the existing 10 radars that constitute the National Weather Radar 

Network (NWRN) in South Africa are not sufficient to cover the entire study area 

(Figure 7.2).  Vast areas of the North West Province are not under radar coverage, 

even though data are collected up to 200 km in range from each radar (Kroese, 

2004). Daily rainfall maps are generated operationally from the mosaic of 10 

radars in the NWRN. As with the raingauge data, the kriging technique is applied 

to the radar rain field for extrapolating information beyond the scope of the 

measurement and partly for enhancing image quality, especially for areal rainfall 
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(Deyzel et al., 2004). The quality of these kriged radar rain fields remains in doubt 

as one moves to areas where currently no radar coverage exists (Deyzel et al., 

2004). Another important aspect is the inability of coast-located radars to sample 

rainfall adequately. Research conducted by Deyzel et al. (2004) confirmed that the 

radars located at the coast performed less well than the inland radars. This is due 

mainly to warm orographic forcing at the coast.   

 

 
 
Figure 7.2 An example of the kriged radar rainfall field over southern Africa for 

05 December 2005, with green squares representing the location of 

the radars (Source: http://metsys.weathersa.co.za, 2007) 
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7.2.3 Satellite Derived Rainfall Fields 
 
Satellites, as distinct from radar, offer a complete spatial coverage over southern 

Africa and are essential in compensating for the low density, or lack of, raingauge 

and radar based rainfall measurements. Satellite data are cost-effective and 

available for any point on Earth, irrespective of country or inhospitable surface 

conditions (Deyzel et al., 2004; Pegram et al., 2004, Kamarianakis et al., 2006). 

Visible (VIS) and Infrared (IR) imagery and passive microwave instruments are the 

satellite tools that have been extensively employed to estimate rainfall for a range 

of applications. Passive microwave radiometry from satellite platforms provide a 

direct information on rainfall (Kamarianakis et al., 2006). However, the lack of 

sufficient temporal and spatial resolution of the current polar-orbiting sensors 

renders the passive microwave techniques not useful for studies of convective 

events (Deyzel et al., 2004; Kamarianakis et al., 2006). A number of techniques 

have been developed to estimate surface rainfall from VIS and IR satellite data 

indirectly. Most of these techniques are based on the premise that the cloud with a  

cold top produces more rain than that with a warmer top, and a statistical 

relationship exists between cloud top temperature and the rainfall falling at the 

surface (Yucel et al., 2004; Deyzel et al., 2004; Kamarianakis et al., 2006). One 

disadvantage of the VIS/IR techniques is that they provide rainfall estimates that 

are technique-dependent. Because of varying rainfall characteristics under 

different climate regimes, the techniques are not transferable from location to 

location (Kamarianakis et al., 2006).  

 
The technique applied for the SIMAR is a multi-spectral rain rate (MSRR) method, 

in which active cloud identification is accomplished by the discrimination of high 

level cloud characteristics which are associated with rain and no-rain classes. 

Data from the three spectral bands, viz. visible (0.5 - 0.9 μm), infrared water 

vapour (5.7 - 7.1 μm) and thermal infrared (10.5 -12.5 μm), of the Meteosat -7 

satellite are utilised in the rain area recognition rainfall estimation method. 

However, only the IR channel data are used for the estimation of surface rainfall 

values (Figure 7.3).  
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Figure 7.3 An example of the satellite rainfall field over southern Africa for 05 

December 2005 (Source: http://metsys.weathersa.co.za, 2007) 

 

Data from the Meteosat-7 satellite were used because the launch of the Meteosat 

Second Generation (MSG) was delayed due to some technical problems (Deyzel 

et al., 2004; Pegram et al., 2004). According to Deyzel et al. (2004), some of the 

inherent limitations in determining rainfall with the MSRR technique include the 

following: 

 
• Clouds are opaque in both the VIS and IR spectral channels and 

precipitation is indirectly inferred from cloud top temperature. This indirect 
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method cannot intelligently identify the extent of convective rainfall. 

Furthermore, cloud structures may be incorrectly classified into rain or no-

rain classes, especially for tropical rain systems. This is primarily due to the 

simplicity of the classification approach. 

• The effects of warm coastal and orographic rainfall are not always correctly 

quantified. 

• The variation of cloud top structure under different dynamical processes are 

handled at an average level and the estimated rain amounts may still 

contain a substantial random error, even if the clouds are correctly identified 

as precipitating. 

 
In the process of producing the final satellite rainfall map for southern Africa two 

further steps are involved. The first is to mask the IR field in order to identify the 

precipitating clouds and the second is to then produce the rainfall estimates from 

the IR map (Deyzel et al., 2004; Pegram et al., 2004). These steps are detailed in 

a report of Deyzel et al. (2004). Unlike the raingauge and radar data sets, the 

satellite rainfall data set is sampled for every area on the gridded national rainfall 

map (Deyzel et al., 2004). 

 
7.2.4 Merged Rainfall Fields  
 
The purpose of merging the gauge/radar/satellite estimations of the respective 

rainfall fields is to retain the fine sampling resolution of areal rainfall from radar, to 

compensate for the lack of observed rainfall information over the oceans and data 

sparse regions from satellite platforms, and to remove any quantitative biases by 

bringing the values closer to those of the “ground truth” raingauges (Deyzel et al., 

2004; Pegram, 2004; Pegram et al., 2004). The merging operation is performed in 

three steps. First, the gauge and radar information is combined into a field, RG. 

Then the gauge and satellite information is combined into a field, SG, and finally 

the RG and SG fields are merged into the SIMAR field, which is published daily on 

the SAWS website along with the individual rainfall fields (Pegram et al., 2004). 

Details on the process of merging and mapping of rainfall are presented more fully 

in the reports by Deyzel et al. (2004) and Pegram (2004). Based on those two 

reports, a brief overview of the merging process is outlined here, so as to highlight 

the principles behind it.  
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7.2.4.1 Merging radar and raingauge data 
 
Merging the radar and raingauge data to produce the RG field is accomplished 

through the following steps (Pegram, 2004; Pegram et al., 2004): 

 
• Extrapolate radar data: The technique used was kriging by the Fast Fourier 

Transform (FFT) in conjunction with Iterative Constrained Deconvolution 

(ICD) to produce a kriged radar rainfall field, RK. 

• Interpolate raingauge point measurements: The covariance function derived 

from archived historical radar rainfall fields was used in kriging the 

raingauge data between the gauge locations to produce kriged raingauge 

rain field, GK. 

• Compute the explained variance fields for radars and gauges: The 

explained variance fields RV and GV for radars and gauges respectively, are 

computed using the FFT and ICD techniques in order to represent the 

accuracy of the data and the interpolated rainfall at non-measured locations 

of the fields. The explained variance is assumed to be 100% for the whole 

radar domain, corresponding to a 200 km range surrounding each radar, as 

well as for the pixels corresponding to the daily reporting raingauge 

positions. The explained variance diminishes with increasing distance from 

the locations of the radars or raingauges. The RV and GV fields remain 

unchanged from day to day, unless a radar or gauge is not operating. 

• Merge the radar and gauge fields: Integrating the quantitative values of the 

raingauge with the superior spatial information of the distribution areal 

rainfall of the radar is performed using the following equation: 

 

]G+R[
]GG+RR[

=R
VV

VKVK
G                                                 7.1 

 

The weight of the raingauge field reduces the effects of bias in the radar rainfall 

field, while maintaining its spatial structure (Pegram et al., 2004).  
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7.2.4.2 Conditioning satellite data on raingauge data 

 
Conditioning the satellite data on the raingauge information to produce the SG field 

is accomplished through the following steps (Pegram, 2004; Pegram et al., 2004): 

 
• Interpolate an average satellite rainfall field: Satellite rainfall pixels are 

sampled at the positions of the raingauges to produce a set of satellite 

rainfall point estimates, SZ. The average SZ data field is then interpolated to 

a regular grid using completely regularised splines (SRS). 

• Interpolate the raingauge data: To interpolate the raingauge data, a kriged 

raingauge rain field, GK is produced, as was described in Section 7.2.4.1.  

• Condition the satellite on raingauge data: The conditioned satellite field, SG, 

is obtained simply by subtracting the mean satellite rainfall field, SZ, from 

the satellite rainfall field, SR, and the result is added to the interpolated 

gauge field, GK, i.e.  

KZRG G+S-S=S                                                       7.2 

 
The SG field retains the spatial distribution of rainfall, as estimated from the 

satellite, but with reduced bias (Pegram et al., 2004).  

 
7.2.4.3 Producing the merged field 
 
In producing the final combined rainfall field, the RG and SG fields are not treated 

equally; rather they are merged in proportion to their weighted fields. For the RG 

field the explained variance masks, RV and GV, are integrated with the “Boolean” 

to produce the weighted field, RGV. The bias skill scores, SBSS, of the satellite 

rainfall in the neighbourhoods surrounding the raingauges are calculated and the 

results are interpolated using splines to a regular grid, SSS, to be used as a weight 

field for the field SG (Deyzel et al., 2004; Pegram, 2004; Pegram et al., 2004). To 

calculate the bias skill score, a contingency table is formed for each of the pixels in 

a 9 by 9 neighbourhood surrounding the raingauge position (Table 7.1). 
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Table 7.1 A contingency table for bias skill score computation (Source: Pegram 

  et al., 2004) 

 
 
Gauge 

Satellite

Rain No-rain 

Rain Hits (H) Misses (M) 

No-rain False Alarms (FA) Correct Nulls (CN) 

 
 
The bias skill score is calculated in the vicinity of a raingauge. It is simply the sum 

of correct hits and correct nulls divided by the total number of pixels surrounding 

the raingauge position (Equation 7.3).  

 

∑
81

1=i

ii
BSS 81

]CN+H[
=S                                                  7.3 

 
The bias skill score ranges from 0 to 1, and it measures the fraction of correct 

rain/no-rain classifications made by the satellite. A skill score of 1 indicates no 

bias, while a 0 score indicates a bias in the technique’s ability to classify the 

rainfall classes correctly. The problem with the bias skill score is that a low value 

could be extended to areas where rainfall is identified correctly, if the satellite 

rainfall field SR has either a false alarm or a miss when compared to an isolated 

raingauge in areas with sparse data. To account for this limitation, the average 

skill score of the entire data domain, SFSS, is used as a weight field in those areas 

far from a raingauge or a radar (Pegram et al., 2004). The integration of the 

radar/raingauge and satellite/raingauge rainfall fields (Figure 7.4) is finally 

computed in proportion to their respective weight fields RGV and SSS/SFSS, as 

given by Equations 7.4 and 7.5 (Deyzel et al., 2004; Pegram et al., 2004). 

 

]RG+S[
]RG×R+S×S[

=R
VSS

VGSSG
MERGED ,   if RGV >0                              7.4 

 

100
]S×S[

=R FSSG
MERGED ,  if RGV  = null                                           7.5     
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Figure 7.4 An example of the merged rainfall field over southern Africa for 05 

December 2005 (Source: http://metsys.weathersa.co.za, 2007) 

 
7.3 Verification of the SIMAR Products 
 
Deyzel et al. (2004) attempted to verify the radar and satellite derived rainfalls as 

well as the merged rainfall fields, with the objective of minimising the specific 

errors and thereby improving the final SIMAR products. In a comparison made 

between the daily rainfall fields generated from the mosaic of 6 radars and rainfall 

measured by Automatic Weather Stations (AWS), they concluded that the 

Polokwane, Bloemfontein, Port Elizabeth and Irene radars were generally 
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performing reasonably well, albeit with the Bloemfontein and Port Elizabeth radars 

appearing to under-estimate the accumulated rainfalls in areas where the distance 

was more than 100 km from the radar. The Durban and Ermelo radars suffered 

from consistent under-estimation (cf. Figure 7.2 for the radar locations). The 

comparison was made in terms of accumulated rainfalls over the period 01 

October to 30 November 2001.  

 
The rainfall fields estimated from the satellite platforms were compared against the 

kriged raingauge rainfall field, assuming the interpolated values as a ground truth. 

Monthly data sets of satellite rainfall, corresponding to the raingauge 

neighbourhood area for the months December 2002 to February 2003 were used 

in the verification process. The correlation value for December 2002 was found to 

be the highest (r2 = 0.69), but with a substantial bias. In contrast, the respective 

correlation values for January (r2 = 0.47) and February 2003 (r2 = 0.28), were quite 

low, even though the biases appeared to be low (Deyzel et al., 2004).  

 

In a similar way, the merged rainfall fields were verified against raingauge data. 

The conditioning technique for removing the bias of the MSRR satellite rainfall field 

was found very effective in improving the distribution of the rainfall values with 

respect to raingauge values. However, the explained variance of the kriged 

technique used for merging of radar with raingauge rainfall data was not as 

efficient as the conditioning process in minimising the bias, but produced reliable 

spatial rainfall fields. The final merged rain field may have lower errors than either 

of the individual rainfall fields. However, its reliability decreases when an extensive 

over-estimation occurs in the satellite estimates (Deyzel et al., 2004).   

 

It is clear that the SIMAR products are subjected to some spatial and temporal 

errors. They all suffer from some complexities, owing to the fact that they are 

affected by interpolation and scaling issues that may exacerbate the inaccuracy of 

these products. It is, therefore, appropriate to further extend the verification 

process, not only in terms of rainfall magnitudes, but also from a hydrological 

perspective. The inter-comparison of the different methods helps us to determine 

which one of them would provide better estimates when compared against the so-

called ground truth. However, since their performances may depend on many 
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issues such as seasonality, spatial/temporal scales, distance from the 

radar/raingauge as well as distance from the ocean or aspect, it is useful to 

therefore test the SIMAR products under a wide range of environmental conditions 

and to utilize them in hydrological comparisons. In this study, the Mgeni catchment 

representing the summer rainfall areas and the Berg catchment representing the 

winter rainfall areas were initially selected to evaluate these data sources. 

However, only the Mgeni catchment was used, owing to the absence of merged 

rainfall fields for the winter rainfall period and the sparse raingauge networks in the 

Berg catchment.  The results are presented in the sub-section which follows.  

 

7.3.1 Methods of Comparison 
 
There are now five source of spatial precipitation information, viz. the kriged 

raingauge rainfall field, the kriged radar rainfall field, the satellite rainfall field as 

well as the conditioned satellite and the merged rainfall fields to be evaluated in 

this study. Since 2002, the SAWS has archived some of these rainfall products. 

However, owing to the presence of significant missing records of the merged maps 

in the archived data, only data sets for the period from 01 January 2003 – 31 

March 2003 were found to be suitable for this study.  The synoptic raingauges 

distributed across the Mgeni catchment (Figure 7.5) were used as ground truth for 

the validation of the effectiveness of the SIMAR products.  

 

The SIMAR data cannot be compared directly against raingauge data, because 

the radar and satellite data are averaged over an area while the raingauge data 

are averaged over time, but represent a point in space. An interpolation scheme 

has to be used to estimate areal rainfall values from the point measurements of 

rainfall observed by these daily synoptic stations. The chosen interpolation method 

is the Natural Neighbours technique, which is commonly used when the sample 

data points are unevenly distributed. Natural Neighbours interpolation creates a 

“Delauney” triangulation of the input points and selects the closest nodes that form 

a convex hull around the interpolation point, then weights their values by 

proportionate area (ESRI, 2005).  
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Figure 7.5 The distribution of radar, daily reporting gauges and synoptic stations 

over the Mgeni catchment 

 
Various objective functions have been used to measure the strength of the 

statistical relationship between the estimated values and the reference values. A 

contingency table approach was first used as an indicator of skill to assess 

whether the rainfall distribution in the SIMAR images were correctly positioned in 

relation to the reference image within a selected area. For this specific case, the 

two highest daily rainfall events which occurred on 05 February and 19 March  

2003 were chosen from the study period, and the Quaternary Catchment U20E 

(Figure 7.5) was selected, owing to its coverage by a relatively dense raingauge 

network (cf. Figures 7.6 and 7.7).  

 
Each 1 ٰ х 1ٰ pixel within U20E in the five sources of rainfall images was compared 

against the corresponding pixel in the reference rainfall image. For the purpose of 

comparison, threshold percentiles were defined based on the rainfall values 

recorded at 31 stations over the Mgeni catchment on these two days. The pixel-

by-pixel scoring criteria, viz. the Critical Success Index, CSI, the Probability of 
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These statistics do not, however, indicate how severe the over-estimation or 

under-estimation in the SIMAR images is. Therefore, and additionally, the 

coefficient of determination (r2), bias, Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) were used for the entire catchment to objectively evaluate 

the discrepancy between the SIMAR products and the observational reference 

data. All comparisons are based on a time series of daily rainfall totals, as the 

SIMAR values are intended for use with daily time-step hydrological/crop yield 

models.  

 
To ensure a representative rainfall value, pixel rainfalls within each QC of the 

Mgeni catchment are averaged. The evaluation consists of two components. The 

first is a direct statistical comparison of the five SIMAR values with the gauge data. 

The second component employs the ACRU model (Schulze, 1995a and updates) 

in order to further evaluate the effectiveness of these data sources once 

transformed into streamflows. The semi-distributed catchment mode of the ACRU 

model was used for simulation of accumulated streamflows from subcatchments 

cascading downstream at the exit of each QC. The ACRU model was initiated with 

historical observed daily rainfall from year 2000 to the beginning of the simulation 

period in 2003 in order to create representative antecedent conditions and initial 

stores (e.g. soil moisture status of the top- and subsoil, baseflow store and 

releases). It is important to reiterate that wherever the term “observed 

streamflows” is used, these are in fact simulated streamflows with the ACRU 

model but when using the so-called ground truth rainfalls.   
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7.3.2 Results and Discussion 
 
For the sake of comparison in this chapter, the interpolated reference data from 

the dense synoptic gauge network will be termed “observed” data, the kriged 

gauge rainfall field as “gauge”, the kriged radar rainfall field as “radar”, the raw 

satellite rainfall field as “satellite”, the conditioned satellite field as “SG” and the 

gauge/radar/satellite rainfall field as “merged” in this chapter. Since the number 

and spatial distribution of the synoptic gauges and daily reporting gauges are not 

the same within the Mgeni catchment (cf. Figure 7.5), differences in accuracy are 

expected between the so-called “observed” and “gauge” data.  Furthermore, the 

05 February and 19 March events are named Event A and Event B respectively. A 

visual comparison of all six of the rainfall fields over QC U20E for Events A and B 

are presented in Figure 7.6. Plots of the various source data versus the reference 

are presented in Figure 7.7 to show the distributions of Hits (H), Misses (M), False 

Alarms (FA) and Correct Nulls (CN) within the boundary of 50th percentile. The 

gauge, SG and merged fields displayed similar patterns for both events with 

majority of their pixel rainfall values falling within the range of CN and FA for Event 

A, while for Event B the majority of their pixel rainfall values scattered within the 

ranges of CN and M. The performance of the radar and satellite is generally very 

poor, especially for Event B no skill was scored at all (Figure 7.7). The pixel-by-

pixel analysis of the CSI, POD and FAR as a function of threshold rainfall 

percentiles also proves the superiority of the gauge, SG and merged data over the 

remaining data sources (Figure 7.8). Generally, decreases in the CSI and POD 

scores are expected with increasing threshold percentiles, while the reverse is 

expected for the FAR score. The reason for this is that most of the rainfall season 

is dominated by rainless days or by days with small events, with only few large 

events. 

 
For Event A the radar displayed a high resemblance, with CSI and POD values of 

100% up to the 30th percentile, followed by an abrupt collapse in correspondence 

at the remaining higher thresholds (Figure 7.8). A deterioration of the radar 

performance is much more noticeable for Event B, with zero scores of CSI, POD 

and FAR. The significant under-estimation of the rainfall pixels by the radar could 

be attributed to the fact that the Durban radar is influenced by coastal rain. 
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Another important explanation for the poor radar performance is the distance 

between the radar the QC U20E, which is approximately 100 km. Research 

conducted by Deyzel et al. (2004) also shows that the Durban radar significantly 

under-estimated rainfall, even within a 30 km distance from the radar.   

 
05 February 2003 (Event A) 

 
19 March 2003 (Event B) 

 
 
Figure 7.6 The estimated spatial distribution of rainfall over QC U20E for 05 

February and 19 March 2003 using the various data sources 
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Figure 7.7 Scores of Hit, Miss, False Alarm and Correct Null defined by the 

threshold of 50th percentile for 05 February 2003 (Event A) and 19 

March 2003 (Event B) using the gauge, radar, satellite, SG and 

merged rainfall fields  

 
Similarly, the rainfall pixels from the raw satellite data significantly under-estimated 

those of the observed rainfall pixels for the majority of pixels in both events, even 

though it is positively biased over the majority of the study period (cf. Figures 7.10, 

7.11 and 7.12). This may be inferred as being a reflection of the inherent 

limitations with the MSRR technique when classifying warm clouds into rain or no-

rain classes (cf. Sub-section 7.2.3). The improvement in the gauge-based satellite 

estimates (SG) is highly noticeable in both events, suggesting that an adjustment 

based on the gauge observations has a profound influence in reducing the effects 

of bias in the satellite rainfall field. 

 

Because of the limited number of daily reporting gauges in the Mgeni catchment, 

the gauge image failed to mimic the spatial structure of the observed rainfall 

distribution over QC U20E. Nevertheless, the performance of the gauge rainfall 

field is more or less similar to that of the merged and SG fields for both events. 

While the rainfall values from the final merged rain field have a better score for 

Event A than Event B, this is to be expected as the result of the influence of an 

extensive under-estimation of the spatial variability of the rainfall from the radar 

and satellite for Event B.  
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Figure 7.8 CSI, POD and FAR scores as a function of threshold percentiles for 

05 February 2003 (Event A) and 19 March 2003 (Event B) using the 

gauge, radar, satellite, SG and merged rainfall fields  

 
The pixel-by-pixel statistics analysed to this point provide only one insight into the 

quality of these data sources. Another insight is gained when the subcatchment 

(QC) rainfalls which were derived from each of the data sources were used as 

input into the ACRU model for streamflow simulation. The analysis is then further 

extended using r2, bias, RMSE and MAE for both the rainfalls and streamflows for 

the evaluation period of 01 January to 31 March 2003. These statistics are plotted 
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in Figure 7.9 in order to investigate the uncertainty and systematic biases inherent 

in these data sources, and to provide a description of their overall performances.  

 
In general, the association of all the data sources is low, with r2 lying between 0.0 

and 0.54 for the rainfalls, and between 0.0 and 0.96 for the simulated streamflows. 

The radar and satellite displayed the worst associations for each of the QCs that 

make up the Mgeni catchment, suggesting that direct use of radar and raw satellite 

data tends to produce large errors that can cause major errors in hydrological 

simulations. The differences in r2 between the gauge, SG and merged fields are 

minimal for the majority of the QCs. The association is relatively stronger for 

U20C, U20E, U20H, U20J and U20M than for the remaining QCs, this being the 

result of the positive influence of the two daily reporting gauges located in U20J 

and U20M (cf. Figure 7.5). It is also suggested that the validity of information that a 

coefficient of determination can provide is highly sensitive to the sample size (i.e. 

evaluation period) and the size of values themselves (i.e. rainfalls or streamflows). 

With a small sample size, a single outlier is capable of considerably changing the 

slope of the regression line and, consequently, the value of the r2. It is therefore 

important not to make important conclusions based solely on the values of the r2.  

In regard to the rainfall comparison, and using the bias as a measure, the SG 

slightly edged out the other data sources, but all are negatively biased, with the 

exception of satellite derived data. Again, in regard to rainfall, the raw satellite data 

had higher RMSE and MAE values than the other data sources, followed by radar 

(Figure 7.9). 

The streamflow statistics, on the other hand, show different features to those of 

the rainfall statistics. The r2 values of all the data sources were slightly degraded 

for all the QCs, with the exception of the r2 in U20H and U20J (Figure 7.9). This 

reveals that the uncertain nature of the rainfall is amplified in its conversion to 

hydrological responses. However, the sensitivity of r2 to small sample size and 

small values may again be a key factor. In regard to bias, the RMSE and MAE of 

the streamflow statistics show that the transformation of rainfalls to streamflows 

had a “smoothing” effect.  
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Figure 7.9 Coefficient of determination, bias, RMSE and MAE of subcatchment 

rainfalls (a) and accumulated streamflows (b) using the different data 

sources for the period 01 January to 31 March 2003  
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Except for the satellite derived values, all the data sources had similar errors for all 

the QCs (Figure 7.9).  This is due mainly to the fact that the evaluation period is 

dominated by rainless days or small rainfall events. As a result, the response of 

the catchment to the minor rainfall events was very small as most of the rainfall 

was lost to satisfy the initial abstractions of the catchment before the 

commencement of streamflow. The generated daily streamflows from all the data 

sources range between 0 and 3 mm throughout the study period. Under these 

conditions, it is not possible to comprehensively investigate the influence of rainfall 

errors on streamflow errors since it is likely that for fast response catchments or for 

longer wet spells, the rainfall errors would be magnified in the streamflow 

simulations. Many researchers (e.g. Sun et al., 2000; Pappenberger et al., 2005) 

have confirmed that larger rainfall errors cause even larger errors in hydrological 

domains. It is important to bear in mind that the simulated streamflows at the exit 

of each QC includes the accumulated flows from upper QCs, while the rainfalls for 

each QC are independent of each other.  

It is also important to note that, despite the overall failure of the radar to estimate 

the observed rainfall well over the Mgeni catchment, the estimates of rainfall have 

been shown to improve a little as one moves closer towards the location of the 

Durban radar. For example, the radar gave its worst estimates for U20A, U20B 

and U20D, which are far from the radar, while the estimates improved for U20L 

and U20M (cf. Figures 7.5 and 7.9), indicating that the distance from the Durban 

radar is partly responsible for its under-performance. Nevertheless, the radar 

estimates suffered from under-estimation even within the closest QC (U20M). 

In order to visualise how well the trend of rainfalls and streamflows generated from 

each of these data sources correspond with the observations, a plot of 

accumulated daily rainfalls for the evaluation period is presented in Figure 7.10 for 

the QC U20M, followed by a plot of accumulated daily streamflows for U20M in 

Figure 7.11 and, finally, a plot of accumulated daily streamflows for the entire 

catchment, including cascaded streamflows from all QCs, in Figure 7.12.   The 

three figures show the average ratio for the time series of rainfalls and 

streamflows. A perfect score is 1, while a score less than 1 indicates under-
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estimation and a score greater than 1 indicates over-estimation above the 

reference.  
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Figure 7.10 Time series comparisons of accumulated rainfall values derived from 

gauge, radar, satellite, SG and the merged rainfall field for QC U20M 

for the period 01 January to 31 March 2003  

It is evident from the plots in Figures 7.10, 7.11 and 7.12 that the raw satellite data 

significantly over-estimated those of the observed values. The high rainfall ratio of 

3.57 was amplified in the streamflow estimates to 5.01 and 5.18. The simplicity of 

the multi-spectral rain rate (MSRR) method to classify cloud structure into rain and 

no-rain classes is probably responsible for the huge over-estimations of rainfall 

during both rain days and rainless days of the study period. In contrast, the radar 

data failed to capture majority of the rainfalls.  The rainfall ratio of 0.28 was seen to 

improve in the streamflow ratios to 0.75 and 0.77. The relative dryness of the 

study period is the reason for the improvement. Nonetheless, the significant under-

estimation may be caused by errors associated with ground clutter, distance from 

the radar and cloud height. The effect of distance is evident, as may be seen in 

Figure 7.9.  
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Figure 7.11 Time series comparisons of accumulated streamflows derived from 

gauge, radar, satellite, SG and the merged rainfall field for QC U20M 

for the period 01 January to 31 March 2003 
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Figure 7.12 Time series comparisons of accumulated streamflows derived from 

gauge, radar, satellite, SG and the merged rainfall field for the entire 

Mgeni catchment for the period 01 January to 31 March 2003 
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The improvement that the SG offers is well illustrated in Figures 7.10 and 7.11. A 

perfect score was achieved in both the rainfall and transformed streamflow ratios 

for U20M only. The ratio was degraded to 0.88 when streamflows were considered 

for the entire catchment, suggesting that the SG slightly under-estimated the 

observed accumulated flows. The curves of gauge and merged data followed each 

other reasonably well in both the rainfall as well as the streamflows, but they 

suffered from under-estimation of the observed values (Figures 7.10, 7.11 and 

7.12).  

7.4 Summary and Conclusions 
 
One of the most important steps in the development of a framework for 

agrohydrological forecasting is the near real time estimation of rainfall and, 

therefore, the choice of a reliable rainfall estimation method, because it is the near 

real time rainfall that will define the “now state” of a catchment at the beginning of 

a forecast period. Since 2002, the METSYS group of the SAWS and the School of 

Civil Engineering at the University of KwaZulu-Natal, in collaboration with the 

Department of Water Affairs and Forestry (DWAF) and ESKOM, have launched a 

project named Spatial Interpolation and MApping of Rainfall (SIMAR) in order to 

produce near real time, spatially high resolution rainfall fields using data from 

around 300 daily reporting gauges and 10 radars as well as from satellite images. 

Individual and merged rainfall maps from these data sources are now available on 

a daily basis at a spatial resolution of one arc minute (i.e. ~1.7 km) for southern 

Africa. The benefits potentially obtainable from incorporating such products into 

agrohydrological forecast operations are well recognised. However, before such 

products can be used effectively in an operational agrohydrological forecasting 

system, a number of important questions have to be addressed. With rainfall being 

one of the most difficult components of the hydrological cycle to estimate, its 

uncertainty is the main one and is seen as a major constraint in the use of these 

products.  

 
In this chapter the various SIMAR products have been reviewed and an attempt 

has been made to address the uncertainties associated with each of these 

products by applying a range of statistical tests. Rainfall fields derived from gauge, 

radar, satellite, conditioned satellite (SG) and the merged (gauge/radar/satellite) 
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field have been applied to the Mgeni catchment for the period of 01 January to 31 

March 2003. The performances of each data source were evaluated by comparing 

results against observed rainfall data and also by comparing the streamflows 

simulated with the ACRU model using observed and estimated rainfalls as input. 

The observed rainfall fields in the evaluation were obtained from 31 daily rainfall 

stations in the Mgeni catchment, and they were assumed to be the “perfect 

reference”, without consideration of interpolation errors.  

 
First, the quality of the data from the various sources for two major rainfall events 

were quantified using the Critical Success Index (CSI), Probability of Detection 

(POD) and False Alarm Ratio (FAR) as a function of threshold percentiles, in order 

to evaluate their positional accuracy in relation to the observed rainfall pixels over 

QC U20E. Generally, the observed grid cell values for the two events were 

significantly under-estimated from the radar and satellite estimates. However, the 

gauge, SG and merged rainfall fields have shown their capability to reasonably 

depict the spatial patterns of observed rainfall for both events. Extending the 

verification, four commonly used statistical measures, viz. the coefficient of 

determination (r2), bias, Root Mean Square Error (RMSE) and the Mean Absolute 

Error (MAE) were employed to distinguish between errors of the data sources in 

time series analyses. Overall, the SG seemed to be more promising than the other 

data sources used, and its superiority over the remaining four data sources was 

also confirmed by a score of perfect ratio (SG/observed ratio = 1). The 

performances of the gauge and merged rainfall fields in the time series analyses 

were found to be satisfactory. They had similar scores, but the merged data 

showed less bias and lower absolute errors than the gauge data. Again, the poor 

performances of the radar and satellite were shown in the time series analyses. 

The radar suffered from significant under-estimation, while the satellite estimates 

were over-estimating in the analyses of both rainfalls and streamflows.  

 
Even though the results presented in this chapter are based on only a short data 

set, it highlights the fact that the radar and satellite alone cannot yet provide the 

accurate rainfall that is required for operational hydrological applications. The SG 

data seem to be preferable to the other data sources. However, the use of gauge 

and the merged rainfall fields as inputs into agrohydrological models could also 
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provide realistic results, without much difference in their hydrological outputs from 

that of the SG. Most importantly, however, their performances may not be similar 

to the ones presented for the Mgeni for different periods of record, or for other 

areas in southern Africa with a different rainfall season or different attributes of 

rainfall events. The evaluation of the SIMAR products should, therefore, be 

extended to other parts of southern Africa in order to account for a wider range of 

environmental conditions. 

 
It is also important to point out that the rainfall-streamflow transformation by the 

ACRU model had a dampening effect on the accumulated flows, resulting in the 

levelling of the performances of the different data sources. This is hypothesised to 

be a consequence of the study period not being dominated by high runoff 

producing rainfall events. The influence of rainfall errors on hydrological estimates 

should be investigated in future studies by including a larger number of heavy 

rainfall events within the evaluation period. Moreover, observational uncertainty 

through interpolation schemes needs to be considered within the evaluation 

statistics.  
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8. EVALUATION OF SHORT AND MEDIUM RANGE RAINFALL 
PREDICTION MODELS FROM A HYDROLOGICAL PERSPECTIVE 

 
8.1 Introduction 

 
Most hydrological models employed for short and medium range forecasting 

depend on quantitative precipitation forecast (QPF) inputs, which are issued as 

either deterministic or probabilistic forecasts or as ensembles of probabilistic 

forecasts, over a pre-determined lead time (Goswami and O’Connor, 2006). The 

basis of current short (i.e. 1-3 day) and medium (i.e. 4-15 day) range forecasting 

practice is Numerical Weather Prediction (NWP), a science that has been 

developed rapidly over the past few decades (Anstee, 2004). NWP models can be 

categorised into global, regional or mesoscale, based on the extent of their spatial 

cover. Global models have global extent, while regional models cover only a 

fraction of the globe such as a continental land surface and surrounding oceans. 

Mesoscale models cover a relatively smaller area, ranging up a few hundreds of 

square kilometres. Since the spatial resolution of NWP models is constrained by 

the computational time and memory capacity of the computers used to run them, 

global models have the coarsest resolution of the three categories whereas 

mesoscale models have, relatively, the finest resolution (Anstee, 2004). 

 
Generally improvements of the NWP models with respect to spatial and temporal 

resolution, as well as to more detailed representations of the atmospheric 

processes, have led to a significant improvement of weather forecasts (Golding, 

2000; Habets et al., 2004). In spite of these improvements, the skill of the NWP 

models has not yet reached an acceptable level of confidence, especially for 

longer lead time forecasts (Federico et al., 2004; Habets et al., 2004; Roads, 

2004; Bocchiola and Rosso, 2006). The reasons for this are that rainfall is hugely 

variable both in space and time, and that great uncertainties affect the 

performances of the NWP models (Bocchiola and Rosso, 2006). In NWP models, 

the physical processes, which are at sub-grid scale, are represented in 

parameterised form. Thus, NWP models cannot account for local environmental 

attributes that influence the production of rainfall (Maini et al., 2004). Another key 

problem in NWP modelling is the instability of the atmosphere, as well as the 
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sensitivity of the rainfall forecasts to small changes in initial conditions of the 

atmosphere (Ahrens and Juan, 2007).  

 
According to Habets et al. (2004) the application of NWP precipitation forecasts 

into hydrological models to predict streamflows or peak flows is limited by three 

types of error: 

 
• localisation of the events, 

• timing of the events, and 

• precipitation intensity. 

 
However, NWP precipitation forecasts are often associated with other tools in 

order to correct some of the errors prior to their application with hydrological 

and/or crop yield models. Commonly used techniques that may improve upon 

these global-scale models are regional climate modelling and statistical post-

processing methods (Hay et al., 2003; Habets et al., 2004; Maini et al., 2004).  

Such methods can account for the local topographic and other environmental 

variables that control precipitation (Maini et al., 2004). The introduction of 

Ensemble Forecasting Systems (EFS) to account for the probability distribution of 

atmospheric states arising from uncertainties in the initial state has also enabled 

some NWP models (e.g. NCEP) to display better results than using only a single 

deterministic forecast that is initiated by the best known, but nevertheless 

uncertain, atmospheric state (Golding, 2000; Hay et al., 2003; Ahrens and Juan, 

2007).   

 
In South Africa, several institutions such as the SAWS, the University of Pretoria, 

and the University of Cape Town have been actively involved in research relating 

to quantitative precipitation forecasting in order to make short (1- 3 day) and 

medium (4 -15 day) rainfall forecasts operationally feasible for application into 

daily time-step hydrological and/or crop yield models. Incorporating such forecasts 

within the framework for an agrohydrological forecasting system has been a major 

task of this study. At the present time, experimental forecasts issued by the SAWS 

from the National Centre for Environmental Prediction for Medium Range 

Forecasting (NCEP-MRF) model and the Unified Model (UM), as well as forecasts 

given by the University of Pretoria from the Conformal-Cubic Atmospheric Model 
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(C-CAM), are incorporated within the framework for short and medium range 

agrohydrological applications (cf. Chapter 5). However, since these models have 

not been extensively tested in southern Africa, there is a strong need for objective 

assessments both in regard to rainfall characteristics and hydrological results in 

order to evaluate the skill and confidence of these models.  

 
This chapter therefore aims at evaluating the archived rainfall forecasts from the 

C-CAM, UM and NCEP-MRF models on the Mgeni catchment. Methods of 

comparison and forecasting procedures are described in Section 8.2, while the 

results obtained from each model are briefly discussed in Section 8.3. Conclusions 

are presented in Section 8.4. 

 
8.2 Methods of Comparison 
 
The C-CAM and UM models have only recently (i.e. 2006) been adopted for 

southern Africa and the archived rainfall hindcasts from these two models are 

therefore only available for the period from May 2006 to date. As was the case in 

Chapter 7, the four highest daily observed rainfall events which occurred on 17 

November 2006, 21 December 2006, 30 January 2007 and 04 March 2007 were 

selected for a pixel-by-pixel comparison over Quaternary Catchment U20E within 

the Mgeni catchment. Each 1 ٰ х 1ٰ pixel value within U20E in the forecast lead time 

of the C-CAM and UM models was compared against the corresponding pixel 

value in the reference rainfall image and the Critical Success Index, CSI, the 

Probability of Detection, POD and the False Alarm Ratio, FAR (Wilks, 1995), the 

definitions of which are given in Chapter 4, were then used to assess the overall 

degree of their positional accuracy.  

 
Observed and forecasted pixel rainfall values within each Quaternary Catchment 

(QC) of the Mgeni catchment were averaged to be used as input into the ACRU 

model for subsequent streamflow analysis. The semi-distributed catchment mode 

of the ACRU model was run with historical observed daily rainfall from year 2000 

up to the time of the forecast start in order to create representative antecedent 

conditions and to initialise stores (e.g. soil moisture status in the top- and subsoil, 

the baseflow store and releases). Two scenarios were then used for the simulation 

of accumulated streamflows from subcatchments cascading downstream at the 
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exit of each QC for the period from 01 November 2006 to 31 January 2007. For 

the first scenario, the ACRU model was run with rainfall forecasts obtained from 

both the C-CAM and UM models from the time of the forecast start up to the end 

of the forecast period, while for the second scenario the ACRU model was initiated 

at each day of the forecast period with observed rainfall of the previous day (i.e. up 

to the “this morning” state) before a hydrological forecast was made for the next 

day with rainfall forecasts obtained from the NWP models. In other words, the bias 

due to the incorrect initial state of the catchment was corrected and only the error 

in the rainfall forecast generates some differences with the reference run.  

 
As was the case in Chapter 7, daily rainfall values measured by raingauges 

distributed across the Mgeni catchment (Figure 7.5) for the selected evaluation 

period were interpolated using the Natural Neighbour method to serve as the 

“ground truth” for the verification. The “observed streamflows” were the simulated 

streamflows with the ACRU model using the so-called ground truth rainfalls. The 

coefficient of determination (r2), bias, Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE) were then computed in order to assess the skill of the C-

CAM and UM models with and without updating schemes. Owing to the scale gap, 

the NCEP-MRF forecasts at grid box of 2.5º can not be applied directly with the 

ACRU model. These forecasts were therefore verified only against observed 

rainfalls.  

 
8.3 Results and Discussion 
 
The four selected rainfall events, viz. on 17 November 2006, 21 December 2006, 

30 January 2007 and 04 March 2007 have been named Event A, Event B, Event C 

and Event D, respectively, for the sake of comparison in this chapter. Since each 

model runs for different lead times and at different spatial scales, individual 

comparisons against observations were first presented in Sub-sections 8.3.1, 8.3.2 

and 8.3.3 in order to assess to the extent to which the lead time of each model is 

skilful, while in Sub-section 8.3.4 the comparison between the combined output of 

the C-CAM and UM models and the observational reference are discussed. 
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8.3.1 Evaluation of the C-CAM Rainfall Forecasts 
 
C-CAM is a variable-resolution, hydrostatic model developed in Australia for 

regional and mesoscale weather prediction (Anstee, 2004). The model is 

formulated on a quasi-uniform grid, derived by projecting the panels of a cube 

towards the surface of the earth. The two dimensional projection of the squares 

onto the sphere forms the horizontal grid pattern used for the atmospheric model 

(Katzfey and McGregor, 2003; Anstee, 2004; Engelbrecht, 2005). An innovation 

that makes the C-CAM model more powerful is the ability to stretch the conformal-

cubic grid over any selected region by a method termed the “Schmidt 

transformation” (Anstee, 2004; Engelbrecht, 2005). The C-CAM model has been 

adapted not only for short and seasonal term forecasting, but also for future 

climate change projections over southern Africa. Engelbrecht (2005) has, for 

example, applied the model for climate change simulations over southern and 

tropical Africa for the period 2070 -2100.  

 

Work is underway (2007) at the University of Pretoria to extend the lead time of 

the model up to 40 days and to further stretch the model’s grid from 15 km to an 8 

km resolution over selected areas over South Africa. However, at the present time 

(November 2007) the archived hindcasts are available only for the 15 km spatial 

resolution rainfall forecasts of 4 days’ lead time (Engelbrecht, 2007). The 

evaluation of these forecasts is presented here. 

 
A visual comparison of the 4 day lead time rainfall forecast over QC U20E is 

presented in Figure 8.1 for the four selected events. The distributions of Hits (H), 

Misses (M), False Alarms (FA) and Correct Nulls (CN) within the threshold of 50th 

percentile are given in Figure 8.2. For Event A the 1 and 2 day lead time forecasts 

displayed similar distribution with 5.7% FA and 92% CN, while 92% of the pixel 

rainfall values were missed in the 3 and 4 day lead time forecasts.  For Event B 

the 1, 3 and 4 day lead time forecasts missed majority of the pixels with large 

rainfall values. By way of contrast, the 2 day lead time forecast for Event B tended 

to over-estimate, even though majority of the rainfall pixels are scattered in the CN 

range. Similar to Event B, the 1, 3 and 4 day lead time forecasts for Event C are 

clustered within the range of H and M ranges, while most of rainfall pixels for the 2 
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day lead time forecast fell within the ranges of FA and CN. For Event D the C-

CAM model captured the pixels with low rainfall values, but most of the pixels with 

large rainfall values are missed (Figure 8.2). The pixel-by-pixel comparisons of the 

CSI, POD and FAR (Equations 4.5, 4.6, 4.7 in Chapter 4, Section 4.13) as a 

function of threshold rainfall percentiles for these four events are presented in 

Figures 8.3 and 8.4. For Event A the 1 and 2 day lead time forecasts displayed 

similar results with CSI and POD scores up to the 70th percentile, while the skill 

for the 3 and 4 day lead time forecasts was only up to the 20th percentile.  No FAR 

was scored for Event A except for the 1 and 2 day lead time forecasts at the 60th 

and 70th threshold percentiles. 

 

 

 

 

Figure 8.1 Four day lead time rainfall forecasts from the C-CAM model over QC 

U20E in the Mgeni catchment for Events A to D on 17 November 

2006, 24 December 2006, 30 January 2007 and 04 March 2007  
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Figure 8.2 Scores of Hit, Miss, False Alarm and Correct Null defined by the 

threshold of 50th percentile for 17 November 2006, 24 December 

2006, 30 January 2007 and 04 March 2007 

 
Surprisingly, for Events B and C the 2 day lead time forecasts edged out the 1 day 

forecast, with CSI and POD scores up to the 70th and 80th percentiles, 

respectively. However, most pixel rainfalls in the 2 day lead time forecasts for 

these two events were significantly above their corresponding pixel rainfalls from 

observations, resulting in high FAR scores in most of the higher threshold 

percentiles (Figures 8.3 and 8.4). On the day of Event D more than 100 mm of 

rainfall was recorded by five raingauges located around QC U20E. However, the 
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C-CAM model has failed to capture the higher pixel rainfalls even on the 1 day 

lead time forecast. Most pixel rainfalls in the forecasts were significantly below 

their corresponding pixel rainfalls in the observations (Figure 8.4). 
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Figure 8.3 CSI, POD and FAR scores of 4 day lead time forecasts from the C-

CAM model as a function of threshold percentiles for the rainfall 

events of 17 November and 21 December 2006   
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Figure 8.4 CSI, POD and FAR scores of 4 day lead time forecasts from the C-

CAM model as a function of threshold percentiles for the rainfall 

events of 30 January and 04 March 2007   

 
The 1 day lead time forecast displayed relatively more skilful forecasts than the 

longer range forecasts and was used as input into the ACRU model for streamflow 

simulations both with and without updating scenarios for the period of 01 

November 2006 to 31 January 2007. Plots of daily and accumulated daily 

streamflows cascaded from all QCs to the mouth of the Mgeni catchment for the 

two scenarios are presented in Figures 8.5 and 8.6 respectively.  
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Figure 8.5 Time series comparisons of daily streamflows simulated with the 

ACRU model at the mouth of the Mgeni catchment, derived from the 

C-CAM rainfall forecasts both with and without updating procedures 

for the period 01 November 2006 to 31 January 2007 
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Figure 8.6 Comparisons of accumulated streamflows simulated with the ACRU 

model at the mouth of the Mgeni catchment, derived from the C-CAM 

rainfall forecasts both with and without updating procedures for the 

period 01 November 2006 to 31 January 2007 
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The streamflow forecasts when using the C-CAM rainfall forecasts without the 

updating scenario displayed significant under-estimation. The explanation for this 

under-estimation obviously lies in the fact that the ACRU model was initiated with 

uncorrected rainfalls on each successive day throughout the study period. The 

error cascade in the rainfall forecasts of each day had a significant influence on 

the ACRU streamflow simulation state variables such as the fraction of water that 

become a streamflow from the topsoil, subsoil and intermediate/groundwater 

stores on a given day, and consequently on the streamflow forecasts. However, 

the C-CAM based streamflow forecasts were seen to improve considerably when 

the ACRU model was initiated with observed rainfalls at the start of each day in 

the forecast period. As may be seen in Figures 8.5 and 8.6, the daily time series 

and accumulated daily streamflows simulated with the updating scenario appeared 

much closer to the reference streamflows, with the total streamflow ratio was 

improving from 0.56 to 0.90.   

 
Statistical comparisons with respect to the coefficient of determination (r2), bias, 

the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) are 

presented in Figure 8.7, so as to highlight the significance of the improvements 

made by the updating procedure. As was expected, the r2 values are relatively 

higher for the updated forecasts, ranging from 0.23 to 0.72 for the various QCs 

that make up the Mgeni catchment, thereby indicating a better agreement than the 

uncorrected scenario for which the r2 range was only between 0.01 and 0.37.  The 

updating procedure has also reduced the bias, RMSE and MAE values to 

minimum levels (Figure 8.7), suggesting that the daily correction of the ACRU 

streamflow state variables based on observed rainfall has a significant influence in 

reducing both the systematic and random errors in the accumulated streamflow 

forecasts. 

 
In conclusion, the C-CAM model has suffered from both under-estimation and 

over-estimation in the analysis of the four individual daily rainfall events, indicating 

the variability of the model’s performance from storm to storm. Overall, the 

observed rainfalls over the entire study period were under-estimated by the model. 

Consequently, the streamflow forecasts were consistently below their 

corresponding observed flows. However, the under-estimation was seen to 
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improve significantly when a daily correction with observed rainfalls was made to 

initiate the ACRU model with the correct “now-state” of the catchment. An error of 

34% in the total streamflow forecasts of the first scenario was attributed to an 

incorrect initialisation of the ACRU model used for each forecast run.  
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Figure 8.7 Coefficient of determination, bias, RMSE and MAE of accumulated 

Quaternary Catchment streamflows simulated with the ACRU model 

when using the C-CAM 1 day lead time rainfall forecasts both with 

and without updating, for the period of 01 November 2006 to 31 

January 2007 

 

8.3.2 Evaluation of the UM Rainfall Forecasts 
 
The Unified Model (UM) is made up of atmospheric, oceanic, wave and sea-ice 

numerical submodels and can cover either all, or part, of the Earth's surface area 

with multiple atmospheric layers. The various submodel components have been 

designed to run individually or in a merged mode for a specific modelling 

application (UK Met Office, 2007). Operationally, the UK Meteorological Office 
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runs a number of configurations of its UM model, ranging from the global model, 

with a spatial resolution of 100 km, down to a high resolution of 4 km local model. 

The choice of horizontal and vertical resolution may be varied by a user (UK Met 

Office, 2007). Since 2006 the SAWS has been actively working on the 

implementation of this new Unified Model as a new NWP system for southern 

Africa. The 12 km resolution rainfall forecasts of 2 days’ lead time is currently 

available and could be used for short term agrohydrological applications. The 

evaluation of these forecasts in the Mgeni catchment is demonstrated below. In 

Figure 8.8 the 1 and 2 day lead time rainfall forecasts over QC U20E are shown 

for events A, B, C and D, along with the reference observation, while in Figure 8.9 

their Hits (H), Misses (M), False Alarms (FA) and Correct Nulls (CN) scores are 

plotted within the boundary of the 50th threshold percentile.  

 

Figure 8.8 Two day lead time rainfall forecasts from the UM model over QC 

U20E in the Mgeni catchment for Events A to D on 17 November 

2006, 24 December 2006, 30 January 2007 and 04 March 2007 

 
For Events A and B the 1 and 2 day lead time forecasts are positively biased with 

high scores of FA.  However, for Event C the 1 day lead time forecast is clustered 

along the boundaries of the four categories, while the 2 day lead time forecast is 
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more stretched to the FA side.  For Event D the UM model failed to capture most 

of the pixels with high rainfall values, even though the model skill is better in the 1 

day lead time forecast than the 2 day ahead forecast. The CSI, POD and FAR 

scores for the 1 and 2 day lead time UM forecasts as a function of threshold 

percentiles are illustrated in Figures 8.10 and 8.11. 
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Figure 8.9 Scores of Hit, Miss, False Alarm and Correct Null defined by the 

threshold of 50th percentile for 17 November 2006, 24 December 

2006, 30 January 2007 and 04 March 2007 
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Figure 8.10 CSI, POD and FAR scores of 2 day lead time rainfall forecasts from 

the UM model as a function of threshold percentiles for the rainfall 

events on the 17 November and 21 December 2006  

 
For Events A and B the 1 and 2 day lead time forecasts showed the same pattern 

over the entire range of threshold percentiles. The probability to detect a rainfall 

event up to the 90th percentile was 100% for both events. The CSI score dropped 

quickly with the increasing rainfall rate, ranging from 80% at the 70th percentile for 

Event A to 23% and 43 % at the 90th percentile for the 1 and 2 day lead time 

forecasts, respectively, while for Event B the CSI ranged from 80% at the 50th 

 151  



percentile to 0% at the 90th percentile for both lead times. The probability of FAR 

for Event A for the 1 and 2 day lead time forecasts was seen to increase 

respectively from 5% at the 50th percentile to 77% and to 56% at the 90th 

percentile. For Event B, the FAR score for both lead times increased, starting from 

18% at the 30th percentile to 100% at the highest threshold percentile (Figure 

8.10). 
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Figure 8.11 CSI, POD and FAR scores of 2 day lead time rainfall forecasts from 

the UM model as a function of threshold percentiles for the rainfall 

events on 30 January and 04 March 2007  
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For events C and D the CSI and POD scores dropped quickly with the threshold 

percentiles rate. The 2 day lead time forecast displayed a better statistical 

performance than the 1 day lead time forecast for Event C, but with higher FAR 

values for high rainfall thresholds. A significant under-estimation of the rainfall 

pixels was observed over the entire area (i.e. U20E) on the day of Event D. The 2 

day lead time forecast displayed no skill scores over the entire domain except at 

the lowest threshold percentile (0%), while the skill of 1 day lead time forecast was 

extended up to the 50th percentile (Figure 8.11). 

 

The UM model slightly over-estimated the rainfall for the majority of rainfall pixels 

in Events A, B and C and the results obtained from the 1 and 2 day lead time 

forecasts were generally very similar for these three events. The model’s 

performance for Event D was poor, even though the skill increased slightly with 

decreasing lead time. 

 
As was the case in Sub-section 8.3.1, the evaluation was extended by 

transforming the 1 day ahead UM rainfall forecasts into streamflow forecasts with 

the ACRU model, both with and without updating scenarios for the evaluation 

period of 01 November 2006 to 31 January 2007. Plots of daily time series and 

accumulated daily streamflows cascaded from all QCs to the mouth of the Mgeni 

catchment are presented in Figures 8.12 and 8.13, respectively. In Figure 8.14 

plots of r2, bias, RMSE and MAE are shown for each of the QCs that make up the 

Mgeni catchment. In general, the r2 values with and without updating are very 

close to one another, ranging between 0.0 and 0.44. However, the improvement 

made by the updating scenario is highly noticeable in term of improvements to the 

bias, RMSE and MAE values.   

 
It is evident from the plots in Figures 8.12, 8.13 and 8.14 that throughout the study 

period the UM model consistently over-estimated values compared to those of the 

observed. The streamflow ratio 3.91 was decreased to 1.59 when the updating 

scenario was used. Nevertheless, the updated forecasts are still positively biased 

by 59% according to the reference observed run, which is significant.  
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Figure 8.12 Time series comparisons of daily streamflows simulated with the 

ACRU model at the mouth of the Mgeni catchment, derived from the 

UM rainfall forecasts both with and without updating procedures for 

the period 01 November 2006 to 31 January 2007 
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Figure 8.13 Comparisons of accumulated streamflows simulated with the ACRU 

model at the mouth of the Mgeni catchment, derived from the UM 

rainfall forecasts both with and without updating procedures for the 

period 01 November 2006 to 31 January 2007 
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Figure 8.14 Coefficient of determination, bias, RMSE and MAE of accumulated 

Quaternary Catchment streamflows simulated with the ACRU model 

when using the UM 1 day lead time rainfall forecasts with and 

without updating for the period of 01 November 2006 to 31 January 

2007 

  
8.3.3 Evaluation of the NCEP-MRF Rainfall Forecasts 
 
A number of ensemble based forecast products are being produced at the National 

Center for Environmental Prediction (NCEP) and distributed to a wide range of 

users both nationally in the USA and internationally (Toth et al., 1997). The output 

of the Medium Range Forecast model (NCEP-MRF) has been used operationally 

for medium range forecasts in South Africa since 2003 (cf. Chapter 5, Sub-section 

5.3.1). Unlike the C-CAM and UM models, the NCEP-MRF model uses the so-

called Ensemble Forecasting System (EFS) to estimate the probability distribution 

of the “true state of the atmosphere” around the control analysis. The motivation 

for use of the EFS is that probabilistic forecasts initiated from slightly different 

initial states and model parameters provide better results than a single 
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deterministic forecast initiated by the best known state (Ahrens and Jaun, 2007). 

The current NCEP ensemble forecasts are generated every day, one with 22 

members at a grid spacing of 2.5º х 2.5º and another with 60 members at a grid 

spacing of 1º х 1º, both running for up to a14 day lead time. The latter product has 

recently been applied in South Africa by the SAWS and the historical archive of 

forecasts available for this study are the 2.5º grid spaced values. The evaluation of 

these coarse scaled forecasts at the Mgeni catchment is presented below.  

 
Owing to the coarse resolution of the data (2.5º), the Mgeni catchment is entirely 

contained within one grid box (Figure 8.15). The verification is undertaken against 

raingauge data by computing the average rainfall of all rainfall stations which fall 

inside the grid box. With a grid space of 2.5º, only a crude representation of 

observed precipitation distribution could be achieved, especially in southern Africa 

where large scale rain bearing frontal systems are enhanced by local topography 

(Tennant et al., 2006). Tennant et al. (2006) have attempted to verify the 2.5º grid 

spaced forecasts against SAWS station data by averaging the rainfall values of the 

stations within a grid box. Approximately 30 to 200 rainfall stations fall into each 

2.5º grid box, with the lower station density found in the more arid western interior 

of South Africa. They found that the NCEP-MRF model over-estimates rainfall 

amounts by up to 300% over the summer rainfall areas of South Africa. This 

significant bias becomes greater for higher rainfall amounts. In contrast to the 

summer rainfall areas, rainfall is under-estimated in the winter rainfall areas of 

South Africa.  

 
Nevertheless, the model performance has been continuously improving through 

upgraded model physics, resolution and data assimilation, and these effects are 

automatically manifest in the 2.5º grid spaced outputs (Tennant et al., 2006). With 

further improvement and refinement, these forecasts have the potential to play an 

increasingly important role for large scale catchments in the short and medium 

range of an agrohydrological forecasting system. The present study is aimed at 

examining if the coarse resolution (2.5º) is sufficient to resolve weather systems 

responsible for the summer rainfall over the Mgeni catchment. For operational use, 

however, these large scale forecasts should be downscaled to a finer resolution 
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based on the use of a statistical or dynamical rainfall downscaling model, which is 

beyond the scope of this study. 

 

 
 

Figure 8.15 The 2.5º grid boxes over southern Africa for the NCEP-MRF 

forecasts, with the Mgeni catchment shown in its relevant grid box 

 
The evaluation commenced with the investigation of ensemble members for the 

four selected rainfall events in order to assess the extent to which they could 

explain the uncertainty associated with a particular forecast. In Figure 8.16 the 

inter-quartile range of 24-hour accumulated precipitation amount is shown, plotted 

from 22 ensemble members for Events A, B and C, but from only 11 members for 

Event D. The spread of the ensemble describes the breadth of the range of 

forecasts made by the EFS. For a good ensemble forecast the “observed value 

lies somewhere within the range of the forecasts given by the ensemble members” 

(Ebert, 2001). In the case of Event A, the observation is significantly less than the 

driest ensemble member, even though the spread of the ensembles is large in 

ranging from 33.0 - 91.8 mm. This large spread suggests a lack of confidence in 

the forecast for that particular day. The spread for Event B is also large (6.4 - 67.0 

mm), but the observation was captured within the lower inter-quartile range. In the 
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cases of Events C and D the spread was relatively small. The observed value for 

Event C lies within the lower inter-quartile range of the ensemble values, whereas 

in the case of Event D the observation is higher than the wettest ensemble 

member. The model’s under-forecast for Event D is possibly due to the absence of 

11 ensemble members of the 22. 
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Figure 8.16 The spread of NCEP ensemble rainfall forecasts for 17 November 

2006, 21 December 2006, 30 January 2007 and 04 March 2007. The 

box-and-whiskers represent the minimum, lower quartile, median, 

upper quartile and maximum values of the ensemble members. The 

x signs indicate the ensemble mean value. Diamonds represent the 

observed values  

 
The most important benefit that the ensemble forecasts can offer is that they can 

be used to provide Probabilistic Quantitative Precipitation Forecasts (PQPFs), as 

is done in many centres (e.g. NCEP, SAWS). It has been shown by many 

researchers (e.g. Toth and Kalnay, 1997; Ebert, 2001; Zhu et al., 2002)  that 

NCEP ensemble forecasts based on probabilistic values have the potential to 

provide a more meaningful indication not only for the temporal distribution, but also 

of possible spatial distributions of rainfall in the short and medium range forecasts. 

PQPFs are computed by counting how many of the ensemble members exceed a 

daily accumulated rainfall, or any given threshold, and then dividing that number 
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by the total number (in this case 22) of ensemble forecasts (Toth et al., 1997). In 

future the same procedure can also be followed to generate probabilistic 

ensembles of streamflow forecasts by ingesting each of the ensemble rainfall 

forecasts into a hydrological model, provided that the spatial scale of these 

forecasts are comparable to those for which the hydrological model is applied.  

 
In this study it is hypothesised that the most likely spatial representation of the rain 

field is given by the ensemble mean. In order to assess the extent to which the 

lead times of the NCEP forecasts are skilful, the ensemble means for each of 5 

day lead time forecasts at the 30ºS 30ºE grid box for the period of 01 November 

2006 to 31 January 2007 were compared against average rainfall values of all 

stations that fall into the box (Figure 8.17). It was found that the 1- 5 day forecasts 

show very similar patterns throughout the study period, although the quality of the 

forecasts increases with decreasing lead time, as expected. Nonetheless, the 

NCEP-MRF model showed a tendency to over-forecast throughout the study 

period.  
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Figure 8.17 Time series comparisons in the 30ºS 30ºE grid box of accumulated 

rainfalls of 5 day forecasts derived from the NCEP-MRF rainfall 

model for the period of 01 November 2006 to 31 January 2007 
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A plot of 1 day forecasts, which are relatively more skilful than the 2 to 5 day ones, 

versus observed rainfalls reveals a positively biased performance of the NCEP 

model (Figure 8.18). The association is quite strong for less extreme events of < 

20 mm per day, while there is more scatter with higher rainfalls. Taking the space 

scale limitation into account, however, the model’s performance is considered 

satisfactory. These results reflect that the NCEP-MRF model is capable of 

identifying a rainfall event, but with a tendency to over-estimate the amount.  
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Figure 8.18 Scattergram of NCEP simulated 1 day forecasts from the means of 

22 ensembles versus observed rainfalls for the period of 01 

November 2006 to 31 January 2007 

 
8.3.4 Combined Use of the C-CAM and UM Rainfall Forecasts 
 
All NWP models predicting weather at shorter ranges, or its various statistics at a 

longer time ranges, are based upon the same laws of physics (Toth et al., 2006). 

However, the quality of the forecasts is often constrained by the model formation 

through the variation of assumptions and approximations as to how the physical 

processes are parameterised in the models, as well as by their the levels of 

vertical and horizontal resolutions, forecast methodologies and data assimilation 

methods (Ebert, 2001; Anstee, 2004). As a result, no two models will display the 

same forecasts in exactly the same manner. Generally, different models will tend 
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to "cluster" around the perfect forecast, with some a little too wet while others are 

a little too dry (Ebert, 2001). In this instance, the C-CAM and UM models 

responded differently for the same season and the same area. Although they 

displayed similar patterns to the reference run, the C-CAM model showed a 

tendency to under-forecast whereas the UM model tended to over-forecast 

throughout the study period. This is particularly noticeable on the occasions of 

heavy rains (Figure 8.19).  

 
The daily QPFs of the two models for the period of 01 November 2006 to 31 

January 2007 were combined by “weighted averaging” in order to evaluate the 

extent to which their combined prediction could improve the accuracy of the 

forecasts. No particular model was favoured and the success of the “weighted 

averaging” to produce a better combined QPF is dependent on the performance of 

the models relative to each other on a given day. It was found that the combined 

forecast was influenced more by the outputs of the UM model than the outputs of 

the C-CAM model. As a result, the combined output was superior in relation to the 

UM than the C-CAM forecasts, both in terms of individual daily and accumulated 

flows (Figures 8.19 and 8.20). The under-estimation in the total streamflow 

forecasts of the C-CAM forecasts was reduced from 34% to 10%, while the over-

estimation in the UM Model was decreased from 291% to 89%. 

 
The advantage of using multiple models to determine rainfall is the ability to 

estimate the probability of receiving rain (Ebert, 2001). For example, if the C-CAM 

and UM models both predict that at least 10 mm would fall at a particular location, 

then the probability of receiving at least 10 mm will be 2/2, or 100%. If there is 

disagreement the chance will be 1/2, or 50%. Likewise, the probability of 

streamflow exceeding a given threshold can also be calculated and mapped at 

catchment or national scale. The greater the number of NWP forecasts the greater 

the skill will be of the probabilistic forecasts. Decision makers can then have more 

confidence in such probabilistic forecasts than any of the individual deterministic 

estimates. 
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Figure 8.19 Time series comparisons of daily streamflows at the mouth of the 

Mgeni catchment, derived from the C-CAM, UM and combined 

rainfall forecasts for the period of 01 November 2006 to 31 January 

2007 
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Figure 8.20 Comparisons of accumulated streamflows at the mouth of the Mgeni 

catchment, derived from the C-CAM, UM and combined rainfall 

forecasts for the period of 01 November 2006 to 31 January 2007 
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8.4 Conclusions 
 
In this chapter three experimental NWP models were evaluated from a 

hydrological perspective, viz. the C-CAM, UM and NCEP-MRF. The results 

obtained from each model are encouraging. However, the quality of the results 

varied between the three models, between the modes of simulation (i.e. with and 

without updating) and between the selected events. Each model was evaluated 

separately for four selected days with relatively high amounts of rainfall, as well as 

for a continuous period of 92 days.  

 
For the four selected events, the C-CAM model scored some skill with the 1 and 2 

day lead time rainfall forecasts, whereas for the 3 and 4 day forecasts the skill was 

low and unreliable.  Except for Event D (04 March 2007), there was no significant 

difference between the 1 and 2 day lead time UM rainfall forecasts. The 2 day 

forecast was slightly superior to the 1 day forecast for Event C (30 January 2007), 

but for Event D the 2 day forecast showed no skill. Results obtained for the 

continuous period showed that streamflow forecasts based on the C-CAM model 

suffered from consistent under-estimation, while conversely the UM based 

streamflow forecasts suffered from consistent over-estimation. Since the degree of 

over-estimation by the UM model was more significant than the degree of under-

estimation of the C-CAM model, their combined output was positively biased. 

However, considerable improvement was achieved in their individual streamflow 

forecasts when the state variables of the catchment were updated at the start of 

each day with observed rainfalls up to the previous day.  

 

The NCEP-MRF rainfall forecasts were verified only against observed rainfalls 

owing to spatial scale differences. It was shown that these forecasts over-

predicted those of the observed values for both the selected single events (except 

for Event D) and over the continuous period of time, although the quality of the 

forecasts increased slightly with decreasing lead time. The ensemble approach 

was effective for Events B (21 December 2006) and C (30 January 2007), but 

failed to capture Events A (17 November 2006) and D (04 March 2007). Despite 

the limitations of the coarse spatial scale, the correlation between the 1 day 

forecast and the reference was fair.  
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In conclusion, when taking into account the discrepancies between the forecast 

period (02:00 to 02:00) and observed period (08:00 to 08:00), scale issues and 

uncertainties in the reference run, the performances of the three models seem to 

be reasonable. The occurrences of the rainfall were signaled correctly over most 

of the study period, especially by the C-CAM and UM models, but with a tendency 

to respectively under- and over-estimate the correct amount.  

 

The results obtained from this research reveal that there is still room for 

improvements in each of these models, especially in making the models’ spatial 

scales more compatible with requirements of hydrological models for application in 

small and medium sized catchments and in improving the rainfall forecast skill, 

especially for longer lead times.  

 

In Chapter 7 an attempt has made to evaluate the near real time ground based 

and remotely sensed rainfall fields from a hydrological perspective, while in this 

chapter the evaluation was extended for the rainfall forecasts generated from the 

C-CAM, UM and NCEP-MRF models. The next two chapters cover, respectively, 

the evaluations of the two temporal downscaling methodologies, viz. the Historical 

Sequence Method and the Ensemble Re-ordering Based Method. 
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9. TEMPORAL DOWNSCALING OF PROBABLISTIC CATEGORICAL 
FORECASTS USING THE HISTORICAL SEQUENCE METHOD 

 
In South Africa, monthly and seasonal forecasts of rainfall are presented as a 

probability of occurrence within categories designated as above, near or below 

normal, i.e. as three-category tercile forecasts. These forecasts have been shown 

to possess certain level of skills when they are compared against observations 

(Klopper and Landman, 2003). However, such forecasts are not necessarily 

directly usable for many types of decisions required in the agricultural and water 

sectors. In order estimate the consequences of such seasonal climate forecasts, 

hydrological and crop yield models generally require quantitative daily time series 

climate information. This has necessitated the development of a methodology of 

translating categorical rainfall forecasts into quantitative daily values to be used as 

input into daily time step hydrological/crop yield models, thus allowing for the 

generation of agrohydrological forecasts (e.g. of streamflows or reservoir levels, or 

of irrigation demands or crop yield estimates) which are then suitable for 

operational use in water resources and agricultural decisions.  

 
As was described briefly in Section 5.4 of Chapter 5, two approaches, viz. the 

Historical Sequence Method and the Ensemble Re-ordering Based Method, have 

been developed in this study in order to generate daily rainfall values from 

preferentially selected analogue years, for subsequent use as input into 

hydrological/crop yield models. If these approaches are to be applicable with a 

high degree of confidence, they should be evaluated in various parts of southern 

Africa. The Mgeni catchment in KwaZulu-Natal is used in this study to demonstrate 

the potential usefulness of the two approaches.  The purpose of this chapter is to 

evaluate the performance of the streamflow simulations of the ACRU model 

derived using the Historical Sequence Method. Evaluation of the Ensemble Re-

ordering Based Method is presented in Chapter 10. 

 
9.1  Datasets Used in this Study 
 
The categorical seasonal rainfall forecasts been used in this study were obtained 

from the South African Weather Service (SAWS). The SAWS has been producing 

seasonal rainfall forecasts in 3 equi-probable categories of below normal, near 
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normal and above normal rainfalls for one month and for any consecutive 3 

months, i.e. seasonal. In this chapter the focus is on the seasonal forecasts and 

investigations are undertaken on the skill of retrospective forecasts for the three 

consecutive month blocks of October-November-December (OND), November-

December-January (NDJ), December-January-February (DJF) and January-

February-March (JFM) for the period October 2003 to March 2006. The October to 

March season was chosen as it makes up the main rainfall months in this southern 

hemisphere summer rainfall region. The forecasts were produced at the beginning 

of each season, referred to as a “zero” month lead-time. Categorical probabilities 

of seasonal forecasts issued by the SAWS over the Mgeni catchment for the 

selected seasons are shown in Table 9.1, and they cover the range from dry-

average, to average-dry to average-wet. 
 

Table 9.1 Categorical probabilities of seasonal forecasts issued by the SAWS 

over the Mgeni catchment for the main rainfall periods of 2003/04 – 

2005/06, and qualitative descriptions of the forecasts 

 
 

Rainfall  
Year 

 
3 Months  

Period 

Categorical Probabilities (%)  
Qualitative  
Description 

Above 
Normal 

Near 
Normal 

Below 
Normal 

  
 
2003/04 
  

OND 20 45 35 Average to Dry 
NDJ 25 45 30 Average to Dry 
DJF 25 35 40 Dry to Average 
JFM 25 35 40 Dry to Average 

 
 
2004/05 
  

OND 25 35 40 Dry to Average 
NDJ 25 45 30 Average  to Dry 
DJF 15 40 45 Dry to Average 
JFM 25 40 35 Average to Dry 

  
 
2005/06 
  

OND 35 40 25 Average to Wet 
NDJ 35 40 25 Average to Wet 
DJF 25 45 30 Average to Dry 
JFM 30 45 25 Average to Wet 

 

9.2 Methodology 
 
Wide ranging spatial variability within the Mgeni catchment with regard to its meso-

climate, soils and land uses made it necessary to apply the ACRU simulations in 

distributed catchment mode in order to also simulate accumulated streamflows 

from subcatchments cascading downstream at the exit of each QC. The ACRU 
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model was run with historical observed daily rainfall from year 2000 to the 

beginning of the forecast period in order to create representative antecedent 

conditions and initial stores (e.g. soil moisture status in the top- and subsoil, the 

baseflow store and baseflow releases). The steps described in Section 5.4 of 

Chapter 5, were applied for the 12 QCs that make up the Mgeni catchment for the 

three month periods OND, NDJ, DJF and JFM from October 2003 to March 2006. 

For each QC and the selected seasons, 20 daily rainfall sets are re-sampled from 

the same dates of the preferentially selected 20 analogue years. The 20 daily 

rainfall sets extracted for each QC for the selected seasons were then applied, 

together with the antecedent conditions generated previously by the ACRU model, 

to generate 20 daily streamflow ensembles for each forecast season.  

 
Before discussing the results, it is useful to know the forecast format types and the 

evaluation methods when seasonal forecasts are considered. Seasonal forecasts 

are often displayed either in deterministic or probabilistic (continuous or 

categorical) forms. A deterministic format contains no expression of uncertainty, 

while probabilistic forecasts convey the uncertainty associated with the forecasts 

in a quantitative way (Zhang and Casey, 1999; Klopper and Landman, 2003). 

Seasonal forecasts are often provided in probabilistic format.  However, when 

users need to make a “yes” or “no” type decision under uncertain situations, 

conversion from probabilistic to deterministic format becomes vital. For this reason 

the output of the ACRU model, derived using the Historical Sequence Method from 

seasonal rainfall forecasts, was evaluated in both continuous and categorical 

formats against corresponding baseline land cover streamflows generated by the 

ACRU model from gauged rainfall.  

 
9.3 Results and Discussion 
 
The 20 generated daily ensembles of streamflow forecasts are first expressed as 

three equi-probable categories of below normal, near normal and above normal 

conditions for the selected three rainfall seasons from October 2003/March 2004 

to October 2005/March 2006. In this study, three category tercile classes of 

streamflow were designated for each QC and each season by using daily 

streamflow values generated by the ACRU model for the period of 1950 to 2003 

(Figures 9.1 and 9.2).   
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Figure 9.1 Probabilities of categorical streamflow forecasts for Quaternary 

Catchments making up the Mgeni catchment for OND of 2003 (a) 

and NDJ of 2003/04 (b), with the red shading representing observed 

below normal conditions, and the shades of green and blue 

representing near and above normal conditions, respectively 
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Figure 9.2 Probability of categorical streamflow forecasts for Quaternary 

Catchments making up the Mgeni catchment for DJF of 2003/04 (a) 

and JFM of 2004 (b), with the red shading representing observed 

below normal conditions, and the shades of green and blue 

representing near and above normal conditions, respectively 
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The 54 years of seasonal streamflow accumulations were then ranked from the 

lowest to highest value for the season under consideration. If the observed 

streamflow falls below the 33rd percentile it is considered below normal, while 

above the 66th percentile is considered to be above normal, and in between the 

two it is considered to be near normal. The future probability of the streamflow 

falling in each of the three categories is computed by dividing the number of 

ensembles falling within each category by the total number of ensembles, i.e. 20.  

 

The Revised True Skill Statistics, RTSS (Equation 4.10), the Linear Errors in 

Probability Space, LEPS (Equation 4.12) and the ranked probability skill score, 

RPSS (Equation 4.14) were used to asses the skill of the categorical probabilistic 

forecasts. Often a 2 x 2 contingency table is constructed to calculate the ratio of 

hits and misses with respect to the possible totals. In this study a 3 x 2 

contingency table, introduced by Zhang and Casey (1999), was used for 

transforming categorical probabilistic forecasts into binary events (i.e. yes, no and 

non-applicable) based on decision probability thresholds. Users may set different 

probability thresholds between forecasts and their random expectations for various 

purposes, and are expected to take protective action when the forecast probability 

of the event exceeds the specified threshold values. Zhang and Casey (1999) 

have defined (1/m)/m as a significant departure from the normal conditions for m-

categorical forecasts. A “No” forecast is assigned if the forecasted probability is 

less than (1/m - 1/m2), and a “Yes” forecast if it is equal or greater than (1/m + 

1/m2). If the forecasted probability is between (1/m - 1/m2) and (1/m + 1/m2) it is 

considered a “Non-applicable” forecast, as there is no significant shift in probability 

from the random expectation of each category. In this respect, for “Yes” forecasts 

the probability threshold is 44.4% and for “No” forecasts it is 22.2%. Figure 9.3 

shows the RTSS score for each of the 12 Quaternary Catchments making up the 

Mgeni system for the selected three seasons for the period 2003/04 to 2005/06.  

 
The RTSS score should be interpreted as a percentage improvement over the 

climatological probabilities (random chances). Overall, the RTSS scores 

demonstrate that the streamflow forecast on each of the Quaternary Catchments 

performed much better than would be expected by random chance.  However, 

below zero scores were observed for DJF and JFM at QCs U20C and U20M 
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respectively (Figure 9.3), indicating worse probabilities than by random chance. It 

is important to bear in mind that the RTSS score does not penalise the errors in 

terms of their severity between each categories. In addition, part of the information 

from probability forecasts will be lost during the transformation to binary forms 

(Zhang and Casey, 1999).  

 

TSS Scores for OND, NDJ, DJF and JFM of 2003/04-2005/06
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Figure 9.3 RTSS scores for retroactive Quaternary Catchment accumulated 

streamflow forecasts on the Mgeni catchment for OND, NDJ, DJF 

and JFM of 2003/04 - 2005/06 

 
Considering the high risk that poor hydrological forecasting can have in water 

resource management, a skill test should be employed that heavily penalises a 

forecast that is two categories in error rather than only one category in error.  For 

this reason, the LEPS (Potts et al., 1996) and RPSS techniques (Wilks, 1995) are 

used. In this contest, the reference forecast was climatology, with an expected hit 

rate of 33.3% for each of the below normal, near normal and above normal 

categories. The LEPS and RPS scores over the retroactive forecast period are 

depicted in Figures 9.4 and 9.5. 

 
Assuming that a LEPS score of 10% is statistically significant (Letcher et al., 

2004), the OND season showed relatively high scores over the remaining three 

month periods, with nine out of 12 QCs scoring above 10%, but one below zero at 
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QC U20B (-6.4%). For the NDJ period, the scores are satisfactory, with five QCs 

scoring above 10%, two QCs scoring between 5-10%, and five QCs scoring below 

zero. Results for DJF and JFM periods show poor forecasting, with more than half 

of the QCs scoring below zero. Comparing LEPS scores on a basin scale, the 

highest score was achieved in U20J, with all seasons scoring above 17% and the 

lowest score being at the mouth of the Mgeni catchment (U20M), in which three 

periods scored below -25% (Figure 9.4).  

 
The RPSS has similar magnitudes to the LEPS scores. Among the three seasons, 

the OND scored the highest RPSS, while the DJF and JFM had considerable 

negative skill scores (Figure 9.5). However, it is important to bear in mind that the 

RPSS is highly sensitive when applied to short data sets (Nurmi, 2003). In 

addition, the RPSS measures how well the probability forecast predicted the 

category that the observation fell into, and not how serious the errors was. 

 

LEPS Scores for OND, NDJ, DJF and JFM of 2003/04-2005/06
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Figure 9.4 LEPS scores for retroactive Quaternary Catchment accumulated 

streamflow forecasts on the Mgeni catchment for OND, NDJ, DJF 

and JFM of 2003/04 - 2005/06 
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RPSS Scores for OND, NDJ, DJF AND JFM of 2003/04-2005/06
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Figure 9.5 RPSSs for retroactive Quaternary Catchment accumulated 

streamflow forecasts on the Mgeni catchment for OND, NDJ, DJF 

and JFM of 2003/04 - 2005/06 

 
Time series streamflow forecasts are another important tool for water 

management decisions. One major advantage of producing a time sequence of 

streamflows during the forecast period is the ability to conduct risk-based scenario 

analyses. With a different probability threshold, it can provide important 

information to, for example, reservoir managers. For drought contingency analysis, 

for example, worst-case forecasts can be made by taking only the low flow 

scenarios.  However, the set of daily ensembles of streamflows generated using 

the Historical Sequence Method should not be interpreted as an exact sequence 

of daily rainfall; rather, the forecast should interpreted in terms of summary 

statistics such as the mean, standard deviation, skewness and coefficient of 

variation in order to provide information on the probable total flows, be they high or 

low, during the target season. The reason for this is that the timing of individual 

rainfall events within a forecast season is unknown.  

 
For reason of space, only ensembles of streamflows for the OND, NDJ, DJF and 

JFM of 2003/04 are given in this chapter. Figure 9.6 shows box-and-whisker plots 

of the generated mean (a), standard deviation (b), skewness (c) and coefficient of 

variation (d) from 20 ensembles of streamflows for the OND, NDJ, DJF and JFM of 

the 2003-2004 rainy season at the mouth of the Mgeni catchment. A box-and-
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whisker in each box plot indicates the lower extreme, lower quartile (the 25th 

percentile), median (i.e. the line across the box), mean (x sign) upper quartile (the 

75th percentile) and upper extreme of the forecasted streamflow sequences. The 

observed mean, standard deviation, skewness coefficient and coefficient of 

variation are depicted in Figure 9.6 as diamonds, with circles indicating the values 

outside of the simulated range.  

0

0.4

0.8

1.2

1.6

OND NDJ DJF JFM

Season

M
ea

n

(a) 

0

0.4

0.8

1.2

1.6

OND NDJ DJF JFM

Season

S
ta

nd
ar

d 
D

ev
ia

tio
n

(b) 

0

1

2

3

4

5

OND NDJ DJF JFM

Season

S
ke

w
ne

ss
 C

oe
ffi

ci
en

t (c) 

0

0.4

0.8

1.2

1.6

OND NDJ DJF JFM

Season

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n (d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.6 Box plots of statistics of generated streamflows along with the             

observed values at the mouth of the Mgeni catchment for OND, NDJ, 

DJF and JFM of 2003/04. The box-and-whiskers represent the 

minimum, lower quartile, median, upper quartile and maximum of the 

forecasted streamflow sequences, while the x signs represent the 

simulated mean values. Diamonds represent the observed values, 

with circles indicating the values outside the simulated range 

 
The box plots show the centre, the spread and the overall range of distribution in 

the statistics from the 20 simulations and also show the capability of the Historical 

Sequence Method to simulate the observed statistics. The statistical moments 

shown in Figure 9.6 generally illustrate that the observed streamflow statistics are 
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well simulated within the range of the four quartiles, except for NDJ and DJF 

where, respectively, the coefficient of variation and the standard deviation 

exceeded the upper extremes. The observed means and skewness coefficients 

are reproduced well by the simulations. However, except for OND, the standard 

deviations and coefficients of variation are slightly under-estimated, suggesting 

that the observed dispersion (spread) is not as well simulated as desired. 

 

To extend the analysis, ensembles of accumulated daily flows were computed at 

the Mgeni catchment outlet from the beginning of each season (Figure 9.7).  
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Figure 9.7 Forecasted versus observed seasonal accumulated flows at the       

mouth of the Mgeni catchment for OND (a), NDJ (b), DJF (c) and 

JFM (d) of 2003/04 
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From these ensembles of forecasts, the mean and median are computed as the 

“best” estimates that can be used to help agricultural and water managers in their 

decision making. Visually, the average accumulated streamflow values are much 

closer to the actual accumulated streamflow values than the median accumulated 

values for the selected seasons, except for the OND season.  

 
In order to assess if the forecasted accumulated flows are statistically acceptable, 

a plot of average versus observed accumulated daily flows for the four selected 

seasons was performed, as shown in Figure 9.8.  The coefficient of determination 

(r2), bias, Relative Mean Square Error (RMSE) and Mean Absolute Error (MAE) 

were computed in order to assess the accuracy of averaged cumulative forecasted 

flows against their corresponding cumulative observed flows.  
 

 

 
 

 

         

 

 

 

 

r2               = 0.99
Bias    = 5.46 mm
RMSE = 7.06 mm
MAE    = 5.46 mm

10

20

30

40

50

10 20 30 40 50

Observed Accumulated Flows (mm)

Fo
re

ca
st

ed
 A

cc
um

ul
at

ed
 F

lo
w

s 
(m

m
)

(a) OND 2003

r2          = 0.96
Bias    = -0.08 mm
RMSE = 2.46 mm
MAE    = 1.83 mm

0

10

20

30

40

50

0 10 20 30 40 5

Observed Accumulated Flows (mm)

Fo
re

ca
st

ed
 A

cc
um

ul
at

ed
 F

lo
w

s 
(m

m
)

(b) NDJ 2003/04

 

 

 

 

 

 

 

 
 

0

r2          = 0.95
Bias    = 2.28 mm
RMSE = 5.57 mm
MAE    = 4.60 mm

10

30

50

70

90

10 30 50 70 90

Observed Accumulated Flows (mm)

Fo
re

ca
st

ed
 A

cc
um

ul
at

ed
 F

lo
w

s 
(m

m
)

(c) DJF 2003/04
r2          = 0.97
Bias    = -14.78 mm
RMSE = 17.76 mm
MAE    = 14.86 mm

0

20

40

60

80

0 20 40 60 8

Observed Accumulated Flows (mm)

Fo
re

ca
st

ed
 A

cc
um

ul
at

ed
 F

lo
w

s 
(m

m
)

(d) JFM 2004

0

Figure 9.8 Plots of accumulated daily forecasted flows simulated with the ACRU 

model versus simulated flows from observed rainfall data at the 

mouth of the Mgeni catchment for OND (a), NDJ (b), DJF (c) and 

JFM (d) of 2003/04  
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Figure 9.8 reveals a very high performance of the Historical Sequence Method, 

with r2 > 0.95 in all selected seasons. The coefficient of determination is especially 

strong for OND (0.99), but appears to be slightly biased (5.49), indicating a slight 

over-estimation over the accumulated observed flows. For NDJ, the MAE (1.83) 

and bias (-0.08) are small, revealing that the accumulated average streamflows 

have mimicked the corresponding observed accumulated flows excellently. 

Statistics for DJF also show good relationships between the forecasted and 

observed, albeit with a slight systematic bias. Although the coefficient of 

determination is high for the JFM period, substantial biases, RMSEs and MAEs 

were found, indicating significant systematic error in the forecast. The negative 

bias indicates that the averaged cumulative forecasts were consistently below their 

corresponding cumulative observed flows.   
 

Another important technique is the cumulative density function (CDF) that helps to 

visualise the cumulative probability distribution (Figure 9.9). The cumulative 

probability is constructed from the generated accumulated average streamflows 

from forecasts and the simulated accumulated streamflow values from observed 

rainfall in Figure 9.8.  

 

As is expected from the results in Figure 9.8, the forecasted cumulative probability 

for NDJ mirrored the corresponding the cumulative probability of observed 

accumulated streamflows well. For OND and DJF, the cumulative probability 

distribution is biased slightly on the wetter side, while the cumulative probability 

distribution for JFM is significantly drier than the corresponding observed 

cumulative distribution, especially for the higher streamflow values. As may be 

seen in Figure 9.9 (d), for accumulated streamflows of less than or equal to 

50 mm, the cumulative probability is 84% with the rainfall forecasts, but with the 

same cumulative probability there is a chance of getting less than or equal to 65 

mm of accumulated streamflows from the rainfall observation. 
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Figure 9.9 Cumulative probability of daily flows simulated with the ACRU model 

versus observed flows at the mouth of the Mgeni catchment for OND 

(a), NDJ (b), DJF (c) and JFM (d) of 2003/04, with the dashed line 

representing the cumulative probability of forecasted streamflows, 

and the solid line representing the cumulative probability of observed 

streamflows 

 
All the forecasting skill assessment approaches used (in both the categorical and 

continuous probabilistic forecasts) reveal that the proposed analogue method had 

more success in the early summer season (OND) in the Mgeni catchment, and 

that forecast skills are seen to degrade with subsequent periods during the rainy 

season. This is most likely due to the much greater influence of high, and 

especially convective, rainfall events occurring during the late summer months. 

While there might have been occasional misreading of a raingauge, some 

extremely high rainfall events resulted in more than 50% of the season’s total 

rainfall occurring in a one or two days of consecutive rain, resulting in a sudden 

shift from a below normal to a near or above normal streamflow season. For 
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example, at QC U20G (cf. Figure 6.1), three days of rainfall amount resulted in 

51% of the DJF rainfall in 2003/04. Given the high spatial variability of convective 

events that characterise the summer seasons in the Mgeni catchment, the use of 

only one rainfall station per QC may also cause appreciable errors. Apart from 

data quality problems, a possible reason for this deterioration in forecast accuracy 

could also be the limitation of the climate models in predicting extreme rainfall 

seasons adequately, or high magnitude individual rainfall events within a season. 

Downscaling the coarse spatial resolution categorical forecasts to the much 

smaller scale QCs is another problem, as seasonal rainfall forecasts have shown 

to posses skills only for large areas. The poor association between January rainfall 

and sea surface temperature (Landman and Klopper, 1998) could be another 

possible explanation that may have affected the forecasts for the NDJ, DJF and 

JFM periods. 

 
9.4 Concluding Remarks 
 
The results from this study have demonstrated clearly the soundness of applying 

the Historical Sequence Method of translating 3 month categorical rainfall 

forecasts into ensembles of daily quantitative values suitable for application in 

hydrological/crop yield models. With an 11.1% probability of departure from its 

random expectation, high values of RTSS were scored over the selected seasons 

in the Mgeni catchment. Some skills are lost in the LEPS and RPSS skill 

assessments, especially in the late summer seasons. However, considering the 

uncertainties that cascade from the rainfall forecasts, through the translation 

process to the ACRU model, the results are considered to be generally 

acceptable. By averaging the 20 daily ensembles of streamflow forecasts, 

statistically realistic forecasts of accumulated streamflows were also obtained for 

the three selected seasons. The results reflect the assumption that the daily 

rainfalls during the forecast period could mirror those of the selected analogue 

years for the same calendar period. The Historical Sequence Method is 

conceptually simple, but computationally cumbersome. Nevertheless, it can be 

used with confidence to translate the skilful categorical rainfall forecasts into a 

daily quantitative values required by agrohydrological models.  
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10. GENERATING  CONDITIONED RAINFALL BASED ON THE ENSEMBLE 
RE-ORDERING METHOD FOR APPLICATIONS IN AGROHYDROLOGY 

 
10.1 Introduction 
 
The use of the Historical Sequence Method as a means of generating daily rainfall 

values from the same dates of selected analogue years provides sequences that 

are based on only the realisation of the past climate. The Historical Sequence 

Method assumes that historical weather sequences can be surrogates for future 

weather sequences. It has many advantages, including its relative simplicity in 

concept and attempts to preserve the spatial and temporal distribution of the past 

weather conditions which occurred in the selected analogue years. However, the 

set of historical sequences of rainfall may not always repeat itself in exactly the 

same manner in the future. In such cases, modifying the analogue method by 

using a random generator method to generate ensembles of synthetic data which 

have statistical characteristics similar to those of historical data, can provide 

alternative realisations that are equally likely to occur in the future time. Such 

methods can generate long term daily weather sequences of values and the 

generated values can then be used as input into agrohydrological models in order 

to assess climate related impacts on agriculture and water resources which allow 

decision makers the option of a wide range of management alternatives.   

 
The aim of this chapter is to disaggregate categorical probabilistic rainfall forecasts 

into synthetic daily rainfall ensembles that are statistically similar to the observed 

data. In order to do this, a conditional precipitation generator has been developed 

which uses an approach termed the “Ensemble Re-ordering” (or “Schaake 

shuffle”). Weather generators can produce daily values of precipitation, minimum 

and maximum temperature and solar radiation. This study, however, focuses only 

on the generation of conditioned sequences of daily precipitation. The remainder 

of this chapter is structured as follows: the Ensemble Re-ordering Based Method 

(ERBM) is described briefly in Section 10.2. Results, including an assessment of 

probabilistic forecast skills, biases and correlations are described in Section 10.3, 

followed by concluding remarks in Section 10.4. 
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10.2 The Ensemble Re-ordering Based Method 
 
Because the dynamics of rainfall occurences are chaotic and dependent on the 

interactions between the atmosphere and the underlying ocean/land distributions, 

it is a difficult task to predict the evolution of indiviudal rainfall events with certainty, 

especially at a longer time scale.  However, by considering rainfall occurrences as 

random phenomena, there are currently several rainfall simulation models that 

have been developed to reproduce stochastic rainfall characterstics that reflect  

first and higher order statistics of observed rainfall. Reviews of commonly used 

weather generators can be found in Lall et al. (1996), Semenov et al. (1998), 

Rajagopalan and Lall (1999), Wilks (2002), Clark et al. (2004), Federsen and 

Andersen (2005) and Chiew et al. (2005). Stochastic weather generators based on 

Markov chains, kernel and the k-nearest neighbours are commonly used methods 

to yield realisations of daily weather that resemble the historical data with respect 

of certain statistical moments. The use of weather sequences generated by such 

methods can be applied to quantify the uncertainty and risks associated with 

climate variability over short and long time scales.  

 
However, according to many researchers (e.g. Sharma and Lall, 1999; Yates et 

al., 2003; Clark et al., 2004), the existing stochastic weather generating methods 

have problems with under-prediction of precipitation when they are extended to 

longer time scales and/or when they are used at multiple sites.  Many researchers 

(e.g. Mason, 1990; Mason et al., 1996; Kabat and Bates, 2002) also suggest that 

the summer rainfall over southern Africa is strongly related to sea surface 

temperature anomalies in the tropical Pacific, central south Atlantic and western 

equatorial Indian Oceans. Thus, it may not be appropriate to consider rainfall 

occurrences in this region as a purely random process. For these reasons, the 

rainfall generator that has been developed in this study is designed to account the 

local probabilistic categorical forecasts, and uses the “Ensemble Re-ordering” 

approach (Clark et al., 2004) to preserve the statistical moments of the historical 

time series from which the rainfall sequences are populated. Clark et al. (2004) 

applied this technique of ensemble member construction for temperature and 

precipitation in four catchments in the USA. They found that the reconstruction 

methodology is capable of preserving the temporal persistence, inter-site and 
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inter-variable correlations. Most of the information contained in this section has 

been taken from Section 3 of Clark et al. (2004) to illustrate the theoretical 

background behind the ERBM method.  

 
For a given forecast day a three-dimensional matrix, Xi,j,k, is constructed to 

resample data sequences from a subset of preferentially selected years, where i 

refers to the number of ensemble members, j refers to the individual station and k 

refers to each variable. Unlike other weather generating methods, resampling of 

data is not conditioned on previous simulated days to preserve the space-time 

variability of the station time series. Instead, another identical three-dimensional 

matrix, Yi,j,k, derived from all historical years of the respective variables, is 

constructed so as to preserve the space-time variability in the historical time 

series, and the dates used to populate the Y matrix are persisted with for 

subsequent forecast days. As in the X matrix, i refers to an index of dates in the 

historical time series, while j refers to each station and k refers to each variable. 

The main assumption in this approach is that an ordered selection of dates from all 

days in the historical record enables the reconstruction of the spatio-temporal 

correlation structure for a subset of data (Clark et al., 2004). Mathematically, the 

ERBM can be formulated as follows: For a given station (j) and variable (k), let X 

be a vector of “n” observations (x) resampled from preferentially selected analogue 

years and let χ  be the ordered vector of X. Therefore, 

 
)x........,,x,x(=X n21                                                   10.1 

and 
)x........,,x,x(=χ )n()2()1( , where  .                          10.2 )n()2()1( x.......,xx ≤≤

 

Similarly, let Y be a vector of “n” observations (y) resampled from all historical 

years of the same season. Let γ  be the sorted vector of Y and β the vector indices 

describing the original observation number corresponding to the values in the 

ordered vector . Therefore, γ

 
)y.......,,y,y(=Y n21                                                  10.3 

and 

)y........,,y,y(=γ )n()2()1( , where  .                        10.4 )n()2()1( y........,,yy ≤≤
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The final re-ordered vector, ssX , is then constructed according to the order in 

vectors  and β, as follows: χ

 
)x,...,x,x(=X ss

n
ss
2

ss
1

ss                                                    10.5 

 
)r(

ss
q x=x                                                               10.6 

 
]r[β=q                                                                10.7 

 
.n.......,1=r                                                              10.8 

 
The implementation of the ERBM approach is further illustrated by the following 

example (Clark et al., 2004). For the first day of January 2007, the randomly 

selected ensembles of 10 members (X) from a mix of dates of selected years and 

the corresponding selected ensembles of 10 members (Y) from all historical years 

of the same month are shown in Table 11.1(a) and (b) respectively.         

 
Table 10.1 The ERBM for 01 January  2007, showing (a) the randomly selected 

ensemble members from selected years (X), (b) the randomly 

selected ensemble members from the same season of all days in the 

historical records (Y), and (c) the final re-ordered output, ssX  (Clark 

et al., 2004) 

 
                   (a)                                   (b)                                      (c) 
 

Ensemble # X  Ens # Date Y   
Reordered 

Ens # ssX
1 14.1  1 03/01/1976 58.0  1 (1) 14.1
2 8.0  2 09/01/1952 7.4  2 (8) 4.7
3 2.5  3 27/01/1982 1.0  3 (5) 0.2
4 0.0  4 11/01/1998 0.8  4 (4) 0.0
5 0.2  5 19/01/1956 0.5  5 (6) 0.0
6 0.0  6 06/01/1996 2.8  6 (3) 2.5
7 2.8  7 09/01/1969 4.3  7 (7) 2.8
8 4.7  8 23/01/1995 10.5  8 (2) 8.0
9 0.8  9 17/01/2001 2.0  9 (9) 0.8
10 0.0  10 02/01/1984 0.0  10 (10) 0.0
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The vector X may provide the sorted vector,χ , and the vector Y may provide the 

sorted vector, , with the vector indices β as shown below: γ

 
X = (14.1, 8.0, 2.5, 0.0, 0.2, 0.0, 2.8, 4.7, 0.8, 0.0) 

χ  = (0.0, 0.0, 0.0, 0.2, 0.8, 2.5, 2.8, 4.7, 8.0, 14.1) 

Y = (58.0, 7.4, 1.0, 0.8, 0.5, 2.8, 4.3, 10.5, 2.0, 0.0) 

γ  = (0.0, 0.5, 0.8, 1.0, 2.0, 2.8, 4.3, 7.4, 10.5, 58.0) 

β = (10, 5, 4, 3, 9, 6, 7, 2, 8, 1) 

 
According to Equations 10.6 and 10.7, the final re-ordered output for 01 January 

2007, also shown in Table 10.1 (c), is: 

 
ssX  = (14.1, 4.7, 0.2, 0.0, 0.0, 2.5, 2.8, 8.0, 0.8, 0.0) 

 

The process is repeated for all the forecast days within January 2007. However, 

the random selection of dates from all years that are used to populate the Y matrix 

are used only for the first day (i.e. 01 January 2007), and are persisted for 

subsequent forecast days. In this example, the dates that would be used to 

populate the Y matrix for the next day (i.e. 02 January 2007) are, 04 January 1976 

for the first ensemble member, 10 January 1952 for ensemble two and 28 January 

1982 for ensemble three and so on (cf. Table 11.1(b)). Since the ranks of the 

ensemble members match the ranks in the historical time series, the resulting 

ensembles of forecasts preserve the temporal patterns of the station time series 

(Clark et al., 2004).  

 

Clark et al. (2004) selected the analogue years based on ENSO indices. However, 

in this study an algorithm has been developed that generates ensembles of 10 

members for each within the forecast period based on monthly (or seasonal) 

probabilistic categorical forecasts. The ERBM (Clark et al., 2004) is then adapted 

as a post-processing step to reconstruct the temporal persistence of the generated 

ensembles. The approach is adapted in this study as follows:  
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For a given region (e.g. a catchment) with one representative climate station (j = 1) 

per QC and one variable (i.e. rainfall), let January 2007 be the forecast month of 

concern, with a triplet of probabilities PB = 30, PN = 40 and PA = 30 pertaining, 

respectively, to the forecasted percentiles of the three categories of “below”, “near” 

and “above” normal rainfall conditions. In this study, quality checked daily rainfall 

totals for a 54 years period from 1950 to 2003 are then ranked for the month of 

January in an ascending (lowest to highest) order. The first 18 ranked rainfall 

totals out of the 54 are then categorised as representing “below normal” seasonal 

rainfalls, the next 18 rankings as “near normal” and the highest 18 as “above 

normal” seasonal rainfalls. A random selection of analogue years (A(years)) is then 

made, based on the weighting criteria given in Equation 9. Since the sum of the 

three forecast probabilities is constrained to 100%, and the forecast probabilities 

are at interval of 5%, the total number of analogue years is always 20. Therefore,  

 

20=)
5

P
+

5
P

+
5

P
(=A ANB

)years(                                                 10.9 

 
In this example, the respective numbers of analogue years sampled from below, 

near and above normal rainfall years would therefore be 6, 8 and 6. Let Z be a 

vector of the selected 20 analogue years (A(years)) as shown below, i.e. 

 
)20,.....,2,1=year,A(=Z )year(                                             10.10 

Each of the selected analogue years A(years) contains “n” observations (a), 

depending on the number of dates in the forecast period (e.g. for January n = 31). 

The subscript (i) refers to an index of dates in the historical time series of the 

selected month. Hence 

 
)n,..........,2,1=i,a(=A )i()year( .                                            10.11 

 
 

)n.,..........,2,1=i,a(=Z )i(20 .                                              10.12 
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To populate the X matrix, a random selection of 10 ensemble members from a mix 

of dates in the vector Z is made for each forecast day of the month, in this 

example for January 2007. Every member, a(i), has 1/20n chance to be included in 

the X matrix. Another random selection of 10 ensembles from all historical years 

(1950-2003) of the same month is made to populate the Y matrix only for the first 

day of the forecast season. For subsequent forecast days, the dates will persist to 

populate the Y matrix. The generation of rainfall ensembles using this approach 

can then be used to generate probabilistic agrohydrological forecasts. In turn, such 

risk based forecasts have the potential to assist users to better prepare for 

extreme events by giving early warnings.  

 

The ERBM was applied to the 12 Quaternary Catchments (QCs) that make up the 

Mgeni catchment. The extent to which the ERBM is able to mimic the daily 

precipitation variability within a month and a season (i.e. three months), is then 

evaluated with respect to dry and wet spell frequencies, and simulated 

streamflows by the ACRU model. The results are discussed in the section which 

follows. 

 

10.3 Results and Discussion 
 
The various verification techniques presented in Chapter 9 have also been 

employed in this chapter to assess the performance of the ERBM derived rainfalls 

and the ACRU simulated streamflows. The statistical means, standard deviations, 

skewness coefficients and coefficients of variation are summarised with box plots. 

Although the simulations were made on a daily timescale, the statistics from the 

daily data have been aggregated into monthly and seasonal (three months) time 

scales to see how well they reproduce aggregated quantities such as monthly (or 

seasonal) totals, means and standard deviations, and number of dry (wet) spells 

within a month (or a season).  

 
10.3.1 Simulating Dry and Wet Spells 
 
Agriculture in southern Africa is at risk due, in part, to the erratic nature of rainfall, 

where individual events are often characterised by severe convective storms in 

many parts of the region. The within-season variability of rainfall in amount, 
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frequency and distribution may affect sustainable agriculture adversely as well as 

impacting on other social and economic functions of the region. This is particularly 

true for rainfed agriculture in the more semi-arid and arid areas where extended 

dry spells often result in poor crop establishment and in yield reduction (Schulze, 

2006).  At the start of the rainy season, few rainfall events may wet the soil 

sufficiently for planting, but these events are often followed by prolonged dry spells 

that can seriously reduce crop production. Hence, modelling the probability 

distribution of temporal rainfall characteristics is crucial to many water and 

agricultural management strategies. Prediction of the onset of the rainy season, 

the number of rainfall days yielding a measureable amount of rain, and the 

probability of long dry spells during critical periods of the growing season can 

provide a basis for decision makers to best manage their operations and strategies 

at the time when a decision has to be made. Such predictability is of great 

importance particulary in rainfed agriculture in assisting farmers in pre-planting 

farming operations and management strategies for different cultivars and crop 

productions. With the advancement of mathematically and physically based 

approaches, the analysis of within-season rainfall characteristics has also received 

much attention for several other applications such as irrigation scheduling, water 

harvesting, reservoir management and the design for the disposal of hazardous 

wastes (Adiku et al., 1997). Furthermore, it can also help disaster managers for 

defining drought and flood severity in order to mitigate the effects of these extreme 

hazards.   

 
Recognising the benefits of accounting for such variations in agriculture and water 

resource management, the ERBM is used to investigate the within-season 

temporal variability of rainfall. Unlike parametric probability models, this approach 

does not require the estimation of parameters describing the sequence of the state 

of the previous day. The ERBM is designed to reproduce the following:  

 
• The fraction of wet and dry days in a given month (season) of the year: In 

this study, a wet day (w) has been defined as a day with rainfall of 0.3 mm 

or more, and a dry day (d) is defined as a day with less than 0.3 mm rainfall. 

Thus, in a rainy month (season) of n days, a  time series of rainfall records, 

x1, x2, ..., xn is truncated at the threshold rainfall value of 0.3 mm, where xi ≥ 
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0.3 mm = wi and xi < 0.3 mm = di. The probability of the fraction of wet days 

is then obtained by dividing the number of wet days by the number of days 

(n) of a given month (season). The same connotation also applies to the 

probability of the fraction of dry days.  

• The probability that a dry day follows a wet day, i.e. P(w/d), and the 

probability that a wet day follows a dry day, i.e. P(d/w), for each forecast 

month (or season): These transitional probabilities can provide some insight 

into the problems related to the intermittency of rainfall. They are also widely 

used to simulate the probabilities of rainfall occurrences in parametric 

probability (e.g. Markov chain) models. 

• The mean and maximum length of wet and dry spells in a given month 

(season) of the year: In a time series of daily rainfall during a rainy month 

(season) of n days, there will occur runs of uninterrupted wet (xi ≥ 0.3 mm) 

and dry (xi < 0.3 mm) days, as shown in Figure 10.1. Wet (Ws) and dry (Ds) 

spells are defined respectively as a series run of wet and dry days within a 

prescribed period of time. In this instance, the mean wet spell length in 

Figure 10.1 is 4.33 days and the mean dry spell length is 6 days. In a similar 

way, the longest wet and dry spell lengths are 6 and 9 days, respectively. 
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Figure 10.1 Schematic representation of wet and dry spells in a rainy month of 

31 days 
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The ERBM was applied to assess its ability to adequately reproduce the aforesaid 

statistics of the observed rainfall characteristics at QC U20M in the Mgeni 

catchment (cf. Figure 6.1) for the year 2004. The categorical probabilistic forecasts 

for each month of the year 2004 were extracted from the SAWS website. The 

statistical moments of the simulated records are compared with those for the 

observed record using box plots. A box in the box-and-whisker plots (Figure 10.2) 

indicates the inter-quartile ranges of the statistics computed from ensembles of 10 

members, the line in the middle of the box indicates the simulated median value, 

and the x indicates the simulated mean value. The solid continuous line 

corresponds to the observed record, with circles indicating the values outside the 

simulated range. In general, if the statistics of observed data lie within the box of 

simulated values, it suggests that the simulated values have reproduced the 

statistics of the observed data adequately.  

 
Figure 10.2 illustrates the fraction of wet and dry days, the probability that a dry 

day follows a wet day P(w/d), and the probability of that a wet day follows a dry 

day P(d/w) for each month. Average and longest of the wet and dry spell lengths 

are shown in Figure 10.3. The box plots illustrate the variability of rainfall in each 

statistic across the 10 ensemble members.   

 

According to Clark et al. (2004), “the ERBM has difficulties dealing with the 

intermittency of rainfall when the ensembles of generated rainfall from analgoue 

years for a given day have fewer zero rainfall ensemble members than the 

ensemble from the persisted observed data. The reason for this is that while the 

generated ensemble members with zero rainfall days may match the observed 

precipitation values, their assignment to a given ensemble member will be entirely 

random”. This discrepancy could potentially cause some biases in the model 

simulations. Nevertheless, except for March, the simulated fraction of wet and dry 

days as well as the P(d/w) and P(w/d) agreed well with the corresponding 

observed statistics.  
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Figure 10.2 Box plots of statistics of generated fractions of wet (a) and dry (b) 

days, the probability that a wet day follows a dry day (c), and the 

probability of that a dry day follows a wet day (d) for each month, 

along with the observed values, at QC U20M for the year 2004, 

using the ERBM. The box-and-whiskers represent the minimum, 

lower quartile, median, upper quartile and maximum of the 

forecasted values. The x signs indicate the simulated mean values. 

The solid line corresponds to the observed record and the circles 

indicate the values outside the simulated range 

 
It is important to note that the seasonal trend is reproduced well in the simulations 

from the ERBM. This indicates the potential capability of the method to capture the 

within-month statistics of the summer rainfall in southern Africa. It is well observed 

again that the trends of simulated means and longest spells of dry and wet 

conditions follow the pattern of observed values in all months of the year 2004, 

even though they were not explicitly mimicked (Figure 10.3). For ease of 

comparison, the within-month statistics of the simulated (mean) and observed 

rainfalls for the year 2004 are summarised in Table 10.2.  
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Figure 10.3 Box plots of statistics of generated mean ( a, b) and longest (c, d) 

lengths of wet and dry spells along with the observed values at QC 

U20M for the year 2004 using the ERBM. The box-and-whiskers 

represent the minimum, lower quartile, median, upper quartile and 

maximum of the forecasted values. The x signs indicate the 

simulated mean values. The solid line corresponds to the observed 

record and the circles indicate the values outside the simulated 

range 

 
At the beginning of the rainy season (October), the agreement between the 

simulated mean and observed statistics was good, and the good agreement was 

seen to increase for November and December when the rainfall frequencies 

increased. For January, even though the simulated mean and longest spells of wet 

days are captured well, the fractions of wet/dry days as well as the mean and 

longest dry spells are biased towards the wetter side.  For February, the simulation 

model did well to capture the observed statistics, but the mean and longest dry 

spells are highly under-estimated. For the autumn (March and April) and early 
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winter (May-July) seasons the differences between the simulated and observed 

statistics are very high, suggesting poor forecasts. As these months exhibit a 

higher probability of no-rain days, the difference could be attributed to the 

weaknesses of the ERBM which were mentioned earlier. However, these 

differences are not necessarily significant agrohydrologically, as these months 

experience very little rainfall. For the early spring months (August-September), the 

simulated within-month statistics agreed reasonably well with the corresponding 

observed data. 

 

Table 10.2 The within-month statistics of simulated and observed rainfalls at the 

mouth of the Mgeni catchment for year 2004, as estimated by the 

ERBM 

 
Statistc Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fraction of wet days Observed 0.29 0.36 0.06 0.07 0.03 0.00 0.16 0.10 0.20 0.35 0.43 0.45
Simulated (mean) 0.40 0.35 0.33 0.22 0.13 0.07 0.08 0.16 0.25 0.40 0.47 0.41

Fraction of dry days Observed 0.71 0.64 0.94 0.93 0.97 1.00 0.84 0.90 0.80 0.65 0.57 0.55
Simulated (mean) 0.60 0.65 0.67 0.78 0.88 0.93 0.92 0.84 0.75 0.60 0.53 0.59

P (%) that a wet day follows a dry day  Observed 12.90 14.29 6.45 6.67 3.23 0.00 12.90 6.45 13.33 12.90 20.00 19.35
Simulated (mean) 19.30 17.10 18.60 14.40 8.50 5.70 5.40 11.00 15.10 19.20 22.00 19.30

P (%) that a dry day follows a wet day  Observed 16.13 14.29 6.45 6.67 3.23 0.00 12.90 6.45 13.33 16.13 16.67 16.13
Simulated (mean) 19.60 16.70 17.90 13.60 8.20 6.00 5.70 11.00 15.70 18.70 21.00 19.00

Mean wet spell length (days) Observed 2.33 2.67 2.00 0.00 0.00 0.00 2.50 2.00 2.00 2.50 2.75 2.60
Simulated (mean) 2.75 2.91 2.60 1.80 0.79 0.20 0.43 1.43 2.23 2.61 3.13 2.93

Mean dry spell length (days) Observed 5.25 8.50 14.50 9.33 29.00 30.00 6.25 9.00 5.75 4.00 3.20 3.75
Simulated (mean) 3.53 4.76 5.43 6.92 11.58 17.38 16.90 9.67 5.86 4.40 3.32 3.80

Longest wet spell length (days) Observed 3.00 4.00 2.00 0.00 0.00 0.00 3.00 2.00 2.00 3.00 4.00 4.00
Simulated (mean) 3.70 3.50 3.10 2.10 1.00 0.20 0.50 1.50 2.80 3.80 4.60 3.90

Longest dry spell length (days) Observed 8.00 13.00 19.00 19.00 29.00 30.00 10.00 14.00 14.00 7.00 5.00 5.00
Simulated (mean) 6.30 8.00 9.00 10.90 17.00 20.60 20.80 14.60 8.20 6.70 5.40 6.20  

 

Another important feature of using the ERBM is to utilise the generated ensembles 

of rainfalls for agrohydrological modelling. A major of concern in many water 

dependent sectors is to predict streamflows, crop yields, soil moisture and 

reservoir storages at short and long time scales. To assess the usefulness of the 

ERBM in such applications, streamflows were generated by the ACRU model at 

the mouth of the Mgeni catchment. The results are discussed in the sub-section 

which follows. 

 
10.3.2 Forecasting Monthly and Seasonal Streamflows 
 
The monthly forecasts for year 2004 and the seasonal forecasts from October 

2003 to March 2006 for the three month periods OND, NDJ, DJF and JFM were 

used for this evaluation. The ACRU model was run with historically observed daily 
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rainfalls from year 2000 to the beginning of the forecast period to create 

representative antecedent conditions and initial stores. The daily re-ordered 

ensemble of 10 members extracted for each QC and for the selected months 

(seasons) were then applied together with the antecedent conditions generated 

previously by the ACRU model in order to generate the corresponding 10 daily 

ensembles of streamflow for each forecast month (season). Simulated 

streamflows obtained from the ACRU model using observed rainfall serve as a 

baseline for evaluating streamflows derived from the ERBM based rainfall 

simulations. It is important to note that the simulated streamflows are accumulated 

at the mouth of the Mgeni catchment from all the upstream subcatchments (cf. 

Figure 6.1). 

 
The monthly simulation of streamflows obtained from the ERBM derived rainfalls 

at the mouth of the Mgeni catchment are shown by way of box plots in Figure 10.4. 

Overall, the simulations adequately mimicked the means of daily streamflows for 

each month, even though there is a slight tendency of under-estimation for 

January and February, and a slight over-estimation for April (Figure10.4 (a)).  

Figure 10.4 (b) shows the standard deviations of daily streamflows for each month, 

where these measure the spread of the streamflows about the monthly mean 

value. As expected, the range of variability is higher for the summer rainfall 

months (November-March) than for the remaining months. Except for October, the 

observed standard deviations are adequately reproduced by the simulations 

(Figure 10.4 (b)).  

 
The skewness coefficient is another important statistical moment in measuring the 

symmetry of the streamflow distribution (Figure 10.4 (c)). Typically, rainfall data 

are positively skewed, as rainfall typically occurs as many small events with a few 

large events that elevate the mean (Hobson, 1997). Consequently, the simulated 

streamflows are also positively skewed, placing the monthly mean value in the 

upper quartile range. The dry months May, June, July and August generally exhibit 

a wide range of values of the skewness coefficient. The reason for this is that they 

are characterised by almost no rainfalls with occasional small events which create 

zero streamflows. The historical skewness coefficients in these months were 
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consistently under-estimated by the model simulations. However, for the remaining 

months the simulations captured the observed skewness well (Figure 10.4 (c)).  
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Figure 10.4 Box plots of statistics of generated streamflows along with the 

observed values at the mouth of the Mgeni catchment for the year         

2004 using the ERBM. The box-and-whiskers represent the 

minimum, lower quartile, median, upper quartile and maximum of the 

forecasted streamflow sequences. The x signs indicate the simulated 

mean value. The solid line corresponds to the observed record and 

the circles indicate the values outside the simulated range 

 
The coefficient of variation (CoV) provides a relative measure of dispersion in 

streamflows with respect to the mean value (Figure 10.4 (d)). The high range of 

rainfall variability in the summer months resulted a more spread-out and widely 

dispersed distribution of streamflows (Figure 10.4 (b)). The observed dispersion is 

reproduced fairly well by the simulations except for the months January, March, 
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April and October, where the CoV values were outside of the simulated inter-

quartile ranges (cf. Figure 10.4 (d)).  

 

Figure 10.5 (a) provides a visual plot of monthly totals of daily simulated vs 

observed streamflows on a month-by-month basis for the year 2004 at the mouth 

of the Mgeni catchment. Figure 10.5 (b) depicts the corresponding accumulated 

monthly flows for the same period. The monthly totals of daily simulated 

streamflows from the ACRU mimicked the corresponding observed flows 

adequately, with the exception of January and February, when the simulations 

under-estimated observations by around 26.3% and 44.4%, respectively (Figure 

10.5(a)). The performance of the ERBM derived simulations by the ACRU model 

was generally better during the drier months (April - September) than the rainy 

months (October - March). The reason for this is the high rainfall variability that 

typically occurs during the rainy months. Nonetheless, the observed trend was 

captured fairly well throughout the year (cf. Figure 10.5(a)).   
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Figure 10.5 Comparison of ACRU simulated flows versus observed flows (mm)         

at the mouth of the Mgeni catchment for the year 2004, using the 

ERBM method, where (a) is a visual plot of monthly totals of daily 

simulated against observed flows and (b) depicts the corresponding 

accumulated monthly flows. The dashed line represents the 

simulated flows and the solid line represents the observed flows 
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The accumulated monthly totals of daily simulated streamflows from the ACRU 

model appeared to consistently under-estimate the corresponding accumulated 

monthly observed flows. This is due partially to the accumulated errors that 

cascade from one month to the subsequent months. Clearly, the under-predicted 

flows during January and February had a significant influence especially on 

baseflows in subsequent months, by consistently under-estimating the 

accumulated observed flows. Nevertheless, the overall trend was captured quite 

well (cf. Figure 10.5(b)).    

 

Figure 10.6 presents the cumulative probability distribution for the year 2004 at the 

mouth of the Mgeni catchment. Since the flows during the dry season months April 

to September are very low, the cumulative probability distribution is constructed 

only for the remaining six rainy months.  Previously it was demonstrated in Figure 

10.5 (a) that a significant under-prediction of the January and February monthly 

totals of daily flows occurred. The cumulative probability distribution for January 

and February is therefore expected to be biased to the drier side (Figures 10.6 (a) 

and (b)).  For March, the model simulation was good enough to estimate the 

observed cumulative probabilities of accumulated flows up to 10 mm, but changed 

to over-predict the probabilities of higher accumulated flows (Figure 10.6 (c)). In 

contrast to the above, the model simulation failed during October to simulate the 

cumulative probabilities of low accumulated flows (< 4 mm), but captured the 

probabilities of higher accumulated flows well (Figure 10.6 (d)). For November and 

December, the simulation appeared to consistently over-predict the observed 

cumulative probabilities. The over-prediction during November is more significant 

than for December, suggesting a higher probability of wet conditions than the 

observed cumulative probability (Figures 10.6 (e) and (f)). 

 
The seasonal simulation of a streamflows by ACRU from the ERBM derived 

rainfalls for OND (a), NDJ (b), DJF (c) and JFM (d) of 2003/04 at the mouth of the 

Mgeni catchment are shown in Figure 10.7. 
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Figure 10.6 Cumulative probabilities of daily flows simulated with the ACRU 

model versus observed flows at the mouth of the Mgeni catchment 

for January (a), February (b), March (c), October (d), November (e) 

and December (f) of the year 2004, using the ERBM. The dashed 

line represents the cumulative probability of forecasted streamflows, 

while the solid line represents the cumulative probability of observed 

streamflows 
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Figure 10.7 Box plots of statistics of generated streamflows along with the 

observed values at the mouth of the Mgeni catchment for OND, NDJ, 

DJF and JFM of 2003/04, using the ERBM. Diamonds represent the 

observed values with circles indicating the values outside the 

simulated range. The x signs represent the simulated mean values, 

and the box-and-whiskers represent the minimum, lower quartile, 

median, upper quartile and maximum of the forecasted streamflow 

sequences 

The upper panels show the means and standard deviations of streamflows while 

the bottom panels show the skewness coefficients and coefficients of variation 

(CoV) for the same variable. Statistics of model performance for each season 

show that the ERBM derived streamflows reproduced the corresponding observed 

flows well with regard to means, standard deviations and skewness coefficients, 

but with a slight over-estimation of the observed means during the first three 

seasons and a slight under-estimation of observed standard deviations during the 
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last three seasons (cf. Figure 10.7 (a) and (b)). Consequently, the dispersion of 

the streamflows with respect to the mean values (COV) was consistently under-

estimated, with COV values for the NDJ and JFM appearing just outside the 

simulated inter-quartile ranges (Figure 10.7 (d)). 

 
 
To extend the analysis for the seasonal simulation of streamflows by ACRU from 

the ERBM derived rainfalls, ensembles of accumulated daily flows were 

constructed for each of the four forecast periods (Figure 10.8). From these 

ensembles of forecasts, the mean and median are computed as the “best” 

estimates that can be used to conduct alternative scenario analyses. Visually, the 

accumulated median streamflow values are much closer to the accumulated actual 

streamflow values than the accumulated mean values for the selected seasons, 

except for the JFM season.  

 
In Figure 10.9 the r2, bias, RMSE and MAE values between simulated (median) 

and actual accumulated streamflows are compared for the selected three month 

forecast periods. Even though forecast accuracy appeared to decline with the 

subsequent periods within the rainy season, the overall performance of the ACRU 

simulated flows is excellent. For OND, the accumulated simulated flows are in 

close agreement with the corresponding observed flows, especially for low flows, 

but with a slight bias (3.56). For NDJ and DJF the accumulated simulated flows 

mimicked the accumulated observed flows fairly well, although the simulated flows 

are slightly higher than the observed flows. For JFM, a significant correlation was 

achieved between the simulated and observed accumulated flows (r2 = 0.96), but 

there is an appreciable bias in the simulation. The negative bias indicates a 

tendency for a consistent under-prediction of the observed flows. 

 

The generated ensembles in Figure 10.8 were then applied to produce 

probabilistic forecasts of total streamflows for each of the selected three month 

forecast periods as shown in Figure 10.10. 
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Figure 10.8 Forecasted versus observed accumulated flows at the mouth of the 

Mgeni catchment for OND (a), NDJ (b), DJF (c) and JFM (d) of 

2003/04, using the ERBM, with the thick black solid line representing 

the observed accumulated streamflow, and the thick grey solid and 

dashed lines representing the forecasted accumulated median and 

average flows, respectively 

 

The simulated cumulative probability of total streamflow for each of the selected 

three month forecast periods is represented by the dashed line, and the 

corresponding observed cumulative probability is represented by a solid line. As 

expected from Figure 10.9, the cumulative probability distributions for OND, NDJ, 

and DJF are positively biased, suggesting a wetter condition than the 

climatological cumulative probability. The cumulative probability distribution for 

JFM is, however, biased towards the drier side.   
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Figure 10.9 Plots of accumulated daily flows simulated with the ACRU model 

versus observed flows at the mouth of the Mgeni catchment for OND 

(a), NDJ (b), DJF (c) and JFM (d) of 2003/04  

 

Extending the results, a comparison is made in Figure 10.11 of the three month 

totals of daily ACRU simulated versus observed flows at the mouth of the Mgeni 

catchment for the year 2004. The model simulations appear to over-estimate the 

three month totals of daily observed streamflows for OND, NDJ and DJF, but 

capture them well for JFM. The overlap of the months allowed the forecast errors 

to persist through the subsequent three month periods. 
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Figure 10.10 Cumulative probabilities of accumulated daily flows simulated with 

the ACRU model versus observed flows at the mouth of the Mgeni 

catchment for OND (a), NDJ (b), DJF (c) and JFM (d) of 2003/04, 

using the ERBM. The dashed line represents the cumulative 

probability of observed streamflows, and the solid line represents the 

cumulative probability of forecasted streamflows 
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Figure 10.11 Three month totals of accumulated daily ACRU simulated versus 

observed flows (mm) at the mouth of the Mgeni catchment for 

2003/04, using the ERBM 

 
10.4 Conclusions 
 
Seasonal climate forecasts for southern Africa are generally issued in a discrete, 

tercile format (Klopper and Landman, 2003). Such probabilistic forecasts cannot 

be applied in their published form in a hydrological/crop yield model that operates 

on a daily time step. Two approaches have been proposed to translate the triplet 

of probabilities into daily quantitative values. The first approach is to sample daily 

rainfall values from the same dates in selected analogue years, as described in 

Chapter 9. The other alternative, as demonstrated in this chapter, is to employ a 

conditional rainfall generator model. The model is designed to randomly generate 

ensembles of 10 members from selected analogue years for each forecast day, 

and uses the “Ensemble Re-ordering” (Clark et al., 2004) as a post-processing 

step to reconstruct the temporal persistence of the synthetically generated daily 

rainfall data. The use of the ERBM is quite effective as a surrogate approach to 

generating stochastic realisations of daily rainfall series that resemble actual 

rainfall data with respect to a range of relevant statistics. The model thus has the 

property of reproducing the transitional probabilities of rain days and dry days as 

well as the persistence of dry and wet spells within forecast cycles, all of which are 

important in the evaluation and forecasting of streamflows and crop yields, as well 

as of droughts and floods.  The ensembles of simulated rainfall were used as input 
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into the ACRU model to generate an ensemble of simulated streamflows at 

monthly and seasonal time scales in the Mgeni catchment. Reasonably good 

results were obtained for most of the selected periods when simulating with the 

ACRU model, which indicates that the ERBM derived rainfalls are useful for 

various agrohydrological applications in South Africa, and possibly elsewhere. 

 
Although the focus in this chapter was only on generating ensembles of 

conditional rainfall sequences, the ERBM can be extended to a multivariate 

weather generator for simulating of maximum and minimum temperatures or solar 

radiation.  
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11. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 
 
11.1 Summary and Conclusions 
 
The development of a framework for the application of near real time, plus daily to 

seasonal rainfall forecasts as a nested input to agrohydrological models, thereby 

enabling the forecasting of agrohydrological variables across a range of time 

scales and lead times, is a new concept in southern Africa. The framework which 

has been developed is a flexible one and is designed to include generic windows 

which facilitate the selection of near real time remotely sensed observations, as 

well as short, medium term and longer term forecasts supplied by various weather 

and climate models from different institutions across a range of spatial scales. The 

framework is capable of importing ASCІІ outputs of individual and merged rainfall 

fields estimated from a network of daily reporting raingauges, radars and satellite 

images, as well as rainfall forecasts provided by three Numerical Weather 

Prediction models, into GIS for spatial disaggregation, reformatting, data joining 

and finally for extracting ACRU formatted daily rainfall values to 1 946 

hydrologically inter-linked Quaternary Catchments.  

 
Furthermore, generic algorithms have been developed within the framework to 

translate categorical monthly and three month seasonal forecasts into a daily time 

series values suitable for use with agrohydrological models. Two types of methods 

can be used in translating the categorical forecasts. The first is the Historical 

Sequence Method, which is designed to sample daily rainfall values from the same 

dates in selected analogue years. The other is the Ensemble Re-ordering Based 

Method, which randomly generates ensembles of 10 members from selected 

analogue years for each forecast day, and uses the method as a post-processing 

step to reconstruct the temporal persistence of the synthetically generated daily 

rainfall data. The latter method is also designed to generate the transitional 

probabilities of rain days and dry days, as well as the persistence of dry and wet 

spells within forecast cycles, all of which are important in forecasting streamflows 

and crop yields, as well as droughts and floods.  

 
The framework has been developed for applications on a real time basis. In this 

study, however, it was applied at the Mgeni catchment with an archive of historical 
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forecasts in order to verify the output of weather and climate models as well as the 

two temporal downscaling methodologies mentioned above. In the evaluation 

process, the key questions were:  

 
• How accurate are the SIMAR products when compared to the observed 

reference? How did the uncertainty in these products translate into the 

streamflow uncertainty? Can they be used reliably for operational 

agrohydrological applications?  

• What is the skill of the C-CAM and UM rainfall forecasts with respect to 

location, rainfall magnitude, lead times and when they are transformed to 

streamflows? What is the role of the initial hydrological conditions in 

affecting the skill of streamflows forecasts? How skilful is the combined use 

of the C-CAM and UM models when compared to the individual runs? To 

what extent does the “ensemble approach” explain the uncertainty with a 

particular NCEP-MRF forecast? Is an ensemble mean more skilful than 

individual members? Does the skill increase with decreasing lead time 

when compared to the reference? 

• How effective are the Historical Sequence Method and the Ensemble Re-

ordering Based Method in translating the categorical monthly and seasonal 

rainfall forecasts to daily values? How can hydrological ensemble forecasts 

obtained from ensembles of analogue years be verified? How skilful are the 

seasonal forecasts when compared to climatology? Do they preserve the 

statistical moments of historical time series from which the rainfall 

sequences are populated? What is the skill of the daily dry and wet spells 

generated by the Ensemble Re-ordering Based Method?  

 
In an attempt to address these questions, a range of verification techniques has 

been employed and the following conclusions are drawn, based on the results 

obtained for each of the models embedded within the forecasting framework: 

 
11.1.1 Conclusions on SIMAR Rainfall Fields 
 
• The use of daily reporting raingauges as well as merged fields of 

satellite/raingauges and satellite/radars/raingauges provides relatively 

realistic rainfall results, without much difference in their hydrological 
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outputs, whereas the radar and raw satellite information by themselves 

cannot be used in operational hydrological application in their current 

status.  

• The rainfall-streamflow transformation by the ACRU model had a 

dampening effect on the accumulated flows. As a result, the influence of 

rainfall errors on the streamflows was not comprehensively investigated in 

the SIMAR products. The reason for the dampening effect was the absence 

of high runoff producing rainfall events during the study period. 

 
11.1.2 Conclusions on C-CAM, UM and NCEP-MRF  Rainfall Forecasts 
 
• The C-CAM model is capable of identifying a rainfall event, but with a 

tendency of under-estimating its magnitude. For lead times up to 2 days 

there is an acceptable skill in the C-CAM forecasts, but for the 3 and 4 day 

lead times the skill is low and unreliable. 

• The UM model is capable of identifying rainy days from non-rainy days, but 

with a significant over-estimation of rainfall amount. There is no significant 

difference between the 1 and 2 day lead time UM forecasts. 

• The role of the initial hydrological conditions in affecting the skill of C-CAM 

and UM streamflows forecasts was significant. The results show that the 

under-estimation of the C-CAM forecasts was reduced from 34% to 10%, 

while the over-estimation in the UM forecasts was reduced from 291% to 

only 59% when the ACRU model was initialised with observed rainfalls up 

to the previous day at each forecast run within the study period.  

• Owing to the spatial scale gap between the 2.5º gridded NCEP-MRF 

forecasts and Quaternary Catchments, these forecasts were not applied 

with the ACRU model. Results obtained for a continuous period of 92 days 

showed that the rainfall forecasts were significantly over-predicted and that 

the quality of the NCEP-MRF forecasts was seen to slightly decrease with 

increasing lead time. However, taking into account the scale gap and 

discrepancies between the forecast and observation times, a correlation 

coefficient of 0.46 is considered a fair result.  

• The “ensemble approach” was successful in capturing the observation for 

only two out of the four selected events and there is no guarantee that the 

 207  



ensemble mean is better than that of any single ensemble member. 

However, ensemble forecasts are very important in calculating Probabilistic 

Quantitative Precipitation Forecasts, which are often required in risk based 

decision making.  

• The combined use of the C-CAM and UM models by a “weighted 

averaging” had an important effect in smoothing the respective extreme 

under- and over-estimations of rainfalls. However, the combined use is 

overshadowed more by the over-estimation of the UM forecasts than the 

under-estimation of the C-CAM forecasts.  

 
11.1.3 Conclusions on Monthly and Seasonal Forecasts 
 
• Reasonably good results were obtained in regard to r2, bias, RMSE and 

MAE from both the Historical Sequence Method and the Ensemble Re-

ordering Based Method for most of the selected periods, which indicates 

the soundness of applying either method in transforming skilful categorical 

seasonal forecasts into ensembles of daily quantitative rainfall values for 

application in hydrological/crop yield models.  

• For the seasonal streamflow forecasts, the observed mean, standard 

deviation, skewness coefficient and coefficient of variation were simulated 

fairy well by both methods in most of the selected periods. Monthly 

streamflow forecasts for the year 2004 using the Ensemble Re-ordering 

Based Method also indicated the model to capture the observed statistics 

well for most of the months of the year except for the dry months from June 

to September. 

• The Ensemble Re-ordering Based Method is capable of reproducing 

statistically acceptable transitional probabilities of rain days and dry days as 

well as their persistence within a given month and this is of great 

importance in agricultural operations. 

 
It should be noted that the NWP models and methodologies conceptualised in this 

study were only tested on one catchment. The developments presented in this 

thesis may, therefore, be considered as a pilot study, laying the foundation for 

further research to be undertaken in making the framework more operational and 

more useful to decision makers responsible for water resources and agricultural 
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operations. The areas that need further research are outlined in the sub-section 

which follows. 

 
11.2 Recommendations for Future Research 
 
There are many scientific and social problems that might need to be addressed in 

the process of practical implementation of hydro-climatic forecasts. Based on the 

experiences in undertaking this study, the following recommendations for future 

research are made. These recommendations are outlined in the context of three 

broad categories:  

 
11.2.1 Recommendations on Issues of Verification  
 
• In this study, data obtained from raingauge networks was used for verifying 

the forecasts and it was implicitly assumed that the reference data were 

perfect. In reality, however, upscaling point observations to a resolution of a 

grid box is often subjected to spatial errors, even if there is dense raingauge 

coverage over an area, as was the case in the Mgeni catchment. For a 

fairer verification, therefore, it is highly recommended to use remotely 

sensed observations with a correction factor from raingauge measurements 

as an alternative for reference rainfall. Furthermore, observational 

uncertainty should be accounted for in the verification process. 

• In order to assess the quality and reliability of the various forecasts, more 

research needs to be undertaken in extending the verification process to 

other parts of South Africa with different hydrological regimes to that of the 

Mgeni catchment. Verification against observed streamflows should also be 

explored by including the actual activities within the Mgeni catchment in the 

hydrological modelling. These include land uses and their influences on 

hydrological responses, irrigation demand and supply, abstractions from 

dams and return flows from urban and industrial areas as well as inter-

catchment transfers. 

• In order to gain more confidence, users need to assess the quality of 

forecasts, but care must be taken to avoid misinterpretation of valuable 

information. 
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11.2.2 Recommendations for Model Improvements 
 
• Rainfall estimates derived from SIMAR are of great importance for defining 

the “now state” of a catchment at the beginning of a forecast period. 

However, more work is still required in improving the time of delivery of the 

daily rainfall maps in near real time. More research and development is also 

needed in improving the quality of the products, especially for rainfall 

estimates derived from satellite and radar measurements. 

• Although rainfall forecasts from the C-CAM, UM and NCEP-MRF models 

have scored some successes, there is still a room for improvement with 

respect to their skill, especially for longer lead times and for distributing the 

information at a finer spatial scale that is comparable to relatively 

homogeneous hydrological response units and their respective dominant 

processes. 

• A hybrid modelling strategy for Quantitative Precipitation Forecasts from 

two or more operational NWP models needs to be considered in order to 

eliminate the problems of systematic errors that often occur when a single 

model is used. The use of multi model ensembles for seasonal forecasting 

(e.g. Doblas-Reyes et al., 2005) should also be considered in the future.   

• The input file menu in ACRU model needs to be reconfigured in order to 

accommodate rainfall forecasts for rapid simulation and self-updating (i.e. 

“hot starting”) schemes. 

• Further research is needed in the framework development to accommodate 

other weather variables (e.g. temperature, solar radiation) that are often 

required, especially for crop yield forecasting. 

 
11.2.3 Recommendations for Practical Applications  
 
• Updating the Quaternary Catchment rainfall database is required for the 

application of the Historical Sequence Method and the Ensemble Re-

ordering Based Method on catchments other than the Mgeni,  

• Research is needed in identifying the potential end users and into how the 

agrohydrological forecasts can be translated and distributed to them, as 

different users need different types of forecasts, formats and levels of 
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accuracy. Water managers, for example, may be more interested in the 

amount of runoff that flows into their reservoirs, while farmers may be more 

interested in the onset, timing and distribution of rainfall within a growing 

season.   

• As an operational utility, one of the major and challenging problems is the 

speed of delivery from a forecasting centre to end users. A web based 

interface is therefore highly recommended for effective and real time 

transfer of information to decision makers. However, end users need to first 

understand the skill and limitation of the forecasts. Research is therefore 

needed on how to communicate the forecasts to end users so as they can 

decide for themselves whether to take the risk of using the forecast 

information or not.  

• Finally, development of a simple decision support tool is recommended for 

potential users to assess their potential economic benefits and losses 

associated with the use of particular forecast information.  

 

The author believes that addressing the above-mentioned recommendations 

would enhance this framework for short to longer term climate forecasts and could 

potentially maximises opportunities to improve management of climate related 

risks in agricultural and water related decision making.  

 

In final conclusion, the primary scientific contribution of this study has been the 

development of a flexible, easily updatable and user friendly forecasting 

framework that is capable of bridging the gaps that exist between outputs of 

weather and climate models and their practical application in agrohydrological 

models over southern Africa. Findings obtained from the evaluation of the various 

weather/climate models and temporal downscaling methodologies in this study 

have also added new knowledge to the science of forecasting on issues related to 

the uncertainties that cascades through the translation of weather/climate 

forecasts into streamflow forecasts and forecast verification strategies. The scene 

is now set for operationalising this framework for integrated, time-varying 

agrohydrological forecasts over southern Africa.  
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