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ABSTRACT 

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder affecting 1 :3500 

live male births. Disease manifestations include progressive weakness of predominantly 

proximal musculature, due to progressive loss and degeneration of muscle fibres, fatty 

infiltration and fibrosis, resulting in reduced mobility and eventual loss of ambulation. 

Becker muscular dystrophy (BMD) is the allelic variant of Duchenne muscular dystrophy 

however the disease course is milder with less severe disease symptoms and progression. 

In 5-10% of cases, female patients referred to as manifesting carriers have shown 

characteristic muscle weakness and pseudohypertrophy of gastrocnemius muscles. 

The 427 kDa protein product, dystrophin, is composed of 79 exons, containing 3686 amino 

acids and spanning 2.4 Mb. Dystrophin is a member of the cytoskeletal protein family and 

early studies localised this protein to the cytoplasmic face at the inner surface of the 

sarcolemma (Zubrzycka-Gaarn et al., 1988). The dystrophin protein is thought to playa 

structural role in the cytoskeletal membrane owing to its similarity to structural proteins. 

Various functional studies performed on dystrophin suggested that the protein has 

numerous interacting partners involved in the regulatory process with the dystrophin 

associated glycoprotein complex playing a significant role. Such vast and varied protein 

interactions highlight the complexity of elucidating the pathogenesis in Duchenne and 

Becker muscular dystrophy. In order to better understand the pathogenesis of human 

dystrophinopathies, a diverse range of disease models have been employed in order to 

unravel the pathophysiology of DMD and BMD. 
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Mutation detection is an important first step in categorising dystrophinopathy patients into 

DMD or BMD classes. This study aimed to find methodologies that were efficient, 

effective as well as cost-effective at producing a definitive result in a resource-limited 

setting such as South Africa. This was done by initially performing single stranded 

conformation polymorphism analysis on DNA samples from 20 individuals including both 

the patient and his mother or female relative that were previously shown to have no 

deletions using the 18-exon multiplex PCR assay. Their mothers DNA samples were also 

subjected to the analysis if the DNA was available. "Cold" PCR-SSCP was employed 

using both a conventional slab gel apparatus and the Novex precast gel apparatus. Various 

parameters including optimal voltage, the correct circulating device to maintain the 

temperature, buffer concentrations, gel concentrations, the use of denaturants and the use 

of appropriate loading buffers were optimised. The Novex system took only 2-3 hours and 

produced better resolution of bands and product separation than the slab gels. The slab gel 

system had the advantage of being cheaper to run and the circulating water bath could be 

easily manufactured thus making all equipment more readily available in South Africa than 

the expensive Novex apparatus. When all the results were collated, 17 patients showed 

abnormally migrating bands on visual inspection. On subjecting the DNA samples to DNA 

sequencing analysis, three SNPs were found in exon 6 and flanking sequence of ex on 5, 

and two insertion mutations were found in exon 52. From these results, the carrier status in 

the mother of the DMD patient and his female relative can be determined. DNA 

sequencing analysis revealed that the mother and female relative of the DMD patient have 

the same nucleotide changes / mutations. 

The 30-exon multiplex PCR mutation detection assay aimed to expand the conventional 

18-exon multiplex PCR assay and was performed on DNA samples from 24 patients. The 
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technique incorporated 30 primer pairs into three separate reaction mixes. The assay did 

not improve the diagnostic efficacy of the 18-exon multiplex peR. The 30-exon screening 

method detected the start and end exon of a patient's deletion and therefore proved useful 

in confirming a clinical diagnosis of dystrophinopathy. One was also able to determine 

whether a deletion was in-frame or out-of-frame by utilising the reading-frame-checker 

(www.dmd.nl) and in so doing a diagnosis ofDMD or BMD was made. 

The next mutation detection method, the multiplex ligation-dependent probe amplification 

(MLPA) assay was implemented with the aim of detecting deletions and duplications 

throughout the dystrophin gene. The technique utilised probes instead of primers in the 

assay therefore a confirmation of any previously detected deletions using other primer 

based methodologies was achieved. A total of 23 individuals were included, two of which 

were mothers of DMD patients. Four of the 21 patients included had duplication mutations 

in the dystrophin gene, with two being in-frame and two being out-of-frame. All patients 

exhibited a rapidly progressing dystrophinopathy this suggesting that the duplication 

mutations are far more complex and produce different effects compared to deletion 

mutations. Duplication mutations were a lot more difficult to analyse using the 

Genemapper software on the ABI 3100 genetic analyser as dosage quotient analysis and 

the Excel spreadsheet was required to obtain a definitive answer whereas visual inspection 

was sufficient to detect deletions. One of the patients with a duplication mutation was 

shown to have a complex re-arrangement mutation and this was confirmed in the mother. 

Following on from the mutation detection analyses, double biopsy samples obtained with 

informed consent from four dystrophinopathy patients were subjected to gene profiling 

analysis using spotted oligonucleotide arrays and Illurnina bead arrays. By obtaining two 

xlix 



samples from the same patient we were able to remove the element of genetic variability 

that normally adds bias to gene profiling experiments such as those conducted between 

normal and diseased tissue samples or pooled samples. This novel aspect of the study was 

performed at Leiden University in the Netherlands. The gastrocnemius muscle was 

biopsied from all patients, the biceps muscle was biopsied from 3 patients and the 

quadriceps muscle was biopsied from one patient. This part of the study aimed to answer 

the question why specific muscle groups such as the biceps and quadriceps muscles 

become progressively weaker whereas the gastrocnemius muscle remains invariably strong 

despite the lack of dystrophin protein in all muscles subjected to immunohistochemical 

analysis. For the spotted oligonucleotide arrays, dye-swap experiments were performed 

and P-values were calculated using Rosetta's error model. For beadchip analysis, the 

Ulumina Human Sentrix-6 Beadchip was used. Quantile normalisation was achieved using 

"R" and Benjamin-Hochberg mUltiple testing was performed. On evaluation of the 

microarray data a positive correlation was achieved between the molecular findings and 

immunohistochemical observations on muscle biopsy. The dysregulated genes included 

immediate early factors, transcription factors, ECM proteins and IGF binding proteins, 

whilst the discordant genes were MAP kinase signalling genes (MAPKl , DUSPI, DUSP6, 

JAKI, GRB2, ILK), immediate early proteins (ZFP36, EGRI), ubiquitin (UBE2D2, UBC), 

NF-kB, Homeobox proteins (IRX5, MSXI, PRRXI) and some extracelluar matrix 

proteins. 

Interestingly, many transcription factors including TAPI5, USF2, CEBPA, RNPSI, SAFB, 

MEIS 1 and HOXC6 were down-regulated in biceps / quadriceps vs. calf in our study. It 

can be deduced from the results obtained that the homeobox transcription factors that 

appear to be differentially expressed in our study but not in other studies (DMD vs. 



normal), may be responsible for sparing the gastrocnemius muscle in DMD patients when 

other muscles become progressively weaker. 

Another important finding was that Hsp70 (heat shock protein 70) or HspalB showed up­

regulation in our study with biceps or quadriceps vs. calf muscle, which differed from 

other studies. It has been documented that the absence of Hsp70 is associated with 

induction of cardiac hypertrophy and increased MAPK signalling. Our data revealed 

Hsp70 to be reduced in hypertrophied DMD calf muscle however it is also lower in DMD 

quadriceps muscle compared to healthy quadriceps. The phenotypic hypertrophy seen in 

the patients can therefore be attributed to the increased MAPKlp38 signalling in DMD calf 

muscle. 

CYP2J2 was another gene that was found to be dysregulated in our study. CYP2J2, a P450 

epoxygenase that synthesizes arachadonic acid is know to activate the p42/p44 MAPK 

signalling cascade in cardiomyocytes, which in effect provides cardioprotection after 

ischaemia (DeLozier et at, 2007). The gene has recently been found in skeletal muscle and 

by extrapolation such a protective effect may also prove to be true. 

The results obtained from undertaking this novel gene profiling aspect of the study has far­

reaching consequences both for therapy as well as in detecting the molecular signatures 

that playa role in elucidating the mechanisms involved in Duchenne muscular dystrophy 

pathogenesis. Large scale gene profiling analyses using both several patients and different 

platforms are an essential next step into further cement the results obtained from this study. 
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CHAPTER! 

GENERAL INTRODUCTION 

Duchenne muscular dystrophy (DMD) is a debilitating X-linked recessive disorder 

affecting 1 :3,500 live male births (Emery, 1993). It is named after Guillaume-Benjamin 

Duchenne de Boulogne, who was credited as having first described the disease and for the 

significant contribution he made in the area. However, according to Emery and Emery 

(1993), Edward Meryon first described DMD in 1851 where it was referred to as "granular 

degeneration" . 

1.1 CLINICAL MANIFESTATIONS 

The disease is characterised by progressive wasting of the proximal musculature. The 

disease can be detected at birth by performing a serum creatine kinase (SCK) assay 

however the symptoms only become apparent as the child learns to sit and stand, or even 

later at ages 3-5 (Dubowitz, 1995). Clinical presentation including delayed motor 

developmental milestones and walking difficulties are common attributes exhibited by 

these children. Other manifestations include a waddling gait and difficulty climbing stairs 

due to proximal muscle weakness, and toe walking due to contracture of the archilles 

tendons. Gradual and progressive deterioration of muscle strength leading to wheelchair 

confinement by the age of 12 reflects the nature of the disease. 
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Figure 1: Diagram highlighting the muscles that are predominantly affected & which become 

progressively weaker in Duchenne muscular dystrophy patients (adapted from Emery, 2002). 

The milder allelic variant, Becker muscular dystrophy (BMD) has a less severe disease 

progression. The disease was first brought to light by Becker and Kiener in 1955 as a 

disorder that closely resembled DMD. It was named Becker muscular dystrophy owing to 

the classification system proposed by Becker (Bakker, 1989). It is characterised by much 

later age of onset, usually after age 11 . Mfected individuals are diagnosed when skeletal 

muscle symptoms are evident on clinical examination, which can be in their late 20s 

(Emery, 2002). According to Emery and Skinner (1976), BMD is thought to be 10 times 

less frequent than DMD with one in 30,000 males being affected. In BMD there exists a 

broad clinical spectrum with respect to severity of disease state (Blake et ai., 2002). Loss 

of ambulation may occur late in adulthood or not at all, with the patients only suffering 

milder effects such as myalgia (Emery, 1993). 

Dystrophinopathy is the disease manifested by patients that have dystrophin deficient 

muscle fibres. These patients display an abnormal Gowers' manoeuvre, which occurs as a 
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direct result of knee and hip extensor weakness. The action may be described as one where 

the affected child climbs up from the ground using his knees as an aid in rising by pushing 

down on them, thereby extending the hips and trunk (Emery, 2002). Pseudohypertrophy of 

the calf muscles is a distinguishing trait in both Duchenne and Becker muscular dystrophy. 

According to Emery (2002), the disorder was previously known as pseudohypertrophic 

muscular dystrophy on account of the enlarged calf muscles of affected patients. As the 

disease progresses the individuals suffer from recurrent respiratory problems due to 

weakening ofthe intercostals, which eventually lead to early death caused by pulmonary 

and other respiratory infections. Presently there is an increasing number ofDMD patients 

who receive respiratory intervention through ventilation support and tracheostomy 

treatment, which increases their lifespan significantly (Simonds et ai., 1998; Emery, 2002). 

Cardiomyopathy and cardiac conduction defects are other leading causes of death in 

dystrophinopathies, particularly in BMD patients (Emery, 1993). 

Apart from the clinical manifestations affecting dystrophinopathy patients, a recent study 

(Wicks ell et ai., 2004) has outlined the specific cognitive defects that are present in these 

patients. From the 1980s to the present time, this area has been the focus of attention in 

many studies (Sollee et ai., 1985; Billard et ai., 1998; Bardoni et ai., 2000). Wicksell et ai. 

(2004) performed a study on the IQ ofDMD patients. No significant difference was found 

between the IQ scores ofDMD affected and normal children, which was in contrast with 

previous studies (Cotton et ai., 2001). They did find that short-term memory was below 

normal whereas learning ability and long-term memory was not affected (Wicksell et ai., 

2004). The group suggested that the cognitive differences seen in DMD patients may be 

attributed to heterogeneity of mutations in the dystrophin gene, which has been previously 

proposed and reviewed by Anderson et ai. (2002). 
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Five to 10% of female carriers show symptoms such as muscle weakness, enlarged calf 

muscles and cardiomyopathy later in life (Emery, 2002). Grain et al. (2001) showed that 

even though cardiomyopathy does occur in carriers ofDMD, the prevalence is lower than 

was previously reported. Owing to the variable state of progression relating to dystrophic 

symptoms, a mistaken diagnosis oflimb-girdle muscular dystrophy can be made. It is 

therefore important that a full diagnostic work-up be performed on suspected manifesting 

carners. 

1.2 MOLECULAR GENETICS OF DYSTROPHIN 

Mapping of one of the largest genes ever to be characterised, began in 1984 using the 

technique of positional cloning (Worton et al., 1984; Kunkel et aI., 1985; Monaco et al., 

1985). The gene was localised to chromosome position Xp21.2 (Verellen-Dumoulin et aI., 

1984; Worton et al., 1984) and was shown to be allelic to Becker muscular dystrophy 

(Kingston et al., 1983). The physical mapping was undertaken using pulsed field gel 

electrophoresis (PFGE) and field inversion gel electrophoresis (FIGE) because the 

enormous size of the gene prevented the use of conventional restriction endonuclease 

mappmg. 

In 1987, the protein product named dystrophin was discovered by Hoffman et al. (1987) 

and the complete dystrophin sequence was elucidated by Koenig et al. (1987). It was also 

revealed that the dystrophin gene spanned approximately 2.4 Mb and further screening 

using Southern blotting analysis highlighted fragments of the X-chromosome containing 

dystrophin exons. Gene promoters together with intronlexon boundaries were identified 

using exon mapping of isolated genomic clones (Worton, 1992). A full description of the 
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protein was outlined in 1988 by Koenig et ai. where the muscle dystrophin gene was 

shown to encode a full-length 14 kb mRNA. The gene is composed of79 exons. The exon 

structure was identified by Roberts et al. (1993), where a yeast artificial chromosome 

(Y AC) vectorette approach was employed and further analysis on the exonlintron 

organisation of the gene was accomplished by Nobile et al. (1997). 

Utilisation of these techniques led to the detection of a myriad of deletions in both DMD 

and BMD patients' samples. These deletions were found throughout the dystrophin gene 

with "hot-spots" located at the 5' proximal end and 3' distal end of the gene. The exonic 

deletion identification process was the first step in implicating the dystrophin gene in the 

pathogenesis of dystrophinopathies. 

1.3 THE DYSTROPHIN PROTEIN 

The 427 kDa protein contains 3686 amino acids (Koenig et ai. , 1988) and is expressed in a 

highly regulated manner utilising approximately eight independent tissue specific 

promoters (Roberts, 1995). According to RNase protection assays conducted by Nudel et 

al. (1988) transcription was most active in skeletal muscle thus producing the highest level 

of expression in this region. 

Dp427 I )p-l27 
(Ii) ( M ) r. r t. Dp.+27 (I'l , DP260 r' Dpl70 ~ 

I 11 • ~1I 111 11 I H I IJ IJ 
Dpl16 

Ul II 

Figure 2: Genomic organisation of the dystrophin gene highlighting the 79 exons of 

dystrophin (vertical lines) and location ofthe promoters, particularly brain (B), muscle (M) 

and purkinje (P) as adapted from Zhou et aI. (2006). 
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1.3.1 Dystrophin isoforms and regulated tissue specific expression 

There are three promoters that independently regulate the expression of the 427 kDa full-

length dystrophin transcripts in brain, muscle and purkinje as shown in the diagram above 

(figure 2). These full-length isoforms possess a "unique first ex on spliced to a common set 

of 78 exons" (Zhou et aI., 2006). The Dp427m transcript is expressed predominantly in 

skeletal muscle, smooth muscle, cardiomyocytes and to a limited extent in the retina and 

glial cells (Bamea et aI., 1990; Chelly et aI., 1990). 

The brain (B) promoter or exon 1 is located approximately 130 kb upstream of the 

Dp427m muscle promoter and drives expression of dystrophin in neurons in the cortex and 

the CA (Cornu Ammonis) regions of the hippocampus. 

The Dp427p isoform is expressed in all cerebellar purkinje cells (Gorecki et aI., 1992) and 

to a limited extent in skeletal muscle (Holder et aI., 1996). The unique promoter or exon 1 

is located in what corresponds to the first intron of the Dp427m isoform. 

DYS 
SR1 3 4 11 17 1920 24 

Dp260 II 

Dp 140 III 

Dpl16 IV 

Dp71 V 

Figure 3: Dystrophin gene isofonns (as adapted from Ervasti, 2006). Structure of the four 

dystrophin domains are clearly illustrated in the full.length muscle isoform. 

6 



In the above figure, the dystrophin (DYS) domains are shown, which include the actin­

binding domain (ABD1), composed of tandem calponin homology (CH) domains, a triple­

helical spectrin-like repeat (SR), together with four hinge regions (H1-H4) located 

throughout the gene, a cysteine rich domain (CR) essential for binding ~-dystroglycan and 

a carboxy-terminal domain important for binding syntrophins and a-dystrobrevin-2. Acidic 

spectrin repeats are coloured in pink, basic repeats coloured in cyan, and a cluster of 

independent acidic repeats form the second actin binding domain (ABD2). Other truncated 

dystrophin non-muscle isoforms, driven by specific promoters are also shown (Dp260, 

Dp140, Dp116, Dp71). 

Within the dystrophin gene at least four other promoters are found, which give rise to 

smaller dystrophin transcripts that posses truncated carboxy-terminal regions (shown in 

figure 3 above). The Dp260 isoform expressed predominantly in the retina utilises exons 

30-79 to produce its transcript. 

Expression of the Dp 140 isoform has been identified in the cerebral cortex, cerebellum, 

hippocampus, brain stem, spinal cord and olfactory bulb. It has also been detected in the 

kidney but not in skeletal muscle (Lidov et a!., 1990). 

The Dp 116 isoform was found specifically in adult peripheral nerve, along the Schwann 

cell membrane. Alternative splicing is also a feature of this isoform, which may also be 

called apo-dystophin-2 (Byers et al. 1993). 

The Dp71 isoform is found predominantly in the liver, brain as well as astrocyte and 

glioma cell cultures. Interestingly, the transcript shares with Dp427m most of the cysteine-
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rich and C-terminal domains sequence. Dp71 may also be referred to as apo-dystrophin-1 

(Bar et ai., 1990). 

1.3.2 Domain structure 

The dystrophin protein belongs to the family of cytoskeletal proteins, which include a­

actinin and ~-spectrin. They possess a characteristic amino terminal domain followed by 

repeat units of spectrin-like elements. Dystrophin is composed of four domains, namely the 

amino terminal actin-binding domain, the central rod domain, the cysteine-rich domain and 

the carboxy terminal domain, each with highly distinctive affinities. A review of 

dystrophin's secondary structure revealed that this predominantly hydrophilic molecule 

(Kyte and Doolittle, 1982) has a propensity to form a-helices throughout the protein. 

The actin-binding domain is composed of amino acids 1-220 and exons 2-8 

(http://www.dmd.nl).This region in dystrophin is highly homologous to the actin-binding 

domain of a-actinin however it is not associated with cross-linking F-actin to form bundles 

(Kuhlman et ai., 1992; Roberts, 2001). 

The central rod domain comprising 24, triple-helical spectrin-like repeats and 

incorporating amino acids 338-3,055 and exons 8-61 (http://www.dmd.nl). make up 75% 

of the protein (Koenig et ai. , 1988; Roberts, 2001). 

The next region initially referred to as the cysteine-rich domain is composed of amino 

acids 3,056-3 ,354 and exons 63-69 (Roberts, 2001, http://www.dmd.nl). The domain 

contains a ~-sheet protein binding WW module that is found in other signalling molecules 
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(Bork et al., 1994). It also has a Ca2+ binding helix-loop-helix "EF" hand motif comprising 

four hairpins of a-helices (Noegel et al. , 1987; Brandon & Tooze, 1991) and a zinc-finger 

ZZ motif found in other nuclear and cytoplasmic proteins (Ponting et al., 1996). According 

to Andersen et ai. (1996), the ZZ domain binds calmodulin in a Ca2
+ -dependent manner 

and this may have implications for calmodulin binding in other dystrophin related proteins 

(Blake et al., 2002). 

The C-terminal domain of dystrophin is comprised of amino acids 3,355-3,685 and exons 

70-79 (http://www.dmd.nl). The only other close similarity exists between dystrophin and 

its homologous relatives, utrophin (Tinsley et al., 1992), dystrophin-related protein and the 

dystrobrevins (Wagner et al., 1993). The homology exists at a leucine zipper motif, which 

is well-documented as protein-interaction regions and located at amino acid positions 

3,559-3,594. Being a region of protein interaction, the coiled-coil region of dystrophin 

serves as a binding site for dystrobrevin, syntrophins and perhaps other dystrophin­

associated proteins (Suzuki et al., 1994; Sadoulet-Puccio et ai., 1997; Blake et ai., 1995). 

1.3.3 Utrophin and dystrophin-related protein 2 

Dystrophin and utrophin are analogous in that they both possess the same four domains 

however utrophin is located on chromosome 6q24 and is 395 kDa whereas dystrophin is 

427 kDa. In comparison to dystrophin, the rod domain ofutrophin consists of a shorter 22 

repeat region with the difference occurring at repeat 14 and 18 (Roberts, 2001) (Figure 4). 

In foetal and regenerating muscle, utrophin is expressed throughout the sarcolemma 

(Takemitsu et al. , 1991). Utrophin expression is concentrated at the neuromuscular and 

myotendinous junctions in adult muscle tissue whereas dystrophin has a more varied 
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expression (Ohlendieck et ai. , 1991). According to Campanelli et ai. (1994) utrophin may 

be involved with post-synaptic membrane maintenance and ' clustering of acetylcholine 

receptors' . 

Many pathogenesis and therapy related studies have been performed to date on unravelling 

the mechanisms that are involved in utrophin regulation as it has been shown to playa role 

in compensating for dystrophin in dystrophin-deficient muscle (Rafael & Brown, 2000; 

Baker et ai., 2006). In 2003 an utrophin knockout mouse (UKOex6 - ex on 6 was knocked 

out) was used to analyse and assess the cellular functions in several short isoforms of 

utrophin. In the same report it was found that full-length utrophin was expressed in 

'intertubular tissue of the testis ' . The authors speculated that it may be involved with 

testosterone secretion and that its absence may result in loss of fertility (Jimenez­

Mallebrera et ai., 2003). 

The dystrophin-related protein 2 (DRP2), a 45 kb gene which was localised to 

chromosome Xq22 (Roberts et ai. , 1996) has close homology to the C-terminal domain of 

dystrophin and is 120 kDa in size (Figure 4). It is present in such tissues as the kidney, 

epididymis, ovary, in many synapses throughout the central nervous system and in 

Schwann cells (Roberts, 2001). The rod domain of the dystrophin-related protein has two 

repeats and there is a 75-residue coiled-coil amino terminal region specific to this protein 

(Roberts, 2001). 

1.3.4 Sub-cellular location and function of dystrophin 

Immunohistochemical studies have localised dystrophin to the cytoplasmic face at the 

inner surface of the sarcolemma (Zubrzycka-Gaarn et al. , 1988). It is confined to 
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costameres or the cytoskeletal lattice network (Porter et ai. , 1992; Straub et al., 1992). 

DYSTROPHIN 

UTROPHIN 

ACTIN· 
BINDING ROD DOMAIN 

Binding sites { 

WW CYS CT 

DG 
SYN 

DFB 

Figure 4: Schematic diagram showing the similarity & differences between dystrophin (DYS), 

utrophin (UTR) & dystrophin related protein 2 (DRP) as adapted from Blake et al. (2002). 

According to Ervasti (2003), costameres are components that couple the sarcolemma to the 

Z-disk of muscle fibres with the assistance of many interacting protein partners. The 

location of dystrophin suggested that it was involved with strengthening the sarcolemmal 

membrane and mediating its association with the myofibrillar cytoskeleton (Watkins et al., 

1988). One of the functional roles played by dystrophin is outlined in the schematic below 

(Ervasti,2006). 

In figure 5, the three-tiered process is outlined. It comprises a relaxed muscle (1), muscle 

stretch, which "imposes forces that unwind" spectrin (spring-like) elements within repeats 

1-10 and 18-24 (II) and "electrostatic interaction of basic actin-binding repeats 11-17 with 

acidic actin filaments" that reduces extension of the "spring-like elements" (ill). The 

electrostatic interaction is non-specific and optimal because no specific orientation is 

required thus allowing sliding between actin and dystrophin. Owing to the shortening of 

muscle during contraction, electrostatic interaction facilitates a reduction in elastic recoil. 
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Figure 5: Schematic model revealing dystrophin's functional role as a ''molecular shock 

absorber" during muscle stretch as adapted from Ervasti (2006). 

1.4 DYSTROpmN ASSOCIATED GL YOCOPROTEIN COMPLEX 

In 1989 it was shown that dystrophin co-localised with a series of other proteins when a 

dystrophin enriched fraction was isolated from detergent-solubilised skeletal muscle 

membranes following chromatographic purification (Campbell & Kahl, 1989). This tightly 

bound complex was found to be highly reduced in biopsies from DMD affected individuals 

and mdx (mouse model of dystrophin) muscle lacking the dystrophin protein (Ervasti et ai., 

1990; Ervasti & Campbell, 1991). All these findings suggested that this hetero-oligomeric 

glycoprotein complex served as a structural link between the actin cytoskeleton and the 
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extracellular matrix. This stabilises the sarcolemma during repeated stress imposed by the 

contraction and relaxation process. 

The dystrophin-associated glycoprotein complex can be separated into three complexes, 

namely the dystroglycan complex, the sarcoglycan:sarcospan complex and the 

cytoplasmic, dystrophin-containing complex (Winder et ai., 1995). Alpha and beta 

dystroglycan together provides the transmembrane link between laminin-a-2 and 

dystrophin. Many extracellular matrix proteins such as the agrins, perlecan and neurexins 

have been shown to bind a- dystroglycan with high affinity however the significance of 

such interactions is as yet unclear (Blake et ai., 2002). Beta-dystroglycan is one of the key 

players in the DAGC that engages in a direct protein interaction with dystrophin and a 

defined binding region has been mapped to the cysteine-rich domain of dystrophin 

(Roberts, 2001). Another binding partner of ~-dystroglycan appears to be the adaptor 

protein Grb2, which leads one to speculate that it may be involved with the movement of 

"extracellular mediated signals to the muscle cytoskeleton" (Blake et ai., 2002). Another 

newly discovered player in the protein interaction game is caveolin-3, which also serves as 

a binding partner for ~-dystroglycan. Studies have revealed that caveolin-3 may compete 

with dystrophin for the binding site of ~-dystroglycan at the C-terminus (Sargiacomo et ai., 

2000). 
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Figure 6: Image showing the extracellular, sarcolemmal, myofibrillar & nuclear proteins of 

the dystrophin associated glycoprotein complex & their associated diseases as adapted from 

Vogel and Zamecnik (2005). 

The sarcoglycan complex comprises six transmembrane glycoproteins, namely, a, ~, y, 0, 

E, ~-sarcoglycan and the 25 kDa membrane protein sarcospan that also has four 

transmembrane domains. The actual function of these proteins still remains unclear, 

however studies have revealed that 8 plays an integral role in the assembly of the other 

sarcoglycans as the absence thereof prevented assembly of the remaining glycoproteins in 

the endoplasmic reticulum (Hack et aI., 2000; Lapidos et aI., 2004) .. The sarcoglycan 

group also ensures proper functioning and stability of sarcospan at the membrane (Crosbie 

et aI., 1999), however sarcospan null-mice do not exhibit muscle pathology (Lebakken et 

ai., 2000). With dystrophin deficiency as is the case in DMD, the sarcoglycan complex 
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becomes disrupted and a reduction in some of the glycoproteins is seen on 

immunohistochemical analyses. 

The syntrophins are another important group of dystrophin interacting proteins that also 

bind neuronal nitric oxide synthase (nNOS), which is found at diminished levels in 

dystrophinopathy patients. The actual association and functional role has not been 

elucidated (Blake et ai., 2002). It was speculated by Ehmsen et ai., (2002) that the 

abnormal blood vessel constriction seen in DMD patients may be attributed to the lack of 

nNOS at the sarcolemma. This in itself is not enough to bring about a muscular dystrophy 

phenotype as has been shown in mouse studies (Crosbie et ai., 1998). According to 

Lapidos et ai. (2004) "nNOS is responsible for increasing cyclic GMP levels to reduce 

vasoconstriction of smooth muscle" (Grady et ai., 1999). 

The dystrobrevins are encoded by two different genes, with the a-dystrobrevin gene 

located on chromosome 18 (Sadoulet-Puccio et ai., 1996) and producing at least five 

different isoforms. Beta-dystrobrevin is located on chromosome 2 (Peters et ai., 1997) and 

produces C-terminal alternatively spliced forms. Dystrobrevin uses the same strategy 

employed by dystrophin to bring about expression in different tissues by utilising specific 

promoters (Lapidos et ai., 2004). Three of the a-dystrobrevin isoforms are located in the 

DAGC of skeletal muscle, with the coiled-coil domain of dystrobrevin interacting with 

dystrophin whilst a specific binding site exists where interaction with the syntrophins is 

brought about. It has been documented that the sarcolemmal localisation of a-dystrobrevin 

is lost in the absence of dystrophin (Metzinger et ai., 1997). 
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The highly arranged network of proteins that make up the DAGC and their complex 

interactions are shown in the diagram below (Figure 7). 

In the figure below, the core proteins that comprise the dystrophin-glycoprotein complex, 

namely a-dystroglycan (a-DG), ~-dystroglycan (~-DG), the sarcoglycan complex (SGC), 

sarcospan (SPN), a-dystrobrevin-2 (a-Db 2), syntrophin (SYN) and dystrophin are 

highlighted in pink. Structural proteins, cytokeratins 8 and 19 (K8/K19) that interact 

directly with constituents of the DAGC, their binding partners and location within striated 

muscle cells are also shown. Those proteins that are present in increased levels in 

dystrophin-deficient muscle are shown in cyan. 

Extracellular 
Matrix 

Sarcolemma 

Figure 7: Associations between the dystrophin associated glycoprotein complex (DAGC) 

constituents are clearly illustrated (as adapted from Ervasti, 2006). 

Proposed cell survival signalling pathways are shown in the diagrams below (figure 8, 

Rando, 2001). In (A) of figure 8, calmodulin plays an active role in the cell survival 
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strategy. It regulates phosphorylation whilst also binding to dystrophin and al- syntrophin 

in a calmodulin-dependent manner. The calmodulin-regulation kinases engage in cell 

survival pathways such as that brought about by phosphatidylinositol-3-kinase (PI3K) and 

Akt thereby controlling muscle cell survival. 
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Figure 8: Diagrams illustrating putative cell survival signalling cascade pathways associated 

with the dystrophin associated glycoprotein complex (as adapted from Rando, 2001). 
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In (B) of figure 8, a cell survival strategy involving growth factor receptor-bound protein 2 

(Grb2) is outlined. It has been previously reported that the RaslMAPK signalling pathways 

are intimately involved with membrane signalling proteins such as caveolin and integrin in 

enhancing cell survival (Bonni et al. , 1999). This may have implications for the role played 

by Grb2 in the apoptosis that accompanies the disruption of the DAGC (Tidball et al. , 

1995; Rando, 2001). 

The last putative cell survival pathway utilises nNOS as the key enzyme (C, of figure 8 

above), which has many binding sites in the DAGC, the most significant being the 

syntrophins. The active compound of this enzyme, nitric oxide (NO) has been implicated 

in many intracellular signalling pathways (Bredt & Snyder, 1994). The role of NO in the 

pathogenesis ofDMD emerged when it was noted that it provides a vasodilatory effect on 

smooth muscle. Since NO is not present to regulate smooth muscle activity, functional 

ischemia results in the muscle cells (Sander et al. , 2000). 

The figure below (Figure 9) shows the many pathways that are initiated and regulated by 

the nNOS reduction that occurs in dystrophin null mutant muscle (grey shaded boxes). 

This may be further worsened by muscle disuse. Also highlighted is the role of NO in 

DMD pathology through the cGMP pathway. Neuronal NOS therefore has a multi-faceted 

role in the pathophysiology ofDMD (Tidball & Wehling-Henricks, 2007). 

1.5 PATHOPHYSIOLOGY 

According to Blake et al. (2002), the pathophysiology of dystrophin deficient muscle can 

be categorised into two parts, the first being abnormalities of the muscle cell and the other 
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Figure 9: Schematic showing the various routes through which nNOS contributes to the 

pathophysiology of Duchenne muscular dystrophy and the pathology seen in dystrophin­

deficient muscle fibres (as adapted from Tidball & Wehling-Henricks, 2007). 

being abnormalities of the muscle tissue. A combination of biochemical, physiological and 

molecular studies has been used to identify the pathophysiological pathways involved in 

DMD (Figure 10). With respect to the abnormalities of the muscle cell, it appears that 

molecules that would under normal circumstances be prevented from entering the muscle 

fibres are allowed free access through the cell membrane in dystrophin-deficient muscle 

fibres. These muscle fibres exhibit structural and functional defects, thus rendering it 

vulnerable to mechanical stress (Blake et at. , 2002). Other dystrophin-deficient muscle cell 

abnormalities include inability of the dystrophin-deficient cells to maintain calcium 
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homeostasis and abnonnal expression of prot eases such as calpain-3. Oxidative damage 

and apoptosis have also has been implicated in the pathophysiology ofDMD (Figure 10). 

Leading on from the abnonnalities of the muscle cell are those of the muscle tissue. These 

include vascular problems, inflammation and fibrosis that are initiated by necrosis and 

muscle regeneration. The high number of satellite cells in muscle fibres at the early stages 

of the dystrophic process lead to increased regeneration, which falls rapidly as the disease 

progresses (Figure 10). 

1.6 ANIMAL MODELS 

The discovery of the dystrophin gene and the effects that it has on dystrophin deficient 

muscle in humans subsequently led to the identification of dystrophin homologues in other 

animals. Such animals where similar muscle effects have been noted include the vertebrate 

species mdx mouse, golden retriever dog, cat and zebrafish. The invertebrates include 

Caenorhabditis elegans and Drosophila melanogaster, where the disease symptoms have 

either been spontaneous or a result of targeted disruption of the gene. The most commonly 

used model to study the disease is the mdx mouse owing to the ease with which genome 

manipulation can be undertaken. It is however not the ideal animal model for human DMD 

owing to differences in muscle pathology. The Golden retriever dog model appears to be 

the ideal candidate to study the disease as the symptoms and the effects it produces are 

very similar to those seen in human DMD. The different animal models have been used 

extensively to study the pathophysiology ofDMD and many potentially useful therapeutic 

options have been investigated. 
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Figure 10: Proposed pathophysiology of dystrophinopathies (as adapted from Deconinck and 

Dan, 2007). 

The mdx mouse was first discovered by the high serum creatine kinase level that it 

exhibited (Bulfield et aI., 1984). The muscle pathology that it showed made it a useful 

model in further studying the dystrophin gene. The mdx mouse has a point mutation in 

ex on 23 of its dystrophin gene that produces a premature stop-codon thus preventing full-

length dystrophin from being expressed (Sicinski et ai., 1989). One of the pathological 

features seen in mdx includes its high regenerative capacity of muscle, which is not the 

case in human DMD. It has also been noted that the 'muscle fibre loss' and 'collagen 

deposition' in mdx occur only later in life (Stedman et aI., 1991; Blake et aI., 2002). In 

comparison, these traits affect DMD patients much earlier in the disease. Interestingly, the 

course of the disease can be hastened by including a moderate exercise regimen in the 
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activity schedule ofthe mice (De Luca et al. , 2003). Despite these differences, the mdx 

mouse has made significant contributions to the understanding of disease pathology in 

DMD. Mdx has been the model used in many therapeutic intervention trials (Wells & 

Wells, 2002; Bertoni et aI. , 2003) to determine whether they would be feasible to 

implement such interventions in larger models such as the dog. One can therefore call the 

mdx mouse the pioneer in studying treatment options for DMD. 

Another mouse model with pathological and clinical features similar to human DMD has 

recently received much attention (Deconinck et al. , 1997). This mouse model is a double 

dystrophin/utrophin (mdx/utrn-/l knockout. It has long been postulated that utrophin can 

compensate for the loss of dystrophin and this has been shown to be the case when mdx 

mice were injected with utrophin, with resulting improvement in muscle pathology (Squire 

et ai. , 2002). Such results could have wider reaching implications for future therapeutic 

interventions that may be implemented in DMD patients owing to the similarity that exists 

at the histological and pathological level. 

Several dog models have been studied (Sharp et aI. , 1992; Winand et ai. , 1994; Schatzberg 

et ai. , 1999) in an attempt to find one that mimics the human DMD phenotype and 

pathology. The Golden retriever dog appears to be most appropriate as a model for human 

DMD however the size of the dog and the severe symptoms that it exhibits are points of 

ethical concern. The muscles of the dog show widespread necrosis from as early on as 

birth, which increases till day 30 after which time there is a steady decline until adulthood 

(Nguyen et ai. , 2002; Cozzi et al. , 2001). In much the same way as in human DMD, serum 

creatine kinase levels are very high with levels reaching 100 x that of normal. There has 

also been evidence to suggest that utrophin is abnormal, which might account for the 
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severe symptoms (Wilson et al., 1994). Acco~ding to Nguyen et al. (2002), the dogs often 

suffer from respiratory distress and cardiac abnormalities leading to their death much like 

in DMD affected patients. The major limitations of this model appear to be the inability to 

use the dogs in high-throughput studies owing to size and costs of maintaining such large 

animals, as well as the extreme variability in severity exhibited by the dogs (Collins & 

Morgan, 2003). 

The term hypertrophic feline muscular dystrophy is used to describe the muscle disease 

that affects cats. The dystrophy occurs as a result of a deletion in the promoter region of 

the dystrophin gene (Winand et al., 1994). Muscle pathology is similar to that seen in the 

mdx mouse with the cyclic processes of regeneration and degeneration being prominent. 

Marked hypertrophy is also a pathological feature. Once again it does not serve as a 

suitable model for human DMD as it does not show any of the characteristic features of 

human DMD such as muscle fibrosis. Collins and Morgan (2003) have also pointed out 

that the large size and emotive nature of cats significantly reduces their usefulness as a 

model organism. 

To date no non-human primates harbouring a dystrophin mutation or exhibiting dystrophin 

deficiency has been reported. 

There are at least three model systems used to study DMD pathogenesis that are non­

mammalian. These include the zebrafish (Guyon et al., 2006), the nematode (Baumeister & 

Ge, 2002) and Drosophila (van der Plas et al. 2007). Even though the pathology exhibited 

by these organisms is by no means comparable to that of human DMD, the number of 

experiments that can be conducted using these simple, small and easily manipulatable 
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organisms from a genetic point of view makes them useful. Large scale screening of 

pharmacological therapeutic approaches can be rapidly undertaken thereby reducing costs. 

The unique trait of optical transparency shown by embryos and young zebrafish makes 

them suitable models to study dystrophin and other associated proteins. Owing to the 

synteny that exists between human and zebrafish genomes and since it has been found that 

orthologous genes in the two organisms regulate similar processes such as T-cell 

development, their use as a model is warranted. Care should be taken to first replicate 

experiments that prove to be promising in other larger, vertebrate organisms before any 

definitive connection can be made with human DMD (Guyon et al., 2006). With respect to 

C.elegans as a model organism for DMD, their ability to undergo parthenogenesis and 

their high reproductive capacity facilitates the conduction of high-throughput experiments 

(Baumeister & Ge, 2002; Collins & Morgan, 2003). In order to determine which isoforms 

were associated with maintenance of muscle integrity in Drosophila, van der Plas et al. 

(2007), utilised RNA interference assays. They found that the Dp 117 isoform is required to 

prevent muscle degeneration. A previous report suggested that the DLP2 orthologue is 

responsible for maintaining synaptic homeostasis (van der Plas et al., 2000). 

1.7 VARIOUS FORMS OF THERAPY 

1.7.1 Gene therapy using viral vectors 

Initial gene therapy studies were performed on the mdx mouse model using retroviral and 

adenoviral vectors owing to their sustained level of expression and high transduction rate. 

These viral vectors served as shuttle vehicles for the delivery of a 6.3 kb mini-dystrophin 

eDNA (Acsadi et al., 1996; Dunckley et al., 1993; Vincent et al., 1993). Such experiments 

were successful at expressing dystrophin, albeit for a limited period of time. The next 
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contender was an adeno-retro viral vector that expressed a 3.7 kb micro-dystrophin. This 

vector did not solve the previously encountered problems, such as the high 

immunogenicity of adenoviral vectors and the ability of retroviral vectors to integrate into 

the host genome (Fassati et ai., 1996). The vector system did succeed in obtaining efficient 

expression of dystrophin in the muscles that were injected; however they also contained 

retroviral vector sequences (Roberts et ai., 2002). According to Roberts et ai. (2002), 

designing such hybrid vectors should continue as it may result in the development of a 

useful vector because researchers would be focusing on the positive attributes of each 

partner in the vector system. 

The group of vectors that has shown promise in gene transfer therapy is the adeno­

associated viral vectors. These vectors lack the viral genes that produced immunogenicity 

in host cells resulting in rejection of the injected dystrophin mini-genes. This attribute is 

also harboured by helper dependent (gutted) adenoviral vectors (Dickson et ai., 2002). 

Even though the AA V vectors are suitable candidates for gene therapy trials, their one flaw 

is the inability to house foreign material larger than 5kb. In order to prevent this from 

being a set-back many groups have designed micro-dystrophins in the range of3.1 to 4.2 

kb in order to harness the potential of these vector systems. These constructs were 

designed, based on the premise that the central part of the rod domain is dispensable as 

found in many patients with BMD phenotypes with truncated but functional dystrophin 

(Passos-Bueno et ai., 1994). There have been several studies using the AA V vectors to 

restore protein expression of dystrophin where it has been expressed at the sarcolemma 

(Wang et ai., 2000) and restored expression at the DAGC (Yuasa et ai., 1998; Fabb et ai., 

2002). It has been documented that even the smallest micro-dystrophin molecules 

delivered using the AA V vector system were able to prevent and reverse the disease 
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pathology in the mdx mouse (Harper et aI. , 2002; Dickson et al., 2002; Gregorevic et al., 

2008). Such successes make the use of such vectors promising in the battle against 

muscular dystrophy through gene therapy. There has been much improvement in the area 

of AA V vectors including serotype analysis and transgene engineering (Blankinship et al. , 

2006). 

1.7.2 Utrophin transgenic mice 

Another manner in which the mdx mouse has been rescued from its dystrophic phenotype 

was to use utrophin as a means to compensate for dystrophin. Studies were performed 

using full-length and rod-domain deleted utrophin transgenic mice (Tinsley et al. , 1996; 

Tinsley et al. , 1998). Since utrophin is only expressed at the neuromuscular junction in 

adult skeletal muscle, a specific promoter had to be used to bring about more generalised 

expression. Using the human skeletal actin (HSA) promoter, utrophin localised to the 

sarcolemma, restored DAGC functionality and "prevented much of the dystrophic 

phenotype in mdx", with the full-length dystrophin being more efficient (Tinsley et al. , 

1998). When the double knockout was crossed with a rod-domain deleted utrophin 

transgenic mouse, utrophin expression was shown to prevent the clinical phenotype and the 

pathological features in the utrophin-dystrophin double knockout mouse (Rafael et aI. , 

1998). Such data suggests that ' sarcolemmal expression of either protein' is able to restore 

functionality in the DAGC and can ' compensate for the loss of both proteins' (Rafael & 

Brown, 2000). In 2008, Odom et al. showed that delivery of a micro-utrophin using a 

recombinant AA V vector was successful in increasing lifespan in dystrophinlutrophin 

deficient mice. 
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1. 7.3 Cell therapy 

Cell transplantation in DMD patients started out as a promising therapeutic alternative and 

has been attempted by different groups. The outcome however has been disappointing 

(Huard et ai., 2003; Urish et aI. , 2005). The postulated reason for poor response was the 

lack of migration ofthe myoblasts (approximately 0.5 mm) away from the site of injection. 

Also the rapid death of >75% of injected myoblasts on account of an immune response was 

common. Systemic delivery of myoblast cells produces problems such as the heightened 

risk of embolism in organs such as the heart, lung, brain, kidneys and liver (peault et ai., 

2007). Recent human trials have demonstrated minimal improvements over previous 

experiments. 

Cell transplantation studies have been rapidly replaced by stem cell therapy. Stem cells 

have the advantage of self-renewal and plasticity or "unlimited potency". In 2005, the 

isolation of myogenic precursor muscle cells from the satellite cell compartment was 

undertaken in an attempt to regenerate muscle fibres (Collins et ai. , 2005; Wagers & 

Conboy, 2005). Owing to the amount of knowledge that has been accumulated in the field 

of tissue regeneration, the molecular biology and functional attributes of satellite cells and 

associated markers has been largely deciphered (Peault et ai. , 2007). 

There are other populations of stem cells that may playa role in muscular dystrophy 

therapy. These include muscle-resident side population (SP), muscle-derived stem cells 

(MDSCs) or multipotent adult progenitor cells. Even though all these cell populations have 

the potential to bring about muscle regeneration, their myogenic capacity appears to be 

lower than satellite cells (Collins et ai. , 2005; Urish et ai. , 2005). Another contender that 
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may produce a favourable outcome for cell therapy is the embryonic stem cell pool. This 

group has a high differentiation capability that could be potentially beneficial for muscular 

dystrophy, particularly DMD. To overcome immune rejection, groups working on stem 

cell therapy have started looking into the possibility of using the DMD patients' own adult 

stem cell pool to prevent the immune response reactions (Zhou et al., 2006). A newly 

discovered stem cell, mesangioblast, has been isolated from blood vessels and their ability 

to regenerate dystrophic muscle was demonstrated successfully in Golden retriever dogs. 

More studies on this pool of stem cells are required with a strong focus on how their finite 

life span can be prolonged since their characteristics make them ideal as candidates for 

clinical trials (Sampaolesi et al., 2006; Grounds & Davies, 2007; Peault et al., 2007). 

1.7.4 Aminoglycoside treatment ofDMD patients with nonsense mutations 

In 1999 it was suggested that DMD patients with a nonsense mutation could be treated 

with an aminoglycoside antibiotic, gentamicin, to convert a truncated dystrophin protein 

into a functional one. This was possible owing to the ability of gentamicin to read-through 

the nonsense mutation. The study was conducted using the mdx mouse model (Barton­

Davis et ai., 1999), and the theory was further investigated by Wagner et al. (2001) using 

aminoglycoside antibiotics on humans. Much interest was sparked by the report as the trial 

was performed on 2 DMD and 2 BMD patients. The technique was also outlined in the 

research updates magazine Quest of the muscular dystrophy association in the USA 

(MDA). The differences obtained in the mouse and human studies may be species 

dependent with toxicity levels and misreading efficiency being related to the type of 

organism being used (Karpati & Lochmuller, 2001). 
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Figure 11: Schematic representation of the therapeutic approach using aminoglycoside 

antibiotic, gentamicin to read-through a nonsense mutation found in the dystrophin gene of 

DMD patients (Quest - MDA, Vol 8, 2001 http://www.mdausa.or2). 

According to Karpati and Lochmuller (2001), the brand and composition of the gentamicin 

sulphate compound also plays a role in inducing misreading. Other aminoglycoside 

antibiotics such as negamicin and PTC124 have also been used to promote read-through of 

stop-codons and may be less toxic (Arakawa et al., 2003). It was previously documented 

that the "efficacy of read-through" was dependent on specific types of nonsense mutations 

(Howard et al., 2000). According to Kimura et al. (2005), a method for identifying the 

patient and the nonsense mutation amenable to gentamicin treatment has been investigated 

and proven to be beneficial. The patient was considered for the therapy, if gentamicin 

"induced dystrophin expression" in the myotubes (Kimura et ai., 2005) and in all cases the 

patients showed a TGA stop codon mutation. 
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1.7.5 Myostatin as a therapeutic avenue 

Myostatin was first described in 1997 as a "negative regulator of muscle growth" owing to 

the increase in skeletal muscle bulk and mass that is exhibited by knock-out mice. This 

gene is also called growth differentiation factor 8 and forms a part of the transforming 

growth factor (TGF) ~ family. Studies conducted in mice have not been clear as to whether 

the increase in muscle bulk occurred as a result of hyperplasia alone or hypertrophy alone, 

however there is data to support the theory that both pathways are active (Zhu et ai. , 2000; 

Lee & McPherron, 2001; Dominique & Gerard, 2006). The myostatin deletion-mutation 

appears to not only influence muscle mass positively but there is also evidence to suggest 

that a decrease in adipose tissue occurs in mice (Lin et ai., 2002; McPherron & Lee, 2002). 

Such results may have a far reaching, positive impact on muscular dystrophy patients since 

adipose tissue deposition increases with age. This increase in fat places increasing strain on 

their progressively weakening muscles. Long before the myostatin gene was cloned, 

naturally occurring mutations resulting in increased muscle mass had been described in 

cattle (Charlier et ai., 1995). The double muscled cattle however also exhibited increases in 

weight of skin, adipose tissue and bone in contrast to the increase in muscle mass seen in 

mice. In 2004, a spontaneous mutation in the myostatin gene was found in a child of an 

athlete. The child showed increase in muscle mass with no negative effects (Schuelke et 

ai., 2004). 

According to Wagner et al. (2005) studies on myostatin negative mice revealed that 

regeneration and repair of skeletal muscle was more efficient than in wildtype, with earlier 

differentiation and greater satellite cell proliferation noted. Myostatin also seems to bring 

31 



about muscle repair and regeneration by regulating the movement of macrophages to the 

site of injury (McCroskery et al., 2005). 

In 2006 an extensive gene expression profiling study was performed in myostatin knockout 

mice by Steelman et al. (2006) where myostatin was shown to be involved with global 

regulation of various proteins. The report showed that the wnt/calcium signalling pathway 

was upregulated in the absence of myostatin and wnt4 was shown to increase the 

proliferation of satellite cells. 

Other studies have focussed on hypertrophy as a way to increase muscle mass without 

inducing pathological changes. In 2001, Musaro et al. produced conditional knockout mice 

that expressed an insulin-like growth factor (IGF)-l isoform called mIGF -1, which is 

normally expressed in skeletal and cardiac muscle. These mice developed hypertrophic 

skeletal muscle containing "little or no body fat" and no cardiac hypertrophy. In older 

mice, normal atrophy occurring as a result of senescence was prevented and histological 

analyses indicated the presence of centralised nuclei, which is a hallmark of regeneration 

(Musaro et al., 2001). Musaro et al. (2006) showed that IGF -1 plays a crucial role in down­

regUlating cytokines IL (interleukin) 1, TNF (tumour necrosis factor) a, ENA (epithelial 

neutrophil activating peptide )-78, and the CC chemokines (p-chemokines possess two 

cysteine residues near the amino terminal end) at the latter stages of the inflammatory 

process, during which time necrosis becomes active, and not during the pro-inflammatory 

stages. Such findings aid in cementing its role in the regeneration of muscle tissue (Pelosi 

et al., 2007). 
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In 2004, Lai et al. used fluorescently tagged conditional knockout mice to show that 

activation ofthe phosphatidylinositol-3-kinase (PI3K)/Akt pathway was sufficient to 

induce hypertrophy. 

All these studies aim to provide mechanisms and pathways that can be activated and in so 

doing induce skeletal muscle hypertrophy that has already been shown to have beneficial 

effects in mice. Recent studies have revealed that signalling pathways that regulate 

hypertrophy are dominant over atrophy mediators, which leaves much hope for muscular 

dystrophy therapy (Cai et al. , 2004; Glass et al., 2005). 

Findings that NF-KB, through activation OflKB kinase (IKK) ~ and to a lesser extent TNF­

a are key initiators of atrophy, open up possibilities for studies that aim to down regulate 

these proteins by biochemically interfering with the pathway (Glass et aI. , 2005). NF-KB 

has previously been shown to be upregulated during muscle disuse and sepsis (Hunter et 

al. , 2002; Penner et al. , 2001) therefore understanding the functional attributes ofNF-KB 

may assist in opening up potential therapeutic avenues. 

There has been one study that focused on myostatin blockade in mouse models of muscular 

dystrophy and it was shown that the effects of myostatin blockade is variable in different 

muscle groups (Parsons et al. , 2006; Hoffman & Escolar, 2006). Care should be taken to 

not extrapolate these results to include DMD when reviewing the data, as 

8-sarcoglycanopathy (limb-girdle muscular dystrophy) was the disease being subjected to 

scrutiny. The results of the report make it necessary for similar studies to fust be 

performed on other forms of muscular dystrophy such as DMD before decisions are made 

regarding the usefulness of such as therapeutic option. 

33 



1.7.6 Pharmaceuticals as an alternative to mainstream therapy 

In a review published by Radley et al. in 2007, the benefits and risks of using different 

drugs to improve patients affected by muscular dystrophy were outlined. The authors 

highlighted the studies that utilised drug therapy both in mdx mice and human trials. The 

first group of drugs to be evaluated were the corticosteroids, prednisone and Deflazacort 

whose side-effects of weight gain, asymptomatic cataracts and stunted growth, outweigh 

their beneficial attributes of delaying muscle wasting. A potentially useful anti­

inflammatory drug, pentoxifylline, was shown to reduce TNF -u production, reduce fibrosis 

and playa "role in normalizing blood flow in dystrophic muscle" (Granchelli et al., 2000). 

Owing to such positive results, pentoxifylline is the subject oftwo CINRG (The 

Cooperative International Neuromuscular Research Group) trials in DMD patients. 

Another manner in which drug therapy has proven to be beneficial is in the use of anti­

cytokine drugs to bring about targeted blockage of specific aspects in the inflammatory 

response cascade. This approach has been used successfully in diseases such as rheumatoid 

arthritis and crohn's disease, where neutralizing antibody called infliximab is used to block 

the action of TNF -u. In mdx mice the use of infliximab was shown to "delay and reduce 

necrosis" associated with the dystrophy (Grounds & Torrisi, 2004). 

The next type of pharmaceutical intervention used in DMD and other diseases include 

antioxidants such as Co-enzyme Q and green tea extract [(-)-epigallocatechin gallate]. 

Various studies have revealed green tea extract to be responsible for a reduction in muscle 

cell damage and improvement in muscle function in the mdx mouse (Buetler et al., 2002; 

Dorchies et aI., 2006). Co-enzyme Q has become the subject of CINRG trials on DMD 

patients where its effectiveness as an adjunct to steroid therapy was assessed. It was shown 
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to "increase strength in some muscle groups" in DMD patients and a larger follow-up 

study is underway. 

In order to assess the usefulness of an anabolic agent, albuterol, the drug was administered 

to DMD patients for 28 weeks (Fowler et al., 2004). Anabolic drugs, such as ~2-agonists 

are known to increase protein content and muscle size. The result of the DMD trials was a 

slight increase in strength with no side-effects. The future use of such drugs in DMD trials 

looks promising. 

1.7.7 Antisense oligonucleotide therapy 

This form of therapy falls into the category of gene modification where exon-skipping is 

brought about in the dystrophin gene of an affected DMD child in order to convert the 

severe phenotype to a more benign BMD phenotype. The procedure is outlined in figure 11 

below. By using the antisense oligonucleotide (AON) approach, an out-of-frame deletion 

can be converted into an in-frame deletion thereby creating a smaller yet functional 

dystrophin protein. According to Aartsma-Rus et al. (2003), a maximum of20 exons can 

be targeted by using the AON technique for single-exon skipping (Zhou et al. , 2006). 

AONs could serve as a "molecular patch" to treat patients with different deletions. In order 

to enhance the delivery of these molecular patches in vivo, a non-ionic triblock copolymer 

F127 was used to efficiently transfect the mdx mice, which contain an ex on 23 mutation 

(Lu et ai. , 2003). The authors found no humoral immune responses to dystrophin after 

administration ofthe AON. Later systemic studies using the same methodology induced 

dystrophin expression in all skeletal muscles except cardiac muscle (Lu et ai. , 2005). It 

was later shown that by altering the chemistry of anti-sense oligonucleotides to an ethylene 
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bridge nucleic acid (ENA) chimera the skipping of ex on 19 was induced and a 40 x more 

efficient expression was achieved, with a reduction in toxicity (Yagi et ai. , 2004). Using 

the same antisense chimeric oligonucleotide, impressive results were achieved when the 

skipping of ex on 41 was accomplished with >90% of muscle fibres being dystrophin 

positive in culture (Surono et ai., 2004). 
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Figure 12: Illustration of the exon-skipping approach adopted by different groups where 

antisense-oligonucleotides technology is implemented in Duchenne muscular dystrophy (as 

adapted from Zhou et al., 2006). 
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CHAPTER 2 

OUTLINE OF STUDY 

The study will be divided into two parts. 

Part I: 

Part II: 

• Mutation detection in dystrophinopathy patients and carrier 

detection in their mothers. 

• Gene profiling analysis using micro array technology to elucidate the 

pathogenesis in DMD by focussing on two muscle groups from the 

same patient. 

2.1 AIMS 

a) Perform immunohistochemistry on all biopsy samples taken from clinically 

affected dystrophinopathy patients through informed consent. 

b) To expand PCR deletion detection in dystrophinopathy patients to encompass 

30 exons within and surrounding the deletion hotspots of the dystrophin gene. 

c) Detect deletions and duplications throughout the 79 exons of dystrophin using a 

novel technique that combines probe-based methodology with the power of 

PCR. 

d) To evaluate the usefulness and reproducibility of a point mutation detection 

technique that uses single stranded conformers to separate normal from 
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abnormal fragments . Aberrant bands would be confirmed by automated DNA 

sequencmg. 

e) To close the mutation gap by conducting reverse-transcription peR on the 

RNA samples from dystrophinopathy patients to detect aberrant fragments that 

were not detected using DNA based methods. 

f) Performing gene expression profiling on a selected number ofDMD affected 

patients RNA samples using the spotted oligonucleotide approach to unravel the 

molecular signatures and regulatory pathways that may be active in different 

types of muscle biopsy samples (gastrocnemius and biceps/quadriceps). 

Double-biopsy samples were obtained from the same patient. Such a broad 

analysis will help us to elucidate the pathogenesis in Duchenne muscular 

dystrophy. 

2.2 PATIENT POPULATION 

Table 1: Table showing the Duchenne and Becker muscular dystrophy patients who agreed to 

have an open muscle biopsy. 

r-=DNA-, su:inam-;~---I Age I Dystrophinopathy 

I 
Mental status 

number Initials status 

1 2 I S , w rl DMD I Intel l ectual ly 
impaired 

I 5 1
M

, 
B 
il DMD I ~ntellectuall y 

lmpal r ed 

I 7 I H, J I 8 I DMD I Normal 

I 8 I s , T 113 I DMD I N/K 

I 9 I s , NM I 17 I DMD 1 N/K 

I 1 2 I G, S I 16 I DMD I N/K 

1 14 I N , D I 9 1 DMD 1 N/K 

I 16 1 M, T I 14 I DMD 1 N/K 

i 19 1 M, S I 6 1 DMD 1 N/K 
I 20 1 M, S r 1 DMD 1 N/K 

I 2 1 I R, S I 8 I DMD 1 N/K 

I 22 I N, N I 10 I DMD 1 Norma l 

1 23 I H, ZM I 13 I DMD 1 N/K 

I 24 I P, D I 8 I DMD I N/K 
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[27---' L , L 1---1 DMD 1 N/K 

I 28 1 M, MB ! 10 1 DMD I Mentally impaired 

I 29 I N, C --I I DMD -I N/K 

1 30 I w, R I I DMD I Normal 

I 31 I C, L I 12 I DMD I Normal , CK 5901 

I 32 1 M, NL I 6 I DMD I N/K 

I 33 I G, P I I DMD 1 N/K 

I 37 1 M, G I 8 I DMD I Normal , CK 7815 

I 38 I N, M I 14 1 DMD I Normal , CK 6409 

I 39 I S , T I 14 1 DMD 1 Normal 

I 40 I S, C I 12 I DMD I Normal 

I 41 1 M, S 1 10 I DMD 1 N/K 

I 42 1 M, R I 12 1 DMD 1 Normal 

I 43 I S, V I 14 I DMD I Normal 

I 44 I C, L I 1 DMD 1 N/K 

I 45 1 M, T 1 13 1 DMD 1 N/K 

I 46 1 M, S I 1 DMD 1 N/K 

I 47 1 M, ST I 1 DMD 1 N/K 

I 48 1 M, S I I DMD I N/K 

I 49 1 M, W 1 7 I DMD I N/K 

I 50 I N, T 1 14 1 DMD I N/K 

I 52 1 K , TP 1 18 I DMD 1 N/K 

I 53 I V, S I 10 I DMD I N/K 

1 54 1 B , N I I DMD I N/K 

I 56 1 S , 1 I DMD I Normal 
. -

T 12 

I 58 1 M, M I 14 I DMD 1 Normal 

I 59 rTX I 10 I DMD I Normal 

I 60 I N, S I 12 I DMD I Normal , CK 5177 

I 61 I L , M I 8 I DMD I Normal 

I 62 I S, S I I DMD I Normal 

I 63 I S , N ~I Carrier F 
I Intellectually 

impaired 

, 66 
1 M, R I I DMD I Normal 

I 68 I N, S il DMD I Norma l 

I 18 I R, J I 34 I BMD I Normal 

I 25 [R~--1 35 I BMD I Normal 

I 26 I Z , S I 18 I BMD I Normal 

I 34 jN;M I 1 BMD I N/K 

I 35 I S , G I 1 BMD 1 N/K I 

I 36 I H, XV I 22 I BMD I Normal 

I 51 I H, N I 19 1 BMD 1 N/K 
I 55 I F, I I BMD 1 Normal S 

Legend: NIK - not known 
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Table 2: Table showing details of mothers and relatives of dystrophinopathy patients who 

were included in different aspects of the project. 

DNA number Surname, 
Initials 

1 S , R 
i 

3 S, OK 

4 M, M 

6 H, S 

I 10 S, S 

I II I S , B 

1 13 Mrs G 

I 15 N, C 

17 Mrs M 

I 57 M, T 
, 

64 M, S 

I 65 M, C 

67 M, P 

2.3 METHODS EMPLOYED 

2.3.1 Immunohistochemistry 

Relationship to 
dystrophinopathy child 

Aunt 0 f 2 

I Mother of 2 

I Mother of 5 

I Mother of 7 

I Mother of 8 & 9 

I Sister of 8 & 9 

I mother of 12 

I Mother of 14 

I Mother of 16 

I Mother of OMO child 28 

I Mother of 19 

I Sister of 64 

I Mother of 64 

Immunohistochemical analyses was performed using H+E staining, staining for 

dystrophin, the sarcoglycans, a-actinin, merosin (laminin-a-2), dysferlin (hamlet 1 and 

hamlet 2), spectrin. All the stains were obtained from Novocastra laboratories (UK). 

2.3.2 30-exon Multiplex peR 

peR or polymerase chain reaction, which is the rapid amplification of a target DNA strand, 

was undertaken. Deletion detection by multiplex peR spanning 30 exons of the dystrophin 

gene was performed. In the case of multiplex peR, several peR primers were included in 

the same reaction tube. The resultant effect following amplification was the production of 

several amplicons of differing lengths. The 30 exons were used to cover the regions that 
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were not amplified using the conventional Chamberlain and Beggs 18 exon multiplex 

PCR. The 30 exons were tested in an attempt to improve the diagnostic efficacy of 

multiplex PCR and thereby increase the number of patients that showed deletions. 

2.3.3 Multiplex ligation-dependent probe amplification assay (MLP A) 

Complete deletion and duplication testing of the dystrophin gene was performed using the 

multiplex ligation-dependent probe amplification assay (MLP A). This novel technique 

uses commercially available probes that are subsequently amplified in the presence of the 

patients ' DNA. The products are subjected to fragment analysis using a genetic analyser. 

Genemapper analysis would reveal no peak for a deletion and duplications are noted by an 

increase in peak area or peak height. Duplications are also confirmed using dosage quotient 

analysis on a spreadsheet program such as Excel. 

2.3.4 Single strand conformation polymorphism (SSCP) analysis 

Point mutation detection was undertaken using the "Cold" PCR single strand conformation 

polymorphism (SSCP) analysis assay on the DNA samples of deletion-negative DMD 

patients. The DNA is PCR amplified, electrophoresed on an agarose gel, purified and 

subjected to SSCP on a polyacrylamide gel. Visually detected aberrant bands / abnormally 

migrating bands are subjected to DNA sequencing using the ABI 3100 and analysis is 

conducted using the Biotools bioinformatics software program. 
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2.3.5 Reverse-transcription peR 

Reverse-transcription PCR was attempted on the RNA samples from dystrophinopathy 

patients' and controls to detect mutations in the dystrophin gene by using 10 amplified 

fragments to examine the entire coding region of the gene by nested PCR. 

2.3.6 Gene profiling using microarrays 

Gene profiling analysis was performed using the Sigma-Compugen human 19K 60-mer 

oligonucleotide collection, spotted at the Leiden Genome Technology Center (LGTC) in 

the Netherlands. Double biopsy samples were obtained through informed consent from 

dystrophinopathy patients. These samples were taken from a weak muscle (biceps / 

quadriceps) and a strong (gastrocnemius) muscle to determine whether differences in gene 

expression were present. These differences may help to understand why the one muscle 

remains invariably strong throughout the child' s life whereas the other muscle becomes 

progressively weaker. Such dysregulation of genes may expand therapeutic options for 

dystrophinopathy patients in the future , which may increase the lifespan and quality of life 

in the affected child. 
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CHAPTER 3 

IMMUNOHISTOCHEMISTRY 

3.1 INTRODUCTION 

The use of immunohistochemistry (IHC) in the diagnosis of muscle disease has served as 

the gold standard for many years. Even though molecular biology has become popular in 

diagnosing various muscle diseases owing to the genes responsible for such disorders 

being mapped out and characterised, the muscle biopsy still proves to be useful in the 

diagnostic process (Tuffery-Giraud et ai. , 2004). The success rate in achieving a definitive 

diagnosis with the aid of immunohistochemistry and histological methods increases when 

combined with molecular diagnostic assays (Vogel & Zamecnik, 2005). 

3.1.1 Skeletal muscle 

Skeletal muscle, which is also referred to as voluntary muscle, is a type of striated muscle. 

It is attached to bone by tendons. Skeletal muscle has a multinucleated structure composed 

oflong, cylindrical cells. The nuclei are located at the periphery, under the plasma 

membrane and this arrangement produces higher efficiency. Muscle is surrounded by three 

connective tissue components that give strength, protection and rigidity to the fibres. The 

epimysium is a fibrous connective tissue that surrounds the entire muscle. Perimysium 

surrounds fascicles (bundle) of muscle cells (Figure 13). Endomysium surrounds 

individual muscle fibres and it is composed of reticular filaments and an outer lamina 

(Junqueira et ai., 1998). 
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The cytoplasm of skeletal muscle is called the sarcoplasm. The plasmalemma is referred to 

as the sarcolemma, which forms deep tubular invaginations called the T -tubules. The T­

tubular network extends into the cells. Myofibrils are bundles of filaments 1-2 !Am in 

diameter and they extend the entire length of the muscle cell (Junqueira et aI., 1998). 

Figure 13: Diagram illustrating the gross sub-cellular organisation of skeletal muscle. 

www.unm.edu/ .. .lmusclesarcomere.html 

There are three types of muscle fibres. These include the red (slow), white (fast) and 

intermediate muscle fibres. All three types may occur in a particular muscle. These muscle 

fibres differ primarily on account of their myoglobin content however other differences 

include mitochondria presence, enzyme concentration and the rate of contraction. A 

change in innervation can change the fibre type of a muscle. For example, if a red fibre is 

denervated and it is re-innervated by an axon determining a white fibre, the red fibre will 

become a white fibre. The red or slow twitch fibres possess a large number of 

mitochondria and engage in predominantly aerobic metabolism and store oxygen in 

myoglobin. Endurance athletes have more red fibres. White or fast twitch fibres have fewer 
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mitochondria and are capable of metabolising A TP at a rapid rate. Sprint athletes have 

more white fibres (Junqueira et ai. , 1998). 

A multitude of genes are involved in producing the skeletal muscle phenotypes we are 

familiar with. Functional differences exist between the adult fast and slow twitch muscle 

fibres owing to varying degrees of expression from muscle proteins. Several signalling 

pathways regulate this process in both animals and humans. Such pathways include the 

Ras/mitogen-activated protein kinase (MAPK) signalling pathway, calcineurin, 

calcium/calmodulin-dependent protein kinase IV, and the peroxisome proliferator y­

coactivator 1 (PGC-1) (Widegren et ai. , 2001). 

Both cytoplasmic and nuclear proteins are phosphorylated by MAPK, thus revealing the 

essential role played by MAPK in transcriptional regulation (Chen et ai. , 1992). 

Transcriptional factors activated by the MAPK family of proteins and other signalling 

partners include cyclic AMP response element binding protein (CREB), myocyte enhance 

factor 2 (MEF2) A and C, activating transcription factor (ATF) 1 and 2 and others (Han et 

ai., 1997, Xing et ai. , 1996, Widegren et ai. , 2006). 

Calcineurin is a Ca2+ sensitive phosphatase that has been found to play an integral role in 

contributing to fast to slow fibre type transformation. It has been implicated in the 

translocation of dephosphorylated NF ATc (nuclear factor of activated T -cells) from the 

cytoplasm to the nucleus where NF ATc brings about slow fibre type gene expression. 

Myocyte enhancer factor 2 (MEF2), a transcription factor has also been shown to cause 

fast-slow fibre type transformation with the help of nuclear calmodulin dependent kinase 

(CaMK) (Lui et ai. , 2005). By extrapolation, it can be deduced from the data obtained thus 
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far (Lui et ai., 2005) that calcineurin plays an important role in initiation and maintenance 

of slow muscle fibre gene expression (Stewart & Rittweger, 2006). 

3.1.2 Sarcomere 

This is the single, basic unit of striated muscle ' s myofibril. Each striated myofibril is 

composed on alternating dark bands called "A-bands" and light bands called "I-bands". In 

the middle of each "A-band" is a lighter area referred to as the "H-zone" or "H-band", 

whereas the centre of each "I-band" houses a dark, thin line which is given the term, "Z­

line". The segment of a myofibril between two "Z-lines" makes up a single sarcomere. The 

"Z-line" is also sometimes referred to as "Z-discs" or "Z-bodies". Inside the "H-zone" is 

located the "M-line". 

Sarcomeres are made up of a complex of proteins, which are divided into three types of 

filament systems. The first is the thick, myosin protein containing filaments possessing a 

globular head and a long centre portion. It is located in the "A-band". The second are the 

thin actin filaments, which is the major constituent of the "I-band" but they also extend 

into the "A-band" . The third is an elastic filament system that is made up of the giant 

protein titin, which extends from the "Z-line" of the sarcomere where it binds to the thin 

filament system to the "M-band" where is interacts with the thick filaments (Figure 14). 

Titin or connectin is the largest protein found in nature to date, spanning 4,200 kDa and it 

is thought to playa essential role in the assembly and functioning of the sarcomere 

(Tskhovrebova & Trinick, 2003). The dark colour that signifies the presence of the "A­

bands" is due to the overlap between actin and myosin filaments . In much the same way, 
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the lighter "H-zone" occurs as a result of the absence of actin from the centre of the "A-

band". 

The process of muscle contraction occurs when an action potential is directed from the 

CNS to myosin which is thus stimulated. During the process of stimulation, 

neurotransmitter acetylcholine is released by the motor neuron and it travels along the 

neuromuscular junction. The nerve impulse then travels along the T (transverse) tubules 

until it reaches the sarcoplasmic reticulum where calcium release channels are activated. 

The myosin head then binds to actin and forms actomyosin, which results in the release of 

energy by breaking up A TP into ADP and Pi. This energy expenditure enables the myosin 

head to draw actin towards the centre of the sarcomere. The myosin head becomes 

liberated from actin and the entire process is repeated as more nerve impulses are received. 

This repeated motion causes the filaments to slide past one another. This process of muscle 

contraction was first proposed by Huxley (Cooke, 2004). 

3.1.3 Muscles hiopsied in dystrophinopathies 

3.1.3.1 Biceps muscle 

This is the prominent muscle on each side of the upper arm and since it can be flexed 

easily it is associated with upper body strength. The biceps (Figure 15) is a muscle that is 

commonly biopsied in Duchenne muscular dystrophy as it is usually affected as a 

consequence of the disease process. Marked wasting of this muscle is a regular feature of 

DMD. The primary genetic defect in DMD, the absence / reduction of the protein 

dystrophin is thought to playa role in bringing about wasting ofthis muscle (Figure 15). 
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Figure 14: Diagram illustrating the structural components that constitute striated skeletal 

muscle (Adapted from Tskhovrebova & Trinickl 2003). 
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Figure 15: Image showing the location of the biceps brachii muscle. 

http://en.wikipedia.org/wikilBiceps brachii muscle 

3.1.3.2 Quadriceps muscle 

The quadriceps (Figure 16) includes the four muscles in the front of the thigh. It is referred 

to as the extensor muscle of the thigh as it envelops the front and the sides of the femur. 

Each of the four muscles has a distinctive name and role. The muscle that occupies the 

middle of the thigh is called the rectus femoris, whereas the other three are connected to 

the femur as their names suggest. They are called the vastus lateralis (lateral side), vastus 

medialis (medial side), vastus intermedius (front of femur). All these muscles together 

form powerful extensors of the knee joint. The quadriceps plays an important role in such 

activities as walking, running, jumping and squatting. The rectus femoris is also involved 

in hip flexion. 

In DMD, these muscles are most often weak and wasted on clinical examination. For this 

reason, it is a common muscle that is biopsied for histological and immunohistochemical 

staining purposes. In Becker muscular dystrophy (BMD) too the quadriceps becomes weak 

however not nearly to the extent that is seen in DMD. Absence of dystrophin staining is 

common on immunohistochemical analysis of DMD biopsies. In BMD patients there is 
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either a mosaic pattern of staining or one of the three dystrophin antibodies shows absence 

of staining. 

~. lij>rilft---- Sartorius 

~.-1"IH+I---- Vastus inte rm edius 

~~-7t----Vastu s lateralis 

--I/----Vastus medialis 

I-r\-----Gastrocnemius 
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!~---- Soleus 
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rectus 
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anterior 

B 

uastus 
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Figure 16: Image of the muscles found in the lower extremities. (A) These include the 

quadriceps and gastrocnemius muscles. The rectis femoris, which forms part of the 

quadriceps is not included to show the vastus intermedius. 

http://en.wikipedia.org/wikillmage:lllu lower extremity muscles.jpg 

(B) Image revealing the location of the rectus femoris. www.harkema.ucla.edu/muscles.html 

3.1.3.3 Gastrocnemius muscle 

This is a powerful muscle found at the back of the lower leg and together with the soleus it 

makes up the calf muscle (Figure 17). Its major action involves standing and walking, 

where it is responsible for increasing the angle between the foot and the leg (plantarflex the 

foot). The muscle starts from the back (posterior) area of the femur and its other end forms 

the Archilles tendon with the soleus muscle. This muscle is often hypertrophied in DMD 

patients (Bakker & van Ommen, 1998). Even though immunohistochemical staining of the 

muscle fibres from this muscle reveals absence of dystrophin, the muscle is found to be 
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strong on clinical examination of dystrophinopathy patients. There is currently no 

definitive reason as to why the calf muscle remains hypertrophied and strong whilst the 

other muscles become progressively weaker. 

Figure 17: Image showing the location of the gastrocnemius muscle. 

http://en.wikipedia.org/wikillmage:Gastrocnemius.png 

3.1.4 Histology of normal skeletal muscle 

In normal skeletal muscle, the fibres are located in such close proximity to one another that 

they may appear to be in contact. This is due to the unobtrusive nature of the endomysium. 

The nuclei are located at the periphery of a muscle fibre. The mean diameter of muscle 

fibres in the neonate would be between 10-15 !lm. In an adult, the mean diameter would 

usually be between 50-80 !lm and this depends largely on various factors such as the 

muscle that was biopsied, gender and activity status of the individual. 

The haematoxylin and eosin (H+E) stain is a commonly used histological stain to 

distinguish normal from myopathic muscle. Haematoxylin stains the nuclei blue whilst 

eosin stains the connective tissue and the cytoplasm pink. In longitudinal section, the cells 

run parallel to one another. In cross sectional view, the muscle fibres of an adult are 
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polygonal, whereas those of a child are almost round in appearance (See figure 18 A and B 

below). The skeletal muscle fibres from a child are much smaller than that of an adult as is 

shown in figure 18 (B and A) below. The same magnification was used to capture both the 

images (200 x). 

In longitudinal section, muscle fibres often show alternating light and dark banding 

patterns, thus giving it the striated appearance as shown in Figure 18 (C) below. 

Figure 18: Haematoxylin and eosin stained images of normal skeletal muscle fibres in cross 

sectional view at 200 x magnification and longitudinal section at 400 x magnification. 

(A) Adult skeletal muscle fibres. (B) Skeletal muscle fibres from a 4 year old child. 

http://missinglink.ucsf.edu/lm/ids 104 musclenerve path/student musclenerve/normal.html. 

(C) Longitudinal muscle fibre sections show faint striations at high magnification (green star) 

http://www.usuhs.mil/pat/surg path/nlhist/pictures/nl0004b.jpg&imgrefurl. 
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Figure 19: Striated appearance of skeletal muscle in longitudinal section. 

http://users.rcn.com/jkimball.ma.ultranetlBiologvPageslMlMuscies.html 

3.1.5 Pathology of dystrophic skeletal muscle 

B 

D 

Figure 20: Dystrophinopathy pathology illustrated by H+E staining. 
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Images A, Band C reflect the early pathology seen on H+E staining of muscle biopsy 

samples in dystrophinopathy patients. (A) Presence of necrotic fibres (Blue star). (B) 

Regenerating muscle fibres are shown by the presence of many small fibres (white star) 

and increased nuclei (green star). (C) Immature basophilic muscle fibres (blue star). Image 

D reflects the later pathology seen in dystrophinopathy patients, where endomysial 

connective tissue infiltration (white star) is evident. Variable fibre size diameter (green 

star) is also shown. 

http://www .neuro. wustl.edu/neuromuscular/picslbiopsy/ dmdl dmdmyopthgreg. jpg 

3.2 AIMS AND OBJECTIVES 

i) To confirm dystrophinopathy status of clinically diagnosed patients using 

immunohistochemical antibody staining. 

ii) Perform immunohistochemical staining on two biopsy samples from the same 

patient to detect the presence / absence of dystrophin. 

Clinically diagnosed Duchenne and Becker muscular dystrophy patients underwent an 

open biopsy procedure with informed consent. Ethical approval was obtained for all 

muscle biopsies performed. 

3.3 MATERIALS AND METHODS 

The biopsy procedure in young children was performed under light general anaesthesia. In 

older children and in adults, the biopsy was performed under local anaesthetic. 
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3.3.1 Patient population 

The biopsy database for this study contains muscle biopsy specimens from 55 DMD and 

BMD individuals. Eight of the muscle biopsy specimens were from Becker muscular 

dystrophy patients, one was from a female manifesting carrier and the rest of the patients 

exhibited symptoms ofDMD. 

3.3.2 Muscle biopsy cutting procedure for immunohistochemical analysis 

The procedure was carried out as outlined in the Leica manual (Leica 1850 cryostat). 

The following aspects of the protocol related specifically to the type of muscle being 

sectioned: 

• The sample was left in the microtome between four and six hours to allow it to 

equilibrate to the desired cutting temperature. 

• The temperature at which the samples were cut varied owing to the state of the 

muscle tissue. If the tissue was found to contain adipose tissue infiltrates, the 

temperature was reduced to between -25 DC and -30DC to allow for sections to be 

cut. If the temperature was too high, the sample would not be cold enough to obtain 

usable sections. 

• The specimen was cut at an 8 ~m diameter . 

3.3.3 Muscle biopsy storage for RNA extraction 

The remaining pieces of muscle tissue were stored in a tissue protectant called RNAlater 

(Ambion). This solution was used to ensure that the quality and quantity of the RNA would 

not be compromised by degradation elements in downstream applications. The reagent 
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enters and saturates the tissue sample thereby stabilising and protecting cellular RNA in 

fresh tissue. 

The muscle tissue sample was cut into pieces of not more than 0.5 cm in thickness. The 

tissue was placed into five volumes of the RNAlater solution. The tissue in RNAlater 

solution was incubated at 4°C overnight. Following incubation, the pieces of tissue were 

placed into a sterile 0.5 ml micro-centrifuge tube for long term storage at -80°C or until 

required. 

3.3.4 Haematoxylin and eosin staining 

Standard haematoxylin and eosin staining was performed on all muscle biopsy samples 

(http://en.wikipedia.org/wikilH&E stain). The stain was used to perform histological 

analyses and thereby confirm the presence ofthe dystrophic process that was clinically 

apparent to the Neurologist. It is also used to give an indication of what stage the 

individual is at, with respect to disease progression. 

All the steps were carried out using protective eye-wear and either double latex gloves or 

nitrile gloves when available. All solutions were housed in a fume hood. Forceps were 

used at all times to handle the slides. 

3.3.5 Dystrophin staining 

The dystrophin stain was performed to confirm the dystrophinopathy state of the clinically 

assessed patient. The dystrophin stain would show the presence, reduction or complete 
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absence of dystrophin in different regions of the protein. There are three commercially 

available monoclonal antibodies for the dystrophin protein (Novocastra laboratory, United 

Kingdom). Dystrophin 1 (Dys 1) targets the rod domain of the protein, dystrophin 2 (Dys 

2) targets the C-terminal domain and dystrophin 3 (Dys 3) targets the N-terminal domain 

of dystrophin. The absence of the protein in a particular domain is usually suggestive of a 

deletion or other mutation in that particular region. The staining therefore serves as the 

ultimate confirmatory test for dystrophin absence. For each batch of dystrophin stains that 

were conducted, a control slide was included for comparison purposes. Sometimes it was 

found that the staining was markedly reduced and not absent. This could only be properly 

assessed by comparing the staining profile of the suspected dystrophinopathy patient's 

sample to that of a control sample. 

The Histostain ™ Plus kit (Zymed Laboratories Inc.) is used to visualise the protein. This 

commercial kit utilises the Streptavidin-biotin methodology to detect binding of the 

monoclonal antibodies to tissue dystrophin. 

The procedure followed was as per manufacturer' s instructions (Novocastra Laboratories, 

United Kingdom; Zymed Laboratories Inc.). 

3.3.6 Spectrin and other protein immuno-staining 

F or each suspected dystrophinopathy patient, other proteins were also stained for. A 

spectrin antibody stain was done to determine the membrane integrity of the sample. 

Spectrin would stain normal in dystrophinopathy patients as the membrane is intact even 

though dystrophin is deficient. Staining for the sarcoglycans (a, p, y and 8) is often 

57 



reduced in dystrophinopathy patients as the sarcoglycans are also a part ofthe dystrophin-

associated glycoprotein complex (DAGC). When there is a mutation in the dystrophin 

gene, it disrupts the entire DAGC hence the reduction in sarcoglycan staining. Further to 

this, a-actinin is stained for. Laminin-a-2 or merosin, which is the name it is given 

because it is expressed in skeletal muscle, is also stained for as it forms the structural part 

of the basement membrane. If merosin is intact in dystrophinopathy then one can exclude 

such disorders as congenital muscular dystrophy or merosinopathy. All these subsidiary 

stains are done to exclude any limb girdle muscular dystrophy as a mild dystrophinopathy 

phenotype may be confused with a limb girdle muscular dystrophy (Blake et ai. , 2002). 

3.4 RESULTS 

All clinically manifesting Duchenne muscular dystrophy patients that agreed to have a 

muscle biopsy showed reduced or absent dystrophin staining on immunochemical analysis. 

In addition to this, four patients agreed to have double biopsies by informed consent. These 

samples formed the basis of the microarray aspect of the study. A detailed description of 

the staining patterns will be outlined for the four patients who agreed to have a double 

biopsy taken from the calf muscle and either the quadriceps or biceps muscle. 

Table 3: Outline of immunohistochemical results obtained for the four dystrophinopathy 

patients who agreed to have double biopsies of their calf and biceps or quadriceps muscles. 

I Biopsy Surname, Muscle I Immunohistochemical 
number Initials stain r ; s , " I DY""phin 1 

I ,;-. ----- I Dystrophin 2 

Result 

Mixture of poorly & 
irregularly stained 

I fibres. Pattern 
varies in different 

: parts of the biopsy . 

I
' negative , no 

staining 
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Few clusters of 
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I 
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3.4.1 Haematoxylin and eosin (H+E) staining 

Figure 21: Haematoxylin and eosin stain showing endomysiaJ connective tissue infiltration 

illustrated by the green stars (magnification 200 x). 



( 
J 

.., 
~~' 

\ , ; 
I~ 

1 
"- ,. 

" • " ." \ 
' ..... , 

\ 

"' / \ 

) 
r 

* 
..... 

, ~'. ' 

'-.. \ <-
,ii" 

" 
.. , 

.# .,"" \ 
..... :,1" .. I' 

J 

Figure 22: Image showing regenerative muscle fibres at different stages of the regenerative 

process. The first reflects the early stage of the regenerative process (green star), whilst the 

second (cyan star) and third (white star) show the latter stages of the regenerative process 

(magnification 200 x). 
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Figure 23: Immunohistochemical stain showing the centralised nuclei (green star) that 

appear in muscle fibres of DMD patients (magnification 100 x). 
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Figure 24: Image showing the invasion of muscle fibres by macrophages, which in effect 

bring about phagocytosis (green star) (magnification 200 x). 

Figure 25: H+E stain showing muscle fibre degeneration (green star) and the variation in 

fibre size diameter that is often seen on muscle biopsy sample from DMD patients (cyan 

stars) (magnification 200 x). 
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Figure 26: Image showing muscle fibre degeneration or digestion that could be the result of 

lysosomal enzyme activity (magnification 200 x). 

3.4.2 Dystrophin staining 

* 
* * 

Figure 27: Immunohistochemical stain of the dystrophin antibody (Dys3) that targets the 

amino-terminal domain of the protein. The DMD affected patient shows a mosaic pattern of 

staining (green star) in this region where a deletion was also found on multiplex peR. 

Variable fibre size diameter is clearly evident (cyan stars). (Magnification 40 x). 

The biopsy sample shown in figure 27 is from patient C, N, whose biopsy was taken in 

1999 and stored at -80°. The patient could not be included in the molecular aspect of the 

project because there was not sufficient DNA left to perform multiple PCR assays for 
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deletion detection. On a previous occasion the multiplex PCR using 18 primer pairs was 

used and it detected deletions in exons 3, 6, 12,45,47,48. 

Figure 28: Dystrophin stain using antibody Dys3, which targets the amino-terminal domain 

of the protein. The stain shows a mosaic pattern of staining in a DMD patient that was shown 

to have no deletions on multiplex peR (magnification 100 x). 

The biopsy was taken from patient M, S in 1999. There were two biopsy samples taken, 

one from the calf muscle and the other from the biceps muscle. The image above - figure 

28 reflects the biceps muscle from the patient. The patient was shown to have no deletion 

when multiplex PCR using 18 exons was previously performed. 

In figure 29 below, biopsies from the same dystrophinopathy patient were taken and 

subjected to dystrophin staining. Even though the calf muscle remains invariably strong 

compared to the biceps muscle, which becomes progressively weaker the pattern of 

dystrophin staining was similar in both muscles. 
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Figure 29: Dystrophin 3 stain from patient 23A12003 (A) and 23B/2003 (B). A mosaic pattern 

of staining is shown in both the biceps (23A) and calf (23B) muscles from the same patient 

(magnification 100 x). 

3.5 DISCUSSION 

Many of the patients' muscle samples were infiltrated by adipose tissue therefore the tissue 

was not of good and usable quality throughout the slide. The results were interpreted with 

caution when poor muscle sections were observed on a slide. The temperature of the 

cryostat was reduced significantly to between -28°C and -30°C in cases where the tissue 

was difficult to cut. This was an indication that the muscle tissue contained mostly 

connective tissue and adipose tissue as opposed to muscle tissue alone. 

The DMD affected patients showed different muscle cell morphology to normal cells. 

The normal muscle cells were hexagonally shaped whereas the cells from DMD patients 

were irregular and round. There was often variation in fibre size diameter, with large and 

small fibres being present in the same region that was viewed under the microscope. An 

example of such an occurrence is shown in figure 25 above. In normal cells, the nuclei 

were present at the periphery compared to the centralised nuclei that were found in muscle 

cells from DMD affected patients, which is shown in figure 23 above. Fibre regeneration 
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and degeneration was also a common feature of dystrophic muscle. More regeneration 

appeared to occur in the muscle fibres of younger patients, where the muscle satellite cells 

actively proliferate. Satellite cells exhibit self-renewal and are capable of producing many 

progeny (Collins et al. , 2005; Wagers & Conboy, 2005). As time progresses, the 

regenerative capacity of the cells diminish owing to less muscle satellite cells being 

present. Owing to such an occurrence, the degeneration of muscle cells becomes more 

prevalent. More necrotic fibres are therefore seen in older DMD affected patients because 

the regeneration gives way to muscle cell necrosis. The degenerating fibres are often 

accompanied by inflammatory cells such as macrophages and CD4+ cells (Emery, 1993; 

Blake et ai. , 2002). 

Majority ofthe clinically affected dystrophinopathy patients had connective tissue 

infiltration, adipose tissue deposition and other histological patterns characteristic of their 

dystrophic phenotype. These signs become more apparent as the affected individual ages. 

Fibre type variation was another prominent feature in the DMD patients. Both small, 

rounded fibres as well as large, irregularly shaped fibres were evident as shown in the 

figures 25 above. 

The biceps and quadriceps muscle tissues are those muscles that become weaker as the 

disease progresses. The calf muscle is the tissue that remains invariably strong in 

dystrophinopathy patients even when other muscle tissues become weaker leading to 

wheelchair confinement for the patient. The gastrocnemius, which forms part of the calf 

muscle, also lacks dystrophin when subjected to immunohistochemical analysis using a 

dystrophin antibody. This lack of staining for the dystrophin protein is expected as all 

muscles are affected when the dystrophin protein is lacking owing to a deletion or another 
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type of mutation in the gene. However, since the calf muscle is hypertrophied and appears 

stronger than the other muscles (biceps, quadriceps) when clinically assessed, the 

speculation is that there must be other regulatory mechanisms involved at the molecular 

level in producing the hypertrophied state often seen in dystrophinopathy patients. 

Biceps 

Quadriceps , 

Gastrocnemius 

Figure 30: Photograph showing a severely affected DMD patient who is wheelchair bound 

owing to generalised weakness of his muscles. 

The pattern of dystrophin staining varied between patients. In some DMD patients who 

showed advanced symptoms, the staining patterns correlated well with the clinical disease 

manifestation. In the case of the BMD patients, a mosaic pattern of staining was noted. The 

female manifesting carrier's immunohistochemistry revealed a mosaic staining pattern 

(Table 3 and figure 29). 

Revertant fibres, which are thought to occur as a result of restoration of the reading frame 

through a splicing or exon-skipping mechanism, have been found in many patients (Thanh 
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et ai. , 1995). During this time it was also shown that the number of revertant fibres 

increased with age however no correlation was found between number of dystrophin 

positive fibres and decreased disease severity (Fanin et ai. , 1995). It was also thought that 

this phenomenon could open up possibilities for gene therapy however owing to the fibres 

being present in small numbers it turned out to not be feasible (Wilton et ai. , 1997). A 

break-though did emerge from these findings and the anti-sense oligonucleotide approach 

was borne. In 2006, revertant fibres were induced in mdx using the anti-sense 

oligonucleotide method and functional dystrophin was detected using three independent 

methods (Fall et aI. , 2006). 

With respect to the patient that did not show any deletions on multiplex PCR yet a mosaic 

pattern of staining was found on immunohistochemical staining (figure 28), the absence of 

a deletion does not rule out the possibility of other mutations such as a duplication. In such 

an instance the next method of detection after the multiplex PCR would be the multiplex 

ligation-dependent probe amplification (MLPA) assay. At the time that this patient's 

sample was subjected to diagnostic testing, the MLP A assay had not been established in 

the Neuroscience laboratory. 
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CHAPTER 4 

POINT MUTATION DETECTION IN NON-DELETION 

DYSTROPHINOPATHY PATIENTS 

SECTION A: 

EVALUATION OF THE SINGLE STRANDED CONFORMATION 

POLYMORPHISM (SSCP) ASSAY ON DNA SAMPLES 

4.1 INTRODUCTION 

The single stranded conformational polymorphism (SSCP) analysis method has been 

utilised to detect point mutations for over a decade in both research laboratories and in 

clinical diagnostic environments. Under non-denaturing conditions, nucleic acids 

comprising DNA, RNA or eDNA have different electrophoretic mobilities depending on 

their length and shape. DNA ranging from 40-500 bp, in a double stranded state, 

electrophoreses in a semi-rigid, rod-like manner. However denatured single stranded DNA 

and RNA in the range of 4-500 bp have the ability of forming "equilibrium-stable" 

conformations, which are stabilised by intra-molecular bonds and therein lies the 

advantage of the SSCP assay (Novex, 1996). Each single strand folds into a specific 

secondary structure that is determined by its primary nucleotide composition and 

temperature of the gel. The change in conformation allows for wildtype sequences to be 

distinguished from mutant sequences by virtue of their differing electrophoretic mobilities. 

Single strands even with one base pair differences can possess different conformations. 

4.1.1 Conventional SSCP 

One of the first papers that included SSCP as the primary method was published by Orita 
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et al. (1989) in Japan. At that stage it was referred to as a mobility shift assay, which was 

performed using a neutral polyacrylamide gel. The method involved restriction 

endonuclease digestion of genomic DNA, denaturation using NaOH and EDTA and 

electrophoresis on a neutral 5% polyacrylamide gel. The features of the mobility shift were 

termed single stranded conformation polymorphisms as it resulted from a conformational 

change in the single stranded DNA. This paper set the stage for some important technical 

criteria to be followed in successive laboratory experiments using SSCP. These included 

the use of an appropriate low temperature as higher temperatures were found to destroy 

"some semi-stable conformations" (Orita et aI., 1989). The other two factors that were 

shown to affect the mobility shifts included electrophoresis buffer concentration and the 

use of denaturing agents such as 10% glycerol. 

Shortly after the publication by Orita et al. (1989), Poduslo et al. in 1991 described a 

similar methodology to detect high-resolution polymorphisms in human coding loci. These 

authors advanced the previous SSCP technique by combining it with PCR amplification of 

3' untranslated regions. Two methods were subsequently employed to detect nucleotide 

substitutions. The PCR products were subjected to either restriction digestion or SSCP 

analysis. The bands from the SSCP assay were detected by autoradiography using 

radioactively labelled 32p. The PCR-SSCP method was able to identify point mutations that 

could not be detected using restriction endonuclease digestion thereby proving the efficacy 

of the SSCP method. 

In 1993, papers focussing on the optimisation and sensitivity of the SSCP method were 

published. These papers outlined the usefulness of this technique whilst revealing those 

parameters that adversely affected the detection rate of point mutations using this mobility 
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shift assay. Sheffield et al. (1993) performed an array of experiments to determine the 

optimum DNA fragment size for definitive point mutation detection. It was found that the 

sensitivity of the method was related to the fragment size, where the highest sensitivity was 

noted in fragments that were between 95 bp and 200 bp. Glavac and Dean (1993), in their 

optimisation paper were able to map out those factors that affected the detection efficiency 

of point mutations using SSCP. These included electrophoresis temperature, concentration 

of the buffer, gel concentration, the effect of compounds such as glycerol and urea. It was 

found that a lower temperature such as 4°C, higher acrlyamide concentrations with lower 

cross-linking and the addition of 10% sucrose provided optimum band separation and 

resolution. 

There appeared to be some discrepancy in the papers that reported on the sensitivity of the 

PCR-SSCP technique. In a review by Hayashi & Yandell (1993) comparisons were made 

between published literature where SSCP was used with probability scores of the factors 

affecting sensitivity being provided. It was suggested that the starting point for the 

detection of most mutations would be to supplement the DNA fragments being 

electrophoresed at room temperature (22°C) with 5-10% glycerol, while those 

electrophoresed at 4°C required no glycerol addition. It was agreed that polyacrylamide 

gels were most efficient, provided the percentage of crosslinker was low such as 5%. With 

respect to detection rate, 90% of mutations were found when the DNA fragment size was 

<200 bp. The prediction was that approximately 80% of point mutations would be detected 

if the fragment sizes were between 300 and 350 bp. The number of bands per single strand 

was not definite as more than one stable conformation was possible. The findings were that 

shorter DNA fragments increased the sensitivity of the SSCP analysis and optimisation 

was the key factor in determining the success of the method (Hayashi & Yandell, 1993). 
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4.1.2 "Cold"-SSCP 

The use ofthe "Cold"-SSCP technique was first documented by Hongyo et ai. in 1993. It 

required a commercially available apparatus called the "Thermoflow electrophoresis 

temperature control system", which was designed for the purpose of maintaining the 

appropriate temperature. A "thermostatically controlled refrigerated circulator" (Hongyo et 

ai., 1993) was used to maintain the set temperature. The samples were loaded onto 

specially designed NOVEX pre-cast TBE gels. The technique was described as a "simple, 

rapid and non-radioactive method" for SSCP analysis (Hongyo et ai., 1993) The authors 

optimised a range of parameters, which included the voltage, gel concentration, buffer 

concentration, the use of denaturants and loading buffers. This method differed from the 

others by virtue ofthe short electrophoresis time of between 40 minutes and two hours as 

well as use of the intercalating dye ethidium bromide as the staining reagent. The PCR 

products screened were in the size range of 117 bp - 256 bp therefore this paper was 

unable to determine the size limits over which "Cold" -SSCP could resolve DNA fragments 

and detect polymorphisms. 

Following the Hongyo et ai. (1993) report, an extensive application manual was compiled 

by NOVEX, the company responsible for manufacturing the "Cold" -SSCP apparatus. This 

booklet outlined all the factors to consider when optimising the "Cold"-SSCP technique 

with detailed explanations ofthe method and interpretation of results obtained. The 

company suggested that a range of different detection methods could be used for 

visualisation of the single strands. These included ethidium bromide, SyBr Green II, silver 

staining, colorimetric, and fluorescent or chemi-illuminescent detection (Novex, 1996). 

Interestingly, the Novex review cited a paper by Michaud et ai. (1992), where point 
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mutations were detected in DNA fragments that were 800 bp in length even though the 

maximum size for point mutation detection was previously documented as being 350 bp 

(Hayashi & Yandell, 1993). During the interpretation stage, it would be important to 

determine that the single strands are found above the double strands at "twice the 

molecular size of migration". The difference in electrophoretic mobility would be based on 

the differing charges of the single and double strands (Novex, 1996). Mutant bands would 

migrate at a different rate from the normal (wild-type) or there would be subtle changes 

such as increased thickness of a single band or very slight change in migration of the band. 

Figure 31: Image showing the Novex Thermoflow™ SSCP mutation detection system that 

was used for separation and electrophoresis of single stranded PCR amplified DNA samples. 

4.1.3 PCR-SSCP and DNA sequencing using radioactive labelling 

Shortly after the efficacy of the PCR-SSCP method was determined, the technique was 

combined with DNA sequencing analysis using radioactive labelling to definitively detect 

point mutations. The first paper to have used both methods was authored by Lenk et al. 

(1994), which focussed on the detection of carriers in Duchenne muscular dystrophy 
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(DMD). The patients' PCR products were electrophoresed on 5% non-denaturing 

polyacrylamide gels and the concentration ofthe carrier detection gels was 12%. Silver 

staining was used for detecting the SSCP fragments instead of radioactively labelling the 

primers. 

4.1.4 Multiplex-SSCP 

In a paper authored by Kneppers et al. (1995), a multiplex SSCP assay was developed, 

where 16 exons in the dystrophin gene were tested to detect point mutations. The 

automated Pharmacia PhastSystem was used to electrophorese and detect the point 

mutations. The exons tested were those included in the previously developed Chamberlain 

kit (Chamberlain et al., 1988) and the Beggs kit (Beggs et al., 1990). A 20% gel run at a 

single electrophoretic condition of 15°C was used and visualisation was performed with a 

silver stain. Band shifts were confirmed by DNA sequencing using the New England 

Biolabs Circumvent Sequencing kit. Interestingly, this was another report where the 

fragment size of>300 bp was not a limiting factor in detecting mutations. The detection 

rate was poor as only 6 band shifts were found in 70 patients tested. This report shows that 

the use of multiplex SSCP may not be sensitive enough to identify all point mutations. 

The assumption that multiplex SSCP is not reliable enough to detect all point mutations 

was further emphasised in a paper by Larsen et al. (1999a). The SSCP analysis was 

performed using precast 10% polyacrylamide gels at 4°C and 20°C using a Multiphor 

apparatus from Pharmacia Biotech. Silver staining was used as the method of band 

visualisation and automated dye terminator cycle sequencing was performed using the ABI 

373 DNA sequencer. This paper amplified 4 exons at a time in a single reaction tube. In 
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effect sixteen exons were amplified using this method. Even though multiplex SSCP was 

optimised in this paper, the authors do not recommend it as a reliable diagnostic test owing 

to the "theoretical possibility of decrease in sensitivity" (Larsen et al., 1999a). 

In an attempt to revive the idea that multiplex SSCP was reliable and sensitive in detecting 

point mutations, Mendell et al. in 2001 using a "modification ofSSCP analysis", screened 

93 patients with DMD. A collection of ninety segments consisting of21-23 amplicons 

were analysed, spanning the entire coding region of the dystrophin gene. The fragment 

sizes ranged from 128-346 bp. The fragments were radioactively labelled with a-33P­

dATP and amplified using a robotic PCR instrument. A range of 5 different non-denaturing 

conditions was used for electrophoresis of the amplified products on a 6% acrylamide I 7 

M urea denaturing gel. The bands were detected using autoradiography. Those bands with 

altered mobility or intensity patterns were sequenced using ABI 377 automated sequencer. 

The limitations of this SSCP modification method included the use of radioactivity and the 

small fragments sizes required for amplification and subsequent SSCP analysis. 

4.1.5 Capillary electrophoresis SSCP 

One of the earliest papers that focussed on the use of CE electrophoresis for SSCP was a 

Danish group (Larsen et aI., 1999b). This group had previously performed SSCP using the 

conventional approach as reviewed earlier in this chapter. In this paper, the authors 

modified an ABI 310 instrument by attaching an in-house water cooling device within the 

chamber that houses the capillary array. The low temperatures increased the sensitivity of 

the SSCP assay and the results obtained were reproducible and of a higher resolution. 
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Figure 32: Illustration showing the water cooling device installed into an ABI 310 instrument, 

to allow electrophoresis to be performed at lower temperatures for SSCP analysis (Adapted 

from Larsen et at., 1999b). 

In a paper by Walz et al. (2000), the use of fluorescent based SSCP together with an ABI 

Prism 310 automated genetic analyser proved to be effective in detecting both known and 

unknown mutations in hemochromatosis and thrombogenetic diseases. The PCR 

amplification was performed using fluorescent labelled primers, with the forward primer 

being labelled with FAM (6-carboyx-fluorescein) and the reverse primer labelled with 

HEX (4,7,2', 4',5', T-hexochloro-6-carboxy-fluorescein). Single PCR products were 

subjected to CE-SSCP, followed by multiplexed products, with only two PCR products 

being used in the multiplexed approach. Interestingly, the authors observed a change in the 

SSCP pattern in 59 of the 61 mutations studied. They were able to obtain a 100% mutation 

detection rate when the temperature was increased to above 40°C. It was shown that this 

method proved to be reproducible even when complex peak patterns were seen during the 

software analysis stage. 
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exons commonly involved in deletion mutations and those exons flanking the "hot-spots" 

for point mutations. A total of 28 primer pairs were subjected to PCR and subsequently 

SSCP analysis. A full list of primers is included in Appendix A. 

Due to the limited resources in our laboratory a conventional gel apparatus, the Hoefer SE 

600 was used for the electrophoresis. An externally attached re-circulating cold water-bath 

that was thermostatically controlled was attached to the gel apparatus using rubber tubing. 

The temperature in the room was kept constant at 18° using an air-conditioning unit that 

was electronically controlled. The temperature was regularly monitored using a mercury 

thermometer throughout the run as it was expected that there would be temperature 

fluctuations due to the electrical current passing through the apparatus during the run. The 

buffer inside the Hoefer SE 600 was re-circulated using a magnetic stirrer bar that ensured 

the temperature variation throughout the unit was negligible. 

We do not have a radioactive facility at our laboratory therefore non-radioactive means 

was the preferred method. Those samples that showed a visual band shift were subjected to 

non-radioactive DNA sequencing, which was performed using the ABI 3100. 

4.2 AIMS AND OBJECTIVES 

i) To use "Cold" PCR-SSCP to detect point mutations in patients found to have 

no deletions on conventional multiplex PCR. 

ii) To evaluate the efficiency and reproducibility of the technique in a resource­

limited setting. 

iii) To assess the optimum temperature for best band resolution. 
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iv) To assess different methods of SSCP fragment detection. 

v) To determine carrier status in the mothers of affected DMD patients. 

4.3 MATERIALS AND METHODS 

Blood samples were obtained through informed consent from clinically affected 

dystrophinopathy patients and their mothers, who attended the Neuromuscular clinic at the 

Department of Neurology, Inkosi Albert Luthuli Central Hospital, Durban, South Africa. 

Prospective samples were collected in an EDTA tube and immediately transported to the 

Neuroscience laboratory for processing. All 20 individuals included in this aspect of the 

study formed part ofthe collective sample number comprising 68 individuals as previously 

discussed in Chapter 3. The patients were found to have no deletions on multiplex PCR. 

The DNA from mother and / or sister as well as child was subjected to SSCP analysis. 

4.3.1. Patient Population 

Table 4: Database of subjects included in the "Cold" PCR-SSCP aspect of the study. 

I DNA 

I 
Surname, 

I 
Age at 

I I number Initials diagnosis 
Gender Mother/child 

I 1 I 8, R I 34 I F I Maternal Aunt of 2 

I 2 I 8, W I 8 1 M I DMD 
I 3 8, DK I 37 I F I Mother of 2 

I 4 1 M, M I N/K F I Mother of 5 

I 5 1 M, B I N/K 1 M I DMD affected 

I 6 I H, 8 I 36 I F I Mother of 7 
I 7 I H, J ! 8 1 M I DMD 
I 8 I 8, T I 13 1 M I DMD 
I 9 I 8, NM I 17 1 M I DMD 
I 10 I 8, 8 I 53 I F I Mother of 8 and 9 
i ll I 8, B 29 I F I 8ister of 8 and 9 , 

I G, I 16 I 12 8 M I DMD 
1 13 I Mrs G I N/K I F I Mother of 12 
1 14 I N, I 9 1 M I DMD D 

I 15 I N, I N/K I F I Mother of C 14 
16 

, 
I 14 I DMD M, T M 
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I 17 I Mrs M I N/ K I F I Mother of 16 

1 M, I N/K i F sister of 6 6 i 

65 C 

1 M, I N/K 1 M I DMD I 66 R 

I N/K I F I Mother of 66 I 67 1 M, P 

Legend: N/K - not known 

4.3.2 DNA Extractions 

Two methods were employed in the isolation of DNA from the patients' blood samples. 

These included the QIAmp DNA blood mini kit (Qiagen) and the salting-out method. 

4.3.2.1 QIAmp DNA blood mini kit 

The QIAamp DNA blood mini kit would produce purified total DNA efficiently. Resulting 

DNA could be utilised in procedures ranging from conventional single PCR to the more 

sensitive multiplex PCR. The total DNA could be purified from whole blood, plasma, 

serum, buffy coat and lymphocytes. This straightforward spin column procedure would 

yield ultra-pure DNA in approximately 20 minutes. The main advantage was that 

purification would not require phenol-chloroform extraction or ethanol precipitation. A 

predominance of 20-30 kb sized purified DNA would be produced and a size range up to 

50 kb has also been obtained using the QIAamp procedure. 

The procedure followed was as per manufacturer' s instructions (Qiagen Handbook, 2003). 

4.3.2.2 Salting-out method 

The salting out method was adapted from the protocol for the extraction of DNA from 
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white blood cells (leucocytes) by Miller et al. (1988). 

4.3.3 DNA Quantification 

Two methods of DNA quantitation were employed. These included: DNA quantitation 

using a DU800 UY/visible Spectrophotometer (Beckman Coulter) and the use of DNA 

quantitation standards (Invitrogen). 

4.3.3.1 DNA quantitation using the Spectrophotometer 

The DNA utilised in each PCR assay was quantitated using the DU800 Spectrophotometer 

by measuring the absorbance of the purified DNA at 260 nm. The DNA concentration was 

calculated by the spectrophotometer using the following parameters: cell pathlength (mm) 

of 10, dsDNA factor of 50. An OD of 1.0 corresponded to 50 J.lg/ml of dsDNA. 

A 1 ml quartz cuvette was used to measure the absorbance. The transparent sides of the 

cuvette was not handled at this was the area through which the UV light would pass 

through and read the sample. The procedure followed was as outlined in the Beckman 

manual for the DU800 Spectrophotometer. 

4.3.3.2 DNA quantitation using DNA quantitation standards 

DNA quantitation standards (Invitrogen) were designed for the quantification of double 

stranded DNA on ethidium bromide stained gels. They consist of six standardised solutions 

of phage A DNA of different concentrations. The DNA was supplied in storage buffer [10 
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mM Tris-HCl (PH 7.5), 20 mM EDTA, 10% (v/v) glycerol, 0.02% (w/v) bromophenol 

blue]. The concentration of each solution was as follows: 500 ng/6 III (83 ng/Ill), 250 ng/6 

III (42 ng/1l1), 125 ng/6lll (21 ng/1l1), 63 ng/6lll (10.5 ng/Ill), 31 ng/6lll (5.2 ng/Ill) and 15 

ng/6 III (2.5 ng/Ill)· 

The procedure followed was as per manufacturer's instructions (Invitrogen). 

4.3.4 peR Optimisation 

All PCR steps were performed in separate rooms to avoid any PCR contamination. Prior to 

beginning the procedure, the Class II biohazard laminar flow unit in each room was wiped 

down first with 100% ethanol, then 70% ethanol. The "clean-room" was used to prepare 

the master mix reactions that contained all reagents except for DNA. The DNA was added 

in the room adjacent to the master mix room, designated the sample room. The 

amplification reactions were performed in the designated "PCR and real-time room". All 

materials such as pipette tips and micro-centrifuge tubes were autoclaved and placed into 

the designated rooms to prevent cross-contamination. Disposable gloves and laboratory 

coats, which were present in every room, were worn at all times. Freeze-thawing of 

reagents was avoided by making small aliquots of all reagents that were to be used in the 

PCR assay. After the first thaw cycle, most reagents (primers, buffers) were subsequently 

stored at 4°C until they were completely used. 

As quality controls, a negative and positive control was included. The negative control 

tube contained all reagents except DNA, and distilled water was added instead of the DNA 

to ensure that the final volume and concentration of reagents were standardised. The 
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negative control was used to ensure that no contamination occurred during the PCR 

preparation stages. The positive control tube (normal individual) contained all reagents as 

well as the DNA from an individual that was not affected by Duchenne / Becker muscular 

dystrophy. A positive control was important as it could be used to show that the PCR assay 

had worked the way it was intended to and that the expected bands were produced. 

With respect to the PCR assay, either duplex (2-plex) polymerase chain reaction assays 

using two primers pairs or triplex (3-plex) PCR assays using three primer pairs were 

performed. Thermocyclers with 96 well heated blocks from Applied Biosystems were 

used, which included a 2700 and 9700. PCR kits from different companies were used 

during the optimisation process. The procedures were followed according to the 

manufacturer's instructions as outlined in the respective handbooks. 

The PCR kits and reagents used for the 2-plex PCR assays were as follows: 

i) the Roche taq system 

ii) the HotStarTaq system (Qiagen) 

iii) in-house Taq polymerase from Molecular Diagnostics Services 

The PCR kit and reagents used for the 3-plex PCR assays were as follows: 

i) Amplitaq Gold™ DNA polymerase with buffer II and Gold buffer (Applied 

Biosystems) 

ii) in-house Taq polymerase from Molecular Diagnostics Services 

A primer titration was carried out using 10 pMol and 25 pMol of primer respectively for 

the Roche taq system and the HotStarTaq system (Qiagen). A MgCb titration was carried 
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out for the Roche taq system and the HotStarTaq system (Qiagen). The final MgCh 

concentration varied from 1.5 mM to 6.0 mM. The only system that did not require primer 

or MgCh titrations was the in-house Taq polymerase from Molecular Diagnostics Services 

as it produced defined and usable bands suitable for proceeding to SSCP analysis. 

This system was used in both the duplex and triplex amplification reactions. 

Table 5: Optimised procedure showing the PCR mix used for the 2-plex assay in a 

50 III reaction volume. 

I Reagent I Volume in III I Final concentration 

1 10 x buffer IV 
1

5
.

0 I 1 
x 

contalnlng 15 roM MgC1 2 

I dNTPs (Pharmacia) 2.5 roM I 4 . 0 I 200 IlM 

I Forward primer (10 pMol/ lll ) r 1. 0 I 0.2 J.1M 

I Reverse primer (10 pMol/ ll l ) I 1.0 I 0 . 2 IlM 

I Reverse primer (10 pMol/ lll ) I 1.0 I 0.2 IlM 

I Forward primer (10 pMol/ lll ) I 1.0 I 0.2 IlM 

I Taq 2 U/ Ill (in- house) I 1.0 j2U/reaction 

I 0 . 22 J.1ffi filter sterilised dH 20 I 31 0 I 
I DNA (50 ng/ Ill ) I 5.0 I 250 ng/reaction 

I Final volume I 50.0 I -

Table 6: Optimised procedure showing the PCR mix used for the 3-plex assay in a 50 III 

reaction volume. 

I Reagent I Volume in III I Final concentration 

/ 10 x buffer IV 
1

5
.

0 I 1 
x 

contalnlng 15 roM MgC1 2 

I dNTPs (Pharmacia) 2.5 roM I 6 . 0 I 200 IlM 

I Forward primer (10 pMol/1l1 ) 1 1. 5 - 3 . 5 1 0 . 3 - 0 . 7 IlM 

1 Reverse primer (10 pMol/1l1 ) 1 1. 5 - 3 . 5 I 0.3 - 0.7 IlM 

1 Forward primer (10 pMol/lll ) 1 1. 5 - 3 . 5 1 0.3 - 0.7 IlM 

I Reverse primer (10 pMol/ ll l ) I 1. 5 - 3 . 5 I 0 . 3 - 0.7 IlM 
1 Forward primer (10 pMol/ lll ) I 1. 5 - 3.5 I 0 . 3 - 0 . 7 IlM 
I Reverse primer (10 pMol/ lll) I 1. 5 - 3 . 5 I 0 . 3 - 0.7 J.1M 
I Taq 2 U/ Ill 1 1. 0 I 2 U/reaction (in- house) 

I 0.22 J.1ffi filter 1 11 - I -sterilised dH 20 23 

I DNA I 5 . 0 I 250 (50 ng/ Ill ) ng/reaction 
I Final volume f5D. o I -

The primer volumes varied depending on the primer pair that was used. The volume for the 
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forward and reverse Pm (muscle promoter) primers was 3.5 Ill , exon 16 was 3.0 Ill , exon 

32 was 3.0 Ill, Pb was 2.0 Ill , exon 9 was 2.0 III and exon 34 was 1.5 Ill. 

Table 7: Amplification conditions for the duplex and triplex peR reactions. 

I I Temperature ( °C) I Time I Cycle number 

I r Ini tial 
1

94 1 4 minutes 1 
denaturation 

I 94 I 30 

~ 
I Denaturation seconds 

I Annea l ing I 53 - 65 I 30 seconds 35 

I Elongat i on 172 I 30 seconds 

I Final Extension I 72 I 4 minutes I 1 

1 Hold 1 15 1 00 I 

The annealing step was performed at different temperatures depending on the average T m 

of each primer pair. 

4.3.5 Visualisation of peR products 

As with the other aspects to the PCR assay, the electrophoresis was carried out in a 

separate room that housed the amplicons. Tubes containing the amplification products 

were only opened in the electrophoresis room to avoid any aerosol amplicon 

contamination. 

Different agarose gels were used to determine which provided the best resolution for the 

detection ofPCR amplified products. Either a Hispan (Hispanlab) 2% agarose gel or a 2% 

SeaKem (BioWhittaker Molecular Applications) agarose gel was made using 0.5 x TBE 

buffer. The intercalating dye, ethidium bromide (10 mg/ml solution) was added to the 

agarose gel when it had cooled down to an appropriate temperature. For each set of 

reactions, a molecular weight marker (Gibco BRL or Roche, Germany) was loaded into a 

single well to allow for accurate size determination of the amplicons. The amplicons were 
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then electrophoresed with constant voltage at 100 V for 5 minutes. Thereafter the voltage 

was reduced to 80 V for 1 hour 30 minutes to allow for proper migration of the amplicons 

through the gel matrix and adequate resolution of the bands. The amplicons were 

visualised under UV transillumination using the BioRad 2000 gel documentation system. 

4.3.6 SSCP electrophoresis of amplicons using the NOVEX ™ Thermoflow System 

This part of the procedure was performed at the University of California, Irvine under the 

supervision of Dr. William Byerley and his research assistant. 

It was essential that a clear band was seen on the 2% agarose gel prior to running it on the 

SSCP polyacrylamide gel apparatus. No PCR product purification was performed before 

electrophoresis ofthe samples on the polyacrylamide gel system. 

The procedure followed was as per manufacturer' s instructions (NOVEX). The NOVEX™ 

Thermoflow SSCP system was used to electrophorese the PCR amplified products. An 

externally attached thermostatically controlled water bath with re-circulating ability was 

utilised to ensure that the temperature remained constant throughout the electrophoresis 

period. This procedure was referred to as cold-SSCP as the temperature at which the 

samples were run varied from 4-1 O°C. Pre-cast 20% TBE gels were purchased from 

NOVEX. A 1.25 xconcentration TBE buffer served as the tank buffer. 

4.3.7 Electrophoresis using the Hoefer SE600 Ruby polyacrylamide gel system 

The Hoefer vertical slab gel apparatus was prepared for casting. Initially 0.75 mm spacers 
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were used together with a 0.75 mm comb. Owing to sample drifting, a smaller volume and 

hence lower sample concentration was loaded into some wells. Following this, the 1.5 mm 

comb and spacers were found to be more practical for the SSCP application as they 

provided better band separation. Also, the problem of sample drifting into the adjacent well 

did not occur with the 1.5 mm comb. During the preparation of the casting apparatus, all 

equipment was fastened securely and the appropriate comb was placed such that a space 

was left between the comb and the glass plates. This was done to ensure that excess gel 

mixture could be added during the loading process as some shrinkage occurs during 

polymerisation. If this is not taken into account, each well would develop a distortion that 

resembles a "smiling" appearance, which prevents full use of the well for sample loading. 

A 5%, 10% or 15% polyacrylamide gel was made during the optimisation stage of the 

SSCP assay. This was done to ensure that the resulting resolution was the best that could 

be obtained using a conventional slab gel apparatus. Either a liquid acrylamide: bis-

acrylimide solution (Sigma-Aldrich) was used or the acrylamide:bis-acrylamide solution 

was made using the powders for each reagent. When the liquid acrylamide solution 

solidified due to a possible UV exposure, powders had to be used to make up the solution. 

The solution was made up in a laminar flow hood with gloves, a face mask and goggles to 

prevent accidental exposure by inhalation as acrylamide is neurotoxic and carcinogenic. 

Table 8: Table showing the different reagents that were added to produce specific 

concentrations of polyacrylamide (P A) gels. 

STOCK reagent ' 5% PA gel I 10% PA gel 115% PA gel 
I lOX TBE I 4 ml I 4 ml 1 4 ml 
I 40 % Acryli - mix I 5 ml 1 10 ml I 15 ml 
I Distilled water I 31 ml (2 1 ml) I 26 ml 1 21 ml (16 ml) (11 ml) 
I Total I 40 ml (30 ml ) I 40 ml 1 40 ml (30 ml) (30 ml) 
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4.3.7.1 Preparation of the PA gel 

A ,37.5:} liquid acrylamide:bis-acrylamide (40%) mixture was used in the preparation of 

the PAgels. The initiator, ammonium persulphate (Sigma, 25% stock solution) was added 

at a volume of 2 III per} ml of gel mix. The ammonium persulphate was made fresh each 

time a gel was prepared. The TEMED (Sigma), which served as the reaction catalyst was 

added at a volume of 2 III per} ml of gel mix. Two gels were poured when a 40 ml 

solution was made. A } 00 ml Buchner flask was used for the preparation of the gels. For 

the initial de-aeration, the TBE, acryli-mix and the distilled water were added to the 

Buchner flask. A stirrer bar was added to flask and placed onto a magnetic stirrer to mix 

the reagents. A stopper was placed into / on top of the Buchner flask with rubber tubing at 

the open end. The de-aeration was then performed using a vacuum. Following de-aeration, 

the TEMED and ammonium persulphate solutions were added simultaneously to initiate 

the polymerisation process. Immediately after adding the solutions, de-aeration was 

performed briefly. 

4.3.7.2 Loading ofPA gel and buffer preparation 

The mixture was placed into a 50 ml syringe housing a needle. The solution was slowly 

placed between the glass plates with care taken to ensure no air bubbles were formed. The 

comb was then gently pushed down into the acrylamide mixture and the gel was left to 

polymerise for half hour prior to being used. It was important that no air bubbles were 

trapped beneath the wells, as this would inhibit polymerisation and prevent formation of a 

smooth gel matrix at the bottom of the wells. For the tank buffer, 1.25 x TBE buffer was 

prepared from a lOx stock solution. To sufficiently cover the upper and lower reservoirs 
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of the tanks, at least 5 litres of buffer was prepared. The buffer was placed into the tank 

and incubated at 4°C overnight, prior to being subjected to electrophoresis, which was 

performed at between 4°C and lOoC. A stirrer bar was placed into the buffer tank ofthe 

Hoefer electrophoresis apparatus, which was then placed onto a magnetic stirrer. This 

ensured even distribution of the cooled buffer throughout the electrophoresis period that 

spanned 5-6 hours. 

4.3.7.3 Sample preparation 

A loading dye was prepared in a 50 ml tube, comprising, 47.5 ml formamide (Applied 

Biosystems), 40 mg NaOH (Merck), 125 mg bromophenol blue (Sigma), 125 mg xylene 

cyanol (Sigma). The loading dye was prepared in a fume hood owing to the toxic nature of 

formamide. The resulting mixture was vortexed and subsequently aliquoted into 1 ml vials 

that were stored at -20°C. For each SSCP run, a single fresh vial ofloading dye was used 

and the remaining contents discarded. A 5 III volume of amplicons was placed into a 0.5 

ml centrifuge tube, with 25 III formamide loading dye being added. Addition of 2-6 

volumes of loading dye was necessary to facilitate optimum denaturation of the double 

stranded PCR products and maintenance of the single stranded state by formamide, prior to 

loading. The 50 III mixture was then placed into the Hybaid PCR machine that was housed 

in the electrophoresis room and used as a heating block, for 10 minutes at 95°C. It was 

wise to not use the PCR machines in the amplification room as amplicons from the PCR 

products would be introduced into the room and result in contamination of other pre-PCR 

mixtures. Following denaturation, the samples were snap chilled on ice for 2 minutes. If a 

0.75 mm comb was used, no more than 10 III could be loaded comfortably into each well. 

When a 1.5 mm comb was used, the wells could accommodate up to 30 III of sample. 
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Volumes ranging from 20-40fll were loaded onto the PAgel using the 1.5 mm combs. The 

lower volumes produced bands that were less intense than the higher volumes, which were 

expected. For each gel that was run, a non-denatured marker was included such as Marker 

VI (Roche) or Marker VIII (Roche). In some cases, undenatured double-stranded (ds) 

DNA was included to determine where single stranded conformers were running in relation 

to their double-stranded counterparts. 

4.3.7.4 Electrophoresis of samples and staining of PAgel 

Following the sample loading, the gel was electrophoresed at 100 V and 25 rnA for 10%, 

0.75 mm thick gels. These were run for 4-5 hours. For 10%, 1.5 mm thick gels, a 

maximum voltage (300 V) was used for 5-6 hours at approximately 50 rnA. When 

dismantling the gel apparatus and removing the gel from between the glass plates, care was 

taken with the 5%, 0.75 mm thick gels as they were more fragile than the 1.5 mm thick 

gels. The gel was placed into a staining solution containing 5 fll ethidium bromide (10 

mg/ml) in a 100 ml volume of 1.25 x buffer solution on an orbital shaker for 45 minutes. 

The gel was then de-stained in distilled water using an orbital shaker for 30 minutes. The 

ethidium bromide staining solution produced variable results therefore SyBr Gold 

(Molecular Probes, 10,000 x concentration) was used as the staining compound. SyBr 

Gold was reported to be more sensitive than ethidium bromide for detecting both double or 

single stranded DNA and RNA. All precautions were taken during the handling of SyBr 

Gold as the carcinogenic and other toxicity properties have not been determined as 

outlined in the MSDS (Material safety data sheet). A 1 fll volume of SyBr Gold dye was 

added to 30 ml of a 1.25 x TBE buffer. An orbital shaker was used for even distribution of 

the dye. De-staining could be omitted when SyBr Gold was used. 
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4.3.8 Analysis of SSCP bands 

The abnormally migrating bands were detected on visual inspection. Each SSCP run was 

inspected for differences of either an additional band or a missing band. The abnormally 

migrating band was then compared to the normal control sample. Any difference indicated 

that the conformation of that product was not the same as the normal control. In such a 

case, the sample was subjected to DNA sequencing analysis using the ABI 3100 genetic 

analyser. 

4.3.9 Purification of PCR reactions 

The PCR products that were subjected to SSCP analysis and those bands found to be 

abnormally migrating were purified prior to being sequenced on the ABI 3100 for mutation 

confirmation. The High Pure PCR product Purification Kit (Roche) was used to remove 

contaminating substances such as unincoporated dNTPs, primers and salts from the PCR 

products. The technique utilises the chaotropic salt, guanidine thiocyanate, which is present 

within the binding buffer. The DNA from the PCR product binds selectively to special 

glass fibres housed within the High Pure filter tube. 

The procedure followed was as per manufacturer' s instructions (Roche). 

4.3.10 DNA Sequencing of abnormally migrating bands using the Bigdye terminator 

cycle sequencing reaction kit (V. 3.1) 

The sequencing assay was conducted using the Applied Biosystems (AB) 9700 PCR 
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machine. The reactions were performed in 0.2 ml PCR tubes. 

The amount of sample used was dependent on the size of the PCR products being 

sequenced. Typically, a 200-500 bp product required 3-10 ng of amplified product. 

However the resultant sequences produced from such a template concentration was not as 

expected, thus the amount of product added was increased to about 50 ng. Each primer 

used in the sequencing reaction was diluted to 3.2 pmol/~l. 

A typical sequencing reaction was as follows: 

Big Dye Reaction Mix 4.0 ~I 

3.2 pmoles l )ll primer 1.0 )ll 

Sample 10 ng/)ll 3.0 - 5.0 )ll 

ddH20 x )ll (depending on the amount of DNA added) 
Total 20.0 ul 

Table 9: peR program for the cycle sequencing reaction using the BigDye terminator 

sequencing chemistry. 

I Time I Temperature ( OC) I No. of cycles 

I Denaturation I 10 seconds I 96 

I Annealing I 5 seconds I 50 25 

I Elongation I 4 minutes I 60 

I Hold 
, 

I r I 
IX) 4 1 

4.3.11 Purification of extension products 

Two methods were employed in product purification. These included the sodium acetate 

method of purification and the Centri-sep column purification. 

4.3.11.1 Sodium acetate purification method 

The procedure followed was as per manufacturer' s instructions (Big Dye Termination kit, 
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Applied Biosystems). 

4.3.11.2 Centri-sep column purification 

There were three parts to this procedure. The first involved column hydration, which was 

followed by removal of interstitial fluid and finally the sample processing step. The centri­

sep columns were obtained from Applied Biosystems. 

The procedure followed was as per manufacturer's instructions (Applied Biosystems). 

4.3.12 Electrophoresis of samples on the ABI 3100 

Prior to electrophoresis on the ABI 3100 of those samples that showed a visual band shift 

on slab gel electrophoresis, the genetic analyser had to be prepared. The POP-6 polymer, 

which is housed at 4°C, was left out at room temperature for 1 hour before it was inserted 

into the syringes on the instrument. The one hour incubation at room temperature was 

necessary to allow the crystals that form in the polymer matrix at low temperatures to 

dissolve before the polymer was injected into the instrument. A 36 cm capillary array or a 

50 cm capillary array was placed onto the instrument. For shorter read lengths of <200 bp, 

the 36 cm capillary was used and for expected product lengths of >200 bp, the 50 cm 

capillary array was used. Initially a spacial and spectral calibration was performed on the 

ABI 3100, in preparation for the electrophoresis. The spacial calibration uses a water 

signal to ensure that the position of maximum fluorescence is mapped for each capillary. A 

spectral calibration had to be performed for dye set Z, which is used for sequencing. A "Q" 

or quality value of 0.95 or greater had to be obtained. The DNA sequencing was performed 
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using "Data collection V2.0". The preset module for DNA sequencing was chosen for the 

run. 

After the sequencing run was completed, the raw data file was viewed to determine that the 

run had taken place as expected. The average signal of the raw data should be between 

1000 and 2000 RFU. An analysis was automatically performed by the DNA sequencing 

software. 

4.3.13 DNA sequencing analysis using the Bioinformatics software 

A consensus sequence for the dystrophin gene was downloaded from NCBI (National 

Center for Biotechnology Information). A BLAST (basic local alignment search tool) 

search was performed to find consensus sequences for individual exons in the dystrophin 

gene. These fragments included the specified ex on as well as the flanking intronic 

sequences. A new consensus sequence was made available for the dystrophin gene in 2003, 

namely NM 004006.1. This replaced the previous consensus sequence, M18533. 

The author performed DNA sequencing data analyses using the Biotools software 

comprising Bioedit (Hall, 1999), Clustal X (Thompson et al., 1997) and GeneDoc software 

programs (Nicholas & Nicholas, 1997). The electropherograms were viewed using 

FinchTV V 1.4.0 (Geospiza Inc, 2006 www.geospiza.com). 

The Leiden muscular dystrophy website was used to obtain other relevant Genbank 

accession numbers for exons in the dystrophin gene. The mutation database housing all 

mutations found in the dystrophin gene was also consulted (http://www.dmd.nl). 
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4.4 RESULTS 

Positive control samples were included in the study. These were normal control DNA from 

individuals such as staff members and nurses from Inkosi Albert Luthuli Central Hospital 

who showed no signs of muscular dystrophy. A negative control was a sample that 

contained all the reagents except for DNA. This was included to ensure that no PCR 

contamination occurred, which would confound the results. 

4.4.1 peR gels 

The following image shows an example of a 2-plex PCR result. 

Sample MVIII 

692 

501 
489 
404 
320 ..,~,. 

242 ··-190 
147 
124 
110 

67 

37, 34, 34 
26, 19 

2 3 4 5 6 7 8 9 10 

Figure 33: A representative image showing the peR amplified products obtained when 

primer pairs for exons 13 and 17 were used in the same reaction. Molecular weight marker 

VIII from Roche was used to confirm the band sizes. 

The following image shows an example of a 3-plex PCR result. 
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Sample 

Lane 

1114 
900 
692 
501 
489 
404 
320 
242 
190 
147 
124 
110 

67 

37, 34, 34 
26, 19 

8 9 10 9 

332 bp 
278 bp 

171 bp 

Figure 34: A representative image showing the peR amplified products obtained when 

primer pairs for exons Pb, 9 and 34 were included in the same reaction. Molecular weight 

marker VIll from Roche was used to confirm the band sizes. 

4.4.2 SSCP gels 

The 5% polyacrylamide gel did not produce any bands. The gel was very thin and broke 

while being transferred to the de-staining solution. The 10% gel was found to produce the 

most usable data as the band resolution was best at this concentration for most exons. For 

some exons, a 10% gel did not produce bands that were well defined. In such an instance, a 

15% polyacrylamide gel was used. A 20% gel was not made as this would have increased 

the length of electrophoresis significantly. The gels were electrophoresed at between 300-

400 V, using 50-110 rnA of current. 

A molecular weight marker was included in most of the gels to confirm the sizes of the 

homoduplex or double stranded products. It was not heated as this would have resulted in 

denaturation. The single stranded products that were produced from denaturation were not 

size dependent as their migration reflects the conformation of the products and not the size. 

All the following controls were included if sufficient product was available: 
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i) Denatured positive normal control which was compared to the patients' sample. 

It was denatured so that all parameters remained the same between sample and 

control. 

ii) Undenatured positive normal control to compare the denatured to an 

undenatured sample state. 

iii) Negative control containing no DNA to reveal any peR contamination. 

4.4.2.1 Optimisation of gel concentration 

Sample 

Lane 

2176 

1766 
1230 
1033 
653 

517 

453 

394 

298 

234 

220 

154 

Figure 35: An image showing the poorly defined bands and therefore unusable data produced 

on running a 10% gel at 4°C. These peR products resulted from amplification of primer 

pairs for exons 45 and 47. Molecular weight marker VI from Roche was included in lane 1. 

Ethidium bromide was used as the agent of detection. 
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Sample 

Lane 

Figure 36: Image showing a 15% polyacrylamide gel that was run using the same samples 

from figure 35 above. These were amplified products from primer pairs of exons 45 and 47, 

which were electrophoresed at 4°C. Ethidium bromide was used as the detection reagent. 

The bands were slightly better resolved using the 15% gel but not ideal. Even though low 

temperatures provided better band resolution, this was not always the case. The 

temperature at which the best resolution would be obtained depended very much on the 

primer composition and the amplified products that were generated. Using one specific 

temperature for the electrophoresis of all amplified products would not be possible (Larsen 

et aI. , 1999a). 

4.4.2.2 Band definition using different detection reagents and a comparison between 

the numbers of primer pairs used 

The image below clearly indicates the benefit of using two primer pairs when performing 
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Sample 

Lane 

2176 
1766 

1230 

1033 

653 
517 

453 

394 

298 
234 

220 

i':> 

.I 1 2 3 4 6 7 8 9 10 11 1213 14 16 17 +C 

Figure 37: A representative image illustrating the good band definition obtained when 

amplified products generated using two primer pairs for exons 6 and 8, were electrophoresed 

at 10°C on a 10% polyacrylamide gel. 

SSCP analysis. Even though it would take a lot longer to generate the PCR products to be 

subjected to point mutation analysis, the resolution obtained is of good quality. This allows 

the analyst to interpret the data correctly. Exons 6 and 8 appeared to produce the most 

well-defined bands at lOoC. When the same samples were electrophoresed at a lower 

temperature, 4°C, the bands were "fuzzy" and not sharp enough for accurate interpretation. 

Ethidium bromide was used as the detection reagent in the above images (Figures 35, 36 

and 37). It is evident that ethidium bromide is not a consistent agent of detection, since it 

produced poor bands in figures 35 and 36 however the band definition was of usable 

quality in figure 37. 

The figure below shows the lack of definition produced when more than two amplified 

products were electrophoresed on a polyacrylamide gel. This made interpretation of the 
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data more difficult. These results were in keeping with a paper authored by (Larsen et al., 

1999a), where the recommendation was to use a single pair of primers per run. The use of 

SyBr Gold as a detection reagent is also more sensitive than ethidium bromide. The bands 

in the figure (amplicons from exons Pm, 16, 32) are more pronounced and brighter than in 

the previous figures 35, 36 and 37. 

Lane 

1114 
900 
692 

501 
489 
404 
320 

242 

190 

147 

124 

110 

37, 34, 34 

26, 19 

1 2 3 

Figure 38: Representation of the single stranded conformers that were produced when a 

10% polyacrylamide gel was run with SyBr gold used as the detection agent. The amplified 

products were derived from the use of primer pairs Pm, 16 and 32. Marker VIII (Roche) was 

included in lane 1. 

4.4.2.3 Abnormally migrating bands 

In figure 41, sample 3 shows an abnormally migrating band that is suggestive of a 

mutation. Ethidium bromide was used as the detection agent. Surprisingly sample 3, which 

is the mother' s DNA sample of a DMD affected child, shows the mutant band only. The 
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mutant band does not appear to be present in the child's sample (sample 2). 

Figure 42 shows an additional band as shown by the green arrows. Sample 2 belongs to a 

DMD affected patient that was previously shown to have no deletions on multiplex peR. 

Sample 3 belongs to the mother of the DMD affected child. Ethidium bromide was used as 

the reagent for band detection. 

Sample 

Lane 

1114 
900 

692 

~J 
404 

320 

242 

190 

147 

124 

110 

67 

37,34,34 
26, 19 

~ ~ 
~ 9 10 11 12 13 14 15 16 17 +c 1§' ·c 

Figure 39: Image representing single stranded conformers resulting from denaturation 

of PCR amplified products derived from the use of primer pairs for exons 52 and 53. The gel 

was electrophoresed using a 10% gel at 10°C. SyBr Gold was used for detection. Abnormally 

migrating bands are indicated by the stars in lanes 5 and 8. 
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Sample 

Lane 

2176 
1766 

1230 

1033 

653 
517 

453 

394 

298 
234 

220 

Figure 40: 

.... 'V ";) ~ 

~ ~ ~ ,(s 
~ t '" ~ 

;- 1 2 3 CJO () "6'<::' 5 4 6 7 8 9 10 11 12 13 14 16 17 +C 

Image showing abnormally migrating conformers obtained when SSCP was 

performed on PCR products generated from primers pairs for exons 6 and 8. The samples 

were electrophoresed at 10°C using a 10% polyacrylamide gel. Abnormally migrating bands 

are indicated by the stars in lanes 2 and 3. 

Figure 41: 

Sample 

Lane 
9 10 12 13 +c 

Image showing an abnormally migrating band (green star) when the peR 

products were generated with primers for exon 53 which were electrophoresed at 4°C on a 

20% Novex precast polyacrylamide gel. Abnormally migrating band are shown by the star in 

lane 3. 
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Figure 42: 

Sample 

Lane 

.... 
Cl' 

i '" Cl' 

i2 3 

2 3 4 

t t 

"> 
Cl' 

i 
5 

'" Cl' 

i 8 9 10 12 13 +C 

6 9 10 11 12 

Image showing the presence of an additional band in samples 2 and 3, which 

would be suggestive of a mutation. The PCR products were generated by using primers for 

exon 60 and electrophoresis was carried out at 4°C with a 20% precast Novex gel. 

Table 10: Table showing those samples from subjects that were abnormally migrating on 

visual inspection following gel electrophoresis. 

I Actual location of 

I 
mutation after DNA 

sequencing 

DNA Mutation / on Dystrophinopathy 
number visual /relative 

inspection only 

I 
E6 1 Exon 6 and / or Aunt of 2 

8 

I 
E6 2 Exon 6 and / or DMD 

8 

I 
E6 3 Exon 6 and / or Mother of 2 

8 

1 Exon 52/53 Aunt of 2 I E52 

2 Exon 52/53 DMD I E52 

3 Exon 53 Mother of 2 I No mutation found 

12 Exon 52, 53 DMD No mutatlon found 

I 15 Exon 52, 53 I Mother of 14 , No mutation found , 
I Exon I 6 53 Mother of 7 I No mutation found 

I 8 I Exon 53 I DMD , No mutation found 
I 9 I Exon 52 I DMD I E52 

I 10 I Exon 52 I Mother of 8 and I E52 
9 

I 11 I Exon 52 I Sister of 8 and I E52 
9 

I 
10 I Exon 20, 22 Mother of 8 and I No mutation found 

9 

I 13 I Exon 20, 22 I Mother of 12 I No mutation found 

I 16 Exon 20, 22 I DMD I No mutation found 

I 16 I Pb, 34, 9 I DMD , No mutation found 

I 17 I Pb, 34, 9 I Mother of 16 , No mutation found 
I 14 I Pm, 16, 32 I DMD I No mutation found 
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I 2 I Exon 60 I DMD I No mutation found 

I 3 I Exon 60 I Mother ! No mutation found 

I 65 I Exon 41, 42 I Sister of 66 ! X 

I 66 I Exon 41, 42 I DMD I X 

I 67 I Exon 41, 42 I Mother of 66 I X 

Legend: X denotes unusable sequencing data, E denotes exon. 

4.4.3 DNA sequencing and analysis 

Seventeen subjects showed abnormally migrating bands on visual inspection. These 

samples were then subjected to DNA sequence analysis. DNA sequencing was performed 

for exons 6, 8, 52, 53, 60, 41, 42 and flanking sequences. Of these exons tested, only exons 

6 and 52 showed SNPs or point mutations. In exon 6 and flanking sequence of exon 5, 

three SNPs were found and in exon 52, two insertion mutations were found. 

DNA sequencing was not performed for exons 20, 22, Pb, 34, 9, Pm, 16 and 32 on subjects 

10, 13, 16, 17 and 14 because DNA was not available. 

4.4.3.1 Exon 6 and flanking regions 

Sample names 

~~)2J 2a 
2b 
3a 
3b 
NM 004006 

1)' 
Consensus sequence 

name 

320 * 340 

ATAAACTGACTCTTGGTTTGATT1:GGAA 1:AT.AA 'I 

1)' 
Consensus sequence 

Figure 43 : Alignment showing sequences in exon 6 and the flanking region in exon 5. A 

comparison is made to the eDNA consensus sequence of the dystrophin gene. Description of 

samples and consensus sequence is outlined. 
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1a 
1b 
2a 
2b 
3a 
3b 
NM 

1a 
1b 
2a 
2b 
3a 
3b 

004006 

NM 004006 

* 80 * 100 * 120 

-------------- ------ -------- ------- -----------------? 

KEKGSTRVHALNNVNKALRVLQNNNVDLVNIGSTDIVDGNHKLTLGLI WN I I 

* * 160 * 180 
?------------ ---

?--------------­
?------------- --

IHSHRPDLFDWNSVVCQ 

Figure 44: Alignment showing the amino acid sequences of samples weighted against the 

consensus eDNA sequence of dystrophin. 

The samples 1, 2 and 3 for exon 6 were all subjected to DNA sequencing in duplicate for 

confirmation purposes hence the numbering 1 a, 1 b, 2a, 2b, 3a, 3b. 

The SNP or mutation descriptions given below are taken from the official HGVS 

nomenclature (http://www.hgys.org/mutnomen/recs-DNA.html, den Dunnen & 

Antonarakis, 2000). It is evident from the aligned sequences above that there are single 

nucleotide polymorphisms at position NM _004006.1: c.352T> A, c.353G> T and 

c.355C>T. The SNP at positions 352 and 353 are not listed on the Leiden pages. The 

c.355C>T SNP is listed on the Leiden website, where all known mutations are posted from 

throughout the world. This SNP has been previously reported three times with all patients 

being from the USA. The numbers on the eDNA consensus sequence correspond to ex on 5. 

In the case of the first SNP, NM _004006.1: c.352T> A with TGG being the amino acid and 

the second SNP, c.353G>T with ATG being the amino acid, they may be population 

specific changes. All the individuals were South African Black patients. 
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TGG on the consensus sequence codes for W or tryptophan whereas in the sample it codes 

for a methionine residue (NM_004006.1 : c.352T>A). With respect to the third SNP, CAG 

on the consensus sequence encodes a Q or glutamine residue, whereas in the samples it 

codes for a stop sequence TAG denoted by X (NM_004006.1: c.355C>T). This is a 

pathogenic mutation that was also listed on the Leiden pages. 

From these results, the carrier status in the mother ofthe DMD patient and his female 

relative could be determined. It was evident that the mother and female relative of the 

DMD patient showed the same nucleotide changes / mutations. 

4.4.3.2 Exon 52 

NM 004006 . 
+C 
la 
lb 
2 
9a 
9b 
lOa 
l Ob 
lla 
llb 

NM 004006. 
+C 
la 
lb 
2 
9a 
9b 
lOa 
lOb 
lla 
llb 

* 7580 
AGAGGCGTCCCCAGTTG 
------ - ------GTTG 

* 7640 

* 7600 

* 

* 7620 

* 7680 
TGAAAGAATTCAGAATCAGTGG 
T------- --------------

T---------- ------- -­
T--- - ---------- -----

Figure 45: Alignment of samples and positive control of exon 52 weighted against the cDNA 

consensus sequence of dystrophin. 

The samples were subjected to DNA sequencing in duplicate for confirmation purposes as 

is shown by "a" and "b" for exon 52 as was the case with ex on 6. There was not enough 
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samples left from patient 2 therefore the DNA sequencing was only performed once in 

each direction ie. forward and reverse. 

The figure shows two insertions found in the patients (2 and 9), a mother (10) and female 

relatives (1, 11). None of the insertions have been previously documented. The first 

occurred at NM_OO4006.1: c.7609insC and the second occurred at position NM_004006.1: 

c.7637 _7638insTC. The first single base insertion brings about a lysine (K) to glutamic 

acid (E) change at amino acid position 2538. Owing to these insertions, the entire reading 

frame also changed. 

NM 004006 . 
+C 
la 
lb 
2 
9a 
9b 
lOa 
lOb 
lla 
llb 

NM 004006. 
+C 
la 
lb 
2 
9a 
9b 
lOa 
lOb 
lla 
llb 

* 2500 * 2520 * 
T W S ,~ KS,' R M ~, M K.: K T~ ~R . 1 

* 2560 * 2580 * 

2540 
T K:2 1\!S 
T IGKTS 
T K,"- '" , t 
T .~~ 'I 

K: ... 
,;.p 

,-
'-~- K: t T K 

K3 '1 
~~ 

11 K:' ":"1 

~: 
.T K,- k 

:T, 
: '0 

L.':":"1 
K,;. 

L 1: ~~ JQ L 

2600 

Figure 46: Amino acid alignment of dystrophin eDNA consensus sequence and samples 

included in the study spanning exon 52. 

Table 11: Outline of the mutations / SNPs that were found in the patients, their mothers and 

female relatives following DNA sequencing analysis. 

I DNA Surname I 
number Initials 

1 S, R 

Actual 
mutation 

/SNP 

c.352 T>A 

Nucleotide 
change at the 

DNA level 

TGG 
to ATG 

Amino acid change 
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~I I~~_I. __ -~ __ --r, _ t _ryp_to_Ph_an_to __ 1 I r--,-- ~ methi onine 

IIII c . 353 G>T I toT~TG 
tryptophan to 

methionine 

I 
3 I S I OK I c . 352 T>A I TGG tryptophan to 

I to ATG methionine 
.--------

I I I c . 353 G>T I TGG tryptophan to 
to ATG methionine 

~Ir----------I c . 355 C>T I '-------C-A-G-------- . _9 __ 1 __ ut_am __ i _n_e __ t _o __ s_t _o_p __ I to TAG ~ codon 

I 9 I S, NM I c . 7609insC I Insertion C lysine to gl utamic 
I acid 

..------,-----

II c.7637_7638 I Insertion TC changes the entire 
insTC reading frame - no 

stop codons 

I 10 I S , S I c . 7609insC I Insertion C lysine to glutamic 
acid 

I -I ..------c . 7637_ 7638 Insertion TC changes the entire 
insTC reading frame - no 

stop codons 

I 11 I S, B I c . 7609 ins C I Ins e rt i on C r-I-l-y-S-i-n-e--~-~-l-' ~-l-u-t-a-m-l:-' c- I 

I -Ir-c--. 7:-:-6 ~3 =-7_---7 ""6-=-3 -:-8-1 Insertion TC r hangeS the entire 
insTC reading frame - no 

stop codons 

4.5 DISCUSSION 

The use of SSCP as a method for detecting point mutations has been used by several 

groups. Even though it is time-consuming and laborious it is easy to set up in an 
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environment where infrastructure is limited. It was therefore an ideal technique to use in 

our laboratory. We already had the primers for the dystrophin gene and the equipment 

needed for electrophoresis and detection of the bands. Since dystrophin is such a large 

gene, encompassing 79 exons, literature consensus showed that the SSCP analysis was 

most efficient for products <300 bp. There were other reports (Michaud et al., 1992; 

Kneppers et al. , 1995) showing that SSCP produced good results for products greater than 

300 bp and these reports motivated the undertaking of this study. 

The study cohort was designed such that the dystrophinopathy patient and his mother and / 

or female relative were included to determine whether a carrier status assessment could be 

made by comparing results of the patient and his mother and / or female relative. It is 

unfortunate that the data did not yield positive carrier status results. 

4.5.1 peR optimisation 

Several optimisation reactions were performed to obtain the best amplification products. 

This was essential as it would allow bands to be more easily visualised once they were 

electrophoresed on the PAgel. If bands were faint on PCR, then the resulting band after 

SSCP were even fainter thus preventing definitive conclusions to be made. One might 

assume that the band was absent however it may just have been very faint owing to the 

amplification reaction. A volume of 6 III - 8 III dNTP mix was tried for the 3-plex PCR 

assays and it was found that 6 III was optimal for the reaction and the number of primers 

that were included. It was important to run the products on a conventional agarose gel to 

ensure that no ambiguous results were obtained once the SSCP gel was run (Hongyo et ai. , 

1993). 
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4.5.2 Two-plex and three-plex PCR 

Prior to performing the PCR assays, a literature search was performed on the type of PCR 

assay that should be designed. There was much discrepancy between the papers with 

respect to developing a multiplex SSCP method. According to Kneppers et al., (1995), the 

use of a mUltiplex SSCP was quite efficient. Larsen et al. (1999a), however suggested that 

a single SSCP reaction be performed encompassing a single ex on because false-negatives 

would be common. This was due to the increasing number of single stranded conformers 

that would be produced as the number of amplified products increased (Larsen et al., 

1999a). Since a consensus in the literature could not be established, the author decided to 

try two and a three-plex PCR assays. Both assays produced well defined bands on PCR. 

However, when these amplified products were run on an SSCP gel the two-plex PCR 

produced conformers that could be distinguished from one another and the data was 

therefore easier to interpret than the three-plex SSCP bands. 

4.5.3 "Cold" PCR-SSCP 

The "Cold" PCR-SSCP method was chosen as it produced the most usable and well 

defined bands. When the author had first run precast 20% polyacrylamide gels on the 

ThermoFlow™ SSCP system at the University of California, Irvine (UCI) two 

temperatures were used to electrophorese the samples. The samples that were run at room 

temperature produced bands of very poor quality and most of the bands were not visible on 

UV trans-illumination. However, when the samples were run at 4°C, the bands were well 

defined and the data was interpretable, therefore all precast gels were run at this 

temperature. The data produced on using the precast gels were easily interpretable 
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therefore no other optimisation was required for those amplified products. However only a 

single pair of primers was electrophoresed during each run, since the author' s time at the 

laboratory in Irvine was limited. 

Literature consensus revealed that the "Cold"-SSCP method was quicker and more 

reproducible than the radioactive SSCP mobility shift assay, therefore it turned out to be 

the obvious choice. In addition to this, the molecular scientist did not have a radioactive 

facility at her disposal therefore the "Cold" PCR-SSCP was chosen. There were a few 

parameters that needed to be optimised before the technique was reproducible. These 

included using the optimal voltage, the correct pump or circulating device to maintain the 

temperature, TBE buffer concentrations, gel concentrations, the use of denaturants and the 

use of appropriate loading buffers (Hongyo et ai. , 1993) 

The author set-up the SSCP assay at the Neuroscience laboratory using conventional slab 

gel apparatus, with a cold water bath attached to the Hoefer SE600 polyacrylamide gel 

apparatus. The author had to improvise and use equipment that was available since the 

ThermoFlow™ SSCP apparatus and the Novex precast gel system that was utilised at UCI 

was not available at the Neuroscience laboratory. The equipment was also not obtainable 

from another laboratory at the Nelson R. Mandela School of Medicine, Durban, South 

Africa. 

Samples were initially electrophoresed at room temperature and at 4°C to determine 

whether the same effect was achieved in that environment, compared to the University of 

California, Irvine. Once again the sample bands were poorly visible at room temperature 

and un-interpretable. Interestingly, the temperature at which best resolution was achieved 
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for most of the amplified products using conventional slab gels was 100 e as opposed to 

4°e using the precast 20% gels. At 4°e some of the amplified products were "fuzzy" in 

appearance and the abnormally migrating conformers could not easily be distinguished 

from the normal conformers using the slab gels. 

For slab gels, it was difficult to maintain the required temperature as there were factors that 

influenced the change in temperature. These included the temperature of the room at the 

time of running the samples and the ability ofthe thermostatically controlled re-circulating 

water bath to maintain the temperature precisely and at a constant temperature (Hongyo et 

al., 1993). Owing to such factors, the room in which the electrophoresis was performed 

was maintained at a constant temperature of 16°e using an externally controlled electronic 

air-conditioning unit. The TBE buffer was incubated for a few hours at 4°e to maintain the 

low gel temperature that was required. A stirrer bar was inserted into the gel tank to ensure 

that cold buffer circulated throughout the buffer chamber. 

Blurring of bands during some runs was also evident using the slab gel apparatus. This 

might have been due to temperature increases during the electrophoresis, which could be 

attributed to the increase in temperature from the power pack. According to Hongyo et al. 

(1993), the temperature during the electrophoresis would have to be adjusted if there was a 

single band or more than two bands being produced in the control sample for a single set of 

primers. It was important for the temperature as well as the ionic conditions to be constant 

as the DNA fragments move through the gel. According to Hongyo et al. (1993), as the 

denatured DNA is placed into a non-denaturing environment such as the gel, a 

conformation is reached and for this conformation to be maintained the temperature and 

ionic concentrations must remain constant throughout the electrophoresis. If there are 
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fluctuations in the thermal conditions, the shape ofthe band and the rate of band migration 

changes. Once this occurs, the sharpness and reproducibility of the band from a particular 

strand would be inconsistent. (Hongyo et al., 1993). This might have resulted in "fuzzy" 

and blurred bands. 

For slab gels, different gel concentrations were used to determine the optimum 

concentration at which the abnormally migrating conformers were most apparent. A 10% 

gel concentration was found to be optimum for most amplified products. When a 15% gel 

was made, the products were electrophoresed for approximately 8 hours; however a good 

separation was not achieved. This suggested that the length of time be increased to 9-10 

hours for future runs using a 15% gel. A 20% polyacrylamide gel could not be used as it 

would have taken> 12 hours to run a single gel. Using a 10% polyacrylamide gel the 

samples were run for approximately 5-6 hours to obtain optimum migration. 

4.5.4 Reagents for maintaining the single stranded state of denatured DNA 

Formamide was chosen since it has been proven to be efficient in maintaining denatured 

strands in a single stranded state. It is commonly used during DNA sequencing and 

fragment analysis procedures. 

Another agent of denaturation, methyl-mercury hydroxide was also researched to 

determine whether it would better than using formamide. According to Weghorst and 

Buzard (1993), methyl-mercury hydroxide increased single stranded conformation 

detection. However, the MSDS for methyl-mercury hydroxide showed it to be highly 

carcinogenic and has many proven systemic effects. It also has been shown to have many 
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environmental effects. Owing to the severe effects of methyl-mercury hydroxide, 

formamide was chosen as the reagent for maintaining the strands in a single stranded state. 

4.5.5 Methods of detection 

Two different reagents were used to detect the bands. For the samples electrophoresed at 

UCI using the precast gels, ethidium bromide was the method of detection. Initially 

ethidium bromide was used as the method of detection for the slab gels at the Neuroscience 

laboratory as this was the only reagent available. There was evidence of high background 

staining in a few gels stained with ethidium bromide. The recommendation was to de-stain 

longer and use less ethidium bromide which was thereafter done. The background 

decreased but so too did the resolution of the bands. 

SyBr Gold was utilised for the remaining amplified products that were subjected to SSCP 

analysis. According to the Molecular probes product insert sheet, SyBr Gold was found to 

be more sensitive than SyBr Green II at staining single stranded DNA and detecting single 

stranded conformers in SSCP derived products. In practice, SyBr Gold was so sensitive 

that even at a 1 :5,000 dilution the bands were significantly brighter than ethidium bromide. 

Owing to the brightness of the resulting bands different concentrations of SyBr Gold, 

ranging from 1: 1 0,000 to 1 :50,000 had to be tested. The optimum concentration was found 

to be 1 :30,000. 

4.5.6 DNA sequencing and use of centri-sep columns 

The centri-sep columns purification method resulted in better sequence data than the 
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conventional sodium acetate method. It was recommended that the sample not be heated at 

the end of procedure however the author tried the heating step as there was no vacuum 

centrifuge at the Neuroscience facility. The heating step did not prove to be a problem, and 

the resulting data was of good quality. It is therefore recommended that the heating step be 

included for those labs that lack a vacuum centrifuge. 

4.5.7 Point mutation detection 

DNA sequencing could not be performed on the DNA of all patients that showed abnormal 

band migration. There was no DNA available from these patients and since the patients 

were from rural areas they could not be reached for additional blood samples. 

4.5.7.1 Exon 6 and flanking regions of exon 5 

Three SNPs were found when exon 6 and flanking regions of exon 5 were analysed. 

The SNP located at NM _004006.1: c.355 C> T has been previously documented. The other 

two SNPs namely NM_004006.l: c.352 T>A, NM_004006.1: c.353 G>T have not been 

documented previously. It is likely that these SNPs are population specific. The carrier 

status of the mother and female relatives could be determined as they all shared the same 

polymorphisms / point mutations. 

4.5.7.2 Exon 52 

Two insertion mutations were found in exon 52 of two patients, a mother and two female 

relatives. They appear to be unique as they have not previously been reported. The 
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insertions changed the reading frame without introducing a stop codon. 

4.5.7.3 Exon 41 and 42 

The samples that appeared to have abnormally migrating bands in exons 41 and / or 42 

were subjected to DNA sequencing to confirm the visual result. The DNA sequencing data 

produced was unusable. This may be attributed to the age of the samples as they were from 

1996. 

4.5.8 Usefulness of the technique 

With respect to the aims that were initially proposed, the following statements provide 

insight into the usefulness ofthe SSCP analysis technique as a mutation detection tool. 

When the efficacy and reproducibility of the technique was evaluated by looking at the 

results obtained, it was concluded that SSCP should not be used as the primary method to 

detect point mutations. This is true as the abnormally migrating bands are not always easily 

detectable on visual inspection. 

On assessment ofthe conventional slab gel SSCP analysis technique, the "cold" PCR 

SSCP method appeared to produce the best results when room temperature results were 

compared to results obtained at 4-1 O°C. The best temperature was 10°C for the majority of 

the PCR products being tested. The best method of detection was SyBr Gold compared to 

ethidium bromide as a very small amount (1 :30,000) was sufficient to produce the desired 

band intensity. Where ethidium bromide is highly carcinogenic, SyBr Gold has not been 

fully assessed however its danger level is on a significantly lower scale. 
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The Novex precast gels and ThermoFlow™ SSCP system has several advantages over 

conventional slab gels. Firstly, the gel concentration would be consistent and reliable as a 

precast, commercially produced gel was being used and it would not be subject to the 

technical errors that could occur when a gel was being poured in the conventional way. 

Secondly, the thermal conditions set on the water-bath would be unchanging and consistent 

as a specifically designed water bath for SSCP was being used as opposed to an externally 

attached water-bath used with slab gels. It is also subject to temperature fluctuations. 

Thirdly, the electrophoresis could be performed in 2-3 hours, thus ensuring the least 

amount of temperature fluctuations and quicker data generation. From the author's 

experience, the precast gels produced better band resolution and product separation than 

the slab gels. However in our resource limited setting this was not a feasible option as the 

equipment to run precast gels was not available. 
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SECTIONB: 

ASSESSING THE USEFULNESS OF REVERSE-TRANSCRIPTION 

PCR USING RNA FROM MUSCLE TISSUE 

4.6 INTRODUCTION 

Reverse-transcription PCR is a method where eDNA is synthesised using random hexamer 

primers or sequence specific primers to analyse a gene at the RNA level. Following eDNA 

production, the resulting fragment is amplified using conventional PCR or nested PCR. 

Nested PCR is an attractive way to improve sensitivity and specificity of a fragment that 

would otherwise not produce a definitive amplification product using a single PCR 

reaction. 

Total RNA or Poly(At selected messenger RNA may serve as the RNA template for RT­

PCR. The RNA can be extracted from tissue samples, blood samples or peripheral blood 

lymphocytes. The quantity and integrity of the RNA species are usually the key 

determinants in generating good quality RT-PCR products that are well resolved on gel 

electrophoresis. RNA degradation is one of the factors that reduce the probability of 

obtaining the highest "sequence information that can be converted into eDNA" (Invitrogen 

R T -PCR manual, http://www.invitrogen.com/content.cfin?pageid=4082). 

RT-PCR can be performed using a one-step or two-step system of amplification. The 

conventional method of eDNA production follows the two-step format where all reactions 

are performed under optimal conditions. During the first step of the RT-PCR assay, a "first 

strand reaction" is performed where eDNA is manufactured from a RNA template within 

118 



RT-buffer. This reaction takes place in the presence of a reverse-transcriptase enzyme. The 

"second strand reaction" involves the amplification of the product from the "first-strand 

reaction" using PCR. The two-step system is the method of choice when difficult templates 

with little starting amount of RNA are being reverse transcribed and amplified. 

In the one-step RT-PCR format both reverse-transcription and the PCR take place in a 

single tube. These reactions are performed under conditions that have been optimised for 

both R T and PCR assays thus making it quicker than its two-step counterpart especially in 

cases where large samples numbers are being processed. The one-step method also offers 

the advantage of no carry-over contamination as the tubes are not opened between 

reactions. 

Good quality eDNA results when several criteria are met. These include the use of robust 

enzymes, appropriate buffers and additives when required and the establishment of suitable 

cycling parameters. Another important factor is the use of high quality templates lacking 

inhibitors that may interfere with downstream applications of the eDNA and that have been 

synthesised using efficient kits or reagents. Additives such as DMSO or glycerol can be 

added to the first-strand reaction to "destabilise nucleic acid duplexes and melt RNA 

secondary structure: (Invitrogen RT-PCR manual) . Care should be taken to ensure that the 

appropriate amounts of each additive are included so as not to interfere with the R T 

enzyme efficiency. For those templates that have small starting amounts of RNA, the 

addition of a RNase inhibitor can enhance the level of detection. 

When isolating RNA, the use of high grade reagents and RNase-free equipment are crucial 

in ensuring that degradation elements do not affect the quality of the RNA. One potential 
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problem often encountered involves the presence of contaminating DNA. The use of Trizol 

reagent significantly reduces the amount of contaminating DNA. Treatment with DNase I 

usually removes DNA such that no DNA generated products can result. 

Primers should be desalted and preferably purified by HPLe. Lyophilised primers should 

be either reconstituted in nuclease-free water or TE buffer. Once the primer has been 

reconstituted in water, it should be stored in aliquots at -80°C to prevent acid hydrolysis 

during freeze-thaw cycles. For some GC-rich templates PCR additives such as Enhancer 

solutions that are available from commercial companies such as HotStar Taq system 

(Qiagen) can be included in the reaction. 

RT-PCR is a method that has gained popularity in detecting mutations in the dystrophin 

gene owing to its large size of 427 kDa and exon number of79. DNA based techniques 

such as conventional multiplex PCR have only been able to detect deletions in the "hot­

spot" of the gene in 65% of cases or 72% of cases according to Aartsma-Rus et al. (2006). 

Many groups have found that DNA based strategies fail to detect splice-site mutations as 

the primers are designed within the exon (Tuffery-Giraud et al. , 1999; Tuffery-Giraud et 

al., 2004). By using an RNA-based technique, such mutations can be identified and 

characterised at the RNA level. Alternative splicing and exon-skipping that occurs as a 

result of the rearrangement in the dystrophin gene can also be recognised by using R T­

PCR (Roberts et al. , 1991; Roberts et al. , 1992). In these cases more than one fragment 

would appear on the gel following electrophoresis. 

In 1999, Tuffery-Giraud et al. used RT-PCR and the protein truncation test (PTT) to 

identify translational termination mutations and splice-site mutations. PIT is a technique 
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that identifies mutations that lead to "premature termination of protein synthesis". The 

drawback of this technique is that an experienced scientist who has gained knowledge in 

the area is required to perform the assays and expensive reagents are needed. According to 

Tuffery-Giraud et al. (2004) the RT-PCR and PTT assays should be an essential part of the 

diagnostic work-up done on dystrophinopathy patients provided the technical expertise is 

available. In the report by Tuffery-Giraud et al. (2004), the authors utilised the experience 

as a DMD national referral centre for France and devised a protocol for the detection of 

mutations in the dystrophin gene. The RT-PCR methodology coupled with the protein­

truncation test (PTT) employed by this group, allowed the detection of abnormal sized 

products in the dystrophin gene. Another advantage of using RT-PCR assays to detect 

aberrant fragments in the dystrophin gene would be the production of a template for use in 

DNA sequencing assays. The DNA sequencing will be able to detect small insertions and 

deletions or even nonsense mutations. Tuffery-Giraud et al. (2004) focussed primarily on 

point mutations as the detection of deletions and duplications have received much attention 

with the advent of the multiplex ligation-dependent probe amplification (MLPA) assay. 

This technique was also utilised by the author for deletion and duplication detection and 

will be discussed in a later chapter (Chapter 6) of this thesis. 

The author attempted to set-up and optimise the RT-PCR assay; however she did not have 

the technical expertise to perform the PTT assay. In developing and implementing the RT­

PCR assay in our laboratory we aimed to reduce the mutation-detection gap by being able 

to detect splice site mutations. By using RT-PCR we would be able to detect the changes at 

the RNA level and correlate these with the phenotype of the individual, which is difficult 

to achieve using DNA based methods. 
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4.7 AIMS AND OBJECTIVES 

(i) Set up and optimise reverse-transcription PCR. 

(ii) Detect splice site mutations using the RT-PCR assay. 

4.8 MATERIALS AND METHODS 

4.8.1 Patient database 

Table 12: Table showing the details of all patients that were included in the reverse­

transcriptase peR aspect of the study. 

I DNA number I Surname, I Dystrophinopathy status / 
Initials disease 

I 19 1 M, S I DMD 

I 22 I N, N I DMD 

I 64 1 M, S I Mother of 19 

I Control 15 I P, MP I Polymyositis 

I Contro l 16 I V, A I Polymyositis 

I Control 17 I T , VA I Dermatomyositis 

I Control 18 1 M, N I Dermatomyositis 

I Control 19 1 M, TT I Polymyositis + Lupus 

4.8.2 Homogenisation of skeletal muscle using the Polytron Kinematica AG PT 1200 

• The instrument used for the homogenisation procedure was the Polytron 

Kinematica AG PT 1200. 

• The Polytron Kinematica AG PT 1200 was placed into a 0.1 M NaOH solution for 

30 minutes to clean the probe prior to use. The instrument was further cleaned in 

100% ethanol using the 6th speed setting. This was followed by 3 x 20 second 

bursts at full speed in autoclaved DEPC-treated water. 

• All samples to be homogenised were placed in dry ice prior to undertaking the 

procedure. 
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• Each tissue sample to be homogenised was placed into a pre-weighed 1.5 ml micro­

centrifuge tube and the weight of the sample was determined before use, and in 

between different samples, clean by agitating 3 x 20 sec using the 6
th 

speed setting 

in ethanol and subsequently 3 x 20 sec in DEPC-treated water 

• The tissue was transferred to a round bottom tubes (Lasec) instead of the 15 ml 

conical tubes (Corning) as the round bottomed tubes provided a larger area thereby 

providing more efficient homogenisation. 

• A 1,000 JlI volume of Trizol LS (Invitrogen) was added to the sample per 50 mg of 

tissue. A minimum volume of 2,000 JlI was required for the homogenisation to 

work optimally. 

• In some cases, to each tube containing the Trizol LS reagent and biopsy tissue 

sample was added 10 JlI yeast tRNA (10 Jlg/JlI, Sigma). The yeast tRNA was added 

to increase the amount of RNA in the tube thereby reducing the degradation that 

would occur during the homogenisation process. 

• The fourth speed was used during the homogenisation 'procedure. The samples were 

homogenised 6-7 times for 5-6 seconds. On completion of this stage of the process, 

the samples were placed on ice. 

• The homogenate was transferred to 1.5 ml micro-centrifuge tubes in 1000 JlI 

volumes. 

4.8.3 RNA extractions 

4.8.3.1 Using Trizol LS 

RNA was extracted from homogenised samples using the Trizol LS reagent and the 

procedure followed was as per manufacturer' s instructions (Invitrogen). 
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4.8.3.2 Fibrous tissue mini kit (Qiagen) 

The procedure followed was as per manufacturer' s instructions. 

4.8.3.3 Nucleospin® RNA II (Machery-Nagel) 

The procedure followed was as per manufacturer' s instructions. 

4.8.4 Electrophoresis of RNA samples 

The RNA samples were electrophoresed on 1 % TBE buffer containing SeaKem agarose 

(Bio Whittaker Molecular Applications) gels for 1.5 hours at 100 V. The procedure used is 

outlined in 4.3.5 above. 

4.8.5 Reverse-transcription (RT) peR using Superscript II 

The procedure followed was as per manufacturer' s instructions (Invitrogen). Amendments 

to the protocol were as follows: 

• A master mix for the RT-reaction was prepared as follows : 

Table 13: Components included in the master mix for the first strand reaction of the 

reverse transcription. 

I Reagent I Volume in III I Final concentration 

15 x First strand buffer 
1

4
.

0 
1 1 

x 

(Invi trogen) 

1 100 mM Oithi othreito1 
1

2
.

0 

1

10 mM 
(OTT ,Invitrogen) 

I 40 U/ I-Il RNasin RNase inhibitor 11. 0 I 40 U 

I (Promega) 

I Master mix total I 7.0 I -
I RT-reaction I 13 . 0 I -
I Final volume 

, 
20 . 0 -
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• Listed below are the primers that were included in either the 1 st or 2
nd 

round PCR 

assays. 

Table 14: Primers used in the RT-PCR assays. Primers are taken from the Leiden and 

Whittock sets. Primers from the Leiden set are AH and GB and where the Whittock set 

was utilised the letter ''w'' is shown. 

1 sf Round PCR 2nd Round PCR p xon. Fragment 

Forward Reverse Forward Reverse included 
length 

Primer primer primer primer on gel 

I Exon2F1 Exon12R1 Exon2F2 Exon11R2 
1

2
-

11 1217 
(lA) (lH) (lC) (lD) 

I Exon9F1 Exon18R2 Exon10F Exon18R1 

I 
10 - 18 1135 

(lG) (lB) 1 (lE) (IF) 

Exon17F1 Exon25R2 Exon17F Exon25R1 

I 
17-25 1203 

(2A) (2H) 2(2C) (2D) 

Exon23F2 Exon35R1 Exon23F Exon35R2 

I 
23 - 35 1794 

(2G) (2Bw) 1(2E) (2Dw) 

Exon30F2 Exon40R1 Exon31f Exon38Fl 

I 
31 - 38 1052 

(3A) (3H) 1(3C) (3D) 

Exon36F3 I Exon46R1 Exon36F Exon45R3 

I 
36- 45 1514 

(3G) (3B) 2(3E) (3Dw) 

Exon43Fl Exon54R1 Exon44F Exon II (4A) (4Bw) 2 (4C) 53R1(4Dw 
) 

Exon50Fl Exon59R4 Exon51F Exon59R3 51 - 59 1389 
(4G) (4B) 1 (4E) (4F) 

Exon56/5 Exon73R1 Exon58F Exon68R2 58 - 68 1342 
7Fl (SA) (5H) 1(5C) (5D) 

Exon63Fl Exon79R2 I Exon67F Exon79R1 67 - 79 1340 
(5G) (5B) I 2 (5E) (SF) 

Table 15: Reagents included in the master mix for the first round PCR reaction. 

I Reagent I Volume in ~l I Final concentration 

I Sterile nuclease free water I 17 . 90 I -
I 10 x In - house buffer I 2.5 I 1 x 

I 10 roM dNTPs I 0 . 5 I 10 MIn 

I Amplitaq polymerase (5U/1l1 , 

I 
0.3 I 1.5 

Applied Bi osystems) I 
I Final volume I 21.2 I -

• 

• 

To each master mix tube was added 1 III of forward primer and 1 III reverse primer, 

both at a concentration of 10 pMollll1 (See table 14 for primer pairs included in the 

1 st round PCR). The volume would be 23.3 Ill. 

The appropriate eDNA was added at a volume of 1.8 III to the reaction tube, and 
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the final PCR reaction volume was 25 Ill. The following PCR conditions were 

employed. 

Table 16: Amplification conditions for the RT-PCR assay. 

I Temperature I Time I Cycle number I ( °C) 

\ 
I Initial \ 94 

\ 5 minutes 1 

denaturation 
I 40 seconds 

~ 
I Denaturation I 94 

I Annealing I 57 I 40 seconds 32 

I Elongation 172 I 2 minutes 

\ Final \ 72 \ 5 minutes 
\ Extension 

I Hold I 15 100 1 1 

Subsequent to the RNA extraction using Trizol LS reagent, the protocol from the clean-up 

section ofthe RNeasy fibrous tissue mini kit (Qiagen) was followed. 

4.9 RESULTS 

4.9.1 RNA extractions 

Various methods were used in extraction of RNA from the tissue samples. The trizol 

method was found to be most efficient at producing a good RNA yield, with intact RNA. 

The two kits used in the extraction procedure did not produce consistent results as is shown 

below. 

The images below (Figure 47) clearly show that the Fibrous tissue mini kit from Qiagen is 

not consistent with respect to the RNA that it produces. Even though the starting material 

was the same in all samples subjected to RNA extraction using the Qiagen kit, the final 

yield of RNA differed considerably. One of the reasons for reduced yield may be due to 

inconsistency in the Qiagen kit itself. Other reasons for such an occurrence may relate to 
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Figure 47 : Images showing the 28S and 18S rRNA bands from control samples that were 

subjected to RNA extraction using the Qiagen fibrous tissue mini kit. 

the state of the tissue at the time of RNA extraction with respect to tissue integrity and 

tissue age of the sample. The biopsy taken from different patients may differ with respect 

to their muscle and adipose tissue content, especially in the case of those patients with 

neuromuscular abnormalities. The control samples used in many cases were from 

polymyositis and dermatomyositis patients, whom invariably possessed adipose tissue and 

decreased amounts of muscle tissue from which RNA would be obtained. 

In figure 47, CI7 (A) and CI5 (B) showed that the RNA was intact after RNA extraction 

and the samples did not undergo RNA degradation. The two other samples CI8 (A) and 

CI9 (B) are in stark contrast to these results as the bands are barely visible. It is therefore 

difficult to conclude that the samples CI8 (A) and CI9 (B) are degraded. 

Figure 48 clearly illustrates the difference in the amount of RNA that resulted from using 

the Machery-Nagel tissue kit and the Qiagen fibrous tissue kit. The same sample was 

used in both kits to ensure that there was no sample bias when performing the comparison. 
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Lane 

C20 C20 

Figure 48: Image showing the RNA that was produced following isolation using the Machery­

Nagel tissue kit and the Qiagen kit as outlined. 

The 18S rRNA band is not visible when the Machery-Nagel kit was used as shown in lane 

1 and the band is faintly visible when the Qiagen tissue kit was used in the RNA extraction 

procedure as shown in lane 4. The 28S rRNA band is faintly visible in lane 1 and is intense 

in lane 4. The loss (lane 1) and faint visibility (lane 4) of the 18S rRNA band may be due 

to sample degradation. 

4.9.2 RT-PCR assays 

In the images below, 1-10 represent the RT-PCR fragments. Expected sizes were as 

follows: fragment 1 was 1217 bp, fragment 2 was 1135 bp, fragment 3 was 1203 bp, 

fragment 4 was 1794 bp, fragment 5 was 1052 bp, fragment 6 was 1514 bp, fragment 7 

was 1488 bp, fragment 8 was 1389 bp, fragment 9 was 1342 and fragment 10 was 1340 bp 

in length. The fragments for molecular weight marker VI (Roche) was as follows: 2176 bp, 

1766 bp, 1230 bp, 1033 bp, 653 bp, 517 bp, 453 bp, 394 bp, 298 bp, 234 bp and 220 bp. 
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Figure 49: Images showing the results obtained when all 10 fragments were 

electrophoresed on 1 % NuSieve agarose gels. 

The 0' gene ladder 100 bp marker was composed of the following fragments, 100 bp, 

200 bp, 300 bp, 400 bp, 500 bp, 600 bp, 700 bp, 800 bp, 900 bp, 1000 bp, 1200 bp, 1500, 

2000 bp and 3000 bp. 

In this set, several products were not visible on the gel. This may have occurred as only 5 

!ll of sample was run or to unsuccessful amplification. 

In fragments 8 and 9 of patient 22 in the figure above (B), the results obtained were 

interesting as it showed two fragments of different length, which suggests deletions, 

duplications or splice site mutations. In this case, since the patient's sample was subjected 
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to multiplex PCR and no deletions were found in the region of exon 51- 59 (fragment 8, 

1389 bp), a splice site mutations is the most likely possibility. There were also two 

fragments obtained for exons 58-68 (fragment size 1342 bp), which had not been checked 

for deletions using the multiplex PCR therefore in this case any of the three mutations 

(deletions, duplications, splice site mutations) could be present. The resulting higher band 

could have been the result of primer carry-over from the first / primary PCR reaction. 

In the figures below, a 100 bp ladder (Fermentas) was used in this and previous RT-PCR 

experiments. The fragments ranged from 100 bp to 3000 bp as was previously mentioned 

(Figure 49). From the images below (figure 50) it is evident that the control samples 

showed more than one band. The expected result would have been a single band for each 

set. At that stage, several changes were made to the protocol. New primers were ordered 

with HPLC grade purification being performed as opposed to normal desalting 

purification, for those sets where more than one band resulted. The new primers produced 

the same outcome. The amplification protocol was then changed, with the cycle number 

being varied. This too did not produce the desired outcome. 

The other reason for obtaining two bands in control samples, where it would be expected 

that one band should be produced may have been due to degraded RNA samples. The 

problem of degraded samples could not be overcome because it would not have been 

ethical for us to ask the patient to consent to another biopsy sample. 

As this stage, RNA was extracted from blood samples by first performing a peripheral 

blood lymphocyte extraction. The resulting RNA was then included in the RT-PCR assays. 

However, no bands were obtained when reverse transcribed RNA samples extracted from 
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blood were subjected to RT-PCR. No conclusive data could be obtained from the RT-PCRs 

that were performed. 
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Figure 50: Images showing RT·PCR assays where amplification was successful for only some 

samples. 
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4.10 DISCUSSION 

The RT-PCR results would have been initially useful in identifying re-arrangements in 

dystrophin negative patients, who have been shown to have no deletions on multiplex 

PCR. The data could have been used to categorise these patients as having a deletion / 

duplication. In so doing, further studies would not have had to be undertaken. The other 

reason for setting up the RT-PCR assay related to finding splice-site mutations that are 

usually not detected using DNA based techniques. 

The author changed many parameters during the optimisation process in an attempt to 

produce usable data. New primer dilutions were initially made. When this did not change 

the results, new primers were ordered. The cycling conditions such as the annealing 

temperature was also varied. After implementing these changes, the results still did not 

match published data (Tuffery-Giraud et ai. , 1999; Tuffery-Giraud et ai. , 2004). 

RNA extracted from lymphocytes has previously been reported to contain fewer 

dystrophin transcripts. This may have been the reason for no bands being produced when 

RT-PCR was performed (Roberts et ai. , 1991; Tuffery-Giraud et ai. , 2004). 

It therefore became evident that the RNA was not of high-quality. The starting material is 

of grave importance in producing usable data (Invitrogen RT-PCR manual). lfthe RNA is 

in any way degraded, false deductions and conclusions could be drawn from the outcome. 

In our study, the control samples that were included also became degraded. The 

degradation did not show up when a gel was run to show the presence of the I8S and 28S 

rRNA bands. 
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The control results had revealed two bands instead of the one expected band. The only time 

two bands would be expected is if a carrier' s sample were being tested or rearrangements 

were present in the patient's sample. The patients included as controls were not DMD 

affected individuals and showed no clinical manifestations ofDMD. The other explanation 

would be for the patient to have exhibited exon-skipping. Once again this could not have 

been possible as they were not dystrophinopathy patients. A more likely explanation would 

be primer carry-over from the primary PCR reaction. The reading frame hypothesis holds 

true for greater than 90% of cases. There are of course exceptions to this rule, and 

secondary mechanisms could account for these discrepancies. 

The recommendation would be to ensure that the biopsy samples are immediately 

preserved in RNAlater solution and stored at -80°C. All precautions should be taken to 

ensure that no degradation of the RNA occurs even during the extraction procedure. The 

eDNA should be synthesised and the RT-PCR performed soon after the RNA was isolated. 
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CHAPTERS 

MULTIPLEX PCR USING 30 EXONS TO IMPROVE THE 

DIAGNOSTIC EFFICACY FOR DELETION SCREENING IN 

DYSTROPlUNOPATlUES 

5.1 INTRODUCTION 

The use of multiplex PCR to detect deletions in the dystrophin gene was considered an 

important step in diagnosing this debilitating disease. Chamberlain et al. (1988) and Beggs 

et al. (1990) were the first to develop multiplex PCR assays for the detection of 18 hot-spot 

exons throughout the dystrophin gene in two multiplex PCR sets. The use of molecular 

genetic approach together with an extensive clinical work-up and immunohistochemical 

analysis proved to be beneficial in diagnosing Duchenne muscular dystrophy. 

Initially, the Southern blotting technique was used to detect deletions and / or duplications 

in the dystrophin gene. However, this technique was gradually replaced by the multiplex 

PCR assay owing to the high sensitivity and specificity of the technique. The molecular 

approach to detect deletions was preferred as it did not require eDNA probes (Koenig et 

al., 1987; Forrest et al., 1987) to be produced prior to undertaking the procedure. Even 

though the production of eDNA probes are time consuming and labour intensive, the 

results from such analyses provided much insight into the dystrophin gene. There were 

instances where the Southern blotting technique failed to detect fragments using the 

appropriate restriction endonuclease. According to Patria et al. (1999) this inability to 

detect the correct fragment led to an in-frame deletion being falsely detected, which was 

later shown to be an out-of-frame deletion using a molecular assay. 
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In 1987, Forrest et ai. was able to conclude that the deletion / duplication spectrum in 

DMD is heterogeneous, an important finding that set the stage for further analyses to be 

conducted that supported the suggestion that the deletion spectrum was complex and 

difficult to characterise. Later studies confirmed that the deletions were clustered in two 

hot-spots, namely the 5' domain region comprising exons 3-7 and the 3' rod domain 

comprising exons 45-52. The term "high frequency deletion region" (HFDR) was 

subsequently coined (Baumbach et ai., 1989). The Southern hybridisation technique 

provided much data on the types of deletions and duplications that were present in the 

dystrophin gene of different patients. Further molecular and Southern analyses revealed 

that Duchenne and Becker muscular dystrophy (BMD) patients could be identified by 

virtue of the reading frame theory. The theory states that a Duchenne muscular dystrophy 

patient would possess an out-of-frame deletion that produces a conjectured transcript that 

prevents the production of a functional protein. Comparatively, a BMD patient would have 

an in-frame deletion allowing the production of a smaller, truncated yet functional protein, 

hence the milder phenotype that is associated with this form of the disease (Monaco et ai., 

1988). 

The reading frame theory does not hold true for all cases as was shown by many groups 

owing to the presence of multiple types of deletions in the dystrophin gene (Malhotra et 

ai., 1988; Monaco et ai. , 1988; Baumbach et ai., 1989). According to Malhotra et ai. , 1988 

the theory does hold true for 92% of cases. Different groups working on DMD have noted 

the inconsistent relation between the detected deletion and the clinical phenotype (Chelly 

et ai. , 1990; Gillard et ai. , 1989). 
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As more data became available on the deletion and duplication spectrum in Duchenne and 

Becker muscular dystrophy, other groups set out to determine the deletion breakpoints in 

dystrophinopathies since this was not possible using the 18 exon multiplex PCR. In 1991, 

Kunkel et aI., expanded on the 18 exon multiplex PCR assay by including a further six 

exons to the assay in a third set. This third set was improved on by Covone et al. in 1992, 

where a 30-plex PCR was developed. The assay utilised four exons 20, 21, 22 and 29 from 

the central part of the rod domain to determine whether deletions were clustered in specific 

hot-spots or whether there were multiple deletions. The authors revealed that such an 

improvement in the multiplex PCR screening would improve the deletion detection rate 

from 98% to 99%. 

In 1998, Haider et ai. utilised 25 primer pairs to detect deletions in hot-spot exons by 

combining the Chamberlain et ai. (1990), Beggs et ai., (1990) and Kunkel et aI., (1991) 

sets. The authors found it was not necessary to include the four exons in the rod domain, 

20,21,22 and 29 as it was previously reported by Beggs et ai. (1991) that such internal 

deletions in that region of the rod domain have minimal effects on protein function and 

clinical phenotype of the individual. Different phenotypes (severe cramps, increased serum 

creatine kinase and typical BMD) have been observed in patients with deletions in the 

three regions of the rod domain (proximal, central, distal) respectively. Such differences in 

phenotype may occur on account of the functional associations between dystrophin and 

other proteins that it binds to and interacts with at the rod domain (Beggs et aI., 1991; 

Chamberlain et ai., 1997). 

When all this data was collated it was found that approximately 65% of mutations in the 

dystrophin gene were made up of intragenic deletions (Koenig et ai., 1989; Baumbach et 
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al., 1989; Muntoni et al., 2003). In 2006, Aartsma-Rus et al. reviewed all the mutations 

that were posted on the Leiden Muscular dystrophy (MD) website and concluded that the 

deletion rate was slightly higher at 72% than was previously reported. The authors 

suggested that the reason for the higher rate may be attributed to the fact that those patients 

in whom no mutations are found are not included in the database however they are 

included in the analysis steps when "percentages are calculated for general patient 

screenings". The Leiden MD website contains over 4700 mutations in the dystrophin gene. 

This review differs from all other publications in that it provides a detailed overview of the 

different mutations and particularly those that do not follow the reading-frame rule. The 

most commonly deleted ex on is exon 45 and exons 45-47. Previous literature consensus 

revealed one of the high frequency deletion regions (HFDR) or deletion "hot-spots" 

clusters around exon 45-53 and the data collated from the review is in keeping with this 

(Beggs et al., 1990, Aartsma-Rus et al., 2006). 

In this aspect of the study, we assessed the 30-plex PCR in our South African patients to 

determine whether the deletion spectrum changed if additional exons were added to the 

conventional 18-exon multiplex PCR assays. From the author's previous Master's study 

where she focussed on a cohort of 68 dystrophinopathy patients, 43% were found to have 

no deletions. The author set out to determine whether the percentage of non deletion 

patients still remained the same using the 30-plex PCR, or whether they had deletions in 

those exons that were not tested using the 18 exon conventional multiplex PCR sets. The 

30-plex PCR used in our study varied slightly from those exons that were tested in the 

Covone et al. (1992) and Haider et al. (1998) studies. 
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5.2 AIMS AND OBJECTIVES 

i) To evaluate the multiplex peR using 30 primer pairs as a screening tool for 

deletion detection. 

ii) To improve the diagnostic efficacy of deletion screening in 

dystrophinopathies. 

5.3 MATERIALS AND METHODS 

5.3.1 Patient population 

Table 17: Database showing the details of those patients that were included in the 30-plex 

peR aspect of the study. 

I 
DNA 

I 
Surname, 

I I DMD/BMD 
number Initials 

Age 

1 2 I s, w 1 16 I DMD 

1 8 I s, T 1 13 I DMD 

1 9 1 s, NM 1 17 I DMD 

1 12 1 G, S 1 16 I DMD 

1 14 1 N, D 1 9 1 DMD 

1 16 1 M, T 1 14 DMD 

1 18 1 R, J 1 34 I BMD 

1 19 1 M, S 1 6 i DMD 

1 20 1 M, S 1 N / A 1 DMD 

I 21 I R, S I 8 I DMD 

I 22 I N, N I 10 1 DMD 

I 23 I H, ZM I 13 I DMD 

I 24 P, D I 13 I DMD 

I 25 R, D 35 I BMD 

I 26 Z, S 18 I BMD 

I 27 L, L N/ A I DMD 

I 28 M, MB 10 I DMD 

1 29 N, C N/ A I DMD 

I 30 W, R N / A I DMD 

I 31 C, L 12 I DMD 

I 32 M, NL 6 1 DMD 

I 33 I G, P N/ A I DMD 

I 34 I N, M N / A I BMD 

I 35 I S, G I N/ A I BMD 
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36 1 H, XV 1 22 1 BMD 

I 37 1 G, M I 8 1 DMD 

1 38 1 N, M 1 14 1 DMD 

1 39 I S, T I 14 I DMD 

1 40 1 s, e 1 12 1 DMD 

1 41 1 M, S 1 10 I DMD 

I 42 M, R I 12 I DMD 

1 43 S, V I 14 I DMD 

r 44 e, L 1 N/A DMD 

I 45 M, T 1 13 DMD 

1 4 6 M, S I N/A DMD 

1 47 M, ST I N/A DMD 

48 M, S I N/A DMD 

49 M, W 1 7 DMD 

5 0 N, T 1 14 DMD 

51 1 H, N I 19 BMD 

52 I K TP I 18 I DMD 

5 3 1 V, S I 10 I DMD 

I 5 4 1 B, N 1 N/A I DMD 

I 55 I F, S I N/A 1 BMD 

I 56 I S, T I 12 1 DMD 

I 68 I N, S I N/A 1 DMD 

Legend:N/A - Not available 

5.3.2 DNA extractions 

The methods that were performed in the isolation of DNA from the patients' blood samples 

included the QIAmp DNA blood mini kit (Qiagen) and the salting-out method. The 

detailed methodology has been outlined in Chapter 4 (Point mutation detection in non-

deletion dystrophinopathy patients) of this thesis. 

5.3.3 DNA quantification 

The DNA was quantitated using the spectrophotometric method as outlined in the 

Beckman manual for the DU800 spectrophotometer. 
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5.3.4 peR reactions and conditions 

Three separate PCR reactions were performed to collectively form the multiplex PCR 

assay. These reactions were adapted by the author from the original Chamberlain 

(Chamberlain et ai. , 1988, Chamberlain et ai. , 1990), Beggs (Beggs et ai. , 1990) and 

Kunkel (Kunkel et ai. , 1991) sets to suit our laboratory conditions and environment. These 

sets were improved on by Covone (Covone et ai., 1992). 

The original Chamberlain and Beggs sets were optimised for the Neuroscience laboratory 

during the author's Master's project and this formed a chapter in the Master' s thesis. The 

Kunkel set was not optimised or included at that time. In this aspect of the present study, 

the author improved on the diagnostic efficacy of the Chamberlain, Beggs and Kunkel 

multiplex peR sets by following the recommendations of Covone et ai. (1992). 

The previous optimisation procedures that were successfully performed during the author's 

Master's study were duplicated for the Chamberlain and Beggs sets using the Platinum Taq 

reagents (Invitrogen). However, as an addition to the Chamberlain set of nine exons, 

another three primer pairs were included in the reaction to make a total of 12 primer pairs 

in the single reaction tube (Covone et ai. , 1992). For the Beggs set, the nine primer pairs 

were increased to 10 primer pairs (Covone et ai. 1992). In our optimisations, 10 primer 

pairs were still used in the Beggs set however two different primer pairs for ex on 50 were 

included in reaction to determine which primer pair produced the most visible band for 

detection purposes. The Kunkel set was increased to nine primer pairs. In our optimisation 

of the Kunkel set, 13 primer pairs were used to determine the most appropriate fragment 
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combination. Two different primer pairs were tested for exon 42 to determine which 

primer pair produced the most visible band. 

Table 18: PCR mix used in the first multiplex PCR set composed of 12 primer pairs, in a 

60 "I reaction volume. 

I I Volume (J.ll) 
1 

Final 
Reagent concentration 

I lOX Platinum PCR buffer I 6 . 0 I 1 x 

I 50mM Mg2Cl I 6.0 I 5 mM 

I dNTPs 25mM (Pharmacia) I 3.0 I 1. 25 mM 

I Forward primer (25 pMol / /Ll) 
1

2 . 0 I 0.8 /LM 
exons 30, 22, 29 

I Reverse primer (25 pMol / /Ll) 
1

2 . 0 I 0.8 /LM 
exons 30, 22, 29 

I Forward primer (25 pMol / /Ll) 
exons 45,48,19,17,51,8,12,44,4 I 1.5 I 0.625 /LM 

I Reverse primer (25 pMol / /Ll) 
exons 45,48,19,17,51,8,12,44,4 I 1.5 I 0.625 /LM 

I Filter sterilised (fs) dH20 I 0 . 5 I -
I Platinum Taq 5U/ 1l1 I I 2.5 U/ reaction 

I DNA(50ng/ 1l1 ) I 5 . 0 I 250 ng/ reaction 

I Final volume I 60.0 I -

The primers included in the above table include all the possible primers that have been 

used to produce a 12-plex peR. During the optimisation process, the fragment sizes of the 

primer pairs differed, owing to different primer pairs being used as was the case with exon 

44. Exon 44 was either 426 bp or 268 bp in length. All the primers and their corresponding 

fragment sizes as observed on an agarose gel are outlined in Appendix A. 

Table 19: Amplification conditions for the 12-plex PCR reaction adapted from Chamberlain 

et ale (1990). 

I I Temperature (OC) I Time 1 Cycle number 

I Initial 
1

94 

I 
6 minutes 

I 
1 

denaturation 

I Denaturation I 94 I 30 seconds 
I Annealing I 53 I 30 seconds >- 35 

I Elongation I 65 I 4 minutes I Final I 65 1 7 minutes 
I Extension 

I Hold I 15 100 1 1 
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Table 20: peR mix used in the second multiplex peR set composed of 10 primer pairs, in a 

60 ,.tl reaction volume. 

I Reagent I Volume (Ill) I Final concentration 

I 10 x Platinum PCR buffer I 6.0 I 1 x 

I 50 mM Mg2Cl I 6.0 I 5mM 

I dNTPs 25 mM (Pharmacia) I 3.0 I 1. 25 mM 

I Forward primer (25 pMol / ll l ) 
exons 3, 43, Pm, 21 1 2 . 0 I 0 . 8 11M 

I Reverse primer (25 pMol / ll l ) 
1 2 . 0 I 0.8 11M 

exons 3, 43, Pm, 21 

I Forward primer (25 pMol / 1l1 ) 
1 1. 5 I 0 . 625 11M 

exons 50,13,6,47,60,52 

I Reverse primer (25 pMol / 1l1 ) 
exons 50,13,6,47,60,52 I 1.5 I 0.625 11M 

I Filter sterilised (fs) dH20 I 5 . 5 I -
I Platinum Taq 5U/ f..l1 I 0 . 5 I 2 . 5 u/ reaction 

I DNA (50 ng / f..l l ) I 5.0 I 250 ng / reaction 

I Final volume I 60.0 I -

The fragment sizes for exon 50 were either 337 bp or 271 bp, depending on the primer 

pairs that were included in the reaction mix. Different primers were used during the 

optimisation process to determine which primer pairs produced the most usable and well 

resolved bands. The primers and their fragment lengths are outlined in appendix A. 

Table 21: peR mix used in the third multiplex peR set composed of 9 primer pairs, in a 50 III 

reaction volume. 

I Reagent I Volume (Ill) I Final concentration 

I 10 x Platinum PCR buffer I 5 . 0 I 1 x 

I 50 mM Mg2Cl I 5 . 0 I 5mM 
I dNTPs 25 mM (Pharmacia) I 3.0 I 1.5 mM 
I Forward primer (25 pMol / ll l ) 

exons Pb,49, (20 or 2 or 5) / 2.0 
/ 

1.0 11M 

I Reverse primer (25 pMol / ll l ) 
exons Pb,49, (20 or 2 or 5) I 2 . 0 I 1.0 11M 

I Forward primer (25 pMol / ll l ) 

I 1.5 
I 0.75 11M exons 16,41,32,42,34,46 

I Reverse primer (25 pMol / ll l ) 

~ I 0.75 11M exons 16,41,32,42,34,46 

I Filter sterilised (fs) dH20 I 1.5 I -
I Platinum Taq 5U/ f..ll I 0.5 I 2 . 5 u/ reaction 
I DNA (50 ng/ f..ll) I 5.0 I 250 ng/ reaction 
I Final volume I I -50.0 
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Exons 20, 2, or 5 could be included as an optional extra once the other 8 primer pairs have 

been tested for compatibility. During the optimisation process, other primer pairs (exons 1 

and 62) were also included in the set to determine whether the data produced would be 

usable. The additional primers that were included and their fragment sizes are outlined in 

Appendix A. 

Table 22: Amplification conditions for the 10-plex and 9-plex peR reaction adapted from 

Beggs et al., (1990) and Kunkel et al. (1991) respectively. 

I I Temperature ( Oe) I Time I Cycle number 

I Initial 
1

94 1 7 minutes 1 
denaturatlon 

I Denaturation I 94 I 30 seconds 

~ I Anneal ing / 
1

65 14 minutes 35 
Elongatlon 

I Final Extension I 65 I 10 minutes I 
I Hold 1 15 1 00 1 1 

5.3.5 Gel electrophoresis 

Various standard melt and low melt agarose gels were used to separate the multiplex PCR 

fragments. The first agarose gel used was the MetaPhor (Cambrex) gel, which is able to 

separate products in the range of 20 bp to 800 bp with high resolution. 

The next agarose gel used was the NuSieve 3:1 (FMC/ Cambrex), a standard melting 

temperature gel used to resolve products 20 bp to 2,000 bp in length. In order to increase 

the strength of the gel, a 0.5% concentration of conventional SeaKem agarose (FMC) was 

added to the 2.5% NuSieve agarose and TBE buffer. SeaKem agarose is used for general 

separation ofPCR products by electrophoresis. By adding both agarose powders to the 

buffer of choice we were able to separate the products using a high strength gel and still 

benefited from the increased resolution that the gel offered. 

143 



Another gel used was the NuSieve GTG, which is a low melt agarose gel used for the 

electrophoresis of products in the range of 10 bp to 1,000 bp. Other gels used include the 

low melt MS-4 and standard melt MS-8 high resolution gels from Hispanlab. The MS-4 

size range is between 9 bp and 600 bp and the MS-8 size range is between 50 bp and 1,000 

bp. The percentages of all gels used varied from 2.5 to 4.0%. The lower the gel percentage, 

the more fragile the gel became. 

5.4 RESULTS 

The DNA samples from 46 dystrophinopathy patients were subjected to multiplex peR 

using 30 primer pairs, in three different sets. 

With respect to agarose gel electrophoresis, the MetaPhor gel produced well resolved 

bands, however in many instances the gel broke owing to its non-sturdy nature and care 

had to be taken with the gel at all times. Also, during the heating step, numerous tiny air 

bubbles were produced, which could not be adequately removed. 

In comparison, the NuSieve 3: 1 agarose gel was an easy gel to work with and produced 

well resolved bands at a low percentage (2.5% - 3.0%). 

The NuSieve GTG and the low melt agarose gel also produced air bubbles during the 

preparation as did the MetaPhor gel. The bubbles were removed by placing the bottle with 

the gel into a water-bath set to 60°C. The gel was left in there for half hour to equilibrate to 

the temperature of the water-bath. Following the water-bath treatment, all air bubbles had 

144 



disappeared and a smooth gel with no air bubbles could be poured. The incubation step 

was subsequently undertaken for the MetaPhor gel with the desired effect. 

The recommendation for an inexperienced laboratory scientist or research assistant would 

be to use the NuSieve 3: 1 agarose gel at first until one gets acquainted with the preparation 

and handling of such gels. Thereafter one can progress to using the NuSieve GTG and 

MetaPhor gels as these are not as sturdy, some experience in handling such gels is 

required. The MS-4 and MS-8 gels were found to be less resilient to handling pressure than 

the NuSieve agarose gels and would therefore not be a first choice. A 3% NuSieve agarose 

+ 0.5% SeaKem agarose would produce a high resolution gel with increased strength. 

5.4.1 Optimisation of the multiplex peR sets 

These sets were optimised for our laboratory environment using PCR reagents different 

from those recommended in the original papers. In some instances, the sizes of the exons 

originally used (Chamberlain et aI., 1990; Beggs et ai., 1990, Kunkel et ai., 1991) differ as 

other primer sequences were used. All primer sequences are outlined in Appendix A. The 

polymerase enzyme used in the three sets was Platinum taq and reagents (Invitrogen). 

The first multiplex PCR set was adapted from the original Chamberlain set (Chamberlain 

et aI., 1990) and improved on by Covone et ai. (1992). Instead of including exon 20 as was 

suggested by Covone et ai. (1992), exon 30 was included in set 1 during this optimisation 

run. For the second set, which was adapted from the original Beggs set (Beggs et ai., 1991) 

and improved on by Covone et ai. (1992), the primer for exon 21 was changed. The size of 
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Figure 51: Image showing all three sets of multiplex PCRs that were optimised using the 

Platinum taq reagents at the Neuroscience laboratory, Durban, South Africa. 

the fragments for exon 47 was 181 bp and exon 21 was 175 bp respectively, according to 

Covone et ai. (1992). This meant that there was a very small difference in size between the 

two fragments thus making interpretation on a gel more difficult. The resulting product 

size for exon 21 was changed from 175 bp to 319 bp. In the third and last multiplex PCR 

set, which was originally described by Kunkel et al. (1991) and improved on by Covone et 

al. (1992), the author made the following changes. The primers for exons 16 and Pb were 

changed to produce different sizes fragments from the published papers. Additions to this 

set were exons 1 and 20 (figure 51). 
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In some instances, owing to primer competition the bands were very faint. Those bands 

that were not easily visible on the NuSieve gel used to run the multiplex PCR assay were 

re-amplified in a single PCR reaction to confirm the presence or absence of the band. The 

annealing temperatures of those primers were calculated and used in the single primer pair, 

PCR assay. For each single primer pair PCR assay that was performed, a positive and 

negative control was included. 

The gel had to be run for several hours to obtain a good enough separation of the products 

so that an informed decision could be made with respect to the presence or absence of a 

band. A number of the products run close to one another therefore a high resolution gel 

was used. 
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Figure 52: Representative image of amplified products from set 1 and set 2 showing deletions 

in two clinically affected dystrophinopathy patients (patients 42 and 43) from the 

Neuromuscular clinic at Inkosi Albert Luthuli Central Hospital, Durban, South Mrica. 

In these sets of multiplex PCRs, set 1, which was adapted from the original Chamberlain 

set was divided into two sets, with seven primer pairs being used in each set. This reaction 
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was performed because a previous multiplex peR using 12 primer pairs produced poor 

results, with some bands being faint and undefined. Therefore the results were not 

definitive. When the multiplex peR was done using seven primer pairs in a reaction, 

intense bands were obtained as is clearly evident in the figure above (Figure 52). 

Non- specific bands were obtained due to the cycle number being the same as that used in 

the reaction with 12 primer pairs. This could have been avoided by reducing the cycle 

number. 

U sing different primer pair combinations in the 7 primer pair reaction a better spread of 

amplified products was obtained compared to the 12 primer pair reaction amplification 

products which were close together. On comparison with the previous image (figure 51) 

showing 12 primer pairs the multiplex peR with seven primer pairs per reaction produced 

more clearly defined bands (figure 52). The band for ex on 30, which was not easily visible 

in the 12 primer pair reaction, was more defined in the seven primer pair reaction. Exon 62 

and exon 20 were included in one of the two peR reactions and a different primer pair was 

used for the amplification of exon 44. All primer sequences are outlined in Appendix A. 

In the above image (figure 52), patient 42 was shown to have a single exon 45 deletion, 

which might not be a deletion but a single nucleotide polymorphism, pathogenic point 

mutation or a primer site polymorphism. 
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Figure 53: Representative image of the third multiplex peR set adapted from Kunkel et 

al.(1991) showing deletions of exons 49 and 46 in patient 43. 

In the above multiplex PCR reaction, 10 primer pairs were included. This reaction was 

performed on the DNA sample from the patient during the optimisation procedure, hence 

the increase in the number of primers used. In this patient, the results fit together neatly to 

provide an overall representation of the actual deletion in the patient. 

Collating the data from all three multiplex PCR sets, the patient (as shown in the figure 

below) was shown to have a deletion from exons 47-52. 
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Figure 54: Image of set 3 (A) and set 1 (B) multiplex PCRs for patient 18, showing exons 45 

and 48 deletion. 

5.4.2 Deletion confirmation using duplex peR 

MVIII 18 +C -c 
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Figure 55: Image of a single exon PCR showing an exon 47 deletion in patient 18. 

Initially it was assumed that the patient had a deletion from exon 45-52, however exon 46 

was present as is shown by the band in figure 54 (A). It was therefore concluded that the 
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Figure 56: Image of a single exon PCR showing an exon 48 deletion in patient 18. 

exon 45 deletion may have resulted from a primer site polymorphism hence the appearance 

of a deletion when multiplex peR was performed. 

Table 23: Deletion data obtained for the patients that were included in the study. This was 

assessed by analysing the multiplex PCR results when 30 exons in the dystrophin gene were 

tested for deletions. 

I Sample 
I 

Surname, I Deletion Frame of 
number Initials deletion 

I 2 S, W No deletions 

8 S, T No deletions 

9 S, NM No deletions 

12 G, S 20-29 and 52-60 
(20,29,52,60) 

14 N, D No deletions 

16 M, T No deletions 

18 R, J 47-48 In-frame 

19 M, S 8-16 Out-of-frame 
(8,12,13,16) 

I M, S 45-60 In-frame 
(45,48,49,50,52,60) 

21 R, S 45-60 (45,48,49,51,52,60) In-frame 

22 N, N No deletions 

23 H, ZM 50-52 Out-of-frame 
(50,51,52) 

24 P, D No deletions 

25 R, D No deletions 

26 Z, S 45-47 In-frame 
(46,45,47) 
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I I I 
27 ~ I No deletions I 
28 1 M, MB I No deletions r-

I Out-of-frame 29 I N, C 
1

48
-

50 
(48,49,50) 

30 I w, R I No deletions I 
31 I C, L I No deletions I 

I Out-of-frame 32 1 M, NL 
1

46
-

50 
(46,47,48,49,50) I 

33 I G, P I No deletions I 
34 I N, M I No deletions I 
35 I 8, G I No deletions I 
36 ~XV I No deletions I 
37 I G, M I 51 I 

I Out-of-frame 38 I N, M 
1

45
-

52 
(45,46,47,48,49,50,51,52) 

39 I 8, T I No deletions I 
I 40 I 8, C I No deletions I 
I 41 1 M, 8 I No deletions I 
I 42 1 M, R I 45 I 

1

43 1 8, V -r 45-52 
(45,46,47,48,49,50,51,52) 

I Out-of-frame 

I 44 -r C, L I No deletions I 
I 45 1 M, T I No deletions I 
I 46 1 M, 8 I No deletions I 
I 47 1 M, 8T I No deletions I 
I 48 1 M, 8 I No deletions I 

1

49 
1 M, W [ 45-52 I Out-of-frame 

(45,46,47,48,49,50,51,52) 

I 50 I N, T I No deletions I 
I 51 I H, N I No deletions I 
I 52 I K, TP I No deletions I 

1

53 I V, 8 
1

45
-

52 I Out-of-frame 
(45,46,47,48,49,50,51,52) 

I 54 I B, N I No deletions I 
I 55 I F, 8 I No deletions I 
I 56 I 8, T I No deletions I 
I 68 I N, 8 I Deletions 47-52 I Out-of-frame 

5.5 DISCUSSION 

5.5.1 Multiplex peR sets 

The multiplex PCR set that was adapted from the Beggs et al. (1990) set was the most 

reproducible in comparison to the other two multiplex PCR sets. All 10 primers pairs 
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always produced defined and high resolution bands. This suggests that the 10 primers used 

in this set work best together with the least amount of competition between primers noted. 

There is also a wider separation between the fragment sizes, therefore making 

interpretation easier and more definite. Such a consideration would be important in a 

diagnostic setting. 

The overall recommendation for a diagnostic laboratory that already has the primers for 

multiplex peR would be to separate set 1 (adapted from Chamberlain et at., 1988) into two 

reactions, with six or seven primer pairs per reaction, leave the 10 primer pairs in set 2 

(adapted from Beggs et at., 1990) and include either 8 or 9 primer pairs in set 3 (adapted 

from Kunkel et at., 1991). The researcher should also use the Platinum (Invitrogen) set of 

reagents as our multiplex PCRs were optimised using these reagents and amplification was 

relatively high. Various other taq polymerases were tested and none produced fragments of 

comparable quality to those obtained with Platinum reagents. 

Single PCRs should generally be included as confirmation of a deletion found using 

multiplex PCR. In some instances, competition between primers makes it difficult to 

visually detect a band for an exon, which may be interpreted as a deletion, when in effect it 

was faint and not visible to the naked eye. 

5.5.2 Comparison between 12 and 7 primer pair reaction in set 1 (adapted from 

Chamberlain et aI., 1988; Chamberlain et at., 1990). 

When the seven primer pair reactions were compared to the 12 primer pair reactions more 

defined bands were evident in the seven primer pair reactions. Even though it is more 
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expensive to run two reactions instead of one, finding ill-defined bands in a 12 primer pair 

reaction would make it necessary to perform single PCR reactions. If the bands are easy to 

view, the researcher would not have to perform single PCR reactions to confirm the results. 

Running single PCR reactions may prove to be even more expensive than performing two 

multiplex PCR reactions. 

5.5.3 Gel electrophoresis 

Several different types of agarose gels were tested and compared to determine which 

produced the highest resolution bands with the least effort during the preparation. By using 

a product that is not fragile, results could be obtained immediately and without the need to 

repeat the electrophoresis on account of broken gels, which is a common occurrence with 

multiplex PCR electrophoresis. 

When the different agarose gels were compared, the NuSieve gel (FMC, Cambrex) was 

found to be the most robust gel that was easier to use than other products such as the 

MetaPhor gel. The NuSieve gels did not produce as many air bubbles as the MetaPhor gels 

therefore ensuring that tight and good quality bands were obtained. The final 

recommendation would be to incubate the gel for half hour in a 60°C water bath, which has 

been shown to remove all air bubbles. 

5.5.4 Efficacy of deletion detection 

In the hope of improving the diagnostic efficacy, this 30-plex PCR was optimised for our 

laboratory. 
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By collating all the data, we conclude that the 30-exon multiplex PCR did not increase the 

number of patients that were shown to have deletions using the conventional Chamberlain 

and Beggs 18 exon multiplex PCR assays. The 30-plex PCR that was implemented in our 

laboratory improved the diagnostic efficacy by determining the deletion breakpoints in 

patients where there appeared to be more than one deletion. We were able to detect the 

start and end exons of the deletion using this screening method. Such a method is 

important to confirm the clinical diagnosis ofDMD or BMD. If the exons involved in the 

deletion are known, the frame of the deletion can be determined using the frame-checker 

software from Leiden University Medical Center, Leiden, The Netherlands (www.dmd.nl). 

Both clinical and molecular data can be collated and the progression of the patient can be 

determined. This may be especially useful in children. If the patient had an out-of-frame 

deletion, the clinician may be able to predict that the progression of the disease would be 

more rapid than a patient found to have an in-frame deletion. This might also influence the 

decision to adopt more aggressive management of an out-of-frame deletion using other 

available options such as exon-skipping therapy. The exon skipping therapy may be able to 

convert the out-of-frame deletion into an in-frame deletion and in so doing this may reduce 

the severity of the clinical outcome (Aartsma-Rus et ai., 2003). 

Patient 42 was found to have a single exon 45 deletion, which is unusual. The exon may 

have appeared to be deleted owing to a primer site polymorphism, creating the false 

impression of a deletion by virtue of non amplification. The other possibility is that there 

could be a single nucleotide polymorphism (SNP) in that exon that once again appears as a 

deletion on multiplex PCR. The last possibility is that there could be a pathogenic point 

mutation that is disease causing. To confirm the presence or absence of a SNP or point 

mutation one would have to perform DNA sequencing on the exon using other primers that 
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extend further out into the intron to obtain a complete exon fragment. DNA sequencing 

was not performed on the DNA of this patient. 

Genotype-phenotype correlations have been a topic of debate since the dystrophin gene 

was first discovered and characterised. Many groups have attempted to correlate disease 

severity with deletions that were found (Beggs et ai., 1991; Baumbach et al., 1989). As 

more sophisticated techniques and technology was developed so to did the ability to 

predict genotype-phenotype correlations. 

There appears to be a few patients that have a single exon deletion. This might not be a 

true deletion as the exon may appear to be deleted on multiplex PCR on account of a single 

nucleotide polymorphism in the ex on itself or there could be a SNP in one of the primers. 

Such exonic "deletions" should be tested using a new set of primers to confirm that the 

exon is in fact deleted. Once a PCR product has been obtained it could then be subjected to 

DNA sequencing. 
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CHAPTER 6 

THE MULTIPLEX LIGATION-DEPENDENT PROBE 

AMPLIFICATION (MLPA) ASSAY AS A METHOD TO DETECT 

DELETIONS AND / DUPLICATIONS THROUGHOUT THE 79 

EXONS OF DYSTROPHIN 

6.1 INTRODUCTION 

MLP A or the multiplex ligation-dependent probe amplification assay is a technique that 

utilises the power ofPCR by simultaneously quantitating and detecting up to 40 different 

target sequences. The technique was first described by Schouten et ai. (2002) and used the 

related technique MAPH (multiplex amplifiable probe hybridisation) as the foundation on 

which it was built. The two techniques are similar in that oligonucleotide probes added to 

the reaction are amplified instead of the actual target sequences being subjected to the PCR 

procedure. In this way, one ensures that cross-contamination between targets is minimised. 

The MAPH technique involves hybridisation of probes to immobilised samples, followed 

by a series of stringent wash steps to remove unbound probes, which are potentially 

amplifiable. In comparison the MLP A assay does not require immobilisation of sample 

nucleic acids and the excessive washing steps necessary in the MAPH procedure. 

The MAPH procedure, which was developed in 2000, preceded the MLP A procedure. The 

probes for the MAPH procedure were initially created from cloning fragments into a vector 

of choice (Armour et ai., 2000). Probe preparation involved amplification of the target 
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sequence from the vector using specific primers, which is a laborious task (White, 2005). 

In 2003, the method of probe design was changed from cloning to a procedure using 

BLAST (Altschul et aI., 1990) and primer design software such as Primer 3 

(http://frodo.wi.mit.edu/) where specific sequences for the gene of interest were created 

and each was flanked with M13 synthetic primer sites (Reid et aI., 2003). This 

methodology also incorporated FAM-Iabelled M13 primers, which allowed the amplicons 

to be electrophoresed on the ABI 377. Even though the MAPH procedure is efficient and 

useful for detecting deletions and duplications in large genes, there still exists the problem 

of additional products being amplified in the original peR reaction from genomic DNA 

(White, 2005). Other reasons for MLPA now being the method of choice in many mutation 

detection laboratories around the world is the small of amount of DNA (100 ng) required 

for amplification as opposed to 1 Ilg for MAPH (White, 2005). 

Probe Set 

Genomic DNA on 
nylon filter (2mm x 3mm) 

l 
Hybndlze OIN ...... StITIgent wash ...... 

Gel Separation 

-
--
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Figure 57: Image representing the multiplex amplifiable probe amplification assay as 

adapted from www.dmd.nl and Armour et al. (2000). The products can either be separated 

using polyacrylamide gel electrophoresis _ or capillary electrophoresis _ using an ABI 

genetic analyser. 

The MLPA assay is based on the hybridisation of commercially designed and available 

probes to target sequences, which are subsequently ligated and quantitatively amplified to 

produce a copy of the target sequence. The simultaneous amplification of the reactions 

results in a useful multiplex set of fragments being produced, which can then be analysed 

for exonic deletions and duplications in the gene being studied. Since all fragments are 

created in the same reaction, analysis is simplified and no normalisation of any sort needs 

to be undertaken to account for thermocycler or PCR reaction differences. The MLP A 

probe itself consists of two parts, which includes a "short synthetic oligonucleotide" 

containing a "target specific sequence at the 3' end" composed of 21 to 30 nucleotides and 

a "common 19 nucleotide (nt) sequence that is identical to the labelled PCR primer at the 
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5' end" whilst the other part of the probe consists of a "M13 derived long" oligonucleotide 

probe (as shown in the figure below). The long probes are produced by inserting a target 

specific sequence of between 25 and 40 nucleotides into M13 derived "SALSA" vectors, 

containing a "stuffer" sequence of different lengths (Schouten et al., 2002). A detailed 

description of the MLP A procedure and probe production is outlined in Schouten et al. 

(2002). 

PCR primer sequence Y 

'---
PCR primer sequence X 

Hybridisation sequence 
.J"stJJffer sequence (different for each probe) 

x 

5'~-.J 
3' Target A 5' 

Hybridisation sequence 

5'Z-~ 
3' Target B 5' 

The two parts of each probe hybridise 
to adjacent target sequences and are 
ligated by a thermostable ligase. 

All probe ligation products are amplified by PCR using only one primer pair. 

y x 
5' 3' 

y 

5' 

x 
3' 

The amplifICation product of each 
probe has a lIlique length (130-
480 bp). 

Amplification products are separated by electrophoresis. Relative amounts of probe amplification 
products, as compared to a control DNA sample, reflect the relative copy number of target 
sequences. 

Exon 
13 

Figure 58: Outline of the multiplex ligation dependent probe amplification assay as adapted 

from Schouten et ale (2002) and http://www.mlpa.com. 

According to Schouten et al. (2002), the MLPA procedure required that the genomic DNA 

be diluted with buffer TE (Tris-EDTA) and heated for 5 minutes at 98°C. This was 

followed by the inclusion of a salt solution together with the probe mixture, each of which 

was 1.5 III volumes. The samples were re-heated for 1 minute at 95°C and incubated at 

60°C for 16 hours. Even though this 16 hour incubation would be optimal for obtaining all 

fragments especially longer products, a reduction in the incubation period has been tested 

and found to produce the same results as those samples incubated for the 16 hour duration 
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by the Molecular diagnostics laboratory headed by Professor E. Bakker. The reduced 

incubation time was adopted by the author and implemented at the Neuroscience 

laboratory. According to White (2005), the PCR volume could be reduced to 25 !J.I from 

the original 50 !J.I reaction volume that was proposed by Schouten et al. (2002). The 

original protocol suggests that the ligation reaction be performed in a total volume of 50 

!J.I, whereas only 10 !J.I of the ligation mixture would be included in the amplification 

reaction. By reducing the hybridisation and ligation reaction to a volume sufficient to 

achieve one PCR reaction per sample, minimal wastage of sample and probe mixes is 

assured. 

Separation of the amplifications products from the MLP A reaction is performed using a 

capillary electrophoresis apparatus, such as the ABI genetic analysers (Applied 

Biosystems). Once the samples have been separated using a genetic analyser, the results 

are viewed using the Genemapper software program (Applied Biosystems). Even though 

exonic deletions can be detected visually as there would be the absence of a peak, detection 

of duplications is be more complicated. The data extracted from the software, which could 

either be the peak areas or the peak heights, are exported into an Excel spreadsheet for 

further analysis by the researcher. The peak areas or peak heights from patient samples are 

compared to the results from the samples of normal individuals using the student's T-test 

as the statistical method to produce a dosage quotient analysis. According to White et al. 

(2003), sample analysis can be performed using the Agilent lab-on-a-chip Bioanalyser 

2100, where 12 samples could be analysed using a single chip. Such an option may suit 

many laboratories as fluorescently labelled primers are not required and the results are 

obtained in under an hour. 
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Aartsma-Rus et al. (2006) performed an evaluation of all the mutation data that was 

present on the Leiden muscular dystrophy pages (http://www.dmd.nl) that amounted to 

>4700 mutations. Intragenic deletions were found to be most common totally 

approximately 72%, which is slightly higher than the literature consensus of 65%. Majority 

ofthese deletions appear to cluster in a hot-spot region of the dystrophin gene spanning 

exons 45-53. In the case of duplications, there may be either single exon or multi-exon 

duplications and these are found in 7% of cases. As was reported by White et ai. (2006) the 

most commonly duplicated exon is exon 2, which collectively made up 6% of the 

duplications in the database. Duplications are located in the minor mutation hot-spot 

spanning exons 2-20, which is in contrast to the location of deletion mutations (Aartsma­

Rus et ai., 2006). 

The MLP A assay was observed, learned and performed at the research laboratory in the 

Department of Human and Clinical Genetics, Leiden University Medical Center, The 

Netherlands under the supervision of Dr. Stefan White. 

During the author's visit to the research laboratory in the Department of Human and 

Clinical Genetics, Leiden University Medical Center, The Netherlands she met and liaised 

with her scientific supervisor, Professor E. Bakker who is the head of the Molecular 

Genetics Laboratory where the MLP A assay was being implemented as a diagnostics 

assay. It was at this time that the author obtained feedback on the manner in which the 

diagnostics laboratory had implemented the assay in their setting, which was different from 

the approach used by the research laboratory in the Netherlands. 
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The MLPA assay was set-up at the Neuroscience laboratory, Durban, South Africa using 

the knowledge gained from both the research and diagnostics laboratories at the Center for 

Human and Clinical Genetics in the Netherlands. The DNA samples were electrophoresed 

using the ABI 3100, on the author's return to South Africa. The subjects were chosen by 

virtue of DNA availability and non-deletion status in the case ofDMD/BMD patients. 

6.2 AIMS AND OBJECTIVES 

i) To detect deletions and duplications throughout the dystrophin gene ill 

Duchenne and Becker muscular dystrophy patients. 

ii) To determine the carrier status in mothers and female relatives of 

dystrophinopathy patients and thereby implement genetic counselling. 

6.3 MATERIALS AND METHODS 

6.3.1 Patient population 

Table 24: Database showing details of aU individuals included in the multiplex ligation­

dependent probe amplification assay aspect of the project. 

I DNA number I Surname, 
I Age I 

DMD/BMD/RELA 
Initials TIVE 

, I H, 
, 

6 8 N/A I Mother of 7 

I 7 I H, J I 8 I DMD 

I 9 I 8, NM I 17 I DMD 

14 I N, D I 9 I DMD 

I 15 I N, C I N/A I Mother of 14 
I 

19 1 M, 8 I 6 I DMD 

; 21 I R, 8 I 8 I DMD 

24 I P, D I 6 I DMD 

I 26 I z, 8 I 18 I BMD , 
I w, I 30 

R I N/A I DMD 
I I C, 31 L I 12 I DMD 
I 

32 1 M, NL , I DMD 6 

I 37 I G, M I 8 I DMD 
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1 14 I DMD I 
38 1 N, M 

I DMD [42 1 M, R I 12 

1 S, 1 14 I DMD 
1 43 V 

\ F mother of 

\ 57 \ M, T \ N/A 28 

I DMD 1 58 1 M, M I 14 

I DMD 1 59 I B, X 1 10 

I DMD 1 60 I N, S I 12 

1 61 I L, M I 8 I DMD 

I 62 I S, s I N/A I DMD 

\ 63 \ S, N \ 25 

\ !MD Carrier 

Legend: NI A - not available 

6.3.2 DNA extractions 

The DNA blood mini kit (Qiagen) was used to isolate DNA from the blood samples of 

patients. The procedure followed was as per manufacturer's instructions (Qiagen, 2003). 

6.3.3 DNA quantification 

Two methods of quantification were employed. The first used the N anodrop 1000, which 

was housed at the Department of Human and Clinical Genetics, Leiden University Medical 

Center, the Netherlands. 

The second method made use of commercially available DNA quantification standards 

(Invitrogen) that were quantitated against the DNA from patients' samples. This method 

was employed as the Neuroscience laboratory did not have a Nanodrop instrument. The 

samples were electrophoresed on a 1 % agarose gel (Seakem) at the Neuroscience 

laboratory, University of KwaZulu-Natal, Durban, South Africa. The same procedure was 

followed as was previously outlined in Chapter 4 of this thesis. 
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6.3.3.1 Quantification using the Nanodrop-l000 

The procedure followed was as outlined in the Nanodrop manual. 

6.3.4 Vacuum centrifugation of DNA samples 

The procedure was carried out as per manufacturer's instructions (Eppendorf). 

6.3.5 DNA denaturation 

The procedure was carried out as per manufacturer's instructions (MRC-Holland). 

6.3.6 Hybridisation of the SALSA-probes (MRC-Holland) 

The procedure was carried out as per manufacturer's instructions (MRC-Holland). 

Amendments to the protocol were as follows: 

• The recommended volume of the SALSA probe mix by MRC-Holland was 1.5 III 

per sample and 0.375 III at the diagnostics laboratory. On the author's return to 

South Africa both volumes (1.5 III and 0.375 Ill) were compared. 

• 

• 

A master mix was prepared for all sample reactions as shown in table 25 . 

The mixture was incubated in a thermal cycler at 95°C for one minute. This was 

followed by incubation at 60°C for three hours. The recommended length of time 

for the 60°C incubation was 16 hours by MRC-Holland, and three hours at the 

diagnostics laboratory in the Netherlands. The author therefore utilised this 

optimised time period when the procedure was implemented in South Africa. 
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Table 25: Table showing the master mix reaction volumes for the SALSA-probes 

hybridisation to the sample DNA. 

Reagent 
\ 

volume per reaction (~l) \ Volume per reaction (~l) 
Diagnostics laboratory Research laboratory 

;..., -SAL-S-A---p-r~ob:-e-m-;i-x--I 0 . 375 I 1. 5 
~I -SAL-S-A-M-LP-A~b-u~f~f-er---~I -0 -.3-7~5----------1 1.5 

~-------------------I~o--------------------I 
I Nuclease free water I 0 .2 5 

6.3.7 Ligation reaction 

• During the hybridisation procedure at 60°C, a master mix was prepared for the 

ligation reaction less than one hour prior to use and stored on ice to prevent 

degradation of the ligase enzyme. 

• Prior to the end of the three hour incubation at 60°C, the temperature in the thermal 

cycler was reduced to 54°C. 

Table 26: Ligation reaction master mix that was added to the hybridised sample mix 

whilst at 54°C. 

Reagent I Volume per reaction (~l) I Volume per reaction (~l) 
Diagnostic laboratory Research laboratory 

1 Ligase -6 5 buffer A 

I Ligase -6 5 buffer B 

I Nuclease free water 

, Ligase-65 

.-0-.7- 5------------------, 3 .0 

0.75 '.-3-.0----------

.-6-.2:-5------------------1 25.0 

0.2 5 '.-1-.0----------

• Whilst the thermal cycler was at 54°C, either a 32 ~l volume (MRC-Holland and 

research laboratory protocol) or an 8 ~l volume (diagnostics laboratory protocol) of 

ligation mix was added to the hybridised mixture. The ligation mixture was 

incubated at 54°C for 15 minutes. This was followed by a five minute incubation at 

98°C. This incubation served to inactivate the ligase enzyme. 

• At this point, the samples could be stored at 4°C for 48 hours awaiting the PCR 

reaction or it could be stored at -20°C for a longer time period. However the 
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recommendation was to start the PCR reaction immediately as this would ensure 

that the best results were obtained. 

6.3.8 peR reaction and conditions 

• A master mix was prepared as shown in the table below for the PCR reaction less 

than one hour prior to being used. 

Table 27: Table showing the peR reaction volumes of each reagent that was added to the 

ligation mixture. 

I 
Volume per reaction (~l) I Volume per reaction (~l) 

Diagnostic laboratory Research laboratory 
~1-I-0 -X--S-AL-S-A--P-CR------rl -2-. -0 -------------------1 4 . 0 

buffer 

Reagent 

,-~~--~----~-- ,----------------------
1 Nuclease free water I 15.75 31 . 5 
1 SALSA PCR primers I 1 . 0 "-1 -2-. 0-------------------

I 
SALSA enzyme ..-1 --:"1 -. 0::--------------------1 2 . 0 
dilution buffer 

rl-SAL--S-A--P--:-ol~ym--e-r-as-e----I 0 . 25 rl-0-. 5--------------------

• The SALSA polymerase enzyme was added to each master mix whilst on ice. The 

contents were mixed well by pipetting but no vortexing was performed. It was 

important that the contents be thoroughly mixed as incomplete mixing of the 50% 

glycerol enzyme solutions with the dilution buffers is usually a major source of 

error. 

• The PCR conditions that were employed varied depending on the protocol that was 

used. The table below show the conditions used in the diagnostic laboratory 

protocol. The MRC-Holland protocol differed in that the denaturation time was 30 

seconds as opposed to 20 seconds and the cycle number was increased to 35 cycles. 

• The PCR apparatus was placed on "hold" at 60°C whilst the 10 III volume of 

ligation product was added to the PCR master mix. Thereafter the PCR program 
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with the conditions listed below was implemented. 

Table 28: Table illustrating the peR conditions used in the optimised diagnostic laboratory 

multiplex ligation-dependent probe amplification assay. 

I I Temperature I Time I Cycle nwnber 

I Denaturation I 95°e I 20 seconds 

~ 
I 33 I Annealing I 60 0 e I 30 seconds 

I Elongation I 72°e I 60 seconds 

I Final I 72°e 1 20 minutes 
1 

1 
Extenslon 

I Hold I 4°e 100 I 

• The PCR products were now referred to as amplicons, which is potentially a source 

of contamination. The PCR tubes were therefore not opened in the amplification 

room in the vicinity of other thermal cyclers. Instead they were transferred to the 

electrophoresis room where they were stored at 4°C for 48 hours, -20°C for longer 

periods of time or used immediately for the electrophoresis procedure. 

6.3.9 Performing spacial calibration on the ABI 3100 

The procedure followed was as outlined in the Applied Biosystems manual. 

6.3.10 Setting up spectral dyes on the ABI 3100 

The procedure followed was as outlined in the Applied Biosystems manual. 

6.3.11 Electrophoresis of samples on the ABI 3100 

• A heating block that could house a 96-well plate was adjusted to 95°C in the 

electrophoresis room. If this was not present, a heating block that could house 
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O.S ml centrifuge tubes was used. All reactions were performed in the 

electrophoresis room as the amplicons are a source of contamination and should not 

be carried into other rooms. 

• The number of samples to be electrophoresed was determined. A master mix of the 

ROX-SOO (Applied Biosystems) internal standard and deionised formamide (HiDi 

formamide, Applied Biosystems) was prepared depending on the number of 

samples that were to be run on the ABI 3100. A O.S III volume of ROX-SOO was 

added to 7.S III HiDi formamide. To each master mix was added 2.0 III sample. 

• The mixture was heated for five minutes at 9SoC and immediately cooled on ice for 

two minutes. The samples were pulsed centrifuged to collect the contents at the 

bottom of the tube. A 10 III volume of samples were then placed into a specific 

pattern using a 96-well plate as this plate was to be placed into the autosampler of 

the ABI 3100 for electrophoresis. 

6.3.12 Run conditions for DMD samples on the ABI 3100 

The procedure followed was as outlined in the Applied Biosystems manuals and the 

handout provided by MRC-Holland. Amendments to the protocol were as follows: 

6.3.13 Data analysis and creation of bins for each ex on using Genemapper software 

The procedure followed was as outlined in the Applied Biosystems Genemapper software 

manual and the handout provided by MRC-Holland.: 
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6.3.14 Further analysis using the Excel spreadsheet 

For further analysis to be undertaken the peak heights or peak areas can be exported from 

the Genemapper software into an Excel spreadsheet by copying the values and transferring 

it across to the Excel program. 

On visual inspection, an exonic deletion can be seen once the sample is viewed in the 

Genemapper software program. An exonic duplication however cannot be definitively 

detected using the visual method. The values therefore need to be exported into Excel and 

using the student's T-test methodology a duplication can be confirmed. In all cases, the 

values of two control samples are compared to the values obtained for each DMD sample. 

Using the dosage quotient analysis method, a duplication is defined as a mutation where 

the value obtained is > 1.5 however in reality the value is usually closer to > 1.65. The cut­

off values for duplications vary from one lab to another and care should be taken to repeat 

the sample when a duplication is thought to be present. 

If there is a deletion present and confirmation is required by inserting the values into the 

Excel spreadsheet in addition to visual inspection, the value obtained would be <0.5 in an 

ideal situation. In reality the value would be closer to <0.65. 

6.4 RESULTS 

6.4.1 DNA quantitation using quantification standards 
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Lane 
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Figure 59: Representative image showing DNA samples that were electrophoresed on a 1 % 

agarose gel together with DNA quantification standards (Invitrogen). 

6.4.2 Spacial calibration 

GA Instn..rnens,. ga3100::. 31 OO_DNA_Sequencer" SpetiaI Cab'ation Viewer 

Intens· vs Pixel Number 

16Cao1ary Poslklno ------ _ Protocol. 

Capky _ (pixels) Left spacirg Rigti spacirg Protocot 1:"131C::00SpaI7'"""-::_-::-:-::.~_1:----3"'~ 

Figure 60: Graphical representation of a poor spacial that was obtained when the calibration 

was performed on the ABI 3100. 

The poor spacial resulted from a condensation on the detection window that prevented 

clear data from being obtained. The condensation occurred as a result of the humid 
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environment of the Durban climate as well as the assembly of the capillary array in a cold 

state. The cold state of the detection window caused droplets to be present on the window 

thereby preventing a clear spacial from being obtained. The detection window was cleaned 

several times with 100% HPLC grade methanol and still the poor spacial was produced. 

Several applied biosystems applications specialists tried to solve the problem over a period 

of 6-8 weeks during which time several capillary arrays were tried and none of them 

worked. The problem was finally solved by removing the capillary array from the 4°C 

fridge and leaving it at room temperature for at least one hour to allow it to equilibrate to 

room temperature before it was assembled onto the instrument. 

All further spacial runs produced good quality peaks that were all in the recommended 

range. The heights of all capillaries were similar and no shoulders were obtained. 

6.4.3 Spectral calibration run 

Under normal circumstances the spectral run would give a fluorescence intensity of 

approximately 4000, however in the above representative image the value is only 100. The 

fluorescence intensity is extremely low as is shown above. Such a value is indicative of a 

spectral data that is unusable. Prior to the spectral being re-run all steps were taken to 

ensure that the calibration would work such as cleaning the detection window on the 

capillary array with methanol. It turned out that the detection window was moist from 

condensation owing to it being left in the refrigerator. Once the problem was solved, all the 

spectral runs were of high quality and the intensity values were in the range of 3000-4000. 

The Q-values were acceptably high being in the range of >0.98 and the condition number 

was within range for fragment analysis (4-7). 
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Figure 61: 

Dye Set: ID 
Active ~oIion for Dye Set: 0 

Melrix used for Coplory 2: jS; J.6l1817:49:36CDT 2005 

CondIion: 7.2081 03 

QVolJe: 0.976889 Us! of ~oIions for Dye Set: 0 

Image showing a poor spectral calibration that was obtained on the ABI 3100 

using Dye set D for fragment analysis. 

6.4.4 Electropherogram of all exons present in control 

In the electropherograms below, each peak represents an exon. The signal intensity is 

shown on the right ( oval shape). The ideal peak heights should be in the dynamic range of 

1000-4000 RFU (relative fluorescence units), which is necessary for data validation and 

usability. For those that are <1000, one should manually view them in order to determine 

whether other characteristics are met, such as evenness and sharpness of the peak. The 

baseline should also be relatively flat. Signal strength is an essential factor when results are 

being confirmed. If the signal is below average or low the process of electrophoresis would 

first need to be repeated. If the signal still turns out to be lower than the normal cut-off 

value, the amplification step would be repeated and the amount of starting material would 
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be reassessed and usually increased thereby ensuring an increase in the peak signal 

intensity. 

I . . r - Elon Alme 

A 
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Figure 62: Representative electropherograms showing the peaks that resulted when the P034 

(A) and P035 (B) probe mixtures were amplified and analysed on the ABI genetic analyser. 

In some instances a split peak can be obtained for a particular exon. In such cases, two 

values would be obtained for the exon. 
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These values should be added and the sum of the values needed to be included in the 

dosage quotient analysis step. 

It was found that using approximately 50 ng of DNA was adequate to produce an optimum 

peak intensity signal. 

6.4.5 Binning 
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• 6,70 lrag.OO2.AOS.f .. 196.25 6:l 382 3725 

• 6,71 lrag.OO2.AOS.f .. 202.02 1792 21310 31!06 

• 6 ,72 lrag.OO2. AOS.f .. 209.34 6537 79025 3904 

• 6,73 lrag.OO2.M6.f .. 218.46 5023 59505 41126 

. 6,75 lrag.002.AOS.fs> 235.1 4343 53497 4248 

. 6,76 frag.OO2.AOS.fs> 243.6 4116 5190S 4361 

• 6,77 frag.OO2.AOS.f .. 251 .45 4133 51494 4467 

• 6,78 frag.002.M6.f .. 259.04 3S89 4590S 4S77 

. 6,79 frag.OO2.AOS.f" 266.86 2276 29079 4690 

• 6,eo lrag.002.A08.1", 274.51 2512 32963 4800 

• 6,B1 lrag.OO2.M6.f .. 2912 5792 7«23 4896 

• 6,82 lrag. OO2.AOS.f .. 289.59 4196 549J.4 5016 

. 6,83 lrag.OO2.AOS.f .. 295.94 4293 S6S44 51 OS 

• 6,94 lrag.OO2.AOS.f .. 3052 41149 52902 S230 . 
Figure 63: Image showing the binning mode where each peak is assigned a name and a size. 

The figure above (Figure 63) shows a peak highlighted in the binning mode. In this mode, 

the user would be able to change the size assigned to each peak and the area over which it 

is recognized by the software. The peak location varies between runs, hence the need to 

broaden the area over which the peak is recognised. 
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6.4.6 Name assignment to peak 

In the figure below (figure 64), details of the highlighted peak are shown in the table. 

Important details include the peak height, peak area and exon name. 

A 

B 

Figure 64: Genemapper image showing a highlighted peak and the names assigned to each 

peak. 

6.4.7 Visual interpretation of a duplication 

In (A) below, the electropherogram is that of a patient's sample. On visual inspection, the 

peak heights of exons 49 (green line) and 50 (red line) are higher than that of the control 

sample as shown in (B). The peak area of exon 49 for the patient (A) is 6344 whereas the 
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peak area for the control (B) is 4466. The peak area of exon 50 for the patient (A) is 7646 

and the peak area of exon 50 for the control (B) is 5152. Even though the peak areas differ 

considerably it is still wise to confum the presence of a duplication using the dosage 

quotient analysis method by placing the peak area or peak height data into an Excel 

spreadsheet and subjecting it to the student's T-test statistical analysis method. 

Figure 65: 

A 

xon name 

Fragment len~h on .AS1 
system 

fIC::=Peak area 

B 

Electropherograms comparing results from a patient sample 62 (A) with an 

exon 49 and exon 50 duplication, to that of a control sample (B). 

In figure 66 (A), the peak area for exon 51 is 26062 whereas the peak area for the control 

(B) is 16512. The peak area for exon 52 is 12452 and control is 8298. The peak area for 

exon 53 is 24949 and control is 13968. The peak area for exon 54 is 23280 whereas the 

peak control is 13122. 

As is clearly shown on visual inspection the peak heights and peak areas provide a good 
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way of determining whether a duplication is present or not. When the peak heights 

between the patient' s sample and control are compared, as shown in the profiles above (A 

and B) the peak heights in those exons that are highlighted in the patient's sample are 

higher than those of the control sample. Patient 62 therefore has a duplication from 49-54. 

L 

A B 

Figure 66: Electropherograms showing the peak heights and peak areas from patient sample 

62 (A) with exons 51, 52, 53 and 54 being duplicated and a control sample (B). 

6.4.8 Confirmation of duplication using dosage quotient analysis 

The peak areas from the patient who was shown to have a duplication from exons 49-54 by 

visual inspection was then imported into Excel. The student's T -test was used to compare 

the results obtained from the patient to those from two control samples. The exons are 

compared to each and between samples to achieve confirmation of the mutation. In the 

above figure, the duplication is shown by values being in a range >2.0 in the vertical 

columns as shown by the blue highlights. These indicate that a particular ex on is 
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Figure 67: Graphical representations (A and B) of the duplication from exons 49-54 found in 

patient 62 using dosage quotient analysis in the Excel spreadsheet. 

179 



duplicated. The corresponding horizontal rows are in a range <0.6 as shown by the yellow 

highlights. 

6.4.9 Visual identification of a deletion 

A 
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Figure 68: Fluorescent profIles showing patient sample 26 (A) with deletions as shown by 

the arrows and a control sample indicating the exon locations and the peaks, which are 

highlighted by the oval shapes (B). 

6.4.10 Mutation confirmation using DNA sequence analysis 

In the above figure, exons 45, 46 and 47 are shown to be deleted in patient sample 26. It is 

easily visible by the absence of a peak. By comparing the patient's electropherogram with 

that of a control sample one can conclude that a deletion is present without having to 

perform dosage quotient analyses using the Excel spreadsheet and the T-test statistical 

analysis. In the case of the above patient, exon 13 had appeared to be deleted. The DNA 

from the patient was subjected to peR amplification and subsequent DNA sequencing for 

exon 13. The results are shown below. 
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DMDex13 ROls 

Summary 
NT Variants 
Index 
Reference 
Reference-AA 
... D1.02 . 0 ... 

DMD-Dl .02.04024_SAEX13Rf1 

DMD-Dl .02.04024_SAEX13F _FO 

... D1.05.0 •.• 

DMD-Dl .05.0064CSAEX13R_Gl 

ATTCTCTCACTCACATGGTGGTGGTAGTTGA AATCTi 
. . . . .. . .. .................. .. ......... 

23 1533 1543 

Legend: I Known Variants I All Variants 

Figure 69: Sequence data showing a polymorphism found on exon 13 in patient sample 26. 

In the above sequence data the C>T polymorphism was located at eDNA position 1554. 

This polymorphism resulted in an aspartic acid residue being replaced with a glutamic acid 

residue at position 518. This is a known polymorphism that has also been listed on the 

Leiden muscular dystrophy pages where it was found in a BMD patient's sample in the 

Netherlands. Our patient in whom the polymorphism was found also manifests a Becker 

muscular dystrophy phenotype. 
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DMDex13 ROts 

Summary 
NT Variants 
Index 
Reference 
Reference-AA 
..,. D1.02.0 ... 

DMD-Dl.02.04024_SAEX13Rfl 

..,. D1. 05 .0 ... 

Figure 70: DNA sequence data showing an intronic substitution in exon 13 of sample 26. 

In the DNA sequence data shown above the actual intronic change was a c1483 -7C>G 

intronic change. The location of the change on the cDNA is shown first followed by the 

actual nucleotide substitution. This change occurred close to a splice site, which required 

that splice site predictions be made. When donor site predictions were made for the -7 C>G 

exon 13 substitution, the score was found 0 be 0.51 , suggesting that a splice site mutation 

is a possibility. The donor site prediction for the wild type sequence was 0.59. When the 

acceptor site prediction was made for this substitution mutation -7C>G the score was 0.85 

therefore suggesting a strong match to the consensus sequence. The acceptor site 

prediction for the wild type sequence was 0.94. A strong match to the consensus indicates 

that the splice site is likely to be recognised by the snRNP (small nuclear 

ribonucleoproteins) in the spliceosomal complex. In so doing the ex on is not spliced out 
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(http://staff.science.nus.edu.sg/~scilooe/srp 2003/sci paper/paediatrics/research paper/lie 

w yi jin.pdf). 

Table 29: Deletion and duplication data obtained after Genemapper analysis on the ABI 3100 

for the patients that were included in the multiplex ligation-dependent probe amplification 

assay. 

I DNA I Surname, F I DMD/BMD 
Deletion / I Frame 

nwnber Initials Duplication 

I I H , 
~I Mother I Duplication 68-

I 
In-frame 

6 S N/ A of 7 78 

I I H, 

, 

I DMD 
I Duplication I 68- In-frame 

7 J 8 78 

I I ~I DMD I Deletion of exon I Out-of-frame 
9 S, NM I 56 

I 

, 

c-I Complex re- Out-of-frame 

I 
arrangement 
(Duplication of 

I 
exon 1 and 46-

14 N, D 9 63) 

c- l 
Complex re- Out-of-frame 
arrangement 
(Duplication of 

Mother exon 1 and 46-
N, C of 14 63) 

I 19 1 M, S 6 DMD I Del 8-16 I Out-of-frame 

I 21 I I I I R, S 8 DMD Del 45-54 In-frame 

I 24 I I I I P, D 6 DMD Dup 6-18 In-frame 

I 26 I S 
, 

I Del 45-47 I Z, 18 BMD In-frame 
30 I w, R I I No del / dup I DMD 

I 31 I C, L I I No del / dup 
, 

12 DMD 

I 32 1 M, NL 
, I DMD I Del I Out-of-frame 6 45-50 

I 37 I G, M i 8 I DMD I I Del 51 Out-of-frame 

I I N I DMD I I In-frame, Del 45-46,51-52 
38 , M 14 in-frame 

I 42 1 M, I I DMD I R 12 Del 45 I Out-of-frame 
I 43 I s, I I DMD I Del v 14 45-56 I Out-of - frame 

r:-I M. 
, I No I 

F del / dup 

I I mother 
T N/ A 

I 1 M, I 58 M 14 I DMD 
, 

del / dup I No 
i 59 I B, I I I No X 10 DMD del / dup I I 60 I N, S I I I Del 45 I 12 I Out-of-frame I I L, 61 M 8 , DMD I No del / dup I I I S, 62 S I : DMD I Dup 49-54 I I Out-of-frame 

I Is, 63 N 25 
I Carrier I No del / dup 

I F 
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6.5 DISCUSSION 

The MLP A procedure was optimised by the Molecular Genetics Laboratory, headed by 

Professor E. Bakker, the scientific supervisor of the author. All volumes were reduced with 

no difference being noted in the final result. Both the recommended procedure by MRC­

Holland and the revised procedure implemented by the diagnostics laboratory in the 

Netherlands are included in the thesis, as both were performed. The recommended 

procedure was followed by Dr. Stefan White at the research laboratory, Center for Human 

and Clinical Genetics in the Netherlands and the procedure was first taught to the author by 

Dr. White. Whilst liaising with the diagnostics laboratory and Professor E. Bakker, the 

author was introduced to the optimised procedure, where reduced volumes of each reagent 

were used. The author therefore obtained training on both methodologies and compared 

them on her return to South Africa. 

6.5.1 Hybridisation reaction 

When the technique was learned under the supervision of Dr. Stefan White at the research 

laboratory at the Center for Human and Clinical Genetics, Leiden University Medical 

Center in the Netherlands, a volume of 1.5 )!l probe mix was used per DNA sample as per 

recommendation by MRC-Holland . However, the probe concentration and volume was 

optimised at the Molecular Genetics laboratory, Leiden University Medical Center in the 

Netherlands, where Professor Bakker, the author's scientific supervisor is based. The 

author therefore compared both 1.5 )!l probe mix per sample as well as 0.375 )!l probe mix 

per sample on her return to South Africa where the technique was implemented at the 

Neuroscience laboratory, Department of Neurology, University of KwaZulu-Natal, 
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Durban. The results obtained following electrophoresis on the ABI 3100 were the same 

therefore in all subsequent reactions the 0.375 III volume of probe mix was used per DNA 

sample. The 16 hour incubation period and the three hour incubation period at 60°C were 

performed using the same samples and electrophoresed using the same conditions on the 

ABI 3100 in South Africa. The author therefore opted to use the three hour incubation 

period for all subsequent reaction as this was being implemented as a diagnostic test and 

the time saving was tremendous. There was no difference noted ifthe DNA sample was 

added to the master mix in the presence or absence of buffer TE. 

6.5.2 peR reaction 

The PCR reaction for the MRC-Holland procedure was different from the diagnostics lab 

procedure. Using the MRC-Holland procedure, the research laboratory used only 10 III of 

the ligation mixture in the PCR reaction. The remaining ligation mixture was stored at 4°C 

and could be used to perform subsequent PCR reactions if the PCR reaction failed for 

some reason without having to go through the entire process hybridisation process again as 

it takes 16 hours for the hybridisation reaction. However, the diagnostic laboratory utilised 

a quarter of the reagents throughout the procedure. There would be no need to repeat the 

PCR reaction unless the PCR failed and if a repeat was required, reagents would not be 

wasted and the time taken would not be as significant since the hybridisation reaction 

required a three-hour incubation as opposed to a 16 hour incubation. 

The PCR conditions that were used differed slightly in the two protocols. The diagnostic 

laboratory protocol was only changed because the MRC-Holland handout indicated that 

those changes could be made with no loss of product if the concentration of the DNA was 

optimal (50 ng/Ill) in a given reaction. 
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6.5.3 Spacial and spectral calibration 

At one point both the spacial and spectral calibrations failed as the detection window was 

moist. This resulted from a capillary array that was not equilibrated to room temperature. 

After this experience, the author removed any arrays that were in short-term storage at 4°C 

in the fridge to the bench-top. The array was left to equilibrate to room temperature for half 

hour to one hour before being installed onto the genetic analyser. Prior to being installed 

the detection window of the array was wiped clean with lint-free paper and further cleaned 

with a drop of HPLC grade methanol to ensure no dust residue remained. It is important 

that the environment in which the genetic analyser is housed is taken into account when 

troubleshooting problems that are encountered. We initially did not taken into account that 

we housed the ABI 3100 in the humid climate of Durban, which had an effect on the 

cooling capacity of the refrigerator that was used to store the array for a short time. 

6.5.4 Data analysis using peak area or peak height 

When the MLP A analysis was performed, the author was introduced to both the peak 

height and peak area methods. Dr. Stefan White, based at the Department of Human and 

Clinical genetics supervised the author in the MLP A assay and he preferred to use the peak 

height method in analysing the sample data. In comparison, staff at the Molecular 

diagnostics laboratory headed by Professor E. Bakker used the peak area method to analyse 

the MLP A assay results. Reports have shown that both methods are comparable in the 

results that they produce (White et at. , 2004; Janssen et at. , 2005). Owing to the fact that 

the PCR methodology is not quantitative by nature, the amplicon produced would alter the 

peak height and in so doing the results obtained on dosage quotient analysis would not be 
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definitive. The author therefore chose to use the peak area method in analysing the data 

produced at the Neuroscience laboratory. 

6.5.5 Deletion and duplication results 

Definitive results are shown for a small number of the actual patients' samples that were 

subjected to MLP A analysis. In some instances, the Genemapper analysed results produced 

poor peak quality. Such samples were repeated. We encountered other problems with the 

samples as well such as non amplification of the samples. All these samples were repeated 

until appropriate results were obtained. The last stumbling block encountered related to an 

inability to obtain a dosage quotient value of 1.0 when peak areas or peak heights were 

exported from Genemapper into an Excel spreadsheet. The values that were being obtained 

were in excess of 6.0 and this did not match previous Excel results. 

When visually inspecting the data using the Genemapper software it became clear that 

deletions can easily be detected by the absence of a peak. Duplications too can be detected 

when one compares the peak areas or peak heights between sample and control. It is 

however advisable to confirm the results using the dosage quotient analysis method and the 

Excel spreadsheet program, especially for duplications. 

With respect to the fragment analysis data that produced usable results, in some instances a 

single ex on deletion was found. Such a deletion should be confirmed using another set of 

probes or by sequencing the exon of interest. The probes used are generally chosen within 

the exon and hybridisation failure could be caused by the presence of a SNP or mutation 

under the hybridisation site (Bakker, personal communication). There could also have been 
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a point mutation present that was pathogenic and that once sequenced may show the 

presence of a premature stop codon. The company that manufacturers the probes also has a 

list of those exons that can sometimes produce higher than normal values for the dosage 

quotient analysis. An example of such an ex on is exon 37 however they have recently 

changed the probe for this exon. During the analysis evaluation one has to take all of this 

into account before stating that a patient has a single exon deletion, which is a rare 

occurrence. 

The table above shows those patients that had deletions or duplications. Four of the 21 

patients had duplications, with two mothers being confirmed as duplication carriers. These 

patients were previously shown to have no deletions, which placed him into the query 

point mutation category. With the advent ofthis new technique finding a duplication at the 

screening stage prevents any further diagnostic tests such as multiplex PCR or SSCP 

analysis from being performed. This is also helpful with respect to genetic counselling as 

the Neurologist can provide information on the type of mutation that the child has to 

parents and they can make informed decisions as to the type of therapy they would like to 

include in the treatment regimen. Specific deletions or duplications may allow the patient 

to be included in certain clinical trials, for examples those that convert an out-of-frame 

deletion into an in-frame deletion by the exon-skipping approach (Aartsma-Rus et at., 

2003; Zhou et aI., 2006) . 
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Figure 71: Image showing the domains of the dystrophin protein (A) together with the 

genotype-phenotype correlations (B) postulated and based on data from Beggs et ale (1991) as 

adapted from Aartsma-Rus et ale (2006). ABD represents the actin-binding domain, ASB 

represents the a-syntrophin binding and DBB represents the dystrobrevin binding site. 

When one attempts to correlate the mutation with physical symptoms there isn't always a 

steadfast rule to disease progression. A guideline to determining the phenotype once a 

deletion has been found is outlined in the figure above that is based on data obtained from 

Beggs et ai. (1991). One child may progress much faster than the other and yet they may 

both have the same type of deletion. Such an effect may occur on account of the location of 

the deletion or duplication. If the mutation is in a region of the gene that is responsible for 

binding other proteins for example, a more severe outcome may be present. In patient 62 

who has a duplication from exons 49-54, the phenotype was that of toe walking and 

inability to stand from the sitting position, extreme weakness and resulting lack of co-

ordination. The 9-year old male was still ambulant even though he was progressing 

rapidly. Even though the duplication was in-frame, which implies the presence of some of 

the protein, his disease severity was moderate to severe. His duplication is located in the 

rod domain. Another duplication (dup 6-18) patient was a 6-year old male with Gowers 

sign, a waddling gait and calf hypertrophy. He was also having much difficulty walking. 

The progressive nature of the disease may be explained by the location of the mutation. 

This mutation starts in the amino terminal domain where many protein interactions 
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between dystrophin and other components ofDAGC occur and in the central part of the 

rod domain, which is thought to be less important for protein interactions. The severity of 

disease in both these patients may cause one to speculate that duplication mutations are 

more complex and produce different effects in comparison to deletion mutations and 

disease progression can be mapped out more readily for deletions than duplications. 

According to White et al., (2006) the mechanisms by which duplications result are 

different from those that produce deletions and this may account for the difference in 

severity of duplication patients with in-frame duplications compared to deletion patients 

with in-frame deletions. 

In the case of deletions, visual inspection would be sufficient to determine that a deletion 

exists as there would be the absence of a peak. There is no need to take the analysis a step 

further by performing dosage quotient analysis using the Excel spreadsheet and the t-test. 

A single deletion of ex on 45 was confirmed in patient 42. 

Performing genotype-phenotype correlations for deletions is more possible compared to 

duplications. One can generally assume that an in-frame deletion would result in a shorter 

yet functional protein being produced and therefore the patient presents with a milder 

phenotype. In contrast an out-of-frame deletion would result in a truncated, non-functional 

protein being produced and therefore a more severe phenotype would be expected (Beggs 

et aI., 1991; Comi et al., 1994). There are exceptions to this "reading-frame rule", which 

was first proposed by Monaco et aI., 1988 (Aartsma-Rus et al., 2006). According to 

Aarstma-Rus et al. (2006), 9% of the mutations listed on the Leiden MD site did not follow 

the reading-frame rule. Even though this may seem like a high percentage, the authors 

suggest that the mutation which is thought to not agree with the reading frame rule should 
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be confirmed using RNA because the discordance may only appear to be true at the DNA 

level. Once RNA is used to determine the mutation and the reading-frame >99.5% of 

mutations fit the conventional reading-frame rule (Aartsma-Rus et ai. , 2006). 

In some cases patients will have polymorphisms in addition to deletions and I or 

duplications in different parts of the dystrophin gene. One such example is patient 26, 

where an in-frame deletion spanning exons 45-47 was confirmed. In addition to this, the 

BMD patient showed dosage quotient values that were not in keeping with the normal 

expected value of 1.0 or close to that value. The exon was sequenced and he was shown to 

have a polymorphism as well as an intronic substitution close to a splice site, which 

suggested the possibility of a splice site mutation. Such results relay the importance of 

performing DNA sequencing on those exons that show abnormal values during dosage 

quotient analysis. 

The most interesting case was the complex re-arrangement found in patient 14. The mother 

was also confirmed as having he same re-arrangement, thus also providing her carrier 

status. 
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CHAPTER 7 

GENE EXPRESSION PROFILING OF DOUBLE MUSCLE BIOPSIES 

FROM DYSTROPIDNOPATHY PATIENTS USING MICROARRAY 

ANALYSIS 

7.1 INTRODUCTION 

The use of micro array analysis in revealing and understanding the simultaneous 

interactions between various genes has become the latest new trend in biological research. 

The data produced from exploiting microarray technology was rapidly advanced by the 

draft mapping of the human genome where the "complete sequence of the euchromatin 

portion of the genome" was published in 2001 (Lander et ai. , 2002; Venter et ai., 2001). 

This milestone in life science history was further extended to include the "complete 

sequencing and characterisation of21 ,243 full-length cDNAs" (Ota et ai. , 2004) as well as 

the annotation of21 ,037 human genes (Imanishi et ai., 2004). These remarkable 

achievements set the course for extensive gene profiling experimentation and analyses to 

be performed on normal and diseased human tissue as well as blood. In order to unravel 

the mechanisms that regulate gene expression both normal and diseased states are being 

studied using micro arrays and the bioinformatics tools that accompany this revolutionary 

technique. 

The advent of micro array technology may be thought of as a profound deVelopment of 

previous molecular biology hybridisation methodology and fluorescence based techniques 

that had grown remarkably over the past few decades. The classical methods used to 

determine simultaneous expression of various genes were time-consuming, required 
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radioactive labelling and were only able to provide a limited amount of data. These 

methods gave rise to the macroarray technology that preceded the micro array revolution, 

where the principle of Northern blotting was reversed and the outcome was one where the 

expression of thousands of genes could be determined in a single experiment (Amersham 

Biosciences, 2002). In 1996, Southern published an article on high-density gridding, which 

set the scene for undertaking large scale gene expression analysis (Southern, 1996). In 

1999, Baldwin et al. provided a three-tiered comparison of the most popular techniques in 

gene expression analysis in plants, which could easily be adapted to Arabidopsis and 

organisms such as yeast. 

Macroarrays differ from micro arrays by virtue of their spot size, with macro arrays being 

300 microns or larger, which could easily be viewed using available laboratory gel blotters 

and scanners. Comparatively, microarray spots are <200 microns in diameter and require 

specialised apparatus that include robotic equipment for spotting and imaging as the gene 

expression of several thousands of spots are identified simultaneously (Amersham 

Biosciences, 2002). 

7.1.1. What is a micro array? 

In broad terms, a microarray may be defined as a highly dense and compact arrangement of 

oligonucleotides or eDNA probes that are immobilised onto a solid support, which is 

usually glass. Each of these nucleic acid sequences in effect forms a tiny "spot". The spot 

may either be referred to as a "probe" or a "target". These two names vary by virtue of 

their function however they are also used interchangeably since at present there is no 

defined nomenclature to discriminate between the two. 
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Figure 72: Graphical representation of a generalised microarray scheme (Amersham 

Biosciences., 2002). 
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There exists a recommended nomenclature proposed by Phimister in 1999, where the 

immobilised oligonucleotides are referred to as the probe and the labelled sample 

represents the target. 

7.1.2. Designing a microarray system 

A successful microarray experiment requires the utilisation and / or development of several 

tools. These include, the probe selection and synthesis thereof, type of array platform and 

spot production, labelling of the target or mRNA, a well designed assay including 

hybridisation method, scanning and image analysis and data mining using bioinformatics 

tools to provide biological as well as statistical significance of the gene expression data. 

There are three types of microarray platforms currently being used. These include i) 

spotted eDNA arrays, ii) spotted oligonucleotide arrays and iii) in-situ oligonucleotide 

arrays such as the Affymetrix GeneChip arrays. 

eDNA probes are double-stranded and generally created from a eDNA library containing 

plasmid vectors with inserted mRNA segments that are harboured in bacterial clones, 

which can effortlessly be amplified up using peR. Spotted oligonucleotide arrays are 

similar to eDNA arrays except that 20-80 mer synthetic oligonucleotide probes are 

designed and immobilised onto glass slides by a robotic spotter. The last array system that 

was developed by Affymetrix is referred to as the in-situ hybridisation platform where 

photolithography (Lee, 2004) is used to synthesise and immobilise directly onto a solid 

support base. 
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The spotting procedure can be undertaken using either contact or non-contact arraying of 

the eDNA or oligonucleotides onto the solid support base. The non-contact spotting 

method was adapted from the ink-jet industry where minute drops of solution are deposited 

onto the glass surface (Amersham Biosciences, 2002). 

Figure 73: Image showing the spotting of eDNA or oligonucleotides arrays into a glass 

support base (http://www.genetechhk.com/image/ser spotting.jpg). 

The next aspect in the design process relates to target preparation, where target refers to the 

RNA or mRNA that was extracted using conventional methods and that was subsequently 

amplified and labelled using in-house or kit based methods. The purity of sample is of 

paramount importance when performing a microarray experiment as the data produced 

would only be as good as the RNA quality. 

Following on from this is the process of target labelling. The use of fluorescent labelling in 

micro array analysis is favoured over other labelling options since fluorescence provides 

more sensitive detection and they are not chemically or biologically hazardous. The use of 

Cy dyes in microarray experiments is popular owing to their robust nature and resistance to 

photobleaching, as opposed to the fluorescein dyes. The Cy3 and Cy5 dyes complement 

each other well in experiments owing to minimal overlap between the two spectra. 
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Figure 74: Image representing the emission spectra and spectral overlaps between different 

Cy fluorophores (Amersham Biosciences., 2002). 

The Cy3 dye is detected at 532 nm and the Cy5 dye at 635 nm. (Amersham Biosciences, 

2002). 

Implementing the assay is the next step in the process where all necessary precautions need 

to be undertaken in order to produce the best quality data. After hybridisation, the slides 

are scanned and images are extracted. 

The data resulting from rnicroarray experiments have a biological significance once the 

statistical analyses have been performed by a bioinformatician. The two are closely 

intertwined as the one gives meaning to the other. Genepix is a software program that was 

designed to assist the researcher in assessing the rnicroarray data. The software has several 

useful functions that make manual evaluation less demanding. There are numerous 

algorithms present within GenePix that allows one to quantify the changes in activity 

levels between test and reference. Before any further analysis is performed the user would 

have to manually detect all spots on the array and flag them as useable or not. This is a 

very important part of the process of analysis because it allows one to assess the quality of 
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the experiment based on the visual inspection of each spot. Spots can be manually flagged 

with quality flags such as good, bad, absent or not found. 

A B 

Figure 75: Images showing some of the problems that can be encountered after completion of 

a micro array experiment. A: fluorescent background from hybridisation or pre-hybridisation 

mixture; B: air was trapped under the coverslip (Amersham Biosciences., 2002). 

7.1.3. Confirmation of micro array results 

The high cost of microarray experiments makes it difficult for a biological researcher to 

include many replicates into an experiment in order to test the reliability of the data. One 

of the ways to confirm the results would be to use different micro array systems and 

compare the results obtained between platforms. That way the same samples would be 

included in both array systems and the need to confirm the data using other means would 

fall away. 

Many laboratories only have a single microarray system at their disposal. Owing to this, 

other methods for confirmation of microarray data is employed. Such methods include the 

use of immunohistochemical analyses coupled to fluorescent imaging on a confocal 

microscope to detect the presence of immune response infiltrates in a muscle tissue for 

example that are over-expressed using microarray analysis. Other methods include 

Northern blotting and real-time peR detection. The main concern with using Northern 

blotting is the large amount of RNA that would be required to obtain a definitive result. 
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This method has lost support as biopsy samples are difficult to obtain in abundant supply. 

Quantitative real-time PCR has gained much popularity owing to the short time over which 

the assays is run, the high accuracy of results obtained since fluorescence is used to 

monitor the amplification and most importantly small amounts of RNA is required. 

7.1.4. Applications and importance of microarrays 

There are numerous applications in the use of microarray technology, which includes both 

DNA and protein arrays. The first and most important application in DNA micro arrays is 

that of gene discovery. The next area to benefit from micro array technology is the field of 

drug discovery. The buzzword in this burgeoning field is pharmacogenomics (ReIling & 

Hoffman, 2007). For a long time it has been known that drugs affect individuals differently 

based on genetic background, ethnicity and other factors and the analysis thereof is given 

the term pharmacogenetics. The essential role of pharmacogenetics has already been 

documented in virological and oncology research scenarios (Mayor, 2007). Another related 

area is that of toxicological research where the changes in the genetic profiles of 

individuals can be monitored on exposure to the toxic elements under investigation. The 

terms toxicogenomics and systems toxicology have been coined to draw attention to this 

new field. There has been such a flood of data in the field of expression profiling that a 

specially designed database has been set-up by the FDA (Food and Drug Administration 

National Center for Toxicological Research, USA) to manage the data generation (Tong et 

ai. , 2003). 
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A new aspect that is being developed in the field of expression profiling is protein 

micro array technology. One of he advantages of utilising protein microarrays is that one 

can study protein-protein interactions. (Hall et al., 2007). 

7.1.5. Literature survey 

The molecular mechanisms underlying the pathogenesis of Duchenne muscular dystrophy 

(DMD) and the milder allelic form, Becker muscular dystrophy (BMD) have become the 

focus of attention. Internationally there has been a move towards finding clues to elucidate 

the molecular signatures that make DMD unique from other muscular dystrophies. Much 

time and effort have been invested in trying to find those genes that are differentially 

expressed in dystrophic tissue instead of maintaining their inactivated form as is the case in 

normal individuals. It is anticipated that gene profiling using microarray analysis will 

unveil the regulatory mechanisms that playa key role in effecting the differential 

expression of specific genes in dystrophic tissues. Once these genes have been identified 

their functional attributes in different tissues can be assessed. 

The first paper to have provided an in-depth profile of the pathophysiological cascade of 

events that take place in two types of muscular dystrophies using the Affymetrix 

HuGeneFL high-density oligonucleotide array system (~6,000 full-length genes) was 

undertaken by Chen et al. (2000). 

In an attempt to reduce the parameters that are affected in a study of this nature, the author 

declared that they limited the number of variables in the study to ensure that the outcome 

could be accepted. This was done by pooling RNA samples from different patients that 
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were approximately age matched from each ofthe three cohorts, which included an u­

sarcoglycan group, a dystrophinopathy group and a control group. By implementing such a 

strategy they ensured that the primary biochemical defect remained constant. This is an 

original approach that has proven to be successful in providing data in an area where it was 

lacking, however there is still the problem of different patients having their own genetic 

background which is a bias that is difficult to remove completely when performing data 

analyses. 

From 2001 to the present time, many studies have focussed on mapping the molecular 

signatures that underlie the disease processes in dystrophinopathies. In 2001 , Tkatchenko 

et al. provided the first gene expression report using a eDNA microarray. Apart from those 

genes that were previously reported to be dysregulated in DMD muscle (Chen et al. 2000) , 

of interest was the unexpected result of finding a downregulation of titin expression in 

DMD patients that confirmed using Northern blotting. The authors speculated that specific 

alterations may occur in DMD muscle with respect to the expression status oftitin. 

In 2002, Haslett et al. embarked on a study to compare 12 quadriceps samples from DMD 

patients and 12 normal control skeletal muscle tissue samples using the Affymetrix HG­

U95Av2 arrays containing 12,500 known genes and full-length expressed sequence tags 

(ESTs). This study claimed to be different from the Chen et al. (2000) study as there was 

no pooling of the RNA samples and it was noted that a more elaborate and statistical 

analysis was included with two methods being employed. An important finding in this 

study was that more genes were up-regulated than down-regulated in DMD, which has 

been a consistent finding in those groups that worked on the mdx mouse model (Tseng et 

al. , 2002; Porter et al. 2002). The mdx mouse model is not an ideal one for DMD since the 
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molecular circuitry involved in producing muscle pathology and clinical disease 

manifestations varies between the two species. Rouger et ai., (2002) also found that 

alterations to other genes on account of dystrophin deficiency are dissimilar between 

human and mouse (Rouger et ai., 2002), however mdx still provides important data relating 

to muscle fibre regeneration pathways. A caveat in the Haslett study (Haslett et ai., 2002a, 

Haslett et ai., 2002b) was the lack of clinical details for DMD affected males and the 

control individuals. Owing to this, it would be difficult to assess whether the data was in 

any way skewed by the varying ages of the individuals at the time of biopsy. 

In 2002, Bakay et ai. conducted a study aimed to provide a transcriptome for DMD and 

non-dystrophic, normal muscle. The four study categories included two dystrophinopathy 

groups comprising 10 samples and two non-dystrophic groups consisting of 8 samples 

which were subsequently pooled. This extensive study utilised the Affymetrix arrays 

together with a custom designed "MuscleChip" specific for human skeletal muscle (Bakay 

et ai., 2002), which collectively incorporated six different types of microarrays. The 

usefulness of the study was further augmented by the data being made publicly available 

on the following website http://microarray.cnmcresearch.org.This study served to improve 

on the expression status data ofDMD patients that was previously reported (Chen et ai., 

2000) by increasing the dataset to -65,000 as opposed to the 5,600 microarray resource. 

On comparison ofDMD affected to unaffected tissue using stringent statistical analyses, 

three times more genes were found to be over-expressed in DMD affected muscle than 

normals, in keeping with mdx mouse model findings (Tseng et ai., 2002; Porter et ai. 

2002). A new finding using cluster analysis revealed that there were genes specifically 

expressed in males that were not detected in the female group of patients. Even though the 

data is impressive owing to the amount of RNA samples required for Affymetrix analysis, 
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the samples had to once again be pooled as was the case in a previous paper by the same 

group (Chen et al., 2000). 

In 2003 Noguchi et al. designed a eDNA microarray composed of>4,000 genes and ESTs 

that were exclusively expressed in skeletal muscle. The study was considered unique as 

tissue samples were not pooled and the pathophysiological changes in each patient was 

mapped and compared to one another. The authors succeeded in correlating histological 

changes with the molecular alterations observed on gene expression analysis bringing us a 

step further in unravelling the mechanisms involved in pathogenesis. 

To date, there have been no studies comparing different muscle groups in the same DMD 

affected patient. There has been one study by Kang et al. (2005), where four different 

muscle groups were compared using autopsy samples from individuals that had no signs of 

muscular dystrophy at the time of death. The study showed that individuality, age and 

muscle type significantly influenced gene expression differences suggesting that gene 

expression is very much influenced by a person's health at a given time. The age of an 

individual also reflected the state of the muscle and other tissues, which was confirmed by 

the adipose tissue that was observed in the muscle of geriatric group of patients. Even 

though the authors have highlighted some interesting and important findings, these results 

cannot be directly compared to biopsy samples as the samples were taken from autopsy 

patients. 

In an attempt to understand why the regenerative process in DMD patients is so inefficient 

even though satellite cells are present, Sterrenburg et al. (2006) conducted cell culture 

studies on normal and DMD myoblasts at the activation and differentiation stages. One of 
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the key findings related to the over-expression of aquaporin 1 that signifies the active 

regenerative state in DMD and bone morphogenetic protein 4 (BMP4), which is known to 

inhibit differentiation of myoblasts into myotubes. Another significant finding was the 

reduction of sarcomeric proteins following the expression of dystrophin, which is thought 

to contribute to the instability of the DAGC. The other reduction noted was that of 

fibroblast growth factor 1, which is responsible for recruiting satellite cells for 

proliferation. Such a finding is significant as it explains the reduced proliferative capacity 

of myoblasts and why the regenerative process in DMD is flawed even though satellite 

cells are in the vicinity. 

7.1.6. Reason for embarking on the study 

At the time that this study was undertaken there was a gap in the literature with respect to 

gene profiling experiments on Duchenne muscular dystrophy where the same patient has 

been used to study and elucidate the pathogenesis in different tissues. Previous studies that 

focussed on generating pathogenesis data for DMD used either pooled samples from 

different dystrophinopathy patients (Chen et al. 2000) or a comparison was made between 

DMD affected and normal patients (Haslett et at. , 2002b). 

We had a pool ofDMD biopsy samples at the Neuroscience laboratory at IALCH, Durban, 

South Africa and we therefore attempted to answer some questions that would assist in the 

current understanding of DMD pathogenesis. An area of particular interest was the 

difference in size and strength seen in two muscle groups, the calf and either the biceps or 

the quadriceps muscles in the same dystrophinopathy affected patient. As is often seen in 

dystrophinopathy patients, the calf muscle remains invariably strong whereas the biceps / 
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quadriceps muscles become progressively weaker even though immunohistochemical 

analyses have revealed no dystrophin protein in either muscle group. 

The use of two biopsy samples from the same patient as a comparison is unique as no other 

study of this nature has been performed using microarray analysis. It ensures no genetic 

variability therefore an unbiased study could be performed. Therefore using the same 

patient is a useful strategy as the genetic variability is completely removed, which is not 

the case when comparative studies are done between normal and diseased tissue. The 

approach of using the same patient and comparing different tissue groups had not been 

explored at the time ofthe study and it is bound to yield promising and definitive results as 

more large scale analyses are undertaken. 

In 2006, there was a study conducted by Zhang et ai., where the same limb girdle muscular 

dystrophy patient was used to show differential expression between different muscles. 

However the authors utilised differential display RT-PCR, which was a completely 

different approach from microarray analysis. Further to this, the study was performed on 

muscle tissues of a different disease (LGMD) from Duchenne muscular dystrophy thus no 

comparisons could be made with other studies where normal and diseased tissues in DMD 

patients were compared. The authors (Zhang et ai., 2006) did however attempt to compare 

their results with previous DMD related studies and found no correlation with the two sets 

of data. This clearly emphasises the need for disease specific studies to be performed as the 

molecular mechanisms that regulate the pathogenesis in different diseases varies. 

Our study initially utilised spotted oligonucleotide arrays to detect differential expression 

between different muscle groups in the same dystrophinopathy patient. Thereafter the 
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Illumina beadchips were incorporated into the study so that a comparison could be made 

between the spotted oligonucleotide arrays and the Illumina beadchips. The data was then 

compared to data obtained from a previous study performed at Professor Eric Hoffman's 

laboratory (Chen et ai., 2000). In this study pooled samples from DMD patients were 

compared to normal patients' biopsy samples (See "literature survey" above for more 

details). 

The quantitative real-time PCR in our study focussed on a gene that is as yet not well 

characterised. The gene, adlican was found to be dysregulated during the micro array 

analysis therefore the author thought it would be interesting to try and unravel some of the 

properties of this gene by performing gene expression analysis on dystrophinopathy and 

polymyositis patients. In so doing, one could speculate about the role that adlican plays in 

diseased cells / tissues in different neuromuscular diseases. 

7.2 AIMS AND OBJECTIVES. 

(i) To perform gene profiling analysis on double skeletal muscle biopsy samples 

from the same dystrophinopathy affected patient using spotted oligonucleotide 

arrays. 

(ii) Determine whether there were differences in the dysregulated genes between 

the two muscle groups using microarrays. 

(iii) Compare data between spotted oligonucleotide arrays and the Illumina 

beadchips. 

(iv) Unravel the properties of adlican and attempt to understand the gene's role in 

the disease process with real-time PCR using the LightCycler 2. 
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7.3 MATERIALS AND METHODS 

Muscle tissue samples were stored in RNAlater (Ambion) immediately after the biopsies 

were taken. This RNA protectant preserved the biopsies for future use and when they were 

needed. 

7.3.1 Patient database 

Table 30: Database of patients included in the gene profiling analysis part of the study. 

I DNA number 

I 
Biopsy 

I 
Surname, 

I 
Gender 

I 
Age 

I number Initials 

I 26 I 19 / 2003 I Z, 8 1M i 18 

I 42 I 06/2006 1 M, R 1M I 12 

I 43 I 03 / 2006 1 8, V 1M I 14 

I 63 I 23 / 2004 I 8, N I F I 25 

Three males and a female manifesting carrier agreed to have double biopsies performed. 

7.3.2 Tissue homogenisation 

Two methods were assessed for optimal tissue homogenisation. The first used the 

MagnaLyser tissue homogenising instrument from Roche. The second included the use of 

the Ultra-Thurrax T25 homogenising tool. All muscle tissue samples were always stored 

on dry ice and minimally handled to prevent protease degradation. 

7.3.2.1 MagNA Lyser (Roche) 

The procedure followed was as per manufacturer's instructions (Roche). 
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7.3.2.2 Ultra-Thurrax T25 (Janke & Kunkel IKA-Labortechnik) 

• The procedure used in the homogenisation was the same as detailed in 4.8.2, of 

Chapter 4. Amendments to the protocol are indicated below. 

• The instrument used for the homogenisation procedure was the Ultra-Thurrax 

(Janke & Kunkel IKA-Labortechnik). 

• The instrument was placed into a 0.1 M NaOH solution for 30 minutes to clean the 

probe prior to use. It was further cleaned in 100% ethanol using 3 x 20 second 

bursts at full speed (black setting). This was followed by 3 x 20 second bursts at 

full speed in autoclaved DEPC-treated water. 

• A 1,000 III volume of RNA-Bee (Tel-Test, USA) was added to the sample per 50 

mg of tissue, instead of Trizol LS reagent. 

• Each sample was homogenised for 2 x 30 seconds at low speed (yellow) using the 

homogenising tool. 

• This step was repeated if tissue remnants were visible. 

7.3.3 RNA isolation using RNA-Bee 

The reagent used in the RNA extraction procedure was called RNA-Bee (Tel-test, USA). 

This reagent is similar to Trizol (Invitrogen) reagent. The active ingredient guanidinium 

isothiocyanate is used by both companies. The same procedure was undertaken as outlined 

in 4.8.3 of Chapter 4. Amendments to the protocol are presented below. 

• All centrifugation were performed at 13,000 rpm (Biofuge A, Heraeus Sepatech) 

for at 4°C. 
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Note. Those samples that were homogenised using the MagnaLyser took much longer to 

resuspend in DEPC treated water than those that were homogenised using the Ultra­

Thurrax. 

7.3.4 RNA purification using the RNeasy mini clean-up kit (Qiagen) 

The procedure was undertaken as shown in the manufacturer's handbook. The actual steps 

undertaken are also outlined in 4.8.3.2 of Chapter 4. 

7.3.5 RNA quantification using the Nanodrop ND-IOOO 

The same procedure was followed as was outlined in Chapter 6 (MLP A) of this thesis. The 

only amendment to the protocol was as follows: 

• The spectrophotometer was initialised by placing a one micro litre volume of 

nuclease free water onto the lower measurement pedestal of the instrument. 

• The "RNA" dialog box was chosen from the software . 

• A 1.2 )ll volume of RNA sample was placed onto the lower measurement pedestal 

of the Nanodrop. 

All other aspects of the protocol remained the same. 

7.3.6 Bioanalyser Lab-on-a-chip detection of total RNA quality and quantity 

The RNA Nano kit was used to measure the quality and quantity of RNA samples prior to 

amplification and hybidisation reactions. The quality and quantity is measured to ensure 

that no degraded samples are used in the microarray experiments as this would confound 
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the results. Further to this, there has to be sufficient RNA sample for the experiments to 

yield useful results. Prior to undertaking the procedure, a new chips for 12 samples was 

removed from the storage cupboard. An aliquot ofthe RNA ladder was removed from -

80°C and denatured at n oc for two minutes using a PCR machine. The machine 

electrodes must be decontaminated prior to each run. 

7.3.6.1 Decontaminating electrodes 

The procedure followed was as outlined in the manufacturer' s handbook (Agilent) . 

7.3.6.2 Preparation and measurement of samples 

The procedure followed was as outlined in the manufacturer's handbook (Agilent). 

The aim was to work quickly and efficiently as it was important that the chip be 

electrophoresed on the bioanalyser within five minutes of being prepared and vortexed. If 

the procedure was not performed during this time, the reagents might evaporate thus 

leading to poor results since the volumes are very small to start with. Therefore all 

instrument preparations were completed before the chip preparation was undertaken. This 

included starting up the instrument as well as initiating the Agilent 2100 biosizing 

software. Following the software initialisation, the RNA-eukaryotic total RNA Nano assay 

was chosen. 

7.3.6.3 RNA 6000 Nano assay expected results 

• After the run has been completed, the results should be checked and verified. A run 
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takes approximately 30 minutes for 12 samples. 

• The ladder should have six well resolved RNA peaks and one marker peak. The 

location of the peaks is important so as to correctly detect the ribosomal RNA 

bands from each sample. 

• Each sample should have two ribosomal peaks (18 S rRNA and 28 S rRNA) and 

one marker peak. 

• The reproducibility of the samples should be tested at the beginning of a sample 

batch. If the reproducibility is poor or if the ladder is not properly resolved and 

produces fewer peaks, it might be due to the use of a degraded ladder or the dye gel 

matrix being too old and unusable. 

• An electropherogram, a gel image and a tabulated format was provided for each 

sample run. 

7.3.7 RNA amplification using the MessageAmpTM aRNA kit (Amhion) for spotted 

oligonucleotide arrays 

This kit was designed especially for the amplification of RNA that would be used in 

microarray analysis. 

The procedure followed was as per manufacturer' s instructions. 

Amendments to the protocol are shown below: 

• A spike mix (AA3 or AA4) was added at a 1:10 dilution to the samples. For each 

quadriceps or biceps muscle sample, a 1.0 III volume of AA3 was added. This 

served as the muscle that was severely affected. For each calf muscle sample, a 1 III 

volume of AA4 was added. This muscle served as the less affected muscle. 
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7.3.8 In-vitro transcription in the presence of aminoallyl UTP for spotted 

oligonucleotide arrays 

• Following the eDNA synthesis using the MessageAmpTM kit (Ambion), to the 

15.2 ,.tI double stranded eDNA was added 4 III T7 ATP, 4 III T7 CTP, 4 III T7 GTP 

2.4 III T7 UTP, 2.4 III T7 aminoallyl UTP (Ambion), 4 III T7 10 x RT buffer and 4 

III T7 enzyme mix. The 10 x R T buffer was left at room temperature prior to use as 

it precipitates on ice. 

• The above mixture was incubated at 37°C for nine hours in a thermal cycler block. 

• Following the incubation, the samples were placed on ice. To each sample was 

added 2 III of DNase I and it was incubated at 37°C for 30 minutes. 

7.3.9 Amplified RNA (aRNA) purification using the MessageAmpTM kit for spotted 

oligonucleotide arrays 

The procedure followed was as per manufacturer's instructions. 

7.3.10 Hybridisation scheme for spotted oligonucleotide micro arrays 

For the two-colour spotted oligonucleotide arrays, two arrays per patient were included as 

is shown in the table below. The array utilised was taken from the "Sigma-Compugen 

human 19K 60-mer oligonucleotide collection". A single spotting approach was adopted 

by the LGTC (Lei den Genome Technology Center) and poly-L-lysine coated slides were 

used. 
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Table 31: Table showing the dye-swap experimental scheme that was followed with the 

relationship between the biopsy number, muscle type and the fluorescent label outlined. 

I Sample I 
Biopsy number 

I 
Muscle type 

I 
Microarray slide 

number number 

I I Cy3 I CyS I Cy3 I CyS I 
I 1 I 06A/2005 I 0 6B/200 5 I Calf I b iceps I KD_huma n # 1 7 

1 2 I 06B/2005 I 06A/200 5 I Bic eps I c a lf I KD_huma n # 1 8 

I 3 

I I 23B/2 0 04 I Biceps I calf I KD_human#1 9 I 23A/200 4 

I 4 
I 

I 23A/ 2004 I Calf I b iceps I KD_huma n #16 23B/2004 

i 5 I 1 9A/2003 I 1 9B/2003 I Qu a d I c a lf I KD_human#1 2 I 

I 6 I 1 9B/2003 I 1 9A/2003 I Ca lf I qua d I KD_ h u ma n#13 

I 7 I 03A/2005 I 03 B/200 5 I Bi cep s I calf I KD _ human#O 7 
I 8 I I 03A/ 2005 I Ca lf I biceps I KD_human# 85 
, 03 B/200 S 

7.3.11 Labelling eDNA with amine-reactive reagent for spotted oligonucleotide 

arrays 

The procedure was carried out as outlined in the Amersham handbook (Amersham 

Biosciences, 2002). 

7.3.12 Slide pre-hybridisation for spotted oligonucleotide arrays 

The procedure was carried out as outlined in the Amersham handbook (Amersham 

Biosciences, 2002). 

7.3.13 Hybridisation of sample mixture to expression array in the hybridisation 

station 

The procedure was carried out as outlined in the handbook (Amersham Biosciences, 2002). 
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7.3.14 Post-hybridisation washing for spotted oligonucleotide arrays 

The procedure was carried out as outlined in the Amersham handbook (Amersham 

Biosciences, 2002). 

7.3.15 Cleaning apparatus, module, rubber "0" rings and white screws 

The procedure followed was as outlined in the instrument manual (GeneTAC hybridisation 

station, Genomic Solutions). 

7.3.16 Scanning spotted oligonucleotide slides and data extraction on the Agilent 

system 

The procedure was carried out as outlined in the Agilent handbook. 

7.3.17 Manual visualisation of spotted oligonucleotide array data and analysis using 

GenePix 5.1 

The procedure was carried out as outlined in the GenePix 5.1 manual. 

7.3.18 Rosetta resolver 

The methodology followed was as per manufacturer's instructions. 

Table 32: Table showing the sample number and sample type used for analysis in Rosetta 

resolver. 

I Sample nwnber I Patient's name I Biopsy nwnber I Muscle type 
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I 1 1M, R I 06A/ 2 0 05 I Calf 

I 2 1M, R I 06B/200 5 
, 

Biceps 

I 3 I s, N I 23A/2 004 I Biceps 

I 4 I s, N I 23B/ 20 0 4 I Calf 

I 5 I z, s I 19A/2 003 I Quadrice ps 

I 6 I z , s I 19B/2 003 I Calf 

I 7 I s, V I 03A/ 20 0 5 I Biceps 

I 8 I s, V I 03B/2 005 I Calf 

7.3.19 Analysis using "R" 

• "R" is a microarray analysis program where macros and other algorithms are 

written to achieve the desired analysis for a data set. 

• "R" version 2.0.1 was downloaded and installed from the website 

www.bioconductor.org.This is the website of the developers. To download the 

software, click on "base" and download "rwzOO l.exe. Choose setup 1 from the 

executable file. 

• Drop down menus can be used to perform a few tasks. 

• The package contains algorithms that people have designed and these contain 

signettes, such as QC scripts and normalis. 

• Instructions for the use of "R" are explained in the website. Such features as 

"GoTools", "limma", "multi test" and "respos tool" are included. 

• A series of exercises are set up for first time users. 

• For practical course go to http://dial.liacs.nl.courses/.This would take one to the 

QC practical, which is a quality control exercise for 2 colour micro arrays in "R". 

• The first task would be to create a directory where all files are housed as "R" can 

only read and write to one directory. 

• An example of what can be done is as follows: on the "R' console type 

> library(marray) [to load] 
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• The directory should be changed to the data file being used, which is also called the 

working directory, I:/>everyone/Kumari/microarraylR. 

• All previous commands that are included are still available to the user by means of 

the arrow keys. 

• To read the gal. file, type 

galinfo +-- read galfile 

sigmahuman.layout +-- galinfolayout sigmahuman.gnomes, where gnomes will be 

the gene identifiers. In this case the accession numbers. 

• Background correction can also be done using "R'. Normalisation is done by 

determining the quality control by using "limma". One can do both pre­

normalisation and post-normalisation plots to get a idea ofthe data quality. 

7.3.20 Spotted oligonucleotides: analysis of differential expression for each patient 

The samples were processed and normalised with Rosetta' s error models. A dye-swap was 

performed therefore two arrays per patient were combined. P-values were calculated using 

Rosetta's error model. A P-value of <lE-6 was significant, which is equivalent to the 

Bonferroni method for multiple testing. The Bonferroni method is highly stringent, 

however owing to the small replicate size of two per group, it is essential that stringency be 

high. 

7.3.21 Illumina bead arrays 

This part of the work was performed by the laboratory technician at the Leiden genome 

technology centre under the supervision of Dr. P. 't Hoen. The RNA that was previously 
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extracted and purified by the author (see 7.3.2, 7.3.3, 7.3.4, 7.3.5 above) was used in these 

experiments. Amplification reactions and subsequent biotin-labelling for each sample was 

performed using the Illumina RNA amplification kit (Ambion) according to the 

manufacturer's instructions as outlined in the handbook. 

7.3.21.1 Arrays used 

These were one-colour chips, where one sample was used per array. Many arrays per 

sample were therefore obtained. The "Illumina Human Sentrix-6 Beadchip" arrays were 

used. These were 45K 50-mer oligonucleotides that are attached to beads. For each gene 

being represented, an average of 30-50 beads is used. Since a single chip was made up of 6 

separate but identical arrays it was possible to load 6 samples from positions A-F. 

7.3.21.2 Hybridisation scheme 

Table 33: Table outlining the hybridisation profile for each sample on the IDumina Sentrix 

human-6 expression bead chip system. 

I Chip Barcode I position I Array 
Batch 
~I Patient 

Day 
I severity I Muscle I Sample 

I 1412091107 D I 1412091107 1 m I 1 I 6 I Low I 6A I Calf 

I 1412091107_E I 1412091107 I E1 I 1 I 6 I High I 6B I Biceps 

I 1412091107 F 1412091107 I F1 I 1 I 3 I High 1 3A I Biceps -
I 1412091105_D 1412091105 I D1 I 1 I 3 I Low I 3B I Calf 

I 1508893088_A 1508893088 I A2 I 2 I 6 I Low I 6A I Calf 

I 1508893088_B 1508893088 I B2 I 2 I 6 I High I 6B I Biceps 

I 1508893088_C 1508893088 I C2 I 2 I 6 I Low I 6A I Calf 

I 1508893088_D 1508893088 I D2 I 2 I 23 I High I 23A I Biceps 

I 1508893088_E I 1508893088 I E2 I 2 I 6 I Low 1 6A I Calf 

I 1508893089_A I 1508893089 I A2 I 2 23 I High I 23A I Biceps 

I 1508893089_B I 1508893089 I B2 I 2 23 Low I 23B I Calf 

I 1508893089_C I 1508893089 I C2 I 2 19 High 1 19A I Quad 

I 1508893089_D I 1508893089 I D2 I 2 19 Low I 19B I Calf 

I 1508893089 E 1 1508893089 - I E2 I 2 3 High 1 3A I Biceps , I 1508893089 1508893089 F I F2 - I 2 3 Low I 3B I Calf 

I I 1508893080 1508893080 A I A2 I 3 3 High I 3A I Biceps -
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I 1508893080_B I 1508893080 I B2 I 3 I 3 I Low I 3B I Calf 

I 1508893080_C I 1508893080 I C2 I 3 I 23 I High 1 23A I Biceps 

I 1508893080_D I 1508893080 I D2 I 3 I 23 I Low I 23B I Calf 

I 1508893080_E I 1508893080 I E2 I 3 I 19 I High 1 19A I Quad 

I 1508893080_F I 1508893080 I F2 -r I 19 I Low 1 19B I Calf 

1508893086_A I 1508893086 I A2 I 3 I 19 I High 1 19A I Quad 

1508893086 B I 1508893086 I B2 I 3 I 19 Low 1 19B I Calf 

1508893086_C I 1508893086 I C2 I 3 I 23 Low I 23B I Calf 

1508893086 D I 1508893086 I D2 I 3 I 23 High I 23A I Biceps 

1508893086 E I 1508893086 I E2 I 3 I 23 High I 23A I Biceps 

1508893086 F I 1508893086 I F2 I 3 I 23 Low I 23B I Calf 

1412091107 D I 1412091107 I D1 I 1 I 6 Low I 6A I Calf 

7.3.21.3 Analysis of differential expression 

Sample data was subjected to quantile normalisation using "R", with no background 

correction being performed. Even though a different wash protocol was performed on day 

one hybridisation samples compared to days two and three, the data from day one was 

included in the analysis in order to ensure an adequate number of sample replicates were 

included. The Benjamin-Hochberg multiple testing was used, which creates adjusted p_ 

values. These are interpreted as the "lowest false discovery rate (FDR) at which the gene is 

still significant". To establish differential gene expression, an FDR of 0.05 was used as the 

cut-off value. This equates to 5% false positives in a list of differentially expressed genes. 

An FDR of 0.1 was used to detect the overlap between biopsy samples 6, 19 and 23. 

7.3.22 Confirmatory quantitative PCR 

One of the genes, adlican or MXRA5, a matrix remodelling precursor protein was 

subjected to quantitative real-time PCR using the LightCycler 2. This protein appears to 

playa role in the pathological states of diseases such as muscular dystrophy and 

inflammatory conditions. Comparisons in gene expression were tested in dystrophinopathy 
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and the inflammatory condition, polymyositis. Probes obtained from the universal probe 

library were used to detect the product with gene specific primers. This gene expression 

was compared in the following ways: 

1. Dystrophinopathy patients' double biopsy samples were compared. 

2. Duchenne and Becker muscular dystrophy patients' samples were compared. 

2. Polymyositis patients' biopsy samples were compared to the samples from 

dystrophinopathy patients both DMD and BMD patients. 

7.3.22.1 Biopsy tissue homogenisation 

Muscle biopsy samples that were cut into tiny pieces and preserved using RNAlater were 

homogenised when required. The same procedure for homogenisation was followed as 

previously outlined in 4.8.2 of Chapter 4. The Polytron Kinematica AG PT 1200 with six 

speeds served as the homogenising tool. 

7.3.22.2 RNA extractions using Trizol LS 

RNA was extracted from homogenised samples using the Trizol LS reagent (Invitrogen). 

The same procedure was followed as outlined in 4.8.3.1 of Chapter 4. Subsequent to the 

RNA extraction using Trizol LS reagent the protocol from the clean-up section of the 

RNeasy fibrous tissue mini kit (Qiagen) was followed. 

7.3.22.3 eDNA preparation and RT-PCR using ImProm-IFM RT (Promega) 

• Sterile nuclease free tubes and reagents were used in the preparation of the eDNA. 
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• All master mix preparations were performed in a biohazard laminar flow bench that 

was wiped down with RNAZap prior to undertaking the procedure. 

• The initial amount of RNA added to each reaction tube was diluted to 50 ng/Ill and 

a 3 III volume was included per reaction, therefore 150 ng was included per 

reaction. 

.,-

• Two methods were used in the preparation of the RNA target and the production of 

the eDNA. These included the use of (i) random hexamers (Roche) and (ii) gene 

specific primers (Adlican primers). 

• For the two types of reactions outlined in the tables below, the same samples were 

used so that a comparison could be made between the two types of reaction 

methods. 

Table 34: Table showing the inclusion of random hexamers in the initial reaction for the 

preparation of eDNA. 

I Reagent I Concentration I Volume <Ill) 
I RNA template I Up to 1 Ilg I 3 . 0 ...-I Random 

1

20 pMol I 0.5 Ilg 11. 0 hexanucleotides 

I Nuclease free water I 11. 0 
I Final volume I - I 5 . 0 

Table 35: Table showing the inclusion of gene specific primers in the initial cDNA 

preparation reaction. 

Reagent Concentration .... Volume <Ill) 
I RNA template I I Up to 1 Ilg 3 . 0 

r7A~dl~1~'c-a-n~fo-r-w-a-r~d-p-r-i~m-e-r--I I I r ~~~--~~~~-, 
20 pMol 0.5 Ilg 1.0 

I Adlican reverse primer I Ir:--::-~-~~~~-1.0 
I Nuclease free water I I 
r=~--~------___ 0 I Final volume r~-~-----r----:----~----I 5 . 0 

• Samples were incubated at 70°C using a thermocycler for 5 minutes . 

• Following incubation, the samples were placed on a hold cycle at 4°C using the 

')')() 
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thennocycler and subsequently chilled on ice until the master mix for the RT 

reaction was ready. 

Table 36: Reagents included in the reverse transcriptase reaction mixture using the 

ImProm-II RT enzyme. 

I Reagent I Concentration I Volume (~l) 

I Nuclease free water I I 5.6 

I ImProm- II 5 x reaction 

I 
1 x 

1
4

.
0 

buffer 

I MgC1 2 25 mM I 3 mM I 2 . 4 

I dNTPs (10 mM ) I 0 . 5 mM 1 1. 0 

I Recombinant RNAsin® I 1 
U/ ~l 

1
20

.
0 

ribonuclease inhibitor 

I RT enzyme (vortex 

I I 1.0 
mixture and add enzyme) 

1 Final volume I I 15 . 0 

• The solution was gently vortexed to mix and 5 Jll of RNA template was added 

to the reaction mixture. The final volume was 20 Jll. 

• Only one tube was opened at any given time to avoid any cross-contamination 

between samples. 

• The universal probe library (Roche) was used to design probes that suited the 

gene specific primers for adlican. The adlican primers were designed using the 

Primer express software by a Roche applications specialist. 

• The reverse transcription was perfonned as per manufacturer's instructions 

(Roche). 

Table 37: Master mix reagents used in the preparation of the amplification reaction for the 

LightCycler 2. 

Reagent 

I Nuclease free water 

I Primers + Probe [10 xl 
1 5 x Master mix 

, eDNA 

I Final volume 

Volume (~l) 

11.0 

2.0 

4 . 0 

3.0 

20.0 
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• Following the master mix addition, the template was added to each glass capillary. 

Each capillary has a number and the template being added to each capillary was 

noted. 

• Immediately following the addition of template to the master mix, a cap was 

securely fastened to each glass capillary using the capping tool. This device was 

used to place the stopper into the glass capillary to ensure no cross contamination 

occurred between samples. Once all samples were added, the adaptors containing 

the glass capillaries were centrifuged using a regular bench top centrifuge at 

700 x g for 5 seconds. The adaptors are made such that they fit securely into a 

regular bench top centrifuge. 

• Each capillary was then placed into the LightCycler 2 carousel in the appropriate 

order. 

Table 38: Programs included in the amplification of the adlican gene using the UPL and 

TaqMan hydrolysis probe detection system on the LightCycler 2. 

l Program name : Pre-inc~on 

Cycle~ 1 1 C:alYSiS 
mode 

I None II I 
Target Hold Slope Sec target step step Acquisit 
(Oe) (hh:nun:ss) (Oe/s) (Oe) size delay ion mode 

_(Oe) (cycles) 

1 

'--- - -- '--- - -
I 95 1 00:10:00 I 20 I 0 I 0 I 0 I None 
r Program name: Amp-lif icat.iQn 

-~ 
1 

Cycle~ 1 45 Analysis I Quantification II I mode 
Target Hold Slope Sec target step step Acquisit 
(Oe) (hh:nun:ss) (Oe/s) (Oe) size delay ion mode 

'-- L- _ ..... ee) ..Jcyc~,--

I 95 1 00:00:10 I 20 I 0 I 0 I 0 I None 
I 60 I 00:00:20 I 20 I 0 I 0 I 0 I None 
I 72 I 00:00 :20 I 20 I 0 I 0 I 0 I Single 
L prog~ame: Cooting 1 

Cycles I 1 
Analysis I None II I - mode 

Target Hold Slope Sec target step step Acquisit 
(Oe) (hh:nun:ss) (Oe/s) (Oe) size delay ion mode 

'-- - ... - - ... ~e) .....Lcycles) 
"--I 40 I 00:00:30 I 20 I 0 I 0 I 0 I None 
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• The LightCycler software version used was LCS4.0.0.23. 

• Following the amplification, absolute quantification was performed and the channel 

used was 530 run. 

Note. The primers/probe mixture was reduced to 1 III per reaction in subsequent 

amplifications reactions. 

7.3.22.4 RT-PCR using Transcriptor reverse transcriptase (Roche) 

• The same procedure was followed as is outlined above in 7.3.21.3 for the 

preparation of the RNA target prior to reverse transcription. Random 

hexanucleotides were used in the RNA target preparation. The RNA + template 

mixture was incubated at 65°C for 10 minutes, which was the recommendation in 

• 

the package insert to denature the RNA secondary structures. This step differed 

slightly from the procedure in 7.3.21.3 where the RNA + template mixture was 

incubated at 70°C for 5 minutes. 

The mixture was composed of template, water and random primers, which 

collectively produced a volume of 13 Ill. A concentration of 300 ng per RNA 

samples was included, with 2 III of random hexamers being added. 

Table 39: Description of the components that were included in the reverse transcription 

reaction using transcriptor reagents. 

Reagent I Volume (~l) I Final concentration 

I 5 x Transcriptor RT 
reaction buffer 1 4 . 0 1 1 x 

I RNase inhibi tor I 0.5 I 20 U 

I dNTPs (10 mM) I 2.0 1 1 Mm 
I Transcriptor RT enzyme I 0.5 1 10 U 

I Final volume I 7.0 I 
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• Following the denaturation step, the reverse transcription procedure was undertaken 

(Table 39). 

• The contents were mixed well by vortexing. The tube was briefly spun down using 

a micro-centrifuge to collect the content at the bottom. 

• The 7 III master mix was added to the 13 III template + random hexamer mixture. 

The 20 III final volume was mixed well by pipetting. 

• The solution was incubated for 10 minutes at 25°C using a thermocycler. This was 

followed by a 30 minute incubation at 55°C. 

• The reverse transcriptase enzyme was inactivated by heating for 5 minutes at 85°C. 

• The tubes were immediately placed on ice. 

• The recommendation according to the package insert was that the reaction could be 

stored at 4°C for 1-2 hours or at -20°C for longer periods. We opted to use the 

eDNA immediately in a PCR reaction, which followed the same procedure as was 

outlined above in 7.3.21.3. 

7.4 RESULTS 

There were initially six samples that would have been included in the study. However, due 

to sample degradation the quality of the RNA was poor as was the purity in two pairs (calf 

and biceps muscle) of tissue samples. Sample degradation could have been attributed to the 

age of the samples as the biopsies were taken in 1996 and 1999 respectively. The samples 

were not preserved in a RNA protectant such as RNAlater. They were merely stored at _ 

80°C. 

Initially the homogenisation was carried out without the addition of yeast tRNA. However, 
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on running those samples that did not contain yeast tRNA in the centrifuge tube, 

degradation of the sample was evident. This was shown by the 28 S rRNA band being less 

intense than the 18 S rRNA band as is revealed in the figure below. For the next batch of 

samples, a 10 III volume of yeast tRNA (Sigma) at a concentration of 10 Ilg/1l1 was added 

to the sample tube prior to the homogenisation procedure. The yeast tRNA served as an 

additional substrate thereby reducing the amount of RNA degradation to the sample. 

7.4.1 Gel image comparing the Magnalyser instrument (Roche) and the Ultra-

Thurrax homogenising tool. 

With respect to the images below, the RNA high range (Fermentas) molecular weight 

marker, comprising eight bands was included in lane 1 of each gel that was 

electrophoresed. 

Sample 

Lane 

(A) 

Sample M C3a C3b 

Lane 

288 rRNA 

188 rRNA 

(8) 

288 rRNA 

188 rRNA 

Figure 76: Image showing the 28 Sand 18 S rRNA bands from control muscle tissue when 

tissue homogenisation was compared using the MagnaLyser instrument (A) and the Ultra­

Thurrax (B). 

The band sizes were as follows: 6,000; 4,000; 3,000; 2,000; 1,500; 1,000; 500; 200 bp. CI 

= control sample 1, C2a, control sample 2a, C2b, control sample 2b, C3a = control sample 
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C3a, C3b = control sample C3b. Image (A) compares the rRNA bands that were obtained 

when the MagnaLyser and the Ultra-Thurrax were used. Control sample Cl , illustrates the 

loss ofthe 28 S rRNA band when the Magnalyser (Roche) was used. Other individuals at 

the Department of Human and Clinical genetics research laboratory, Leiden University 

also had the same problem. Control samples C2a and C2b were homogenised using the 

Ultra-Thurrax. No tRNA was added to centrifuge tubes containing either tissue sample C2a 

or C2b. All other parameters remained the same as that of the samples that were subjected 

to homogenisation using the MagnaLyser. As is evident from the above image, the 28 S 

rRNA band in samples C2a and C2b were slightly degraded since the 28 S band is not 

twice as intense as the 18 S band. The reason for this could be attributed to not adding 

yeast tRNA to the sample tubes. The addition of the yeast tRNA served to provide another 

substrate that would also be subjected to protease degradation thereby reducing the 

degradation caused to the tissue sample. In effect this served to protect the tissue sample. 

Image (B) shows the 28 S rRNA band being twice as intense as the 18 S rRNA band, 

which suggests no sample degradation. In this case the Ultra-Thurrax was used to 

homogenise the sample and 10 III of yeast tRNA was added to the sample tube. This result 

revealed the usefulness of adding yeast tRNA as an additional substrate to be digested by 

degradation substances. For all subsequent tissue homogenisations, the Ultra-Thurrax was 

used and 10 III of yeast tRNA was added to the tube. The samples were kept on ice at all 

times to minimise protease degradation. 

7.4.2 RNA quantity and quality assessment using the Bioanalyser lab-on-a-chip. 

All samples to be included in the gene profiling aspect of the study had to be of high 
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quality and purity to ensure that the results obtained could be utilised in further 

bioinformatics and statistical analyses. This quality assessment was performed using the 

RNA 6000 Nano kit. Each sample was electrophoresed twice on the Bioanalyser to test the 

reproducibility of the instrument. For each batch of samples electrophoresed, the 

instrument produced a gel image, a graphical representation of the bands and a tabulated 

result. The area under the peak of the 28 S and 18 S rRNA bands was calculated. 

~ co co co co ~ co ~ 0 8 8 0 0 
Q; 0 0 0 0 0 

~ ~ a! '" '" ~ ~ a! Sample "0 ill < "0 m 
'" '" '" '" '" co ~ co co 
-' 0 0 0 0 0 0 0 

Lane 2 3 4 5 6 7 8 9 

--

- - -------
Figure 77: Gel image generated by the Bioanalyser software to illustrate the intensity of 

the rRNA bands and their corresponding position in relation to a known ladder with defined 

sizes. 

The images and table 40 illustrates that the reproducibility of the bioanalyser was good 

considering only 1 J..lI of sample was used. The 28 S rRNA band would normally need to be 

twice that of the 18 S rRNA band. This is a sign of good quality and pure RNA that is not 

degraded. Owing to this, we were confident of the results obtained and it would precisely 
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reflect the actual state of the genes as it would not be confounded by other factors such as 

sample degradation. 
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Figure 78: Graphical image showing peaks of the 18 Sand 28 S rRNA species obtained 

using the biceps muscle sample 03A12006(i) from patient S.V. as the representative sample. 
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Figure 79: Representative graph showing peaks of the 18 Sand 28 S rRNA species 

obtained using the calf muscle sample 03B/2006(i) from patient S.V. 

Since the samples from patients 19/1999 (Figure 80) and 06/1996 (Figure 81) had very low 

concentrations of RNA, the samples were excluded from the study. 
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Data interpretation could not have been done with poor quality RNA, especially since we 

would be looking for subtle gene expression changes. 

Table 40: Table demonstrating the reproducibility of the Bioanalyser when the same sample 

subjected to electrophoresis and analysis. 

Fragment I Name I Start_Time (sees) I End_Time (sees) I Area 1 %_of_total 
03A/2006(i) Area 

I 1 1 188 I 41. 05 I 42.75 I 7.99 I 3.63 

I 2 I 288 I 45.95 I 49.85 1 18.20 I 8 . 26 

I RNA Area 220.26 

I RNA Concentration(ng/ul) 253.56 

I rRNA Ratio [288 / 188] 2.28 

Fragment I" Start_Time (sees) End_Time (sees) I % of total -
03A/2006 Area 
(ii) 

I 1 I 188 I 41. 00 I 42.65 I 7.60 I 3.55 

1 

2 F 1 46.20 1
49

.
75 ~1 8.37 

I RNA Area 2l3.80 

I RNA Concentration (ng/ul) 246.12 

I rRNA Ratio [288 / 188] 2.36 
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Figure 80: Image showing a poor quality sample with a low RNA concentration. The 

sample (19/1999) is also degraded as is shown by the 18 S rRNA peak being larger than the 

28 S rRNA peak. 
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Figure 81: Graphical representation of an impure sample. The sample (06/1996, biceps) 

also shows degradation products in the form of multiple peaks, in close proximity to where 

the 18 S rRNA band would normally be present (green star). 

7.4.3 GenePix image of a scanned slide 

"A" shows the actual slide using the sample from patient 43 (Sibiya,V), "B" reveals the 

glyceraldehydes-3-phosphate dehydrogenase (GAPD-H)control spots, "e" shows a down-

regulated gene visualised as a green spot and "D" shows an up-regulated gene which is 

viewed as a red spot. 

The GAPD-H control region is easily visible as can be seen by the yellow spots at the top 

left of the slide. There are over 300 GAPD-H control spots on a single slide. 
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C: Downregulated: 

B: GAPD-H spots Cy3 
0: Upregul 

Cy5 

Figure 82: Representative image of a microarray slide that was viewed using the GenePix 

5.1 software. 

7.4.4 Normalised data from spotted oligonucleotide arrays 

For each patient, biceps 1 quadriceps and a calf muscle sample were compared. The graphs 

below show those genes that were unchanged, represented by blue (+), the down-regulated 

genes represented by green (+), the up-regulated gene represented by red (+) and a 

combination of the dysregulated genes, which are represented by grey (+). 

Interestingly, the data obtained for the patient with biopsy number 06/2005 showed many 

more dysregulated genes than the other patients. This is a 12 year old Indian South Mrican 

patient. He had enlarged calf muscles and had much pain and weakness in his upper arms 

and his legs were becoming progressively weaker. Hypertrophy was also noted in his 
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forearm flexors. This child appears to be severely affected, which may be attributed to the 

exon 45 deletion that was found on multiplex PCR and MLPA analysis. A single exon 

deletion is usually not common and DNA sequencing of the exon would have to be 

performed using a PCR product that was amplified using different primers, to confirm 

whether it is a single exon deletion or a single nucleotide polymorphism that is pathogenic. 

If the deletion were genuine, this would indicate an out-of-frame deletion hence the severe 

clinical symptoms. 
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Figure 83: Images showing scatter plots of normalised data for each patients' samples that 

were subjected to the spotted oligonucleotide array approach. 

The other three patients did not show as many dysregulated genes. This may be due to the 

less severe clinical manifestation of the disease. The DNA from patient 03/2005 showed a 
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deletion of exons 45-52 (out-of-frame) on multiplex PCR and deletion of exon 45-56 on 

MLP A analysis. The patient is a 14 year old Black South African. He showed marked 

wasting of proximal muscles and slight calf hypertrophy with normal strength in the calves 

being noted. 

The other male patient, whose biopsy number was 19/2003 showed a Becker muscular 

dystrophy phenotype. He was an 18 year old Black South African patient. He showed 

marked calf hypertrophy and forearm hypertrophy. Multiplex PCR on the patient's DNA 

sample revealed a 45-47 in-frame deletion hence the milder disease severity seen in this 

patient. The quadriceps muscle for the dystrophin 1 stain showed a mosaic pattern of 

staining, dystrophin 2 showed positive and a few negative fibres and dystrophin 3 showed 

positive and a few negative fibres. The calf muscle showed a mosaic pattern of staining for 

dystrophin 1, dystrophin 2 showed positive and a few negative fibres and dystrophin 3 

showed positive and a few negative fibres. 

The last patient was a 25 year old female Black South African, biopsy number 23/2004. 

She showed marked calf hypertrophy. She revealed that she has cramps in her calves and 

they were sore at times. She was mentally retarded. Proximal muscle weakness in lower 

limbs and wasting of the rhomboids, deltoid, supraspinatus, infraspinatus (left > right) and 

vastus medialis was found. The multiplex ligation-dependent probe amplification assay 

was performed on the DNA of this patient and no deletions or duplications were found. 

All patients appeared to have calf hypertrophy on clinical examination by the Neurologist 

at the Department of Neurology, Inkosi Albert Luthuli Central Hospital, Durban, South 
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Africa. They also showed very high serum creatine kinase values. The dystrophin stains of 

all the patients were abnormal. 

7.4.5 Student's t-test on all patients for spotted oligonucleotide arrays 

In the student's t-test statistical analysis method used, the calf muscle was compared to the 

biceps 1 quadriceps muscle for all patients. No multiple test correction was performed. The 

dysregulated genes are represented by blue (+) and those genes that remained unchanged 

are represented by grey (+). A P-value of <0.01 was considered significant. 
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Figure 84: Graphical representation of those genes that were dysregulated in all patients 

when the statistical analysis using the student's t-test was performed on all arrays. 

7.4.6 Trend plot of significant genes on all patients for spotted oligonucleotide 
arrays 

The trend plot below showed consistency between patients 0312005 and 06/2005 when the 

dysregulated genes were plotted. There was agreement with respect to the up or down 
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Figure 85: Graph showing the trend for all those 66 significant genes for all patients when 

compared to another. 

regulation of the gene when the "log-intensity" values were viewed, for example if a gene 

was over-expressed in patients 0312005 it was also over-expressed in patient 06/2005. 

However the results became more varied as the other two patients' samples (19/2003 and 

2312004) were incorporated into the comparison. The data used in the comparison were 

generated using Rosetta resolver. 

The similarity between the two DMD patients, 0312005 and 0612005 may have occurred 

because the same molecular signatures and regulatory processes are being activated in 

these two patients. The other two patients (1912003 and 2312004) have a more complex 

disease process because they exhibit milder signs, thus from a pathogenesis angle, other 

regulatory machinery may be activated. This implies that not just one but many signalling 

cascades may be involved in bringing about the phenotypic characteristics and 

pathophysiology seen in these patients. 
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7.4.7 Clustering of up and down regulated genes using Anova 

When hierarchical clustering was performed in order to categorise the genes that were up 

and down regulated, a fingerprint was created for 142 genes from those that were up-

regulated and for 106 for down-regulated genes. A literature based annotation of biological 

concepts was obtained (www.biosemantics.org). 

The genes that are up-regulated are measured as those that are higher expressed in biceps / 

quadriceps than in calf muscle. The genes that are down-regulated are those that are lower 

expressed in biceps / quadriceps than in calf muscle. 

Table 41: Table showing hierarchical clustering data using Anova for up and down-regulated 

genes found in all four dystrophinopathy patients. 

I Up-regulated genes I Down-regulated genes 

I Transcription factors I NADH-dependent 
oxidoreductases 

I Actins - stress fibers I Transcription factors 

I Homeodomain proteins I Homeodomain proteins 
(HOXC6, HOXCIO, Meisl) 

I Nucleolar proteins I Calcium release channels 

I Immediate-early proteins I Muscular dystrophies 
(CAPN3, DTNA, POMTl) 

I MAP kinases I Muscle-specific 
phosphotransferases 

I Collagens 
, 
I 

I Proteoglycans/ECM I 
I Heat-shock proteins I 

I 

I IGF binding I 

It was previously reported by Haslett et al. (2002b) that a significantly higher number of 

genes were up-regulated than down-regulated in DMD versus control samples. This also 

appeared to be the case in our study even though we were comparing the more affected 

biceps/ quadriceps muscle to the less affected hypertrophied calf muscle. On evaluation of 

the microarray data, it is evident that the molecular findings correlate positively with the 
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immunohistochemical observations on muscle biopsy. This association was also noted in 

the study by Haslett et al. (2002b). 

Up-regulation of the proteoglycans / ECM (extra-cellular matrix) genes and collagens in 

our microarray study affirms the already well-documented observation of connective tissue 

infiltration in the muscle fibres of affected patients using immunohistochemistry. This 

result is further cemented by the observation that no ECM proteins are down-regulated, an 

indication ofthe inflammatory process being active in dystrophic muscle. 

With respect to the muscular dystrophy related genes that were down-regulated in the 

biceps / quadriceps muscles, it is as yet unclear what the significance of this is. Calpains 

have been implicated in the pathophysiology of the muscular dystrophies and this may 

hold a clue to its down-regulation status. 

7.4.8 Projected comparison between our study and data from Chen et al. (2000). 

In 2000, Professor Eric Ho ffin an 's laboratory published a gene profiling paper where 

normal and diseased tissue samples were pooled and a comparison between the two was 

performed using the Affymetrix array system. The data from the study was made available 

on a website. Even though the data produced were from pooled samples, the data was 

extensive and included many useful outcomes. 

When the Benjamini-Hochberg adjustment for multiple testing was employed with 

p(severity) < 0.0.5, the following dysregulated gene values were obtained, 211 up-
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regulated genes and 243 down-regulated genes were obtained. All four patients were 

included for biceps/quadriceps vs. calf. 

Those genes that were concordant in both datasets amounted to 52 genes. The genes that 

were discordant amounted to 42 genes. Those that were up-regulated and significant in 

Anova in our study and up-regulated (> 1.3 fold) in DMD vs. normal in the Chen et al. 

(2000) study are shown below. 

In addition to this, several transcription factors (TAFI5, USF2, CEBPA, RNPSI, SAFB, 

MEISI, HOXC6) were down-regulated in biceps / quadriceps vs. calf but this was not so in 

DMD vs. healthy. 

Table 42: List of concordant and discordant genes obtained when a comparative analysis was 

performed between our study and that of Chen et al. (2000). 

I Concordant genes I Discordant genes 
Immediate early factors MAP kinase signalling 

(MAPKl, DUSPl, DUSP6, 
JAKl, GRB2, ILK) 

I Transcription factors immediate early 
proteins (ZFP36, EGRl) 

I ECM I ubiquitin (UBE2D2, UBC) 
I IGF binding proteins I NF-Kb 

I 
r;frmeObOX protein' 

(IRXS, MSXl, PRRXl), 
FZDl 

I some extracelluar 
matrix proteins. 

In a study by Kang et al. (2005), HOXC 1 0, also a transcription factor was found to be 

differentially expressed between quadriceps and gastrocnemius muscles. These 

comparisons were made between the muscles of autopsy patients who had no symptoms of 

muscular dystrophy at the time of death. Such a result may prove to be significant in 

unravelling the regulatory mechanisms and pathways involved in gene expression, which 

may differ between muscle groups. 
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The homeobox transcription factors that appear to be differentially expressed in our study 

but not in other studies (DMD vs. normal), may be responsible for sparing the 

gastrocnemius muscle in DMD patients when other muscles become progressively weaker. 

Some of the important overlap data and two of those genes that were significant are 

outlined below. 

Of those genes that were differentially expressed, 59 were up-regulated and 3 were down­

regulated. Interestingly it was found that the one gene, Hsp70 or HspalB showed strong 

down-regulation in DMD versus healthy in the Chen et al. (2000) study however it was up­

regulated in our study with biceps or quadriceps versus calf muscle. In a publication by 

Kim et al. (2006), it was reported that absence ofHsp70 (heat shock protein 70) is 

associated with induction of cardiac hypertrophy in as well increased signalling molecules 

such as MAPK (mitogen activated protein kinase). Our results show that Hsp70 is reduced 

in hypertrophied DMD calf muscle however it is also lower in DMD quadriceps muscle 

compared to healthy quadriceps. This shows that the MAPKlp38 pathways is increased in 

DMD and it is even more active in DMD calf muscle therefore contributing to the 

phenotypic hypertrophy seen in the patients. 
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Figure 86: Graph showing the overlap of differentially expressed genes and the dysregulation 

of Hsp70 (HspalB) when data of our study was weighted against that of Chen et al. (2000). 

Figure 87 shows that 134 genes were found on the DMD chip of the down-regulated genes, 

where 119 were unchanged, 14 were down-regulated and 1 was up-regulated. CYP2J2 is a 

P450 epoxygenase that synthesizes arachadonic acid. It has also been shown to activate the 

p42/p44 MAPK signalling cascade in cardiomyocytes, which in effects provides 

cardioprotection after ischaemia. 
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Figure 87: Graphical representation showing the overlap of data and the dysregulation status 

of the Cyp2J2 gene, when our results were projected against the data from Chen et al. (2000). 

By extrapolation such results indicate that if the similar pathways were to be activated in 

skeletal muscle, the upregulation of CYP2J2 may confer a protective effect. This may 

prove to be the case seeing that CYP2J2 was recently found to be expressed in skeletal 

muscle using real-time reverse-transcription PCR assays (Bie'che et al., 2007). 

7.4.9 Real-time PCR using the LightCycler 2 

7.4.9.1 Comparison between the random hexamer method and the gene specific 

primer method of eDNA production 

The starting material was the same for both methods. The eDNA was obtained using the 

ImProm-II reverse transcriptase enzyme (Promega). The samples that were reverse 

transcribed using the gene specific primers are represented by (a), which includes 

2812003(a), 03/2004(a), 06A_2005(a) and 06B_2005(a). 
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Figure 88: Graph showing the amplification curves obtained for the adlican gene comparing 

the amplification when gene specific primers or random hexamers were used. 

The samples that were reverse transcribed using the random hexamer approach were 

28/2003(b), 03/2004(b), 06A_2005(b) and 06B_2005(b). 

The results from the above image clearly show that the random hexamer approach 

produced better amplification curves. The Ct or crossing point is the point at which the 

samples are first visible above background fluorescence. This is important as it represents 

the amplified product and is able to show that the random hexamer approach was more 

efficient at producing more product than the gene specific primer method when performing 

the reverse transcription. The crossing points for each sample were as follows: 

06A_2005(a) = 19.49,03/2004(2) = 19.63, 28/2003(a) = 20.16, 06B/2005(a) = 20.67, 

28/2003(b) = 22.82, 06B/2005(b) = 25.05, 03/2004(b) = 25.11, 06A_2005(b) = 26.64. 

In the graph below, the amplification curves are difficult to distinguish as the Ct values for 

many products were in the same vicinity. The slightest difference in Ct values between 

samples was important as it would be used to reveal gene expression changes. 
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Figure 89: Graphical representation of the amplification curves obtained for the adlican 

gene using ImProm-II derived eDNA that was subjected to PCR with the LightCycler 2. 

The amount of primer/probe mix added to these set of reactions was reduced to 1 III 

compared to the 2 III that was added in the previous batch of reactions (Figure 88). 

Table 43: Table showing the crossing point values obtained from amplification curves for the 

adlican gene in each patients' sample when sUbjected to PCR using the LightCycler 2. 

Disease I Biopsy number I Crossing point 

Polymyositis I 44/2004 I 22.86 

Polymyositis I 17/2005 22.97 

Polymyositis I 21 2003 24.20 

DMD I 03A 2005 24.86 

Polymyositis I 28 200? 24.87 -
DMD I 03B 2005 26.09 

DMD I 19A 2003 26.28 

I DMD I 19B 2003 26 .72 

I DMD I 23A 2003 27 .13 

I DMD I 23B 2003 27.73 
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When the Ct values of the above patients were compared, it was found that the gene 

expression values of the polymyositis patients were higher than the dystrophinopathy 

patients. Adlican is a matrix remodelling precursor protein, previously referred to as 

MXRA5. According to UniProt, the universal protein knowledgebase, MXRA5 

(http://www.ebi.uniprot.org:80/index.shtml) is an "adhesion protein with leucine-rich 

repeats and immunoglobulin domains related to perlecan". The consensus is that not much 

is known about this precursor protein. When an NCBI search was performed on this 

molecule, only three hits come up in PubMed and seven in PubMedCentral. Most of these 

publications relate the adlican gene to diseased states such as cancers and 1 or senescence. 

One reason for why the dystrophinopathy patients had lower expression levels could be 

because the fibre regeneration is more active at this point than tissue remodelling and 

necrosis. It makes sense that the female patient (23 /2003) would show the lowest gene 

expression for adlican as she is a carrier ofthe disease and would not exhibit extensive 

changes in the muscle machinery as a result of matrix remodelling. The 18 year old 

(19/2003) showed the next lowest gene expression value as he was diagnosed with Becker 

muscular dystrophy and was shown to have an in-frame deletion (exons 45-47). This 

deletion makes it possible for him to produce a smaller yet functional protein therefore 

tissue remodelling and necrosis is not at an advanced stage at this point. Patients 2312004 

and 1912003 showed hypertrophied calf muscles and these enlarged calf muscles might 

serve a protective effect especially when the microarray results are taken into account. The 

calf muscle had reduced Hsp70 and increased CYP2J2, which could collectively confer 

protection to the calf muscle. 



7.5 DISCUSSION 

7.5.1 Muscle tissue storage prior to RNA isolation 

All precautions were taken to ensure RNA quality was maintained. All surfaces, pipettes 

and disposal items in the UV protected biohazard cabinet were treated with RNaseZap. 

Nuclease free micro centrifuge tubes were utilised for all RNA related activities. The RNA 

was processed immediately on receipt of the biopsy sample from the patient. The sample 

was divided into several parts for immunohistochemical analyses, molecular analyses as 

well as storage at -80°C. The samples were treated with RNAlater, which served to 

maintain the integrity and protect the RNA from further degradation. Tissue samples to be 

stored at -80°C for microarray analysis were cut into tiny pieces and stored in single use 

nuclease free 0.5 ml centrifuge tubes in RNAlater to prevent freeze-thawing. 

7.5.2 Tissue homogenisation and RNA isolations 

During the homogenisation process, all samples were stored in liquid nitrogen until they 

were placed into the RNA-Bee solution to prevent degradation. Two methods of 

homogenisation were employed. The first method utilised the MagnaLyser instrument 

from Roche. This instrument was expected to produce completely homogenised tissue 

without having to manually perform the homogenisation for long periods oftime. Also, the 

actual homogenisation procedure takes a few minutes at the most therefore the sample 

would be at room temperature for a minimal period of time. This would ensure that the 

least amount of protease degradation occurred. However, disappointingly when control 

samples were homogenised using this method, the sample did not survive the centrifugal 



agitation produced by the instrument. This agitation appeared to fragment the 28 S rRNA 

sample as was evident by the loss ofthe band on 1 % agarose gel electrophoresis. Such a 

result was also obtained by other individuals at the Department of Human and Clinical 

genetics research lab, Leiden University, when mouse tissue was subjected to 

homogenisation using the MagnaLyser. 

When the Ultra-Thurrax homogenisation was compared to the MagnaLyser it was· found 

that the 28 S rRNA band was intact and did not get fragmented. However, good quality, 

non-degraded RNA resulted only when yeast tRNA (Sigma) was added to the muscle 

tissue sample tube. The addition of the tRNA, which served as an additional substrate to be 

digested by proteases, minimised degradation to the muscle sample. 

The RNA-Bee reagent served the same purpose as Trizol LS reagent. It is a potent reagent 

containing guanidinium thiocyanate used for extraction of RNA. In addition to the in­

house method of isolation that was employed, other RNA extractions methods were also 

attempted. These included the use of specialised kits such as the fibrous tissue kit (Qiagen) 

and the tissue extraction kit from Machery Nagel. Both these methods had produced pure, 

good quality RN however the yield was much lower than that of the RNA-Bee method. 

7.5.3 RNA quality and quantity 

The RNA quality of each sample included in the study was maintained by always storing 

the samples one ice between steps. The procedure was performed as quickly as possible to 

avoid any RNA loss and at no point was the RNA left at room temperature unless it was 

for an incubation that was required in the protocol. 



In order to avoid down stream microarray procedural problems, the RNA quality and 

quantity was determined using a fluorescence based system, the Bioanalyser. The 

Bioanalyser (Agilent) is an instrument that is based on microfluidic technology that 

couples miniaturisation with automation. The chips are composed of a "network of 

miniaturized, microfabricated channels" (http://www.chem.agilent.comQ through which 

fluids can pass thereby facilitating the qualitative and quantitative analysis of different 

substances. It served an important role in this microarray study as it is able to detect 

quantity and quality of RNA very precisely. This quality assessment ensured that the 

parameter of starting material was taken care of and if a problem was evident after data 

analysis, the author was assured that the RNA was not the cause. The reproducibility of the 

Bioanalyser was tested in this study and it was found to be high when the same sample was 

electrophoresed twice using two different channels on a micro-chip. The results are 

represented by sample 03 /2006 in figures 78 and 79. No sample degradation was noted. 

Since the muscle biopsy samples were taken during 2003-2005, the samples were of good 

quality. Owing to the lack of degradation, we had confidence that the data obtained was of 

good and usable quality and the dysregulated genes were unambiguous and clear-cut. If the 

sample is of poor quality, there might be differential expression of genes that would not 

usually be dysregulated. The purity of the RNA was further tested when samples were left 

out at room temperature overnight. When the RNA samples were assayed using the 

Bioanalyser the next morning, the amount of sample was almost identical to the previous 

run the day before. This had demonstrated that our method of choice for RNA extraction 

and purification was suitable in producing high-quality RNA and it also confirmed the 

reproducibility ofthe Bioanalyser. 



7.5.4 Comparison between the Affymetrix system and spotted oligonucleotide 

arrays 

The drawback of using an Affymetrix system relates to the large amount of RNA (Haslett 

et at., 2002, Haslett et ai. 2003, Chen et at., 2000) required as starting material. In most 

cases, biopsy samples are composed of adipose and connective tissue thus making it 

difficult to obtain large quantities of RNA. However the spotted oligonucleotide array 

system utilises a fraction of RNA compared to the Affymetrix system. Better still is the 

new Illumina beadchip arrays that only require approximately 100 ng of RNA for the 

procedure to be undertaken (Illumina Inc., 2007 www.illumina.com). 

Regarding the array itself, various control measures were in place. The first was the 

addition of>300 GAPD-H spots on the microarray slide. The second control was the 

inclusion of genes from other species such as mouse genes that would not yield a result as 

no binding of the RNA to that oligonucleotide probe would occur. 

All precautions were taken to prevent any loss of sample. For example, Cy dye 

incorporation into the labelled sample was measured using the Nanodrop 

spectrophotometer, which utilises 1 ul sample. 

In order to ensure that the ratio of Cy3/Cy5 was consistent and that equal amount of dye 

was loaded onto each slide, a self-hybridisation experiment was performed. All spots came 

up as yellow because the same RNA sample was used, however different dyes were 

included. Since differential expression is not expected in any gene, a graph of normalised 

signals for Cy3 plotted against normalised Cy5 signals should give a straight line. It is 



important for a "yellow" or self-hybridisation experiment to be performed as all stages of 

the micro array experiment can be assessed using just the one RNA sample. If this is not 

done and experiments on different RNA samples are performed, one would not be able to 

determine which differentially expressed genes are there as a result of actual up or down 

regulation or whether there was a flaw in one part of the microarray experimental process. 

The experiments that were performed on all four patients were repeated 3 times in order to 

obtain enough replicates to verify the data. To ensure that the data obtained was not due to 

a single slide, multiple slides were hybridised with each pair oflabelled probes. This 

allowed us to ensure that the data obtained was true and real. 

7.5.5 Evaluation of clustering data 

Interestingly, other studies have previously shown that many more genes were up­

regulated than down-regulated when DMD affected patient samples were compared to 

unaffected normal biopsy samples (Haslett et aI., 2002b; Porter et al., 2002, Tseng et al., 

2002). The Haslett et al. (2002b) study used the Affymetrix system for gene profiling 

analysis in human patients and normal controls whereas the Tseng et al. (2002) and Porter 

et at. (200) studies focussed their attention on the mdx mouse model. All three authors 

allude to protein turnover being responsible for the discrepancy between the number of 

genes being up-regulated and down-regulated, on account of the regenerative and 

degenerative nature of the disease. In our study, a comparison was made between a more 

affected biceps / quadriceps muscle and a less affected calf muscle from the same DMD 

affected patient. Even though both muscles were affected, we also found more genes were 

up-regulated in the biceps / quadriceps muscle when compared to the calf muscle. Whether 
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these genes are up-regulated as a result of the dystrophic process being more heightened in 

the biceps / quadriceps muscle is as yet unknown. Large scale studies would have to be 

performed on more patients' sample in order to accurately confirm these findings. 

With respect to calpain3 being down-regulated in biceps / quadriceps, there has been much 

speculation as to the role of calpains in muscular dystrophies. It was thought that the 

calpains, particularly calpain3, the neutral protease plays a regulatory role in proteolysis in 

muscle cells, which in effect brings about muscle wasting (Blake et ai., 2002). Calpain 

levels are elevated early on in the dystrophic process and have been found in necrotic 

fibres initially and at the membrane of muscle fibres at the latter stages of the disease. The 

calpains are therefore thought to be involved in the pathophysiology of Duchenne muscular 

dystrophy (Tidball & Spencer, 2000). 

Many transcription factors are differentially expressed in our study. The actual function of 

these factors is as yet unknown however some appear to playa significant role in 

signalling cascade pathways. It stands to reason that some transcription factors would be 

up-regulated as the protein turnover would be increased when the muscle is in a state of 

stress. The clustering data therefore opens up many possibilities for pathway studies to be 

performed. 

The heat-shock proteins may have been over-expressed in the biceps / quadriceps muscle, 

which are in a constant state of stress, as these proteins have been associated with 

facilitating the "assembly of intracellular proteins" (Kim et ai., 2006). During a state of 

cellular stress, such as in dystrophic muscle, Hsps may aid in the process of restoring 

homeostasis in a cell (Frier & Locke, 2007). 
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When the Chen et ai. (2000) data was compared to our data, several genes were discordant. 

One of these was NF-kB, which was previously shown to play an important role in 

initiating atrophy, in studies conducted on mice. Since it was over-expressed in biceps / 

quadriceps muscle in humans, which shows signs of weakness and progressive wasting, an 

NF-kB pathway may be responsible for the effects seen in the patient. It was also 

documented that non use and sepsis (Hunter et ai., 2002; Penner et ai., 2001) activates this 

pathway. Future studies should focus on the group of patients that are already in 

wheelchairs to try and unravel mechanisms that come into play when the child becomes 

immobile. It would be interesting to determine to what extent NF-kB, TNF-alpha and other 

cytokines such as the ILs are up-regulated in immobile DMD sufferers. These findings 

may help to direct therapy towards the use ofNF-kB and cytokine antagonists (Cai et ai., 

2004), which may reverse the atrophy seen in these patients or prevent further muscle 

wasting. 

7.5.6 Differential expression of Hsp70 

When our study data was projected against the data obtained by Chen et ai. (2000) a gene 

that showed a surprising result was Hsp70. Much work has been done on this heat shock 

protein, which belongs to a family that is rapidly produced in the bodies of most organisms 

in response to "protein damaging stresses" (O'Neill et ai., 2006). Many authors have 

focussed on this protein owing to its presence in the cardiovascular system where it can be 

induced by in response to oxidative and mechanical stresses. It is also constitutively 

produced in the body to aid with "protein folding, facilitation of intracellular trafficking 

and signalling processes" (Zheng et ai. , 2006). 
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Kim et ai. (2006) where absence ofHsp70 was shown to increase cardiac hypertrophy. It 

appears that similar pathways may be activated and regulated when Hsp70 is absent to 

bring about hypertrophy in cardiac and smooth muscle. 

Hypertrophy of the calf muscle in DMD patients may be due to a complex series of events. 

One ofthe pathways that playa role in maintaining this hypertrophic muscle is the 

MAPKlp28 pathway concert with Hsp70 reduction. Even though these genes have been 

implicated in the hypertrophic process, this may be just the beginning in unravelling the 

many mechanisms that are involved in hypertrophy. The next step would be to look at 

other genes that are up-regulated in spontaneously occurring models of hypertrophy such 

as the callipyge lambs. A paternally expressed protein coding genes DLKI and PEGll are 

thought to play an integral role in bringing about the hypertrophy seen in the callipyge 

lambs (Fleming-Waddell et aI., 2007). Using gene expression profiling experiments, 

Fleming-Waddell et ai. (2007) showed that these lambs had increased expression of 

"muscle-type phosphofructokinase (PFKM)", "phosphodiesterase 7 A (PDE7 A) is a high­

affinity cAMP specific phosphodiesterase that is found in high abundance in skeletal 

muscle" and "terminal deoxynucleotidyltransferase interacting factor 1 (DNTTIP 1)", 

which may act to induce hypertrophy (Fleming-Waddell et ai., 2007). We would be able to 

obtain more insight into the pathways that regulate the process of hypertrophy by analysing 

data collected from studies like this one (Fleming-Waddell et ai., 2007) conducted in 

animals. 

Skeletal muscle hypertrophy has received much attention oflate owing to the discovery of 

the infant with unusually large muscle mass in 2004 (Schuelke et ai., 2004). A recent study 

aimed to determine how Hsp proteins influence muscle hypertrophy, by using rats that 
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were subjected to heat stress and overload. It has been previously documented that when 

skeletal muscle is faced with "overload", the muscle apparatus adapts by undergoing 

hypertrophy by increasing "structural and contractile protein content" and increasing type I 

myosin heavy chain. In this way, hypertrophy serves as a protective response by the 

muscle (Frier & Locke, 2007). The authors were able to show that an accumulation ofHsp 

proteins "inhibits increase in muscle mass" in those muscles in the process of undergoing 

hypertrophy. Therefore it stands to reason that a reduction / absence of Hsp70 will result in 

muscle hypertrophy. This gives credibility to the result that was obtained in our study 

where a comparison was done between the weaker biceps or quadriceps muscle as the 

stronger hypertrophied calf muscle in the same dystrophinopathy patient. 

Many studies on muscle hypertrophy focus on the how the event can be prevented as the 

Hsp proteins are known to be activated by stress responses. The next group of studies 

should rather focus on the beneficial and protective aspects of skeletal muscle hypertrophy 

and all the pathways that are involved in bringing about this phenomenon. Even though 

studies on the m yostatin gene and the use of IgF -1 to bring about hypertrophy have been 

performed, the underlying mechanisms that drive such processes still remain elusive. 

Microarray and gene profiling analyses therefore hold the key to understanding the 

mechanisms that regulate hypertrophy. 

7.5.7 Differential expression of CYP2J2 

CYP2J2 is cytochrome P450 epoxygenase that metabolises arachidonic acid to 

epoxyeicosatrienoic acids (EETs). These are subsequently "converted to 

dihydroxyeicosatrienoic acids (DHETs) by epoxide hydrolases". Many epoxygenases are 
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expressed in the heart but CYP2J2 is unique in that it is expressed primarily in 

cardiomyocytes. Quantitative real-time PCR was used to localise the expression of three 

P450 epoxyygenases CYP2C8, CYP2C9, and CYP2J2 in the heart, aorta and coronary 

artery samples with GAPDH serving as the control against which the results were 

weighted. CYP2J2 mRNA was found to be 103 times higher in human heart than the other 

two, CYP2C9 levels was highest in aorta and relatively higher than the other two in 

coronary artery (DeLozier et at., 2007). Further to this, real-time reverse-transcriptase PCR 

was used to measure the levels of CYP 1, CYP2, CYP3 in 22 different human tissues 

(Bie' che et at., 2007). With specific reference to CYP2J2, this P450 epoxygenase was 

expressed in heart, salivary gland, placenta and skeletal muscle. 

A single nucleotide polymorphism (G-50T), located in the proximal promoter region ofthe 

CYP2J2 gene has been implicated in and associated with increased risk of coronary heart 

disease. This SNP is located in a region where there are four putative Spl transcriptional 

binding sites and the loss of one Spl binding site at the proximal promoter significantly 

reduces to the CYP2J2 gene (Spiecker et at., 2004). In 2004, Seubert et al. showed that 

transgenic mice exhibiting over-expression of CYP2J2 in cardiomyocytes caused increased 

expression of p42/p44 MAPK after ischaemia and in effect bestowing protection on the 

cardiac apparatus. 

Since CYP2J2 was recently found to be expressed in skeletal muscle, the results from our 

microarrays data showing up-regulation of CYP2J2 in calf muscle suggests that it may be 

involved in protecting the skeletal muscle tissue together with the MAPK pathway. 
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7.5.8 Real-time PCR using the LightCycler 2 

Initially, the Sybr green detection kit was used to determine if usable results could be 

obtained without having to use the UPL system or any other such probe based system. 

Unfortunately very poor results were obtained and the melting curve analysis could not be 

properly interpreted. Following this, an attempt was made to use the hybridisation probe 

detection master mix, together with the UPL mix and the adlican primers as the 

hybridisation probe kit was available in the laboratory since it was used in the assay of 

another disease. Once again the results were not satisfactory. Very low fluorescence 

signals (~0.1) were obtained and these results could not be used. In comparison, the 

TaqMan master mix using the hydrolysis probe approach produced excellent results on the 

first attempt. 

When a comparison was done between the amounts of product that was obtained using two 

method of eDNA production, the random hexamer approach was found to be better than 

the gene specific primer approach. These results are shown in figure 88 above. The random 

hexanucleotide method of producing eDNA was used in all subsequent reactions. 

As previously mentioned, the adlican gene or MXRA5 is a matrix remodelling precursor 

proteins. These proteins appear to play an active role in the pathological states, such as the 

muscular dystrophies. The matrix metalloproteinases are also associated with tissue 

remodelling in pathological processes such as metastasis, tissue repair and have been 

implicated in inflammatory diseases (Page-McCaw et a!., 2007). This is seen in the graph 

above where 3 of the 4 (Figure 89, Table 43) polymyositis patients have a higher gene 

expression level than the DMD patients. 



It can be speculated that the inflammatory condition of polymyositis patients would render 

the tissue remodelling more active in their muscle fibres than the muscle of the DMD 

patients. Also the patients in the polymyositis cohort are much older therefore the muscles 

may have endured more remodelling than the DMD patients. The age difference between 

cohorts may be a significant factor in contributing to gene expression changes as was 

shown by Kang et al. (2005) when a comparison was done between four muscles in 

different age groups. 

One can speculate that the dystrophinopathy patients would show more regeneration 

(Schmalbruch, 1984) as opposed to necrosis as a result of tissue remodelling because they 

are much younger. The regenerative process is more pronounced at a younger age owing to 

satellite cell proliferation. 
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CHAPTER 8 

GENERAL DISCUSSION AND CONCLUSIONS 

The study involved 68 patients in total. All patients agreed to have muscle biopsies. The 

biopsy samples were subjected to immunohistochemical techniques and routine 

histological examination. The immunohistochemical test serves as the "gold standard" 

even at a time when molecular biology tools are becoming useful, and at times invaluable 

in diagnosing diseases such as Duchenne muscular dystrophy and other such debilitating 

disorders. The main problem encountered by a researcher working on the dystrophin gene 

is that mutations are found throughout the 79 exons of dystrophin. Even though 65% of 

mutations are deletions, which are located in hot-spot exons, the remaining 35% can be 

anything from a duplication to a point mutation that could be scattered anywhere 

throughout the 2.4 Mb gene. 

This makes mutation detection a mammoth task for diagnostic laboratories. One aspect of 

the present study dealt with mutation detection, whilst the next focussed on the use of 

micro array analysis in attempting to elucidate the pathogenesis in DMD. The author chose 

to evaluate both deletion and point mutation detection techniques since one of the patient 

cohorts included in this study were found to have no deletions on conventional 18 exon 

multiplex peR testing. The deletion detection study formed part of the author' s MMedSc. 

thesis (K.D. Pillay, 2002). The reason for also focussing on deletion testing in this study 

was to determine whether increasing the number of exons screened would improve the 

deletion detection rate. Further to this, a novel technique called the MLP A assay was 

established by Schouten et ai. (2002) just prior to the author's candidature. This technique 
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could be used to screen for deletions and duplications in all exons of the dystrophin gene, 

which would be useful in our setting. 

8.1 Mutation detection 

With respect to the mutation detection aspect of the project, 30-plex multiplex PCR was 

used to detect deletions in the suspected dystrophinopathy patients. This technique 

provides important data in a laboratory setting where large and expensive pieces of 

equipment such as a DNA sequencer would not readily be available for regular use. 

However, it works best in the hands of an experienced molecular scientist or laboratory 

technician whose sole responsibility would be to perform the technique. During our study, 

the technique was found to be less reproducible when a new and inexperienced member of 

staff was carrying out the procedure. On evaluation of the results obtained from the 30-

exon multiplex PCR assay, it was found that increasing the number of exons tested did not 

significantly improve the diagnostic efficacy as the same numbers of patients were found 

to have deletions as with the conventional 18-exon screening assay. The only difference 

was that the area over which the exon deletion occurred increased in some cases. The 

actual span of the deletion was confirmed by testing more exons in the assay. 

Ifthe author were to design a deletion and duplication detection protocol for a DMD 

diagnostic laboratory, the following would be recommended. The first method of choice 

should be the MLP A assay if the laboratory has a genetic analyser at its disposal, such as 

the ABI 310 or ABI31 00 from Applied Biosystems. This assay could serve a dual purpose 

as it would provide deletion and duplication results using the DNA from a suspected 

dystrophinopathy patient and it could also be used for carrier testing in the female relatives 
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ofthose patients that were shown to have a deletion. In this way, genetic counselling could 

be implemented for that group of patients and their families. The next recommendation 

would be to include the 30-plex technique in the deletion protocol ifthe MLPA assay 

yielded a result that required confirmation. In such a case, two entirely different methods 

would be employed thereby strengthening the confidence in the deletion that was found. If 

a single deletion was found in a patient's sample, it would be wise to perform DNA 

sequence analysis on the DNA sample from the patient by first obtaining a PCR product 

and subjecting it to sequencing analysis. This could be done by placing the primer binding 

site further away from the exon thereby creating a product if no deletion was present. Such 

a deletion may be the result of a primer site polymorphism that would be viewed as a 

deletion on MLP A or quantitative PCR. It could also be the result of a single nucleotide 

point mutation, which on sequence analysis might lead to a stop codon being produced. In 

this way, nonsense mutations could be found in patients' samples, with the aid of the 

MLP A assay. Such a result would be invaluable for families that would like their child to 

be considered for clinical trials based on nonsense mutations in the dystrophin gene or 

exon skipping clinical trials. Such trials are well underway in the USA, with the support of 

the DMD Parent Project. 

For point mutation testing, there still appears to be no definitive testing method that could 

be referred to as the gold standard. The first method that was evaluated in this study was 

the single stranded conformation polymorphism analysis. This would be a cheap and 

relatively uncomplicated method to set-up in a resource limited setting by a researcher 

experienced in molecular biology methodology such as PCR, agarose and polyacrylamide 

gel preparations, purification ofPCR products, DNA sequencing using capillary 

electrophoresis and analysis using Biotools or other bioinformatics software. However the 
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assay is time-consuming and labour-intensive. The author found that the assay was 

laborious as several gels were required to be run using various temperatures and gel 

concentrations until highly resolved bands were obtained. The author also found that SSCP 

bands were better resolved and more clearly visible when the Novex pre-cast gel system 

was utilised as opposed to conventional slab gels, which were run using the Hoefer system. 

Despite the negative attributes of the SSCP methodology, visual band shifts were found in 

15 of the 28 exons tested with 17 patients showing abnormal band migration. DNA 

sequencing was performed for exons 6,8,52,53,60,41,42 and flanking sequences. DNA 

sequencing could not be performed on the other exons as the patients' DNA was not 

available. In exon 6 and flanking sequence of exon 5, three SNPs were found and in exon 

52, two insertion mutations were found. It is possible that several more of those mutations 

that were detected in visual inspection could be confirmed using DNA sequencing ifthe 

patients' DNA was available for testing. 

Realistically the SSCP assay should not be the method of choice for a gene as large as the 

dystrophin gene, since several patients' samples would need to be analysed and at least 25-

30 hot-spot exons would need to be assessed as was attempted in Chapter 4 ofthe thesis. 

The SSCP method may be useful in detecting even more mutations than the slab gel 

method if it were performed using a capillary electrophoresis (CE) apparatus. However, the 

technique would only be useful if modifications to a CE apparatus such as the ABI 3100 

could be performed without the warranty being affected. The modification is required as 

the 3100 is unable to reach low temperatures such as 4-1 O°C, which are vital temperatures 

to obtain and detect the single stranded conformers. Even in such a situation, the SSCP 

assay would require different temperatures for each exon to be tested and this would make 

it labour-intensive and very expensive. Such capillary electrophoresis modifications were 
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not possible at the Neuroscience laboratory, Inkosi Albert Luthuli Central Hospital, 

Durban, South Africa because the apparatus was not only used for the sole purpose of 

detecting mutations in the dystrophin gene. Ultimately, the SSCP assay is a useful 

technique in a resource limited setting and has the ability to produce data that is useful, 

provided all conditions are optimal. 

In addition to the SSCP technique, the author attempted reverse-transcriptase CRT) PCRs 

on the RNA samples from patients and controls. The RNA samples were extracted from 

muscle tissue or blood samples. The RT-PCRs did not yield the expected results. A faint 

band or no band was present in the patients' samples when agarose gel electrophoresis was 

performed. This could be attributed to sample degradation. 

On evaluation of this technique, the author would recommend that RNA samples be 

extracted immediately and stored at -80°C if the RT-PCR assay is being considered for 

mutation detection. The eDNA should also be prepared soon after RNA extraction. 

For those laboratories that have access to an ABI 3100 on a daily basis, it may be worth 

considering the possibility of performing DNA sequencing on the entire coding region of 

the dystrophin gene. This is a definitive method of detecting point mutations. By exploiting 

such technology, several types of mutations could be detected, including small deletions, 

insertions, spice-site mutations and stop codon mutations. The only drawback of such a 

technique is the cost of the reagents such as the sequencing kits as well as the reagents 

required to run the genetic analyser. 
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8.2 Genetic counselling 

It is important that genetic counselling be offered to all mothers and female relatives of 

clinically affected dystrophinopathy patients. If DNA sequencing and analysis were 

performed, those families that were found to have no deletions and / duplications on 

MLP A analysis, would obtain a definitive result. 

Previous studies that focussed on detecting cardiac abnormalities in carriers showed that 

the risk of cardiomyopathy is much lower than was previously documented. The 

recommendation would be to include both ECG and echo cardiography as screening 

methods to clinically assess all patients (Grain et at., 2001). 

8.3 Gene profiling analysis 

The mutation in our dystrophinopathy patients had to first be determined in order to better 

analyse the data generated from microarray analysis. If the mutation was not known it may 

become more difficult to assess the importance of specific genes being dysregulated. If for 

example the patient was found to have an in-frame deletion and there were specific genes 

being dysregulated, one could correlate the genes being over and under-expressed to the 

type of mutation found. If the patient had an out-of-frame deletion, once again the 

dysregulated genes on microarrays analysis could be better explained. If the mutation was 

not known, one would have to rely entirely on the gene expression profiles to understand 

the mechanisms that are regulating the gene expression in that individual. Once the 

mutation is know, the gene expression data can be analysed from a point of knowledge. 
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In our study, four dystrophinopathy patients agreed to have double biopsies. The biopsy 

samples were required to determine the usefulness of performing gene expression studies 

on two different muscle groups in the same individual thereby removing any genetic 

variability and significantly reducing bias during the statistical analyses. The biopsies were 

taken from a muscle that becomes progressively weaker in DMD (quadriceps / biceps) and 

a muscle group that remains invariably strong (gastrocnemius) despite muscle weakness 

and eventual wheelchair confinement. 

Both the spotted oligonucleotide arrays and the Illumina beadchips showed a positive 

correlation between the molecular findings and immunohistochemical analyses. In order to 

determine the strength of our data, a comparative analysis between our study and that of 

Chen et al. (2000) was performed, where the Affymetrix system was utilised. The study by 

Chen et at. (2000) was one of the most extensive DMD studies performed however the 

drawback ofthe study was the use of pooled samples to obtain definitive results on the 

Affymetrix system as large amounts of starting material are required. In our study we 

aimed to elucidate the mechanisms that may influence the strength of the gastrocnemius 

muscle in DMD patients. This question may have been answered by the novel finding that 

homeobox transcription factors were differentially expressed in our study thus suggesting 

that it may be responsible for sparing the gastrocnemius when other muscle groups become 

progressively weaker. 

Another important finding was that Hsp70 was up-regulated in our study (biceps or 

quadriceps vs. calf muscle) as opposed to being down-regulated, which was a finding in 

the Chen et at. (2000) study in DMD versus healthy. The absence ofHsp70 is responsible 

for induction of cardiac hypertrophy and increased MAPK signalling. Our finding allows 
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us to speculate that the increased MAPKlp38 signalling may be responsible for the calf 

hypertrophy seen in DMD patients. Yet another MAPK signalling associated finding 

included the dysregulation of the CYP2J2 gene in our study. CYP2J2 is a P450 

epoxygenase that synthesizes arachadonic acid. It is known to activate the p42/p44 MAPK 

signalling cascade in cardiomyocytes, conferring cardioprotection after iscahemia. 

Interestingly, this gene has recently been found in skeletal muscle, thus suggesting that it 

may playa similar protective role in skeletal muscle. A more elaborate study focussing on 

these dysregulated genes is required to confirm these novel results. 

In conclusion, with respect to mutation detection, the MLP A assay should be the initial 

screening method to be implemented in a laboratory working on DMD as it is able to 

detect both deletions and duplications. Once a deletion is found, it can be confirmed using 

multiplex PCR. This ensures that two different techniques are used to confirm a deletion, 

with the one utilising probes and the other using primer based methodology. However, the 

Southern blotting technique would still have to be utilised to confirm the presence of a 

duplication. 

Gene profiling analysis using different muscle tissue samples from the same patient has 

proven to be useful in determining which pathways are being regulated in different tissues. 

This is especially important in the case where the different muscle groups are affected to 

varying degrees by the disease process as is the case with the biceps / quadriceps and calf 

muscles in DMD patients. 

This project has set the scene for further studies to be performed in both mutation detection 

as well as gene profiling analysis. With respect to mutation detection, DNA sequencing of 
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the dystrophin gene in a South African cohort has not previously been undertaken. The 

results obtained could prove to be very useful as the data from our four unique South 

Africa racial groups could be compared to Caucasian populations and other such ethnic 

groups. Such data analyses could determine of there are variations in the mutation 

spectrum between different racial groups and different ethnicities. 

With respect to the gene profiling analysis, it is the first study of this nature that has been 

performed using two muscle groups from the same patient. The study is therefore unique 

and internationally novel. There are several avenues that could not be pursued owing to the 

results that have thus far been obtained. The author is keen to compare the results obtained 

using a larger cohort of patients. If double biopsies from the same patient cannot be 

obtained, a large number of single biopsies from a calf and biceps muscle can be 

compared. 
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APPENDICES 

APPENDIX A 

PRIMER SEQUENCES 

1. Single stranded conformation polymorphism analysis. 

Table 44: Actual primer sequences in the 5' - 3' orientation that were used in the PCR 

procedure to amplify the products for SSCP analysis. 

I EXON NAME I SEQUENCE 5 ' - 3 ' I SIZE IN 
BASE PAIRS 

I 2 F I CAC TAACAC ATC ATA ATG G 1 233 bp 

I 2 R I GAT ACA CAG GTA CAT AGT C 

I 3 F I TCA TCC ATC ATC TTC GGC AGA TTA A 

I 
410 bp 

I 3 R I CAG GCG GTA GAG TAT GCC AAA TGA AAA TCA 

I 4 F I TTG TCG GTC TCC TGC TGG TCA GTG 

I 
190 bp 

I 4 R I CAA AGC CCT CAC TCA AAC ATG AAG C 

I 5 F I GGT TGA TTT AGT GAA TAT TGG AAG TAC 

I 
114 bp 

I 5 R I CCA TTC ATC AGG ATT CTT ACC TGC C 

I 6 F I CCA CAT GTA GGT CAA AAA TGT AAT GAA 

I 
202 bp 

I 6 R I GTC TCA GTA ATC TTC TTA CCT ATG ACT ATG G 

I 8 F I GTC CTT TAC ACA CTT TAC CTG TTG AG 

1

360 bp 

I 8 R I GGC CTC ATT CTC ATG TTC TAA TTA G 

I 9 F I TCT ATC CAC TCC CGA ACC TCT CTG CAG 

1

278 bp 

I 9 R I AAC AAA CCA GCT CTT CAC GAG GAG A 

I 12 F I GAT AGT GGG CTT TAC TTA CAT CCT TC 

I 
331 bp 

I 12 R 
, 

GAA AGC ACG CAA CAT AAG ATA CAC CT 
I 13 F I AAT AGG AGT ACC TGA GAT GTA GCA GAA AT 

I 
238 bp 

I 13 R I CTG ACC TTA AGT TGT TCT TCC AAA GCA G 

I 16 F I TCT ATG CAA ATG AGC AAA TAC ACG C 

I 
290 bp 

I 16 R I GGT ATC ACT AAC CTG TGC TGT ACT C 

I 17 F I GAC TTT CGA TGT TGA GAT TAC TTT CCC 

I 
416 bp 

I 17 R I AAG CTT GAG ATG CTC TCA CCT TTT CC 

I 20 F I GTG TTA ATG CAG ATA GCA TCA AAC 

I 
239 bp 

I 20 R I ACA AAT TTT TAA CTG ACT TTT AAT TG 

I 22 F I TTG ACA CTT TGC CAC CAA TGC GCT ATC 

I 
140 bp 

I 22 R I CAA TTC CCC GAG TCT CTG CTC CAT G 

I 32 F I GAC CAG TTA TTG TTT GAA AGG CAA A 

I 
253 bp 

I 32 R I TTG CCA CCA GAA ATA CAT ACC ACA CAA TG 

I 34 F I GTA ACA GAA AGA AAG CAA CAG TTG GAG AA 

I 
171 bp 

I 34 R I CTT TCC CCA GGC AAC TTC AGA ATC CAA A 

I 41 F I GTT AGC TAA CTG CCC TGG GCC CTG TAT TG / 274 bp 

I 41 R I TAG AGT AGT AGT TGC AAA CAC ATA CGT GG 

I 42 F I CAC ACT GTC CGT GAA GAA ACG ATG ATG I 155 bp 
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I 42 R I TTA GCA CAG AGG TCA GGA GCA TTG AG I 
1 43 F 1 GAA CAT GTC AAA GTC ACT GGA CTT CAT GG 

I 
357 bp 

I 43 R l ATA TAT GTG TTA CCT ACC CTT GTC GGT 

I 44 F I GTT GTG TGT ACA TCG TAG GTG TGT A r --
I 44 R I TCC ATC ACC CTT CAG AAC CTG ATC T 

I 45 F I AAA CAT GGA ACA TCC TTG TGG GGA C I 547 bp 

I 45 R I CAT TCC TAT TAG ATC TGT CGC CCT AC 

I 46 F I GCT AGA AGA ACA AAA GAA TAT CTT GTC 

I 
148 bp 

I 46 R I CTT GAC TTG CTC AAG CTT TTC TTT TAG 

I 47 F I CGT TGT TGC ATT TGT CTG TTT CAG TTA C 

I 
181 bp 

I 47 R I GTC TAA CCT TTA TCC ACT GGA GAT TTG 

I 50 F I CAC CAA ATG GAT TAA GAT GTT CAT GAA T 

I 
271 bp 

I 50 R I TCT CTC TCA CCC AGT CAT CAC TTC ATA G 

I 51 F I GAA ATT GGC TCT TTA GCT TGT GTT TC 

I 
388 bp 

I 51 R I GGA GAG TAA AGT GAT TGG TGG AAA ATC 
I 52 F I AAT GCA GGA TTT GGA ACA GAG GCG TCC 

I 
113 bp . 

I 52 R I TTC GAT CCG TAA TGA TTG TTC TAG CCT C 

I 53 F I TTG AAA GAA TTC AGA ATC AGT GGG ATG 

I 
212 bp 

I 53 R I CTT GGT TTC TGT GAT TTT CTT TTG GAT TG 

I Pb F I TCT GGC TCA TGT GTT TGC TCC GAG GTA T AG 

I 
332 bp 

I Pb R I CTT CCA TGC CAG CTG TTT TTC CTG TCA CTC 

I Pm F I GAA GAT CTA GAC AGT GGA TAC ATA ACA AAT GCA TG 

I 
535 bp 

I Pm R I TTC TCC GAA GGT AAT TGC CTC CCA GAT CTG AGT CC 

2. 30-exon multiplex peR. 

Table 45: Primer sequences for the adapted and optimised original Chamberlain set of exons 

for the first multiplex PCR set. 

I EXON NAME I SEQUENCE 5' - 3' I SIZE IN 
BASE PAIRS 

I 
45 F aaa cat gga aea tee ttg tgg gga e I 547 45 R cat tee tat tag ate tgt ege eet ae 

I 
48 F ttg aat aea ttg gtt aaa tee eaa cat 9 

I 
506 

48 R eet gaa taa agt ett eet tae cae ae 

I 
19 F gat gge aaa agt gtt gag aaa aag te 

I 
459 

19 R tte tae cae ate eea ttt tet tee a 

I 
44 F gtt gtg tgt aea teg tag gtg tgt a 

I 
426 

44 R tee ate ace ett eag aae etg ate t (QmPCR) 

I 
44 F 

I 
ett gat eea tat get ttt ace tge a 268 

44 R tee ate ace ett eag aae etg ate t 

I 
17 F 

I 

gae ttt ega tgt tga gat tae ttt eee 416 
17 R aag ett gag atg etc tea eCT TTT CC 

I 
51 F 

I 
gaa att gge tet tta get tgt gtt te 

I 
388 51 R gga gag taa agt gat tgg tgg aaa ate 

I I gge 8 F etc att etc atg tte taa tta 9 I 360 8 R • gte ett tae aea ett tae CTG TTG AG 
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~-- gat agt ggg ett tae tta cat eet te 
I 

331 
12 R gaa age aeg eaa cat aag ata cae et 

I 
29 F eea atg tat tta gaa aaa aaa gga 9 

I 
242 

29 R gea aat tag att aaa gag att tte ae 

I 
4 F ttg teg gte tet etg etg gte agt 9 

I 
196 

4 R eaa age eet cae tea aae atg aag e 

I 
22 F TTG ACA CTT TGC CAC CAA TGC GCT ATC 

I 
140 

22 R CAA TTC CCC GAG TCT CTG CTC CAT G (Covone) 

I 

30 F AGG CTG TAA GGA GGC AAA AGT TGC 175bp 
30 R GAT GTA CTT GCC TGG GCT TCC TGA GGC (QmPCR) 

Table 46: Table showing the primer sequences used for the adapted and optimised original 

Beggs set of exons for the second multiplex PCR set. 

I I SEQUENCE 5 ' - 3' SIZE IN BASE EXON NAME 
PAIRS 

F GAAGATCtagaeagtggataeataaeaaatgeatg 535 
Pm R tteteegaaggtaattgeeteeeagatetgagtee 

I 
3 F teateegteatetteggeagattaa 410 
3 R eaggeggtagagtatgeeaaatgaaaatea 

I 
43 F gaaeatgteaaagteaetggaetteatgg 357 
43 R atatatgtgttaeetaeCCTTGTCGGTCC 

I 
21 F geaaaatgtaatgtatgeaaag 319 
21 R atgttagtaeettetggattte 

I 
50 F ttaaaagaaattetaeeeaetaaagtt 337 (QmPCR) 
50 R eteteteaeeeagteateaetteata 

I 
50 F cae eaa atg gat taa gat gtt cat gaa t 

I 
271 

50 R tet etc tea eee agt cat cae tte ata 9 

I 
13 F aataggagtaeetgagatgtageagaaat 

I 
238 

13 R etgaeCTTAAGTTGTTCTTCCAAAGCAG 

I 
6 F eeaeatgtagGTCAAAAATGTAATGAA 

I 
202 

6 R gteteagtaatettettaeCTATGACTATGG 

I 
47 F egttgttgeatttgtetgttteagTTAC 

I 181 
47 R gtetaaeCTTTATCCACTGGAGATTTG 

I 
60 F AGGAGAAATTGCGCCTCTGAAAGAGAACG 

I 
139 

60 R CTGCAGAAGCTTCCATCTGGTGTTCAGG 

I 
52 F AATGCAGGATTTGGAACAGAGGCGTCC 

I 113 
52 R TTCGATCCGTAATGATTGTTCTAGCCTC 

Table 47: Primer sequences for the adapted and optimised original Kunkel set of exons for 

the third multiplex PCR set. 

I EXON NAME I SEQUENCE 5' - 3' I 
SIZE IN BASE 

PAIRS 

F TCTGGCTCATGTGTTTGCTCCGAGGTATAG 

I 
332 

Pb R CTTCCATGCCAGCTGTTTTTCCTGTCACTC 

I 49 F gtgeeettatgtaeeaggeagaaattg 

I 
439 

49 R geaatgaetegttaatageettaagate 

I 46 F 

I 
GCTAGAAGAACAAAAGAATATCTTGTC 148 46 R CTTGACTTGCTCAAGCTTTTCTTTTAG 

I 16 F 

I 
tetatgeaaatgageaaataeaege 290 16 R ggtateaetaaeCTGTGCTGTACTC 

I I 41 F gttagetaaetgeeetgggeeetgtattg I 274 
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1 41 R I tagagtagtagttgeaaaeaeataegtgg ~I~~ ___________ I 
~1-3 -2 - F---~g-a':'ee"":a=-g-t--=t-a-t-=-t-gt-t=-t-g-a-a-a-g-g-ea-a-a---------------, 253 

32 R ttgeeaeeagaaataeataeCACACAATG 
;"',-2-0- F--- GTG TTA ATG CAG ATA GCA TCA AAC ;""1-=-2-=-3 -=--9 - (C"":C-o-v-on- e-:)--

20 R ACA AAT TTT TAA CTG ACT TTT AAT TG 

1

42 F CAC ACT GTC CGT GAA GAA ACG ATG ATG G 1 195 
42 R CTT CAG AGA CTC CTC TTG CTT AAA GAG AT ;...-____________ _ 

I 
42 F ~C-A-C-A-C:-T=--=G-=T-=C·-C:::-G=:T::-:G:-::AA-::--;::-GAA::-::--:A;-:C:;-;:G;--:;:A-;:;:;T;:::-G -:A;;-;T;;-;:G:;-----1 155 
42 R tta gea eag agg tea gga geA TTG AG 

r-,-3-4-F--- GTAACAGAAAGAAAGCAACAGTTGGAGAA I r--1-7-1-----------
34 R CTTTCCCCAGGCAACTTCAGAATCCAAA 

~1 RF [M13f) - GCAGGTCCTGGAATTTGA I 405 I ~ ~ [M13r)-eaaaetaaaegttatgeeaea 

I 
~ ~ ~c-ac-ta-a-c-a-c-a-t-c-a-t-a-a-tg-g----------r-1-2~33-(-Q-m-PC-R-)--

gat aca cag gta cat agt c 

1

5 F Ggt tga ttt agt gaa tat tgg aag tae 1 114 (QmPC 
5 R Cea tte ate agg att ett ace tge e 

1

62 F gte ttt eet gtt tge gat gaa ttt gae e 1 191 
62 R etc act tgt gaa tat aea ggt tag tea e (QmPCR) 

M13F = 5'-TGTAAAACGACGGCCAGT-3'. 

M13R= 5'-CAGGAAACAGCTATGACC-3'. 

The exon 1 primer in the third set contains a M13 tail to enable sequencing to be 

performed. 

3. Reverse transcription peR primers. 

Table 48: Table showing the primers that were included in the reverse transcription peR 

assays. 

I EXON NAME I SEQUENCE 5' - 3' , eDNA position 
I 2Fl (lA) , CAA AAG AAA ACA TTC ACA AAA TGG I 49-72 
1 2F2(IC) I T7 -TCT AAG TTT GGG AAG CAG CA , 88 - 107 
I 9Fl(IG) I CGA TTC AAG AGC TAT GCC TAC I 883 - 903 
I 10Fl (IE) I T7 -TTG CAA GCA CAA GGA GAG ATT , 1084 -11 04 
I 11R2 (lD) I TGA GGC ATT CCC ATC TTG A I 1285-1303 
I 12Rl(IH) I TTA GCC AGT CAT TCA ACT CTT TCA I 1370- 1393 , 17F1(2A) I egg ate eAC AAG GGA ACA GAT CCT GGT AA I 2068 - 2089 
I 17F2 (2C) I geT7 - AGG CAG ATT ACT GTG GAT TCT GA I 2134-2156 
I 23F2 (2G) I ATT GAG GGA CGC TGG AAG A I 3073- 3091 
I 23F1 (2E) I geT7 - GAG CAT TGT CAA AAG CTA GAG GA I 3112 - 3134 
I 18Rl (IF) I CTT CTG AGC GAG TAA TCC AGC T I 2197-2218 
I 18R2(IB) I ACT CTG CAA CAC AGC TTC TGA G I 2211-2232 I 25Rl (2D) I CCC ACC TTC ATT GAC ACT GTT I 3316-3336 I 25R2 (2H) I GTC TCA AGT CTC GAA GCA AAC TCT I 3363 - 3386 
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I 30F2(3A) I TCA CAT TCA TTG ACA AGC AGT TGG I 4157 - 4180 

I 31F1 (3C) I geT7 - GCC CAA AGA GTC CTG TCT CA I 4309- 4328 

I 35R1 (2Bw) I TTA TCT TCC ACC AAC GTC TCC TTC TTG I 4929 - 4955 

I 35R2 (2Dw) I CCT ACC TCT GTG ATA CTC TTC AGG TGC I 4878 - 4904 

I 36F3(3G) I CAC AAA GTG GAT CAT TCA GGC I 5073- 5093 

I 36F2(3E) I T7 - GCT GAC ACA CTT TTG GAT G I 5092-5110 

I 38R1 (3D) I TTA AAC TGC TCC AAT TCC TTC AA I 5338 - 5360 

I 40R1(3H) I CAA TGT CAT CCA AGC ATT TCA G I 5668 - 5689 

I 43F1(4A) I GCA ACG CCT GTG GAA AGG GTG I 6196 - 6216 

I 44F2 (4C) I T7 - GCT GAA CAG TTT CTC AGA AAG ACA CAA I 6367-6393 

I 45R3(3Dw) I CTG TCT GAC AGC TGT TTG CAG ACC TCC I 6579-6605 

I 46R1(3B) I CTG CTT CCT CCA ACC ATA AAA C I 6670-6691 

I 50F1(4G) I AGC TCC TGG ACT GAC CAC TAT T I 7281 - 7302 

I 51F1(4E) I T7-TGG ACA GAA CTT ACC GAC TGG I 7435 - 7455 

I 53R1(4Dw) I CTT TTG GAT TGC ATC TAC TGT ATA GGG I 7828 - 7854 

I 54R1 (4Bw) I TGC CAC TGG CGG AGG TCT TTG GCC AAC I 7875-7901 

I 56/57F1 (5A) I AAA AGT CTC TCA ACA TTA GGT CCC I 8372 - 8395 

I 58F1(5C) I geT7-ACA GAG CAG CCT TTG GAA G I 8620-8638 

I 59R3(4F) I CTC TTG AAG TTC CTG GAG TCT TTC I 8800- 8823 
I 59R4(4B) I GTG ATC TTG GAG AGA GTC AAT GAG G I 8898-8922 

I 63F1(5G) I ACG AGA CTC AAA CAA CTT GCT G I 9227 - 9248 

I 67F2(5E) I geT7 - TGG GTG AAG TTG CAT CCT TTG G I 9743 - 9764 

I 68R2 (5D) I TGG ACA CTC TTT GCA GAT GTT AC I 9938 - 9960 
I 73R1(5H) I ATC CAT I TGC TGT TTT CCA TTT C I 10336-10357 

I 79R1 (5F) I ATC ATC TGC CAT GTG GAAAAG I 11064 - 11084 

I 79R2(5B) I geg aat teT ATT CTG CTC CTT CTT CAT CTG TC I 11120- 11 143 

The start codon ATG was at position 245 using the NM004006 dystrophin consensus 

sequence. 

T7 - gga tee taa tae gae tea eta tag gaa eag aee aee atg 

4. Lightcycler 2 adlican primers. 

Table 49: Table showing the primer set that was included in the Lightcycler 2 assays. 

Primer name Sequence 5'- 3' 
I Adliean forward ett ett ttg eaa atg eea etc 
I Adliean reverse I tga tga atg tte etc aga tat eet at 
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Bl. ACCESSION NUMBERS 

AF213406: Exon 6 

AF213408: Exon 8 

AF213429: Exon 41 

AF213430: Exon 42 

AF213437: Exon 52 

AF213438: Exon 53 

Z11860: Exon 60 

APPENDIXB 

NM 004006.1: cDNA reference sequence (dystrophin) 

M18533: old cDNA reference sequence (dystrophin) 

B2. WEB SITES / INTERNET LITERATURE 

http://www.chem.agilent.com/-Bioanalyserlab-on-a-chip.Agilent technologies. 

http://en.wikipedia.org/wiki/Image:Gastrocnemius.png - Image of gastrocnemius muscle. 

http://en.wikipedia.org/wikilBiceps brachii muscle - Image of biceps muscle. 

http://en.wikipedia.org/wikilMuscle 

http://en.wikipedia.org/wiki/Image:Illu lower extremity muscles.jpg - gastroc and 

quadriceps muscle image. 

http://users.rcn.com/jkimball.ma.ultranetlBiologyPageslMlMuscles.html - Striated 

appearance of muscle. 
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www.harkema.ucla.edulmuscles.html- image of the rectus femoris. 

http: //en.wikipedia.org/wikilH&E stain - H+E staining protocol. 

http://www .neuro. wustl.edulneuromuscular/pics/biopsv/ dmd/ dmdm vopthgreg. jpg 

Dystrophic images H+E staining. 

http://missinglink.ucsf.edullm/idsl04musclenerve path/student musclenerve/normal.ht 

ml - normal muscle fibres from adult and child. 200X magnification. 

http://www.usuhs.mil/pat/ surg path/nlhist/pictures/nl 0004b. jpg&imgrefurl - Longitudinal 

section of muscle fibre . 

www.unm.edul .. .lmusclesarcomere.html- subcellular organisation of muscle. 

(http://www.genetechhk.com/image/ser spotting.jpg) - micro array spotting. 

(http://www.ebi.uniprot.org:80/index.shtml) - universal protein knowledgebase. 

http://frodo.wi.mit.edul - Primer3 software for primer design. 

http://www.mdausa.org - muscular dystrophy association in the USA. 

http://staff.science.nus.edu.sg/~scilooe/srp 2003/sci paper/paediatrics/research paper/liew 

vi jin.pdf: Splice site selection in the dystrophin gene. 

http://www.dmd.n1/dmd all.html: All dystrophin mutations. 

http://www.invitrogen.com/content.cfm?pageid=4082: Invitrogen RT-PCR manual 

http://www.geospiza.com: FinchTV V 1.4.0 

http://www.hgys.org/mutnomenirecs-DNA.html: Human genome variation society 
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