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ABSTRACT 

Hybrid renewable energy systems (HRESs) refer to power generating systems that integrate several 

sources of energy, including renewables, to provide electricity to consumers. HRESs can either work 

as standalone or grid-connected systems. Since wind and solar have complementary characteristics 

and are available in most areas, they are considered as suitable energy sources to be combined in an 

HRES. Moreover, the maturity of technologies needed for generating electricity from wind and solar 

has turned them into more economical options in many locations.  

Many countries, including South Africa, have introduced policies and incentives to increase their 

renewable energy capacities in order to address environmental concerns and reduce pollutant 

emissions into the atmosphere. In addition, consumers in South Africa have faced the ever-increasing 

price of electricity and unreliability of the grid since 2007 due to the lack of sufficient electricity 

production. As a result, employing HRESs has gained popularity among consumers in different 

sectors.    

This research is focused on grid-connected hybrid energy systems based on solar photovoltaic (PV) 

panels and wind turbines as a potential solution to reduce the dependency of residential sector 

consumers on the grid in Durban. The aim of the research is to identify the optimal sizing of such a 

HRES to be cost-effective for consumers over a certain period of time. Since the energy supplied by 

renewable sources are intermittent and dependent on the geographical location of the system, 

identifying optimal sizing becomes a challenging task in HRESs. In this research, Durban’s 

meteorological data and eThekwini municipality tariff rates have been considered. Moreover, two 

artificial intelligence methods have been used to obtain the optimal sizing for different types of 

available PV panels, wind turbines and inverters in the market. 

The results have shown that the combination of PV panels and battery storage (BS) can become a 

profitable option for Durban area. Moreover, the systems using higher rated power PV panels can start 

to become profitable in a shorter lifetime. Considering BS in a system can only become a cost-

effective choice if we consider a long enough lifespan for the system.   
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 : INTRODUCTION Chapter 1

1.1. Introduction  

The failure of utilities to provide consistent power supply coupled with the rising cost of electricity, 

lack of fossil fuels and global warming concerns encourage a shift towards alternative and greener 

sources of energy for generating electricity. Many countries, including South Africa, have introduced 

policies and incentives to increase their renewable energy capacities for addressing environmental 

concerns and reducing pollutant emissions into the atmosphere. In addition, with ongoing load-

shedding, exploring alternative sources for generating reliable electricity is of great importance for the 

country. Due to the technology improvement needed for harvesting energy from alternative sources, 

using renewable energy sources (RES) for generating electricity has become more cost-effective than 

ever before. This is observable from many buildings across the country that have installed 

photovoltaic (PV) panels on their rooftops or wind turbines for generating electricity. Wind and solar 

have complementary characteristics, which make them ideal sources of energy for reducing power 

fluctuations and supplementing the system in the case of insufficient power delivery by a grid. In fact, 

the most commonly used renewable sources in small scale power generating systems are wind and 

solar energy. 

Hybrid energy systems refer to power generating systems that benefit from integrating several 

sources of energy, such as RES, diesel generators and even storage units and can either work as 

standalone or grid-connected systems. Optimization plays a pivotal role in designing hybrid energy 

systems. Through optimization, a hybrid energy system can make the most effective usage of the 

available energy resources to obtain certain objectives. Objectives can be in the form of reducing 

costs, improving power reliability, lessening greenhouse gas emissions or other social and economic 

factors. In some cases, there might be multiple objectives that have to be satisfied, and sometimes 

there would be trade-offs between two or more conflicting objectives. For instance, although an 

oversized hybrid system can satisfy the load demand, it is costly. On the other hand, an undersized 

hybrid system can be cost-effective, but fails to meet the required load demand. During an 

optimization process, there are also some constraints, which impose on the system and limit the 

possible solutions. 

Many hybrid energy systems consist of renewable sources of energy, including various 

combinations of wind and solar. However, optimizing hybrid energy systems consisting of renewable 

energy sources is more challenging, as the energy supplied by such sources are intermittent. In 
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addition, the availability of renewable sources is dependent on the geographical location of a system, 

and so, optimum solutions should be identified according to meteorological data. As a result, the 

optimal design of a hybrid system could be different for various geographical locations.   

1.2. Motivation 

This research is motivated by the ever-increasing price of electricity in South Africa and the 

challenges that consumers face as a result of the unreliability of the grid. The availability of wind and 

solar in most areas and the maturity of technologies needed for generating electricity from such 

sources make them popular choices to be used in hybrid renewable energy systems. Solar energy is a 

daytime energy source that is variable and random. On a clear day, the solar irradiation increases from 

dawn till around midday and then decreases again till dusk. Solar energy also varies by the season, 

with irradiation being stronger in autumn and summer and weaker in winter and spring. Wind energy, 

on the other hand, is available throughout day and night. In most locations higher wind speeds are 

experienced at night compared to daytime, and also, wind speeds are higher in winter and spring 

compared to autumn and summer. Therefore, wind and solar have complementary characteristics and 

are suitable sources to be combined in a hybrid energy system. 

In this research, we focus on hybrid energy systems, which use solar PV and wind turbines. We 

also consider using energy storage systems for the considered hybrid system. The combination of solar 

and wind with energy storage systems is an effective solution for tackling the randomness and 

unpredictability nature of wind and solar sources. Including energy storage units can also help to 

overcome the electricity fluctuation thereby increasing electricity quality.  

Hybrid energy systems that combine wind, solar, energy storage and the grid can be a potential 

solution to reduce South African consumers’ dependency on the grid and may lessen the overall cost 

of their consumed electricity over an extended period. Although it is common that a grid-connected 

hybrid system injects its excessive generated power back to the grid, the focus of this research is to 

obtain the least dependency on the grid, and so we try to find the best solution for storing the excessive 

energy within the system rather than injecting it back to the grid. Despite much research that has been 

done on optimizing different hybrid energy systems, identifying the specifications, objectives and 

constraints involved in optimization of a hybrid energy system capable of satisfying South African 

consumers’ needs requires more investigation. 
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1.3. Problem Statement 

The increasing cost of electricity and reduced reliability of electricity in South Africa have raised 

concerns in many sectors of the economy and public. Many companies and individuals have lost 

productivity and revenue due to power cuts and have had reduced profits due to the increasing 

electricity costs. Consequently, consumers have supplemented the grid supply with other sources of 

energy such as solar PV systems, wind turbines or backup generators. In the majority of the cases, 

these alternative sources have not been optimized, and therefore, can become very expensive.  

This research seeks to identify the optimal size of a grid-connected solar PV-wind turbine-battery 

storage hybrid system that is cost-effective compared to a purely grid-connected system. Cost-

effectiveness is the sense that the consumer pays less for electricity compared to purchasing purely 

from the grid over a certain period of time. In other words, we try to identify the optimal size of each 

HRES’s components so that a consumer can recover their investments over a certain period of time by 

saving from purchasing less electricity from the grid’s service provider. Solar and wind energy are 

location-based and as such, the study has been done based on the meteorological data of Durban.  

1.4. Aims and Objectives 

The aim of this research is to determine the optimal sizing of a grid-connected HRES to be cost-

effective for consumers over a certain period of time. It will identify the type and number of PV 

panels, wind turbines and battery storage, and the cost that will result in an optimal hybrid generating 

system. Artificial intelligence methods will be employed to optimally size the HRES for different 

types of available PV panels, wind turbines and inverters in the market.   

There are four primary objectives for this project that have direct significance to its application: 

1. To model the load and HRES based on the residential consumer needs and available product 

in the market.  

2. To define the optimization problem based on a cost evaluation indicator and identify 

constraints. 

3. To determine the optimum combination of RES that will result in a hybrid generating system 

that has the lowest cost by employing two artificial intelligence methods. 



4 

 

4. To assess the cost of setting up a hybrid generating system for typical residential consumers 

willing to use green energy and reduce or eliminate effects of power cuts from the utility grid 

based on their power consumption needs.  

1.5. Outline of Dissertation 

The rest of this dissertation is organized as follows: 

• Chapter 2 discusses the literature review on the previous research applicable to this project, 

which are mainly research associated with combination of wind and solar hybrid systems. 

• Chapter 3 focuses on mathematical modelling of HRES’s components. Also, it covers the 

genetic algorithm and particle swarm optimization methods that are used to identify the 

optimal size of the HRES. 

• Chapter 4 is devoted to define and solve the optimization problem for identifying the 

optimal size of the HRES. 

• In Chapter 5 the results and discussion are provided. We evaluate the chosen models to 

determine if the objectives of this project have been satisfied. 

• The final chapter, Chapter 6, fuses the work and gives conclusions and documentation of 

the contributions of this research. We also summarize the discoveries of the research, 

describe the limitations of the optimization methods, and offer further research paths.  
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 : LITERATURE REVIEW  Chapter 2

2.1. Introduction 

The availability of wind and solar in most areas and the maturity of the technology needed for 

generating electricity from such sources make them popular choices in hybrid renewable energy 

systems. Wind and solar energy, both, have intermittent nature and are highly dependent on 

environmental conditions. As a result, using only wind or solar as the sole energy resource often leads 

to an oversized and expensive system. Nevertheless, wind and solar have complementary 

characteristics and so are suitable sources to be combined in a hybrid energy system.  

Hybrid energy systems, which combine multiple energy sources to generate electricity, can be 

designed to work as stand-alone or grid-connected systems. They can also benefit from energy storage 

units. These energy storage units are essential in improving the output power quality. Different studies 

have shown that even though the load demand by a hybrid wind and solar system can be satisfied, the 

fluctuating characteristics of wind and solar combinations make the energy supply system 

uncontrollable, resulting in a reduced electricity quality [1-4].  

Energy storage (ES) systems, such as batteries and fuel cells, are effective solutions to reduce 

quality deficiency in wind-solar hybrid energy systems. In such systems, charging and discharging 

mechanisms are implemented to adjust a system’s output. ES systems can exist in other forms than 

batteries and fuel cells. For example, in a large-scale system, where using batteries due to their high 

cost is not feasible, pumped hydro storage (PHS) acts as an energy storage system. PHS proves to be 

superior to traditional batteries in large-scale systems when considering reliability, economic costs, 

capacity and flexibility [5-8]. Countries such as China, the United States and Brazil have feasible 

conditions for exploration of PHS. For a hybrid renewable system at a scale, which we are interested 

in this work, the battery storage (BS) is a suitable energy storage option. 

Regardless of the number and type of energy sources combined to form a hybrid energy system, 

optimization is an important stage in designing such a system. Through optimization, the best design 

with regard to certain criteria and constraints can be obtained. The design objectives used in 

optimizing a hybrid energy system can be technical, financial, environmental, social, or a combination 

of them. Minimizing costs (initial purchase costs, maintenance costs, and operational costs) and 

maximizing power supply reliability are examples of the most commonly used objectives. Constraints, 
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on the other hand, limit the possible solutions and can be caused by the weather conditions, number of 

PV panels, or a wind turbine output power in a hybrid wind-solar system.   

In this chapter, we first provide an overview of different configurations for hybrid energy systems, 

which use wind and solar as RES. We then look at different evaluation indicators that have been 

considered in the optimization of such systems. Finally, we review the optimization techniques that 

can be employed for optimizing HRESs.  

2.2. Hybrid Renewable Energy Systems Configurations 

In this section, we provide a review of different hybrid renewable energy systems configurations, 

which use wind and solar as RES. As solar energy is random and intermittent, an ES system is 

required for lessening its intermittent characteristic. In Solar-ES systems, the exceeded energy 

generated by PVs during day time can be stored to meet the load demand at night. Alternatively, the 

stored energy can be sold to the grid [9-13].  

A wind turbine can also be combined with an ES unit in a wind-ES configuration. In such a 

configuration, the ES, which is in the form of a BS, is used to stabilize fluctuation associated with 

wind power. Xu et al. [14] employed BS to smoothen fluctuations of generated power and cater for 

loss of power production from wind in a stand-alone wind-BS system. Moreover, the excessive 

generated power at night can be used during day time or can be sold to the grid [15].  

Solar-BS configuration appears to be superior to the wind-BS system according to [16], as a result 

of the sudden drop in wind speed. However, [17] presented contrasting results in another area. 

Likewise, [18] and [19] obtained opposing conclusions in different regions based on the economy of 

the system. Therefore, it can be seen that design approaches will vary from one region to another 

because of meteorological and load characteristics, and so, it is important to reasonably select the 

energy resources for a specific area for which the hybrid system would be used. 

Another possible configuration is wind-solar-BS [20-23] so that the deficit power can be obtained 

from the BS system. The complementary nature of wind and solar in this configuration reduces the 

storage requirements and improves system availability. For instance, a cost-effective and reliable off-

grid hybrid system was developed by [24]. The site for this design has mild winters and dry and hot 

summers. The optimum results show that the wind-solar-BS and the solar-BS have the same capacity. 

However, the wind-solar-BS system is realized at a lower cost. In another research, the hybrid system 

was modelled to minimize the cost by considering seasonal load fluctuations [25]. The results of this 
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research showed that the combination of wind and solar greatly reduces the required battery storage 

capacity compared to solar-BS and wind-BS. These results have been also confirmed for ES in the 

form of fuel cell [26], where the wind-solar-fuel cell combination offers a lower system cost than the 

solar-fuel cell and the wind-fuel cell. 

In addition to an ES system, a wind and solar hybrid system can be combined with other non-

renewable sources of energy. For example, in a stand-alone HRES using wind and solar, a backup 

generator can be used for replacing the energy storage system [27]. In the event that the hybrid system 

does not meet the load power requirements, the deficit power is obtained from the backup generator. 

Compared to a sole backup generator system, the wind-solar-backup generator system offers a 

reduction in pollutant emissions and may also reduce the cost of generating power [28]. Diesel 

generators improve system economy and guarantee the reliability of the system in the event that the 

wind-solar system cannot satisfy load, such as in extreme weather conditions.  

To further reduce pollutant emissions, an ES system is added to the wind-solar-backup generator 

system to ensure that the load is satisfied during the time of insufficient power generated by the RES 

[29, 30]. Nevertheless, batteries have a short lifespan and have to be replaced more often, which 

increases the maintenance cost of the system. Due to the pollutant emissions from the combustion of 

diesel, diesel fuel is only used when wind, solar and ES generated power is insufficient [31]. As a 

result, backup generators guarantee system reliability in the event that the wind-solar-BS system 

produces insufficient power, for example when there are extreme weather conditions. Other 

researchers have studied the combination of solar and wind with different sources of energy than 

diesel, such as solar-gas turbine [32] and wind-hydrogen [15] systems. Although, in isolated areas, the 

wind-solar-diesel-BS combination is a viable configuration regardless of the pollution caused by diesel 

generators, using a diesel generator is not considered in this research, as we consider a grid-connected 

system. 

Wind-solar-grid combinations have been considered in [33, 34]. In this setup, the main source of 

power for the load is from the renewable sources. In the event that the renewable sources cannot meet 

the load demand, the grid provides the deficit power. It is also common to integrate an ES into the 

wind-solar-grid configuration [35-38].  

In the wind-solar-ES-grid configuration, if the load is not satisfied by the wind-solar system, the 

deficit power is obtained from the ES. If the power from the ES is still insufficient, the required power 

will then be obtained from the grid. This combination utilizes the complementary nature of solar and 

wind and the charge and discharge cycles of the BS to improve the system’s reliability. The power 
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from the grid would reduce energy storage requirements and improve system reliability. Senjyu et al. 

[35] presented optimum configurations for hybrid systems for a residential building based on a year’s 

actual data for each hour. The model was developed using the average electrical energy consumption 

of a single house in Okinawa in Japan. The aim was to minimize the total cost of the system, which 

comprises of the sum of initial, operational, and maintenance costs per year. Xu et al. [36] presented 

an improved optimization method for a wind-solar-BS HRES in which total system cost was 

minimized. They developed models for, both, stand-alone and grid-connected systems. Power supply 

reliability and the total system cost are taken as system preferences. They showed that the grid-

connected system could generate smoother power, with higher reliability and lower total system cost. 

2.3. Evaluation Indicators  

Optimal sizing is essential in a hybrid renewable energy system so that the system can achieve a 

desired level of reliability with the least possible costs [39]. For optimizing a system, once the usable 

energy sources have been selected, the mathematical models should be developed. This is followed by 

identifying objectives, constraints and decision variables. Objective functions are then defined 

according to the identified objectives. Constraints are due to the limitations that are imposed on the 

system and limit the possible solutions. Decision variables are the variables that a decision-maker can 

adjust to achieve the system’s optimum performance according to the objectives. An optimization 

algorithm helps to find the best answer among possible solutions. The effectiveness of an optimization 

algorithm for finding the best solution, in many cases, depends on the selected objective functions.  

Objective functions for optimizing HRES are developed according to different evaluation 

indicators, which can be categorized as economic, reliability, social, and environmental indicators. 

The economic indicators are mostly used by researchers in single-objective optimization problems, 

while economic and system reliability indicators are considered for multi-objective problems. Social 

and environmental indicators have also been considered together with reliability and economic 

indicators. 

2.3.1. Economic Indicators 

Economic indicators evaluate the costs involved in a hybrid energy system and the possible 

incomes as a result of using the system. The costs include initial costs, operational costs and 

maintenance costs, and the possible incomes are obtained from selling the excessive generated 

electricity and the residual value of the components of the HRES at the end of its lifespan. The most 
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commonly used indicators are net present value (NPV), life cycle cost (LCC), total annual cost (TAC), 

annualised cost of system (ACS), cost of energy (COE) and levelised cost of energy (LCOE). 

NPV which is also referred to as net present cost (NPC) is obtained by subtracting the present 

discount values of the costs from the incomes. For instance, in grid-connected systems, NPV is 

calculated as  

𝑁𝑁𝑁 = �𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 + �𝑁𝑁𝑁𝑒𝑒𝑒 −�𝑁𝑁𝑁𝑂𝑂 −�𝑁𝑁𝑁𝑟 − 𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                (2.1) 

𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖: The present discount value of income from selling the excessive generated power    to the 

grid. 

𝑁𝑁𝑁𝑒𝑒𝑒  : The present discount value of the residual system’s components values at the end of the 

system’s lifetime. 

𝑁𝑁𝑁𝑂𝑂  : The present discount value for subsequent operation and maintenance costs for the 

duration of the system’s lifetime.  

𝑁𝑁𝑁𝑟  : The present discount value for future replacement costs during the system’s lifetime.  

𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 : The value of initial investment. 

LCC is another economic indicator, which is calculated based on present discount value as 

𝐿𝐿𝐿 = 𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + �𝑁𝑁𝑁𝑂𝑂 + �𝑁𝑁𝑁𝑟 −�𝑁𝑁𝑁𝑒𝑒𝑒                                                                   (2.2) 

The other economic indicator is TAC, which is equal to  

𝑇𝑇𝑇 = 𝐶𝑎𝑎𝑎𝑎 + 𝐶𝑎𝑎𝑎𝑎𝑎                                                                                                                                     (2.3) 

𝐶𝑎𝑎𝑎𝑎   : The system’s annual capital costs  

𝐶𝑎𝑎𝑎𝑎𝑎  : The system’s annual maintenance costs.  

The capital recovery factor (CRF) formula helps to calculate the annual capital costs from the initial 

capital costs as 

 

𝐶𝑎𝑎𝑎𝑎  =  (1 + 𝐶𝐶𝐶)  ×  𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
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       = �1 + 𝑖(1+𝑖)𝑛

(1+𝑖)𝑛−1
�× 𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                          (2.4)  

𝑖   : The interest rate. 

𝑛  : The number of years considered for the payback on the initial capital costs. 

By adding the annual replacement costs to TAC, another economic indicator is obtained, which is 

known as ACS and is calculated as 

𝐴𝐴𝐴 = 𝐶𝑎𝑎𝑎𝑎 + 𝐶𝑎𝑎𝑎𝑎𝑎 + 𝐶𝑎𝑎𝑎𝑎                                                                                                                      (2.5) 

𝐶𝑎𝑎𝑎𝑎  : The annual system replacement costs. 

By taking ratio of summation of ACS to the summation of total annual energy production (TAEP) 

for the lifetime of the system, another indicator is acquired, called COE. By considering Eg(i) as the 

total daily energy production in the day 𝑖 of the year 𝑛,  

 

𝑇𝑇𝐸𝐸𝑛 = �𝐸𝑔(𝑖)
365

𝑖=1

                                                                                                                                             (2.6) 

and 

𝐶𝐶𝐶 =
∑ 𝐴𝐴𝐴𝑛𝑛
∑ 𝑇𝑇𝑇𝑇𝑛𝑛

                                                                                                                                               (2.7) 

and finally, LCOE is defined as the ratio of TAC to 𝐸𝑡𝑡𝑡. 𝐸𝑡𝑡𝑡 is the total annual energy that the 

HRES produces.  

𝐿𝐿𝐿𝐿 =
𝑇𝑇𝑇
𝐸𝑡𝑡𝑡

                                                                                                                                                       (2.8) 

2.3.2. Reliability Indicators 

Energy sources employed in hybrid systems are highly unpredictable, and so there is a need for 

indicators to demonstrate the reliability of a system. Reliability indicators are used to measure the 

HRES’ ability to meet load requirements. The mostly used indicators are the loss of power supply 

probability (LPSP), loss of load probability (LOLP), deficiency of power supply probability (DPSP), 

loss of load expected (LOLE) and loss of energy expected (LOEE). 
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LPSP demonstrates the percentage that a power supply fails to meet the load demand and has been 

widely used as a reliability index in hybrid systems. LPSP is defined as 

𝐿𝐿𝐿𝐿 = ∑ 𝐷𝐷(𝑡)𝑇
𝑡=1

∑ 𝑃𝑙𝑙𝑙𝑙(𝑡)∆𝑡𝑇
𝑡=1

                                                                                                                                  (2.9)  

𝐷𝐷(𝑡)  : The deficit energy at time 𝑡 (kWh). 

𝑃𝑙𝑙𝑙𝑙(𝑡) : The power required by the load at time 𝑡 (kW). 

𝑇   : The total time periods. 

∆𝑡   : The time interval (h). 

In some literature LPSP concept is used with a different name as LOLP [40-42]. LOLP is a ratio of 

all energy shortage to all energy required by the load over a certain time interval.  LOLP over one year 

and with one-hour time intervals is calculated as: 

𝐿𝐿𝐿𝐿 =
∑ 𝐸𝐸(𝑡)8760
𝑡=1

∑ 𝐿𝐿(𝑡)8760
𝑡=1

                                                                                                                                      (2.10) 

𝐸𝐸(𝑡)  : Energy shortage at time 𝑡 (kWh). 

𝐿𝐿(𝑡)  : The load demand at time 𝑡 (kWh). 

The other similar reliability indicator is DPSP, which is the ratio of all power supply deficiency to 

all load demand for a certain period and is calculated by  

𝐷𝐷𝐷𝐷 =
∑ [𝐿𝐿(𝑡) − 𝐸𝑠𝑠𝑠𝑠(𝑡)]𝑇
𝑡=1

∑ 𝐿𝐿(𝑡)𝑇
𝑡=1

                                                                                                                 (2.11) 

𝐸𝑠𝑠𝑠𝑠(𝑡)  : The energy supplied by the HRES at time 𝑡 (kWh). 

Deficiency of power supply occurs if the HRES generates insufficient power.   

Besides the above reliability indicators, which represent the percentage that a HRES fails to satisfy 

load energy requirements, other reliability indicators are given as the total yearly hours, which the 

system fails to support the load demand. For instance, LOLE gives the expected number of hours 

during the year in which the load requirements are not met. LOLE (h/year) [41, 43-46] is calculated as  
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𝐿𝐿𝐿𝐿 = � �𝑃𝑖 × 𝑇𝑖
𝑖∈𝑆

8760

ℎ=1

                                                                                                                                 (2.12) 

𝑆  : The set of all loss of load states. 

𝑃𝑖   : The probability of occurrence of the state 𝑖 

𝑇𝑖   : The time duration of that the state 𝑖 (h)   

Using expected values for representing reliability of the system have also been used to calculate the 

expected loss of energy. LOEE (kWh/year) represents the expected energy value that has not been 

provided by the hybrid energy system and is equal to  

𝐿𝐿𝐸𝐸 = � �𝑃𝑖 × 𝐿𝐿𝐿𝑖
𝑖∈𝑆

8760

ℎ=1

                                                                                                                           (2.13) 

𝐿𝐿𝐿𝑖  : The amount of energy loss during the state 𝑖 (kWh). 

2.3.3. Social and Environmental indicators  

The development of HRESs has both social and environmental impacts. Social indicators represent 

social impact associated with developing a hybrid energy system. They can be in the form of the job 

creation and human development index, or can be in the form of the social resistance against 

employing renewable energy sources as a result of visual impact, use of land, noise pollution or 

electromagnetic interferences caused by a HRES [47]. From the environmental perspective, the 

implementation of HRESs reduces pollutant emissions, resulting in more sustainable energy 

production. Environmental indicators include carbon footprint of energy, amount of carbon emission, 

life cycle assessment and embodied energy [48], which all indicate the amount of reduction in the 

greenhouse gas emission as a result of using renewable energy sources.  

2.4. Optimal Sizing Methods 

Optimal sizing methods can be as a single objective optimization (SOO) or multi objective 

optimization (MOO) problem. SOO problems can be utilized when determining best solutions based 

on only one objective function, for instance, optimizing a HRES to minimize costs or to maximize 

reliability. On the other hand, MOO problems integrate at least two separate objective functions and 

determine a compromised solution, such as optimizing a HRES to minimize its costs and maximize its 
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reliability, simultaneously. MOO problems can, therefore, improve the reliability and cost-

effectiveness of a HRES in contrast to SOO problems, which only minimize costs [49, 50].  

Optimizers can be used on an objective function to try to find the most suitable solution [51]. In a 

SOO problem, the optimizer returns the best solution with regard to one objective function. However, 

in a MOO problem, there would be a group of solutions called Pareto-optimal points, where one 

objective cannot be improved without worsening the other objectives. The rest is the designer decision 

to select a solution among Pareto-optimal points.     

 Optimizers that have been used in HRES sizing problems are generally classified as classical 

techniques, modern techniques and software tools. In classical techniques, objective functions are 

estimated by deterministic or probabilistic functions [52] and their optimum solutions are either found 

by differential calculus or through searching the whole design space with iterative methods [53]. 

Designing an HRES, however, involves uncertainties related to renewable energy sources and 

constraints and technical factors associated with the HRES location and components that made up the 

system. As the complexity of the problem increases, classical techniques become less efficient in 

optimally sizing HRESs. Consequently, a shift towards the use of modern techniques based on meta-

heuristics algorithms [52, 54] has been seen over the last few years. Such algorithms, which are known 

as modern techniques, do not use differential calculus for finding descent directions. Instead, they use 

a large number of points throughout the design space looking for the optimal solution. Although 

modern algorithms are successful in skipping local minima and identifying the best design region, they 

may not perform well in local searches. Therefore, they can be combined with the classical techniques 

to achieve a better performance. This category of optimizers is known as hybrid methods [52, 55]. 

Hybrid methods have shown better accuracy and convergence in finding optimal solutions and can 

establish the global optimum solutions. In addition to mathematical methods, there are different 

software tools, which are available for optimizing HRES. Hybrid Optimization Model for Electric 

Renewables (HOMER) and Improved Hybrid Optimization by Genetic Algorithm (iHOGA) are the 

most widely used packages used for finding optimal sizing [55, 56].   

2.4.1. Classical Techniques 

Classical techniques are generally used in SOO problems. In  [46], the average solar irradiation and 

wind speed was used to identify an objective function and the problem was optimized based on a 

classical technique. Although this method is easy to implement, it overlooks many details, which 

include number of PV panels, PV area and wind turbine heights, which may lead to a solution far 

away from the optimal point. Other researchers have tried to model objective functions by estimating 
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the stochastic nature of wind and solar using probabilistic functions [15]. Although it is also simple to 

obtain objective functions using such probabilistic functions, the model cannot demonstrate the 

dynamic performance of the system and so it is not suitable for finding the optimal solution. In both of 

these methods, differential calculus has been used for optimization. 

In addition to differential calculus, optimizations based on classical techniques have been done 

using iterative algorithms. In fact, most of the studies carried out through the use of classical 

techniques make use of iterative algorithms [23, 36, 57-60]. The authors in [23] used an iterative 

algorithm to optimally size a standalone solar-wind-fuel cell-BS-hydrogen tank hybrid energy system. 

The main objective of their design was to minimize the system’s total COE. The authors have also 

used LOEE and LOLE to evaluate the HRES’s reliability. The authors in [61] presented an 

optimization method for a stand-alone solar-wind-fuel cell-hydrogen tank HRES based on an iterative 

technique. They assessed technical performance of the hybrid system by calculating the fuel cell and 

electrolyzer powers. Minimizing capital cost of the system was their main objective. The results show 

that utilizing the complementary characteristics of solar and wind resulted in a reduction in storage 

requirements, which led to reduced installation costs, while meeting the load demand. The authors in 

[62] presented an iterative algorithm based on enumeration to optimally size a solar-wind-BS-diesel 

generator HRES. The feasibility of the HRES was evaluated by minimizing LCC. The system’s 

reliability was assessed by observing the effect of LPSP and renewable energy penetration on LCC. A 

more efficient iterative algorithm that can be used to find global optimum of various problems is by 

DIRECT algorithm. The authors in [63] used DIRECT algorithm to obtain the best system 

components by minimizing the total system cost while guaranteeing energy availability. The authors 

have used the battery state of charge as well as the balance between generated power and load demand 

to evaluate the HRES’s reliability. 

Linear programming (LP) is another classical method that has been used to optimally size a stand-

alone solar-wind HRES [64, 65]. The authors in [64] presented a method that employs LP to optimize 

an off-grid solar-wind-BS HRES by minimizing the total system cost, while meeting load 

requirements. The authors in [66] used the mixed-integer linear programming (MILP) in optimally 

sizing a solar-wind-BS-diesel generator system by reducing LCOE over a 20-year system lifetime. The 

authors in [67] presented a method that uses MILP and exact solve procedure, considering the energy 

requirements and energy resource maps in determining the location and the optimal combination of 

components of a solar-wind HRES. The initial system cost was the objective function to be 

minimized. The results of the study identified the optimal location and the size of the system to 

minimize initial investment costs. 
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Analytical methods that make use of theoretical and mathematical analysis and calculations are 

also part of classical techniques. These techniques utilize computational models to optimize economic 

feasibility of a hybrid energy system [48]. Certain logical steps must be defined and implemented to 

obtain an accurate model. This is in contrast to numerical methods, which do not require sequentially 

specified procedures for obtaining estimated models [68, 69]. Consequently, the computational time 

required in analytical methods is more than that of numerical methods [44]. The use of these methods 

has declined in recent years [70, 71]. In [72], an analytical method was used to estimate an objective 

function based on meteorological data to optimally size a solar-wind-BS-diesel generator hybrid 

system, taking into account solar irradiation and maximum and minimum wind speed in a year. In this 

optimization problem, minimizing the use of the generator was the objective function. In addition, 

state of charge and power balance was utilized in evaluating the HRES’s reliability, while the HRES’s 

economy was assessed by the decision to turn on the diesel generator. The authors in [70] also used an 

analytical technique for minimizing the generation cost of an independent solar-wind system. By 

comparing the results to Monte Carlo simulation (MCS), the authors were able to validate their results. 

The amount of meteorological data required for the analytical technique is less than that of MCS. As a 

result, the analytical technique offers lower computational time in comparison with MCS. 

2.4.2. Modern Techniques 

Modern techniques can find a solution to SOO or MOO problems. As a result, modern techniques 

provide more accurate solutions and have more flexibility when dealing with complex optimization 

problems. Artificial intelligence (AI) methods are able to manipulate MOO problems and generate the 

best solutions in the design of hybrid energy systems. In this section, we discuss the most recent AI 

algorithms that have been used for optimizing hybrid energy systems consist of solar and wind 

renewable sources. 

Genetic Algorithm (GA) is amongst the best AI optimization algorithms. GA has been used by 

many researchers to determine the optimal size of HRESs [73-78]. The authors in [74] implemented 

GA for optimally sizing an off-grid HRES. They considered five different load demand combinations 

and traded a single big diesel generator for a cluster of small diesel generators. The economy, 

reliability, and environmental aspects associated with the HRES were assessed using the LCC, net 

dump load, and the total CO2 emissions, respectively. The results of the study indicate that solar-wind-

split diesel-BS hybrid energy system is the most optimal configuration with regards to the lowest 

LCC, COE, net dump energy and CO2 emissions. Another key finding from the study is that the use of 

a cluster of smaller generators instead of one large generator was more cost-effective. In [75], GA was 

used to optimally size a HRES employing a BS. The main aim was to find the optimal size of the 
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system by minimizing COE and total cost. Adaptive GA (AGA) is implemented by [79] to optimally 

size off-grid solar-wind-BS HRES. AGA has an enhanced adaptability and computational simplicity in 

solving non-linear problems. Meteorological data was used to estimate solar and wind turbine 

production powers. Minimizing the installation cost of the HRES was the objective function. LOLP 

was used to evaluate the HRES’s reliability. The resulting optimal system satisfied the total system 

cost as well as reliability requirements. Non-dominated sorting genetic algorithm (NSGA-II) which is 

an enhanced type of GA was implemented by [80, 81] to solve a MOO problem and the results were 

encouraging. The authors in [80] used NSGA-II algorithm to optimally size an off-grid solar-wind-BS 

HRES. Minimizing total cost and DPSP were the economic and reliability evaluation indicators. The 

DPSP value was estimated by making use of NSGA-II as well as chance constrained programming 

(CCP) because of the uncertainties associated with renewable resources that affect DPSP value.  The 

study generated more conservative solution sets in comparison to MCS. [81] also used NSGA-II in 

optimizing solar-wind-BS HRES in a micro-grid. The cost and reliability were evaluated by obtaining 

minimum total investment cost values; expected energy not supplied and line losses. The authors in 

[82] used a variation of NSGA-II called controlled elitist GA in optimally sizing an off-grid solar-

wind-BS HRES. The authors in this study used a triple multi-objective function combining LPSP, 

LCC, and expected energy. The obtained optimal solution catered for the reliability, economic and 

environmental assessment parameters. 

Mine blast algorithm was used by [83] to optimize a HRES based on minimizing available transfer 

capability. The balance of power between load demand and production was used to evaluate the 

reliability of the system. Real meteorological data was used by the author to optimally size the HRES. 

A solar-wind-fuel cell system was determined to be the most cost-effective combination.  

Particle swarm optimization (PSO) is another widely used heuristic algorithm. PSO is taken as an 

effective approach for solving real life optimization problems that are non-convex and non-linear. PSO 

boasts high efficiency, less reliant on gradient information, fast convergence speeds and is quite easy 

to implement. However, PSO has a possibility of being trapped in local minima. The search ability of 

PSO over a number of iterations is lost because of the change in velocity drops of the particles, which 

leads to particles resemble one another. PSO was used by the authors in [84] to find the optimal 

combination of PV panels, wind turbines, diesel generators, and battery units based on reliability, 

social cost of carbon and LCOE evaluation parameters. Using large storage units results in less storage 

units being required and a reduction in replacement cost, while meeting the reliability parameters. 

Additionally, integrating diesel generators with RES lowers social cost of carbon. The authors in [85] 

implemented PSO to optimally size a stand-alone HRES using solar, wind, fuel cell and hydrogen 

tank. Minimizing total cost was the objective function of the problem, whereas reliability of the HRES 



17 

 

was evaluated using LPSP. The optimal solution was based on the lowest total cost over the system 

life cycle of 20 years. The authors in [86] utilized PSO together with its variants to minimize LCC, 

while ensuring reliability using LPSP for a combination of solar, wind turbine, and BS. From the 

results, it can be seen that the PSO with inertia weight presents superior balance between local and 

global exploration due to the removal of early convergence, generates the lowest LCC in comparison 

with the first PSO as well as the other forms of PSO. In an analogous study [87], the optimal 

renewable combination is obtained by minimizing TAC. The conclusion from the results was that the 

Constriction Factor-PSO (CF-PSO) generates more encouraging results in comparison to other AI 

algorithms, PSO and its different variants. A modified PSO (MPSO) is presented by [88] to optimally 

size a stand-alone and grid connected HRES using solar, wind and BS. Minimizing the total initial cost 

was the objective function being optimized. The algorithm presented in the study was able to generate 

optimum total initial cost for an off-grid mode. Multi-objective PSO (MOPSO) was implemented by 

the authors in [49] to optimally size the HRES’ economy and reliability, which are made of PV, wind 

turbine, fuel cell and hydrogen tank over a 20 year period. The objective functions were to obtain 

minimum values of TAC, LOEE and LOLE of the HRES. The annual system cost is affected by the 

reliability of each component. Taking this into account, the authors were able to optimize the system 

based on reliability and cost. MOPSO was also implemented in [89] to optimize a HRES using solar, 

wind turbine, diesel generator and BS micro-grid. Minimizing COE and LPSP achieves the optimal 

combination. The authors in [90] implemented PSO to optimally size a stand-alone HRES using solar, 

wind, BS and fuel cell. They utilized fuzzy logic controller to control energy flow in the HRES. The 

results of the study indicate that a well optimized fuel cell reduces the variation in batteries’ state of 

charge, which enhances their lifetime.   

In addition to GA and PSO, many other heuristic methods have been used for optimizing HRES. A 

MOO problem was optimized by [91] by using line-up competition algorithm (LCA). Ant colony 

optimization (ACO) was used to determine the optimal combination of solar, wind turbine, BS and 

diesel generator based on minimizing TAC [92]. ACO has an inherent ability of parallel computing, 

which enables it to solve complex problems that behave dynamically. A variation of ACO which uses 

integer programming called ACOR, for continuous domains, was used by [93] to optimize a HRES. 

Preference-inspired coevolutionary algorithm (PICEA) has also been used for optimizing MOO 

problems [94, 95]. Authors in [96] made use of an improved Fruit-fly optimization algorithm (IFOA) 

to optimally size a stand-alone HRES using solar, wind, backup generator and battery. A population 

inspired technique called biogeography-based optimization (BBO) was utilized by [97, 98] to 

optimally size HRES comprising of solar, wind turbine, and other sources and storage units. In [99], 

the authors implemented artificial bee colony (ABC) to find best combination of solar-wind-biomass-

battery storage HRES to minimize cost and improve reliability. Imperial competitive algorithm (ICA) 
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was used in [100] to optimize an off-grid and grid-connected HRES. Cuckoo search (CS) is another 

metaheuristic algorithm, which addresses multi-objective and complex optimization problems. 

Discrete harmony search (DHS) was used by [18] to optimize solar, wind, BS and diesel generator for 

minimizing TAC and total gas emissions. Stochastic trust-region response-surface (STRONG) 

technique was used by [101] in minimizing total cost of a HRES using solar, wind, battery and backup 

generator. 

2.4.3. Hybrid Techniques 

AI optimization algorithms give sufficiently accurate group of best solutions in a quick computing 

time and a relatively low convergence. Nevertheless, as the use of solar-wind hybrid energy systems is 

rapidly growing, especially for off-grid applications, even more advanced and accurate optimization 

strategies are required. Hybrid algorithms are a mixture of at least two single algorithms (classical or 

modern), which complement each other in solving complicated optimization cases. Each one of the 

algorithms may have different constraints. 

The GA has been combined with multi-objective evolutionary algorithm (MOEA) in [102]. The 

authors have first used MOEA to size the components by minimizing NPC and some other social 

indicators and then applied GA to determine the best control strategy based on NPC. A hybrid 

artificial neural network (ANN) and Monte Carlo Simulation (MCS) based GA optimization algorithm 

presented in [103], where solar irradiation and wind speed time series were generated using MCS to be 

used by an ANN-based GA. Hong et al. [104] proposed a Markov-based GA to optimize a HRES 

employing solar, wind, and diesel generator based on minimizing total system costs as well as CO2 

emissions, and the reliability was evaluated using LOLP. In their work, solar panels, wind turbines and 

load demand were modelled by Markov processes, while the optimal size was found using GA. The 

iterative method and GA have been combined in [105] to optimally size an off-grid solar, wind 

turbine, and BS system. For this purpose, first, a set of possible combinations of components of the 

hybrid energy system were generated using iterative method and then GA was used to find the optimal 

sizing. The GA has been combined with an exhaustive-search technique and used by [106] to optimize 

a stand-alone solar, wind and BS HRES by minimizing total cost and LPSP. 

PSO can be combined with mutation operator from GA to prevent being trapped in local optimum 

values, resulting in the hybrid big bang–big crunch (HBB-BC) algorithm. The authors in [107] used 

HBB-BC in optimizing an off-grid hybrid solar, wind and BS system by minimizing total present cost 

and energy not supplied. Moreover, natural selection particle swarm optimization (NSPSO) is the 

combination of the selection strategy of GA and PSO. NSPSO was used by [50] to enhance the 
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accuracy of optimum results. An improved simulated annealing particle swarm optimization (SAPSO) 

method was presented by [108] to optimally size a HRES. Integrating an improved simulated 

annealing (SA) with PSO improves accuracy and extent to which the process can search.  

The SA algorithm has also been combined with Tabu search (TS) method [109]. The SA offers fast 

convergence in the area close to the best solutions. On the other hand, TS, offers good efficiency in 

determining the optimal solution for a specific locality. Combining SA and TS offers advantages of 

improved solutions when dealing with more complex optimization problems. A discrete chaotic 

harmony search-based simulated annealing algorithm (DCHSSA) was proposed by Askarzadeh [110]. 

DCHSSA combines chaotic search (CS), harmony search (HS), and simulated annealing (SA). In 

[111], the authors presented harmony search-based chaotic search (HSBCS) which was used to 

optimize a solar-wind-BS HRES using reverse osmosis (RO). The wind and solar forecasting have 

been done using ANN, while system components were optimally sized using HSBCS. A hybrid flower 

pollination algorithm (FPA) and SA algorithm were proposed by [112] to optimally size solar-wind 

and BS HRES with the most cumulative savings as well as increased reliability.  

Hybrid teaching-learning-based optimization algorithm (TLBO) is another hybrid method, which 

comprises of the size of the population as well as the parameters for the number of iterations. 

Improved TLBO was used by [113] for optimizing a solar, wind turbine, diesel generator and BS 

HRES. The authors used the fuel cost and TAC to assess the economy and LPSP to evaluate the 

system’s reliability. Iterative-Pareto-Fuzzy (IPF) method combines iterative, fuzzy, as well as Pareto 

optimality methods and used by [114] to find the best solution for a stand-alone HRES using solar, 

wind, and BS to minimize the total cost, while considering reliability of the system according to the 

net dump energy, energy index of reliability and expected energy not supplied. Total system cost and 

net dump energy were minimized, while system reliability was maximized using the proposed 

algorithm. Long-term wind speed data was combined with estimated solar irradiation in [115] to 

optimize a HRES.  

2.4.4. Computer Software Tools 

Various software tools have been employed to optimally size HRES [116]. Hybrid optimization 

model for electric renewables (HOMER), developed by the U.S. National Renewable Energy 

Laboratory, is the most used software tool for optimizing capacity of HRES based on economic 

indicators. HOMER has the ability to simulate and optimize conventional and renewable energy 

systems including ES systems in stand-alone and grid-connected modes. The meteorological data from 

the past is used according to the area of the site to optimally size the HRES. HOMER Pro is an 
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enhanced edition of HOMER, which has additional attributes including options for load profile, limits 

on monthly demand, advanced battery characteristics, multi-year module, and capability of linking 

with Matlab software. However, HOMER only allows SOO based on optimizing NPC with the user 

having to insert the input variables [117]. 

Improved hybrid optimization by genetic algorithms (iHOGA) is another commonly used software 

tool for optimally sizing HRES. iHOGA is an optimal sizing software tool that is written by the 

University of Zaragora. Input details for component, economy and resource constraints can be used to 

carry out the optimal sizing process. Simulation of the system is conducted over an hour interval 

during which all variables of the system are kept the same. GA is used in the software to optimize 

single or multi- objective functions as well as optimizing control procedures offering a lower 

computing time in comparison with GA alone. Additionally, iHOGA uses Monte Carlo Simulation for 

conducting probabilistic evaluation [46, 103]. An analysis for buying and selling electrical energy in 

grid-connected mode with various cases of net metering [48, 118] can also be performed in the 

software. The software also allows selling of the surplus hydrogen that the electrolyzer produces. A 

maximum power point tracking (MPPT) option in the solar panel charge controller and an estimation 

of the lifespan of the batteries [119], according to the model proposed by [120], can be considered. 

Furthermore, the inverter efficiency is considered as a function of the output power. The wind turbine 

height, air density and atmospheric pressure are also considered in the optimization process. Social 

indicators can be included in its version 2.0 PRO plus. The optimal size of HRES can be obtained by 

minimizing NPC and other variables. 

Renewable Energy Research Laboratory of the University of Massachusetts created another 

software tool called HYBRID2. HYBRID2 supports simulation steps between 10 minutes to 1 hour, 

which is more accurate than HOMER and iHOGA. Therefore, it can be used in collaboration with 

HOMER or iHOGA to improve the accuracy of the optimization solution. 

The aforementioned software tools are utilized in determining the optimal design of HRES for 

various locations across the world. In addition to them, MATLAB, HYBRIDS, RETSCREEN have 

also been widely used. HOMER has been used by [121] to determine the optimal HRES components 

combination and then the results have been used in Matlab to conduct energy management for the 

resulting HRES. HOMER Pro was used by [117] to find the optimal size of a solar-wind turbine-

battery storage system. The system was able to achieve a minimum NPC. The authors in [122] 

employed iHOGA to optimally size a HRES to minimize the CO2 emissions, COE and NPC. Also, 

iHOGA have been used to optimize a system based on MOEA algorithm and GA hybrid technique 

[123].  
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2.4.5. The Comparison of Algorithms 

PSO is a widely used algorithm in optimization of HRESs because of its simplicity, flexibility and 

good performance. Nevertheless, the performance of PSO in optimizing a system with four or more 

decision variables is low and as a result, the optimization solutions become inadequate. Additionally, 

PSO may have a tendency of being stuck in local optima [124]. SAPSO was proposed by [108] to 

overcome the limitations of PSO. SAPSO has the ability to circumvent sticking at local optima, 

improves the diversity of PSO such that non-coordinate system can be solved, and reduces the 

computational time which improves the global searching. Improvements on computational time and 

convergence can be made on PSO. MPSO was proposed by [88] in determining the optimal 

combination of RES with the lowest investment cost. MPSO gave shorter computational time and 

faster convergence in comparison to PSO. 

SA is a suitable choice for problems involving global optimization. SA has low accuracy solutions 

when compared to PSO, GA and other algorithms [87, 112, 124]. As a result, SA is not widely used in 

optimizing HRES. Combining SA with a search algorithm can be done to take advantage of SA’s 

ability to avoid being trapped in local optima. A combination of SA with CS and HS gives DCHSSA. 

DCHSSA generates more accurate solutions in sizing HRES in comparison with DHSSA and DSA 

[110]. TS has the ability of avoiding being trapped in the local optima. Nevertheless, TS requires big 

number of simulations and has to begin from a feasible solution. The authors in [109] determined that 

combining TS and SA overcomes these limitations. SA can be used to determine the initial feasible 

result which is then supplied to TS.  

GA can also avoid being trapped in local optima, but a large number of iterations are required, 

which increases the computational time [124]. Combining an exhaustive search algorithm with GA 

can overcome this limitation. The resulting hybrid algorithm can utilize GA’s good convergence as 

well as its ability to avoid being stuck in local optima and advantage of lower computational time and 

effectiveness of an exhaustive search algorithm in finding optimal results [106]. The long 

computational time of GA can also be overcome by using a stochastic model for example Markov or 

chronology to forecast future state assumed from its current state. The high performance of GA can be 

combined with PSO to improve the accuracy of the solutions and global optimization ability [50]. A 

comparison of ACO with ABC and GA revealed that while optimal cost solutions are identical, ACO 

generated optimal solutions with fewer iterations and lower computational time [93].  

Renewable energy sources are random in nature. As a result, the starting input data for the 

optimization methods are diverged and unbounded. Consequently, the results of the optimization 
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process may not be near the minimum global solutions. Sanchez et al. [85] assessed the PSO technique 

in optimally sizing HRES. For random initial conditions, PSO has provided optimal values near the 

global optimal solutions. Therefore, it is highly recommended to use PSO to optimize HRES with 

unbounded random initial conditions. Using a combination of algorithms can compensate for decay in 

population diversity and avoid being trapped in local optima. 

2.5. Summary 

In this chapter, we first provided a literature review on the research that has been done on different 

configurations of HRES based on wind and solar RES. This followed by covering different evaluation 

indicators such as economic, reliability, social and environmental that are used for defining objective 

functions for optimally sizing HRESs. Finally, different solvers that have been used for obtaining 

optimum solutions in SOO and MOO problems were discussed and compared. This includes classical 

techniques, modern techniques, hybrid techniques and software tools.  
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 : MATHEMATICAL MODELLING  Chapter 3

3.1. Introduction 

Classical techniques, especially those that are fundamentally based on searching the whole design 

space with iterative methods, can be utilized to find the solution of most optimization problems.  

However, the optimization of HRESs consisting of solar PVs and wind turbines is more complicated, 

and classical methods show some inadequacies in finding optimum solutions. Contemporary 

algorithms based on learning strategies provide more reliable optimal solutions. The majority of these 

algorithms are nature-inspired algorithms. In cases that meteorological data are not available, hybrid 

algorithms are better options for estimating such data and optimizing the problem. However, in this 

research, we have access to the required meteorological data and so we only use solvers to find the 

optimum solutions. 

GA and PSO are widely used to optimally size HRESs. GA can avoid being trapped in local 

optima, but a large number of iterations are required, which increases its computational time. PSO, on 

the other hand, has less computational complexity and, at the same time, shows a good performance in 

three-dimensional coordinate problems, such as the one we have in hand in this research. Therefore, in 

this study, GA and PSO are employed to optimally size the HRES. In this chapter, we first provide an 

overview of GA and PSO, followed by providing mathematical models for different renewable energy 

sources of the PV-wind turbine-BS HRES.  

3.2. Genetic Algorithm 

GA is an optimization technique that is used to optimize constrained and unconstrained problems 

on the basis of the process of natural selection. GA does not use gradient information and as such, 

non-differentiable functions and functions with many local optima can be solved using GA. In GA, 

each individual in the population represents a possible solution to the optimization problem. A fitness 

value is assigned to every individual representing its goodness as a solution. Individuals who are 

extremely fit are given a chance to reproduce with other members of the population by cross breeding. 

The resulting offspring has features of each parent. The individuals with the lowest fitness are unlikely 

to get a chance to reproduce and therefore will die out.   

If the finest individuals of the present population are mated, a new generation having a higher 

proportion of traits from the finest individuals of the preceding generation is produced. Subsequently, 
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over many generations, desired traits are spread throughout the population. Mating the superior 

individuals allows for the exploration of the best regions in the search space. By carefully designing 

the GA, the population will converge to the best solution of the problem. 

Initially, a representation of the optimization problem is defined. A random process is then used to 

generate the starting population of strings. Thereafter, a set of operators are employed to generate 

consecutive populations that improve them over time. These operators are known as the selection 

operator, crossover operator and mutation operator. Figure 3-1 shows the flowchart of GA.  
 

Figure  3-1: Flowchart of GA 

3.2.1. Selection Operator 

The selection process selects the optimal candidates and discards all the other solutions. The 

objective function value is used to make the selection. The solutions to be kept are determined and 

allowed to be reproduced. Also, the unfit strings are eliminated to keep the size of the population 

constant. Functions of the selection operator are as follows: 

Start 

Initialize 

Evaluate Solutions 

Optimum? 

Stop  

Mutation 

Crossover 

T = T + 1 
Selection  

T=0 

NO 

YES 
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• Identify the optimal candidates in a population 

• Replicate optimal candidates 

• Eliminate bad candidates and replace them with the optimal candidates 

The objective function is used to assign a measure of performance, known as the fitness score, to 

each individual according to a specific set of parameters. The fitness function converts that measure of 

performance into an assignment of reproductive chances. The assessment of one string expressing a 

set of parameters is independent of the assessment of any other string. However, the fitness of that 

string is always defined relative to other individuals in the current population.  

In GA, fitness score is determined as 𝑓𝑖 𝑓𝐴⁄  where 𝑓𝑖 is the assessment related to string 𝑖 and 𝑓𝐴 is 

the average assessment of the entire string population. Selection in GA can be implemented using 

different algorithms including tournament selection, roulette wheel selection, rank selection, and 

steady state selection.  

In tournament selection, a few individuals play many tournaments and then individuals are selected 

at random. The best solution of the first round is chosen for the next generation. Changing the 

tournament size can adjust the selection pressure. If the tournament consists of many individuals, the 

likelihood of selecting weaker individuals is low. Hence, the worst solution will not have copies, while 

the best solution will have two copies. 

In roulette wheel selection, a fitness score is used to select parents. The worse chromosomes (bad 

solutions) have less chance of being selected, while the better chromosomes (best solutions) have a 

higher chance of being selected. The bad solutions are represented by the smaller sectors in the 

roulette wheel and the better solutions by the larger sectors as is shown in Figure 3-2. The arrow in the 

diagram represents the selection point. The larger sectors (best solutions), therefore, have a higher 

chance of being selected. 
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Figure  3-2: Roulette selection wheel 

In the rank selection, the population is first sorted and ranked according to the fitness value. Each 

chromosome is assigned a selection probability based on its rank. Rank selection prevents premature 

convergence and overcomes scaling problems such as stagnation. Rank selection is more robust than 

other methods. The sum of ranks is first computed after which the selection probability of each 

individual is computed. 

In steady state selection, some of the chromosomes, which possess superior traits, are used for 

generating new offspring in every successive generation. A few of the chromosomes having fewer 

desirable traits are discarded and replaced with the new offspring. The rest of the population is passed 

onto the next generation without going through the selection process. 

3.2.2. Crossover Implementation 

Initially, the selection operator is used to generate optimal strings from the current population. The 

crossover operator is then applied to generate new solutions form the optimal strings of the previous 

population. A pair of offspring is produced by mixing elements of two parents resulting in an 

exchange of gene information. The information of the elements is encoded into a series of strings to 

represent a particular solution.  

The most commonly used method for encoding is binary encoding. The string of 0s and 1s 

represent a chromosome and each location on the chromosome corresponds to a specific trait of the 

optimization problem. An example of binary encoding for two variables is given in Figure 3-3. 
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1 1 0 1 0 0   0 1 1 0 1 0 

 

 

Decoded values:  52      26 

 

Figure  3-3: Binary encoding in GA   

Thereafter, two solution strings from the mating pool are randomly selected. Parts of these strings 

are swapped between the two strings. The point of selection is taken at random. In order for a solution 

to go for crossover, a probability of crossover is introduced so as to give freedom to an individual 

solution. 

The best individuals will most likely be selected many times in a generation; bad individuals may 

not be selected at all. After two parents have been selected, their chromosomes are integrated, 

generally by making use of crossover and mutation. Crossover is not normally applied to every pair of 

individuals chosen for mating. Not all chromosome pairs selected for mating experience crossover, the 

chance of crossover being applied is 0.6 to 1.0.   Offspring are duplicated from the parents if crossover 

is not applied. This allows each individual an opportunity of passing on its genes without the 

interference of crossover. 

3.2.3. Mutation Operator  

Mutation is the random alteration of string values into the solution string of the population. 

Mutation has the effect of maintaining population diversity. While crossover is primarily used 

to search for the optimal solution, mutation can also help to achieve this purpose. Figure 3-4 

illustrates how mutation occurs on the fourth gene of the chromosome. In binary mutation, the 

operator changes a 0 to a 1 or vice versa. Steady convergence is achieved by making the probability of 

mutation closer to zero. 

 

1st variable 2nd variable 
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1 1 0 1 0 0 0 1 1 

   Before mutation  

1 1 0 0 0 0 0 1 1 

   After mutation 

Figure  3-4: Mutation in GA 

When crossover is complete, the mutation operator can then be utilized separately on individual 

offspring. Each gene is randomly altered with a low probability. The conventional view is that 

crossover is more significant than mutation for the fast exploration of the search region. Mutation 

guarantees that every point in the search region gets an opportunity to be explored. 

In every iteration, the fitness of the above average individuals in each generation increases towards 

the optimal value. If 95% of individuals in a population share a gene, the gene is said to have 

converged. The population converges when all of the genes have converged. The fitness approaches 

the optimal individual when the population converges.  

GA will always be prone to stochastic errors. Genetic drift is one of such problems. Even if there is 

no selection pressure (i.e. a constant fitness function), the individuals will still converge to some point 

in the search region. This occurs as a result of the accumulation of stochastic errors. A predominant 

gene in the population is likely to become more predominant in the next generation. Sustaining such 

dominance over many successive generations, in a finite population will result in the gene spreading to 

all members of the population. When a gene has converged in this manner, it is fixed. This means no 

new genes can be introduced by crossover. Similarly, as generations proceed, each gene eventually 

becomes fixed. The rate of genetic drift consequently gives a lower bound on the rate at which a GA 

can converge towards the optimal solution. In a case where GA has to utilize gradient information in 

the fitness function, the fitness function should supply a slope adequately large to prevent any genetic 

drift. Increasing the mutation rate can reduce the rate of genetic drift.  Nevertheless, the search 

becomes effectively random should the mutation rate become too high, therefore the gradient 

information in the fitness function is not utilized. Elitism is also a method to preserve the population 

         

Before mutation 
After mutation 
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pool. Elitism protects the best solutions from being destroyed by crossover and mutation and is 

defined in percentage or in number. The typical GA procedure is as follows: 

 
1. Select starting population 
2. Set a fitness basis 
3. Carry out elitism  
4. Carry out selection 
5. Carry out crossover 
6. Carry out mutation 

3.3. Particle Swarm Optimization  

PSO is a stochastic optimization algorithm based on the behaviour of a population of some 

creatures like a flock of birds or school of fish. The swarm is made up of particles that have random 

velocities, and each particle represents a possible solution to the optimization problem. PSO is 

intuitive, simple, easy to implement, and has wide adaptability to various kinds of functions. 

PSO determines the optimal solution by moving the particles through the solution space. The 

application of PSO is quite simple and straightforward, requiring just a few lines of programming 

code. The mathematical operators in PSO are simple, and as such, PSO is computationally economical 

with regard to both speed and memory requirements. PSO possesses features of both evolutionary 

strategies and GA. As a matter of fact, PSO does not require the differentiation of the objective 

function, and it offers fast computing time and simplicity and ease of being programmed. Combining 

PSO with other algorithms can eliminate being stuck in local optima and improve its performance. 

PSO has experienced many enhancements since being presented in 1995. Newer modifications of 

PSO include chaotic and fuzzy PSO. PSO can be hybridized with other algorithms, such as with GA, 

simulated annealing, ant colony algorithm, Tabu search, harmonic search and artificial bee colony. In 

PSO, the particles are observed to follow a common approach in searching for food. Individual 

particles use their experiences and those of other particles to alter their search path. 

The position and velocity of particles in PSO are updated based on the changes in environment to 

meet the stipulation of quality as well as closeness. The position of the particles is updated every 

iteration. The iteration index in PSO is denoted as 𝑡′ where  

𝑡′ = 1, 2, … , 𝑡𝑚𝑚𝑚
′  and 𝑡𝑚𝑚𝑚

′  is the maximum number of iterations, which is adjusted by the user. The 

particles progress towards better positions in the search space. Initially, a particle population is 

generated randomly in the search space. Each particle is then able to use memory to navigate through 
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the search space in search of a better position than the present one. The particles are able to memorise 

their best experience, 𝑝𝑝𝑝𝑝𝑝, and best experience of the entire population, 𝑔𝑔𝑔𝑔𝑔. During each 

iteration, 𝑡′, the position of each particle is updated as follows: 

𝑣𝑗(𝑡′ + 1) = 𝑤(𝑡′)𝑣𝑗(𝑡′) + 𝑐1𝑟1�𝑝𝑝𝑝𝑝𝑝𝑗(𝑡′) − 𝑥𝑗(𝑡′)� + 𝑐2𝑟2�𝑔𝑔𝑔𝑔𝑔(𝑡′) − 𝑥𝑗(𝑡′)�                          (3.1) 

𝑥𝑗(𝑡′ + 1) = 𝑣𝑗(𝑡′ + 1) + 𝑥𝑗(𝑡′)                                                                                                                     (3.2) 

𝑥𝑗   : Particle’s position 

t′ = 1, 2, … , tmax′  : Iteration index 

𝑗 = 1,2, … ,𝑁𝑝  : Particle’s index 

𝑣𝑗   : Particle’s velocity 

𝑟1and 𝑟2  : Random numbers with uniform distribution form [0 1] 

𝑐1and 𝑐2  : Individual and social learning factors respectively   

𝑤   : Inertia weight 

Inertia weight is adaptive and offers a good balance between local and global searches. A small 

inertia weight results in a local search while a large one results in a global search. In many cases the 

𝑤 value is updated as the iterations proceed as follows: 

𝑤(𝑡′) = 𝑤𝑚𝑚𝑚 −
𝑤𝑚𝑚𝑚 − 𝑤𝑚𝑚𝑚

𝑡𝑚𝑚𝑚
′ × 𝑡′                                                                                                              (3.3) 

𝑤𝑚𝑚𝑚  : Final inertia weight  

𝑤𝑚𝑚𝑚  : Initial inertia weight  

Additionally, there are no restrictions of particle movement. Particles are free to search for the best 

solution in the search region. Figure 3-5 illustrates PSO flowchart.  
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Figure  3-5: Flowchart of PSO  

In summary: PSO has particles, which are possible solutions to an optimization problem. Each 

particle has the capability of memorizing its best position together with best position of the other 

members of the population. In addition, each particle has its own velocity. The particles are able to 

change their velocity and position based on the changes in the search region until the best solution is 

attained. Objective functions are used to connect various dimensions of the search space.  

There are two types of PSO; local and global types. In local type, individual particles only track 

their best position referred to as pbest while in the global type, particles track pbest and the global best 

referred to as gbest. In many PSO methods, particles search for solutions largely due to chaoticity. 

These variations of PSO provide a thorough exploration of the search region compared to typical PSO. 

For instance, Foragers follow a Levy distribution and Richer and Blackwell in 2006 used this 

distribution to develop Levy PSO (PSOlevy), which showed better performance compared to a standard 
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PSO. The Levy PSO overcomes the drawback of premature convergence and getting stuck in local 

optima. In PSOlevy, (3.1) is replaced with the following equation: 

𝑣𝑗(𝑡′ + 1) = 𝑤(𝑡′)𝑳𝑳𝑳𝑳𝑗(𝑡′) + 𝑐1𝑟1�𝑝𝑝𝑝𝑝𝑝𝑗(𝑡′) − 𝑥𝑗(𝑡′)� + 𝑐2𝑟2�𝑔𝑔𝑔𝑔𝑔(𝑡′) − 𝑥𝑗(𝑡′)�                  (3.4) 

𝑳𝑳𝑳𝑳  : Vector with elements, 𝑙𝑙, produced by the Levy distribution  

The Levy distribution is generated by 

𝑙𝑙 =
𝑢

|𝑣|
1
𝛽�

                                                                                                                                                           (3.5) 

Where 𝑢 and 𝑣 are Gaussian random variables with the probability density functions of  

𝑢~𝑁(0,𝜎𝑣2) ∶ 𝜎𝑢 = �
Γ(1 + 𝛽)𝑠𝑠𝑠(𝛽𝛽 2⁄ )

Γ((1 + 𝛽) 2⁄ )𝛽2(𝛽−1) 2⁄ �
1 𝛽⁄

                                                                                   (3.6) 

𝑣~𝑁(0, 1)                                                                                                                                                            (3.7) 

Γ  : The standard gamma function  

𝛽  : An adjustable parameter (usually taken as 1.5) 

As it is seen, in PSOlevy, a Levy method replaces the velocity memory. By employing Levy flight, 

particles have a possibility of making lengthy jumps even in their final iterations, which enhances the 

original PSO global search capability.  

For MOO problems, individual functions can be optimally sized, separately. However, it is likely 

that the objectives are in conflict, and therefore, it is highly unlikely that all objectives will be satisfied 

by the same solution. Consequently, Pareto optimal results can only be determined. In GA, there is 

bidirectional sharing of information between chromosomes during the crossover operation. However, 

in PSO algorithms, particles only receive information about 𝑔𝑔𝑔𝑔𝑔 or 𝑝𝑝𝑝𝑝𝑝. As a result, selecting 

𝑔𝑔𝑔𝑔𝑔 and 𝑝𝑝𝑝𝑝𝑝, is the main problem of MOO. Selecting 𝑝𝑝𝑝𝑝𝑝 follows an identical principle as 

standard PSO algorithm; however, 𝑔𝑔𝑔𝑔𝑔 is found based on the Pareto dominance.  

3.4. Modelling of the Renewable Energy Sources 

This study considers a grid-connected HRES employing PV and wind turbine. In this section, we 

provide the mathematical models for the components of this HRES. 
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3.4.1. Wind Turbine Model 

A wind turbine converts kinetic energy of the wind into electrical energy. The power output of a 

wind turbine, 𝑃𝑊𝑊, can be calculated using wind speed, 𝑣, as [125]: 

𝑃𝑊𝑊(𝑣) =

⎩
⎪
⎨

⎪
⎧

0                                  𝑣 < 𝑣𝑐𝑐
𝑃𝑟𝑟𝑟𝑟𝑟 ×

𝑣 − 𝑣𝑐𝑐
𝑣𝑟 − 𝑣𝑐𝑐

𝑣𝑐𝑐 ≤ 𝑣 < 𝑣𝑟
𝑃𝑟𝑟𝑟𝑒𝑒                       𝑣𝑟 ≤ 𝑣 < 𝑣𝑐𝑐
0                                       𝑣 ≥ 𝑣𝑐𝑐

                                                                                          (3.8) 

𝑣𝑐𝑐  : cut in speed 

𝑣𝑟  : rated speed  

𝑣𝑐𝑐  : cut-out speed 

𝑃𝑟𝑎𝑡𝑡𝑡  : rated power of the wind turbine 

According to (3.8), the power output of wind turbine is zero for wind speeds below 𝑣𝑐𝑐 and 

above 𝑣𝑐𝑐. We assume that as the wind speed increases from 𝑣𝑐𝑐, the wind turbine output power 

increases linearly according to the wind speed, 𝑣, until reaches 𝑣𝑟. The wind turbine generates rated 

power for wind speeds between 𝑣𝑟 and 𝑣𝑐𝑐. Figure 3-6 shows the wind turbine output curve. 

 

Figure  3-6: Wind turbine output curve 
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3.4.2. Solar Photovoltaic Model 

A solar PV converts solar energy to electrical energy. Area, efficiency, solar irradiation and 

atmospheric temperature are factors that affect the output power of a PV generation system. The PV 

system is assumed to be equipped with a MPPT to maximize power generation of the PV system. The 

PV system’s hourly output power can be calculated as 

𝑃𝑃𝑃(𝑡) = 𝐴𝑃𝑃𝜂𝑃𝑃𝐼(𝑡)�1 − 0.005(𝑇0(𝑡) − 25)�                                                                                         (3.9) 

𝐴𝑃𝑃   : The panel area in m2 

𝜂𝑃𝑃  : The panel efficiency 

𝐼   : The solar irradiation in kW/m2   

𝑇0   : The atmospheric temperature in ℃   

3.5. Summary 

In this chapter, an overview of the GA and PSO was given. GA and PSO are selected as they are 

widely used to optimally size HRESs. GA can avoid being trapped in local optima, but a large number 

of iterations are required, which increases its computational time. PSO, on the other hand, has less 

computational complexity and, at the same time, shows a good performance in three-dimensional 

coordinate problems, such as the one we have in hand in this research. Thereafter, the renewable 

energy sources used in our considered HRES were modelled, which were the wind turbine and solar 

PV.  
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 : METHODOLOGY  Chapter 4

4.1. Introduction 

This chapter covers the operation of the considered hybrid energy system and the definition of an 

optimization problem to identify the system’s optimal sizing with respect to the size of the employed 

RES and BS. The hybrid energy system, which we consider in this study, is shown in Figure 4-1. It 

consists of PV arrays, wind turbines and battery storage systems. The selected wind turbines are 

considered to be equipped with internal rectifiers and battery storages. As a result, the output of the 

wind turbine is in the form of DC power. The output of PV arrays, wind turbines and BS are all 

integrated into a DC bus. Although it is common that a grid-connected hybrid system injects its 

excessive generated power back to the grid, the eThekwini municipality has not finalized its small-

scale embedded generation (SSEG) systems’ tariffs. Therefore, in this research, instead of injecting the 

excessive power generated by RES back to the grid, we try to find the best solution to store the energy 

within the system or dump it if necessary.  

Figure  4-1: Block diagram of the grid-connected hybrid RES 
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4.2. Meteorological Data 

The meteorological data used in this research, which includes global horizontal irradiance (GHI), 

temperature and wind speed, are obtained from the Southern African Universities Radiometric 

Network (SAURAN) database [126, 127]. The collected data are from the University of KwaZulu-

Natal, Howard College Campus station, where its geographical location is given in Table 4.1. We used 

the average hourly data (8760 hours).  

Table  4-1. THE METEOROLOGICAL STATION LOCATION 

Location Latitude Longitude Elevation Topography 
Durban, South 

Africa 
-29.87097931 30.97694969 150 m Roof of Desmond 

Clarence building 

 

Figure 4-2 (a) shows the annual hourly GHI data of the given station. The sensor, which is used for 

the GHI measurements, was Kipp & Zonen CMP11 pyranometers. The histogram of the annual hourly 

GHI data and their corresponding statistics are given in Figure 4-2 (b) and Table 4-2, respectively. As 

is seen, the average hourly GHI for Durban is 189 𝑊/𝑚2 with the peak value of 1116 𝑊/𝑚2. 

Considering there is no solar radiation during the night, the average hourly GHI during daytime can be 

estimated as 323 𝑊/𝑚2.  

 

                                 (a)                                     (b) 

Figure  4-2: Annual Global Horizontal Irradiance (GHI) data 
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Table  4-2. GHI STATISTICS (W/m2) 

mean std min 25% 50% 75% max 

189.02 281.62 0.0 0.0 4.51 323.73 1116.0 

 

According to equation (3.9), in addition to the GHI data, the temperature data are also needed to 

estimate the PV panels’ output power. Figure 4-3 (a) shows the annual temperature data of the given 

station, and Figure 4-3 (b) shows their histogram. The statistics for the annual temperature data are 

also given in Table 4-3, which shows the average hourly temperature of 20.65 ℃, a maximum 

temperature of 34.99 ℃ and a minimum of 10.63 ℃. 

 

 

(a)                                        (b) 

     Figure  4-3: Annual temperature data 

 

Table  4-3. TEMPERATURE STATISTICS ( ℃) 

mean std min 25% 50% 75% max 

20.65 3.43 10.63 18.33 20.75 23.10 34.99 

 

Figure 4-4 (a) shows the annual wind speed data of the given station. According to equation (3.8), 

these data will be used to estimate the output power of the wind turbines. Moreover, the histogram of 
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the annual wind speed and their statistics are shown in Figure 4-4 (b), and Table 4-4, respectively. The 

average hourly wind speed for Durban is 2.16 𝑚/𝑠 with the peak value of 10.95 𝑚/𝑠. These values 

are important in selecting a wind turbine with suitable cut-in and rated wind speeds specifications.  

   

                                   (a)                                    (b) 

Figure  4-4: Annual wind speed data 

 

Table  4-4. WIND SPEED STATISTICS (m/s) 

mean std min 25% 50% 75% max 

2.16 1.60 0.00 0.90 1.94 3.15 10.95 

  

4.3. Tariff Rates 

Tariff rates that are used in this study were obtained from eThekwini website [128]. Table 4-5 

shows the eThekwini tariffs structure from 2008 to 2020 for single-phase residential users. The rates 

are in c/kWh. It can be seen from this table that tariffs increase over the years with an average annual 

increase rate of 11.3%. Figure 4-5 shows the graphical representation of the tariff structure from 2008 

to 2020 and the extrapolation for 2020 to 2030. Cubic (3rd order) polynomial trendline was used, as 

the best-fitted line, to fit the data from 2008 to 2020 and to predict tariff till 2030. The prediction gives 

an annual increase of 11.8%, which is in-line with the historical tariff increase. The predicted tariff 

rates are shown in Table 4-6. 
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Table  4-5. ETHEKWINI SINGLE PHASE RESIDENTIAL TARIFF 

 
YEAR Single-Phase Residential Tariff 

(c/kWh) 
2008 58.0807 
2009 73.2979 
2010 90.16 
2011 106.83 
2012 117.29 
2013 124.375 
2014 131.46 
2015 147.5 
2016 158.78 
2017 161.77 
2018 174.35 
2019 197.14 
2020 209.4 

 

Figure  4-5: Single phase residential tariff in eThekwini municipality  
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Table  4-6. ETHEKWINI SINGLE PHASE RESIDENTIAL PROJECTED TARIFF 

 
YEAR Single-Phase Residential Tariff estimation (c/kWh) 
2021 231.6743431 
2022 256.8655806 
2023 286.6790051 
2024 321.7036421 
2025 362.5285158 
2026 409.7426529 
2027 463.9350762 
2028 525.6948128 
2029 595.6108861 
2030 674.2723217 

4.4. Load Profile  

In this study, the size of the PV, wind turbine and battery storage components are determined, so 

that the HRES can meet the load requirements at the minimal cost. The data for the load profile has 

been obtained from the study that has been funded by the South African National Energy 

Development Initiative (SANEDI) and done by Stellenbosch University and the University of Cape 

Town on profiling Domestic Electrical Load [129]. We use the data that was collected from an 80m2 

residential building in Durban. 

Figure 4-6 shows the typical daily load profile for a high-consumption and a low-consumption 

month. The load demand is higher in winter compared to summer as the days are shorter and more 

electricity is used to heat-up homes. Load demand is higher around 06:00 to 07:00 and more uniform 

during daytime hours. Again, it peaks up around 18:00 to 20:00, which are the highest load demand 

hours in both winter and summer months. This is due to more activities that are being done during 

these hours such as cooking, watching TV and having more lights on. The annual load profile of the 

given building is shown in Figure 4-7 and its corresponding statistics are recorded in Table 4-7. As it 

is seen, the average hourly load consumption is 0.68 kWh with the peak value of 2.55 kWh. These are 

important information for selecting the right sized inverter.  
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Figure  4-6: Typical daily load profile 

 

(a)                                                      (b)                                     

Figure  4-7: Annual load profile 

 

Table  4-7. LOAD STATISTICS (kWh) 

mean std min 25% 50% 75% max 

0.68 0.32 0.06 0.46 0.65 0.85 2.55 
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4.5. PV Panels 

Based on equation (3-9), the solar irradiation and temperature data have been used to simulate the 

output power of three different PV panels: Cinco 50W, Cinco 100W, and Cinco 200W. The annual 

output power for each panel is shown in Figures 4-8. The specifications of these panels together with 

their current price on the market are given in Table 4.8 [130]. As it is seen, the output power increases 

by the increase in GHI and temperature until it reaches its maximum value for each panel. 

 

(a) (b) 

(c) 

Figure  4-8: Annual PV power output per panel: (a) Cinco 50W, (b) Cinco 100W, 
(c) Cinco 200W 
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Table  4-8. PV PANELS PARAMETERS 

Maximum Power 
at STC (Pmax)  

50W 100W 200W 

Optimum 
Operating Voltage 

17.8V 36.6V 36.45V 

Optimum 
Operating Current  

2.81A 2.73A 5.488A 

Open-Circuit 
Voltage  

22.00V 45.38V 44.37V 

Short-Circuit 
Current  

3.01A 2.92A 6.01A 

Solar Module 
Efficiency (%)  

14.01 14.01 15.67 

Dimension (L × W 
× D)  

695 mm × 510 mm 
× 25mm 

1020 mm × 680 mm 
× 30mm 

1,580 mm × 808 
mm × 35 mm 

Weight  5kg 10kg 13.5kg 
Operating 
Temperature  

-40˚C to 85˚C -40˚C to 85˚C -40˚C to 85˚C 

Maximum System 
Voltage (DC) 

1000 1000 1000 

Maximum Series 
Fuse Rating  

10A 10A 15A 

Power Tolerance +/-3% +/-3% +/-3% 
Cell Type Poly Poly Mono 
Number of Cells 36 Cell  72 Cell 72 Cell 
Warranty  10 years power 

warranty (90% 
yield) 
25 years power 
warranty (80% 
yield) 

10 years limited 
product warranty, 
(90% yield) 
25 years power 
warranty (80% 
yield) 

10 years limited 
product warranty, 
(90% yield) 
25 years power 
warranty (80% 
yield) 

Price:  R 632.99 R999.01 R 1,890.00 

According to the panel specifications, the generated power by these panels has a 90% yield in 10 

years and 80% in 25 years. To reflect this in our simulation, we consider a linear decline in the 

performance of PV panels in their lifetime, and so we modify equation (3-9) to  

𝑃𝑃𝑃(𝑡) = (1 − 0.00067𝑚)𝐴𝑃𝑃𝜂𝑃𝑃𝐼(𝑡)�1 − 0.005(𝑇0(𝑡) − 25)�                                           (4.1) 

where 𝑚 is the number of months in the system’s lifetime. This means after 120 months (10 years), 

the coefficient value is equal to 1 − 0.00067 × 120 = 0.9 and after 300 months (25 years) is equal to 

0.8. 
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4.6. Wind Turbine 

 We used the characteristics of a Kestrel e160i-600W wind turbine in our simulation. These 

characteristics are given in Table 4.9. The annual output power of this turbine based on the wind speed 

data given in Figure 4-4 is calculated by equation (3.8) and is shown in Figure 4.9. It can be seen that 

for the location of study, Durban, the amount of generated power by the wind turbine is lower in 

winter compared to summertime, and so we cannot benefit from wind and solar complementary 

characteristics in this sense. 

Figure  4-9: Annual wind turbine output 

Table  4-9. WIND TURBINE PARAMETERS 

Small Wind Turbine Class:  II 
Maximum Power:  700W 
Rated Output:  600W 
Rated Wind Speed:  13.5m/s 
Cut-in Wind Speed:  2.5m/s 
Generator Type:  Permanent-magnet, Axial flux brushless 
Rotor Diameter:  1.6m 
Number of Blades:  5 
Blade Material:  Fibreglass 
Tower Type:  Monopole  
Over-speed Protection:  Rotor Turbulence 
Controller Type:  Charge or Dump 
Output Voltage:  24, 48, 110 and 220 Vdc 
Application:  Battery Charging, Grid Tie, Hybrid 
Price:  R 21,968.00 
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4.7. Battery Storage 

The output power from the PV panels and wind turbine is used to charge the battery storage 

system. The BS is used to store the excess power generated by RES when power production exceeds 

load demand. The BS provides power to the load during times when the HRES generates insufficient 

power. If the power from the RES and BS still does not meet load requirements, then power is 

purchased from the utility grid.  

There are various BS technologies available, which include lithium ion, vanadium-redox, sodium-

sulphur and lead-acid. Lithium ion batteries offer longer lifespan, more storage capacity (depth-of 

discharge of 100%) and no maintenance. However, all these benefits come at a much larger cost. 

Vanadium-redox batteries have exceptionally large cycle life, average energy density with no self-

discharge and moderate cost. Sodium-sulphur batteries offer high cycle life, high energy density and 

average cost. Lead-acid batteries are more mature and the least expensive of these technologies. Lead-

acid batteries come in two types; flooded lead-acid and sealed lead-acid batteries. Flooded lead-acid 

batteries can be charged daily but release a gas as a by-product, so they require a well-ventilated 

space. These batteries require regular maintenance to replace the water lost in the form of the emitted 

gas. Sealed lead-acid batteries do not produce a gas as such they do not need to be refilled like flooded 

lead-acid batteries. Consequently, they require minimal maintenance and can be installed in a variety 

of locations. Additionally, sealed lead-acid batteries do not self-discharge as rapidly if unused over a 

long period of time. There are two types of sealed lead-acid batteries, namely, absorbent glass mat 

(AGM) and gel. The AGM battery offers some advantages which include; spill proof, can withstand 

extreme temperatures, lower self-discharge rate, requires less maintenance and are vibration and shock 

resistant. Despite the relatively poor performance of lead-acid batteries (depth-of-discharge of 50%) 

compared to the lithium-ions, their affordability and availability motivated for the use of this 

technology in this project. The battery type used in this study is a SonX 100Ah 12V AGM, which we 

use them in a bundle of four to be suitable for operating with the selected inverter. The battery 

parameters are shown in Table 4.10. We consider a maintenance costs to replace the batteries when 

their lifetime has been reached. 
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Table  4-10. BATTERY PARAMETERS 

Battery  SonX 100Ah 12V AGM 
Cells per Unit  6 
Voltage per Unit  12V 
Capacity  100Ah@10hr-rate to 1.80V per cell @ 25°C 
Max. Discharge Current 1000A (5 sec) 
Internal Resistance  5mΩ 
Recommended Maximum Charging Current 
Limit 

30A 

Equalization and Cycle Service  14.6Vdc to 14.8 Vdc / unit Average at 25°C 
Self-Discharge  VRLA batteries can be stored for more than 6 

months at 25°C. Self-discharging ratio less than 
3% per month at 25°C 

Terminal  Terminal F5/F12 

Operating Temperature Range 

 

 

Discharge  (-) 20°C to 60 °C 
Charge  0°C to 50°C 
Storage  (-) 20°C - 60°C 
Normal Operating Temperature Range  25°C +/- 5°C 
Float charging Voltage  13.6Vdc to 13.8 Vdc / unit Average at 25°C 

Container Material  A.B.S. (UL94-HB), Flammability resistance of 

UL94-V1 can be available upon request 

Dimensions (L × W × H)  32,8cm × 17,2cm × 22, 2 cm 

Weight  30.0 Kg 
Price  R 3,193.00 

4.8. Inverter 

Based on the configuration of the proposed HRES and by considering the load profile, a 3kW 

hybrid inverter can provide sufficient power. The specification of the selected hybrid inverter is given 

in Table 4.11.  

Table  4-11. INVERTER PARAMETERS 

 
Model:  RCT-AXPERT 3K - 48V 
Rated Power:  3000VA/3000W 
Input Voltage:  230 VAC 
Frequency Range:  50 Hz/60 Hz (Auto sensing) 
Output  
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AC Voltage Regulation:  230 Vac ± 5% 
Surge Power:  6000VA for 5 sec 
Efficiency (Peak):  93 % at Line Mode, 90% at Battery Mode 
Transfer Time:  10 ms (For Personal Computers); 20 ms (For 

Home Appliances) 
Waveform:  Pure sine wave. 
Battery  

Battery Voltage:  48 Vdc 

Floating Charge Voltage:  27 Vdc 

Overcharge Protection:  31 Vdc 

Solar Charger & AC Charger  

Solar Charger Type:  MPPT 

Maximum PV Array power 900 W 

Maximum PV Array Open Circuit Voltage:  102 Vdc 

Maximum Solar Charge Current:  18 A 

Maximum AC Charge Current:  15 A 

Maximum Charge Current:  33 A 

Physical  

Dimension, D × W × H (mm):  100 × 272 × 355 

Net Weight (kgs):  7.4 

Price:  R 8,670 

4.9. Utility Grid 

The utility grid will guarantee the load demand if the hybrid generating system cannot meet load 

demand. The utility grid power at any given time can be calculated as 

𝑃𝑔𝑔𝑔𝑔(𝑡) = 𝑃𝐿(𝑡) −�[𝑃𝑊𝑊(𝑡),𝑃𝑃𝑃(𝑡),𝑃𝐵𝐵(𝑡)]                                                                          (4.2) 

𝑃𝑔𝑔𝑔𝑔  : The power that is supplied to or by the utility grid 

𝑃𝐿  : The load power demand 

𝑃𝑊𝑊  : The power that the wind turbine supplies 

𝑃𝑃𝑃  : The power that the PV arrays supplies 

𝑃𝐵𝐵  : The power that the BS supplies    



48 

 

4.10. System Operation 

Our considered HRES uses the energy produced by the PV and WT systems as well as the energy 

stored in BS to satisfy the load demand with the option of purchasing insufficient energy from the 

utility grid. At any given time, a comparison between the load demand and energy produced by RES is 

made. If the demand is less than the energy produced by RES, the excess energy will be used to charge 

the BS, and upon the BS reaches its full capacity, the excessive power will be dumped. On the 

condition that the load demand is greater than the energy produced by RES, the system uses the power 

stored in the BS to cover a part or all the power deficiency. If the BS does not contain sufficient 

energy then the deficit energy should be purchased from the utility grid.  

Figure 4-10 shows the system operation flowchart. 𝑃𝑃𝑃 and 𝑃𝑊𝑊 is the power generated by PV 

panels and wind turbines at time 𝑡. The load demand and BS power at time 𝑡 is represented by 𝑃𝐿 and 

𝑃𝐵𝐵, respectively. The BS can be discharged until its power reaches a minimum value of 𝑃𝐵𝐵_𝑚𝑚𝑚. The 

inverter efficiency is shown by 𝜂.  

 

 

 

 

 

 

 

 

Figure  4-10: System operation flowchart 
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4.11. Proposed Optimization Method 

In this study, the optimization objective is to minimize the cost of the hybrid system such that the 

user would be able to pay back the cost of the system by the amount of money saved over a period of 

time as a result of using RES for generating electricity. There are various cost components involved in 

the system including the initial investment costs, installation costs and operation and maintenance 

costs.  

The power produced by RES is a function of 𝑃𝑃𝑃, 𝑃𝑊𝑊 and 𝑃𝐵𝐵. These values are affected by the 

number of PV panels, wind turbines and BS that have been used in the system. The power produced 

by the RES at time 𝑡 can be determined as  

𝑃𝑅𝑅𝑅(𝑡) = 𝑁𝑃𝑃𝑃𝑃𝑃1(𝑡) + 𝑁𝑊𝑊𝑃𝑊𝑊1(𝑡)                                                                                           (4.3) 

subject to  

0 ≤ 𝑁𝑃𝑃 ≤ 𝑁𝑃𝑃_𝑚𝑚𝑚                                                                                                                            (4.4) 

0 ≤ 𝑁𝑊𝑊 ≤ 𝑁𝑊𝑊_𝑚𝑚𝑚                                                                                                                          (4.5) 

𝑁𝑃𝑃  : The number of PV panels 

𝑃𝑃𝑃1(𝑡)  : The power produced by each PV panel 

𝑁𝑊𝑊  : The number of wind turbines 

𝑃𝑊𝑊1(𝑡)  : The power produced by each wind turbine 

𝑁𝑃𝑃_𝑚𝑚𝑚  : The maximum number of PV panels  

𝑁𝑊𝑊_𝑚𝑚𝑚  : The maximum number of wind turbines 

A BS can also be considered for the system to store the excess power generated by the RES. The 

excess power at time 𝑡 is calculated by  

𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑡) = 𝜂𝑃𝑅𝑅𝑅(𝑡) − 𝑃𝐿(𝑡)                                                                                                         (4.6) 
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where 𝑃𝐿(𝑡) is the load demand, and 𝜂 is the inverter efficiency.  When the load demand exceeded the 

system’s RES generated power, the BS power can be used to compensate for this deficiency. The 

amount of power stored in the BS is equal to  

𝑃𝐵𝐵(𝑡) = 𝑚𝑚𝑚 {𝜂𝑃𝑅𝑅𝑅(𝑡) − 𝑃𝐿(𝑡),𝑃𝐵𝐵_𝑚𝑚𝑚}                                                                                (4.7) 

The load obtains power primarily from the RES. If the power produced by RES is insufficient then 

the deficit power is obtained from the BS. If the power in the BS is greater than the minimum 

allowable power in the BS, the BS discharges to supply the load. Otherwise, the insufficient energy is 

purchased from the utility grid. The total power of the RES and BS can be modelled as  

𝑃𝑅𝑅𝑅−𝐵𝐵(𝑡) = 𝜂�𝑁𝑃𝑃𝑃𝑃𝑃1(𝑡) + 𝑁𝑊𝑊𝑃𝑊𝑊1(𝑡) + 𝑁𝐵𝐵𝑃𝐵𝐵1(𝑡)�                                                   (4.8) 

𝑃𝑅𝑅𝑅−𝐵𝐵: The total power produced by the RES and BS 

𝑁𝐵𝐵  : The number of BS units 

𝑃𝐵𝐵1 : The power provided by each BS unit 

4.11.1. Cost Function 

We have used the NPV for calculating the cost function. The costs involved in the system is made 

up of the total initial investment cost including installation, total maintenance and operational costs, 

and the total income generated by using the RES for generating electricity. NPV is obtained by 

subtracting the present discount values of the costs from the incomes as  

𝑁𝑁𝑁 = 𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +�𝑁𝑃𝑃𝑂𝑂 −�𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖                                                                    (4.9) 

𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  : The value of initial investment including installation. 

𝑁𝑁𝑁𝑂𝑂  : The net present value of operation and maintenance cost 

𝑁𝑃𝑉𝑖𝑖𝑖𝑖𝑖𝑖  : The net present value of the income generated by using the HRES 

The investment cost is made up of the cost of purchasing PV panels as given in Table 4.8, the cost 

of purchasing wind turbines as given in Table 4.9, the cost of purchasing batteries as given in Table 

4.10 and the cost of purchasing the inverter as given in Table 4.11. Additionally, the investment costs 

include an additional 20% of the component prices for installation. The nominal annual interest and 
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inflation rates used for NPV calculations are given in Table 4.12. The investment costs (inclusive of 

installation) can be calculated as 

𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑁𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝 + 𝑁𝑊𝑊𝑊𝑊𝑝𝑝𝑝𝑝𝑝 + 𝑁𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝 + 𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝� × 1.2                    (4.10) 

𝑃𝑃𝑝𝑝𝑝𝑝𝑝  : The price of a single PV panel  

𝑊𝑊𝑝𝑝𝑝𝑝𝑝 : The price of a single wind turbine 

𝐵𝐵𝑝𝑝𝑝𝑝𝑝  : The price of a single bundle of battery storage 

𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝  : The price of a single inverter  

Table  4-12. CONSIDERED ECONOMIC DATA FOR THE SYSTEM 

 
Yearly operation and 
maintenance costs   

Installation 
Costs 

 Nominal interest 
rate (%) 

Inflation rate 
(%) 

2% of initial purchase costs 20% of initial purchase 
costs 

3.7 4.6 

 

In this study the yearly operation and maintenance costs are taken to be 2% of the initial costs of 

the components as given in Table 4.12. Therefore, the monthly operation and maintenance cost factor 

can be calculated by dividing the yearly percentage by 12 to obtain 0.0017. The net present value of 

operation and maintenance can be determined based by 

𝑀𝑀𝑀𝑀ℎ𝑙𝑙𝑂𝑂 = 0.0017 × �𝑁𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑝 + 𝑁𝑊𝑊𝑊𝑊𝑝𝑝𝑝𝑝𝑝 + 𝑁𝐵𝐵𝐵𝐵𝑝𝑝𝑝𝑝𝑝 + 𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝�          (4.11) 

The money saved as a result of using RES to generate electricity instead of purchasing that from 

the grid is considered as an income for the system. This income is used to recover the initial 

investments and operation and maintenance costs. The monthly power generated by the RES can be 

determined and the income is therefore equal to the product of the power generated by RES and the 

tariff at a given time. The tariff rates for eThekwini municipality from 2008 to 2020 are given in Table 

4.5 and the projected tariffs up to the year 2030 are given in Table 4.6. The income at a given time 𝑡 is 

equal to 

𝐼(𝑡) = 𝑇(𝑡)  × 𝑃𝑅𝑅𝑅−𝐵𝐵(𝑡)                                                                                                              (4.12) 
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𝑇(𝑡) : The tariff at time 𝑡 

The objective of this study is to find the optimal combination of PV, WT, and BS to minimize the 

outcome of equation (4.9). This means that when the value of equation (4.9) is a negative number, the 

sum of the initial investment and the operation and maintenance costs of the system are less than the 

generated income, and hence, using the HRES becomes profitable.  

4.11.2. Constraints 

There are three constraints in this optimization problem, which are on the number of PV panels, 

wind turbines and the BS units. These numbers should be positive integers. Also, the maximum 

number of PV panels should not exceed the available installation area of the proposed site. Therefore, 

these constraints can be listed as 

0 ≤ 𝑁𝑃𝑃 ≤ 𝑁𝑃𝑃_𝑚𝑚𝑚                                                                                                                          (4.13) 

0 ≤ 𝑁𝑊𝑊 ≤ ∞                                                                                                                                    (4.14) 

0 ≤ 𝑁𝐵𝐵 ≤ ∞                                                                                                                                      (4.15) 

where  

𝑁𝑃𝑃_𝑚𝑚𝑚  × 𝐴𝑃𝑃 ≤ 𝐴𝑖𝑖𝑖𝑖                                                                                                                   (4.16) 

𝐴𝑃𝑃  : The surface of a PV panel (m2) 

𝐴𝑖𝑖𝑖𝑖 : Installation area of the considered site (m2) 

The PV panel dimensions considered in this study are given in Table 4.8. 

4.11.3. Optimizers 

GA and PSO have been used to find the optimal solution of equation (4.9) constrained by (4.13) - 

(4.15). GA has been chosen because of its ability to avoid being trapped in local optima. However, it 

requires a large number of iterations, which increases its computational time. PSO, on the other hand, 
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has less computational complexity and at the same time shows a good performance in the three-

dimensional problems, such as the one we have in hand.  

4.11.3.1. GA 

The two main parameters in GA are the crossover and mutation probabilities. Crossover probability 

refers to the likelihood of a crossover being implemented. If crossover is not implemented then the 

resulting offspring are exactly the same as parents, and if 100% chance of crossover is considered then 

all the offspring are due to crossover. The crossover is implemented to increase the good genes in the 

offspring. We consider a 50% crossover probability in our developed GA algorithm. 

Mutation probability refers to the likelihood of mutation being implemented. If mutation is not 

implemented then offspring remain the same as after crossover. On the other hand, if 100% mutation 

is implemented then the entire offspring is changed after crossover. Mutation is implemented 

occasionally to avoid being stuck in local optima. The mutation probability considered in our GA 

optimizer is 10%. 

Another parameter in GA is population size, which refers to the number of individuals in one 

generation. If there are many individuals then the computational time becomes longer, while too few 

individuals result in the search region not being effectively explored. We considered a population size 

of 100. 

We consider no limitation on the maximum number of iterations, however, to increase the speed of 

algorithm, we limit the number of iterations without improvement to 10 iterations. Table 4.13 gives 

the parameters that are used for developing the GA optimizer. 
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Table  4-13. PARAMETERS USED IN THE GA OPTIMIZER 

Parameters Values 

Maximum number of iterations None 

Maximum number of iterations without 

improvement 

10 

Population size 100 

Mutation Probability 10% 

Elite Ratio 10% 

Cross over Probability 50% 

Parents Portion 30% 

Crossover Type Uniform 

4.11.3.2. PSO  

The parameters of PSO algorithm includes the number of particles, n, constants for acceleration, c1 

and c2, and the inertia weight, w. The maximum number of iterations, tmax, and calculated accuracy, 𝜀, 

are also utilized in ending the iteration. The number of particles refers to the number of individuals in 

the population. Increasing the number of particles increases the computational time as well as 

reliability while reducing the number of particles affects the PSO performance. We consider 30 

particles in our PSO optimizer. Table 4.14 gives the parameters that are used for developing the PSO 

optimizer. 

Constants for acceleration refer to acceleration weight in the direction of pbest as well as gbest. If 

the acceleration constant is small then the particles are directed towards a specific area, while a large 

accelerate constant may cause the particles to move quickly and away from the specified area. In 

general, acceleration constants are used to motivate individuals to explore the entire search region. 

This prevents convergence at local optima and improves convergence in the direction of global optima 
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resulting in more efficient determination of the optimal solution. The values selected for c1 and c2 are 

0.5 and 0.3, respectively.  

Inertia weight refers to how the present velocity is affected by the preceding velocity. The zero 

value for w means the particle’s velocity is based on the present pbest and gbest. A small value of w 

will result in local search due to a small velocity, while a large value results in global search due to a 

larger velocity. We selected w equal to 0.9. 

Maximum velocity vmax gives an indication of the search capability of a particle. If vmax is too large 

the particle can overshoot good solutions while a small vmax results in localized search. Both of these 

situations may reduce PSO performance. We consider vmax=1.  

 

Table  4-14. PARAMETERS USED IN THE PSO OPTIMIZER 

Parameters Values 

Maximum number of iterations 100 

Population size 30 

C1 0.5 

C2 0.3 

w 0.9 

In order to apply PSO for optimally sizing the hybrid system, a population of feasible solutions is 

produced and updated by making use of PSO till the optimal solution is determined.  The PSO 

procedure is given as follows: 

Step 1: Initially, a population of 30 solutions (feasible particles) is generated. In sizing the hybrid 

system, individual particle’s position is given by a vector that is made up of three 

elements, 𝑥 = [𝑁𝑃𝑃   𝑁𝑊𝑊  𝑁𝐵𝐵].  
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Step2: An initial velocity is generated for every particle. This velocity is a vector made of      

three elements which are randomly valued.  

Step 3: The objective function value is calculated for each particle.  

Step 4: At the beginning, the particle’s initial position is taken as its pbest and the best particle of 

the population is selected as gbest. gbest is the position of the particle with the lowest cost 

function value. 

Step 5: The velocity of each particle is then updated using (3.1) and the particle progresses       

to a new position in the search space by (3.2). New solution vectors are generated in this step. 

Step 6: If the position is infeasible then the particle moves to its preceding position.  

Step 7: The values of the objective function are calculated for each new position. 

Step 8: Each particle compares its new position to the previously memorised position and updates 

its pbest, provided that the new position provides a better value. The best particle in the 

population is then taken as gbest. 

Step 9: The termination basis is examined (getting to 𝑡𝑚𝑚𝑚
′ =100). If 𝑡 is not satisfied, steps 5-8 are 

repeated, or else PSO is ended and elements in gbest are taken as the optimal solution. 

4.12. Summary 

In this chapter, the methodology that we have used for setting up a grid-connected HRES was 

given. In our study, we used the meteorological data of Durban. First, we have gathered and analysed 

the meteorological data. We then studied the eThekwini municipality tariff rates from 2008 to 2020, 

and based on that, we estimated the tariff up to 2030. Moreover, the load profile for a residential 

building in Durban was collected and analysed. We used the collected meteorological data to identify 

the output of three different types of PV panels and a selected wind turbine. Moreover, the 

specifications and prices of different components of the proposed HRES, including PV panels, wind 

turbine, BS and inverter, were given. The system operation was then explained, and the proposed 

optimization method was developed. We used the NPV to define a cost function for the HRES. 

Minimizing the NPV is the objective of this study. Economic data associated with the cost function 
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was tabulated. We then defined the system constraints for this optimization problem. Finally, we 

discussed the GA and PSO as the optimizers used in this study. 
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 : RESULTS AND DISCUSSION Chapter 5

5.1. Introduction 

This chapter covers the results of the optimal sizing of the considered HRES based on the two 

selected optimizers, namely GA and PSO. The objective of this study is to minimize the cost of the 

HRES. The aim of the optimization is that the users would be able to pay back the cost of the system 

by the amount of money saved over a period of time as a result of using RES instead of buying 

electricity from the grid. The cost function’s value shows the amount of money spent on the HRES 

after a certain number of years. Therefore, a negative value shows a profitable system configuration. 

Cinco 50W, Cinco 100W and Cinco 200W are the three types of PV panels that have been considered 

in this study. In addition to the PV panels, we also considered using wind turbines and BS for the 

HRES. The specification of the selected wind turbine and BS are given in the previous chapter. We 

first provide a comparison between the two employed optimizers, showing GA outperforms PSO in 

finding the global minimum of the defined cost function. We then used the GA algorithm, as the 

outperformer optimiser, to find the optimal size of the system based on different types of selected PV 

panels and for various system lifetimes. Thereafter, the operation of the optimally sized HRES for a 

system with 10 years of lifetime has been studied.  

5.2. Optimal Sizing Results 

We used Python3 on an Intel core 1.8GHz i5 processor to simulate the system and obtain optimal 

solutions. In this study, three different types of PV panels have been considered. These panels have 

different power output and price values. The two selected optimizers, GA and PSO, have been widely 

used in optimally sizing of HRESs. Generally, GA has the ability to avoid being trapped in local 

optima; however, it usually requires a large number of iterations, which increases its computational 

time. On the other hand, PSO has less computational complexity and showing a good performance in 

three-dimensional coordinate problems.  

In this section, we provide a comparison between GA and PSO in identifying the optimal size of 

our considered HRESs over 10 years of lifetime. A separate comparison is made for systems using 

50W, 100W and 200W PV panels. The number of PV panels is constrained by the surface area of the 

selected building rooftop. All systems were allowed to have wind turbines and BS. 



59 

 

There is usually no restriction on the number of iterations for obtaining the optimal values in the 

GA algorithm. Instead, the algorithm will usually set to stop when 95% of the genes converged. 

However, this usually takes a long time. We first optimized the system based on the original GA. 

However, it was realized that in this particular problem, the optimization could be stopped after 10 

iterations with no further improvement, without making a sacrifice on the optimiser performance. 

Therefore, we considered this stopping criterion in addition to the GA parameters given in Table 4.13. 

PSO, on the other hand, is limited by the number of iterations. In PSO algorithms, the optimal 

solution is obtained by moving the particles through the search space until the algorithm reaches its 

maximum number of iterations. The parameters used for developing a PSO algorithm are given in 

Table 4.14. As is seen, the maximum number of iterations that we considered for the employed PSO 

algorithm is set to 100 iterations. 

The transition of the cost function with respect to iterations is shown in Figures 5-1 to 5-3. Figure 

5-1(a) and (b) shows the transition diagram for optimizing a hybrid system using 200W PV panels 

optimized by GA and PSO, respectively. For this system, GA requires 7 iterations to reach the optimal 

solution, and the algorithm stops after 17 iterations. However, the PSO algorithm could not obtain the 

optimal solutions and only stops due to reaching its iteration limit. The transition diagram for a HRES 

using 100W PV panels are shown next, where Figure 5-2(a) shows the transition diagram for the GA 

algorithm and Figure 5-2(b) is for the PSO. Again, the GA algorithm reaches the optimal solution after 

7 iterations and stops after 10 more iterations, while PSO terminated without getting into the global 

minimum point. Finally, Figure 5-3(a) and (b) depict the transition diagram for optimizing a HRES 

based on 50W PV panels. As is seen, the GA algorithm gets into the optimal solution after only 11 

iterations and stops at 21, while PSO again could not reach to the optimal solution.  
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(a) 

(b) 

Figure  5-1: The transition of cost function considering systems over 10 years 
of lifetime with (a) 200W PV panels optimized by GA, (b) 200W PV panels 

optimized by PSO 
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(a) 

(b) 

Figure  5-2: The transition of cost function considering systems over 10 years 
of lifetime with (a) 100W PV panels optimized by GA, (b) 100W PV panels 

optimized by PSO 
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(a) 

 

(b) 

Figure  5-3: The transition of cost function considering systems over 10 years of lifetime 

with (a) 50W PV panels optimized by GA, (b) 50W PV panels optimized by PSO 
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In Table 5.1, a comparison between the performance of GA and PSO optimizers in optimizing 

systems with 10 years of lifetime is given. For a system using a 200 W PV panel, GA provides the 

optimal sizing as a system with 21 PV panels, no wind turbines and 2 battery storage units. The value 

of the cost function for this system is –R45,395.70. PSO, on the other hand, was only able to minimize 

the cost function to the value of –R45,299.40. This is achieved by a system containing 22 PV panels, 

no wind turbines and 2 battery storage units. The other interesting observation is that the GA not only 

has a better performance over PSO but also can achieve this over a shorter period of time. The total 

simulation time using GA was 528.9 seconds, while the same for the PSO was 1066.4 seconds. This is 

due to the modification that we have made to the GA to stop it after 10 iterations without 

improvement. Similar performance can be observed for a HRES using 100W and 50W PV panels.  

In all three systems, GA can achieve a sizing that provides a lower-valued cost function in a shorter 

amount of time compared to the PSO algorithm. Moreover, the required time for solving the 

optimization problem, in both methods, is directly proportional to the size of the search space. This 

can be seen by comparing the required time for optimizing the system components’ size for different 

types of PV panels. The surface area of the 200W PV panels is larger than the others, and so the 

maximum number of the 200W PV panels that can be installed is less than the other two types. As a 

result, the search space for the 200W is the smallest among the three. This follows by the 100W and 

50W panels, respectively.   

Table  5-1. A COMPARISON BETWEEN THE PERFORMANCE OF GA AND PSO 
OPTIMIZER IN OPTIMIZING THE SYSTEM WITH 10 YEARS LIFETIME 

Type of 

PV 

Panel 

Optimizer The Optimal 

Size 

Cost Function value 

Simulation Time (s) 

𝑁𝑃𝑃 𝑁𝑊𝑊 𝑁𝐵𝐵 

200 W 
GA 21 0 2 -R45395.70 528.9 

PSO 22 0 2 -R45299.40 1066.4 

100 W 
GA 41 0 2 -R40616.40 513.3 

PSO 43 0 2 -R39332.00 1159.3 

50 W 
GA 74 0 2 -R27618.50 651.01 

PSO 80 0 2 -R27171.90 1160.1 
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Due to the GA algorithm’s superiority, we decided to use that to find the optimal size of the 

HRES’s components for different system’s lifetimes. We consider three different scenarios based on 

the type of the employed PV panels. Figure 5-4, 5-5 and 5-6 show the transition of the cost function 

for a system using the 200W, 100W and 50W PV panels, respectively. Again, as is seen, the algorithm 

stops after 10 iterations without improvements. 

 

 (a)  (b) 

 (c)  (d) 

 (e) 

Figure  5-4: The transition of the cost function for a system with the 200W PV panels and 

optimized by GA for the system life span of (a) 10, (b) 9, (c) 8, (d) 7, (e) 6 years. 
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 (a)  (b) 

 (c)  (d) 

 (e) 

Figure  5-5: The transition of the cost function for a system with the 100W PV 
panels and optimized by GA for the system life span of (a) 10, (b) 9, (c) 8, (d) 7, 

(e) 6 years. 
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 (a)  (b) 

 (c)  (d) 

Figure  5-6: The transition of the cost function for a system with the 50W PV 
panels and optimized by GA for the system life span of (a) 10, (b) 9, (c) 8, (d) 7 

years. 

The optimal size and cost function value of systems using different types of PV panel and lifetime 

are shown in Table 5.2. All the values are obtained using the GA algorithm. It can be seen from the 

table that the system profitability increases by its lifetime. This means that the system can generate 

more income over a longer period of time as the income of the first few years would be used to cover 

the initial costs. Moreover, the profitability is increased by using PV panels with higher rated power. 

This is because the per Watt price of the PV panels decreases as the PV panel rated power increases. 

In other words, a 200W PV panel cost is less than the fourfold price of a 50W PV panel.  

A HRES using the 100W and 200W can start becoming profitable after 6 years, while a user of a 

HRES based on the 50W panel should at least wait for 7 years. The other finding is that in the Durban 

area, employing wind turbines (based on the selected specification and price) would not be a cost-

effective option. One reason can be because of the weather conditions in Durban, which unlike many 

other locations has a lesser wind speed during winter than in summer. So, the wind-solar combination 

cannot fully achieve their expected complementary characteristics. Moreover, employing BS can only 
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become an economic decision if we consider a long enough lifetime for a system. This means that 

storing energy is not always an economical choice, but sometimes dumping the excess power would 

become more cost-effective. 

Table  5-2. THE OPTIMAL SIZE AND COST FUNCTION VALUE OF THE SYSTEM 
CONSIDERING DIFFERENT PV PANEL TYPES AND SYSTEM’S LIFETIME 

(OPTIMIZED BY GA) 

Type of PV 

Panel 

System’s Life 

Time 

The Optimal Size Cost 

Function 

value 
𝑁𝑃𝑃 𝑁𝑊𝑊 𝑁𝐵𝐵 

200 W 

10 Years 21 0 2 -R45395.70 

9 Years 20 0 2 -R27010.90 

8 Years 18 0 2 -R10835.30 

7 Years 6 0 0 -R1828.90 

6 Years 5 0 0 R2494.20 

100 W 

10 Years 41 0 2 -R40616.40 

9 Years 40 0 2 -R22622.80 

8 Years 26 0 1 -R8582.90 

7 Years 12 0 0 -R507.80 

6 Years 15 0 0 R4878.50 

50 W 

10 Years 74 0 2 -R27618.50 

9 Years 68 0 2 -R10701.60 

8 Years 23 0 0 -R1364.80 

7 Years 24 0 0 R3393.10 

 

Table 5.3 gives the breakup of the cost function values given in Table 5.2 based on their different 

components. By studying this table, it can be seen how much of the income would be spent to recover 

the initial investment and how much it costs to maintain the system over a given lifetime. In all cases, 

the income value is greater than the summation of the initial investment and the operation and 

maintenance costs, making the total cost a negative value.   
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Table  5-3. THE COST COMPONENTS OF THE SYSTEM CONSIDERING 
DIFFERENT PV PANEL TYPES AND SYSTEM’S LIFE TIME (OPTIMIZED BY GA) 

Type of PV Panel 
System’s 

Life Time 

Costs 

𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �𝑁𝑁𝑁𝑂𝑂 �𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 

200 W 

10 Years R81842.00 R12661.90 R139899.70 

9 Years R79574.00 R11296.00 R117881.00 

8 Years R75038.00 R9679.10 R95552.30 

7 Years R22278.00 R2527.00 R26634.00 

100 W 

10 Years R83364.80 R12879.40 R136860.60 

9 Years R82166.00 R11634.80 R116423.60 

8 Years R52610.80 R6726.00 R67919.80 

7 Years R23055.60 R2608.90 R26172.30 

50 W 

10 Years R90424.40 R13887.30 R131930.20 

9 Years R85866.80 R12118.6 R108686.90 

8 Years R26140.80 R3295.1 R30800.60 

 

5.3. Verification and Validation of the System Model 

The meteorological data, tariff rates and the load profile used in this study have been collected 

from reliable sources, which are SAURAN, eThekwini website and Domestic Electrical Load 

databases. Also, the mathematical models that are used for the employed components, which are PV 

panels, wind turbines, batteries and inverters are based on the models that have been widely used in 

the literature. The parameters for each component have been set according to the datasheet of the used 

components, which are given in Chapter 4. Moreover, the installation and maintenance costs that have 

been used are in line with the percentages that the other researchers in the literature use. 

We, further, validate our model by studying the performance of the system using different wattage 

PV panels. Although using the 50W PV panels may be unrealistic in practical applications, this can 

help to validate the implemented model. As it is seen in Table 5-3, the installation and maintenance 

costs of a system based on 50W panels is greater than that when higher wattage panels are being used. 
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This would be true when considering the number of connections and so the failure points in a system 

built from 50W panels will be relatively higher than a system built with 100W and 200W PV panels.  

5.4. Operation of the System with Optimal Configuration 

In this section, we study the operation of an optimally configured HRES. The system is optimally 

sized over 10 years of lifetime. Figure 5-7 shows the average annual consumption of the system from 

the grid as well as from the PV panels and BS for different PV panel types. The horizontal axis shows 

the days over a period of one year, starting from the first day of January, and the vertical axis shows 

the consumption (in kWh). 

As is seen, there is more power consumption from the grid during wintertime, where the demand is 

high, and the solar irradiation is low. However, during summertime, where the solar irradiation is high, 

the PV panels generate more power. As a result of lower demand, the power generated by the PV 

panels on some summer days is sufficient to be the sole source of power for the system. 
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Figure  5-7: Average annual consumption from the Grid and RES for an 
optimally sized system comprising of (a) 200W, (b) 100W, (c) 50W PV Panels 

  

(a) 

(b) 

(c) 
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Figure 5-8 shows the average annual stored and dumped power for the optimally sized HRES using 

different types of PV panels. As is shown, the amount of stored power is increased by employing 

higher power PV panels. Moreover, as is was expected, we dumped more energy during summertime 

as there is more excessive generated power due to high solar irradiation and low consumption. 

However, during wintertime, where the load demand is high, all the generated energy by the PV 

panels is either stored or used by the load. The average values of data shown by graphs of Figure 5-8 

are tabulated in Table 5.4. The averaged values, of both, stored energy and dumped load are increased 

by using higher power PV panels. However, the ratio of the dumped energy to the stored energy is less 

in the system that uses the 50W than the 100W and 200W. 

 

Table  5-4. THE AVERAGE VALUES OF THE BATTERY STORAGE AND LOAD 
DUMP FOR THE OPTIMAL SYSTEM 

200W PV Panel 100W PV Panel 50W PV Panel 

Average 

Battery 

Storage 

(kWh) 

Average 

Load Dump 

(kWh) 

Average 

Battery 

Storage 

(kWh) 

Average 

Load Dump 

(kWh) 

Average 

Battery 

Storage 

(kWh) 

Average 

Load Dump 

(kWh) 

3.602 0.188 3.424 0.160 3.149 0.121 
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Figure  5-8: Averaged annual BS and Load Dump for the optimal size system 
with 10 years life time using (a) 200W, (b) 100W (c) 50W PV Panels 

  

(a) 

  

(b) 

  

(c) 
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5.5. Summary 

In this chapter, the results obtained from simulating the system were discussed. We first discussed 

the performance of the deployed optimisers. It was shown that with a small modification to the GA, 

we could achieve the globally optimized sizing of the system in a relatively short amount of time. We 

then used this modified GA to optimize the HRES for different types of PV panels and over various 

lifetimes. The results have shown that the combination of PV panels and BS can become a profitable 

option for Durban area. Moreover, the systems using higher rated power PV panels can start to 

become profitable in a shorter lifetime. Considering BS in a system can only become a cost-effective 

choice if we consider a long enough lifetime for the system.   
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 : CONCLUSIONS  Chapter 6

6.1. Summary and Contributions 

HRESs use different RES, energy storage systems such as BS and can even be connected to the 

utility grid for supplying energy to a load.  The implementation of such systems seeks to supply load 

demand, while reducing pollutant emissions into the atmosphere to address environmental concerns at 

a reasonable system cost. RES are intermittent in nature; as such implementation of two or more RES 

allows the system to overcome the drawback of using a single energy source by capitalising on the 

complementary characteristics of the energy sources. As such, correctly choosing the RES based on 

the location of a site can result in a reliable energy generating system. BS can also be utilized in a 

hybrid energy system to store the excess energy produced by the RES and smooth the output power to 

overcome power fluctuations providing an improvement of power quality. The RES that were 

considered for the HRES in this research are solar and wind because of their complementary 

characteristics. In this study we considered a grid-connected hybrid generating system using PV, wind 

turbine and BS.  

In South Africa, consumers have been faced with ever-increasing cost of electricity and an 

unreliable grid supply dating as far back as 2007 due to insufficient electricity production. The focus 

of this research is aimed at identifying the optimal sizing of a grid-connected HRES that is cost-

effective for consumers over a period of time. By developing an optimal system, the consumers’ 

dependency on the grid is reduced while the net cost of their electricity over a period of time is 

lowered. To achieve this, the system components and constraints were identified, and then a 

mathematical model of the system was developed and optimized.  

Much research has been conducted in optimally sizing of various HRESs. Most of this research has 

been focussed in systems using wind and solar due to their availability. However, no similar research 

has been conducted for the Durban area. Similarly, solar and wind have been considered in this study 

as Durban promises good solar irradiation and wind speeds. As such, this research seeks to identify the 

specifications, objectives and constraints associated with optimization of a HRES to suit South African 

consumers’ needs. Various evaluation indicators have been used by researchers to optimally size 

HRESs which include economic, reliability, social and environmental indicators. Some of the 

concerns that consumers have when it comes to setting up a HRES are the associated costs as well as 

the returns on such an investment. As a result, the NPV of the costs has been selected as the economic 

indicator for this study.  
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The HRES is optimally sized using a defined cost function. The cost function is obtained by 

summing the investment cost and net present values of operation and maintenance costs and 

subtracting the net present values of income generated by use of the HRES. A negative cost function 

values translates to a profitable system. This means that the income generated by the use of the HRES 

is greater than the sum of expenses i.e. investment costs, and operation and maintenance costs. To 

determine the investment cost, 20% of the total costs of system components have been added to 

account for the installation costs. The yearly operation and maintenance costs have been taken to be 

2% of the total initial costs. A HRES was modelled based on residential consumer needs and available 

products in the market. After developing the NPV cost evaluation indicator, the HRES constraints 

were identified. The constraints were applied to the number of PV panels, number of wind turbines 

and number of battery storage units. The presented optimal sizing method was able to determine the 

optimal number of PV panels, wind turbines and BS units, which resulted in a reasonable HRES. This 

allows for the cost of setting up a hybrid generating system for typical residential consumers to be 

assessed.   

To optimize the HRES, two optimizers were used, that is GA and PSO. GA and PSO have been 

widely used by researchers in optimally sizing HRESs. The reason for selecting GA is its ability to 

avoid being trapped in the local optima. The drawback of GA is that a large number of iterations are 

usually required which results in a longer computational time. On the contrary, PSO was selected as it 

offers good performance and lower computational requirements leading to a lower computational 

time. This study used a modified GA according to Table 4.13. This modified GA shows a lower 

computational time and better performance than PSO. PSO was unable to determine the optimal 

solution and was limited due to the pre-set limit on the number of iterations. As a result, the modified 

GA was used in finding the optimal size of the HRES.  

To optimize the system size, the meteorological data of Durban and load information for a 

residential building in Durban were gathered and analysed. Meteorological data includes GHI, 

atmospheric temperature and wind speed. GHI and atmospheric temperature are required to determine 

the PV panel output power while the wind speed data is required to determine the wind turbine output 

power. Additionally, the tariff structure for eThekwini municipality from 2008 to 2020 was tabulated 

and used to calculate the income of the HRES. The tariff was estimated using cubic polynomial 

trendline up to 2030. Furthermore, the specifications and prices of various HRES components were 

used for calculating the different costs associated with the system.  

Three different PV panels were considered in this study; Cinco 50W, Cinco 100W and Cinco 

200W. Due to the limited rooftop area for installation of PV panels, the higher rated panel resulted in a 
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more profitable HRES.  A minimum of 6 years is required for the HRES to be profitable to the user.  

The 100W and 200W PV panels produce HRESs that would become profitable in 6 years while the 

50W PV panel system requires 7 years to become profitable. Although with an increase in PV panel 

rated power, there would be an increase in initial investment and operation and maintenance costs, the 

income generated by the HRES also increases with an increase in PV panel rated power. This study 

shows that in the Durban area, using wind turbines (according to the specification and price of the 

selected wind turbine) would not be a feasible option. This can be attributed to the weather conditions 

in Durban, which unlike many other locations has lower wind speed during winter compared to 

summer. Consequently, the solar and wind combination is unable to fully achieve their expected 

complementary characteristics. Moreover, using BS is only cost-effective after 8 years for the systems 

using the 200W and 100W PV panels while 9 years are required for the 50W PV panel system. This 

means that for shorter system lifespans, it is more cost-effective to dump any excess power that is 

produced instead of storing it.  

In the first few years of the system’s lifetime, the income is used to pay for the investment, 

operation and maintenance costs. The options of three different PV panels allow users to choose the 

optimal HRES that meets their initial affordability. The flexibility in the optimal sizing strategy of the 

HRES has potential to increase adoption of the installation of the HRES by many consumers as 

different price points are proposed. Additionally, the system design is flexible to allow for adjusting 

for different meteorological data, load requirements and system components such as availability of 

different PV panel types in the market and initial costs. Moreover, the system model is made more 

realistic by filtering in the installation area of the PV panels according to the available installation area 

on the proposed site.  

While minimizing the cost of the HRES is the primary objective of this study, it is important to 

note that the system is reliable as deficit energy is purchased from the utility grid, as such the load is 

always satisfied. In the event of load shedding by the grid, the load can be supplied by the energy 

stored in the battery storage or generated by the RES. This allows consumers to remain operational 

and thus maintain their productivity and ensure their revenue. Moreover, the optimal HRES obtained 

from this study is able to address the issue of increasing cost of electricity as the system is able to be 

paid back by the income generated by the use of the RES. Once the investment cost, operation and 

maintenance costs have been paid, the income generated becomes profit for the user. The lack of grid 

reliability has resulted in an enhanced social acceptance, since HRESs are able to supplement the grid 

and over a certain period of time the system pays for itself. 
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6.2. Future Works and Recommendations 

It is customary that a grid-connected HRES sells its surplus generated power to the grid. However, 

eThekwini municipality has not concluded its small-scale embedded generation (SSEG) systems’ 

tariffs. In winter there is less energy production by the HRES and a higher load demand, and so more 

energy is purchased from the grid in winter. On the other hand, more energy than the need is generated 

in summer when there is more solar irradiation and less load demand. It was shown that it is more 

economical to dump a portion of the excess generated energy. This dumped energy could have been 

sold to the grid increasing the income and making the HRES more profitable for the user. Therefore, 

further research can be undertaken once the tariff structure becomes available to maximise on the 

power that can be sold to the grid instead of dumping. Following this path of research will also require 

the HRES design to factor in the smoothening of the power sold to the grid as this will affect the grid 

power quality. Consequently, guaranteeing high power reliability could be the objective of such a 

study. 
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