D.1: Full crystallographic Data Tables of [Au(L1)](PF₆)

Au(1)-N(4)	1.976(5)	
Au(1)-N(1)	1.993(5)	
Au(1)-N(2)	2.005(5)	
Au(1)-N(3)	2.022(5)	
P-F(5)	1.588(4)	
P-F(4)	1.600(4)	
P-F(2)	1.605(4)	
P-F(1)	1.606(4)	
P-F(3)	1.617(5)	
P-F(6)	1.619(4)	
N(1)-C(1)	1.361(7)	
N(1)-C(4)	1.386(7)	
N(4)-C(13)	1.361(7)	
N(4)-C(10)	1.404(8)	
N(6)-C(14)	1.340(7)	
N(6)-C(21)	1.355(7)	
C(14)-C(15)	1.473(7)	
C(14)-C(13)	1.486(8)	
N(2)-C(5)	1.314(9)	
N(2)-C(6)	1.467(8)	
C(15)-N(5)	1.348(7)	
C(15)-C(1)	1.482(8)	
N(5)-C(16)	1.342(7)	
C(10)-C(9)	1.403(8)	
C(10)-C(11)	1.404(8)	
C(1)-C(2)	1.433(8)	
C(2)-C(3)	1.381(9)	
C(13)-C(12)	1.419(8)	
C(19)-C(20)	1.392(9)	
C(19)-C(18)	1.431(9)	
N(3)-C(9)	1.308(7)	
N(3)-C(8)	1.480(7)	
C(21)-C(20)	1.411(8)	
C(21)-C(16)	1.444(8)	

Table D.1.1: Bond lengths [Å] and angles $[\circ]$ for $[Au(L1)](PF_6)$

C(12)-C(11)	1.405(8)
C(17)-C(18)	1.358(9)
C(17)-C(16)	1.446(8)
C(3)-C(4)	1.403(9)
C(7)-C(6)	1.526(10)
C(7)-C(8)	1.537(10)
C(5)-C(4)	1.410(9)
N(4)-Au(1)-N(1)	99.23(19)
N(4)-Au(1)-N(2)	177.65(19)
N(1)-Au(1)-N(2)	81.7(2)
N(4)-Au(1)-N(3)	81.8(2)
N(1)-Au(1)-N(3)	177.71(18)
N(2)-Au(1)-N(3)	97.2(2)
F(5)-P-F(4)	89.9(2)
F(5)-P-F(2)	90.0(2)
F(4)-P-F(2)	179.9(3)
F(5)-P-F(1)	179.5(3)
F(4)-P-F(1)	90.5(3)
F(2)-P-F(1)	89.7(2)
F(5)-P-F(3)	89.9(2)
F(4)-P-F(3)	90.7(3)
F(2)-P-F(3)	89.3(2)
F(1)-P-F(3)	89.8(2)
F(5)-P-F(6)	91.5(2)
F(4)-P-F(6)	90.2(3)
F(2)-P-F(6)	89.7(2)
F(1)-P-F(6)	88.8(2)
F(3)-P-F(6)	178.3(3)
C(1)-N(1)-C(4)	108.4(5)
C(1)-N(1)-Au(1)	138.6(4)
C(4)-N(1)-Au(1)	112.6(4)
C(13)-N(4)-C(10)	108.6(5)
C(13)-N(4)-Au(1)	139.3(4)
C(10)-N(4)-Au(1)	111.6(4)
C(14)-N(6)-C(21)	120.0(5)
N(6)-C(14)-C(15)	119.6(5)

Table D.1.1. continued...

N(6)-C(14)-C(13)	109.2(4)
C(15)-C(14)-C(13)	131.1(5)
C(5)-N(2)-C(6)	124.5(5)
C(5)-N(2)-Au(1)	112.5(4)
C(6)-N(2)-Au(1)	123.0(5)
N(5)-C(15)-C(14)	119.9(5)
N(5)-C(15)-C(1)	108.6(5)
C(14)-C(15)-C(1)	131.5(5)
C(16)-N(5)-C(15)	119.7(5)
C(9)-C(10)-C(11)	134.5(6)
C(9)-C(10)-N(4)	116.1(5)
C(11)-C(10)-N(4)	109.3(5)
N(1)-C(1)-C(2)	107.6(5)
N(1)-C(1)-C(15)	129.9(5)
C(2)-C(1)-C(15)	122.5(5)
C(3)-C(2)-C(1)	108.2(6)
N(4)-C(13)-C(12)	107.4(5)
N(4)-C(13)-C(14)	129.7(5)
C(12)-C(13)-C(14)	122.9(5)
C(20)-C(19)-C(18)	120.5(6)
C(9)-N(3)-C(8)	123.8(6)
C(9)-N(3)-Au(1)	113.3(4)
C(8)-N(3)-Au(1)	122.9(4)
N(6)-C(21)-C(20)	120.1(5)
N(6)-C(21)-C(16)	120.2(5)
C(20)-C(21)-C(16)	119.7(5)
C(11)-C(12)-C(13)	109.3(5)
C(18)-C(17)-C(16)	119.5(6)
N(5)-C(16)-C(21)	120.6(5)
N(5)-C(16)-C(17)	120.3(5)
C(21)-C(16)-C(17)	119.1(5)
C(2)-C(3)-C(4)	106.5(5)
N(3)-C(9)-C(10)	117.1(6)
C(6)-C(7)-C(8)	115.4(5)
N(2)-C(5)-C(4)	118.9(6)
N(3)-C(8)-C(7)	111.6(5)
N(2)-C(6)-C(7)	113.1(5)

Table D.1.1. continued		
C(17)-C(18)-C(19)	121.5(6)	
C(10)-C(11)-C(12)	105.3(5)	
N(1)-C(4)-C(3)	109.3(5)	
N(1)-C(4)-C(5)	114.2(6)	
C(3)-C(4)-C(5)	136.4(6)	
C(19)-C(20)-C(21)	119.7(6)	

	displa	cement factor	exponent tak	es the form: -	$2p^2[h^2a^*^2U^2]$	¹¹ + + 2 h k a* l	o* U ¹²]
	U ¹¹	U22	U ³³	U ²³	U ¹³	U ¹²	
Au(1)	14(1)	20(1)	25(1)	-4(1)	-1(1)	3(1)	
Р	21(1)	35(1)	22(1)	-5(1)	5(1)	-3(1)	
N(1)	23(3)	20(2)	16(2)	0(2)	-4(2)	3(2)	
N(4)	18(2)	20(2)	24(2)	-3(2)	5(2)	4(2)	
N(6)	17(3)	15(2)	19(2)	0(2)	1(2)	5(2)	
C(14)	17(3)	10(2)	18(3)	-4(2)	4(2)	3(2)	
F(5)	22(2)	58(3)	67(3)	-15(2)	10(2)	-6(2)	
F(6)	43(2)	35(2)	61(3)	1(2)	13(2)	1(2)	
N(2)	20(3)	30(3)	36(3)	-8(3)	-7(2)	2(2)	
C(15)	17(3)	9(3)	23(3)	0(2)	4(2)	4(2)	
N(5)	23(3)	16(2)	22(3)	-4(2)	8(2)	3(2)	
C(10)	17(3)	25(3)	35(3)	1(3)	8(3)	2(2)	
F(2)	61(3)	55(3)	36(2)	-15(2)	19(2)	2(2)	
C(1)	22(3)	24(3)	20(3)	-6(3)	7(3)	7(2)	
C(2)	32(4)	38(4)	17(3)	-2(3)	10(3)	6(3)	
C(13)	16(3)	18(3)	19(3)	2(2)	2(2)	3(2)	
F(4)	73(4)	113(4)	40(3)	-36(3)	28(3)	-45(3)	
F(3)	51(3)	56(3)	67(3)	21(2)	5(2)	-11(2)	
C(19)	21(3)	15(3)	48(4)	-8(3)	6(3)	3(2)	
N(3)	16(3)	21(2)	33(3)	-5(2)	6(2)	-1(2)	
C(21)	18(3)	10(2)	24(3)	-1(2)	8(2)	6(2)	
C(12)	21(3)	33(3)	18(3)	-1(3)	3(3)	-4(3)	
C(17)	26(3)	19(3)	32(3)	3(3)	16(3)	1(2)	
C(16)	25(3)	16(3)	28(3)	0(2)	11(3)	9(2)	
C(3)	40(4)	42(4)	16(3)	-4(3)	1(3)	7(3)	
C(9)	29(4)	24(3)	31(4)	2(3)	14(3)	2(3)	
C(7)	13(3)	32(4)	76(5)	-3(4)	-5(3)	-1(3)	
C(5)	28(4)	31(4)	32(4)	-6(3)	-7(3)	5(3)	
C(8)	14(3)	38(4)	52(4)	-17(3)	8(3)	-5(3)	
F(1)	23(2)	63(3)	69(3)	6(2)	2(2)	-1(2)	
C(6)	15(3)	44(4)	47(4)	-6(3)	-12(3)	-2(3)	
C(18)	24(3)	22(3)	45(4)	-4(3)	19(3)	0(3)	
C(11)	25(3)	35(3)	19(3)	1(3)	9(2)	-4(3)	
C(4)	30(4)	27(3)	16(3)	-3(3)	-3(3)	7(3)	
C(20)	14(3)	25(3)	33(3)	-5(3)	-2(3)	4(2)	

Table D.1.2: Anisotropic displacement parameters ($Å^2x \ 10^3$) for [Au(L1)](PF₆). The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

[At	x	v	Z	U(ea)	
H(2)	5125	1269	1919	34	
H(19)	1552	740	-1393	35	
H(12)	5002	2916	-1817	30	
H(17)	2833	525	761	29	
H(3)	6498	1794	2848	41	
H(9)	7996	4855	-1043	32	
H(7A)	9207	2593	934	52	
H(7B)	9924	4115	1188	52	
H(5)	8121	3240	2621	40	
H(8A)	8987	6460	458	42	
H(8B)	9260	4854	-13	42	
H(6A)	9330	3815	2143	47	
H(6B)	9038	5819	1790	47	
H(18)	1614	107	-153	34	
H(11)	6345	3939	-2091	31	
H(20)	2741	1773	-1719	31	

Table D.1.3: Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for [Au(11)](PE_c)

N(4)-Au(1)-N(1)-C(1)	4.0(6)
N(2)-Au(1)-N(1)-C(1)	-173.8(6)
N(4)-Au(1)-N(1)-C(4)	175.4(4)
N(2)-Au(1)-N(1)-C(4)	-2.4(4)
N(1)-Au(1)-N(4)-C(13)	-3.9(6)
N(3)-Au(1)-N(4)-C(13)	174.0(6)
N(1)-Au(1)-N(4)-C(10)	-174.4(4)
N(3)-Au(1)-N(4)-C(10)	3.5(4)
C(21)-N(6)-C(14)-C(15)	-1.0(7)
C(21)-N(6)-C(14)-C(13)	176.6(4)
N(1)-Au(1)-N(2)-C(5)	2.2(4)
N(3)-Au(1)-N(2)-C(5)	-175.7(4)
N(1)-Au(1)-N(2)-C(6)	-179.6(5)
N(3)-Au(1)-N(2)-C(6)	2.4(5)
N(6)-C(14)-C(15)-N(5)	1.0(7)
C(13)-C(14)-C(15)-N(5)	-176.1(5)
N(6)-C(14)-C(15)-C(1)	178.8(5)
C(13)-C(14)-C(15)-C(1)	1.7(9)
C(14)-C(15)-N(5)-C(16)	0.3(7)
C(1)-C(15)-N(5)-C(16)	-178.0(4)
C(13)-N(4)-C(10)-C(9)	-177.0(5)
Au(1)-N(4)-C(10)-C(9)	-3.5(6)
C(13)-N(4)-C(10)-C(11)	0.5(6)
Au(1)-N(4)-C(10)-C(11)	174.0(4)
C(4)-N(1)-C(1)-C(2)	0.4(6)
Au(1)-N(1)-C(1)-C(2)	172.1(4)
C(4)-N(1)-C(1)-C(15)	180.0(5)
Au(1)-N(1)-C(1)-C(15)	-8.3(10)
N(5)-C(15)-C(1)-N(1)	-175.2(5)
C(14)-C(15)-C(1)-N(1)	6.8(10)
N(5)-C(15)-C(1)-C(2)	4.4(7)
C(14)-C(15)-C(1)-C(2)	-173.7(5)
N(1)-C(1)-C(2)-C(3)	0.0(7)
C(15)-C(1)-C(2)-C(3)	-179.6(5)
C(10)-N(4)-C(13)-C(12)	-0.3(6)
Au(1)-N(4)-C(13)-C(12)	-171.0(4)

Table D.1.4: Torsion angles [°] for [Au(L1)](PF₆)

Table D.1.4. continued...

C(10)-N(4)-C(13)-C(14)	179.6(5)
Au(1)-N(4)-C(13)-C(14)	8.9(10)
N(6)-C(14)-C(13)-N(4)	173.6(5)
C(15)-C(14)-C(13)-N(4)	-9.1(10)
N(6)-C(14)-C(13)-C(12)	-6.6(7)
C(15)-C(14)-C(13)-C(12)	170.7(5)
N(4)-Au(1)-N(3)-C(9)	-3.2(4)
N(2)-Au(1)-N(3)-C(9)	174.7(4)
N(4)-Au(1)-N(3)-C(8)	178.6(5)
N(2)-Au(1)-N(3)-C(8)	-3.5(5)
C(14)-N(6)-C(21)-C(20)	-178.8(5)
C(14)-N(6)-C(21)-C(16)	-0.1(7)
N(4)-C(13)-C(12)-C(11)	0.0(7)
C(14)-C(13)-C(12)-C(11)	-179.9(5)
C(15)-N(5)-C(16)-C(21)	-1.4(7)
C(15)-N(5)-C(16)-C(17)	179.5(5)
N(6)-C(21)-C(16)-N(5)	1.3(8)
C(20)-C(21)-C(16)-N(5)	-179.9(5)
N(6)-C(21)-C(16)-C(17)	-179.5(5)
C(20)-C(21)-C(16)-C(17)	-0.8(8)
C(18)-C(17)-C(16)-N(5)	179.7(5)
C(18)-C(17)-C(16)-C(21)	0.5(8)
C(1)-C(2)-C(3)-C(4)	-0.4(7)
C(8)-N(3)-C(9)-C(10)	-179.7(5)
Au(1)-N(3)-C(9)-C(10)	2.1(7)
C(11)-C(10)-C(9)-N(3)	-175.8(6)
N(4)-C(10)-C(9)-N(3)	1.0(8)
C(6)-N(2)-C(5)-C(4)	-179.7(6)
Au(1)-N(2)-C(5)-C(4)	-1.6(7)
C(9)-N(3)-C(8)-C(7)	-144.9(6)
Au(1)-N(3)-C(8)-C(7)	33.1(7)
C(6)-C(7)-C(8)-N(3)	-69.5(7)
C(5)-N(2)-C(6)-C(7)	146.4(6)
Au(1)-N(2)-C(6)-C(7)	-31.5(8)
C(8)-C(7)-C(6)-N(2)	69.1(7)
C(16)-C(17)-C(18)-C(19)	-0.3(8)
C(20)-C(19)-C(18)-C(17)	0.3(8)

Table D.1.4. continued		
C(9)-C(10)-C(11)-C(12)	176.4(7)	
N(4)-C(10)-C(11)-C(12)	-0.5(7)	
C(13)-C(12)-C(11)-C(10)	0.3(7)	
C(1)-N(1)-C(4)-C(3)	-0.7(7)	
Au(1)-N(1)-C(4)-C(3)	-174.7(4)	
C(1)-N(1)-C(4)-C(5)	176.3(5)	
Au(1)-N(1)-C(4)-C(5)	2.3(6)	
C(2)-C(3)-C(4)-N(1)	0.6(7)	
C(2)-C(3)-C(4)-C(5)	-175.3(7)	
N(2)-C(5)-C(4)-N(1)	-0.4(8)	
N(2)-C(5)-C(4)-C(3)	175.4(7)	
C(18)-C(19)-C(20)-C(21)	-0.6(8)	
N(6)-C(21)-C(20)-C(19)	179.6(5)	
C(16)-C(21)-C(20)-C(19)	0.8(8)	

D.2: Full crystallographic Data Tables of [Au(L2)](CF₃SO₃)

C(1A)-C(2A)	1.43(3)	
C(1A)-N(1A)	1.43(3)	
C(1A)-C(047)	1.46(4)	
C(1B)-C(2B)	1.33(4)	
C(1B)-N(2B)	1.38(3)	
C(1B)-C(21B)	1.39(4)	
C(2A)-C(3A)	1.35(3)	
C(2B)-C(3B)	1.40(3)	
C(3A)-C(4A)	1.41(3)	
C(3B)-C(4B)	1.38(3)	
C(4A)-C(5A)	1.34(3)	
C(4A)-N(1A)	1.39(3)	
C(4B)-N(2B)	1.38(3)	
C(4B)-C(5B)	1.41(3)	
C(5A)-N(2A)	1.39(3)	
C(5B)-N(1B)	1.38(4)	
C(6A)-N(2A)	1.40(3)	
C(6A)-C(7A)	1.59(3)	
C(6B)-N(1B)	1.35(4)	
C(6B)-C(7B)	1.52(5)	
C(7A)-C(22A)	1.52(3)	
C(7A)-C(23A)	1.52(3)	
C(7A)-C(8A)	1.64(4)	
C(7B)-C(8B)	1.43(4)	
C(7B)-C(23B)	1.47(4)	
C(7B)-C(22B)	1.58(3)	
C(8A)-N(3A)	1.43(3)	
C(8B)-N(4B)	1.54(3)	
C(9A)-C(11A)	1.32(4)	
C(9A)-N(3A)	1.32(3)	
C(9B)-N(4B)	1.21(3)	
C(9B)-C(10B)	1.47(3)	
C(10A)-C(12A)	1.37(4)	
C(10A)-C(11A)	1.41(3)	

Table D.2.1: Bond lengths [Å] and angles [°] for $[Au(L2)](CF_3SO_3)$.

	Table	D.2.1.	continued
--	-------	--------	-----------

C(10B)-C(11B)	1.31(3)
C(10B)-N(3B)	1.41(3)
C(11A)-N(4A)	1.37(3)
C(11B)-C(13B)	1.41(3)
C(12A)-C(13A)	1.44(3)
C(13A)-N(4A)	1.36(3)
C(13A)-C(14A)	1.47(3)
C(13B)-N(027)	1.42(5)
C(14A)-N(6A)	1.28(3)
C(14A)-C(047)	1.51(3)
C(14B)-N(5B)	1.40(5)
C(14B)-C(21B)	1.46(6)
C(14B)-N(027)	1.57(6)
C(15A)-C(16A)	1.34(3)
C(15A)-N(6A)	1.36(3)
C(15A)-C(21A)	1.44(4)
C(15B)-C(20B)	1.36(3)
C(15B)-N(5B)	1.40(3)
C(15B)-C(16B)	1.46(4)
C(16A)-C(17A)	1.24(4)
C(16B)-C(17B)	1.33(3)
C(17A)-C(19A)	1.42(4)
C(17B)-C(18B)	1.42(3)
C(18B)-C(19B)	1.21(3)
C(19A)-C(20A)	1.36(3)
C(19B)-C(20B)	1.39(3)
C(20A)-C(21A)	1.39(3)
C(20B)-N(6B)	1.43(3)
C(21A)-N(5A)	1.30(3)
C(21B)-N(6B)	1.23(3)
C(24A)-F(2A)	1.26(5)
C(24A)-F(3A)	1.39(4)
C(24A)-F(1A)	1.43(3)
C(24A)-S(1A)	1.72(6)
C(24B)-F(2B)	0.83(12)
C(24B)-F(3B)	1.43(7)
C(24B)-F(1B)	1.53(7)

C(24B)-S(1B)	2.04(8)
C(047)-N(5A)	1.24(3)
N(1A)-Au(1A)	1.981(18)
N(1B)-Au(1B)	2.02(2)
N(2A)-Au(1A)	1.989(18)
N(2B)-Au(1B)	1.94(2)
N(3A)-Au(1A)	1.98(2)
N(3B)-N(027)	1.34(4)
N(3B)-Au(1B)	2.01(2)
N(4A)-Au(1A)	1.993(18)
N(4B)-Au(1B)	2.07(3)
O(1A)-S(1A)	1.419(18)
O(1B)-S(1B)	1.52(3)
O(2A)-S(1A)	1.48(2)
O(2B)-S(1B)	1.48(5)
O(3A)-S(1A)	1.47(2)
O(3B)-S(1B)	1.46(3)
C(2A)-C(1A)-N(1A)	102(2)
C(2A)-C(1A)-C(047)	121.9(19)
N(1A)-C(1A)-C(047)	136(2)
C(2B)-C(1B)-N(2B)	109(2)
C(2B)-C(1B)-C(21B)	118(3)
N(2B)-C(1B)-C(21B)	132(3)
C(3A)-C(2A)-C(1A)	111.3(18)
C(1B)-C(2B)-C(3B)	110(2)
C(2A)-C(3A)-C(4A)	108.9(17)
C(4B)-C(3B)-C(2B)	104(2)
C(5A)-C(4A)-N(1A)	114.4(19)
C(5A)-C(4A)-C(3A)	139(2)
N(1A)-C(4A)-C(3A)	106.3(15)
N(2B)-C(4B)-C(3B)	109.9(19)
N(2B)-C(4B)-C(5B)	117(3)
C(3B)-C(4B)-C(5B)	133(3)
C(4A)-C(5A)-N(2A)	118.5(19)
N(1B)-C(5B)-C(4B)	114(2)
N(2A)-C(6A)-C(7A)	113.7(19)

Table D.2.1.	continued
--------------	-----------

N(1B)-C(6B)-C(7B)	116(3)
C(22A)-C(7A)-C(23A)	110(2)
C(22A)-C(7A)-C(6A)	110.7(18)
C(23A)-C(7A)-C(6A)	107.9(18)
C(22A)-C(7A)-C(8A)	110.8(19)
C(23A)-C(7A)-C(8A)	106.5(18)
C(6A)-C(7A)-C(8A)	110.8(19)
C(8B)-C(7B)-C(23B)	109(2)
C(8B)-C(7B)-C(6B)	115(3)
C(23B)-C(7B)-C(6B)	112(3)
C(8B)-C(7B)-C(22B)	100(2)
C(23B)-C(7B)-C(22B)	111(2)
C(6B)-C(7B)-C(22B)	110(2)
N(3A)-C(8A)-C(7A)	110.5(19)
C(7B)-C(8B)-N(4B)	117(2)
C(11A)-C(9A)-N(3A)	118(2)
N(4B)-C(9B)-C(10B)	122(3)
C(12A)-C(10A)-C(11A)	110(2)
C(11B)-C(10B)-N(3B)	107(2)
C(11B)-C(10B)-C(9B)	140(2)
N(3B)-C(10B)-C(9B)	113(2)
C(9A)-C(11A)-N(4A)	119(2)
C(9A)-C(11A)-C(10A)	136(3)
N(4A)-C(11A)-C(10A)	105(2)
C(10B)-C(11B)-C(13B)	109(2)
C(10A)-C(12A)-C(13A)	107(2)
N(4A)-C(13A)-C(12A)	106(2)
N(4A)-C(13A)-C(14A)	132.5(18)
C(12A)-C(13A)-C(14A)	121.5(19)
C(11B)-C(13B)-N(027)	108(2)
N(6A)-C(14A)-C(13A)	110.3(19)
N(6A)-C(14A)-C(047)	118(2)
C(13A)-C(14A)-C(047)	131.3(19)
N(5B)-C(14B)-C(21B)	125(2)
N(5B)-C(14B)-N(027)	99(4)
C(21B)-C(14B)-N(027)	136(3)
C(16A)-C(15A)-N(6A)	125(3)

Table D.2.1. continued...

C(16A)-C(15A)-C(21A)	117(3)
N(6A)-C(15A)-C(21A)	118(2)
C(20B)-C(15B)-N(5B)	119.1(19)
C(20B)-C(15B)-C(16B)	122(2)
N(5B)-C(15B)-C(16B)	118(2)
C(17A)-C(16A)-C(15A)	129(3)
C(17B)-C(16B)-C(15B)	115(3)
C(16A)-C(17A)-C(19A)	118(2)
C(16B)-C(17B)-C(18B)	122(3)
C(19B)-C(18B)-C(17B)	118(2)
C(20A)-C(19A)-C(17A)	118(2)
C(18B)-C(19B)-C(20B)	129(2)
C(19A)-C(20A)-C(21A)	124(2)
C(15B)-C(20B)-C(19B)	113.6(19)
C(15B)-C(20B)-N(6B)	121(2)
C(19B)-C(20B)-N(6B)	125(2)
N(5A)-C(21A)-C(20A)	124(2)
N(5A)-C(21A)-C(15A)	121(2)
C(20A)-C(21A)-C(15A)	115(2)
N(6B)-C(21B)-C(1B)	117(3)
N(6B)-C(21B)-C(14B)	116(2)
C(1B)-C(21B)-C(14B)	127(2)
F(2A)-C(24A)-F(3A)	112(4)
F(2A)-C(24A)-F(1A)	104(3)
F(3A)-C(24A)-F(1A)	102(3)
F(2A)-C(24A)-S(1A)	112(3)
F(3A)-C(24A)-S(1A)	112(3)
F(1A)-C(24A)-S(1A)	114(3)
F(2B)-C(24B)-F(3B)	118(8)
F(2B)-C(24B)-F(1B)	132(9)
F(3B)-C(24B)-F(1B)	95(6)
F(2B)-C(24B)-S(1B)	121(7)
F(3B)-C(24B)-S(1B)	93(5)
F(1B)-C(24B)-S(1B)	88(5)
N(5A)-C(047)-C(1A)	111.9(19)
N(5A)-C(047)-C(14A)	121(2)
C(1A)-C(047)-C(14A)	127(2)

Table D.2.1. continued...

C(4A)-N(1A)-C(1A)	111.1(18)
C(4A)-N(1A)-Au(1A)	114.2(13)
C(1A)-N(1A)-Au(1A)	134.5(16)
C(6B)-N(1B)-C(5B)	121(3)
C(6B)-N(1B)-Au(1B)	125(3)
C(5B)-N(1B)-Au(1B)	113.4(16)
C(5A)-N(2A)-C(6A)	122.9(19)
C(5A)-N(2A)-Au(1A)	111.7(14)
C(6A)-N(2A)-Au(1A)	123.8(15)
C(1B)-N(2B)-C(4B)	106(2)
C(1B)-N(2B)-Au(1B)	139.8(19)
C(4B)-N(2B)-Au(1B)	113.9(16)
C(9A)-N(3A)-C(8A)	122(2)
C(9A)-N(3A)-Au(1A)	111.7(16)
C(8A)-N(3A)-Au(1A)	124.9(18)
N(027)-N(3B)-C(10B)	112(3)
N(027)-N(3B)-Au(1B)	137(2)
C(10B)-N(3B)-Au(1B)	111.6(14)
C(13A)-N(4A)-C(11A)	112.5(19)
C(13A)-N(4A)-Au(1A)	137.8(14)
C(11A)-N(4A)-Au(1A)	109.3(16)
C(9B)-N(4B)-C(8B)	130(3)
C(9B)-N(4B)-Au(1B)	112.0(18)
C(8B)-N(4B)-Au(1B)	116.9(19)
C(047)-N(5A)-C(21A)	121(2)
C(14B)-N(5B)-C(15B)	115(3)
C(14A)-N(6A)-C(15A)	120.3(19)
C(21B)-N(6B)-C(20B)	124(3)
N(3B)-N(027)-C(13B)	104(3)
N(3B)-N(027)-C(14B)	127(4)
C(13B)-N(027)-C(14B)	129(3)
O(1A)-S(1A)-O(3A)	115.1(13)
O(1A)-S(1A)-O(2A)	115.7(13)
O(3A)-S(1A)-O(2A)	114.7(14)
O(1A)-S(1A)-C(24A)	103.9(16)
O(3A)-S(1A)-C(24A)	101.7(15)
O(2A)-S(1A)-C(24A)	103(2)

O(3B)-S(1B)-O(2B)	113(2)	
O(3B)-S(1B)-O(1B)	111(3)	
O(2B)-S(1B)-O(1B)	125(3)	
O(3B)-S(1B)-C(24B)	97(2)	
O(2B)-S(1B)-C(24B)	90(3)	
O(1B)-S(1B)-C(24B)	115(3)	
N(1A)-Au(1A)-N(3A)	174.0(8)	
N(1A)-Au(1A)-N(2A)	80.8(7)	
N(3A)-Au(1A)-N(2A)	96.7(8)	
N(1A)-Au(1A)-N(4A)	100.1(7)	
N(3A)-Au(1A)-N(4A)	81.8(8)	
N(2A)-Au(1A)-N(4A)	173.5(7)	
N(2B)-Au(1B)-N(3B)	100.3(8)	
N(2B)-Au(1B)-N(1B)	81.7(8)	
N(3B)-Au(1B)-N(1B)	174.8(8)	
N(2B)-Au(1B)-N(4B)	176.5(9)	
N(3B)-Au(1B)-N(4B)	81.7(8)	
N(1B)-Au(1B)-N(4B)	96.0(9)	

Table D.2.1. continued...

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1A)	54(15)	59(16)	32(12)	26(11)	37(12)	45(13)	
C(1B)	51(16)	36(14)	27(12)	6(10)	15(11)	4(12)	
C(2A)	34(11)	36(11)	29(11)	-2(8)	15(9)	9(9)	
C(2B)	47(14)	66(18)	58(15)	20(13)	30(13)	16(13)	
C(3A)	20(9)	45(13)	25(10)	-14(8)	9(8)	-11(8)	
C(3B)	45(12)	59(15)	44(13)	12(11)	25(11)	15(12)	
C(4A)	36(11)	12(9)	49(12)	10(8)	27(10)	10(8)	
C(4B)	39(12)	71(17)	32(11)	23(11)	12(9)	28(12)	
C(5A)	44(12)	19(10)	25(10)	7(8)	12(9)	1(9)	
C(5B)	58(16)	61(17)	40(14)	20(12)	29(12)	20(13)	
C(6A)	43(11)	35(10)	64(18)	-1(11)	28(12)	0(11)	
C(6B)	70(20)	180(40)	80(20)	50(20)	50(20)	90(30)	
C(7A)	27(10)	61(15)	54(14)	6(11)	10(10)	-5(10)	
C(7B)	34(12)	84(18)	53(15)	20(13)	22(11)	-4(12)	
C(8A)	35(12)	76(19)	33(13)	13(12)	16(11)	14(12)	
C(8B)	38(14)	100(20)	59(17)	-9(16)	1(12)	18(15)	
C(9A)	24(10)	54(15)	34(11)	-7(11)	10(9)	-5(11)	
C(9B)	29(11)	80(20)	41(12)	-20(13)	17(10)	-6(13)	
C(10A)	61(16)	33(12)	23(11)	-1(9)	1(10)	-16(11)	
C(10B)	58(15)	41(12)	27(11)	-1(10)	17(11)	-3(11)	
C(11A)	90(20)	46(15)	43(15)	-15(12)	42(16)	-9(15)	
C(11B)	70(16)	43(13)	49(14)	5(11)	38(13)	-5(12)	
C(12A)	33(12)	72(18)	33(12)	8(11)	9(10)	0(12)	
C(13A)	64(18)	49(12)	18(9)	-20(10)	23(11)	-23(12)	
C(13B)	53(14)	68(18)	22(11)	9(11)	19(10)	1(13)	
C(14A)	50(13)	18(10)	35(11)	4(8)	32(11)	-8(9)	
C(14B)	21(17)	200(50)	40(20)	1(19)	26(16)	-17(17)	
C(15A)	46(13)	38(11)	42(12)	0(9)	27(11)	8(10)	
C(15B)	30(11)	58(15)	29(11)	22(10)	15(9)	19(10)	
C(16A)	110(20)	28(12)	80(20)	16(13)	60(19)	7(15)	
C(16B)	49(15)	130(30)	33(13)	-9(15)	14(11)	-27(17)	
C(17A)	83(19)	25(12)	58(16)	2(11)	20(14)	-11(13)	
C(17B)	8(9)	90(20)	66(17)	-10(14)	16(10)	9(11)	
C(18B)	51(13)	42(13)	69(15)	-15(11)	44(12)	-22(11)	

Table D.2.2: Anisotropic displacement parameters ($Å^2x \ 10^3$) for [Au(L2)](CF₃SO₃). The anisotropicdisplacement factor exponent takes the form: $-2p^2$ [$h^2a^{*2}U^{11} + ... + 2h \ ka^*b^*U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U12	
C(19A)	90(20)	29(13)	79(19)	0(12)	31(16)	4(13)	
C(19B)	27(4)	28(4)	27(4)	1(1)	13(2)	-1(1)	
C(20A)	31(11)	48(13)	33(11)	-3(9)	15(9)	-2(10)	
C(20B)	37(11)	59(15)	32(11)	4(9)	16(9)	4(10)	
C(21A)	45(14)	100(20)	19(10)	-3(12)	18(10)	14(14)	
C(21B)	20(13)	110(30)	18(12)	32(12)	6(10)	2(13)	
C(22A)	34(10)	36(11)	55(13)	13(10)	16(9)	7(9)	
C(22B)	27(11)	90(19)	66(17)	22(14)	14(11)	22(12)	
C(23A)	30(11)	48(14)	82(18)	13(12)	13(11)	2(10)	
C(23B)	37(12)	72(17)	65(16)	4(13)	17(11)	-4(11)	
C(24A)	36(16)	60(20)	210(50)	30(20)	-10(20)	-19(15)	
C(24B)	120(40)	440(120)	70(30)	-30(50)	20(30)	150(60)	
C(047)	19(9)	60(16)	9(9)	-5(9)	2(7)	-15(10)	
N(1A)	39(9)	38(10)	38(9)	5(8)	27(8)	-3(8)	
N(1B)	42(12)	88(18)	24(10)	0(10)	9(9)	16(12)	
N(2A)	35(9)	52(11)	33(9)	5(8)	15(8)	1(8)	
N(2B)	31(10)	64(13)	26(10)	9(9)	14(8)	0(9)	
N(3A)	62(14)	52(12)	49(12)	14(10)	35(11)	21(11)	
N(3B)	16(8)	91(15)	17(8)	14(9)	7(7)	-5(9)	
N(4A)	34(9)	43(11)	31(9)	-19(8)	15(8)	0(8)	
N(4B)	47(13)	70(16)	58(15)	22(12)	15(11)	29(12)	
N(5A)	40(10)	40(10)	38(9)	2(8)	26(8)	14(8)	
N(5B)	46(12)	48(13)	26(10)	12(9)	8(9)	0(10)	
N(6A)	27(8)	42(10)	22(7)	8(6)	7(6)	-8(7)	
N(6B)	32(10)	75(14)	40(11)	2(10)	20(9)	-3(10)	
N(027)	100(20)	170(40)	21(13)	26(17)	24(14)	20(20)	
O(1A)	35(9)	84(13)	78(14)	-19(11)	1(9)	5(9)	
O(1B)	230(40)	58(17)	390(70)	30(30)	200(40)	-20(20)	
O(2A)	39(10)	150(20)	140(20)	-54(17)	13(12)	31(12)	
O(2B)	360(60)	500(80)	250(50)	190(50)	230(50)	370(70)	
O(3A)	47(10)	93(14)	116(18)	-37(13)	29(11)	-18(10)	
O(3B)	270(40)	120(20)	76(17)	40(16)	80(20)	110(30)	
F(1A)	88(12)	66(11)	160(20)	17(12)	36(13)	7(10)	
F(1B)	130(20)	220(30)	180(30)	110(30)	-20(20)	-50(20)	
F(2A)	74(12)	79(13)	180(20)	11(13)	31(14)	27(11)	
F(2B)	210(40)	160(30)	400(80)	100(40)	80(40)	-70(30)	

Table D.2.2. continued...

Table D.	2.2. continu	ied					
	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²	
F(3A)	58(10)	135(18)	114(15)	14(13)	19(10)	8(11)	
F(3B)	190(30)	150(30)	200(30)	-70(20)	80(30)	20(20)	
S(1A)	45(4)	80(5)	92(6)	-19(4)	3(4)	6(4)	
S(1B)	184(12)	109(8)	112(8)	34(6)	83(9)	82(9)	
Au(1A)	25(1)	30(1)	29(1)	2(1)	11(1)	0(1)	
Au(1B)	28(1)	62(1)	27(1)	0(1)	10(1)	5(1)	

Table D 2.2 continued

	X	v	Z	U(ea)	
H(2A)	12266	389	3715	40	
H(2B)	-1103	8722	3526	66	
H(3A)	12271	1344	3698	37	
H(3B)	305	8182	4590	57	
H(5A)	10768	2087	2352	38	
H(5B)	2148	8533	6117	61	
H(6A1)	9074	2239	179	56	
H(6A2)	9310	2505	1354	56	
H(6B1)	3472	9037	6928	127	
H(6B2)	3229	9344	7764	127	
H(8A1)	6839	1728	-648	58	
H(8A2)	7581	1771	-1041	58	
H(8B1)	3855	10589	7276	91	
H(8B2)	3446	10286	7946	91	
H(9A)	6690	802	-852	47	
H(9B)	2561	11247	6548	60	
H(10A)	6826	-330	-666	56	
H(11B)	821	11822	5122	60	
H(12A)	8127	-910	443	59	
H(13B)	-737	11465	3901	57	
H(16A)	10022	-1908	1890	77	
H(16B)	-3168	11113	1676	87	
H(17A)	11159	-2394	2859	74	
H(17B)	-4531	10694	759	69	
H(18B)	-4626	9768	760	57	
H(19A)	12596	-1987	3954	82	
H(19B)	-3470	9326	1783	33	
H(20A)	12661	-1087	4011	46	
H(22A)	8436	2214	2263	66	
H(22B)	7915	1679	1721	66	
H(22C)	7369	2214	1511	66	
H(22D)	4975	10151	7969	97	
H(22E)	5009	9534	7775	97	
H(22F)	4698	9743	8640	97	
H(23A)	7034	2727	105	89	

Table D.2.3: Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for [Au(L2)](CF₂SO₂).

	x	У	Z	U(eq)	
H(23B)	7413	2679	-758	89	
H(23C)	7994	2966	424	89	
H(23D)	3017	9876	5258	92	
H(23E)	3950	9571	5741	92	
H(23F)	3938	10196	5819	92	

Table D.2.3 continued...

Table D.4.4: Torsion angles [°] for [Au(L2)](CF₃SO₃).

N(1A)-C(1A)-C(2A)-C(3A)	1(2)	
C(047)-C(1A)-C(2A)-C(3A)	178.2(18)	
N(2B)-C(1B)-C(2B)-C(3B)	1(3)	
C(21B)-C(1B)-C(2B)-C(3B)	178(2)	
C(1A)-C(2A)-C(3A)-C(4A)	-1(2)	
C(1B)-C(2B)-C(3B)-C(4B)	0(3)	
C(2A)-C(3A)-C(4A)-C(5A)	-177(3)	
C(2A)-C(3A)-C(4A)-N(1A)	1(2)	
C(2B)-C(3B)-C(4B)-N(2B)	-1(2)	
C(2B)-C(3B)-C(4B)-C(5B)	178(2)	
N(1A)-C(4A)-C(5A)-N(2A)	3(3)	
C(3A)-C(4A)-C(5A)-N(2A)	-178(2)	
N(2B)-C(4B)-C(5B)-N(1B)	-1(3)	
C(3B)-C(4B)-C(5B)-N(1B)	180(2)	
N(2A)-C(6A)-C(7A)-C(22A)	55(3)	
N(2A)-C(6A)-C(7A)-C(23A)	176(2)	
N(2A)-C(6A)-C(7A)-C(8A)	-68(3)	
N(1B)-C(6B)-C(7B)-C(8B)	66(4)	
N(1B)-C(6B)-C(7B)-C(23B)	-58(4)	
N(1B)-C(6B)-C(7B)-C(22B)	178(3)	
C(22A)-C(7A)-C(8A)-N(3A)	-56(3)	
C(23A)-C(7A)-C(8A)-N(3A)	-176(2)	
C(6A)-C(7A)-C(8A)-N(3A)	67(3)	
C(23B)-C(7B)-C(8B)-N(4B)	58(3)	
C(6B)-C(7B)-C(8B)-N(4B)	-68(4)	
C(22B)-C(7B)-C(8B)-N(4B)	174(3)	
N(4B)-C(9B)-C(10B)-C(11B)	-174(3)	
N(4B)-C(9B)-C(10B)-N(3B)	3(3)	
N(3A)-C(9A)-C(11A)-N(4A)	-2(3)	
N(3A)-C(9A)-C(11A)-C(10A)	-178(3)	
C(12A)-C(10A)-C(11A)-C(9A)	177(3)	
C(12A)-C(10A)-C(11A)-N(4A)	1(3)	
N(3B)-C(10B)-C(11B)-C(13B)	2(3)	
C(9B)-C(10B)-C(11B)-C(13B)	179(3)	
C(11A)-C(10A)-C(12A)-C(13A)	-2(3)	
C(10A)-C(12A)-C(13A)-N(4A)	3(3)	

Table D.4.4. continued...

C(10A)-C(12A)-C(13A)-C(14A)	179(2)	
C(10B)-C(11B)-C(13B)-N(027)	-3(3)	
N(4A)-C(13A)-C(14A)-N(6A)	178(2)	
C(12A)-C(13A)-C(14A)-N(6A)	3(3)	
N(4A)-C(13A)-C(14A)-C(047)	-6(4)	
C(12A)-C(13A)-C(14A)-C(047)	179(2)	
N(6A)-C(15A)-C(16A)-C(17A)	179(3)	
C(21A)-C(15A)-C(16A)-C(17A)	5(4)	
C(20B)-C(15B)-C(16B)-C(17B)	2(3)	
N(5B)-C(15B)-C(16B)-C(17B)	-178(2)	
C(15A)-C(16A)-C(17A)-C(19A)	-5(5)	
C(15B)-C(16B)-C(17B)-C(18B)	-3(4)	
C(16B)-C(17B)-C(18B)-C(19B)	4(4)	
C(16A)-C(17A)-C(19A)-C(20A)	2(4)	
C(17B)-C(18B)-C(19B)-C(20B)	-3(4)	
C(17A)-C(19A)-C(20A)-C(21A)	O(4)	
N(5B)-C(15B)-C(20B)-C(19B)	178.7(19)	
C(16B)-C(15B)-C(20B)-C(19B)	-1(3)	
N(5B)-C(15B)-C(20B)-N(6B)	0(3)	
C(16B)-C(15B)-C(20B)-N(6B)	-179(2)	
C(18B)-C(19B)-C(20B)-C(15B)	1(3)	
C(18B)-C(19B)-C(20B)-N(6B)	179(2)	
C(19A)-C(20A)-C(21A)-N(5A)	-180(2)	
C(19A)-C(20A)-C(21A)-C(15A)	0(3)	
C(16A)-C(15A)-C(21A)-N(5A)	178(2)	
N(6A)-C(15A)-C(21A)-N(5A)	3(3)	
C(16A)-C(15A)-C(21A)-C(20A)	-3(3)	
N(6A)-C(15A)-C(21A)-C(20A)	-177.0(18)	
C(2B)-C(1B)-C(21B)-N(6B)	7(3)	
N(2B)-C(1B)-C(21B)-N(6B)	-178(3)	
C(2B)-C(1B)-C(21B)-C(14B)	-175(2)	
N(2B)-C(1B)-C(21B)-C(14B)	1(4)	
N(5B)-C(14B)-C(21B)-N(6B)	-6(4)	
N(027)-C(14B)-C(21B)-N(6B)	170(3)	
N(5B)-C(14B)-C(21B)-C(1B)	175(3)	
N(027)-C(14B)-C(21B)-C(1B)	-9(4)	
C(2A)-C(1A)-C(047)-N(5A)	3(3)	

Table D.4.4. continued...

N(1A)-C(1A)-C(047)-N(5A)	179(2)	
C(2A)-C(1A)-C(047)-C(14A)	179.1(18)	
N(1A)-C(1A)-C(047)-C(14A)	-5(4)	
N(6A)-C(14A)-C(047)-N(5A)	-3(3)	
C(13A)-C(14A)-C(047)-N(5A)	-179(2)	
N(6A)-C(14A)-C(047)-C(1A)	-178.5(19)	
C(13A)-C(14A)-C(047)-C(1A)	5(4)	
C(5A)-C(4A)-N(1A)-C(1A)	178.3(18)	
C(3A)-C(4A)-N(1A)-C(1A)	-1(2)	
C(5A)-C(4A)-N(1A)-Au(1A)	2(2)	
C(3A)-C(4A)-N(1A)-Au(1A)	-176.9(12)	
C(2A)-C(1A)-N(1A)-C(4A)	0(2)	
C(047)-C(1A)-N(1A)-C(4A)	-177(2)	
C(2A)-C(1A)-N(1A)-Au(1A)	175.1(13)	
C(047)-C(1A)-N(1A)-Au(1A)	-1(3)	
C(7B)-C(6B)-N(1B)-C(5B)	153(3)	
C(7B)-C(6B)-N(1B)-Au(1B)	-31(4)	
C(4B)-C(5B)-N(1B)-C(6B)	176(2)	
C(4B)-C(5B)-N(1B)-Au(1B)	-1(2)	
C(4A)-C(5A)-N(2A)-C(6A)	-173(2)	
C(4A)-C(5A)-N(2A)-Au(1A)	-7(2)	
C(7A)-C(6A)-N(2A)-C(5A)	-155(2)	
C(7A)-C(6A)-N(2A)-Au(1A)	41(3)	
C(2B)-C(1B)-N(2B)-C(4B)	-2(3)	
C(21B)-C(1B)-N(2B)-C(4B)	-178(3)	
C(2B)-C(1B)-N(2B)-Au(1B)	177.5(18)	
C(21B)-C(1B)-N(2B)-Au(1B)	1(5)	
C(3B)-C(4B)-N(2B)-C(1B)	2(2)	
C(5B)-C(4B)-N(2B)-C(1B)	-177(2)	
C(3B)-C(4B)-N(2B)-Au(1B)	-177.5(14)	
C(5B)-C(4B)-N(2B)-Au(1B)	3(2)	
C(11A)-C(9A)-N(3A)-C(8A)	172(2)	
C(11A)-C(9A)-N(3A)-Au(1A)	5(3)	
C(7A)-C(8A)-N(3A)-C(9A)	153(2)	
C(7A)-C(8A)-N(3A)-Au(1A)	-42(3)	
C(11B)-C(10B)-N(3B)-N(027)	-1(3)	
C(9B)-C(10B)-N(3B)-N(027)	-178(2)	

C(11B)-C(10B)-N(3B)-Au(1B)	176.7(16)
C(9B)-C(10B)-N(3B)-Au(1B)	-1(2)
C(12A)-C(13A)-N(4A)-C(11A)	-2(2)
C(14A)-C(13A)-N(4A)-C(11A)	-178(2)
C(12A)-C(13A)-N(4A)-Au(1A)	-174.1(17)
C(14A)-C(13A)-N(4A)-Au(1A)	10(4)
C(9A)-C(11A)-N(4A)-C(13A)	-176(2)
C(10A)-C(11A)-N(4A)-C(13A)	1(3)
C(9A)-C(11A)-N(4A)-Au(1A)	-2(3)
C(10A)-C(11A)-N(4A)-Au(1A)	175.2(16)
C(10B)-C(9B)-N(4B)-C(8B)	-172(3)
C(10B)-C(9B)-N(4B)-Au(1B)	-3(3)
C(7B)-C(8B)-N(4B)-C(9B)	-157(3)
C(7B)-C(8B)-N(4B)-Au(1B)	34(4)
C(1A)-C(047)-N(5A)-C(21A)	-180.0(18)
C(14A)-C(047)-N(5A)-C(21A)	4(3)
C(20A)-C(21A)-N(5A)-C(047)	176(2)
C(15A)-C(21A)-N(5A)-C(047)	-4(3)
C(21B)-C(14B)-N(5B)-C(15B)	4(3)
N(027)-C(14B)-N(5B)-C(15B)	-174(2)
C(20B)-C(15B)-N(5B)-C(14B)	-1(3)
C(16B)-C(15B)-N(5B)-C(14B)	179(2)
C(13A)-C(14A)-N(6A)-C(15A)	179.1(18)
C(047)-C(14A)-N(6A)-C(15A)	2(3)
C(16A)-C(15A)-N(6A)-C(14A)	-176(2)
C(21A)-C(15A)-N(6A)-C(14A)	-2(3)
C(1B)-C(21B)-N(6B)-C(20B)	-176(2)
C(14B)-C(21B)-N(6B)-C(20B)	6(3)
C(15B)-C(20B)-N(6B)-C(21B)	-3(3)
C(19B)-C(20B)-N(6B)-C(21B)	179(2)
C(10B)-N(3B)-N(027)-C(13B)	-1(3)
Au(1B)-N(3B)-N(027)-C(13B)	-177.3(15)
C(10B)-N(3B)-N(027)-C(14B)	179(2)
Au(1B)-N(3B)-N(027)-C(14B)	2(4)
C(11B)-C(13B)-N(027)-N(3B)	2(3)
C(11B)-C(13B)-N(027)-C(14B)	-178(2)
N(5B)-C(14B)-N(027)-N(3B)	-175(3)

Table D.4.4.	continued
--------------	-----------

C(21B)-C(14B)-N(027)-N(3B)	8(5)	
N(5B)-C(14B)-N(027)-C(13B)	4(3)	
C(21B)-C(14B)-N(027)-C(13B)	-172(3)	
F(2A)-C(24A)-S(1A)-O(1A)	-55(3)	
F(3A)-C(24A)-S(1A)-O(1A)	177(2)	
F(1A)-C(24A)-S(1A)-O(1A)	62(3)	
F(2A)-C(24A)-S(1A)-O(3A)	64(2)	
F(3A)-C(24A)-S(1A)-O(3A)	-63(3)	
F(1A)-C(24A)-S(1A)-O(3A)	-178(2)	
F(2A)-C(24A)-S(1A)-O(2A)	-176(2)	
F(3A)-C(24A)-S(1A)-O(2A)	56(3)	
F(1A)-C(24A)-S(1A)-O(2A)	-59(3)	
F(2B)-C(24B)-S(1B)-O(3B)	48(8)	
F(3B)-C(24B)-S(1B)-O(3B)	-77(4)	
F(1B)-C(24B)-S(1B)-O(3B)	-172(3)	
F(2B)-C(24B)-S(1B)-O(2B)	-66(8)	
F(3B)-C(24B)-S(1B)-O(2B)	169(4)	
F(1B)-C(24B)-S(1B)-O(2B)	74(4)	
F(2B)-C(24B)-S(1B)-O(1B)	165(7)	
F(3B)-C(24B)-S(1B)-O(1B)	39(4)	
F(1B)-C(24B)-S(1B)-O(1B)	-56(4)	
C(4A)-N(1A)-Au(1A)-N(3A)	-70(9)	
C(1A)-N(1A)-Au(1A)-N(3A)	115(8)	
C(4A)-N(1A)-Au(1A)-N(2A)	-4.4(12)	
C(1A)-N(1A)-Au(1A)-N(2A)	-179.6(18)	
C(4A)-N(1A)-Au(1A)-N(4A)	-177.8(12)	
C(1A)-N(1A)-Au(1A)-N(4A)	7.0(18)	
C(9A)-N(3A)-Au(1A)-N(1A)	-113(8)	
C(8A)-N(3A)-Au(1A)-N(1A)	81(9)	
C(9A)-N(3A)-Au(1A)-N(2A)	-177.9(15)	
C(8A)-N(3A)-Au(1A)-N(2A)	16(2)	
C(9A)-N(3A)-Au(1A)-N(4A)	-4.3(14)	
C(8A)-N(3A)-Au(1A)-N(4A)	-171(2)	
C(5A)-N(2A)-Au(1A)-N(1A)	5.8(14)	
C(6A)-N(2A)-Au(1A)-N(1A)	171.5(19)	
C(5A)-N(2A)-Au(1A)-N(3A)	-179.7(15)	
C(6A)-N(2A)-Au(1A)-N(3A)	-14.0(19)	

Table D.4.4. continued	
------------------------	--

C(5A)-N(2A)-Au(1A)-N(4A)	104(7)
C(6A)-N(2A)-Au(1A)-N(4A)	-90(7)
C(13A)-N(4A)-Au(1A)-N(1A)	-11(2)
C(11A)-N(4A)-Au(1A)-N(1A)	177.4(14)
C(13A)-N(4A)-Au(1A)-N(3A)	175(2)
C(11A)-N(4A)-Au(1A)-N(3A)	3.2(15)
C(13A)-N(4A)-Au(1A)-N(2A)	-108(7)
C(11A)-N(4A)-Au(1A)-N(2A)	80(7)
C(1B)-N(2B)-Au(1B)-N(3B)	3(3)
C(4B)-N(2B)-Au(1B)-N(3B)	-178.2(14)
C(1B)-N(2B)-Au(1B)-N(1B)	178(2)
C(4B)-N(2B)-Au(1B)-N(1B)	-3.0(16)
C(1B)-N(2B)-Au(1B)-N(4B)	130(15)
C(4B)-N(2B)-Au(1B)-N(4B)	-51(17)
N(027)-N(3B)-Au(1B)-N(2B)	-6(3)
C(10B)-N(3B)-Au(1B)-N(2B)	177.1(14)
N(027)-N(3B)-Au(1B)-N(1B)	-119(10)
C(10B)-N(3B)-Au(1B)-N(1B)	64(11)
N(027)-N(3B)-Au(1B)-N(4B)	176(2)
C(10B)-N(3B)-Au(1B)-N(4B)	-0.1(16)
C(6B)-N(1B)-Au(1B)-N(2B)	-175(2)
C(5B)-N(1B)-Au(1B)-N(2B)	2.3(17)
C(6B)-N(1B)-Au(1B)-N(3B)	-61(11)
C(5B)-N(1B)-Au(1B)-N(3B)	116(10)
C(6B)-N(1B)-Au(1B)-N(4B)	3(3)
C(5B)-N(1B)-Au(1B)-N(4B)	179.6(16)
C(9B)-N(4B)-Au(1B)-N(2B)	-126(15)
C(8B)-N(4B)-Au(1B)-N(2B)	45(17)
C(9B)-N(4B)-Au(1B)-N(3B)	1(2)
C(8B)-N(4B)-Au(1B)-N(3B)	172(2)
C(9B)-N(4B)-Au(1B)-N(1B)	-173.9(19)
C(8B)-N(4B)-Au(1B)-N(1B)	-3(2)

D.3: Full crystallographic Data Tables of [Au(L3)](PF₆)

Au(1)-N(4A)	1.976(12)
Au(1)-N(1A)	1.990(12)
Au(1)-N(3A)	2.018(14)
Au(1)-N(2A)	2.028(11)
Au(2)-N(1B)	1.972(12)
Au(2)-N(4B)	1.980(12)
Au(2)-N(3B)	2.025(11)
Au(2)-N(2B)	2.033(13)
Au(3)-N(1C)	1.973(15)
Au(3)-N(4C)	1.982(14)
Au(3)-N(3C)	2.028(13)
Au(3)-N(2C)	2.064(13)
Au(4)-N(4D)	1.975(11)
Au(4)-N(1D)	1.997(14)
Au(4)-N(2D)	2.011(12)
Au(4)-N(3D)	2.015(12)
Au(5)-N(4E)	1.974(14)
Au(5)-N(1E)	2.002(11)
Au(5)-N(2E)	2.012(11)
Au(5)-N(3E)	2.045(12)
Au(6)-N(2F)	1.967(14)
Au(6)-N(4F)	1.985(16)
Au(6)-N(1F)	1.993(14)
Au(6)-N(3F)	2.004(13)
P(1)-F(4)	1.579(11)
P(1)-F(5)	1.583(9)
P(1)-F(2)	1.592(11)
P(1)-F(1)	1.593(11)
P(1)-F(3)	1.594(12)
P(1)-F(6)	1.608(10)
P(2)-F(9)	1.573(11)
P(2)-F(12)	1.579(10)
P(2)-F(7)	1.600(10)
P(2)-F(10)	1.607(9)

Table D.3.1: Bond lengths [Å] and angles [°] for [Au(L3)](PF₆)

Table D.3.1	continued
-------------	-----------

P(2)-F(8)	1.611(9)
P(2)-F(11)	1.650(12)
P(3)-F(18)	1.581(10)
P(3)-F(15)	1.584(11)
P(3)-F(14)	1.595(9)
P(3)-F(13)	1.599(12)
P(3)-F(16)	1.602(9)
P(3)-F(17)	1.609(9)
P(4)-F(23)	1.587(11)
P(4)-F(20)	1.592(10)
P(4)-F(19)	1.603(10)
P(4)-F(22)	1.610(10)
P(4)-F(21)	1.619(9)
P(4)-F(24)	1.622(12)
P(5)-F(26)	1.576(10)
P(5)-F(28)	1.582(9)
P(5)-F(30)	1.590(9)
P(5)-F(25)	1.592(9)
P(5)-F(27)	1.606(9)
P(5)-F(29)	1.609(10)
P(6)-F(31)	1.572(10)
P(6)-F(35)	1.584(10)
P(6)-F(34)	1.597(13)
P(6)-F(32)	1.598(11)
P(6)-F(33)	1.605(10)
P(6)-F(36)	1.614(9)
N(1A)-C(1A)	1.343(18)
N(1A)-C(4A)	1.394(17)
N(1B)-C(1B)	1.380(19)
N(1B)-C(4B)	1.42(2)
N(1C)-C(4C)	1.37(2)
N(1C)-C(1C)	1.38(2)
N(1D)-C(4D)	1.34(2)
N(1D)-C(1D)	1.35(2)
N(1E)-C(1E)	1.322(18)
N(1E)-C(4E)	1.381(18)
N(1F)-C(1F)	1.33(2)

Table D.3.1 c	ontinued
---------------	----------

N(1F)-C(4F)	1.40(2)
N(1S)-C(1S)	1.10(2)
N(2A)-C(5A)	1.303(18)
N(2A)-C(6A)	1.496(18)
N(2B)-C(5B)	1.347(19)
N(2B)-C(6B)	1.444(19)
N(2C)-C(5C)	1.29(2)
N(2C)-C(6C)	1.45(2)
N(2D)-C(5D)	1.32(2)
N(2D)-C(6D)	1.45(2)
N(2E)-C(5E)	1.282(17)
N(2E)-C(6E)	1.468(15)
N(2F)-C(5F)	1.35(2)
N(2F)-C(6F)	1.49(2)
N(2S)-C(3S)	1.15(3)
N(3A)-C(10A)	1.304(19)
N(3A)-C(9A)	1.488(19)
N(3B)-C(10B)	1.295(18)
N(3B)-C(9B)	1.467(17)
N(3C)-C(10C)	1.26(2)
N(3C)-C(9C)	1.493(19)
N(3D)-C(10D)	1.286(18)
N(3D)-C(9D)	1.492(17)
N(3E)-C(10E)	1.28(2)
N(3E)-C(9E)	1.49(2)
N(3F)-C(10F)	1.32(2)
N(3F)-C(9F)	1.48(2)
N(3S)-C(5S)	1.119(18)
N(4A)-C(14A)	1.36(2)
N(4A)-C(11A)	1.39(2)
N(4B)-C(14B)	1.347(19)
N(4B)-C(11B)	1.406(17)
N(4C)-C(11C)	1.37(2)
N(4C)-C(14C)	1.37(2)
N(4D)-C(14D)	1.393(18)
N(4D)-C(11D)	1.409(18)
N(4E)-C(14E)	1.38(2)

Table [D.3.1	continued
---------	-------	-----------

N(4E)-C(11E)	1.40(2)
N(4F)-C(14F)	1.35(2)
N(4F)-C(11F)	1.41(2)
N(4S)-C(7S)	1.126(19)
N(5A)-C(15A)	1.360(19)
N(5A)-C(17A)	1.36(2)
N(5B)-C(17B)	1.337(19)
N(5B)-C(15B)	1.34(2)
N(5C)-C(15C)	1.34(2)
N(5C)-C(17C)	1.35(2)
N(5E)-C(15E)	1.33(2)
N(5E)-C(17E)	1.34(3)
N(5F)-C(15F)	1.33(2)
N(5F)-C(17F)	1.34(2)
N(5S)-C(9S)	1.10(3)
N(6A)-C(16A)	1.33(2)
N(6A)-C(22A)	1.36(2)
N(6B)-C(16B)	1.327(19)
N(6B)-C(22B)	1.330(19)
N(6C)-C(16C)	1.34(2)
N(6C)-C(22C)	1.34(2)
N(6E)-C(16E)	1.33(2)
N(6E)-C(22E)	1.35(3)
N(6F)-C(22F)	1.32(2)
N(6F)-C(16F)	1.35(2)
N(6S)-C(11S)	1.16(2)
N(41)-C(15D)	1.34(2)
N(41)-C(17D)	1.38(3)
N(42)-C(22D)	1.35(3)
N(42)-C(16D)	1.35(2)
C(1A)-C(2A)	1.42(2)
C(1A)-C(16A)	1.480(19)
C(1B)-C(2B)	1.37(2)
C(1B)-C(16B)	1.48(2)
C(1C)-C(2C)	1.45(2)
C(1C)-C(16C)	1.46(2)
C(1D)-C(2D)	1.42(3)

Table D.3	.1 continued
-----------	--------------

C(1D)-C(16D)	1.49(2)	
C(1E)-C(16E)	1.43(2)	
C(1E)-C(2E)	1.44(2)	
C(1F)-C(2F)	1.42(3)	
C(1F)-C(16F)	1.49(3)	
C(1S)-C(2S)	1.48(2)	
C(2A)-C(3A)	1.39(2)	
C(2A)-H(2A)	0.9500	
C(2B)-C(3B)	1.40(2)	
C(2B)-H(2B)	0.9500	
C(2C)-C(3C)	1.37(2)	
C(2C)-H(2C)	0.9500	
C(2D)-C(3D)	1.32(3)	
C(2D)-H(2D)	0.9500	
C(2E)-C(3E)	1.33(2)	
C(2E)-H(2E)	0.9500	
C(2F)-C(3F)	1.42(3)	
C(2F)-H(2F)	0.9500	
C(2S)-H(2SA)	0.9800	
C(2S)-H(2SB)	0.9800	
C(2S)-H(2SC)	0.9800	
C(3A)-C(4A)	1.41(2)	
C(3A)-H(3A)	0.9500	
C(3B)-C(4B)	1.37(2)	
C(3B)-H(3B)	0.9500	
C(3C)-C(4C)	1.37(2)	
C(3C)-H(3C)	0.9500	
C(3D)-C(4D)	1.42(3)	
C(3D)-H(3D)	0.9500	
C(3E)-C(4E)	1.40(2)	
C(3E)-H(3E)	0.9500	
C(3F)-C(4F)	1.42(3)	
C(3F)-H(3F)	0.9500	
C(3S)-C(4S)	1.43(3)	
C(4A)-C(5A)	1.38(2)	
C(4B)-C(5B)	1.35(2)	
C(4C)-C(5C)	1.40(2)	

Table D.S.I Continued

C(4D)-C(5D)	1.44(3)
C(4E)-C(5E)	1.429(19)
C(4F)-C(5F)	1.41(2)
C(4S)-H(4SA)	0.9800
C(4S)-H(4SB)	0.9800
C(4S)-H(4SC)	0.9800
C(5A)-H(5A)	0.9500
C(5B)-H(5B)	0.9500
C(5C)-H(5C)	0.9500
C(5D)-H(5D)	0.9500
C(5E)-H(5E)	0.9500
C(5F)-H(5F)	0.9500
C(5S)-C(6S)	1.48(2)
C(6A)-C(7A)	1.51(2)
C(6A)-H(6AA)	0.9900
C(6A)-H(6AB)	0.9900
C(6B)-C(7B)	1.51(2)
C(6B)-H(6BA)	0.9900
C(6B)-H(6BB)	0.9900
C(6C)-C(7C)	1.50(2)
C(6C)-H(6CA)	0.9900
C(6C)-H(6CB)	0.9900
C(6D)-C(7D)	1.56(2)
C(6D)-H(6DA)	0.9900
C(6D)-H(6DB)	0.9900
C(6E)-C(7E)	1.524(18)
C(6E)-H(6EA)	0.9900
C(6E)-H(6EB)	0.9900
C(6F)-C(7F)	1.48(2)
C(6F)-H(6FA)	0.9900
C(6F)-H(6FB)	0.9900
C(6S)-H(6SA)	0.9800
C(6S)-H(6SB)	0.9800
C(6S)-H(6SC)	0.9800
C(7A)-C(8A)	1.48(2)
C(7A)-H(7AA)	0.9900
С(7А)-Н(7АВ)	0.9900

C(7B)-C(8B)	1.56(2)
С(7В)-Н(7ВА)	0.9900
С(7В)-Н(7ВВ)	0.9900
C(7C)-C(8C)	1.57(2)
C(7C)-H(7CA)	0.9900
С(7С)-Н(7СВ)	0.9900
C(7D)-C(8D)	1.49(2)
C(7D)-H(7DA)	0.9900
C(7D)-H(7DB)	0.9900
C(7E)-C(8E)	1.52(2)
C(7E)-H(7EA)	0.9900
C(7E)-H(7EB)	0.9900
C(7F)-C(8F)	1.55(3)
C(7F)-H(7FA)	0.9900
C(7F)-H(7FB)	0.9900
C(7S)-C(8S)	1.49(2)
C(8A)-C(9A)	1.52(2)
C(8A)-H(8AA)	0.9900
C(8A)-H(8AB)	0.9900
C(8B)-C(9B)	1.543(19)
C(8B)-H(8BA)	0.9900
C(8B)-H(8BB)	0.9900
C(8C)-C(9C)	1.49(2)
C(8C)-H(8CA)	0.9900
C(8C)-H(8CB)	0.9900
C(8D)-C(9D)	1.510(18)
C(8D)-H(8DA)	0.9900
C(8D)-H(8DB)	0.9900
C(8E)-C(9E)	1.50(2)
C(8E)-H(8EA)	0.9900
C(8E)-H(8EB)	0.9900
C(8F)-C(9F)	1.50(2)
C(8F)-H(8FA)	0.9900
C(8F)-H(8FB)	0.9900
C(8S)-H(8SA)	0.9800
C(8S)-H(8SB)	0.9800
C(8S)-H(8SC)	0.9800

Table D.3.1 continued...

С(9А)-Н(9АА)	0.9900
С(9А)-Н(9АВ)	0.9900
С(9В)-Н(9ВА)	0.9900
С(9В)-Н(9ВВ)	0.9900
С(9С)-Н(9СА)	0.9900
С(9С)-Н(9СВ)	0.9900
C(9D)-H(9DA)	0.9900
C(9D)-H(9DB)	0.9900
C(9E)-H(9EA)	0.9900
C(9E)-H(9EB)	0.9900
C(9F)-H(9FA)	0.9900
C(9F)-H(9FB)	0.9900
C(9S)-C(10S)	1.49(3)
C(10A)-C(11A)	1.43(2)
C(10A)-H(10A)	0.9500
C(10B)-C(11B)	1.412(19)
C(10B)-H(10B)	0.9500
C(10C)-C(11C)	1.37(2)
C(10C)-H(10C)	0.9500
C(10D)-C(11D)	1.39(2)
C(10D)-H(10D)	0.9500
C(10E)-C(11E)	1.40(3)
C(10E)-H(10E)	0.9500
C(10F)-C(11F)	1.41(2)
C(10F)-H(10F)	0.9500
C(10S)-H(10G)	0.9800
C(10S)-H(10H)	0.9800
C(10S)-H(10I)	0.9800
C(11A)-C(12A)	1.40(2)
C(11B)-C(12B)	1.38(2)
C(11C)-C(12C)	1.37(2)
C(11D)-C(12D)	1.41(2)
C(11E)-C(12E)	1.36(3)
C(11F)-C(12F)	1.36(3)
C(11S)-C(12S)	1.45(3)
C(12A)-C(13A)	1.36(2)
C(12A)-H(12A)	0.9500

C(12B)-C(13B)	1.39(2)	
C(12B)-H(12B)	0.9500	
C(12C)-C(13C)	1.38(3)	
C(12C)-H(12C)	0.9500	
C(12D)-C(13D)	1.37(2)	
C(12D)-H(12D)	0.9500	
C(12E)-C(13E)	1.43(3)	
C(12E)-H(12E)	0.9500	
C(12F)-C(13F)	1.38(2)	
C(12F)-H(12F)	0.9500	
C(12S)-H(12G)	0.9800	
C(12S)-H(12H)	0.9800	
C(12S)-H(12I)	0.9800	
C(13A)-C(14A)	1.42(2)	
C(13A)-H(13A)	0.9500	
C(13B)-C(14B)	1.40(2)	
C(13B)-H(13B)	0.9500	
C(13C)-C(14C)	1.38(3)	
C(13C)-H(13C)	0.9500	
C(13D)-C(14D)	1.39(2)	
C(13D)-H(13D)	0.9500	
C(13E)-C(14E)	1.41(3)	
C(13E)-H(13E)	0.9500	
C(13F)-C(14F)	1.41(2)	
C(13F)-H(13F)	0.9500	
C(14A)-C(15A)	1.45(2)	
C(14B)-C(15B)	1.52(2)	
C(14C)-C(15C)	1.48(3)	
C(14D)-C(15D)	1.48(2)	
C(14E)-C(15E)	1.45(2)	
C(14F)-C(15F)	1.50(2)	
C(15A)-C(16A)	1.48(2)	
C(15B)-C(16B)	1.41(2)	
C(15C)-C(16C)	1.44(2)	
C(15D)-C(16D)	1.42(3)	
C(15E)-C(16E)	1.49(3)	
C(15F)-C(16F)	1.43(3)	
C(17A)-C(18A)	1.382(19)	
---------------	-----------	
C(17A)-C(22A)	1.40(2)	
C(17B)-C(22B)	1.42(2)	
C(17B)-C(18B)	1.43(2)	
C(17C)-C(22C)	1.37(2)	
C(17C)-C(18C)	1.42(2)	
C(17D)-C(22D)	1.30(3)	
C(17D)-C(18D)	1.45(3)	
C(17E)-C(18E)	1.38(3)	
C(17E)-C(22E)	1.46(3)	
C(17F)-C(18F)	1.41(2)	
C(17F)-C(22F)	1.42(3)	
C(18A)-C(19A)	1.377(19)	
C(18A)-H(18A)	0.9500	
C(18B)-C(19B)	1.40(2)	
C(18B)-H(18B)	0.9500	
C(18C)-C(19C)	1.36(3)	
C(18C)-H(18C)	0.9500	
C(18D)-C(19D)	1.42(3)	
C(18D)-H(18D)	0.9500	
C(18E)-C(19E)	1.45(3)	
C(18E)-H(18E)	0.9500	
C(18F)-C(19F)	1.33(2)	
C(18F)-H(18F)	0.9500	
C(19A)-C(20A)	1.44(2)	
C(19A)-H(19A)	0.9500	
C(19B)-C(20B)	1.42(2)	
C(19B)-H(19B)	0.9500	
C(19C)-C(20C)	1.36(3)	
C(19C)-H(19C)	0.9500	
C(19D)-C(20D)	1.35(3)	
C(19D)-H(19D)	0.9500	
C(19E)-C(20E)	1.38(3)	
C(19E)-H(19E)	0.9500	
C(19F)-C(20F)	1.44(3)	
C(19F)-H(19F)	0.9500	
C(20A)-C(21A)	1.34(2)	

	Table	D.3.1	continued
--	-------	-------	-----------

C(20A)-H(20A)	0.9500	
C(20B)-C(21B)	1.35(2)	
C(20B)-H(20B)	0.9500	
C(20C)-C(21C)	1.41(2)	
C(20C)-H(20C)	0.9500	
C(20D)-C(21D)	1.29(3)	
C(20D)-H(20D)	0.9500	
C(20E)-C(21E)	1.30(3)	
C(20E)-H(20E)	0.9500	
C(20F)-C(21F)	1.38(3)	
C(20F)-H(20F)	0.9500	
C(21A)-C(22A)	1.41(2)	
C(21A)-H(21A)	0.9500	
C(21B)-C(22B)	1.433(18)	
C(21B)-H(21B)	0.9500	
C(21C)-C(22C)	1.43(2)	
C(21C)-H(21C)	0.9500	
C(21D)-C(22D)	1.49(3)	
C(21D)-H(21D)	0.9500	
C(21E)-C(22E)	1.42(3)	
C(21E)-H(21E)	0.9500	
C(21F)-C(22F)	1.40(2)	
C(21F)-H(21F)	0.9500	
N(4A)-Au(1)-N(1A)	96.6(5)	
N(4A)-Au(1)-N(3A)	82.6(5)	
N(1A)-Au(1)-N(3A)	177.3(4)	
N(4A)-Au(1)-N(2A)	176.8(5)	
N(1A)-Au(1)-N(2A)	81.8(5)	
N(3A)-Au(1)-N(2A)	99.2(5)	
N(1B)-Au(2)-N(4B)	97.1(5)	
N(1B)-Au(2)-N(3B)	176.3(4)	
N(4B)-Au(2)-N(3B)	82.0(4)	
N(1B)-Au(2)-N(2B)	82.3(5)	
N(4B)-Au(2)-N(2B)	177.5(4)	
N(3B)-Au(2)-N(2B)	98.8(5)	
N(1C)-Au(3)-N(4C)	98.3(6)	

N(1C)-Au(3)-N(3C)	177.8(5)
N(4C)-Au(3)-N(3C)	79.9(5)
N(1C)-Au(3)-N(2C)	82.1(6)
N(4C)-Au(3)-N(2C)	177.6(5)
N(3C)-Au(3)-N(2C)	99.7(6)
N(4D)-Au(4)-N(1D)	97.2(5)
N(4D)-Au(4)-N(2D)	175.5(4)
N(1D)-Au(4)-N(2D)	82.1(5)
N(4D)-Au(4)-N(3D)	81.9(5)
N(1D)-Au(4)-N(3D)	176.1(5)
N(2D)-Au(4)-N(3D)	99.2(5)
N(4E)-Au(5)-N(1E)	97.1(5)
N(4E)-Au(5)-N(2E)	177.1(5)
N(1E)-Au(5)-N(2E)	81.6(5)
N(4E)-Au(5)-N(3E)	81.9(6)
N(1E)-Au(5)-N(3E)	175.7(4)
N(2E)-Au(5)-N(3E)	99.6(5)
N(2F)-Au(6)-N(4F)	178.4(5)
N(2F)-Au(6)-N(1F)	83.2(6)
N(4F)-Au(6)-N(1F)	96.1(6)
N(2F)-Au(6)-N(3F)	98.5(6)
N(4F)-Au(6)-N(3F)	82.3(6)
N(1F)-Au(6)-N(3F)	175.5(5)
F(4)-P(1)-F(5)	88.7(6)
F(4)-P(1)-F(2)	179.2(7)
F(5)-P(1)-F(2)	91.1(6)
F(4)-P(1)-F(1)	91.3(6)
F(5)-P(1)-F(1)	89.6(6)
F(2)-P(1)-F(1)	89.4(6)
F(4)-P(1)-F(3)	89.5(6)
F(5)-P(1)-F(3)	90.0(6)
F(2)-P(1)-F(3)	89.7(6)
F(1)-P(1)-F(3)	179.0(7)
F(4)-P(1)-F(6)	91.1(6)
F(5)-P(1)-F(6)	179.6(7)
F(2)-P(1)-F(6)	89.2(6)
F(1)-P(1)-F(6)	90.1(6)

F(3)-P(1)-F(6)	90.3(6)	
F(9)-P(2)-F(12)	90.2(7)	
F(9)-P(2)-F(7)	179.0(8)	
F(12)-P(2)-F(7)	90.8(6)	
F(9)-P(2)-F(10)	88.8(7)	
F(12)-P(2)-F(10)	89.8(6)	
F(7)-P(2)-F(10)	90.9(5)	
F(9)-P(2)-F(8)	91.0(6)	
F(12)-P(2)-F(8)	90.5(5)	
F(7)-P(2)-F(8)	89.3(5)	
F(10)-P(2)-F(8)	179.7(6)	
F(9)-P(2)-F(11)	90.8(8)	
F(12)-P(2)-F(11)	178.8(7)	
F(7)-P(2)-F(11)	88.3(6)	
F(10)-P(2)-F(11)	89.5(7)	
F(8)-P(2)-F(11)	90.2(6)	
F(18)-P(3)-F(15)	90.3(7)	
F(18)-P(3)-F(14)	90.1(7)	
F(15)-P(3)-F(14)	90.2(6)	
F(18)-P(3)-F(13)	90.6(7)	
F(15)-P(3)-F(13)	178.9(7)	
F(14)-P(3)-F(13)	90.4(6)	
F(18)-P(3)-F(16)	90.8(6)	
F(15)-P(3)-F(16)	89.7(6)	
F(14)-P(3)-F(16)	179.1(7)	
F(13)-P(3)-F(16)	89.7(6)	
F(18)-P(3)-F(17)	179.5(6)	
F(15)-P(3)-F(17)	90.0(6)	
F(14)-P(3)-F(17)	90.3(6)	
F(13)-P(3)-F(17)	89.1(6)	
F(16)-P(3)-F(17)	88.8(6)	
F(23)-P(4)-F(20)	91.8(6)	
F(23)-P(4)-F(19)	91.8(6)	
F(20)-P(4)-F(19)	90.3(6)	
F(23)-P(4)-F(22)	89.9(6)	
F(20)-P(4)-F(22)	178.3(6)	
F(19)-P(4)-F(22)	90.2(5)	

F	(23)-P(4)-F(21)	89.6(6)
F	(20)-P(4)-F(21)	90.9(5)
F	(19)-P(4)-F(21)	178.2(6)
F	(22)-P(4)-F(21)	88.6(6)
F	(23)-P(4)-F(24)	177.2(7)
F	(20)-P(4)-F(24)	90.0(6)
F	(19)-P(4)-F(24)	90.3(6)
F	(22)-P(4)-F(24)	88.3(6)
F	(21)-P(4)-F(24)	88.2(6)
F	(26)-P(5)-F(28)	178.7(6)
F	(26)-P(5)-F(30)	90.3(6)
F	(28)-P(5)-F(30)	90.8(6)
F	(26)-P(5)-F(25)	90.6(6)
F	(28)-P(5)-F(25)	90.2(5)
F	(30)-P(5)-F(25)	89.6(5)
F	(26)-P(5)-F(27)	89.0(5)
F	(28)-P(5)-F(27)	90.2(5)
F	(30)-P(5)-F(27)	89.7(5)
F	(25)-P(5)-F(27)	179.2(5)
F	(26)-P(5)-F(29)	88.6(7)
F	(28)-P(5)-F(29)	90.4(7)
F	(30)-P(5)-F(29)	178.5(7)
F	(25)-P(5)-F(29)	91.5(6)
F	(27)-P(5)-F(29)	89.2(6)
F	(31)-P(6)-F(35)	91.8(6)
F	(31)-P(6)-F(34)	90.0(6)
F	(35)-P(6)-F(34)	90.6(6)
F	(31)-P(6)-F(32)	90.4(6)
F	(35)-P(6)-F(32)	90.6(6)
F	(34)-P(6)-F(32)	178.7(6)
F	(31)-P(6)-F(33)	178.8(7)
F	(35)-P(6)-F(33)	89.4(6)
F	(34)-P(6)-F(33)	90.0(6)
F	(32)-P(6)-F(33)	89.5(5)
F	(31)-P(6)-F(36)	89.7(6)
F	(35)-P(6)-F(36)	178.5(6)
F	(34)-P(6)-F(36)	90.0(6)

F(32)-P(6)-F(36)	88.8(5)
F(33)-P(6)-F(36)	89.1(6)
C(1A)-N(1A)-C(4A)	109.3(12)
C(1A)-N(1A)-Au(1)	140.0(9)
C(4A)-N(1A)-Au(1)	110.6(9)
C(1B)-N(1B)-C(4B)	107.1(12)
C(1B)-N(1B)-Au(2)	141.0(11)
C(4B)-N(1B)-Au(2)	111.8(9)
C(4C)-N(1C)-C(1C)	109.3(14)
C(4C)-N(1C)-Au(3)	112.0(11)
C(1C)-N(1C)-Au(3)	138.7(11)
C(4D)-N(1D)-C(1D)	108.1(15)
C(4D)-N(1D)-Au(4)	111.8(11)
C(1D)-N(1D)-Au(4)	139.8(12)
C(1E)-N(1E)-C(4E)	109.5(12)
C(1E)-N(1E)-Au(5)	139.0(11)
C(4E)-N(1E)-Au(5)	111.1(9)
C(1F)-N(1F)-C(4F)	108.0(15)
C(1F)-N(1F)-Au(6)	141.7(14)
C(4F)-N(1F)-Au(6)	109.9(11)
C(5A)-N(2A)-C(6A)	122.2(12)
C(5A)-N(2A)-Au(1)	112.0(9)
C(6A)-N(2A)-Au(1)	125.4(9)
C(5B)-N(2B)-C(6B)	121.8(13)
C(5B)-N(2B)-Au(2)	110.2(10)
C(6B)-N(2B)-Au(2)	127.7(10)
C(5C)-N(2C)-C(6C)	124.2(14)
C(5C)-N(2C)-Au(3)	109.6(11)
C(6C)-N(2C)-Au(3)	126.1(11)
C(5D)-N(2D)-C(6D)	118.5(13)
C(5D)-N(2D)-Au(4)	112.9(11)
C(6D)-N(2D)-Au(4)	128.5(10)
C(5E)-N(2E)-C(6E)	119.8(11)
C(5E)-N(2E)-Au(5)	113.7(9)
C(6E)-N(2E)-Au(5)	125.5(9)
C(5F)-N(2F)-C(6F)	117.0(14)
C(5F)-N(2F)-Au(6)	114.1(11)

C(6F)-N(2F)-Au(6)	128.2(11)
C(10A)-N(3A)-C(9A)	120.0(14)
C(10A)-N(3A)-Au(1)	112.5(11)
C(9A)-N(3A)-Au(1)	127.2(10)
C(10B)-N(3B)-C(9B)	120.4(11)
C(10B)-N(3B)-Au(2)	113.3(9)
C(9B)-N(3B)-Au(2)	125.9(9)
C(10C)-N(3C)-C(9C)	123.8(13)
C(10C)-N(3C)-Au(3)	112.2(10)
C(9C)-N(3C)-Au(3)	122.9(10)
C(10D)-N(3D)-C(9D)	121.6(12)
C(10D)-N(3D)-Au(4)	112.9(10)
C(9D)-N(3D)-Au(4)	125.1(9)
C(10E)-N(3E)-C(9E)	122.5(13)
C(10E)-N(3E)-Au(5)	111.1(11)
C(9E)-N(3E)-Au(5)	125.8(10)
C(10F)-N(3F)-C(9F)	117.9(14)
C(10F)-N(3F)-Au(6)	113.4(11)
C(9F)-N(3F)-Au(6)	128.6(12)
C(14A)-N(4A)-C(11A)	106.9(12)
C(14A)-N(4A)-Au(1)	141.4(11)
C(11A)-N(4A)-Au(1)	111.8(10)
C(14B)-N(4B)-C(11B)	108.2(12)
C(14B)-N(4B)-Au(2)	140.7(10)
C(11B)-N(4B)-Au(2)	110.9(9)
C(11C)-N(4C)-C(14C)	108.8(14)
C(11C)-N(4C)-Au(3)	112.4(11)
C(14C)-N(4C)-Au(3)	138.2(13)
C(14D)-N(4D)-C(11D)	108.2(12)
C(14D)-N(4D)-Au(4)	139.9(10)
C(11D)-N(4D)-Au(4)	110.8(9)
C(14E)-N(4E)-C(11E)	108.4(15)
C(14E)-N(4E)-Au(5)	139.4(12)
C(11E)-N(4E)-Au(5)	111.7(11)
C(14F)-N(4F)-C(11F)	106.2(15)
C(14F)-N(4F)-Au(6)	142.1(12)
C(11F)-N(4F)-Au(6)	111.7(12)

C(15A)-N(5A)-C(17A)	121.7(13)
C(17B)-N(5B)-C(15B)	118.2(13)
C(15C)-N(5C)-C(17C)	121.3(17)
C(15E)-N(5E)-C(17E)	121.1(18)
C(15F)-N(5F)-C(17F)	122.0(15)
C(16A)-N(6A)-C(22A)	120.3(13)
C(16B)-N(6B)-C(22B)	121.0(13)
C(16C)-N(6C)-C(22C)	117.2(14)
C(16E)-N(6E)-C(22E)	123.2(18)
C(22F)-N(6F)-C(16F)	120.1(17)
C(15D)-N(41)-C(17D)	115.4(18)
C(22D)-N(42)-C(16D)	117.5(18)
N(1A)-C(1A)-C(2A)	107.9(12)
N(1A)-C(1A)-C(16A)	131.5(13)
C(2A)-C(1A)-C(16A)	120.5(13)
C(2B)-C(1B)-N(1B)	109.1(14)
C(2B)-C(1B)-C(16B)	122.1(14)
N(1B)-C(1B)-C(16B)	128.8(13)
N(1C)-C(1C)-C(2C)	105.5(12)
N(1C)-C(1C)-C(16C)	132.6(15)
C(2C)-C(1C)-C(16C)	121.8(14)
N(1D)-C(1D)-C(2D)	105.8(15)
N(1D)-C(1D)-C(16D)	128.4(17)
C(2D)-C(1D)-C(16D)	125.7(17)
N(1E)-C(1E)-C(16E)	132.1(14)
N(1E)-C(1E)-C(2E)	107.2(14)
C(16E)-C(1E)-C(2E)	120.2(13)
N(1F)-C(1F)-C(2F)	109.2(18)
N(1F)-C(1F)-C(16F)	128.5(17)
C(2F)-C(1F)-C(16F)	122.3(17)
N(1S)-C(1S)-C(2S)	177.1(19)
C(3A)-C(2A)-C(1A)	108.3(13)
C(3A)-C(2A)-H(2A)	125.8
C(1A)-C(2A)-H(2A)	125.8
C(1B)-C(2B)-C(3B)	107.8(14)
C(1B)-C(2B)-H(2B)	126.1
С(3В)-С(2В)-Н(2В)	126.1

C(3C)-C(2C)-C(1C)	107.4(13)
C(3C)-C(2C)-H(2C)	126.3
C(1C)-C(2C)-H(2C)	126.3
C(3D)-C(2D)-C(1D)	111.5(16)
C(3D)-C(2D)-H(2D)	124.3
C(1D)-C(2D)-H(2D)	124.3
C(3E)-C(2E)-C(1E)	108.2(13)
C(3E)-C(2E)-H(2E)	125.9
C(1E)-C(2E)-H(2E)	125.9
C(3F)-C(2F)-C(1F)	108.3(18)
C(3F)-C(2F)-H(2F)	125.8
C(1F)-C(2F)-H(2F)	125.8
C(1S)-C(2S)-H(2SA)	109.5
C(1S)-C(2S)-H(2SB)	109.5
H(2SA)-C(2S)-H(2SB)	109.5
C(1S)-C(2S)-H(2SC)	109.5
H(2SA)-C(2S)-H(2SC)	109.5
H(2SB)-C(2S)-H(2SC)	109.5
C(2A)-C(3A)-C(4A)	106.2(12)
С(2А)-С(ЗА)-Н(ЗА)	126.9
С(4А)-С(ЗА)-Н(ЗА)	126.9
C(4B)-C(3B)-C(2B)	108.4(15)
C(4B)-C(3B)-H(3B)	125.8
C(2B)-C(3B)-H(3B)	125.8
C(4C)-C(3C)-C(2C)	108.5(13)
C(4C)-C(3C)-H(3C)	125.7
C(2C)-C(3C)-H(3C)	125.7
C(2D)-C(3D)-C(4D)	104.0(15)
C(2D)-C(3D)-H(3D)	128.0
C(4D)-C(3D)-H(3D)	128.0
C(2E)-C(3E)-C(4E)	107.6(14)
C(2E)-C(3E)-H(3E)	126.2
C(4E)-C(3E)-H(3E)	126.2
C(4F)-C(3F)-C(2F)	104.1(17)
C(4F)-C(3F)-H(3F)	128.0
C(2F)-C(3F)-H(3F)	128.0
N(2S)-C(3S)-C(4S)	178.5(18)

C(5A)-C(4A)-N(1A)	116.7(12)
C(5A)-C(4A)-C(3A)	135.0(13)
N(1A)-C(4A)-C(3A)	108.3(12)
C(5B)-C(4B)-C(3B)	136.7(16)
C(5B)-C(4B)-N(1B)	115.3(13)
C(3B)-C(4B)-N(1B)	107.6(14)
C(3C)-C(4C)-N(1C)	109.2(14)
C(3C)-C(4C)-C(5C)	135.1(15)
N(1C)-C(4C)-C(5C)	115.7(15)
N(1D)-C(4D)-C(3D)	110.6(15)
N(1D)-C(4D)-C(5D)	117.4(16)
C(3D)-C(4D)-C(5D)	131.8(16)
N(1E)-C(4E)-C(3E)	107.4(12)
N(1E)-C(4E)-C(5E)	115.5(12)
C(3E)-C(4E)-C(5E)	136.9(14)
N(1F)-C(4F)-C(5F)	117.4(14)
N(1F)-C(4F)-C(3F)	109.9(16)
C(5F)-C(4F)-C(3F)	132.4(17)
C(3S)-C(4S)-H(4SA)	109.5
C(3S)-C(4S)-H(4SB)	109.5
H(4SA)-C(4S)-H(4SB)	109.5
C(3S)-C(4S)-H(4SC)	109.5
H(4SA)-C(4S)-H(4SC)	109.5
H(4SB)-C(4S)-H(4SC)	109.5
N(2A)-C(5A)-C(4A)	118.5(12)
N(2A)-C(5A)-H(5A)	120.7
C(4A)-C(5A)-H(5A)	120.7
N(2B)-C(5B)-C(4B)	120.1(15)
N(2B)-C(5B)-H(5B)	120.0
C(4B)-C(5B)-H(5B)	120.0
N(2C)-C(5C)-C(4C)	120.5(15)
N(2C)-C(5C)-H(5C)	119.7
C(4C)-C(5C)-H(5C)	119.7
N(2D)-C(5D)-C(4D)	115.7(15)
N(2D)-C(5D)-H(5D)	122.1
C(4D)-C(5D)-H(5D)	122.1
N(2E)-C(5E)-C(4E)	117.6(12)

N(2E)-C(5E)-H(5E)	121.2	
C(4E)-C(5E)-H(5E)	121.2	
N(2F)-C(5F)-C(4F)	115.0(14)	
N(2F)-C(5F)-H(5F)	122.5	
C(4F)-C(5F)-H(5F)	122.5	
N(3S)-C(5S)-C(6S)	179.4(18)	
N(2A)-C(6A)-C(7A)	112.0(11)	
N(2A)-C(6A)-H(6AA)	109.2	
C(7A)-C(6A)-H(6AA)	109.2	
N(2A)-C(6A)-H(6AB)	109.2	
C(7A)-C(6A)-H(6AB)	109.2	
H(6AA)-C(6A)-H(6AB)	107.9	
N(2B)-C(6B)-C(7B)	113.3(13)	
N(2B)-C(6B)-H(6BA)	108.9	
C(7B)-C(6B)-H(6BA)	108.9	
N(2B)-C(6B)-H(6BB)	108.9	
C(7B)-C(6B)-H(6BB)	108.9	
H(6BA)-C(6B)-H(6BB)	107.7	
N(2C)-C(6C)-C(7C)	113.4(12)	
N(2C)-C(6C)-H(6CA)	108.9	
C(7C)-C(6C)-H(6CA)	108.9	
N(2C)-C(6C)-H(6CB)	108.9	
C(7C)-C(6C)-H(6CB)	108.9	
H(6CA)-C(6C)-H(6CB)	107.7	
N(2D)-C(6D)-C(7D)	111.6(11)	
N(2D)-C(6D)-H(6DA)	109.3	
C(7D)-C(6D)-H(6DA)	109.3	
N(2D)-C(6D)-H(6DB)	109.3	
C(7D)-C(6D)-H(6DB)	109.3	
H(6DA)-C(6D)-H(6DB)	108.0	
N(2E)-C(6E)-C(7E)	112.4(10)	
N(2E)-C(6E)-H(6EA)	109.1	
C(7E)-C(6E)-H(6EA)	109.1	
N(2E)-C(6E)-H(6EB)	109.1	
C(7E)-C(6E)-H(6EB)	109.1	
H(6EA)-C(6E)-H(6EB)	107.9	
C(7F)-C(6F)-N(2F)	114.4(14)	

C(7F)-C(6F)-H(6FA)	108.7
N(2F)-C(6F)-H(6FA)	108.7
C(7F)-C(6F)-H(6FB)	108.7
N(2F)-C(6F)-H(6FB)	108.7
H(6FA)-C(6F)-H(6FB)	107.6
C(5S)-C(6S)-H(6SA)	109.5
C(5S)-C(6S)-H(6SB)	109.5
H(6SA)-C(6S)-H(6SB)	109.5
C(5S)-C(6S)-H(6SC)	109.5
H(6SA)-C(6S)-H(6SC)	109.5
H(6SB)-C(6S)-H(6SC)	109.5
C(8A)-C(7A)-C(6A)	116.5(13)
C(8A)-C(7A)-H(7AA)	108.2
C(6A)-C(7A)-H(7AA)	108.2
C(8A)-C(7A)-H(7AB)	108.2
C(6A)-C(7A)-H(7AB)	108.2
H(7AA)-C(7A)-H(7AB)	107.3
C(6B)-C(7B)-C(8B)	114.9(11)
C(6B)-C(7B)-H(7BA)	108.5
C(8B)-C(7B)-H(7BA)	108.5
C(6B)-C(7B)-H(7BB)	108.5
C(8B)-C(7B)-H(7BB)	108.5
H(7BA)-C(7B)-H(7BB)	107.5
C(6C)-C(7C)-C(8C)	112.1(12)
C(6C)-C(7C)-H(7CA)	109.2
C(8C)-C(7C)-H(7CA)	109.2
C(6C)-C(7C)-H(7CB)	109.2
C(8C)-C(7C)-H(7CB)	109.2
H(7CA)-C(7C)-H(7CB)	107.9
C(8D)-C(7D)-C(6D)	114.1(11)
C(8D)-C(7D)-H(7DA)	108.7
C(6D)-C(7D)-H(7DA)	108.7
C(8D)-C(7D)-H(7DB)	108.7
C(6D)-C(7D)-H(7DB)	108.7
H(7DA)-C(7D)-H(7DB)	107.6
C(8E)-C(7E)-C(6E)	112.9(12)
C(8E)-C(7E)-H(7EA)	109.0

	100.0
С(6Е)-С(7Е)-Н(7ЕА)	109.0
C(8E)-C(7E)-H(7EB)	109.0
C(6E)-C(7E)-H(7EB)	109.0
H(7EA)-C(7E)-H(7EB)	107.8
C(6F)-C(7F)-C(8F)	114.7(17)
C(6F)-C(7F)-H(7FA)	108.6
C(8F)-C(7F)-H(7FA)	108.6
C(6F)-C(7F)-H(7FB)	108.6
C(8F)-C(7F)-H(7FB)	108.6
H(7FA)-C(7F)-H(7FB)	107.6
N(4S)-C(7S)-C(8S)	178.0(17)
C(7A)-C(8A)-C(9A)	114.3(11)
C(7A)-C(8A)-H(8AA)	108.7
C(9A)-C(8A)-H(8AA)	108.7
C(7A)-C(8A)-H(8AB)	108.7
С(9А)-С(8А)-Н(8АВ)	108.7
H(8AA)-C(8A)-H(8AB)	107.6
C(9B)-C(8B)-C(7B)	112.6(12)
C(9B)-C(8B)-H(8BA)	109.1
C(7B)-C(8B)-H(8BA)	109.1
C(9B)-C(8B)-H(8BB)	109.1
C(7B)-C(8B)-H(8BB)	109.1
H(8BA)-C(8B)-H(8BB)	107.8
C(9C)-C(8C)-C(7C)	115.1(14)
C(9C)-C(8C)-H(8CA)	108.5
C(7C)-C(8C)-H(8CA)	108.5
C(9C)-C(8C)-H(8CB)	108.5
C(7C)-C(8C)-H(8CB)	108.5
H(8CA)-C(8C)-H(8CB)	107.5
C(7D)-C(8D)-C(9D)	115.3(13)
C(7D)-C(8D)-H(8DA)	108.4
C(9D)-C(8D)-H(8DA)	108.4
C(7D)-C(8D)-H(8DB)	108.4
C(9D)-C(8D)-H(8DB)	108.4
H(8DA)-C(8D)-H(8DB)	107.5
C(9E)-C(8E)-C(7E)	116.3(11)
C(9E)-C(8E)-H(8EA)	108.2

C(7E)-C(8E)-H(8EA)	108.2	
C(9E)-C(8E)-H(8EB)	108.2	
C(7E)-C(8E)-H(8EB)	108.2	
H(8EA)-C(8E)-H(8EB)	107.4	
C(9F)-C(8F)-C(7F)	115.2(13)	
C(9F)-C(8F)-H(8FA)	108.5	
C(7F)-C(8F)-H(8FA)	108.5	
C(9F)-C(8F)-H(8FB)	108.5	
C(7F)-C(8F)-H(8FB)	108.5	
H(8FA)-C(8F)-H(8FB)	107.5	
C(7S)-C(8S)-H(8SA)	109.5	
C(7S)-C(8S)-H(8SB)	109.5	
H(8SA)-C(8S)-H(8SB)	109.5	
C(7S)-C(8S)-H(8SC)	109.5	
H(8SA)-C(8S)-H(8SC)	109.5	
H(8SB)-C(8S)-H(8SC)	109.5	
N(3A)-C(9A)-C(8A)	111.2(12)	
N(3A)-C(9A)-H(9AA)	109.4	
C(8A)-C(9A)-H(9AA)	109.4	
N(3A)-C(9A)-H(9AB)	109.4	
C(8A)-C(9A)-H(9AB)	109.4	
Н(9АА)-С(9А)-Н(9АВ)	108.0	
N(3B)-C(9B)-C(8B)	115.3(10)	
N(3B)-C(9B)-H(9BA)	108.5	
C(8B)-C(9B)-H(9BA)	108.5	
N(3B)-C(9B)-H(9BB)	108.5	
C(8B)-C(9B)-H(9BB)	108.5	
H(9BA)-C(9B)-H(9BB)	107.5	
N(3C)-C(9C)-C(8C)	114.3(12)	
N(3C)-C(9C)-H(9CA)	108.7	
C(8C)-C(9C)-H(9CA)	108.7	
N(3C)-C(9C)-H(9CB)	108.7	
C(8C)-C(9C)-H(9CB)	108.7	
H(9CA)-C(9C)-H(9CB)	107.6	
N(3D)-C(9D)-C(8D)	113.4(10)	
N(3D)-C(9D)-H(9DA)	108.9	
C(8D)-C(9D)-H(9DA)	108.9	

N(3D)-C(9D)-H(9DB)	108.9
C(8D)-C(9D)-H(9DB)	108.9
H(9DA)-C(9D)-H(9DB)	107.7
N(3E)-C(9E)-C(8E)	111.9(12)
N(3E)-C(9E)-H(9EA)	109.2
C(8E)-C(9E)-H(9EA)	109.2
N(3E)-C(9E)-H(9EB)	109.2
C(8E)-C(9E)-H(9EB)	109.2
H(9EA)-C(9E)-H(9EB)	107.9
N(3F)-C(9F)-C(8F)	111.3(14)
N(3F)-C(9F)-H(9FA)	109.4
C(8F)-C(9F)-H(9FA)	109.4
N(3F)-C(9F)-H(9FB)	109.4
C(8F)-C(9F)-H(9FB)	109.4
H(9FA)-C(9F)-H(9FB)	108.0
N(5S)-C(9S)-C(10S)	179(2)
N(3A)-C(10A)-C(11A)	117.9(15)
N(3A)-C(10A)-H(10A)	121.1
C(11A)-C(10A)-H(10A)	121.1
N(3B)-C(10B)-C(11B)	117.3(12)
N(3B)-C(10B)-H(10B)	121.4
C(11B)-C(10B)-H(10B)	121.4
N(3C)-C(10C)-C(11C)	120.2(15)
N(3C)-C(10C)-H(10C)	119.9
C(11C)-C(10C)-H(10C)	119.9
N(3D)-C(10D)-C(11D)	118.4(13)
N(3D)-C(10D)-H(10D)	120.8
C(11D)-C(10D)-H(10D)	120.8
N(3E)-C(10E)-C(11E)	120.3(15)
N(3E)-C(10E)-H(10E)	119.9
C(11E)-C(10E)-H(10E)	119.9
N(3F)-C(10F)-C(11F)	117.1(14)
N(3F)-C(10F)-H(10F)	121.5
C(11F)-C(10F)-H(10F)	121.5
C(9S)-C(10S)-H(10G)	109.5
C(9S)-C(10S)-H(10H)	109.5
H(10G)-C(10S)-H(10H)	109.5

Table D.3.1	continued
-------------	-----------

C(9S)-C(10S)-H(10I)	109.5
H(10G)-C(10S)-H(10I)	109.5
H(10H)-C(10S)-H(10I)	109.5
N(4A)-C(11A)-C(12A)	110.0(14)
N(4A)-C(11A)-C(10A)	115.2(13)
C(12A)-C(11A)-C(10A)	134.5(16)
C(12B)-C(11B)-N(4B)	107.8(12)
C(12B)-C(11B)-C(10B)	135.9(13)
N(4B)-C(11B)-C(10B)	116.1(12)
C(12C)-C(11C)-C(10C)	136.4(16)
C(12C)-C(11C)-N(4C)	108.2(15)
C(10C)-C(11C)-N(4C)	114.0(14)
C(10D)-C(11D)-N(4D)	115.3(12)
C(10D)-C(11D)-C(12D)	136.3(14)
N(4D)-C(11D)-C(12D)	108.4(13)
C(12E)-C(11E)-N(4E)	108.6(15)
C(12E)-C(11E)-C(10E)	136.7(17)
N(4E)-C(11E)-C(10E)	114.7(16)
C(12F)-C(11F)-N(4F)	109.1(15)
C(12F)-C(11F)-C(10F)	135.1(16)
N(4F)-C(11F)-C(10F)	115.5(16)
N(6S)-C(11S)-C(12S)	174(2)
C(13A)-C(12A)-C(11A)	105.9(15)
C(13A)-C(12A)-H(12A)	127.1
C(11A)-C(12A)-H(12A)	127.1
C(11B)-C(12B)-C(13B)	107.5(12)
C(11B)-C(12B)-H(12B)	126.3
C(13B)-C(12B)-H(12B)	126.3
C(11C)-C(12C)-C(13C)	107.1(17)
C(11C)-C(12C)-H(12C)	126.5
C(13C)-C(12C)-H(12C)	126.5
C(13D)-C(12D)-C(11D)	105.5(14)
C(13D)-C(12D)-H(12D)	127.3
C(11D)-C(12D)-H(12D)	127.3
C(11E)-C(12E)-C(13E)	108.7(15)
C(11E)-C(12E)-H(12E)	125.6
C(13E)-C(12E)-H(12E)	125.6

C(11F)-C(12F)-C(13F)	108.6(15)
C(11F)-C(12F)-H(12F)	125.7
C(13F)-C(12F)-H(12F)	125.7
C(11S)-C(12S)-H(12G)	109.5
C(11S)-C(12S)-H(12H)	109.5
H(12G)-C(12S)-H(12H)	109.5
C(11S)-C(12S)-H(12I)	109.5
H(12G)-C(12S)-H(12I)	109.5
H(12H)-C(12S)-H(12I)	109.5
C(12A)-C(13A)-C(14A)	109.0(14)
C(12A)-C(13A)-H(13A)	125.5
C(14A)-C(13A)-H(13A)	125.5
C(12B)-C(13B)-C(14B)	107.9(13)
C(12B)-C(13B)-H(13B)	126.1
C(14B)-C(13B)-H(13B)	126.1
C(14C)-C(13C)-C(12C)	108.9(17)
C(14C)-C(13C)-H(13C)	125.5
C(12C)-C(13C)-H(13C)	125.5
C(12D)-C(13D)-C(14D)	112.0(14)
C(12D)-C(13D)-H(13D)	124.0
C(14D)-C(13D)-H(13D)	124.0
C(14E)-C(13E)-C(12E)	105.7(15)
C(14E)-C(13E)-H(13E)	127.1
C(12E)-C(13E)-H(13E)	127.1
C(12F)-C(13F)-C(14F)	105.7(14)
C(12F)-C(13F)-H(13F)	127.2
C(14F)-C(13F)-H(13F)	127.2
N(4A)-C(14A)-C(13A)	108.0(14)
N(4A)-C(14A)-C(15A)	129.3(13)
C(13A)-C(14A)-C(15A)	122.5(14)
N(4B)-C(14B)-C(13B)	108.5(12)
N(4B)-C(14B)-C(15B)	128.8(13)
C(13B)-C(14B)-C(15B)	122.6(13)
N(4C)-C(14C)-C(13C)	106.6(17)
N(4C)-C(14C)-C(15C)	130.1(16)
C(13C)-C(14C)-C(15C)	123.1(16)
C(13D)-C(14D)-N(4D)	105.9(14)

C(13D)-C(14D)-C(15D)	125.8(14)
N(4D)-C(14D)-C(15D)	127.9(14)
N(4E)-C(14E)-C(13E)	108.6(15)
N(4E)-C(14E)-C(15E)	129.9(16)
C(13E)-C(14E)-C(15E)	121.3(16)
N(4F)-C(14F)-C(13F)	110.3(14)
N(4F)-C(14F)-C(15F)	127.6(15)
C(13F)-C(14F)-C(15F)	122.1(15)
N(5A)-C(15A)-C(14A)	111.3(13)
N(5A)-C(15A)-C(16A)	116.3(14)
C(14A)-C(15A)-C(16A)	132.4(13)
N(5B)-C(15B)-C(16B)	121.4(14)
N(5B)-C(15B)-C(14B)	106.9(13)
C(16B)-C(15B)-C(14B)	131.7(14)
N(5C)-C(15C)-C(16C)	118.2(16)
N(5C)-C(15C)-C(14C)	109.1(16)
C(16C)-C(15C)-C(14C)	132.7(15)
N(41)-C(15D)-C(16D)	122.4(16)
N(41)-C(15D)-C(14D)	106.2(15)
C(16D)-C(15D)-C(14D)	131.3(15)
N(5E)-C(15E)-C(14E)	108.5(17)
N(5E)-C(15E)-C(16E)	120.8(15)
C(14E)-C(15E)-C(16E)	130.7(16)
N(5F)-C(15F)-C(16F)	119.0(15)
N(5F)-C(15F)-C(14F)	109.4(15)
C(16F)-C(15F)-C(14F)	131.5(15)
N(6A)-C(16A)-C(15A)	121.1(13)
N(6A)-C(16A)-C(1A)	110.4(13)
C(15A)-C(16A)-C(1A)	128.5(14)
N(6B)-C(16B)-C(15B)	119.1(15)
N(6B)-C(16B)-C(1B)	109.3(13)
C(15B)-C(16B)-C(1B)	131.6(14)
N(6C)-C(16C)-C(15C)	120.9(14)
N(6C)-C(16C)-C(1C)	110.7(14)
C(15C)-C(16C)-C(1C)	128.5(15)
N(42)-C(16D)-C(15D)	118.5(15)
N(42)-C(16D)-C(1D)	108.5(16)

C(15D)-C(16D)-C(1D)	133.0(16)
N(6E)-C(16E)-C(1E)	113.2(15)
N(6E)-C(16E)-C(15E)	116.6(15)
C(1E)-C(16E)-C(15E)	130.2(14)
N(6F)-C(16F)-C(15F)	119.3(17)
N(6F)-C(16F)-C(1F)	108.8(16)
C(15F)-C(16F)-C(1F)	131.9(15)
N(5A)-C(17A)-C(18A)	120.1(13)
N(5A)-C(17A)-C(22A)	120.0(13)
C(18A)-C(17A)-C(22A)	119.9(14)
N(5B)-C(17B)-C(22B)	120.9(14)
N(5B)-C(17B)-C(18B)	118.1(14)
C(22B)-C(17B)-C(18B)	121.0(13)
N(5C)-C(17C)-C(22C)	118.0(15)
N(5C)-C(17C)-C(18C)	120.2(17)
C(22C)-C(17C)-C(18C)	121.6(16)
C(22D)-C(17D)-N(41)	122.2(19)
C(22D)-C(17D)-C(18D)	121(2)
N(41)-C(17D)-C(18D)	116(2)
N(5E)-C(17E)-C(18E)	124(2)
N(5E)-C(17E)-C(22E)	119.3(18)
C(18E)-C(17E)-C(22E)	116.1(18)
N(5F)-C(17F)-C(18F)	122.2(16)
N(5F)-C(17F)-C(22F)	118.3(15)
C(18F)-C(17F)-C(22F)	119.6(14)
C(19A)-C(18A)-C(17A)	121.9(14)
C(19A)-C(18A)-H(18A)	119.0
C(17A)-C(18A)-H(18A)	119.0
C(19B)-C(18B)-C(17B)	118.0(14)
C(19B)-C(18B)-H(18B)	121.0
C(17B)-C(18B)-H(18B)	121.0
C(19C)-C(18C)-C(17C)	117.8(17)
C(19C)-C(18C)-H(18C)	121.1
C(17C)-C(18C)-H(18C)	121.1
C(19D)-C(18D)-C(17D)	115(2)
C(19D)-C(18D)-H(18D)	122.4
C(17D)-C(18D)-H(18D)	122.4

C(17E)-C(18E)-C(19E)	119(2)	
C(17E)-C(18E)-H(18E)	120.5	
C(19E)-C(18E)-H(18E)	120.5	
C(19F)-C(18F)-C(17F)	119.4(16)	
C(19F)-C(18F)-H(18F)	120.3	
C(17F)-C(18F)-H(18F)	120.3	
C(18A)-C(19A)-C(20A)	117.3(13)	
C(18A)-C(19A)-H(19A)	121.4	
C(20A)-C(19A)-H(19A)	121.4	
C(18B)-C(19B)-C(20B)	120.1(14)	
C(18B)-C(19B)-H(19B)	120.0	
C(20B)-C(19B)-H(19B)	120.0	
C(18C)-C(19C)-C(20C)	122.4(17)	
C(18C)-C(19C)-H(19C)	118.8	
C(20C)-C(19C)-H(19C)	118.8	
C(20D)-C(19D)-C(18D)	121(2)	
C(20D)-C(19D)-H(19D)	119.4	
C(18D)-C(19D)-H(19D)	119.4	
C(20E)-C(19E)-C(18E)	122.6(19)	
C(20E)-C(19E)-H(19E)	118.7	
C(18E)-C(19E)-H(19E)	118.7	
C(18F)-C(19F)-C(20F)	122.5(16)	
C(18F)-C(19F)-H(19F)	118.7	
C(20F)-C(19F)-H(19F)	118.7	
C(21A)-C(20A)-C(19A)	121.3(15)	
C(21A)-C(20A)-H(20A)	119.4	
C(19A)-C(20A)-H(20A)	119.4	
C(21B)-C(20B)-C(19B)	122.7(13)	
C(21B)-C(20B)-H(20B)	118.7	
C(19B)-C(20B)-H(20B)	118.7	
C(19C)-C(20C)-C(21C)	121.3(16)	
C(19C)-C(20C)-H(20C)	119.3	
C(21C)-C(20C)-H(20C)	119.3	
C(21D)-C(20D)-C(19D)	125(2)	
C(21D)-C(20D)-H(20D)	117.7	
C(19D)-C(20D)-H(20D)	117.7	
C(21E)-C(20E)-C(19E)	118.6(19)	

C(21E)-C(20E)-H(20E)	120.7	
C(19E)-C(20E)-H(20E)	120.7	
C(21F)-C(20F)-C(19F)	118.3(16)	
C(21F)-C(20F)-H(20F)	120.8	
C(19F)-C(20F)-H(20F)	120.8	
C(20A)-C(21A)-C(22A)	121.0(16)	
C(20A)-C(21A)-H(21A)	119.5	
C(22A)-C(21A)-H(21A)	119.5	
C(20B)-C(21B)-C(22B)	119.0(13)	
C(20B)-C(21B)-H(21B)	120.5	
C(22B)-C(21B)-H(21B)	120.5	
C(20C)-C(21C)-C(22C)	117.5(15)	
C(20C)-C(21C)-H(21C)	121.3	
C(22C)-C(21C)-H(21C)	121.3	
C(20D)-C(21D)-C(22D)	117(2)	
C(20D)-C(21D)-H(21D)	121.7	
C(22D)-C(21D)-H(21D)	121.7	
C(20E)-C(21E)-C(22E)	123(2)	
C(20E)-C(21E)-H(21E)	118.4	
C(22E)-C(21E)-H(21E)	118.4	
C(20F)-C(21F)-C(22F)	120.4(18)	
C(20F)-C(21F)-H(21F)	119.8	
C(22F)-C(21F)-H(21F)	119.8	
N(6A)-C(22A)-C(17A)	120.5(15)	
N(6A)-C(22A)-C(21A)	120.9(15)	
C(17A)-C(22A)-C(21A)	118.6(14)	
N(6B)-C(22B)-C(17B)	119.4(12)	
N(6B)-C(22B)-C(21B)	121.2(12)	
C(17B)-C(22B)-C(21B)	119.3(13)	
N(6C)-C(22C)-C(17C)	124.1(16)	
N(6C)-C(22C)-C(21C)	116.4(15)	
C(17C)-C(22C)-C(21C)	119.4(15)	
C(17D)-C(22D)-N(42)	123(2)	
C(17D)-C(22D)-C(21D)	121(2)	
N(42)-C(22D)-C(21D)	115(2)	
N(6E)-C(22E)-C(21E)	121(2)	
N(6E)-C(22E)-C(17E)	118.9(17)	

Table D.3.1 continued						
C(21E)-C(22E)-C(17E)	120.3(18)					
N(6F)-C(22F)-C(21F)	119.0(17)					
N(6F)-C(22F)-C(17F)	121.3(15)					
C(21F)-C(22F)-C(17F)	119.7(16)					

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(1)	14(1)	18(1)	24(1)	-1(1)	1(1)	0(1)
Au(2)	14(1)	21(1)	22(1)	0(1)	0(1)	-1(1)
Au(3)	20(1)	25(1)	19(1)	1(1)	-3(1)	1(1)
Au(4)	15(1)	19(1)	19(1)	1(1)	0(1)	0(1)
Au(5)	15(1)	21(1)	17(1)	-1(1)	-1(1)	1(1)
Au(6)	21(1)	30(1)	22(1)	-1(1)	-1(1)	0(1)
P(1)	34(2)	25(2)	28(2)	-2(2)	0(2)	-1(2)
P(2)	22(2)	36(2)	23(2)	1(2)	-2(1)	-4(1)
P(3)	27(2)	31(2)	21(2)	4(1)	0(2)	6(1)
P(4)	20(2)	29(2)	30(3)	0(2)	3(2)	-1(1)
P(5)	16(2)	42(2)	21(2)	2(2)	2(1)	3(1)
P(6)	19(2)	33(2)	27(3)	1(2)	4(2)	0(1)
F(1)	39(6)	64(6)	28(6)	0(5)	-4(4)	-2(5)
F(2)	39(6)	38(5)	76(9)	-14(5)	-7(5)	-1(4)
F(3)	44(6)	47(5)	35(7)	-5(5)	-3(5)	-8(4)
F(4)	47(6)	53(6)	66(8)	-17(5)	4(5)	13(5)
F(5)	44(6)	32(4)	51(7)	11(4)	-15(5)	-15(4)
F(6)	30(5)	48(5)	60(7)	16(5)	-2(5)	-9(4)
F(7)	49(6)	47(5)	32(5)	-4(4)	-7(4)	13(4)
F(8)	28(5)	64(6)	20(5)	5(4)	0(3)	-8(4)
F(9)	58(8)	69(7)	43(8)	-15(6)	6(6)	27(6)
F(10)	26(5)	69(6)	37(6)	-7(5)	-8(4)	-1(4)
F(11)	54(8)	60(6)	72(10)	10(6)	9(7)	-43(5)
F(12)	33(6)	86(7)	43(6)	26(5)	-4(4)	-26(5)
F(13)	53(7)	61(6)	38(7)	-9(5)	-22(5)	19(5)
F(14)	52(6)	63(6)	43(6)	-21(5)	6(5)	27(5)
F(15)	35(6)	51(5)	29(6)	-11(4)	-6(4)	-4(4)
F(16)	32(5)	43(5)	48(6)	-16(4)	13(4)	6(4)
F(17)	25(5)	36(4)	46(6)	9(4)	5(4)	-4(3)
F(18)	49(7)	69(7)	77(9)	46(7)	17(6)	-3(5)
F(19)	24(5)	38(4)	56(7)	6(4)	13(4)	-1(3)
F(20)	31(5)	54(5)	44(7)	-18(5)	12(4)	-5(4)
F(21)	44(6)	38(5)	39(6)	18(4)	14(5)	4(4)
F(22)	34(6)	43(5)	54(7)	-23(5)	10(5)	-5(4)

Table D.3.3: Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for [Au(L3)](PF₆).

Table D.	5.5 continu						
	U ¹¹	U22	U33	U ²³	U ¹³	U ¹²	
F(23)	26(6)	57(6)	38(8)	-10(4)	-14(5)	1(4)	
F(24)	37(6)	36(4)	44(8)	1(4)	-7(5)	-6(3)	
F(25)	24(5)	64(6)	28(5)	7(4)	-3(4)	3(4)	
F(26)	35(6)	53(5)	28(6)	-10(4)	-3(4)	14(4)	
F(27)	23(4)	47(5)	37(5)	2(4)	3(4)	1(3)	
F(28)	39(6)	73(6)	38(6)	-27(5)	3(4)	18(5)	
F(29)	42(7)	66(6)	42(8)	25(5)	-11(5)	-23(5)	
F(30)	39(6)	39(4)	46(6)	12(4)	8(4)	-4(4)	
F(31)	42(6)	45(5)	45(7)	-16(5)	9(5)	4(4)	
F(32)	21(5)	44(4)	33(6)	3(4)	2(4)	-2(3)	
F(33)	27(5)	46(5)	47(7)	-16(4)	7(4)	-7(4)	
F(34)	29(6)	55(6)	37(8)	0(4)	9(5)	-8(4)	
F(35)	40(6)	50(5)	52(7)	14(5)	11(5)	-8(4)	
F(36)	26(5)	31(4)	51(7)	12(4)	8(4)	0(3)	
N(1A)	19(3)	12(4)	19(3)	-3(3)	-3(2)	0(3)	
N(1B)	17(3)	17(4)	18(3)	0(3)	0(3)	0(3)	
N(1C)	30(4)	13(4)	16(4)	2(3)	-2(3)	-1(3)	
N(1D)	26(3)	20(4)	19(4)	5(4)	1(3)	-1(3)	
N(1E)	18(3)	29(4)	24(3)	-3(4)	-1(3)	-3(3)	
N(1F)	23(3)	34(4)	19(4)	0(4)	-1(3)	-7(4)	
N(1S)	36(6)	43(7)	40(8)	0(6)	-1(5)	2(6)	
N(2A)	23(5)	24(5)	32(4)	2(4)	-1(3)	4(4)	
N(2B)	23(3)	22(5)	16(5)	0(4)	3(3)	2(4)	
N(2C)	21(5)	24(5)	33(4)	11(4)	-5(4)	-2(4)	
N(2D)	20(5)	24(4)	23(4)	1(4)	0(3)	9(4)	
N(2E)	19(3)	16(4)	14(5)	3(4)	-5(3)	-3(3)	
N(2F)	28(4)	38(5)	30(6)	0(5)	-1(3)	-1(4)	
N(2S)	29(7)	42(7)	40(9)	2(5)	-6(5)	5(5)	
N(3A)	25(3)	27(5)	26(6)	-1(5)	0(3)	3(4)	
N(3B)	27(5)	15(4)	27(3)	-3(4)	4(3)	-6(4)	
N(3C)	27(3)	28(3)	21(3)	-3(3)	-2(3)	-1(3)	
N(3D)	21(3)	20(5)	23(5)	2(4)	0(3)	1(3)	
N(3E)	19(5)	20(4)	25(4)	-2(4)	4(3)	-1(4)	
N(3F)	21(5)	31(5)	31(4)	-3(4)	-6(3)	-5(4)	
N(3S)	28(5)	30(5)	34(7)	7(5)	5(4)	-3(4)	
N(4A)	17(3)	19(4)	21(3)	4(4)	-1(3)	1(3)	

Table D.3.3 continued...

Table B		cam					
	U ¹¹	U ²²	U33	U ²³	U ¹³	U ¹²	
N(4B)	17(3)	18(4)	19(3)	-5(3)	1(2)	4(3)	
N(4C)	24(3)	30(4)	18(3)	-9(4)	-4(3)	5(4)	
N(4D)	21(3)	22(4)	23(3)	6(4)	-3(3)	4(3)	
N(4E)	25(3)	18(4)	18(4)	-1(4)	1(3)	0(3)	
N(4F)	25(3)	24(4)	22(4)	-4(4)	-4(3)	3(3)	
N(4S)	28(6)	27(5)	44(8)	6(6)	0(5)	2(4)	
N(5A)	20(3)	21(5)	25(3)	1(4)	2(3)	-4(4)	
N(5B)	17(4)	18(4)	23(4)	-4(4)	-1(3)	4(3)	
N(5C)	23(3)	36(6)	27(4)	-3(5)	2(3)	1(4)	
N(5E)	37(3)	23(5)	32(4)	0(4)	-10(3)	4(4)	
N(5F)	30(3)	22(4)	25(4)	-8(4)	3(3)	0(4)	
N(5S)	31(7)	48(7)	47(10)	-2(6)	6(6)	-6(6)	
N(6A)	22(3)	21(4)	16(3)	-3(4)	-4(3)	6(4)	
N(6B)	19(3)	22(4)	24(5)	0(4)	1(3)	3(4)	
N(6C)	29(3)	19(4)	25(4)	-3(4)	-2(3)	1(4)	
N(6E)	25(3)	27(5)	44(4)	-2(5)	-13(3)	-4(4)	
N(6F)	23(3)	20(5)	30(4)	-2(4)	5(3)	0(4)	
N(6S)	39(7)	63(8)	26(7)	-2(6)	-4(5)	1(6)	
N(41)	26(3)	27(5)	46(4)	5(5)	-14(3)	3(4)	
N(42)	41(3)	14(4)	33(4)	-1(4)	-14(3)	-1(4)	
C(1A)	20(3)	13(4)	22(4)	-1(4)	-1(2)	6(4)	
C(1B)	19(4)	17(4)	22(3)	-3(4)	1(3)	0(4)	
C(1C)	28(3)	14(4)	20(4)	3(4)	-3(3)	-2(4)	
C(1D)	30(3)	25(4)	24(4)	5(4)	-4(3)	-3(4)	
C(1E)	20(4)	22(4)	28(3)	-5(4)	-2(3)	2(4)	
C(1F)	23(4)	32(5)	25(3)	2(4)	0(3)	0(4)	
C(1S)	30(5)	28(5)	36(7)	-6(5)	-8(4)	3(5)	
C(2A)	25(4)	24(4)	23(4)	-2(4)	-4(3)	2(4)	
C(2B)	18(3)	29(4)	25(4)	-1(4)	0(3)	5(4)	
C(2C)	34(4)	9(4)	19(4)	0(4)	-2(3)	1(4)	
C(2D)	37(4)	21(4)	22(4)	5(4)	-5(3)	8(4)	
C(2E)	20(3)	33(5)	32(4)	-1(4)	-1(3)	1(4)	
C(2F)	24(4)	46(5)	29(4)	2(4)	-4(3)	1(4)	
C(2S)	40(8)	41(8)	44(9)	-3(8)	2(6)	4(6)	
C(3A)	24(3)	20(4)	26(3)	-1(4)	-9(3)	0(4)	
C(3B)	22(3)	22(4)	23(3)	0(4)	-3(3)	3(4)	

Table D.3.3 continued...

	.5.5 continu	eu					
	U11	U ²²	U ³³	U ²³	U ¹³	U12	
C(3C)	33(4)	6(4)	19(4)	0(4)	-6(3)	0(4)	
C(3D)	35(4)	18(4)	21(3)	6(4)	1(3)	6(4)	
C(3E)	22(3)	37(5)	28(4)	-4(4)	0(3)	-6(4)	
C(3F)	27(4)	46(5)	28(4)	0(4)	-5(3)	-3(4)	
C(3S)	24(5)	32(6)	34(7)	3(5)	-12(5)	-3(5)	
C(4A)	20(3)	17(4)	27(3)	1(4)	-7(3)	-2(4)	
C(4B)	22(3)	17(4)	18(3)	-4(4)	-1(3)	0(4)	
C(4C)	21(3)	15(3)	20(3)	0(2)	-2(2)	-6(2)	
C(4D)	28(3)	16(4)	20(4)	2(4)	3(3)	2(4)	
C(4E)	21(3)	28(4)	22(3)	-3(4)	2(3)	0(4)	
C(4F)	27(3)	39(5)	20(4)	0(4)	-6(3)	-2(4)	
C(4S)	35(7)	33(7)	22(8)	-1(6)	-7(5)	-4(6)	
C(5A)	17(4)	18(5)	34(4)	-1(5)	-6(3)	-5(4)	
C(5B)	25(3)	13(5)	18(5)	3(4)	0(3)	1(4)	
C(5C)	16(6)	31(6)	34(4)	2(5)	-11(4)	-5(4)	
C(5D)	22(4)	40(6)	24(4)	0(5)	6(4)	7(5)	
C(5E)	24(3)	13(5)	22(5)	4(4)	2(3)	-3(4)	
C(5F)	32(4)	38(6)	18(5)	1(5)	-2(3)	3(5)	
C(5S)	17(5)	29(6)	36(7)	3(5)	-3(4)	6(5)	
C(6A)	27(6)	25(5)	37(5)	-2(4)	2(4)	-4(4)	
C(6B)	25(4)	29(5)	25(6)	-1(5)	6(3)	0(4)	
C(6C)	23(5)	37(6)	33(5)	7(4)	-5(4)	3(5)	
C(6D)	13(5)	26(5)	28(4)	-1(4)	3(3)	0(4)	
C(6E)	25(4)	24(5)	16(6)	2(4)	-11(4)	3(3)	
C(6F)	31(4)	43(6)	38(7)	5(5)	7(5)	6(4)	
C(6S)	27(7)	38(7)	63(11)	-7(7)	15(6)	4(6)	
C(7A)	31(5)	17(5)	37(6)	4(4)	2(4)	2(4)	
C(7B)	26(4)	23(5)	34(6)	-6(4)	3(4)	1(3)	
C(7C)	24(5)	23(5)	33(5)	4(3)	1(4)	5(4)	
C(7D)	15(5)	28(5)	25(4)	-1(3)	-6(4)	-2(4)	
C(7E)	27(5)	31(5)	18(5)	1(4)	-9(4)	-2(4)	
C(7F)	33(5)	35(6)	43(5)	0(5)	2(5)	5(4)	
C(7S)	23(5)	25(5)	29(6)	2(5)	-8(4)	1(5)	
C(8A)	25(4)	21(5)	36(6)	-1(4)	11(4)	-1(3)	
C(8B)	19(5)	24(5)	35(6)	-1(4)	9(4)	-4(4)	
C(8C)	28(6)	24(5)	26(5)	2(4)	13(5)	6(4)	

Table D.3.3 continued...

Table Bi		a c a m					
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(8D)	23(5)	34(5)	21(5)	0(4)	-5(4)	-1(4)	
C(8E)	20(5)	26(5)	22(4)	3(3)	-5(4)	4(4)	
C(8F)	44(6)	38(6)	40(5)	-4(4)	0(5)	9(5)	
C(8S)	35(7)	53(9)	42(9)	8(7)	6(6)	-5(7)	
C(9A)	27(4)	20(5)	31(6)	2(5)	4(4)	-8(4)	
C(9B)	16(5)	22(5)	31(5)	-2(4)	0(4)	-6(4)	
C(9C)	29(6)	36(6)	29(6)	0(5)	-1(5)	-3(4)	
C(9D)	26(4)	26(5)	22(6)	-2(4)	-1(4)	-2(3)	
C(9E)	22(5)	27(5)	23(4)	4(4)	4(3)	-7(4)	
C(9F)	29(6)	36(6)	43(5)	-5(5)	3(4)	2(5)	
C(9S)	29(6)	37(6)	37(8)	5(6)	0(5)	1(5)	
C(10A)	28(3)	26(5)	22(5)	5(5)	-1(3)	-3(5)	
C(10B)	17(4)	21(5)	30(3)	-2(5)	-3(3)	-2(4)	
C(10C)	31(4)	36(6)	20(5)	-4(5)	0(4)	-1(5)	
C(10D)	27(3)	32(6)	22(5)	-4(5)	4(3)	3(5)	
C(10E)	19(4)	18(5)	24(4)	-3(4)	6(3)	3(4)	
C(10F)	23(4)	14(5)	29(4)	-13(5)	-11(3)	3(4)	
C(10S)	22(7)	43(8)	62(13)	5(7)	3(7)	0(6)	
C(11A)	26(3)	21(4)	21(3)	4(4)	-2(3)	0(4)	
C(11B)	21(3)	16(4)	26(3)	4(4)	-5(3)	-2(4)	
C(11C)	23(3)	30(5)	18(3)	-3(4)	-7(3)	-2(4)	
C(11D)	23(3)	25(4)	25(3)	5(4)	6(3)	2(4)	
C(11E)	26(3)	21(4)	22(4)	-2(4)	3(3)	0(4)	
C(11F)	29(3)	18(4)	26(4)	-1(4)	-9(3)	2(4)	
C(11S)	39(6)	54(7)	31(7)	5(6)	2(5)	-3(6)	
C(12A)	28(4)	29(5)	23(4)	3(4)	-6(3)	-3(4)	
C(12B)	22(3)	16(4)	26(3)	-1(4)	-6(3)	0(4)	
C(12C)	25(4)	31(5)	23(4)	2(4)	-7(3)	0(4)	
C(12D)	25(3)	33(5)	32(4)	-3(4)	7(3)	1(4)	
C(12E)	33(4)	21(4)	22(4)	-1(4)	2(3)	-3(4)	
C(12F)	36(4)	23(4)	26(4)	-3(4)	-8(3)	8(4)	
C(12S)	31(8)	48(8)	59(11)	25(8)	7(6)	2(6)	
C(13A)	19(4)	27(5)	25(4)	-1(4)	-3(3)	2(4)	
C(13B)	26(4)	21(4)	21(3)	4(4)	-4(3)	-6(4)	
C(13C)	23(4)	36(5)	26(4)	6(4)	-3(3)	0(4)	
C(13D)	22(4)	33(5)	34(4)	1(4)	2(3)	5(4)	

Table D.3.3 continued...

Table Bi		icum.					
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U12	
C(13E)	34(4)	28(5)	22(4)	0(4)	-4(3)	-1(4)	
C(13F)	38(4)	10(4)	25(4)	-1(4)	-3(3)	8(4)	
C(14A)	16(4)	22(4)	20(3)	-3(4)	-1(2)	1(4)	
C(14B)	20(3)	18(4)	19(4)	5(4)	-1(2)	-1(4)	
C(14C)	24(4)	24(4)	23(3)	0(4)	-1(3)	-1(4)	
C(14D)	19(4)	27(4)	30(3)	3(4)	-2(3)	5(4)	
C(14E)	29(3)	18(4)	23(4)	-4(4)	-2(3)	4(4)	
C(14F)	29(3)	20(4)	25(4)	-2(4)	-1(3)	5(4)	
C(15A)	20(3)	8(5)	19(3)	-1(4)	-1(2)	-3(4)	
C(15B)	20(3)	11(5)	22(4)	5(4)	-1(3)	3(4)	
C(15C)	23(3)	18(5)	24(3)	1(5)	1(3)	2(4)	
C(15D)	25(3)	25(6)	33(3)	-4(5)	-6(3)	-7(5)	
C(15E)	31(3)	18(5)	29(4)	7(5)	-7(3)	-12(5)	
C(15F)	28(3)	17(5)	24(4)	-4(5)	2(2)	-3(4)	
C(16A)	22(3)	19(5)	18(3)	3(5)	-2(2)	2(4)	
C(16B)	19(4)	16(5)	21(3)	-4(5)	1(3)	-1(4)	
C(16C)	28(3)	15(5)	25(4)	-5(5)	0(3)	-7(4)	
C(16D)	32(3)	15(5)	28(4)	2(5)	-8(3)	9(4)	
C(16E)	22(3)	18(5)	30(3)	-6(5)	-7(3)	-4(4)	
C(16F)	23(3)	25(6)	26(3)	2(5)	3(3)	0(4)	
C(17A)	19(3)	19(4)	26(3)	1(4)	2(2)	3(4)	
C(17B)	21(3)	13(3)	19(3)	-2(2)	0(2)	0(2)	
C(17C)	25(3)	26(5)	26(4)	1(4)	2(3)	3(4)	
C(17D)	34(4)	39(5)	48(4)	4(5)	-18(3)	0(4)	
C(17E)	38(3)	28(5)	42(4)	-2(4)	-17(3)	-3(4)	
C(17F)	31(3)	19(4)	32(4)	-1(4)	6(3)	-1(4)	
C(18A)	19(3)	20(4)	24(4)	5(4)	2(3)	1(4)	
C(18B)	30(4)	22(4)	21(5)	-2(4)	-1(4)	3(4)	
C(18C)	24(3)	28(5)	35(4)	-4(4)	3(3)	5(4)	
C(18D)	35(4)	51(5)	55(5)	1(5)	-22(4)	2(5)	
C(18E)	45(4)	31(5)	43(4)	1(5)	-19(4)	4(4)	
C(18F)	34(4)	21(4)	32(4)	3(4)	6(3)	-3(4)	
C(19A)	24(4)	16(4)	25(4)	-1(4)	4(3)	4(4)	
C(19B)	31(4)	18(4)	26(4)	4(4)	0(3)	6(4)	
C(19C)	26(4)	34(5)	37(4)	-2(4)	6(3)	1(4)	
C(19D)	42(5)	48(5)	58(5)	-2(5)	-26(3)	5(5)	

Table D.3.3 continued...

Table D.	5.5 continu	eu					
	U ¹¹	U22	U ³³	U ²³	U ¹³	U12	
C(19E)	45(4)	30(5)	50(4)	-1(5)	-24(4)	8(4)	
C(19F)	35(4)	28(5)	38(4)	-1(5)	11(3)	0(4)	
C(20A)	28(4)	15(4)	26(4)	-3(4)	2(3)	0(4)	
C(20B)	27(4)	16(4)	28(4)	0(4)	2(3)	4(4)	
C(20C)	32(4)	32(5)	34(4)	2(4)	5(3)	7(4)	
C(20D)	48(4)	50(5)	52(5)	-6(5)	-27(4)	11(5)	
C(20E)	37(4)	30(5)	54(5)	-2(5)	-22(3)	6(4)	
C(20F)	28(4)	30(5)	41(5)	1(4)	11(3)	1(4)	
C(21A)	27(4)	21(4)	25(4)	-4(4)	1(3)	4(4)	
C(21B)	21(4)	12(4)	27(4)	0(4)	-1(4)	-2(4)	
C(21C)	33(4)	35(5)	26(4)	1(4)	1(3)	0(4)	
C(21D)	49(4)	46(5)	45(4)	-7(5)	-22(4)	3(5)	
C(21E)	32(3)	33(5)	51(4)	-7(5)	-19(3)	6(4)	
C(21F)	28(3)	22(4)	37(4)	0(4)	7(3)	0(4)	
C(22A)	24(3)	17(4)	27(3)	-10(4)	2(3)	5(4)	
C(22B)	17(3)	16(3)	19(3)	-3(2)	1(2)	3(2)	
C(22C)	30(3)	28(5)	26(4)	6(4)	0(3)	6(4)	
C(22D)	40(3)	38(5)	44(4)	-1(5)	-19(3)	3(4)	
C(22E)	31(3)	24(5)	45(4)	-4(5)	-15(3)	3(4)	
C(22F)	27(3)	20(4)	31(4)	-2(4)	7(3)	3(4)	

Table D.3.3 continued...

	х	У	Z	U(eq)
H(2A)	5643	2097	6840	29
H(2B)	5806	6795	6717	29
H(2C)	9412	3193	6267	25
H(2D)	9361	7314	5159	32
H(2E)	9068	3059	8295	34
H(2F)	8922	7748	9603	40
H(2SA)	5740	829	9247	62
H(2SB)	5939	1452	9508	62
H(2SC)	5785	3118	9320	62
H(3A)	5091	1477	6956	28
Н(ЗВ)	6018	7020	6241	27
H(3C)	9976	3121	6213	23
H(3D)	9911	7189	5233	30
H(3E)	8807	3764	7862	35
H(3F)	8627	7362	10051	40
H(4SA)	6234	8410	8595	45
H(4SB)	6411	7497	8852	45
H(4SC)	6267	6063	8625	45
H(5A)	4808	830	7495	28
Н(5В)	6643	7461	6058	22
H(5C)	10357	2502	5736	32
H(5D)	10261	7534	5750	35
H(5E)	8133	4298	7747	24
H(5F)	7966	6723	10130	35
H(6AA)	4957	-736	8137	36
H(6AB)	4680	-276	7934	36
H(6BA)	7298	9106	6137	32
Н(6ВВ)	7163	7188	5990	32
H(6CA)	10450	875	5140	37
Н(6СВ)	10601	2613	5316	37
H(6DA)	10331	9272	6319	27
H(6DB)	10444	7253	6181	27
H(6EA)	7641	5206	7761	26
H(6EB)	7484	5423	8055	26

Table D.3.3: Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for [Au(L3)](PF₆).

	х	у	Z	U(eq)	
H(6FA)	7359	4702	9817	45	
H(6FB)	7493	5373	10106	45	
H(6SA)	8408	9454	7388	64	
H(6SB)	8540	7630	7560	64	
H(6SC)	8601	9848	7660	64	
H(7AA)	4640	2924	8098	34	
Н(7АВ)	4618	1416	8349	34	
Н(7ВА)	7575	5738	6131	33	
Н(7ВВ)	7399	5557	6416	33	
H(7CA)	10592	4269	4936	32	
H(7CB)	10241	4647	5008	32	
H(7DA)	10021	5847	6504	27	
H(7DB)	10370	5946	6594	27	
H(7EA)	7184	3325	7787	30	
H(7EB)	7471	1947	7720	30	
H(7FA)	7255	8362	10078	44	
H(7FB)	7009	6660	10029	44	
H(8AA)	4908	3852	8504	33	
H(8AB)	5095	4028	8225	33	
H(8BA)	7870	6805	6534	31	
H(8BB)	7871	8337	6284	31	
H(8CA)	10222	3478	4566	31	
H(8CB)	10480	1863	4620	31	
H(8DA)	10298	8641	6852	31	
H(8DB)	10016	7231	6921	31	
H(8EA)	7132	597	8059	27	
H(8EB)	7480	669	8151	27	
H(8FA)	6892	8965	9706	49	
H(8FB)	7241	9372	9634	49	
H(8SA)	8852	3911	6958	65	
H(8SB)	9009	5489	7157	65	
H(8SC)	9041	3173	7219	65	
H(9AA)	5310	2301	8655	31	
Н(9АВ)	5172	424	8498	31	
H(9BA)	7789	9992	6709	28	
H(9BB)	7514	10360	6502	28	

	х	у	Z	U(eq)	
H(9CA)	10016	325	4558	38	
Н(9СВ)	10139	-97	4859	38	
H(9DA)	9838	10425	6881	29	
H(9DB)	9995	10679	6588	29	
H(9EA)	7139	3917	8317	29	
H(9EB)	7040	1863	8454	29	
H(9FA)	7034	5587	9502	43	
H(9FB)	6890	7343	9324	43	
H(10A)	5824	2070	8586	30	
H(10B)	7678	8926	7137	27	
H(10C)	9516	1476	4532	35	
H(10D)	9335	9449	6886	32	
H(10E)	7242	2156	8891	24	
H(10F)	7119	7215	8916	27	
H(10G)	6081	2879	5798	63	
H(10H)	6203	1035	5971	63	
H(10I)	6265	3242	6076	63	
H(12A)	6464	2757	8403	32	
H(12B)	7388	8247	7680	26	
H(12C)	8866	2174	4609	32	
H(12D)	8675	8567	6779	36	
H(12E)	7596	2004	9400	30	
H(12F)	7500	7867	8432	34	
H(12G)	6558	7538	5115	69	
H(12H)	6759	8300	5368	69	
H(12I)	6680	5999	5339	69	
H(13A)	6680	2710	7934	28	
H(13B)	6840	7662	7800	27	
H(13C)	8577	2748	5041	34	
H(13D)	8425	7789	6337	36	
H(13E)	8170	2228	9480	34	
H(13F)	8068	8063	8377	29	
H(18A)	7115	3261	7261	25	
H(18B)	6057	7342	8104	29	
H(18C)	8003	2157	5630	35	
H(18D)	7899	7233	5710	56	

	x	У	Z	U(eq)	
H(18E)	9000	2538	9702	48	
H(18F)	8918	8308	8196	35	
H(19A)	7296	3401	6813	26	
H(19B)	5538	6699	8191	30	
H(19C)	7761	2407	6047	39	
H(19D)	7700	7037	5254	59	
H(19E)	9545	2517	9708	50	
H(19F)	9434	8249	8191	40	
H(20A)	6945	2750	6449	28	
H(20B)	5196	6293	7824	28	
H(20C)	8026	2905	6443	39	
H(20D)	8013	7186	4887	60	
H(20E)	9830	2668	9310	48	
H(20F)	9724	7825	8600	39	
H(21A)	6443	2262	6536	29	
H(21B)	5353	6358	7378	24	
H(21C)	8564	3191	6441	38	
H(21D)	8516	7588	4920	56	
H(21E)	9592	2851	8906	46	
H(21F)	9468	7582	9017	35	

Table D.3.3 continued...

Table D.3.4: Torsion angles [°] for [Au(L3)](PF₆).

N(4A)-Au(1)-N(1A)-C(1A)	-2.1(13)
N(2A)-Au(1)-N(1A)-C(1A)	-179.3(13)
N(4A)-Au(1)-N(1A)-C(4A)	-177.6(8)
N(2A)-Au(1)-N(1A)-C(4A)	5.1(7)
N(4B)-Au(2)-N(1B)-C(1B)	0.7(13)
N(2B)-Au(2)-N(1B)-C(1B)	178.3(13)
N(4B)-Au(2)-N(1B)-C(4B)	177.3(8)
N(2B)-Au(2)-N(1B)-C(4B)	-5.1(8)
N(4C)-Au(3)-N(1C)-C(4C)	-179.2(8)
N(2C)-Au(3)-N(1C)-C(4C)	-1.6(8)
N(4C)-Au(3)-N(1C)-C(1C)	2.7(13)
N(2C)-Au(3)-N(1C)-C(1C)	-179.7(13)
N(4D)-Au(4)-N(1D)-C(4D)	-178.1(8)
N(2D)-Au(4)-N(1D)-C(4D)	-2.6(8)
N(4D)-Au(4)-N(1D)-C(1D)	9.3(14)
N(2D)-Au(4)-N(1D)-C(1D)	-175.2(15)
N(4E)-Au(5)-N(1E)-C(1E)	5.3(14)
N(2E)-Au(5)-N(1E)-C(1E)	-177.3(14)
N(4E)-Au(5)-N(1E)-C(4E)	177.0(9)
N(2E)-Au(5)-N(1E)-C(4E)	-5.6(9)
N(2F)-Au(6)-N(1F)-C(1F)	171.8(16)
N(4F)-Au(6)-N(1F)-C(1F)	-6.7(16)
N(2F)-Au(6)-N(1F)-C(4F)	-0.4(10)
N(4F)-Au(6)-N(1F)-C(4F)	-179.0(10)
N(1A)-Au(1)-N(2A)-C(5A)	-4.2(9)
N(3A)-Au(1)-N(2A)-C(5A)	173.3(9)
N(1A)-Au(1)-N(2A)-C(6A)	168.1(10)
N(3A)-Au(1)-N(2A)-C(6A)	-14.4(10)
N(1B)-Au(2)-N(2B)-C(5B)	3.0(8)
N(3B)-Au(2)-N(2B)-C(5B)	-173.5(8)
N(1B)-Au(2)-N(2B)-C(6B)	-171.0(11)
N(3B)-Au(2)-N(2B)-C(6B)	12.5(11)
N(1C)-Au(3)-N(2C)-C(5C)	2.0(9)
N(3C)-Au(3)-N(2C)-C(5C)	-176.9(9)
N(1C)-Au(3)-N(2C)-C(6C)	-174.0(11)
N(3C)-Au(3)-N(2C)-C(6C)	7.1(11)

N(1D)-Au(4)-N(2D)-C(5D)	3.1(10)
N(3D)-Au(4)-N(2D)-C(5D)	-173.2(10)
N(1D)-Au(4)-N(2D)-C(6D)	-173.0(11)
N(3D)-Au(4)-N(2D)-C(6D)	10.8(11)
N(1E)-Au(5)-N(2E)-C(5E)	2.4(8)
N(3E)-Au(5)-N(2E)-C(5E)	-173.4(8)
N(1E)-Au(5)-N(2E)-C(6E)	-165.8(10)
N(3E)-Au(5)-N(2E)-C(6E)	18.4(10)
N(1F)-Au(6)-N(2F)-C(5F)	3.4(10)
N(3F)-Au(6)-N(2F)-C(5F)	-172.4(10)
N(1F)-Au(6)-N(2F)-C(6F)	-167.4(13)
N(3F)-Au(6)-N(2F)-C(6F)	16.9(13)
N(4A)-Au(1)-N(3A)-C(10A)	-1.8(10)
N(2A)-Au(1)-N(3A)-C(10A)	175.5(9)
N(4A)-Au(1)-N(3A)-C(9A)	171.1(11)
N(2A)-Au(1)-N(3A)-C(9A)	-11.5(11)
N(4B)-Au(2)-N(3B)-C(10B)	4.8(9)
N(2B)-Au(2)-N(3B)-C(10B)	-172.8(9)
N(4B)-Au(2)-N(3B)-C(9B)	-167.8(10)
N(2B)-Au(2)-N(3B)-C(9B)	14.6(10)
N(4C)-Au(3)-N(3C)-C(10C)	3.2(10)
N(2C)-Au(3)-N(3C)-C(10C)	-174.4(10)
N(4C)-Au(3)-N(3C)-C(9C)	-164.7(11)
N(2C)-Au(3)-N(3C)-C(9C)	17.7(11)
N(4D)-Au(4)-N(3D)-C(10D)	4.0(9)
N(2D)-Au(4)-N(3D)-C(10D)	-171.6(9)
N(4D)-Au(4)-N(3D)-C(9D)	-168.3(10)
N(2D)-Au(4)-N(3D)-C(9D)	16.1(10)
N(4E)-Au(5)-N(3E)-C(10E)	1.6(9)
N(2E)-Au(5)-N(3E)-C(10E)	-175.8(8)
N(4E)-Au(5)-N(3E)-C(9E)	-170.5(10)
N(2E)-Au(5)-N(3E)-C(9E)	12.1(10)
N(2F)-Au(6)-N(3F)-C(10F)	-177.4(9)
N(4F)-Au(6)-N(3F)-C(10F)	1.1(9)
N(2F)-Au(6)-N(3F)-C(9F)	7.2(13)
N(4F)-Au(6)-N(3F)-C(9F)	-174.2(12)
N(1A)-Au(1)-N(4A)-C(14A)	1.2(14)

Table	D.3.4	continued
-------	-------	-----------

N(3A)-Au(1)-N(4A)-C(14A)	-176.3(14)	
N(1A)-Au(1)-N(4A)-C(11A)	-179.4(8)	
N(3A)-Au(1)-N(4A)-C(11A)	3.1(9)	
N(1B)-Au(2)-N(4B)-C(14B)	2.7(14)	
N(3B)-Au(2)-N(4B)-C(14B)	179.1(14)	
N(1B)-Au(2)-N(4B)-C(11B)	176.8(8)	
N(3B)-Au(2)-N(4B)-C(11B)	-6.8(8)	
N(1C)-Au(3)-N(4C)-C(11C)	172.6(9)	
N(3C)-Au(3)-N(4C)-C(11C)	-8.6(9)	
N(1C)-Au(3)-N(4C)-C(14C)	3.0(14)	
N(3C)-Au(3)-N(4C)-C(14C)	-178.3(14)	
N(1D)-Au(4)-N(4D)-C(14D)	10.4(14)	
N(3D)-Au(4)-N(4D)-C(14D)	-173.4(14)	
N(1D)-Au(4)-N(4D)-C(11D)	176.5(8)	
N(3D)-Au(4)-N(4D)-C(11D)	-7.3(8)	
N(1E)-Au(5)-N(4E)-C(14E)	10.3(14)	
N(3E)-Au(5)-N(4E)-C(14E)	-173.9(14)	
N(1E)-Au(5)-N(4E)-C(11E)	179.9(8)	
N(3E)-Au(5)-N(4E)-C(11E)	-4.3(8)	
N(1F)-Au(6)-N(4F)-C(14F)	2.4(15)	
N(3F)-Au(6)-N(4F)-C(14F)	178.1(15)	
N(1F)-Au(6)-N(4F)-C(11F)	-177.4(8)	
N(3F)-Au(6)-N(4F)-C(11F)	-1.7(8)	
C(4A)-N(1A)-C(1A)-C(2A)	1.7(13)	
Au(1)-N(1A)-C(1A)-C(2A)	-173.9(9)	
C(4A)-N(1A)-C(1A)-C(16A)	-178.2(12)	
C(4B)-N(1B)-C(1B)-C(2B)	1.4(13)	
Au(2)-N(1B)-C(1B)-C(2B)	178.2(10)	
C(4B)-N(1B)-C(1B)-C(16B)	-178.2(12)	
Au(2)-N(1B)-C(1B)-C(16B)	-1(2)	
C(4C)-N(1C)-C(1C)-C(2C)	0.3(13)	
Au(3)-N(1C)-C(1C)-C(2C)	178.5(9)	
C(4C)-N(1C)-C(1C)-C(16C)	-177.2(12)	
Au(3)-N(1C)-C(1C)-C(16C)	1(2)	
C(4D)-N(1D)-C(1D)-C(2D)	-0.8(14)	
Au(4)-N(1D)-C(1D)-C(2D)	172.0(10)	
C(4D)-N(1D)-C(1D)-C(16D)	174.6(12)	
Au(4)-N(1D)-C(1D)-C(16D)	-13(2)	
--------------------------	------------	--
C(4E)-N(1E)-C(1E)-C(16E)	173.8(13)	
Au(5)-N(1E)-C(1E)-C(16E)	-14(2)	
C(4E)-N(1E)-C(1E)-C(2E)	1.3(15)	
Au(5)-N(1E)-C(1E)-C(2E)	173.1(11)	
C(4F)-N(1F)-C(1F)-C(2F)	-6.5(16)	
Au(6)-N(1F)-C(1F)-C(2F)	-178.8(12)	
C(4F)-N(1F)-C(1F)-C(16F)	174.1(13)	
Au(6)-N(1F)-C(1F)-C(16F)	2(2)	
N(1A)-C(1A)-C(2A)-C(3A)	-1.7(14)	
C(16A)-C(1A)-C(2A)-C(3A)	178.1(11)	
N(1B)-C(1B)-C(2B)-C(3B)	-0.6(15)	
C(16B)-C(1B)-C(2B)-C(3B)	179.1(11)	
N(1C)-C(1C)-C(2C)-C(3C)	0.8(13)	
C(16C)-C(1C)-C(2C)-C(3C)	178.7(11)	
N(1D)-C(1D)-C(2D)-C(3D)	0.1(15)	
C(16D)-C(1D)-C(2D)-C(3D)	-175.5(12)	
N(1E)-C(1E)-C(2E)-C(3E)	0.2(16)	
C(16E)-C(1E)-C(2E)-C(3E)	-173.3(12)	
N(1F)-C(1F)-C(2F)-C(3F)	3.2(17)	
C(16F)-C(1F)-C(2F)-C(3F)	-177.3(13)	
C(1A)-C(2A)-C(3A)-C(4A)	1.1(14)	
C(1B)-C(2B)-C(3B)-C(4B)	-0.5(15)	
C(1C)-C(2C)-C(3C)-C(4C)	-1.6(13)	
C(1D)-C(2D)-C(3D)-C(4D)	0.6(14)	
C(1E)-C(2E)-C(3E)-C(4E)	-1.7(16)	
C(1F)-C(2F)-C(3F)-C(4F)	1.4(17)	
C(1A)-N(1A)-C(4A)-C(5A)	177.5(11)	
Au(1)-N(1A)-C(4A)-C(5A)	-5.5(13)	
C(1A)-N(1A)-C(4A)-C(3A)	-1.0(13)	
Au(1)-N(1A)-C(4A)-C(3A)	176.0(8)	
C(2A)-C(3A)-C(4A)-C(5A)	-178.2(14)	
C(2A)-C(3A)-C(4A)-N(1A)	-0.1(13)	
C(2B)-C(3B)-C(4B)-C(5B)	173.4(14)	
C(2B)-C(3B)-C(4B)-N(1B)	1.4(14)	
C(1B)-N(1B)-C(4B)-C(5B)	-175.7(10)	
Au(2)-N(1B)-C(4B)-C(5B)	6.6(12)	

Table D.3.4 continued	Table	D.3.4	continued
-----------------------	-------	-------	-----------

C(1B)-N(1B)-C(4B)-C(3B)	-1.7(13)	
Au(2)-N(1B)-C(4B)-C(3B)	-179.5(8)	
C(2C)-C(3C)-C(4C)-N(1C)	1.8(13)	
C(2C)-C(3C)-C(4C)-C(5C)	-179.4(13)	
C(1C)-N(1C)-C(4C)-C(3C)	-1.4(13)	
Au(3)-N(1C)-C(4C)-C(3C)	179.9(8)	
C(1C)-N(1C)-C(4C)-C(5C)	179.7(11)	
Au(3)-N(1C)-C(4C)-C(5C)	1.0(13)	
C(1D)-N(1D)-C(4D)-C(3D)	1.2(14)	
Au(4)-N(1D)-C(4D)-C(3D)	-173.8(8)	
C(1D)-N(1D)-C(4D)-C(5D)	176.8(11)	
Au(4)-N(1D)-C(4D)-C(5D)	1.8(14)	
C(2D)-C(3D)-C(4D)-N(1D)	-1.1(14)	
C(2D)-C(3D)-C(4D)-C(5D)	-175.9(13)	
C(1E)-N(1E)-C(4E)-C(3E)	-2.4(15)	
Au(5)-N(1E)-C(4E)-C(3E)	-176.6(9)	
C(1E)-N(1E)-C(4E)-C(5E)	-177.8(11)	
Au(5)-N(1E)-C(4E)-C(5E)	8.0(14)	
C(2E)-C(3E)-C(4E)-N(1E)	2.5(16)	
C(2E)-C(3E)-C(4E)-C(5E)	176.5(15)	
C(1F)-N(1F)-C(4F)-C(5F)	-177.4(13)	
Au(6)-N(1F)-C(4F)-C(5F)	-2.5(17)	
C(1F)-N(1F)-C(4F)-C(3F)	7.5(17)	
Au(6)-N(1F)-C(4F)-C(3F)	-177.5(11)	
C(2F)-C(3F)-C(4F)-N(1F)	-5.3(18)	
C(2F)-C(3F)-C(4F)-C(5F)	-179.3(17)	
C(6A)-N(2A)-C(5A)-C(4A)	-170.2(11)	
Au(1)-N(2A)-C(5A)-C(4A)	2.3(15)	
N(1A)-C(4A)-C(5A)-N(2A)	2.2(17)	
C(3A)-C(4A)-C(5A)-N(2A)	-179.8(13)	
C(6B)-N(2B)-C(5B)-C(4B)	174.3(11)	
Au(2)-N(2B)-C(5B)-C(4B)	-0.1(13)	
C(3B)-C(4B)-C(5B)-N(2B)	-175.8(14)	
N(1B)-C(4B)-C(5B)-N(2B)	-4.3(16)	
C(6C)-N(2C)-C(5C)-C(4C)	174.0(12)	
Au(3)-N(2C)-C(5C)-C(4C)	-2.1(15)	
C(3C)-C(4C)-C(5C)-N(2C)	-177.8(13)	

Table D.3.4 continued	Table	D.3.4	continued
-----------------------	-------	-------	-----------

N(1C)-C(4C)-C(5C)-N(2C)	0.9(18)
C(6D)-N(2D)-C(5D)-C(4D)	173.5(11)
Au(4)-N(2D)-C(5D)-C(4D)	-2.9(16)
N(1D)-C(4D)-C(5D)-N(2D)	0.8(18)
C(3D)-C(4D)-C(5D)-N(2D)	175.2(13)
C(6E)-N(2E)-C(5E)-C(4E)	170.3(11)
Au(5)-N(2E)-C(5E)-C(4E)	1.3(14)
N(1E)-C(4E)-C(5E)-N(2E)	-6.4(17)
C(3E)-C(4E)-C(5E)-N(2E)	179.9(15)
C(6F)-N(2F)-C(5F)-C(4F)	166.2(13)
Au(6)-N(2F)-C(5F)-C(4F)	-5.6(17)
N(1F)-C(4F)-C(5F)-N(2F)	5(2)
C(3F)-C(4F)-C(5F)-N(2F)	179.1(16)
C(5A)-N(2A)-C(6A)-C(7A)	-112.2(15)
Au(1)-N(2A)-C(6A)-C(7A)	76.3(14)
C(5B)-N(2B)-C(6B)-C(7B)	-134.8(12)
Au(2)-N(2B)-C(6B)-C(7B)	38.6(16)
C(5C)-N(2C)-C(6C)-C(7C)	-130.2(15)
Au(3)-N(2C)-C(6C)-C(7C)	45.2(17)
C(5D)-N(2D)-C(6D)-C(7D)	-137.5(13)
Au(4)-N(2D)-C(6D)-C(7D)	38.4(15)
C(5E)-N(2E)-C(6E)-C(7E)	111.7(14)
Au(5)-N(2E)-C(6E)-C(7E)	-80.8(13)
C(5F)-N(2F)-C(6F)-C(7F)	112.4(18)
Au(6)-N(2F)-C(6F)-C(7F)	-77.1(19)
N(2A)-C(6A)-C(7A)-C(8A)	-56.3(18)
N(2B)-C(6B)-C(7B)-C(8B)	-98.7(15)
N(2C)-C(6C)-C(7C)-C(8C)	-99.4(15)
N(2D)-C(6D)-C(7D)-C(8D)	-98.4(13)
N(2E)-C(6E)-C(7E)-C(8E)	54.8(16)
N(2F)-C(6F)-C(7F)-C(8F)	54(2)
C(6A)-C(7A)-C(8A)-C(9A)	-42.8(19)
C(6B)-C(7B)-C(8B)-C(9B)	44.3(18)
C(6C)-C(7C)-C(8C)-C(9C)	40.8(18)
C(6D)-C(7D)-C(8D)-C(9D)	44.7(16)
C(6E)-C(7E)-C(8E)-C(9E)	47.2(17)
C(6F)-C(7F)-C(8F)-C(9F)	42(2)

Table D.3.4 continued...

C(10A)-N(3A)-C(9A)-C(8A)	133.0(13)	
Au(1)-N(3A)-C(9A)-C(8A)	-39.5(15)	
C(7A)-C(8A)-C(9A)-N(3A)	99.0(14)	
C(10B)-N(3B)-C(9B)-C(8B)	110.6(14)	
Au(2)-N(3B)-C(9B)-C(8B)	-77.3(14)	
C(7B)-C(8B)-C(9B)-N(3B)	54.5(17)	
C(10C)-N(3C)-C(9C)-C(8C)	112.9(17)	
Au(3)-N(3C)-C(9C)-C(8C)	-80.6(16)	
C(7C)-C(8C)-C(9C)-N(3C)	58.9(18)	
C(10D)-N(3D)-C(9D)-C(8D)	110.4(15)	
Au(4)-N(3D)-C(9D)-C(8D)	-78.0(14)	
C(7D)-C(8D)-C(9D)-N(3D)	54.1(16)	
C(10E)-N(3E)-C(9E)-C(8E)	-135.4(13)	
Au(5)-N(3E)-C(9E)-C(8E)	35.8(14)	
C(7E)-C(8E)-C(9E)-N(3E)	-99.7(13)	
C(10F)-N(3F)-C(9F)-C(8F)	-132.4(14)	
Au(6)-N(3F)-C(9F)-C(8F)	42.7(18)	
C(7F)-C(8F)-C(9F)-N(3F)	-97.6(18)	
C(9A)-N(3A)-C(10A)-C(11A)	-173.4(12)	
Au(1)-N(3A)-C(10A)-C(11A)	0.1(16)	
C(9B)-N(3B)-C(10B)-C(11B)	171.4(11)	
Au(2)-N(3B)-C(10B)-C(11B)	-1.6(14)	
C(9C)-N(3C)-C(10C)-C(11C)	170.9(13)	
Au(3)-N(3C)-C(10C)-C(11C)	3.1(18)	
C(9D)-N(3D)-C(10D)-C(11D)	173.0(11)	
Au(4)-N(3D)-C(10D)-C(11D)	0.4(15)	
C(9E)-N(3E)-C(10E)-C(11E)	173.9(11)	
Au(5)-N(3E)-C(10E)-C(11E)	1.5(14)	
C(9F)-N(3F)-C(10F)-C(11F)	175.6(11)	
Au(6)-N(3F)-C(10F)-C(11F)	-0.3(14)	
C(14A)-N(4A)-C(11A)-C(12A)	1.7(14)	
Au(1)-N(4A)-C(11A)-C(12A)	-177.9(9)	
C(14A)-N(4A)-C(11A)-C(10A)	175.7(11)	
Au(1)-N(4A)-C(11A)-C(10A)	-4.0(14)	
N(3A)-C(10A)-C(11A)-N(4A)	2.6(19)	
N(3A)-C(10A)-C(11A)-C(12A)	174.7(14)	
C(14B)-N(4B)-C(11B)-C(12B)	0.2(13)	

Au(2)-N(4B)-C(11B)-C(12B)	-175.9(8)
C(14B)-N(4B)-C(11B)-C(10B)	-175.9(11)
Au(2)-N(4B)-C(11B)-C(10B)	8.1(13)
N(3B)-C(10B)-C(11B)-C(12B)	-178.9(13)
N(3B)-C(10B)-C(11B)-N(4B)	-4.4(17)
N(3C)-C(10C)-C(11C)-C(12C)	-175.5(16)
N(3C)-C(10C)-C(11C)-N(4C)	-11(2)
C(14C)-N(4C)-C(11C)-C(12C)	-5.6(15)
Au(3)-N(4C)-C(11C)-C(12C)	-178.4(9)
C(14C)-N(4C)-C(11C)-C(10C)	-174.6(12)
Au(3)-N(4C)-C(11C)-C(10C)	12.6(15)
N(3D)-C(10D)-C(11D)-N(4D)	-7.0(18)
N(3D)-C(10D)-C(11D)-C(12D)	175.9(15)
C(14D)-N(4D)-C(11D)-C(10D)	-179.6(11)
Au(4)-N(4D)-C(11D)-C(10D)	9.8(14)
C(14D)-N(4D)-C(11D)-C(12D)	-1.7(14)
Au(4)-N(4D)-C(11D)-C(12D)	-172.3(9)
C(14E)-N(4E)-C(11E)-C(12E)	-1.9(14)
Au(5)-N(4E)-C(11E)-C(12E)	-174.8(9)
C(14E)-N(4E)-C(11E)-C(10E)	179.2(10)
Au(5)-N(4E)-C(11E)-C(10E)	6.3(13)
N(3E)-C(10E)-C(11E)-C(12E)	176.1(15)
N(3E)-C(10E)-C(11E)-N(4E)	-5.4(17)
C(14F)-N(4F)-C(11F)-C(12F)	-1.9(14)
Au(6)-N(4F)-C(11F)-C(12F)	178.0(9)
C(14F)-N(4F)-C(11F)-C(10F)	-177.8(10)
Au(6)-N(4F)-C(11F)-C(10F)	2.1(13)
N(3F)-C(10F)-C(11F)-C(12F)	-175.7(14)
N(3F)-C(10F)-C(11F)-N(4F)	-1.2(16)
N(4A)-C(11A)-C(12A)-C(13A)	-4.7(15)
C(10A)-C(11A)-C(12A)-C(13A)	-177.0(15)
N(4B)-C(11B)-C(12B)-C(13B)	0.5(13)
C(10B)-C(11B)-C(12B)-C(13B)	175.4(14)
C(10C)-C(11C)-C(12C)-C(13C)	171.1(17)
N(4C)-C(11C)-C(12C)-C(13C)	5.8(16)
C(10D)-C(11D)-C(12D)-C(13D)	178.5(16)
N(4D)-C(11D)-C(12D)-C(13D)	1.3(15)

Table D.3.4 continued...

N(4E)-C(11E)-C(12E)-C(13E)	1.3(15)
C(10E)-C(11E)-C(12E)-C(13E)	179.9(15)
N(4F)-C(11F)-C(12F)-C(13F)	2.8(15)
C(10F)-C(11F)-C(12F)-C(13F)	177.6(13)
C(11A)-C(12A)-C(13A)-C(14A)	5.8(15)
C(11B)-C(12B)-C(13B)-C(14B)	-1.0(14)
C(11C)-C(12C)-C(13C)-C(14C)	-3.9(16)
C(11D)-C(12D)-C(13D)-C(14D)	-0.4(17)
C(11E)-C(12E)-C(13E)-C(14E)	-0.3(15)
C(11F)-C(12F)-C(13F)-C(14F)	-2.6(14)
C(11A)-N(4A)-C(14A)-C(13A)	1.9(14)
Au(1)-N(4A)-C(14A)-C(13A)	-178.7(10)
C(11A)-N(4A)-C(14A)-C(15A)	177.0(12)
Au(1)-N(4A)-C(14A)-C(15A)	-4(2)
C(12A)-C(13A)-C(14A)-N(4A)	-4.9(15)
C(12A)-C(13A)-C(14A)-C(15A)	179.6(11)
C(11B)-N(4B)-C(14B)-C(13B)	-0.8(13)
Au(2)-N(4B)-C(14B)-C(13B)	173.4(10)
C(11B)-N(4B)-C(14B)-C(15B)	179.9(11)
Au(2)-N(4B)-C(14B)-C(15B)	-6(2)
C(12B)-C(13B)-C(14B)-N(4B)	1.1(14)
C(12B)-C(13B)-C(14B)-C(15B)	-179.5(10)
C(11C)-N(4C)-C(14C)-C(13C)	3.2(15)
Au(3)-N(4C)-C(14C)-C(13C)	173.1(11)
C(11C)-N(4C)-C(14C)-C(15C)	178.1(13)
Au(3)-N(4C)-C(14C)-C(15C)	-12(2)
C(12C)-C(13C)-C(14C)-N(4C)	0.5(15)
C(12C)-C(13C)-C(14C)-C(15C)	-174.9(11)
C(12D)-C(13D)-C(14D)-N(4D)	-0.7(16)
C(12D)-C(13D)-C(14D)-C(15D)	-173.7(13)
C(11D)-N(4D)-C(14D)-C(13D)	1.4(14)
Au(4)-N(4D)-C(14D)-C(13D)	167.7(11)
C(11D)-N(4D)-C(14D)-C(15D)	174.2(13)
Au(4)-N(4D)-C(14D)-C(15D)	-19(2)
C(11E)-N(4E)-C(14E)-C(13E)	1.7(14)
Au(5)-N(4E)-C(14E)-C(13E)	171.5(10)
C(11E)-N(4E)-C(14E)-C(15E)	176.5(12)

Table D.3.4 continued...

Au(5)-N(4E)-C(14E)-C(15E)	-14(2)	
C(12E)-C(13E)-C(14E)-N(4E)	-0.9(14)	
C(12E)-C(13E)-C(14E)-C(15E)	-176.2(11)	
C(11F)-N(4F)-C(14F)-C(13F)	0.3(14)	
Au(6)-N(4F)-C(14F)-C(13F)	-179.5(10)	
C(11F)-N(4F)-C(14F)-C(15F)	-176.6(12)	
Au(6)-N(4F)-C(14F)-C(15F)	4(2)	
C(12F)-C(13F)-C(14F)-N(4F)	1.4(14)	
C(12F)-C(13F)-C(14F)-C(15F)	178.4(11)	
C(17A)-N(5A)-C(15A)-C(14A)	179.5(11)	
C(17A)-N(5A)-C(15A)-C(16A)	-1.3(16)	
N(4A)-C(14A)-C(15A)-N(5A)	-177.9(12)	
C(13A)-C(14A)-C(15A)-N(5A)	-3.4(16)	
N(4A)-C(14A)-C(15A)-C(16A)	3(2)	
C(13A)-C(14A)-C(15A)-C(16A)	177.6(12)	
C(17B)-N(5B)-C(15B)-C(16B)	1.2(16)	
C(17B)-N(5B)-C(15B)-C(14B)	-177.7(10)	
N(4B)-C(14B)-C(15B)-N(5B)	-175.2(12)	
C(13B)-C(14B)-C(15B)-N(5B)	5.6(15)	
N(4B)-C(14B)-C(15B)-C(16B)	6(2)	
C(13B)-C(14B)-C(15B)-C(16B)	-173.1(12)	
C(17C)-N(5C)-C(15C)-C(16C)	0.1(18)	
C(17C)-N(5C)-C(15C)-C(14C)	179.4(11)	
N(4C)-C(14C)-C(15C)-N(5C)	-166.5(13)	
C(13C)-C(14C)-C(15C)-N(5C)	7.8(17)	
N(4C)-C(14C)-C(15C)-C(16C)	13(2)	
C(13C)-C(14C)-C(15C)-C(16C)	-173.1(13)	
C(17D)-N(41)-C(15D)-C(16D)	-1.6(19)	
C(17D)-N(41)-C(15D)-C(14D)	178.4(12)	
C(13D)-C(14D)-C(15D)-N(41)	-0.8(19)	
N(4D)-C(14D)-C(15D)-N(41)	-172.3(12)	
C(13D)-C(14D)-C(15D)-C(16D)	179.2(14)	
N(4D)-C(14D)-C(15D)-C(16D)	8(2)	
C(17E)-N(5E)-C(15E)-C(14E)	178.6(12)	
C(17E)-N(5E)-C(15E)-C(16E)	-4.0(19)	
N(4E)-C(14E)-C(15E)-N(5E)	-179.4(12)	
C(13E)-C(14E)-C(15E)-N(5E)	-5.1(17)	

Table D.3.4 continued...

$N(AE)_C(1AE)_C(15E)_C(16E)$	1(2)	
$((4L)^{-}C(14L)^{-}C(15L)^{-}C(16L)$	+(2)	
C(13E) - C(14E) - C(15E) - C(16E)	0.7(10)	
C(17F) - N(5F) - C(15F) - C(10F)	0.7(19)	
C(17F)-N(5F)-C(15F)-C(14F)	-1/8.0(11)	
N(4F)-C(14F)-C(15F)-N(5F)	1/5./(12)	
C(13F)-C(14F)-C(15F)-N(5F)	-0.8(17)	
N(4F)-C(14F)-C(15F)-C(16F)	-3(2)	
C(13F)-C(14F)-C(15F)-C(16F)	-179.9(13)	
C(22A)-N(6A)-C(16A)-C(15A)	-1.8(18)	
C(22A)-N(6A)-C(16A)-C(1A)	177.9(10)	
N(5A)-C(15A)-C(16A)-N(6A)	2.5(17)	
C(14A)-C(15A)-C(16A)-N(6A)	-178.5(12)	
N(5A)-C(15A)-C(16A)-C(1A)	-177.1(11)	
C(14A)-C(15A)-C(16A)-C(1A)	2(2)	
N(1A)-C(1A)-C(16A)-N(6A)	173.6(12)	
C(2A)-C(1A)-C(16A)-N(6A)	-6.2(16)	
N(1A)-C(1A)-C(16A)-C(15A)	-7(2)	
C(2A)-C(1A)-C(16A)-C(15A)	173.5(12)	
C(22B)-N(6B)-C(16B)-C(15B)	-0.4(18)	
C(22B)-N(6B)-C(16B)-C(1B)	-178.5(11)	
N(5B)-C(15B)-C(16B)-N(6B)	-0.2(17)	
C(14B)-C(15B)-C(16B)-N(6B)	178.3(11)	
N(5B)-C(15B)-C(16B)-C(1B)	177.4(12)	
C(14B)-C(15B)-C(16B)-C(1B)	-4(2)	
C(2B)-C(1B)-C(16B)-N(6B)	0.1(17)	
N(1B)-C(1B)-C(16B)-N(6B)	179.8(12)	
C(2B)-C(1B)-C(16B)-C(15B)	-177.6(13)	
N(1B)-C(1B)-C(16B)-C(15B)	2(2)	
C(22C)-N(6C)-C(16C)-C(15C)	1.6(18)	
C(22C)-N(6C)-C(16C)-C(1C)	-178.1(11)	
N(5C)-C(15C)-C(16C)-N(6C)	-3.5(18)	
C(14C)-C(15C)-C(16C)-N(6C)	177.4(12)	
N(5C)-C(15C)-C(16C)-C(1C)	176.1(12)	
C(14C)-C(15C)-C(16C)-C(1C)	-3(2)	
N(1C)-C(1C)-C(16C)-N(6C)	175.4(12)	
C(2C)-C(1C)-C(16C)-N(6C)	-1.8(16)	
N(1C)-C(1C)-C(16C)-C(15C)	-4(2)	

Table D.3.4 continued...

C(2C)-C(1C)-C(16C)-C(15C)	178.5(12)	
C(22D)-N(42)-C(16D)-C(15D)	-4.2(17)	
C(22D)-N(42)-C(16D)-C(1D)	177.3(11)	
N(41)-C(15D)-C(16D)-N(42)	6.8(19)	
C(14D)-C(15D)-C(16D)-N(42)	-173.2(13)	
N(41)-C(15D)-C(16D)-C(1D)	-175.2(13)	
C(14D)-C(15D)-C(16D)-C(1D)	5(3)	
N(1D)-C(1D)-C(16D)-N(42)	177.8(13)	
C(2D)-C(1D)-C(16D)-N(42)	-7.7(18)	
N(1D)-C(1D)-C(16D)-C(15D)	0(2)	
C(2D)-C(1D)-C(16D)-C(15D)	174.1(13)	
C(22E)-N(6E)-C(16E)-C(1E)	178.1(12)	
C(22E)-N(6E)-C(16E)-C(15E)	-2.8(19)	
N(1E)-C(1E)-C(16E)-N(6E)	-172.3(13)	
C(2E)-C(1E)-C(16E)-N(6E)	-0.6(18)	
N(1E)-C(1E)-C(16E)-C(15E)	9(2)	
C(2E)-C(1E)-C(16E)-C(15E)	-179.6(13)	
N(5E)-C(15E)-C(16E)-N(6E)	4.2(18)	
C(14E)-C(15E)-C(16E)-N(6E)	-179.1(13)	
N(5E)-C(15E)-C(16E)-C(1E)	-176.8(13)	
C(14E)-C(15E)-C(16E)-C(1E)	0(2)	
C(22F)-N(6F)-C(16F)-C(15F)	0.8(18)	
C(22F)-N(6F)-C(16F)-C(1F)	-177.1(11)	
N(5F)-C(15F)-C(16F)-N(6F)	-1.2(18)	
C(14F)-C(15F)-C(16F)-N(6F)	177.9(12)	
N(5F)-C(15F)-C(16F)-C(1F)	176.2(13)	
C(14F)-C(15F)-C(16F)-C(1F)	-5(2)	
N(1F)-C(1F)-C(16F)-N(6F)	-175.2(13)	
C(2F)-C(1F)-C(16F)-N(6F)	5.4(17)	
N(1F)-C(1F)-C(16F)-C(15F)	7(2)	
C(2F)-C(1F)-C(16F)-C(15F)	-172.2(14)	
C(15A)-N(5A)-C(17A)-C(18A)	179.6(11)	
C(15A)-N(5A)-C(17A)-C(22A)	-0.6(18)	
C(15B)-N(5B)-C(17B)-C(22B)	-1.6(16)	
C(15B)-N(5B)-C(17B)-C(18B)	179.5(11)	
C(15C)-N(5C)-C(17C)-C(22C)	4.9(19)	
C(15C)-N(5C)-C(17C)-C(18C)	-179.9(12)	

Table D.3.4 continued...

C(15D)-N(41)-C(17D)-C(22D)	-6(2)	
C(15D)-N(41)-C(17D)-C(18D)	-179.2(13)	
C(15E)-N(5E)-C(17E)-C(18E)	178.7(14)	
C(15E)-N(5E)-C(17E)-C(22E)	2.3(19)	
C(15F)-N(5F)-C(17F)-C(18F)	-179.4(12)	
C(15F)-N(5F)-C(17F)-C(22F)	0.2(19)	
N(5A)-C(17A)-C(18A)-C(19A)	-179.9(11)	
C(22A)-C(17A)-C(18A)-C(19A)	0.3(18)	
N(5B)-C(17B)-C(18B)-C(19B)	-179.1(11)	
C(22B)-C(17B)-C(18B)-C(19B)	2.0(18)	
N(5C)-C(17C)-C(18C)-C(19C)	-176.0(13)	
C(22C)-C(17C)-C(18C)-C(19C)	-1(2)	
C(22D)-C(17D)-C(18D)-C(19D)	4(2)	
N(41)-C(17D)-C(18D)-C(19D)	177.4(14)	
N(5E)-C(17E)-C(18E)-C(19E)	-179.6(13)	
C(22E)-C(17E)-C(18E)-C(19E)	-3(2)	
N(5F)-C(17F)-C(18F)-C(19F)	-178.5(13)	
C(22F)-C(17F)-C(18F)-C(19F)	2(2)	
C(17A)-C(18A)-C(19A)-C(20A)	-2.1(17)	
C(17B)-C(18B)-C(19B)-C(20B)	-1.9(18)	
C(17C)-C(18C)-C(19C)-C(20C)	0(2)	
C(17D)-C(18D)-C(19D)-C(20D)	-2(2)	
C(17E)-C(18E)-C(19E)-C(20E)	2(2)	
C(17F)-C(18F)-C(19F)-C(20F)	0(2)	
C(18A)-C(19A)-C(20A)-C(21A)	2.6(17)	
C(18B)-C(19B)-C(20B)-C(21B)	1.3(19)	
C(18C)-C(19C)-C(20C)-C(21C)	0(2)	
C(18D)-C(19D)-C(20D)-C(21D)	-1(3)	
C(18E)-C(19E)-C(20E)-C(21E)	0(2)	
C(18F)-C(19F)-C(20F)-C(21F)	-1(2)	
C(19A)-C(20A)-C(21A)-C(22A)	-1.2(19)	
C(19B)-C(20B)-C(21B)-C(22B)	-0.7(18)	
C(19C)-C(20C)-C(21C)-C(22C)	0(2)	
C(19D)-C(20D)-C(21D)-C(22D)	2(3)	
C(19E)-C(20E)-C(21E)-C(22E)	-1(2)	
C(19F)-C(20F)-C(21F)-C(22F)	1(2)	
C(16A)-N(6A)-C(22A)-C(17A)	-0.2(17)	

Table D.3.4 continued...

C(16A)-N(6A)-C(22A)-C(21A)	179.9(12)	
N(5A)-C(17A)-C(22A)-N(6A)	1.4(18)	
C(18A)-C(17A)-C(22A)-N(6A)	-178.8(11)	
N(5A)-C(17A)-C(22A)-C(21A)	-178.7(11)	
C(18A)-C(17A)-C(22A)-C(21A)	1.2(18)	
C(20A)-C(21A)-C(22A)-N(6A)	179.2(11)	
C(20A)-C(21A)-C(22A)-C(17A)	-0.7(18)	
C(16B)-N(6B)-C(22B)-C(17B)	0.0(18)	
C(16B)-N(6B)-C(22B)-C(21B)	-178.7(11)	
N(5B)-C(17B)-C(22B)-N(6B)	1.0(17)	
C(18B)-C(17B)-C(22B)-N(6B)	179.9(11)	
N(5B)-C(17B)-C(22B)-C(21B)	179.7(10)	
C(18B)-C(17B)-C(22B)-C(21B)	-1.4(17)	
C(20B)-C(21B)-C(22B)-N(6B)	179.4(11)	
C(20B)-C(21B)-C(22B)-C(17B)	0.7(17)	
C(16C)-N(6C)-C(22C)-C(17C)	4(2)	
C(16C)-N(6C)-C(22C)-C(21C)	-179.3(12)	
N(5C)-C(17C)-C(22C)-N(6C)	-7(2)	
C(18C)-C(17C)-C(22C)-N(6C)	177.6(13)	
N(5C)-C(17C)-C(22C)-C(21C)	176.0(13)	
C(18C)-C(17C)-C(22C)-C(21C)	1(2)	
C(20C)-C(21C)-C(22C)-N(6C)	-177.3(13)	
C(20C)-C(21C)-C(22C)-C(17C)	0(2)	
N(41)-C(17D)-C(22D)-N(42)	9(2)	
C(18D)-C(17D)-C(22D)-N(42)	-178.2(14)	
N(41)-C(17D)-C(22D)-C(21D)	-176.5(14)	
C(18D)-C(17D)-C(22D)-C(21D)	-4(2)	
C(16D)-N(42)-C(22D)-C(17D)	-3(2)	
C(16D)-N(42)-C(22D)-C(21D)	-178.2(12)	
C(20D)-C(21D)-C(22D)-C(17D)	1(2)	
C(20D)-C(21D)-C(22D)-N(42)	175.6(14)	
C(16E)-N(6E)-C(22E)-C(21E)	-178.5(13)	
C(16E)-N(6E)-C(22E)-C(17E)	1(2)	
C(20E)-C(21E)-C(22E)-N(6E)	179.8(14)	
C(20E)-C(21E)-C(22E)-C(17E)	0(2)	
N(5E)-C(17E)-C(22E)-N(6E)	-1(2)	
C(18E)-C(17E)-C(22E)-N(6E)	-177.5(13)	

Table D.3.4 continued		
N(5E)-C(17E)-C(22E)-C(21E)	179.0(13)	
C(18E)-C(17E)-C(22E)-C(21E)	2(2)	
C(16F)-N(6F)-C(22F)-C(21F)	-178.9(12)	
C(16F)-N(6F)-C(22F)-C(17F)	0.1(19)	
C(20F)-C(21F)-C(22F)-N(6F)	179.5(12)	
C(20F)-C(21F)-C(22F)-C(17F)	0.5(19)	
N(5F)-C(17F)-C(22F)-N(6F)	-0.7(19)	
C(18F)-C(17F)-C(22F)-N(6F)	178.9(12)	
N(5F)-C(17F)-C(22F)-C(21F)	178.4(12)	
C(18F)-C(17F)-C(22F)-C(21F)	-2.0(19)	

D.4: Full crystallographic Data Tables of [Au(L10)](AuCl₄)

C(10)-C(11)	1.354(12)	
C(10)-C(9)	1.434(10)	
C(10)-H(10)	0.9500	
C(11)-C(11)#1	1.409(16)	
C(11)-H(11)	0.9500	
Au(1)-N(1)#1	1.988(6)	
Au(1)-N(1)	1.988(6)	
Au(1)-N(2)#1	2.059(6)	
Au(1)-N(2)	2.059(6)	
N(3)-C(8)	1.335(9)	
N(3)-C(9)	1.346(10)	
N(2)-C(3)	1.297(10)	
N(2)-C(2)	1.471(9)	
C-C(2)	1.515(11)	
C-H(0A)	0.9800	
C-H(0B)	0.9800	
C-H(0C)	0.9800	
C(3)-C(4)	1.400(11)	
N(1)-C(4)	1.370(9)	
N(1)-C(7)	1.371(10)	
C(6)-C(5)	1.386(11)	
C(6)-C(7)	1.410(11)	
C(6)-H(6)	0.9500	
C(8)-C(8)#1	1.435(14)	
C(8)-C(7)	1.468(10)	
C(4)-C(5)	1.392(10)	
C(2)-H(2A)	0.9900	
C(2)-H(2B)	0.9900	
C(5)-H(5)	0.9500	
C(9)-C(9)#1	1.417(16)	
Au(2)-Cl(1)#1	2.272(2)	
Au(2)-Cl(1)	2.271(2)	
Au(2)-Cl(2)	2.287(2)	
Au(2)-Cl(2)#1	2.287(2)	

Table D.4.1: Bond lengths [Å] and angles [°] for [Au(L10)](AuCl₄).

Table D.4.1 continued...

C(11)-C(10)-C(9)	118.1(8)
C(11)-C(10)-H(10)	120.9
C(9)-C(10)-H(10)	120.9
C(10)-C(11)-C(11)#1	122.0(5)
C(10)-C(11)-H(11)	119.0
C(11)#1-C(11)-H(11)	119.0
N(1)#1-Au(1)-N(1)	95.8(3)
N(1)#1-Au(1)-N(2)#1	81.5(2)
N(1)-Au(1)-N(2)#1	176.7(2)
N(1)#1-Au(1)-N(2)	176.7(2)
N(1)-Au(1)-N(2)	81.5(3)
N(2)#1-Au(1)-N(2)	101.2(3)
C(8)-N(3)-C(9)	119.6(7)
C(3)-N(2)-C(2)	121.3(6)
C(3)-N(2)-Au(1)	110.9(5)
C(2)-N(2)-Au(1)	127.7(5)
C(2)-C-H(0A)	109.5
C(2)-C-H(0B)	109.5
H(0A)-C-H(0B)	109.5
C(2)-C-H(0C)	109.5
H(0A)-C-H(0C)	109.5
H(0B)-C-H(0C)	109.5
N(2)-C(3)-C(4)	119.2(7)
C(4)-N(1)-C(7)	107.6(6)
C(4)-N(1)-Au(1)	111.9(5)
C(7)-N(1)-Au(1)	140.3(5)
C(5)-C(6)-C(7)	108.8(7)
C(5)-C(6)-H(6)	125.6
C(7)-C(6)-H(6)	125.6
N(3)-C(8)-C(8)#1	120.0(4)
N(3)-C(8)-C(7)	109.5(6)
C(8)#1-C(8)-C(7)	130.5(4)
N(1)-C(7)-C(6)	107.6(6)
N(1)-C(7)-C(8)	130.6(7)
C(6)-C(7)-C(8)	121.8(7)
N(1)-C(4)-C(5)	110.6(7)
N(1)-C(4)-C(3)	116.4(7)

133.1(7)
114.1(7)
108.7
108.7
108.7
108.7
107.6
105.5(7)
127.3
127.3
120.2(4)
119.9(7)
119.8(5)
88.62(11)
175.84(8)
90.10(8)
90.10(8)
175.84(8)
91.45(12)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U12	
C(10)	20(4)	19(4)	17(4)	0(3)	-2(3)	-5(3)	
C(11)	21(4)	8(3)	25(4)	2(3)	6(3)	-7(3)	
Au(1)	11(1)	6(1)	13(1)	0	3(1)	0	
N(3)	12(3)	12(3)	12(3)	1(2)	1(2)	-1(2)	
N(2)	15(3)	11(3)	19(3)	0(2)	6(2)	1(2)	
С	22(4)	16(4)	19(4)	-1(3)	3(3)	4(3)	
C(3)	16(3)	14(4)	19(4)	0(3)	4(3)	2(3)	
N(1)	13(3)	12(3)	17(3)	-1(2)	5(2)	4(2)	
C(6)	21(4)	14(4)	26(4)	0(3)	7(3)	-1(3)	
C(8)	14(3)	3(3)	20(4)	-3(2)	3(3)	-2(2)	
C(7)	15(3)	12(4)	21(4)	-2(3)	4(3)	-2(3)	
C(4)	13(3)	16(4)	18(4)	-1(3)	7(3)	2(3)	
C(2)	20(4)	10(3)	14(4)	-2(3)	2(3)	1(3)	
C(5)	23(4)	13(4)	33(5)	3(3)	17(3)	-2(3)	
C(9)	21(4)	8(3)	12(3)	0(2)	-2(3)	-3(3)	
Au(2)	13(1)	9(1)	18(1)	0	5(1)	0	
Cl(1)	36(1)	16(1)	21(1)	4(1)	-1(1)	0(1)	
Cl(2)	30(1)	18(1)	32(1)	-10(1)	14(1)	-5(1)	

Table D.4.2: Anisotropic displacement parameters ($Å^2x \ 10^3$) for [Au(L10)](AuCl₄). The anisotropicdisplacement factor exponent takes the form: $-2p^2$ [$h^2a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}$]

Table D.4.3: Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for [Au(L10)](AuCl₄).

	х	У	z	U(eq)	
H(10)	1784	6493	932	24	
H(11)	873	7124	1726	22	
H(0A)	2501	3069	204	29	
H(0B)	2661	2701	1577	29	
H(0C)	3637	3127	1948	29	
H(6)	2987	5330	725	24	
H(2A)	555	3111	1496	18	
H(2B)	1675	3156	3254	18	
H(5)	4134	4615	403	26	

C(9)-C(10)-C(11)-C(11)#1	0.1(14)	
N(1)-Au(1)-N(2)-C(3)	-1.6(5)	
N(2)#1-Au(1)-N(2)-C(3)	176.5(6)	
N(1)-Au(1)-N(2)-C(2)	175.2(6)	
N(2)#1-Au(1)-N(2)-C(2)	-6.7(5)	
C(2)-N(2)-C(3)-C(4)	-176.3(7)	
Au(1)-N(2)-C(3)-C(4)	0.7(9)	
N(1)#1-Au(1)-N(1)-C(4)	-179.8(6)	
N(2)-Au(1)-N(1)-C(4)	2.2(5)	
N(1)#1-Au(1)-N(1)-C(7)	-6.2(7)	
N(2)-Au(1)-N(1)-C(7)	175.7(9)	
C(9)-N(3)-C(8)-C(8)#1	5.5(12)	
C(9)-N(3)-C(8)-C(7)	-172.3(6)	
C(4)-N(1)-C(7)-C(6)	-0.1(9)	
Au(1)-N(1)-C(7)-C(6)	-173.9(6)	
C(4)-N(1)-C(7)-C(8)	-178.1(8)	
Au(1)-N(1)-C(7)-C(8)	8.1(14)	
C(5)-C(6)-C(7)-N(1)	-0.8(10)	
C(5)-C(6)-C(7)-C(8)	177.4(7)	
N(3)-C(8)-C(7)-N(1)	-177.4(8)	
C(8)#1-C(8)-C(7)-N(1)	5.1(16)	
N(3)-C(8)-C(7)-C(6)	4.8(10)	
C(8)#1-C(8)-C(7)-C(6)	-172.6(10)	
C(7)-N(1)-C(4)-C(5)	1.0(9)	
Au(1)-N(1)-C(4)-C(5)	176.7(6)	
C(7)-N(1)-C(4)-C(3)	-178.2(7)	
Au(1)-N(1)-C(4)-C(3)	-2.5(8)	
N(2)-C(3)-C(4)-N(1)	1.2(11)	
N(2)-C(3)-C(4)-C(5)	-177.8(9)	
C(3)-N(2)-C(2)-C	-7.7(10)	
Au(1)-N(2)-C(2)-C	175.8(5)	
C(7)-C(6)-C(5)-C(4)	1.4(10)	
N(1)-C(4)-C(5)-C(6)	-1.5(10)	
C(3)-C(4)-C(5)-C(6)	177.5(8)	
C(8)-N(3)-C(9)-C(9)#1	-0.7(12)	
C(8)-N(3)-C(9)-C(10)	178.4(7)	

Table D.4.4: Torsion angles [°] for [Au(L10)](AuCl₄).

Table D.4.4 continued	
C(11)-C(10)-C(9)-N(3)	-179.1(7)
C(11)-C(10)-C(9)-C(9)#1	0.0(13)

D.5: Full crystallographic Data Tables of [Au(L12)](PF₆)

Au(01)-N(4)	1.979(6)	
Au(01)-N(1)	2.008(4)	
Au(01)-N(3)	2.041(4)	
Au(01)-N(2)	2.044(5)	
P-F(3)	1.556(5)	
P-F(2)	1.587(4)	
P-F(5)	1.593(4)	
P-F(6)	1.595(5)	
P-F(4)	1.599(5)	
P-F(1)	1.607(4)	
N(3)-C(10)	1.325(7)	
N(3)-C(9)	1.462(7)	
N(4)-C(14)	1.362(8)	
N(4)-C(11)	1.387(7)	
N(1)-C(1)	1.340(7)	
N(1)-C(4)	1.384(7)	
C(3)-C(4)	1.390(8)	
C(3)-C(2)	1.427(8)	
С(3)-Н(3)	0.9500	
C(10)-C(11)	1.398(9)	
C(10)-H(10)	0.9500	
C(2)-C(1)	1.403(8)	
С(2)-Н(2)	0.9500	
C(12)-C(13)	1.398(9)	
C(12)-C(11)	1.404(8)	
C(12)-H(12)	0.9500	
C(14)-C(13)	1.396(8)	
C(14)-H(14)	0.9500	
C(8)-C(9)	1.518(8)	
C(8)-C(7)	1.534(8)	
C(8)-H(8A)	0.9900	
C(8)-H(8B)	0.9900	
C(7)-C(6)	1.523(8)	
C(7)-H(7A)	0.9900	

Table D.5.1: Bond lengths [Å] and angles [°] for [Au(L12)](PF₆)

|--|

C(7)-H(7B)	0.9900
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(6)-N(2)	1.481(7)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
N(2)-C(5)	1.299(7)
C(1)-H(1)	0.9500
C(4)-C(5)	1.414(8)
C(13)-H(13)	0.9500
C(5)-H(5)	0.9500
N(4)-Au(01)-N(1)	99.84(19)
N(4)-Au(01)-N(3)	80.68(19)
N(1)-Au(01)-N(3)	175.92(18)
N(4)-Au(01)-N(2)	178.14(18)
N(1)-Au(01)-N(2)	80.84(19)
N(3)-Au(01)-N(2)	98.77(18)
F(3)-P-F(2)	91.6(4)
F(3)-P-F(5)	90.6(4)
F(2)-P-F(5)	177.6(3)
F(3)-P-F(6)	178.2(4)
F(2)-P-F(6)	89.8(3)
F(5)-P-F(6)	88.0(3)
F(3)-P-F(4)	91.1(4)
F(2)-P-F(4)	91.4(3)
F(5)-P-F(4)	89.7(2)
F(6)-P-F(4)	90.0(3)
F(3)-P-F(1)	89.8(3)
F(2)-P-F(1)	88.9(2)
F(5)-P-F(1)	90.1(2)
F(6)-P-F(1)	89.0(3)
F(4)-P-F(1)	179.0(3)
C(10)-N(3)-C(9)	120.7(5)
C(10)-N(3)-Au(01)	112.6(4)
C(9)-N(3)-Au(01)	125.9(4)
C(14)-N(4)-C(11)	106.8(5)

Table D.5.1 continued...

C(14)-N(4)-Au(01)	139.1(4)
C(11)-N(4)-Au(01)	113.9(4)
C(1)-N(1)-C(4)	108.0(5)
C(1)-N(1)-Au(01)	139.9(4)
C(4)-N(1)-Au(01)	112.0(4)
C(4)-C(3)-C(2)	107.3(5)
C(4)-C(3)-H(3)	126.3
C(2)-C(3)-H(3)	126.3
N(3)-C(10)-C(11)	118.0(5)
N(3)-C(10)-H(10)	121.0
C(11)-C(10)-H(10)	121.0
C(1)-C(2)-C(3)	104.9(5)
C(1)-C(2)-H(2)	127.5
C(3)-C(2)-H(2)	127.5
C(13)-C(12)-C(11)	106.0(5)
C(13)-C(12)-H(12)	127.0
C(11)-C(12)-H(12)	127.0
N(4)-C(14)-C(13)	109.9(6)
N(4)-C(14)-H(14)	125.1
C(13)-C(14)-H(14)	125.1
C(9)-C(8)-C(7)	114.2(5)
C(9)-C(8)-H(8A)	108.7
C(7)-C(8)-H(8A)	108.7
C(9)-C(8)-H(8B)	108.7
C(7)-C(8)-H(8B)	108.7
H(8A)-C(8)-H(8B)	107.6
C(6)-C(7)-C(8)	114.8(5)
C(6)-C(7)-H(7A)	108.6
C(8)-C(7)-H(7A)	108.6
C(6)-C(7)-H(7B)	108.6
C(8)-C(7)-H(7B)	108.6
H(7A)-C(7)-H(7B)	107.5
N(3)-C(9)-C(8)	113.4(5)
N(3)-C(9)-H(9A)	108.9
C(8)-C(9)-H(9A)	108.9
N(3)-C(9)-H(9B)	108.9
C(8)-C(9)-H(9B)	108.9

Table [0.5.1	continued
---------	-------	-----------

H(9A)-C(9)-H(9B)	107.7
N(2)-C(6)-C(7)	111.4(5)
N(2)-C(6)-H(6A)	109.3
C(7)-C(6)-H(6A)	109.3
N(2)-C(6)-H(6B)	109.3
C(7)-C(6)-H(6B)	109.3
H(6A)-C(6)-H(6B)	108.0
C(5)-N(2)-C(6)	119.7(5)
C(5)-N(2)-Au(01)	113.3(4)
C(6)-N(2)-Au(01)	126.7(3)
N(1)-C(1)-C(2)	111.0(5)
N(1)-C(1)-H(1)	124.5
C(2)-C(1)-H(1)	124.5
N(4)-C(11)-C(10)	114.8(5)
N(4)-C(11)-C(12)	109.7(5)
C(10)-C(11)-C(12)	135.5(5)
N(1)-C(4)-C(3)	108.8(5)
N(1)-C(4)-C(5)	116.1(5)
C(3)-C(4)-C(5)	135.1(6)
C(14)-C(13)-C(12)	107.6(6)
C(14)-C(13)-H(13)	126.2
C(12)-C(13)-H(13)	126.2
N(2)-C(5)-C(4)	117.7(5)
N(2)-C(5)-H(5)	121.2
C(4)-C(5)-H(5)	121.2

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
Au(01)	20(1)	21(1)	15(1)	1(1)	3(1)	-2(1)	
Р	29(1)	23(1)	26(1)	-4(1)	9(1)	-1(1)	
N(3)	21(2)	27(2)	14(2)	2(2)	4(2)	-4(2)	
N(4)	23(2)	33(3)	17(2)	0(2)	1(2)	7(2)	
N(1)	23(2)	28(2)	12(2)	1(2)	4(2)	-3(2)	
F(1)	39(2)	36(2)	47(2)	-20(2)	12(2)	-7(2)	
F(3)	149(6)	55(3)	41(3)	23(2)	19(4)	23(4)	
F(4)	57(3)	51(3)	82(4)	-41(3)	39(3)	-28(2)	
C(3)	26(3)	32(3)	20(3)	4(2)	3(2)	1(2)	
C(10)	26(2)	31(3)	19(2)	8(2)	3(2)	-5(2)	
F(5)	40(2)	52(3)	59(3)	-27(2)	24(2)	-10(2)	
F(2)	41(2)	62(3)	98(4)	-43(3)	35(3)	-16(2)	
F(6)	99(4)	73(4)	40(3)	10(3)	-10(3)	14(3)	
C(2)	23(2)	23(3)	28(3)	8(2)	9(2)	6(2)	
C(12)	32(3)	29(3)	32(3)	8(3)	1(2)	-6(2)	
C(14)	27(3)	23(3)	36(3)	0(2)	5(2)	-2(2)	
C(8)	35(3)	37(3)	17(3)	-4(2)	7(2)	-6(3)	
C(7)	31(3)	32(3)	19(3)	-3(2)	2(2)	-5(2)	
C(9)	25(3)	36(3)	20(3)	-3(2)	6(2)	-3(2)	
C(6)	28(3)	24(3)	25(3)	-4(2)	7(2)	-2(2)	
N(2)	27(2)	17(2)	15(2)	-2(2)	2(2)	-5(2)	
C(1)	24(2)	27(3)	18(2)	-5(2)	4(2)	0(2)	
C(11)	28(3)	27(3)	21(3)	6(2)	2(2)	-5(2)	
C(4)	26(2)	25(3)	16(2)	2(2)	3(2)	-1(2)	
C(13)	42(3)	22(3)	32(3)	1(2)	2(3)	-6(3)	
C(5)	27(3)	21(2)	21(2)	4(2)	4(2)	0(2)	

Table D.5.2: Anisotropic displacement parameters ($Å^2x \ 10^3$) for [Au(L12)](PF₆). The anisotropicdisplacement factor exponent takes the form: $-2p^2$ [$h^2a^{*2}U^{11} + ... + 2h \ ka^*b^*U^{12}$]

	х	У	z	U(eq)
H(3)	5272	2646	6297	31
H(10)	10581	6054	3170	30
H(2)	5338	4852	6775	29
H(12)	10167	8611	3675	37
H(14)	7435	7513	5197	34
H(8A)	9345	2355	2577	35
H(8B)	8394	3615	2409	35
H(7A)	6594	3225	3187	33
H(7B)	6805	1922	2826	33
H(9A)	10547	3131	3664	32
H(9B)	10953	4003	3032	32
H(6A)	7151	1231	3912	30
H(6B)	8971	1727	3922	30
H(1)	6531	6140	5866	28
H(13)	8664	9349	4677	39
H(5)	6513	1640	5016	27

Table D.3.3: Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for [Au(L12)](PF₆).

N(4)-Au(01)-N(3)-C(10)	0.6(4)	
N(2)-Au(01)-N(3)-C(10)	178.8(4)	
N(4)-Au(01)-N(3)-C(9)	169.7(5)	
N(2)-Au(01)-N(3)-C(9)	-12.1(5)	
N(1)-Au(01)-N(4)-C(14)	-7.2(7)	
N(3)-Au(01)-N(4)-C(14)	176.9(6)	
N(1)-Au(01)-N(4)-C(11)	177.1(4)	
N(3)-Au(01)-N(4)-C(11)	1.2(4)	
N(4)-Au(01)-N(1)-C(1)	-4.6(6)	
N(2)-Au(01)-N(1)-C(1)	177.1(6)	
N(4)-Au(01)-N(1)-C(4)	-178.6(4)	
N(2)-Au(01)-N(1)-C(4)	3.2(4)	
C(9)-N(3)-C(10)-C(11)	-172.1(5)	
Au(01)-N(3)-C(10)-C(11)	-2.3(6)	
C(4)-C(3)-C(2)-C(1)	2.0(6)	
C(11)-N(4)-C(14)-C(13)	-1.2(7)	
Au(01)-N(4)-C(14)-C(13)	-177.1(5)	
C(9)-C(8)-C(7)-C(6)	-40.9(8)	
C(10)-N(3)-C(9)-C(8)	-115.1(6)	
Au(01)-N(3)-C(9)-C(8)	76.5(6)	
C(7)-C(8)-C(9)-N(3)	-58.8(7)	
C(8)-C(7)-C(6)-N(2)	98.9(6)	
C(7)-C(6)-N(2)-C(5)	133.4(5)	
C(7)-C(6)-N(2)-Au(01)	-40.3(6)	
N(1)-Au(01)-N(2)-C(5)	-2.4(4)	
N(3)-Au(01)-N(2)-C(5)	173.5(4)	
N(1)-Au(01)-N(2)-C(6)	171.6(5)	
N(3)-Au(01)-N(2)-C(6)	-12.5(5)	
C(4)-N(1)-C(1)-C(2)	1.8(7)	
Au(01)-N(1)-C(1)-C(2)	-172.3(5)	
C(3)-C(2)-C(1)-N(1)	-2.4(7)	
C(14)-N(4)-C(11)-C(10)	-179.9(5)	
Au(01)-N(4)-C(11)-C(10)	-2.8(6)	
C(14)-N(4)-C(11)-C(12)	1.2(7)	
Au(01)-N(4)-C(11)-C(12)	178.3(4)	
N(3)-C(10)-C(11)-N(4)	3.4(8)	

Table D.5.4: Torsion angles [°] for [Au(L12)](PF₆).

Table D.5.4 continued		
N(3)-C(10)-C(11)-C(12)	-178.0(6)	
C(13)-C(12)-C(11)-N(4)	-0.7(7)	
C(13)-C(12)-C(11)-C(10)	-179.3(7)	
C(1)-N(1)-C(4)-C(3)	-0.4(6)	
Au(01)-N(1)-C(4)-C(3)	175.5(4)	
C(1)-N(1)-C(4)-C(5)	-179.5(5)	
Au(01)-N(1)-C(4)-C(5)	-3.6(6)	
C(2)-C(3)-C(4)-N(1)	-1.0(7)	
C(2)-C(3)-C(4)-C(5)	177.8(6)	
N(4)-C(14)-C(13)-C(12)	0.8(8)	
C(11)-C(12)-C(13)-C(14)	0.0(7)	
C(6)-N(2)-C(5)-C(4)	-173.4(5)	
Au(01)-N(2)-C(5)-C(4)	1.1(7)	
N(1)-C(4)-C(5)-N(2)	1.7(8)	
C(3)-C(4)-C(5)-N(2)	-177.1(6)	

F.1: Molecular Orbital Diagrams of Ligands

[Au(L12)][⁺]

LUMO+2: Orbital 76

ATOM TYPE DEFINITIONS: MODIFIED SP4 FORCE FIELD

Four distinct nitrogen atom donors were defined for the new force field: **npw**, **npx** (the two imine nitrogen atoms in the structure of **3** above); **npy**, and **npz** (the two pyrrole nitrogen atoms). Distinct nitrogen donor atom types are mandatory to define the structurally unique *cis* and *trans* N–Au–N angles in the coordination sphere of the square planar metal ion. Key bond stretching, van der Waals, bond angle, and torsion angle terms were then added to complete the parameter set. The new parameter terms for the force field are listed below along with their standard sp4 definitions.

NEW PARAMETERS ADDED TO SP4 FORCE FIELD

#	FF_Param S	P4													
;	* * * * * * * * *	* * * *	****	* * * * * * *	* * * * * * *	******	* * *								
;	* * * *	V	/EGA	Parame	eters	**	* * *								
;	* * * *	for	SP4	4 force	e field	1 **	* * *								
;	******	* * * *	****	* * * * * * *	* * * * * * *	******	* * *								
#.	Atoms														
;	Descripti	on:													
;	~~~~~~~	~~~													
;	Atom type	->	Ator	n type											
;	R	->	Comb	oining	bond 1	radius									
;	Theta	->	Comb	oining	angle	term									
;	Sigma	->	VdW	parame	eter										
;	Emin	->	VdW	parame	eter										
;	Z	->	Effe	ective	charge	e									
;	AngleInc	->	?												
;	Х	->	Eleo	ctroneg	gativit	ЗУ									
;	Jaa	->	Sel:	f could	omb tei	cm									
;	Mass	->	Ator	n mass											
;	Charge	->	Ator	nic cha	arge										
;	V	->	Tors	sion te	erm foi	evalu	uation								
;	U	->	Tors	sion te	erm foi	r evalu	uation								
;	Hybrid	->	Defa	ault hy	ybrid 1	force	(ignored	if <= 0)							
;	Atom type	R		Theta	Sigma	Emin	Z	AngleInc	х	Jaa	Mass	Charge	V	U	Hybrid
'	au3	1.28	00	90.00	2.912	0.013	2.43000	0.0	15.4010	30.5000	197.000	0.000	0.000	0.000	0.000
	npw	0.64	00	118.00	3.660	0.069	1.71900	0.0	7.6490	11.0100	14.0067	0.000	-1.000	1.250	0.000
	npx	0.64	00	118.00	3.660	0.069	1.71900	0.0	7.6490	11.0100	14.0067	0.000	-1.000	1.250	0.000
	npy	0.63	80	110.00	3.660	0.069	1.90000	0.0	6.8990	11.7600	14.0067	0.000	-1.000	1.250	150.000
	npz	0.63	80	110.00	3.660	0.069	1.90000	0.0	6.8990	11.7600	14.0067	0.000	-1.000	1.250	150.000

#Bonds

;	Description:
;	~~~~~~~~~~~

'			
;	Atom I,J	->	Bonded atoms
;	Force	->	Force constant
;	Length	->	Bond length
;	Atom I Atom	J	Force Length
;		====	

npw	280.0	2.020
npx	280.0	2.020
npy	700.0	1.850
npz	700.0	1.850
	npw npx npy npz	npw 280.0 npx 280.0 npy 700.0 npz 700.0

#Angles

;	Description:
;	~~~~~~~~~~~~~

,

;	Atom I,	J,K	->	Bonded atoms	
;	Force		->	Force constant	
;	Theta		->	Angle value	
;	Atom I	Atom	J	Atom K Force Theta	ι

;					
	npw	Au3	npy	600.0	180.0
	npy	Au3	npw	600.0	180.0
	npx	Au3	npz	600.0	180.0
	npz	Au3	npx	600.0	180.0
	npw	Au3	npx	10.0	90.0
	npx	Au3	npy	10.0	90.0
	npy	Au3	npz	20.0	90.0
	npw	Au3	npz	10.0	90.0

#Torsions

;	Descript	tion:					
;	~~~~~~	~~~~~					
;	Atom I,	J,K,L ->	> Atoms d	efining	the tor	sio	n
;	Force	->	> Force c	onstant			
;	Ν	->	> Multipl	icity			
;	Offset	->	 Torsion 	offset			
;	Atom I	Atom J	Atom K	Atom L	Force	N	Offset
,		c2	 xon	c3	46.0	2	180.0
	ca	c2	npw	c3	46.0	2	180.0
	c3	npx	c2	ca	46.0	2	180.0
	с3	npw	c2	ca	46.0	2	180.0
	npz	au3	npw	c2	16.0	2	0.0
	npy	au3	npz	c2	16.0	2	0.0
	npz	ca	ca	ca	16.0	2	0.0
	npy	ca	ca	ca	16.0	2	0.0
	ca	ca	ca	npy	16.0	2	0.0
	ca	ca	ca	npz	16.0	2	0.0
	npz	ca	ca	nr	56.0	2	180.0
	npy	ca	ca	nr	56.0	2	180.0
	c2	ca	ca	ca	46	2	180.0

#Hybrids

;	Description:		
;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
;	Atom I, J, K, L	->	Atoms defining the improper angle
;	Force	->	Force constant
;	Offset	->	Inproper offset
;	Atom I Atom	J	Atom K Atom L Force Offset
;		===	

'						
	npw	au3	npx	c3	46.0	0.0
	npx	au3	npw	c3	46.0	0.0
	c3	npx	au3	npw	46.0	0.0
	c3	npw	au3	npx	46.0	0.0

********************************* ; **** VEGA Template V4.0 **** ; **** Force Field SP4 **** ********************************* ; ATDL atom description: ; Element (2) - Bond order (1) - Ring indicator (1) - Aromatic indicator (1) ; The brackets indicates the length in characters of each field. ; Generic elements: Bond order: ~~~~~~~~~~ 0 = Atom not bonded ; X = Any atom ; # = Heavy atom 1-6 = Bond order; \$ = Any atom excluding C and H 9 = Any bond order ; @ = Halogen ; - = None ; Ring indicator: Aromatic indicator: ; 0 = Don't check ring ; 2 = Not inside a ring 0 = Don't check ; 2 1 = Aromatic ; 3...7 = From 3 to 7 member ring ; 9 = Generic ring ; Logical operators: ; to use the logical operators AND, OR and NOT (&, | and !), you must ; place the expression between square brackets at the specified position: ; Examples: ; [C- | N-]900 -> the element can be carbon or nitrogen ; [X- & !Cl]900 -> all elements but not chlorine ; C-[4 | 3]00 -> sp3 or sp2 carbon ; C-4[9 & 9]0 -> sp3 carbon in a double condensed ring ; C-3[6 | 5][!1] -> sp2 carbon in 5 or 6 member ring not aromatic ; Atom types: ; ~~~~~~~~ ; each not blank and not commented line (; is the remark indicator) must ; include at least the atom type name (max. 8 characters) and the ATDL $% \left({\left({{{\left({{{\left({{{}_{{\rm{T}}}} \right)}} \right)}_{{\rm{T}}}}} \right)_{{\rm{T}}}} \right)$; description. Optionally, you can specify the bonded atoms placing them ; between round brackets. ; Type Atm Bonded atoms N-300 (C-300 (N-300 N-300 N-300)) npw N-300 (C-300 (O-100)) npw N-300 (C-391) npw npw N-300 (C-300) N-300 (0-200 0-100 0-100) npw N-300 (C-900 O-100 O-100) npw N-300 (C-300 (N-300 N-300 N-300)) npx N-300 (C-300 (O-100)) npx N-300 (C-391) npx N-300 (C-300) npx N-300 (O-200 O-100 O-100) npx N-300 (C-900 O-100 O-100) npx N-300 (C-300 (N-300 N-300 N-300)) npy N-300 (C-300 (O-100)) npy N-300 (C-391) npy N-300 (C-300) npy N-300 (0-200 0-100 0-100) npy N-300 (C-900 O-100 O-100) npy N-300 (C-300 (N-300 N-300 N-300)) npz N-300 (C-300 (O-100)) npz N-300 (C-391) npz N-300 (C-300) N-300 (O-200 O-100 O-100) npz npz N-300 (C-900 O-100 O-100) npz Au900 au3

#TemplateFF SP4 1.0

FORCE FIELD VERIFICATION

Figure 1. Non-linear least-squares fits of the AMMP-calculated and X-ray structures of cations from the experimental structures of compounds **1–3**. The fit root mean square (RMS) errors are shown and are determined from the fit of all atoms in each structure. The modified AMMP parameter set affords an acceptably accurate description of the structures as far as their geometric and conformational attributes are concerned.
Developmental Ther	apeutics Program	NSC: D-754844 / 1	Conc: 1.00E-5 Molar	Test Date: Nov 15, 2010
One Dose Mea	an Graph	Experiment ID: 1011	OS53	Report Date: Dec 22, 2010
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
Panel/Cell LineLeukemiaCCRF-CEMHL-60(TB)K-562MOLT-4RPMI-8226SRNon-Small Cell Lung CancerA549/ATCCEKVXHOP-62NCI-H226NCI-H226NCI-H522Colon CancerCOLO 205HCC-2998HCT-116HCT-15HT29KM12SW-620CNS CancerSF-268SF-295SF-539SNB-19SNB-75U251MelanomaLOX IMVIMALME-3MM14MDA-MB-435SK-MEL-2SK-MEL-2SK-MEL-5UACC-257UACC-62Ovcarian CancerIGROV1OVCAR-3OVCAR-3OVCAR-4OVCAR-4OVCAR-5OVCAR-5OVCAR-8SK-0V-3Renal CancerRenal Cancer786-0A498ACHNCAKI-1RXF 393SN12CTK-10UO-31Prostate CancerPC-3HC	Growth Percent 86.98 105.50 74.10 93.26 77.51 91.90 40.56 52.25 52.77 76.24 83.41 95.28 84.34 48.82 97.45 113.11 89.32 104.35 100.05 100.64 92.77 47.63 27.44 74.28 30.68 42.60 15.37 88.58 76.94 74.25 103.39 80.87 91.02 46.11 88.98 76.02 78.78 109.55 84.90 122.23 57.00 99.85 62.87 54.83 96.48 86.87 97.43 21.60 106.88 <	Mean Growth	Percent - Growth Perc	zent
DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	93.34 59.05 97.36 42.19 78.98 80.05 30.70			
Mean Delta Range	76.68 61.31 106.86	-		
	150	100 50	0 -50	-100 -150

Log₁₀ of Sample Concentration (Molar)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D - 757	139 / 1				Exp	erimer	nt ID : 1′	105NS53				Test	Туре : 08	Units : N	lolar
Report Date :	July 14,	, 2011			Tes	t Date	: May 2	3, 2011				QNS	5:	MC :	
COMI : KA_au	umacro_	_DM (10	4509)		Stai	in Rea	gent : S	RB Dual-	Pass F	Related	I	SSP	L : 0X1V		
					1	Lo	og10 Con	centration						I	
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mean -7.0	Optical -6.0	l Densiti -5.0	es -4.0	-8.0	P -7.0	ercent G -6.0	Frowth -5.0	-4.0	GI50	TGI	LC50
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.527 0.594 0.249 0.587 0.789 0.346	1.862 2.436 1.772 1.954 2.670 1.459	1.861 1.933 1.708 1.988 2.650 1.486	1.737 2.248 1.777 1.990 2.614 1.449	1.725 2.157 1.525 2.161 2.387 1.487	1.283 1.806 1.147 1.986 2.014 0.944	0.458 0.150 0.258 0.617 1.799 0.354	100 73 96 102 99 102	91 90 100 103 97 99	90 85 84 115 85 102	57 66 59 102 65 54	-13 -75 1 2 54 1	1.24E-5 1.29E-5 1.42E-5 3.33E-5 > 1.00E-4 1.17E-5	6.49E-5 2.94E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4	 > 1.00E-4 6.66E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H23 NCI-H322M NCI-H460 NCI-H522	g Cancer 0.315 0.746 0.348 1.138 0.605 0.538 0.821 0.226 0.593	1.504 1.702 0.972 1.565 1.726 1.405 1.549 1.845 1.559	1.482 1.629 0.981 1.626 1.612 1.383 1.483 1.953 1.463	1.462 1.688 1.007 1.614 1.470 1.319 1.479 1.823 1.421	1.398 1.594 0.821 1.602 1.473 1.216 1.555 1.586 1.324	1.012 1.375 0.703 1.450 1.350 0.966 1.386 1.331 0.839	1.166 1.671 0.864 1.408 1.341 1.127 1.604 1.336 0.309	98 92 101 114 90 97 91 107 90	96 99 106 111 77 90 90 99 86	91 89 76 109 77 78 101 84 76	59 66 57 73 66 49 78 68 25	72 97 83 63 66 68 108 69 -48	 > 1.00E-4 3.24E-6 	 > 1.00E-4 2.22E-5 	 > 1.00E-4
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.270 0.685 0.186 0.472 0.217 0.439 0.228	1.304 1.996 1.116 2.411 1.063 2.274 1.398	1.331 2.011 1.055 2.455 1.164 2.258 1.366	1.389 1.914 1.051 2.367 1.126 2.164 1.390	1.328 1.945 1.010 2.433 1.102 2.265 1.321	1.088 1.314 0.841 2.079 0.900 1.870 0.982	0.196 1.320 0.064 1.682 0.194 1.757 0.032	103 101 93 102 112 99 97	108 94 93 98 108 94 99	102 96 89 101 105 100 93	79 48 70 83 81 78 64	-28 48 -66 62 -11 72 -86	1.88E-5 9.06E-6 1.41E-5 > 1.00E-4 2.17E-5 > 1.00E-4 1.25E-5	5.51E-5 > 1.00E-4 3.29E-5 > 1.00E-4 7.62E-5 > 1.00E-4 2.68E-5	 > 1.00E-4 > 1.00E-4 7.68E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 5.77E-5
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.469 0.640 0.834 0.448 0.603 0.254	1.633 1.964 2.113 1.340 1.236 1.262	1.568 1.941 2.115 1.303 1.207 1.249	1.512 1.721 2.061 1.299 1.183 1.189	1.179 1.484 2.079 0.936 1.048 0.437	0.805 1.039 1.417 0.627 1.002 0.334	1.023 1.400 1.847 0.839 1.255 0.403	94 98 100 96 95 99	90 82 96 95 92 93	61 64 97 55 70 18	29 30 46 20 63 8	48 57 79 44 103 15	2.20E-6 1.37E-6 > 1.00E-4 3.74E-7	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Melanoma LOX IMVI MALME-3M MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.221 0.694 0.393 0.445 0.990 0.516 0.442 0.776 0.834	1.422 1.446 1.187 1.974 1.721 1.473 2.846 1.510 2.276	1.360 1.432 1.171 1.945 1.716 1.498 2.806 1.470 2.212	1.319 1.356 1.154 1.922 1.653 1.494 2.453 1.452 2.114	1.089 1.384 1.190 1.913 1.753 1.377 2.380 1.466 2.014	0.898 1.122 0.954 1.678 1.642 1.343 1.279 1.415 1.924	0.785 0.727 1.074 1.633 1.643 1.440 0.807 1.296 1.796	95 98 98 99 103 98 95 96	91 88 96 97 91 102 84 92 89	72 92 100 96 104 90 81 94 82	56 57 71 89 86 35 87 76	47 4 86 78 89 97 15 71 67	4.74E-5 1.35E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 4.66E-6 > 1.00E-4 > 1.00E-4	 > 1.00E-4 	 > 1.00E-4
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.523 0.499 0.488 0.573 0.386 0.452 0.503	1.707 1.562 1.466 1.501 1.455 1.241 1.300	1.691 1.563 1.432 1.478 1.470 1.246 1.301	1.608 1.569 1.382 1.421 1.393 1.226 1.336	1.585 1.544 1.340 1.457 1.151 1.226 1.372	1.259 1.219 0.863 1.461 0.808 1.153 1.270	1.380 0.656 0.860 1.625 0.963 1.241 1.527	99 100 97 97 101 101 100	92 101 91 94 98 105	90 98 87 95 72 98 109	62 68 38 96 39 89 96	72 15 38 113 54 100 128	 > 1.00E-4 2.16E-5 5.76E-6 > 1.00E-4 > 1.00E-4 > 1.00E-4 	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4	 > 1.00E-4
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.533 1.239 0.418 0.688 0.541 0.583 0.657 0.566	1.911 2.252 1.494 2.099 1.204 1.813 1.203 1.649	1.850 1.990 1.501 2.069 1.181 1.749 1.150 1.524	1.778 2.087 1.492 2.037 1.078 1.660 1.129 1.523	1.691 2.092 1.402 2.054 1.061 0.909 1.251 1.524	1.415 2.186 1.336 1.741 0.920 0.736 1.303 1.401	1.655 2.421 0.927 1.280 0.965 1.034 0.865 1.431	96 74 101 98 97 95 90 88	90 84 100 96 81 88 86 88	84 91 97 78 26 109 88	64 93 85 75 57 12 118 77	81 117 47 42 64 37 38 80	 > 1.00E-4 > 1.00E-4 8.50E-5 5.67E-5 > 1.00E-4 4.12E-7 7.11E-5 > 1.00E-4 	 > 1.00E-4 	 > 1.00E-4
Prostate Cancer PC-3 DU-145	0.488 0.300	1.263 1.459	1.238 1.367	1.188 1.395	1.050 1.440	0.803 1.170	0.929 0.954	97 92	90 94	72 98	41 75	57 56	> 1.00E-4	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
Breast Cancer MCF7 MDA-MB-231/ATC0 HS 578T BT-549 T-47D MDA-MB-468	0.335 C 0.577 0.733 0.750 0.672 0.587	1.886 1.336 1.466 1.504 1.510 1.381	1.789 1.282 1.414 1.443 1.487 1.308	1.711 1.281 1.434 1.463 1.495 1.095	1.354 1.360 1.130 1.536 1.497 0.813	0.799 1.066 1.046 1.023 1.173 0.369	0.561 0.668 1.265 1.163 0.479 0.231	94 93 93 92 97 91	89 93 96 95 98 64	66 103 54 104 98 28	30 64 43 36 60 -37	15 12 73 55 -29 -61	2.75E-6 1.89E-5 1.29E-5 2.48E-7	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 4.73E-5 2.71E-6 	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 3.50E-5

National Cancer Institute Deve	lopmental Therapeutics Program	NSC : D - 7	757139/1 Unit	s :Molar	SSPL :0X1V EXP. ID :110		
	Mean Graphs	Report Dat	e :July 14, 2011		Test Date :May 23, 2011		
Panel/Cell Line	Log ₁₀ GI50 GI50	Log ₁₀ TGI	TGI	Lo	g ₁₀ LC50 LC50		
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	-4.91 -4.89 -4.85 -4.48 > -4.00 -4.93	-4.19 -4.53 > -4.00 > -4.00 > -4.00 > -4.00	-	>	-4.00 -4.18 -4.00 -4.00 -4.00 -4.00 -4.00		
A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H322M NCI-H322M NCI-H3222 Colon Cancer	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 -5.49	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 4.65		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	-4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00		
COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268	-4.73 -5.04 -4.85 > -4.00 -4.66 > -4.00 -4.90 -5.66	-4.26 > -4.00 -4.48 > -4.00 -4.12 > -4.00 -4.57 > -4.00		>	-4.00 -4.00 -4.11 -4.00 -4.00 -4.00 -4.24		
SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma L OX IMV/	-5.86 > -4.00 -6.43			>	-4.00 -4.00 -4.00 -4.00 -4.00		
MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-257 UACC-62 Ovarian Cancer	$\begin{array}{c} -4.87 \\ -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -5.33 \\ > -4.00 \\ > -4.00 \\ > -4.00 \end{array}$	> -4.00 > -4.00		>	-4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00		
IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer	> -4.00 -4.67 -5.24 > -4.00 > -4.00 > -4.00	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00		>	-4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00		
A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer	> -4.00 -4.07 -4.25 - 4.00 -6.39 -4.15 > -4.00	00 > -4.00		>	-4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00		
PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	> -4.00 - -5.56 -4.72 -4.89 -6.61	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 -4.33 -5.57		>	-4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.00 -4.46	,	
_MID Delta Range	-4.54 2.07 2.61	-4.08 1.49 1.57			02 .44 .46		

Nontumored Animal Toxicity Assay for S758065

Report generated on 25-Oct-2012

	EXPER ME B(RIMENT: AAZ-607 XMO NO: XOK NO:	/0/	8B	TUMOR: NO CELLS SOURCE/LINE: 0 IMPLANT SITE: 0	HOST: Athymic Nudes SOURCE: APA SEX: F	IMPLANT DATE: 03-APR-2012 STAGING DATE: 03-APR-2012 EVALUATION DATE: 20-APR-2012
		TREATMENT					
Grp	NSC	Dose/Units	Rt.	Schedule	Death Days	Surv/Total Day 17	
4	D-S758065	100.00 mg/kg/dose	IP	QD X 1, Day 0	-	1/1	
5	D-S758065	200.00 mg/kg/dose	IP	QD X 1, Day 0	-	1/1	
6	D-S758065	400.00 mg/kg/dose	IP	QD X 1, Day 0		1/1	

VEHICLES

Grp	4	⇒	NSC # S758065 / 2 (Dose = 100.00)	: in 100% DMSO	(Smooth suspension - homogeneous)	200.0 mg/ml	Inj. Vol.: 0.5 ul/gm body wt
Grp	5	->	NSC # S758065 / 2 (Dose = 200.00)	: in 100% DMSO	(Smooth suspension - homogeneous)	200.0 mg/ml	Inj. Vol.: 1 ul/gm body wt
Grp	6	⇒	NSC # S758065 / 2 (Dose = 400.00)	: in 100% DMSO	(Smooth suspension - homogeneous)	200.0 mg/ml	Inj. Vol.: 2 ul/gm body wt

NOTE: All treatment was administered according to exact body weight.

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D - 758	8065 / 1				Exp	erimer	nt ID : 1	106NS66	;			Test	Туре : 08	Units : M	lolar
Report Date :	August	22, 201 <i>°</i>	1		Tes	t Date	: June 2	20, 2011				QNS	:	MC :	
COMI : KA_a	umacro_	_Bu (104	506)		Stai	n Rea	gent : S	RB Dual-	Pass F	Related		SSP	L : 0X1V		
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mear -7.0	Optical	Lo Densiti -5.0	og10 Con es -4.0	centration -8.0	P -7.0	ercent G -6.0	rowth -5.0	-4.0	GI50	TGI	LC50
Leukemia HL-60(TB) MOLT-4 SR	0.836 0.495 0.409	2.606 1.918 1.631	2.522 1.874 1.467	2.441 1.840 1.256	1.863 1.486 0.694	1.022 0.740 0.665	0.829 0.732 1.015	95 97 87	91 95 69	58 70 23	10 17 21	-1 17 50	1.47E-6 2.37E-6 2.63E-7	8.34E-5 > 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H322M NCI-H460 NCI-H522	g Cancer 0.264 0.774 0.479 1.062 0.558 0.486 0.705 0.246 0.526	1.356 1.796 1.352 1.466 1.397 1.683 1.658 2.456 1.226	1.340 1.724 1.314 1.485 1.379 1.651 1.584 2.561 1.165	1.276 1.668 1.346 1.544 1.358 1.597 1.555 2.548 1.051	1.282 1.646 1.128 1.424 1.360 1.448 1.550 2.510 0.088	0.704 1.368 0.373 1.135 1.262 0.752 1.596 2.371 0.061	0.368 0.808 0.228 1.547 0.370 0.472 0.317 0.352 0.336	99 93 96 105 98 97 92 105 91	93 87 99 119 95 93 89 104 75	93 85 74 90 96 80 89 102 -83	40 58 -22 18 84 22 93 96 -88	9 3 -52 120 -34 -3 -55 5 -36	6.56E-6 1.40E-5 1.79E-6 1.94E-5 3.32E-6 1.96E-5 3.20E-5 1.44E-7	 > 1.00E-4 > 1.00E-4 5.90E-6 > 1.00E-4 5.17E-5 7.61E-5 4.26E-5 > 1.00E-4 2.98E-7 	<pre>> 1.00E-4 > 1.00E-4 8.33E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 9.24E-5 > 1.00E-4</pre>
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.240 0.539 0.226 0.301 0.175 0.441 0.199	1.223 2.060 1.682 1.768 1.057 2.286 1.316	1.217 2.041 1.662 1.807 1.096 2.270 1.331	1.233 2.074 1.752 1.771 1.077 2.263 1.349	0.920 2.104 1.596 1.670 1.018 2.287 0.776	0.501 1.922 0.504 1.472 0.509 2.047 0.154	0.128 0.083 0.185 0.434 0.120 0.108 0.139	99 99 103 104 99 101	101 101 105 100 102 99 103	69 103 94 93 96 100 52	27 91 19 80 38 87 -23	-47 -85 -18 9 -31 -76 -30	2.81E-6 1.71E-5 3.87E-6 2.64E-5 6.15E-6 1.69E-5 1.05E-6	2.30E-5 3.30E-5 3.26E-5 > 1.00E-4 3.52E-5 3.43E-5 4.93E-6	 > 1.00E-4 6.35E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 6.96E-5 > 1.00E-4
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.360 0.860 0.572 0.503 0.771 0.239	1.219 2.538 1.568 1.623 1.308 1.059	1.217 2.488 1.601 1.565 1.266 1.061	1.182 2.340 1.619 1.538 1.313 1.005	0.695 2.426 1.438 1.482 1.259 0.811	0.120 2.215 0.282 1.034 0.939 0.122	0.316 0.804 0.409 0.082 0.603 0.082	100 97 103 95 92 100	96 88 105 92 101 93	39 93 87 87 91 70	-67 81 -51 47 31 -49	-12 -7 -29 -84 -22 -66	6.40E-7 2.25E-5 1.86E-6 8.59E-6 4.83E-6 1.47E-6	2.34E-6 8.42E-5 4.28E-6 2.30E-5 3.88E-5 3.86E-6	> 1.00E-4 5.52E-5 > 1.00E-4 1.12E-5
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.214 0.626 0.405 0.416 0.883 0.484 0.517 0.628 0.701	1.433 0.971 1.611 1.930 1.734 1.212 2.162 1.368 2.434	1.361 0.926 1.602 1.830 1.761 1.254 2.107 1.301 2.321	1.173 0.904 1.612 1.765 1.864 1.245 2.003 1.276 2.302	0.841 0.888 1.406 1.684 1.806 1.126 1.743 1.172 2.016	0.316 0.763 1.167 1.373 1.521 0.919 0.851 1.039 1.446	0.276 0.742 0.539 0.490 0.901 0.326 0.433 0.718 0.585	94 87 99 93 103 106 97 91 93	79 81 100 89 115 105 90 88 92	51 76 83 84 108 88 74 73 76	8 40 63 63 75 60 20 55 43	5 34 11 5 2 -33 -16 12 -17	1.08E-6 5.21E-6 1.79E-5 1.68E-5 2.20E-5 1.28E-5 2.83E-6 1.34E-5 6.12E-6	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 4.43E-5 3.59E-5 > 1.00E-4 5.27E-5 	 > 1.00E-4
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.425 0.455 0.677 0.487 0.321 0.467 0.485	1.419 1.439 1.608 1.147 1.343 1.533 1.210	1.459 1.468 1.652 1.156 1.327 1.552 1.192	1.359 1.516 1.645 1.176 1.315 1.521 1.150	1.130 1.236 1.637 1.183 1.205 1.545 1.166	0.506 0.413 1.493 1.196 0.439 1.407 1.154	0.466 0.601 0.174 0.200 0.394 1.144 0.459	104 103 105 101 98 102 98	94 108 104 104 97 99 92	71 79 103 105 86 101 94	8 -9 88 107 12 88 92	4 15 -74 -59 7 64 -5	2.15E-6 2.14E-6 1.71E-5 2.21E-5 3.07E-6 > 1.00E-4 2.71E-5	 > 1.00E-4 3.47E-5 4.42E-5 > 1.00E-4 > 1.00E-4 8.79E-5 	<pre>> 1.00E-4 > 1.00E-4 7.07E-5 8.83E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4</pre>
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	1.912 2.033 1.631 2.148 0.671 1.886 1.344 1.340	1.934 2.056 1.632 2.138 0.381 1.560 1.352 1.325	0.283 2.011 1.429 2.129 0.165 0.345 1.306 1.284	0.623 1.133 0.744 1.956 0.348 0.214 0.793 1.045	99 88 104 95 98 97 97 92	101 106 96 91 99 101 88	103 109 106 95 23 75 102 86	-53 104 89 94 -41 -34 96 82	2 10 29 82 15 -59 28 56	2.18E-6 3.75E-5 4.45E-5 > 1.00E-4 4.01E-7 1.70E-6 4.72E-5 > 1.00E-4	 > 1.00E-4 > 1.00E-4 > 1.00E-4 4.87E-6 > 1.00E-4 > 1.00E-4 	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 4.26E-5 > 1.00E-4 > 1.00E-4 			
Prostate Cancer PC-3 DU-145	0.493 0.410	1.624 1.583	1.634 1.657	1.610 1.644	1.448 1.344	1.144 0.692	0.555 0.640	101 106	99 105	84 80	58 24	5 20	1.40E-5 3.40E-6	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4
MCF7 MDA-MB-231/ATC HS 578T BT-549 T-47D MDA-MB-468	0.549 C 0.465 0.722 0.750 0.518 0.569	2.101 1.113 1.501 1.519 1.189 1.438	2.080 1.100 1.520 1.579 1.128 1.338	2.029 1.089 1.499 1.604 1.103 1.341	1.863 0.961 1.373 1.347 0.892 1.048	1.234 0.802 1.305 0.249 0.707 0.247	0.181 0.627 1.161 0.504 0.306 0.029	99 98 102 108 91 89	95 96 100 111 87 89	85 77 84 78 56 55	44 52 75 -67 28 -57	-67 25 56 -33 -41 -95	7.16E-6 1.19E-5 > 1.00E-4 1.55E-6 1.61E-6 1.11E-6	2.49E-5 > 1.00E-4 > 1.00E-4 3.45E-6 2.55E-5 3.11E-6	7.03E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 8.73E-6

National Cancer Institute Developmental Therapeutics Program			NSC : D - 758065/1	Units :Molar	SSPL :0X1V	EXP. ID :1106NS66
	Mean Graphs		Report Date :August 22, 20)11	Test Date :June 20, 2011	
Panel/Cell Line	Log ₁₀ GI50	GI50	Log ₁₀ TGI TC	GI	Log ₁₀ LC50 LC50	0
Leukemia HL-60(TB) MOLT-4 SR	-5.83 -5.63 -6.58	È.	-4.08 > -4.00 > -4.00		> -4.00 > -4.00 > -4.00	
Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226	-5.18 -4.85 -5.75 -4.71		> -4.00 > -4.00 -5.23 > -4.00 -4.29		> -4.00 > -4.00 -4.08 > -4.00 > -4.00 > -4.00	
NCI-H23 NCI-H322M NCI-H360 NCI-H522 Colon Cancer	-5.48 -4.71 -4.49 -6.84	_ 	-4.12 -4.37 > -4.00 -6.53		> -4.00 -4.03 > -4.00	
COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer	-5.55 -4.77 -5.41 -4.58 -5.21 -4.77 -5.98	£	-4.64 -4.48 -4.49 > -4.00 -4.45 -4.46 -5.31		-4.00 -4.20 > -4.00 > -4.00 -4.16 > -4.00	
SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma	-6.19 -4.65 -5.73 -5.07 -5.32 -5.83		-5.63 -4.07 -5.37 -4.64 -4.41 -5.41		> -4.00 -4.26 > -4.00 -4.95	_
LÖX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62 Ovarian Cancer	-5.97 -5.28 -4.75 -4.77 -4.66 -4.89 -5.55 -4.87 -5.21		> -4.00 > -4.00 > -4.00 > -4.00 -4.35 -4.44 > -4.40 -4.28		> -4.00 > -4.00	
IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 NCI/ADR-RES SK-OV-3 Renal Cancer	-5.67 -5.67 -4.77 -4.65 -5.51 > -4.00 -4.57		> -4.00 -4.46 -4.35 > -4.00 -4.00 -4.06		> -4.00 > -4.00 -4.15 -4.05 > -4.05 > -4.00 > -4.00	
A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer PC-3	-3.00 -4.43 -4.35 > -4.00 -6.40 -5.77 -4.33 > -4.00 -4.86		> -4.00 > -4.00 > -4.00 -5.31 > -4.00 > -4.00 > -4.00		> -4.00 > -4.00 > -4.00 -4.37 > -4.00 -4.37 > -4.00 > -4.00	•
DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	-5.47 -5.14 -4.92 > -4.00 -5.81 -5.79 -5.95		-4.00 -4.60 > -4.00 -5.46 -4.59 -5.51		-4.00 -4.15 > -4.00 > -4.00 > -4.00 -5.06	
_MID Delta Range	-5.19 1.65 2.84		-4.4 2.13 2.53		4.07 0.99 1.06	
	+3 +2	+1 0 -1 -2 -3	+3 +2 +1 0	-1 -2 -3	+3 +2 +1 0	-1 -2 -3

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D - 758	8065 / 1				Exp	erimer	nt ID : 1	108RS14				Test T	ype : 08	Units : N	Iolar
Report Date :	Octobe	r 25, 201	1		Tes	t Date	: Augus	st 29, 201	1			QNS :		MC :	
COMI : KA_a	umacro_	_Bu (104	506)		Stai	n Rea	gent : S	RB Dual-	Pass F	Related		SSPL	: 0X1V		
					1	Lo	og10 Con	centration				1		1	
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mear -7.0	Optical -6.0	Densiti -5.0	es -4.0	-8.0	P -7.0	ercent G -6.0	rowth -5.0	-4.0	GI50	TGI	LC50
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.553 0.793 0.213 0.528 0.970 0.302	2.031 2.566 1.644 1.951 2.157 1.331	2.027 2.435 1.537 1.851 2.156 1.220	1.983 2.472 1.545 1.806 2.201 1.167	1.580 2.225 0.635 1.786 1.901 0.663	0.853 1.418 0.232 1.302 1.378 0.307	0.632 0.357 0.232 0.573 0.903 0.417	100 93 93 93 100 89	97 95 93 90 104 84	69 81 29 88 78 35	20 35 1 54 34	5 -55 1 3 -7 11	2.48E-6 4.74E-6 4.76E-7 1.22E-5 4.42E-6 4.95E-7	 > 1.00E-4 2.46E-5 > 1.00E-4 > 1.00E-4 6.79E-5 > 1.00E-4 	> 1.00E-4 8.79E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H322M NCI-H322	g Cancer 0.320 0.621 0.390 0.929 0.775 0.531 0.695 0.228 0.816	1.524 1.652 1.110 1.354 1.919 1.416 1.755 2.102 1.573	1.539 1.591 1.087 1.376 1.854 1.373 1.644 2.147 1.516	1.562 1.633 1.119 1.341 1.870 1.341 1.651 2.137 1.394	1.450 1.475 1.048 1.099 1.814 1.160 1.679 2.028 0.535	0.789 1.079 0.311 0.803 1.390 0.278 1.574 1.744 0.291	0.492 0.860 0.198 1.013 0.900 0.424 0.240 0.274 0.746	101 94 97 105 94 95 90 102 92	103 98 101 97 96 92 90 102 76	94 83 91 40 91 71 93 96 -34	39 44 -20 -14 54 -48 83 81 -64	14 23 -49 20 11 -20 -65 2 -9	6.29E-6 7.17E-6 2.35E-6 6.65E-7 1.22E-5 1.50E-6 1.67E-5 2.48E-5 1.73E-7	 > 1.00E-4 > 1.00E-4 6.58E-6 > 1.00E-4 3.97E-6 3.62E-5 > 1.00E-4 4.89E-7 	<pre>> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 7.87E-5 > 1.00E-4</pre>
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	1.224 1.545 1.246 1.737 0.908 2.142 1.517	1.041 1.519 1.121 1.540 0.833 2.101 1.229	0.596 1.225 0.147 1.281 0.371 1.864 0.376	0.108 0.011 0.076 0.510 0.190 0.092 0.036	107 101 99 95 107 101 100	101 101 97 106 110 100 98	82 98 86 91 99 98 77	34 70 -12 72 30 85 13	-61 -98 -55 14 3 -76 -83	4.64E-6 1.32E-5 2.31E-6 2.40E-5 5.11E-6 1.64E-5 2.62E-6	2.28E-5 2.62E-5 7.54E-6 > 1.00E-4 > 1.00E-4 3.36E-5 1.36E-5	7.63E-5 5.20E-5 7.73E-5 > 1.00E-4 > 1.00E-4 6.89E-5 4.55E-5			
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.378 0.643 0.631 0.538 0.946 0.421	1.420 2.377 1.751 1.842 1.825 1.761	1.382 2.314 1.782 1.763 1.783 1.816	1.330 2.319 1.781 1.733 1.709 1.780	1.117 2.181 1.635 1.619 1.731 1.464	0.182 1.618 0.290 0.787 1.381 0.201	0.288 0.683 0.551 0.290 1.189 0.336	96 96 103 94 95 104	91 97 103 92 87 101	71 89 90 83 89 78	-52 56 -54 19 49 -52	-24 2 -13 -46 28 -20	1.48E-6 1.30E-5 1.89E-6 3.28E-6 9.71E-6 1.64E-6	3.78E-6 > 1.00E-4 4.21E-6 1.96E-5 > 1.00E-4 3.97E-6	> 1.00E-4 > 1.00E-4 > 1.00E-4
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.334 0.504 0.359 0.454 0.883 0.508 0.474 0.806 0.730	1.993 1.236 1.145 1.922 1.288 1.455 2.749 1.753 2.427	1.935 1.179 1.130 1.900 1.287 1.419 2.628 1.731 2.384	1.921 1.197 1.062 1.889 1.270 1.450 2.551 1.649 2.292	1.742 1.031 0.961 1.766 1.250 1.231 2.312 1.465 1.868	1.153 0.668 0.687 1.370 1.023 0.736 1.131 1.294 1.112	0.344 0.648 0.363 0.567 0.772 0.414 0.704 0.956 0.766	97 92 98 99 100 96 95 98 97	96 95 89 98 95 99 91 89 92	85 72 77 89 90 76 81 70 67	49 22 42 62 34 24 29 52 23	1 20 -13 -19 10 16 2	9.58E-6 2.77E-6 5.79E-6 1.69E-5 5.28E-6 3.18E-6 3.92E-6 1.11E-5 2.41E-6	<pre>> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 5.39E-5 3.66E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4</pre>	 > 1.00E-4
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.490 0.439 0.554 0.497 0.321 0.478 0.444	1.901 1.521 1.374 1.419 1.530 1.629 1.230	1.877 1.504 1.394 1.466 1.511 1.629 1.230	1.891 1.508 1.366 1.416 1.486 1.617 1.212	1.777 1.465 1.234 1.436 1.265 1.542 1.262	1.007 0.424 1.054 1.091 0.499 1.311 1.105	0.593 0.612 0.541 0.421 0.517 1.027 0.465	98 98 103 105 98 100 100	99 99 100 96 99 98	91 95 83 102 78 92 104	37 -3 61 64 15 72 84	7 16 -2 -15 16 48 3	5.68E-6 2.86E-6 1.49E-5 1.51E-5 2.77E-6 8.08E-5 2.62E-5	 > 1.00E-4 9.15E-5 6.41E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 	 > 1.00E-4
Renal Cancer 786-0 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.626 0.380 0.601 0.635 0.497 0.557 0.604	2.056 1.412 2.088 1.228 2.089 1.178 1.713	1.952 1.444 2.044 1.195 2.060 1.206 1.580	2.002 1.411 2.119 1.190 1.995 1.210 1.542	1.880 1.442 2.021 1.017 1.772 1.127 1.481	0.625 1.225 1.666 0.762 0.283 0.890 1.280	0.564 0.862 1.494 0.877 0.254 0.622 1.094	93 103 97 94 98 105 88	96 100 102 93 94 105 85	88 103 96 64 80 92 79	82 72 21 -43 54 61	-10 47 60 41 -49 10 44	2.68E-6 8.04E-5 > 1.00E-4 2.16E-6 1.75E-6 1.21E-5 4.51E-5	9.96E-6 > 1.00E-4 > 1.00E-4 > 1.00E-4 4.47E-6 > 1.00E-4 > 1.00E-4	 > 1.00E-4
Prostate Cancer PC-3 DU-145	0.452	1.552 1.023	1.561	1.526 1.028	1.407 0.868	1.122 0.489	0.484 0 428	101 101	98 101	87 80	61 32	3 24	1.54E-5 4 17F-6	> 1.00E-4 > 1.00F-4	> 1.00E-4 > 1.00F-4
Breast Cancer MCF7 MDA-MB-231/ATC HS 578T BT-549 T-47D MDA-MB-468	0.357 C 0.618 0.775 0.850 0.377 0.571	2.079 1.813 1.521 1.543 0.845 1.179	1.934 1.881 1.484 1.524 0.805 1.157	1.916 1.818 1.499 1.538 0.838 1.062	1.569 1.722 1.260 1.356 0.723 0.752	0.828 1.225 1.095 0.425 0.548 0.226	0.311 0.967 1.022 0.445 0.150 0.130	92 106 95 97 91 96	91 100 97 99 98 81	70 92 65 73 74 30	27 51 43 -50 37 -60	-13 29 33 -48 -60 -77	2.97E-6 1.09E-5 4.75E-6 1.54E-6 4.37E-6 4.01E-7	4.76E-5 > 1.00E-4 > 1.00E-4 3.92E-6 2.38E-5 2.14E-6	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 7.82E-5 7.66E-6

National Cancer Institute Developmental Therapeutics Program			NSC : D - 758065/1	Units :Molar	SSPL :0X1V	EXP. ID :1108RS14
	Mean Graphs		Report Date :October 25,	2011	Test Date :August 29, 20) 11
Panel/Cell Line	Log ₁₀ GI50	GI50	Log ₁₀ TGI T	ſĠŀ	Log ₁₀ LC50 LC5	0
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H220 NCI-H222M NCI-H322M NCI-H460 NCI-H460 NCI-H460	-5.60 -5.32 -6.32 -4.91 -5.35 -6.31 -5.20 -5.14 -5.63 -6.18 -4.91 -5.82 -4.91 -5.82 -4.61 -6.76		$\begin{array}{c} > -4.00 \\ -4.61 \\ > -4.00 \\ > -4.00 \\ -4.17 \\ > -4.00 \\ > -4.00 \\ -5.18 \\ > -4.00 \\ -5.18 \\ > -4.00 \\ -5.40 \\ -5.40 \\ -5.18 \\ > -4.00 \\ -6.31 \\ \end{array}$		-4.00 -4.06 > -4.00 > -4.00	
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer	-5.33 -4.88 -5.64 -4.62 -5.29 -4.78 -5.58		-4.64 -4.58 -5.12 > -4.00 = -4.00 -4.47 -4.87		-4.12 -4.28 -4.11 > -4.00 > -4.00 -4.16 -4.34	•
SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma L OX IMV/I	-5.83 -4.88 -5.72 -5.48 -5.01 -5.79 -5.02		-5.42 > -4.00 -5.38 -4.71 > -4.00 -5.40		> -4.00 > -4.00 > -4.00 > -4.00	
MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62 Ovarian Cancer	-2.52 -5.56 -5.24 -4.77 -5.28 -5.50 -5.41 -4.96 -5.62		> -4.00 > -4.00 > -4.00 -4.27 -4.44 > -4.00 > -4.00 > -4.00		> -4.00 > -4.00	
IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer 786-0	-5.25 -5.54 -4.83 -4.82 -5.56 -4.09 -4.58		> -4.00 -4.04 -4.19 > -4.00 > -4.00 > -4.00 -5.00		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00	
ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer PC-3 DU-145	-4.09 > -4.00 -5.67 -5.76 -4.92 -4.35 -4.81 -5.38		> -4.00 > -4.00 -5.35 > -4.00 -5.4.00 > -4.00 4.00 4.00		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00	
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	-5.53 -4.96 -5.32 -5.81 -5.36 -6.40	-	-4.32 > -4.00 > -4.00 -5.41 -4.62 -5.67		> -4.00 > -4.00 > -4.00 > -4.00 -4.11 -5.12	
_MID Delta Range	-5.28 1.48 2.76		-4.39 1.92 2.31		-4.04 1.08 1.12	
	+3 +2 +1	0 -1 -2 -3	+3 +2 +1	0 -1 -2 -3	+3 +2 +1 0	-1 -2 -3

Developmental Thera	apeutics Program	NSC: D-762525 / 1	Conc: 1.00E-5 Molar	Test Date: Nov 28, 2011				
One Dose Mea	an Graph	Experiment ID: 11110S67Report Date: Jan 11, 20						
Panel/Cell Line	Growth Percent	Mean Growth I	Percent - Growth Perc	ent				
	F0 F0							
	50.58							
HL-00(1D)	41.99							
MOI T-4	71 11							
RPMI-8226	60.05							
SR	59.12							
Non-Small Cell Lung Cancer								
A549/ATCC	64.51							
EKVX	89.34							
HOP-62	58.82							
NCI-H226	59.73							
NCI-H23	78.90							
	97.94							
NCI-H522	37 36							
Colon Cancer	67.56							
COLO 205	101.39							
HCC-2998	91.49							
HCT-116	83.56		-					
HCT-15	99.66							
H129	67.04							
KM12	97.64							
SW-020 CNS Cancer	100.00							
SE-268	56 78							
SF-295	62.55							
SF-539	101.65							
SNB-19	63.53							
U251	36.96							
Melanoma								
	85.90							
	88.90							
MDA-MB-435	98.62							
SK-MFL-2	79.90							
SK-MEL-28	99.43							
SK-MEL-5	58.36							
UACC-257	102.08							
UACC-62	82.40		•					
Ovarian Cancer	63.50							
	63.59 86.43							
OVCAR-4	79.00							
OVCAR-5	98.92							
OVCAR-8	52.90							
NCI/ADR-RES	104.13							
SK-OV-3	96.45							
Renal Cancer	70.00							
Λ00-U Λ/08	70.30 04 74							
ACHN	101 58							
CAKI-1	91.24							
RXF 393	89.87							
SN12C	50.84							
TK-10	94.85							
UU-31 Prostate Concer	80.64							
Prostate Cancer	02.42							
DU-145	92.42 75.1 <i>4</i>							
Breast Cancer	73.14							
MCF7	65.07							
MDA-MB-231/ATCC	84.07		-					
HS 578T	56.14							
BT-549	89.57							
	93.39							
Ινίυα-ινίβ-468	73.12							
Mean	78 78							
Delta	41.82							
Range	69.72							
-								
	150	100 50	0 -50	-100 -150				

Log₁₀ of Sample Concentration (Molar)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D - 764	909 / 1				Exp	erimer	nt ID : 12	206NS96				Test	Туре : 08	Units : N	lolar
Report Date :	Septem	ber 25, 2	2012		Tes	t Date	: June 2	25, 2012				QNS	:	MC :	
COMI : KA_Au	uMeMad	cro_Pr (1	17963))	Stai	n Rea	gent : S	RB Dual-	Pass F	Related		SSPI	L : 0X1V		
					1	Lo	og10 Con	centration				1			
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mean -7.0	Optical -6.0	Densiti -5.0	es -4.0	-8.0	P -7.0	ercent G -6.0	rowth -5.0	-4.0	GI50	TGI	LC50
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.678 0.781 0.228 0.476 0.800 0.354	2.530 3.004 1.661 1.795 2.173 1.788	2.527 2.795 1.565 1.726 2.176 1.599	2.452 2.905 1.397 1.723 2.034 1.596	2.086 2.471 0.922 1.604 1.838 1.605	1.103 0.486 0.391 0.923 0.959 0.497	1.113 0.678 0.422 0.724 1.104 0.567	100 91 93 95 100 87	96 96 82 95 90 87	76 76 48 85 76 87	23 -38 11 34 12 10	23 -13 14 19 22 15	3.09E-6 1.69E-6 8.96E-7 4.87E-6 2.51E-6 3.03E-6	 > 1.00E-4 4.65E-6 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lung A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H223 NCI-H322M NCI-H322M NCI-H460 NCI-H522	Cancer 0.328 0.271 1.262 0.742 0.645 0.687 0.210 0.739	1.607 0.828 1.561 1.983 1.744 1.466 2.145 1.839	1.505 0.812 1.516 1.923 1.665 1.421 2.221 1.698	1.350 0.756 1.460 1.894 1.562 1.396 2.035 1.669	0.762 0.509 1.309 1.594 1.257 1.315 1.651 1.318	0.541 0.507 1.171 1.266 0.778 1.046 0.647 0.737	0.662 0.611 1.732 1.063 0.904 1.226 0.503 0.948	92 97 85 95 93 94 104 87	80 87 66 93 83 91 94 85	34 43 16 69 56 81 74 53	17 42 -7 42 12 46 23	26 61 157 26 24 69 15 19	4.47E-7 5.06E-6 1.35E-6 2.96E-6 1.12E-6	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 	 > 1.00E-4
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.219 0.919 0.166 0.218 0.182 0.600 0.239	0.979 2.669 1.572 1.606 1.114 2.569 1.789	0.981 2.560 1.516 1.562 1.121 2.594 1.747	1.018 2.625 1.491 1.545 1.037 2.579 1.756	0.857 2.573 1.381 1.484 0.789 2.576 1.546	0.353 1.622 0.576 1.226 0.383 1.266 0.706	0.261 1.585 0.386 0.499 0.251 0.815 0.389	100 94 96 97 101 101 97	105 97 94 96 92 101 98	84 94 86 91 65 100 84	18 40 29 73 22 34 30	5 38 16 20 7 11 10	3.25E-6 6.58E-6 4.32E-6 2.70E-5 2.22E-6 5.71E-6 4.30E-6	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.611 0.615 0.847 0.618 0.914 0.389	1.755 1.524 2.245 1.819 1.724 1.757	1.680 1.583 2.188 1.778 1.586 1.715	1.607 1.273 2.151 1.681 1.593 1.578	1.053 0.819 1.870 1.082 1.384 0.599	0.912 0.710 1.059 1.038 1.284 0.621	1.149 0.915 1.009 1.345 1.786 0.708	93 107 96 97 83 97	87 72 93 89 84 87	39 22 73 39 58 15	26 10 15 35 46 17	47 33 12 60 108 23	5.83E-7 2.81E-7 2.51E-6 3.28E-7	 > 1.00E-4 	 > 1.00E-4
Melanoma LOX IMVI MALME-3M MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.474 0.588 0.323 0.436 0.794 0.477 0.503 0.784 0.708	2.635 1.048 1.257 1.892 1.491 1.396 2.482 1.753 2.194	2.599 1.011 1.219 1.804 1.500 1.393 2.359 1.733 2.120	2.430 0.996 1.225 1.850 1.451 1.396 2.249 1.762 2.059	2.317 0.933 1.055 1.711 1.398 1.239 1.524 1.653 1.818	1.142 0.545 0.673 0.924 0.886 0.734 0.543 1.496 1.245	0.754 0.680 0.536 0.641 0.993 0.468 0.759 0.781 1.009	98 92 96 94 101 100 94 98 95	91 89 97 94 100 88 101 91	85 75 78 88 87 83 52 90 75	31 -7 37 33 13 28 2 73 36	13 20 23 14 28 -2 13 20	4.46E-6 2.01E-6 4.93E-6 3.15E-6 3.97E-6 1.08E-6 2.08E-5 4.37E-6	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 8.58E-5 > 1.00E-4 9.86E-5 > 1.00E-4 	 > 1.00E-4
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.668 0.509 0.527 0.455 0.367 0.534 0.532	1.671 1.500 1.056 1.043 1.459 1.724 1.268	1.614 1.518 1.041 1.026 1.467 1.702 1.284	1.549 1.377 1.051 1.054 1.282 1.683 1.322	1.334 1.276 0.861 0.917 0.735 1.685 1.263	0.949 0.880 0.689 0.735 0.610 1.392 0.938	0.895 0.664 0.835 0.711 0.634 1.149 1.071	94 102 97 97 101 98 102	88 88 99 102 84 97 107	66 77 63 79 34 97 99	28 37 31 48 22 72 55	23 16 58 43 24 52 73	2.67E-6 4.85E-6 8.35E-6 4.72E-7 > 1.00E-4 > 1.00E-4	 > 1.00E-4 	 > 1.00E-4
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.640 1.460 0.302 0.660 0.660 0.521 0.495 0.712	2.190 2.201 1.133 1.966 1.158 1.936 1.080 1.754	2.062 2.110 1.104 1.891 1.154 1.890 1.032 1.561	2.040 2.073 1.122 1.877 1.163 1.644 1.021 1.468	1.514 1.856 1.041 1.760 0.970 0.762 1.039 1.519	1.277 1.829 0.811 1.606 0.906 0.828 1.048 1.488	1.023 2.845 0.343 0.666 1.055 0.885 0.567 0.797	92 88 96 94 99 97 92 81	90 83 99 93 101 79 90 72	56 53 89 84 62 17 93 77	41 50 61 72 49 22 95 74	25 187 5 79 26 12 8	2.62E-6 1.58E-5 2.05E-5 2.96E-7 3.48E-5 2.34E-5	 > 1.00E-4 	 > 1.00E-4
Prostate Cancer PC-3 DU-145	0.535	1.863 1 279	1.830 1.300	1.728 1 242	1.515	0.930	1.147 0.604	97 102	90 96	74 67	30 34	46 29	3.46E-6	> 1.00E-4 > 1.00F-4	> 1.00E-4 > 1.00F-4
Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	0.489 0.419 1.127 0.666 0.689 0.608	2.148 1.055 2.010 1.536 1.642 1.392	2.054 1.069 2.054 1.498 1.563 1.312	1.976 1.018 1.862 1.507 1.571 1.320	1.651 0.881 1.546 1.393 1.513 0.970	0.812 0.555 1.548 0.789 1.037 0.257	0.715 0.597 1.838 0.924 0.997 0.463	94 102 105 96 92 90	90 94 83 97 93 91	70 73 47 84 86 46	19 21 48 14 36 -58	14 28 80 30 32 -24	2.49E-6 2.77E-6 3.04E-6 5.36E-6 8.21E-7	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 2.78E-6 	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4

National Cancer Institute Developmental Therapeutics Program		NSC : D - 764909/1	Units :Molar	SSPL :0X1V EXP. ID :1206NS96			
	Mean Graphs	Report Date :September 25	5, 2012	Test Date :June 25, 2012			
Panel/Cell Line	Log ₁₀ GI50 GI50	Log ₁₀ TGI TG	l l	Log ₁₀ LC50 LC50			
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer	-5.51 -5.77 -6.05 -5.31 -5.60 -5.52	> -4.00 -5.33 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00			
A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H223 NCI-H322M NCI-H322M NCI-H460 NCI-H522 Colon Cancer	-6.35 -5.30 -5.87 -5.53 -5.95	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00			
COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer	-5.49 -5.18 -5.36 -4.57 -5.65 -5.24 -5.37	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00			
SF-268 SF-295 SF-539 SNB-19 SNB-75 U251 Melanoma LOX IMVI	-6.23 -6.55 -5.60 -6.48	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00			
MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 UACC-257 UACC-62 Ovarian Cancer	-5.70 -5.31 -5.31 -5.50 -5.40 -5.97 -4.68 -5.36	$\begin{array}{c} > -4.00 \\ > -4.00 \\ -4.07 \\ -4.07 \\ > -4.00 \\ -4.01 \\ > -4.00 \end{array}$		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00			
IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer	-5.57 -5.31 -5.08 -6.33 > -4.00 > -4.00	$\begin{array}{c} > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \end{array}$		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00			
A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer	-4.80 -4.69 -6.53 -4.46 -4.63	$\begin{array}{c} -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \\ > -4.00 \end{array}$		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00			
PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	-5.46 -5.48 -5.60 -5.56 -5.52 -5.27 -6.09	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 - 5.56		> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00			
עטיייעואדיאטאי		-0.00					
_MID Delta Range	-5.46 1.09 2.55 +3 +2 +1 0 -1 -2 -3	-4.05 1.51 1.56 +3 +2 +1 0	-1 -2 -3	-4.0 0.0 +3 +2 +1 0	-1 -2 -3		

Developmental Ther	apeutics Program	NSC: D-764908 / 1	Conc: 1.00E-5 Molar	Test Date: May 07, 2012
One Dose Mea	an Graph	Experiment ID: 1205	Report Date: Jun 09, 2012	
Panel/Cell Line	Growth Percent	Mean Growth	Percent - Growth Perc	cent
	25.40			
	25.49			
K-562	18 42			
MOLT-4	50.81			
RPMI-8226	41.27			
Non-Small Cell Lung Cancer				
A549/ATCC	15.01			
HOP-62	39.53			
HOP-92	30.32		_	
	49.17			
NCI-H322M	74.85			
NCI-H460	64.03			
NCI-H522	13.95			
Colon Cancer				
COLO 205	53.49			
HCC-2998 HCT 116	63.69 57.80			
HCT-15	82.00			
HT29	41.09			
KM12	77.37			
SW-620	46.95		-	
CNS Cancer	00.45			
SF-268	26.45			
SF-295 SE-530	30.14			
SNB-19	15 80			
SNB-75	27.15			
U251	10.60			
Melanoma	70.40			
	78.46			
M14	51 25			
MDA-MB-435	82.69			
SK-MEL-2	91.62			
SK-MEL-28	83.41			
SK-MEL-5	8.24			
	67.47 72.22			
Ovarian Cancer	12.32			
IGROV1	59.07		_	
OVCAR-3	68.00			
OVCAR-4	56.12			
OVCAR-5	70.73			
	108 58			
SK-OV-3	76.71			
Renal Cancer				
786-0	43.44		I	
	52.52			
	70.09 01.32			
RXF 393	77.65			
SN12C	15.18			
TK-10	96.74			
UO-31	119.62			
Prostate Cancer	40.38		_	
DU-145	50.95			
Breast Cancer	00.00			
MCF7	30.46			
MDA-MB-231/ATCC	87.73			
HS 5781	67.96			
БТ-349 Т-47D	19.05 52.91			
MDA-MB-468	-19.59			
	10.00			
Mean	51.80			
Delta	71.39			
Kange	139.21			—
	150	100 50	0 -50	-100 -150

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results																
NSC : D - 764908 / 1					Experiment ID : 1206NS96							Test Type : 08		Units :	Units : Molar	
Report Date :	Septem	ber 25, 2	2012		Tes	t Date	: June 2	5, 2012				QNS	:	MC :		
COMI : KA_A	uFmacro	o_Pr (11	7962)		Stai	n Rea	gent : SI	RB Dual-	Pass F	Related		SSP	L : 0X1V			
						Lo	og10 Cond	centration				1				
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mean -7.0	Optical -6.0	Densiti -5.0	es -4.0	-8.0	Pe -7.0	ercent G -6.0	rowth -5.0	-4.0	GI50	TGI	LC50	
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.678 0.781 0.228 0.476 0.800 0.354	2.374 2.846 1.589 1.723 2.069 1.596	2.377 2.995 1.635 1.750 2.058 1.597	2.257 3.036 1.397 1.765 1.985 1.601	2.006 2.839 1.058 1.703 1.885 1.596	1.344 1.512 0.568 1.224 1.194 0.762	0.954 0.693 0.347 0.706 1.148 0.620	100 107 103 102 99 100	93 109 86 103 93 100	78 100 61 98 85 100	39 35 25 60 31 33	16 -11 9 18 27 21	5.31E-6 5.93E-6 2.01E-6 1.74E-5 4.48E-6 5.55E-6	 > 1.00E-4 5.72E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4	
Non-Small Cell Lun A549/ATCC HOP-62 NCI-H226 NCI-H23 NCI-H23 NCI-H322M NCI-H460 NCI-H522	g Cancer 0.328 0.271 0.742 0.645 0.687 0.210 0.739	1.536 0.815 1.843 1.825 1.401 2.194 1.758	1.446 0.780 1.773 1.829 1.408 2.244 1.735	1.141 0.671 1.664 1.709 1.393 1.977 1.677	0.723 0.487 1.386 1.329 1.264 1.700 1.277	0.540 0.439 1.194 0.926 1.028 0.975 0.972	0.646 0.594 1.134 1.140 1.136 0.728 0.737	93 94 100 101 103 98	67 74 84 90 99 89 92	33 40 59 58 81 75 53	18 31 41 24 48 39 23	26 59 36 42 63 26	3.15E-7 3.08E-6 1.71E-6 4.86E-6 1.24E-6	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 9.67E-5 	 > 1.00E-4 	
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.219 0.919 0.166 0.218 0.182 0.600 0.239	0.951 2.724 1.486 1.711 1.031 2.627 1.754	0.953 2.847 1.518 1.684 1.062 2.569 1.733	0.944 2.857 1.499 1.625 1.010 2.720 1.703	0.831 2.718 1.441 1.545 0.885 2.674 1.456	0.392 2.075 0.664 1.152 0.458 1.661 0.781	0.157 2.040 0.421 0.912 0.300 1.114 0.463	100 107 102 98 104 97 99	99 107 101 94 98 105 97	84 100 97 89 83 102 80	24 64 38 63 33 52 36	-29 62 19 46 14 25 15	3.63E-6 > 1.00E-4 6.19E-6 6.05E-5 4.50E-6 1.22E-5 4.79E-6	2.84E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4	<pre>> 1.00E-4 > 1.00E-4</pre>	
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.611 0.615 0.847 0.618 0.914 0.389	1.758 1.470 2.264 1.854 1.703 1.693	1.786 1.383 2.272 1.762 1.596 1.570	1.700 1.104 2.130 1.585 1.491 1.347	1.078 0.666 1.603 0.932 1.351 0.619	0.943 0.584 1.209 0.711 1.348 0.434	1.155 1.088 1.219 0.882 1.633 0.680	102 90 101 93 86 91	95 57 91 78 73 73	41 6 53 25 55 18	29 -5 26 8 55 3	47 55 26 21 91 22	6.74E-7 1.32E-6 3.42E-7 > 1.00E-4 2.63E-7	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 	
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.474 0.588 0.323 0.436 0.794 0.477 0.503 0.784 0.708	2.772 0.976 1.207 1.767 1.445 1.399 2.285 1.779 2.179	2.790 0.969 1.206 1.763 1.527 1.316 2.199 1.759 2.114	2.727 0.960 1.225 1.721 1.513 1.315 1.897 1.712 1.977	2.564 0.850 1.039 1.659 1.457 1.235 1.359 1.681 1.808	1.929 0.670 0.672 1.064 1.128 0.941 0.729 1.607 1.461	0.950 0.673 0.735 0.836 0.998 0.604 0.635 1.014 1.287	101 98 100 100 113 91 95 98 96	98 96 102 97 110 91 78 93 86	91 67 81 92 102 82 48 90 75	63 21 39 47 51 50 13 83 51	21 22 47 30 31 14 7 23 39	2.05E-5 2.38E-6 5.57E-6 8.66E-6 1.16E-5 1.02E-5 8.61E-7 3.54E-5 1.26E-5	 > 1.00E-4 	 > 1.00E-4 	
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.668 0.509 0.527 0.455 0.367 0.534 0.532	1.590 1.462 1.057 1.122 1.442 1.811 1.275	1.617 1.545 1.013 1.059 1.439 1.908 1.314	1.581 1.507 0.992 1.050 1.159 1.911 1.323	1.381 1.356 0.892 0.919 0.717 1.671 1.258	0.990 1.017 0.673 0.823 0.591 1.640 1.055	1.052 0.781 0.738 0.995 0.776 1.730 1.239	103 109 92 91 100 108 105	99 105 88 89 74 108 106	77 89 69 70 33 89 98	35 53 28 55 21 87 70	42 28 40 81 38 94 95	4.40E-6 1.36E-5 2.86E-6 > 1.00E-4 3.77E-7 > 1.00E-4 > 1.00E-4	 > 1.00E-4 	 > 1.00E-4 	
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.640 1.460 0.302 0.660 0.660 0.521 0.495 0.712	2.048 2.240 1.180 1.836 1.104 1.953 1.056 1.653	2.095 2.125 1.156 1.755 1.077 1.868 1.054 1.612	2.015 2.011 1.102 1.697 1.034 1.495 1.087 1.583	1.383 1.737 1.115 1.581 0.934 0.799 1.036 1.515	1.235 1.795 0.854 1.333 0.890 0.662 1.029 1.610	0.980 2.559 0.571 1.426 1.329 0.623 0.718 1.687	103 85 97 93 94 94 100 96	98 71 91 88 84 68 105 93	53 35 93 78 62 19 96 85	42 43 63 57 52 10 95 95	24 141 31 65 151 7 40 104	1.83E-6 2.50E-5 > 1.00E-4 > 1.00E-4 2.34E-7 6.51E-5 > 1.00E-4	 > 1.00E-4 	 > 1.00E-4 	
Prostate Cancer PC-3 DU-145	0.535 0.334	1.853 1.291	1.798 1.378	1.655 1.306	1.516 1.023	0.906 0.805	1.073 0.636	96 109	85 102	74 72	28 49	41 32	3.37E-6 9.25E-6	> 1.00E-4 > 1.00E-4	> 1.00E-4 > 1.00E-4	
Breast Cancer MCF7 MDA-MB-231/ATC HS 578T BT-549 T-47D MDA-MB-468	0.489 C 0.419 1.127 0.666 0.689 0.608	2.225 1.023 2.088 1.515 1.639 1.316	2.061 0.964 2.052 1.571 1.636 1.241	1.903 0.948 1.908 1.581 1.606 1.151	1.677 0.887 1.609 1.341 1.358 0.699	0.913 0.733 1.733 0.644 1.041 0.139	0.722 0.366 1.885 0.739 0.811 0.305	91 90 96 107 100 89	81 88 81 108 96 77	68 77 50 79 70 13	24 52 63 -3 37 -77	13 -13 79 9 13 -50	2.62E-6 1.07E-5 > 1.00E-4 2.27E-6 4.08E-6 2.62E-7	 > 1.00E-4 6.35E-5 > 1.00E-4 > 1.00E-4 1.39E-6 	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 	

National Cancer Institute Deve	elopmental Therapeutics Program	NSC : D - 764908/1 Units :M	/lolar SSPL :0X1V	EXP. ID :1206NS96		
	Mean Graphs	Report Date :September 25, 2012	Test Date :June 25, 2012	Test Date :June 25, 2012		
Panel/Cell Line	Log ₁₀ GI50 GI50	Log ₁₀ TGI TGI	Log ₁₀ LC50 LC50)		
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 NCI-H226 NCI-H226 NCI-H228 NCI-H322M NCI-H322M NCI-H322Z Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-295 SF-539 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-62 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-3 OVCAR-8 NCI/ADR-RES SK-0V-3 Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
DU-145 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	-0.47 -5.03 -5.58 -4.97 > -4.00 -5.64 -5.39 -6.58	> -4.00 > -4.00 -4.20 > -4.00 -4.20 > -4.00 -5.86	> -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00			
_MID Delta Range	-5.19 1.44 2.63	-4.05 1.81 1.86	-4.0 0 0.0			

Г

Developmental Ther	apeutics Program	NSC: D-765698 / 1 Conc: 1.00E-5 Molar	Test Date: Jun 11, 2012		
One Dose Mea	an Graph	Experiment ID: 1206OS93	Report Date: Jul 16, 2012		
Panel/Cell Line	Growth Percent	Mean Growth Percent - Growth Pe	rcent		
	-12 /1				
HL-60(TB)	28.95		_		
K-562	-0.07				
MOLI-4 RPMI-8226	-14.02 60.58		-		
Non-Small Cell Lung Cancer	00.00				
A549/ATCC	79.57				
HOP-62 HOP-92	-6.46				
NCI-H226	11.02				
NCI-H23	97.93				
NCI-H322M NCI-H460	89.96				
NCI-H522	-42.52				
Colon Cancer	04.59				
HCC-2998	-94.56 117.32				
HCT-116	-17.23		-		
HCT-15	-41.01				
KM12	107.31				
SW-620	-64.76				
CNS Cancer	107.49				
SF-539	84.44				
SNB-19	99.71				
SNB-75	76.58 65.86				
Melanoma	03.00				
	71.10				
MALME-3M M14	-70.58 84.84				
MDA-MB-435	80.59				
SK-MEL-2	113.40				
SK-MEL-20 SK-MEL-5	71.74				
UACC-257	25.39				
UACC-62	62.74				
IGROV1	95.72				
OVCAR-3	39.22				
OVCAR-4 OVCAR-5	32.28				
OVCAR-8	74.21				
NCI/ADR-RES	114.92				
SK-OV-3 Renal Cancer	110.76				
786-0	111.33				
	107.97				
CAKI-1	77.04				
RXF 393	-31.13				
SN12C TK-10	89.95				
UO-31	-53.70				
Prostate Cancer	70.00				
DU-145	92.66				
Breast Cancer	02.00				
	41.48				
HS 578T	75.22				
BT-549	109.45				
	-72.11				
	-91.03				
Mean	45.21				
Delta Range	139.79 213.32				
. tango					
	460				
	150	-0 -0	-100 -150		

Log₁₀ of Sample Concentration (Molar)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results																
NSC : D - 765698 / 1					Experiment ID : 1207NS08							Test T	Test Type : 08		Units : Molar	
Report Date :	Septem	ber 25, 2	2012		Tes	t Date	: July 1	6, 2012				QNS :		MC :		
COMI : KA_A	_pseud	lomacro <u></u>	_Et (11	8827)	Stai	n Reag	gent : S	RB Dual-	Pass F	Related		SSPL	: 0X1V			
	Time			Mean	Optical	Lo Densitie	og10 Cor es	ncentration	P	ercent G	rowth					
Panel/Cell Line Leukemia	Zero	Ctrl	-8.0	-7.0	-6.0	-5.0	-4.0	-8.0	-7.0	-6.0	-5.0	-4.0	GI50	TGI	LC50	
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	0.627 0.895 0.240 0.664 1.272 0.221	2.784 2.548 2.030 2.194 3.040 0.611	2.694 2.885 1.981 2.313 3.035 0.631	2.585 2.842 2.156 2.398 2.988 0.616	2.556 2.915 2.000 2.194 2.933 0.625	0.458 0.582 0.156 0.448 2.498 0.205	0.754 0.509 0.348 0.733 1.155 0.334	96 120 97 108 100 105	91 118 107 113 97 101	89 122 98 100 94 103	-27 -35 -35 -33 69 -7	6 -43 6 5 -9 29	2.18E-6 2.88E-6 2.30E-6 2.38E-6 1.76E-5 3.04E-6	5.99E-6 7.63E-5	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 	
Non-Small Cell Lung A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H223 NCI-H322M NCI-H460	Cancer 0.400 0.410 1.410 0.904 0.821 0.815 0.264	1.687 1.352 1.991 2.471 2.397 1.699 2.645	1.660 1.317 1.956 2.462 2.340 1.707 2.592	1.665 1.359 2.000 2.548 2.416 1.706 2.612	1.551 1.330 2.069 2.605 2.343 1.639 2.569	1.322 1.285 1.381 1.120 1.567 1.630 2.222	0.323 0.305 1.127 0.861 0.791 0.095 0.213	98 96 94 99 96 101 98	98 101 102 105 101 101 99	89 98 113 109 97 93 97	72 93 -2 14 47 92 82	-19 -26 -20 -5 -4 -88 -19	1.73E-5 2.30E-5 3.54E-6 4.15E-6 8.82E-6 1.71E-5 2.08E-5	6.14E-5 6.07E-5 9.59E-6 5.53E-5 8.46E-5 3.24E-5 6.45E-5	<pre>> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 6.13E-5 > 1.00E-4</pre>	
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.380 1.199 0.187 0.160 0.303 0.409 0.247	1.761 3.287 1.860 2.185 1.475 1.991 2.052	1.869 3.324 1.830 2.078 1.538 2.053 2.052	1.850 3.327 1.977 2.084 1.644 2.040 2.115	2.067 3.264 1.958 2.019 1.656 2.060 2.150	0.061 3.223 0.034 0.072 0.246 2.076 0.065	0.315 0.763 0.382 0.413 0.276 0.167 0.258	108 102 98 95 105 104 100	106 102 107 95 114 103 104	122 99 106 92 115 104 105	-84 97 -82 -55 -19 105 -74	-17 -36 12 12 -9 -59 1	2.24E-6 2.25E-5 1.98E-6 1.92E-6 3.07E-6 2.17E-5 2.04E-6	3.91E-6 5.33E-5 7.22E-6 4.37E-5	> 1.00E-4 > 1.00E-4 8.80E-5	
CNS Cancer SF-268 SF-539 SNB-19 SNB-75 U251	0.562 0.493 0.824 1.227 0.496	1.922 2.609 2.236 2.045 1.928	1.831 2.583 2.079 1.809 1.891	1.908 2.568 2.081 1.910 1.867	1.852 2.481 2.080 1.834 1.761	1.800 2.466 1.925 1.886 1.643	0.545 0.654 0.068 0.357 0.328	93 99 89 71 97	99 98 89 83 96	95 94 89 74 88	91 93 78 81 80	-3 8 -92 -71 -34	2.73E-5 3.20E-5 1.46E-5 1.59E-5 1.84E-5	9.29E-5 > 1.00E-4 2.88E-5 3.40E-5 5.04E-5	> 1.00E-4 > 1.00E-4 5.67E-5 7.28E-5 > 1.00E-4	
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.715 0.563 0.445 0.376 1.033 0.539 0.676 0.900 1.049	3.209 1.138 1.801 1.618 1.833 1.418 2.991 2.213 2.864	3.200 1.118 1.816 1.565 1.869 1.345 3.010 2.150 2.810	3.190 1.163 1.819 1.558 1.921 1.289 2.991 2.095 2.706	3.119 1.131 1.727 1.421 1.856 1.350 2.673 2.091 2.611	2.721 0.219 0.911 0.434 1.834 1.055 2.220 1.317 1.880	0.684 0.589 0.548 0.381 0.466 0.407 0.204 0.725 0.506	100 96 101 96 105 92 101 95 97	99 104 101 95 111 85 100 91 91	96 99 95 84 103 92 86 91 86	80 -61 34 5 100 59 67 32 46	-4 5 8 -55 -25 -70 -19 -52	2.28E-5 2.02E-6 5.50E-6 2.69E-6 2.11E-5 1.27E-5 1.33E-5 4.91E-6 7.86E-6	8.87E-5 > 1.00E-4 > 1.00E-4 4.42E-5 5.06E-5 3.08E-5 4.17E-5 2.95E-5	 > 1.00E-4 > 1.00E-4 9.30E-5 > 1.00E-4 7.16E-5 > 1.00E-4 9.59E-5 	
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.638 0.485 0.769 0.434 0.417 0.748 0.592	1.760 1.545 1.550 1.502 1.746 2.340 1.336	1.867 1.615 1.474 1.490 1.688 2.367 1.326	1.855 1.668 1.431 1.503 1.704 2.440 1.323	1.808 1.676 1.458 1.544 1.663 2.358 1.405	1.396 0.059 1.011 1.369 0.572 2.066 1.317	0.483 0.539 0.685 0.411 0.459 0.818 0.001	110 107 90 99 96 102 99	108 112 85 100 97 106 98	104 112 88 104 94 101 109	68 -88 31 88 12 83 97	-24 5 -11 -5 3 4 -100	1.55E-5 2.05E-6 4.66E-6 2.54E-5 3.41E-6 2.62E-5 1.74E-5	5.43E-5 8.77E-5 > 1.00E-4 > 1.00E-4 3.12E-5	 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 5.59E-5 	
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.838 1.396 0.259 1.099 0.885 0.958 0.779 0.680	2.914 2.140 1.788 2.958 1.298 2.854 1.317 2.119	2.958 1.953 1.814 2.807 1.272 2.750 1.344 2.032	3.055 1.846 1.837 2.886 1.241 2.770 1.429 2.110	2.967 1.968 1.793 2.873 1.270 2.638 1.496 2.135	1.056 1.969 -0.001 0.823 0.206 2.533 0.075 0.138	1.034 0.261 0.395 0.513 0.646 0.491 0.665 0.454	102 75 102 92 94 95 105 94	107 60 103 96 86 96 121 99	103 77 100 95 93 89 133 101	10 77 -100 -25 -77 83 -90 -80	9 -81 9 -53 -27 -49 -15 -33	3.72E-6 1.48E-5 1.78E-6 2.38E-6 1.79E-6 1.78E-5 2.36E-6 1.92E-6	> 1.00E-4 3.06E-5 6.19E-6 3.53E-6 4.27E-5 3.94E-6 3.62E-6	> 1.00E-4 6.34E-5 7.63E-5 > 1.00E-4	
Prostate Cancer PC-3 DU-145	0.518 0.389	2.390 1.734	2.425	2.325 1.661	2.301 1.722	1.795 0.814	0.229 0.179	102	97 95	95 99	68 32	-56 -54	1.40E-5 5.34E-6	3.55E-5 2.34E-5	8.98E-5 8.98E-5	
MCF7 MDA-MB-231/ATC0 HS 578T BT-549 T-47D MDA-MB-468	0.424 C 0.677 0.912 0.746 0.684 0.767	2.292 1.392 2.038 1.988 1.623 1.651	2.104 1.383 1.974 1.998 1.589 1.607	2.044 1.360 1.919 2.069 1.603 1.578	1.895 1.273 1.893 2.027 1.587 1.567	0.686 0.799 1.848 1.878 0.248 0.123	0.452 0.476 1.003 0.765 0.719 0.133	90 99 94 101 96 95	87 95 89 106 98 92	79 83 87 103 96 90	14 17 83 91 -64 -84	1 -30 8 2 4 -83	2.78E-6 3.18E-6 2.76E-5 2.88E-5 1.94E-6 1.71E-6	 > 1.00E-4 2.31E-5 > 1.00E-4 > 1.00E-4 .3.30E-6 	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 6.39E-6	

National Cancer Institute Developmental Therapeutics Program			NSC : D - 765698/1	Units :Molar	SSPL :0X1V	EXP. ID :1207NS08		
	Mean Graphs		Report Date :September	25, 2012	Test Date :July 16, 2012			
Panel/Cell Line	Log ₁₀ GI50	GI50	Log ₁₀ TGI	TGI	Log ₁₀ LC50	LC50		
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H228 NCI-H322M NCI-H322M NCI-H460 Colon Cancer COLO 2005 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer SF-268 SF-539 SNB-75 U251 Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-28 SK-MEL-2 Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-3 OVCAR-8 NCI/ADR-RES SK-0V-3 Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C	$\begin{array}{r} \mbox{Log}_{10}\mbox{Giso} \\ \hline & -5.66 \\ -5.54 \\ -5.62 \\ -4.75 \\ -5.52 \\ \hline & 4.76 \\ -4.64 \\ -5.45 \\ -5.52 \\ \hline & 4.76 \\ -4.64 \\ -5.45 \\ -5.38 \\ -5.05 \\ -4.77 \\ -4.68 \\ \hline & -5.65 \\ -4.66 \\ -5.70 \\ -5.71 \\ -5.51 \\ -4.66 \\ -5.69 \\ \hline & 4.56 \\ -4.50 \\ -4.84 \\ -4.80 \\ -4.74 \\ \hline & -4.64 \\ -5.70 \\ -5.26 \\ -5.57 \\ -4.68 \\ -5.69 \\ \hline & -5.57 \\ -4.68 \\ -5.26 \\ -5.57 \\ -4.68 \\ -5.33 \\ -5.10 \\ \hline & -4.81 \\ -5.69 \\ -5.33 \\ -5.33 \\ -5.10 \\ \hline & -4.81 \\ -5.69 \\ -5.33 \\ -5.10 \\ \hline & -4.81 \\ -5.69 \\ -5.33 \\ -4.90 \\ -4.88 \\ -5.31 \\ -5.10 \\ \hline & -4.81 \\ -5.69 \\ -5.33 \\ -4.90 \\ -4.88 \\ -5.31 \\ -5.10 \\ \hline & -4.81 \\ -5.69 \\ -5.33 \\ -5.69 \\ -5.33 \\ -5.60 \\ -5.47 \\ -4.58 \\ -4.76 \\ \hline & -5.43 \\ -5.75 \\ -5.62 \\ -5.75 \\ -4.75 \\ \hline \end{array}$		$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $		$ \begin{array}{r} & -4.00 \\ > -4.00 \\ $			
UO-31 Prostate Cancer PC-3 DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	-5.72 -4.85 -5.27 -5.56 -5.50 -4.56 -4.54 -5.71 -5.77		$\begin{array}{c} -5.44 \\ -4.45 \\ -4.63 \\ \end{array}$ $\begin{array}{c} > -4.00 \\ -4.64 \\ > -4.00 \\ = -5.48 \end{array}$		-4.05 -4.05 > -4.00 > -4.00 > -4.00 > -4.00 > -4.00 > -5.19			
_MID Delta Range	-5.18 0.59 1.27	+1 0 -1 -2 -3	-4.46 1.02 1.48		-4.06 1.13 1.19			

Г

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results															
NSC : D - 765697 / 1				Experiment ID : 1207NS11				Test Type : 08		Units : N	Units : Molar				
Report Date : September 25, 2012				Test Date : July 23, 2012				QNS :		MC :					
COMI : KA_Aı	_pseud	lomacro <u></u>	_EtOH	(11882	5)Stai	5)Stain Reagent : SRB Dual-Pass Related			SSPL:0X1V						
5 1/2 1111	Time	0.1		Mean	Optical	Lo Densiti	og10 Con es	centration	P	ercent G	rowth		0.170		1.050
Panel/Cell Line Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR	2ero 0.516 0.673 0.353 0.609 0.999 0.194	2.077 2.327 2.450 2.114 2.531 0.670	-8.0 2.067 2.471 2.404 2.234 2.461 0.643	-7.0 1.980 2.335 2.446 2.306 2.364 0.656	-6.0 1.976 2.378 2.475 2.039 2.240 0.645	-5.0 0.270 0.314 0.209 0.332 0.555 0.189	-4.0 0.317 0.207 0.216 0.290 0.763 0.174	-8.0 99 109 98 108 95 94	-7.0 94 100 100 113 89 97	-6.0 94 103 101 95 81 95	-5.0 -48 -53 -41 -46 -44 -3	-4.0 -39 -69 -39 -52 -24 -11	2.03E-6 2.18E-6 2.29E-6 2.09E-6 1.77E-6 2.87E-6	4.59E-6 4.56E-6 5.16E-6 4.74E-6 4.42E-6 9.35E-6	 > 1.00E-4 9.52E-6 > 1.00E-4 4.39E-5 > 1.00E-4 > 1.00E-4
Non-Small Cell Lung A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H23 NCI-H322M NCI-H322M NCI-H460 NCI-H522	Cancer 0.413 0.514 1.087 0.746 1.173 0.689 0.271 0.986	1.581 1.557 1.309 2.180 2.957 1.631 2.624 1.913	1.558 1.580 1.277 2.172 2.949 1.622 2.733 1.901	1.557 1.510 1.287 2.114 2.994 1.629 2.613 1.750	1.550 1.529 1.343 2.152 2.889 1.580 2.602 1.764	0.497 1.059 0.168 0.371 1.374 1.593 2.015 0.022	0.202 0.391 0.692 0.714 0.845 0.014 0.221 0.640	98 102 86 99 100 99 105 99	98 95 90 95 102 100 100 82	97 97 115 98 96 95 99 84	7 52 -85 -50 11 96 74 -98	-51 -24 -36 -4 -28 -98 -19 -35	3.35E-6 1.07E-5 2.12E-6 2.11E-6 3.50E-6 1.72E-5 1.82E-5 1.54E-6	1.33E-5 4.84E-5 3.77E-6 4.58E-6 1.93E-5 3.12E-5 6.30E-5 2.90E-6	9.58E-5 > 1.00E-4 > 1.00E-4 5.65E-5 > 1.00E-4
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.374 0.542 0.192 0.249 0.300 0.515 0.251	1.217 1.539 1.679 2.174 1.457 2.481 2.085	1.238 1.493 1.820 2.072 1.489 2.542 2.100	1.172 1.543 1.810 1.979 1.561 2.583 2.152	1.260 1.475 1.930 1.987 1.574 2.528 2.139	0.013 0.167 0.054 0.129 0.112 2.447 0.103	0.039 0.194 0.209 0.244 0.162 0.195 0.189	102 95 109 95 103 103 101	95 100 109 90 109 105 104	105 94 117 90 110 102 103	-97 -69 -72 -48 -63 98 -59	-90 -64 1 -2 -46 -62 -25	1.87E-6 1.85E-6 2.26E-6 1.95E-6 2.23E-6 2.00E-5 2.12E-6	3.32E-6 3.75E-6 4.49E-6 4.34E-6 4.10E-5 4.31E-6	5.87E-6 7.61E-6 > 1.00E-4 8.40E-5
CNS Cancer SF-268 SF-539 SNB-19 U251	0.737 0.797 0.753 0.678	2.104 2.736 2.215 2.206	2.058 2.703 2.029 2.120	2.105 2.650 2.076 2.158	1.960 2.683 1.852 2.123	0.801 0.652 1.756 1.300	0.400 0.660 0.056 0.373	97 98 87 94	100 96 91 97	89 97 75 95	5 -18 69 41	-46 -17 -93 -45	2.92E-6 2.57E-6 1.30E-5 6.71E-6	1.24E-5 6.96E-6 2.67E-5 2.98E-5	> 1.00E-4 > 1.00E-4 5.44E-5 > 1.00E-4
Melanoma LOX IMVI MALME-3M MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.552 0.673 0.425 0.396 1.283 0.449 0.729 0.996 0.857	2.887 1.354 1.873 1.854 2.267 1.100 3.095 1.736 2.829	2.929 1.319 1.907 1.799 2.295 1.091 3.010 1.651 2.779	2.923 1.313 1.932 1.721 2.329 1.078 2.949 1.614 2.681	2.747 1.327 1.807 1.724 2.254 1.108 2.812 1.642 2.401	0.070 0.153 0.295 0.141 1.490 0.012 0.892 0.124 0.271	0.394 0.569 0.346 0.280 0.249 0.222 0.147 0.366 0.374	102 95 102 96 103 99 96 88 97	102 94 104 91 106 97 94 83 93	94 96 95 91 99 101 88 87 78	-87 -77 -31 -64 21 -97 7 -88 -68	-29 -16 -19 -29 -81 -51 -80 -63 -56	1.75E-6 1.84E-6 2.29E-6 1.84E-6 4.24E-6 1.81E-6 2.94E-6 1.63E-6 1.56E-6	3.30E-6 3.58E-6 3.85E-6 1.61E-5 3.23E-6 1.20E-5 3.16E-6 3.42E-6	> 1.00E-4 5.00E-5 5.77E-6 4.53E-5 6.10E-6 7.49E-6
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.662 0.601 0.644 0.406 0.564 0.868 0.651	2.071 1.752 1.133 1.305 2.030 2.702 1.409	2.112 1.893 1.140 1.298 2.059 2.739 1.365	2.129 1.801 1.121 1.340 2.013 2.840 1.351	1.943 1.827 1.100 1.324 2.004 2.656 1.359	0.372 0.037 0.280 0.075 0.477 1.519 1.266	0.466 0.492 0.546 0.347 0.442 0.820 0.268	103 112 101 99 102 102 94	104 104 97 104 99 108 92	91 106 93 102 98 98 93	-44 -94 -57 -82 -15 36 81	-30 -18 -15 -15 -22 -6 -59	2.01E-6 1.91E-6 1.94E-6 1.92E-6 2.66E-6 5.84E-6 1.67E-5	4.73E-6 3.40E-6 4.19E-6 3.60E-6 7.32E-6 7.31E-5 3.80E-5	 > 1.00E-4 > 1.00E-4 > 1.00E-4 8.65E-5
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.732 1.207 0.340 0.946 0.779 0.721 0.770 0.706	2.664 1.999 1.740 3.084 1.031 2.622 1.393 2.245	2.628 1.954 1.759 3.000 0.991 2.535 1.394 2.113	2.740 1.968 1.768 2.967 0.933 2.525 1.476 2.143	2.732 1.948 1.702 2.945 0.936 2.441 1.505 2.044	0.303 1.931 0.030 0.146 0.036 0.714 0.017 0.072	0.650 0.217 0.305 0.723 0.275 0.210 0.467 0.482	98 94 101 96 84 95 100 91	104 96 102 95 61 95 113 93	104 94 97 93 62 90 118 87	-59 91 -91 -85 -95 -1 -98 -90	-11 -82 -10 -24 -65 -71 -39 -32	2.14E-6 1.73E-5 1.78E-6 1.75E-6 1.19E-6 2.77E-6 2.06E-6 1.62E-6	4.35E-6 3.37E-5 3.28E-6 3.35E-6 2.48E-6 9.74E-6 3.52E-6 3.10E-6	6.54E-5 5.15E-6 5.02E-5
Prostate Cancer PC-3 DU-145	0.651 0.333	1.952 1.296	1.898 1.364	1.826 1.338	1.842 1.313	0.810 0.147	0.154 0.124	96 107	90 104	91 102	12 -56	-76 -63	3.34E-6 2.13E-6	1.37E-5 4.42E-6	5.03E-5 9.16E-6
Breast Cancer MCF7 MDA-MB-231/ATC0 HS 578T BT-549 T-47D MDA-MB-468	0.380 0.625 0.954 0.918 0.681 0.679	1.741 1.418 2.190 1.984 1.671 1.528	1.633 1.449 2.132 2.017 1.658 1.425	1.656 1.481 2.086 2.143 1.602 1.348	1.737 1.276 1.971 2.150 1.594 1.257	0.048 0.159 1.539 0.166 0.424 0.119	0.233 0.413 1.057 0.741 0.617 0.439	92 104 95 103 99 88	94 108 92 115 93 79	100 82 82 116 92 68	-87 -75 47 -82 -38 -82	-39 -34 8 -19 -9 -35	1.84E-6 1.60E-6 8.38E-6 2.15E-6 2.11E-6 1.32E-6	3.41E-6 3.34E-6 > 1.00E-4 3.85E-6 5.12E-6 2.83E-6	> 1.00E-4 > 1.00E-4

National Cancer Institute Deve	elopmental Therapeutics Program	NSC : D - 765697/1 Units :Mc	blar SSPL :0X1V	EXP. ID :1207NS11	
	Mean Graphs	Report Date :September 25, 2012	Test Date :July 23, 2012	Test Date :July 23, 2012	
Panel/Cell Line	Log ₁₀ GI50 GI50	Log ₁₀ TGI TGI	Log ₁₀ LC50 LC	50	
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR Non-Small Cell Lung Cancer A549/ATCC HOP-62 HOP-62 HOP-92 NCI-H226 NCI-H223 NCI-H322M NCI-H322M NCI-H322 Colon Cancer COLO 205 HCC-2908	-5.69 -5.66 -5.64 -5.68 -5.75 -5.54 -5.47 -4.97 -5.67 -5.68 -5.68 -5.46 -4.76 -4.74 -5.81 -5.73 -5.73 -5.73	-5.34 -5.34 -5.29 -5.32 -5.35 -5.03 -4.88 -4.32 -5.42 -5.34 -4.71 -4.51 -4.20 -5.54 -5.54 -5.43	$\begin{array}{c} & -4.00 \\ & -5.02 \\ & -4.00 \\ & -4.36 \\ & -4.00 \\ & -4.00 \\ & -4.02 \\ & -4.00 \\ & -4.25 \\ & -4.00 \\ & -4.25 \\ & -4.00 \\ & -5.23 \\ & -5.12 \end{array}$		
HCC-2996 HCT-116 HCT-15 HT29 KM12 SW-620 CNS Cancer	-5.65 -5.71 -5.65 -4.70 -5.67	-5.43 -5.35 -5.36 -4.39 -5.37	-3.12 > -4.00 -4.08		
SF-268 SF-539 SNB-19 U251 Melanoma LOX IMVI	-5.53 -5.59 -4.88 -5.17 -5.76 -5.76 -5.76	-4.91 -5.16 -4.57 -4.53	> -4.00 > -4.00 -4.26 > -4.00		
MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62 Ovarian Cancer	-5.73 -5.64 -5.74 -5.37 -5.74 -5.53 -5.79 -5.81	-5.45 -5.24 -5.41 -4.79 -5.49 -4.92 -5.50 -5.47	> -4.00 -4.30 -5.24 -4.34 -5.21 -5.13		
IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3 Renal Cancer	-5.70 -5.72 -5.71 -5.72 -5.58 -5.23 -4.78	-5.33 -5.47 -5.38 -5.44 -5.14 -4.14 -4.42	> -4.00 > -4.00 > -4.00 -4.06		
786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31 Prostate Cancer PC-3	-5.67 -4.76 -5.75 -5.76 -5.92 -5.56 -5.69 -5.69 -5.79	-5.36 -4.47 -5.48 -5.48 -5.61 -5.01 -5.01 -5.45 -5.51 -4.86	-4.18 - -5.29 -4.30 -4.30		
DU-145 Breast Cancer MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468	-5.07 -5.73 -5.80 -5.67 -5.68 -5.88	-5.35 -5.47 -5.48 > -4.00 -5.41 -5.29 -5.55	-5.04 > -4.00 > -4.00		
_MID Dalta	-5.54	-5.14	-4.33		
Range	1.22		2 -3) -1 -2 -3	

7/27/13

Compound Submission Application Hollow Fiber Testing Data

NSC: 758065							
It was tested against the following disease types and cell lines:							
Experiment ID: HF19	00						
Panel Name		Cell Name	Schedule	Route	e High Dose		
Breast Cancer	MDA-MB-231	QD X 4	IP	150 mg/kg/dose			
Non-Small Cell Lung Can	cer	NCI-H23	QD X 4	IP	150 mg/kg/dose		
Colon Cancer		SW-620	QD X 4	IP	150 mg/kg/dose		
Experiment ID: HF19	01						
Panel Name	Cell Name	Schedule	Rout	e Hi	gh Dose		
Colon Cancer	COLO 205	QD X 4	IP	15	50 mg/kg/dose		
Melanoma	LOX IMVI	QD X 4	IP	15	0 mg/kg/dose		
Ovarian Cancer	OVCAR-3	QD X 4	IP	15	50 mg/kg/dose		
Experiment ID: HF19	02						
Panel Name		Cell Name	Schedule	Route	High Dose		
Non-Small Cell Lung Can	cer	NCI-H522	QD X 4	IP	150 mg/kg/dose		
CNS Cancer		U251	QD X 4	IP	150 mg/kg/dose		
Melanoma		UACC-62	QD X 4	IP	150 mg/kg/dose		
Experiment ID: HF19	03						
Panel Name	Cell Name	Sched	ule Ro	oute	High Dose		
Melanoma	MDA-MB-435	QD X 4	1 IP)	150 mg/kg/dose		
Ovarian Cancer	OVCAR-5	QD X 4	1 IP)	150 mg/kg/dose		
CNS Cancer	SF-295	QD X 4	4 IP		150 mg/kg/dose		
Your compound was scor	ed as follows:						
IP Score 4	out of 48						
SC Score 0	out of 48						
Total 4							
Cell Kill N							

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

> (43) International Publication Date 22 December 2011 (22.12.2011)

- (51) International Patent Classification: A61K 31/28 (2006.01) (21) International Application Number: PCT/IB2011/052572 (22) International Filing Date: 14 June 2011 (14.06.2011) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 2010/04299 17 June 2010 (17.06.2010) ZA
- (71) Applicant (for all designated States except US): UNI-VERSITY OF KWAZULU-NATAL [ZA/ZA]; Office of Registrar, University Road, Chiltern Hills, 3629 Westville (ZA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MUNRO, Orde, Quentin [ZA/ZA]; 59A Warwick Road, Ferncliffe, 3201 Pietermaritzburg (ZA). AKERMAN, Kate, Julie [ZA/ZA]; 25 Natalie Place, 2 Kay Road, Hayfields, Pietermaritzburg 3201 (ZA). AKERMAN, Piers

X

(54) Title: GOLD COMPLEXES

(10) International Publication Number WO 2011/158176 A2

[ZA/ZA]; 25 Natalie Place, 2 Kay Road, Hayfields, Pietermaritzburg 3201 (ZA).

- (74) Agents: FORBES, Craig, Paul et al.; Adams & Adams, PO Box 1014, 0001 Pretoria (ZA).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(57) Abstract: The invention provides compounds of the Formula (I), in which W is independently selected from W¹, W², W³, W⁴, W⁵, or W represents a pair of substituents independently selected from H, alkyl, aryl or amide in which the amide is optionally part of a linking chain, and the Zⁿ- Z^n bonds (n = 4-17; n' = n + 1) are optionally of any whole or partial bond order, Y is Y¹ or Y represents a pair of substituents independently selected from H, C-1-C₆ alkyl, Z₅ or Z₆ aryl, or Y is optionally a bridging structure that may comprise one or more C-1-C₆ amide, C-1-C₆ ether, or C-1-C₆ ester groups, R-R³⁹ are independently selected from no substituent, a lone pair of electrons, H, halogen, C5-C6 aryl, C1- C-12 alkyl, amine, C-1- C_6 alkylamine, C-1- C_6 amide, nitro, cyano, carboxyl, C-1- C_6 ester, phosphane, thiol, C-1- C_6 thioether, OR⁴⁰, and suitable pairs of adjacent R groups (R-R³⁹) may optionally together form part of a C₅ or C₆ aryl ring, a Z_5 or Z_6 ring, R^{40} is independently selected from H, C-1-C₆ alkyl, Z_5 or Z_6 aryl, C-1-C₆ ester, poly(-C₂O-), amine, and C-1-C₆ alkylamine, Z-Z²⁴ are independently selected from C, N, P, O, and S, and X⁻ is a pharmaceutically acceptable anion, for the treatment of cancer.

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, **Published**: GW, ML, MR, NE, SN, TD, TG). — without a without a statement of the statement ____

Declarations under Rule 4.17:

without international search report and to be republished upon receipt of that report (Rule 48.2(g))

as to the identity of the inventor (Rule 4.17(i)) ____

GOLD COMPLEXES

THIS INVENTION relates to novel chemotherapeutic agents. It relates in particular to novel bis(pyrrolide-imine) and bis(imidazolato-imine) gold(III) Schiff base complexes as chemotherapeutic agents.

General Background

The use of metal complexes in medicine can be traced back to 3500 BC and due to its particular physical and chemical properties gold has always been one of the many metals in use^{1,2} Despite its wide use most of the gold based drugs have not been designed specifically for their function, and their mode of action is often unknown² The use of gold(0) is limited and is mostly used as a non-irritating food decoration and additive¹ Most of the gold-based drugs employ gold(I) and gold(III).¹

The use of gold(I) based drugs has until recently been the main focus of medicinal research.^{3,4} Their usefulness has mostly been in the treatment of rheumatoid arthritis, but testing against different cancer cell lines has been reported.³ Gold(I) is a soft d¹⁰ metal ion. The most common coordination geometry for gold(I) complexes is linear, with the molecules usually consisting of a central gold(I) ion coordinated by either phosphorous or sulfur donor ligands.^{4,5} Au(I) complexes undergo facile ligand exchange in aqueous solutions, with the rate of ligand exchange increasing in the order R₃P < RS⁻ < X⁻. The lability of the ligands contributes to both the therapeutic activity of Au(I) antiarthritic compounds and the side effects observed with these drugs.⁴ One of the most well known of the gold(I) drugs is Auranofin (Scheme 1) which is widely used in the treatment of rheumatoid arthritis.

Auranofin and its many derivatives have also become the focus of research into gold(I) based anti-cancer agents. Several complexes have been found to exhibit cytotoxicity greater than that of cisplatin against melanoma and leukemia cancer cell

lines in particular.⁵ The *in vitro* test results of many gold(!) chelates against various human cancer cell lines have been promising.^{4,5}

However, many of these complexes have never entered into clinical trials, since they have been associated with cardiotoxicity in preclinical trials.² Due to this cardiotoxicity of gold(I) chelates, gold(III) has become the focus of research into gold based chemotherapeutic agents.^{5,6}

One of the first metal based drugs that was used in the treatment of cancer was cisplatin.^{6,7} Cisplatin is still widely used today in the treatment of several types of tumors, particularly testicular cancer. Its use is, however, hindered by some clinical problems such as a severe toxicity towards non-cancerous tissue and the frequent occurrence of initial and acquired resistance to the treatment.⁶ The most concerning adverse side effect is nephrotoxicity correlated to platinum binding and inactivation of renal thiol-containing enzymes.⁶ These drawbacks to the success of cisplatin in anticancer chemotherapy has raised great interest in the study of metal complexes to be used as antitumor agents, instigating the ongoing investigation of alternative metalbased drugs. The allure of gold(III) as an anti-tumor agent is that it has a d⁸ electron configuration, with vacant $d(x^2-y^2)$ orbitals, and therefore adopts a rigorously square planar coordination geometry. Gold(III) is therefore isostructural and isoelectronic to platinum(II).⁸ Despite the similarity to platinum(II) literature relating to the use of gold(III) as a chemotherapeutic agent is scarce.⁶ The rarity of data on gold(III) complexes probably derives from their high redox potential and relatively poor stability, which make their use rather problematic under physiological conditions.^{5,6} The gold(III) ion can be readily reduced to the more stable gold(I) ion or even metallic gold(0) under the in vivo reducing conditions, characteristic of the mammalian environment.⁵ The coordination of a ligand, which is a strong σ -donor and π -acceptor ligand that can stabilize the gold(III) ion under physiological conditions is therefore critical if gold(III) is to be used in the treatment of cancer.^{5,9}

SUBSTITUTE SHEET (RULE 26)

Gold(III) complexes with Au-N bonds that have been tested for cytotoxicity against human cancer cell lines.¹⁰

Scheme 2

There are currently no commercially available gold(III) compounds being used as chemotherapeutic agents. There are, however, many gold(III) complexes that have shown very promising *in vitro* and *in vivo* activity against many different human cancer cell lines.¹⁰ The structures of a range of gold(III) chelates, which have Au–N bonds, that have been tested for cytotoxicity are shown in Scheme 2.

The two pyridyl gold(III) species, $[AuCl_3(Hpm)]$ and $[AuCl_2(pm)]$ (Scheme 2) have good cytotoxicity towards a range of human cancer cell lines, particularly human ovarian cancer cell lines. The results of these tests although promising were comparable to the

screening results of NaAuCl₄ which is their parent compound.¹⁰ The other drawback of these compounds is that although stable in organic solutions, they are susceptible to reduction in aqueous buffer media, which limits their practical usefulness.^{10,11} The bipyridine type complexes, $[Au(bipy)(OH)_2][PF_6]$ and $[Au(bipy-H)(OH)][PF_6]$ were, on the other hand, found to be stable in aqueous buffer media. Unfortunately they were found to interact with calf thymus DNA only weakly. Despite this weak interaction with calf thymus DNA, both bipyridyl gold(III) complexes show IC_{50} values falling into the micromolar range against an ovarian carcinoma cell line. $[Au(bipy-H)(OH)][PF_6]$ is the most active of the two compounds. The results of the tests against other ovarian cancer cell lines as well as leukemia cell lines were less encouraging.⁹

The gold(III) complexes with multidentate N-donor ligands; [Au(phen)Cl₂]Cl, [Au(terpy)Cl]Cl₂, [AuCl(dien)]Cl₂, [Au(cyclam)](ClO₄)₂Cl and [Au(en)₂]Cl₂, showed reasonable stability in physiological buffer solutions at 37 °C. These gold(III) complexes have been greatly stabilized by the chelation of the gold(III) ion to polyamine ligands. This stabilization was evidenced by measurements of the reduction potentials of the complexes.^{8,10} The stabilization was less evident for the less basic phenanthrene and terpyridine ligands.⁸ With the exception of the complex [Au(cyclam)](ClO₄)₂Cl, all complexes exhibited good cytotoxicity against the human ovarian cancer cell line A2780. These complexes also exhibited good cytotoxicity towards the cisplatin-resistant A2780 ovarian cancer cell line; this suggests that gold(III) compounds might overcome the phenomenon of drug resistance.^{8,10} The free ligands that were coordinated to a gold(III) ion to give the complexes were also screened against the same cancer cell lines to ensure that the cytotoxicity was a result of the presence of the gold(III) ion. These test results showed that the free ethylenediamine ligand was devoid of any activity. The potency of free phenanthrene and terpyridine, on the other hand, was comparable to that of the respective gold(III)complexes making the screening results of these chelates difficult to interpret. The study did, however, prove that the cytotoxicity of [Au(en)₂]Cl₂ was a direct consequence of the presence of the gold(III) ion.¹⁰

The complex [Au(azpy)Cl₂]Cl, which contains a bidentate N-donor ligand, exhibited promising cytotoxic activity in cisplatin-sensitive and cisplatin-resistant ovarian carcinoma and leukemia cancer cell lines. Interestingly, solutions of [Au(azpy)Cl₂]Cl

underwent a cyclization reaction under physiological conditions leading to the formation of a tricyclic cationic organic compound, which also exhibited good cytotoxic activity.^{10,12}

The gold(III) dithiocarbamate complexes, are examples of gold(III) chelates with Au–S bond which are bound to ligands through a sulfur atom. Examples of dithiocarbamate complexes that have been screened against various cancer cell lines are shown below in Scheme 3.

Gold(III) chelates with sulfur-bound ligands.

Scheme 3

The Gold(III) dithiocarbamate complexes that have been screened against various human cancer cell lines exhibited greater cytotoxic effects compared to cisplatin. The complexes were also bioactive against drug resistant cancer cell lines and induced apoptosis.^{6,7} The compounds have proven to be stabile under physiological conditions and readily bind to calf thymus DNA, inhibiting both DNA and RNA synthesis. Experiments on red blood cells indicated that haemolytic properties might contribute significantly to the bioactivity of the agents. The complexes triggered cancer cell death via apoptotic and non-apoptotic pathways and affected mitochondrial functions.^{6,7,10} The free ligand ESDT (Scheme 3) did not exhibit proteosome inhibitory activity and the parent gold salts KAuCl₄ and KAuBr₄ also showed weaker inhibitory activities than (ESDT)AuBr₂.

Although the *in vitro* anti-cancer activity of gold(III) compounds has been documented for more than three decades, very few demonstrate promising *in vivo* anti-

SUBSTITUTE SHEET (RULE 26)

cancer activities. Among the gold(III)compounds in the literature that have undergone *in vivo* testing are the gold(III) dithiocarbamate compounds, which inhibited approximately 50% growth of breast cancer cells a month after the first dose of the compound.¹³

Detailed background relating to the invention

The gold(III) chelates of this invention have tetradentate dianion ligands. More specifically they are $N_2N'_2$ tetradentate ligands and therefore are closely related to the highly cytotoxic gold(III) tetraarylporphyrins. The advantage of tetradentate ligands is that they are better able to stabilize the gold(III) cation against reduction under physiological conditions and are therefore potentially more useful as drugs.^{5,9} Coordination of a tetradentate dianionic ligand to gold(III) gives a mono-cationic gold(III) compound having a planar geometry. These mono-cationic complexes have a similar overall structure to lipophilic organic cations, which have proven to be effective chemotherapeutic agents.¹³ The structures of a selection of known gold(III) chelates with tetradentate, dianionic ligands¹³ are set out in Scheme 4.

The structures of a selection of gold(III) chelates with tetradentate, dianionic ligands.¹³

Scheme 4

The gold(III) porphyrins have proven to be stable under physiological conditions. The complexes [Au(dcbpb)]Cl and [Au(salen)]Cl, on the other hand, show signs of slow decomposition under similar conditions.¹³ [Au(TPP)]Cl has displayed promising anticancer activities toward a panel of human cancer cell lines including

SUBSTITUTE SHEET (RULE 26)

nasopharyngeal carcinoma, promyelocytic leukaemia, hepatocellular carcinoma, cervical epithelioid carcinoma, and oral epidermoid carcinoma.¹³ The IC₅₀ values of [Au(TPP)]CI ranged between 0.11 and 0.73 µM. These IC50 values show that [Au(TPP)]Cl is several hundred times more cytotoxic than cisplatin. This compound also shows significant cytotoxicity against KB-3-1 and its multi-drug resistant (KB-V1) variant. The latter possesses a high level of membrane P-glycoproteins, which exclude drugs such as vinblastine and doxorubicin.¹³ To investigate the cytotoxic effect of [Au(TPP)]CI on non-cancerous cells, the cytotoxicity toward peripheral blood mononuclear cells (PBMCs) from healthy individuals and CCD-19Lu cells, which is a fibroblast cell line derived from normal lung tissue, were examined. Results by MTT assay revealed that [Au(TPP)]CI exhibits at least ten-fold higher cytotoxicity to cancer cells than non-cancerous cells.¹³ The presence of gold(III) ions has been proven to be critical for the observed in vitro chemotherapeutic properties. This conclusion is based on the inactivity of [Zn^{II}(TPP)]. The zinc(II) analogue of [Au(TPP)]CI exhibits an IC₅₀ value greater than 50 µM. The gold(III) ion is unstable under physiological conditions as it undergoes reduction to colloidal gold. The porphyrin ligand is, however able to stabilize the gold(III) ion and it is hypothesized that [Au(TPP)]⁺ acts as a stable lipophilic planar cation for binding to bio-molecular target(s) through non-covalent interactions.¹³

The cytotoxic properties of the gold(III) salen Schiff base complexes and the bis(pyridyl)carboxamide gold(III) complexes have also been evaluated.¹³ These compounds have been shown to exhibit a cytotoxicity comparable to that of cisplatin with a IC_{50} values in the range of 10-30 μ M.

There are two different pathways via which a compound can cause cell death, these are apoptosis and necrosis. Apoptosis is characterized by an ordered series of biochemical and biophysical reactions that are regulated by various genes, this is in contrast to necrosis which is premature cell death. While apoptosis often provides beneficial effects to the organism, necrosis is almost always detrimental, and can be fatal. Apoptosis does not trigger inflammatory tissue reactions, and thus is advantageous for cytotoxic chemotherapeutic agents to be able to induce apoptotic cell death as opposed to necrosis. The compound [Au(TPP)]Cl induced cytotoxicity in NPC cells via an apoptotic pathway.¹³ By means of confocal imaging, typical apoptotic morphological changes were detected, including the formation of apoptotic bodies,

WO 2011/158176

chromatin condensation and DNA fragmentation. The induced apoptosis was also confirmed by the oligonucleosomic degradation of cellular DNA, as this type of chromatin degradation is characteristic of apoptosis. These experiments confirm that [Au(TPP)]CI induces apoptotic cell death in NPC cells as opposed to necrosis.¹³ The dithiocarbamate gold(III) complexes were also found to cause apoptosis as opposed to necrosis^{6,7} this would suggest that gold(III) chelates could potentially favour an apoptotic pathway as opposed to a necrotic pathway. This would make them more attractive chemotherapeutic agents.

Tetradentate Schiff base ligands comprising two pyrrole groups bridged by a synthetically variable di(azomethine) unit have been known for several decades.¹⁴ However, studies of both the free base ligands as well as their metal chelates are quite limited.¹⁴ Coordination of this class of ligands to a metal cation usually occurs with the concomitant deprotonation of the pyrrole NH groups, this means that they are $N_2N'_2$ tetradentate, dianionic ligands. The ligands have been previously bound to Ru(II), Pd(II), Ni(II), Co(III), Mn(II), Cu(II), Sm(II), Pt(II) and Fe(III).¹⁵⁻²³ Chelation of the former by the dianionic ligand will result in a neutral metal chelate, with the exception of Co(III) and Fe(III), which will give a monocationic complex. These metal chelates have been used as hydrogenation catalysts when coordinated to Pd(II)¹⁶ as well as high efficiency red electrophosphorescence materials when chelated to Pt(II).²² The complexes also show a similar coordination geometry, regardless of the electronic configuration of the metal ion. The metal ions exhibiting a nominally square planar coordination geometry, regardless of whether the bis(imine) linkage is aromatic or a straight or substituted alkyl group. The bridging does, however, affect the extent to which the metal ion is distorted from the optimum square planar geometry. Short bridges, of two carbons in length, whether aromatic or alkyl result in a smaller bite angle of the ligand. This small bite angle manifests itself as an acute Nimine-M-Nimine bond angle.^{16,23} The longer three carbon bridge allows for a larger bite angle and the Nimine-M-Nimine bond angle therefore tends towards a right angle.¹⁶

The free base bis(pyrrole-imine) compounds have been shown to exhibit fascinating supramolecular structures both with aromatic²⁴ and alkyl¹⁴ bridges. The pyrrole N-H and imine type nitrogen atoms form a highly predictable hydrogen bonding motif. The compounds with aromatic bridges have even been used to form distinct

SUBSTITUTE SHEET (RULE 26)

nanostructures, with the effect of isomeric molecules being examined in an attempt to try and further understand the self assembly of organic molecules into distinct nanostructures.²⁴

The invention

The present invention provides new classes of gold(III) bis(pyrrolide-imine) and bis(imidazolato-imine) compounds. Several of these compounds have been shown to be cytotoxic towards a wide range of human cancer cell lines having an activity similar to, or better than, cisplatin which is currently the industry standard. The most active compound has been proven *in vitro* to be a poison of topoisomerase II at low concentrations (EC₅₀ = 0.5 μ M) and a catalytic inhibitor of the enzyme at higher concentrations (50 μ M).

An extensive search of the literature as well as the Cambridge Structural Database (CSD) has confirmed that the gold(III) chelates of the invention are new. Neither the structures nor the syntheses of the bis(pyrrolide-imine) and bis(imidazolato-imine) gold(III) Schiff base complexes of the invention have been reported and, accordingly, there has been no report of the use of the gold(III) chelates of the invention as cytotoxic agents for the treatment of cancer.

According to a first aspect of the invention, there is provided a compound selected from compounds of the Formula (I),

in which

W is independently selected from W¹, W², W³, W⁴, W⁵,

or W represents a pair of substituents independently selected from H, C_1-C_6 alkyl, Z_5 or Z_6 aryl or C_1-C_6 amide in which the amide is optionally part of a linking chain, and the $Z^n-Z^{n'}$ bonds (n = 4–17; n' = n + 1) are optionally of any whole or partial bond order,

Y is Y¹

or Y represents a pair of substituents independently selected from H, C_1 - C_6 alkyl, Z_5 or Z_6 aryl,

or Y is optionally a bridging structure that may comprise one or more C_1 - C_6 amide, C_1 - C_6 ether, or C_1 - C_6 ester groups,

 $R-R^{39}$ are independently selected from no substituent, a lone pair of electrons, H, halogen, C₅-C₆ aryl, C₁-C₁₂ alkyl, amine, C₁-C₆ alkylamine, C₁-C₆ amide, nitro, cyano, carboxyl, C₁-C₆ ester, phosphane, thiol, C₁-C₆ thioether, OR⁴⁰, and suitable pairs of adjacent R groups (R-R³⁹) may optionally together form part of a C₅ or C₆ aryl ring, a Z₅ or Z₆ ring,

 R^{40} is independently selected from H, C₁-C₆ alkyl, Z₅ or Z₆ aryl, C₁-C₆ ester, poly(-C₂O-), amine, and C₁-C₆ alkylamine,

Z-Z²⁴ are independently selected from C, N, P, O, and S, and

 X^- is a pharmaceutically acceptable anion.

The anion X^- may be selected from halide, hexafluorophosphate, nitrate, and triflate.

Examples of representative structurally characterized and tested compounds of the invention are the following compounds.

Compound 1.1a (MA_AuPr) in which chelate substituents $R-R^5$ are H, Z-Z³ are C, the bridge W is $-CH_2CH_2CH_2$ -, Y is 2H, and the anion X is CI⁻.

Compound 1.1b (MA_AuDM) in which chelate substituents $R-R^5$ are H, Z-Z³ are C, the bridge W is $-CH_2C(CH_3)_2CH_2-$, Y is 2H, and the anion X is CI⁻.

Compound 1.1c (MA_AuOH) in which chelate substituents $R-R^5$ are H, Z–Z³ are C, the bridge W is $-CH_2CH(OH)CH_2-$, Y is 2H, and the anion X is CI^- .

Compound 1.1Y¹a (KA_AumacroPr) in which chelate substituents $R-R^5$ are H, $Z-Z^3$ are C, the bridge W is $-CH_2CH_2CH_2-$, Y is Y¹, where $R^{46}-R^{49}$ are H, Z^{29} and Z^{34} are N, $Z^{30}-Z^{33}$ are C, and the anion X is PF_6^{-} .

Compound 1.1Y¹b (KA_AumacroDM) in which chelate substituents R–R⁵ are H, Z–Z³ are C, the bridge W is $-CH_2C(CH_3)_2CH_2$ –, Y is Y¹, where R⁴⁶–R⁴⁹ are H, Z²⁹ and Z³⁴ are N, Z³⁰–Z³³ are C, and the anion X is PF₆⁻.

Compound 1.5Y¹a (KA_AumacroBu) in which chelate substituents R–R⁵ are H, Z–Z³ are C, the bridge W is $-CH_2CH_2CH_2CH_2$ –, Y is Y¹, where R⁴⁶–R⁴⁹ are H, Z²⁹ and Z³⁴ are N, Z³⁰–Z³³ are C, and the anion X is PF₆⁻.

Compound 1.1f (KA_AuMeImPr) in which chelate substituents R and R⁵ are H, R¹ and R⁴ are CH₃, R² and R³ are lone pairs of electrons, Z and Z³ are C, Z¹ and Z² are N, the bridge W is $-CH_2CH_2CH_2-$, Y is 2H, and the anion X is PF₆⁻.

Compound 1.1g (KA_AuMeImDM) in which chelate substituents R and R⁵ are H, R¹ and R⁴ are CH₃, R² and R³ are lone pairs of electrons, Z and Z³ are C, Z¹ and Z² are N, the bridge W is $-CH_2C(CH_3)CH_2-$, Y is 2H, and the anion X is PF_6^-

Schemes 5a, 5b, and 5c show, by way of illustration of the parent derivatives of each new class of gold(III) chelates, partially labeled thermal ellipsoid diagrams of the X-ray crystal structures of MA_AuPr (compound 1.1a), KA_AumacroPr (compound 1.1Y¹a), and KA_AuMeImPr (compound 1.1f), respectively.

The single crystal X-ray structural data for compounds 1.1a, 1.1f, and 1.1Y¹a are summarized in Table 1. Other crystallographically characterized complexes of the invention are summarized in Table 2.

Table 1

Crystal data and structure refinement details for MA_AuPr (1.1a), KA_AumacroPr $(1.1Y^{1}a)$, and KA_AuMeImPr (1.1f).

-			r
Compound	MA_AuPr	KA_AumacroPr	KA_AuMelmPr
Formula	C ₁₃ H ₁₄ AuCIN ₄	$C_{21}H_{16}AuN_6F_6P$	$C_{13}H_{16}AuF_6N_6P$
Cell setting	Triclinic	Monoclinic	Monoclinic
Space group	P-1	P2/c	Cc
Formula weight	458.70	694.33	598.25
a/A, b/A, c/A	7.5888(4),	16.473(5),	16.348(5),
	9.4183(3),	6.980(5),	12.015(5),
	10.5118(4)	18.804(5)	9.488(5)
α/°, β/°, γ/°	68.707(4),	90, 105.675(5), 90	90, 106.865(5), 90
	72.787(4),		
	72.194(4)		
T/K	140(2)	173(2)	295(2)
Z	2	4	4
V / Å ³	651.86(5)	2081.7(17)	1783.5(13)

Density (g cm ⁻³)	2.337	2.2155	2.228
μ (mm ⁻¹)	11.479	7.220	8.410
Crystal	0.10 x 0.10 x 0.10	0.50 × 0.02 × 0.01	0.45 × 0.25 × 0.15
Dimensions (mm ³)			
Radiation λ (Å)	0.71073	0.71073	0.71073
Total Data	10737	14581	6002
Collected			
Unique Data	4510 [R(int)] =	4010 [R(int)] =	2635 [R(int)] =
	0.0173	0.060	0.032
Refinement	Full-matrix least-	Full-matrix least-	Full-matrix least-
Method	squares on F ²	squares on F ²	squares on F ²
Goodness-of-fit on	1.032	0.940	1.020
F ²			
Final R indices	$R_1 = 0.0165$	$R_1 = 0.0320$	<i>R</i> ₁ = 0.0271
[I>2sigma(I)]	wR ₂ = 0.0403	wR ₂ = 0.0703	$wR_2 = 0.0660$
Final R indices	<i>R</i> ₁ = 0.0189	<i>R</i> ₁ = 0.0452	<i>R</i> ₁ = 0.0288
[all data]	wR ₂ = 0.0406	wR ₂ = 0.0733	wR ₂ = 0.0655
Largest diff.	1.697/-1.902	2.282/-1.453	0.134/ -1.296
peak/hole			

It is noteworthy that other anions may be used to crystallize the cations of this invention. For example, we have recently acquired X-ray data for the triflate salt of KA_aumacroDM ($C_{24}H_{20}AuF_3N_6O_3S$, monoclinic space group *Cc*, *a* = 17.092(5) Å, *b* = 25.520(5) Å, *c* = 13.625(5) Å, α = 90°, β = 119.057(5)°, γ = 90°, *V* = 5195(3) Å³, *Z* = 8, *T* = -153(2) °C).

The Applicant has found that MA_AuPr (1.1a), by way of example, has several advantages over currently available inorganic chemotherapeutic agents in clinical use. Firstly, the synthesis of the ligands belonging to the 1.1a–1.1f series of compounds is a simple one-pot reaction, requiring minimal purification. Chelation of the ligand to gold(III) is simple and gives a clean easily re-crystallized product. Derivatization of the parent ligand was found to be possible and different derivatives showed varying activity, suggesting that there is a structure/activity relationship between the different derivatives. *In vitro* testing showed that the chelate 1.1a was more effective than cisplatin against *ca.* 25% of the 60 human cancer cell lines against which it was tested.

The *in vitro* mechanism of action of the drug has been established and is highly specific. This indicates that the activity of the drug can be carefully controlled.

According to a second aspect of the invention, there is provided a compound selected from compounds of the Formula (I),

in which

W is independently selected from W^1 , W^2 , W^3 , W^4 , W^5 ,

or W represents a pair of substituents independently selected from H, C_1-C_6 alkyl, Z_5 or Z_6 aryl or C_1-C_6 amide in which the amide is optionally part of a linking chain, and the $Z^n-Z^{n'}$ bonds (n = 4–17; n' = n + 1) are optionally of any whole or partial bond order,

SUBSTITUTE SHEET (RULE 26)

Y is Y¹

or Y represents a pair of substituents independently selected from H, C_1 - C_6 alkyl, Z_5 or Z_6 aryl,

or Y is optionally a bridging structure that may comprise one or more C_1 - C_6 amide, C_1 - C_6 ether, or C_1 - C_6 ester groups,

 $R-R^{39}$ are independently selected from no substituent, a lone pair of electrons, H, halogen, C₅-C₆ aryl, C₁-C₁₂ alkyl, amine, C₁-C₆ alkylamine, C₁-C₆ amide, nitro, cyano, carboxyl, C₁-C₆ ester, phosphane, thiol, C₁-C₆ thioether, OR⁴⁰, and suitable pairs of adjacent R groups (R-R³⁹) may optionally together form part of a C₅ or C₆ aryl ring, a Z₅ or Z₆ ring,

 R^{40} is independently selected from H, C₁-C₆ alkyl, Z₅ or Z₆ aryl, C₁-C₆ ester, poly(-C₂O-), amine, and C₁-C₆ alkylamine,

Z-Z²⁴ are independently selected from C, N, P, O, and S, and

X⁻ is a pharmaceutically acceptable anion for the treatment of cancer.

The anion X^- may be selected from halide, hexafluorophosphate, nitrate, and triflate.

According to a third aspect of the invention, there is provided a pharmaceutical composition, the composition including at least one compound selected from compounds of the Formula (I),

16

in which

W is independently selected from W^1 , W^2 , W^3 , W^4 , W^5 ,

or W represents a pair of substituents independently selected from H, C_1 - C_6 alkyl, Z_5 or Z_6 aryl or C_1 - C_6 amide in which the amide is optionally part of a linking chain, and the Z^n - Z^n' bonds (n = 4–17; n' = n + 1) are optionally of any whole or partial bond order,

Y is Y¹

or Y represents a pair of substituents independently selected from H, C_1 - C_6 alkyl, Z_5 or Z_6 aryl,

or Y is optionally a bridging structure that may comprise one or more C_1 - C_6 amide, C_1 - C_6 ether, or C_1 - C_6 ester groups,

 $R-R^{39}$ are independently selected from no substituent, a lone pair of electrons, H, halogen, C₅-C₆ aryl, C₁-C₁₂ alkyl, amine, C₁-C₆ alkylamine, C₁-C₆ amide, nitro, cyano, carboxyl, C₁-C₆ ester, phosphane, thiol, C₁-C₆ thioether, OR⁴⁰, and suitable pairs of adjacent R groups (R-R³⁹) may optionally together form part of a C₅ or C₆ aryl ring, a Z₅ or Z₆ ring,

 R^{40} is independently selected from H, C₁-C₆ alkyl, Z₅ or Z₆ aryl, C₁-C₆ ester, poly(-C₂O-), amine, and C₁-C₆ alkylamine,

Z-Z²⁴ are independently selected from C, N, P, O, and S, and

X⁻ is a pharmaceutically acceptable anion.

The anion X^- may be selected from halide, hexafluorophosphate, nitrate, and triflate.

The pharmaceutical composition may be for use in the treatment of cancer.

According to a fourth aspect of the invention, there is provided a method of treating cancer, the method including the step of administering, to a subject in need of treatment, a pharmaceutically effective amount of at least one compound selected from compounds of Formula (I),

in which

W is independently selected from W^1 , W^2 , W^3 , W^4 , W^5 ,

or W represents a pair of substituents independently selected from H, C_1-C_6 alkyl, Z_5 or Z_6 aryl or C_1-C_6 amide in which the amide is optionally part of a linking chain, and the $Z^n-Z^{n'}$ bonds (n = 4–17; n' = n + 1) are optionally of any whole or partial bond order,

Y is Y¹

or Y represents a pair of substituents independently selected from H, C_1 - C_6 alkyl, Z_5 or Z_6 aryl,

or Y is optionally a bridging structure that may comprise one or more C_1-C_6 amide, C_1-C_6 ether, or C_1-C_6 ester groups,

R–R³⁹ are independently selected from no substituent, a lone pair of electrons, H, halogen, C₅-C₆ aryl, C₁-C₁₂ alkyl, amine, C₁-C₆ alkylamine, C₁-C₆ amide, nitro, cyano, carboxyl, C₁-C₆ ester, phosphane, thiol, C₁-C₆ thioether, OR⁴⁰, and suitable pairs of adjacent R groups (R–R³⁹) may optionally together form part of a C₅ or C₆ aryl ring, a Z₅ or Z₆ ring,

 R^{40} is independently selected from H, C₁-C₆ alkyl, Z₅ or Z₆ aryl, C₁-C₆ ester, poly(-C₂O-), amine, and C₁-C₆ alkylamine,

Z-Z²⁴ are independently selected from C, N, P, O, and S, and

X⁻ is a pharmaceutically acceptable anion.

The anion X^- may be selected from halide, hexafluorophosphate, nitrate, and triflate.

According to a fifth aspect of the invention, there is provided the use of a compound selected from compounds of Formula (I) has hereinbefore described in the manufacture of a medicament for the treatment of cancer.

The invention described thus provides a new class of gold(III) bis(pyrrolide-imine) and bis(imidazolato-imine) Schiff base complexes for use as novel anticancer chemotherapeutic agents. These complexes consist of a central gold(III) ion chelated by a $N_2N'_2$ tetradentate bis(N-heterocycle-imine) type ligand. Upon coordination of the gold(III) ion, the two pyrrole-type nitrogen atoms (N-H groups) are deprotonated, giving the ligand an overall charge of -2. The metal ion complex therefore has an overall charge of +1; hence the chelates are associated with an anion. The complexes were designed to be predominantly planar which allows the gold(III) chelates to intercalate between DNA base pairs. The overall charge on the cation allows for favorable electrostatic interactions with the negatively charged phosphate backbone of the DNA double helix. The molecular target for the gold(III) complexes is thus DNA (and possibly also related nucleotides). Once the drug has intercalated genomic DNA in cells, it prevents DNA transcription (and thus cell growth), separation of daughter chromatids during mitosis (and thus cell division), and/or maintenance of the DNA duplex by interfering specifically with the normal functioning of either of the essential enzymes topoisomerase I or topoisomerase II. Compound 1.1a, for example, acts as a topoisomerase II poison at low concentrations and an inhibitor of the enzyme at high concentrations (topoisomerase II is critical for cell replication, being responsible for the decatenation of daughter chromatids during mitosis). Compound 1.1Y¹a (KA_AumacroPr), on the other hand, acts as a catalytic inhibitor of both topoisomerase I and topoisomerase II.

The gold(III) chelates of the invention are novel in design and structure and their mode of synthesis is novel. The complexes are readily crystallized, easily purified, and have been fully characterized. The complexes exhibit a highly specific mode of action (all of the compounds target topoisomerase II and some also target topoisomerase I). The most active compound shows good activity (mean $GI_{50} = 7 \mu M$; mean $IC_{50} = 20 \mu M$) against multiple cancer cell lines over the full NCI-60 screen. The mechanism of action has been proven to be dependent on the presence of the gold(III) ion since the metal-free complexes are inactive.

In preferred embodiments of the invention, Y may represent two hydrogen atoms or Y¹. For example, Y may be Y¹, and Z¹⁹ and Z²⁴ may be N. In another preferred embodiment Z^{20} - Z^{23} may be C.

The groups R-R⁵ may be selected from H, C_1 - C_3 alkyl, O- C_1 - C_3 alkyl, hydroxyl and halogen. In particular the C_1 - C_3 alkyl group may be a methyl group, the O- C_1 - C_3 alkyl group may be an O-ethyl group and the halogen may be chlorine.

In other preferred embodiments W may be selected from W¹, W², W³ or W⁴. The groups R^{6} - R^{27} may then be selected from H, C₁-C₃ alkyl, O-C₁-C₃ alkyl and halogen. The C₁-C₃ alkyl group may be a methyl group, the O-C₁-C₃ alkyl may be an O-ethyl group and the halogen may be chlorine.

More preferred compounds are compounds selected from:

2,2'-{propane-1,3-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) chloride,

2,2'-{(2,2-dimethylpropane-1,3-diyl)bis[nitrilo(*E*)methylylidene]} bis(pyrrol-1-ido)gold(III) chloride,

2,2'-{(2-hydroxypropane-1,3-diyl)bis[nitrilo(*E*) methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{(2-ethoxypropane-1,3-diyl)bis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{(2-chloropropane-1,3-diyl)bis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{ethane-1,2-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{(2S)-propane-1,2-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{(1*R*,2*R*)-cyclohexane-1,2-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{(1*S*,2*S*)-cyclohexane-1,2-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{cyclohexane-1,2-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V) 22

2,2'-{(4-methylbenzene-1,2-diyl)bis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) nitrate(V),

4,4'-{propane-1,3-diyl)bis[nitrilo(*E*)methylylidene]}bis(5-methylimidazol-1-ide)gold(III) hexafluorophosphate(V),

4,4'-{(2,2-dimethylpropane-1,3-diyl)bis[nitrilo(*E*)methylylidene]}bis(5-methylimidazol-1-ide)gold(III) hexaflurophosphate(V),

{12,13-dihydro-14H-6,9:17,20-diepimino[1,6]diazacyclo-heptadecino[12,13-

β]quinoxalinato}gold(III) hexafluorophosphate(V),

{12,13,14,15-tetrahydro-6,9:18,21-diepimino[1,6]diazacycloctadecino[12,13-

b]quinoxalinato}gold(III) hexafluorophosphate(V), and

{13-chloro-12,14-dihydro-6,9:17,20-diepimino[1,6]diazacyclo-heptadecino[12,13-

 β]quinoxalinato}gold(III) hexafluorophosphate(V).

The invention extends further to a pharmaceutical composition comprising at least one compound as hereinbefore described.

The invention extends to a method of preparing a compound of Formula (I), which includes the steps of condensing a diamine of the general formula A

simultaneously or consecutively with a carbonyl compound selected from compounds of the general formula B, C and D

to produce a diimine Schiff base of the general formula E or F

and reacting the diimine of general formula E or F with a tetraalkylammonium tetrahaloaurate(III) to produce the gold(III) compound of the general Formula (I) in which W, Y, R, Z and X are as hereinbefore described.

The invention extends further to a method of preparing a compound of general Formula (I), which includes the step of reacting a carbonyl compound of the general formula D

with a tetraalkylammonium tetrahaloaurate(III) and a diamine to produce the compound of general Formula (I) in which W, Y, R, Z and X are as hereinbefore described. The

tetraalkylammonium tetrahaloaurate(III) may be tetrabutylammonium tetrachloroaurate(III). The butyl group may be a *t*-butyl group.

The method may include reacting the diamine with the tetraalkylammonium tetrahaloaurate (III) in the presence of a salt selected from halides, hexafluorophosphates, nitrates, and triflates to produce the corresponding compound of Formula (I) in which X^- is the corresponding anion. In particular, the salt may be a tetraalkylammonium hexafluorophosphate such as tetra-*t*-butylammonium hexafluorophosphate.

Where the compound of Formula (I) is a chloride the method may include the further step of reacting the compound of Formula (I) in which X^- is chloride with a salt selected from halides other than chloride, hexafluorophosphates, nitrates, and triflates to produce a compound of Formula (I) in which X^- is the anion of the said salt.

The invention extends to a method of preparing a 2-substituted 1,3-diamine intermediate of the general formula A^1

or its dihydrochloride salt, in which F is selected from F¹ or halogen,

in which

 R^{41} - R^{43} are independently selected, H, halogen, Z₅ or Z₆ aryl, C₁-C₁₂ alkyl, C₁-C₆ alkylamine, C₁-C₆ amide, carboxyl, C₁-C₆ ester or OR⁴⁰,

 $\ensuremath{\mathsf{R}^{^{40}}}$ is as hereinbefore described, or

25

suitable pairs of adjacent R groups (R^{41} - R^{43}) optionally together form part of a C_5 or C_6 aryl ring, or

F is R⁴⁴, and

 R^{44} is independently selected from H, C_1 - C_6 alkyl, Z_5 or Z_6 aryl, C_1 - C_6 ester, poly(- C_2O -), amine, C_1 - C_6 alkylamine, and C_1 - C_6 amide or a Z_5 or Z_6 ring, and

 Z_5 and Z_6 are as hereinbefore described,

the method including the steps of converting the hydroxyl group of 2,2,12,12-*t*-methyl-3,11-dioxo-4,10-dioxa-5,9-diazatridecan-7-ol to the group F.

The invention extends to bis(pyrrole-imine) ligands selected from: 2-ethoxy-N,N-bis[(E)-1H-pyrrol-2-ylmethylidene]propane-1,3-diamine, and 2-chloro-N,N-bis[(E)-1H-pyrrol-2-ylmethylidene]propane-1,3-diamine.

The invention extends further to a method for the preparation of tetrabutylammonium tetrachloroaurate, $[Bu_4N][AuCl_4]$, the method including the step of extracting $[Bu_4N][AuCl_4]$ from a mixture using an organic solvent-extraction purification step to produce an acid-free, crystalline $[Bu_4N][AuCl_4]$. The method may include reacting an aqueous solution of H[AuCl_4] and $[Bu_4N][HSO_4]$ to produce the mixture and extracting the $[Bu_4N][AuCl_4]$ from the mixture with the organic solvent.

The invention is now illustrated, by way of example, with reference to the following examples.

Scheme 1 Auranofin

<u>Scheme 5a</u> Partially labeled thermal ellipsoid diagram of the X-ray crystal structure of MA_AuPr. Ellipsoids are rendered as 50% probability surfaces; H atoms are of an arbitrary radius.

<u>Scheme 5b</u> Partially labeled thermal ellipsoid diagram of the X-ray crystal structure of KA_AumacroPr. Ellipsoids are rendered as 50% probability surfaces; H atoms are of an arbitrary radius.

<u>Scheme 5c</u> Partially labeled thermal ellipsoid diagram of the X-ray crystal structure of A_AuMeImPr. Ellipsoids are rendered as 30% probability surfaces; H atoms are of an arbitrary radius. <u>Scheme 6a</u> Single-dose screening results for MA_AuPr over 60 human cancer cell lines. A negative growth percent is favorable and shows up as a positive bar on the graph.

<u>Scheme 6b</u> Single-dose screening results for KA_AumacroPr over 60 human cancer cell lines. A negative growth percent is favorable and shows up as a positive bar on the graph.

<u>Scheme 6c</u> Single-dose screening results for KA_AuMeImPr over 60 human cancer cell lines. A negative growth percent is favorable and shows up as a positive bar on the graph.

<u>Scheme 8a</u> Dose-response curves for three commercial anticancer drugs (cisplatin, mitomycin, camptothecin) and three Au(III) chelates. The more abrupt the curve, the harder the dose-response function.

<u>Scheme 8b</u> Dose-response curves (HeLa cells, pH 7.0, 37 °C) for three macrocyclic Au(III) chelates. IC_{50} values for the complexes against HeLa cells obtained from the least squares data fits (graph) are given in the 3rd column of the table.

<u>Scheme 9</u> Plot of $-\log(GI_{50}/M)$ for MA_AuPr versus the equivalent data for cisplatin.

<u>Scheme 10a</u> Comparison of –log(GI₅₀) values for MA_AuPr with commercially available anticancer drugs for selected human cancer cell lines.

<u>Scheme 10b</u> Comparison of $-\log(GI_{50})$ values for MA_AuPr and MA_AuDM with commercially available anticancer drugs for selected human cancer cell lines.

<u>Scheme 11</u> Comparison of the activity profiles of commercial drugs with a known mechanism of action and the two Au(III) chelates MA_AuPr and MA_AuDM. (Group average method, Minkowski distance.)

<u>Scheme 12</u> EB gel showing the poisoning at low concentrations (0.5 μ M) and catalytic inhibition at higher concentrations (50 μ M) of topoisomerase II activity on supercoiled plasmid DNA substrate by MA_AuPr.

<u>Scheme 13</u> EB gel showing the inactivity of MA_AuPr against topoisomerase I compared to the chemotherapeutic agent CPT (camptothecin), which is specifically a topoisomerase I poison.

<u>Scheme 14</u> EB gel showing the inactivity of MA_H2PrLig (the metal-free ligand) against topoisomerase II compared to the chemotherapeutic agent VP-16 (etoposide), which is specifically a topoisomerase II poison. There is evidence of weak DNA-cleavage induction in the presence of topoisomerase II from the free ligand at 500 μ M concentration.

<u>Scheme 15</u> EB gel showing the diminished activity of MA_PdPr (the Pd^{2+} analogue of MA_AuPr) against topoisomerase II compared to the chemotherapeutic agent VP-16 (etoposide), which is specifically a topoisomerase II poison. There is evidence of DNA-cleavage induction in the presence of topoisomerase II at 50 μ M concentration (a 100-fold weaker effect than the gold(III) complex).

<u>Scheme 16</u> Top: agarose gel electrophoresis topoisomerase II (topo II) DNA cleavage assay (66 ng kinetoplast DNA, 4 U topo II) as a function of the concentration of KA_AumacroPr (complex 1.1Y¹a). Lanes 1–4 contain catenated DNA (no topo II), decatenated DNA (topo II present), decatenated DNA (solvent control), and linear DNA, respectively. The lane marked VP-16 contained DNA, topo II, and etoposide (VP-16). Band labels: I, catenated DNA; II, open-circular (OC) DNA; III, linear DNA; IV, closedcovalently circular (CCC) DNA. Lanes 5–13 included compound 1.1Y¹ a from 5 nM to 500 nM in 10-fold concentration increments, respectively. Bottom: standard doseresponse function fit of the experimental titration data (top gel) with (solid line) and without (dashed line) a Hill coefficient. The maximum ESD from triplicate measurements is shown (15%).

<u>Scheme 17</u> Inhibition of human topoisomerase I by KA_AumacroPr as determined by supercoiled plasmid DNA relaxation assay (agarose gel electrophoresis).

Lanes 2–12 have 5U of topoisomerase I. The enzyme fully relaxes supercoiled (SC) DNA in lanes 3–8 for KA_AumacroPr concentrations ranging from 0–50 nM. At concentrations from 500 nM–500 μ M, topoisomerase I exhibits abnormal and incomplete substrate relaxation.

<u>Scheme 18</u> Titration of MA_AuPr (1.1a) with calf-thymus DNA in aqueous pH 7 phosphate buffer at 37 ℃. The data indicate that compound 1.1a is a DNA intercalator.

<u>Scheme 23</u> Graph of 3LL tumor growth in black mice (mean data for 6 subjects) as a function of time and type of anticancer drug. MA_AuPr was administered at a dose of 20 μ mol/kg twice weekly and cisplatin at a dose of 26 μ mol/kg once weekly. Untreated mice were the control.

<u>Scheme 24</u> Mouse survival data as a function of metallodrug dose for MA_AuPr. The graph plots the survival of five groups of four mice on drug concentrations ranging from 1 to 30 µmol/kg for the displayed injection protocols.

Example 1

In vitro anti-cancer tests

The gold(III) complexes of this invention were screened by the National Cancer Institute (NCI, USA) against their panel of 60 different human cancer cell lines. These screens initially entail a one-dose test for the compound at a high concentration (10 μ M; e.g. Schemes 6a-6c). Compounds with a good cytotoxicity profile in the one-dose screen are then subjected to a five-dose screen for the full panel of sixty human cancer cell lines (the so-called 5-dose NCI-60 screen). In the full five-dose screen, the compound concentration is varied in five doses from 10⁻⁸ M to 10⁻⁴ M in order to establish a dose-response function of percentage cell growth versus the concentration of the test agent. The latter data permits determination of several key parameters indicative of a compound's cytotoxicity, namely, the GI₅₀, IC₅₀, and LC₅₀ values for the test agent (these are the concentrations at which 50% growth inhibition, total growth inhibition, and 50% cell death occur, respectively). These data from 5-dose NCI-60

WO 2011/158176

screens are summarized in Scheme 7 for selected chelates of this invention (by way of illustration). Similar data will shortly be available for compounds $1.1Y^{1}b$ and $1.5Y^{1}a$ as these derivatives are in 5-dose screens currently at the NCI.

The results of one-dose NCI-60 screens are noteworthy and merit some discussion as they quickly indicate activity profiles, cell-line specificity, and general cytotoxicity for the test agents across multiple human cancer cell lines. Schemes 6a, 6b, and 6c set out the one-dose screening results for MA_AuPr (Scheme 6a), KA_AumacroPr (Scheme 6b), and KA_AuMeImPr (Scheme 6c) obtained by the NCI. These three compounds are the parent derivatives that are representative of the three new types of gold(III) Schiff base chelate relevant to this invention. All other compounds synthesized as part of this invention have been similarly analyzed.

The preliminary cell screening data indicated that the three classes of compounds are inherently more toxic towards some cancer cell lines than others. This suggests that the compounds of the invention are not merely general poisons, but in fact agents with some tumor specificity and specific cellular mechanisms of action. From Schemes 6a–6c, leukemia, breast, and colon cancer cell lines are inherently more susceptible to the cytotoxic action of MA_AuPr. Breast and leukemia cell lines were, as a group, the most sensitive to KA_AuMeImPr while the macrocyclic derivative KA_AumacroPr showed good cytotoxicity for the majority of the cell lines constituting the groups: (i) non-small lung cancer, (ii) central nervous system cancer, (iii) renal carcinoma, and (iv) breast cancer.

Complexes 1.1a, 1.1b, and $1.1Y^{1}b$ were selected by the NCI for a five-dose screen against the full panel of 60 different human cancer cell lines to establish IC₅₀ values and other parameters.

Complex 1.1c (with a hydroxyl group in the propyl bridge, MA_AuOH) was not sufficiently active in cell cultures to warrant a five-dose screen. The Applicant is of the opinion that cancer cells may have an active defense mechanism against 1.1c, e.g., an efflux pump or derivatization to an inactive form. The hydroxyl group is clearly implicated in the inactivity of the compound because 1.1a which lacks the hydroxyl group is highly active. A summary of the average cytotoxicity data over 60 human

cancer cell lines for 1.1a–1.1c and comparison with selected commercial and patented cytotoxic agents is shown in Scheme 7. Dose-response curves for three commercial anticancer drugs (cisplatin, mitomycin, camptothecin) and three Au(III) chelates are shown in Scheme 8a. The more abrupt the curve, the harder the dose-response

5

10

shown in Scheme 8a. The more abrupt the curve, the harder the dose-response function. Scheme 8b shows dose-response curves obtained with HeLa cells incubated with the macrocyclic gold(III) complexes $1.1Y^{1}a$, $1.1Y^{1}b$, and $1.5Y^{1}a$ at 37 °C. The data indicate that the complex with the butyl chain as the bridging group W (complex $1.5Y^{1}a$) has very good cytotoxicity with a sub-micromolar IC₅₀ value of 370 nM; complexes $1.1Y^{1}a$ and $1.1Y^{1}b$ were also cytotoxic and had IC₅₀ values of ca. 3 μ M.

Drug : : : : :	Geo (ua)		
MA_AUOH (*)	> 100	>100	>100
MA_AuDM (*)	12	31	72
MA_AuPr (*)	7(1)	20(3)	49(5)
cis-[PtCl ₂ (NH ₃) ₂]	2	27	>100
[Au ^{ili} (terpy)Cl]Cl ₂	0.13	11	73
Mitomycin	0.71	6.5	18
Camptothecin	0.04	0.89	33

(*): This work.

Summary of the average cytotoxicity data over 60 human cancer cell lines for 1.1a-c and comparison with selected commercial and patented cytotoxic agents

Scheme 7

15

The mean cytotoxicity data summarized in Scheme 7 were compiled over 60 human cancer cell lines from the NCI database. The experimental parameters GI_{50} , IC_{50} , and LC_{50} , are mean concentrations at which 50% growth inhibition, 100% (total) growth inhibition, and 50% cell death occur, respectively. The data show that MA_AuPr is somewhat more cytotoxic than cisplatin and carboplatin when comparing the IC_{50} and LC_{50} values. The dose-response curves for the bis(pyrrolide-imine) chelates of the invention are steeper, or harder, than those of all the compounds compared in Scheme 7. Of the other drugs shown, only mitomycin (a powerful organic DNA alkylating and cross-linking agent) exhibits a comparably steep mean dose-response function.

25
The important features to note from the data in Scheme 7 and Schemes 8a and 8b are the following: (i) MA_AuPr has a lower LC₅₀ value than the other Pt(II) and Au(III) compounds and a comparable LC₅₀ value to camptothecin (a potent topoisomerase I poison). (ii) MA_AuPr has a better $|C_{50}$ value than cisplatin and carboplatin. The hard dose-response function of MA_AuPr means that the therapeutic dose *in vitro* has a narrow window. Thus, 50% growth inhibition, on average, requires a relatively high concentration of the compound (7 μ M). However, only a 7-fold increase in concentration to 49 μ M effects a 50% cell kill (again on average, and over the full 60 cell lines). In contrast, a potent drug such as camptothecin requires an 825-fold increase in concentration (from 40 nM to 33 μ M) to achieve the same effect.

The three Au(III) macrocycles developed and tested to date (Scheme 8b) exhibit the best cytotoxicity of all the compounds examined (at least in the HeLa cell line) with softer dose-response profiles more akin to commercial natural product drugs like

15

10

camptothecin. In particular, the GI_{50} values for the three compounds $1.1Y^{1}a$, $1.1Y^{1}b$, and $1.5Y^{1}a$ are all around 100 nM. Complex $1.5Y^{1}a$ has a particularly attractive dose-response profile that is better than that of camptothecin (Scheme 8a) because the LC_{50} value is < 10 μ M (i.e. about one-third of camptothecin's LC_{50} value).

Further, the *in vitro* data suggest that if general and organ-specific toxicity of MA_AuPr is not high in an animal model, i.e., micromolar concentrations of the compound are well-tolerated *in vivo*, then this new class of Au(III) compounds has a fundamental activity profile unlike any other compounds currently in use or in trials. Most importantly, this new class of compounds might be useful for completely clearing stubborn tumours or cisplatin-resistant tumours (complex 1.5Y¹a is clearly an extremely promising candidate for such a role). Small structural changes to the basic ligand structure (compare MA_AuPr with MA_AuDM and MA_AuOH) clearly dramatically alter the mean cytotoxicity profile of the compound. This suggests a strong link between structure and activity and that the synthesis and screening of other derivatives of the basic bis(pyrrolide-imine) chelate system are likely to enhance the cytotoxicity of the lead compound and afford Gl₅₀ and IC₅₀ values in the same range as commercially viable drugs such as mitomycin or camptothecin.

Scheme 9 shows a plot of -log(Gl₅₀/M) for MA_AuPr versus the equivalent data for cisplatin.

The plot in Scheme 9 shows that, on average, the chelate MA_AuPr exhibits 95% of the growth inhibition activity of cisplatin. The region marked A on the plot accounts for *ca.* 25% of the cancer cell lines tested and confirms that a sizeable fraction of cancer cell lines are either equivalently susceptible or significantly more susceptible to MA_AuPr than to cisplatin. The complex MA_AuDM shows a similar activity profile to that of MA_AuPr (with 91% of the activity of cisplatin on average and around 12% of the cell lines being more susceptible to this Au(III) drug than to cisplatin). These data demonstrate that the new class of bis(pyrrolide-imine) Au(III) chelates of the invention should compete favorably with cisplatin or, in fact, be better for around 25% of human cancers. We have yet to test the Au(III) macrocycles $1.1Y^1a$, $1.1Y^1b$, and $1.5Y^1a$ in the full 5-dose NCI-60 screens. However, complex $1.1Y^1b$ has just entered this phase of

SUBSTITUTE SHEET (RULE 26)

the screening process and is expected to perform better than MA_AuPr if its performance in the HeLa cell line is an indicator of its more general cytotoxicity.

Scheme 10a shows a comparison of $-\log(GI_{50})$ values for MA_AuPr (the best performing open-chelate Au(III) complex of this invention) with two comparable commercially available anticancer drugs (cisplatin and mitomycin) for selected human cancer cell lines (LE, leukemia; LC, lung cancer; CO, colo-rectal cancer; RE, renal carcinoma; PR, prostate cancer; BR, breast cancer).

Scheme 10b compares the performance (specifically as the drug concentration at which 50% growth inhibition is observed) of two open-chelate gold(III) complexes of the invention with existing commercial anti-cancer drugs for selected human cancer cell lines. The average $-\log(GI_{50})$ values for all of the drugs over the cancer cell lines plotted are marked with an asterisk.

Schemes 10a and 10b show the following. Firstly MA AuPr is more active than MA_AuDM and cisplatin for the cancer cell lines plotted. MA AuPr also performs similarly to mitomycin for several important cancers (renal carcinoma and colon cancer) and is better than cisplatin, on average, for the selected leukemia, colon, and renal cancer cell lines. MA_AuPr is also significantly more active than 5-fluorouracil and carmustine [mean -log(GI₅₀) = 4.20, data not shown]. MA_AuPr is less active than the topoisomerase poisons camptothecin (topo I) and daunorubicin (topo II). This is consistent with the fact that the compound is a dual-mode catalytic inhibitor and poison of topoisomerase II and has a slightly different mode of action with the enzyme. It is noteworthy that potent topoisomerase poisons are acutely toxic with some severe sideeffects. This is often problematic because the damage caused to healthy cell DNA by these drugs is mutagenic and has been shown to result in the initiation of secondary cancer post-treatment (i.e. genotoxicity). The current strategy employed by oncologists is therefore to administer a potent topoisomerase poison (camptothecin or daunorubicin) and an independent topoisomerase catalytic inhibitor to diminish the damage caused by these highly cytotoxic topoisomerase poisons. There is thus an advantage to having a less cytotoxic dual-mode drug like MA AuPr with a better balance between general and specific cytotoxicity. Indeed, this is why cisplatin, oxaliplatin, and carboplatin are widely used in first-line chemotherapy to treat the

SUBSTITUTE SHEET (RULE 26)

majority of human cancers (all are notably less genotoxic and less cytotoxic than duanorubicin).

The *in vitro* cytotoxicities of the two non-macrocyclic gold(III) chelates of the invention shown in Schemes 10a and 10b are clearly comparable to or better than that of cisplatin. Inherent specificity for renal, colon, and some leukemia cell lines has also been observed. It is an advantage of the invention that gold is cheaper than platinum and this would confer a competitive edge to the compounds of the invention.

Mechanism of action

From the data presented above, it is clear that the compound MA_AuPr is an effective cytotoxic agent that is suitably active against multiple human cancer cell lines. Identification of the cellular target of the compound and elucidation of its biological mechanism of action are critical to the optimization of lead compounds into successful chemotherapeutic agents. There are three key parameters which define the cytotoxic activity of a compound against a given cancer cell line, namely its GI₅₀, IC₅₀, and LC₅₀ values (see Scheme 8a). One drug tested over 60 cancer cell lines affords 180 experimental data that may be compared with the same parameters for all other compounds similarly tested against the NCI's panel of 60 human cancer cell lines. Only hierarchical cluster analysis offers a tractable statistical approach to establish functional relationships between drugs with a large data set. There are various ways in which to effect hierarchical cluster analysis of a large data set. Irrespective of the method chosen, one expects to delineate which drugs exhibit similar activity profiles over the full 60 cell line panel. Compounds most similar in behavior will converge in the statistical analysis to form a tight group or cluster. If a test agent has an unknown mechanism of action and is found to cluster or fall within a group of compounds whose mechanism of action has been previously and independently determined, then one can conclude, with reasonably high certainty, that the test agent is active against the same cellular target as the majority of the compounds within a particular cluster.

Scheme 11 (below) shows a dendrogram obtained via hierarchical cluster analysis of the GI_{50} , IC_{50} , and LC_{50} values for a range of commercial anti-cancer drugs with known mechanisms of action. The Au(III) compounds of the invention were included in

the analysis and are highlighted in red. It is clear from the clusters shown that the activity of MA_AuPr correlates best with that of etoposide, one of the most widely used topoisomerase II poisons. The compound also appears on a branch with a direct, though distant, link to the drugs daunorubicin and cisplatin. Daunorubicin is a potent topoisomerase II poison, while cisplatin has been shown to be an effective catalytic inhibitor²⁵ of topoisomerase II (in addition to its role as a DNA cross-linker and guanine-N7 "alkylating" agent).

Topoisomerase II is an essential nuclear enzyme found in all living cells. Topoisomerase II participates in various DNA metabolic processes, such as transcription, DNA replication, chromosome condensation, and de-condensation, and is essential at the time of chromosome segregation after cell division.²⁶ This enzyme transiently creates a protein-concealed double-strand break in one DNA molecule through which a second double-stranded DNA molecule can be transported prior to religation of the DNA.²⁶ There are two classes of compounds that act against topoisomerase II—poisons and catalytic inhibitors. The former compounds stabilize the ternary drug-enzyme-DNA cleavage complex and favor an increase in the number of DNA double strand breaks; these are highly damaging to cancer cells and lead to apoptosis (programmed cell death).²⁷ The latter compounds (catalytic inhibitors) are either competitive inhibitors (block DNA binding), non-specific inhibitors (react with topoisomerase II sulfhydryl groups, e.g., cisplatin,²⁵ thereby altering the proper function of the enzyme), or inhibitors that block the ATPase domain of the enzyme (effectively curtailing the ATP-dependent DNA strand passage step in the cycle). Highly successful, though highly toxic, commercial anticancer compounds active against topoisomerase II include the drugs etoposide, teniposide, doxorubicin, daunorubicin, and idarubicin.²⁶ There are, however, difficulties associated with the use of these drugs in chemotherapy due to their high general toxicity. The cardiac toxicity of the compounds is generally high and catalytic inhibitors of topoisomerase II (such as dexrazoxane, ICRF-187) are administered along with a topoisomerase poison to temper the toxicity of the poison,²⁸ or to prevent tissue damage (necrosis) when extravasation of a topoisomerase poison occurs during chemotherapy.²⁹ There is also good evidence to suggest that topoisomerase poisons are themselves carcinogenic, such that the development of post-treatment (secondary) cancer occurs in some patients. 30

SUBSTITUTE SHEET (RULE 26)

The compound MA AuPr clearly targets topoisomerase II if the statistical analysis of the NCI data for a range of drugs shown in Scheme 11 is correct. MA_AuPr was therefore assayed for its action against topoisomerase II in vitro using TopoGEN's standard protocol over a wide range of test agent concentrations (0.005 to 500 µM) in order to obtain direct experimental proof for the apparent cellular target of the compound to ensure that a fundamental understanding of the mechanism of action of this new class of Au(III) compounds exists. These experiments were performed by the company TopoGEN and at the University of Central Florida. The DNA cleavage experiments were performed in vitro using purified topoisomerase I and II enzymes and supercoiled plasmid DNA as the substrate. The controls that were used in the experiment were linear marker DNA as well as reactions without the gold(III) complex and high concentrations of VP16. The compound VP16 (etoposide) is a commercially available DNA intercalator chemotherapeutic agent, widely used in the treatment of lung and testicular cancers as well as lymphomas. The choice of VP16 as a control is based on the fact that it is a poor topoisomerase II inhibitor, but is a powerful topoisomerase II poison which arrests the enzyme's cycle at the ternary drug-enzyme-DNA cleavage complex stage, leading to observation of linear DNA fragments upon SDS denaturation of the enzyme (i.e., work-up). Comparison of the VP16 results with the results of MA_AuPr would therefore give a good indication of whether the gold(III) chelate is an inhibitor or a poison. The results of the ethidium bromide (EB) gel analysis are shown in Scheme 12.

Lane 1 of the gel (Scheme 12) is the control experiment with only supercoiled plasmid DNA present. The control contains no topoisomerase II and so the DNA supercoiled structure cannot be relaxed, as the topoisomerase II enzyme would usually do. The gel shows that the complex MA_AuPr begins to effectively poison topoisomerase II at a concentration of 0.5 μ M (lane 5 of the gel), as evidenced by the formation, trapping, and detection of linear DNA cleavage products at this concentration of the test agent. At a higher concentration of the test agent (50 μ M), both supercoiled plasmid DNA and linear cleavage products are observed. This shows that MA_AuPr exhibits dual action at this concentration in that it functions both as a topoisomerase II poison (forming linear DNA) and as a topoisomerase II catalytic inhibitor (preventing relaxation of the supercoiled plasmid DNA substrate). At very high concentrations (>500 μ M), MA_AuPr behaves exclusively as a catalytic inhibitor of the enzyme.

SUBSTITUTE SHEET (RULE 26)

37

The formation of a low concentration of linear DNA (lane 5 of the gel) demonstrates that the compound MA_AuPr has the ability to interrupt the second step of the cleavage/ligation cycle, in particular preventing religation of the double-stranded DNA. This conclusion is based on the fact that the cleavage/ligation cycle leads to formation of trapped intermediates, which resolve as linear DNA in the gels. In summation, the test compound MA_AuPr is therefore both a poison and a catalytic topoisomerase II inhibitor.

This result is particularly interesting since, in the treatment of brain cancers in mice, combinations of topoisomerase II inhibitors and poisons are often used because the efficacy of the combined treatment is greater than the sum of the parts and a catalytic inhibitor modulates the acute toxicity of the poison. Therefore, a drug that demonstrates both inhibition and poisoning of the enzyme is potentially a novel and useful chemotherapeutic agent.²⁵

MA_AuPr was also tested to determine if the compound was a topoisomerase I poison or inhibitor since the compound appears to be a topoisomerase II-specific agent and not a DNA intercalator with multiple enzyme targets. The results are shown in the EB gel in Scheme 13. The gel electrophoresis experiment shows that the gold(III) chelate is not a topoisomerase I poison. This conclusion is based on comparison of the migration of the DNA with various concentrations of the gold(III) chelate with the lane containing CPT (camptothecin, a topoisomerase-I specific poison) and linear DNA as a reference or marker. This result shows that the gold(III) chelate specifically poisons topoisomerase II and not topoisomerase I.

The role of gold(III) in the efficacy of the compound was determined by modifying the structure of MA_AuPr by replacing the Au(III) cation with Pd(II) to afford MA_PdPr (the isoelectronic square planar coordination complex of known structure and geometry³¹) and carrying out the DNA relaxation assay with topoisomerase II as before. The metal-free ligand (MA_H2PrLig) was tested under identical conditions to confirm that the mechanism of action is related to the intact structure of the metal chelate. The results are shown in Schemes 14 and 15.

WO 2011/158176

The data confirm firstly that the free ligand is not a good topoisomerase II poison. Secondly, The efficacy of the Au(III) chelate is *100 times higher* than that of the isoelectronic Pd(II) chelate. This result is expected and is consistent with the electrophilic character of the Au(III) ion, which is known to favor electrostatic interactions with aromatic groups or anions perpendicular to the square planar coordination group (i.e., the vacant axial interaction sites at the metal center). Compound 1a is also positively charged, whereas the Pd(II) chelate is neutral and thus likely to exhibit diminished electrostatic attraction for the phosphate backbone of doublestranded DNA.

The topo II inhibition assay for the Au(III) macrocycle KA_AumacroPr is shown above in Scheme 16. In contrast to MA_AuPr, this complex functions as a pure catalytic inhibitor of topo II since no trapped linear DNA cleavage products are evident that would signal behavior of the complex as a topo II poison. The enzyme inhibition is characterized by an IC₅₀ of 4.8 μ M, which is in excellent agreement with the cell cytotoxicity IC₅₀ value measured for this compound against HeLa cells (Scheme 8b).

As indicated by the DNA unwinding assay in Scheme 17, the test agent KA_AumacroPr interferes with the normal operation of human topoisomerase I. Specifically, abnormal relaxation products are generated from supercoiled plasmid DNA. This is consistent with strong intercalative binding of KA_AumacroPr to the plasmid DNA probably before and after the action of topoisomerase I, and consequently inhibition of its normal turnover cycle. Collectively the data in Schemes 16 and 17 show that the macrocyclic Au(III) complex $1.1Y^{1}b$ functions as a catalytic inhibitor of human topoisomerase I. Similar data were obtained for complexes $1.1Y^{1}a$ and $1.5Y^{1}a$.

For a drug to act as a topoisomerase II poison, two molecular recognition events must occur. Firstly, the drug must bind to DNA via intercalation between base pairs and secondly, the drug must interact with topoisomerase II in such a way that religation of the DNA after formation the topoisomerase II-DNA covalent complex (the catalytic intermediate) is impossible. The enzyme is poisoned at this point and the cycle irreversibly disrupted by the drug. Scheme 18 shows titration data for the titration of complex 1.1a with calf-thymus DNA (ctDNA).

SUBSTITUTE SHEET (RULE 26)

WO 2011/158176

The hypochroism of the absorption band of the complex at 383 nm was monitored as a function of added ctDNA. The data were fitted to equation $(1)^{32}$ to determine the affinity constant by non-linear regression:

$$(\varepsilon_{a} - \varepsilon_{f})/(\varepsilon_{b} - \varepsilon_{f}) = (b - (b^{2} - 2K_{a}^{2}Ct[DNA]/s)^{1/2})/2K_{a}Ct$$
(1a)

$$b = 1 + K_{a}Ct + K_{a}[DNA]/2s$$
(1b)

where [DNA] is the concentration of DNA base pairs, ε_a is the extinction coefficient $(A_{abs}/[M])$ observed for the 383-nm MLCT absorption band of MA_AuPr at a given DNA concentration, ε_f and ε_b are the extinction coefficient for the free Au(III) complex and the extinction coefficient for the Au(III) complex in the fully bound form, respectively. K_a is the equilibrium binding constant in M⁻¹, Ct is the total Au(III) complex concentration, and *s* is the binding site size.

From Scheme 18, it is clear that compound 1.1a binds to ctDNA with a high affinity constant. Moreover, since the MLCT (metal-to-ligand-charge-transfer) band of the complex at 383 nm decreased upon DNA binding (hypochroism), the mode of interaction is likely to be intercalation, as occurs with Ru(II) complexes with known DNA-intercalating bidentate ligands.

Complex	K _a (calf thymus DNA) / M ⁻¹	Cytotoxicity#
1.1a (MA_AuPr)	2.05(2) × 10 ⁵	active
1.1b (MA_AuDM)	1.63(3) x 10 ⁵	active
1.1c (MA_AuOH)	1.43(3) x 105	<i>in vitro</i> only
1.1d (MA_AuOEt)	1.01(4) x 10 ⁶	active
1.1e (MA_AuCl)	3.91(7) × 10 ⁵	active
1.1Y¹a (KA_AumacroPr)	2.8(2) x 10 ⁶	active
1.1Y ¹ b (KA_AumacroDM)	1.49(8) x 10 ⁶	active
1.5Y¹a (KA_AumacroBu)	1.20(9) x 10 ⁶	active

Conditions:

MA series of complexes in pH 7.0 phosphate buffer at 37 °C. KA series of complexes in pH 7.0 15% DMSO-TRIS buffer at 25 °C. * Active: mean IC₅₀ value in low µM range in the NCI-60 cytotoxicity screen or in an independent cytotoxicity screen. *In vitro*: the compound is a proven topo II poison *in vitro* (cell-free enzyme assay).

SUBSTITUTE SHEET (RULE 26)

Summary of selected calf thymus DNA binding constants for open- and macrocyclic Au(III) chelates.

Scheme 19

Scheme 19 summarizes the DNA affinity constants for the compounds. The affinity constants are high $(10^5 \text{ to } 10^6 \text{ M}^{-1})$ and the data clearly show, in unison with Scheme 18, that both the non-macrocyclic and macrocyclic Au(III) complexes are DNA intercalators. Consequently, the compounds are capable of disrupting the topoisomerase I or II DNA religation step and/or its ability to bind DNA (competitive inhibition). In short, the compounds of this invention act as poisons and/or inhibitors of the human topoisomerase I and/or II enzyme *in vitro*.

<u>Toxicology</u>

Key to the design of compounds for cancer chemotherapy is an early assessment of their toxicology profiles. Compounds have to be well-tolerated in live subjects, easily metabolized or excreted, well-transported across cell membranes, and have favorable plasma stability to be worthy of detailed pre-clinical animal model studies.

Test	Key Indicator	Comment
Microsomal clearance	t _{1/2} < 10 min	Highly metabolized; low liver toxicity expected
Plasma half-life	t _{1/2} < 20 min	Highly metabolized
Plasma protein binding	No binding – drug undetected	Unstable in plasma; requires encapsulation for transport
Genotoxicity	Negative	Non-mutagenic
Cytotoxicity (Hep-G2)	Strong positive	Good cytotoxicity expected (consistent with NCI-60 screens of drug)
Caco-2	Not an efflux transporter substrate	Favorable intestinal uptake expected

Summary of key in vitro ADME-Tox (absorption, distribution, metabolism, toxicology) data for MA_AuPr.

41

Scheme 20

The most promising non-macrocyclic Au(III) complex, MA_AuPr, was selected for *in vitro* ADME-Tox profiling to gauge the potential of the compound for pre-clinical animal toxicology testing and further development towards phase I human trials. The data are summarized in Scheme 20, which reveals a number of positive attributes for the compound. First, the compound is not genotoxic (i.e. mutagenic). This means the invented compounds have a clear advantage over topo II poisons such as daunorubicin and its derivatives which are known to be genotoxic but are in clinical use. Second, the compound is rapidly metabolized by liver cytochrome P450 enzymes and hepatotoxicity is not anticipated. Third, the Hep-G2 cytotoxicity assay confirmed the expected good cytotoxicity displayed in the NCI-60 screen of the compound. Fourth, the Caco-2 transport data clearly demonstrate that the test agent is not an efflux transporter substrate and has the ability to freely pass across a monolayer of Caco-2 cells (a model for the human small intestine wall or mucosa) without much preference for direction. The Caco-2 data are especially important as many drugs fail due to poor membrane transport/absorption. The transport rates for MA_AuPr are summarized in Scheme 21.

Ratio
4)
3,3
0.2

Summary of Caco-2 transport for MA_AuPr, ranitidine (a substrate for efflux transporter proteins), and warfarin (a non-substrate for efflux transporters).

Scheme 21

The only possibly concerning ADME-Tox result shown in Scheme 20 is that the test compound did not bind to plasma protein and was, in fact, not identified in a structurally intact form by LC-MS in the protein-free fraction (i.e. the molecular ion peak

for MA_AuPr was not detected in the mass spectrum). The $t_{1/2}$ of MA_AuPr in plasma was < 20 min. This suggests fast conversion of the compound to another species in the presence of plasma constituents and could suggest covalent interaction with proteins or metal ion aquation/hydrolysis possibly by enzyme action. Experiments in our lab with compound 1.2a (MA AuEt, in which W = W², R and R¹-R⁴ are H, Y = 2H, and Z and Z¹ = C) have shown that water may displace a pyrrole ring from the Au(III) ion to form a Au(III)-OH species and protonated pyrrole ring. MA AuPr did not show hydrolysis in phosphate buffered aqueous solutions presumably because the 6-membered chelate ring leads to a more stable chelate for Au(III). This is why binding to DNA of the intact chelate occurs (Schemes 12 and 18). However, it is noteworthy that hydrolysis of a Au(III)--N_{pyrrole} bond is a reaction that may be catalyzed by enzymes in plasma and could account for the plasma instability of MA AuPr. By way of comparison, the plasma half-life of cisplatin measures 0.88 h or ca. 53 min, while that of its mono(agua) complex is 0.26 h (16 min).³³ The plasma stability of MA AuPr is thus very similar to that of the mono(aqua) cisplatin derivative (cisplatin is one of the most successful anticancer drugs in the history of cancer chemotherapy).

The Applicant is of the firm opinion that encapsulation of the non-macrocyclic Au(III) compounds belonging to Formula (I) in γ -cyclodextrin or other water-soluble encapsulating agents such as curcubit-[8]-uril will permit increased plasma half-lives for these compounds. Encapsulation for metallo-drug transport and stabilization is well-established in the literature,³⁴ and has been shown to enhance the redox and plasma stability of cisplatin analogues.³⁴ It should be noted that enhanced plasma stability for the macrocyclic Au(III) complexes belonging to Formula (I) is anticipated because hydrolysis of the Au–N_{pyrrole} bonds in the macrocycle is quite unlikely. Experiments investigating this concept further are currently underway in our laboratory.

	MA_AuPr			Chlorpromazine (control)				
Cell Health Parameter	МЕС (µM)	АС ₅₀ (µМ	MEC	AC _{SQ}	МЕС (µM)	ΑC ₅₀ (μΜ)	MEC	AC ₅₀
Cell Loss	<0.23	7.4		×	100	7.8		
Nuclear Area	6.2	17			>11	100		
DNA structure	>19	N/A			11	196		
Membrane permeability	2.1	16	x		11	30		
Mitochondrial mass	2.1	41	x		3.7	5.4	X	x
Mitochondrial membrane potential	6.2	>500	×		3.7	50	x	
Cytochrome C release	19	33			11	16	Ì	

MEC: Minimum effective concentration that significantly crosses vehicle control threshold.

N/D: Not determined due to lowest concentration tested is the returned MEC.

 AC_{50} : The concentration at which 50% maximum effect is observed for each cell health parameter.

N/A: The response was not significantly above control to determine an AC_{50} value.

First Signal (x): The cell health feature which responds at the lowest observed dose.

Summary of cell health parameters for HepG2 human hepatocellular carcinoma cells exposed to serial dilutions of MA_AuPr and chlorpromazine (control).

Scheme 22

The data for MA_AuPr in Scheme 22 are consistent with a cytotoxic compound capable of inducing apoptosis (programmed cell death) and, indeed, a compound that performs better than the control drug. The lowest MEC response data indicate that the compound MA_AuPr has resulted in an increase in membrane permeability (indicating general cell death), an increase in mitochondrial mass (indicating an adaptive response to cellular energy demands), and an increase in mitochondrial potential (implying adaption to cellular energy requirements). Other cell health parameters which respond are a loss of total cells per well (indicating toxicity due to necrosis, apoptosis or a reduction in cellular proliferation), an increase in nuclear area (indicating necrosis or G2 cell cycle arrest), an increase in cytochrome c release (implying activation of a signalling cascade leading to apoptosis). The latter is particularly relevant as we may rule out cell death by necrosis in the case of MA_AuPr. The mechanism of action of the compound thus leads to cell cycle arrest in the G2 phase and the induction of apoptosis (highly desirable for an anticancer drug). The lowest AC₅₀ response indicates that the compound MA_AuPr has resulted in a loss of total cells per well (indicating toxicity due

to necrosis, apoptosis or a reduction in cellular proliferation). Since the compound induces cytochrome c release, cytotoxicity involves apoptosis.

The plasma stability and cytotoxicity of a test drug may be examined more extensively in an animal model (*in vivo*).

Scheme 23 shows a graph of 3LL tumor growth (measured by caliper methods at the University of Strasbourg, France) in black mice over a 20-day period at the indicated doses. (The 3LL cell line is a solid Lewis lung carcinoma cell line of the mouse.) The compound MA_AuPr, despite its modest plasma stability in vitro (Scheme 20) and poor performance against human lung carcinoma cell lines in the NCI-60 screen (Scheme 6a), clearly slows down the growth rate of 3LL tumors in black mice by about 33% relative to the control after 20 days. In comparison to cisplatin, which reduces the growth rate of 3LL tumors by 76% in 20 days and is a highly effective drug against lung carcinoma cell lines, MA_AuPr has about 43% of the in vivo performance of cisplatin for this particular cancer cell line. We note that the gold(III) chelates of this invention outperform cisplatin for several colorectal carcinoma cell lines, renal carcinomas, and breast cancer cell lines (Scheme 10), so that the data presented in Scheme 23 may be taken as a lower limit of the compound's in vivo cytotoxicity. The value of the experimental data shown in Scheme 23 clearly lies in the fact that it demonstrates that MA_AuPr has sufficient plasma stability in live animals to exert a positive cytotoxic effect leading to reduced tumor growth rates, even for a class of tumors for which the compound is expected to perform poorly.

The results are most encouraging and suggest that xenografts of human tumor cell lines susceptible to MA_AuPr (e.g. colon carcinoma cell lines) in mouse model subjects are likely to prove illuminating and worth the cost. Furthermore, the Applicant anticipates that the most cytotoxic macrocyclic Au(III) complexes, e.g., compound 1.5Y¹a, may have good plasma half-lives due to their enhanced redox stability and resistance to hydrolysis such that better time-dependent tumor growth profiles are quite likely for the macrocyclic members of Formula (I) of the invention.

Scheme 24 shows a set of survival data for five groups of four mice receiving from 1 to 30 µmol/kg doses of MA_AuPr. A single dose of the compound was administered

by injection over the first week followed by two injections per week per mouse for a total period of 50 days. All of the mice remained healthy and showed no abnormal weight changes over the timeframe of the experiment (mouse mass data not shown, but available as a time dependent plot). The results demonstrate that MA_AuPr has an acute toxicity > 30 μ mol/kg/week and a chronic toxicity > 60 μ mol/kg/week. This is fully consistent with the ADME-Tox data (Scheme 20) which showed that the compound is highly metabolized by liver microsomes.

In conclusion, the ADME-Tox and *in vivo* toxicology data for MA_AuPr are complementary and collectively indicate that:

- MA_AuPr is a cytotoxic metal complex (a topoisomerase II poison and inhibitor) with a mean *in vitro* IC₅₀ value in the low μM range.
- MA_AuPr is <u>not</u> genotoxic.
- MA_AuPr induces apoptosis in cancer cells such as HepG2.
- MA_AuPr is <u>not</u> a substrate for the efflux transporters in a Caco-2 cell monolayer and exhibits facile bidirectional transfer across this mucosal membrane mimic.
- MA_AuPr is readily metabolized by liver microsomes.
- MA_AuPr has a short plasma half life (t_{1/2} < 20 min) which is similar to the mono(aqua) derivative of cisplatin, [PtCl(NH₃)₂(OH₂)]⁺.
- MA_AuPr is cytotoxic in a live animal setting (mice) and demonstrates the ability to reduce tumor growth rates for mouse lung carcinoma cells (despite having poor cytotoxicity in general for lung tumor cell lines).
- MA_AuPr is non-toxic to healthy black mice exhibiting acute and chronic toxicity values > 30 μmol/kg/week and > 60 μmol/kg/week, respectively.

Example 2

Synthesis of MA AuPr and other open-chelate derivatives

1.1a $R = H, R^{n} = H$ **1.1b** $R \cdot R^{7} = H, R^{8} = R^{9} = CH_{3}, R^{10} \cdot R^{11} = H$ **1.1c** $R \cdot R^{8} = H, R^{9} = OH, R^{10} \cdot R^{11} = H$ **1.1d** $R \cdot R^{8} = H, R^{9} = OCH_{2}CH_{3}, R^{10} \cdot R^{11} = H$ **1.1e** $R \cdot R^{8} = H, R^{9} = CI, R^{10} \cdot R^{11} = H$

1.3a $R = H, R^n = H$ **1.3b** $R \cdot R^5 = H, R^{16} = H, R^{17} = CH_3, R^{18} \cdot R^{19} = H$

1.2a $R = H, R^n = H$

1.2b R-R⁵ = H, R¹²-R¹⁴ = H, R¹⁵ = CH₃

1.4a $R = H, R^n = H,$ racemic **1.4b** $R = H, R^n = H, 1S, 2S$ enantiomer **1.4c** $R = H, R^n = H, 1R, 2R$ enantiomer

Open chelate Au(III) compound library synthesized and fully characterized using the methodology outlined for MA_AuPr. The anion X^- is typically chloride or PF_6^- .

Scheme 25

<u>Generic description of materials for the synthesis of bis(pyrrolide-imine) and</u> <u>bis(imidazolato-imine) gold(III) chelates</u>

The general synthetic procedure for the synthesis of all non-macrocyclic ligands in this invention involves the condensation of two equivalents of 1*H*-pyrrole-2-carbaldehyde or 5-methyl-1*H*-imidazole-4-carbaldehyde with an appropriate 1,2- or 1,3-diaminoalkane linker unit, which forms a diiminoalkane bridge in the Schiff base condensation product. The bis(imine) compounds produced from such condensation reactions are then purified and reacted with a gold(III) salt in a suitable solvent system to form a relatively planar chelate of gold(III).

The synthetic procedure for macrocyclic gold(III) chelates required, in most cases, the initial reaction of 2,3-bis(5'-formylpyrrol-2'-yl)quinoxaline with a gold(III) salt to form an intermediate metal chelate in which the formyl oxygen atoms and deprotonated pyrrole nitrogen atoms function in unison as a tetradentate chelating ligand and most likely form a gold(III) chelate with a AuN₂O₂ coordination group. This intermediate is not isolated but condensed *in situ* with a 1,3- or 1,4-diaminoalkane linker unit, which, through the formation of a pair Au-bound imine groups and concomitant loss of two molar equivalents of water, cyclizes the ligand to form the product Au(III) macrocycle as a monocationic complex.

Commercially available diaminoalkanes were purchased from Aldrich and used without further purification. Commercially <u>un</u>available 1,3-diamines such as 2-ethoxy-1,3-diaminopropane and 2-chloro-1,3-diaminopropane were synthesized by *t*-boc protection of the two amino groups of 1,3-diamino-2-hydroxypropane followed by reaction of the hydroxy group and subsequent deprotection of the amino groups. Thus, although the compounds 2-ethoxy-1,3-diaminopropane and 2-chloro-1,3-diaminopropane are themselves not novel, with several synthetic approcahes available from the literature,^{35,36} the method we have employed to make them (as dihydrochloride salts) from *t*-boc-protected 1,3-diamino-2-hydroxypropane and to use them in subsequent condensation reactions to form diimines is novel.

Synthetic details for making key synthons for subsequent preparation of the chelating ligands described herein are given below.

Synthesis of 2,2,12,12-t-methyl-3,11-dioxo-4,10-dioxa-5,9-diazatridecan-7-ol (N,N'-di-t-boc-2-hydroxy-1,3-diaminopropane)

Sodium hydrogencarbonate (8.3 g, 99 mmol) was dissolved in 1:1 acetonitrile:water mixture (190 mL) and the solution cooled to 4 °C in an ice bath. 1,3-diamino-2-hydroxypropane (2.5 g, 27 mmol) and di-tert-butyldicarbonate (12.8 g, 59 mmol) were dissolved in the same solvent system (65 mL). This mixture was then added to the chilled sodium hydrogencarbonate solution and stirred on ice for two hours. The reaction was then heated to room temperature and stirred overnight. The acetonitrile was removed by rotary evaporation and the protected amine extracted into dichloromethane (3 x 75 mL portions). The organic portions were combined, dried over sodium carbonate, and evaporated to dryness by rotary evaporation.³⁷ The resulting oil was re-crystallised from diethylether/hexane,³⁸ giving colourless crystals (7.2 g, 91% yield). The compound was characterised by ¹H and ¹³C NMR and FT-IR spectroscopy. IR (cm⁻¹): 3316m br v(OH and NH), 2971m and 2930m v(CH₃ and CH), 1681s v(C=O). ¹H NMR (400 MHz, CDCl₃, 298 K) [ō, ppm]: 1.45 (s, 18H, H-1), 3.20 (m, 4H, H-5), 3.75 (m, 2H, H-6 and H-7), 5.20 (s br, 2H, H-4). ¹³C NMR (100 MHz, CDCl₃, 298K) [ō, ppm]: 28.55 (C-1), 43.72 (C-2), 71.07 (C-5), 79.87 (C-6), 157.24 (C-3).

Synthesis of 2-ethoxy-1,3-diaminopropane dihydrochloride

N,N'-di-t-boc-2-hydroxy-1,3-diaminopropane (2.0 g, 6.9 mmol) and [Bu₄N][HSO₄] (0.44 g, 1.3 mmol) were dissolved in toluene (7.5 mL). To this 50 % aqueous NaOH (7.5 mL) and ethyl iodide (1.67 mL, 20.7 mmol) were added. The resulting biphasic solution was heated to 100 °C for 18 hours. The solution was diluted with water and the alkylated compound extracted into ethylacetate (75 mL); this solution was washed with brine and then water and dried over anhydrous Na₂CO₃. The solvent was then removed by rotary evaporation and the resulting oil purified by column chromatography on silica gel using 1:4 ethylacetate:hexane as the eluent.³⁹ The solvent in the column fractions containing the alkylated product was removed by rotary evaporation and the resulting oil was dissolved in methanolic HCI (1.25 M, 30 mL) and stirred overnight. 2-ethoxy-1,3diaminopropane dihydrochloride precipitated as an oil from the methanol solution with the addition of diethylether. The oil was separated from the methanol by centrifugation and dried over P_2O_5 to give the hydrochloride salt as a white powder (0.70 g, 53%) yield). The powder was characterised by ¹H NMR. ¹H NMR (400 MHz, D₂O, 298 K) [δ , ppm]: 1.24 (t, 3H, H-1), 3.14 (dd, 2H, ${}^{3}J_{1}$ = 7.13 Hz, ${}^{3}J_{2}$ = 14.2 Hz, H-4), 3.35 (dd, 2H, ${}^{3}J_{1}$ = 4.3 Hz, ${}^{3}J_{2}$ = 13.0 Hz, H-4), 3.69 (q, 2H, H-2), 4.03 (m, 1H, H-3).

Synthesis of 2-chloro-1,3-diaminopropane dihydrochloride

CI⁻ NH₃⁺ NH₃⁺ CI⁻

N,*N*'-di-*t*-boc-2-hydroxy-1,3-diaminopropane (1.0 g, 3.5 mmol) and triphenylphosphine (1.5 g, 5.72 mmol) were dissolved in chloroform (15 mL) and carbon tetrachloride (35 mL). This solution was refluxed for 5 hours, before the solvents were removed under reduced pressure by rotary evaporation. The resulting oil was dissolved in diethylether to precipitate the OPPh₃ and the resulting solution centrifuged to remove the insoluble OPPh₃. The diethyl ether was removed by rotary evaporation and the resulting oil dissolved in methanolic HCI (1.25 M, 30 mL) and stirred overnight. The 2-chloro-1,3-diaminopropane dihydrochloride was precipitated as a white powder by the addition of dichloromethane. The powder was stored over P₂O₅ (0.304 g, 49% yield). The complex was characterised by ¹H and ¹³C NMR spectroscopy. ¹H NMR (400 MHz, D₂O, 298 K) [δ , ppm]: 3.34 (dd, 2H, ³J₁ = 3.8 Hz, ³J₂ = 14.7 Hz, H-2), 3.57 (dd, 2H, ³J₁ = 3.3 Hz, ³J₂ = 13.9 Hz, H-2), 4.58 (m, 1H, H-1). ¹³C NMR (100 MHz, D₂O, 298K) [δ , ppm]: 42.95 (C-2), 54.94 (C-1).

General synthesis of simple bis(pyrrole-imine) and bis(imidazole-imine) ligands

1*H*-Pyrrole-2-carbaldehyde (30 mmol) or 5-methyl-1*H*-imidazole-4-carbaldehyde (30 mmol) and a 1,2- or 1,3-diaminoalkane derivative (15 mmol) were refluxed in ethanol (30 mL) for two hours. During refluxing the reaction mixture changed from colourless to a clear, bright orange. Solvent was then removed by rotary evaporation, leaving a viscous orange-coloured oil. The oil was then dissolved in dichloromethane prior to adding hexane to the solution, which was left to re-crystallise overnight. This typically yields the crystalline bis(Schiff base) product in around 70-90% yield. The crystalline product can be shown to be clean by thin layer chromatography or ¹H NMR spectroscopy. Single crystals suitable for X-ray crystallography may also be obtained from the re-crystallisation process. The procedure and full characterization for N,N'-bis[(1*E*)-1*H*-pyrrol-2-ylmethylene]propane-1,3-diamine have, for example, been reported elsewhere.¹⁴

<u>General synthesis of new bis(pyrrole-imine) ligands from 1,3-diaminopropane</u> <u>dihydrochloride salts</u>

The general strategy when condensing dihydrochloride salts of the diamine linker group with two molar equivalents of 1*H*-pyrrole-2-carbaldehyde was to carry out the

reaction under solvent-free conditions to avoid incompatible solubility of the two reagents and to obviate the use of organic bases for deprotonation of the diamine reagent's ammonium groups. A typical solid-state reaction is described below.

Excess sodium carbonate (ca. 4 mmol) and a relevant 2-substituted 1,3diaminopropane dihydrochloride derivative (ca. 2 mmol) were ground in an agate pestle and mortar for 1 minute. To the resulting white paste, 1H-pyrrole-2-carbaldehyde (ca. 4 mmol) was added and the mixture ground together for a further 10 min. Water was then added to the paste, followed by acetone, to dissolve the ligand. The solvent solution was collected and the acetone allowed to evaporate, yielding the ligand as a pale yellow powder. The powder was purified by re-crystallisation from 1:30:50 ethanol:THF:hexane. Typical isolated yields were of the order of 60-70%. The product ligands were analysed by ¹H NMR, ¹³C NMR, UV/visible and IR spectroscopy. In some cases, crystals suitable for a structure determination by X-ray diffraction were obtained during the re-crystallisation step. Synthetic methods and characterization data for several novel ligands prepared in this way are described below.

Synthesis of 2-chloro-*N*-[(1*E*)-1*H*-pyrrol-2-ylmethylene]-*N*'-[(1*Z*)-1*H*-pyrrol-2-ylmethylene]propane-1,3-diamine

Sodium carbonate (0.448 g, 4.24 mmol) and 2-chloro-1,3-diaminopropane dihydrochloride (0.350 g, 1.93 mmol) were ground in an agate pestle and mortar for 1 minute. To the resulting white paste, 1*H*-pyrrole-2-carbaldehyde (0.365 g, 3.93 mmol) was added and the mixture ground together for a further 10 min. Water was then added to the paste, followed by acetone, to dissolve the ligand. The solvent solution was collected and the acetone allowed to evaporate, yielding the ligand as a pale yellow powder. The powder was re-crystallised from 1:30:50 ethanol:THF:hexane (0.290 g,

SUBSTITUTE SHEET (RULE 26)

62% yield). The novel ligand was further characterized by ¹H NMR, ¹³C NMR, UV/visible and IR spectroscopy. UV/vis (ethanol) [λ_{max} , nm; ε, mol⁻¹ dm³ cm⁻¹]: 292; 3.81 × 10⁴. IR (cm⁻¹): 3183w δ(NH, pyrrole), 2942m br v(CH, imine), 2838m v(CH, H-CCl), 1643s br v(C=N), 743 (C-Cl stretch). ¹H NMR (400 MHz, DMSO-*d*₆, 298 K) [δ, ppm]: 3.74 (dd, ³J₁ = 7.2 Hz, ³J₂ = 5.3 Hz, 2H, H-6), 4.01 (dd, ³J₁ = 7.88 Hz, ³J₂ = 5.3 Hz, 2H, H-6), 4.45 (m, 1H, H-7) 6.13 (t, 2H, H-2), 6.50 (dd, ³J₁ = 3.7 Hz, ³J₂ = 1.3 Hz, 2H, H-3), 6.90 (s br, 2H, H-1), 8.11 (s, 2H, H-5), 11.37 (s br, 2H, CD₃OD exchangeable, H-8). ¹³C NMR (100 MHz, DMSO-*d*₆, 298 K) [δ, ppm]: 63.57 (C-6), 64.88 (C-7), 109.47 (C-2), 114.53 (C-3), 122.96 (C-1), 129.98 (C-4), 154.43 (C-5).

Synthesis of 2-ethoxy-N,N-bis[(1E)-1H-pyrrol-2-ylmethylene]propane-1,3-diamine

(0.366 g, Sodium carbonate 3.45 mmol) and 2-ethoxy-1,3-diaminopropane dihydrochloride (0.300 g, 1.57 mmol) were ground together in an agate pestle and mortar for 5 min. To the resulting white paste, 1H-pyrrole-2-carbaldehyde (0.299 g, 3.14 mmol) was added and the mixture ground for a further 10 min. The crude ligand was dissolved in dichloromethane (40 mL) and washed with water (3 x 25 mL) portions. The organic layer was dried over anhydrous sodium carbonate. To the dichloromethane solution, aliquots of ethanol (1 mL) and hexane (50 mL) were added to re-crystallise the ligand. Crystals suitable for singe crystal X-ray diffraction were obtained from the recrystallisation (0.280 g, 65% yield). The novel ligand was further characterized by ¹H NMR, ¹³C NMR, UV/visible and IR spectroscopy and X-ray diffraction. UV/vis (ethanol) $[\lambda_{max}, nm; \epsilon, mol^{-1} dm^{3} cm^{-1}]$: 290; 3.48 × 10⁴. IR (cm⁻¹): 3158w δ (NH, pyrrole), 2975m br v(CH, imine), 2901m v(CH, H-COCH₂), 2838m v(CH, CH₃) 1631s br v(C=N), 734 (C-O stretch). ¹H NMR (400 MHz, CDCI₃, 298 K) [δ, ppm]: 1.08 (t, 3H, H-9), 3.49-3.65 (m, 4H,

H-6), 3.65-3.80 (m, 3H, H-8), 6.21 (t, 2H, H-2), 6.46 (dd, ${}^{3}J_{1}$ = 3.7 Hz, ${}^{3}J_{2}$ = 1.3 Hz, 2H, pyrrole H-3), 6.86 (s br, 2H, H-1), 8.03 (s, 2H, H-5), 9.53 (s, 2H, CD₃OD exchangeable, H-10). 13 C NMR (100 MHz, CDCl₃, 298 K) [$\bar{0}$, ppm]: 15.62 (C-9), 62.64 (C-6), 65.82 (C-8), 79.31 (C-7), 109.66 (C-2), 114.34 (C-3), 122.02 (C-1), 130.26 (C-4), 153.68 (C5).

Synthesis of tert-butylamonium tetrachloroaurate(III)

There are several methods in the literature for making $[Bu_4N][AuCl_4]$. We have developed a modified version of a typical method which involves precipitation of $[Bu_4N][AuCl_4]$ after the addition of $[Bu_4N]Cl$ to a solution of $H[AuCl_4]$.⁴⁰ More specifically, we found it necessary to add a solvent-extraction step to the preparative method to obtain an acid-free product suitable for subsequent metallation reactions of the potentially hydrolysable Schiff base ligands described in this invention.

Hydrogen tetrachloroaurate(III) (0.406 g, 0.98 mmol) was dissolved in deionised water (15 mL). To this solution *tert*-butylamonium hydrogen sulphate (340 mg, 1.01 mmol) was added, forming a lipophillic gold(III) salt, which immediately precipitated from the aqueous solution as a bright yellow powder:

$$H[AuCl_4](aq) + [Bu_4N][HSO_4](aq) \rightarrow [Bu_4N][AuCl_4](s) + H_2SO_4(aq)$$

The [Bu₄N][AuCl₄] was then extracted from the sulphuric acid into chloroform. The organic solution was dried over magnesium sulphate before the chloroform was removed by rotary evaporation, leaving a bright yellow, crystalline solid (0.570 g, 97.2% yield). The crystalline solid was dried under vacuum and stored under nitrogen.

General metallation of simple bis(pyrrole-imine) and bis(imidazole-imine) ligands

In a typical reaction carried out under an inert atmosphere, [Bu₄N][AuCl₄] (100 mg, 0.172 mmol) was added to a dry 100 mL round-bottom flask and dissolved in 20 mL of dry dichloromethane. Five molar equivalents of free base ligand (0.860 mmol) were dissolved in 15 mL of dry ethanol. The ethanolic solution was then heated and the gold(III) solution was added via cannula transfer to the hot ethanol solution and the mixture stirred under nitrogen. The solution rapidly turned a deep red colour and the

SUBSTITUTE SHEET (RULE 26)

product precipitated from the solution as a pale yellow powder after approximately 45 minutes. The precipitate was collected by centrifugation. This crude material was recrystallized by slow liquid diffusion of a methanol solution of the complex into diethylether. The re-crystallized product may be isolated in 60-70% yield and analysed by X-ray crystallography as well as LCMS, NMR, IR and UV/visible spectroscopy.

Specific synthetic procedure for compound 1.1a

The synthetic scheme (Scheme 26 below) and structures of the reagents and products are shown below for MA_AuPr. The method is general for all of the non-macrocyclic bis(pyrrolide-imine) structures listed in Formula (I).

The following reaction was carried out under inert atmosphere conditions. To a dry 100 mL round-bottomed flask, [Bu₄N][AuCl₄] (100 mg, 0.172 mmol) was added and dissolved in 20 mL dry dichloromethane. Five molar equivalents of free base ligand (196 mg, 0.860 mmol) was dissolved in 15 mL of dry ethanol (the ligand was synthesized as previously described¹⁴). The ethanolic solution was then heated and the gold(III) solution was added via cannula transfer to the hot ethanol solution and the mixture stirred under nitrogen. The solution rapidly turned a deep red color and the product precipitated from the solution as a pale yellow powder after approximately 45 minutes. The precipitate was now air stable and was collected by centrifugation. This crude material was re-crystallized by slow liquid diffusion of a methanol solution into diethylether. The re-crystallized product (52.8 mg, 0.148 mmol, 67% yield) was shown to be MA_AuPr by X-ray crystallography as well as NMR, IR and UV/visible spectroscopy.

It was found that use of a smaller excess of ligand resulted in the desired chelate. The counterion of this chelate was not, however, the desired chloride ion but rather a linear gold(I) chloride, [AuCl₂]⁻. The presence of this undesirable anion was confirmed by X-ray crystallography. The developed method with the addition of the gold(III) solution to the excess ligand, dissolved in hot ethanol consistently produced the desired chelate, with the desired anion.

The salt [Bu₄N][AuCl₄] was found to be more satisfactory than the more conventional [Na][AuCl₄] as the source of gold(III) ions for two reasons. First, the use of [Na][AuCl₄] resulted in the formation of [AuCl₂]⁻ anions, regardless of the concentration of the ligand solution. Second, the salt [Bu₄N][AuCl₄] is soluble in non-polar solvents, unlike [Na][AuCl₄] which is only soluble in polar solvents. This therefore means that the chelation reaction can be carried out in non-polar solvents. This is ideal since the starting materials are soluble in non-polar solvents, while the gold(III) chelate is not. The gold(III) chelate therefore precipitates out of solution relatively pure. This synthetic method was therefore found to require no additional purification steps, the final crystallization was sufficient to generate a high purity material.

Characterization data for compound 1.1a

2,2'-{propane-1,3-diylbis[nitrilo(E)methylylidene]}bis(pyrrol-1-ido)gold(III) chloride: M/Z⁺ = 423.0885 M⁺ (calc. = 423.0884). UV/vis (methanol) [λ_{max} , nm; ε, mol⁻¹ dm³ cm⁻¹]: 288; 1.47x10⁴, 382; 1.05x10⁴. IR (KBr pellet, cm⁻¹): 3090m br v(CH, imine), 3010m v(CH, CH₂CH₂CH₂), 2930m v(CH, CH₂-N=CH), 1590s br v(C=N). ¹H NMR (400 MHz, CD₃OD, 298 K) [δ , ppm]: 2.28 (q, 2H, CH₂CH₂CH₂), 3.78 (t, 4H, CH₂-N=CH), 6.49 (dd, ³J₁ = 2.5 Hz, ³J₂ = 2.5 Hz, 2H, pyrrole β-H), 7.05 (d, 2H, pyrrole γ-H), 7.58 (d br, 2H, pyrrole α-H), 8.22 (s, 2H, imine). ¹³C NMR (100 MHz, CD₃OD, 298 K) [δ , ppm]: 32.53 (CH₂CH₂CH₂), 52.95 (CH=NCH₂), 113.96 (pyrrole β-C), 124.39 (pyrrole γ-C), 138.32 (pyrrole C NH-C-C=N), 139.25 (pyrrole α-C), 164.55 (imine C).

SUBSTITUTE SHEET (RULE 26)

Characterization data for compound 1.1b

2,2'-{(2,2-dimethylpropane-1,3-diyl)bis[nitrilo(E)methyl- ylidene]} bis(pyrrol-1ido)gold(III) chloride: M/Z⁺ = 451.1196 M⁺ (calc. = 451.1197). UV/vis (ethanol) [λ_{max} , nm; ε, mol⁻¹ dm³ cm⁻¹]: 290; 1.48x10⁴, 381; 1.11x10⁴. IR (KBr pellet, cm⁻¹): 3176w δ(NH, pyrrole), 3125m br v(CH, imine), 2970m v(CH, terminal CH₃), 2854m v(CH₂, alkyl), 1631s br v(C=N). ¹H NMR (400 MHz, CD₃OD, 298 K) [δ, ppm]: 0.98 (s, 6H, terminal CH₃), 3.43 (s, 4H, alkyl CH₂), 6.26 (dd, ³J₁ = 3.7 Hz, ³J₂ = 1.3 Hz, 2H, pyrrole β-H), 6.45 (t, 2H, pyrrole γ-H), 6.91 (s br, 2H, pyrrole α-H), 8.02 (s, 2H, imine). ¹³C NMR (100 MHz, CD₃OD, 298 K) [δ, ppm]: 22.18 (CH₃), 39.03 (C(CH₃)₂), 61.70 (CH=NCH₂), 112.84.69 (pyrrole β-C), 123.33 (pyrrole γ-C), 137.57 (Pyrrole C NH-C-C=N), 137.95 (pyrrole α-C) 163.98 (imine C).

Characterization data for compound 1.1c

2,2'-{(2-hydroxypropane-1,3-diyl)bis[nitrilo(E) methyl- ylidene]}bis(pyrrol-1ido)gold(III) hexafluorophosphate(V): M/Z⁺ = 439.0834 M⁺ (calc. = 439.0833). UV/vis (methanol) [λ_{max} , nm; ε, mol⁻¹ dm³ cm⁻¹]: 282; 1.57x10⁴, 379; 1.15x10⁴. IR (KBr pellet, cm⁻¹): 3431m br δ(OH), 3110m br v(CH, imine), 2985m v(CH, H-COH), 2946m v(CH, CH₂-N=CH), 1592s br v(C=N), 1104w (C-O stretch). ¹H NMR (400 MHz, D₂O, 298 K) [δ, ppm]: 3.35 (s ,1H, HOCH), 3.77 (s, 2H, CH₂-N=CH, 6.36 (dd, ³J₁ = 2.1 Hz, ³J₂ = 1.8 Hz pyrrole β-H), 6.89 (s br, 2H, pyrrole γ-H) 7.24 (s, 2H, pyrrole α-H), 8.02 (s, 2H, imine). ¹³C NMR (100 MHz, D₂O, 298 K) [δ, ppm]: 54.95 (CH₂CHOHCH₂), 69.02 (CH₂CHOHCH₂), 100.03 (pyrrole β-C), 113.07 (pyrrole γ-C), 124.00 (pyrrole C NH-C-C=N), 137.08 (pyrrole α-C), 164.62 (imine C).

Characterization data for compound 1.1d

 $2,2'-{(2-ethoxypropane-1,3-diyl)bis[nitrilo(E)methylylidene]}bis$ (pyrrol-1ido)gold(III) hexafluorophosphate(V): M/Z⁺ = 467.1148 M⁺ (calc. = 467.1146). UV/vis (acetonitrile) [λ_{max} , nm; ϵ , mol⁻¹ dm³ cm⁻¹]: 288; 1.43x10⁴, 379.5; 1.10x10⁴. IR (cm⁻¹): 2909m br v(CH, imine), 2880m v(CH, H-COC), 1581s br v(C=N), 1045s v(C-O) 834w v(PF₆). ¹H NMR (400 MHz, CD₃CN, 298 K) [δ , ppm]: 1.16 (t, 3H, CH₃), 3.61 (q, 2H, OCH₂CH₃), 3.80 (d, 2H, CH₂-N=CH), 3.95 (dd, ${}^{3}J_{1}$ = 9.6 Hz, ${}^{3}J_{2}$ = 5.8 Hz, 2H, CH₂-N=CH), 4.31 (t ,1H, OCH), 6.53 (dd, ${}^{3}J_{1}$ = 2.1 Hz, ${}^{3}J_{2}$ = 1.8 Hz pyrrole β-H), 7.10 (s br, 2H, pyrrole γ-H) 7.54 (s, 2H, pyrrole α-H), 8.12 (s, 2H, imine). 13 C NMR (100 MHz, CD₃CN, 298 K) [δ, ppm]: 14.50 (CH₃), 29.99 (OCH₂CH₃) 53.28 and 64.20 (CH₂CHCICH₂), 75.49 (CH), 112.85 (pyrrole γ-C), 123.59 (pyrrole C NH-C-C=N), 137.65 (pyrrole α-C), 164.36 (imine C).

Characterization data for compound 1.1e

2,2'-{(2-chloropropane-1,3-diyl)bis[nitrilo(E)methylylidene]}bis (pyrrol-1-ido)gold(III) hexafluorophosphate(V): M/Z⁺ = 457.0497 M⁺ (calc. = 457.0494). UV/vis (acetonitrile) [λ_{max} , nm; ε, mol⁻¹ dm³ cm⁻¹]: 289; 1.54x10⁴, 381.5; 1.22x10⁴. IR (cm⁻¹): 3141m br v(CH, imine), 3046m v(CH, H-CCI), 1581s br v(C=N), 822w v(PF₆), 741s v(C-CI). ¹H NMR (400 MHz, CD₃CN, 298 K) [δ , ppm]: 3.96 (dd, ³J₁ = 10.00 Hz, ³J₂ = 4.85 Hz, 2H, CH₂-N=CH), 4.15 (d, 2H, CH₂-N=CH), 5.00 (t, 1H, CICH), 6.56 (dd, ³J₁ = 2.1 Hz, ³J₂ = 1.8 Hz pyrrole β-H), 7.16 (s br, 2H, pyrrole γ-H) 7.57 (s, 2H, pyrrole α-H), 8.11 (s, 2H, imine). ¹³C NMR (100 MHz, CD₃CN, 298 K) [δ , ppm]: 55.86 (CH₂CHCICH₂), 58.00 (CH₂CHCICH₂), 100.03 (pyrrole β-C), 113.28 (pyrrole γ-C), 124.52 (pyrrole C NH-C-C=N), 137.59 (pyrrole α-C), 164.65 (imine C).

Characterization data for compound 1.2a

2,2'-{ethane-1,2-diylbis[nitrilo(E)methylylidene]}bis(pyrrol-1-ido)gold(III)

hexafluorophosphate(V): $M/Z^+ = 409.0728$ M⁺ (calc. = 409.0729). UV/vis (acetonitrile) [λ_{max} , nm; ε, mol⁻¹ dm³ cm⁻¹]: 292; 1.45x10⁴, 385; 1.07x10⁴. IR (KBr pellet, cm⁻¹): 3127m br v(CH, imine), 3053m v(CH, CH₂CH₂), 2866m v(CH, CH₂-N=CH), 1575s br v(C=N). ¹H NMR (400 MHz, CD₃OD, 298 K) [δ , ppm]: 4.40 (s, 4H, CH₂-N=CH), 6.50 (dd, ³J₁ = 2.14 Hz, ³J₂ = 1.3 Hz, 2H, pyrrole β-*H*), 7.08 (s, 2H, pyrrole α-*H*), 7.47 (t, 2H, pyrrole γ-*H*), 7.86 (s, 2H, imine). ¹³C NMR (100 MHz, CD₃CN, 298 K) [δ , ppm]: 62.49 (CH₂CH₂), 112.89 (pyrrole β-C), 125.67 (pyrrole γ-C), 137.99 (pyrrole α-C), 138.84 (Pyrrole C NH-C-C=N), 161.44 (imine C). ³¹P NMR (162 MHz, CD₃CN, 298 K) [δ , ppm]: -144.62 (PF₆). ¹⁹F NMR (376 MHz, CD₃CN, 298 K) [δ , ppm]: -73.82, -71.95 (PF₆).

Characterization data for compound 1.2b

2,2'-{(2S)-propane-1,2-diylbis[nitrilo(E)methylylidene]} bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V): M/Z⁺ = 423.0883 M⁺ (calc. = 423.0884) . UV/vis (acetonitrile) [λ_{max} , nm; ε , mol⁻¹ dm³ cm⁻¹]: 293.5; 1.42x10⁴, 385; 1.08x10⁴. IR (KBr pellet, cm⁻¹): 3125w br v(CH, imine),1552s br v(C=N), 830s (PF₆). ¹H NMR (400 MHz, CD₃OD, 298 K) [δ , ppm]: 1.62 (d, 3H, CH₃) 4.21 (dd, ³J₁ = 7.88 Hz, ³J₂ = 6.5 Hz, 1H, CH₂), 4.48 (dd, ³J₁ = 8.58 Hz, ³J₂ = 5.81 Hz, 1H, CH₂) 4.85 (m, 1H, CHCH₃), 6.50 (dd, ³J₁ = 2.14 Hz, ³J₂ = 1.3 Hz, 2H, pyrrole β-H), 7.08 (s, 2H, pyrrole α-H), 7.47 (t, 2H, pyrrole γ-H), 7.84 (s, 1H, imine), 7.88 (s,1H, imine). ¹³C NMR (100 MHz, CD₃CN, 298 K) [δ , ppm]: 16.18 (CH₃), 68.07 (CH₂), 113.03 (pyrrole β-C), 125.58 (pyrrole γ-C), 140.00 (pyrrole α-C), 143.11 (Pyrrole C NH-C-C=N), 159.68 (imine C), 161.36 (imine C). ³¹P NMR (162 MHz, CD₃CN, 298 K) [δ , ppm]: -144.27 (PF₆). ¹⁹F NMR (376 MHz, CD₃CN, 298 K) [δ , ppm]: -73.87, -71.99 (PF₆).

Characterization data for compound 1.3b

2,2'-{(4-methyl-1,2-phenylene)bis[nitrilo(E)methylylidene]}bis(pyrrol-1-ido)gold(III) nitrate(V): M/Z⁺ = 471.0887 M⁺ (calc. = 471.0889). UV/vis (ethanol) [λ_{max} , nm; ε, mol⁻¹ dm³ cm⁻¹]: 296; 2.00x10⁴, 323; 4.03x10⁴, 374.5; 1.58x10⁴, 457; 1.43x10⁴. IR (cm⁻¹): 3097m br v(CH, imine), 2983m v(aromatic C-H), 1553s br v(C=N). ¹H NMR (400 MHz, CDCl₃, 298 K) [δ , ppm]: 2.40 (s, 3H, CH₃) 6.62-8.0 (m, 9H, aromatic C-H), 8.84 (s, 2H, imine). ¹³C NMR (100 MHz, CDCl₃, 298 K) [δ , ppm]: 21.78 (CH3), 115.26 (pyrrole α-C), 118.04 (pyrrole β-C), 120.35 (CH₃CCHCN), 120.98 (CHCHCN) 124.68 (pyrrole γ-C), 127.25 (CHCHCN) 131.23 (pyrrole C NH-C-C=N), 143.76 (CH₃C), 145.4 (Ph C), 153.33 (imine C).

Characterization data for compound 1.4c

2,2'-{(1R,2R)-cyclohexane-1,2-diylbis[nitrilo(E)methylylid en]}bis(pyrrol-1ido)gold(III)hexafluorophosphate(V): M/Z⁺ = 463.1195 M⁺ (calc. = 463.1197). UV/vis (acetonitrile) [λ_{max} , nm; ϵ , mol⁻¹ dm³ cm⁻¹]: 294; 1.54x10⁴, 380.5; 1.22x10⁴. IR (cm⁻¹): 2955m br v(CH, imine), 2867m v(CH, CH₂CH₂), 1564s br v(C=N), 821s v(PF₆). ¹H NMR (400MHz, DMSO, 298 K) [δ, ppm]: 1.31 and 1.65 (t, 2H, CH₂CH), 1.78 and 2.61 (d, 2H, CH₂CH₂CH), 4.32 (d, 2H, CH) 6.47 (dd, ${}^{3}J_{1}$ = 2.14 Hz, ${}^{3}J_{2}$ = 1.3 Hz, 2H, pyrrole β-H), 7.07 (t, 2H, pyrrole α-H), 7.78 (s br, 2H, pyrrole γ-H), 8.37 (s, 2H, imine). 13 C NMR (100 MHz, DMSO, 298 K) [δ, ppm]: 24.40 (CHCH₂CH₂CH₂), 29.08 (CHCH₂CH₂CH₂), 76.86 (CHCH₂CH₂CH₂), 113.02 (pyrrole α-C), 125.20 (pyrrole β-C), 140.00 (pyrrole γ-C), 143.38 (Pyrrole C NH-C-C=N), 158.92 (imine C).

Synthesis of bis(imidazolato-imine) chelates

Procedure for compound 1.1f

A solution of *tert*-butylammonium tetrachloroaurate (100 mg, 0.172 mmol) and *tert*butylammonium hexafluorophosphate(V) (400 mg, 0.103 mmol) in dichloromethane (20 ml) was added to *N*,*N*-bis[(1*E*)-(5-methyl-1*H*-imidazol-4-yl)methylene]propane-1,3diamine (246 mg. 0.860 mmol) in ethanol (10 mL). A yellow precipitate immediately formed. The solution was stirred at room temperature for 1 hour. The yellow precipitate of *4*,*4'-{propane-1,3-diylbis[nitrilo(E)methylylidene]}bis(5-methylimidazol-1-ide)gold(III) hexafluorophosphate(V)* (complex 1.1f) was filtered and dried (81 mg, 79%). ¹H NMR: (500 MHz, DMSO-*d*₆) δ 2.22 (br, 2H, *h*), 2.52 (s, 6H, *d*), 3.74 (br, 4H, *g*), 8.41 (s, 2H, *a*), 8.83 (s, 2H, *f*). ¹³C NMR: (125 MHz, DMSO-*d*₆) δ 14.5 (*d*), 30.5 (*h*), 51.9 (*g*), 134.5 (*c*), 147.6 (*a*), 152.7 (*e*), 162.0 (*f*). IR (cm⁻¹): 1595(s), 1359(m), 1298(m), 1256(m), 1201(m), 1157(m), 971(w), 820(vs), 641 (m), 555(s), 482(m), 431 (m); MS: m/z 453.1099 (M+Na)⁺.

Procedure for compound 1.1g

A solution of *tert*-butylammonium tetrachloroaurate (100 mg, 0.172 mmol) and *tert*butylhexafluorophosphate(V) (400 mg, 0.103 mmol) in dichloromethane (20 mL) was added to a 2,2-dimethyl-*N*,*N*'-bis[(1*E*)-(5-methyl-1*H*-imidazol-4-yl)methylene]propane-1,3-diamine (178 mg, 0.688 mmol) in ethanol (5 mL). This resulted in the immediate formation of a yellow precipitate. The reaction mixture was stirred for one hour at room temperature. The yellow precipitate of *4*,*4'*-{(2,2-dimethylpropane-1,3-diyl)bis-[*nitrilo(E)methylylidene]*bis(5-methylimidazol-1-ide)gold(III) hexaflurophosphate(V) (complex 1.1g) was filtered and dried (89 mg, 83%). ¹H NMR: (500 MHz, DMSO-*d*₆) δ 1.08 (s, 6H, *î*), 2.53 (s, 6H, *d*), 3.47 (s, 4H, *g*), 8.45 (s, 2H, *a*), 8.80 (s, 2H, *f*). ¹³C NMR: (125 MHz, DMSO-*d*₆) δ 14.5 (*d*), 30.5 (*h*), 51.9 (*g*), 134.5 (*c*), 147.6 (*a*), 152.7 (*e*), 162.0 (*f*). IR (cm⁻¹): 1593(s), 1381(m), 1359(m), 1277(m), 1206(m), 922(vs), 642(w), 557(vs), 438(s). MS: m/z 481.1420 (M⁺).

Synthesis of KA_AumacroPr and related Au(III) macrocycles

Macrocyclic Au(III) compound library synthesized and characterized using the methodology outlined for KA_AumacroPr and KA_AumacroDM. The anion X^- is typically PF₆⁻, but may also be an anion such as triflate.

<u>Scheme 26</u>

Only the macrocyclic ligand for $1.1Y^1a$ (i.e. that with a propyl bridge linking the two imine units) could be metallated by straightforward reaction of the macrocycle with a Au(III) salt using the method described for compound 1.1a. Complexes $1.1Y^1b$ and $1.5Y^1a$ had to be synthesized by a novel metal-templated reaction in which closure of the macrocycle through the formation of the bis(imine) links with the relevant diamine nucleophile occurs about the Au(III)-bound 2,3-bis(5'-formylpyrrol-2'-yl)quinoxaline moiety (i.e. metal-templated cyclization).

Procedure for compound 1.1Y¹a

The free ligand was synthesized following the literature method.⁴¹ A solution of tert-butylammonium tetrachloroaurate(III) (80 mg. 0.138 mmols) and tertbutylammonium hexafluorophosphate(V) (160 mg, 0.414 mmols) in dichloromethane (15 mL) was added dropwise to the free ligand, 12,13-dihydro-14H-6,9:17,20diepimino[1,6]diazacyclo-heptadecino [12,13-b]quinoxaline (99 mg, 0.275 mmols) in dichloromethane (20 mL). The solution was refluxed for 16 hours. Over this time a precipitate formed which was filtered, washed with dichloromethane and dried to afford brick red powder of {12,13-dihydro-14H-6,9:17,20-diepimino[1,6]diazacycloа heptadecino[12,13-β]quinoxalinato}gold(III) hexafluorophosphate(V) (44 mg, 37%). Crystals suitable for single crystal X-ray diffraction were grown by vapor diffusion of diethylether into a benzonitrile solution of the product. ¹H NMR (400 MHz, DMSO- d_6): δ 2.42 (br, 2H, =N-CH₂-CH₂), 3.94 (br, 4H, =N-CH₂-CH₂), 7.25 (d, ³J_{HH}= 4.4 Hz, 2H, 3pyrrole), 7.81 (d, ³J_{HH}= 4.4 Hz, 2H, *4*-pyrrole), 7.94-7.96 (dd, ⁴J_{HH}=3.3 Hz, ³J_{HH}=3.1 Hz, 2H, 6,7-quinoxaline), 8.05-8.07 (dd, ${}^{4}J_{HH}$ =3.3 Hz, ${}^{3}J_{HH}$ =3.1 Hz, 2H, 8,5-quinoxaline), 8.73 (s, 2H, -C*H*=N); ¹³C (100 MHz, DMSO-*d*₆): δ 33.81, 51.27, 118.76, 122.46, 128.48, 131.69, 135.53, 138.99, 139.35, 147.54, 163.05; IR (cm⁻¹): 2955 (br), 1649 (m), 1572 (w), 1472 (w), 1400 (m), 1294 (m),1115 (m), 1068 (w), 832 (s), 760 (s), 664 (w), 497 (s), 424 (m); UV-vis (CH₃CN) λ_{max} [nm] (ϵ/M^{-1} cm⁻¹): 246 (23 346), 309 (30 077), 346 (18 001), 373 (15 237), 455 (12 041);); MS: m/z 549.1104 (M⁺).

SUBSTITUTE SHEET (RULE 26)

Procedure for compound 1.1Y¹b

Metal-templated synthesis of the chloride salts of macrocyclic Au(III) compounds such as KA_AumacroDM and KA_AumacroBu. The chloride ion is then exchanged with PF_6^- for crystallization.

Scheme 27

2,3-Bis(5'-formylpyrrol-2'-yl)quinoxaline, alternatively named 5,5'-quinoxaline-2,3diylbis(1H-pyrrole-2-carbaldehyde), was synthesized by the literature method.⁴¹ Α solution of 2,3-bis(5'-formylpyrrol-2'-yl)quinoxaline (54 mg, 0.172 mmols) in dichloromethane (10 mL) was added dropwise to tert-butylammonium tetrachloroaurate(III) (100 mg, 0.172 mmols) in dichloromethane (20 mL). The solution was allowed to reflux for 90 min before the addition 1,3-diamino-2,2-dimethylpropane (18 mg, 0.172 mmols) whereupon a yellow solid immediately precipitates out of solution. The reaction mixture was refluxed for a further 30 min and after this time triethylamine (35 mg, 0.344 mmols) was added after which the precipitate turned orange. The reaction mixture was refluxed for 1 hour before the orange precipitate was isolated and dried. This precipitate was dissolved in methanol and a saturated solution of ammonium hexafluorophosphate(V) was added to precipitate out the hexafluorophosphate salt of the gold complex. The precipitate was filtered and dried to afford an orange powder of {12,14-dihydro-13,13-dimethyl-6,9:17,20-diepimino[1,6]diazacyclo-heptadecino[12,13- β Jquinoxalinato}gold(III) hexafluorophosphate(V) (45 mg, 36%). ¹H NMR (500 MHz, DMSO- d_6): δ 1.19 (s, 6H, CH₃), 3.72 (s, 4H, =N-CH₂-C(CH₃)₂), 7.44 (d, ³J_{HH}= 4.4 Hz,

2H, 3-pyrrole), 7.97-7.99 (dd, ${}^{4}J_{HH}$ =3.3 Hz, ${}^{3}J_{HH}$ =3.1 Hz, 2H, 6,7-quinoxaline), 7.99 (d, ${}^{3}J_{HH}$ = 4.4 Hz, 2H, 4-pyrrole), 8.17-8.19 (dd, ${}^{4}J_{HH}$ =3.3 Hz, ${}^{3}J_{HH}$ =3.1 Hz, 2H, 8,5-quinoxaline), 8.83 (s, 2H, -C*H*=N); 13 C (125 MHz, DMSO-*d*₆): δ 23.09, 43.05, 61.57, 119.35, 123.39, 129.08, 132.31, 136.73, 139.67, 140.03, 148.43, 164.56; IR (cm⁻¹): 1569 (m), 1471 (w), 1405 (m),1339 (w), 1238 (w), 1107 (m), 835 (s), 557 (m), 433 (m); UV-vis (CH₃CN) λ_{max} [nm] (ϵ/M^{-1} cm⁻¹): 230 (17 642), 249 (14 463), 309 (16 131), 348 (8 795), 375 (8 680), 458 (6 640), 481 (6 360); MS: m/z 577.1416 (M⁺).

Procedure for compound 1.5Y¹a

This complex was prepared by the same method used for the synthesis of $1.1Y^{1}b$ but with 1,4-diaminobutane (15.2 mg, 0.172 mmols) as the macrocycle-closing diamine to give a brown powder of compound $1.5Y^{1}a$, {12,13,14,15-tetrahydro-6,9:18,21-diepimino[1,6]diazacycloctadecino[12,13-b]quinoxalinato}gold(III)

hexafluorophosphate(V) (20 mg, 16%). ¹H NMR (500 MHz, DMSO-*d*₆): δ 2.04 (br, 4H, =N-CH₂-CH₂), 4.31 (br, 4H, =N-CH₂-CH₂), 7.45 (d, ³J_{HH}= 4.4 Hz, 2H, 3-pyrrole), 7.95-7.97 (dd, ⁴J_{HH}=3.3 Hz, ³J_{HH}=3.1 Hz, 2H, 6,7-quinoxaoline), 8.06 (d, ³J_{HH}= 4.4 Hz, 2H, *4*pyrrole), 8.17-8.18 (dd, ⁴J_{HH}=3.3 Hz, ³J_{HH}=3.1 Hz, 2H, 8,5-quinoxaline), 8.74 (s, 2H, -CH=N); ¹³C (125 MHz, DMSO-*d*₆): δ 23.68, 55.41, 118.92, 122.26, 128.52, 131.69, 135.69, 139.64, 139.72, 147.92, 164.83; IR (cm⁻¹): 2964 (w), 1590 (m), 1400 (m), 1354 (m), 1100 (m), 1059 (m), 829 (s), 555 (s), 446 (w); UV-vis (CH₃CN) λ_{max} [nm] (ε/M⁻¹ cm⁻¹): 244 (16 439), 306 (19 364), 347 (13 712), 370 (13 425), 449 (9 825); MS: m/z 563.1265 (M⁺).

Compound $1.1Y^{1}e$, {13-chloro-12, 14-dihydro-6,9:17, 20-diepimino[1,6]diazacycloheptadecino[12, 13- β]quinoxalinato}gold(III) hexafluorophosphate(V), was similarly synthesized.

Table 2 shows a summary of X-Ray data of some of the gold(III) chelates of the invention.

Table 2

Summary of X-Ray data of some of the gold(III) chelates of the invention

Crystal Data			
	Jan 2 and		
Formula	C ₁₃ H ₁₄ AuF ₆ N ₄ OP	C ₁₅ H ₁₉ AuCIN ₄ O _{0.5}	C ₁₂ H ₁₂ AuF ₆ N ₄ P
Compound number	MA_AuOH (1.1c)	MA_AuDM (1.1b)	MA_AuEn (1.2a)
Cell Setting	Monoclinic	Monoclinic	Orthorhombic
Space Group	P2 ₁ /n	P21/c	Pbcn
Formula Weight	584.22	495.76	554.2
a/Å	7.6496(2)	13.5985(3)	10.0520(5)
b/Á	11.8256(4)	11.9234(3)	20.1960(5)
c/Å	18.8218(6)	19.7476(5)	8.2450(5)
α / °; β/°; γ/°	90; 101.181(3); 90	90; 97.299(2); 90	90; 90; 90
T/K	131(2)	140(2)	298(2)
Z	4	4	4
V/Å ³	1670.32(9)	3175.94(13)	1673.82(14)
Density (g cm ⁻³)	2.323	2.074	2.20
F(000)	1104	1896	1039.7
μ (mm ⁻¹)	8.977	9.435	8.948
Crystal Dim. (mm ³)	0.05 x 0.10 x 0.40	0.45 x 0.45 x 0.45	0.07 x 0.1 x 0.40
Radiation $M_{o} K_{\alpha}$ (Å)		0.71073	[]
Total data collected	17500	31771	16589
Unique Data	3297	6250	1665
R _{int}	0.0302	0.0741	0.068
Refinement Method	Full-matrix least-squares on F ²		
Final R indices	R ₁ = 0.0206	$R_1 = 0.0424$	R ₁ = 0.050
[I>2sigma(I)]	wR ₂ = 0.0399	wR ₂ = 0.121	wR ₂ = 0.140
Final R indices	$R_1 = 0.0286$	<i>R</i> ₁ = 0.0479	<i>R</i> ₁ = 0.072
[all data]	wR ₂ = 0.0413	wR ₂ = 0.1238	wR ₂ = 0.154
Crystal Data			
	XŦ	ale I	
			تين من الم
		j v v j	
Formula	C ₁₅ H ₁₇ AuF ₆ N ₄ OP	C ₁₅ H ₁₆ AuClF ₆ N ₅ P	C ₁₇ H ₁₄ AuF ₆ N ₅ O
Compound number	MA_AuOEt (1.1d)	MA_AuCl (1.1e)	MA_AuTol (1.3b)
Cell Setting	Monoclinic	Monoclinic	Monoclinic
Space Group	P2₁/n	P2₁/n	P2₁/n

Formula Weight	611.3	643.7	533.3	
a/Å	8.2220(5)	11.3580(3)	17.7717(12)	
b/Á	10.5390(5)	12.5390(5)	8.9015(7)	
c/Å	21.1170(5)	13.9730(4)	22.696(16)	
α / °; β/°; γ/°	90; 95.430(5); 90	90; 106.490(5); 90	90; 102.530(7); 90	
Т/К	100(2)	100(2)	298(2)	
Z	4	4	8	
V / Å ³	1821.61(17)	1908.16(32)	3504.89(56)	
Density (g cm ⁻³)	2.229	2.24	2.02	
F(000)	1164	1223.7	2031.3	
μ (mm ⁻¹)	8.237	8.003	8.422	
Crystal Dim. (mm ³)	0.10 x 0.10 x 0.60	0.07 x 0.10 x 0.60	0.02 x 0.15 x 0.50	
Radiation $M_{o} K_{\alpha}$ (Å)	0.71073			
Total data collected	12681	18903	10005	
Unique Data	3607	6137	5945	
R _{int}	0.0542	0.041	0.061	
Refinement Method	Full-matrix least-squares on F ²			
Final R indices	$R_1 = 0.0536$	$R_1 = 0.040$	<i>R</i> ₁ = 0.079	
[I>2sigma(I)]	wR ₂ = 0.1516	wR ₂ = 0.101	wR ₂ = 0.179	
Final R indices	R ₁ = 0.0598	R ₁ = 0.051	R ₁ = 0.133	
[all data]	wR ₂ = 0.1546	wR ₂ = 0.105	wR ₂ = 0.194	
References

- [1] P. Zatta, Coordination Chemistry Reviews, 2009, (253), 1597-1598.
- [2] I. Kostova, Anti Cancer Agents in Medicinal Chemistry, 2006, (6), 19-32.
- [3] M. Rigobello, G. Scutari, R. Boscolo and A. Bindoli, *British Journal of Pharmacology*, 2002, (136), 1162-1168.
- [4] S. Gunatilleke and A. Barrios, *Journal of Medicinal Chemistry*, 2006, (49), 3933-3937.
- [5] V. Milacic and P. Dou, *Coordination Chemistry Reviews*, 2009, (253), 1649-1660.
- [6] L. Ronconi, L. Giovagnini, C. Marzano, F. Betti`o, R. Graziani, G. Pilloni, and D. Fregona, *Inorganic Chemistry*, 2005, (44), 1867-1881.
- [7] L. Ronconi, C. Marzano, P. Zanello, M. Corsini, G. Miolo, C. Macca, A. Trevisan, and D. Fregona, *Journal of Medicinal Chemistry*, 2006, (49), 1648-1657.
- [8] L. Messori, F. Abbate, G. Marcon, P. Orioli, M. Fontani, E. Mini, T. Mazzei, S. Carotti, T. O'Connell, and P. Zanello, *Journal of Medicinal Chemistry*, 2000, (43), 3541-3548.
- [9] G. Marcon, S. Carotti, M. Coronnello, L. Messori, E. Mini, P. Orioli, T. Mazzei, M.
 A. Cinellu, and G. Minghetti, *Journal of Medicinal Chemistry*, 2002, (45), 1672-1677.
- [10] I. Ott, Coordination Chemistry Reviews, 2009, (253), 1970-1981.
- [11] P. Calamai, S. Carotti, A. Guerri, L. Messori, E. Mini, P. Oriolli and G. P. Speroni, *Journal of Inorganic Biochemistry*, 1997, (66), 103-109.
- [12] A. Garza-Ortiz, H. den Dulk, J. Brouwer, H. Kooijman, A. L. Spek, J. Reedijk, *Journal of Inorganic Biochemistry*, 2007, (101), 1922-1930.
- [13] R. W.-Y. Sun, C.-M. Che, Coordination Chemistry Reviews, 2009, (253), 1682-1691.
- [14] O. Munro and G. Camp, Acta Crystallographica Section C, 2003, (C59), o672o675.
- [15] C. Stern, F. Franceschi, E. Solari, C. Floriani and R. Scopelliti, *Journal of Organometallic Chemistry*, 2000, (593), 86-95.
- [16] A. Bacchi, M. Carcelli, L. Gabba, S. Ianelli, P. Pelagatti, G. Pelizzi, D. Rogolino, Inorganica Chimica Acta, 2003, (342), 229-235.
- [17] N. Bailey, S. Hull, Crystal Structure Communications, 1976, (5) 447-451.

68

- [18] U. Mueller-Westerhoff, A. Rheingold and M. Allen, 1996, Private communication to the Cambridge Structural Database. Reference No. 219663. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge England.
- [19] F. Franceschi, G. Guillemot, E. Solari, C. Floriani, H. Birkedal and P. Patterson, *Chemistry:A European Journal*, 2001, (7), 1468-1478.
- [20] H. Yokoi and W. Addison, *Inorganic Chemistry*, 1977, (16), 1341-1349.
- [21] C. Berube, S. Gambarotta, G. Yap and P. Cozzi, *Organometallics*, 2003, (22), 434-439.
- [22] Hai-Feng Xiang, Siu-Chung Chan, Kitty Kit-Ying Wu, Chi-Ming Che and P. T. Lai, *Chemical Communications*, 2005, 1408-1410.
- [23] Jing-Wen Ran, Dao-Jun Onga, and Ya-Hong Li, Acta Crystallographica Section E, 2006, (E62), m2668-m2669.
- [24] Y. Wang, H. Fu, A. Peng, Y. Zhao, J. Ma, Y. Maa and J. Yao, *Chemical Communications*, 2007, 1623-1625.
- [25] B. B. Hasinoff, X. Wu, O. V. Krokhin, W. Ens, K. G. Standing, J. L. Nitiss, T. Sivaram, A. Giorgianni, S. Yang, Y. Jiang, and J. C. Yalowich, *Molecular Pharmacology*, 2005, (67), 937-947.
- [26] L. H. Jensen, H. Liang, R. Shoemaker, M. Grauslund, M. Sehested and B. B. Hasinoff, *Molecular Pharmacology*, 2006, (70), 1503-1513.
- [27] J. M. Fortune and N. Osheroff, Prog. Nucleic Acid Res. Mol. Biol., 2000, (64), 221-253.
- [28] B. B. Hasinoff, Cardiovasc. Toxicol., 2002, (2), 111-118.
- [29] L. H. Jensen, M. Sehested, US Patent: US20090209535A1.
- [30] J. G. Hengstler, C. K. Heimerdinger, I. B. Schiffer, S. Gebhard, J. Sagemüller, B. Tanner, H. M. Bolt, F. Oesch, *EXCLI Journal*, 2002, (1), 8-14.
- [31] A. Bacchi, M. Carcelli, L. Gabba, S. Ianelli, P. Pelagatti, G. Pelizzi, D. Rogolino, *Inorg. Chim. Acta*, 2003, (342), 229.
- [32] L.-M. Chen, J. Liu, J.-C. Chen, C.P. Tan, S. Shi, K.-C. Zheng, L.-N. Ji, J. Inorg. Biochem., 2008, (102), 330-341.
- [33] A. Andersson, H. Ehrsson, J. Pharm. Biomed. Anal., 1995, (13), 639-644.
- [34] J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, *Angew. Chem. Int. Ed.* 2005, (44), 4844-4870.
- [35] T. G. Appleton and J. R. Hall, *Inorganic Chemistry*, 1972, (11), 112-117.

69

[36] P. Nanjappan, N. Raju, K. Ramalingam, D. P. Nowotnik, *Tetrahedron*, 1994, (50), 8617-8632.

- [37] P. Di Bernardo, P. L. Zanonato, S. Tamburini and P. A. Vigato, *Inorganica Chimica Acta*, 2007, (360), 1083-1094.
- [38] K. Ramalingam, N. Raju, P. Nanjappan, N. Palaniappa and P. David, *Tetrahedron*, 1995, (51), 2875-2894.
- [39] F. Taehee Kang, E. Yoon, E. Choi, S. Kim, J. Lee, *European Journal of Medicinal Chemistry*, 2009, (44), 239-250.
- [40] S. L. Barnholtz, J. D. Lydon, G. Huang, M. Venkatesh, C. L. Barnes, A. R. Ketring, and S. S. Jurisson, *Inorganic Chemistry*, 2001, (40), 972-976.
- [41] L. Wang, X.-J. Zhu, W.-Y. Wong, J.-P. Guo, W.-K. Wong, Z.-Y. Li, *Dalton. Trans.*, 2005, 3235-3240.

CLAIMS

1. A compound selected from compounds of the Formula (I),

in which

W is independently selected from W^1 , W^2 , W^3 , W^4 , W^5 ,

or W represents a pair of substituents independently selected from H, C_1 - C_6 alkyl, Z_5 or Z_6 aryl or C_1 - C_6 amide in which the amide is optionally part of a linking chain, and the Z^n - Z^n' bonds (n = 4-17; n' = n + 1) are optionally of any whole or partial bond order,

Y is Y¹

or Y represents a pair of substituents independently selected from H, C_1 - C_6 alkyl, Z_5 or Z_6 aryl,

or Y is optionally a bridging structure that may comprise one or more C_1 - C_6 amide, C_1 - C_6 ether, or C_1 - C_6 ester groups,

 $R-R^{39}$ are independently selected from no substituent, a lone pair of electrons, H, halogen, C_5-C_6 aryl, C_1-C_{12} alkyl, amine, C_1-C_6 alkylamine, C_1-C_6 amide, nitro, cyano, carboxyl, C_1-C_6 ester, phosphane, thiol, C_1-C_6 thioether, OR^{40} , and suitable pairs of adjacent R groups ($R-R^{39}$) may optionally together form part of a C_5 or C_6 aryl ring, a Z_5 or Z_6 ring,

 R^{40} is independently selected from H, C₁-C₆ alkyl, Z₅ or Z₆ aryl, C₁-C₆ ester, poly(-C₂O-), amine, and C₁-C₆ alkylamine,

Z-Z²⁴ are independently selected from C, N, P, O, and S, and

X⁻ is a pharmaceutically acceptable anion.

- 2. A compound as claimed in claim 1, in which the anion is selected from from halide, hexafluorophosphate, nitrate, and triflate.
- A compound as claimed in claim 1 or claim 2, in which Y represents two hydrogen atoms or Y¹.

- 4. A compound as claimed in claim 3, in which Y is Y^1 and Z^{19} and Z^{24} are N.
- 5. A compound as claimed in claim 4, in which $Z^{20}-Z^{23}$ are C.
- 6. A compound as claimed in any one of the preceding claims, in which R-R⁵ are selected from H, C₁-C₃ alkyl, O-C₁-C₃ alkyl, hydroxyl and halogen.
- 7. A compound as claimed in claim 6, in which C_1-C_3 alkyl is methyl, $O-C_1-C_3$ alkyl is O-ethyl, and halogen is chlorine.
- 8. A compound as claimed in any of the preceding claims in which W is selected from W^1 , W^2 , $W^3 W^4$ or W^5 .
- 9. A compound as claimed in claim 8, in which R^6-R^{35} are selected from H, C_1-C_3 alkyl, $O-C_1-C_3$ alkyl and halogen.
- 10. A compound as claimed in claim 9, in which C_1-C_3 alkyl is methyl, $O-C_1-C_3$ alkyl is O-ethyl and halogen is chlorine.
- A gold(III) compound selected from:
 2,2'-{propane-1,3-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) chloride,

2,2'-{(2,2-dimethylpropane-1,3-diyl)bis[nitrilo(*E*)methylylidene]} bis(pyrrol-1-ido)gold(III) chloride,

2,2'-{(2-hydroxypropane-1,3-diyl)bis[nitrilo(*E*) methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{(2-ethoxypropane-1,3-diyl)bis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{(2-chloropropane-1,3-diyl)bis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{ethane-1,2-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{(2S)-propane-1,2-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V), 2,2'-{(1R,2R)-cyclohexane-1,2-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{(1S,2S)-cyclohexane-1,2-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V),

2,2'-{cyclohexane-1,2-diylbis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) hexafluorophosphate(V)

2,2'-{(4-methylbenzene-1,2-diyl)bis[nitrilo(*E*)methylylidene]}bis(pyrrol-1-ido)gold(III) nitrate(V),

4,4'-{propane-1,3-diyl)bis[nitrilo(*E*)methylylidene]}bis(5-methylimidazol-1-ide)gold(III) hexafluorophosphate(V),

4,4'-{(2,2-dimethylpropane-1,3-diyl)bis[nitrilo(*E*)methylylidene]}bis(5-

methylimidazol-1-ide)gold(III) hexaflurophosphate(V),

{12,14-dihydro-13,13-dimethyl-6,9:17,20-diepimino[1,6]diazacyclo-

heptadecino[12,13-β]quinoxalinato}gold(III) hexafluorophosphate(V),

{12,13,14,15-tetrahydro-6,9:18,21-diepimino[1,6]diazacycloctadecino[12,13-

b]quinoxalinato}gold(III) hexafluorophosphate(V), and

{13-chloro-12,14-dihydro-6,9:17,20-diepimino[1,6]diazacyclo-

heptadecino[12,13- β]quinoxalinato}gold(III) hexafluorophosphate(V).

- 12. A compound as claimed in any one of claims 1-11 inclusive for the treatment of cancer.
- 13. A pharmaceutical composition comprising at least one compound as claimed in any one of claims 1-11 inclusive.
- 14. A method of preparing a compound of Formula (I) as claimed in claim 1, which includes the steps of condensing a diamine of the general formula A

simultaneously or consecutively with a carbonyl compound selected from compounds of the general formula B, C and D

to produce a diimine Schiff base of the general formula E or F

and reacting the diimine of general formula E or F with a tetraalkylammonium tetrahaloaurate(III) to produce the gold(III) compound of the general Formula (I) in which W, Y, R, Z and X are as described in claim1.

15. A method of preparing a compound of general Formula (I) as claimed in claim 1, which includes the step of reacting a carbonyl compound of the general formula D

75

with a tetraalkylammonium tetrahaloaurate(III) and, consecutively or simultaneously, a diamine to produce the compound of general Formula (I) in which W, Y, R, Z and X are as described in claim 1.

- 16. A method as claimed in claim 14 or claim 15, in which the tetraalkylammonium tetrachloroaurate(III) is tetrabutylammonium tetrachloroaurate(III).
- 17. A method as claimed in claim 16, in which the tetraalkylammonium tetrahaloaurate(III) is tetra-*t*-butylammonium tetrachloroaurate(III).
- 18. A method as claimed in any one of claims 15 to 17 inclusive, in which reacting with the tetraalkylammonium tetrahaloaurate(III) is carried out in the presence of a salt selected from halides, hexafluorophosphates, nitrates, and triflates.
- 19. A method as claimed in claim 18, in which the salt is a tetraalkylammonium hexafluorophosphate.
- 20. A method as claimed in claim 19, in which the salt is tetra-*t*-butylammonium hexafluorophosphate.
- 21. A method as claimed in any one of claims 15 to 17 inclusive, in which the compound of Formula (I) is a chloride and the method includes the further step of reacting the compound of Formula (I) in which X⁻ is chloride with a salt selected from halides other than chloride, hexafluorophosphates, nitrates, and triflates to produce a compound of Formula (I) in which X⁻ is the anion of the said salt.
- 22. A method of preparing a 2-substituted 1,3-diamine intermediate of the general formula A¹

or its dihydrochloride salt, in which

F is selected from F¹ or halogen,

 R^{41} - R^{43} are independently selected from H, halogen, Z₅ or Z₆ aryl, C₁-C₁₂ alkyl, C₁-C₆ alkylamine, C₁-C₆ amide, carboxyl, C₁-C₆ ester and OR⁴⁰, R^{40} is as defined in claim 1, or pairs of adjacent R groups (R^{41} - R^{43}) together form part of a C₅ or C₆ aryl ring, or F is R^{44} , and R^{44} is independently selected from H, C₁-C₆ alkyl, Z₅ or Z₆ aryl, C₁-C₆ ester, poly(-C₂O-), amine, C₁-C₆ alkylamine, and C₁-C₆ amide or a Z₅ or Z₆ ring, and Z₅ and Z₆ are as defined in caim 1, the method including the steps of converting the hydroxyl group of 2,2,12,12-*t*-methyl-3,11-dioxo-4,10-dioxa-5,9-diazatridecan-7-ol to the group F.

- 23. A bis(pyrrole-imine) ligand selected from:
 2-ethoxy-*N*,*N*-bis[(*E*)-1*H*-pyrrol-2-ylmethylidene]propane-1,3-diamine, and
 2-chloro-*N*,*N*-bis[(*E*)-1*H*-pyrrol-2-ylmethylidene]propane-1,3-diamine.
- 24. A method for the preparation of tetrabutylammonium tetrachloroaurate, [Bu₄N][AuCl₄], the method including the step of extracting [Bu₄N][AuCl₄] from a mixture using an organic solvent-extraction purification step to produce an acidfree, crystalline [Bu₄N][AuCl₄].
- 25. A method as claimed in claim 24, which includes reacting an aqueous solution of H[AuCl₄] and [Bu₄N][HSO₄] to produce the mixture and extracting the [Bu₄N][AuCl₄] from the mixture with the organic solvent.

Scheme 1

<u>Scheme 5a</u>

Scheme 5b

Scheme 5c

Scheme 6a

Scheme 6b

Scheme 8a

Compound	"W" group	lC _{so} ∕uM	Hill Coeff.
		(HeLa Cells)	
1.1Y ¹ a (KA_AumacroPr)	CH2CH2CH2	3.0(2.5)	0.27(6)
1.5Y ¹ a (KA_AumacroBu)	CH ₂ (CH ₂) ₂ CH ₂	0.37(27)	0.48(9)
1.1Y ¹ b (KA_AumacroDM)	CH ₂ C(CH ₃) ₂ CH ₂	3.6(1.1)	0.32(3)

Scheme 9

Scheme 10a

SUBSTITUTE SHEET (RULE 26)

Scheme 10b

Scheme 12

SUBSTITUTE SHEET (RULE 26)

Scheme 14

SUBSTITUTE SHEET (RULE 26)

Scheme 15

SUBSTITUTE SHEET (RULE 26)

Scheme 18

Scheme 23

Scheme 24

APPENDIX A: CRYSTOLLOGRAPHIC DATA TABLES OF LIGANDS

A.1: Crystallographic Data Tables for H_2L2

Table A.1.1 Crystal data and structure refinement details for H_2L2

Identification code	H ₂ L2		
Empirical formula	$C_{23} H_{22} N_6$		
Formula weight	382.47		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 2 ₁ /c		
Unit cell dimensions	a = 9.170(5) Å	α = 90°.	
	b = 11.244(5) Å	β= 96.718(5)°.	
	c = 18.720(6) Å	γ = 90°.	
Volume	1916.9(14) Å ³		
Z	4		
Density (calculated)	1.325 Mg/m ³		
Absorption coefficient	0.083 mm ⁻¹		
F(000)	808		
Crystal size	0.50 x 0.30 x 0.05 mm ³		
Theta range for data collection	2.84 to 26.01°		
Index ranges	-11<=h<=11, -11<=k<=13, -22<=l<=23		
Reflections collected	13312		
Independent reflections	3693 [R(int) = 0.1083]		
Completeness to theta = 25.00°	99.8 %		
Absorption correction	Semi-empirical from equival	lents	
Max. and min. transmission	0.9959 and 0.9599		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3693 / 2 / 272		
Goodness-of-fit on F ²	0.865		
Final R indices [I>2sigma(I)]	R1 = 0.0579, wR2 = 0.1130		
R indices (all data)	R1 = 0.1261, wR2 = 0.1310		
Largest diff. peak and hole	0.515 and -0.276 e.Å⁻³		

	x	У	Z	U(eq)
C(1)	8489(3)	1540(2)	773(1)	21(1)
C(2)	7106(3)	1871(2)	431(1)	25(1)
C(3)	6112(3)	1820(2)	942(1)	25(1)
C(4)	6924(3)	1480(2)	1590(1)	22(1)
C(5)	6467(3)	1310(2)	2291(1)	24(1)
C(6)	6924(3)	918(2)	3553(1)	29(1)
C(7)	7565(3)	-236(2)	3922(1)	25(1)
C(8)	9263(3)	-210(3)	4032(1)	27(1)
C(9)	11134(3)	-545(2)	3200(1)	25(1)
C(10)	11675(3)	-328(2)	2545(1)	23(1)
C(11)	13004(3)	-728(2)	2319(1)	28(1)
C(12)	13024(3)	-302(2)	1634(2)	27(1)
C(13)	11676(3)	343(2)	1454(1)	21(1)
C(14)	11265(3)	922(2)	746(1)	20(1)
C(15)	12209(3)	1369(2)	-323(1)	22(1)
C(16)	13412(3)	1384(2)	-726(1)	26(1)
C(17)	13228(3)	1846(3)	-1407(2)	30(1)
C(18)	11837(3)	2287(2)	-1713(2)	30(1)
C(19)	10653(3)	2264(2)	-1340(1)	26(1)
C(20)	10828(3)	1823(2)	-623(1)	20(1)
C(21)	9846(3)	1430(2)	438(1)	21(1)
C(22)	7005(3)	-1325(3)	3473(2)	33(1)
C(23)	7052(3)	-300(3)	4668(2)	35(1)
N(1)	8360(3)	1323(2)	1477(1)	22(1)
N(2)	7405(3)	1075(2)	2842(1)	25(1)
N(3)	9881(3)	-125(2)	3348(1)	27(1)
N(4)	10875(2)	334(2)	2008(1)	22(1)
N(5)	12397(2)	917(2)	361(1)	22(1)
N(6)	9673(2)	1863(2)	-232(1)	22(1)

Table A.1.2 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for H₂L2. U(eq) is defined as one third of the trace of the orthogonalised Uij tensor.

Table A.1.3: IUCR CIF Check Report

Datablock: H₂L2

Bond precisio	n:	C-C = 0	.0040 A		Wavelength=0.71073
Cell:	a=9.170(5)		b=11.244(5)	c=18.720	D(6)
	alpha=90		beta=96.718(5)	gamma=	90
Temperature:	296 K				
		Calculate	d		Reported
Volume		1916.9(15	5)		1916.9(14)
Space group		P 21/c			P 21/c
Hall group		-P 2ybc			-P 2ybc
Moiety formu	la	C23 H22 I	N6		C23 H22 N6
Sum formula		C23 H22 I	N6		C23 H22 N6
Mr		382.47			382.47
Dx,g cm-3		1.325			1.325
Z		4			4
Mu (mm-1)		0.083			0.083
F000		808.0			808.0
F000'		808.24			
h,k,lmax		11,13,23			11,13,23
Nref		3768			3693
Tmin,Tmax		0.971,0.9	96		0.960,0.996
Tmin'		0.959			
Correction me	ethod= MULTI	-SCAN			
Data complete	eness= 0.980		Theta(ma	x)= 26.010	
R(reflections)	= 0.0579(193	3)	wR2	reflections)= (0.1310(3693)
S = 0.865		Npar	= 272		
The following test-name	ALERTS were e_ALERT_aler	generated t-type_ale	d. Each ALERT has t ert-level.	the format	

Alert level C

PLAT906_ALERT_3_C Large K value in the Analysis of Variance 11.1	55
PLAT906_ALERT_3_C Large K value in the Analysis of Variance 2.75	54
PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min)	3
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600	3
Alert level G	
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	4
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	20
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints	2
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	72

PLATON version of 05/11/2012; check.def file version of 05/11/2012

Datablock H₂L2 - ellipsoid plot

A.2: Crystallographic Data Tables for H₂L5

Identification code	H ₂ L5		
Empirical formula	$C_{23} H_{22} N_6$		
Formula weight	382.47		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 31.645(5) Å	α= 90°.	
	b = 7.749(4) Å	β= 123.596(5)°.	
	c = 19.067(5) Å	γ = 90°.	
Volume	3895(3) Å ³		
Z	8		
Density (calculated)	1.305 Mg/m ³		
Absorption coefficient	0.081 mm ⁻¹		
F(000)	1616		
Crystal size	0.50 x 0.30 x 0.10 mm ³		
Theta range for data collection	2.84 to 26.04°.		
Index ranges	-38<=h<=38, -7<=k<=9, -23<=l<=23		
Reflections collected	13929		
Independent reflections	3841 [R(int) = 0.0384]		
Completeness to theta = 25.00°	99.9 %		
Absorption correction	Semi-empirical from equiva	lents	
Max. and min. transmission	0.9919 and 0.9605		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	3841 / 2 / 272		
Goodness-of-fit on F ²	0.896		
Final R indices [I>2sigma(I)]	R1 = 0.0382, wR2 = 0.0853		
R indices (all data)	R1 = 0.0579, wR2 = 0.0893		
Largest diff. peak and hole	0.240 and -0.299 e.Å ⁻³		

Table A.2.1 Crystal data and structure refinement details for $\mathsf{H}_2\mathsf{L}5$

	x	У	Z	U(eq)
N(001)	3208(1)	-813(2)	913(1)	23(1)
N(002)	2752(1)	209(2)	1646(1)	22(1)
N(003)	3867(1)	-661(1)	3675(1)	21(1)
N(004)	1813(1)	397(2)	81(1)	29(1)
N(005)	4348(1)	-1808(1)	2898(1)	22(1)
N(006)	2293(1)	-289(2)	-705(1)	30(1)
C(007)	3642(1)	-477(2)	2850(1)	19(1)
C(008)	3149(1)	405(2)	2458(1)	19(1)
C(009)	4571(1)	-1657(2)	5008(1)	24(1)
C(010)	3702(1)	-908(2)	1547(1)	21(1)
C(011)	5035(1)	-2438(2)	5484(1)	25(1)
C(012)	3891(1)	-1079(2)	2444(1)	19(1)
C(013)	4331(1)	-1411(2)	4134(1)	21(1)
C(014)	2733(1)	-366(2)	-601(1)	28(1)
C(015)	4010(1)	-845(2)	1220(1)	26(1)
C(016)	5279(1)	-2684(2)	6414(1)	33(1)
C(017)	4575(1)	-1986(2)	3742(1)	21(1)
C(018)	2992(1)	1461(2)	2868(1)	22(1)
C(019)	1879(1)	1208(2)	717(1)	27(1)
C(020)	2491(1)	1917(2)	2280(1)	24(1)
C(021)	1820(1)	132(2)	-1499(1)	33(1)
C(023)	5286(1)	-3008(2)	5090(1)	26(1)
C(024)	3190(1)	-656(2)	178(1)	25(1)
C(025)	2346(1)	1118(2)	1523(1)	23(1)
C(026)	3685(1)	-689(2)	362(1)	28(1)
C(027)	1352(1)	628(2)	-763(1)	34(1)
C(028)	1496(1)	1337(2)	-1351(1)	35(1)
C(029)	5058(1)	-2781(2)	4245(1)	25(1)
C(030)	5799(1)	-3856(2)	5611(1)	34(1)

Table A.2.2 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for H₂L5. U(eq) is defined as one third of the trace of the orthogonalised Uij tensor.

Table A.2.3: IUCR CIF Check Report

Datablock: H₂L5

Bond precisio	on:	C-C = 0	.0023 A	١	Wavelength=0.71073
Cell:	a=31.645(5)		b=7.749(4)	c=19.067(5))
	alpha=90		beta=123.596(5)	gamma=90	
Temperature	: 120 K				
		Calculate	d		Reported
Volume		3895(2)			3895(3)
Space group		C 2/c			C2/c
Hall group		-C 2yc			-C 2yc
Moiety formu	ula	C23 H22	N6		C23 H22 N6
Sum formula		C23 H22	N6		C23 H22 N6
Mr		382.47			382.47
Dx,g cm-3		1.304			1.305
Z		8			8
Mu (mm-1)		0.081			0.081
F000		1616.0			1616.0
F000'		1616.48			
h,k,lmax		38,9,23			38,9,23
Nref		3850			3841
Tmin,Tmax		0.971,0.9	92		0.961,0.992
Tmin'		0.960			
Correction m	ethod= MULT	-SCAN			
Data complet	eness= 0.998		Theta(max)=	26.040	
R(reflections)	= 0.0382(265	4)	wR2(refl	ections)= 0.08	893(3841)
S = 0.896		Npar	= 272		
The following test-nam	g ALERTS were e_ALERT_aler	generate t-type_ale	d. Each ALERT has the ert-level.	format	
Alert level	IC				
PLAT601_ALE	RT_2_C Struc	ture Conta	ains Solvent Accessible	VOIDS of .	31 A**3
PLAT906_ALE	RT_3_C Large	K value ir	the Analysis of Variar	ice 5.8	13
PLAT910_ALE	RT_3_C Missi	ng # of FC	F Reflections Below Th	(Min)	5
Alert leve	lG				

Alert level G	
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	4
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	49
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints	2
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	4
PLAT961_ALERT_5_G Dataset Contains no Negative Intensities	!

PLATON version of 05/11/2012; check.def file version of 05/11/2012

Datablock H2L5 - ellipsoid plot

A.3: Crystallographic Data Tables for H₂L6

Identification code	H ₂ L6		
Empirical formula	$C_{22} \: H_{20} \: N_6 \: O_{0.5}$		
Formula weight	376.44		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 31.219(5) Å	α= 90°.	
	b = 7.724(4) Å	β= 125.403(5)°.	
	c = 19.098(5) Å	γ= 90°.	
Volume	3754(3) Å ³		
Z	8		
Density (calculated)	1.332 Mg/m ³		
Absorption coefficient	0.085 mm ⁻¹		
F(000)	1584		
Crystal size	0.45 x 0.45 x 0.10 mm ³		
Theta range for data collection	3.20 to 26.03°.		
Index ranges	-38<=h<=37, -9<=k<=7, -23<=l<=23		
Reflections collected	13380		
Independent reflections	3700 [R(int) = 0.0387]		
Completeness to theta = 26.00°	99.8 %		
Absorption correction	Semi-empirical from equival	lents	
Max. and min. transmission	0.9915 and 0.9627		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	3700 / 3 / 281		
Goodness-of-fit on F ²	0.968		
Final R indices [I>2sigma(I)]	R1 = 0.0549, wR2 = 0.1532		
R indices (all data)	R1 = 0.0806, wR2 = 0.1624		
Largest diff. peak and hole	0.600 and -0.368 e.Å ⁻³		

Table A.3.1 Crystal data and structure refinement details for H_2L6

	x	v	Z	U(ea)
N(5)	3966(1)	843(2)	8826(1)	36(1)
N(4)	2813(1)	-108(2)	6748(1)	33(1)
N(1)	3278(1)	790(2)	6020(1)	31(1)
N(6)	4460(1)	1858(2)	8054(1)	35(1)
N(3)	1829(1)	-308(3)	5154(2)	50(1)
C(007)	3732(1)	591(2)	7990(1)	30(1)
N(2)	2316(1)	304(2)	4375(1)	43(1)
C(009)	3792(1)	863(2)	6685(1)	30(1)
C(010)	3988(1)	1116(2)	7584(1)	30(1)
C(011)	4696(1)	2111(3)	8906(1)	36(1)
C(012)	4101(1)	709(3)	6363(2)	38(1)
C(013)	3224(1)	-290(3)	7578(1)	33(1)
C(014)	4448(1)	1599(3)	9297(2)	37(1)
C(015)	5193(1)	2924(3)	9414(2)	44(1)
C(016)	2398(1)	-1043(3)	6621(2)	40(1)
C(017)	3248(1)	568(3)	5280(1)	33(1)
C(018)	4696(1)	1899(3)	10183(2)	46(1)
C(019)	2765(1)	290(3)	4480(1)	39(1)
C(020)	3757(1)	517(3)	5485(2)	41(1)
C(021)	5427(1)	3212(3)	10270(2)	49(1)
C(022)	1913(1)	-1129(3)	5807(2)	47(1)
C(023)	5176(1)	2694(3)	10663(2)	49(1)
C(024)	3069(1)	-1347(3)	7997(2)	46(1)
C(025)	2555(1)	-1815(3)	7396(2)	52(1)
C(026)	5466(2)	3094(6)	11547(3)	44(1)
C(027)	1483(1)	-1278(3)	3700(2)	58(1)
C(028)	1823(1)	-109(3)	3557(2)	52(1)
C(029)	1352(1)	-505(4)	4284(2)	59(1)
C(030)	5923(2)	4070(7)	10879(3)	53(1)
O(1W)	5000	4147(4)	7500	68(1)

Table A.3.2 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for H₂L6. U(eq) is defined as one third of the trace of the orthogonalised Uij tensor.

Table A.3.3: IUCR CIF Check Report

Datablock: H₂L6

Bond precisio	n:	C-C = 0.0	0041 A		N	Wavelength=0.71073
Cell:	a=31.219(5)	b	o=7.724(4)		c=19.098(5))
	alpha=90	b	oeta=125.40	3(5)	gamma=90	
Temperature	120 K					
		Calculated				Reported
Volume		3754(2)				3754(3)
Space group		C 2/c				C 2/c
Hall group		-C 2yc				-C 2yc
Moiety formu	ıla	2(C22 H19	N6), H2 O			C22 H19 N6, H1 O0.5
Sum formula		C44 H40 N3	12 0			C22 H20 N6 O0.5
Mr		752.88				376.44
Dx,g cm-3		1.332				1.332
Z		4				8
Mu (mm-1)		0.085				0.085
F000		1584.0				1584.0
F000'		1584.51				
h,k,lmax		38,9,23				38,9,23
Nref		3708				3700
Tmin,Tmax		0.962,0.992	2			0.963,0.992
Tmin'		0.962				
Correction method= MULTI-SCAN						
Data complet	eness= 0.998		Thet	a(max)= 2	6.030	
R(reflections)	= 0.0549(246	1)		wR2(refle	ctions)= 0.1	524(3700)
S = 0.968		Npar=	281			

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**.

Alert level C

DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75
_refine_diff_density_max given = 0.600
Test value = 0.600
DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75
The relevant atom site should be identified.
PLAT041_ALERT_1_C Calc. and Reported SumFormulaStrings Differ ?
PLAT222_ALERT_3_C Large Non-Solvent H Uiso(max)/Uiso(min) 4.6 Ratio
PLAT230_ALERT_2_CHirshfeld Test Diff for C021 C030 5.7 su
PLAT230_ALERT_2_CHirshfeld Test Diff for C023 C026 5.7 su
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.0041 Ang
PLAT906_ALERT_3_C Large K value in the Analysis of Variance 7.078
PLA1910_ALER1_3_C Missing # of FCF Reflections Below In(Min) 6

Alert level G	
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	6
PLAT042_ALERT_1_G Calc. and Reported MoietyFormulaStrings Differ	?
PLAT045_ALERT_1_G Calculated and Reported Z Differ by 0.50 F	latio
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large.	0.11
PLAT301_ALERT_3_G Note: Main Residue Disorder 4 Perc	
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	40
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints	3
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	4

A.4: Crystallographic Data Tables for H₂L7

Identification code	H ₂ L7		
Empirical formula	$C_{21} H_{16} F N_6$		
Formula weight	371.40		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 2 ₁ /c		
Unit cell dimensions	a = 9.396(5) Å	α= 90°.	
	b = 10.667(5) Å	β= 90.254(5)°.	
	c = 17.165(5) Å	γ= 90°.	
Volume	1720.4(13) Å ³		
Z	4		
Density (calculated)	1.434 Mg/m ³		
Absorption coefficient	0.098 mm ⁻¹		
F(000)	772		
Crystal size	0.30 x 0.30 x 0.15 mm ³		
Theta range for data collection	2.89 to 32.00°.		
Index ranges	-13<=h<=9, -11<=k<=15, -24<=l<=25		
Reflections collected	10797		
Independent reflections	5271 [R(int) = 0.0847]		
Completeness to theta = 25.00°	99.2 %		
Max. and min. transmission	0.9855 and 0.9713		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5271 / 2 / 270		
Goodness-of-fit on F ²	0.821		
Final R indices [I>2sigma(I)]	R1 = 0.0608, wR2 = 0.1269		
R indices (all data)	R1 = 0.1374, wR2 = 0.1442		
Largest diff. peak and hole	0.288 and -0.338 e.Å ⁻³		

Table A.4.1 Crystal data and structure refinement details for H_2L7

	<u> </u>	,			
	х	У	Z	U(eq)	
N(4)	7025(2)	1236(2)	6637(1)	27(1)	_
F(2)	572(2)	1781(2)	3014(1)	39(1)	
N(1)	4631(2)	384(2)	7224(1)	27(1)	
N(2)	5983(2)	18(2)	8661(1)	34(1)	
N(5)	5346(2)	1873(2)	4788(1)	27(1)	
N(6)	2768(2)	1079(2)	5439(1)	28(1)	
N(3)	8488(2)	771(2)	8055(1)	37(1)	
C(008)	6736(2)	1490(2)	5882(1)	26(1)	
C(009)	5306(2)	1452(2)	5520(1)	25(1)	
C(010)	2703(2)	-719(2)	7572(1)	31(1)	
C(011)	3965(2)	1007(2)	5851(1)	25(1)	
C(012)	4036(2)	-289(2)	7812(1)	29(1)	
C(013)	2973(2)	2191(2)	3122(1)	35(1)	
C(014)	3713(2)	403(2)	6608(1)	26(1)	
C(015)	1700(2)	1819(2)	3478(1)	35(1)	
C(016)	2833(2)	1483(2)	4688(1)	26(1)	
C(017)	4133(2)	1858(2)	4354(1)	26(1)	
C(018)	1574(2)	1481(2)	4233(1)	30(1)	
C(019)	4193(2)	2225(2)	3560(1)	33(1)	
C(020)	2503(2)	-277(2)	6818(1)	31(1)	
C(021)	8288(2)	-571(2)	9214(1)	44(1)	
C(022)	4767(2)	-486(2)	8534(1)	32(1)	
C(023)	8482(2)	1319(2)	6710(1)	30(1)	
C(024)	9157(2)	1049(2)	7418(1)	34(1)	
C(025)	9104(2)	1652(2)	5991(1)	35(1)	
C(026)	8011(2)	1767(2)	5470(1)	33(1)	
C(027)	6755(2)	-205(2)	9393(1)	41(1)	
C(028)	9144(2)	442(2)	8807(1)	42(1)	
F(1)	2810(6)	2339(6)	2376(3)	33(1)	

Table A.4.2 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for H₂L7. U(eq) is defined as one third of the trace of the orthogonalised Uij tensor.
Table A.4.3: IUCR CIF Check Report

Datablock: H₂L7

Bond precisio	n:	C-C = 0.0030 A			Wavelength=0.71073	
Cell:	a=9.396(5)		b=10.667(5)	c=17.165(6)	
	alpha=90		beta=90.254(5)	gamma=9	D	
Temperature	: 120 K					
		Calculate	d		Reported	
Volume		1720.4(14	4)		1720.4(13)	
Space group		P 21/c			P 21/c	
Hall group		-P 2ybc			-P 2ybc	
Moiety formu	ıla	C21 H16	F N6		C21 H16 F N6	
Sum formula		C21 H16	F N6		C21 H16 F N6	
Mr		371.40			371.40	
Dx,g cm-3		1.434			1.434	
Z		4			4	
Mu (mm-1)		0.098			0.098	
F000		772.0			772.0	
F000'		772.29				
h,k,lmax		14,15,25			13,15,25	
Nref		5963			5271	
Tmin,Tmax		0.971,0.9	85		0.971,0.985	
Tmin'		0.971				
Correction me	ethod= MULT	I-SCAN				
Data completeness= 0.884			Theta(max	x)= 32.000		
R(reflections)	= 0.0608(233	1)	wR2(i	reflections)= 0.3	1438(5271)	
S = 0.824		Npar	= 270			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Alert level C

PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low 44 Per	c.
PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C013 - C019 1.37 Ang.	
PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C015 - C018 1.35 Ang.	
PLAT906_ALERT_3_C Large K value in the Analysis of Variance 15.895	
PLAT906_ALERT_3_C Large K value in the Analysis of Variance 2.873	
PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) 3	
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 25	

Alert level G

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSi	te 4	1
PLAT301_ALERT_3_G Note: Main Residue Disorder	4 Perc.	
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	35	

PLATON version of 05/11/2012; check.def file version of 05/11/2012

Datablock H₂L7 - ellipsoid plot

A.5: Crystallographic Data Tables for H₂L8a

Identification code	H-18a		
Empirical formula			
Eormula weight			
	206(2) K		
	296(2) K		
Wavelength	0./10/3 A		
Crystal system	Orthorhombic		
Space group	P2 ₁ 2 ₁ 2 ₁		
Unit cell dimensions	a = 6.9450(3) Å	α= 90°.	
	b = 19.3867(11) Å	β= 90°.	
	c = 24.0176(15) Å	γ = 90°.	
Volume	3233.7(3) Å ³		
Z	4		
Density (calculated)	1.456 Mg/m ³		
Absorption coefficient	0.095 mm ⁻¹		
F(000)	1472		
Crystal size	0.25 x 0.07 x 0.03 mm ³		
Theta range for data collection	1.35 to 28.74°.		
Index ranges	-9<=h<=9, -26<=k<=26, -29<=l<=32		
Reflections collected	18286		
Independent reflections	4670 [R(int) = 0.0565]		
Completeness to theta = 25.00°	98.6 %		
Max. and min. transmission	0.9972 and 0.9766		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	4670 / 4 / 503		
Goodness-of-fit on F ²	1.043		
Final R indices [I>2sigma(I)]	R1 = 0.0588, wR2 = 0.1277		
R indices (all data)	R1 = 0.1015, wR2 = 0.1477		
Absolute structure parameter	-2(3)		
Largest diff. peak and hole	0.397 and -0.312 e.Å ⁻³		

Table A.5.1 Crystal data and structure refinement details for H_2L8a

trace of the orthogonalised Uij tensor.					
	x	У	Z	U(eq)	
N(1)	5845(6)	8319(2)	5931(1)	36(1)	
N(2)	6621(5)	8984(2)	6948(1)	24(1)	
N(3)	5915(5)	7836(2)	7492(1)	24(1)	
N(4)	5100(6)	7151(2)	6489(2)	32(1)	
N(5)	7703(5)	9874(2)	8230(1)	27(1)	
N(6)	6880(5)	8670(2)	8808(1)	27(1)	
N(7)	12124(5)	8307(2)	8892(1)	27(1)	
N(8)	12070(5)	9051(2)	7883(1)	23(1)	
N(9)	11269(5)	8926(2)	6016(1)	26(1)	
N(10)	12463(5)	10060(2)	6630(1)	24(1)	
N(15)	11047(5)	7961(2)	7301(1)	23(1)	
N(16)	11067(5)	7203(2)	8290(1)	28(1)	
C(1)	6399(6)	8956(2)	5942(2)	28(1)	
C(2)	6762(6)	9307(2)	6446(2)	26(1)	
C(3)	7080(6)	9447(2)	7350(2)	24(1)	
C(4)	7160(5)	9312(2)	7949(2)	23(1)	
C(5)	6784(5)	8671(2)	8245(2)	23(1)	
C(6)	6250(6)	7992(2)	8034(2)	23(1)	
C(7)	5457(6)	7149(2)	7469(2)	26(1)	
C(8)	5026(6)	6825(2)	6954(2)	28(1)	
C(9)	4639(8)	6844(2)	5949(2)	44(1)	
C(10)	5673(9)	7198(2)	5492(2)	52(2)	
C(11)	7486(6)	10092(2)	7096(2)	27(1)	
C(12)	7289(6)	9998(2)	6528(2)	28(1)	
C(13)	7854(6)	9842(2)	8783(2)	26(1)	
C(14)	8577(7)	10440(2)	9074(2)	30(1)	
C(15)	7384(6)	9243(2)	9070(2)	26(1)	
C(16)	5509(6)	6871(2)	8006(2)	26(1)	
C(17)	6005(6)	7392(2)	8363(2)	30(1)	
C(18)	7385(7)	9237(2)	9674(2)	33(1)	
N(14)	7348(7)	9263(2)	10147(2)	51(1)	
C(20)	12076(7)	7862(2)	9384(2)	33(1)	
C(21)	12345(6)	8970(2)	8886(2)	27(1)	
C(22)	12354(6)	9361(2)	8390(2)	24(1)	

Table A.5.2 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for H₂L8a. U(eq) is defined as one third of the trace of the orthogonalised Uij tensor.

	x	У	Z	U(eq)	
C(23)	12182(6)	9553(2)	7501(2)	22(1)	
C(24)	12002(5)	9471(2)	6900(2)	23(1)	
C(25)	11432(6)	8870(2)	6573(2)	23(1)	
C(26)	11700(6)	9519(2)	5776(2)	27(1)	
C(27)	11438(7)	9570(2)	5174(2)	31(1)	
N(12)	11221(7)	9627(2)	4706(2)	46(1)	
N(11)	13437(6)	11215(2)	5592(2)	41(1)	
C(30)	12943(7)	10716(2)	5805(2)	31(1)	
C(31)	12340(6)	10086(2)	6078(2)	25(1)	
C(32)	10940(5)	8185(2)	6763(2)	23(1)	
C(33)	10463(6)	7290(2)	7325(2)	25(1)	
C(34)	10424(6)	6927(2)	7845(2)	26(1)	
C(35)	11058(7)	6821(2)	8818(2)	32(1)	
C(36)	12533(6)	10206(2)	7765(2)	25(1)	
C(37)	12627(6)	10079(2)	8324(2)	24(1)	
C(38)	9989(6)	7078(2)	6791(2)	29(1)	
C(39)	10269(6)	7635(2)	6440(2)	29(1)	
C(1')	10589(7)	7295(2)	9302(2)	33(1)	
C(2')	5375(10)	7946(2)	5423(2)	50(1)	
N(13)	9203(6)	10890(2)	9321(2)	44(1)	

Table A.5.2 continued...

Table A.5.3: IUCR CIF Check Report

Datablock: H₂L8a

Bond precisio	n:	C-C = 0.0053 A		Wavelength=0.71073		
Cell:	a=6.9450(3)		b=19.3867(11)	c=24.0176	15)
	alpha=90		beta=90		gamma=90)
Temperature	: 296 K					
		Calculate	d			Reported
Volume		3233.7(3))			3233.7(3)
Space group		P 21 21 2	1			P212121
Hall group		P 2ac 2ab)			P 2ac 2ab
Moiety formu	ıla	C19 H14	N8			C19 H14 N8
Sum formula		C19 H14	N8			C19 H14 N8
Mr		354.38				354.38
Dx,g cm-3		1.456				1.456
Z		8				8
Mu (mm-1)		0.095				0.095
F000		1472.0				1472.0
F000'		1472.42				
h,k,lmax		9,26,32				9,26,32
Nref		4740[840	08]			4670
Tmin,Tmax		0.992,0.9	97			0.977,0.997
Tmin'		0.977				
Correction method= MULTI-SCAN						
Data completeness= 0.99/0.5).56	The	eta(max)= 2	8.740	
R(reflections)	= 0.0570(319	5)		wR2(refle	ctions)= 0.1	383(4670)
S = 1.043		Npar	r= 503			

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**.

Alert level C

PLAT222_ALERT_3_C Large Non-Solvent H Uiso(max)/Uiso(min) .	4.8 Ratio
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	0.0053 Ang
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin&STh/L= 0.	600 45

Alert level G

PLAT002_ALERT_2_G Numb	er of Distance or Ang	gle Restraints	on AtSi	te 8
PLAT371_ALERT_2_G Long	C(sp2)-C(sp1) Bond	C13 - C14		1.44 Ang.
PLAT371_ALERT_2_G Long	C(sp2)-C(sp1) Bond	C15 - C18		1.45 Ang.
PLAT371_ALERT_2_G Long	C(sp2)-C(sp1) Bond	C26 - C27		1.46 Ang.
PLAT371_ALERT_2_G Long	C(sp2)-C(sp1) Bond	C30 - C31		1.45 Ang.
PLAT720_ALERT_4_G Numb	er of Unusual/Non-S	itandard Labe	els	4
PLAT790_ALERT_4_G Centre	e of Gravity not With	in Unit Cell: F	Resd. #	2
PLAT860_ALERT_3_G Note:	Number of Least-Squ	uares Restraiı	nts	4

PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 23

PLATON version of 05/11/2012; check.def file version of 05/11/2012 Datablockom_H₂L8a - ellipsoid plot

A.6: Crystallographic Data Tables for H₂L8b

Identification code	H ₂ L8b		
Empirical formula	$C_{19} H_{17} N_7 O$		
Formula weight	359.40		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P n a 21		
Unit cell dimensions	a = 9.792(3) Å	α= 90°.	
	b = 17.151(6) Å	β= 90°.	
	c = 10.407(4) Å	γ = 90°.	
Volume	1747.7(10) Å ³		
Z	4		
Density (calculated)	1.366 Mg/m ³		
Absorption coefficient	0.091 mm ⁻¹		
F(000)	752		
Crystal size	0.35 x 0.30 x 0.15 mm ³		
Theta range for data collection	2.29 to 25.33°.		
Index ranges	-11<=h<=9, -10<=k<=20, -11<=l<=12		
Reflections collected	7081		
Independent reflections	1671 [R(int) = 0.0420]		
Completeness to theta = 25.3°	99.0 %		
Absorption correction	Semi-empirical from equival	lents	
Max. and min. transmission	0.9864 and 0.9688		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	1671 / 3 / 253		
Goodness-of-fit on F ²	1.071		
Final R indices [I>2sigma(I)]	R1 = 0.0588, wR2 = 0.1600		
R indices (all data)	R1 = 0.0819, wR2 = 0.1755		
Largest diff. peak and hole	0.402 and -0.209 e.Å ⁻³		

Table A.6.1 Crystal data and structure refinement details for H_2L8b

			011	
	x	У	Z	U(eq)
O(1)	13359(4)	2008(2)	1761(4)	55(1)
C(16)	12459(5)	2355(3)	2547(6)	41(1)
N(5)	11551(4)	3530(3)	3320(5)	44(1)
N(4)	8896(4)	3421(2)	5724(4)	42(1)
N(1)	8910(4)	1899(2)	5630(5)	44(1)
C(1)	9925(5)	1729(3)	4770(6)	43(1)
C(15)	10726(5)	2291(3)	4059(6)	41(1)
N(6)	11624(5)	1924(2)	3260(5)	42(1)
C(19)	13314(7)	1182(3)	1638(8)	69(2)
C(17)	12425(5)	3161(3)	2575(6)	45(1)
C(14)	10698(5)	3124(3)	4088(5)	39(1)
C(13)	9844(5)	3650(3)	4868(5)	42(1)
C(10)	8372(6)	4099(3)	6268(6)	51(1)
C(9)	7376(6)	4075(4)	7230(6)	57(2)
N(3)	6878(5)	3424(3)	7667(5)	62(1)
C(8)	5840(7)	3352(5)	8673(7)	69(2)
C(7)	5969(9)	2580(5)	9346(8)	88(3)
C(6)	5842(8)	1862(4)	8551(7)	74(2)
N(2)	6891(5)	1863(3)	7540(6)	63(1)
C(5)	7369(6)	1222(4)	7085(7)	59(2)
C(4)	8404(6)	1226(3)	6120(6)	53(2)
C(11)	9022(7)	4746(4)	5716(8)	76(2)
C(12)	9941(6)	4472(3)	4832(7)	64(2)
C(18)	13315(6)	3612(3)	1765(7)	55(1)
N(7)	14006(7)	3957(3)	1123(7)	84(2)
C(2)	10051(6)	917(3)	4707(7)	60(2)
C(3)	9098(6)	609(3)	5562(8)	70(2)

Table A.6.2Atomic coordinates (x 10^4) and equivalent isotropic displacementparameters (Å² x 10^3) for H₂L8b. U(eq) is defined as one third of the
trace of the orthogonalised Uij tensor.

Table A.6.3: IUCR CIF Check Report

Datablock: H₂L8b

Bond precisio	n:	C-C = 0.0085 A		Wavelength=0.71073	
Cell:	a=9.792(3)	b=17	7.151(6)	c=10.407(4)
	alpha=90	beta	i=90	gamma=90	
Temperature	: 100 K				
		Calculated			Reported
Volume		1747.8(11)			1747.7(10)
Space group		P n a 21			P n a 21
Hall group		P 2c -2n			P 2c -2n
Moiety formu	ıla	C19 H17 N7 O			C19 H17 N7 O
Sum formula		C19 H17 N7 O			C19 H17 N7 O
Mr		359.40			359.40
Dx,g cm-3		1.366			1.366
Z		4			4
Mu (mm-1)		0.091			0.091
F000		752.0			752.0
F000'		752.25			
h,k,lmax		11,20,12			11,20,12
Nref		1688[3187]			1671
Tmin,Tmax		0.969,0.986			0.969,0.986
Tmin'		0.969			
Correction me	ethod= MULT	I-SCAN			
Data complet	eness= 0.99/0).52	Theta(max)= 2	25.330	
R(reflections)	= 0.0588(124	1)	wR2(refle	ections)= 0.1	755(1671)
S = 1.071		Npar= 253	3		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Alert level C

PLAT089_ALERT_3_C Poor Data / P	arameter Ratio (Zmax .LT. 18)	6.60
PLAT241_ALERT_2_C Check High	Ueq as Compared to Neighbors for	· C7
PLAT241_ALERT_2_C Check High	Ueq as Compared to Neighbors for	· C11
PLAT340_ALERT_3_C Low Bond Pre	ecision on C-C Bonds 0.0	0085 Ang
PLAT911_ALERT_3_C Missing # FCF	Refl Between THmin & STh/L= 0.60	00 16

Alert level G

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	4
PLAT371_ALERT_2_G Long C(sp2)-C(sp1) Bond C17 - C18 1.44 /	Ang.
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints	3
PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still	36 Perc.

PLATON version of 05/11/2012; check.def file version of 05/11/2012

Datablock H₂L8b- ellipsoid plot

A.7: Crystallographic Data Tables for H₂L8c

Identification code	H ₂ L8c		
Empirical formula	$C_{20} H_{18} N_8 O$		
Formula weight	386.42		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 8.8718(2) Å	α= 90°.	
	b = 20.4106(3) Å	β= 98.3440(10)°.	
	c = 10.0909(2) Å	γ = 90°.	
Volume	1807.91(6) Å ³		
Z	4		
Density (calculated)	1.420 Mg/m ³		
Absorption coefficient	0.774 mm ⁻¹		
F(000)	808		
Crystal size	0.15 x 0.15 x 0.05 mm ³		
Theta range for data collection	4.33 to 68.31°.		
Index ranges	-10<=h<=10, -23<=k<=24, -12<=l<=11		
Reflections collected	11955		
Independent reflections	3279 [R(int) = 0.0189]		
Completeness to theta = 25.00°	96.8 %		
Absorption correction	Semi-empirical from equiva	lents	
Max. and min. transmission	0.9623 and 0.8927		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	3279 / 0 / 267		
Goodness-of-fit on F ²	1.061		
Final R indices [I>2sigma(I)]	R1 = 0.0557, wR2 = 0.1499		
R indices (all data)	R1 = 0.0597, wR2 = 0.1534		
Largest diff. peak and hole	0.531 and -0.322 e.Å ⁻³		

Table A.7.1 Crystal data and structure refinement details for H_2L8c .

	x	У	Z	U(eq)	
O(1)	4391(2)	3904(1)	9394(2)	40(1)	
N(1)	-420(2)	6152(1)	908(2)	34(1)	
N(2)	844(2)	5292(1)	2990(2)	27(1)	
N(3)	4223(2)	5009(1)	6758(2)	31(1)	
N(5)	2122(2)	4115(1)	5579(2)	30(1)	
N(6)	1613(2)	7030(1)	2084(2)	35(1)	
N(7)	2849(2)	6143(1)	4087(2)	28(1)	
C(1)	-941(3)	6649(1)	-108(2)	38(1)	
C(2)	-877(3)	5552(1)	953(2)	31(1)	
C(3)	-299(2)	5118(1)	1979(2)	29(1)	
C(4)	1076(2)	4765(1)	3795(2)	27(1)	
C(5)	2190(2)	4709(1)	5017(2)	28(1)	
C(6)	3309(2)	5177(1)	5623(2)	29(1)	
C(7)	4085(3)	4423(1)	7314(2)	32(1)	
C(8)	5101(3)	4307(1)	8605(2)	34(1)	
C(9)	5261(3)	3730(1)	10653(3)	44(1)	
C(10)	3041(3)	3971(1)	6698(2)	31(1)	
C(11)	2925(3)	3298(1)	7169(2)	35(1)	
N(8)	2816(3)	2764(1)	7470(2)	45(1)	
C(13)	341(3)	7116(1)	-250(3)	42(1)	
C(14)	951(3)	7482(1)	1030(3)	41(1)	
C(15)	2837(3)	7173(1)	2847(2)	34(1)	
C(16)	3464(3)	6745(1)	3927(2)	32(1)	
C(17)	3617(2)	5837(1)	5178(2)	29(1)	
C(18)	4763(3)	6265(1)	5754(2)	34(1)	
C(19)	4669(3)	6825(1)	4980(2)	36(1)	
C(20)	-793(3)	4474(1)	2162(2)	34(1)	
C(21)	63(3)	4249(1)	3306(2)	35(1)	
N(9)	6394(3)	4543(1)	8984(2)	44(1)	

Table A.7.2 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for H₂L8c. U(eq) is defined as one third of the trace of the orthogonalised Uij tensor.

Table A.7.3: IUCR CIF Check Report

Datablock: H₂L8c

Bond pred	cision:	C-C = 0.0031 A	Wavelength=1.54178
Cell:	a=8.8718(2)	b=20.4106(3)	c=10.0909(2)
	alpha=90	beta=98.344(1)	gamma=90
Temperat	ure: 100 K		
		Calculated	Reported
Volume		1807.91(6)	1807.91(6)
Space gro	up	P 21/c	P21/c
Hall group)	-P 2ybc	-P 2ybc
Moiety fo	rmula	C20 H18 N8 O	C20 H18 N8 O
Sum form	ula	C20 H18 N8 O	C20 H18 N8 O
Mr		386.42	386.42
Dx,g cm-3		1.420	1.420
Z		4	4
Mu (mm-:	1)	0.774	0.774
F000		808.0	808.0
F000'		810.40	
h,k,lmax		10,24,12	10,24,12
Nref		3311	3279
Tmin,Tma	x	0.890,0.962	0.893,0.962
Tmin'		0.890	
Correction	n method= MULT	I-SCAN	
Data com	pleteness= 0.990	Theta(ma	ax)= 68.310
R(reflectio	ons)= 0.0557(301	.9) wR2((reflections)= 0.1534(3279)
S = 1.061		Npar= 267	
The follow test-n	ving ALERTS were ame_ALERT_ale	e generated. Each ALERT has t r t-type_alert-level.	the format
Refert le PLAT019	evel B ALERT_1_B Chec	k _diffrn_measured_fraction	_theta_full/_max 0.978
Alert le	evel C		
PLAT906_	ALERT_3_C Large	K value in the Analysis of Va	ariance 3.173
PLAT911_	ALERT_3_C Missi	ng # FCF Refl Between THmir	n & STh/L= 0.600 25
Alert le	evel G		
PLAT007_	ALERT_5_G Note	: Number of Unrefined D-H A	Atoms 2
PLAT371_	ALERT_2_G Long	C(sp2)-C(sp1) Bond C10 -	C11 1.46 Ang.
PLAT912_	ALERT_4_G Miss	ing # of FCF Reflections Abov	[,] e STh/L= 0.600 7

PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600

PLATON version of 05/11/2012; check.def file version of 05/11/2012

Datablock H₂L8c - ellipsoid plot

A.8: Crystallographic Data Tables for H₂L9

Identification code	H ₂ L9		
Empirical formula	$C_{20} H_{18} N_6$		
Formula weight	342.40		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 9.174(4) Å	α= 90°.	
	b = 17.089(5) Å	β= 108.624(5)°.	
	c = 11.072(5) Å	γ = 90°.	
Volume	1644.9(11) Å ³		
Z	4		
Density (calculated)	1.383 Mg/m ³		
Absorption coefficient	0.087 mm ⁻¹		
F(000)	720		
Crystal size	0.40 x 0.30 x 0.10 mm ³		
Theta range for data collection	3.07 to 26.05°.		
Index ranges	-11<=h<=11, -21<=k<=21, -10<=l<=13		
Reflections collected	12114		
Independent reflections	3248 [R(int) = 0.0414]		
Completeness to theta = 25.00°	99.8 %		
Absorption correction	Semi-empirical from equiva	lents	
Max. and min. transmission	0.9913 and 0.9659		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	3248 / 0 / 245		
Goodness-of-fit on F ²	0.911		
Final R indices [I>2sigma(I)]	R1 = 0.0391, wR2 = 0.0913		
R indices (all data)	R1 = 0.0535, wR2 = 0.0947		
Largest diff. peak and hole	0.159 and -0.295 e.Å ⁻³		

Table A.8.1 Crystal data and structure refinement details for H_2L9

		-			
	x	у	Z	U(eq)	
C(1)	8310(2)	451(1)	67(1)	31(1)	
C(2)	6177(2)	1228(1)	-99(1)	24(1)	
C(3)	4848(2)	1530(1)	166(1)	22(1)	
C(4)	3886(2)	2139(1)	-441(1)	26(1)	
C(5)	2745(2)	2216(1)	134(1)	25(1)	
C(6)	3033(2)	1649(1)	1092(1)	21(1)	
C(7)	2083(2)	1490(1)	1906(1)	21(1)	
C(8)	-99(2)	1921(1)	2343(1)	22(1)	
C(9)	-1367(2)	2441(1)	2105(1)	26(1)	
C(10)	-2434(2)	2334(1)	2706(1)	29(1)	
C(11)	-2294(2)	1711(1)	3577(1)	30(1)	
C(12)	-1077(2)	1208(1)	3833(1)	28(1)	
C(13)	41(2)	1303(1)	3213(1)	22(1)	
C(14)	2233(2)	847(1)	2808(1)	20(1)	
C(15)	3362(2)	203(1)	3131(1)	21(1)	
C(16)	3255(2)	-440(1)	3918(1)	24(1)	
C(17)	4491(2)	-911(1)	4019(1)	25(1)	
C(18)	5325(2)	-552(1)	3295(1)	22(1)	
C(19)	6691(2)	-835(1)	3166(1)	24(1)	
C(20)	8919(2)	-890(1)	2456(2)	32(1)	
N(1)	7019(1)	666(1)	501(1)	24(1)	
N(2)	4313(1)	1243(1)	1092(1)	22(1)	
N(3)	944(1)	2008(1)	1719(1)	23(1)	
N(4)	1218(1)	783(1)	3437(1)	23(1)	
N(5)	4613(1)	133(1)	2752(1)	21(1)	
N(6)	7491(1)	-535(1)	2496(1)	25(1)	

Table A.8.2 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for H₂L9. U(eq) is defined as one third of the trace of the orthogonalised Uij tensor.

Table A.8.3: IUCR CIF Check Report

Datablock: H₂L9

Bond precisio	n:	C-C = 0.0020 A		Wavelength=0.71073		
Cell:	a=9.174(4)		b=17.089)(5)	c=11.072(5))
	alpha=90		beta=108	8.624(5)	gamma=90	
Temperature:	120 K					
		Calculate	d			Reported
Volume		1644.9(11	1)			1644.9(11)
Space group		P 21/c				P21/c
Hall group		-P 2ybc				-P 2ybc
Moiety formu	ıla	C20 H18 I	N6			C20 H18 N6
Sum formula		C20 H18 I	N6			C20 H18 N6
Mr		342.40				342.40
Dx,g cm-3		1.383				1.383
Z		4				4
Mu (mm-1)		0.087				0.087
F000		720.0				720.0
F000'		720.21				
h,k,lmax		11,21,13				11,21,13
Nref		3250				3248
Tmin,Tmax		0.969,0.9	91			0.966,0.991
Tmin'		0.966				
Correction me	ethod= MULT	I-SCAN				
Data complet	eness= 0.999		٦	۲heta(max)= 2	6.050	
R(reflections)	= 0.0391(242	1)		wR2(refle	ctions)= 0.0	947(3248)
S = 0.911		Npar	= 245			

The following ALERTS were generated. Each ALERT has the format **test-name_ALERT_alert-type_alert-level**.

Alert level C

PLAT906_	ALERT_	3_C Large K value in the Analysis of Variance	3.022
PLAT910_	ALERT_	B_C Missing # of FCF Reflections Below Th(Min)	5

PLATON version of 05/11/2012; check.def file version of 05/11/2012 Datablock H₂L9 - ellipsoid plot

A.9: Crystallographic Data Tables for H₂L12

Identification code	H ₂ L12		
Empirical formula	$C_{14} H_{18} N_4$		
Formula weight	242.32		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 18.140(5) Å	α= 90°.	
	b = 5.129(4) Å	β= 102.177(5)°.	
	c = 14.310(5) Å	γ = 90°.	
Volume	1301.5(12) Å ³		
Z	4		
Density (calculated)	1.237 Mg/m ³		
Absorption coefficient	0.077 mm ⁻¹		
F(000)	520		
Crystal size	0.50 x 0.29 x 0.22 mm ³		
Theta range for data collection	4.07 to 32.10°.		
Index ranges	-26<=h<=26, -7<=k<=5, -20<=l<=21		
Reflections collected	6311		
Independent reflections	2095 [R(int) = 0.0260]		
Completeness to theta = 25.00°	99.7 %		
Absorption correction	Semi-empirical from equiva	lents	
Max. and min. transmission	0.9833 and 0.9625		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	2095 / 0 / 86		
Goodness-of-fit on F ²	0.977		
Final R indices [I>2sigma(I)]	R1 = 0.0425, wR2 = 0.1194		
R indices (all data)	R1 = 0.0522, wR2 = 0.1232		
Largest diff. peak and hole	0.217 and -0.353 e.Å ⁻³		

Table A.9.1 Crystal data and structure refinement details for H_2L12

	parameters (A \times 10) for H_2L12 . O(eq) is defined as one third of the					
	trace of the orthogo	Shallsed Olj tens	501.			
	Х	У	Z	U(eq)		
C(1)	3972(1)	-1719(2)	6860(1)	25(1)		
C(2)	4040(1)	225(2)	7535(1)	25(1)		
C(3)	3374(1)	1729(2)	7306(1)	24(1)		
C(4)	2920(1)	649(2)	6500(1)	20(1)		
C(5)	2176(1)	1495(2)	6026(1)	21(1)		
C(6)	1000(1)	1407(2)	4987(1)	20(1)		
C(7)	401(1)	-436(2)	5221(1)	21(1)		
N(1)	3294(1)	-1467(2)	6237(1)	22(1)		
N(2)	1757(1)	315(2)	5324 (1)	21(1)		

Table A.9.2 Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for H₂L12. U(eq) is defined as one third of the trace of the orthogonalised Uij tensor.

Table A.9.3: IUCR CIF Check Report

Datablock: H₂L12

Bond precisio	on:	C-C = 0	.0017 A		Wavelength=0.71073
Cell:	a=18.140(5)		b=5.129(4)	c=14.310(5)
	alpha=90		beta=102.177(5)	gamma=9	0
Temperature	: 120 K				
		Calculate	d		Reported
Volume		1301.5(1	2)		1301.5(12)
Space group		C 2/c			C2/c
Hall group		-C 2yc			-C2yc
Moiety formu	ula	C14 H18	N4		C14 H18 N4
Sum formula		C14 H18	N4		C14 H18 N4
Mr		242.32			242.32
Dx,g cm-3		1.237			1.237
Z		4			4
Mu (mm-1)		0.077			0.077
F000		520.0			520.0
F000'		520.15			
h,k,lmax		26,7,21			26,7,21
Nref		2278			2095
Tmin,Tmax		0.974,0.9	83		0.962,0.983
Tmin'		0.962			
Correction m	ethod= MULT	-SCAN			
Data complet	eness= 0.920		Theta(max)	= 32.100	
R(reflections)	= 0.0425(166	6)	wR2(re	eflections)= 0.3	1232(2095)
S = 0.977		Npar	= 86		
The following test-nam	; ALERTS were e_ALERT_aler	generate t-type_al e	d. Each ALERT has th ert-level.	e format	
Alert level	IC RT 3 C Large	K value ir	the Analysis of Varia	ance 2.	154
PLAT910_ALE	RT_3_C Missi	ng # of FC	F Reflections Below T	Րh(Min)	3
-					

Alert level G

PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 177

PLATON version of 05/11/2012; check.def file version of 05/11/2012

 $\textbf{Datablock H}_2\textbf{L12} \text{ - ellipsoid plot}$

APPENDIX B: CRYSTOLLOGRAPHIC DATA TABLES OF GOLD(III) COMPLEXES

B.1: Crystallographic Data Tables for [Au(L1)](PF₆)

Table B.1.1: Crystal data and structure refinement details for [Au(L1)](PF₆).

Identification code	[Au(L1)](PF ₆)			
Empirical formula	C ₂₁ H ₁₆ Au F ₆ N ₆ P			
Formula weight	694.33			
Temperature	173(2) К			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2/c			
Unit cell dimensions	a = 16.473(5) Å	⊵ = 90.000°.		
	b = 6.980(5) Å	⊵= 105.675(5)°.		
	c = 18.804(5) Å	₽ = 90.000°.		
Volume	2081.7(17) Å ³			
Z	4			
Density (calculated)	2.215 Mg/m ³			
Absorption coefficient	7.223 mm ⁻¹			
F(000)	1328			
Crystal size	0.50 x 0.02 x 0.01 mm ³			
Theta range for data collection	2.92 to 25.97°.			
Index ranges	-19<=h<=20, -6<=k<=8, -22<=l<=22			
Reflections collected	14581			
Independent reflections	4010 [R(int) = 0.0603]			
Completeness to theta = 25.00°	99.8 %			
Absorption correction	Semi-empirical from equiva	lents		
Max. and min. transmission	1.00000 and 0.49688			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	4010/0/316			
Goodness-of-fit on F ²	0.940			
Final R indices [I>2sigma(I)]	R1 = 0.0320, wR2 = 0.0703			
R indices (all data)	R1 = 0.0452, wR2 = 0.0733			
Largest diff. peak and hole	2.282 and -1.453 e.Å ⁻³			

	x	У	Z	U(eq)
Au(1)	7252(1)	3853(1)	613(1)	21(1)
Р	9026(1)	842(2)	-1505(1)	26(1)
N(1)	6499(3)	3010(7)	1223(2)	21(1)
N(4)	6441(3)	3727(6)	-375(3)	21(1)
N(6)	4229(3)	2414(6)	-862(2)	18(1)
C(14)	4957(3)	2643(7)	-338(3)	15(1)
F(5)	10026(2)	800(6)	-1272(2)	50(1)
F(6)	8982(3)	-1321(5)	-1206(2)	46(1)
N(2)	8102(3)	3892(7)	1603(3)	31(1)
C(15)	4990(3)	2274(7)	440(3)	17(1)
N(5)	4292(3)	1682(6)	620(3)	20(1)
C(10)	6834(4)	4090(8)	-938(4)	25(1)
F(2)	9037(3)	1658(6)	-705(2)	50(1)
C(1)	5695(4)	2373(8)	1123(3)	22(1)
C(2)	5610(4)	1768(9)	1827(3)	28(1)
C(13)	5629(4)	3190(8)	-691(3)	19(1)
F(4)	9017(3)	26(8)	-2303(2)	73(2)
F(3)	9044(3)	3017(6)	-1797(3)	60(1)
C(19)	2056(4)	912(8)	-1030(4)	29(2)
N(3)	8044(3)	4613(7)	6(3)	23(1)
C(21)	3532(3)	1817(7)	-675(3)	17(1)
C(12)	5503(4)	3223(9)	-1468(3)	25(1)
C(17)	2820(4)	774(8)	272(4)	24(1)
C(16)	3572(4)	1424(7)	88(3)	22(1)
C(3)	6373(4)	2054(10)	2345(3)	34(2)
C(9)	7692(4)	4574(9)	-705(3)	27(1)
C(7)	9317(4)	3940(9)	1046(4)	44(2)
C(5)	7784(4)	3316(9)	2137(4)	33(2)
C(8)	8941(4)	5104(10)	341(4)	35(2)
F(1)	8013(2)	903(6)	-1738(3)	54(1)
C(6)	8985(4)	4448(10)	1706(4)	40(2)
C(18)	2096(4)	531(8)	-274(4)	28(2)
C(11)	6253(4)	3791(8)	-1628(3)	26(1)
C(4)	6924(4)	2814(8)	1964(3)	26(1)
C(20)	2768(4)	1539(8)	-1227(3)	26(1)

Table B.1.2:Atomic coordinates (x 10^4) and equivalent isotropic displacementparameters (Å² x 10^3) for [Au(L1)](PF₆). U(eq) is defined as one third of the
trace of the orthogonalised Uij tensor.

Table B.1.3: IUCR CIF Check Report.

Datablock: [Au(L1)](PF₆)

Bond precisio	n:	C-C = 0	.0090 A	V	Vavelength=0.71073	
Cell:	a=16.473(5)		b=6.980(5)	c=18.804(5)		
	alpha=90		beta=105.675(5)	gamma=90		
Temperature	: 173 K					
		Calculate	d		Reported	
Volume		2081.7(1	7)		2081.7(17)	
Space group		P 2/c			P2/c	
Hall group		-P 2yc			-Р 2ус	
Moiety formu	ıla	C21 H16	Au N6, F6 P		C21 H16 Au N6, F6 P	
Sum formula		C21 H16	Au F6 N6 P		C21 H16 Au F6 N6 P	
Mr		694.34			694.33	
Dx,g cm-3		2.216			2.215	
Z		4			4	
Mu (mm-1)		7.223			7.223	
F000		1328.0			1328.0	
F000'		1321.29				
h,k,lmax		20,8,23			20,8,22	
Nref		4088			4010	
Tmin,Tmax		0.841,0.9	30		0.497,1.000	
Tmin'		0.027				
Correction m	ethod= MULT	-SCAN				
Data complet	eness= 0.981		Theta(max)=	25.970		
R(reflections)	= 0.0320(315	3)	wR2(ref	lections)= 0.07	33(4010)	
S = 0.940		Npar	= 316			
The following test-nam	ALERTS were	generate t-type_ale	d. Each ALERT has the ert-level .	format		
Alert level	С					
PLAT244_ALE	RT_4_C Low	'Solvent'	Ueq as Compared to N	leighbors of	Р	
PLAT342_ALE	RT_3_C Low E	Bond Preci	sion on C-C Bonds	0.009	90 Ang	
PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) 5						
PLAT911_ALE	RT_3_C Missi	ng # FCF R	efl Between THmin &	STh/L= 0.600	3	
Alert leve	G					
PLAT005_ALE	RT_5_G No _i	ucr_refine	e_instructions_details	in the CIF	?	
PLAT153_ALE	RT_1_G The s	u's on the	Cell Axes are Equal .	0.0050	0 Ang.	

PLAT790_ALERT_4_G Centre of Gravity not Within Unit Cell: Resd. # 2

F6 P

PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 70

PLATON version of 24/04/2013; check.def file version of 23/04/2013 Datablock [Au(L1)](PF₆)- ellipsoid plot

B.2: Crystallographic Data Tables for [Au(L2)](CF₃SO₃)

Table B.2.1: Crystal da	ta and structure	refinement	details for	$[Au(L2)](CF_3SO_3).$
Tuble Dillini or jotal at		rennement	actandio	

Identification code	[Au(L2)](CF ₃ SO ₃)		
Empirical formula	C ₂₄ H ₂₀ Au F ₃ N ₆ O ₃ S		
Formula weight	726.50		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	Сс		
Unit cell dimensions	a = 17.092(5) Å	α= 90.000(5)°.	
	b = 25.520(5) Å	β= 119.057(5)°.	
	c = 13.625(5) Å	= 90.000(5)°.	
Volume	5195(3) Å ³		
Z	2		
Density (calculated)	1.860 Mg/m ³		
Absorption coefficient	5.805 mm ⁻¹		
F(000)	2820		
Crystal size	0.30 x 0.10 x 0.07 mm ³		
Theta range for data collection	2.77 to 26.05°.		
Index ranges	-21<=h<=20, -30<=k<=31, -13<=l<=16		
Reflections collected	19009		
Independent reflections	7804 [R(int) = 0.0737]		
Completeness to theta = 25.00°	99.9 %		
Max. and min. transmission	0.6867 and 0.2748		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	7804 / 8 / 689		
Goodness-of-fit on F ²	1.003		
Final R indices [I>2sigma(I)]	R1 = 0.0646, wR2 = 0.1599		
R indices (all data)	R1 = 0.0897, wR2 = 0.1697		
Absolute structure parameter	0.659(18)		
Largest diff. peak and hole	2.382 and -1.468 e.Å ⁻³		

	х	У	z	U(eq)
C(1A)	10870(17)	400(11)	2603(19)	41(7)
C(1B)	-316(18)	9363(11)	4170(20)	39(6)
C(2A)	11752(13)	601(8)	3298(16)	33(5)
C(2B)	-518(17)	8858(11)	3990(20)	55(7)
C(3A)	11760(12)	1129(8)	3285(15)	31(5)
C(3B)	257(15)	8553(10)	4575(19)	48(5)
C(4A)	10889(13)	1310(7)	2561(17)	30(4)
C(4B)	935(15)	8914(10)	5128(18)	49(6)
C(5A)	10455(15)	1763(8)	2157(17)	32(5)
C(5B)	1857(17)	8862(11)	5880(20)	51(7)
C(6A)	9038(18)	2192(8)	880(20)	47(6)
C(6B)	3180(20)	9355(18)	7010(30)	106(16)
C(7A)	8013(13)	2160(9)	566(19)	51(6)
C(7B)	3687(15)	9830(11)	6950(20)	57(7)
C(8A)	7489(17)	1708(11)	-390(20)	49(7)
C(8B)	3414(17)	10319(13)	7200(20)	76(9)
C(9A)	7310(14)	775(10)	-327(18)	39(5)
C(9B)	2170(14)	10961(11)	6188(19)	50(6)
C(10A)	7420(18)	-215(9)	-178(19)	47(7)
C(10B)	1213(16)	11066(9)	5438(19)	44(6)
C(11A)	7690(20)	313(10)	40(20)	55(8)
C(11B)	662(17)	11462(10)	5000(20)	50(6)
C(12A)	8136(15)	-538(11)	420(20)	49(7)
C(13A)	8905(16)	-206(9)	1011(19)	42(6)
C(13B)	-208(16)	11263(11)	4300(17)	48(6)
C(14A)	9796(16)	-424(8)	1761(19)	29(5)
C(14B)	-911(15)	10300(30)	3640(20)	84(15)
C(15A)	10522(16)	-1210(8)	2371(19)	39(5)
C(15B)	-2452(14)	10409(9)	2378(18)	39(5)
C(16A)	10570(20)	-1734(10)	2370(30)	64(8)
C(16B)	-3220(17)	10744(14)	1720(20)	73(8)
C(17A)	11222(18)	-2024(9)	2890(20)	62(7)
C(17B)	-4001(14)	10494(12)	1170(20)	57(8)
C(18B)	-4068(16)	9940(8)	1190(20)	47(6)

Table B.2.2: Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for [Au(L2)](CF₃SO₃). U(eq) is defined as one third of the trace of the orthogonalised Uij tensor.

	x	У	Z	U(eq)
C(19A)	12070(20)	-1783(9)	3550(30)	68(8)
C(19B)	-3395(12)	9694(7)	1766(14)	27(4)
C(20A)	12097(14)	-1251(9)	3576(17)	38(5)
C(20B)	-2523(14)	9879(9)	2410(17)	43(5)
C(21A)	11352(17)	-934(12)	3005(19)	54(7)
C(21B)	-997(15)	9729(16)	3624(17)	50(8)
C(22A)	7925(13)	2058(8)	1608(18)	44(5)
C(22B)	4687(14)	9813(11)	7930(20)	65(7)
C(23A)	7575(14)	2679(9)	40(20)	59(7)
C(23B)	3645(16)	9872(10)	5850(20)	61(7)
C(24A)	9750(20)	3135(14)	4730(50)	130(20)
C(24B)	7510(40)	1900(40)	6120(40)	220(50)
C(047)	10689(14)	-161(10)	2451(16)	31(6)
N(1A)	10355(11)	868(7)	2159(14)	35(4)
N(1B)	2298(14)	9334(10)	6233(16)	54(6)
N(2A)	9538(11)	1748(7)	1446(14)	41(4)
N(2B)	593(13)	9416(8)	4869(16)	40(5)
N(3A)	7814(15)	1198(9)	63(17)	51(5)
N(3B)	712(11)	10604(9)	5005(14)	42(5)
N(4A)	8592(12)	293(7)	767(14)	36(4)
N(4B)	2474(15)	10520(10)	6360(20)	63(7)
N(5A)	11371(12)	-424(7)	3023(16)	37(4)
N(5B)	-1612(14)	10643(8)	3009(16)	44(5)
N(6A)	9767(10)	-926(6)	1747(12)	33(4)
N(6B)	-1764(12)	9559(9)	3079(16)	48(5)
N(027)	-150(20)	10707(17)	4300(20)	97(12)
O(1A)	8892(12)	3313(8)	2685(18)	77(6)
O(1B)	8310(30)	2974(11)	6770(40)	200(20)
O(2A)	10286(12)	2809(10)	3420(20)	121(10)
O(2B)	6990(40)	2560(20)	7050(40)	330(40)
O(3A)	10313(12)	3759(8)	3820(19)	90(6)
O(3B)	8560(30)	2284(11)	8140(20)	157(15)
F(1A)	9308(13)	2654(7)	4680(20)	115(7)
F(1B)	6943(19)	2254(14)	5120(30)	215(19)
F(2A)	9316(14)	3475(8)	4930(20)	123(9)
F(2B)	7400(30)	1614(16)	6340(50)	290(40)

	x	у	z	U(eq)	
F(3A)	10601(11)	3050(9)	5642(18)	112(7)	
F(3B)	8290(20)	1915(12)	5970(30)	184(14)	
S(1A)	9803(5)	3268(3)	3522(8)	85(2)	
S(1B)	7889(10)	2540(5)	7128(10)	131(5)	
Au(1A)	9092(1)	1017(1)	1045(1)	29(1)	
Au(1B)	1492(1)	9962(1)	5547(1)	41(1)	

Table	B 2 2	continued
TUDIC	D.Z.Z.	continucu

Table B.1.3: IUCR CIF Check Report.

Datablock: [Au(L2)](CF₃SO₃)

Bond precisio	n:	C-C = 0	.0220 A		Wavelength=0.71073
Cell:	a=17.092(5)		b=25.520(5)	c=13.62	25(5)
	alpha=90		beta=119.057(5)	gamma	a=90
Temperature:	: 120 K				
		Calculate	d		Reported
Volume		5195(3)			5195(3)
Space group		Сс			Сс
Hall group		C -2yc			C -2yc
Moiety formu	ıla	C23 H20	Au N6, C F3 O3 S		C23 H20 Au N6, C F3 O3 S
Sum formula		C24 H20	Au F3 N6 O3 S		C24 H20 Au F3 N6 O3 S
Mr		726.50			726.49
Dx,g cm-3		1.858			1.858
Z		8			8
Mu (mm-1)		5.804			5.804
F000		2816.0			2816.0
F000'		2802.62			
h,k,lmax		21,31,16			21,31,16
Nref		10271[5	143]		7796
Tmin,Tmax		0.503,0.6	66		0.404,1.000
Tmin'		0.174			
Correction me	ethod= MULT	I-SCAN			
Data complet	eness= 1.52/0	0.76	Theta(max	:)= 26.050	
R(reflections)	= 0.0544(572	7)	wR2(r	eflections)=	= 0.1246(7796)
S = 0.980		Npar	= 665		
The following test-name	ALERTS were	generate	d. Each ALERT has th ert-level.	ne format	

Alert level B

PLAT342_ALERT_3_B Low Bond Precision on C-C Bonds	0.0	0220 Ang
PLAT601_ALERT_2_B Structure Contains Solvent Accessible VOI	DS of .	175 Ang3
PLAT973_ALERT_2_B Large Calcd. Positive Residual Density on	Au2	1.51 eA-3

Alert level C

PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) 7.72
PLAT234_ALERT_4_C Large Hirshfeld Difference Au2 N2B 0.16 Ang.
PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of C1C
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor 3.7
PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) 6
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3
PLAT915_ALERT_3_C Low Friedel Pair Coverage 52 %
PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density 2.24 eA-3

PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual I	Density	2.02 eA-3
PLAT973_ALERT_2_C Large Calcd. Positive Residual Density on	Au1	1.44 eA-3

Alert level G	
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite	10
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms	74
PLAT153_ALERT_1_G The su's on the Cell Axes are Equal 0.0050	00 Ang.
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	8
PLAT850_ALERT_4_G Check Flack Parameter Exact Value 0.00 and su	0.01
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints	455

PLATON version of 24/04/2013; check.def file version of 23/04/2013 Datablock [Au(L2)](CF₃SO₃)- ellipsoid plot

B.3: Crystallographic Data Tables for [Au(L3)](PF₆)

Table B.3.1: Crystal data and structure refinement details for [Au(L3)](PF₆).

Identification code	[Au(L3)](PF ₆)	
Empirical formula	C ₂₄ H ₂₁ Au F ₆ N ₇ P	
Formula weight	749.41	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	Pna21	
Unit cell dimensions	a = 43.9022(11) Å	α= 90°.
	b = 6.7597(2) Å	β= 90°.
	c = 48.8964(12) Å	γ = 90°.
Volume	14510.8(7) Å ³	
Z	24	
Density (calculated)	2.058 Mg/m ³	
Absorption coefficient	12.760 mm ⁻¹	
F(000)	8688	
Crystal size	0.12 x 0.02 x 0.02 mm ³	
Theta range for data collection	1.81 to 66.59°.	
Index ranges	-45<=h<=52, -8<=k<=8, -57<	=l<=56
Reflections collected	101016	
Independent reflections	24413 [R(int) = 0.0978]	
Completeness to theta = 67.0°	99.4 %	
Absorption correction	Numerical	
Max. and min. transmission	0.8123 and 0.3097	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	24413 / 2247 / 2114	
Goodness-of-fit on F ²	1.055	
Final R indices [I>2sigma(I)]	R1 = 0.0520, wR2 = 0.1067	
R indices (all data)	R1 = 0.0680, wR2 = 0.1131	
Absolute structure parameter	0.00(6)	
Largest diff. peak and hole	2.016 and -2.003 e.Å ⁻³	

	х	У	Z	U(eq)
Au(1)	5526(1)	1621(1)	7879(1)	19(1)
Au(2)	6955(1)	7984(1)	6761(1)	19(1)
Au(3)	9705(1)	2191(1)	5259(1)	21(1)
Au(4)	9568(1)	8286(1)	6177(1)	18(1)
Au(5)	7917(1)	3127(1)	8461(1)	17(1)
Au(6)	7783(1)	7056(1)	9389(1)	24(1)
P(1)	5498(1)	6927(5)	8898(1)	29(1)
P(2)	8096(1)	3846(5)	7119(1)	27(1)
P(3)	6992(1)	2566(5)	5746(1)	26(1)
P(4)	5882(1)	7507(5)	5501(1)	26(1)
P(5)	9386(1)	9088(5)	7520(1)	26(1)
P(6)	6609(1)	2167(6)	9140(1)	26(1)
F(1)	5750(2)	6887(15)	9132(2)	44(2)
F(2)	5694(2)	5371(13)	8728(3)	51(3)
F(3)	5250(3)	6953(14)	8660(2)	42(3)
F(4)	5302(3)	8476(15)	9063(3)	56(3)
F(5)	5670(2)	8715(12)	8757(2)	42(2)
F(6)	5324(2)	5117(14)	9043(2)	46(2)
F(7)	7951(2)	5645(13)	7287(2)	43(2)
F(8)	8380(2)	3829(14)	7328(2)	37(2)
F(9)	8234(3)	2052(17)	6955(3)	57(3)
F(10)	7813(2)	3850(15)	6911(2)	44(2)
F(11)	7908(3)	2317(16)	7320(3)	62(4)
F(12)	8270(2)	5340(17)	6926(2)	54(3)
F(13)	6752(3)	2515(15)	5500(3)	51(3)
F(14)	7191(2)	899(15)	5599(2)	53(3)
F(15)	7225(2)	2607(13)	5993(2)	38(2)
F(16)	6790(2)	4214(13)	5896(2)	41(2)
F(17)	6796(2)	890(12)	5899(2)	36(2)
F(18)	7182(3)	4224(16)	5594(3)	65(4)
F(19)	6023(2)	9227(12)	5314(2)	39(2)
F(20)	6019(2)	5878(13)	5300(2)	43(2)
F(21)	5730(2)	5807(13)	5689(2)	40(2)
F(22)	5734(2)	9141(13)	5700(2)	43(3)

Table B.3.2:Atomic coordinates (x 10^4) and equivalent isotropic displacement
parameters (Å² x 10^3) for [Au(L3)](PF₆). U(eq) is defined as one third of
the trace of the orthogonalised Uij tensor.

	х	У	Z	U(eq)
F(23)	6178(3)	7450(13)	5688(3)	40(3)
F(24)	5571(3)	7554(12)	5323(2)	39(3)
F(25)	9669(2)	9142(14)	7724(2)	38(2)
F(26)	9556(3)	7552(14)	7331(2)	39(3)
F(27)	9104(2)	9046(13)	7311(2)	36(2)
F(28)	9209(2)	10599(15)	7709(2)	50(3)
F(29)	9237(3)	7260(15)	7683(3)	50(3)
F(30)	9532(2)	10864(12)	7352(2)	41(2)
F(31)	6467(2)	3758(13)	9336(2)	44(2)
F(32)	6916(2)	2165(12)	9316(2)	33(2)
F(33)	6759(2)	580(13)	8936(2)	40(2)
F(34)	6307(3)	2191(14)	8958(3)	40(3)
F(35)	6477(2)	410(14)	9318(2)	47(3)
F(36)	6750(2)	3918(12)	8955(2)	36(2)
N(1A)	5534(2)	1641(13)	7472(2)	17(2)
N(1B)	6517(3)	7498(13)	6705(3)	18(2)
N(1C)	9631(3)	2612(14)	5653(3)	20(2)
N(1D)	9522(3)	7730(16)	5778(3)	22(2)
N(1E)	8359(3)	3291(16)	8364(2)	24(2)
N(1F)	8217(3)	7316(17)	9503(3)	25(2)
N(1S)	5272(3)	1660(20)	9688(3)	40(3)
N(2A)	5080(3)	1002(15)	7813(3)	26(2)
N(2B)	6962(3)	7809(15)	6346(3)	20(2)
N(2C)	10154(3)	2273(16)	5385(3)	26(2)
N(2D)	10012(3)	7959(16)	6087(3)	23(2)
N(2E)	7871(2)	3813(14)	8063(2)	16(2)
N(2F)	7716(3)	6612(19)	9782(3)	32(2)
N(2S)	6873(4)	7413(19)	8386(4)	37(3)
N(3A)	5523(3)	1738(16)	8292(3)	26(2)
N(3B)	7399(3)	8664(14)	6825(2)	23(2)
N(3C)	9766(3)	1698(17)	4854(3)	26(2)
N(3D)	9605(2)	9040(15)	6574(2)	21(2)
N(3E)	7469(3)	2734(15)	8562(3)	21(2)
N(3F)	7347(3)	7024(17)	9267(3)	28(2)
N(3S)	7954(3)	8869(16)	7858(3)	31(3)
N(4A)	5967(3)	2091(15)	7932(3)	19(2)

Table B.3.2. continued	continued			
------------------------	-----------			
	x	v	Z	U(eq)
-------	---------	----------	---------	-------
N(4B)	6948(2)	8028(14)	7166(3)	18(2)
N(4C)	9275(3)	2228(16)	5134(3)	24(2)
N(4D)	9129(3)	8378(15)	6266(2)	22(2)
N(4E)	7972(3)	2587(15)	8855(3)	20(2)
N(4F)	7856(3)	7433(16)	8992(3)	24(2)
N(4S)	9529(3)	4066(16)	6784(3)	33(3)
N(5A)	6573(3)	2703(15)	7433(3)	22(2)
N(5B)	6315(3)	7472(14)	7631(3)	19(2)
N(5C)	8590(3)	2475(17)	5545(4)	29(2)
N(5E)	8658(4)	2584(16)	9259(3)	31(2)
N(5F)	8566(3)	7915(16)	8625(3)	26(2)
N(5S)	5612(4)	2280(20)	6254(4)	42(4)
N(6A)	6167(3)	2174(15)	7006(3)	20(2)
N(6B)	5912(3)	6934(15)	7205(3)	22(2)
N(6C)	8912(3)	2898(16)	6026(3)	24(2)
N(6E)	9017(3)	2827(17)	8796(4)	32(2)
N(6F)	8898(3)	7584(15)	9097(3)	24(2)
N(6S)	7214(3)	6520(20)	4949(3)	43(3)
N(41)	8473(3)	7574(16)	5838(4)	33(2)
N(42)	8835(4)	7645(15)	5370(3)	29(2)
C(1A)	5730(3)	1904(17)	7265(3)	18(2)
C(1B)	6251(3)	7242(18)	6851(3)	19(2)
C(1C)	9387(3)	2816(17)	5829(3)	21(2)
C(1D)	9303(4)	7660(20)	5583(4)	27(2)
C(1E)	8628(3)	3026(18)	8481(3)	24(2)
C(1F)	8495(4)	7478(19)	9402(4)	27(2)
C(1S)	5485(4)	1730(20)	9569(4)	31(3)
C(2A)	5561(3)	1904(18)	7018(3)	24(2)
C(2B)	6013(3)	7008(19)	6670(3)	24(2)
C(2C)	9520(3)	3037(16)	6100(3)	21(2)
C(2D)	9459(4)	7411(18)	5332(4)	27(2)
C(2E)	8854(3)	3190(20)	8271(3)	29(2)
C(2F)	8709(5)	7570(20)	9621(5)	33(2)
C(2S)	5760(4)	1790(20)	9396(4)	42(4)
C(3A)	5256(3)	1574(17)	7081(3)	23(2)
C(3B)	6131(4)	7139(18)	6406(4)	22(2)

Table B.3.2. continued...

	x	У	Z	U(eq)
C(3C)	9831(3)	2979(16)	6070(3)	19(2)
C(3D)	9757(4)	7334(18)	5368(4)	25(2)
C(3E)	8712(3)	3560(20)	8035(3)	29(2)
C(3F)	8548(4)	7340(20)	9870(4)	34(2)
C(3S)	6646(4)	7401(19)	8505(4)	30(3)
C(4A)	5241(3)	1411(17)	7367(3)	22(2)
C(4B)	6439(3)	7468(17)	6424(3)	19(2)
C(4C)	9897(3)	2684(17)	5799(3)	19(2)
C(4D)	9794(4)	7516(17)	5655(4)	21(2)
C(4E)	8398(3)	3580(20)	8087(3)	24(2)
C(4F)	8241(4)	7070(20)	9788(4)	29(2)
C(4S)	6368(4)	7340(20)	8656(4)	30(3)
C(5A)	5012(3)	1045(17)	7554(3)	23(2)
C(5B)	6677(3)	7565(16)	6249(3)	19(2)
C(5C)	10165(4)	2483(19)	5646(4)	27(3)
C(5D)	10061(4)	7650(20)	5823(4)	29(3)
C(5E)	8126(3)	3954(16)	7936(3)	20(2)
C(5F)	7970(4)	6790(20)	9936(3)	30(3)
C(5S)	8169(3)	8904(19)	7736(3)	27(3)
C(6A)	4860(3)	309(19)	8025(3)	30(2)
C(6B)	7225(3)	7740(19)	6169(3)	26(2)
C(6C)	10419(4)	2240(20)	5207(4)	31(3)
C(6D)	10270(3)	7900(20)	6273(4)	22(2)
C(6E)	7590(3)	4488(18)	7931(3)	22(2)
C(6F)	7437(4)	5850(20)	9921(4)	38(3)
C(6S)	8454(4)	8960(20)	7572(4)	43(4)
C(7A)	4758(4)	1970(20)	8210(4)	28(2)
С(7В)	7483(3)	6511(19)	6283(3)	28(2)
C(7C)	10393(3)	3610(19)	4967(3)	27(2)
C(7D)	10192(3)	6759(19)	6541(3)	23(2)
C(7E)	7376(3)	2782(18)	7863(3)	25(2)
C(7F)	7189(4)	7320(20)	9949(5)	37(3)
C(7S)	9311(3)	4098(19)	6905(3)	26(3)
C(8A)	5001(3)	3078(19)	8354(3)	27(2)
C(8B)	7741(3)	7718(19)	6426(4)	26(2)
C(8C)	10297(4)	2494(18)	4700(4)	26(3)

Table B.3.2. continued	continued
------------------------	-----------

	v		7	
	X	y	2	
C(8D)	10109(3)	8060(20)	6776(3)	26(2)
C(8E)	/300(3)	1499(19)	8110(3)	23(2)
C(8F)	7092(4)	8320(20)	9678(4)	41(3)
C(8S)	9029(4)	4170(30)	7074(4)	43(4)
C(9A)	5251(3)	1785(19)	8473(3)	26(2)
C(9B)	7615(3)	9345(18)	6616(3)	23(2)
C(9C)	10058(3)	940(20)	4737(3)	32(3)
C(9D)	9891(3)	9723(18)	6710(3)	24(2)
C(9E)	7211(4)	2573(19)	8365(4)	24(2)
C(9F)	7068(4)	6960(20)	9437(4)	36(3)
C(9S)	5828(4)	2330(20)	6139(5)	34(4)
C(10A)	5794(3)	1990(20)	8394(3)	25(2)
C(10B)	7475(3)	8663(18)	7080(3)	23(2)
C(10C)	9518(3)	1750(20)	4723(3)	29(3)
C(10D)	9347(3)	9102(19)	6698(3)	27(2)
C(10E)	7438(4)	2399(17)	8817(4)	20(2)
C(10F)	7314(4)	7215(17)	8999(4)	22(2)
C(10S)	6119(4)	2380(20)	5983(5)	42(4)
C(11A)	6044(3)	2146(19)	8208(3)	22(2)
C(11B)	7243(3)	8254(17)	7272(3)	21(2)
C(11C)	9252(4)	2200(20)	4854(3)	24(2)
C(11D)	9085(3)	8646(19)	6549(3)	24(2)
C(11E)	7693(4)	2386(18)	8989(4)	23(2)
C(11F)	7583(4)	7420(17)	8842(4)	24(2)
C(11S)	7002(5)	6920(30)	5079(4)	41(4)
C(12A)	6355(4)	2549(19)	8237(4)	26(2)
C(12B)	7224(3)	8135(17)	7555(3)	21(2)
C(12C)	8950(4)	2280(20)	4787(4)	27(2)
C(12D)	8772(3)	8440(20)	6607(3)	30(2)
C(12E)	7747(4)	2190(19)	9263(4)	25(2)
C(12F)	7646(4)	7750(19)	8574(4)	28(2)
C(12S)	6727(4)	7210(30)	5238(5)	46(4)
C(13A)	6471(3)	2584(18)	7980(3)	24(2)
C(13B)	6921(3)	7822(18)	7621(3)	22(2)
C(13C)	8791(4)	2560(20)	5027(4)	28(2)
C(13D)	8637(4)	8010(20)	6360(3)	30(2)

	x	v	z	U(eq)
C(13E)	8068(4)	2310(19)	9309(4)	28(2)
C(13F)	7958(3)	7887(17)	8543(3)	24(2)
C(14A)	6227(3)	2399(17)	7789(3)	19(2)
C(14B)	6753(3)	7784(18)	7377(3)	19(2)
C(14C)	8992(4)	2516(18)	5243(4)	23(2)
C(14D)	8848(3)	7950(20)	6148(3)	26(2)
C(14F)	8201(4)	2578(18)	9048(4)	23(2)
C(14F)	8081(4)	7711(18)	8809(3)	24(2)
C(15A)	6275(3)	2398(15)	7495(3)	15(2)
C(15B)	6411(3)	7485(16)	7370(3)	17(2)
C(15C)	8893(4)	2605(17)	5533(4)	21(2)
C(15D)	8776(4)	7730(20)	5854(4)	28(2)
C(15E)	8529(4)	2643(18)	9014(4)	26(2)
C(15F)	8418(4)	7736(18)	8861(4)	23(2)
C(16A)	6065(3)	2162(18)	7261(3)	20(2)
C(16B)	6205(3)	7214(18)	7151(3)	19(2)
C(16C)	9059(4)	2771(18)	5787(4)	23(2)
C(16D)	8967(4)	7661(18)	5620(4)	25(2)
C(16E)	8717(4)	2843(19)	8762(3)	24(2)
C(16F)	8590(4)	7581(19)	9109(4)	25(2)
C(17A)	6673(3)	2747(18)	7169(3)	21(2)
C(17B)	6019(3)	7157(17)	7680(3)	18(2)
C(17C)	8440(4)	2501(18)	5786(4)	26(2)
C(17D)	8356(5)	7400(20)	5576(5)	40(2)
C(17E)	8960(5)	2580(20)	9286(5)	36(2)
C(17F)	8870(4)	7936(19)	8611(4)	27(2)
C(18A)	6977(3)	3073(17)	7113(3)	21(2)
C(18B)	5919(4)	7126(19)	7958(3)	24(2)
C(18C)	8117(4)	2356(19)	5793(4)	29(2)
C(18D)	8028(5)	7260(20)	5554(5)	47(3)
C(18E)	9111(5)	2560(20)	9535(5)	40(2)
C(18F)	9027(4)	8145(19)	8362(3)	29(2)
C(19A)	7088(3)	3133(17)	6850(3)	22(2)
C(19B)	5610(3)	6768(18)	8008(3)	25(2)
C(19C)	7977(4)	2510(20)	6039(4)	32(2)
C(19D)	7913(5)	7170(20)	5282(5)	49(3)

Table B.3.2. continued...

	х	У	z	U(eq)
C(19E)	9442(4)	2580(20)	9537(4)	42(2)
C(19F)	9330(4)	8110(20)	8361(4)	34(2)
C(20A)	6874(3)	2773(17)	6633(3)	23(2)
C(20B)	5405(3)	6507(17)	7786(3)	24(2)
C(20C)	8134(4)	2810(20)	6275(4)	33(2)
C(20D)	8102(5)	7280(30)	5064(5)	50(3)
C(20E)	9614(4)	2670(20)	9302(4)	40(3)
C(20F)	9507(4)	7870(20)	8607(4)	33(2)
C(21A)	6579(4)	2471(18)	6684(4)	24(2)
C(21B)	5496(3)	6552(16)	7522(3)	20(2)
C(21C)	8455(4)	2980(20)	6276(3)	31(2)
C(21D)	8393(6)	7490(20)	5079(5)	47(3)
C(21E)	9473(5)	2760(20)	9068(5)	39(2)
C(21F)	9355(4)	7715(19)	8852(4)	29(2)
C(22A)	6467(3)	2458(17)	6954(4)	23(2)
C(22B)	5811(3)	6895(17)	7462(3)	17(2)
C(22C)	8608(4)	2820(20)	6019(3)	28(2)
C(22D)	8527(5)	7560(20)	5360(5)	41(2)
C(22E)	9152(4)	2720(20)	9043(4)	33(2)
C(22F)	9038(4)	7751(18)	8859(4)	26(2)

Table	B 2 2	continued
TUDIC	D.Z.Z.	continucu

Table B.3.3: IUCR CIF Check Report.

Datablock: [Au(L3)](PF₆)

Bond precisi	on:	C-C = 0	.0230 A		Wavelength=1.54178
Cell:	a=43.9022(1	1)	b=6.7597(2)	c=48.896	4(12)
	alpha=90		beta=90	gamma=9	90
Temperature	e: 100 K				
		Calculate	d		Reported
Volume		14510.8(7)		14510.8(7)
Space group		P n a 21			Pna21
Hall group		P 2c -2n			P 2c -2n
Moiety form	ula	C22 H18	Au N6, F6 P, C2 ⊦	13 N	C22 H18 Au N6, F6 P, C2 H3 N
Sum formula	1	C24 H21	Au F6 N7 P		C24 H21 Au F6 N7 P
Mr		749.42			749.41
Dx,g cm-3		2.058			2.058
Z		24			24
Mu (mm-1)		12.760			12.760
F000		8688.0			8688.0
F000'		8614.96			
h,k,lmax		52,8,58			52,8,57
Nref		25548[1	2938]		24413
Tmin,Tmax		0.773,0.7	75		0.310,0.812
Tmin'		0.206			
Correction m	nethod= NUME	RICAL			
Data comple	teness= 1.89/0	.96	Theta(n	nax)= 66.590	
R(reflections	s)= 0.0520(206	23)	wR	2(reflections)= 0	.1131(24413)
S = 1.055		Npai	= 2114		
The following test-nam	g ALERTS were ne_ALERT_aler	generate t-type_al	d. Each ALERT ha ert-level.	s the format	
Alert leve	l B				
PLAT342_AL	ERT_3_B Low E	Bond Prec	ision on C-C Bon	ds 0.	0230 Ang
Alert leve	el C				

PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) 6.	08
PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of	P1
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595	95
PLAT926_ALERT_1_C Reported and Calculated R1 Differ by0.00	21
PLAT927_ALERT_1_C Reported and Calculated wR2 Differ by0.0	045
PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density	2.03 eA-3
PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density	-1.79 eA-3

Alert level G

PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 186

PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF	?
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large	ge. 102.15
PLAT335_ALERT_2_G Check Large C6 Ring C-C Range C17D -C22D	0.21 Ang.
PLAT335_ALERT_2_G Check Large C6 Ring C-C Range C17E -C22E	0.16 Ang.
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	60
PLAT850_ALERT_4_G Check Flack Parameter Exact Value 0.00 and su	0.06
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints	2247
PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still	76 %
$PLAT916_ALERT_2_G$ Hooft y and Flack x Parameter values differ by .	0.42

PLATON version of 24/04/2013; check.def file version of 23/04/2013

Datablock [Au(L3)](PF₆)- ellipsoid plot

B.4: Crystallographic Data Tables for [Au(L10)](AuCl₄)

Table B.4.1: Crystal d	ata and structure	refinement	details for	[Au(L10)](AuCl₄).
				[·····(/](·····-·4/)

Identification code	[Au(L10)](AuCl ₄)		
Empirical formula	$C_{22}H_{18}Au_2CI_4N_6$		
Formula weight	902.16		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 9.4669(13) Å	α= 90°.	
	b = 31.073(4) Å	β= 103.831(3)°.	
	c = 8.3523(12) Å	γ = 90°.	
Volume	2385.7(6) Å ³		
Z	4		
Density (calculated)	2.512 Mg/m ³		
Absorption coefficient	12.758 mm ⁻¹		
F(000)	1672		
Crystal size	0.10 x 0.05 x 0.01 mm ³		
Theta range for data collection	2.31 to 28.09°.		
Index ranges	-12<=h<=12, -41<=k<=40, -1	1<=l<=10	
Reflections collected	9729		
Independent reflections	2871 [R(int) = 0.0289]		
Completeness to theta = 25.00°	98.5 %		
Absorption correction	Semi-empirical from equival	lents	
Max. and min. transmission	0.8830 and 0.3619		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2871/0/156		
Goodness-of-fit on F ²	1.048		
Final R indices [I>2sigma(I)]	R1 = 0.0342, wR2 = 0.1022		
R indices (all data)	R1 = 0.0424, wR2 = 0.1110		
Largest diff. peak and hole	3.719 and -1.556 e.Å ⁻³		

		0	,		
	x	у	Z	U(eq)	
C(10)	1070(9)	6487(3)	1559(10)	20(2)	
C(11)	529(8)	6857(2)	2033(10)	18(2)	
Au(1)	0	4120(1)	2500	10(1)	
N(3)	1059(6)	5713(2)	1604(8)	13(1)	
N(2)	1472(7)	3700(2)	1896(8)	14(1)	
С	2681(9)	3012(3)	1390(10)	19(2)	
C(3)	2470(8)	3906(2)	1381(10)	16(1)	
N(1)	1325(6)	4549(2)	1864(8)	14(1)	
C(6)	2658(9)	5057(3)	999(11)	20(2)	
C(8)	579(7)	5342(2)	2081(9)	13(1)	
C(7)	1445(8)	4985(2)	1668(10)	16(1)	
C(4)	2430(8)	4356(2)	1327(10)	15(1)	
C(2)	1514(8)	3229(2)	2070(10)	15(1)	
C(5)	3290(9)	4664(3)	806(11)	21(2)	
C(9)	533(8)	6087(2)	2032(9)	15(1)	
Au(2)	0	1694(1)	2500	13(1)	
Cl(1)	-684(2)	2217(1)	570(3)	26(1)	
Cl(2)	-545(2)	1180(1)	485(3)	25(1)	

Table B.4.2:	Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement
	parameters ($Å^2 \times 10^3$) for [Au(L10)](AuCl ₄) U(eq) is defined as one
	third of the trace of the orthogonalised Uij tensor.

Table B.4.3: IUCR CIF Check Report.

Datablock: [Au(L10)](AuCl₄)

Bond precisio	n:	C-C = 0	.0111 A			Wavelength=0.71073
Cell:	a=9.4669(13)	1	b=31.073(4)		c=8.3523(1	2)
	alpha=90		beta=103.831	(3)	gamma=90	I
Temperature	: 100 K					
		Calculate	d			Reported
Volume		2385.7(6))			2385.7(6)
Space group		C 2/c				C2/c
Hall group		-С 2ус				-C 2yc
Moiety formu	ıla	C22 H18	Au N6, Au Cl4			C22 H18 Au N6, Au Cl4
Sum formula		C22 H18	Au2 Cl4 N6			C22 H18 Au2 Cl4 N6
Mr		902.16				902.16
Dx,g cm-3		2.512				2.512
Z		4				4
Mu (mm-1)		12.758				12.758
F000		1672.0				1672.0
F000'		1659.78				
h,k,lmax		12,41,11				12,41,11
Nref		2915				2871
Tmin,Tmax		0.470,0.8	80			0.362,0.883
Tmin'		0.276				
Correction me	ethod= MULTI	-SCAN				
Data complet	eness= 0.985		Theta	(max)= 2	8.090	
R(reflections)	= 0.0342(249	7)	v	vR2(refle	ctions)= 0.1	110(2871)
S = 1.048		Npar	= 156			
The following test-name	ALERTS were e_ALERT_aler	generated t-type_ale	d. Each ALERT I ert-level.	has the fo	ormat	
Alert level	В					

PLAT973_ALERT_	2_B Large	Calcd. Positive Residual Density on	Au1	1.69 eA-3
----------------	-----------	-------------------------------------	-----	-----------

Alert level C

PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density	2.39
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds 0.0112	1 Ang
PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min)	1
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600	32
PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density	2.33 eA-3
PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density	2.10 eA-3
PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density	1.63 eA-3
PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density	1.53 eA-3
PLAT973_ALERT_2_C Large Calcd. Positive Residual Density on Au2 1.	20 eA-3

PLATON version of 05/11/2012; check.def file version of 05/11/2012

Datablock [Au(L10)](AuCl₄) - ellipsoid plot

B.5: Crystallographic Data Tables for [Au(L12)](PF₆)

Table B.5.1: Crystal data and structure refinement details for [Au(L12)](PF₆).

Identification code	[Au(L12)](PF ₆)		
Empirical formula	C ₁₄ H ₁₆ Au F ₆ N ₄ P		
Formula weight	582.24		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 2 ₁ /n		
Unit cell dimensions	a = 8.293(5) Å	α= 90°.	
	b = 10.903(5) Å	β= 96.808(5)°.	
	c = 19.024(6) Å	γ = 90°.	
Volume	1708.0(14) Å ³		
Z	4		
Density (calculated)	2.264 Mg/m ³		
Absorption coefficient	8.775 mm ⁻¹		
F(000)	1104		
Crystal size	0.45 x 0.20 x 0.15 mm ³		
Theta range for data collection	2.85 to 32.08°.		
Index ranges	-11<=h<=11, -14<=k<=15, -27<=l<=28		
Reflections collected	16330		
Independent reflections	5430 [R(int) = 0.0396]		
Completeness to theta = 25.00°	99.8 %		
Absorption correction	Semi-empirical from equival	ents	
Max. and min. transmission	0.3528 and 0.1101		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	5430 / 0 / 235		
Goodness-of-fit on F ²	1.054		
Final R indices [I>2sigma(I)]	R1 = 0.0357, wR2 = 0.0848		
R indices (all data)	R1 = 0.0579, wR2 = 0.0985		
Largest diff. peak and hole	3.059 and -2.759 e.Å ⁻³		

	X	У	Z	U(eq)	
Au(01)	8041(1)	4682(1)	4471(1)	19(1)	_
Р	3222(2)	546(1)	3467(1)	25(1)	
N(3)	9411(5)	4764(4)	3648(2)	21(1)	
N(4)	8473(6)	6467(5)	4469(2)	25(1)	
N(1)	6836(6)	4565(4)	5324(2)	21(1)	
F(1)	3982(5)	1769(4)	3845(2)	40(1)	
F(3)	3816(10)	-203(5)	4145(3)	81(2)	
F(4)	2465(6)	-658(5)	3079(3)	61(2)	
C(3)	5693(7)	3347(6)	6085(3)	26(1)	
C(10)	9900(7)	5894(6)	3528(3)	25(1)	
F(5)	4891(5)	288(4)	3157(3)	49(1)	
F(2)	1551(6)	855(5)	3757(3)	65(2)	
F(6)	2671(8)	1333(6)	2773(3)	72(2)	
C(2)	5710(7)	4573(5)	6349(3)	24(1)	
C(12)	9585(8)	8120(6)	3971(3)	31(1)	
C(14)	8076(7)	7497(6)	4815(4)	28(1)	
C(8)	8810(8)	3047(6)	2794(3)	29(1)	
C(7)	7369(7)	2547(6)	3142(3)	27(1)	
C(9)	10069(7)	3715(6)	3299(3)	27(1)	
C(6)	7815(7)	1976(5)	3870(3)	25(1)	
N(2)	7544(6)	2845(4)	4443(2)	20(1)	
C(1)	6396(7)	5276(6)	5843(3)	23(1)	
C(11)	9385(7)	6842(6)	3943(3)	25(1)	
C(4)	6408(7)	3369(5)	5460(3)	22(1)	
C(13)	8753(8)	8524(6)	4525(3)	32(1)	
C(5)	6793(7)	2478(5)	4967(3)	23(1)	

Table B.5.2: Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for [Au(L12)](PF₆). U(eq) is defined as one third of the trace of the orthogonalised Uij tensor.

Table B.4.3: IUCR CIF Check Report.

Datablock: [Au(L12)](PF₆)

Bond precisio	n:	C-C = 0.0	0085 A		١	Vavelength=0.71073
Cell:	a=8.293(5)	ł	o=10.903(5)	С	=19.024(6)	
	alpha=90	k	peta=96.808(5)	g	gamma=90	
Temperature	120 K					
		Calculated				Reported
Volume		1708.0(14))			1708.0(14)
Space group		P 21/n				P 21/n
Hall group		-P 2yn				-P 2yn
Moiety formu	ıla	C14 H16 A	u N4, F6 P			C14 H16 Au N4, F6 P
Sum formula		C14 H16 A	u F6 N4 P			C14 H16 Au F6 N4 P
Mr		582.25				582.24
Dx,g cm-3		2.264				2.264
Z		4				4
Mu (mm-1)		8.775				8.775
F000		1104.0				1104.0
F000'		1097.31				
h,k,lmax		12,16,28				11,15,28
Nref		5980				5430
Tmin,Tmax		0.140,0.26	8			0.110,0.353
Tmin'		0.017				
Correction me	ethod= MULT	I-SCAN				
Data complet	eness= 0.908		Theta(m	nax)= 32	.080	
R(reflections)	= 0.0357(414	1)	wR	2(reflect	tions)= 0.09	85(5430)
S = 1.054		Npar=	235			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Alert level C

PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of	Р
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor	2.1
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds 0.00)85 Ang
PLAT905_ALERT_3_C Negative K value in the Analysis of Variance1	946
PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min)	4
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600) 2
PLAT971_ALERT_2_C Large Calcd. Non-Metal Positive Residual Density	2.06 eA-3
PLAT972_ALERT_2_C Large Calcd. Non-Metal Negative Residual Density	-1.53 eA-3

Alert level G	
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large.	9.06
PLAT128_ALERT_4_G Alternate Setting of Space-group P21/c P21/n	
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Au01 N4 7.5 su	

PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels	1
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	476

PLATON version of 05/11/2012; check.def file version of 05/11/2012 Datablock [Au(L12)](PF₆) - ellipsoid plot

C.1: Full crystallographic Data Tables of H_2L2

C(1)-N(1)	1.358(3)
C(1)-C(2)	1.403(4)
C(1)-C(21)	1.462(4)
C(2)-C(3)	1.399(4)
C(2)-H(021)	0.9300
C(3)-C(4)	1.400(4)
C(3)-H(026)	0.9300
C(4)-N(1)	1.370(4)
C(4)-C(5)	1.435(4)
C(5)-N(2)	1.291(3)
C(5)-H(019)	0.9300
C(6)-N(2)	1.460(3)
C(6)-C(7)	1.553(4)
C(6)-H(02D)	0.9700
C(6)-H(02E)	0.9700
C(7)-C(23)	1.527(4)
C(7)-C(22)	1.540(4)
C(7)-C(8)	1.546(4)
C(8)-N(3)	1.462(3)
C(8)-H(02F)	0.9700
C(8)-H(02G)	0.9700
C(9)-N(3)	1.302(4)
C(9)-C(10)	1.396(4)
C(9)-H(013)	0.9300
C(10)-N(4)	1.389(3)
C(10)-C(11)	1.409(4)
C(11)-C(12)	1.372(4)
C(11)-H(024)	0.9300
C(12)-C(13)	1.439(4)
C(12)-H(016)	0.9300
C(13)-N(4)	1.339(3)
C(13)-C(14)	1.486(4)
C(14)-N(5)	1.331(3)
C(14)-C(21)	1.475(4)

Table C.1.1: Bond lengths [Å] and angles [°] for H_2L2

Table C.1.1	. continued
-------------	-------------

C(15)-N(5)	1.368(3)	
C(15)-C(16)	1.408(4)	
C(15)-C(20)	1.420(4)	
C(16)-C(17)	1.369(4)	
C(16)-H(018)	0.9300	
C(17)-C(18)	1.425(4)	
C(17)-H(022)	0.9300	
C(18)-C(19)	1.359(4)	
C(18)-H(027)	0.9300	
C(19)-C(20)	1.421(4)	
C(19)-H(015)	0.9300	
C(20)-N(6)	1.357(3)	
C(21)-N(6)	1.338(3)	
C(22)-H(02H)	0.9600	
C(22)-H(02I)	0.9600	
C(22)-H(02J)	0.9600	
C(23)-H(02A)	0.9600	
C(23)-H(02B)	0.9600	
C(23)-H(02C)	0.9600	
N(1)-H(101)	0.925(18)	
N(3)-H(102)	0.906(17)	
N(1)-C(1)-C(2)	108.3(2)	
N(1)-C(1)-C(21)	125.2(2)	
C(2)-C(1)-C(21)	126.5(2)	
C(3)-C(2)-C(1)	107.6(2)	
C(3)-C(2)-H(021)	126.2	
C(1)-C(2)-H(021)	126.2	
C(2)-C(3)-C(4)	106.4(2)	
C(2)-C(3)-H(026)	126.8	
C(4)-C(3)-H(026)	126.8	
N(1)-C(4)-C(3)	108.9(2)	
N(1)-C(4)-C(5)	120.8(2)	
C(3)-C(4)-C(5)	130.2(3)	
N(2)-C(5)-C(4)	121.4(3)	
N(2)-C(5)-H(019)	119.3	
C(4)-C(5)-H(019)	119.3	

Table C.1.1. continued...

N(2)-C(6)-C(7)	111.6(2)	
N(2)-C(6)-H(02D)	109.3	
C(7)-C(6)-H(02D)	109.3	
N(2)-C(6)-H(02E)	109.3	
C(7)-C(6)-H(02E)	109.3	
H(02D)-C(6)-H(02E)	108.0	
C(23)-C(7)-C(22)	110.1(2)	
C(23)-C(7)-C(8)	107.0(2)	
C(22)-C(7)-C(8)	110.7(2)	
C(23)-C(7)-C(6)	107.8(2)	
C(22)-C(7)-C(6)	109.7(2)	
C(8)-C(7)-C(6)	111.5(2)	
N(3)-C(8)-C(7)	111.9(2)	
N(3)-C(8)-H(02F)	109.2	
C(7)-C(8)-H(02F)	109.2	
N(3)-C(8)-H(02G)	109.2	
C(7)-C(8)-H(02G)	109.2	
H(02F)-C(8)-H(02G)	107.9	
N(3)-C(9)-C(10)	122.5(3)	
N(3)-C(9)-H(013)	118.8	
C(10)-C(9)-H(013)	118.8	
N(4)-C(10)-C(9)	121.1(3)	
N(4)-C(10)-C(11)	110.9(2)	
C(9)-C(10)-C(11)	128.0(3)	
C(12)-C(11)-C(10)	106.0(2)	
C(12)-C(11)-H(024)	127.0	
C(10)-C(11)-H(024)	127.0	
C(11)-C(12)-C(13)	106.8(2)	
C(11)-C(12)-H(016)	126.6	
C(13)-C(12)-H(016)	126.6	
N(4)-C(13)-C(12)	110.5(2)	
N(4)-C(13)-C(14)	126.1(2)	
C(12)-C(13)-C(14)	123.4(2)	
N(5)-C(14)-C(21)	119.9(2)	
N(5)-C(14)-C(13)	110.5(2)	
C(21)-C(14)-C(13)	129.7(2)	
N(5)-C(15)-C(16)	119.0(2)	

Table C.1.1. continued...

N(5)-C(15)-C(20)	120.9(2)
C(16)-C(15)-C(20)	120.1(2)
C(17)-C(16)-C(15)	119.1(3)
C(17)-C(16)-H(018)	120.5
C(15)-C(16)-H(018)	120.5
C(16)-C(17)-C(18)	120.9(3)
C(16)-C(17)-H(022)	119.6
C(18)-C(17)-H(022)	119.6
C(19)-C(18)-C(17)	121.2(3)
C(19)-C(18)-H(027)	119.4
C(17)-C(18)-H(027)	119.4
C(18)-C(19)-C(20)	118.9(3)
C(18)-C(19)-H(015)	120.6
C(20)-C(19)-H(015)	120.6
N(6)-C(20)-C(15)	121.0(2)
N(6)-C(20)-C(19)	119.2(2)
C(15)-C(20)-C(19)	119.8(2)
N(6)-C(21)-C(1)	111.0(2)
N(6)-C(21)-C(14)	120.6(2)
C(1)-C(21)-C(14)	128.4(2)
C(7)-C(22)-H(02H)	109.5
C(7)-C(22)-H(02I)	109.5
H(02H)-C(22)-H(02I)	109.5
C(7)-C(22)-H(02J)	109.5
H(02H)-C(22)-H(02J)	109.5
H(02I)-C(22)-H(02J)	109.5
C(7)-C(23)-H(02A)	109.5
С(7)-С(23)-Н(02В)	109.5
H(02A)-C(23)-H(02B)	109.5
С(7)-С(23)-Н(02С)	109.5
H(02A)-C(23)-H(02C)	109.5
H(02B)-C(23)-H(02C)	109.5
C(1)-N(1)-C(4)	108.8(2)
C(1)-N(1)-H(101)	127(2)
C(4)-N(1)-H(101)	124(2)
C(5)-N(2)-C(6)	120.6(2)
C(9)-N(3)-C(8)	127.3(2)

Table C.1.1. continued			
C(9)-N(3)-H(102)	119(2)		
C(8)-N(3)-H(102)	114(2)		
C(13)-N(4)-C(10)	105.8(2)		
C(14)-N(5)-C(15)	119.0(2)		
C(21)-N(6)-C(20)	118.7(2)		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1)	22(2)	18(2)	22(2)	0(1)	1(1)	-2(1)	
C(2)	24(2)	27(2)	22(2)	1(1)	1(1)	2(1)	
C(3)	20(2)	28(2)	28(2)	-1(1)	0(1)	2(1)	
C(4)	24(2)	20(2)	22(2)	-1(1)	5(1)	-2(1)	
C(5)	25(2)	21(2)	27(2)	1(1)	3(1)	1(1)	
C(6)	32(2)	29(2)	25(2)	1(1)	6(1)	3(1)	
C(7)	28(2)	26(2)	23(2)	3(1)	6(1)	4(1)	
C(8)	33(2)	29(2)	19(2)	3(1)	3(1)	2(1)	
C(9)	28(2)	24(2)	23(2)	1(1)	-4(1)	0(1)	
C(10)	25(2)	21(2)	23(2)	2(1)	-3(1)	1(1)	
C(11)	29(2)	27(2)	26(2)	5(1)	-1(1)	3(1)	
C(12)	25(2)	30(2)	26(2)	-1(1)	4(1)	5(1)	
C(13)	24(2)	17(2)	22(2)	-4(1)	1(1)	-4(1)	
C(14)	20(2)	16(2)	22(2)	-2(1)	-2(1)	-2(1)	
C(15)	26(2)	18(2)	21(2)	-4(1)	3(1)	-3(1)	
C(16)	23(2)	31(2)	25(2)	-3(1)	3(1)	0(1)	
C(17)	33(2)	32(2)	26(2)	-1(1)	12(1)	2(2)	
C(18)	38(2)	26(2)	27(2)	4(1)	8(2)	4(1)	
C(19)	32(2)	23(2)	23(2)	0(1)	0(1)	4(1)	
C(20)	22(2)	15(2)	24(2)	-2(1)	2(1)	-2(1)	
C(21)	22(2)	18(2)	21(2)	-3(1)	-3(1)	-4(1)	
C(22)	34(2)	30(2)	34(2)	2(1)	4(1)	0(2)	
C(23)	38(2)	38(2)	28(2)	6(1)	7(1)	4(2)	
N(1)	25(1)	23(1)	17(1)	-1(1)	0(1)	1(1)	
N(2)	32(1)	22(1)	21(1)	3(1)	5(1)	1(1)	
N(3)	26(1)	35(2)	19(1)	5(1)	3(1)	3(1)	
N(4)	22(1)	23(1)	21(1)	1(1)	2(1)	3(1)	
N(5)	21(1)	22(1)	22(1)	-2(1)	4(1)	-1(1)	
N(6)	25(1)	22(1)	19(1)	-1(1)	-1(1)	-2(1)	

Table C.1.2: Anisotropic displacement parameters ($Å^2x \ 10^3$) for H2L2. The anisotropic displacementfactor exponent takes the form: -2p²[$h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}$]

	x	У	Z	U(eq)	
H(021)	6889	2085	-50	29	
H(026)	5111	1981	867	30	
H(019)	5476	1369	2348	29	
H(02D)	5860	883	3506	34	
H(02E)	7235	1598	3852	34	
H(02F)	9590	465	4331	32	
H(02G)	9624	-927	4281	32	
H(013)	11690	-1008	3542	30	
H(024)	13721	-1187	2582	33	
H(016)	13766	-410	1341	32	
H(018)	14318	1083	-533	32	
H(022)	14022	1872	-1674	36	
H(027)	11738	2598	-2176	36	
H(015)	9743	2532	-1549	32	
H(02H)	5953	-1352	3435	49	
H(02I)	7403	-2037	3703	49	
H(02J)	7311	-1266	3001	49	
H(02A)	6002	-372	4621	52	
H(02B)	7344	410	4932	52	
H(02C)	7488	-979	4921	52	
H(101)	9080(30)	1030(30)	1818(14)	61(11)	
H(102)	9350(30)	330(20)	3017(14)	51(11)	

Table C.1.3: Hydrogen coordinates ($x\,10^4$) and isotropic displacement parameters (Å $^2x\,10^3$) for H_2L2.

Table C.1.4: Torsion angles [°] for H_2L2 .

N(1)-C(1)-C(2)-C(3)	-1.5(3)
C(21)-C(1)-C(2)-C(3)	177.8(2)
C(1)-C(2)-C(3)-C(4)	1.1(3)
C(2)-C(3)-C(4)-N(1)	-0.3(3)
C(2)-C(3)-C(4)-C(5)	178.9(3)
N(1)-C(4)-C(5)-N(2)	4.3(4)
C(3)-C(4)-C(5)-N(2)	-174.9(3)
N(2)-C(6)-C(7)-C(23)	178.0(2)
N(2)-C(6)-C(7)-C(22)	-62.2(3)
N(2)-C(6)-C(7)-C(8)	60.8(3)
C(23)-C(7)-C(8)-N(3)	-178.9(2)
C(22)-C(7)-C(8)-N(3)	61.1(3)
C(6)-C(7)-C(8)-N(3)	-61.3(3)
N(3)-C(9)-C(10)-N(4)	-1.5(4)
N(3)-C(9)-C(10)-C(11)	-180.0(3)
N(4)-C(10)-C(11)-C(12)	0.2(3)
C(9)-C(10)-C(11)-C(12)	178.8(3)
C(10)-C(11)-C(12)-C(13)	-0.8(3)
C(11)-C(12)-C(13)-N(4)	1.1(3)
C(11)-C(12)-C(13)-C(14)	-178.7(2)
N(4)-C(13)-C(14)-N(5)	170.6(2)
C(12)-C(13)-C(14)-N(5)	-9.7(4)
N(4)-C(13)-C(14)-C(21)	-11.3(4)
C(12)-C(13)-C(14)-C(21)	168.4(3)
N(5)-C(15)-C(16)-C(17)	-179.4(2)
C(20)-C(15)-C(16)-C(17)	0.4(4)
C(15)-C(16)-C(17)-C(18)	-1.2(4)
C(16)-C(17)-C(18)-C(19)	0.0(4)
C(17)-C(18)-C(19)-C(20)	2.0(4)
N(5)-C(15)-C(20)-N(6)	2.6(4)
C(16)-C(15)-C(20)-N(6)	-177.2(2)
N(5)-C(15)-C(20)-C(19)	-178.6(2)
C(16)-C(15)-C(20)-C(19)	1.6(4) C(18)-C(19)-C(20)-N(6)
C(18)-C(19)-C(20)-C(15)	-2.8(4)
N(1)-C(1)-C(21)-N(6)	-171.3(2)
C(2)-C(1)-C(21)-N(6)	9.5(4)

Table C.1.4. contin	ued
---------------------	-----

N(1)-C(1)-C(21)-C(14)	9.0(4)	
C(2)-C(1)-C(21)-C(14)	-170.2(3)	
N(5)-C(14)-C(21)-N(6)	1.5(4)	
C(13)-C(14)-C(21)-N(6)	-176.5(2)	
N(5)-C(14)-C(21)-C(1)	-178.8(2)	
C(13)-C(14)-C(21)-C(1)	3.2(4)	
C(2)-C(1)-N(1)-C(4)	1.3(3)	
C(21)-C(1)-N(1)-C(4)	-178.0(2)	
C(3)-C(4)-N(1)-C(1)	-0.6(3)	
C(5)-C(4)-N(1)-C(1)	-179.9(2)	
C(4)-C(5)-N(2)-C(6)	179.3(2)	
C(7)-C(6)-N(2)-C(5)	130.7(3)	
C(10)-C(9)-N(3)-C(8)	-174.5(3)	
C(7)-C(8)-N(3)-C(9)	-149.9(3)	
C(12)-C(13)-N(4)-C(10)	-0.9(3)	
C(14)-C(13)-N(4)-C(10)	178.8(2)	
C(9)-C(10)-N(4)-C(13)	-178.2(2)	
C(11)-C(10)-N(4)-C(13)	0.5(3)	
C(21)-C(14)-N(5)-C(15)	-1.0(4)	
C(13)-C(14)-N(5)-C(15)	177.3(2)	
C(16)-C(15)-N(5)-C(14)	178.9(2)	
C(20)-C(15)-N(5)-C(14)	-0.9(4)	
C(1)-C(21)-N(6)-C(20)	-179.6(2)	
C(14)-C(21)-N(6)-C(20)	0.1(4)	
C(15)-C(20)-N(6)-C(21)	-2.1(4)	
C(19)-C(20)-N(6)-C(21)	179.1(2)	

C.2: Full crystallographic Data Tables of H₂L5

Table C.2.1: Bond lengths [Å] and angles [°] for H_2L1

N(001)-C(010)	1.3489(18)
N(001)-C(024)	1.3767(18)
N(002)-C(008)	1.3579(17)
N(002)-C(025)	1.3670(18)
N(002)-H(101)	0.894(10)
N(003)-C(007)	1.3285(17)
N(003)-C(013)	1.3566(18)
N(004)-C(019)	1.2775(19)
N(004)-C(027)	1.4675(18)
N(005)-C(012)	1.3320(18)
N(005)-C(017)	1.3586(18)
N(006)-C(014)	1.292(2)
N(006)-C(021)	1.4609(19)
N(006)-H(102)	0.883(9)
C(007)-C(012)	1.4562(19)
C(007)-C(008)	1.4724(19)
C(008)-C(018)	1.3988(19)
C(009)-C(011)	1.366(2)
C(009)-C(013)	1.411(2)
C(009)-H(009)	0.9500
C(010)-C(015)	1.4197(19)
C(010)-C(012)	1.4715(19)
C(011)-C(023)	1.434(2)
C(011)-C(016)	1.505(2)
C(013)-C(017)	1.411(2)
C(014)-C(024)	1.405(2)
C(014)-H(014)	0.9500
C(015)-C(026)	1.372(2)
C(015)-H(015)	0.9500
C(016)-H(01A)	0.9800
C(016)-H(01B)	0.9800 C(016)-H(01C)
C(017)-C(029)	1.419(2)
C(018)-C(020)	1.388(2)
C(018)-H(018)	0.9500

APPENDIX C: FULL CRYSTOLLOGRAPHIC DATA TABLES OF LIGANDS

Table C.2.1. continued...

	•
C(019)-C(025)	1.429(2)
C(019)-H(019)	0.9500
C(020)-C(025)	1.394(2)
С(020)-Н(020)	0.9500
C(021)-C(028)	1.523(2)
C(021)-H(02A)	0.9900
C(021)-H(02B)	0.9900
C(023)-C(029)	1.364(2)
C(023)-C(030)	1.506(2)
C(024)-C(026)	1.403(2)
C(026)-H(026)	0.9500
C(027)-C(028)	1.526(2)
C(027)-H(02C)	0.9900
C(027)-H(02D)	0.9900
C(028)-H(02E)	0.9900
C(028)-H(02F)	0.9900
C(029)-H(029)	0.9500
C(030)-H(03A)	0.9800
C(030)-H(03B)	0.9800
C(030)-H(03C)	0.9800
C(010)-N(001)-C(024)	106.94(12)
C(008)-N(002)-C(025)	108.98(12)
C(008)-N(002)-H(101)	117.3(14)
C(025)-N(002)-H(101)	130.4(15)
C(007)-N(003)-C(013)	119.26(12)
C(019)-N(004)-C(027)	121.41(14)
C(012)-N(005)-C(017)	119.03(12)
C(014)-N(006)-C(021)	124.69(13)
C(014)-N(006)-H(102)	122.3(14)
C(021)-N(006)-H(102)	112.6(14)
N(003)-C(007)-C(012)	120.18(12)
N(003)-C(007)-C(008)	111.95(12)
C(012)-C(007)-C(008)	127.84(12)
N(002)-C(008)-C(018)	108.22(12)
N(002)-C(008)-C(007)	125.25(12)
C(018)-C(008)-C(007)	126.33(13)

Table C.2.1. continued...

C(011)-C(009)-C(013)	121.53(14)
C(011)-C(009)-H(009)	119.2
C(013)-C(009)-H(009)	119.2
N(001)-C(010)-C(015)	109.98(12)
N(001)-C(010)-C(012)	124.72(13)
C(015)-C(010)-C(012)	125.28(13)
C(009)-C(011)-C(023)	119.47(13)
C(009)-C(011)-C(016)	120.16(14)
C(023)-C(011)-C(016)	120.37(13)
N(005)-C(012)-C(007)	120.23(12)
N(005)-C(012)-C(010)	113.00(12)
C(007)-C(012)-C(010)	126.72(12)
N(003)-C(013)-C(017)	120.65(13)
N(003)-C(013)-C(009)	120.13(13)
C(017)-C(013)-C(009)	119.21(13)
N(006)-C(014)-C(024)	124.14(14)
N(006)-C(014)-H(014)	117.9
C(024)-C(014)-H(014)	117.9
C(026)-C(015)-C(010)	106.40(13)
C(026)-C(015)-H(015)	126.8
C(010)-C(015)-H(015)	126.8
C(011)-C(016)-H(01A)	109.5
C(011)-C(016)-H(01B)	109.5
H(01A)-C(016)-H(01B)	109.5
C(011)-C(016)-H(01C)	109.5
H(01A)-C(016)-H(01C)	109.5
H(01B)-C(016)-H(01C)	109.5
N(005)-C(017)-C(013)	120.66(13)
N(005)-C(017)-C(029)	120.66(13)
C(013)-C(017)-C(029)	118.68(13)
C(020)-C(018)-C(008)	107.33(13)
C(020)-C(018)-H(018)	126.3
C(008)-C(018)-H(018)	126.3
N(004)-C(019)-C(025)	121.62(14)
N(004)-C(019)-H(019)	119.2
C(025)-C(019)-H(019)	119.2
C(018)-C(020)-C(025)	107.25(13)

Table C.2.1. continued...

C(018)-C(020)-H(020)	126.4
C(025)-C(020)-H(020)	126.4
N(006)-C(021)-C(028)	110.77(13)
N(006)-C(021)-H(02A)	109.5
C(028)-C(021)-H(02A)	109.5
N(006)-C(021)-H(02B)	109.5
C(028)-C(021)-H(02B)	109.5
H(02A)-C(021)-H(02B)	108.1
C(029)-C(023)-C(011)	119.63(13)
C(029)-C(023)-C(030)	120.57(15)
C(011)-C(023)-C(030)	119.80(14)
N(001)-C(024)-C(026)	109.37(13)
N(001)-C(024)-C(014)	121.94(14)
C(026)-C(024)-C(014)	128.48(13)
N(002)-C(025)-C(020)	108.22(12)
N(002)-C(025)-C(019)	121.69(13)
C(020)-C(025)-C(019)	130.02(14)
C(015)-C(026)-C(024)	107.30(13)
C(015)-C(026)-H(026)	126.4
C(024)-C(026)-H(026)	126.4
N(004)-C(027)-C(028)	109.28(13)
N(004)-C(027)-H(02C)	109.8
C(028)-C(027)-H(02C)	109.8
N(004)-C(027)-H(02D)	109.8
C(028)-C(027)-H(02D)	109.8
H(02C)-C(027)-H(02D)	108.3
C(021)-C(028)-C(027)	114.79(14)
C(021)-C(028)-H(02E)	108.6
C(027)-C(028)-H(02E)	108.6
C(021)-C(028)-H(02F)	108.6
C(027)-C(028)-H(02F)	108.6
H(02E)-C(028)-H(02F)	107.5
C(023)-C(029)-C(017)	121.48(14)
C(023)-C(029)-H(029)	119.3
C(017)-C(029)-H(029)	119.3
C(023)-C(030)-H(03A)	109.5
C(023)-C(030)-H(03B)	109.5

Table C.2.1. continued	
H(03A)-C(030)-H(03B)	109.5
С(023)-С(030)-Н(03С)	109.5
H(03A)-C(030)-H(03C)	109.5
H(03B)-C(030)-H(03C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
N(001)	32(1)	20(1)	17(1)	-1(1)	14(1)	-3(1)	
N(002)	22(1)	27(1)	17(1)	3(1)	11(1)	0(1)	
N(003)	22(1)	23(1)	17(1)	1(1)	11(1)	0(1)	
N(004)	28(1)	30(1)	18(1)	2(1)	6(1)	-2(1)	
N(005)	24(1)	20(1)	23(1)	-1(1)	15(1)	-1(1)	
N(006)	36(1)	29(1)	18(1)	1(1)	12(1)	-6(1)	
C(007)	20(1)	18(1)	18(1)	0(1)	10(1)	-3(1)	
C(008)	21(1)	22(1)	17(1)	3(1)	11(1)	-1(1)	
C(009)	26(1)	26(1)	19(1)	-1(1)	11(1)	-1(1)	
C(010)	29(1)	17(1)	20(1)	-2(1)	15(1)	-2(1)	
C(011)	24(1)	21(1)	21(1)	1(1)	6(1)	-4(1)	
C(012)	23(1)	18(1)	19(1)	-1(1)	12(1)	-4(1)	
C(013)	19(1)	19(1)	20(1)	-1(1)	9(1)	-2(1)	
C(014)	43(1)	23(1)	20(1)	-3(1)	20(1)	-7(1)	
C(015)	29(1)	29(1)	26(1)	-1(1)	18(1)	-2(1)	
C(016)	32(1)	31(1)	23(1)	3(1)	6(1)	0(1)	
C(017)	22(1)	18(1)	22(1)	-1(1)	12(1)	-4(1)	
C(018)	23(1)	25(1)	16(1)	1(1)	10(1)	-1(1)	
C(019)	24(1)	28(1)	27(1)	4(1)	12(1)	0(1)	
C(020)	25(1)	26(1)	24(1)	2(1)	16(1)	2(1)	
C(021)	38(1)	32(1)	16(1)	1(1)	7(1)	-9(1)	
C(023)	20(1)	19(1)	28(1)	1(1)	7(1)	-3(1)	
C(024)	39(1)	22(1)	19(1)	-3(1)	19(1)	-5(1)	
C(025)	22(1)	26(1)	23(1)	5(1)	12(1)	2(1)	
C(026)	41(1)	28(1)	26(1)	-3(1)	25(1)	-4(1)	
C(027)	29(1)	36(1)	22(1)	0(1)	4(1)	-2(1)	
C(028)	36(1)	30(1)	19(1)	4(1)	3(1)	-3(1)	
C(029)	23(1)	21(1)	32(1)	-2(1)	16(1)	-1(1)	
C(030)	23(1)	29(1)	37(1)	3(1)	9(1)	0(1)	

Table C.2.2: Anisotropic displacement parameters ($Å^2x \ 10^3$) for H2L5. The anisotropic displacementfactor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	х	У	Z	U(eq)	
H(009)	4407	-1270	5272	29	
H(014)	2747	-218	-1082	33	
H(015)	4370	-900	1532	32	
H(01A)	5059	-2204	6577	50	
H(01B)	5608	-2090	6724	50	
H(01C)	5331	-3918	6548	50	
H(018)	3191	1803	3442	26	
H(019)	1609	1888	652	32	
H(020)	2285	2639	2376	29	
H(02A)	1629	-943	-1771	40	
H(02B)	1896	691	-1883	40	
H(026)	3778	-616	-33	34	
H(02C)	1120	1440	-738	41	
H(02D)	1176	-491	-979	41	
H(02E)	1181	1603	-1902	42	
H(02F)	1683	2434	-1114	42	
H(029)	5226	-3164	3987	30	
H(03A)	5768	-4944	5841	51	
H(03B)	6034	-3088	6074	51	
H(03C)	5928	-4087	5257	51	
H(101)	2823(8)	-150(30)	1277(11)	91(8)	
H(102)	2257(8)	-350(30)	-279(10)	80(7)	

Table C.2.3: Hydrogen coordinates ($x\,10^4$) and isotropic displacement parameters (Å $^2x\,10^3$) for $H_2L5.$

Table C.2.4: Torsion angles [°] for H_2L5 .

C(013)-N(003)-C(007)-C(012)	0.13(19)	
C(013)-N(003)-C(007)-C(008)	-178.35(11)	
C(025)-N(002)-C(008)-C(018)	0.30(15)	
C(025)-N(002)-C(008)-C(007)	175.34(12)	
N(003)-C(007)-C(008)-N(002)	-152.96(13)	
C(012)-C(007)-C(008)-N(002)	28.7(2)	
N(003)-C(007)-C(008)-C(018)	21.19(19)	
C(012)-C(007)-C(008)-C(018)	-157.14(14)	
C(024)-N(001)-C(010)-C(015)	-1.15(15)	
C(024)-N(001)-C(010)-C(012)	179.76(12)	
C(013)-C(009)-C(011)-C(023)	0.7(2)	
C(013)-C(009)-C(011)-C(016)	-179.80(13)	
C(017)-N(005)-C(012)-C(007)	0.29(19)	
C(017)-N(005)-C(012)-C(010)	177.66(11)	
N(003)-C(007)-C(012)-N(005)	-0.41(19)	
C(008)-C(007)-C(012)-N(005)	177.80(12)	
N(003)-C(007)-C(012)-C(010)	-177.39(12)	
C(008)-C(007)-C(012)-C(010)	0.8(2)	
N(001)-C(010)-C(012)-N(005)	155.09(13)	
C(015)-C(010)-C(012)-N(005)	-23.85(19)	
N(001)-C(010)-C(012)-C(007)	-27.7(2)	
C(015)-C(010)-C(012)-C(007)	153.31(14)	
C(007)-N(003)-C(013)-C(017)	0.24(19)	
C(007)-N(003)-C(013)-C(009)	-178.48(12)	
C(011)-C(009)-C(013)-N(003)	178.74(13)	
C(011)-C(009)-C(013)-C(017)	0.0(2)	
C(021)-N(006)-C(014)-C(024)	175.43(14)	
N(001)-C(010)-C(015)-C(026)	0.68(16)	
C(012)-C(010)-C(015)-C(026)	179.76(13)	
C(012)-N(005)-C(017)-C(013)	0.07(19)	
C(012)-N(005)-C(017)-C(029)	179.01(12)	
N(003)-C(013)-C(017)-N(005)	-0.4(2)	
C(009)-C(013)-C(017)-N(005)	178.38(12)	
N(003)-C(013)-C(017)-C(029)	-179.31(12)	
C(009)-C(013)-C(017)-C(029)	-0.6(2)	
N(002)-C(008)-C(018)-C(020)	-0.64(15)	

C(007)-C(008)-C(018)-C(020)	-175.62(13)	
C(027)-N(004)-C(019)-C(025)	-173.81(13)	
C(008)-C(018)-C(020)-C(025)	0.74(16)	
C(014)-N(006)-C(021)-C(028)	-138.36(15)	
C(009)-C(011)-C(023)-C(029)	-0.7(2)	
C(016)-C(011)-C(023)-C(029)	179.74(13)	
C(009)-C(011)-C(023)-C(030)	179.46(13)	
C(016)-C(011)-C(023)-C(030)	-0.1(2)	
C(010)-N(001)-C(024)-C(026)	1.20(15)	
C(010)-N(001)-C(024)-C(014)	-174.04(13)	
N(006)-C(014)-C(024)-N(001)	-2.8(2)	
N(006)-C(014)-C(024)-C(026)	-177.01(15)	
C(008)-N(002)-C(025)-C(020)	0.17(16)	
C(008)-N(002)-C(025)-C(019)	177.55(12)	
C(018)-C(020)-C(025)-N(002)	-0.57(16)	
C(018)-C(020)-C(025)-C(019)	-177.66(14)	
N(004)-C(019)-C(025)-N(002)	2.3(2)	
N(004)-C(019)-C(025)-C(020)	179.06(15)	
C(010)-C(015)-C(026)-C(024)	0.07(16)	
N(001)-C(024)-C(026)-C(015)	-0.78(17)	
C(014)-C(024)-C(026)-C(015)	174.05(14)	
C(019)-N(004)-C(027)-C(028)	119.06(16)	
N(006)-C(021)-C(028)-C(027)	-58.89(18)	
N(004)-C(027)-C(028)-C(021)	64.20(17)	
C(011)-C(023)-C(029)-C(017)	0.1(2)	
C(030)-C(023)-C(029)-C(017)	179.95(13)	
N(005)-C(017)-C(029)-C(023)	-178.44(13)	
C(013)-C(017)-C(029)-C(023)	0.5(2)	

C.3: Full crystallographic Data Tables of H₂L6

N(5)-C(007)	1.331(3)
N(5)-C(014)	1.358(3)
N(4)-C(013)	1.350(3)
N(4)-C(016)	1.376(3)
N(1)-C(009)	1.353(3)
N(1)-C(017)	1.372(3)
N(1)-H(101)	0.934(19)
N(6)-C(010)	1.332(3)
N(6)-C(011)	1.358(3)
N(3)-C(022)	1.284(3)
N(3)-C(029)	1.461(3)
N(3)-H(102)	0.90(2)
C(007)-C(010)	1.456(3)
C(007)-C(013)	1.468(3)
N(2)-C(019)	1.294(3)
N(2)-C(028)	1.458(3)
C(009)-C(012)	1.417(3)
C(009)-C(010)	1.465(3)
C(011)-C(014)	1.406(3)
C(011)-C(015)	1.415(3)
C(012)-C(020)	1.379(3)
C(012)-H(012)	0.9500
C(013)-C(024)	1.410(3)
C(014)-C(018)	1.413(3)
C(015)-C(021)	1.368(3)
C(015)-H(015)	0.9500
C(016)-C(025)	1.395(3)
C(016)-C(022)	1.410(3)
C(017)-C(020)	1.399(3)
C(017)-C(019)	1.409(3)
C(018)-C(023)	1.366(3)
C(018)-H(018)	0.9500
С(019)-Н(019)	0.9500
С(020)-Н(020)	0.9500

Table C.3.1: Bond lengths [Å] and angles [°] for H_2L6 .

APPENDIX C: FULL CRYSTOLLOGRAPHIC DATA TABLES OF LIGANDS

Table C.3.1. continued...

C(021)-C(023)	1.422(4)
C(021)-C(030)	1.450(6)
C(022)-H(022)	0.9500
C(023)-C(026)	1.412(5)
C(024)-C(025)	1.374(4)
C(024)-H(024)	0.9500
C(025)-H(025)	0.9500
C(026)-H(26C)	0.9800
C(026)-H(26B)	0.9800
C(026)-H(26A)	0.9800
C(027)-C(029)	1.515(4)
C(027)-C(028)	1.532(4)
C(027)-H(02A)	0.9900
C(027)-H(02B)	0.9900
C(028)-H(02C)	0.9900
C(028)-H(02D)	0.9900
C(029)-H(02E)	0.9900
C(029)-H(02F)	0.9900
C(030)-H(03A)	0.9800
C(030)-H(03B)	0.9800
C(030)-H(03C)	0.9800
O(1W)-H(1W)	1.000(10)
C(007)-N(5)-C(014)	119.00(19)
C(013)-N(4)-C(016)	108.03(18)
C(009)-N(1)-C(017)	107.90(18)
C(009)-N(1)-H(101)	114(3)
C(017)-N(1)-H(101)	137(3)
C(010)-N(6)-C(011)	119.20(18)
C(022)-N(3)-C(029)	123.5(2)
C(022)-N(3)-H(102)	136(4)
C(029)-N(3)-H(102)	96(4)
N(5)-C(007)-C(010)	120.58(19)
N(5)-C(007)-C(013)	112.46(18)
C(010)-C(007)-C(013)	126.92(19)
C(019)-N(2)-C(028)	122.7(2)
N(1)-C(009)-C(012)	109.02(18)

Table C.3.1. continued...

N(1)-C(009)-C(010)	124.65(18)
C(012)-C(009)-C(010)	126.3(2)
N(6)-C(010)-C(007)	119.75(19)
N(6)-C(010)-C(009)	113.24(18)
C(007)-C(010)-C(009)	126.97(19)
N(6)-C(011)-C(014)	120.9(2)
N(6)-C(011)-C(015)	120.1(2)
C(014)-C(011)-C(015)	118.9(2)
C(020)-C(012)-C(009)	106.8(2)
C(020)-C(012)-H(012)	126.6
C(009)-C(012)-H(012)	126.6
N(4)-C(013)-C(024)	108.8(2)
N(4)-C(013)-C(007)	125.26(19)
C(024)-C(013)-C(007)	125.8(2)
N(5)-C(014)-C(011)	120.5(2)
N(5)-C(014)-C(018)	119.5(2)
C(011)-C(014)-C(018)	120.0(2)
C(021)-C(015)-C(011)	120.3(2)
C(021)-C(015)-H(015)	119.8
C(011)-C(015)-H(015)	119.8
N(4)-C(016)-C(025)	108.7(2)
N(4)-C(016)-C(022)	121.3(2)
C(025)-C(016)-C(022)	130.0(2)
N(1)-C(017)-C(020)	109.0(2)
N(1)-C(017)-C(019)	121.8(2)
C(020)-C(017)-C(019)	129.0(2)
C(023)-C(018)-C(014)	120.3(2)
C(023)-C(018)-H(018)	119.8 C(014)-C(018)-H(018)
N(2)-C(019)-C(017)	123.4(2)
N(2)-C(019)-H(019)	118.3
C(017)-C(019)-H(019)	118.3
C(012)-C(020)-C(017)	107.22(19)
C(012)-C(020)-H(020)	126.4
C(017)-C(020)-H(020)	126.4
C(015)-C(021)-C(023)	120.6(2)
C(015)-C(021)-C(030)	128.0(3)
C(023)-C(021)-C(030)	111.4(3)
Table C.3.1. continued...

N(3)-C(022)-C(016)	122.1(2)
N(3)-C(022)-H(022)	119.0
C(016)-C(022)-H(022)	119.0
C(018)-C(023)-C(026)	126.6(3)
C(018)-C(023)-C(021)	119.8(2)
C(026)-C(023)-C(021)	113.6(3)
C(025)-C(024)-C(013)	107.2(2)
C(025)-C(024)-H(024)	126.4
C(013)-C(024)-H(024)	126.4
C(024)-C(025)-C(016)	107.3(2)
C(024)-C(025)-H(025)	126.3
C(016)-C(025)-H(025)	126.3
C(023)-C(026)-H(26C)	109.5
C(023)-C(026)-H(26B)	109.5
H(26C)-C(026)-H(26B)	109.5
C(023)-C(026)-H(26A)	109.5
H(26C)-C(026)-H(26A)	109.5
H(26B)-C(026)-H(26A)	109.5
C(029)-C(027)-C(028)	114.1(2)
C(029)-C(027)-H(02A)	108.7
C(028)-C(027)-H(02A)	108.7
C(029)-C(027)-H(02B)	108.7
C(028)-C(027)-H(02B)	108.7
H(02A)-C(027)-H(02B)	107.6
N(2)-C(028)-C(027)	110.4(2)
N(2)-C(028)-H(02C)	109.6
C(027)-C(028)-H(02C)	109.6
N(2)-C(028)-H(02D)	109.6
C(027)-C(028)-H(02D)	109.6
H(02C)-C(028)-H(02D)	108.1
N(3)-C(029)-C(027)	110.3(2)
N(3)-C(029)-H(02E)	109.6
C(027)-C(029)-H(02E)	109.6
N(3)-C(029)-H(02F)	109.6
C(027)-C(029)-H(02F)	109.6
H(02E)-C(029)-H(02F)	108.1
C(021)-C(030)-H(03A)	109.5

Table C.3.1. continued		
C(021)-C(030)-H(03B)	109.5	
H(03A)-C(030)-H(03B)	109.5	
C(021)-C(030)-H(03C)	109.5	
H(03A)-C(030)-H(03C)	109.5	
H(03B)-C(030)-H(03C)	109.5	

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
N(5)	43(1)	38(1)	36(1)	0(1)	27(1)	5(1)	
N(4)	34(1)	33(1)	41(1)	-6(1)	28(1)	-2(1)	
N(1)	37(1)	28(1)	37(1)	4(1)	27(1)	3(1)	
N(6)	35(1)	32(1)	42(1)	0(1)	25(1)	5(1)	
N(3)	37(1)	41(1)	63(2)	-6(1)	24(1)	-2(1)	
C(007)	36(1)	27(1)	35(1)	2(1)	25(1)	8(1)	
N(2)	42(1)	31(1)	45(1)	2(1)	20(1)	6(1)	
C(009)	38(1)	27(1)	37(1)	4(1)	28(1)	4(1)	
C(010)	32(1)	27(1)	38(1)	2(1)	25(1)	7(1)	
C(011)	34(1)	30(1)	40(1)	1(1)	20(1)	9(1)	
C(012)	40(1)	42(1)	46(1)	-1(1)	33(1)	1(1)	
C(013)	42(1)	30(1)	40(1)	-3(1)	32(1)	2(1)	
C(014)	37(1)	35(1)	38(1)	0(1)	20(1)	9(1)	
C(015)	36(1)	36(1)	54(2)	-2(1)	23(1)	6(1)	
C(016)	47(1)	36(1)	57(2)	-12(1)	41(1)	-9(1)	
C(017)	46(1)	29(1)	35(1)	5(1)	30(1)	2(1)	
C(018)	50(2)	45(1)	38(1)	0(1)	22(1)	10(1)	
C(019)	52(2)	31(1)	36(1)	4(1)	27(1)	4(1)	
C(020)	51(2)	45(1)	44(1)	1(1)	38(1)	-2(1)	
C(021)	37(1)	35(1)	53(2)	-1(1)	14(1)	12(1)	
C(022)	44(2)	38(1)	72(2)	-12(1)	41(2)	-11(1)	
C(023)	49(2)	39(1)	42(1)	-1(1)	17(1)	15(1)	
C(024)	70(2)	41(1)	45(2)	-6(1)	43(1)	-15(1)	
C(025)	78(2)	46(1)	64(2)	-12(1)	59(2)	-22(1)	
C(026)	54(3)	44(3)	24(2)	1(2)	17(2)	17(2)	
C(027)	47(2)	39(1)	60(2)	-9(1)	15(1)	-4(1)	
C(028)	47(2)	37(1)	48(2)	-4(1)	14(1)	7(1)	
C(029)	37(2)	51(2)	73(2)	-6(1)	22(2)	-5(1)	
C(030)	49(3)	49(3)	63(3)	11(3)	33(3)	9(2)	
O(1W)	72(2)	61(2)	87(2)	0	55(2)	0	

Table C.3.2: Anisotropic displacement parameters ($Å^2x \ 10^3$) for H2L6. The anisotropic displacementfactor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	x	у	z	U(eq)	
H(012)	4474	732	6690	46	
H(015)	5366	3273	9159	52	
H(018)	4529	1547	10446	55	
H(019)	2768	83	3993	46	
H(020)	3848	377	5093	49	
H(022)	1639	-1818	5739	57	
H(024)	3280	-1674	8586	56	
H(025)	2346	-2532	7490	63	
H(26C)	5296	2571	11794	66	
H(26B)	5481	4353	11621	66	
H(26A)	5824	2635	11839	66	
H(02A)	1151	-1535	3136	69	
H(02B)	1670	-2388	3950	69	
H(02C)	1897	-703	3179	62	
H(02D)	1630	973	3270	62	
H(02E)	1183	638	4060	71	
H(02F)	1102	-1269	4295	71	
H(03A)	6129	3375	11405	80	
H(03B)	5856	5214	11019	80	
H(03C)	6119	4200	10627	80	
H(1W)	4779(18)	3360(60)	7580(40)	220(30)	
H(101)	3050(14)	680(60)	6190(30)	158(19)	
H(102)	2029(19)	110(80)	4990(30)	210(30)	

Table C.3.3: Hydrogen coordinates ($x\,10^4$) and isotropic displacement parameters (Å $^2x\,10^3$) for $H_2L6.$

Table C.3.4: Torsion angles [°] for H_2L6 .

C(014)-N(5)-C(007)-C(010)	0.0(3)
C(014)-N(5)-C(007)-C(013)	178.01(18)
C(017)-N(1)-C(009)-C(012)	0.8(2)
C(017)-N(1)-C(009)-C(010)	179.12(18)
C(011)-N(6)-C(010)-C(007)	0.0(3)
C(011)-N(6)-C(010)-C(009)	-177.70(17)
N(5)-C(007)-C(010)-N(6)	-0.1(3)
C(013)-C(007)-C(010)-N(6)	-177.79(18)
N(5)-C(007)-C(010)-C(009)	177.30(18)
C(013)-C(007)-C(010)-C(009)	-0.4(3)
N(1)-C(009)-C(010)-N(6)	-153.11(19)
C(012)-C(009)-C(010)-N(6)	24.9(3)
N(1)-C(009)-C(010)-C(007)	29.3(3)
C(012)-C(009)-C(010)-C(007)	-152.7(2)
C(010)-N(6)-C(011)-C(014)	0.1(3)
C(010)-N(6)-C(011)-C(015)	-178.88(18)
N(1)-C(009)-C(012)-C(020)	-0.8(2)
C(010)-C(009)-C(012)-C(020)	-179.01(19)
C(016)-N(4)-C(013)-C(024)	-0.7(2)
C(016)-N(4)-C(013)-C(007)	-175.91(19)
N(5)-C(007)-C(013)-N(4)	151.23(19)
C(010)-C(007)-C(013)-N(4)	-30.9(3)
N(5)-C(007)-C(013)-C(024)	-23.2(3)
C(010)-C(007)-C(013)-C(024)	154.6(2)
C(007)-N(5)-C(014)-C(011)	0.1(3)
C(007)-N(5)-C(014)-C(018)	178.94(19)
N(6)-C(011)-C(014)-N(5)	-0.2(3)
C(015)-C(011)-C(014)-N(5)	178.79(19)
N(6)-C(011)-C(014)-C(018)	-178.99(19)
C(015)-C(011)-C(014)-C(018)	0.0(3)
N(6)-C(011)-C(015)-C(021)	178.74(19)
C(014)-C(011)-C(015)-C(021)	-0.3(3)
C(013)-N(4)-C(016)-C(025)	0.4(2)
C(013)-N(4)-C(016)-C(022)	-178.82(19)
C(009)-N(1)-C(017)-C(020)	-0.6(2)
C(009)-N(1)-C(017)-C(019)	174.34(18)

Table C.3.4. continued...

N(5)-C(014)-C(018)-C(023)	-178.5(2)
C(011)-C(014)-C(018)-C(023)	0.3(3)
C(028)-N(2)-C(019)-C(017)	-175.4(2)
N(1)-C(017)-C(019)-N(2)	3.3(3)
C(020)-C(017)-C(019)-N(2)	177.1(2)
C(009)-C(012)-C(020)-C(017)	0.4(2)
N(1)-C(017)-C(020)-C(012)	0.1(2)
C(019)-C(017)-C(020)-C(012)	-174.3(2)
C(011)-C(015)-C(021)-C(023)	0.2(3)
C(011)-C(015)-C(021)-C(030)	-177.8(3)
C(029)-N(3)-C(022)-C(016)	173.5(2)
N(4)-C(016)-C(022)-N(3)	-2.0(3)
C(025)-C(016)-C(022)-N(3)	178.9(2)
C(014)-C(018)-C(023)-C(026)	179.3(3)
C(014)-C(018)-C(023)-C(021)	-0.4(3)
C(015)-C(021)-C(023)-C(018)	0.1(3)
C(030)-C(021)-C(023)-C(018)	178.4(3)
C(015)-C(021)-C(023)-C(026)	-179.6(3)
C(030)-C(021)-C(023)-C(026)	-1.2(4)
N(4)-C(013)-C(024)-C(025)	0.7(3)
C(007)-C(013)-C(024)-C(025)	175.9(2)
C(013)-C(024)-C(025)-C(016)	-0.4(3)
N(4)-C(016)-C(025)-C(024)	0.0(3)
C(022)-C(016)-C(025)-C(024)	179.2(2)
C(019)-N(2)-C(028)-C(027)	137.0(2)
C(029)-C(027)-C(028)-N(2)	58.3(3)
C(022)-N(3)-C(029)-C(027)	-115.7(3)
C(028)-C(027)-C(029)-N(3)	-65.5(3)

C.4: Full crystallographic Data Tables of H_2L7

N(4)-C(008)	1.349(3)
N(4)-C(023)	1.377(3)
F(2)-C(015)	1.323(3)
N(1)-C(012)	1.361(3)
N(1)-C(014)	1.362(3)
N(1)-H(101)	0.893(10)
N(2)-C(022)	1.280(3)
N(2)-C(027)	1.467(3)
N(5)-C(009)	1.336(2)
N(5)-C(017)	1.358(3)
N(6)-C(011)	1.329(3)
N(6)-C(016)	1.360(2)
N(3)-C(024)	1.298(3)
N(3)-C(028)	1.471(3)
N(3)-H(102)	0.882(10)
C(008)-C(026)	1.424(3)
C(008)-C(009)	1.479(3)
C(009)-C(011)	1.464(3)
C(010)-C(020)	1.390(3)
C(010)-C(012)	1.395(3)
C(010)-H(010)	0.9500
C(011)-C(014)	1.469(3)
C(012)-C(022)	1.430(3)
C(013)-F(1)	1.298(5)
C(013)-C(019)	1.369(3)
C(013)-C(015)	1.403(3)
C(014)-C(020)	1.397(3)
C(015)-C(018)	1.352(3)
C(016)-C(017)	1.410(3)
C(016)-C(018)	1.414(3)
C(017)-C(019)	1.420(3)
C(018)-H(018)	0.9500
C(019)-H(019)	0.9500
С(020)-Н(020)	0.9500

Table C.4.1: Bond lengths [Å] and angles [°] for H_2L7

APPENDIX C: FULL CRYSTOLLOGRAPHIC DATA TABLES OF LIGANDS

Table C.4.1. continued...

Table C.4.1. continued...

C(009)-C(011)-C(014)	128.92(18)
N(1)-C(012)-C(010)	108.95(19)
N(1)-C(012)-C(022)	121.58(19)
C(010)-C(012)-C(022)	129.45(18)
F(1)-C(013)-C(019)	129.2(3)
F(1)-C(013)-C(015)	111.5(3)
C(019)-C(013)-C(015)	118.8(2)
N(1)-C(014)-C(020)	107.79(18)
N(1)-C(014)-C(011)	126.02(18)
C(020)-C(014)-C(011)	126.18(19)
F(2)-C(015)-C(018)	119.7(2)
F(2)-C(015)-C(013)	115.38(19)
C(018)-C(015)-C(013)	124.9(2)
N(6)-C(016)-C(017)	121.17(19)
N(6)-C(016)-C(018)	118.77(18)
C(017)-C(016)-C(018)	120.02(18)
N(5)-C(017)-C(016)	120.45(18)
N(5)-C(017)-C(019)	119.10(17)
C(016)-C(017)-C(019)	120.45(19)
C(015)-C(018)-C(016)	116.90(19)
C(015)-C(018)-H(018)	121.5
C(016)-C(018)-H(018)	121.5
C(013)-C(019)-C(017)	118.90(19)
С(013)-С(019)-Н(019)	120.5
C(017)-C(019)-H(019)	120.5
C(010)-C(020)-C(014)	108.03(19)
C(010)-C(020)-H(020)	126.0
C(014)-C(020)-H(020)	126.0
C(028)-C(021)-C(027)	114.4(2)
C(028)-C(021)-H(02A)	108.6
C(027)-C(021)-H(02A)	108.6
С(028)-С(021)-Н(02В)	108.6
С(027)-С(021)-Н(02В)	108.6
H(02A)-C(021)-H(02B)	107.6
N(2)-C(022)-C(012)	120.67(19)
N(2)-C(022)-H(022)	119.7
C(012)-C(022)-H(022)	119.7

Table C.4.1. continued...

120.89(18)
110.53(19)
128.55(19)
124.0(2)
118.0
118.0
106.36(18)
126.8
126.8
106.78(19)
126.6
126.6
109.50(18)
109.8
109.8
109.8
109.8
108.2
110.65(19)
109.5
109.5
109.5
109.5
108.1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
N(4)	18(1)	28(1)	36(1)	-2(1)	-3(1)	0(1)	
F(2)	27(1)	45(1)	44(1)	7(1)	-16(1)	-1(1)	
N(1)	20(1)	28(1)	33(1)	3(1)	-2(1)	1(1)	
N(2)	27(1)	38(1)	38(1)	5(1)	-11(1)	5(1)	
N(5)	23(1)	25(1)	33(1)	-1(1)	0(1)	-1(1)	
N(6)	21(1)	30(1)	32(1)	-1(1)	-1(1)	2(1)	
N(3)	26(1)	43(1)	41(1)	0(1)	-10(1)	0(1)	
C(008)	20(1)	25(1)	35(1)	0(1)	0(1)	-1(1)	
C(009)	21(1)	22(1)	33(1)	-5(1)	-1(1)	0(1)	
C(010)	24(1)	33(1)	37(1)	4(1)	3(1)	-4(1)	
C(011)	18(1)	26(1)	30(1)	-4(1)	-1(1)	2(1)	
C(012)	22(1)	29(1)	35(1)	2(1)	-1(1)	1(1)	
C(013)	36(1)	30(1)	39(1)	0(1)	-7(1)	5(1)	
C(014)	19(1)	27(1)	32(1)	-3(1)	-4(1)	1(1)	
C(015)	32(1)	30(1)	42(1)	1(1)	-11(1)	5(1)	
C(016)	24(1)	24(1)	31(1)	-1(1)	-3(1)	2(1)	
C(017)	22(1)	25(1)	32(1)	-2(1)	-1(1)	3(1)	
C(018)	24(1)	31(1)	35(1)	0(1)	-3(1)	2(1)	
C(019)	32(1)	30(1)	39(1)	4(1)	3(1)	-1(1)	
C(020)	19(1)	36(1)	37(1)	2(1)	-2(1)	-3(1)	
C(021)	36(1)	46(2)	49(1)	4(1)	-18(1)	5(1)	
C(022)	31(1)	28(1)	36(1)	5(1)	-2(1)	1(1)	
C(023)	18(1)	27(1)	45(1)	-4(1)	-3(1)	-2(1)	
C(024)	20(1)	32(1)	51(1)	-8(1)	-8(1)	-2(1)	
C(025)	19(1)	35(1)	50(1)	0(1)	1(1)	-4(1)	
C(026)	24(1)	34(1)	42(1)	3(1)	2(1)	-1(1)	
C(027)	39(1)	43(1)	42(1)	8(1)	-14(1)	-1(1)	
C(028)	30(1)	53(2)	43(1)	-2(1)	-16(1)	2(1)	
F(1)	36(3)	35(3)	27(3)	20(3)	4(3)	2(3)	

Table C.4.2: Anisotropic displacement parameters ($Å^2x \ 10^3$) for H2L7. The anisotropic displacementfactor exponent takes the form: -2p²[$h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}$]

	x	У	z	U(eq)	
H(010)	2059	-1215	7865	38	
H(018)	681	1253	4449	36	
H(019)	5066	2490	3336	40	
H(020)	1686	-412	6501	37	
H(02A)	8773	-789	9709	52	
H(02B)	8280	-1330	8883	52	
H(022)	4346	-995	8924	38	
H(024)	10167	1069	7433	41	
H(025)	10088	1771	5890	42	
H(026)	8085	1990	4936	40	
H(02C)	6286	-885	9688	49	
H(02D)	6742	563	9716	49	
H(02E)	9194	1196	9142	50	
H(02F)	10127	139	8720	50	
H(101)	5503(15)	680(30)	7135(15)	69(9)	
H(102)	7558(12)	650(30)	8058(18)	89(11)	

Table C.4.3: Hydrogen coordinates ($x\,10^4$) and isotropic displacement parameters (Å $^2x\,10^3$) for $H_2L7.$

Table C.4.4: Torsion angles [°] for H_2L7 .

C(023)-N(4)-C(008)-C(026)	-1.3(2)	
C(023)-N(4)-C(008)-C(009)	176.90(19)	
C(017)-N(5)-C(009)-C(011)	-1.2(3)	
C(017)-N(5)-C(009)-C(008)	177.43(17)	
N(4)-C(008)-C(009)-N(5)	173.63(18)	
C(026)-C(008)-C(009)-N(5)	-8.4(3)	
N(4)-C(008)-C(009)-C(011)	-7.8(3)	
C(026)-C(008)-C(009)-C(011)	170.2(2)	
C(016)-N(6)-C(011)-C(009)	4.9(3)	
C(016)-N(6)-C(011)-C(014)	-172.64(17)	
N(5)-C(009)-C(011)-N(6)	-3.5(3)	
C(008)-C(009)-C(011)-N(6)	178.13(19)	
N(5)-C(009)-C(011)-C(014)	173.65(19)	
C(008)-C(009)-C(011)-C(014)	-4.8(3)	
C(014)-N(1)-C(012)-C(010)	0.2(2)	
C(014)-N(1)-C(012)-C(022)	179.12(18)	
C(020)-C(010)-C(012)-N(1)	-0.4(2)	
C(020)-C(010)-C(012)-C(022)	-179.3(2)	
C(012)-N(1)-C(014)-C(020)	0.1(2)	
C(012)-N(1)-C(014)-C(011)	-178.61(18)	
N(6)-C(011)-C(014)-N(1)	-167.19(19)	
C(009)-C(011)-C(014)-N(1)	15.5(3)	
N(6)-C(011)-C(014)-C(020)	14.3(3)	
C(009)-C(011)-C(014)-C(020)	-163.0(2)	
F(1)-C(013)-C(015)-F(2)	-4.9(4)	
C(019)-C(013)-C(015)-F(2)	-178.5(2)	
F(1)-C(013)-C(015)-C(018)	173.5(3)	
C(019)-C(013)-C(015)-C(018)	-0.1(4)	
C(011)-N(6)-C(016)-C(017)	-2.0(3)	
C(011)-N(6)-C(016)-C(018)	175.85(19)	
C(009)-N(5)-C(017)-C(016)	4.2(3)	
C(009)-N(5)-C(017)-C(019)	-175.76(18)	
N(6)-C(016)-C(017)-N(5)	-2.7(3)	
C(018)-C(016)-C(017)-N(5)	179.46(19)	
N(6)-C(016)-C(017)-C(019)	177.26(19)	
C(018)-C(016)-C(017)-C(019)	-0.6(3)	

Table C.4.4. continued...

F(2)-C(015)-C(018)-C(016)	176.9(2)	
C(013)-C(015)-C(018)-C(016)	-1.4(3)	
N(6)-C(016)-C(018)-C(015)	-176.23(19)	
C(017)-C(016)-C(018)-C(015)	1.7(3)	
F(1)-C(013)-C(019)-C(017)	-171.0(4)	
C(015)-C(013)-C(019)-C(017)	1.3(3)	
N(5)-C(017)-C(019)-C(013)	179.0(2)	
C(016)-C(017)-C(019)-C(013)	-0.9(3)	
C(012)-C(010)-C(020)-C(014)	0.5(2)	
N(1)-C(014)-C(020)-C(010)	-0.4(2)	
C(011)-C(014)-C(020)-C(010)	178.34(19)	
C(027)-N(2)-C(022)-C(012)	-178.47(19)	
N(1)-C(012)-C(022)-N(2)	3.3(3)	
C(010)-C(012)-C(022)-N(2)	-178.0(2)	
C(008)-N(4)-C(023)-C(024)	-176.90(19)	
C(008)-N(4)-C(023)-C(025)	1.0(2)	
C(028)-N(3)-C(024)-C(023)	178.0(2)	
N(4)-C(023)-C(024)-N(3)	-3.7(3)	
C(025)-C(023)-C(024)-N(3)	178.8(2)	
N(4)-C(023)-C(025)-C(026)	-0.3(2)	
C(024)-C(023)-C(025)-C(026)	177.4(2)	
C(023)-C(025)-C(026)-C(008)	-0.5(2)	
N(4)-C(008)-C(026)-C(025)	1.2(2)	
C(009)-C(008)-C(026)-C(025)	-177.1(2)	
C(022)-N(2)-C(027)-C(021)	131.0(2)	
C(028)-C(021)-C(027)-N(2)	63.2(3)	
C(024)-N(3)-C(028)-C(021)	-142.8(2)	
C(027)-C(021)-C(028)-N(3)	-60.2(3)	

C.5: Full crystallographic Data Tables of H₂L8a

N(1)-C(1)	1.293(5)	
N(1)-C(2')	1.457(6)	
N(2)-C(3)	1.355(5)	
N(2)-C(2)	1.364(5)	
N(2)-H(103)	0.873(11)	
N(3)-C(6)	1.355(5)	
N(3)-C(7)	1.370(5)	
N(4)-C(8)	1.285(5)	
N(4)-C(9)	1.462(5)	
N(4)-H(104)	0.873(11)	
N(5)-C(13)	1.334(5)	
N(5)-C(4)	1.337(5)	
N(6)-C(15)	1.323(5)	
N(6)-C(5)	1.354(5)	
N(7)-C(21)	1.295(5)	
N(7)-C(20)	1.463(5)	
N(8)-C(23)	1.340(5)	
N(8)-C(22)	1.372(5)	
N(8)-H(102)	0.874(11)	
N(9)-C(26)	1.320(5)	
N(9)-C(25)	1.346(5)	
N(10)-C(31)	1.328(5)	
N(10)-C(24)	1.352(5)	
N(15)-C(33)	1.363(5)	
N(15)-C(32)	1.366(5)	
N(16)-C(34)	1.276(5)	
N(16)-C(35)	1.469(5)	
N(16)-H(101)	0.870(12)	
C(1)-C(2)	1.410(6)	
C(1)-H(1)	0.9300	
C(2)-C(12)	1.403(5)	
C(3)-C(11)	1.420(5)	
C(3)-C(4)	1.464(5)	
C(4)-C(5)	1.456(5)	

Table C.5.1: Bond lengths [Å] and angles [°] for H_2L8a

Table C.5.1. continued...

C(5)-C(6)	1.459(5)
C(6)-C(17)	1.416(5)
C(7)-C(16)	1.400(6)
C(7)-C(8)	1.419(6)
С(8)-Н(8)	0.9300
C(9)-C(10)	1.481(7)
С(9)-Н(6)	0.9700
С(9)-Н(7)	0.9700
C(10)-C(2')	1.474(7)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-C(12)	1.383(5)
C(11)-H(2)	0.9300
C(12)-H(3)	0.9300
C(13)-C(15)	1.390(5)
C(13)-C(14)	1.444(6)
C(14)-N(13)	1.141(5)
C(15)-C(18)	1.450(6)
C(16)-C(17)	1.370(6)
C(16)-H(5)	0.9300
C(17)-H(4)	0.9300
C(18)-N(14)	1.139(5)
C(20)-C(1')	1.521(6)
C(20)-H(20A)	0.9700
C(20)-H(20B)	0.9700
C(21)-C(22)	1.413(5)
C(21)-H(14)	0.9300
C(22)-C(37)	1.414(5)
C(23)-C(36)	1.437(5)
C(23)-C(24)	1.458(5)
C(24)-C(25)	1.461(5)
C(25)-C(32)	1.445(5)
C(26)-C(31)	1.392(5)
C(26)-C(27)	1.459(6)
C(27)-N(12)	1.140(5)
N(11)-C(30)	1.148(5)
C(30)-C(31)	1.448(6)

i abie eleizi oontinucum		
C(32)-C(39)	1.397(5)	
C(33)-C(38)	1.386(6)	
C(33)-C(34)	1.433(6)	
C(34)-H(15)	0.9300	
C(35)-C(1')	1.519(6)	
C(35)-H(35A)	0.9700	
C(35)-H(35B)	0.9700	
C(35)-H(101)	1.5(3)	
C(36)-C(37)	1.368(5)	
C(36)-H(13)	0.9300	
C(37)-H(12)	0.9300	
C(38)-C(39)	1.385(6)	
C(38)-H(17)	0.9300	
C(39)-H(16)	0.9300	
C(1')-H(1'1)	0.9700	
C(1')-H(1'2)	0.9700	
C(2')-H(2'1)	0.9700	
C(2')-H(2'2)	0.9700	
C(1)-N(1)-C(2')	123.9(4)	
C(3)-N(2)-C(2)	108.0(3)	
C(3)-N(2)-H(103)	113(6)	
C(2)-N(2)-H(103)	139(6)	
C(6)-N(3)-C(7)	107.2(3)	
C(8)-N(4)-C(9)	124.2(4)	
C(8)-N(4)-H(104)	127(8)	
C(9)-N(4)-H(104)	108(8)	
C(13)-N(5)-C(4)	119.2(3)	
C(15)-N(6)-C(5)	119.2(3)	
C(21)-N(7)-C(20)	126.6(3)	
C(23)-N(8)-C(22)	106.3(3)	
C(23)-N(8)-H(102)	115(10)	
C(22)-N(8)-H(102)	138(10)	
C(26)-N(9)-C(25)	119.0(3)	
C(31)-N(10)-C(24)	119.7(3)	
C(33)-N(15)-C(32)	109.0(3)	
C(34)-N(16)-C(35)	120.7(3)	

Table C.5.1. continued...

C(34)-N(16)-H(101)	158(10)
C(35)-N(16)-H(101)	77(10)
N(1)-C(1)-C(2)	122.1(4)
N(1)-C(1)-H(1)	118.9
C(2)-C(1)-H(1)	118.9
N(2)-C(2)-C(12)	109.4(4)
N(2)-C(2)-C(1)	121.6(3)
C(12)-C(2)-C(1)	129.0(4)
N(2)-C(3)-C(11)	108.9(3)
N(2)-C(3)-C(4)	126.1(3)
C(11)-C(3)-C(4)	124.9(3)
N(5)-C(4)-C(5)	120.0(3)
N(5)-C(4)-C(3)	111.2(3)
C(5)-C(4)-C(3)	128.8(3)
N(6)-C(5)-C(4)	118.7(3)
N(6)-C(5)-C(6)	111.0(3)
C(4)-C(5)-C(6)	130.2(3)
N(3)-C(6)-C(17)	109.4(3)
N(3)-C(6)-C(5)	125.3(3)
C(17)-C(6)-C(5)	125.2(4)
N(3)-C(7)-C(16)	109.3(4)
N(3)-C(7)-C(8)	121.1(4)
C(16)-C(7)-C(8)	129.6(4)
N(4)-C(8)-C(7)	122.1(4)
N(4)-C(8)-H(8)	119.0
C(7)-C(8)-H(8)	119.0
N(4)-C(9)-C(10)	111.3(4)
N(4)-C(9)-H(6)	109.4
C(10)-C(9)-H(6)	109.4
N(4)-C(9)-H(7)	109.4
C(10)-C(9)-H(7)	109.4
H(6)-C(9)-H(7)	108.0
C(2')-C(10)-C(9)	118.1(5)
C(2')-C(10)-H(10A)	107.8
C(9)-C(10)-H(10A)	107.8
C(2')-C(10)-H(10B)	107.8
C(9)-C(10)-H(10B)	107.8

Table C.5.1. continued...

H(10A)-C(10)-H(10B)	107.1
C(12)-C(11)-C(3)	106.8(3)
C(12)-C(11)-H(2)	126.6
C(3)-C(11)-H(2)	126.6
C(11)-C(12)-C(2)	106.9(3)
C(11)-C(12)-H(3)	126.6
C(2)-C(12)-H(3)	126.6
N(5)-C(13)-C(15)	121.0(4)
N(5)-C(13)-C(14)	118.2(4)
C(15)-C(13)-C(14)	120.8(4)
N(13)-C(14)-C(13)	176.5(5)
N(6)-C(15)-C(13)	121.8(3)
N(6)-C(15)-C(18)	118.0(3)
C(13)-C(15)-C(18)	120.2(4)
C(17)-C(16)-C(7)	107.4(4)
C(17)-C(16)-H(5)	126.3
C(7)-C(16)-H(5)	126.3
C(16)-C(17)-C(6)	106.7(4)
C(16)-C(17)-H(4)	126.7
C(6)-C(17)-H(4)	126.7
N(14)-C(18)-C(15)	176.7(5)
N(7)-C(20)-C(1')	109.7(3)
N(7)-C(20)-H(20A)	109.7
C(1')-C(20)-H(20A)	109.7
N(7)-C(20)-H(20B)	109.7
C(1')-C(20)-H(20B)	109.7
H(20A)-C(20)-H(20B)	108.2
N(7)-C(21)-C(22)	122.8(3)
N(7)-C(21)-H(14)	118.6
C(22)-C(21)-H(14)	118.6
N(8)-C(22)-C(21)	120.9(3)
N(8)-C(22)-C(37)	110.6(3)
C(21)-C(22)-C(37)	128.5(3)
N(8)-C(23)-C(36)	110.4(3)
N(8)-C(23)-C(24)	126.4(3)
C(36)-C(23)-C(24)	123.2(3)
N(10)-C(24)-C(23)	111.3(3)

Table C.5.1. continued...

N(10)-C(24)-C(25)	118.7(3)
C(23)-C(24)-C(25)	130.0(3)
N(9)-C(25)-C(32)	111.6(3)
N(9)-C(25)-C(24)	119.5(3)
C(32)-C(25)-C(24)	128.8(3)
N(9)-C(26)-C(31)	122.2(3)
N(9)-C(26)-C(27)	117.6(4)
C(31)-C(26)-C(27)	120.2(4)
N(12)-C(27)-C(26)	178.3(4)
N(11)-C(30)-C(31)	179.4(5)
N(10)-C(31)-C(26)	120.8(4)
N(10)-C(31)-C(30)	117.7(4)
C(26)-C(31)-C(30)	121.5(3)
N(15)-C(32)-C(39)	107.5(3)
N(15)-C(32)-C(25)	125.3(3)
C(39)-C(32)-C(25)	127.1(4)
N(15)-C(33)-C(38)	108.4(4)
N(15)-C(33)-C(34)	120.7(4)
C(38)-C(33)-C(34)	130.9(4)
N(16)-C(34)-C(33)	121.2(4)
N(16)-C(34)-H(15)	119.4
C(33)-C(34)-H(15)	119.4
N(16)-C(35)-C(1')	110.9(3)
N(16)-C(35)-H(35A)	109.5
C(1')-C(35)-H(35A)	109.5
N(16)-C(35)-H(35B)	109.5
C(1')-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35B)	108.0
N(16)-C(35)-H(101)	34(5)
C(1')-C(35)-H(101)	80(9)
H(35A)-C(35)-H(101)	110.1
H(35B)-C(35)-H(101)	134.6
C(37)-C(36)-C(23)	106.4(3)
C(37)-C(36)-H(13)	126.8
C(23)-C(36)-H(13)	126.8
C(36)-C(37)-C(22)	106.3(3)
C(36)-C(37)-H(12)	126.9

Table C.5.1.	continued
--------------	-----------

C(22)-C(37)-H(12)	126.9	
C(39)-C(38)-C(33)	107.3(3)	
C(39)-C(38)-H(17)	126.3	
C(33)-C(38)-H(17)	126.3	
C(38)-C(39)-C(32)	107.7(4)	
C(38)-C(39)-H(16)	126.1	
C(32)-C(39)-H(16)	126.1	
C(35)-C(1')-C(20)	113.0(4)	
C(35)-C(1')-H(1'1)	109.0	
C(20)-C(1')-H(1'1)	109.0	
C(35)-C(1')-H(1'2)	109.0	
C(20)-C(1')-H(1'2)	109.0	
H(1'1)-C(1')-H(1'2)	107.8	
N(1)-C(2')-C(10)	111.2(4)	
N(1)-C(2')-H(2'1)	109.4	
C(10)-C(2')-H(2'1)	109.4	
N(1)-C(2')-H(2'2)	109.4	
C(10)-C(2')-H(2'2)	109.4	
H(2'1)-C(2')-H(2'2)	108.0	

	U ¹¹	U25	U ³³	U ²³	U ¹³	U ¹²
N(1)	47(3)	34(2)	28(2)	-1(2)	-7(2)	4(2)
N(2)	18(2)	28(2)	26(2)	2(2)	1(1)	5(1)
N(3)	21(2)	24(2)	27(2)	0(1)	2(2)	6(1)
N(4)	37(2)	33(2)	25(2)	-1(2)	0(2)	4(2)
N(5)	19(2)	29(2)	32(2)	-4(1)	4(2)	2(1)
N(6)	24(2)	29(2)	28(2)	2(1)	-2(2)	3(1)
N(7)	30(2)	29(2)	22(2)	3(1)	1(2)	0(2)
N(8)	20(2)	27(2)	23(2)	-3(1)	-1(1)	4(1)
N(9)	26(2)	27(2)	24(2)	-2(1)	0(2)	4(1)
N(10)	20(2)	28(2)	24(2)	1(1)	0(1)	3(1)
N(15)	18(2)	22(2)	30(2)	-1(1)	2(1)	3(1)
N(16)	25(2)	26(2)	32(2)	2(2)	4(2)	5(1)
C(1)	32(2)	29(2)	24(2)	7(2)	3(2)	6(2)
C(2)	18(2)	31(2)	29(2)	4(2)	0(2)	6(2)
C(3)	20(2)	25(2)	28(2)	-1(2)	1(2)	5(2)
C(4)	14(2)	29(2)	25(2)	1(2)	0(2)	5(2)
C(5)	17(2)	26(2)	26(2)	1(2)	0(2)	4(1)
C(6)	19(2)	26(2)	25(2)	1(2)	1(2)	4(2)
C(7)	20(2)	29(2)	29(2)	1(2)	5(2)	2(2)
C(8)	25(2)	23(2)	36(2)	0(2)	1(2)	1(2)
C(9)	61(4)	38(2)	32(3)	-11(2)	-1(2)	-2(2)
C(10)	79(4)	44(3)	32(3)	-7(2)	-2(3)	-12(3)
C(11)	23(2)	26(2)	32(2)	2(2)	-1(2)	0(2)
C(12)	23(2)	32(2)	30(2)	8(2)	3(2)	1(2)
C(13)	23(2)	28(2)	28(2)	-3(2)	-1(2)	4(2)
C(14)	31(2)	32(2)	26(2)	-3(2)	-1(2)	5(2)
C(15)	23(2)	29(2)	25(2)	2(2)	-3(2)	5(2)
C(16)	27(2)	22(2)	30(2)	4(2)	4(2)	2(2)
C(17)	29(2)	34(2)	27(2)	6(2)	3(2)	3(2)
C(18)	38(3)	32(2)	28(2)	2(2)	-4(2)	0(2)
N(14)	73(3)	49(2)	32(2)	6(2)	-12(2)	0(2)
C(20)	44(3)	33(2)	22(2)	4(2)	-2(2)	2(2)
C(21)	29(2)	27(2)	24(2)	-4(2)	-2(2)	2(2)
C(22)	19(2)	29(2)	23(2)	-3(2)	2(2)	4(2)

Table C.5.2: Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for H₂L8a. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

Table C.	.5.2. continu	ieu					
C(23)	18(2)	25(2)	24(2)	-1(2)	1(2)	1(2)	
C(24)	15(2)	28(2)	26(2)	-3(2)	2(2)	7(2)	
C(25)	19(2)	27(2)	25(2)	-1(2)	2(2)	5(2)	
C(26)	27(2)	32(2)	22(2)	0(2)	2(2)	9(2)	
C(27)	40(3)	28(2)	25(2)	-6(2)	3(2)	5(2)	
N(12)	76(3)	35(2)	28(2)	-5(2)	2(2)	-3(2)	
N(11)	58(3)	38(2)	27(2)	7(2)	5(2)	0(2)	
C(30)	39(3)	32(2)	21(2)	-3(2)	2(2)	3(2)	
C(31)	22(2)	30(2)	24(2)	1(2)	3(2)	3(2)	
C(32)	15(2)	28(2)	26(2)	-4(2)	1(2)	5(2)	
C(33)	17(2)	26(2)	33(2)	-1(2)	2(2)	2(2)	
C(34)	22(2)	19(2)	38(3)	-4(2)	5(2)	1(2)	
C(35)	34(2)	30(2)	32(2)	6(2)	6(2)	-1(2)	
C(36)	23(2)	26(2)	26(2)	-1(2)	1(2)	1(2)	
C(37)	21(2)	26(2)	27(2)	-6(2)	3(2)	3(2)	
C(38)	26(2)	25(2)	35(2)	-7(2)	2(2)	1(2)	
C(39)	22(2)	39(2)	26(2)	-8(2)	-2(2)	2(2)	
C(1')	41(3)	30(2)	28(2)	6(2)	5(2)	2(2)	
C(2')	78(4)	39(3)	32(3)	1(2)	-11(3)	-1(3)	
N(13)	49(3)	43(2)	38(2)	-7(2)	-2(2)	-3(2)	

Table C.5.2. continued...

	x	у	Z	U(eq)
H(1)	6563	9189	5608	34
H(8)	4678	6361	6954	34
H(6)	3263	6874	5885	52
H(7)	4991	6360	5952	52
H(10A)	7041	7120	5545	62
H(10B)	5316	6975	5146	62
H(2)	7820	10499	7276	32
H(3)	7470	10330	6253	34
H(5)	5255	6415	8103	31
H(4)	6152	7359	8747	36
H(20A)	11749	8134	9710	40
H(20B)	13335	7659	9444	40
H(14)	12505	9199	9224	32
H(15)	9921	6483	7858	32
H(35A)	12310	6612	8877	39
H(35B)	10109	6454	8799	39
H(13)	12669	10631	7590	30
H(12)	12831	10401	8606	29
H(17)	9563	6641	6688	34
H(16)	10049	7643	6058	35
H(1'1)	10507	7023	9641	40
H(1'2)	9339	7504	9240	40
H(2'1)	6178	8113	5121	60
H(2'2)	4042	8033	5325	60
H(102)	11700(300)	8650(40)	7760(60)	390(100)
H(101)	11300(700)	7520(130)	8540(110)	1000(300)
H(103)	6320(150)	8580(20)	7080(30)	170(40)
H(104)	5650(170)	7550(30)	6430(50)	250(60)

Table C.5.3: Hydrogen coordinates ($x~10^4$) and isotropic displacement parameters (Å $^2x~10^3$) for $H_2L8a.$

Table C.5.4: Torsion angles [°] for H_2L8a .

C(2')-N(1)-C(1)-C(2)	177.3(5)
C(3)-N(2)-C(2)-C(12)	-1.2(4)
C(3)-N(2)-C(2)-C(1)	179.0(4)
N(1)-C(1)-C(2)-N(2)	2.6(6)
N(1)-C(1)-C(2)-C(12)	-177.1(4)
C(2)-N(2)-C(3)-C(11)	1.4(4)
C(2)-N(2)-C(3)-C(4)	-178.4(4)
C(13)-N(5)-C(4)-C(5)	-1.4(6)
C(13)-N(5)-C(4)-C(3)	-179.9(4)
N(2)-C(3)-C(4)-N(5)	178.5(4)
C(11)-C(3)-C(4)-N(5)	-1.1(6)
N(2)-C(3)-C(4)-C(5)	0.2(7)
C(11)-C(3)-C(4)-C(5)	-179.5(4)
C(15)-N(6)-C(5)-C(4)	-2.6(6)
C(15)-N(6)-C(5)-C(6)	178.7(3)
N(5)-C(4)-C(5)-N(6)	4.0(6)
C(3)-C(4)-C(5)-N(6)	-177.7(4)
N(5)-C(4)-C(5)-C(6)	-177.6(4)
C(3)-C(4)-C(5)-C(6)	0.7(7)
C(7)-N(3)-C(6)-C(17)	0.1(4)
C(7)-N(3)-C(6)-C(5)	-180.0(4)
N(6)-C(5)-C(6)-N(3)	175.5(4)
C(4)-C(5)-C(6)-N(3)	-3.0(7)
N(6)-C(5)-C(6)-C(17)	-4.6(6)
C(4)-C(5)-C(6)-C(17)	176.9(4)
C(6)-N(3)-C(7)-C(16)	-0.1(4)
C(6)-N(3)-C(7)-C(8)	-179.9(4)
C(9)-N(4)-C(8)-C(7)	-178.9(4)
N(3)-C(7)-C(8)-N(4)	2.1(6)
C(16)-C(7)-C(8)-N(4)	-177.7(4)
C(8)-N(4)-C(9)-C(10)	-153.3(5)
N(4)-C(9)-C(10)-C(2')	-57.6(7)
N(2)-C(3)-C(11)-C(12)	-1.0(5)
C(4)-C(3)-C(11)-C(12)	178.7(4)
C(3)-C(11)-C(12)-C(2)	0.3(5)
N(2)-C(2)-C(12)-C(11)	0.5(5)

Table C.5.4. continued...

C(1)-C(2)-C(12)-C(11)	-179.7(4)
C(4)-N(5)-C(13)-C(15)	-2.5(6)
C(4)-N(5)-C(13)-C(14)	175.6(4)
N(5)-C(13)-C(14)-N(13)	-138(8)
C(15)-C(13)-C(14)-N(13)	40(8)
C(5)-N(6)-C(15)-C(13)	-1.3(6)
C(5)-N(6)-C(15)-C(18)	177.1(4)
N(5)-C(13)-C(15)-N(6)	4.0(6)
C(14)-C(13)-C(15)-N(6)	-174.0(4)
N(5)-C(13)-C(15)-C(18)	-174.3(4)
C(14)-C(13)-C(15)-C(18)	7.7(6)
N(3)-C(7)-C(16)-C(17)	0.0(5)
C(8)-C(7)-C(16)-C(17)	179.8(4)
C(7)-C(16)-C(17)-C(6)	0.1(5)
N(3)-C(6)-C(17)-C(16)	-0.1(5)
C(5)-C(6)-C(17)-C(16)	180.0(4)
N(6)-C(15)-C(18)-N(14)	-138(9)
C(13)-C(15)-C(18)-N(14)	40(10)
C(21)-N(7)-C(20)-C(1')	142.1(4)
C(20)-N(7)-C(21)-C(22)	-179.3(4)
C(23)-N(8)-C(22)-C(21)	-179.3(4)
C(23)-N(8)-C(22)-C(37)	0.8(4)
N(7)-C(21)-C(22)-N(8)	1.9(6)
N(7)-C(21)-C(22)-C(37)	-178.3(4)
C(22)-N(8)-C(23)-C(36)	-0.4(4)
C(22)-N(8)-C(23)-C(24)	179.0(4)
C(31)-N(10)-C(24)-C(23)	-178.5(4)
C(31)-N(10)-C(24)-C(25)	1.8(5)
N(8)-C(23)-C(24)-N(10)	-171.1(4)
C(36)-C(23)-C(24)-N(10)	8.3(5)
N(8)-C(23)-C(24)-C(25)	8.6(7)
C(36)-C(23)-C(24)-C(25)	-172.0(4)
C(26)-N(9)-C(25)-C(32)	-178.9(3)
C(26)-N(9)-C(25)-C(24)	2.5(6)
N(10)-C(24)-C(25)-N(9)	-3.8(5)
C(23)-C(24)-C(25)-N(9)	176.5(4)
N(10)-C(24)-C(25)-C(32)	177.8(4)

Table C.5.4. continued...

C(23)-C(24)-C(25)-C(32)	-1.9(7)
C(25)-N(9)-C(26)-C(31)	0.8(6)
C(25)-N(9)-C(26)-C(27)	-177.7(4)
N(9)-C(26)-C(27)-N(12)	144(19)
C(31)-C(26)-C(27)-N(12)	-35(19)
C(24)-N(10)-C(31)-C(26)	1.5(6)
C(24)-N(10)-C(31)-C(30)	-176.8(4)
N(9)-C(26)-C(31)-N(10)	-3.0(7)
C(27)-C(26)-C(31)-N(10)	175.5(4)
N(9)-C(26)-C(31)-C(30)	175.3(4)
C(27)-C(26)-C(31)-C(30)	-6.2(6)
N(11)-C(30)-C(31)-N(10)	45(49)
N(11)-C(30)-C(31)-C(26)	-134(48)
C(33)-N(15)-C(32)-C(39)	-0.1(4)
C(33)-N(15)-C(32)-C(25)	179.6(4)
N(9)-C(25)-C(32)-N(15)	177.0(4)
C(24)-C(25)-C(32)-N(15)	-4.6(6)
N(9)-C(25)-C(32)-C(39)	-3.4(6)
C(24)-C(25)-C(32)-C(39)	175.1(4)
C(32)-N(15)-C(33)-C(38)	0.6(4)
C(32)-N(15)-C(33)-C(34)	-179.7(3)
C(35)-N(16)-C(34)-C(33)	-178.7(4)
N(15)-C(33)-C(34)-N(16)	-5.3(6)
C(38)-C(33)-C(34)-N(16)	174.4(4)
C(34)-N(16)-C(35)-C(1')	-142.7(4)
N(8)-C(23)-C(36)-C(37)	-0.1(4)
C(24)-C(23)-C(36)-C(37)	-179.5(4)
C(23)-C(36)-C(37)-C(22)	0.5(4)
N(8)-C(22)-C(37)-C(36)	-0.8(5)
C(21)-C(22)-C(37)-C(36)	179.3(4)
N(15)-C(33)-C(38)-C(39)	-0.9(5)
C(34)-C(33)-C(38)-C(39)	179.4(4)
C(33)-C(38)-C(39)-C(32)	0.8(5)
N(15)-C(32)-C(39)-C(38)	-0.5(5)
C(25)-C(32)-C(39)-C(38)	179.8(4)
N(16)-C(35)-C(1')-C(20)	-62.5(5)
N(7)-C(20)-C(1')-C(35)	62.5(5)

Table C.5.4. continued	
C(1)-N(1)-C(2')-C(10)	153.6(5)
C(9)-C(10)-C(2')-N(1)	56.5(7)

C.6: Full crystallographic Data Tables of H₂L8b

O(1)-C(16)	1.342(6)
O(1)-C(19)	1.423(7)
C(16)-N(6)	1.328(7)
C(16)-C(17)	1.383(7)
N(5)-C(17)	1.317(7)
N(5)-C(14)	1.350(7)
N(4)-C(13)	1.346(7)
N(4)-C(10)	1.391(7)
N(1)-C(4)	1.356(7)
N(1)-C(1)	1.369(7)
N(1)-H(101)	0.95(2)
C(1)-C(2)	1.399(7)
C(1)-C(15)	1.446(7)
C(15)-N(6)	1.364(7)
C(15)-C(14)	1.430(7)
C(19)-H(19C)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19A)	0.9800
C(17)-C(18)	1.438(8)
C(14)-C(13)	1.473(7)
C(13)-C(12)	1.414(8)
C(10)-C(9)	1.399(8)
C(10)-C(11)	1.402(9)
C(9)-N(3)	1.300(8)
С(9)-Н(9)	0.9500
N(3)-C(8)	1.465(8)
N(3)-H(103)	0.94(2)
C(8)-C(7)	1.503(11)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(7)-C(6)	1.489(11)
C(7)-H(7A)	0.9900
С(7)-Н(7В)	0.9900
C(6)-N(2)	1.470(8)

Table C.6.1: Bond lengths [Å] and angles [°] for H_2L8b

APPENDIX C: FULL CRYSTOLLOGRAPHIC DATA TABLES OF LIGANDS

Table C.6.1. continued...

С(6)-Н(6В)	0.9900
C(6)-H(6A)	0.9900
N(2)-C(5)	1.286(8)
C(5)-C(4)	1.426(8)
C(5)-H(5)	0.9500
C(4)-C(3)	1.385(9)
C(11)-C(12)	1.369(9)
C(11)-H(11)	0.9500
C(12)-H(12)	0.9500
C(18)-N(7)	1.119(8)
C(2)-C(3)	1.393(9)
C(2)-H(2)	0.9500
C(3)-H(3)	0.9500
C(16)-O(1)-C(19)	118.4(5)
N(6)-C(16)-O(1)	119.9(4)
N(6)-C(16)-C(17)	122.0(5)
O(1)-C(16)-C(17)	118.1(5)
C(17)-N(5)-C(14)	120.2(5)
C(13)-N(4)-C(10)	106.3(4)
C(4)-N(1)-C(1)	109.2(5)
C(4)-N(1)-H(101)	139(8)
C(1)-N(1)-H(101)	111(8)
N(1)-C(1)-C(2)	107.9(5)
N(1)-C(1)-C(15)	125.9(5)
C(2)-C(1)-C(15)	126.2(5)
N(6)-C(15)-C(14)	119.1(5)
N(6)-C(15)-C(1)	110.8(5)
C(14)-C(15)-C(1)	130.2(5)
C(16)-N(6)-C(15)	118.7(4)
O(1)-C(19)-H(19C)	109.5
O(1)-C(19)-H(19B)	109.5
H(19C)-C(19)-H(19B)	109.5
O(1)-C(19)-H(19A)	109.5
H(19C)-C(19)-H(19A)	109.5
H(19B)-C(19)-H(19A)	109.5
N(5)-C(17)-C(16)	120.6(5)

Table C.6.1. continued...

N(5)-C(17)-C(18)	118.7(5)
C(16)-C(17)-C(18)	120.8(5)
N(5)-C(14)-C(15)	119.4(5)
N(5)-C(14)-C(13)	111.2(5)
C(15)-C(14)-C(13)	129.4(5)
N(4)-C(13)-C(12)	110.7(5)
N(4)-C(13)-C(14)	125.3(5)
C(12)-C(13)-C(14)	123.9(5)
N(4)-C(10)-C(9)	121.6(5)
N(4)-C(10)-C(11)	109.1(5)
C(9)-C(10)-C(11)	129.3(5)
N(3)-C(9)-C(10)	122.5(6)
N(3)-C(9)-H(9)	118.8
C(10)-C(9)-H(9)	118.8
C(9)-N(3)-C(8)	125.6(6)
C(9)-N(3)-H(103)	120(5)
C(8)-N(3)-H(103)	114(5)
N(3)-C(8)-C(7)	110.5(6)
N(3)-C(8)-H(8A)	109.6
C(7)-C(8)-H(8A)	109.6
N(3)-C(8)-H(8B)	109.6
С(7)-С(8)-Н(8В)	109.6
H(8A)-C(8)-H(8B)	108.1
C(6)-C(7)-C(8)	117.5(7)
C(6)-C(7)-H(7A)	107.9
С(8)-С(7)-Н(7А)	107.9
С(6)-С(7)-Н(7В)	107.9
С(8)-С(7)-Н(7В)	107.9
H(7A)-C(7)-H(7B)	107.2
N(2)-C(6)-C(7)	109.8(6)
N(2)-C(6)-H(6B)	109.7
С(7)-С(6)-Н(6В)	109.7
N(2)-C(6)-H(6A)	109.7
C(7)-C(6)-H(6A)	109.7
H(6B)-C(6)-H(6A)	108.2
C(5)-N(2)-C(6)	121.1(6)
N(2)-C(5)-C(4)	120.9(6)

APPENDIX C: FULL CRYSTOLLOGRAPHIC DATA TABLES OF LIGANDS

N(2)-C(5)-H(5)	119.5
C(4)-C(5)-H(5)	119.5
N(1)-C(4)-C(3)	108.3(5)
N(1)-C(4)-C(5)	121.8(6)
C(3)-C(4)-C(5)	129.8(6)
C(12)-C(11)-C(10)	107.6(5)
C(12)-C(11)-H(11)	126.2
C(10)-C(11)-H(11)	126.2
C(11)-C(12)-C(13)	106.3(5)
C(11)-C(12)-H(12)	126.9
C(13)-C(12)-H(12)	126.9
N(7)-C(18)-C(17)	179.1(8)
C(3)-C(2)-C(1)	106.7(5)
C(3)-C(2)-H(2)	126.6
C(1)-C(2)-H(2)	126.6
C(4)-C(3)-C(2)	107.9(5)
C(4)-C(3)-H(3)	126.1
C(2)-C(3)-H(3)	126.1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	57(2)	43(2)	63(2)	-7(2)	8(2)	7(2)
C(16)	31(2)	51(3)	40(3)	-6(3)	-1(2)	8(2)
N(5)	39(2)	43(2)	52(3)	3(2)	2(2)	-2(2)
N(4)	40(2)	44(2)	43(3)	-5(2)	2(2)	3(2)
N(1)	45(2)	36(2)	50(3)	1(2)	2(2)	-5(2)
C(1)	39(3)	39(3)	51(3)	-1(2)	-4(3)	2(2)
C(15)	37(3)	49(3)	38(3)	-1(2)	-5(2)	4(2)
N(6)	40(2)	43(2)	45(2)	-2(2)	-3(2)	4(2)
C(19)	79(4)	48(3)	81(5)	-8(3)	5(4)	4(3)
C(17)	43(3)	43(3)	49(3)	-2(3)	-1(3)	0(2)
C(14)	39(3)	38(3)	40(3)	-4(2)	-4(2)	2(2)
C(13)	35(3)	47(3)	45(3)	-3(2)	-1(3)	1(2)
C(10)	43(3)	48(3)	62(4)	-9(3)	11(3)	8(3)
C(9)	47(3)	52(3)	71(4)	-10(3)	8(3)	4(3)
N(3)	54(3)	72(4)	59(3)	-9(3)	13(3)	2(3)
C(8)	62(4)	87(5)	57(4)	2(4)	23(3)	6(3)
C(7)	96(6)	107(7)	62(5)	-2(4)	28(5)	-6(5)
C(6)	79(5)	73(4)	71(5)	-2(4)	29(4)	-8(4)
N(2)	61(3)	65(3)	63(3)	4(3)	18(3)	-7(3)
C(5)	58(4)	55(4)	65(4)	9(3)	4(3)	-9(3)
C(4)	51(3)	47(3)	61(4)	2(3)	3(3)	-5(3)
C(11)	80(4)	40(3)	109(6)	-13(4)	39(5)	2(3)
C(12)	66(4)	41(3)	84(5)	2(3)	27(4)	-5(3)
C(18)	58(3)	47(3)	59(4)	-1(3)	19(3)	3(3)
N(7)	97(4)	61(4)	94(5)	-3(3)	42(4)	-7(3)
C(2)	63(4)	43(3)	74(5)	1(3)	13(4)	2(3)
C(3)	71(4)	32(3)	108(6)	-3(4)	13(4)	-5(3)

Table C.6.2: Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for H₂L8b. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	x	У	z	U(eq)	
H(19C)	13554	941	2462	104	
H(19B)	13965	1015	978	104	
H(19A)	12391	1021	1390	104	
H(9)	7051	4553	7578	68	
H(8A)	4919	3397	8287	83	
H(8B)	5951	3780	9304	83	
H(7A)	6869	2567	9779	106	
H(7B)	5262	2558	10026	106	
H(6B)	5954	1396	9101	89	
H(6A)	4923	1841	8155	89	
H(5)	7028	739	7395	71	
H(11)	8856	5278	5918	92	
H(12)	10527	4774	4302	77	
H(2)	10666	631	4182	72	
H(3)	8950	71	5731	84	
H(103)	7090(70)	2950(30)	7260(70)	90(30)	
H(101)	8860(110)	2445(19)	5790(140)	170(50)	

Table C.6.3: Hydrogen coordinates ($x\,10^4$) and isotropic displacement parameters (Å $^2x\,10^3$) for $H_2L8b.$

Table C.6.4: Torsion angles [°] for H₂L8b.

C(19)-O(1)-C(16)-N(6)	5.1(8)
C(19)-O(1)-C(16)-C(17)	-174.2(6)
C(4)-N(1)-C(1)-C(2)	0.7(7)
C(4)-N(1)-C(1)-C(15)	-179.2(5)
N(1)-C(1)-C(15)-N(6)	-178.3(5)
C(2)-C(1)-C(15)-N(6)	1.8(8)
N(1)-C(1)-C(15)-C(14)	1.8(10)
C(2)-C(1)-C(15)-C(14)	-178.0(6)
O(1)-C(16)-N(6)-C(15)	179.5(4)
C(17)-C(16)-N(6)-C(15)	-1.2(8)
C(14)-C(15)-N(6)-C(16)	0.9(8)
C(1)-C(15)-N(6)-C(16)	-178.9(4)
C(14)-N(5)-C(17)-C(16)	1.5(9)
C(14)-N(5)-C(17)-C(18)	179.8(5)
N(6)-C(16)-C(17)-N(5)	0.0(9)
O(1)-C(16)-C(17)-N(5)	179.3(5)
N(6)-C(16)-C(17)-C(18)	-178.3(5)
O(1)-C(16)-C(17)-C(18)	1.0(8)
C(17)-N(5)-C(14)-C(15)	-1.7(8)
C(17)-N(5)-C(14)-C(13)	178.1(5)
N(6)-C(15)-C(14)-N(5)	0.5(8)
C(1)-C(15)-C(14)-N(5)	-179.7(5)
N(6)-C(15)-C(14)-C(13)	-179.3(5)
C(1)-C(15)-C(14)-C(13)	0.5(10)
C(10)-N(4)-C(13)-C(12)	-0.5(6)
C(10)-N(4)-C(13)-C(14)	178.0(5)
N(5)-C(14)-C(13)-N(4)	-180.0(5)
C(15)-C(14)-C(13)-N(4)	-0.2(9)
N(5)-C(14)-C(13)-C(12)	-1.6(8)
C(15)-C(14)-C(13)-C(12)	178.2(6)
C(13)-N(4)-C(10)-C(9)	-178.4(5)
C(13)-N(4)-C(10)-C(11)	0.2(7)
N(4)-C(10)-C(9)-N(3)	-0.4(9)
C(11)-C(10)-C(9)-N(3)	-178.8(7)
C(10)-C(9)-N(3)-C(8)	179.8(6)
C(9)-N(3)-C(8)-C(7)	-153.9(7)

N(3)-C(8)-C(7)-C(6)	-58.7(10)	
C(8)-C(7)-C(6)-N(2)	58.8(10)	
C(7)-C(6)-N(2)-C(5)	151.4(7)	
C(6)-N(2)-C(5)-C(4)	-178.9(6)	
C(1)-N(1)-C(4)-C(3)	-0.3(7)	
C(1)-N(1)-C(4)-C(5)	177.3(5)	
N(2)-C(5)-C(4)-N(1)	-1.0(9)	
N(2)-C(5)-C(4)-C(3)	176.1(7)	
N(4)-C(10)-C(11)-C(12)	0.2(8)	
C(9)-C(10)-C(11)-C(12)	178.7(7)	
C(10)-C(11)-C(12)-C(13)	-0.5(8)	
N(4)-C(13)-C(12)-C(11)	0.7(7)	
C(14)-C(13)-C(12)-C(11)	-177.9(6)	
N(1)-C(1)-C(2)-C(3)	-0.7(7)	
C(15)-C(1)-C(2)-C(3)	179.1(6)	
N(1)-C(4)-C(3)-C(2)	-0.1(8)	
C(5)-C(4)-C(3)-C(2)	-177.5(6)	
C(1)-C(2)-C(3)-C(4)	0.5(8)	
C.7: Full crystallographic Data Tables of H₂L8c

O(1)-C(8)	1.360(3)
O(1)-C(9)	1.433(3)
N(1)-C(2)	1.293(3)
N(1)-C(1)	1.469(3)
N(1)-H(15)	0.8800
N(2)-C(4)	1.345(3)
N(2)-C(3)	1.377(3)
N(3)-C(7)	1.333(3)
N(3)-C(6)	1.348(3)
N(5)-C(10)	1.326(3)
N(5)-C(5)	1.344(3)
N(6)-C(15)	1.271(3)
N(6)-C(14)	1.465(3)
N(7)-C(17)	1.361(3)
N(7)-C(16)	1.362(3)
N(7)-H(6)	0.8800
C(1)-C(13)	1.507(4)
C(1)-H(14)	0.9900
C(1)-H(1)	0.9900
C(2)-C(3)	1.402(3)
C(2)-H(16)	0.9500
C(3)-C(20)	1.407(3)
C(4)-C(21)	1.425(3)
C(4)-C(5)	1.468(3)
C(5)-C(6)	1.448(3)
C(6)-C(17)	1.457(3)
C(7)-C(10)	1.390(3)
C(7)-C(8)	1.491(3)
C(8)-N(9)	1.252(3)
С(9)-Н(2)	0.9800
C(9)-H(3)	0.9800
C(9)-H(19)	0.9800
C(10)-C(11)	1.461(3)
C(11)-N(8)	1.138(3)

Table C.7.1: Bond lengths [Å] and angles [°] for H_2L8c

APPENDIX C: FULL CRYSTOLLOGRAPHIC DATA TABLES OF LIGANDS

Table C.7.1. continued...

C(13)-C(14)	1.521(4)	
C(13)-H(13)	0.9900	
C(13)-H(12)	0.9900	
C(14)-H(11)	0.9900	
C(14)-H(10)	0.9900	
C(15)-C(16)	1.444(3)	
C(15)-H(9)	0.9500	
C(16)-C(19)	1.403(3)	
C(17)-C(18)	1.402(3)	
C(18)-C(19)	1.380(4)	
C(18)-H(8)	0.9500	
C(19)-H(7)	0.9500	
C(20)-C(21)	1.365(3)	
C(20)-H(17)	0.9500	
C(21)-H(18)	0.9500	
N(9)-H(101)	0.98(4)	
C(8)-O(1)-C(9)	115.7(2)	
C(2)-N(1)-C(1)	127.6(2)	
C(2)-N(1)-H(15)	116.2	
C(1)-N(1)-H(15)	116.2	
C(4)-N(2)-C(3)	105.87(18)	
C(7)-N(3)-C(6)	120.3(2)	
C(10)-N(5)-C(5)	120.0(2)	
C(15)-N(6)-C(14)	120.8(2)	
C(17)-N(7)-C(16)	110.37(19)	
C(17)-N(7)-H(6)	124.8	
C(16)-N(7)-H(6)	124.8	
N(1)-C(1)-C(13)	109.7(2)	
N(1)-C(1)-H(14)	109.7	
C(13)-C(1)-H(14)	109.7	
N(1)-C(1)-H(1)	109.7	
C(13)-C(1)-H(1)	109.7	
H(14)-C(1)-H(1)	108.2	
N(1)-C(2)-C(3)	122.8(2)	
N(1)-C(2)-H(16)	118.6	
C(3)-C(2)-H(16)	118.6	

APPENDIX C: FULL CRYSTOLLOGRAPHIC DATA TABLES OF LIGANDS

Table C.7.1. continued...

N(2)-C(3)-C(2)	122.4(2)
N(2)-C(3)-C(20)	110.69(19)
C(2)-C(3)-C(20)	126.9(2)
N(2)-C(4)-C(21)	110.35(19)
N(2)-C(4)-C(5)	126.52(19)
C(21)-C(4)-C(5)	123.1(2)
N(5)-C(5)-C(6)	119.1(2)
N(5)-C(5)-C(4)	111.08(19)
C(6)-C(5)-C(4)	129.7(2)
N(3)-C(6)-C(5)	118.8(2)
N(3)-C(6)-C(17)	112.3(2)
C(5)-C(6)-C(17)	128.9(2)
N(3)-C(7)-C(10)	120.2(2)
N(3)-C(7)-C(8)	115.5(2)
C(10)-C(7)-C(8)	124.3(2)
N(9)-C(8)-O(1)	122.4(2)
N(9)-C(8)-C(7)	128.0(2)
O(1)-C(8)-C(7)	109.6(2)
O(1)-C(9)-H(2)	109.5
O(1)-C(9)-H(3)	109.5
H(2)-C(9)-H(3)	109.5
O(1)-C(9)-H(19)	109.5
H(2)-C(9)-H(19)	109.5
H(3)-C(9)-H(19)	109.5
N(5)-C(10)-C(7)	121.4(2)
N(5)-C(10)-C(11)	114.9(2)
C(7)-C(10)-C(11)	123.6(2)
N(8)-C(11)-C(10)	176.6(3)
C(1)-C(13)-C(14)	114.2(2)
C(1)-C(13)-H(13)	108.7
C(14)-C(13)-H(13)	108.7
C(1)-C(13)-H(12)	108.7
C(14)-C(13)-H(12)	108.7
H(13)-C(13)-H(12)	107.6
N(6)-C(14)-C(13)	111.3(2)
N(6)-C(14)-H(11)	109.4
C(13)-C(14)-H(11)	109.4

Table C.7.1. continued...

N(6)-C(14)-H(10)	109.4
C(13)-C(14)-H(10)	109.4
H(11)-C(14)-H(10)	108.0
N(6)-C(15)-C(16)	121.3(2)
N(6)-C(15)-H(9)	119.4
C(16)-C(15)-H(9)	119.4
N(7)-C(16)-C(19)	106.9(2)
N(7)-C(16)-C(15)	121.2(2)
C(19)-C(16)-C(15)	131.9(2)
N(7)-C(17)-C(18)	107.2(2)
N(7)-C(17)-C(6)	125.4(2)
C(18)-C(17)-C(6)	127.3(2)
C(19)-C(18)-C(17)	107.6(2)
C(19)-C(18)-H(8)	126.2
C(17)-C(18)-H(8)	126.2
C(18)-C(19)-C(16)	107.9(2)
C(18)-C(19)-H(7)	126.0
C(16)-C(19)-H(7)	126.0
C(21)-C(20)-C(3)	106.2(2)
C(21)-C(20)-H(17)	126.9
C(3)-C(20)-H(17)	126.9
C(20)-C(21)-C(4)	106.9(2)
C(20)-C(21)-H(18)	126.6
C(4)-C(21)-H(18)	126.6
C(8)-N(9)-H(101)	104(2)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	43(1)	42(1)	34(1)	4(1)	-1(1)	0(1)
N(1)	36(1)	34(1)	30(1)	3(1)	-1(1)	2(1)
N(2)	29(1)	25(1)	26(1)	-1(1)	3(1)	2(1)
N(3)	30(1)	37(1)	26(1)	-5(1)	3(1)	6(1)
N(5)	32(1)	31(1)	29(1)	3(1)	6(1)	5(1)
N(6)	45(1)	24(1)	36(1)	1(1)	6(1)	2(1)
N(7)	29(1)	27(1)	28(1)	-4(1)	3(1)	0(1)
C(1)	39(1)	42(1)	32(1)	8(1)	2(1)	7(1)
C(2)	28(1)	36(1)	28(1)	-5(1)	3(1)	2(1)
C(3)	27(1)	30(1)	28(1)	-5(1)	4(1)	2(1)
C(4)	29(1)	25(1)	28(1)	-2(1)	7(1)	4(1)
C(5)	28(1)	28(1)	28(1)	0(1)	8(1)	6(1)
C(6)	29(1)	35(1)	24(1)	-2(1)	6(1)	8(1)
C(7)	36(1)	35(1)	26(1)	1(1)	8(1)	10(1)
C(8)	35(1)	36(1)	31(1)	-1(1)	4(1)	5(1)
C(9)	48(2)	46(2)	37(1)	5(1)	-2(1)	3(1)
C(10)	33(1)	34(1)	28(1)	2(1)	7(1)	5(1)
C(11)	37(1)	37(1)	30(1)	2(1)	3(1)	3(1)
N(8)	51(1)	42(1)	40(1)	8(1)	1(1)	-3(1)
C(13)	43(1)	42(1)	41(1)	13(1)	9(1)	10(1)
C(14)	50(2)	27(1)	46(1)	6(1)	12(1)	5(1)
C(15)	41(1)	23(1)	39(1)	-5(1)	14(1)	-2(1)
C(16)	34(1)	28(1)	34(1)	-6(1)	8(1)	-1(1)
C(17)	28(1)	33(1)	25(1)	-5(1)	5(1)	2(1)
C(18)	32(1)	40(1)	29(1)	-6(1)	3(1)	-1(1)
C(19)	33(1)	38(1)	39(1)	-12(1)	7(1)	-7(1)
C(20)	33(1)	30(1)	37(1)	-5(1)	0(1)	-3(1)
C(21)	39(1)	24(1)	42(1)	0(1)	5(1)	-2(1)
N(9)	45(1)	49(1)	38(1)	-4(1)	6(1)	-5(1)

Table C.7.2: Anisotropic displacement parameters ($Å^2x \ 10^3$) for H2L8c. The anisotropic displacementfactor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

H ₂ Lð	ť.				
	x	У	Z	U(eq)	
H(15)	287	6277	1562	41	
H(6)	2066	5977	3559	34	
H(14)	-1813	6894	159	46	
H(1)	-1286	6434	-979	46	
H(16)	-1636	5399	262	37	
H(2)	6228	3533	10501	67	
H(3)	4685	3414	11113	67	
H(19)	5463	4123	11208	67	
H(13)	-20	7440	-955	50	
H(12)	1187	6867	-551	50	
H(11)	1737	7799	842	49	
H(10)	112	7731	1343	49	
H(9)	3351	7570	2704	40	
H(8)	5476	6184	6534	41	
H(7)	5307	7200	5134	44	
H(17)	-1567	4241	1603	41	
H(18)	-4	3830	3700	42	
H(101)	6630(50)	4790(20)	8210(40)	83(12)	

Table C.7.3: Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($^{A^2}x \ 10^3$) for

Table C.7.4: Torsion angles [°] for H₂L8c.

C(2)-N(1)-C(1)-C(13) -149.4(2) C(1)-N(1)-C(2)-C(3) -179.8(2) C(4)-N(2)-C(3)-C(2) 178.7(2) C(4)-N(2)-C(3)-C(2) 0.3(2) N(1)-C(2)-C(3)-N(2) -2.6(3) N(1)-C(2)-C(3)-N(2) -2.6(3) N(1)-C(2)-C(3)-N(2) -75.5(2) C(3)-N(2)-C(4)-C(5) 179.87(19) C(10)-N(5)-C(5)-C(6) 2.1(3) C(10)-N(5)-C(5)-C(6) 2.1(3) C(10)-N(5)-C(5)-C(6) -179.97(18) N(2)-C(4)-C(5)-N(5) 0.5(3) N(2)-C(4)-C(5)-N(5) 0.5(3) N(2)-C(4)-C(5)-C(6) -2.0(4) C(21)-C(4)-C(5)-C(6) -2.0(4) C(21)-C(4)-C(5)-C(6) -179.95(19) N(2)-C(4)-C(5)-C(6) 1.9(3) C(7)-N(3)-C(6)-C(17) 178.4(2) C(4)-C(5)-C(6)-N(3) -179.95(19) N(5)-C(5)-C(6)-C(17) 0.6(4) C(5)-C(6)-N(3) -179.92(19) N(5)-C(5)-C(6)-C(17) 0.6(4) C(4)-C(5)-C(6) 177.8(2) N(3)-C(7)-C(8)-N(9) -2.7(3) C(6)-N(3)-C(7) 0.1(3) C(9)-O(1)-C(8)-N(9) 150.7(3)			
C(1)-N(1)-C(2)-C(3) -179.8(2) C(4)-N(2)-C(3)-C(2) 178.7(2) C(4)-N(2)-C(3)-C(20) 0.3(2) N(1)-C(2)-C(3)-N(2) -2.6(3) N(1)-C(2)-C(3)-C(20) 175.5(2) C(3)-N(2)-C(4)-C(21) -0.6(2) C(3)-N(2)-C(4)-C(5) 179.87(19) C(10)-N(5)-C(5)-C(6) 2.1(3) C(10)-N(5)-C(5)-C(4) -179.77(18) N(2)-C(4)-C(5)-N(5) 0.5(3) N(2)-C(4)-C(5)-N(5) 0.5(3) N(2)-C(4)-C(5)-C(6) 178.5(2) C(7)-N(3)-C(6)-C(17) 178.5(2) C(7)-N(3)-C(6)-C(5) -0.5(3) C(7)-N(3)-C(6)-C(17) 178.4(2) C(4)-C(5)-C(6)-N(3) -179.95(19) N(5)-C(5)-C(6)-N(3) -179.95(19) N(5)-C(5)-C(6)-N(3) -179.65(19) N(5)-C(5)-C(6)-N(3) -179.65(19) N(5)-C(5)-C(6)-C(17) 0.6(4) C(4)-C(5)-C(6)-N(3) -176.92(19) C(4)-C(5)-C(6)-C(17) 0.6(4) C(6)-N(3)-C(7)-C(8)-N(9) -29.7(4) C(10)-C(7)-C(8)-N(9) -29.7(4) C(10)-C(7)-C(8)-N(1) -176.92(19) N(3)-C(7)-C(8)-N(1) -131.	C(2)-N(1)-C(1)-C(13)	-149.4(2)	
C(4)-N(2)-C(3)-C(2) 178.7(2) C(4)-N(2)-C(3)-C(20) 0.3(2) N(1)-C(2)-C(3)-N(2) -2.6(3) N(1)-C(2)-C(3)-C(20) 175.5(2) C(3)-N(2)-C(4)-C(21) -0.6(2) C(3)-N(2)-C(4)-C(21) -0.6(2) C(3)-N(2)-C(4)-C(5) 179.87(19) C(10)-N(5)-C(5)-C(6) 2.1(3) C(10)-N(5)-C(5)-C(6) -179.97(18) N(2)-C(4)-C(5)-N(5) 0.5(3) N(2)-C(4)-C(5)-N(5) 0.5(3) N(2)-C(4)-C(5)-N(5) -0.5(3) N(2)-C(4)-C(5)-N(5) -0.5(3) C(7)-N(3)-C(6)-C(17) 179.26(18) N(5)-C(5)-C(6)-C(17) 179.26(18) N(5)-C(5)-C(6)-C(17) 179.65(19) N(5)-C(5)-C(6)-C(17) 178.4(2) C(4)-C(5)-C(6) 2.7(3) C(6)-N(3)-C(7)-C(10) 2.7(3) C(6)-N(3)-C(7) 177.8(2) N(3)-C(7)-C(8)-N(9) -29.7(4) C(10)-C(7)-C(8)-N(9) -29.7(4) C(10)-C(7) 0.1(3) C(5)-N(5)-C(10)-C(1) -31.6(3) C(5)-N(5)-C(10)-C(1) -76.4(5(19) N(3)-C(7)-C(8)-N(1) -76.4(5(19)	C(1)-N(1)-C(2)-C(3)	-179.8(2)	
C(4)-N(2)-C(3)-C(20) 0.3(2) N(1)-C(2)-C(3)-N(2) -2.6(3) N(1)-C(2)-C(3)-C(20) 175.5(2) C(3)-N(2)-C(4)-C(21) -0.6(2) C(3)-N(2)-C(4)-C(5) 179.87(19) C(10)-N(5)-C(5)-C(6) 2.1(3) C(10)-N(5)-C(5)-C(6) -179.77(18) N(2)-C(4)-C(5)-N(5) -0.5(3) N(2)-C(4)-C(5)-N(5) -0.5(3) N(2)-C(4)-C(5)-N(5) -0.5(3) C(21)-C(4)-C(5)-C(6) 178.5(2) C(7)-N(3)-C(6)-C(5) -0.5(3) C(7)-N(3)-C(6)-C(5) -0.5(3) C(7)-N(3)-C(6)-C(17) 179.26(18) N(5)-C(5)-C(6)-N(3) -1.9(3) C(4)-C(5)-C(6)-C(17) 178.4(2) C(4)-C(5)-C(6)-C(17) 2.7(3) C(6)-N(3)-C(7)-C(10) 2.7(3) C(6)-N(3)-C(7) 178.4(2) C(9)-O(1)-C(8)-N(9) -2.7(3) C(6)-N(3)-C(7) 177.8(2) N(3)-C(7)-C(8)-N(9) -2.7(3) C(6)-N(3)-C(7) 177.8(2) N(3)-C(7)-C(8)-N(1) 176.45(19) N(3)-C(7)-C(8)-N(1) -176.43(3) C(9)-O(1)-C(8)-N(9) -2.6(3)	C(4)-N(2)-C(3)-C(2)	178.7(2)	
N(1)-C(2)-C(3)-N(2)-2.6(3)N(1)-C(2)-C(3)-C(20)175.5(2)C(3)-N(2)-C(4)-C(21)-0.6(2)C(3)-N(2)-C(4)-C(5)179.87(19)C(10)-N(5)-C(5)-C(6)2.1(3)C(10)-N(5)-C(5)-C(6)179.97(18)N(2)-C(4)-C(5)-N(5)0.5(3)N(2)-C(4)-C(5)-N(5)0.5(3)N(2)-C(4)-C(5)-N(5)0.5(3)N(2)-C(4)-C(5)-C(6)-2.0(4)C(2)-C(4)-C(5)-C(6)-2.0(4)C(2)-C(4)-C(5)-C(6)-0.5(3)C(7)-N(3)-C(6)-C(5)-0.5(3)C(7)-N(3)-C(6)-C(5)-0.5(3)C(7)-N(3)-C(6)-C(17)178.5(2)C(7)-N(3)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-N(3)-176.92(19)N(5)-C(5)-C(6)-C(17)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-2.9.7(4)C(10)-C(7)-C(8)-N(1)-18.1(2)C(10)-C(7)-C(8)-N(1)-16.3(3)C(5)-N(5)-C(10)-C(1)-176.45(19)N(3)-C(7)-C(8)-O(1)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)-7.0(2)N(3)-C(7)-C(10)-N(5)-7.0(2)N(3)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(1)-N(6)-C(14)-C(13)139.5(2)	C(4)-N(2)-C(3)-C(20)	0.3(2)	
N(1-C(2)-C(3)-C(20)175.5(2)C(3)-N(2)-C(4)-C(21)-0.6(2)C(3)-N(2)-C(4)-C(5)179.87(19)C(10)-N(5)-C(5)-C(6)2.1(3)C(10)-N(5)-C(5)-C(4)-179.77(18)N(2)-C(4)-C(5)-N(5)0.5(3)C(21)-C(4)-C(5)-N(5)0.5(3)C(21)-C(4)-C(5)-N(5)-2.0(4)C(21)-C(4)-C(5)-C(6)-2.0(4)C(21)-C(4)-C(5)-C(6)-2.0(4)C(21)-C(4)-C(5)-C(6)-0.5(3)C(7)-N(3)-C(6)-C(5)-0.5(3)C(7)-N(3)-C(6)-C(5)-0.5(3)C(7)-N(3)-C(6)-C(17)179.26(18)N(5)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-C(17)0.6(4)C(4)-C(5)-C(6)-C(17)0.6(4)C(4)-C(5)-C(6)-C(17)0.6(4)C(4)-C(5)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-C(17)-176.92(19)C(5)-N(5)-C(10)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-150.7(3)N(3)-C(7)-C(8)-N(1)-176.45(19)N(3)-C(7)-C(8)-N(1)-176.45(19)N(3)-C(7)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-C(11)-2.6(3)C(8)-C(7)-C(10)-C(11)-2.6(3)C(8)-C(7)-C(10)-C(11)-7.7(4)N(3)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(1)-N(5)-C(14)-C(13)139.5(2)	N(1)-C(2)-C(3)-N(2)	-2.6(3)	
C(3)-N(2)-C(4)-C(21) -0.6(2) C(3)-N(2)-C(4)-C(5) 179.87(19) C(10)-N(5)-C(5)-C(6) 2.1(3) C(10)-N(5)-C(5)-C(4) -179.77(18) N(2)-C(4)-C(5)-N(5) 0.5(3) N(2)-C(4)-C(5)-N(5) 0.5(3) N(2)-C(4)-C(5)-N(5) 0.5(3) N(2)-C(4)-C(5)-C(6) -2.0(4) C(21)-C(4)-C(5)-C(6) 178.5(2) C(7)-N(3)-C(6)-C(17) 179.26(18) N(5)-C(5)-C(6)-N(3) -1.9(3) C(4)-C(5)-C(6)-C(17) 178.4(2) C(4)-C(5)-C(6)-C(17) 0.6(4) C(5)-N(5) -2.7(3) C(6)-N(3)-C(7)-C(10) 2.7(3) C(6)-N(3)-C(7)-C(8) 177.8(2) N(3)-C(7)-C(8)-N(9) -4.3(3) C(9)-O(1)-C(8)-N(9) -4.3(3) C(9)-O(1)-C(8)-N(9) 150.7(3) N(3)-C(7)-C(8)-N(9) 150.7(3) N(3)-C(7)-C(8)-N(9) -29.7(4) C(10)-C(7)-C(8)-N(1) 177.62 N(3)-C(7)-C(8)-N(1) 136.3) C(5)-N(5)-C(10)-C(11) -176.45(19) N(3)-C(7)-C(10)-N(5) -2.6(3) C(8)-C(7)-C(10)-N(5) -2.6(3) <t< td=""><td>N(1)-C(2)-C(3)-C(20)</td><td>175.5(2)</td><td></td></t<>	N(1)-C(2)-C(3)-C(20)	175.5(2)	
C(3)-N(2)-C(4)-C(5)179.87(19)C(10)-N(5)-C(5)-C(6)2.1(3)C(10)-N(5)-C(5)-C(4)-179.77(18)N(2)-C(4)-C(5)-N(5)-179.95(19)C(21)-C(4)-C(5)-N(5)0.5(3)N(2)-C(4)-C(5)-C(6)-2.0(4)C(21)-C(4)-C(5)-C(6)178.5(2)C(7)-N(3)-C(6)-C(17)179.26(18)N(5)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)-31.6(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-C(11)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(3)-N(2)-C(4)-C(21)	-0.6(2)	
C1(10)-N(5)-C(5)-C(6)2.1(3)C1(10)-N(5)-C(5)-C(4)-179.77(18)N(2)-C(4)-C(5)-N(5)-179.95(19)C(21)-C(4)-C(5)-N(5)0.5(3)N(2)-C(4)-C(5)-C(6)-2.0(4)C(21)-C(4)-C(5)-C(6)178.5(2)C(7)-N(3)-C(6)-C(5)-0.5(3)C(7)-N(3)-C(6)-C(17)179.26(18)N(5)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)-176.45(19)N(3)-C(7)-C(8)-N(1)-176.45(19)N(3)-C(7)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)-7.7(2)N(3)-C(7)-C(10)-N(5)-7.7(2)N(3)-C(7)-C(10)-N(5)-7.7(2)N(3)-C(7)-C(10)-N(5)-7.7(2)N(3)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(11)-C(11)-6.7(4)N(1)-C(1)-C(11)-C(13)139.5(2)	C(3)-N(2)-C(4)-C(5)	179.87(19)	
C1(10)-N(5)-C(5)-C(4) -179.77(18) N(2)-C(4)-C(5)-N(5) -179.95(19) C(21)-C(4)-C(5)-N(5) 0.5(3) N(2)-C(4)-C(5)-C(6) -2.0(4) C(21)-C(4)-C(5)-C(6) 178.5(2) C(7)-N(3)-C(6)-C(5) -0.5(3) C(7)-N(3)-C(6)-C(17) 179.26(18) N(5)-C(5)-C(6)-N(3) -1.9(3) C(4)-C(5)-C(6)-N(3) -179.65(19) N(5)-C(5)-C(6)-C(17) 178.4(2) C(4)-C(5)-C(6)-C(17) 0.6(4) C(6)-N(3)-C(7)-C(10) 2.7(3) C(6)-N(3)-C(7)-C(8) -176.92(19) C(9)-O(1)-C(8)-N(9) -4.3(3) C(9)-O(1)-C(8)-N(9) -177.8(2) N(3)-C(7)-C(8)-N(9) 150.7(3) N(3)-C(7)-C(8)-N(1) 148.1(2) C(10)-C(7)-C(8)-O(1) -31.6(3) C(5)-N(5)-C(10)-C(11) -176.45(19) N(3)-C(7)-C(10)-N(5) -2.6(3) C(8)-C(7)-C(10)-N(5) -2.6(3) C(8)-C(7)-C(10)-N(5) 177.0(2) N(3)-C(7)-C(10)-N(5) -7.7(4) N(3)-C(7)-C(10)-C(11) -6.7(4) N(1)-C(1)-C(11)-C(13) -60.0(3) C(15)-N(6)-C(14)-C(13) 139.5(2)	C(10)-N(5)-C(5)-C(6)	2.1(3)	
N(2)-C(4)-C(5)-N(5)-179.95(19)C(21)-C(4)-C(5)-N(5)0.5(3)N(2)-C(4)-C(5)-C(6)178.5(2)C(7)-N(3)-C(6)-C(5)0.5(3)C(7)-N(3)-C(6)-C(17)179.26(18)N(5)-C(5)-C(6)-N(3)-179.65(19)N(5)-C(5)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(1)150.7(3)N(3)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(10)-N(5)-C(5)-C(4)	-179.77(18)	
C(21)-C(4)-C(5)-C(6) 0.5(3) N(2)-C(4)-C(5)-C(6) 178.5(2) C(21)-C(4)-C(5)-C(6) 179.26(18) N(5)-C(5)-C(6)-N(3) -179.65(19) N(5)-C(5)-C(6)-C(17) 178.4(2) C(4)-C(5)-C(6)-C(17) 178.4(2) C(4)-C(5)-C(6)-C(17) 0.6(4) C(6)-N(3)-C(7)-C(10) 2.7(3) C(6)-N(3)-C(7)-C(8) -176.92(19) C(9)-O(1)-C(8)-N(9) -4.3(3) C(9)-O(1)-C(8)-N(9) -2.9.7(4) C(10)-C(7)-C(8)-N(9) 150.7(3) N(3)-C(7)-C(8)-N(1) 148.1(2) C(10)-C(7)-C(8)-O(1) -31.6(3) C(5)-N(5)-C(10)-C(11) -176.45(19) N(3)-C(7)-C(10)-N(5) 2.6(3) C(8)-C(7)-C(10)-N(5) 177.0(2) N(3)-C(7)-C(10)-N(5) 177.0(2) N(3)-C(7)-C(10)-C(11) -6.7(4) N(1)-C(1)-C(13)-C(14) -60.0(3)	N(2)-C(4)-C(5)-N(5)	-179.95(19)	
N(2)-C(4)-C(5)-C(6)-2.0(4)C(21)-C(4)-C(5)-C(6)178.5(2)C(7)-N(3)-C(6)-C(5)-0.5(3)C(7)-N(3)-C(6)-C(17)179.26(18)N(5)-C(5)-C(6)-N(3)-179.65(19)N(5)-C(5)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-N(1)148.1(2)C(10)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(5)-N(5)-C(10)-C(11)-177.0(2)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(21)-C(4)-C(5)-N(5)	0.5(3)	
C(21)-C(4)-C(5)-C(6)178.5(2)C(7)-N(3)-C(6)-C(5)-0.5(3)C(7)-N(3)-C(6)-C(17)179.26(18)N(5)-C(5)-C(6)-N(3)-179.65(19)N(5)-C(5)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-176.45(19)N(3)-C(7)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)177.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	N(2)-C(4)-C(5)-C(6)	-2.0(4)	
C(7)-N(3)-C(6)-C(17)179.26(18)N(5)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-N(3)-179.65(19)N(5)-C(5)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-N(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(1)-176.45(19)N(3)-C(7)-C(10)-N(5)2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(21)-C(4)-C(5)-C(6)	178.5(2)	
C(7)-N(3)-C(6)-C(17)179.26(18)N(5)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-N(3)-179.65(19)N(5)-C(5)-C(6)-C(17)0.6(4)C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-C(7)177.8(2)N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(7)-N(3)-C(6)-C(5)	-0.5(3)	
N(5)-C(5)-C(6)-N(3)-1.9(3)C(4)-C(5)-C(6)-N(3)-179.65(19)N(5)-C(5)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-4.3(2)N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(7)-N(3)-C(6)-C(17)	179.26(18)	
C(4)-C(5)-C(6)-N(3)-179.65(19)N(5)-C(5)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-N(9)-4.3(2)N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	N(5)-C(5)-C(6)-N(3)	-1.9(3)	
N(5)-C(5)-C(6)-C(17)178.4(2)C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-C(7)177.8(2)N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(4)-C(5)-C(6)-N(3)	-179.65(19)	
C(4)-C(5)-C(6)-C(17)0.6(4)C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-C(7)177.8(2)N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-N(5)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	N(5)-C(5)-C(6)-C(17)	178.4(2)	
C(6)-N(3)-C(7)-C(10)2.7(3)C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-C(7)177.8(2)N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(4)-C(5)-C(6)-C(17)	0.6(4)	
C(6)-N(3)-C(7)-C(8)-176.92(19)C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-C(7)177.8(2)N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(6)-N(3)-C(7)-C(10)	2.7(3)	
C(9)-O(1)-C(8)-N(9)-4.3(3)C(9)-O(1)-C(8)-C(7)177.8(2)N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(6)-N(3)-C(7)-C(8)	-176.92(19)	
C(9)-O(1)-C(8)-C(7)177.8(2)N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)72.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(9)-O(1)-C(8)-N(9)	-4.3(3)	
N(3)-C(7)-C(8)-N(9)-29.7(4)C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(9)-O(1)-C(8)-C(7)	177.8(2)	
C(10)-C(7)-C(8)-N(9)150.7(3)N(3)-C(7)-C(8)-O(1)148.1(2)C(10)-C(7)-C(8)-O(1)-31.6(3)C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	N(3)-C(7)-C(8)-N(9)	-29.7(4)	
N(3)-C(7)-C(8)-O(1) 148.1(2) C(10)-C(7)-C(8)-O(1) -31.6(3) C(5)-N(5)-C(10)-C(7) 0.1(3) C(5)-N(5)-C(10)-C(11) -176.45(19) N(3)-C(7)-C(10)-N(5) -2.6(3) C(8)-C(7)-C(10)-N(5) 177.0(2) N(3)-C(7)-C(10)-C(11) 173.7(2) C(8)-C(7)-C(10)-C(11) -6.7(4) N(1)-C(1)-C(13)-C(14) -60.0(3) C(15)-N(6)-C(14)-C(13) 139.5(2)	C(10)-C(7)-C(8)-N(9)	150.7(3)	
C(10)-C(7)-C(8)-O(1) -31.6(3) C(5)-N(5)-C(10)-C(7) 0.1(3) C(5)-N(5)-C(10)-C(11) -176.45(19) N(3)-C(7)-C(10)-N(5) -2.6(3) C(8)-C(7)-C(10)-N(5) 177.0(2) N(3)-C(7)-C(10)-C(11) 173.7(2) C(8)-C(7)-C(10)-C(11) -6.7(4) N(1)-C(1)-C(13)-C(14) -60.0(3) C(15)-N(6)-C(14)-C(13) 139.5(2)	N(3)-C(7)-C(8)-O(1)	148.1(2)	
C(5)-N(5)-C(10)-C(7)0.1(3)C(5)-N(5)-C(10)-C(11)-176.45(19)N(3)-C(7)-C(10)-N(5)-2.6(3)C(8)-C(7)-C(10)-N(5)177.0(2)N(3)-C(7)-C(10)-C(11)173.7(2)C(8)-C(7)-C(10)-C(11)-6.7(4)N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(10)-C(7)-C(8)-O(1)	-31.6(3)	
C(5)-N(5)-C(10)-C(11) -176.45(19) N(3)-C(7)-C(10)-N(5) -2.6(3) C(8)-C(7)-C(10)-N(5) 177.0(2) N(3)-C(7)-C(10)-C(11) 173.7(2) C(8)-C(7)-C(10)-C(11) -6.7(4) N(1)-C(1)-C(13)-C(14) -60.0(3) C(15)-N(6)-C(14)-C(13) 139.5(2)	C(5)-N(5)-C(10)-C(7)	0.1(3)	
N(3)-C(7)-C(10)-N(5) -2.6(3) C(8)-C(7)-C(10)-N(5) 177.0(2) N(3)-C(7)-C(10)-C(11) 173.7(2) C(8)-C(7)-C(10)-C(11) -6.7(4) N(1)-C(1)-C(13)-C(14) -60.0(3) C(15)-N(6)-C(14)-C(13) 139.5(2)	C(5)-N(5)-C(10)-C(11)	-176.45(19)	
C(8)-C(7)-C(10)-N(5) 177.0(2) N(3)-C(7)-C(10)-C(11) 173.7(2) C(8)-C(7)-C(10)-C(11) -6.7(4) N(1)-C(1)-C(13)-C(14) -60.0(3) C(15)-N(6)-C(14)-C(13) 139.5(2)	N(3)-C(7)-C(10)-N(5)	-2.6(3)	
N(3)-C(7)-C(10)-C(11) 173.7(2) C(8)-C(7)-C(10)-C(11) -6.7(4) N(1)-C(1)-C(13)-C(14) -60.0(3) C(15)-N(6)-C(14)-C(13) 139.5(2)	C(8)-C(7)-C(10)-N(5)	177.0(2)	
C(8)-C(7)-C(10)-C(11) -6.7(4) N(1)-C(1)-C(13)-C(14) -60.0(3) C(15)-N(6)-C(14)-C(13) 139.5(2)	N(3)-C(7)-C(10)-C(11)	173.7(2)	
N(1)-C(1)-C(13)-C(14)-60.0(3)C(15)-N(6)-C(14)-C(13)139.5(2)	C(8)-C(7)-C(10)-C(11)	-6.7(4)	
C(15)-N(6)-C(14)-C(13) 139.5(2)	N(1)-C(1)-C(13)-C(14)	-60.0(3)	
	C(15)-N(6)-C(14)-C(13)	139.5(2)	

Table C.7.1. continued	Table	C.7.1.	continued
------------------------	-------	--------	-----------

C(1)-C(13)-C(14)-N(6)	62.9(3)	
C(14)-N(6)-C(15)-C(16)	177.2(2)	
C(17)-N(7)-C(16)-C(19)	-0.8(2)	
C(17)-N(7)-C(16)-C(15)	-179.16(19)	
N(6)-C(15)-C(16)-N(7)	6.5(3)	
N(6)-C(15)-C(16)-C(19)	-171.5(2)	
C(16)-N(7)-C(17)-C(18)	0.8(2)	
C(16)-N(7)-C(17)-C(6)	-177.6(2)	
N(3)-C(6)-C(17)-N(7)	-178.18(19)	
C(5)-C(6)-C(17)-N(7)	1.6(3)	
N(3)-C(6)-C(17)-C(18)	3.7(3)	
C(5)-C(6)-C(17)-C(18)	-176.5(2)	
N(7)-C(17)-C(18)-C(19)	-0.5(2)	
C(6)-C(17)-C(18)-C(19)	177.9(2)	
C(17)-C(18)-C(19)-C(16)	0.1(3)	
N(7)-C(16)-C(19)-C(18)	0.4(3)	
C(15)-C(16)-C(19)-C(18)	178.6(2)	
N(2)-C(3)-C(20)-C(21)	0.0(3)	
C(2)-C(3)-C(20)-C(21)	-178.2(2)	
C(3)-C(20)-C(21)-C(4)	-0.4(3)	
N(2)-C(4)-C(21)-C(20)	0.6(3)	
C(5)-C(4)-C(21)-C(20)	-179.8(2)	

C.8: Full crystallographic Data Tables of H₂L9

C(1)-N(1)	1.4600(18)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-N(1)	1.2788(18)
C(2)-C(3)	1.438(2)
C(2)-H(2)	0.9500
C(3)-N(2)	1.3619(17)
C(3)-C(4)	1.3899(19)
C(4)-C(5)	1.393(2)
C(4)-H(4)	0.9500
C(5)-C(6)	1.3974(19)
C(5)-H(5)	0.9500
C(6)-N(2)	1.3636(18)
C(6)-C(7)	1.4656(19)
C(7)-N(3)	1.3344(17)
C(7)-C(14)	1.4615(19)
C(8)-N(3)	1.3551(18)
C(8)-C(13)	1.4079(19)
C(8)-C(9)	1.419(2)
C(9)-C(10)	1.360(2)
C(9)-H(9)	0.9500
C(10)-C(11)	1.414(2)
C(10)-H(10)	0.9500
C(11)-C(12)	1.366(2)
C(11)-H(11)	0.9500
C(12)-C(13)	1.4137(19)
C(12)-H(12)	0.9500
C(13)-N(4)	1.3584(18)
C(14)-N(4)	1.3343(17)
C(14)-C(15)	1.4753(19)
C(15)-N(5)	1.3468(18)
C(15)-C(16)	1.4246(19)

Table C.8.1: Bond lengths [Å] and angles [°] for H_2L9

APPENDIX C: FULL CRYSTOLLOGRAPHIC DATA TABLES OF LIGANDS

Table C.8.1. continued...

C(16)-C(17)	1.365(2)
C(16)-H(16)	0.9500
C(17)-C(18)	1.4128(19)
C(17)-H(17)	0.9500
C(18)-N(5)	1.3802(17)
C(18)-C(19)	1.392(2)
C(19)-N(6)	1.3036(18)
C(19)-H(19)	0.9500
C(20)-N(6)	1.4570(19)
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
С(20)-Н(20С)	0.9800
N(2)-H(101)	0.963(19)
N(6)-H(102)	0.923(17)
N(1)-C(1)-H(1A)	109.5
N(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
N(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
N(1)-C(2)-C(3)	125.08(13)
N(1)-C(2)-H(2)	117.5
C(3)-C(2)-H(2)	117.5
N(2)-C(3)-C(4)	107.91(12)
N(2)-C(3)-C(2)	123.84(12)
C(4)-C(3)-C(2)	128.24(13)
C(3)-C(4)-C(5)	107.68(12)
C(3)-C(4)-H(4)	126.2
C(5)-C(4)-H(4)	126.2
C(4)-C(5)-C(6)	107.07(12)
C(4)-C(5)-H(5)	126.5
C(6)-C(5)-H(5)	126.5
N(2)-C(6)-C(5)	107.88(12)
N(2)-C(6)-C(7)	125.91(12)
C(5)-C(6)-C(7)	126.14(12)
N(3)-C(7)-C(14)	120.17(12)

Table C.8.1. continued...

N(3)-C(7)-C(6)	111.85(12)
C(14)-C(7)-C(6)	127.94(12)
N(3)-C(8)-C(13)	120.41(12)
N(3)-C(8)-C(9)	120.47(13)
C(13)-C(8)-C(9)	119.10(13)
C(10)-C(9)-C(8)	120.05(14)
C(10)-C(9)-H(9)	120.0
C(8)-C(9)-H(9)	120.0
C(9)-C(10)-C(11)	120.76(13)
C(9)-C(10)-H(10)	119.6
C(11)-C(10)-H(10)	119.6
C(12)-C(11)-C(10)	120.39(14)
C(12)-C(11)-H(11)	119.8
C(10)-C(11)-H(11)	119.8
C(11)-C(12)-C(13)	119.89(14)
C(11)-C(12)-H(12)	120.1
C(13)-C(12)-H(12)	120.1
N(4)-C(13)-C(8)	120.61(12)
N(4)-C(13)-C(12)	119.57(12)
C(8)-C(13)-C(12)	119.80(12)
N(4)-C(14)-C(7)	119.31(12)
N(4)-C(14)-C(15)	111.41(11)
C(7)-C(14)-C(15)	129.25(12)
N(5)-C(15)-C(16)	110.73(11)
N(5)-C(15)-C(14)	126.34(12)
C(16)-C(15)-C(14)	122.93(12)
C(17)-C(16)-C(15)	106.66(12)
C(17)-C(16)-H(16)	126.7
C(15)-C(16)-H(16)	126.7
C(16)-C(17)-C(18)	106.48(13)
C(16)-C(17)-H(17)	126.8
C(18)-C(17)-H(17)	126.8
N(5)-C(18)-C(19)	124.47(12)
N(5)-C(18)-C(17)	110.36(12)
C(19)-C(18)-C(17)	125.15(13)
N(6)-C(19)-C(18)	127.65(13)
N(6)-C(19)-H(19)	116.2

Table C.8.1. c	ontinued
----------------	----------

C(18)-C(19)-H(19)	116.2
N(6)-C(20)-H(20A)	109.5
N(6)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
N(6)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(2)-N(1)-C(1)	115.86(12)
C(3)-N(2)-C(6)	109.47(12)
C(3)-N(2)-H(101)	128.2(10)
C(6)-N(2)-H(101)	122.3(10)
C(7)-N(3)-C(8)	119.61(12)
C(14)-N(4)-C(13)	119.85(12)
C(15)-N(5)-C(18)	105.77(11)
C(19)-N(6)-C(20)	121.92(13)
C(19)-N(6)-H(102)	121.2(10)
C(20)-N(6)-H(102)	116.8(10)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1)	27(1)	36(1)	31(1)	-8(1)	10(1)	-2(1)	
C(2)	26(1)	25(1)	21(1)	-2(1)	6(1)	-6(1)	
C(3)	23(1)	21(1)	21(1)	0(1)	4(1)	-6(1)	
C(4)	32(1)	22(1)	22(1)	2(1)	4(1)	-3(1)	
C(5)	27(1)	19(1)	24(1)	1(1)	2(1)	2(1)	
C(6)	19(1)	17(1)	23(1)	-2(1)	2(1)	-2(1)	
C(7)	18(1)	18(1)	22(1)	-4(1)	1(1)	-3(1)	
C(8)	20(1)	20(1)	24(1)	-6(1)	2(1)	-3(1)	
C(9)	24(1)	21(1)	30(1)	-2(1)	3(1)	1(1)	
C(10)	24(1)	28(1)	32(1)	-9(1)	4(1)	4(1)	
C(11)	26(1)	35(1)	29(1)	-7(1)	10(1)	1(1)	
C(12)	28(1)	30(1)	25(1)	-2(1)	8(1)	1(1)	
C(13)	20(1)	22(1)	22(1)	-6(1)	3(1)	-2(1)	
C(14)	19(1)	20(1)	19(1)	-4(1)	1(1)	-3(1)	
C(15)	20(1)	20(1)	20(1)	-2(1)	2(1)	-1(1)	
C(16)	23(1)	24(1)	26(1)	3(1)	7(1)	-1(1)	
C(17)	26(1)	20(1)	26(1)	4(1)	4(1)	1(1)	
C(18)	22(1)	18(1)	22(1)	0(1)	2(1)	0(1)	
C(19)	24(1)	19(1)	24(1)	-1(1)	1(1)	0(1)	
C(20)	24(1)	28(1)	43(1)	-1(1)	10(1)	3(1)	
N(1)	22(1)	25(1)	24(1)	-5(1)	6(1)	-3(1)	
N(2)	20(1)	20(1)	22(1)	2(1)	4(1)	-1(1)	
N(3)	20(1)	20(1)	26(1)	-2(1)	2(1)	-1(1)	
N(4)	21(1)	23(1)	22(1)	-3(1)	3(1)	0(1)	
N(5)	20(1)	20(1)	21(1)	1(1)	3(1)	1(1)	
N(6)	22(1)	22(1)	29(1)	-1(1)	7(1)	1(1)	

Table C.8.2: Anisotropic displacement parameters ($Å^2x \ 10^3$) for H2L9. The anisotropic displacementfactor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	х	у	Z	U(eq)	
H(1A)	8343	803	-623	46	
H(1B)	8182	-89	-244	46	
H(1C)	9272	497	778	46	
H(2)	6451	1465	-773	29	
H(4)	3987	2446	-1124	31	
H(5)	1927	2584	-85	30	
H(9)	-1470	2863	1527	32	
H(10)	-3284	2681	2538	35	
H(11)	-3050	1643	3987	36	
H(12)	-981	794	4427	33	
H(16)	2476	-524	4299	29	
H(17)	4740	-1386	4484	30	
H(19)	7086	-1301	3620	28	
H(20A)	9149	-1352	3009	48	
H(20B)	9759	-511	2753	48	
H(20C)	8808	-1046	1579	48	
H(101)	4710(20)	815(11)	1667(17)	54(5)	
H(102)	7149(18)	-101(10)	1989(15)	39(5)	

Table C.8.3: Hydrogen coordinates ($x\,10^4$) and isotropic displacement parameters (Å $^2x\,10^3$) for $H_2L9.$

Table C.8.4: Torsion angles [°] for H_2L9 .

N(1)-C(2)-C(3)-C(4)-0.7(2)N(1)-C(2)-C(3)-C(4)179.78(14)N(2)-C(3)-C(4)-C(5)-0.17(15)C(2)-C(3)-C(4)-C(5)179.40(13)C(3)-C(4)-C(5)-C(6)0.10(15)C(4)-C(5)-C(6)-N(2)0.01(14)C(4)-C(5)-C(6)-C(7)-176.93(12)N(2)-C(6)-C(7)-N(3)-6.09(18)N(2)-C(6)-C(7)-C(14)4.5(2)C(5)-C(6)-C(7)-C(14)171.93(13)N(3)-C(8)-C(9)-C(10)0.63(19)C(3)-C(8)-C(7)-C(14)0.5(2)C(3)-C(8)-C(7)-C(14)0.5(2)C(3)-C(8)-C(7)-C(14)0.5(2)C(3)-C(8)-C(7)-C(14)0.5(2)C(3)-C(3)-N(4)0.2(2)C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(10)-C(11)0.5(2)C(9)-C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)-177.63(13)C(9)-C(8)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(4)0.21(18)C(4)-C(7)-C(14)-N(4)0.21(18)C(4)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(5)8.4(2)N(4)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)-172.05(13)N(5)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-172.05(13)N(4)-C(15)-C(16)-173.68(12) <th></th> <th></th> <th></th>			
N(1-C(2)-C(3)-C(4)-C(5)179.78(14)N(2)-C(3)-C(4)-C(5)-0.17(15)C(2)-C(3)-C(4)-C(5)179.40(13)C(3)-C(4)-C(5)-C(6)0.10(15)C(4)-C(5)-C(6)-N(2)0.01(14)C(4)-C(5)-C(6)-N(2)0.01(14)C(4)-C(5)-C(6)-C(7)-176.93(12)N(2)-C(6)-C(7)-N(3)-6.09(18)N(2)-C(6)-C(7)-C(14)-4.5(2)C(5)-C(6)-C(7)-C(14)171.93(13)N(3)-C(8)-C(9)-C(10)-0.63(19)C(3)-C(8)-C(9)-C(10)-0.63(19)C(3)-C(8)-C(9)-C(10)-0.63(19)C(3)-C(1)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)-0.7(2)N(3)-C(8)-C(3)-N(4)-177.63(13)C(1)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(15)0.2(2)N(3)-C(7)-C(14)-N(15)-173.68(12)C(11)-C(12)-C(13)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)-172.05(13)N(3)-C(7)-C(14)-C(15)-172.05(13)N(3)-C(1)-C(16)-C(17)-172.05(13)N(3)-C(1)-C(16)-C(17)-179.38(12)C(13)-C(16)-C(17)-179.38(12)C(13)-C(16)-C(17)-179.38(12)C(13)-C(16)-C(17)-179.38(12)C(13)-C(16)-C(17)-179.38(12)C(13)-C(16)-C(17)-179.38(12)C(13)-C(16)-C(17)-C(18)-0.09(16)C(14)-C(1	N(1)-C(2)-C(3)-N(2)	-0.7(2)	
N(2)-C(3)-C(4)-C(5)-0.17(15)C(2)-C(3)-C(4)-C(5)179.40(13)C(3)-C(4)-C(5)-C(6)0.10(15)C(4)-C(5)-C(6)-N(2)0.01(14)C(4)-C(5)-C(6)-C(7)-176.93(12)N(2)-C(6)-C(7)-N(3)177.51(12)C(5)-C(6)-C(7)-N(3)-6.09(18)N(2)-C(6)-C(7)-C(14)-4.5(2)C(5)-C(6)-C(7)-C(14)171.93(13)N(3)-C(8)-C(9)-C(10)-0.63(19)C(3)-C(8)-C(9)-C(10)-0.63(19)C(8)-C(9)-C(10)-C(11)0.5(2)C(9)-C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)-0.25(19)C(9)-C(8)-C(13)-N(4)-177.63(12)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(5)0.6(2)N(3)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(5)178.02(12)C(6)-C(7)-C(14)-N(5)-173.68(12)C(7)-C(14)-N(5)-173.68(12)C(7)-C(14)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)-173.68(12)C(14)-C(15)-N(5)-173.68(12)C(14)-C(15)-N(5)-173.68(12)C(14)-C(15)-N(5)-173.68(12)C(14)-C(15)-N(5)-173.68(12)C(14)-C(15)-N(5)-173.68(12)C(14)-C(15)-N(5)-173.68(12)C(14)-C(15)-N(5)-173.68(12)C(14)-C(15)-N(5)-173.68(12)C(15)-C(16)-C(17) </td <td>N(1)-C(2)-C(3)-C(4)</td> <td>179.78(14)</td> <td></td>	N(1)-C(2)-C(3)-C(4)	179.78(14)	
C(2)-C(3)-C(4)-C(5) 179.40(13) C(3)-C(4)-C(5)-C(6) 0.10(15) C(4)-C(5)-C(6)-(7) 0.176.93(12) N(2)-C(6)-C(7)-N(3) 177.51(12) C(5)-C(6)-C(7)-N(3) -6.09(18) N(2)-C(6)-C(7)-C(14) -4.5(2) C(5)-C(6)-C(7)-C(14) 171.93(13) N(3)-C(8)-C(9)-C(10) -0.63(19) C(3)-C(3)-C(12) 0.2(2) C(1)-C(11)-C(12) 0.2(2) C(1)-C(11)-C(12)-C(13) -0.7(2) N(3)-C(8)-C(7)-C(14) 178.30(12) N(3)-C(8)-C(13)-N(4) -0.25(19) C(9)-C(8)-C(13)-N(4) -0.25(19) C(9)-C(8)-C(13)-N(4) -0.7(2) N(3)-C(8)-C(13)-N(4) -177.63(13) C(11)-C(12)-C(13)-N(4) -177.63(13) C(11)-C(12)-C(13)-N(4) -177.63(13) C(11)-C(12)-C(13)-N(4) -177.63(13) C(11)-C(12)-C(13)-N(4) -177.63(13) C(11)-C(12)-C(14)-N(4) -177.63(12) N(3)-C(7)-C(14)-N(4) -177.63(12) N(3)-C(7)-C(14)-N(4) -177.63(12) N(3)-C(7)-C(14)-N(5) -173.68(12) C(6)-C(7)-C(14)-N(5) -173.68(12) C(7)-C(14)-N(15)-N(5) -173.68(12) N(3)-C(15)-N(5) -173.68(12) C(1)-C(12)-N(5) -170.5(13) N(3)-C	N(2)-C(3)-C(4)-C(5)	-0.17(15)	
C(3)-C(4)-C(5)-C(6)0.10(15)C(4)-C(5)-C(6)-N(2)0.01(14)C(4)-C(5)-C(6)-C(7)176.93(12)N(2)-C(6)-C(7)-N(3)177.51(12)C(5)-C(6)-C(7)-N(3)-6.09(18)N(2)-C(6)-C(7)-C(14)4.5(2)C(5)-C(6)-C(7)-C(14)171.93(13)N(3)-C(8)-C(9)-C(10)-0.63(19)C(8)-C(9)-C(10)0.5(2)C(9)-C(10)-C(11)0.5(2)C(9)-C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)0.7(2)N(3)-C(8)-C(3)-N(4)-0.25(19)C(9)-C(8)-C(13)-N(4)-0.25(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)0.2(118)C(6)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)0.2(2)N(3)-C(7)-C(14)-N(5)178.02(12)C(6)-C(7)-C(14)-N(5)-0.2(2)N(3)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-172.05(13)C(7)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)-172.05(13)N(3)-C(7)-C(14)-C(15)-N(5)-172.05(13)N(5)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)-179.38(12)C(14)-C(15)-C(16)-0.09(16)C(15)-C(16)-C(17)-C(18)-N(5)-0.09(16)C(15)-C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-2.7(2)	C(2)-C(3)-C(4)-C(5)	179.40(13)	
C(4)-C(5)-C(6)-N(2) 0.01(14) C(4)-C(5)-C(6)-C(7) 176.93(12) N(2)-C(6)-C(7)-N(3) 177.51(12) C(5)-C(6)-C(7)-N(3) -6.09(18) N(2)-C(6)-C(7)-C(14) 171.93(13) N(3)-C(8)-C(9)-C(10) 177.93(12) C(13)-C(8)-C(9)-C(10) 0.63(19) C(8)-C(9)-C(10) 0.5(2) C(9)-C(10)-C(11) 0.5(2) C(9)-C(10)-C(11)-C(12) 0.2(2) C(10)-C(11)-C(12)-C(13) -0.7(2) N(3)-C(8)-C(13)-N(4) -0.75(19) C(9)-C(13)-C(12) 178.30(12) N(3)-C(8)-C(13)-N(4) -0.77(3) N(3)-C(8)-C(13)-N(4) -0.77(3) N(3)-C(8)-C(13)-N(4) -0.77(3) C(9)-C(13)-C(12) 0.11(19) C(11)-C(12)-C(13)-N(4) -177.63(13) C(11)-C(12)-C(13)-N(4) -177.66(12) N(3)-C(7)-C(14)-N(4) 0.21(18) C(6)-C(7)-C(14)-N(4) -177.66(12) N(3)-C(7)-C(14)-N(5) -173.68(12) C(7)-C(14)-N(5) -172.05(13) N(4)-C(14)-C(15)-N(5) 8.4(2) N(4)-C(14)-C(15)-N(5) -172.05(13) N(4)-C(14)-C(15)-N(5) -0.26(15) C(14)-C(15)-C(16) -172.05(13) N(5)-C(15)-C(16)-C(17) -2.6(15) C(14)-C(15)-C(16) <td< td=""><td>C(3)-C(4)-C(5)-C(6)</td><td>0.10(15)</td><td></td></td<>	C(3)-C(4)-C(5)-C(6)	0.10(15)	
C(4)-C(5)-C(6)-C(7)-N(3) 177.51(12) N(2)-C(6)-C(7)-N(3) -6.09(18) N(2)-C(6)-C(7)-C(14) -4.5(2) C(5)-C(6)-C(7)-C(14) 171.93(13) N(3)-C(8)-C(9)-C(10) 177.93(12) C(13)-C(8)-C(9)-C(10) -0.63(19) C(8)-C(9)-C(10)-C(11) 0.5(2) C(9)-C(10)-C(11)-C(12) 0.2(2) C(10)-C(11)-C(12)-C(13) -0.7(2) N(3)-C(8)-C(13)-N(4) -0.25(19) C(9)-C(13)-N(4) -0.25(19) C(9)-C(13)-C(12) 178.30(12) N(3)-C(8)-C(13)-N(4) -0.7(2) N(3)-C(8)-C(13)-N(4) -0.7(2) N(3)-C(13)-C(12) -178.44(12) C(9)-C(8)-C(13)-N(4) -177.63(13) C(11)-C(12)-C(13)-N(4) -177.63(13) C(11)-C(12)-C(13)-N(4) -177.63(12) C(11)-C(12)-C(13)-N(4) -177.66(12) N(3)-C(7)-C(14)-N(4) -177.66(12) N(3)-C(7)-C(14)-N(4) -177.66(12) N(3)-C(7)-C(14)-N(5) -173.68(12) C(7)-C(14)-C(15) 0.2(2) N(4)-C(14)-C(15)-N(5) -173.68(12) C(7)-C(14)-C(15)-N(5) -173.68(12) C(7)-C(14)-C(15)-N(5) -173.68(12) C(7)-C(14)-C(15)-N(5) -173.68(12) C(7)-C(14)-C(15)-N(5) -173.68(12)	C(4)-C(5)-C(6)-N(2)	0.01(14)	
N(2)-C(6)-C(7)-N(3)177.51(12)C(5)-C(6)-C(7)-N(3)-6.09(18)N(2)-C(6)-C(7)-C(14)171.93(13)N(3)-C(8)-C(9)-C(10)177.93(12)C(13)-C(8)-C(9)-C(10)-0.63(19)C(8)-C(9)-C(10)-C(11)0.5(2)C(9)-C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)-0.25(19)C(9)-C(13)-N(4)-0.25(19)C(9)-C(13)-C(12)0.11(19)C(9)-C(13)-C(12)0.11(19)C(1)-C(13)-C(12)0.11(19)C(1)-C(12)-C(13)-N(4)-177.63(13)C(1)-C(12)-C(13)-N(4)-0.21(18)C(9)-C(8)-C(13)-C(12)0.6(2)N(3)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)3.4(2)N(4)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.2(2(15)C(14)-C(15)-C(16)-C(17)0.2(15)C(14)-C(15)-C(16)-C(17)-0.10(15)C(14)-C(15)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-2.7(2)	C(4)-C(5)-C(6)-C(7)	-176.93(12)	
C(5)-C(6)-C(7)-N(3)-6.09(18)N(2)-C(6)-C(7)-C(14)171.93(13)N(3)-C(8)-C(9)-C(10)177.93(12)C(13)-C(8)-C(9)-C(10)-0.63(19)C(8)-C(9)-C(10)-C(11)0.5(2)C(9)-C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)-0.25(19)C(9)-C(13)-C(12)178.30(12)N(3)-C(8)-C(13)-N(4)-177.63(13)C(9)-C(8)-C(13)-C(12)0.11(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-173.68(12)C(7)-C(14)-C(15)-173.68(12)C(7)-C(14)-C(15)5.90(17)C(7)-C(14)-C(15)5.90(17)C(7)-C(14)-C(15)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-2.7(2)	N(2)-C(6)-C(7)-N(3)	177.51(12)	
N(2)-C(6)-C(7)-C(14)-4.5(2)C(5)-C(6)-C(7)-C(14)171.93(13)N(3)-C(8)-C(9)-C(10)-0.63(19)C(13)-C(8)-C(9)-C(10)-C(11)0.5(2)C(9)-C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)-0.25(19)C(9)-C(13)-C(12)178.30(12)N(3)-C(8)-C(13)-N(4)178.30(12)N(3)-C(8)-C(13)-C(12)0.11(19)C(1)-C(12)-C(13)-N(4)-177.63(13)C(1)-C(12)-C(13)-N(4)0.21(18)C(1)-C(12)-C(13)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)0.2(615)C(14)-C(15)-C(16)172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.00(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(6)-2.7(2)	C(5)-C(6)-C(7)-N(3)	-6.09(18)	
C(5)-C(6)-C(7)-C(14)171.93(13)N(3)-C(8)-C(9)-C(10)-0.63(19)C(13)-C(8)-C(9)-C(10)-C(11)0.5(2)C(9)-C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)178.30(12)N(3)-C(8)-C(13)-N(4)178.30(12)N(3)-C(8)-C(13)-C(12)-1178.44(12)C(9)-C(8)-C(13)-C(12)0.11(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)0.21(18)C(11)-C(12)-C(13)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)-172.05(13)N(4)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(6)-2.7(2)	N(2)-C(6)-C(7)-C(14)	-4.5(2)	
N(3)-C(8)-C(9)-C(10)177.93(12)C(13)-C(8)-C(9)-C(10)-0.63(19)C(8)-C(9)-C(10)-C(11)-C(12)0.2(2)C(9)-C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)0.25(19)C(9)-C(8)-C(13)-N(4)178.30(12)N(3)-C(8)-C(13)-C(12)-178.44(12)C(9)-C(8)-C(13)-C(12)0.11(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)0.21(18)C(11)-C(12)-C(13)-N(4)-177.66(12)N(3)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)0.2(2)N(3)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-N(5)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-2.7(2)	C(5)-C(6)-C(7)-C(14)	171.93(13)	
C(13)-C(8)-C(10)-0.63(19)C(8)-C(9)-C(10)-C(11)0.5(2)C(9)-C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)-0.25(19)C(9)-C(8)-C(13)-N(4)178.30(12)N(3)-C(8)-C(13)-C(12)0.11(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)0.21(18)C(1)-C(12)-C(13)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)0.21(2)N(3)-C(7)-C(14)-N(5)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)-172.05(13)N(4)-C(14)-C(15)-C(16)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-2.7(2)	N(3)-C(8)-C(9)-C(10)	177.93(12)	
C(8)-C(9)-C(10)-C(11))0.5(2)C(9)-C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)-0.25(19)C(9)-C(8)-C(13)-N(4)178.30(12)N(3)-C(8)-C(13)-C(12)0.11(19)C(1)-C(12)-C(13)-N(4)-177.63(13)C(1)-C(12)-C(13)-N(4)0.21(18)C(1)-C(12)-C(13)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)0.2(2)N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-C(16)5.90(17)C(7)-C(14)-C(15)-C(16)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-C(19)178.62(13)N(5)-C(16)-C(19)-N(6)-2.7(2)	C(13)-C(8)-C(9)-C(10)	-0.63(19)	
C(9)-C(10)-C(11)-C(12)0.2(2)C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)-0.25(19)C(9)-C(8)-C(13)-N(4)178.30(12)N(3)-C(8)-C(13)-C(12)-178.44(12)C(9)-C(8)-C(13)-C(12)0.11(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-179.38(12)C(14)-C(15)-C(16)-0.10(15)C(14)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-C(19)178.62(13)N(5)-C(16)-C(17)-C(18)-C(19)-2.7(2)	C(8)-C(9)-C(10)-C(11)	0.5(2)	
C(10)-C(11)-C(12)-C(13)-0.7(2)N(3)-C(8)-C(13)-N(4)-0.25(19)C(9)-C(8)-C(13)-N(4)178.30(12)N(3)-C(8)-C(13)-C(12)-178.44(12)C(9)-C(8)-C(13)-C(12)0.11(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-C(8)0.6(2)N(3)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)-C(16)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-C(19)178.62(13)N(5)-C(18)-C(19)-N(6)-2.7(2)	C(9)-C(10)-C(11)-C(12)	0.2(2)	
N(3)-C(8)-C(13)-N(4)-0.25(19)C(9)-C(8)-C(13)-N(4)178.30(12)N(3)-C(8)-C(13)-C(12)-178.44(12)C(9)-C(8)-C(13)-C(12)0.11(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-C(8)0.6(2)N(3)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(4)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-C(19)178.62(13)N(5)-C(18)-C(19)-N(6)-2.7(2)	C(10)-C(11)-C(12)-C(13)	-0.7(2)	
C(9)-C(8)-C(13)-N(4)178.30(12)N(3)-C(8)-C(13)-C(12)-178.44(12)C(9)-C(8)-C(13)-C(12)0.11(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-C(8)0.6(2)N(3)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(6)-2.7(2)	N(3)-C(8)-C(13)-N(4)	-0.25(19)	
N(3)-C(8)-C(13)-C(12)-178.44(12)C(9)-C(8)-C(13)-C(12)0.11(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-C(8)0.6(2)N(3)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-C(16)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-2.7(2)	C(9)-C(8)-C(13)-N(4)	178.30(12)	
C(9)-C(8)-C(13)-C(12)0.11(19)C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-C(8)0.6(2)N(3)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-C(19)178.62(13)N(5)-C(18)-C(19)-N(6)-2.7(2)	N(3)-C(8)-C(13)-C(12)	-178.44(12)	
C(11)-C(12)-C(13)-N(4)-177.63(13)C(11)-C(12)-C(13)-C(8)0.6(2)N(3)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-C(19)178.62(13)N(5)-C(18)-C(19)-N(6)-2.7(2)	C(9)-C(8)-C(13)-C(12)	0.11(19)	
C(11)-C(12)-C(13)-C(8)0.6(2)N(3)-C(7)-C(14)-N(4)0.21(18)C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-N(5)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-C(19)178.62(13)N(5)-C(18)-C(19)-N(6)-2.7(2)	C(11)-C(12)-C(13)-N(4)	-177.63(13)	
N(3)-C(7)-C(14)-N(4) 0.21(18) C(6)-C(7)-C(14)-N(4) -177.66(12) N(3)-C(7)-C(14)-C(15) 178.02(12) C(6)-C(7)-C(14)-C(15) 0.2(2) N(4)-C(14)-C(15)-N(5) -173.68(12) C(7)-C(14)-C(15)-N(5) 8.4(2) N(4)-C(14)-C(15)-C(16) 5.90(17) C(7)-C(14)-C(15)-C(16) -172.05(13) N(5)-C(15)-C(16)-C(17) 0.26(15) C(14)-C(15)-C(16)-C(17) -179.38(12) C(15)-C(16)-C(17) -0.10(15) C(16)-C(17)-C(18)-N(5) -0.09(16) C(16)-C(17)-C(18)-N(5) -0.09(16) C(16)-C(17)-C(18)-N(6) -2.7(2)	C(11)-C(12)-C(13)-C(8)	0.6(2)	
C(6)-C(7)-C(14)-N(4)-177.66(12)N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-C(16)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(6)-2.7(2)	N(3)-C(7)-C(14)-N(4)	0.21(18)	
N(3)-C(7)-C(14)-C(15)178.02(12)C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-C(16)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-C(19)178.62(13)N(5)-C(18)-C(19)-N(6)-2.7(2)	C(6)-C(7)-C(14)-N(4)	-177.66(12)	
C(6)-C(7)-C(14)-C(15)0.2(2)N(4)-C(14)-C(15)-N(5)-173.68(12)C(7)-C(14)-C(15)-N(5)8.4(2)N(4)-C(14)-C(15)-C(16)5.90(17)C(7)-C(14)-C(15)-C(16)-172.05(13)N(5)-C(15)-C(16)-C(17)0.26(15)C(14)-C(15)-C(16)-C(17)-179.38(12)C(15)-C(16)-C(17)-C(18)-0.10(15)C(16)-C(17)-C(18)-N(5)-0.09(16)C(16)-C(17)-C(18)-N(5)178.62(13)N(5)-C(18)-C(19)-N(6)-2.7(2)	N(3)-C(7)-C(14)-C(15)	178.02(12)	
N(4)-C(14)-C(15)-N(5) -173.68(12) C(7)-C(14)-C(15)-N(5) 8.4(2) N(4)-C(14)-C(15)-C(16) 5.90(17) C(7)-C(14)-C(15)-C(16) -172.05(13) N(5)-C(15)-C(16)-C(17) 0.26(15) C(14)-C(15)-C(16)-C(17) -179.38(12) C(15)-C(16)-C(17)-C(18) -0.10(15) C(16)-C(17)-C(18)-N(5) -0.09(16) C(16)-C(17)-C(18)-C(19) 178.62(13) N(5)-C(18)-C(19)-N(6) -2.7(2)	C(6)-C(7)-C(14)-C(15)	0.2(2)	
C(7)-C(14)-C(15)-N(5) 8.4(2) N(4)-C(14)-C(15)-C(16) 5.90(17) C(7)-C(14)-C(15)-C(16) -172.05(13) N(5)-C(15)-C(16)-C(17) 0.26(15) C(14)-C(15)-C(16)-C(17) -179.38(12) C(15)-C(16)-C(17)-C(18) -0.10(15) C(16)-C(17)-C(18)-N(5) -0.09(16) C(16)-C(17)-C(18)-C(19) 178.62(13) N(5)-C(18)-C(19)-N(6) -2.7(2)	N(4)-C(14)-C(15)-N(5)	-173.68(12)	
N(4)-C(14)-C(15)-C(16) 5.90(17) C(7)-C(14)-C(15)-C(16) -172.05(13) N(5)-C(15)-C(16)-C(17) 0.26(15) C(14)-C(15)-C(16)-C(17) -179.38(12) C(15)-C(16)-C(17)-C(18) -0.10(15) C(16)-C(17)-C(18)-N(5) -0.09(16) C(16)-C(17)-C(18)-C(19) 178.62(13) N(5)-C(18)-C(19)-N(6) -2.7(2)	C(7)-C(14)-C(15)-N(5)	8.4(2)	
C(7)-C(14)-C(15)-C(16) -172.05(13) N(5)-C(15)-C(16)-C(17) 0.26(15) C(14)-C(15)-C(16)-C(17) -179.38(12) C(15)-C(16)-C(17)-C(18) -0.10(15) C(16)-C(17)-C(18)-N(5) -0.09(16) C(16)-C(17)-C(18)-C(19) 178.62(13) N(5)-C(18)-C(19)-N(6) -2.7(2)	N(4)-C(14)-C(15)-C(16)	5.90(17)	
N(5)-C(15)-C(16)-C(17) 0.26(15) C(14)-C(15)-C(16)-C(17) -179.38(12) C(15)-C(16)-C(17)-C(18) -0.10(15) C(16)-C(17)-C(18)-N(5) -0.09(16) C(16)-C(17)-C(18)-C(19) 178.62(13) N(5)-C(18)-C(19)-N(6) -2.7(2)	C(7)-C(14)-C(15)-C(16)	-172.05(13)	
C(14)-C(15)-C(16)-C(17) -179.38(12) C(15)-C(16)-C(17)-C(18) -0.10(15) C(16)-C(17)-C(18)-N(5) -0.09(16) C(16)-C(17)-C(18)-C(19) 178.62(13) N(5)-C(18)-C(19)-N(6) -2.7(2)	N(5)-C(15)-C(16)-C(17)	0.26(15)	
C(15)-C(16)-C(17)-C(18) -0.10(15) C(16)-C(17)-C(18)-N(5) -0.09(16) C(16)-C(17)-C(18)-C(19) 178.62(13) N(5)-C(18)-C(19)-N(6) -2.7(2)	C(14)-C(15)-C(16)-C(17)	-179.38(12)	
C(16)-C(17)-C(18)-N(5) -0.09(16) C(16)-C(17)-C(18)-C(19) 178.62(13) N(5)-C(18)-C(19)-N(6) -2.7(2)	C(15)-C(16)-C(17)-C(18)	-0.10(15)	
C(16)-C(17)-C(18)-C(19) 178.62(13) N(5)-C(18)-C(19)-N(6) -2.7(2)	C(16)-C(17)-C(18)-N(5)	-0.09(16)	
N(5)-C(18)-C(19)-N(6) -2.7(2)	C(16)-C(17)-C(18)-C(19)	178.62(13)	
	N(5)-C(18)-C(19)-N(6)	-2.7(2)	

	Table	C.8.4.	continued
--	-------	--------	-----------

C(17)-C(18)-C(19)-N(6)	178.73(13)
C(3)-C(2)-N(1)-C(1)	179.71(12)
C(4)-C(3)-N(2)-C(6)	0.18(15)
C(2)-C(3)-N(2)-C(6)	-179.41(12)
C(5)-C(6)-N(2)-C(3)	-0.12(14)
C(7)-C(6)-N(2)-C(3)	176.83(12)
C(14)-C(7)-N(3)-C(8)	-1.94(18)
C(6)-C(7)-N(3)-C(8)	176.25(11)
C(13)-C(8)-N(3)-C(7)	1.97(18)
C(9)-C(8)-N(3)-C(7)	-176.56(12)
C(7)-C(14)-N(4)-C(13)	1.50(18)
C(15)-C(14)-N(4)-C(13)	-176.68(11)
C(8)-C(13)-N(4)-C(14)	-1.49(18)
C(12)-C(13)-N(4)-C(14)	176.70(12)
C(16)-C(15)-N(5)-C(18)	-0.31(14)
C(14)-C(15)-N(5)-C(18)	179.32(12)
C(19)-C(18)-N(5)-C(15)	-178.47(12)
C(17)-C(18)-N(5)-C(15)	0.24(14)
C(18)-C(19)-N(6)-C(20)	179.32(13)

C.9: Full crystallographic Data Tables of H₂L12

C(1)-N(1)	1.3633(12)
C(1)-C(2)	1.3750(15)
C(1)-H(1)	0.9500
C(2)-C(3)	1.4132(14)
C(2)-H(2)	0.9500
C(3)-C(4)	1.3838(13)
C(3)-H(3)	0.9500
C(4)-N(1)	1.3743(14)
C(4)-C(5)	1.4427(13)
C(5)-N(2)	1.2772(12)
C(5)-H(5)	0.9500
C(6)-N(2)	1.4670(11)
C(6)-C(7)	1.5297(13)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-C(7)#1	1.5265(16)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
N(1)-H(11)	0.927(14)
N(1)-C(1)-C(2)	109.01(8)
N(1)-C(1)-H(1)	125.5
C(2)-C(1)-H(1)	125.5
C(1)-C(2)-C(3)	106.68(9)
C(1)-C(2)-H(2)	126.7
C(3)-C(2)-H(2)	126.7
C(4)-C(3)-C(2)	107.71(9)
C(4)-C(3)-H(3)	126.1
C(2)-C(3)-H(3)	126.1
N(1)-C(4)-C(3)	107.60(8)
N(1)-C(4)-C(5)	125.22(8)
C(3)-C(4)-C(5)	127.14(9)
N(2)-C(5)-C(4)	124.69(9)
N(2)-C(5)-H(5)	117.7

Table C.9.1: Bond lengths [Å] and angles [°] for H_2L12

C(4)-C(5)-H(5)	117.7
N(2)-C(6)-C(7)	110.51(8)
N(2)-C(6)-H(6A)	109.5
C(7)-C(6)-H(6A)	109.5
N(2)-C(6)-H(6B)	109.5
С(7)-С(6)-Н(6В)	109.5
H(6A)-C(6)-H(6B)	108.1
C(7)#1-C(7)-C(6)	112.78(9)
C(7)#1-C(7)-H(7A)	109.0
C(6)-C(7)-H(7A)	109.0
C(7)#1-C(7)-H(7B)	109.0
C(6)-C(7)-H(7B)	109.0
H(7A)-C(7)-H(7B)	107.8
C(1)-N(1)-C(4)	109.00(8)
C(1)-N(1)-H(11)	126.0(8)
C(4)-N(1)-H(11)	124.9(8)
C(5)-N(2)-C(6)	115.99(8)

Table C.9.1. continued...

Table C.9.2: Anisotropic displacement parameters (Å2x 103) for H2L12. The anisotropic displacementfactor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1)	18(1)	28(1)	28(1)	-2(1)	1(1)	2(1)	
C(2)	19(1)	32(1)	24(1)	-2(1)	2(1)	-2(1)	
C(3)	20(1)	27(1)	24(1)	-4(1)	6(1)	-1(1)	
C(4)	17(1)	22(1)	22(1)	0(1)	6(1)	-2(1)	
C(5)	18(1)	21(1)	24(1)	0(1)	8(1)	-1(1)	
C(6)	16(1)	20(1)	26(1)	2(1)	4(1)	2(1)	
C(7)	16(1)	22(1)	26(1)	5(1)	5(1)	2(1)	
N(1)	17(1)	23(1)	25(1)	-3(1)	2(1)	0(1)	
N(2)	15(1)	22(1)	25(1)	1(1)	5(1)	0(1)	

	х	У	Z	U(eq)	
H(1)	4337	-3026	6832	30	
H(2)	4455	502	8054	30	
H(3)	3258	3214	7644	28	
H(5)	1984	3041	6253	25	
H(6A)	908	1687	4287	24	
H(6B)	965	3117	5296	24	
H(7A)	483	-2204	4985	25	
H(7B)	460	-541	5924	25	
H(11)	3123(7)	-2480(30)	5699(9)	34(3)	

Table C.9.3: Hydrogen coordinates ($x\,10^4$) and isotropic displacement parameters (Å $^2x\,10^3$) for H_2L12.

Table C.9.4: Torsion angles [°] for H_2L12 .

N(1)-C(1)-C(2)-C(3)	-0.26(11)
C(1)-C(2)-C(3)-C(4)	0.11(11)
C(2)-C(3)-C(4)-N(1)	0.07(10)
C(2)-C(3)-C(4)-C(5)	178.09(8)
N(1)-C(4)-C(5)-N(2)	3.10(14)
C(3)-C(4)-C(5)-N(2)	-174.59(9)
N(2)-C(6)-C(7)-C(7)#1	-172.89(9)
C(2)-C(1)-N(1)-C(4)	0.32(10)
C(3)-C(4)-N(1)-C(1)	-0.24(10)
C(5)-C(4)-N(1)-C(1)	-178.30(8)
C(4)-C(5)-N(2)-C(6)	176.15(8)
C(7)-C(6)-N(2)-C(5)	-110.86(10)