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ABSTRACT 

 
Flash floods are the number one cause of death and damage with regard to natural 

disasters in South Africa (Poolman, 2009). Thus, the South African Weather Service (SAWS) 

and the National Disaster Management Centre (NDMC) embarked on a collaborative project for 

the implementation of the South African Flash Flood Guidance system (SAFFG) in flash flood 

prone regions (de Coning & Poolman, 2011). The SAFFG is dependent on accurate 

precipitation estimates from radars and therefore much emphasis has been placed on the 

performance of the Quantitative Precipitation Estimation (QPE) fields. Weather radars offer the 

public efficient means of measuring precipitation remotely. Although the measurements are 

indirect radar remains the best alternative in capturing the spatial variability associated with 

precipitation at high temporal and spatial resolutions. 

A methodology proposed by Chumchean et al., (2006) was selected to be implemented 

and compared against the existing radar precipitation field of the Gematronik 600S S-band 

Doppler radar at Irene, South Africa. The methodology proposes a process that includes a 

rainfall classification algorithm. This algorithm separates convective from stratiform 

precipitation with the intent to assign different Z-R relations to the two different types of rainfall 

(Chumchean, et al., 2008). A technique for smoothing accumulations was also included into the 

algorithm, which is based on optical flow techniques (Bowler, et al., 2004). Reflectivity data 

from the Irene radar together with in situ rain gauge data within a 300 km radius of the radar 

location were obtained for the South African summer rainfall season from October 2010 to 

March 2011 for evaluation of the QPE field. One and twenty-four hour accumulations were 

compared to the corresponding rain gauge totals and the resulting evaluation scores are 

compared to the existing precipitation field to determine any improvements.  

The study showed that by applying specific Z-R relationships to both convective and 

stratiform precipitation yields better results than using a single relationship only. Smoothing the 

precipitation with optical flow vectors further decreases the QPE error at both one and twenty-

four hour accumulations. Overall the dual Z-R relationship with the optical flow smoothing 

yields the smallest error and is an improvement from the previous algorithm. 
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CHAPTER 1 

BACKGROUND AND INTRODUCTION 

1.1 Introduction 

Weather Radar offers weather forecasters, scientists and the public an efficient means of 

measuring precipitation. Although its measurements are indirect it remains the best alternative 

in capturing the spatial variability associated with precipitation at a high temporal and spatial 

resolution. Flash floods are the number one cause of death and damage with regard to natural 

disasters in South Africa (Poolman, 2009). Thus, the South African Weather Service (SAWS) 

and the National Disaster Management Centre (NDMC) embarked on a collaborative project for 

the implementation of a flash flood warning system in flash flood prone regions, called the 

South African Flash Flood Guidance system (SAFFG) and was implemented in 2009 (de 

Coning & Poolman, 2011). The Flash Flood Guidance System (FFGS) is the intellectual 

property of the Hydrologic Research Centre (HRC), a non-profit public-benefit corporation 

based in San Diego, USA. SAFFG was developed and implemented by the HRC. The SAFFG is 

heavily dependent on accurate precipitation estimates from radar and, with the installation of the 

new Gematronik 600S S-band Doppler radar systems, much emphasis has been placed on the 

performance of the radar’s Quantitative Precipitation Estimation (QPE) field. A methodology 

proposed by Chumchean et al. (2006) was selected to upgrade and improve the existing radar 

precipitation field. A rainfall classification algorithm has been introduced in this dissertation. 

This algorithm separates convective from stratiform precipitation with the intention of assigning 

different Z-R relationships to the two different classifications of rainfall (Chumchean, et al., 

2008). A technique for smoothing accumulation of precipitation, which is based upon optical 

flow techniques (Bowler, et al., 2004), has also been introduced into the QPE algorithm. 

1.2 The South African Flash Flood Guidance System 

The SAFFG was operationally implemented in October 2010. The SAFFG monitors the soil 

moisture in 1633 small river basins that are about 50 km2 on average. These basins are 

predominantly located in flash flood prone areas in South Africa. These areas surround the 

metropolitan area of Gauteng the Kwa-Zulu Natal province and the South Coast and being 

predominantly in highly populated areas near cities, are served by radars. The SAFFG makes 

use of real-time QPE data such as weather radar, satellite and rain gauges as input for the 
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hydrological modelling of the basin soil moisture. The most recent 24 hours of rainfall is used to 

calculate information such as soil moisture and run-off on an hourly basis. The SAFFG then 

determines the amount of rainfall needed per hour for each basin to cause flooding (de Coning 

& Poolman, 2011) and when it would be expected. Thus, the SAFFG depends heavily on the 

QPE products to be accurate as possible. The radar QPE is used as the primary precipitation 

input, thus the need to improve and include the best possible radar precipitation field was made 

clear by de Coning & Poolman (2011). 

1.3 QPE at the South African Weather Service 

South Africa is a water stressed country, thus accurately measuring the amount of precipitation 

is becoming increasingly more important for water management. During the winter months 

(June, July, August) precipitation is normally observed along the Southwest coastline of South 

Africa. During the summer months (December, January, February) the central and eastern parts 

of the country receive most of the country’s annual rainfall. This is clearly illustrates in Figure 

1-1 after Kruger (2007). The SAWS has a number of tools and infrastructure available that can 

help monitor and predict the amount of precipitation. 

Figure 1-1: Normal winter (left) and summer (right) rainfall for South Africa (Kruger, 2007). 

The SAWS currently coordinates the records of almost 1500 rain gauges. This includes 

data from Automatic Weather Stations (AWS), Automatic Rainfall Stations (ARS), Weather 

Offices and various observation stations. These instruments are mostly capable of daily 

measurements. However, 5 minute measurement intervals are available from the AWS and ARS 

stations. The rain gauge network will be discussed in more detail in chapter 4. 
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A local version of the UK-Met Office’s Unified Model (UM) is also available at the 

SAWS. The regional model runs twice a day to give a precipitation forecast every hour for a 48 

hour forecast. The model domain is between 0.48˚N and 44˚S, and 10˚W and 56˚E and runs on 

a horizontal resolution of 12 km over 38 vertical levels. By the end of 2014, a new High 

Performance Computer (HPC) will be installed at SAWS and the model will then be capable of 

running on a horizontal resolution of 4 km over 70 vertical levels (Landman et al, 2012). 

The SAWS also has access to Meteosat Second Generation (MSG) data. Using the data 

from the 10.7 µm brightness temperature channel together with variables such as temperature, 

precipitable water, etc. available from UM calculations quantitative estimates can be obtained. 

The software known as the Hydro-Estimator (HE) was develop by Kuligowski & Scofield 

(2003). The temporal resolution is 15 minutes and its domain and resolution is dependent on 

that of the UM. The biggest advantage of a satellite based precipitation estimates is that 

precipitation can be measured in data sparse regions. 

The SAWS runs its own weather radar network which is one of the weather service’s 

most expensive and valuable assets. In 2009 the SAWS upgraded the network to expand from 

ten C-band and two S-band radar, to eleven S-band, three C-band and two X-band radars. The 

SAWS is currently in the process of removing all C-band radars and migrating to S-band radars. 

The S-band has numerous advantages, which will be discuss throughout the dissertation. The 

current network was predominantly used for storm identification, weather prediction and 

aviation applications (de Coning et al., 2010). However, in recent years the demand for the QPE 

capabilities of weather radar has been dramatically increasing. The basic reflectivity conversion 

to rain rate using the Marshall and Palmer Z-R relationship was not sufficiently accurate 

anymore. More accurate and modern QPE techniques were being sought after.  

1.4 Aims and Approach of this Research 

The main aim of this dissertation is to improve on the current QPE algorithm available at the 

SAWS. This can be done by incorporating some of the latest techniques in radar QPE. To 

achieve this aim the following objectives were defined: 

 To introduce instantaneous precipitation classification. To apply different Z-R

relationships for convective and stratiform classified rainfall.

 To account for storm movement between successive scans by integrating precipitation

over a computed vector path that is based upon optical flow techniques.

 To determine how these techniques mentioned above perform on different altitudes of

reflectivity.
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These objectives are addressed by: 

 Incorporating a 2 dimensional classification scheme (Chumchean et al., 2008).

 Using optical flow to calculate motion vectors between successive scans (Bowler et al.,

2004; Sinclair, 2007)

 Using a dual Z-R relationship to convert reflectivity to rain rate (Chumchean et al.,

2008). 

 Accumulation through morphing with motion vectors (Hannesen, 2002; Sinclair, 2007).

Important research questions can be inferred from the research objectives above. These are: 

 Can the classification scheme accurately distinguish between convective and stratiform

precipitation?

 Is the dual Z-R relationship an improvement compared to the existing precipitation

algorithm?

 Does the smoothing of precipitation accumulations using optical flow techniques

further improve the precipitation algorithm?

Two algorithms will be set up to compare to the current precipitation algorithm. One uses the 

classification technique and a dual Z-R relationship denoted as the Classified Rain Rate (CRR) 

and the other is a similar algorithm adding the optical flow vectors to the accumulated totals. 

This combination algorithm will be called the Optical Flow Rain Rate (OFRR) algorithm. Each 

algorithm will be compared with one another in order to determine which technique improves 

traditional radar rainfall estimates. 

1.5 Summary 

The importance of accurate precipitation measurements and early warning systems such as the 

SAFFG is becoming more and more significant to warn the public of extreme types of weather 

events. There is evidence to suggest that these extreme events will increase in frequency (IPCC, 

2007). Thus, improving the accuracy in which radar precipitation is measured can have a 

tremendous impact on the value of these early warning forecasts. The remainder of this 

document will focus on radar precipitation. The next chapter, chapter 2, will discuss the history 

of radar in South Africa, the SAWS radar network and the different techniques involved in 

estimating radar precipitation. Chapter 3 will discuss the algorithm developed to implement the 

techniques introduced in section 1.4. Chapter 4 looks into the advantages and limitations of the 

radar data as well as the rain gauge data used for the evolution of the precipitation algorithm. 
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The evaluation method is also discussed in detail. Chapter 5 will list the findings of the research 

done and the conclusion reached will be discussed in Chapter 6. 
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CHAPTER 2 

RADAR RAINFALL MEASUREMENTS 

2.1 Introduction 

In this chapter the history of the development of weather radar in South Africa is summarised 

from its early uses in cloud seeding experiments to its role in Quantitative Precipitation 

Estimation (QPE) in recent years. The new radar network (of which the first radar was installed 

at the end of 2009) is described, singling out the S-band radar at Irene as the main focus of the 

study. Basic radar theory is outlined to support the weather radar’s ability to measure 

precipitation.  

The Australian Bureau of Meteorology (BoM) precipitation estimation methodology is 

then presented. It was selected by the South African Weather Service (SAWS) in 2010 to 

enhance the precipitation estimates from radar-derived reflectivities. The remainder of the 

chapter discusses the three steps in the methodology that include (i) reflectivity measurements, 

(ii) Z-R conversion and (iii) rain gauge adjustment. Basic radar theory is introduced to help 

explain the complex and inherently difficult task of radar precipitation estimation. 

2.2 Weather Radar Development in South Africa 

The roots of weather radar lie in radio. The first proposal to use radio waves for target detection 

was made as far back as 1922. However, it was not until the start of the 2nd World War in 1939 

that the development of radar really took off. Used primarily as an early warning system to 

detect aircraft, operators often observed noise that came from weather phenomena like rain, hail, 

snow, etc. By the end of the War, radar had been thoroughly developed and scientists interested 

in studying the weather were some of the first to acquire the surplus military radars (Reinhart, 

2004). 

South Africa had its first radar build in 1939 under the leadership of Dr Basil Schonland 

of the Bernard Price Institute of Geophysical Research at the University of the Witwatersrand. 

Hewitt (1975) and Austin (1992) give an interesting and detailed account of this event. At the 

start of the war the British Government informed its commonwealth countries of the existence 

of a radio direction finding (RDF) apparatus, as it was known at the time, and requested that 

senior scientists from each country travel to Britain and familiarise themselves with the system. 

South African scientists were unable to attend but it had been arranged that Dr Ernest Marsden, 
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from the New Zealand Department of Scientific and Industrial Research, return to New Zealand 

via Cape Town. Here he met up with Dr Schonland and briefed him on the RDF system. Armed 

with Dr Marsden’s knowledge and a vague photocopied manual Dr Schonland set out, using 

only local components, to build the radar. As a result the first radar echo was received on the 

16th of December 1939, which was by chance, from the Johannesburg landmark known as the 

Northcliff Water Tower. The radar operated with a peak power output of 5 kW, with a pulse 

length of 20 µs, a pulse repetition frequency (PRF) of 50 Hz and a wavelength of 3.5 m. The 

radar was known as JB0 and was operational within 3 month of Dr Schonland’s meeting with 

Dr Marsden. 

The South African radar team became known as the Special Signals Services (SSS). 

Upgrades of the JB0 were then deployed to East Africa as well as the Middle East to aid in the 

defensive efforts during the war. A further twelve radars were deployed along the coast of South 

Africa to aid with defence. In April 1942 British radar equipment finally arrived and replaced 

the JB series radars. By 1943 two Royal Navy type-273 radars were installed on Signal Hill and 

at Cape Point to monitor shipping. These radars greatly enhanced the capability of the coverage 

previously provided by the JB radars. 

After the war, junior members of Dr. Schonland’s team formed the Telecommunications 

Research Laboratory (a division of the CSIR) and conducted the first cloud seeding experiments 

over South Africa. During the summer of 1947-1948 they dropped dry ice into the tops of 36 

cumulus clouds using aircraft supplied by the South African Air Force (SAAF). A 3cm 

wavelength X-band radar built at the Telecommunications Research Laboratory station in 

Johannesburg was then used to monitor the seeding effects. This was the first time radar was 

used in meteorological studies in South Africa (CSIR, 1948) 

In 1971 the CSIR Atmospheric Physics Division brought into operation a Mitsubishi S-

band radar for the National Physical Research Laboratory (NPRL) hail studies project. The 

radar was located at Houtkoppen in Randburg and for the first time the three-dimensional 

structure of storms could be observed. This lead to numerous documented case studies of hail 

producing storms (Held and Carte 1973; Carte and Held, 1978; and Held 1978 and 1982). The 

studies highlighted that airflow measurements around these storms are essential for the 

understanding of these storms. Held (1982) showed how one storm can produce > 5cm hail 

while a remarkably similar storm can produce heavy precipitation but no hail. Thus, the S-band 

radar was upgrade to a Doppler system that could detect radial velocities of the hydrometeors. 

The first Doppler velocity observations were made at the end of the 1986/1987 season (Dicks et 

al, 1987). A C-band radar installed at Pretoria, which was also a Doppler system, made 

observations of storm velocity simultaneously with the S-band in Houtkoppen in March 1991 
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(Held and Gomes, 1992). Shortly afterwards funding was terminated for the project and the 

CSIR involvement with radar research ended with Hodson’s (1993) thesis on radar-rainfall 

studies.  

Since the 1950’s the South African Weather Bureau (SAWB) used radar primarily to 

track upper-air balloons. Only in the 1970s did the SAWB focus shift towards cloud seeding 

experiments. A Mitsubishi RC 4B C-band radar was installed at Bethlehem in 1971 as part of 

the Bethlehem Weather Modification Experiment (BEWMEX) (Harrison, 1974). A report on 

radar observation during the 1978-1979 summer season was compiled by Fletcher (1980). 

The name of the project was changed to the Bethlehem Precipitation Research Project 

(BPRP) in the 1980’s and the Enterprise WSR-81 C-band radar was installed at Bethlehem in 

1982. The BPRP main focus was to continue to monitor the effect of cloud seeding over the 

Bethlehem area (Krauss et al, 1987; Gagin et al, 1986). The data captured was also used for 

storm climatology studies such as storm movement, storm lifetime, etc. (Steyn and Bruintjies, 

1990; Mather and Terblanche, 1993). Data was also used for studies on evaporation of rainfall 

between the convective cloud and the ground (Rosenfeld and Mintz, 1988) as well as factors 

that contribute to the total rainfall yield from convective clouds (Rosenfeld and Gagin, 1989). 

At the same time, the Water Research Commission (WRC) carried out a similar seeding 

project that ran for 3 years starting in 1984. The project was known as the Programme to 

Augment Water Supplies (PAWS) and a Pacer III C-band radar was used over the Nelspruit 

area. Mather et al. (1996) give a thorough description of the programme as well as the results 

from the experiments. The programme was also the birth place of the automatic storm tracking 

algorithm, which would later be known as the Thunderstorm Identification, Tracking and 

Nowcasting (TITAN) tracking algorithm (Dixon, 1977; Wiener and Dixon, 1993).  

In 1990 the National Precipitation Research Programme (NPRP) was formed. This 

allowed for a co-operation between the PAWS and BPRP research groups. With their combined 

efforts quick progress and major advances with cloud seeding experiments was made. One of 

which was the development of hygroscopic flares. During the 1990-1992 study period the 

Enterprise C-band radar at Bethlehem was used (Mather and Terblanche, 1993).  The radar had 

limitations that were identified by the project team that included attenuation. The MRL-5 dual-

wavelength radar operated in the S- as well as the X-band frequencies due to a unique antenna 

system was procured to eliminate this limitation. This radar was installed in Bethlehem and 

would play a pivotal role in radar research for South Africa over the next few years. The 

1993/1996 study period would be the final experiment done on cloud seeding by the NPRP, and 

over South Africa as well (Mather and Terblanche, 1996). The Digital Signal Processing for 

Logarithmic, Linear and Quadratic Responses (DISPLACE) method was also developed by 
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Terblanche (1996) during the NPRP. It was originally developed to facilitate the averaging of 

digitized logarithmic receiver output, but later the method was found to be ideally suited for 

many other processes, one of which was a more efficient way to calculate Constant Altitude 

Plan Position Indicator (CAPPI) data (Mittermaier and Terblanche, 1997).  

The MRL-5 radar remained in operation after the conclusion of the NPRP but the 

research focus shifted more toward hydrological applications due to water management 

concerns. Van Heerden and Steyn (1999) used the radar to develop a greater understanding of 

the space-time characteristics of convective precipitation and also develop a means of 

communicating the radar based rainfall to potential users with the view to satisfying 

hydrological requirements. From this Visser (1999) developed the Storm Severity Structure 

(SSS) method to help determine the structure and intensity of convective storms. Mittermaier 

(1999) also developed algorithms that attempt to improve rainfall estimates where bright band 

interference was possible. 

In 2001 the Vaal dam catchment Integrated Precipitation Observing System (VIPOS) 

project came to an end (Terblanche et al., 2001). This project saw many changes within the 

SAWS (in 2001 the South African Weather Bureau (SAWB) name changed to South African 

Weather Service (SAWS)) and also contributed to major advances in Radar precipitation. The 

merging of the scientific groups in Pretoria and Bethlehem was the start of Meteorological 

systems and technology section of the SAWB or METSYS for short. This had the advantage of 

being the sole entity responsible for the National Radar Network, both scientific and technical. 

With the MRL-5 radar at Bethlehem, the two Enterprise C-band radars at Irene and Ermelo and 

the Liebenbergsvlei catchment rain gauge network, VIPOS made it clear that the advantages of 

a radar network’s high spatial and temporal resolution had no comparison. This led to the 

TITAN system being deployed at all the radars in the network. VIPOS also showed that radar 

rainfall estimations can be improved by adjustment with rain gauge measurements. It also laid 

the ground work for merging of radar and gauge data which was utilized by the Spatial 

Interpolation and MApping of Rainfall (SIMAR) project. 

The purpose of the SIMAR project, funded by the Water Research Commission (WRC), 

was to produce a daily rainfall map of South Africa by merging gauge, satellite and radar 

precipitation. The project was divided in three parts. The maintenance and upgrading of radar 

and rain gauge infrastructure (Kroese, 2004) was the first part. The second part focussed on 

optimising the radar and satellite derived rainfall and then ultimately combining the three 

precipitation fields (Deyzel et al., 2004). The third part addressed the complex mathematical 

problem of combining the three fields (Pegram, 2004). An original method of Kriging, 

exploiting the Fast Fourier Transform, was developed by Pegram (2004) to optimally 
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integrate/merge the data fields to produce a daily rainfall map. The DAily RAinfall Mapping 

over South Africa (DARAM) project, also funded by the WRC, followed to improve on the 

advances made with SIMAR. Further methods of improving the infrastructure and radar 

coverage were investigated (Kroese et al., 2006). Additional techniques for improving rainfall 

estimation, as well as investigating method for near future forecasting (up to 2 hours ahead) 

were included (Pegram et al, 2006). 

The daily rainfall map that was generated using the radar network from the DARAM 

project unfortunately halted at the end of 2006. This was due to a number of factors but the most 

important was the loss of many key personnel that were required to maintain and upgrade the 

system. The MRL-5 radar at Bethlehem became outdated and spare parts were no longer 

available to sustain operation. Perhaps the most severe blow to the project was the appearance 

of Radio Local Area Network (RLAN/WIFI) devices. As explained in more detail in chapter 4 

section 4.3.2, these RLAN devices caused interference on the C-band operating frequency, 

effectively rendering the radar data useless for hydrological purposes. This resulted in the 

introduction of the South African Radar Improvement Project, which was officially launched in 

2010. A description of the radar upgrades is found in the next section. 

2.3 The Current Radar Network in South Africa 

The pre-2009 SAWS radar network consisted of eleven Enterprise C-band (5 +/- cm 

wavelength) radars of various ages (Terblanche et al., 2001). These radars were installed at 

Cape Town, Port Elizabeth, East London, Mthatha, Durban, De Aar, Bloemfontein, Bethlehem, 

Irene, Ermelo and Polokwane. A 2° Beam width EEC S-band radar was also installed at 

Skukuza. The increasing age of the radars led to numerous down times (periods during which 

the radar was not operating) due to mechanical and/or electronic failures. The difficulty of 

obtaining spare parts for an aging radar network was just one of the many reasons the SAWS 

radar improvement project was launched. The R240 million government funded project allowed 

for the purchase of 10 METEOR 600S S-band Doppler radars of which 1 would be Dual-

Polarized and 2 would be mobile METEOR 50DX X-band radars which are capable of 

detecting Doppler winds and are also Dual-Polarized.  

The radars were deployed to replace 8 of the eleven Enterprise C-band radars at Irene, 

Polokwane, Ermelo, Bloemfontein, Bethlehem, Durban, Mthatha and East-London. The 

remaining 2 S-band radars were deployed at Ottosdal and George to expand the radar network 

coverage where it was previously lacking. The Dual-Polarized S-band radar was deployed at 

Bethlehem. The radars at De Aar, Port Elizabeth and Cape Town would remain Enterprise C-

band radars. The S-band radar at Skukuza would also remain operational. Table 2-1 gives a 
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summary of when each radar became operational, the operating frequency band and its 

capabilities. 

Table 2-1: This table illustrates the radar network of the SAWS. Listed are the date the radar 

was commissioned, the frequency it operates at and it capabilities. 

Radar Date Commissioned Frequency Band Capabilities 

Bethlehem March 2010 S-band (10cm) Doppler & Dual-

Pol 

Bloemfontein July 2011 S-band (10cm) Doppler 

Cape Town < 1998 C-band (5cm) Reflectivity Only 

Cape Town Int. 

Airport 

Not yet active X-band (3cm) Doppler & Dual-

Pol 

De Aar < 1998 C-band (5cm) Reflectivity Only 

Durban May 2011 S-band (10cm) Doppler 

East-London May 2011 S-band (10cm) Doppler 

Ermelo November 2010 S-band (10cm) Doppler 

George January 2012 S-band (10cm) Doppler 

Irene January 2010 S-band (10cm) Doppler 

OR Tambo Int. 

Airport 

Not yet active X-band (3cm) Doppler & Dual-

Pol 

Ottosdal November 2010 S-band (10cm) Doppler 

Mthatha March 2010 S-band (10cm) Doppler 

Polokwane November 2010 S-band (10cm) Doppler 

Port-Elizabeth < 1998 C-band (5cm) Reflectivity Only 

Skukuza February 2007 S-band (10cm) Reflectivity Only 

Figure 2-1 illustrates the current SAWS radar network, displaying the different radar 

locations and the range they operate at, with respect to the South African provinces. The white 

range rings represent S-band frequency radars and the green rings the C-band frequency radars. 

The smaller rings are at a 200km range, while the bigger rings are at 300km. The radars located 

by a red dot do not have Doppler capabilities while the blue dotted radars do have Doppler. The 

turquoise colour dotted radar at Bethlehem includes both Doppler and Dual-Polarization 

capabilities. The location of the radar was originally selected to maximise storm surveillance 

and was not originally deployed with hydrological application in mind (Terblanche et al., 2001). 

Large convective systems have deep vertical dimension, which allows them to be observed, at 
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least partially, at longer ranges from the radar. Shallower precipitation from stratiform systems 

becomes difficult to detect at long ranges due to the radar beam quickly increasing in height and 

overshooting the upper levels of the rainfall (Terblanche et al., 2001). For these conditions, the 

radars should not be more than 150 km apart, because Collier (1986a, b) and Mylne and Hems 

(1991) recommend a nominal inter-radar distance of 75km for meaningful quantitative 

purposes. 

Figure 2-1: The current SAWS operational radar network. The white range rings represents S-

band frequency radars while the green rings the C-band frequency radars. The smaller rings 

are at 200km range while the larger rings are at 300km. The red dot radars do not have 

Doppler capabilities while the blue dot radar does have Doppler. The turquoise colour radar at 

Bethlehem includes both Doppler as well as Dual-Polarization capabilities. (X-band radar not 

include due to it not being operational. The radar will however be located at both CT int. 

Airport and OR Tambo Int. Airport.) 

2.4. Quantitative Precipitation Estimation 

Why use radar rainfall? Radar remains the best tool for estimating rainfall over a large area and 

with high temporal resolution (5-10min). It is also the best means of producing short-term 

rainfall forecasts. The ever decreasing total number of reliable gauge data has made radar 

measurement more important than ever (van Heerden and Steyn, 1999). The concept of 
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estimating precipitation with radar involves careful consideration of measured reflectivities. 

Errors in precipitation estimation can result from errors in reflectivity measurements and Z-R 

conversion errors. Only through a thorough understanding of the limitations can the correction 

strategies be implemented successfully (Chumchean et al., 2006). The Australian Bureau of 

Meteorology (BoM) uses the procedure shown in Figure 2-2 to estimate real-time hourly radar 

rainfall estimates.  

Figure 2-2: The Australian Bureau of Meteorology process for estimating 1 hour rainfall 

accumulations (Chumchean et al., 2006). 

The process taken from Chumchean et al. (2006) involves 3 steps. The firsts is the 

correction of reflectivity measurements, the second is to introduce techniques to minimize the 

errors from Z-R conversions, and the third is a bias adjustment using rain gauge data. The 

SAWS also decided to adopt this process. However, this document primarily focusses on 

minimising errors from Z-R conversions.  

2.4.1. Reflectivity Measurements 

As seen in Figure 2-2 the radar reflectivity measurement needs to be carefully corrected and 

extracted before rainfall estimation can calculated. These involve errors from ground and sea 

clutter, anomalous propagation, bright band, second trip echoes, beam blockage and scaling 

Reflectivity measurements

Exclude reflectivity that are

greater or lower than the

maximum/minimum

reflectivity thresholds

Conversion to CAPPI Cartesian

coordinate at altitude below

bright-band level

Remove the effect of ground

and sea clutter

Scaling correction

Record reflectivity field in 3D polar

coordinate at operational temporal

resolution

Z-R conversion

Accumulate into

hourly radar

rainfall

Z-R conversion

Z=ARb

Account for the

storm movement

within an hour

Instantaneous storm

classification

Instantaneous convective/

stratiform reflectivity

Instantaneous convective/

stratiform radar rainfall

Initial hourly radar

rainfall estimates

Rain gauge adjustment

Estimate hourly gauge-radar

bias adjustment factor (AF)

based on Kalman filtering

approach proposed by

(Chumchean et al., 2003)

[under review]

Final hourly radar

rainfall
=

AF × initial radar rainfall

estimates



14 

effects to name a few. The next few sections will discuss some of these errors and their effects 

on reflectivity measurement in terms of estimating precipitation. In order to use the reflectivity 

measurement the data needs to be extracted from the volumetric scan stored in polar 

coordinates. Thus, Constant Altitude Plan Position Indicator (CAPPI) level will also be 

discusses. 

2.4.1.1 Beam Blocking 

When a radar beam strikes a fixed object like a building or mountain, it is said that the beam has 

undergone blocking. Correcting for beam blocking is not part of the study but is still a major 

source of error within precipitation estimation and it will be worthwhile understanding these 

effects better. In Figure 2-3, two types of beam blockage are possible. The first is, 1) partial 

beam blocking and the second 2) total beam blocking (Bech et al., 2002). Figure 2-3 only 

illustrates the concept of beam blocking. Partial beam blocking can results in power losses and 

precipitation can be severely under-estimated. Total beam blocking, block one hundred percent 

of the power and no precipitation can be detected beyond that range. Each radar has its own 

“finger print” when it comes to beam blocking that is dependent on the surrounding topography. 

Figure 2-3: A graphic illustration of 1) partial and 2) total beam blocking. It is assumed that 

atmospheric refraction and the curvature of the earth has no effect on the radar beam. 

Examples of beam blocking in a radar scan are shown in Figures 2-4 and 2-5. Figure 2.4 

displays instantaneous composite reflectivities as measured by the East-London C-band radar in 

2001. A section of shallow stratiform precipitation is present to the east of the radar over the 

Indian Ocean. Sectors of reduced to missing reflectivities are observed within this region of 

1 
2 
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stratiform precipitation. This is due to the terrain and structures surrounding the radar obscuring 

the lower elevation scans. This makes detecting low targets such as stratiform precipitation at 

long ranges very difficult.  

Figure 2-4: Instantaneous reflectivities at the East-London radar showing an example of beam 

blocking to the east of the radar. 

Figure 2-5 illustrates the result when beam blocking is present in a precipitation field. 

The 24 hour precipitation field from the C-band radar at Irene was generated shortly after the S-

band radar was constructed. The S-band radar is located around 100m to the south of the C-band 

radar and the resulting blockage caused by the S-band radar contributes to severely under-

estimated precipitation totals, which are clearly visible on the radar display. A large spike of 

apparently increased precipitation almost due south of the radar is also observed which is 

caused by RLAN interference. 

The Irene S-band itself experiences partial beam blockage to the west of the radar due to 

the construction of large warehouse structure visible on the horizon from the Irene radar site. 

The structures are illustrated in Figure 2-6 with photographs taken from the top of the 15m tall 

radar tower. Figure 2-6 (a) illustrates and points out the largest building of the 3 structures with 

the arrow mark A. The structures located to the left and right from the structure in Figure 2-6 (a)  
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Figure 2-5: A 24 hour accumulation of the C-band radar after the installation of the new S-

band radar at Irene. The S-band radar causes total beam blocking to the south of the radar 

resulting in severe under-estimation of precipitation, the large spike of apparently increased 

precipitation is caused by RLAN interference. 

Figure 2-6: Images of the large warehouse structure as seen from the top of the S-band radar 

tower. The buildings are the cause of partial beam blocking as well as reflection of the 

electromagnetic wave. 

(a) 

(c) (b) 
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are represented by Figure 2-6 (b) and Figure 2-6 (c). Figure 2-6 (b) also has a tower visible 

mark with the arrow T. 

Figure 2-7 illustrates the effects these structures can have on precipitation estimates. On 

the 15th of December 2010, a day of significant flooding with wide spread precipitation, the 24 

hour accumulation illustrates definite power losses to the west of the radar with low 

precipitation measurements. The effect from the partial beam blockage is aggravated with an 

increase in range.  

A problem that is unique to the Irene S-band radar, in a South African context at least, is 

that the metal construction of warehouse buildings to the west of the radar not only causes 

blockages of the radar beam but also acts as a reflector and reflects electromagnetic radiation. 

Figure 2-8 displays 3 spiked like features to the west of the radar. During this time only storms 

to the north and east of the radar were present. The warehouse building reflected radiation to the 

east and the radar measured a power return with the receiver of the antenna pointing to the west, 

resulting in a false echo being detected. Figure 2-9 shows the effect it can have on the 

precipitation product. 

Figure 2-7: A 24 hour accumulation of precipitation for the Irene S-band Radar. The partial 

beam blocking to the west of the radar causes under-estimation to be observed (red ellipse). 
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Figure 2-8: The radar at Irene detecting storms to the east and north. Reflectivity to the west is 

a result from radiation being reflected off the buildings (Figure 2-6) towards the storms to the 

east while the radar is facing west. 

Figure 2-9: The effects the reflection (shown in Figure 2-8) can cause on the precipitation field. 
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Clearly the effect of beam blocking can be severe. Normally these blockages only affect 

the lowest level of the volume scan but it is also the most useful scan in terms of precipitation 

estimation at ground level (Collier, 1996). Thus most operational QPE’s include correction 

algorithms for example, Harold et al. (1974), Kitchen et al. (1994), Joss and Lee (1995), Fulton 

et al. (1998), Chumchean et al. (2006) and Zhang et al. (2011). Zrnic and Ryhzkov (1998) also 

point out the advantage that Dual-Polarised products (like differential phase) can have over 

single polarisation radars in terms of estimating precipitation under beam blocking conditions. 

2.4.1.2. The Bright-Band 

Observations of a uniform band of higher reflectivities just beneath the zero-degree isotherm 

(freezing level), is known as the bright-band, so named due to its brighter appearance on the 

older radar displays and was first presented by Ryde (1946). The higher reflectivities are as a 

result of several characteristics of electromagnetic waves and hydrometeors within the 

atmosphere, such as the differences of ice and water with regard to their (i) reflective properties 

(dielectric constant), (ii) density above and below the melting level and (iii) terminal velocity 

(Battan, 1973). 

This phenomenon is observed in more organised stratiform precipitation, where there is a 

clear distinction in particles between different layers in the atmosphere. When particles 

precipitate from the cloud and the ice particles move through the melting layer they start to melt 

from the outside inward. Equation 2-1 relates the backscattering cross-sectional area (𝜎) of the 

hydrometeor, to |𝐾2| the dielectric constant, D the diameter of the hydrometer and 𝜆 the radar 

wavelength. The backscattering cross-sectional area is the surface area of the hydrometeor 

relative to the radar. In the Rayleigh and Mie region (when the diameter of the hydrometeor is 

much smaller or close to the length of the radar wavelength) this area can differ significantly 

from the physical area of the hydrometeor. The hydrometeor type is also a factor. Thus, since 

the dielectric constant |𝐾2| in Equation 2-1 of water is 0.93 compared to ice of 0.192, an ice 

particle with a water coated surface will appear much larger and reflect more radiation back to 

the receiver of the radar. The reflectivity is much more dependent on the size of the particle than 

the number of particles in a sample volume. Thus the larger water coated ice particle can result 

in an increase of up to 7dB (7 Decibel) in return power. When the particles melt completely the 

size reduces and the terminal velocity increases, resulting in the particle to fall away from the 

melting layer faster. This causes a decrease in the measured power. The result is a band of 

higher reflectivities just underneath the freezing level (Reinhart, 2004).  
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𝜎 =
𝜋5|𝐾|2𝐷6

𝜆4
(2-1) 

Figure 2-10 illustrates an example of the bright-band observed at the Irene radar. The 3.4° 

elevation scan displays a ring of higher reflectivity at a range close to 50 km from the radar. At 

the 50 km range the 3.4° scan travels through the melting layer which is around 4.5 km Above 

Mean Sea Level (AMSL) at the Irene radar during the summer season. This results in an 

increase of reflectivity due to the bright-band which is observed. At a longer range the radar 

beam is above the melting layer where ice is the cause for lower reflectivities, i.e. lower di-

electric constant.  

Figure 2-10: The 3.4° PPI illustrating a ring of higher reflectivity as the beam propagates 

through the melting layer. Clearly illustrating the bright-band 

Figure 2-11 illustrates the effect the bright-band can have on precipitation estimates. The 

precipitation is generated from the maximum reflectivity within a vertical column above each 

specific grid point. The vertical column extends well above the freezing level. A detailed 

description of how the precipitation field is generated can be found in Chapter 4 section 4.4.3. A 
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24 hour accumulation over Irene on the 16th of November is shown where the bright-band rings 

from multiple elevation scans caused a significant over-estimation in precipitation. During 

stratiform precipitation events the bright-band can cause visible rings of high rainfall as 

illustrated by Figure 2-11. Although the bright-band is a major source of error in precipitation 

estimates, it is not the main focus of this study. However, several attempt in identifying and 

correcting for the bright-band can be found in (Smith, 1986; Cheng and Collier, 1993; Andrieu 

and Creutin, 1995; Sanchez-Diezma et al., 2000; Gourley an Calvert, 2003; and Zhang and Qi, 

2010).  

Figure 2-11: A 24 hour precipitation accumulation illustrating rings of over-estimated 

precipitation caused by bright-band interference. 

2.4.1.3. Ground Clutter 

Ground clutter appears when the main beam (or side lobes) intersects the ground and results in 

an echo returned to the radar. Targets usually consist of mountains and structures like towers 

and tall buildings in the immediate area around the radar. The structure would usually be easily 

recognisable (Doviak and Zrnic, 1993). In Figure 2-12 (a) a PPI display of the 0.5° elevation 

scan illustrates ground targets during standard refractive conditions. The Johannesburg CBD 
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with its tall buildings is visible with reflectivity values of over 70dBZ. The Magaliesberg 

Mountains are also visible as a line of higher reflectivity to the north-west of the radar. 

Figure 2-12: The 0.5° PPI display of uncorrected reflectivity data (a) illustrating ground clutter 

from the Irene S-band radar. After the Doppler filter has been applied (b) most of the clutter 

has been remove. When extracting the 3km AMSL CAPPI (c) results in virtually no clutter to be 

present when converting the estimates to precipitation. 

Usually a radar clutter map is used to identify and delete ground clutter from a weather 

radar display, but the Irene radar makes use of a Doppler filter that is available on the Rainbow 

software suite and will be explained in more detail in chapter 4. Figure 2-12 (b) shows the 0.5° 

elevation scan after the filter has been applied. Most of the clutter has been removed but some 

reflectivity still remains over the Johannesburg CBD due to its intensity. However, this 

remaining clutter will not interfere when converting to CAPPI data for precipitation 

calculations. Figure 2-12 (c) shows the 3km CAPPI level (~1.5km above the radar). The effects 

from ground clutter have been effectively removed. 

PPI 0.5° PPI 0.5° 

CAPPI 3km 

(a) (b) 

(c) 
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2.4.1.4. Anomalous Propagation  

Anomalous Propagation, Anaprop (or AP) is defined as the extended detection of ground 

targets (Reinhart, 2004). To understand the cause of anomalous propagation one must have a 

clear understanding of radar beam propagation and the refractive properties of the atmosphere. 

Reinhart (2004), as well as Doviak and Zrnic (1993) gives detailed descriptions on the theories 

behind beam propagation and anomalous propagation. It usually occurs in clear weather 

conditions with the presence of a temperature inversion or whenever the water vapour content 

of the atmosphere is high. The result is that the radar beam is refracted much more compared to 

normal atmospheric condition and in extreme cases, can cause the beam to curve towards the 

surface of the earth.  

Figure 2-13 illustrates an example of severe AP that caused ground clutter to be detected 

at ranges from 100 to 200 km from the Irene radar. The AP results in very large echoes being  

 

 

Figure 2-13: Example of Anomalous Propagation showing radar reflectivities in dBZ before (a) 

and after (b) Doppler filtering. The Velocity field (c) in ms-1 indicates 0ms-1 over most of the 

area inside the red oval. The 0ms-1 velocities is a clear indication that the beam is hitting the 

ground. Thus, the Doppler filter attempts to remove the reflectivities associated with it. 

(a) (b) 

(c) 



24 

detected due to the radar beam reflecting off the ground to the east of the radar. This is 

illustrated by the uncorrected reflectivity field displayed but 0.5° PPI in Figure 2-13 (a).  The 

velocity field in Figure 2-13 (c) illustrates the beam path clearly. Around the immediate vicinity 

of the radar the 0 ms-1 velocity measurements are clear from the normal ground targets being 

detected. As the beam propagates and increases in height the velocity measurement increases. 

But the beam is bend downward through ducting and 0 ms-1 velocity measurements are again 

observed due to the beam striking the ground. The Doppler filter makes a very good attempt in 

filtering the ground clutter, but it does not manage to remove it completely, as seen in Figure 2-

13 (b). It is clear that the effects of AP can cause significant problems with precipitation 

estimates. Developing a filter to effectively remove all occurrences of AP will be beneficial. 

2.4.1.5. Scaling 

Scaling refers to the technique used to correct range dependent biases in radar reflectivity. 

These range dependent biases are a result of partial beam filling and of the increase in 

observation volume with range. This is due to the conical shape of the radar beam. The volume 

of a measured radar bin is given by, 

𝑉 = 
𝜋𝑟2𝜃𝜙ℎ

16 ln(2)
 (2-2) 

where θ and 𝜙 are the horizontal and vertical beam widths respectively, r is the distance to the 

sample volume from the radar, and h is the pulse length. Thus, from Equation 2-2, the bin 

volume will increase by the square of the distance to the radar (Reinhart, 2004). This leads to 

the small intense features within the rainfall estimation field, to be averaged out within the 

sample volume(𝑉), thereby resulting in an under-estimation of the frequency of high-intensity 

echoes at far ranges. Subsequently, a bias in reflectivity measurement is present that will 

progressively increase with increase in range. The reflectivity measurement is further 

complicated due to the range resolution of the polar bins being invariant and that the three-

dimensional precipitation fields show anisotropic scaling behaviour between the vertical and 

horizontal directions (Chumchean et al., 2004).  

In a hypothesis popularized by Mandelbrot (1982), it can be assumed that these biases in 

reflectivity measurements can be modelled and corrected for by a simple scaling model. Gupta 

and Waymire (1990) verified that this scaling hypothesis holds true for the probability 

distribution of reflectivity measurements with range from the radar. Thus the bias correction can 

be approached through a transformation function derived using scaling theory as:  
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𝑍𝑑 = (𝑑 𝐷⁄ )−𝜂𝑍𝐷 (2-3) 

where ZD is the measured reflectivity, d/D is a scale factor, where d (km) is the reference 

observation range interval; D (km) is the observation range of the measured reflectivity ZD; η is 

the scaling exponent; and Zd (dBZ) is the transformed reflectivity of the measured reflectivity 

(ZD) to be equivalent to reflectivity at the reference observation range interval d (Chumchean et 

al., 2004). 

2.4.1.6. CAPPI Conversion 

Normally radar volume scans are stored in polar coordinates in terms of radar range, elevation 

and azimuth angle of the scan. The polar coordinates can be interpolated to constant altitude 

planes, known as Constant Altitude Plan Position Indicators (or CAPPIs). It is an important 

derived product in the field of hydrometeorology. The advantage of a CAPPI level is that data 

close to the radar is derived from the higher elevation angles, which will reduce the effect of 

ground clutter observed by the lowest elevation scan. Even though a clutter filter removes most 

of the ground clutter some reflectivities still remain due to the clutter. Using reflectivities from 

higher elevation scans one can eliminate the clutter contaminated data from the lowest elevation 

scan. The disadvantage with CAPPI data is that it has a limited range at the lower levels. Higher 

CAPPI levels are needed to include data at further ranges, which in return will decrease the 

accuracy of the precipitation estimates. Figure 2-14, as illustrated by van Heerden and Steyn 

(1999), is a diagram that illustrates how CAPPI information is extracted from a polar coordinate 

system. The process is affected by the propagation of the radar beam. A description of the radar 

beam path with respect to the curvature of the earth and taking refraction of the beam into 

account, can be found in Battan (1973).  

The interpolation from polar to Cartesian coordinate system simplifies the merging of 

information from a number of different radars as well as the calculation of precipitation 

estimates (Terblanche et al., 2001). It is also the required data format for the tracking algorithm 

in the TITAN software (Wiener and Dixon, 1993). The TITAN program performs an 8-point 

linear interpolation when converting to CAPPI data, which results in a 1km horizontal 

resolution with height given at AMSL. The process to generate CAPPI data can be classified 

into two broad methods, a visual projection- and an interpolation method. The projection 

method had been very popular in the past due to its simplicity, but discontinuities occur at 

ranges where the data transitions to different elevations, as illustrated by Figure 2-14. With the 

interpolation method these discontinuities were more gradual, but it was computationally 
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expensive to calculate (Mittermaier and Terblanche, 1997). The DISPLACE method was 

implemented on the MRL-5 radar and used addition and subtraction of the logarithms of 

reflectivities instead of multiplication and division that is characteristic of conversion 

algorithms. This resulted in calculations that were around 50% faster (Mittermaier and 

Terblanche, 1997). However, with the improvements in performance of computers the 

restrictions on interpolation methods on real-time radar data have been severely reduced. 

Figure 2- 14: A graphic illustration of how a 2km CAPPI will be interpolated from volumetric 

data sampling (van Heerden and Steyn, 1999). 

2.4.2. Converting Reflectivity to Rainfall Rate 

Once the reflectivity measurements have been corrected as far as possible and the CAPPI 

reflectivity extracted the second phase, as shown by Figure 2-2, can start. This involves 

converting the reflectivity to rain rate and the next section will give more details. 

2.4.2.1. Radar-Rainfall Algorithms 

Due to the fact that precipitation algorithms are the key focus of this study it is necessary to take 

a closer look at different methods of estimating rainfall from radar reflectivities. 

i. The Z-R Relationship

The advantage of the 10cm S-band radar allows for the assumption that all power received from 

rainfall is within the Raleigh approximation (Battan, 1973). Thus the power received from a 

sphere can be expressed as, 
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𝑃𝑟̅ =
𝐶|𝐾|2𝑍

𝑟2
, (2-4) 

Where 𝑃𝑟̅ is the power received from a sphere in the atmosphere, C is a constant related to the

radar parameters, |𝐾|2 is related to the di-electric constant of water and ice, Z is the reflectivity

calculated from the power received and 𝑟2 is the range from the radar. The reflectivity Z relates

to the drop size distribution (DSD) and can be expressed as,  

𝑍 = ∑𝑁𝐷 𝐷
6

, (2-5) 

where Z is related to the number of drops (𝑁𝐷) and D to the drop size to the sixth power. Rain 

rate is also dependent on the DSD with the drop diameter (to the third power), as well as the 

terminal velocity of the raindrops. Terminal velocity is directly proportional to the diameter of 

the drops. Thus reflectivity and rain rate can be related through the empirical expression of the 

form  

𝑍 = 𝐴𝑅𝑏 , (2-6) 

where A and b are some constant value. In order to estimate rain from the calculated reflectivity 

it is necessary to understand the relation between reflectivity (Z) and rainfall rate (R). 

Marshall and Palmer (1948) were some of the first to investigate the relation between 

reflectivity and rain rate. The approach was along statistical lines due to the large variations in 

time and space between reflectivity and rain rate for a number of different precipitation types. 

Marshall and Palmer (1948), plotted raindrop diameters against the distribution of the number 

of drops and for most of the data the general relation of  

𝑁𝐷 = 𝑁0𝑒
−𝛬𝐷

(2-7) 

can be fitted, where D is the drop diameter, 𝑁0 is equal to 0.08 cm-4 and 𝛬 can be expressed as

4.1R-0.21 (specific to rainfall). R is then the rain rate in (mm/h). Using this relation and any 

specific rainfall rate, the drop size distribution (DSD) can be estimated. The estimated DSD, can 

then be used to determine a rain rate associated radar reflectivity through Equation 2-5. 
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Measuring Z alone is not enough to determine a unique measurement of R. The DSD 

needs to be known and it depends on an indefinite number of parameters. By adjusting the 

values of A and b in Equation 2-6, differences in DSD’s under different climatic conditions and 

geographical locations can be accounted for. Battan (1973) lists over 60 different Z-R relations 

that show considerable differences for similar types of precipitation. Not only will the DSD 

influence the Z-R relations over different seasons, climatologies and geographical locations, but 

Wilson (1966) also found that Z-R relations will differ considerably from one storm to the next 

within the same radar domain. Even if the DSD were on average the same at two different 

locations, errors in radar calibration could lead to the development of different Z-R relations 

(Doviak and Zrnic, 1993). Zero vertical velocity is also assumed by a Z-R relation and 

significant over- and under-estimation of precipitation can occur in down- and up-drafts 

respectively. Despite the errors that can occur even with the use of a suitable Z-R relation, less 

than satisfactory results may be obtained. It is possible to include additional adjustment to the 

estimated rainfall to improve results from Z-R conversion (Wilson and Brandes, 1979). 

ii. The Area-Time Integral

The Area-Time Integral (ATI) does not require the use of any Z-R relationship. However, a 

well-calibrated radar is vital to minimise errors within the estimates (Doneaud et al., 1984). The 

theory behind ATI is that rainfall accumulated over large areas and time is independent of how 

rain intensity is distributed within the storm. The volumetric rainfall V over an area A during the 

time T is given by: 

𝑉 = ∫ ∫ 𝑅 𝑑𝑎𝑑𝑡
𝐴𝑇

(2-8) 

where R is the rainfall area. Assuming that rainfall is constant Equation 2-8 can be expressed as 

𝑉 = 𝑅𝑐 ∫ ∫ 𝑑𝑎𝑑𝑡
𝐴𝑇

= 𝑅𝑐𝐴𝑇𝐼   where  𝐴𝑇𝐼 = ∫ ∫ 𝑑𝑎𝑑𝑡 ≈  ∑ 𝐴𝑖∆𝑡𝑖𝑖𝐴𝑇
(2-9) 

Here, Ai is the area over which rain was detected during the ith observing period and Δti is the 

time interval between observations. Rc was taken as a constant to illustrate the area-time integral 

concept. However, in the process of data analysis, values of ATI can be calculated from 

Equation 2-9 without making any assumptions about the value of R. The concept of ATI is 

useful because it incorporates information about the areal extent and duration of the 

precipitation events. It will be most useful for global satellite rainfall (Doviak and Zrnic, 1993). 
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iii. Polarimetric Methods

Polarimetric methods capitalize on the fact that rain drops are not perfect spheres but are oblate 

spheroids (Doviak and Zrnic, 1993). Polarimetric rainfall estimation techniques are more robust 

than the typical Z-R relations with respect to DSD variations and the presence of hail. This is 

due to the radar transmitting and/or receiving electromagnetic waves in horizontal and vertical 

polarizations; making it possible to determine specific characteristics of hydrometeors such as 

their size, shape, spatial orientation and thermodynamic phase (Doviak and Zrnic, 1993). 

A number of quantities can be derived from polarization measurements but one of the 

most significant with regard to precipitation is the measurement of specific differential phase 

(KDP). KDP is only sensitive to liquid water eliminating the error that small hail can produce with 

standard Z-R relations. KDP is also immune to miss-calibrations of the radar, attenuation, and 

partial beam blockage. KDP measurement provide benefits to the quality of precipitation 

estimation through utilising methods to correct radar reflectivity biases that result from the 

factors mentioned above or through the direct estimation of precipitation using R(KDP) relations 

(Zrnic´ and Ryzhkov 1996). 

iv. Statistical Methods

Due to high differences within measured and true reflectivity there is high variability within the 

fitted Z-R relationship. Thus, Rosenfeld et al. (1993) proposed a probability matching method 

(PMM) that transforms reflectivity measurements to rain rate by matching the probability 

distributions between them. The method was later improved by considered the change of 

reflectivity probability density functions (PDF) with range. This method was termed window 

probability matching method (WPMM), whereby pairs of spatial and contemporary windows 

small enough to maintain some physical relevance are used in comparing the two PDFs 

(Rosenfeld et al. 1994). The advantage of the WPMM is the variability normally associated with 

range and DSD is related to the selected Z-R relationship. However, this method is severely 

affected by the number of gauges available within the window to estimate PDFs. Calheiros and 

Zawazki (1987) also made use of probability densities between reflectivity Z and rain rate R to 

determine an appropriate Z-R relationship. The advantages of this method is that is can be 

applied to existing data even if the rain gauge data is not simultaneous with the radar data and 

there is no need for an extensive rain gauge network. However, this method still does not 

address the variability in DSD from storm to storm within the radar domain. 
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2.4.2.2. Classification 

When Z-R relationships (Equation 2-7) are utilised for radar precipitation calculation, errors that 

are associated with the DSD occur. The variables A and b within Equation 2-7 are model 

parameters, which relate to a specific DSD. These model parameters assume the raindrops are 

falling at terminal velocity through still air and that the terminal velocity is a function of their 

diameter. Lee & Zawadzki (2005) illustrated the uncertainty in rainfall estimates due to day-to-

day variation in DSD. Battan (1973) also mentions that appreciable differences can sometimes 

occur from one storm to the next within the same radar domain. Numerous Z-R relationships are 

listed that have been develop due to these variations to relate the quantities of A and b to 

parameters such as rainfall type, thermodynamic stability, and synoptic classification. Doviak 

and Zrnic (1993) and Zawadzki (2006) state that it is broadly believed that using distinct Z–R 

relationships for different rainfall types will lead to an improvement in radar rainfall. However, 

Zawadzki (2006) shows examples of Z–R relationships that were indistinguishable for 

stratiform and convective rainfall even though there was considerable variability in the DSD 

(Chumchean et al., 2008). 

It has been suggested that the variation of DSD can be reduced by distinguishing and 

classifying different rainfall type’s namely convective and stratiform rainfall. Stratiform 

precipitation occurs when there is a uniform region of air moving upward. This vertical upward 

motion of air needs to be small compared to the fall velocity of the ice crystals present within 

the cloud. This will allow ice crystals to fall towards the earth and through the melting layer. 

The ice crystal will melt below the freezing layer and result in precipitation on the surface 

(Houze, 1997). Stratiform precipitation usually occurs within large scale synoptic or 

topographical forcing that result in an uplift of air. It is also observed within convective cloud 

systems falling to the ground away from the main convective core. Stratiform precipitation is 

normally associated with light to moderate precipitation rates, weak horizontal reflectivity 

gradients (no defined core visible), and is accompanied by frequent observation of the bright-

band near the melting layer (Battan, 1973; Houze, 1993). The processes involved with 

convective precipitation contrast distinctly from stratiform precipitation processes (Houze, 

1993). The vertical upward motion of air with convective precipitation is equal to or much 

higher than the fall velocity of the precipitation particle due to the strong vertical winds. This 

strong vertical uplift is a localised feature and is usually driven by thermodynamic forcing. A 

well-defined core of high reflectivities is normally observed by the radar. The bright-band is 

normally not observed due to the mixing of ice and water within the convective cloud 

(Chumchean et al., 2008). 
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Early technique to classify radar precipitation was the background-exceedance technique 

(BET), which is a simple threshold method, it used rain gauge data to try to identify areas of 

convective rainfall (Austin and Houze, 1972; Houze, 1973). Churchill and Houze (1984) used 

this method but modified it to be applied to radar reflectivities. A fixed radius of influence was 

defined for each identified convective core. Tao et al. (1993) expanded the method by adding 

two additional criteria, namely the inclusion the updraft velocity and the cloud water content. 

Steiner et al. (1995) proposed to utilise a two-dimensional classification technique using only 

radar reflectivity. He also allowed for the length of the convective radius of influence to vary. A 

number of convective–stratiform classification techniques were introduced. These utilised the 

microphysics and horizontal gradient of the convective and stratiform cloud structure, as well as 

the use of Vertical Integrate Liquid (VIL) content and bright-band signature in the Vertical 

Profile of Reflectivity (VPR) to confirm stratiform or convective precipitation (Yuter and 

Houze, 1997; Sanchez-Diezma et al., 2000; Sempere-Torres et al., 2000; Tokay and Short, 

1996; Zhang and Qi, 2010). Chumchean et al. (2008) introduced a minor modification into the 

classification method by Steiner et al. (1995), which they incorporated into a real-time 

operational radar rainfall algorithm. 

In terms of radar precipitation estimates the objective of a classification scheme is to limit 

the variability in DSD and therefore the Z-R relationship from the climatological mean by 

grouping precipitation with respect to their physical structures. Yuter and Houze (1997) suggest 

that separating convective and stratiform precipitation based on DSD will likely be inaccurate 

and is not fully justified. However, Atlas et al. (1999) illustrate that within each classification 

the DSD are remarkably consistent. They concluded that classification of rainfall types is 

possible based on DSD and rain rate. 

2.4.2.3. Optical Flow Constraint 

In order to determine the movement of precipitation it is necessary to determine the speed and 

direction of travel. This is of particular interest when forecasting precipitation and a number of 

advection techniques have been developed and tested over the years. These advection 

techniques make use of extrapolation methods that can be summarised, very generally, as 

correlation techniques, centroid tracking and Numerical Weather Prediction (NWP) wind 

advection (Bowler et al., 2004). Older schemes defined areas of precipitation known as 

contiguous rain area’s (CRA’s). The problem with CRA’s is that the associated velocities are 

often generalized. Intense precipitation embedded within the CRA, such as convective showers 

within stratiform rain areas, often exhibit a noticeable different velocity to that of the larger rain 

area. 
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Rinehart and Garvey (1978) introduce a new approach with the Tracking Radar Echoes 

by Correlation (TREC) method. They made use of a series of blocks to divide the CRA into 

different sections. Two consecutive time scans separated by a short interval were cross-

correlated to find the appropriate correlation for each block. This allowed for multiple advection 

vectors to be calculated within the CRA. However, the vectors often diverge due to 

inconsistencies from ground clutter or beam blocking. The continuity of TREC vectors 

(COTREC) was then developed to try to address this issue (Li et al. 1995). The COTREC 

method minimises the divergence of the vectors. In reality, this minimises the difference 

between the vector velocity and the average velocity of neighbouring blocks. This is known as a 

smoothness constraint and forces the flow of vectors to be smooth (Reyniers, 2008). Bowler et 

al. (2004), used the optical flow method to try and improve on velocity vector calculations. 

Optical flow is based on Lagrangian persistence and allows for the direct calculation of motion 

vectors.  

The optical flow method was developed to determine the motion of objects in a series of 

images (Horn and Schunck, 1981). It originated from the field of robotics as a tool for detecting 

motion in computer vision. They can provide information on the spatial orientation of objects 

and rate at which they change between successive images. Central to the study of optical flow is 

the Optical Flow Constraint (OFC) equation, 

𝐷𝑡𝑍 = 𝑢
𝛿𝑍

𝛿𝑥
+ 𝑣

𝛿𝑍

𝛿𝑦
+
𝛿𝑍

𝛿𝑡
= 0 (2-10) 

where u and v are the velocity vectors and Z is the radar reflectivity (dBZ) at a given point (x, 

y). Equation 2-10 is modified slightly from the original equation given by Horn and Schunck 

(1981) to accommodate reflectivity data and it makes the explicit assumption that the intensity 

of the reflectivity would only change shape and not in size or intensity. This is not an 

appropriate assumption to make as the growth and decay of precipitation patterns can result in 

noisy data.  Since Z is known at every point, solving the partial derivatives can produce a value 

for u and v at every point. However, Equation 2-10 still has insufficient information to 

determine the u and v vectors at every point. Thus, a number of techniques have been developed 

to supply extra information (Bab-Hadiashar and Suter, 1998). One technique involves 

aggregating a box of pixels, similar to that of the TREC algorithm. This will produce a set of 

over-determined linear equations that can be solve to determine u and v. Methods such as a least 

squares approximation to multiple robust techniques can be utilised to solve the system of linear 

equations; which is more appropriate in the presence of noise. A smoothness constraint still 
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needs to be applied after the calculations. More details on this technique will be given in chapter 

3 

2.4.3. BIAS Corrections 

As far back as the 1950’s Hitschfeld and Bordan (1954) suggested that a radar needs to be 

calibrated against rain gauge measurements. The leading cause of errors within radar 

measurements of precipitation result from variations in the Z-R relationship due to the 

microphysical and dynamical processes that effect the DSD and drop fall speed (Wilson and 

Brandes, 1979). To correct for these errors an adjustment factor, based on the mean 

multiplicative bias of the radar field, can be uniformly applied to the estimates. The adjustment 

factor can be calculated with one of the following equations: 

𝐹 = ∑ 𝐺𝑖
𝑁
𝑖=1 ∑ 𝑅𝑖

𝑁
𝑖=1⁄ (2-11) 

Or 

𝐹 =
1

𝑁
∑

𝐺𝑖

𝑅𝑖

𝑁
𝑖=1 (2-12) 

In Equation 2-11 the observations receive a weight that is proportional to the rainfall depth, 

while in Equation 2-12 all observations have equal weight (Wilson and Brandes, 1979). Spatial 

adjustments are necessary due to the fact that smaller errors from gauges near the radar are 

observed than from the ensemble of all available gauges within the radar domain. Thus, the 

adjustments can be weighted according to the distance. Although bias adjustments can 

significantly improve on radar precipitation estimates restraint needs to be exercised when 

rainfall is extremely light or when radar precipitation variability (i.e. convective storms) in the 

vicinity of the rain gauge is large (Wilson, 1975; Collier, 1986). 

More sophisticated methods to combine radar observations with adjusted gauge 

measurements have been devised from as early as the 1970’s (e.g. Brandes, 1975). These focus 

primarily on correcting the bias within radar estimates using an adjustment factor. One of the 

biggest challenges when implementing merging techniques is the difficulty of estimating the 

error structure associated with rain gauge and radar observations. Sinclair & Pegram (2005) 

worked around this problem by introducing a conditional merging technique. This technique 

utilises the spatial information from radar estimates to condition the spatially limited 

information obtained from interpolating between rain gauges. A precipitation estimate is 

produced that includes the correct spatial structure. This method results in the spatial detail of 

the final merged precipitation field to be improved while still maintaining the mean field 
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characteristics measured by the gauges (Sinclair & Pegram, 2005). In essence the technique 

eliminates the bias between radar and gauge estimates. 

2.5. Summary 

It is clear that South Africa has an extensive and rich history when it comes to research with 

weather radars. The recent addition of 10 Gematronik 600S S-band radar systems has opened 

the door for future research and development on weather radars in South Africa. The three main 

component in generating real-time precipitation estimates from radar were reviewed. The first is 

the correction of reflectivity measurements that include bright band, beam blocking, anomalous 

propagation and ground clutter were all discussed and illustrated. The second is to introduce 

techniques to minimize the errors from Z-R conversions. These techniques involve the Z-R 

conversion relation, classification and OFC vector calculation to minimize the effects of drop 

size variations with different precipitation types. The third step was a bias correction using rain 

gauge adjustments. The next chapter will focus on the second part of radar precipitation 

estimation to include techniques like classification and OFC vector to minimize the errors from 

Z-R conversion. 
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CHAPTER 3 

AN ENHANCED QPE ALGORITHM FOR THE IRENE 

RADAR 

3.1 Introduction 

The problem of errors associated with Z-R conversions is the focus of the study and the 

techniques incorporated in the precipitation estimation algorithm will attempt to minimize these 

errors. This chapter discusses the algorithm written in FORTAN 90 in more detail. The 

computer algorithm consists of four main parts: 

1. The Classification scheme.

2. Calculation of the motion vectors.

3. Reflectivity to Rainfall conversion.

4. Accumulation through the morphing with motion vectors.

The first part, the classification routine, will assign the radar reflectivity values with the 

appropriate stratiform or convective rainfall flag. The second part will use the Optical Flow 

Constraint (OFC) equation to calculate the motion vectors. The third part uses the results from 

the classification scheme to convert the reflectivity to rain rate with the appropriate Z-R 

relationship. This will hopefully minimize the errors due to different microphysical properties 

between stratiform and convective precipitation. The final phase is to morph (definition: 

to transform an image by computer) the motion vectors with the precipitation field and utilise 

the time difference between successive scans to yield the final accumulated precipitation field. 

Adding these techniques to the QPE calculation will hopefully yield favourable results. 

3.2 The Enhanced QPE Algorithm 

The enhanced QPE algorithm consists of four main parts. The process flow of the algorithm is 

illustrated in Figure 3-1. The process was adapted for the Irene radar and is based on the 

Australian BoM methodology (Chumchean et al., 2006). The algorithm uses CAPPI reflectivity 

data that is extracted from the radar volume scan and ingested into the program. Details of this 

pre-processing algorithm will be made clear in chapter 4. CAPPI data from consecutive volume 
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scans are included in the calculations. In an operational environment this entails the latest 

volume scan available in real-time at time t2 (Figure 3-1) and the previous scan at time t1. When 

the CAPPI data are extracted, no distinction between no-data values and low-reflectivity values 

are made. Thus, values below -30dBZ needed to be ignored so that they will not become a 

hindrance in the averaging calculations later in the program. The CAPPI data are then processed 

within the algorithm to estimate precipitation values from the reflectivity data.  

Figure 3-1: The Flowchart indicating the processes involved in calculating the enhanced QPE. 

In the first phase of the QPE algorithm the CAPPI reflectivity data is introduced to the 

classification scheme which was adopted from Chumchean et al. (2008). It is an operational 

approach to classify radar reflectivity as either convective or stratiform precipitation by using a 

two dimensional reflectivity field such as CAPPI data. The classification is done on the 

reflectivity with the intention of assigning the appropriate Z-R relationship to the classified 

reflectivity value. The output resulting from the classification routine are two fields where the 

reflectivities at time t1 and t2 have been flagged as either no-precipitation, stratiform 

Input binary CAPPI data (t1) 

Input binary CAPPI data (t2) 

Threshold No-Data values 

Classification 
Classified Reflectivity (t1) 

Classified Reflectivity (t2) 

OFC calculations 

Calculate Precipitation 

Smooth rain rate with 

OFC vectors 

U (t2) Vector Component 

V (t2) Vector Component 

Classified Rain Rate (t1) 

Classified Rain Rate (t2) 

Threshold 53dBZ hail cap & 

15dBZ non-precipitating 

Instantaneous rainfall (t2) with spatial and temporal 

errors accounted for. 

The QPE Algorithm
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precipitation or convective precipitation. The two sequent classified fields will then be later 

used in the 3rd phase of the program for the precipitation calculations. 

The second phase of the program is the calculation of the OFC velocity vector 

𝒙 = (𝑢, 𝑣), where u and v are the velocity vectors in the East-West and North-South direction 

respectively. By using a series of images the motion of specific object can be determined by 

solving the OFC equation (Equation 2-10, chapter 2). However, the equation contains 

insufficient information to determine the velocity at each pixel. A number of techniques can be 

implemented to provide extra information to establish a best fit (Bab-Hadiashar and Suter, 

1998).  Thus, consecutive scan times are needed to calculate each pixel’s propagation or motion 

at each point on the gridded field. The CAPPI data at times t1 and t2 provides this information 

and the OFC routine can thus produce a velocity field, with u and v components for each pixel 

at time t2. These velocity components will later be morphed with the precipitation field. 

The third phase of the QPE algorithm is the actual precipitation calculation. Here the 

classified values are used to determine which Z-R relationship to apply to the reflectivity data. 

First, hail and non-precipitation thresholds need to be applied. Any reflectivity below the 15 

dBZ threshold, which corresponds to around 0.3 mm/h was considered to be non-precipitating 

reflectivity values. A default value of 53 dBZ was used for the lower hail threshold. While it is 

difficult to determine a specific hail threshold, this threshold is also the default setting for radar 

rainfall estimations in the United States (Fulton et al., 1998). The 53 dBZ threshold yields a rain 

rate of 75 mm/h using the standard Marshall-Palmer relationship. Thus in this scheme, all 

reflectivities equal to and greater than the set threshold would have a rain rate of no greater the 

75mm/h. The reflectivity data is converted to rain rate using the appropriate Z-R relationship 

corresponding to the convective or stratiform classified flag value. 

The fourth and final phase of the QPE algorithm morphs the OFC vector field with the 

calculated precipitation values to produce a smoothed accumulated rainfall field that accounts 

for storm movement, thus minimizing the spatial errors made by the temporal resolution of the 

radar scan strategy. The reason is that the temporal resolution of a radar volume scan, usually of 

the order of 5-10 minutes, can cause errors as a pocket of high precipitation rate, such as due to 

a thunderstorm, shifts position. By integrating the precipitation over the calculated vector path, 

this error in storm motion can be considerably reduced, if not eliminated. 

3.3 The Classification Scheme 

The classification technique is based on a texture synthesis algorithm. This allows for fast 

calculations and the use of individual instantaneous reflectivity maps based on 2 dimensional 

CAPPI data. This is an advantage, as rapid techniques are of great importance within an 
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operational nowcasting environment. The classification scheme discussed in this section was 

acquired from Chumchean et al. (2008). It was adopted from work done by Steiner et al. (1995) 

which builds on earlier work by Churchill and Houze (1984). Figure 3-2 illustrates the 

classification process by means of a flow diagram. In order for a reflectivity pixel to be 

classified as a convective centre it must satisfy the following criteria (Chumchean et al., 2008) 

in equations (3-1) to (3-4): 

𝑍 ≥ 42 𝑑𝐵𝑍 (3- 1) 

where Z is the pixel reflectivity.  If it is greater than or equal to 42 dBZ it is immediately 

classified as a convective centre pixel. If the pixel does not satisfy the criterion in Equation 

(3-1) then both of the following criteria needs to be evaluated to true, 

𝑍𝑏𝑔 > 𝑍𝑐  and  𝑍 − 𝑍𝑏𝑔 > ∆𝑍 (3- 2) 

where Zc is the minimum convective centre threshold in dBZ which is selected to be 35 dBZ 

(Chumcheam et al., 2008) and Zbg is background reflectivity or background average, 

∆𝑍 =

{
 
 

 
 

10,  𝑍𝑏𝑔 < 0

10 −
𝑍𝑏𝑔
2

𝑃
,  0 ≤ 𝑍𝑏𝑔 < 42.43

 0,  𝑍𝑏𝑔 ≥ 42.43 

(3- 3) 

with, 

𝑃 = 𝑚𝑎𝑥 (
(𝑍𝑐+2.5)

2

10
, 140) (3- 4) 

Zbg is defined as the average reflectivity within an 11km radius of the current pixel (See Figure 

3-4). The reflectivity difference (∆𝑍) is calculated by Equation 3-3 and is a function of the 

background average. It can be graphically interpreted through Figure 3-3. ΔZ is a modification 

from the original to account for the minimum convective centre threshold (Zc) and will default 

back to the original Steiner et al. (1995) algorithm when Zc in Equation 3-4 is selected to be 

equal to 40 dBZ.  
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Figure 3-2: A flowchart illustrating the process of classifying a given reflectivity pixel as 

convective or stratiform precipitation. 

From Figure 3-3 it can be determined that when the difference between the pixel value and 

background average (𝑍 − 𝑍𝑏𝑔) is greater than the calculated ΔZ for the corresponding

background average, the pixel will qualify as a convective centre. However, the background 

average must also be larger than the selected minimum convective centre threshold. Thus, a 

pixel value that satisfies the criteria in Equation 3-1 or in Equation 3-2 will be classified as a 

convective centre. If it does not, the pixel is flagged as stratiform precipitation (See Figure 3-2). 

Any value below the 15 dBZ threshold is assumed to be non-precipitating and is not classified. 

Once a pixel has been flagged as a convective centre the convective radius needs to be 

determined. The convective radius is a function of the background average. The relationship 

between the background average and the convective radius is listed in Table 3-1. The larger the 

value of the background average the greater is the influence of convection of the neighbouring 

pixels around the convective centre. The pixels that fall within this radius are then also flagged 

as convective pixels. Figure 3-4 illustrates a convective radius of 5 km (the red circle) around 

the flagged convective centre (the green pixel). All the pixel centres that fall within this radius 

are also flagged as convective. The end result is a classified reflectivity field that is flagged as 

either no-precipitation, stratiform precipitation or convective precipitation pixels. 
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Figure 3-3: The reflectivity difference (∆𝑍) compared to Mean Background Average (𝑍𝑏𝑔),

with Zc selected at 35 dBZ. If the difference (𝑍 − 𝑍𝑏𝑔) is above the green line the pixel will be

classified as a convective centre, below the line it will be a stratiform classified value. 

Figure 3-4: A graphical representation of the classified pixel (green), the mean background 

average (grey) and convective radius (red). Pixels are included for calculations when the pixel 

centre is within the determined radii. 

14km 

14km 
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Table 3-1: The Table lists radius of influence around the convective centre for the appropriate 

background average (Chumchean et al., 2008). 

Relationship between mean background reflectivity and convective radius 

Mean Background Reflectivity - 𝒁𝒃𝒈 (dBZ) 15-25 25-30 30-35 35-40 40-50 

Convective Radius (km) 1 2 3 4 5 

In the original Steiner et al. (1995) scheme each grid point pixel, usually taken from 

CAPPI reflectivity below the melting layer, needs to be greater than 40dBZ or it needs to 

exceed the average intensity of reflectivity taken from the surrounding values (selected radius of 

11 km), by a specified threshold (∆𝑍), to be considered a convective centre. Then for each point 

that has been identified as convective, a surrounding area similar to the background reflectivity, 

which also depends on the intensity of the surrounding background reflectivity, is also 

classified as convective (see Table 3-1).  

Steiner et al. (1995) suggested that criteria be modified to best distinguish convection and  

stratiform precipitation depending on the particular geographic location of radar, precipitation 

regime and radar attributes such as, receiver sensitivity, beam width, scanning strategies, etc. 

The Darwin radar in Australia was originally used to classify instantaneous CAPPI reflectivity 

data form. The radar had a beam width of 1.65° and CAPPI data was interpolated to Cartesian 

Coordinates with a horizontal resolution of 2 km (Steiner et al., 1995). The convective radius is 

a function of the grid resolution of the CAPPI data rather than the precipitation regime. Thus, 

Chumchean et al. (2008) re-calibrated the associated parameters for use at the Kurnell radar in 

Sydney, Australia. This radar had a beam width of 0.9° and could interpolate the instantaneous 

CAPPI reflectivity to Cartesian coordinates with a 1 km horizontal resolution (Chumchean et 

al., 2008). Calibration of the classification parameters were done through visual interpretation of 

convective and stratiform cells. The spatial resolution of the CAPPI data (1 km-square) allows 

for the use of 42 dBZ as a threshold instead of the 40 dBZ threshold proposed by Steiner et al. 

(1995).  

It is worth noting that no changes to the associate parameters of the classification scheme 

have been made for the Irene radar which was adopted ‘as is’ from the Kurnell radar in Sydney, 

Australia. It was decided to test the current classification scheme performance and then make 

appropriate change from the findings at a later stage. The physical attributes of the two radars 
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are largely similar in terms of beam width and grid resolution. Thus, differences in the 

performance of the classification scheme are assumed to be small.  

Figure 3-5 illustrates a classified field on 28 October 2010 at 02:29:16 UTC and is 

compared with the instantaneous reflectivity field. The classified convective cells correspond 

well with the high reflectivity cells observed within the reflectivity field, likewise for the 

stratiform classified precipitation.  

Figure 3-5: The classified field on 28 October 2010 at 02:29:16 UTC (above) and the 

corresponding instantaneous reflectivity field (below). 

This region might be contaminated with bright-band effects, which can influence the 

classification scheme. The only area of concern is that the stratiform region of high reflectivities 
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to the east of the radar, is classified as convective. It is well-know that the classification 

algorithm from Steiner et al. (1995) classifies bright band contaminated areas as convective 

precipitation. One way to improve on the algorithm is to make use of volumetric data. 

Convective storms usually show strong vertical development, thus by taking the average 

reflectivity within a vertical column favourable results could be achieved (Franco et al., 2006). 

However, as stated above this will only be explored in future work. 

3.4 Velocity Vector Calculations Using Optical Flow Constraints 

After the classification has been done the algorithm moves on to determine the velocity vectors. 

The process flow of the calculations is illustrated in Figure 3-6. The following section will give 

a more detailed description of how the optical flow vectors are calculated, following from the 

discussion in section 2.4.2.3.  

Figure 3-6: Flowchart illustrating the process to calculate motion vectors from two consecutive 

radar scans using an optical flow method 

CAPPI data (t1) CAPPI data (t2) 

Smooth radar data 

Find partial derivatives 

Group data pixels into blocks 

Calculate velocity for each block 

which best satisfies OFC by means 

of a least square approximation  

Optimise velocities to satisfy smoothness 

constraint with two values of weight given 

to neighbours 

Smooth velocities calculated (Figure 3-8) 
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The radar reflectivity data first has to be smoothed so that the partial derivatives for the OFC 

equation (Equation 2-10) can be calculated using a finite-difference method. The smoothed 

reflectivity data are partitioned into blocks, so that a least squares method can be used to solve 

the OFC for each block. The velocity field is then interpolated back to the original grid 

resolution and a smoothness constraint is applied so that each pixel is equal to the average of its 

neighbours. 

3.4.1 Determine the OFC Partial Derivatives 

In order to calculate the partial derivatives with a simple finite-difference method it is necessary 

to smooth the radar reflectivities to obtain a stable estimate of the local derivatives (Bowler et 

al., 2004). To smooth the values, a square box is centred over a pixel intended to be averaged. 

The smoothed reflectivity intensity is thus given by  

𝑍𝑠(𝑥, 𝑦, 𝑡) =
1

(2𝐿𝑠 + 1)
2
∑ ∑ 𝑍(𝑖, 𝑗, 𝑡)

𝑦+𝐿𝑠

𝑗=𝑦−𝐿𝑠

𝑥+𝐿𝑠

𝑖=𝑥−𝐿𝑠

(3-5) 

where LS is equal to 15. This choice of LS means that the smoothing occurs over a box of 31 by 

31 pixels. Thus the speed of reflectivities moving at more than 30 pixels per time step cannot be 

estimated accurately. For example, considering a storm moving at 100 km/h (about the 

maximum speed observed during the study period) the storm will only shift 10 pixels separated 

by a 6 minute scan intervals on a 1km grid resolution. This is well within the limit to estimate 

accurate velocities by solving the derivatives. It might be tempting to choose LS to be very large, 

given that the size influences the upper limit of the velocities that can be accurately estimated. 

However, this will result in a decrease in spatial resolution of the derivative estimates. Thus, the 

choice of LS is a compromise between estimating large velocities accurately, and capturing the 

differential motion exhibited by neighbouring pixels (Bowler et al., 2004). 

Once the reflectivity field has been smoothed, the partial derivatives from Equation 2-10 

can be determined using a centred finite difference method following Horn and Schunck (1981). 

First the smoothed field is separated into blocks similar to the TREC algorithm discusses in 

section 2.4.2.3. The derivatives can then be calculated using an image sequence of aggregating 

blocks with the following equations:  

𝛿𝑍(𝑥, 𝑦, 𝑡)

𝛿𝑥
≈ 

1

16
(𝑍(𝑥 + 1, 𝑦 + 1, 𝑡) + 𝑍(𝑥 − 1, 𝑦 + 1, 𝑡)) 
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−
1

16
(𝑍(𝑥 + 1, 𝑦 + 1, 𝑡 − 1) + 𝑍(𝑥 − 1, 𝑦 + 1, 𝑡 − 1)) 

(3-6) 

+
1

8
(𝑍(𝑥 + 1, 𝑦, 𝑡) + 𝑍(𝑥 − 1, 𝑦, 𝑡)) 

−
1

8
(𝑍(𝑥 + 1, 𝑦, 𝑡 − 1) + 𝑍(𝑥 − 1, 𝑦, 𝑡 − 1)) 

+
1

16
(𝑍(𝑥 + 1, 𝑦 − 1, 𝑡) + 𝑍(𝑥 − 1, 𝑦 − 1, 𝑡)) 

−
1

16
(𝑍(𝑥 + 1, 𝑦 − 1, 𝑡 − 1) + 𝑍(𝑥 − 1, 𝑦 − 1, 𝑡 − 1)) 

𝛿𝑍(𝑥, 𝑦, 𝑡)

𝛿𝑦
≈ 

1

16
(𝑍(𝑥 + 1, 𝑦 + 1, 𝑡) + 𝑍(𝑥 + 1, 𝑦 − 1, 𝑡)) 

(3-7) 

−
1

16
(𝑍(𝑥 + 1, 𝑦 + 1, 𝑡 − 1) + 𝑍(𝑥 + 1, 𝑦 − 1, 𝑡 − 1)) 

+
1

8
(𝑍(𝑥, 𝑦 + 1, 𝑡) + 𝑍(𝑥, 𝑦 − 1, 𝑡)) 

−
1

8
(𝑍(𝑥, 𝑦 + 1, 𝑡 − 1) + 𝑍(𝑥, 𝑦 − 1, 𝑡 − 1)) 

+
1

16
(𝑍(𝑥 − 1, 𝑦 + 1, 𝑡) + 𝑍(𝑥 − 1, 𝑦 − 1, 𝑡)) 

−
1

16
(𝑍(𝑥 − 1, 𝑦 + 1, 𝑡 − 1) + 𝑍(𝑥 − 1, 𝑦 − 1, 𝑡 − 1)) 

𝛿𝑍(𝑥, 𝑦, 𝑡)

𝛿𝑡
≈ 

1

16
(𝑍(𝑥 + 1, 𝑦 − 1, 𝑡) − 𝑍(𝑥 + 1, 𝑦 − 1, 𝑡 − 1)) 

(3-8) 

+
1

8
(𝑍(𝑥, 𝑦 − 1, 𝑡) − 𝑍(𝑥, 𝑦 − 1, 𝑡 − 1)) 

+
1

16
(𝑍(𝑥 − 1, 𝑦 − 1, 𝑡) − 𝑍(𝑥 − 1, 𝑦 − 1, 𝑡 − 1)) 

+
1

8
(𝑍(𝑥 + 1, 𝑦, 𝑡) − 𝑍(𝑥 + 1, 𝑦, 𝑡 − 1)) 

+
1

4
(𝑍(𝑥, 𝑦, 𝑡) − 𝑍(𝑥, 𝑦, 𝑡 − 1)) 

+
1

8
(𝑍(𝑥 − 1, 𝑦, 𝑡) − 𝑍(𝑥 − 1, 𝑦, 𝑡 − 1)) 
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+
1

16
(𝑍(𝑥 + 1, 𝑦 + 1, 𝑡) − 𝑍(𝑥 + 1, 𝑦 + 1, 𝑡 − 1)) 

+
1

8
(𝑍(𝑥, 𝑦 + 1, 𝑡) − 𝑍(𝑥, 𝑦 + 1, 𝑡 − 1)) 

+
1

16
(𝑍(𝑥 − 1, 𝑦 + 1, 𝑡) − 𝑍(𝑥 − 1, 𝑦 + 1, 𝑡 − 1)) 

After determining the derivatives in Equation 2-10, there is still insufficient information to 

determine the u and v vector components at every point.  

3.4.2. Calculating the Velocity of a Block 

By solving for the partial derivative within the block, a system of over-determined linear 

equations is reached and given by, 

𝑎𝑖1𝑢 + 𝑎𝑖2𝑣 = 𝑏𝑖 + 𝑒𝑖 ,  𝑖 = 1, 2,… . ,𝑚 (3-9) 

where m = 2500, ai1 and ai2 are the spatial derivatives 
𝛿𝑍

𝛿𝑥
and 

𝛿𝑍

𝛿𝑦
 respectively and bi is the 

negative temporal derivative  −
𝛿𝑍

𝛿𝑡
 for every pixel i within the defined block, as mentioned in 

section 2.4.2.3 a method using robust to least squares. In matrix form Equation (3-9) can be 

written as: 

𝐀𝒙 = 𝒃 + 𝒆 (3-10) 

where x is the two-component vector, 𝒙 = (𝑢, 𝑣), A is a 2 dimensional matrix of 

dimensions 𝑚 × 2, b has dimensions 𝑚 × 1 and the error vector e is also 𝑚 × 1. Plotting the set 

of linear equations known as constraint lines will result in the examples shown in Figure 3-7. 

When considering noiseless data, i.e. data that only changes its position, but does not change its 

shape or intensity over time is illustrated by Figure 3-7 (a). 

The result of the noiseless data will cause all of the constraint lines to intersect at the 

appropriate value for u and v. This is not the case when working with radar reflectivity data. It is 

well known that weather echoes can rapidly change in shape and intensity over time and will be 

the product of very noisy data. The contraint lines will not intersect at one point, but rather at 

multiple points as show in Figure 3-7 (b). In order to find a single vector that best represents all 

pixels within the block a method of solving the set of linear equation in the presence of noise is 
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needed. As mentioned in section 2.4.2.3, a method using robust least squares can be applied. 

The advantage of a robust approach, instead of a rational approach, is that outliers within the 

input data will not influence the calculated result significantly (Bab-Hadiashar and Suter, 1998). 

A simple least squares approximation was selected to solve the vectors for each block. It is not 

a robust method, which makes the algorithm sensitive to the influences of outliers, particularly 

around the boundaries of the reflectivity field, such as the edges of precipitating areas and at the 

limits of the radar range. However, the algorithm is fast to compute, which is a valuable 

attribute in the Nowcasting field.  

Figure 3-7: Plotting constraint lines with noiseless (a) and noisy (b) data. 

With the least squares method, we seek to minimise the sum of squares of the errors e in 

Equation 3-9. This is expressed as: 

𝑈 =∑(𝑎𝑖1𝑢 + 𝑎𝑖2𝑣 − 𝑏𝑖)
2

𝑚

𝑖=1

(3-11) 

which can also be written in matrix form as: 

𝐀𝐓𝐀𝒙 = 𝐀𝐓𝒃 (3-12) 

(a) (b) 
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where the transpose of A is multiplied into Equation 3-10. Solving Equation 3-12 will result in 

matrices, which are minimised and are of dimensions 2 X 2 and 2 X 1 for A and b respectively. 

Thus, it is possible to determine 𝒙 = (𝑢, 𝑣) by applying the LU decomposition algorithm to the 

resulting matrices. LU decomposition is useful due to the fact that it can easily be built into a 

computer algorithm to solve a system of linear equations. Press et al. (1992) gives a thorough 

explanation on the principals behind LU decomposition and how to implement it successfully in 

an algorithm. Thus, only a short summary on LU decomposition will be given below and the 

reader is encourage to refer back to Press et al. (1992) for more details with regards to 

implementation. 

LU decomposition assumes that the matrix A can be the product of two matrices as 

follow: 

𝑨 = (𝑳 ∙ 𝑼) (3-13) 

Where U is the upper triangular matrix of A, and L is the Lower triangular matrix of A. For 

example, 

[
𝑎11 𝑎12
𝑎21 𝑎22

] = [
𝑙11 0
𝑙21 𝑙22

] ∙ [
𝑢11 𝑢12
0 𝑢22

] (3-14) 

Equation 3-10 can be decomposed by substituting Equation 3-13 into Equation 3-10, 

𝑨 ∙ 𝒙 = (𝑳 ∙ 𝑼) ∙ 𝒙 = 𝑳 ∙ (𝑼 ∙ 𝒙) = 𝒃 (3-15) 

The vector 𝑥 = (𝑢, 𝑣) can then be solved first by forward substitution of the vector y such that, 

𝑳 ∙ 𝒚 = 𝒃 (3-16) 

Then through back substitution such that, 

𝑼 ∙ 𝒙 = 𝒚 (3-17) 

Equations 3-18 and 3-19 below illustrates how the vector y is calculated from Equation 3-16, 
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𝑦1 =
𝑏1
𝑙11

(3-18) 

𝑦2 =
1

𝑙22
[𝑏2 − 𝑙21𝑦1] 

(3-19) 

and Equations 3-20 and 3-21 illustrates how to solve Equation 3-17 to obtain vector x, 

𝑥2 =
𝑦2
𝑢22

(3-20) 

𝑥1 =
1

𝑢11
[𝑦1 − 𝑢12𝑥2]

(3-21) 

Note that the complexity of the LU decomposition can be avoided by inverting the 2x2 matrix 

𝐀𝐓𝐀  directly as Z to obtain x =[𝐀𝐓𝐀]−1 𝐀𝐓𝒃, a very simple and speedy calculation.  Whichever

method is used, the result is that the vector x for each block now has mean values for the two 

components u and v, because 𝒙 = (𝑢, 𝑣). The velocity vectors of each block are interpolated 

back to the original grid size. The next step is to apply a smoothness constraint so that the vector 

cannot deviate substantially from the average neighbouring velocity vectors. 

3.4.3 Optimising the Velocity 

The last step in calculating the velocity vectors is to find the velocity for each block that best 

satisfies the smoothness constraint. The method describe below was taken from Bowler et al. 

(2004). As mentioned in the previous section the least squares method is very sensitive to 

outliers. Thus, by forcing the velocity to be equal to its neighbouring velocity the outliers in the 

velocity field can be effectively smoothed. The first step is to assign a weight 

denoted 𝐾(𝑥, 𝑦, 𝑡), to the velocity that is dependent on the smoothed reflectivity value within 

the defined block surrounding the velocity vector. A block with infinite reflectivity will receive 

a weight of 1 while block with no total reflectivity will have a weight of 0; the velocity is 

calculated as follows: 

𝐾(𝑥, 𝑦, 𝑡) = 1 − 𝑒𝑥𝑝(−∑∑ ∑
𝑍𝑠(𝑖, 𝑗, 𝑘)

2𝑤𝐿2

𝑡

𝑘=𝑡−1

𝑦+𝐿

𝑗=𝑦

𝑥+𝐿

𝑖=𝑥

) (3-22) 
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where w is a parameter greater than 0, and L is the block size. The parameter w is usually set to 

0.75 because it gives favourable results (Bowler et al., 2004). The weighted velocity is then 

calculated as 

𝑉w(𝑥, 𝑦, 𝑡) = 𝐾(𝑥, 𝑦, 𝑡)𝑉OFC(𝑥, 𝑦, 𝑡) (3-23) 

where VOFC is the velocity calculated from the OFC equation. The weighted velocity vectors Vw 

can then be used to calculate the average velocity of the neighbouring velocity vector Vn and is 

given by   

𝑉𝑛(𝑥, 𝑦, 𝑡) = 1

6
(
𝑉𝑤(𝑥 + 𝐿, 𝑦, 𝑡) + 𝑉𝑤(𝑥 − 𝐿, 𝑦, 𝑡) +

𝑉𝑤(𝑥, 𝑦 + 𝐿, 𝑡) + 𝑉𝑤(𝑥, 𝑦 − 𝐿, 𝑡)
) + 

(3-24)

1

12
(
𝑉𝑤(𝑥 + 𝐿, 𝑦 + 𝐿, 𝑡) + 𝑉𝑤(𝑥 + 𝐿, 𝑦 − 𝐿, 𝑡) +

𝑉𝑤(𝑥 − 𝐿, 𝑦 + 𝐿, 𝑡) + 𝑉𝑤(𝑥 − 𝐿, 𝑦 − 𝐿, 𝑡)
) 

 The velocity field that will satisfy the smoothness constraint can thus be calculated for every 

block as  

𝑉(𝑥, 𝑦, 𝑡) = ((1 − 𝑟𝑛)𝐾(𝑥, 𝑦, 𝑡) 𝑉𝑂𝐹𝐶(𝑥, 𝑦, 𝑡) + 𝑟𝑛𝑉𝑛(𝑥, 𝑦, 𝑡)) 𝐾𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑦, 𝑡)⁄ (3-25) 

where rn is a parameter between 0 and 1. Ktotal is the average weight of the block and its 

neighbours. The value of rn is chosen to be 0.35 as this appears to give favourable results. The 

result of the calculation through section 3.4 is illustrated in Figure 3-8. The calculated velocity 

vector V replaces VOFC and thus satisfies the smoothness constraint. The final step is to replace 

regions of zero velocities with the calculated average velocity of the entire field. 

3.5 Precipitation Estimates with Dual Z-R Relationships 

The next step in the QPE algorithm outlined in Figure 3-1 is to convert the reflectivity 

measurement into rain rate estimates. Dual Z-R relationships are applied to the different 

classifications calculated in section 3.3. Poolman et al. (2014) tested a number of Z-R 

relationships at the Irene and Port-Elizabeth radars and found the relationships in Equation 3-26  
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Figure 3-8: Velocity vectors on 28 October 2010 at 02:29:16 UTC, calculated from the OFC 

equation indicating the direction and speed of the reflectivity field. 

and 3-27 outperforms all other Z-R relationship. The use of a dual Z-R relationship gave better 

results than using a single Marshall-Palmer relationship. Thus, when reflectivities are classified 

as stratiform precipitation the standard Marshall-Palmer Z-R relationship is applied. From 

Equation 2-7 the relationship is expressed as 

𝑍 = 200𝑅1.6 (3-26) 

where the units of Z are in mm6m-3 and R is in mmh-1. The Marshall-Palmer relationship is one 

of the most commonly used relationships not only for stratiform precipitation, but for radar 

derived precipitation in general (Battan, 1973). The relationship was derived by comparing 

Drop Size Distributions (DSD) and radar reflectivity measurement from numerous precipitation 

events (Marshall and Palmer, 1948). A different Z-R relationship is applied when reflectivities 

are classified as convective. The relationship is expressed as 

𝑍 = 300𝑅1.4 (3-27) 

with units similar to Equation 3-26 and is widely used for convective precipitation (Fulton et al., 

1998; Zhang et al., 2011). Figure 3-9 illustrates a 1 hour accumulations calculated from the 

classification scheme and the Z-R relationships in Equations 3-26 and 3-27. Figure 3-9 also 
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illustrates the problem of temporal sampling frequency. The long sampling time results in the 

loss of important evolutionary features of the precipitation field. 

3.6 Algorithm to Smooth the Spatial Rainfall Field for Accumulations 

The accumulation technique shown here (following Hannesen (2002) and improved by Sinclair 

(2007)) handles the problem of temporal sampling illustrated in Figure 3-9. The accumulation 

technique that accounts for the spatial and temporal evolution of the rainfall field between 

successive radar scans can be expressed as: 

Figure 3-9: A one hour accumulation using dual Z-R relationships on 28 October 2010 at 

03:00:00 UTC. Stratiform classified precipitation makes use of Marshall-Palmer (Z=200R1.6), 

while convective classified precipitation is converted with the convective Z-R relationship 

(Z=300R1.4).   

𝐴𝑃 = ∫ 𝑅(𝑃𝑡) 𝑑𝑡
𝑡2

𝑡1

(3-28) 

where 𝑃𝑡 = (𝑥, 𝑦, 𝑡) is any point at time t and 𝑡1 ≤ 𝑡 ≤ 𝑡2. The problem is that 𝑅(𝑃𝑡) is not

known. However, the rain rate 𝑅(𝑃𝑡1) at point 𝑃𝑡1 and 𝑅(𝑃𝑡2) at point 𝑃𝑡2 is known and

assuming a constant rate of change in rainfall intensity we can express 𝑅(𝑃𝑡) as:
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𝑅(𝑃𝑡) =
𝑡2 − 𝑡

𝑡2 − 𝑡1
𝑅(𝑃𝑡1) +

𝑡 − 𝑡1
𝑡2 − 𝑡1

𝑅(𝑃𝑡2)
(3-29) 

and  ∆𝑡 = 𝑡2 − 𝑡1 so that Equation 3-29 becomes,

𝑅(𝑃𝑡) =
𝑡2 − 𝑡

∆𝑡
𝑅(𝑃𝑡1) +

𝑡 − 𝑡1
∆𝑡

𝑅(𝑃𝑡2)
(3-30) 

Equation 3-30 is a linear combination of the rainfall rate 𝑅𝑡1 and 𝑅𝑡2, where the weighting

factors 
𝑡1−𝑡

∆𝑡
 and 

𝑡−𝑡2

∆𝑡
 ensures a smooth transition of rain rate from time 𝑡1 to 𝑡2. In order to

change the time integral in Equation 3-28 into a path integral, Equation 3-30 needs to be 

expressed in terms of the vector path. Figure 3-10 is a schematic representation of the situation. 

The Rainfall is desired at point 𝑃𝑡 and is spatially represented by the point 𝑆𝑃|𝑡. For Figure 3-10

it can be safely inferred that all the precipitation (𝑅𝑡1) along the path 𝑆𝑡1 to 𝑆𝑃|𝑡 has passed the

point 𝑃𝑡. Similarly precipitation (𝑅𝑡2) has also passed point  𝑃𝑡 along the path 𝑆𝑃|𝑡 to 𝑆𝑡2.

Therefore, the linear weighting factors in Equation 3-30 can be expressed in terms of the vector 

path as, 

𝑡2 − 𝑡

∆𝑡
=
𝑆𝑃|𝑡1 − 𝑆𝑡1

∆𝑠
; 
𝑡 − 𝑡1
∆𝑡

=
𝑆𝑡2 − 𝑆𝑃|𝑡2

∆𝑠
(3-31) 

where ∆𝑠 = 𝑆𝑡2 − 𝑆𝑃|𝑡 = 𝑆𝑃|𝑡 − 𝑆𝑡1. Substituting Equation 3-31 into Equation 3-30,

𝑅(𝑆𝑃|𝑡) =
𝑆𝑃|𝑡1 − 𝑆𝑡1

∆𝑠
𝑅(𝑆𝑃|𝑡1) +

𝑆𝑡2 − 𝑆𝑃|𝑡2
∆𝑠

𝑅(𝑆𝑃|𝑡2)
(3-32) 

Considering that, 

𝑉𝑃⃗⃗⃗⃗ =
∆𝑠

∆𝑡
; 𝑑𝑡 =

1

𝑉𝑃⃗⃗⃗⃗ 
𝑑𝑠 (3-33) 

and substituting Equation 3-32 and Equation 3-33 into Equation 3-28, an equation with known 

values for 𝐴𝑃 is obtained:
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𝐴𝑃 =
1

𝑉𝑃⃗⃗⃗⃗ 
(∫ |

𝑆𝑃 − 𝑆𝑡1
∆𝑠

|𝑅(𝑆𝑃)𝑑𝑠
𝑆𝑃|𝑡

𝑆𝑡2

+∫ |
𝑆𝑡2 − 𝑆𝑃

∆𝑠
| 𝑅(𝑆𝑃)

𝑆𝑡1

𝑆𝑃|𝑡

𝑑𝑠) (3-34) 

Figure 3-10: A schematic representation of the accumulation scheme. If the advection were not 

taken into account, the pixel at 𝑆𝑃would not receive any precipitation during this scan interval.

The figure illustrates the location of a precipitation cell in two consecutive radar scans (𝑅𝑡1
and𝑅𝑡2). The motion vector 𝑉𝑝⃗⃗  ⃗ illustrates the direction and speed of the precipitation cell. The

total rainfall on the pixel located at 𝑆𝑃 is the weighted sum of the integrals along the paths

𝑆𝑃|𝑡 − 𝑆𝑡1  and 𝑆𝑡2 − 𝑆𝑃|𝑡  .

A Trapezoidal approximation can then be utilized to solve the integrals in Equation 3-34. A 

number of iterations are performed which is depicted by the velocity vector. However, the 

velocity vector is related to the pixels per time step and is a non-integer value. The result is that 

the rainfall pixel will not correspond to a single ground value pixel, but will rather be spread 

over 4 neighbouring pixels. The rainfall pixel is calculated from the percentage overlap of each 

pixel (Figure 3-11). The calculated rainfall pixel can then be used for computation within the 

path integral.  

The number of iterations within the path integral directly relates to its computational 

time. Computation time is reduced by relating the length of the vector to the number of 

iterations that needs to be performed (Sinclair, 2007). Thus, longer vectors will have sufficient 

iterations within the path integral, while vectors of length 0 will simple be an average of the 

𝑆𝑡1

𝑅𝑡1

𝑅𝑡2

𝑉⃗ 𝑝

𝑡1 𝑡2 𝑡 

𝑃𝑡 

𝑃𝑡2 

𝑃𝑡1

𝑆𝑡2

Time 

𝑆𝑃|𝑡1

𝑆𝑃|𝑡2

𝑆𝑃 
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consecutive scans. In this way, computation time is much less while not sacrificing the quality 

of the calculations. 

Figure 3-11: The figure illustrates an example of the percentage overlap for any given iteration 

of the integral. The pixel value is calculated by weighting the corresponding ground values. 

Figure 3-12: The same one hour accumulation illustrated in Figure 3-9 on 28 October 2010 at 

03:00:00 UTC. The figure illustrates the difference after the accumulation technique was 

applied. 

20.1 mm/h 14.1 mm/h 

3.2 mm/h 8.7 mm/h 

18% 

26% 8% 

48% 

12.9 mm/h =
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The result of this final step in the precipitation calculations produces a precipitation field 

that utilises a dual Z-R relationship and also accounts for the spatial and temporal evolution of 

the estimates. The result is illustrated in Figure 3-12 with the same hour accumulation illustrated 

within Figure 3-9. The technique preserves the precipitation depth while producing a realistic 

swath pattern, which is what one would expect a realistic precipitation pattern to look like. 

3.7 Summary 

The QPE algorithm described in this chapter introduced techniques in calculating precipitation 

that were not previously available at the SAWS. The use of a classification scheme to categorise 

reflectivity allows for the use of dual Z-R relationships to try to reduce the errors associated 

with the DSD within different types of precipitation. Spatial errors associated with the temporal 

resolution of the scan strategy are accounted for by morphing a motion vector with the 

precipitation field. Then the desired motion vectors are obtained by employing an OFC 

technique. The next step is to evaluate the performance of the classification scheme. This will 

include determining with what skill the classification scheme can classify precipitation, the 

performance of the Z-R relationships, as well as the spatially smoothed precipitation. The data 

and methods used to evaluate the algorithm will be described in the next chapter. 
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CHAPTER 4 

DATA AND EVALUATION METHODS 

4.1. Introduction 

The methods introduced in chapter 3 needs to be properly verified so that a conclusion can be 

drawn if they are in fact an improvement on the current precipitation scheme at SAWS. The 

algorithms’ performance is measured by comparing their output to rain gauge measurements. It 

is assumed that rain gauges are a true measurement of surface precipitation. The algorithms are 

then compared with one another relative to their performance against the gauges.  This chapter 

will describe the shortcomings and benefits of using rain gauge data for comparison. It will also 

highlight the benefit gained from switching to S-band wavelength radar. Finally the chapter will 

also discuss the methodology used to compare the radar estimates to gauge data, as well as give 

a summary on the advantages and limitations with the verification scores. 

4.2. Rain Gauge Data 

Rain gauges have an extensive history and are seen as the traditional method to measure the 

amount of rainfall within a determined period. It is often regarded as the true precipitation for a 

particular point of measurement. Ironically, this is also a limitation of the rain gauge and the 

next couple of sections will discuss the SAWS rain gauge network and its advantages and 

limitations. 

4.2.1. Rain Gauge Network over South Africa 

As of November 2013 the SAWS rain gauge network consists of 22 manual weather stations of 

which 2 are first order stations, 3 second order and 17 third order stations. The station order is 

classified according to the amount of observations that are taken each day. First order stations 

record observations 3 times daily at 08:00, 14:00 and 20:00 SAST, second order twice a day at 

08:00 and 14:00 SAST and third order once at 08:00 SAST. SAWS also coordinates 1254 

rainfall stations, of which 26 are at official SAWS weather offices. The manual rainfall stations 

are being systematically replaced by the SAWS. A total of 33 Automatic Weather Stations 

(AWS) and 173 Automatic Rainfall Stations (ARS) have been deployed. The rainfall data is 

collected by the SAWS through a rainfall report send in by an observer or through an SMS 
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service by the AWS and ARS stations. Figure 4-1 illustrates the locations of the SAWS surface 

based rainfall observation stations. From Figure 4-1 the irregular spacing and scarcity of the rain 

gauges are evident. This will add to the difficulty of determining an accurate representation of 

the rainfall across large areas and/or the entire country (Deyzel, 2004). 

Figure 4-1: A map illustrating the locations of the 1254 SAWS ground precipitation observation 

network 

4.2.2. Advantages and Limitations 

Certainly, the biggest advantage with rain gauge measurements is their ability to directly 

measure the precipitation rate at the ground. The data collected can be easily interpreted to 

assist with any study. The instrument is easy to install and can become a reliable source of 

precipitation data provided that the instrument is properly maintained. Rain gauge data sets have 

a very long history which makes them favourable for climatological studies. They have also 

proven themselves invaluable with regard to radar calibration (Collier, 1986). 

One of the more prominent limitations with rain gauges is their failure to capture the 

spatial variability of precipitation. It is difficult to interpolate or extrapolate rain gauge data in 

any accuracy or significant detail. At shorter time scales and distances the accuracy of the 

measurement are also dependent on rainfall type. Habib and Krajewski (2002) also 
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demonstrated that random errors exist between rain gauges situated within a distance of 1 metre 

from one another, and highlighted the discrepancies that can occur between radar and rain gauge 

accumulations. Rain gauges are also becoming increasingly elaborate, thus becoming more 

expensive thus opening up a new set of problems. The typical tipping bucket system is limited 

with a measurement resolution of no finer than 0.2 mm. Rain gauges tend to underestimate the 

rainfall in situations of heavy rainfall by as much as 20 to 40%, where the main sources of error 

are turbulence and increase wind flow above the gauge (Wilson and Brandes, 1979). The 

density of the SAWS rain gauge network is also decreasing over time. With fewer and fewer 

gauges available the accuracy of estimating the spatial variability of precipitation is decreasing. 

4.2.3. Study Period 

The main aim of this study is to improve on an operational radar product. Thus, the goal is to 

evaluate the performance of the algorithms under operational conditions. The 2010/11 summer 

rainfall season (October 2010 – March 2011) was the period selected for evaluation of the 

Quantitative Precipitation Estimation algorithms. Since October 2010 the Irene radar provided 

high-quality data at a favourable temporal resolution of 6 minute intervals. Details of the scan 

strategy operational at the time at Irene are discussed in section 4.3.3. The relatively large 

collection of data will help to assess the radar’s performance during the periods when 

precipitation is prevalent within the radar domain. 

To put the season in perspective WB42 records (30 year climatological average from 

1981 to 2010) were obtained from the SAWS. The stations, 8 of them in total within the radar 

domain, are listed in Table 4-1. Not Available (NA) is inserted were there was no data available. 

The total precipitation, together with the climatological average for each month of the study 

period is listed. The monthly average total precipitation over for the 8 stations for the rainfall 

season of October 2010 – March 2011 is illustrated by Figure 4-2. The orange bars represent 

each corresponding month the recorded precipitation for the study period, while the blue bars 

represent the climatological average as calculated from the WB42 records. The months of 

October, November and February indicate that the rain gauges received below normal rainfall, 

with October being the driest receiving only 48% of the climatological monthly average. 

However, December, January and March indicates more precipitation than normal, with 

December being particularly wet receiving 69% more precipitation than the norm. For the 

season the average precipitation over the 8 gauges for the six month period was 105.2 mm, 

while the average climatological precipitation for the 8 station of the same six month period is 

93.0 mm. Thus, the season received 13% more precipitation than normal.
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Table 4- 1: Rain gauge stations listing the total precipitation per month compared to the Climatological value. Not Available (NA) is inserted were 

there was no data available and the direction to gauge and range to gauge is respective to the Irene S-band radar. 

Total Precipitation (mm) 

STATIONS 

Direction 

to Gauge 

(°) 

Range to 

Gauge (km) 

October 2010 November 2010 December 2010 January 2011 February 2011 March 2011 

Station 

Tot. 
Clim 

Station 

Tot. 
Clim 

Station 

Tot. 
Clim 

Station 

Tot. 
Clim 

Station 

Tot. 
Clim 

Station 

Tot. 
Clim 

IRENE WO 0.0 0.0 24.2 67.4 62.8 99.2 197.7 119.0 196.3 120.8 117.8 100.6 106.2 90.5 

JHB BOT TUINE 218.1 34.0 35.6 63 51.6 79 186.2 111 111.2 123 82 97 157.6 85 

JOH INT WO 175.7 26.8 29.4 79 109.9 103 209.6 124 170.1 135 63.8 112 135 101 

PILANESBERG 306.1 122.0 6.6 51 60.6 63 249 101 130.4 86 32.6 87 147.8 77 

RUSTENBURG 286.2 102.3 5.2 56 90.6 69 NA 94 NA 108 NA 85 86.6 69 

SECUNDA 124.1 117.8 65.4 88 77.8 114 193.4 136 178.2 149 20.6 89 NA 81 

VEREENIGING 199.4 77.9 23.4 63 79.4 86 208.6 104 NA 106 NA 69 66.8 74 

WARMBAD 6.2 113.0 65 59 29.8 86 112.6 129 NA 112 NA 82 102 83 

Average = 31.9 65.9 70.3 87.4 193.9 114.9 157.2 117.3 63.4 90.2 114.6 82.5 

Ave Total = 105.2 93.0 
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Figure 4-2: The average precipitation for the rainfall season of October 2010 – March 2011for 

the 8 station with WB42 data. The average total precipitation for each month (orange) is 

compared to the average total climatological precipitation (blue). 

4.2.4. Quality Control of Gauge Data 

Rain gauges within a 300km radius of the Irene radar was selected for the study period. Due to 

gauge measurement errors and unreliable gauge hardware, the gauges needed to be extensively 

quality controlled (QC) before comparisons with radar data could be made. The first step was to 

examine the data for unrealistic values such as negative numbers and extreme maxima. The next 

step was to flag gauges that had less than 22% of data available. This equates to ± 40 days of 

data out of the 182 day study period. Most of the flagged gauges had intermitant reports, were 

not reliable and had to be removed from the data set. A 25km2 box was then aggregated over 

the Irene radar domain. The correlation-coefficient between precipitation measurements and 

corresponding p-values were calculated, as defined by Wilks (2005), and compared between 

gauges within this 25km2 box. Thus, all gauges that exceed the p-value test level of 5%, the 

most commonly used significance level (Wilks, 2005), were considered as insignificant and 

were removed from the dataset. This resulted in removing gauges that were reporting zero 

millimetres of rainfall for more than 90% of the study period. Finally, the data of the remaining 
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gauges was plotted and manually inspected for any irregularities in the data and gauges with 

unrealistic precipitation data were removed. 

Figure 4-3 illustrates the locations of the rain gauges that made it through the QC process. 

The blue dots in the figure represent gauges that are capable of measuring precipitation in an 

hourly temporal resolution while the red dots are 24 hour totals of precipitation measured at 

08h00 SAST daily. A total of 70 hourly gauge and 333 twenty-four hour gauges were available 

for the study. It is worth noting that even with the strict QC procedures that there still may be 

some errors present within the rain gauge dataset. 

Figure 4- 3: Locations of rain gauge that made it through Quality Control (QC) within a 300km 

radius of the Irene radar. Red gauges are only capable of daily totals while blue gauge are 

capable of an hourly temporal resolution.  

4.3 Weather Radar Data 

The following subsections will discuss the Irene weather radar data and some of the advantages 

and limitation associated with it. 
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4.3.1. The Irene Radar 

This study primarily focuses on the Irene Weather Radar (See Figure 4-4). The radar is 1560 m 

Above Mean Sea Level (AMSL) and is situated at 25.91°S and 28.21°E, about 25km North of 

O.R. Tambo International Airport. Construction of the radar started in October 2009 and was 

completed by mid-November 2009. The first volume scan was subsequently received on the 

afternoon of 12 November 2009. After some fine tuning of the system the radar was 

commissioned in January 2010 for operational use.  A scan strategy, which is described in 

section 4.3.3., was implemented. The scan strategy ran operationally until October 2010 when 

the use of the Doppler filter was introduced. This decreased the effects of Ground Clutter (GC) 

and Anomalous Propagation. In July 2011 the radar firmware and controller software were 

upgraded. A new scan strategy with reduced range to improve data quality and unambiguous 

Doppler velocity measurements was installed. This scan strategy is not discussed in detail 

because it only became operational after the data was collected for this study. 

This METEOR 600S radar from the German company, Gematronik Weather Radar 

Systems, operates at a frequency of 2.7 – 2.9 GHZ, which is designated as the S-band 

frequency. Thus the radar has an electromagnetic wavelength of ±10cm. The radar can alternate 

between pulse durations of 0.8-3.3µs as well as a Pulse Repetition Frequency (PRF) of between 

250-1400Hz. Four volume data files are created: 

1. The raw or uncorrected reflectivity field in dBZ, which show the reflectivity field

without undergoing any filtering.

2. The corrected reflectivity field in dBZ with pre-processed filters applied such as the

Doppler filter

3. The Doppler velocity in m/s, which is the radial component of the wind velocity relative

to the radar

4. The spectrum width or standard deviation in m/s, within a sample volume relative to 

the mean Doppler velocity in m/s.

The antenna has a diameter of 8.5 m, which allows for an antenna gain of 44.5 dB as well as a 

half power beam width of 1°. The magnetron transmitter is capable of producing a peak power 

output of 850 kW and the super heterodyne receiver has a dynamic range of 105 dB.  

Software that allows for maintenance and control of the radar is provided by the Ravis® 

software suite and meteorological products are controlled through the Rainbow® software suite.  

The 600S radar can also be easily upgraded to Dual-Polarized capabilities if the need arises. 

This will allow four additional products to be generated, namely:  
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Figure 4-4: The Irene METEOR 600S S-band radar during construction in 2009, (a) and (b), as 

it stands today (c) at the Irene WO just outside Pretoria, Gauteng. 

(a) 

(b) 

(c) 
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1. Differential Reflectivity (ZDR),

2. Differential Phase shift (ΦDP),

3. Specific Differential Phase Shift (KDP) and,

4. Polarimetric Correlation Coefficient (ρHV).

Currently the radar at Irene is operated in single polarisation, pulsing with the electric 

component of the electromagnetic wave at a horizontal orientation. For a detailed description of 

the METEOR 600S specifications, please refer to the online documentation available on 

Gematronik webpage. 

Figure 4-4 (c) is a photograph of the S-band Radar as it stand today at the Irene WO. In 

Figures 4-4 (a) and (b) the radar can be seen during different phases of construction. Figure 4-4 

(a) show the construction of the 15m tower completed and the 8.5m reflector assembled, ready 

to be hoisted onto the tower. In Figure 4-4 (b) the reflector is secured on top of the tower and 

construction of the radome is underway. The tiles from which the radome is constructed will 

form a round sphere protecting valuable radar equipment from damage due to weather elements.  

4.3.2 Advantages and Limitations 

Moving from a C-band radar network to a network that will operate in the S-band frequency has 

a number of advantages that will be described in this section. The only real disadvantage S-band 

radars have is that they are expensive to build and maintain. Below, two advantages are 

described that make the S-band worth its while, if the budget allows for it. 

i. Attenuation

In a radar context, attenuation is defined as the loss of power when electromagnetic radiation 

passes through a medium. The amount of power that is lost is dependent on (i) the frequency of 

the beam and (ii) the density of the medium through which the radiation has to travel. Thus 

attenuation is the loss of power that the electromagnetic radiation will experience travelling 

from the antenna to the target and back again. This reduction of intensity along the transmitted 

path can be expressed as: 

𝑑𝑃𝑟̅ = 2𝑘𝐿𝑃𝑟̅𝑑𝑟 (4-1) 

where 𝑑𝑃𝑟̅ is the incremental reduction of backscattered power 𝑃𝑟̅ caused by absorption and

scattering of the medium between the radar set and the target, dr is the increment of the range r, 

and 𝑘𝐿 is the attenuation coefficient having dimension (length)-1 (Battan, 1973). The factor 2 is
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included in the equation due to the path having to travel to and from the target. By integrating 

Equation 4-1 over a path of range r and expressing it in terms of decibels, it can be written as: 

10 log
𝑃𝑟̅

𝑃𝑟0̅̅ ̅̅
= −2∫ (𝑘𝑔 + 𝑘𝑐 + 𝑘𝑝)𝑑𝑟

𝑟

0

(4-2) 

where 𝑃𝑟0̅̅ ̅̅  is the power which would have been received had there been no attenuation. The

advantage of expressing the equation in decibels per unit is that the different causes of power 

loss can be simply added to give the total attenuation. Here𝑘𝑔, 𝑘𝑐 and 𝑘𝑝 represent attenuation

by atmospheric gases, clouds and precipitation respectively.  

Attenuation effects can result from both absorption and scattering. Gases and clouds 

primarily act as absorbers but scattering needs to be consider when large hydrometeors are 

present. Attenuation through gases at the 3 most used weather radar frequencies (10cm, 5cm 

and 3cm) are usually small and can be ignored. However, when shorter wavelengths are used 

such as the K-band (1.25cm) gases like water vapour can cause significant power losses. Gunn 

and East (1954) illustrated that water in clouds attenuates electromagnetic radiation more than 

ice particles. However, at the 5- and 10cm wavelengths cloud attenuation can be safely ignored.  

Attenuation can also be caused by precipitating particles, these includes rainfall, snow 

and hail. When considering rainfall Wexler and Atlas (1963) list a table (Table 4-2) of one way 

rain attenuation at different frequencies. The values listed in the first column as M-P were 

calculated from the standard Marshall-Palmer distribution assuming Mie scattering. The 

Modified M-P took into account that at diameters below 1.0-1.5mm the drop-size spectra differ 

from the standard M-P. Mueller and Jones (1960) used raindrop spectra attained from shower-

type precipitation. The last column list 𝐾′ =
𝑘𝑝

𝑅
  as a function of wavelength at the temperatures 

indicated in the column. Attenuation for most wavelengths is proportional to R.  From Table 4-2 

it can be concluded that rain attenuation at the 10cm wavelength can be safely ignored. Using 

the values from Mueller-Jones an S-band wavelength radar at a precipitation rate of 100 mm/hr 

will only lose 0.092 dB/km. Thus, the power loss through a storm that is 10 km wide will only 

be 1.84 dB. A C-band radar will experience losses of around 6.6 dB travelling through a similar 

storm. With the standard Marshall-Palmer reflectivity to rain-rate conversion a 100 mm/hr is 

equivalent to 55dBZ. Power losses for an S- and C-band radar would result in a rain-rate 

measurement of 76.6 mm/hr and 38.6 mm/hr respectively. Although snow and hail affects 

attenuation of the electromagnetic radiation differently than rain, the effects on the different 

wavelength remain the same. The advantages an S-band radar has over a C-band radar with 

precipitation measurements are clear. 
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Table 4-2: One-Way Rain Attenuation K’ (
𝑑𝐵/𝑘𝑚

𝑚𝑚/ℎ𝑟
) = (Wexler and Atlas, 1963) 

Wavelength (cm) M-P (at 0°C) Modified M-P 

(at 0°C) 

Mueller-Jones 

(at 0°C) 

Gunn and East 

(at 18°C) 

0.62 0.50-0.37 0.52 0.66 - 

0.86 0.27 0.31 0.39 - 

1.24 0.117R0.07 0.13R0.07 0.18 0.12R0.05 

1.8 - - - 0.045R0.11 

1.87 0.045R0.10 0.050R0.10 0.065 - 

3.21 0.011R0.15 0.013R0.15 0.018 0.0074R0.31 

4.67 0.005-0.007 * 0.0053 0.0058 - 

5.5 0.003-0.004 * 0.0031 0.0033 - 

5.7 - - - 0.0022R0.17 

10 0.0009-0.0007 

* 

0.00082 0.00092 0.0003 

*The first value applies at 2 mm/hr, the second at 50 mm/hr, and there is a smooth transition

between them. 

Figure 4-5 illustrates an example of how attenuation would look on a radar display. In 

this particular case at the Bloemfontein Enterprise C-band radar the storm detected on 20 

November 2001, directly to the west of the radar caused attenuation, resulting in precipitation 

behind the storm (from a radar perspective) to be under-estimated. A large sector of stratiform 

precipitation (indicated by the red V shape on Figure 4-5), is not being detected by the radar due 

to the presence of the heavy precipitating storm to the west of the radar.  

Figure 4-6 illustrates the Enterprise C-band radar at Bloemfontein detecting a severe 

storm 80km to the North-West of the radar. Figure 4-6 (a) displays the storm’s position relative 

to the radar. Figure 4-6 (b) displays the storm and illustrates a feature that often accompanies 

severe storms when operating in the C-band range. The feature pointed out by the arrow marked 

A is attenuation caused by the storm core. It consists of very large water drops and water coated 

hail, which is evident from the reflectivity above 60 dBZ. The bean shape echo is thus a result 

of attenuation to the back of the storm causing under-estimation of its intensity. This feature 

will shift its position relative to the position of the radar as the storm progresses. This will cause 

errors in estimating areal rainfall. Trying to correct for these errors before estimating 
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precipitation can often lead to larger errors. Hitschfeld and Bordan (1954), showed that 

precipitation estimates that had no attenuation correction applied to the reflectivity field often 

illustrated better results. By estimating precipitation at non-attenuating wavelengths, like the S-

band radar located at Irene, would yield the best result for quantitative precipitation estimations. 

Figure 4-5: The Enterprise C-band Radar at Bloemfontein illustrating signs of attenuation. A 

sector of lower reflectivity is observed directly to the West of the storm (relative to the radar) 

compared to the surrounding region. This sector is mark by the red lines. 

Figure 4-6: Reflectivities from a storm detected by the Enterprise C-band Radar at 

Bloemfontein show signs of attenuation. The location of the storm relative to the radar is 

(a) (b) 

A 
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illustrated in (a). Hail inside the storm (b) is causing significant attenuation, so part of the 

storm away from the radar is significantly underestimated. This region is pointed out by the 

arrow marked A.  Note the high reflectivities in the core in the range 65 – 70 dBZ. 

ii. Radio LAN Interference

Originally, the main open band used by wireless transmitting devices was about 2.4GHz. 

However, the overwhelming popularity of these devices, and a number of other services that 

share the spectrum, led to the frequency range becoming congested. At the World Radio 

Conference in 2003 portions of the 5GHz band were allocated for unlicensed use by mobile and 

Radio LAN (RLAN) devices. The 5150 – 5350 MHz and 5470 – 5725 MHz bands were 

allocated for these devices and the use of dynamic frequency selection (DFS) was made 

mandatory for these frequency bands. DFS allows for an access-point to automatically select a 

frequency with low interference. The Independent Communication Authority of South Africa 

(ICASA) is responsible for issuing licenses for devices to operate in specific frequencies in 

South Africa. Unfortunately, ICASA did not enforce DFS to be switched “ON” in RLAN 

devices approved for use in South Africa. The resulting interference to the C-band weather 

radars, which operate in the “meteorological” band of 5600 – 5650 MHz, is shown in Figure 4-

7. The first RLAN interference was observed at the end of 2006. ICASA played a big role in

locating and attempting to ensure the closing down of RLAN links operating in the C-band 

radars’ frequency, but due to the large number of devices, the Authority could not keep up with 

policing the users of the technology (de Waal et al., 2008). 

The consequence is that any attempt to accumulate precipitation reflectivities in the C-

band range is severely compromised. The RLAN interference effectively renders the 

precipitation products from the radar useless. In an attempt to minimize the damage from the 

interference, the National Centre for Atmospheric Research (NCAR), which is also developers 

of the TITAN software, developed a filter to reduce the unwanted interference. Since the radar 

is a non-Doppler system, the only data available for filtering is the radar reflectivity. Using the 

signal-to-noise ratio (SNR) the filter considers one beam at a time. The interference shows as 

the SNR at some level above the calibration noise of the radar receiver. The filter algorithm 

computes a histogram of the SNR values and looks for a strong peak in the histogram. Weather 

signals are generally spread across the histogram while interference signals will have a spikier 

SNR and will show up concentrated in a small number of bins. The Power received from the 

interference is estimated by the chosen SNR. This estimated power is then subtracted at each 

range gate and the reflectivity is then computed from the remaining power (de Waal et al., 

2008). 
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The filter manages to remove most of the interference but the result is not perfect. It also 

has a tendency to remove weak stratiform precipitation. Figure 4-8 illustrates an example of this 

at the Port Elizabeth radar. The first image at 10:21:10 UTC shows that the filter was active; in 

the next image at 10:25:52 UTC the filter was deactivated. At this instance no interference was 

detected during this stratiform rain event, but the active filter still removed a crucial amount of 

precipitation information. 

Figure 4-7: Radar displays showing RLAN interference at Irene, Durban and Port-Elizabeth 

radars. 

The consequence is that, even if the interference filter worked perfectly and removed 

none of the weather related echoes and all of the inference echoes, RLAN interference will still 

cause significant errors in precipitation estimation. The reason for this is that, when a storm 

Irene Durban

Port-Elizabeth

RLAN interference on the C-band radar frequencies at 

various locations
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moves into an area suffering from severe interference, the storm will be filtered with the rest of 

the inference or its intensity significantly reduced. The best solution is to change the operating 

frequency of the radar, hence the decision of the SAWS to shift to the 2.8GHz S-band radar 

systems.  

4.3.3 Scan Strategy 

The S-band radar at Irene makes use of a volume scan technique. The Antenna rotates in 

azimuth at 1° intervals while continuously pulsing. The first scan starts at the highest elevation 

of 30° and make twelve steps down to an elevation of 0.5° where the scan finishes, before 

repeating. The elevation scans are graphically illustrated in Figure 4-9 by the blue lines. Each 

blue line represents the centre of the beam axis and the corresponding height above level ground 

with range takes the earth’s curvature and standard refraction of the atmosphere into account. 

The scan process takes about 355 seconds and gives the radar an overall temporal resolution of 

360 seconds (6 minutes). 

Figure 4-8: Example of the Port Elizabeth radar running with the filter (Left), and without 

(Right). The two image are five minutes apart. 

The high temporal resolution was selected due to the nature of thunderstorms on the Highveld. 

A single cell thunderstorm life-cycle can be as short as 30 minutes. To fit twelve elevation scans 

within a 6 minute time frame the antenna speed varies from the top elevation to the bottom. The 

antenna will rotate a 30°/s at the top to 10°/s at the bottom, because the lower the radar beam 

gets, the further it needs to travel through the atmosphere to capture the reflectivities due to 

RLAN interference filter 

Port-ElizabethPort-Elizabeth
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precipitation below a typical maximum height of 16 km. The pulse duration will alternate from 

0.85µs for the higher elevation and 1.64 µs for the lower elevation. The longer pulses at the 

lower half of the scan ensure that enough power is transmitted to observe meaningful 

reflectance. The resulting pulse length is 125 m, which are range-averaged over 4 samples to 

produce 500 m range bins. 

Due to the radar having Doppler capabilities the Doppler Dilemma influences the setup to 

the radar. The maximum range a radar can operate at and the maximum unambiguous velocity 

the radar is capable of detecting is all depended on the Pulse Repetition Frequency (PRF). 

Solving the equation that determines the maximum range and maximum unambiguous velocity 

results in the follow equation known as the Doppler Dilemma: 

 

 

Figure 4-9: An illustration of the height AMSL with range of each elevation in the radar scan 

strategy (blue line).  

 

𝑉𝑚𝑎𝑥𝑟𝑚𝑎𝑥 =
𝑐𝜆

8
 (4-3) 

 

Here 𝑉𝑚𝑎𝑥 is the maximum unambiguous velocity and 𝑟𝑚𝑎𝑥 the maximum range. The speed of 

light is represented by c and the radar wavelength by λ (Reinhart, 2004). The term on the right is 
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a constant because the wavelength of the radar cannot be changed. The result is that, in order to 

detect large velocities, the range of the radar needs to be small (and vice versa) in order to detect 

echoes at long ranges. A partial solution to this is to increase the wavelength of the radar, which 

is another advantage the S-band radar has over its C-band counterpart. The PRF can be no 

higher than 500 Hz for the radar to operate successfully at a 300 km range. However, this results 

in a maximum unambiguous velocity of only 13.1 ms-1 (47.1 kmh-1), even with the use of the S-

band’s longer wavelength. A dual-PRF setting can be activated that allows the radar to pulse at 

alternate PRF’s of 500 Hz and 400 Hz (Joe and May, 2003). The result of this strategy is that 

the radar can operate at a 300 km range and detect a maximum unambiguous velocity of 52.3 

ms-1 (188.28 kmh-1). This allows the Doppler filter to operate more efficiently, which is crucial 

for filtering ground clutter and anomalous propagation. This in return will allow for better 

precipitation estimation.  

Table 4-3: The volume scan strategy used during the study period. 

Elevation Scans (°) (top-bottom) 30, 22, 16.8, 12.2, 9.9, 7.9, 6.2, 4.7, 3.4, 2.3, 1.3, 0.5 

Beam Width (°) 1 

Range (km) 300 

Bin resolution (km) 0.5 

Pulse Duration (µs) 0.85-1.64 

PRF (Hz) 500 - 1200 

Azimuth Interval (°) 1 

Samples per Beam 18 to 22 

Antenna Speed (°/s) 30 to 10 

Temporal resolution (S) 355 

However, the dual-PRF method has its drawbacks due to the fact that it decreases the beam 

sampling to between 18 and 22 samples per beam. The result is that the signal-to-noise filter 

will remove crucial information. Thus, the decision was made in July 2011 to reduce the radar’s 

range to 200 km in order to receive higher quality data from the radar. Table 4-3 lists a 

summary of the scan parameters of the S-band at Irene as set during the study period of the 

2010/2011 summer rainfall season. 

4.3.4 Data Pre-Processing 

After each scan interval, four data files are produced as mentioned in section 4.3.1. The files are 

in the Gematronik volume format (VOL). These files consist of 2 parts, an XML and binary 
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part. The XML part consists of Meta data describing the data set and the binary data that 

accompanies the file. The binary data is stored in polar coordinates, with each value 

corresponding to a particular elevation and azimuth angle scanned as well as the range from the 

radar. However, the SAWS radar data processing system is built around the MDV 

(Meteorological Data Volume) format and uses the TITAN system extensively. The MDV file 

is also in binary format whose main advantage is the fast data access speed that is a result of its 

binary nature. Each MDV file consists of a file header, which defines the layout and content of 

the data portion which follows. The format is capable of storing multiple “Fields” (such as 

reflectivity, precipitation, velocity, etc.) within one file at a number of “Levels” and coordinate 

systems. This allows for the data to be represented in its 3 dimensional structure relative to the 

radar. 

In order to utilise the data in this study the VOL data needed to be converted into MDV 

format. The TITAN system has an application GemVolXml2Dsr that allows the unpacking of 

VOL data as FMQ (File Message Queue) data. FMQ data is a temporary storage file that holds 

information about the current radar scan, which is then later converted in to MDV format for 

permanent storage. From the FMQ file, the TITAN application Dsr2Vol can generate the user 

specified MDV files. For this study the corrected reflectivity file (dBZ.vol), assuming that all 

ground clutter is removed by the Doppler filter, was used to create the instantaneous MDV file. 

The raw VOL data was interpolated to a Cartesian coordinate system with 1 km square 

horizontal grid cell size and a stack of 37 vertical levels separated by 0.5km. 

4.4 Quantitative Precipitation Estimation (QPE) Algorithms 

The next few section will discuss how the QPE algorithms were calculated using TITAN 

applications and extracted CAPPI levels. 

4.4.1 CAPPI Levels 

One of the objectives of the study was to evaluate how the algorithm performs at different 

heights above the radar. Thus, a number of CAPPI levels were extracted on which to run the 

precipitation algorithm. The extracted CAPPI levels chosen were: 2.5, 3.0, 3.5, 4.5, 5.5, 7.0, 8.5 

and 10.0 km AMSL. With the Radar at 1.5km AMSL the CAPPI levels translate to 1.0, 1.5, 2.0, 

3.0, 4.0, 5.5, 7.0 and 8.5 km respectively above the Radar. The choice was limited to 8 CAPPI 

levels due to computation time limitations. Because of the logical assumption that precipitation 

measurement will be more representative of the rain gauge measurements closer to the surface 

of the earth, the CAPPI levels are separated by 0.5km in the lower atmosphere, 1.0km in the 

middle and 1.5 km in the upper atmosphere. The CAPPI levels are graphically illustrated in 

Figure 4-10 by the red lines. It shows clearly that the lower CAPPI levels will have the least 
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amount of information due to increase in height with range of the lowest elevation scan of 0.5°. 

The 2.5 km level CAPPI will have a maximum range of only 73 km from the radar. The range 

of the CAPPI levels will increase with the increase in height of the CAPPI level as the base-scan 

rises above ground. Thus, only the 10.0 km CAPPI level has the 300 km range of the radar. A 

similar situation is observed with the near-by range of the CAPPI levels at height. This is due to 

the blind spot above the radar known as the cone of silence. The result is that the 10.0 km 

CAPPI level will not have any data within 17km range of the radar. 

4.4.2 Precipitation Algorithms 

For each of the extracted CAPPI levels the dBZ reflectivity is converted into precipitation 

estimates as described in chapter 3. Two precipitation products are created at different stages in 

processing the CAPPI levels. The first precipitation product, which is referred to as the 

Classified Rain Rate (CRR), is generated using the dual Z-R relationship with the classification 

technique applied, i.e. no morphing of the motion vectors was done. The CRR algorithm created 

from CAPPI data will be used in the verification process to determine if it is an improvement to 

the single Z-R relationship used in the TITAN algorithm currently operational at the SAWS (see 

section 4.4.3).  

Figure 4- 10: An illustration of the height above AMSL with range of each elevation in the 

radar scan strategy (blue line). The extracted CAPPI levels are represented by the red lines. 

The grey rectangle illustrates the region of 17 – 73 km range from radar where all the CAPPI 

levels are comparable to rain gauges, which lie below the cylinder. 
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The second algorithm it the CRR precipitation estimate which is morphed with the 

motion vectors and will be referred to as the Optical Flow Rain Rate (OFRR). This algorithm 

will then be verified against the other precipitation algorithms in order to determine if there are 

any improvements obtained by using the motion vector morphing technique. 

Both algorithms produce instantaneous precipitation estimates valid for the current 6 

minute scan. The files are ingested into the PrecipAccum application in the TITAN software 

(describe further in section 4.4.3 below) to produce 1 hour and 24 hour accumulations so that a 

comparison with gauge data can be made. 

4.4.3 TITAN Precipitation 

The TITAN algorithm that runs operationally at the SAWS for the Irene radar is generated by 

the PrecipAccum application within TITAN. The data is converted into a Cartesian coordinate 

plain MDV file as described in section 4.3.4. The MDV file is input to the PrecipAccum 

application, which is set up to search for the maximum reflectivity within a 0 – 30 km vertical 

column in the Cartesian plane. A single Z-R relationship, the Marshall-Palmer relationship 

(200R1.6), is applied to the maximum reflectivity across the field to produce precipitation 

estimates. As one of the objective is to see if the CRR and OFRR algorithms can improve on the 

TITAN algorithm, it was to decided not to adjust any of parameter that were currently 

producing operational precipitation product. A 2 dimensional MDV file with the surface 

precipitation estimates in millimetres of rain (mm) is produced by the application. Due to 

discrepancies with the start and end time within the MDV file as a result of the conversion from 

raw volume data, the precipitation estimates are forced to be scaled by 6 minute intervals so that 

they will correspond to the radar scan temporal resolution.  

Accumulations are also generated by the PrecipAccum application. By altering the input 

parameters so that the application reads precipitation values instead of reflectivity values, 

accumulations can be calculated for any desired time interval. One hour and twenty-four hour 

accumulations were created by the application. The application was setup to produce an output 

file at the top of each hour, weighting the start and end scans for the accumulation appropriately 

if they should overlap. However, this latter effect should be trivial because the radar scan was 

synchronised to start its scanning with the start of every hour. The precipitation values can now 

be extracted and compared with surface gauge observations. 

4.5 Verification of QPE Performance 

The next few sections will discuss the verification techniques used to evaluate the algorithm 

with gauge measurements. 
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4.5.1 Evaluation Method 

Due to the limitations of gauges to point locations, and their relative errors in measurement 

discussed in section 4.2.2, a point location evaluation method was selected instead of a spatial 

comparison. The natural variability of precipitation can affect the verification scores. Rain 

gauges underneath the Irene radar are sparse and irregularly spaced. Thus, interpolating the 

gauge observations will increase the uncertainty in the rain gauge data, which will be dependent 

on the particular weather event and spatial resolution. By doing a point comparison, the only 

uncertainty with the data remains with the gauges’ physical measurement. 

Contemporaneous pixels of precipitation were extracted for comparison with collocated 

gauges. Because radar measures precipitation within the atmosphere and not on the surface the 

extracted precipitation estimate needs to account for wind drift to be comparable to the rain 

gauge measurement. Thus, an average of 9x9 pixels over the corresponding gauge is used for 

the comparison. A series of continuous variable and dichotomous scores obtained through using 

a threshold were used to evaluate the precipitation algorithms. The TITAN algorithm using a 

single Marshall-Palmer Z-R relationship was used as a baseline score. The CRR and OFRR 

algorithms will be compared to the each other and the TITAN algorithm to illustrate any 

improvements. 

A cylindrical region within 17 – 73 km from the radar was defined due to radar scan 

geometry effects, as discussed in section 4.4.1 on CAPPI level extraction. The region is 

illustrated by the grey rectangle in Figure 4-10. It allows for the direct comparison of all 

precipitation algorithms on all CAPPI levels. Figure 4-11 illustrates how the gauges, which are 

distributed around the radar within this region, will be used for the verification. In total the 

region includes 56 gauges, of which 15 are capable of 1 hour accumulation. 

Figure 4- 11: Range gauges locations within 17 – 73 km range from radar where all CAPPI 

levels are comparable to the rain gauges. 
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How the different algorithms perform with respect to range from the radar also needs to 

be analysed. It is for this reason that the gauges have been divided into circular regions related 

to the range from the radar. An interval of 30km was selected because it allows for a reasonable 

amount of hourly and daily gauges to be included within each interval. Figure 4-12 illustrates 

the distribution of the gauges within each region.  

Figure 4- 12: A sequence of plots separated by a range interval of 30km. The plots illustrate the 

gauge distribution between each range interval. The number in parenthesis shows the number 

of each gauge type available   
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There is a reasonable distribution of gauges for each interval. However, large gaps do 

start to appear in the Northern and North-Western sectors when a range 210 km is reached. 

Continuous variable and dichotomous scores obtained through thresholds can be compared to 

determine the algorithms performance with range. 

4.5.2 Evaluation Scores 

This section discusses the evaluation scores using (i) continuous variable and (ii) dichotomous 

(yes/no) verifications. A brief overview will be given below discussing the advantage of the 

scores in terms of radar precipitation. The reader is referred to Stanski, et al. (1989) and Wilks 

(2005) for further details. 

i. Continuous Variable Verification 

A good first look at the data and a simple way to visualize them is by drawing a scatter plot. The 

scatter plot will give a first indication of how well the radar estimates correspond to the 

observed values. A perfect representation of the data will be if the plot of data-points is located 

on the 45 degree diagonal of the scatter plot. A bias or a tendency for the radar to over or under 

estimate precipitation, from the observed values, will be indicated if the plotted values have a 

tendency to lie above or below the 45 degree diagonal. Scores like the correlation coefficient, 

Mean Error (BIAS) and root mean square error (RMSE) can be calculated to get a summary of 

the correspondence of the two sets of data. The correlation coefficient is calculated by, 

 

𝑟 =
∑ (𝐸𝑖 − 𝐸̅)(𝑂𝑖 − 𝑂̅)𝑖

√∑ (𝐸𝑖 − 𝐸̅)
2

𝑖

      (4-4) 

 

where E is the radar estimate and O the observed gauge value and over-bars indicate means. The 

correlation coefficient measures the linear association of the data, i.e. it shows how well the 

radar estimates correspond to the observed values. A score as close to the perfect score of 1 is 

desirable. The correlation coefficient is sensitive to outliers in the data. Thus, it can easily be 

influenced by poor quality of gauge measurements so great care in quality control of the gauge 

data is required.  

The Mean Error or additive BIAS is a good indicator of the average error within the 

dataset and is calculated by, 

 

𝑀𝐸 = 
1

𝑁
∑(𝐸𝑖 − 𝑂𝑖)

𝑁

𝑖=1

 (4-5) 
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where E and O is the same as Equation 4-4 and N is the total number of observations. The score 

indicates the direction of the error rather than the magnitude and a perfect score of 0 is sought-

after. It is possible to get a good score if there are compensating errors.  

The root mean squared error (RMSE) gives the average magnitude of the estimates error 

and a perfect score of 0 is desirable. The square law will put greater influence on large errors 

which is good when large errors are undesirable. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐸𝑖 − 𝑂𝑖)

2

𝑁

𝑖=1

(4-6) 

ii. Dichotomous (yes/no) Verification

Dichotomous verification is performed by constructing a contingency table through use of 

thresholds. Three thresholds were selected for comparison namely: 

1. A 1 mm threshold,

2. A 5 mm threshold and,

3. A 10 mm threshold.

By evaluating yes, both radar and gauge received precipitation above the threshold; or no both 

are below the threshold, etc. The frequency of yes/no occurrences are constructed into a 

contingency like table format as displayed below in Figure 4-13.  

Observed 

YES NO 

E
st

im
a

te
s YES HITS 

FALSE 

ALARMS 

NO MISSES 
CORRECT 

NEGATIVES 

Figure 4-13: The format of a contingency table constructed by the use of thresholds. 
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A large variety of categorical statistics can be calculated from the elements in the contingency 

table to describe particular aspects of the different precipitation algorithms performance. One of 

the most common statistics to calculate is the accuracy (Equation 4-7).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
ℎ𝑖𝑡𝑠 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙
(4-7) 

𝑡𝑜𝑡𝑎𝑙 = ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 +𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (4-8) 

The accuracy shows the overall percentage of estimates that were corresponding with the rain 

gauges. A perfect score will be 1, for 100% of cases. However, the score can be very misleading 

because it heavily influenced by correct negatives. Because the estimates and rain gauges are 

physical measurement of the atmosphere it is very easy for both measurements to return 0 mm 

of rainfall. For the majority of the study period there will be no rain over the gauges resulting in 

a high frequency of correct negatives. Thus, it will be expected that the accuracy scores will be 

high even if algorithms perform poorly. 

The frequency BIAS (Equation 4-9) is another useful score to use. It measures how the 

frequency of the estimated "yes" events compare to the frequency of observed "yes" events, i.e. 

the score indicates whether the estimates has a tendency to under-forecast or over-forecast 

observed events. A perfect score is 1, while 0 and ∞ show no skill. However, it does not 

measure how well the estimates correspond to the observations. 

𝐵𝐼𝐴𝑆 =
ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
(4-9) 

The Probability of Detection (POD) and False Alarm Ratio (FAR) should be used in 

conjunction with one another, because both are very sensitive to the climatological frequency of 

their respective event. The POD indicates what percentage of the observed “yes” events were 

correctly estimated and the FAR indicates what percentage of estimated “yes” events actually 

did occur; i.e. using a 1 mm threshold the POD will give you the percentage of radar estimates 

that are more than 1 mm when the gauge measured more than 1 mm. The opposite is true for the 

FAR. For the POD in Equation 4-10 a perfect score is 1, while the FAR in Equation 4-11 a 

score of 0 is preferable. 

𝑃𝑂𝐷 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
(4-10) 
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𝐹𝐴𝑅 = 
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
(4-11) 

The Critical Success Index (CSI) illustrates how well the estimated “yes” event corresponded to 

the observed “yes” events. This is a particularly good score to use for precipitation because it 

ignores correct negatives. The CSI is only concerned with estimates that occurred and can thus 

be viewed as the accuracy of the estimates. It is heavily dependent on the climatological 

frequency of the hits and hits can occur purely due to random chance. By using the Equitable 

Thread Score (ETS) one can account and adjust for the hits that occur due to random chance. It 

is a good score to use when comparing different algorithms because it allows for the scores to 

be compared more fairly across different regimes. Both scores work on perfect score of 1. 

𝐶𝑆𝐼 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
(4-12) 

𝐸𝑇𝑆 =  
ℎ𝑖𝑡𝑠 − ℎ𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 − ℎ𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚
(4-13) 

ℎ𝑖𝑡𝑠𝑟𝑎𝑛𝑑𝑜𝑚 =
(ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠)(ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠)

𝑡𝑜𝑡𝑎𝑙
(4-14) 

The Heidke Skill Score (HSS) will illustrate the accuracy of the estimates relative to that of 

random chance. In meteorology it is better to measure the skill against climatology or 

persistence. Thus, the HSS measures the percentage of estimates that are correct after 

eliminating the estimates that would be correct due to climatology or persistence. The perfect 

score is 1 while 0 and below indicates no skill at all.  

𝐻𝑆𝑆 =
(ℎ𝑖𝑡𝑠 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) − (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)𝑟𝑎𝑛𝑑𝑜𝑚

𝑡𝑜𝑡𝑎𝑙 − (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)𝑟𝑎𝑛𝑑𝑜𝑚
(4-15) 

(𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡)𝑟𝑎𝑛𝑑𝑜𝑚=

1

𝑡𝑜𝑡𝑎𝑙
[

(ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠)(ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠) +

(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑚𝑖𝑠𝑠𝑒𝑠)(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠)
] 

(4-16) 

The results of the evaluation score will be presented in chapter 5 



83 
 

 
 

4.6 Summary 

The rain gauges underneath the Irene radar domain have been extensively quality controlled. 

However, there may still be some problematic measurement as it is difficult to account for all 

the associated errors with the dataset. The S-band radar at Irene produces high quality 

reflectivity data that is free from RLAN interference and less effected by attenuation, 

particularly over short ranges from the radar. This is favourable for precipitation estimates. 

Ground clutter from the reflectivity data has been removed as well as possible by the Doppler 

filter. The reflectivity data was then converted into 3 precipitation algorithms: 

 

1. The TITAN algorithm uses a single Z-R relationship and is calculated as described in 

section 4.4.3. This is the current operational algorithm at the national forecasting centre 

and will be used as the benchmark to compare improvements from the other algorithms. 

2. The CRR, uses a dual Z-R relationship (section 4.4.2) 

3. The OFRR, uses the dual Z-R relationship and motion vector morphing (section 4.4.2) 

 

These algorithms are evaluated by comparing the estimated values to gauge measurements 

using a point verification technique. Continuous variable and dichotomous verifications scores 

provide sufficient framework to analyse the algorithms. The results will be presented in the next 

chapter. Section 5.2 will report the result from the classification algorithm, Section 5.3 will 

report the performance of the different algorithm and section 5.4 will report on the algorithm 

performance with range from the radar.  
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CHAPTER 5 

ALGORITHM EVALUATION RESULTS 

5.1 Introduction 

In this chapter the results of the verification scores introduced in Chapter 4 will be discussed. 

The classification scheme is to compare 5 minute rain rate values and Vertical Profiles of 

Reflectivity (VPR) to determine whether the classification scheme can accurately distinguish 

convective from stratiform precipitation. The TITAN algorithm is then evaluated using 

continuous variable and contingency table statistics as discussed in the previous chapter. The 

Classified Rain Rate (CRR) and Optical Flow Rain Rate (OFRR) on all CAPPI levels are then 

compared to the TITAN algorithm to determine if there is any improvement. Lastly the 

algorithms are evaluated in terms of range from the radar to estimate the overall performance of 

the algorithms. 

5.2 Results from Classification Scheme 

The classification scheme was analysed using a selected event over the Gauteng area during the 

study period. The 15th and 16th of December 2010 were selected. The precipitation event cause 

localized flooding in parts of Gauteng and provided long durations of both convective and 

stratiform precipitation. A number of 5 minute rainfall station data were analysed within a 75 

km radius of the radar to determine whether convective and stratiform rainfall occurred over the 

stations and whether the classification scheme can accurately distinguish between the two 

precipitation types. Figure 5-1 illustrates the 5 minute rain rate recorded by 2 of these rainfall 

stations namely Wonderboom Airport and Springs Automatic Rainfall Stations (ARS’s). The 

graphs in Figure 5-1 show the recorded rain rate from 2010-12-15 00h00 to 2010-12-16 23h55 

(SAST). The plotted line is a blue colour when the radar CAPPI classification scheme did not 

classify any rainfall, red when stratiform was classified and green when the classification 

scheme determined convective rainfall. Stratiform rain rate is associated with low rain rates for 

extended durations whereas convective rain rate tends to be at a much higher rain rate with 

shorter durations. At the Wonderboom Airport ARS a period of heavy convective precipitation 

is observed with frequent spikes in the rain rate which reach well over 40 mm/h. The 

classification scheme produced favourable results with the convective classified precipitation 

plotted as a green line. During the same time, the Springs ARS also recorded a spike in the rain 

rate reaching close to 40 mm/h, which is associated with the convection classified in the radar  
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Figure 5-1: The 5 minute rain rate data recorded at the automatic rainfall stations of Wonderboom Airport (a) and Springs 

(b). The graphs show the recorded rain rate from the gauge for the period 2010-12-15 00h00 to 2010-12-16 23h55 (UTC). The traces are blue when 

the classification of the radar is null, red when classified as stratiform and green when the classification algorithm chose convective rainfall. 
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images. It is then followed by a steady rain rate of no more than 10 mm/h for a few hours, 

which is associated with stratiform precipitation. The convection is well identified by the 

classification scheme, evident from the green segments of the plotted line. However, the periods 

other than the convective segments comprise a mixture of null, convective and stratiform 

precipitation. Some further investigation is needed to determine if it is indeed stratiform or 

convective precipitation that occurred. 

In order to accurately determine whether the radar is measuring convective or stratiform 

precipitation the radar Vertical Profile of Reflectivity (VPR) was extracted from the CAPPIS 

directly over the different rainfall stations. As discussed in Chapter 2, the bright band can easily 

be identified from the radar images of stratiform precipitation. Typically, an area of increased 

reflectivity would be observed on the VPR just below the freezing level. This feature is 

normally not present with convective precipitation due to the strong mixing of hydrometeors 

within the storm. Figure 5-2 illustrates the VPR calculated at the Wonderboom Airport ARS. 

Due to the fact that ARS data is in 5 minute intervals and the Radar scan strategy is running at 6 

minute intervals the VPR needed to be averaged over an hourly period to match the gauge data. 

Thus, the corresponding pixel over the station was considered classified as convective when 

every vertical scan within the represented hour was classified as convective. The same is true 

for stratiform classified pixels. The VPR for each scan over the corresponding gauge was then 

extracted and averaged over the hour to be plotted as in Figure 5-2. The freezing level height 

was obtained from that closest matching time when radiosonde data was collected at the Irene 

WO. The freezing level height is also plotted (red line) on the graphs in Figure 5-2 for ease of 

comparison. The three graphs in Figure 5-2 were all classified as convective profiles because of 

the vertical structure of the reflectivity below the freezing level and because the reflectivity of 

the corresponding plotted VPR is near 40 dBZ. The time of the plots: 2010-12-16 0500, 2010-

12-16 0600 and 2010-12-16 0700 correspond to the convective precipitation observed in Figure 

5-1. Analysing the VPR for this time period in more detail, a typical convective profile was 

observed. High reflectivities below the freezing level were dominant and there is a steady drop 

with increasing height above the freezing level. This is due to more snow and ice hydrometeors 

being present within the atmosphere and the dielectric constant of ice results in lower 

reflectivities being observed. The analysis of the Wonderboom Airport VPRs show how well 

the classification scheme behaves. 

Figure 5-3 is similar to Figure 5-2, except that these VPR’s are located at the Springs 

ARS a day earlier than the plot in Figure 5-2 and they were classified as stratiform pixels. The 

corresponding time of 2010-12-15 0200, 2010-12-15 0600 and 2010-12-15 0700 were also 

defined as stratiform precipitation in Figure 5-1 which is early in the time series indicated by the 
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red line segment in the plot. Analysis of the VPR’s shows a strong presence of the bright band. 

The sharp increase of reflectivity just below the freezing level, followed immediately below the 

peak by a sharp drop in reflectivity, is clear evidence of the bright band’s presence.  

 

Figure 5-2: The average VPR for Wonderboom Airport. An hourly average of the VPR was 

calculated and plotted for each hour in which every radar scan above the pixel located at the 

station was classified as convective. The freezing level identified by the radiosonde launched 

from the Irene WO is also plotted (red line). The graphs are all classified as convective because 

of the vertical structure of the reflectivity below the freezing level where the reflectivity is near 

40 dBZ. In the graphs (a), (b) and (c) the dates correspond to the title. 
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Figure 5-3: The average VPR for Springs ARS. An hourly average of the VPR was calculated 

and plotted for each hour where every radar scan within the hour, the corresponding pixel 

located at the station, was classified as stratiform. The freezing level from the radiosonde 

balloon assent data launched from Irene WO is also plotted (red line). The graphs are all 

classified as stratiform. In the graphs (a), (b) and (c) the dates correspond to the title. 
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This confirms the classification of the column of stratiform precipitation above the Springs 

station. Thus, the classification scheme successfully classified the stratiform precipitation as 

shown in Figure 5-1. 

Figure 5-4 illustrates the VPR’s for the Springs ARS that represents the area of 

convective classified precipitation first identified analysing Figure 5-1. Both the graphs were 

classified as convective. Analysing the first panel of Figure 5-4 which is the average profile 

during the hour 2010-12-16 0500, a typical convective profile is observed. There is no sharp 

increase in reflectivity below the freezing level, so there seems to be no evidence of a bright-

band occurring;  

Figure 5-4: The average VPR for Springs ARS. An hourly average of the VPR was calculated 

and plotted for each hour where every radar scan within the hour, the corresponding pixel 

located at the station, was classified as convective. The freezing level from the balloon assent 

data done at Irene WO is also plotted (red line). The graphs are both classified as convective. In 

the graphs (a) and (b) the dates correspond to the title. 
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in addition the reflectivity is about 40 dBZ. It is safe to classify this profile as convective 

precipitation. This corresponds well with Figure 5-1 where a sharp spike in rain rate is observed 

at the same time. 

The lower panel in Figure 5-4 was also classified as convective. However, after analysis a 

local peak of reflectivity was observed below the freezing level, below which the reflectivity 

drops to about 38 dBZ. Thus, the presence of the well-definite bright band signifies stratiform 

rainfall. This conclusion is supported by the lower rain rates in Figure 5-1 at the corresponding 

time. Thus, the classification scheme did not accurately classify the stratiform precipitation in 

this case, probably because the reflectivity of the bright band peaks as 45 dBZ.    

This conclusion was confirmed when analysing other rainfall stations with their 

corresponding VPR’s over the same period. It would seem that the classification scheme works 

well in identifying stratiform and convective regions. However, it seems to struggle in 

distinguishing between the two classifications when a region of stratiform precipitation follows 

a convective front. The classification scheme then tends to over-compensate by choosing 

convective pixels. 

5.3 Algorithm Comparison 

The following subsections will discuss the results from the verification scores calculated from 

gauges within the 17 – 73 km cylinder as defined in Chapter 4. The scores will be compared to 

determine whether the CRR and OFRR algorithm outperforms the TITAN algorithm. 

5.3.1 TITAN as a Benchmark 

The TITAN algorithm was chosen to be the benchmark against which to measure any 

improvements coming from the CRR and OFRR algorithms. Figures 5-5 (a) and 5-5 (b) 

illustrate the scatterplots for the hourly and daily measurements respectively as measured by the 

TITAN algorithm. The blue dashed line represents the linear fit, while the black line represents 

a perfect fit of Radar to Gauge rainfall. The hourly trend-line through the data in Figure 5-5 (a) 

has a gradient of 0.97 which is very close to the ideal gradient of 1.This indicates that the radar 

estimates have a slight tendency to under-estimate the precipitation as the magnitude of the 

measurements increases. The trend-line has an intercept of 0.21 mm, which illustrates that the 

radar estimates are more likely to indicate rainfall whenever a gauge measures zero. The 

correlation of 0.792 is respectable, even though there is a fair amount of scatter. A similar 

pattern is observed with the daily measurements. The values for the linear fit are worse than the 

hourly, possibly due to the longer accumulation period. A gradient of 0.78 shows a greater 
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tendency to underestimate larger measurements, while the intercept of 5.65 mm illustrates that 

the radar estimates are very likely to measure precipitation when the gauges are recording zero 

rainfall. This can be due to error from rain gauge measurements as a result of mechanical 

malfunction or human error when the measurements are recorded, as well as radar estimates that 

measures precipitation as a result from none-precipitating reflectivities such as anomalous 

propagation, clutter, etc. The correlation value of 0.682 indicates mediocre linkage between the 

sets of data. Although every attempt has been made to remove the errors from the dataset, it is 

difficult to remove every contaminated measurement. 

Figure 5-5: Scatterplot for the hourly (a) and daily (b) radar and contemporaneous gauge 

measurements for the whole study period October 2010 to March 2011. The blue dashed line 

represents the linear fit, while the black line represents a perfect fit of y=x. The associated 

correlation, bias and RMSE for the entire study period are also shown.  

The correlation coefficients for hourly and daily accumulations are illustrated in Figure 5-

6 (a) from October 2010 to March 2011. The radar precipitation estimates correlate reasonably 

well with the gauge measurements. With the hourly measurements, most of the individual 

months have a correlation value of around ±0.8, with January the only month that deviates and 

drops down to 0.72. This reduces the correlation coefficient for the study period to below 0.8, as 

shown in Figure 5-5 (a). The daily measurements show a high correlation of 0.78 during 

October and drops down to 0.59 for November. The remainder of the period then illustrates a 

correlation coefficient of close to 0.68, which is the correlation coefficient for the whole 6 

month period, as shown in Figure 5.5.  

(a) (b) 
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Figure 5-6: Continuous variable scores on a monthly basis for the October 2010 – March 2011 

study period are illustrated. The correlation coefficient (a) for hourly and daily measurements 

is shown. The BIAS and Root Mean Square Error (RMSE) for one hour accumulations (b) as 

well as daily accumulations (c) are shown. The blue to green bars represents the changes 

through each month. 

(c) 

(a) 

(b) 
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The BIAS scores are similarly illustrated in Figure 5-6 (b) and 5-6 (c) for both hourly and 

daily accumulation periods respectively. Positive values are observed for every individual 

month, which indicates an over-estimation by the TITAN algorithm for both accumulation 

periods. A similar pattern is observed for both hourly and daily measurements. October and 

January illustrates the best scores, followed by November and February. December and March 

thus shows the highest BIAS scores for the period. The month of January does illustrate the best 

BIAS score, contradiction the lower correlation value. However, good BIAS scores can be 

obtained through compensating errors. 

The RMSE is also illustrated in Figure 5-6 (b) and (c), which are the hourly and daily 

measurements respectively. The hourly measurements have an error of 0.76 – 1.14 mm, with 

December, January and March having an error of about 1 mm and October, November and 

February illustrating errors of around 0.8 mm. This pattern is also observed with the daily 

measurements. December, January and March have errors from 10.02 -14.08 mm while 

October, November and February have errors 5.68 – 8.02 mm. December, January and March 

are also the months that illustrated above normal rainfall (Figure 4-2, in chapter 4), while 

October, November and February received below normal rainfall. Thus, the decrease in errors 

can be related to the amount of precipitation received during the particular observation period. 

This is due to the higher probability that both instruments will record zero rainfall whenever 

there is no rainfall present. 

Table 5-1 illustrates contingency table and dichotomous (yes/no) evaluated scores using 

thresholds of 1 mm, 5 mm and 10 mm for the hourly measurements. Table 5-1 (a) illustrates the 

number of events where the gauge and radar measured both score more than 1 mm (hits) , both 

less than 1 mm (correct negatives), the radar more than 1mm while the gauge less than 1 mm 

(false alarms) and the gauge more than 1 mm and the radar less (missed events). Tables 5-1 (b) 

and (c) are similar tables, but are using 5 mm and 10 mm respectively as the measurement 

thresholds. Table 5-1 (d) lists the scores calculated from Tables 5-1 (a), (b) and (c). The 

accuracy scores illustrate near perfect scores of 1, with the 10 mm threshold performing the best 

with a score of 0.995, followed by the 5mm threshold with 0.990 and then the 1 mm threshold 

with 0.973. This score is somewhat misleading due to the fact that it only takes hits and correct 

negative events into consideration. During the rainfall period it is far more likely that the gauge 

and radar will measure precipitation below the specified threshold, as shown by the contingency 

tables in Table 5-1 (a), (b) and (c). Thus, to get a true sense of the performance of the algorithm, 

one must refer to the Critical Success Index (CSI). The CSI score includes the false alarms and 

missed events while ignoring the correct negatives. It is clear that the 1 mm threshold performs 
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the best with 0.539, followed by the 5 mm threshold with 0.453 and then the 10mm threshold 

with 0.357.   

Table 5- 1: Contingency tables for hourly measurements are illustrated using 1 mm (a), 5 mm 

(b) and 10 mm (c) as thresholds. Scores calculated from the resulting tables are illustrated in 

(d). 

The Equitable Thread Score (ETS) is similar to the CSI but it compensates for the possibility of 

scoring hits in the contingency table due to random chance. The ETS illustrate scores slightly 

less than the CSI (decrease by less than 1%), but indicates similar results overall. The frequency 

bias scores show values higher than 1. This indicates an over-estimation, meaning that the radar 

is far more likely to estimate amounts above the threshold than what the gauge is measuring. 

The smallest bias is observed at the 1 mm threshold and then increases with an increase in 

threshold. The Probability of Detection (POD) and False Alarm Ratio (FAR) need to be 

compared alongside one another. With the high over-estimation, high POD and FAR scores are 

observed. A decreasing POD and increasing FAR is observed with an increase in threshold. The 

Heidke Skill Score (HSS) also indicates a decrease in value with an increase in threshold. 

Table 5-2 follows the same layout as Table 5-1. It illustrates the contingency tables for 

the daily gauge and radar estimates also with thresholds of 1 mm, 5 mm and 10 mm. For the 1 

(a) (c) (b) 

(d) 
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mm threshold the accuracy is below 50% with 0.439. The scores increase with increasing 

threshold with the 5 mm threshold and 10 mm threshold scoring 0.743 and 0.821 respectively.  

Table 5-2: Contingency tables for daily measurements are illustrated using 1 mm (a), 5 mm (b) 

and 10 mm (c) as thresholds.  Scores calculated from the resulting tables are illustrated in (d). 

This is due to the likelihood of scoring correct negatives with increasing threshold values. 

Taking the CSI into consideration, very low scores are evident. The highest being the 5 mm 

threshold at 0.43. With the ETS taking persistence into account, it reveals very low scores and 

an increase in accuracy with increase in threshold. The bias scores indicate heavy over-

estimation with the 1 mm threshold, with the 5 mm scoring slightly less than the 10 mm 

threshold. The 1 mm threshold has a very high POD of 0.978. However, the FAR is also high at 

0.645 supporting the heavy over-estimation illustrated by the bias. When considering both POD 

and FAR the 5 mm threshold scores the best. The HSS indicates an increase in skill with 

increase in threshold the 1 mm threshold has almost no skill at 0.117 for daily measurements.  

Figure 5-7 compares cumulative plots and frequency distributions of the hourly and daily 

radar and gauge data during the study period. In the individual images, the blue and red line 

represents the gauges and radar estimates respectively. Figure 5-7 (a) illustrates the hourly 

measurements while Figure 5-7 (b) the daily measurements. The top graph in each panel 

(a

)
(c) (b) 

(d) 
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illustrates the average cumulative sum of the radar estimates and gauge measurements. The 

bottom graph illustrates the Cumulative Distribution Function (CDF) for the study period 

considering only non-zero precipitation events. Thus, the CDFs reflect the probability of a 

specific value occurring whenever precipitation occurs. With both the hourly and daily 

measurements (Figure 5-7 (a) and (b)) the radar estimates illustrate a much more rapid growth 

than the gauge measurements and continue to deviate from each other as time progress. The 

hourly gauges recorded an average total of 673 mm during the study period and the radar 

estimated an average of 1255 mm, almost twice the amount of the gauges. Similarly, the daily 

gauges measured a total of 665 mm with the radar coming in at 1414 mm, more than twice the 

amount of the gauges. This confirms the over-estimation bias score and clearly shows that the 

greater the accumulation the larger the error will be. The region used for verification contains 

16 hourly gauges while the daily gauges have a total of 42. The hourly measurements CDF 

graph in Figure 5-7 (a) illustrate that the probability of a specific precipitation value of 

occurring is always greater for the radar estimates than the gauge measurements. The daily 

measurements CDF graph in Figure 5-7 (b) show that the gauge estimates have a higher 

probability of occurring than the radar estimates. Only for the smaller precipitation 

measurements past the 2.0 mm measurement the probability of the radar estimate drastically 

increase.  

Figure 5-7: Gauge (blue) and radar (red) hourly accumulation (a) and daily accumulation (b) 

for the study period of October 2010 – March 2011. The associated Cumulative Distribution 

Function (CDF) considering only measurement that are not zero, are also illustrated in the 

lower panels, in which the cumulative fraction ranges from 0 to1 and the horizontal axes are 

logarithmic scales.  

(a) (b) 
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5.3.2 Visual Comparison of Algorithms 

Figure 5-8 illustrates 4 examples where the 3 algorithms (TITAN, CRR and OFRR) hourly 

accumulations are compared. The rows within the figure represent each algorithm with the 

TITAN algorithm at the top, CRR in the centre and OFRR at the bottom. Each column is an 

event and time stamps are valid for the end of the accumulated period. The dates and time for 

the events are (from left to right) 2010-10-24 15h00, 2010-10-28 00h00, 2010-12-03 02h00 and 

2010-12-15 23h00 respectively. The 3.0 km CAPPI was selected to represent the CRR and 

OFRR algorithms. 

The first case relating to 2010-10-24 15h00 the CRR algorithm captures the convective 

core on the border of the precipitation field at the north east and south East corners. A higher 

rain rate is illustrated with the CRR algorithm than the TITAN algorithm. The convective 

storms to the North and East of Pretoria (indicated by PTA in the images within Figure 5-8) also 

indicate higher rain rates. This is due to the deep convective Z-R relationship (300R1.4) used by 

the CRR algorithm. The TITAN and CRR algorithms show a speckled pattern clearly visible 

within the storm paths mentioned above. The OFRR algorithm smooth’s the pattern 

considerably, but the storms just south and north of Pretoria still has a speckled pattern with the 

higher rain rates.  

The lower rain rates values appear to have a much better response to the smoothing 

technique. However, this is not the case everywhere within the precipitation field, as the storm 

to the east of Pretoria shows some favourable results with the smoothing technique within the 

OFRR algorithm. The next accumulation which ends at 2010-10-28 00h00 the CRR show a 

slight increase in rain rate with the convective storm north of Pretoria. A speckled pattern is 

visible with the storm to the North of Pretoria within both the TITAN and CRR algorithms. The 

OFRR algorithm smoothed this pattern considerably to represent a much more realistic pattern 

for the precipitation. The accumulation of 2010-12-03 02h00 the CRR algorithm show a slight 

decrease in rain rate for the immediate area around the radar. This is as a result of using a single 

CAPPI, as both algorithms use Marshall-Palmer for stratiform rain rate.  

Accumulated storms to the north of Pretoria and east of Johannesburg show a speckled 

pattern as a result of the radar temporal resolution. The OFRR algorithm does well to smooth 

out this pattern to give a more realistic result. The final accumulation in the figure, 2010-12-15 

23h00 is a large event that moved very slowly and caused significant flooding over parts of 

Gauteng. By comparing TITAN and CRR a significant difference in the precipitation patterns 

are observed. Bright-band interference is mostly eliminated by the use of the CAPPI. Thus, the 

ring like features around the radar in the TITAN field is reduced. Small variations in the 

precipitation field, predominately where there is convection, are observed. 
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Figure 5-8: Examples of the 3 algorithms (TITAN, CRR and OFRR) hourly accumulations. The rows represent each algorithm with the TITAN 

algorithm at the top, CRR in the centre and OFRR at the bottom. Each column is an event and time stamps are valid for the end of the 

accumulated period. The 3.0km CAPPI was selected to represent the CRR and OFRR algorithms. 
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Figure 5- 9: Examples of the 3 algorithms (TITAN, CRR and OFRR) daily accumulations. The rows represent each algorithm with the TITAN 

algorithm at the top, CRR in the centre and OFRR at the bottom. Each column is an event and time stamps are valid for the end of the 

accumulated period. The 3.0km CAPPI was selected to represent the CRR and OFRR algorithms 
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The regions of higher precipitation to the west and south of the radar right at the edge of the 

coverage area showing a slight increase in precipitation due to the deep convective ZR 

relationship. The OFRR algorithm illustrates a much smoother precipitation field with a lot of 

the speckle removed, especially at the edges of the precipitation field. 

Figure 5-9 illustrates 4 examples where 24 hour accumulations for 3 algorithms (TITAN, 

CRR and OFRR) are compared. The layout is similar to Figure 5-8. Each column is an event 

and time stamps are valid for the end of the accumulated period. Thus, accumulations are for 

2010-10-23, 2010-10-27, 2010-12-02 and 2010-12-15 respectively. The 3.0 km CAPPI was 

selected to represent the CRR and OFRR algorithms. For the daily accumulation on 2010-10-23 

the TITAN algorithm exhibited much higher precipitation values than the CRR or OFRR 

algorithm.  

The use of a CAPPI level seems to have excluded the additional precipitation. The OFRR 

illustrates a precipitation field, which nicely smoothed the CRR field especially around the 

edges of the accumulated field. The accumulation on 2010-10-27 illustrates fast moving 

thunderstorms. Thus, speckled lines of precipitation are visible on both the TITAN and CRR 

algorithms. Slightly higher precipitation rate is captured by the CRR algorithm due to the deep 

convective Z-R relationship. The OFRR algorithm manages to smooth out most of the noise 

caused by the temporal resolution of the scan strategy. However, it is not completely removed. 

The CRR for the 2010-12-02 accumulation illustrated a reduced precipitation amount compared 

to the TITAN algorithm. Again, this is the result from using the single CAPPI level for 

precipitation calculations.  

The noise from the CRR field shows a very speckled pattern. This pattern is then nicely 

smoothed within the OFRR precipitation field. Similar results are observed for the 2010-12-15 

case where the field has been smoothed, removing a lot of the speckled pattern observed in the 

CRR and TITAN algorithms. Once again, the use of a single CAPPI has resulted in significant 

reduction in the amount of precipitation captured by the TITAN algorithm. The TITAN 

algorithm captures the effect of bright-band interference. The CAPPI level at 3km is still well 

below the freezing level and thus show minimal effects related to the interference. 

5.3.3 Results of Verification Scores 

The correlation coefficients between the 2 precipitation algorithms and rain gauges for 

each CAPPI level are listed in Table 5-3 and Table 5-4 for the hourly and daily accumulations 

respectively. Both tables follow similar layouts with the TITAN scores discussed in section 

5.3.1 also added for comparison.  
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Table 5-3: Correlation coefficient scores for hourly measurements of the CRR and OFRR 

algorithms at the respective CAPPI levels. The TITAN algorithm is include for reference and 

the CAPPI level SURFACE represents the vertical column of reflectivities being projected to the 

surface for calculations.  

Table 5-4: Correlation coefficient scores for daily measurements of the CRR and OFRR 

algorithms at the respective CAPPI levels. The TITAN algorithm is include for reference and 

the CAPPI level SURFACE represents the vertical column of reflectivities being projected to 

the surface for calculations. 
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The table cells are coloured according to their corresponding values. The first column that 

represents correlation scores is labelled PERIOD and corresponds to the entire 6 month study 

period. The rest of the columns are a breakdown of the of the study period in months ranging 

from October 2010 to March 2011. 

Considering Table 5-3 and the whole study period, the TITAN algorithm has the highest 

correlation of 0.792 with the gauge measurements. The CRR and OFRR algorithms best 

correlation scores are at the lower CAPPI levels as expect and the correlation scores decreases 

as the CAPPI height increase, as expected. However, the CRR scores better than the OFRR 

algorithm on all levels. This is not the case when considering the correlation scores on a 

monthly basis. Comparing the two algorithms over all CAPPI levels for each month and the 

OFRR algorithm out performs the CRR algorithm 37.5% of all the cases. The OFRR having the 

highest correlation score for the month of October at the 2.5 km CAPPI. The CRR algorithm 

has the highest scores for November and January at the 3.0 km and 2.5 km CAPPI’s 

respectively. The TITAN algorithm outperforms both CRR and OFRR algorithms in terms of 

correlation during December, February and March. Thus, considering hourly accumulations 

TITAN is the algorithm that is best correlated followed by the CRR and the OFRR algorithms. 

When considering the correlation with daily accumulation in Table 5-4 we see for the study 

period the TITAN algorithm is once again the best correlated with a correlation of 0.682. 

However, if we investigate month by month we see that the TITAN algorithm only has the best 

correlation for February and March. For October and November the CRR algorithm at a 2.5 km 

CAPPI has the best correlation, December the OFRR algorithm at 2.5 km is on top and for 

January there is a tie between the CRR and OFRR algorithms. The CRR algorithm is the best 

correlated 58% of the time when considering all months and CAPPI levels. However, when 

considering the entire study period the OFRR algorithm outperforms the CRR algorithm on 

every CAPPI level. 

The next 2 tables, Table 5-5 and Table 5-6, has then same layout as the previous 2 tables 

the only difference being that the bias scores are depicted in the table. Again, Table 5-5 and 

Table 5-6 represent hourly and daily accumulation respectively. In Table 5-5 it is clear that the 

TITAN algorithm is extremely bias indicated by the red colour of the cells. The use of CAPPI 

levels has significantly lowered the bias scores. The best bias score of 0.012 mm comes from 

the CRR algorithm at the 2.5 km CAPPI followed closely by the OFRR algorithm at the same 

level with a score of 0.013 mm. The bias scores for both the CRR and OFRR algorithms does 

not differ significantly with the largest difference no more than 0.003 mm between them. The 

lower CAPPI levels have a tendency to over-estimate and the general trend to under-estimation 

starts at the 5.5 km CAPPI.  
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Table 5-5: Bias scores for hourly measurements of the CRR and OFRR algorithms at the 

respective CAPPI levels. The TITAN algorithm is include for reference and the CAPPI level 

SURFACE represents the vertical column of reflectivities being projected to the surface for 

calculations. 

Table 5-6: Bias scores for daily measurements of the CRR and OFRR algorithms at the 

respective CAPPI levels. The TITAN algorithm is include for reference and the CAPPI level 

SURFACE represents the vertical column of reflectivities being projected to the surface for 

calculations. 
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When analysing the individual months an over-estimation of precipitation dominates at 

the lower levels except for the month of January when an under-estimation was observed. 

Considering all the months and CAPPI levels the OFRR algorithm had the best score for 42% of 

the 48 cases. The CRR algorithm was better for 39% while 19% of the case there were no 

difference in bias scores at all. An over-estimation in precipitation is illustrated by Table 5- 6 

for the daily accumulation by the TITAN algorithm. The best bias score is the CRR algorithm 

with 0.187 mm again followed closely by the OFRR algorithm with 0.202 mm, both at the 2.5 

km CAPPI level. This is a large improvement from the 4.698 mm over-estimation by the 

TITAN algorithm. Considering all the months and CAPPI levels in Table 5-6 the CRR 

algorithm had the best score for 48% of the 48 cases. The OFRR algorithm outscored the CRR 

algorithm with 46% of cases, while for 6% there was no difference in the bias score at all. 

However, there is a trend where the CRR algorithm outperformed the OFRR algorithm at the 

lower CAPPI level and the OFRR algorithm outperformed the CRR algorithm at the higher 

levels. At the higher CAPPI levels there was much smaller under-estimations observed in the 

drier months of October, November and February compared to the other wetter months. 

The next two tables, Table 5-7 and Table 5-8, haves then same layout as the previous four 

tables the only difference being that the RMSE scores are depicted in the table. Table 5-7 and 

Table 5-8 represent hourly and daily accumulation respectively. Considering the hourly 

accumulation error scores in Table 5-7 the lowest error score of 0.899 mm for the entire study 

period comes from the CRR algorithm at the 2.5 km CAPPI level. However, the OFRR 

algorithm is only a little larger at with an error score of 0.907 mm at the 2.5 km CAPPI level. 

The OFRR algorithm then goes on to outperform the CRR algorithm at the 3.0, 3.5, and 5.5 km 

CAPPI levels. The OFRR and CRR algorithms are only out scored by the TITAN algorithm at 

the 5.5 km CAPPI level and up. Considering all the months and CAPPI levels in Table 5-7 the 

CRR algorithm had the best score for 52% of the 48 cases. The OFRR algorithm however 

scored better at most of the months within the study period at the lower CAPPI level, except for 

the 2.5 km CAPPI level where the CRR algorithm outperformed the OFRR algorithm. 

Considering the daily accumulations of Table 5-8, the CRR algorithm again has the best error 

score of 8.385 mm at the 2.5 km CAPPI. Outperforming the OFRR algorithm by 0.002 mm. 

However, the CRR algorithm only outperforms the OFRR algorithm during October and March 

for the study period at the 2.5 km CAPPI. . Considering all the months and CAPPI levels in 

Table 5-8 the OFRR algorithm had the best score for 61% of the 48 cases. Outperforming the 

CRR algorithm at all CAPPI levels, except the 2.5 km level.  
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Table 5-7: RMSE scores for hourly measurements of the CRR and OFRR algorithms at the 

respective CAPPI levels. The TITAN algorithm is include for reference and the CAPPI level 

SURFACE represents the vertical column of reflectivities being projected to the surface for 

calculations. 

Table 5-8: RMSE scores for daily measurements of the CRR and OFRR algorithms at the 

respective CAPPI levels. The TITAN algorithm is include for reference and the CAPPI level 

SURFACE represents the vertical column of reflectivities being projected to the surface for 

calculations. 
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The OFRR and CRR algorithm outperform the TITAN algorithm up to the 5.5 km CAPPI level. 

It is also evident from both Table 5-7 and 5-8, that smaller error scores are associated for the 

drier than normal months of October, November and February, compared to the wetter than 

normal months of December, January and March.  

Table 5-9 and 5-10 represent contingency table scores for 1, 5 and 10 mm thresholds. 

They also correspond to hourly and daily accumulation values respectively. The first column 

holds the algorithm name, the second the threshold in millimetres used to construct the 

contingency table and the third the CAPPI level in kilometres AMSL. The variable surface is 

used within the table together with the TITAN algorithm. This implies that a vertical column of 

reflectivities is used to calculate the surface precipitation. The rest of the column in the table 

lists the following score from left to right; the Equitable Thread Score (ETS), Critical Success 

Index (CSI), Probability of Detection (POD), False Alarm Ratio (FAR), Heidke Skill Score 

(HSS), Accuracy (ACC) and bias (BIAS). Considering the scores of the hourly values in Table 

5-9 the best ETS and CSI score at the 1 mm threshold comes from the CRR algorithm at the 3.0 

km CAPPI, it is closely followed by the OFRR algorithm. Both the OFRR and CRR algorithm 

outperform the TITAN algorithm up to the 4.5 km CAPPI level. The CRR algorithm performs 

the best on most CAPPI levels compared to the OFRR algorithm at the 1 mm threshold. With 

the 5 mm threshold the TITAN algorithm scores the best but is closely followed by the scores of 

the CRR and OFRR algorithms at the 3.0 km CAPPI. 

The CRR performs best on most CAPPI levels. With the 10 mm threshold the CRR 

algorithm at the 3.0 km CAPPI again has the highest ETS, followed by TITAN algorithm and 

then the OFRR algorithm. Considering the different thresholds the CRR algorithm is superior 

over the different CAPPI levels. The 3.0 km CAPPI has the best result and the algorithms are 

much more accurate with the smaller thresholds. Considering the POD and FAR it is clear that 

the TITAN algorithm has the highest scores. However, it also has the highest FAR scores as 

well. The biggest FAR comes from the higher CAPPI levels but the FAR for the TITAN 

algorithm by far exceeds the FAR of the OFRR and CRR algorithms at the lower CAPPI levels. 

Taking both POD and FAR into account the CRR algorithm at the 2.5 km CAPPI performs the 

best at a 1 mm threshold. For the 5 and 10 mm threshold the TITAN algorithm performs better 

detecting the larger accumulation values. The HSS show that the CRR algorithm at a 2.5 km 

CAPPI level, the TITAN algorithm and the CRR algorithm at the 3.0 km CAPPI level has the 

best skill at 1, 5 and 10 mm thresholds respectively. The CRR algorithm also shows greater 

skill at most CAPPI levels.  



107 

Table 5-9:  Contingency table scores using thresholds of 1, 5 and 10 mm are listed in the table 

below. The scores are listed with the corresponding algorithm, threshold and CAPPI level. The 

scores are based on hourly accumulated values. The best scores in each category are 

highlighted in red. 



108 

Table 5-10: Contingency table scores using thresholds of 1, 5 and 10 mm are listed in the table 

below. The scores are listed with the corresponding algorithm, threshold and CAPPI level. The 

scores are based on daily accumulated values. The best scores in each category are highlighted 

in red. 
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The bias again show large over-estimation from the TITAN algorithm compared to the other 

algorithms. At the 1 mm threshold the CRR algorithm at the 2.5 km CAPPI level illustrates the 

best result. An over-estimation is observed up to the 4.5 km CAPPI where under-estimation is 

then dominant as the CAPPI level increase in height. With the 5 mm threshold the CRR 

algorithm at a 3.0 km CAPPI has the smallest bias. The CRR algorithm also outperforms the 

OFRR algorithm at most CAPPI levels. The 2.5 km CAPPI illustrates under-estimation, but the 

3.0 – 4.5 km CAPPI over- estimation is observed. With the 10 mm threshold the OFRR 

algorithm has the smallest bias score at the 3.0 km CAPPI level. The OFRR algorithm 

outperforms the CRR algorithm at most of the CAPPI levels at the 10 mm threshold. The 2.5 

km CAPPI level under-estimates, with over-estimation only at the 3.0 and 3.5 km CAPPI levels. 

The accuracy score in this regard does not add any value because of the high frequency of both 

instruments measuring 0 mm of precipitation. 

Table 5-10 is similar to Table 5-9 except that is illustrated the contingency table scores 

using daily accumulations. The CRR algorithm at the 3.0 km CAPPI level show the best ETS 

and CSI scores at all threshold of 1, 5 and 10 mm. The TITAN algorithm does not perform very 

well at the smaller thresholds but it does improve with an increase in threshold. The CRR 

algorithm outperforms the OFRR algorithm at most CAPPI levels except at the 5 mm threshold. 

Although the CRR algorithm has the highest score it is very closely followed by the OFRR 

algorithm. For the POD and FAR the TITAN algorithm scores the highest at all thresholds. 

Considering both the POD and FAR scores the OFRR and CRR algorithm at the 3.0 km CAPPI 

scores the best. 

The CRR algorithm at 3.0 km and 3.5 km CAPPI levels scores the best at 5 and 10 mm 

thresholds respectively. The CRR algorithm at the 3.0 km CAPPI level again has the highest 

skill with the best HSS scores at all thresholds. The bias again indicates large over-estimations 

by the TITAN algorithm. With the smallest bias at the 5.5 km CAPPI level for the 1 mm 

threshold and 2.5 km CAPPI level for the 5 and 10 mm thresholds. An over-estimation is 

observed at the lower CAPPI levels and the higher CAPPI levels under-estimation is observed. 

Form Table 5-9 and Table 5-10 it is clear that the lower CAPPI levels perform well as expected. 

Although there is not much of a difference between the CRR and OFRR algorithms the CRR 

algorithm seems to be edging in front of the OFRR algorithm on a regular basis. 

Figure 5-10 is similar to Figure 5-7 however it includes the CRR algorithm calculated on 

the different CAPPI levels. Figure 5-10 (a) illustrates the hourly measurements while Figure 5-

10 (b) the daily measurements. The top graph illustrates the average cumulative sum of the 

radar estimates and gauge measurements. The bottom graph illustrates the Cumulative 
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Distribution Function (CDF) for the study period considering only none zero precipitation 

events.  

        Thus, the CDFs reflect the probability of a specific value occurring whenever 

precipitation occurs. With both the hourly and daily measurements (Figure 5-10 (a) and 

(b)) the TITAN algorithm estimates illustrates a much more rapid growth than the gauge 

measurements as well as the CRR algorithm on any of the CAPPI levels and it continues 

to deviate away as time progress. The hourly gauges recorded 673 mm during the study 

period and the TITAN algorithm 1255 mm as mentioned in Figure 5-7. Similarly, the daily 

gauges measured a total of 665 mm with the TITAN algorithm over-estimating at 1414 mm. 

For both the hourly and daily measurements the CRR at the 2.5 km CAPPI level was the 

closest accumulation to the gauges. The CRR algorithm measured 682 mm and 703 mm 

for the hourly and daily measurements respectively. However, it was followed very 

closely by the OFRR algorithm, measuring 684 mm and 706 mm respectively at the 2.5 km 

CAPPI level. A slightly higher accumulation is observed when the CAPPI level increases until 

the 5.5 km CAPPI level where a sharp drop in the total accumulation is shown. The CDF 

graph in Figure 5-10 (a) and (b) both illustrate that the lower CAPPI levels closely follow the 

CDF curve that represents the gauges, with the 2.5 km CAPPI being the most accurate. 

The higher CAPPI levels and TITAN algorithm deviates quite significantly. 

Figure 5-10: Gauge, TITAN algorithm and CRR algorithm at all CAPPI levels for hourly 

accumulation (a) and daily accumulation (b) for the study period of October 2010 – March 

2011. The associated Cumulative Distribution Function (CDF) considering only measurement 

that are not zero, are also illustrated in the lower panels, in which the cumulative fraction 

ranges from 0 to1 and the horizontal axes are logarithmic scales. 

(a) (b) 
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5.4. Precipitation Performance with Range 

The TITAN and CRR algorithms were also evaluated in terms of range from the radar. The 

CRR algorithm was selected for the comparison with TITAN, because the CRR algorithm had 

mostly favourable results compared to the OFRR algorithm.  Nevertheless, the differences were 

small and the results did not differ much compared to the CRR, so either algorithm would 

produce similar results for the range comparison. 

Figure 5-11 illustrates the correlation coefficient for hourly (a) and daily (b) 

measurements in terms of the range interval separated by 30 km. The Blue line is the TITAN 

algorithm while the rest represents the CRR algorithm at the different CAPPI levels. The bars at 

the bottom of the graph indicate the number of gauges available within the indicated radius. The 

range intervals are labelled with the start range of the interval. It is clear from the graph that the 

lower CAPPI levels in both Figure 5-11 (a) and Figure 5-11 (b) are performing the best together 

with the TITAN algorithm. These include the 2.5, 3.0 and 3.5 km CAPPI levels. However, all 

these CAPPI levels including the TITAN algorithm drop significantly to much lower 

correlations once the range of 150 km is exceeded. The lower the CAPPI level the shorter the 

range at which it can effectively measure the precipitation estimates. 

Figures 5-12 illustrates the bias for hourly (a) and daily (b) measurements in terms of the 

range intervals. A similar pattern is observed with both Figures 5-12 (a) and (b). The TITAN 

algorithm illustrates an extreme bias near the radar and it decrease linearly as the range from the 

radar increases. The lower CAPPI levels from the CRR algorithm show a slight over-estimation 

near the radar but they soon start to under-estimate as the range from the radar increases.  

Figure 5-11: The correlation coefficient at range intervals for the TITAN algorithm and CRR 

algorithm at all CAPPI levels for hourly accumulation (a) and daily accumulation (b) for the 

study period of October 2010 – March 2011. The grey bars indicate the number of gauges 

within each range ring. 

(a) (b) 



112 

Figure 5-12: The bias at range intervals for the TITAN algorithm and CRR algorithm at all 

CAPPI levels for hourly accumulation (a) and daily accumulation (b) for the study period of 

October 2010 – March 2011. 

The 2.5 km CAPPI start the under-estimation at 90-120 km, the 3.0 km CAPPI at 120-150 km 

and from 150 km all, including the TITAN algorithm, start to under-estimate. 

Figure 5-13 illustrates the RMSE for hourly (a) and daily (b) measurements in terms of 

the range intervals. The same pattern is observed as in Figures 5-11 and 5-12. The lower CAPPI 

levels perform the best, but start to increase in error as the range from the radar increases. Again 

all errors increase past the 150 km mark. Thus, it is safe to say that no matter what type of 

algorithm is used, past the 150 km mark precipitation estimates dramatically decline in 

reliability. 

Figure 5-13: The RMSE at range intervals for the TITAN algorithm and CRR algorithm at all 

CAPPI levels for hourly accumulation (a) and daily accumulation (b) for the study period of 

October 2010 – March 2011. 

(a) (b) 

(a) (b) 
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5.5. Summary 

In this chapter the information regarding the performance of the classification scheme and 

precipitation algorithms was presented and discussed. The classification scheme illustrated a 

tendency to over-estimate the frequency of convective rainfall. The CRR and OFRR algorithms 

performed better than the TITAN algorithm. However, there were very small differences 

between the CRR and OFRR algorithm. It became clear that the lower the CAPPI level is to the 

ground, the better it will perform compared to the gauge measurements, which one would hope 

to be the case. It was also determined that precipitation estimates have little quantitative value 

beyond 150 km from the radar. These findings and more will be discussed further in the next 

chapter. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1 Introduction 

Although there is a summary at the end of each chapter it is fitting to review the critical points 

set out there. Chapter 1 introduced the aims and objectives of the study. The objectives were to 

introduce instantaneous precipitation classification so that a dual Z-R relationship technique can 

be applied to convective and stratiform classified rainfall, and to account for storm movement 

between successive scans by integrating precipitation over a computed vector path that is based 

on optical flow techniques. Chapter 2 discussed the history of radar in South Africa followed by 

an in depth look at all aspects involved with radar precipitation, such as the theories behind 

error correction and techniques for rain rate estimation from reflectivities. Chapter 3 discussed 

the computer algorithms that were written to addresses the study objectives. The algorithms 

incorporate a 2 dimensional classification scheme (Chumchean et al., 2008), and optical flow 

techniques to calculate motion vectors between successive scans (Bowler et al., 2004), applies a 

dual Z-R relationship to convert reflectivity to rain rate (Chumchean et al., 2008), then 

accumulation through the integration of precipitation with motion vectors (Hannesen, 2002). By 

applying these algorithms to extracted CAPPI data, the aim was to improve the radars’ 

precipitation estimates. Chapter 4 then discussed the evaluation method over a number of 

different CAPPI level heights and the use of rain gauge data as the basis for verification. The 

advantages and limitation of both rain gauge and radar datasets were also discussed. Chapter 5 

then evaluated the results of the evaluation methods. All this was done with one question in 

mind: can these techniques improve on the current operational QPE algorithm available at the 

SAWS? To answer the question, the following sections in this chapter will address the 

conclusions drawn about whether the classification scheme can accurately classify the radar 

reflectivities and whether the use of optical flow vectors have any benefit as well.  

6.2 Classifying Precipitation 

How well can the classification scheme distinguish between convective and stratiform 

precipitation? To answer this question 5 minute rain rate from various gauges as well as the 

Vertical Profile of Reflectivity (VPR) were analysed. The overall analysis showed that the 
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classification scheme can distinguish between convective and stratiform precipitation 

reasonably well. The analysis of the Wonderboom Airport VPR showed very favourable results 

for the classification scheme, successfully classifying convective precipitation observed from 

the 5 minute rain rate and VPR as convective precipitation. When stratiform precipitation is 

observed the classification scheme also does a reasonably good job in classifying the 

precipitation correctly. However, the classification scheme seems to struggle to distinguish 

between the two classifications whenever a region of stratiform precipitation follows a 

convective line or when stratiform precipitation has a high rain rate. Thus, the classification 

scheme tends to over-estimate the frequency of convective precipitation.  

6.3 Algorithm Comparison 

The next step was to determine whether the use of a dual Z-R relationship can improve on the 

existing TITAN precipitation algorithm. The Classified Rain Rate (CRR) algorithm was created 

and precipitation was generated on multiple CAPPI levels. The CRR estimates were then 

compared to the TITAN precipitation algorithm. After this comparative analysis, the tendency 

for the TITAN algorithm to under-estimate extreme precipitation events was identified, in 

addition, both the hourly and daily measurements are in general over-estimated by TITAN. The 

CRR algorithm computed an increase in rainfall within the convective region due to the strong 

convective Z-R relationship. Using this particular dual Z-R relationship has shown a small 

improvement over using a single relationship such as the Marshall-Palmer relationship 

(Poolman et al., 2014). However, using a single CAPPI level to estimate the rainfall proves to 

be the most significant improvement within the algorithm. The lower the CAPPI level the more 

accurate the estimation, but with larger precipitation thresholds slightly higher CAPPI levels 

such as the 3.0 and 3.5 km CAPPI perform better. By using several CAPPI levels to estimate the 

precipitation, the capability to detect larger precipitation thresholds can decrease significantly. 

From the 5.5 km CAPPI level and upwards there is no skill in the precipitation estimates. The 

CRR algorithm thus outperforms the TITAN algorithm.  

The Optical Flow Rain Rate (OFRR) algorithm was created to determine if the smoothing 

of precipitation accumulations using optical flow techniques further improve the precipitation 

algorithm. This method accounts for errors that might occur due to the temporal resolution of 

the radar scan strategy. There were very small differences between the CRR and OFRR 

algorithms. The CRR algorithm showed the best scores at the 2.5 km CAPPI level with a very 

close results between them at the 3.0 and 3.5 km CAPPI levels. Both the evaluation method and 

temporal resolution of 6 minutes can affect these results. The 6 minute temporal resolution may 

be short enough to not cause any significant differences between the two algorithms. 
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Alternatively, stratiform precipitation may have smoothed the effect of fast moving storms due 

to the use of seasonal periods and monthly time scales by the evaluation method. In either case, 

further evaluation will be needed to determine exactly how the temporal resolution affects the 

precipitation algorithm at a larger time scale. 

The results showed that the lower the CAPPI level the better the precipitation estimates. 

However, the disadvantage of this is that the operating range of the radar at the 2.5 km level has 

a maximum range of 70 km. Using higher CAPPI levels the radar can potentially operate with 

satisfactory results with a range of up to 150 km. However, due to the radar beam increasing in 

height with range, 150 km is the outer limit at which a radar can successfully estimate 

precipitation at the ground. This observation was also confirmed when it was shown that CAPPI 

levels of 5.5 km and higher have no skill in estimating precipitation at the ground. 

6.4 Summary 

The following recommendations and future work can be concluded from the study. The 

evaluations detailed above have shown that the chosen classification scheme illustrates 

favourable results with a slight over-estimation in convective precipitation. This can be 

improved by additional filters, such as a bright-band filter or by using an alternative 

classification technique incorporating information from the Vertical Integrated Liquid (VIL) 

column such as was used in the classification technique of Zhang and Qi (2010). 

The CRR and OFRR algorithms both showed an improvement over the TITAN 

algorithm. The CRR algorithm made a relatively small improvement when comparing the dual 

Z-R relationship against the simple Marshall-Palmer relation. The OFRR algorithm in some 

cases performed better than the CRR and in other cases not. Further evaluation is needed to 

determine the value of adding the technique.  

The main result that comes out of this study is that the greatest improvement was from 

the use of CAPPI levels instead of a vertical column of reflectivity to estimate the rainfall. Thus, 

future work can possibly focus on the development of a “smart” CAPPI level that incorporates 

topography and sophisticated interpolation techniques that can skilfully extract the appropriate 

reflectivity for precipitation estimation. This might add greater value to the precipitation 

estimates than any other technique such as the dual Z-R relationship or optical flow technique 

for example. 
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