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ABSTRACT 

Missing data is a common problem in research and the manner in which this ‘missingness’ is 

managed, is crucial to the validity of analysis outcomes.  

This study illustrates the use of two diverse methods to handle, in particular, missing 

categorical data. These methods are applied to a set of data which intended to identify 

relationships between asthma severity in children and environmental, behavioural, genetic 

and socio-economic factors. This dataset suffered from substantial missingness. 

The first method involved the application of two approaches to multiple imputation, each 

adopting different distributional specifications. A practical challenge, previously 

undocumented, was encountered in the application of multiple imputation when interactions, 

to be identified and included in the analysis model, were needed for the imputation model. 

This study found that by imputing a single set of complete data using the expectation 

maximization (EM) algorithm for covariance matrices, it was possible to identify relevant 

interactions for inclusion in the imputation model.      

The second method illustrated the application of correspondence analysis to a subset of the 

data that includes only the measured data categories. The application of subset 

correspondence analysis (s-CA) with incomplete data, as well as its sensitivity to the type of 

missingness, has not been well documented, if at all. There is also no evidence of research in 

which interactions have been added to an analysis with s-CA. In this study its use, both with 

and without interactions, was illustrated and the results, when compared to those from the 

multiple imputation approach, were found to be similar and favourably complementary. A 

simulation study found that s-CA performed well with any type of missingness, provided the 

amount of missingness is less than 30% on any variable with incomplete data. 

Across all analyses, relationships found between asthma severity and factors were consistent 

with known relationships, thus providing confirmation of the reliability of the methods. 
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Chapter 1 

INTRODUCTION 

The problem of missing data is unavoidable and has hindered researchers from the time field 

research began. It is especially common in the medical and social sciences (Rubin, 1996). 

Analytic procedures that were developed early in the twentieth century were designed to be 

used with complete data sets (Graham, 2009) and thus the presence of missing data presents a 

challenge. 

When data are missing, researchers need to proceed cautiously and be aware that the reason 

for their missingness as well as the manner in which it is addressed may produce bias which 

can impact the results and ensuing inferences. This can potentially affect the validity of 

research outcomes – a fact that is often ignored in medical literature (Wood et al., 2004). 

Early researchers adopted a number of methods to deal with the missing data. These methods 

included, amongst others, mean substitution, case-wise deletion, hot deck imputation and the 

indicator method. These were in many cases merely a means to bypass the problem of missing 

data and were seldom successful in achieving the primary goal of analysis – to obtain unbiased 

estimates of population parameters. There is generally widespread agreement regarding the 

strengths and weaknesses of these methods. 

Howell (2007) noted that modern techniques such as maximum likelihood and multiple 

imputation procedures have come far in narrowing the gap between the ideal and the 

practical. He further suggested that, in specialized areas like the treatment of missing data, it 

takes time for newer methods to be understood and adopted, as confirmed by the low usage 

of these methods, as evidenced in the literature. 
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1.1 Missing data classifications  

Missing data are traditionally categorised into three different types of missingness: missing 

completely at random (MCAR); missing at random (MAR) and missing not at random (MNAR). 

The type of missingness is determined on the basis of the process that led to the missingness. 

This terminology for missingness was introduced by  Donald Rubin (1976) , one of the pioneers 

of missing data research.  

1.1.1 Missing completely at random  

Data are ‘missing completely at random’ (MCAR) if the probability of an item missing has 

nothing to do with the value of the item or with the value of any other variable in the data. In 

other words it is a completely random happening with missing values being randomly 

distributed across all observations. Thus one observation of a variable is as likely to be missing 

as any other. MCAR data can result from, for example: someone missing an interview session 

due to traffic problems; accidentally turning two pages of a questionnaire instead of one; or a 

respondent genuinely not knowing the answer to a question. This missingness is easy to 

handle and does not cause bias in the results. However, depending on how the missing data is 

managed, MCAR can result in a loss of statistical power. 

1.1.2 Missing at random 

Data are ‘missing at random’ (MAR) if the probability that a variable is missing depends on 

another variable that may or may not be part of the data set. For example, the probability that 

income is recorded may depend on the gender of the respondent. It could be that females are 

more willing to divulge income than males. Provided the variable with which the missingness is 

related – in this case gender - is fully recorded, the missing data can be considered MAR.  If the 

variable with which the missingness is related contains some non-response itself, then the 

data are not MAR.  

Little and Rubin (1987) refer jointly to data that are MAR or MCAR as ‘ignorable’. When the 

cause of missingness is known, measured and available for use in analysis, it is also called an 

accessible missing data mechanism (Graham and Donaldson, 1993). Correct application of this 
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cause of missingness in analysis results in the adjustment of biases associated with missing 

data. On the other hand, when the cause of missingness is either not measured or is related to 

the variable containing the missingness, it is referred to as an inaccessible missing data 

mechanism. This is equivalent to a ‘non-ignorable mechanism’ and is commonly termed 

‘missing not at random’. 

1.1.3 Missing not at random 

All data that are neither MAR nor MCAR are described as ‘missing not at random’ (MNAR). This 

is a difficult situation to deal with as, even though the cause of the missingness may be known 

to the researcher, it is not measured or available for use. In addition, missingness that is MNAR 

will yield biased parameter estimates. A familiar illustration, taken from the medical field, of 

MNAR data is where patients drop out of a study because of discomfort they experience as a 

result of a treatment they are receiving. If the discomfort factor is not measured for all 

patients then this missingness is ‘not at random’. Another form of MNAR data occurs when the 

missingness depends on the missing value itself – for example, where people who consume 

excessive amounts of alcohol are reluctant to reveal their drinking habits. In the extreme case, 

where all refuse to divulge their excessive drinking habits, it is called censoring.  

A recognised treatment of censoring and MNAR data that will result in unbiased estimates of 

the parameters of the model is to explicitly model the missingness. Unfortunately, this is a 

difficult exercise as it is often not clear what lies behind the missingness and furthermore the 

missingness depends on unobserved data. As the term non-ignorable mechanism implies, the 

analysis that is being carried out cannot be completed unless a model governing missingness is 

also able to be written (Howell, 2007).  

1.2 Early contributions 

One of the earliest apparent applications of data imputation dates back to the 1940’s at the 

United States Census Bureau. According to Scheuren (2005) this endeavour to impute missing 

data, which was at that time referred to as ‘allocating’ data, was applied to the 1940 Decennial 

Census. Hot deck imputation was used to fill in the missing items of data (Ford, 1983). 
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Realizing that this form of imputation introduced a degree of bias with an underestimation of 

variance, Donald Rubin – a pioneer of multiple imputation – was consulted to help with a 

solution to the problem.  As a result, multiple imputation was conceived and first documented 

by Rubin in 1977 (Rubin, 2004a).  Additional influential research relating to the subject  was 

reported by several authors, including Rubin (1976), Dempster et al. (1977) and Heckman 

(1979). It was not until 1987 that dramatic changes were experienced in the field. Two 

important books (Little and Rubin, 1987, Rubin, 2004b) were published and these laid the 

groundwork for significant advances in the treatment of missing data. Coupled with these 

publications was the advent of powerful personal computers which led to the development of 

much needed software. Other important publications from 1987 described methods for 

dealing with missing data using structural equation (SEM) software (Allison, 1987, Muthén et 

al., 1987); and data augmentation that would later become a cornerstone of some multiple 

imputation software (Tanner and Wong, 1987). 

Current software, mostly developed since 2000, includes both stand-alone software and 

routines incorporated into popular statistical packages. Two significant contributions were 

made in this regard by Schafer (1997) who developed NORM (Novo and Schafer, 2010) – a 

stand-alone Windows package – and Van Buuren and Groothuis-Oudshoorn (2011)  who 

developed MICE – a routine implemented in both S-PLUS and R.  

1.3 Managing missing data 

Over the years a variety of methods have been used to ‘handle’ missing data but most of them 

do not, in essence, effectively deal with the missing data. Some are acceptable under certain 

conditions and others should not be used at all. Their success lies in the assumption of the type 

of missingness present as well as in the application of the method. Accessibility to techniques 

for managing missing data was, to begin with, restricted to what are commonly known as ad 

hoc methods. These include variable or case deletion and a number of single imputation 

methods. More recently, sophisticated techniques including multiple imputation have been 

developed to manage missing data. With increasing accessibility and the advancement of 

modern computers with superior computational capabilities, the use of these methods should 

become more evident in the literature.  
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1.3.1 Ad hoc methods 

Complete case analysis 

Probably the most commonly used and simplest approach to dealing with missing data is 

complete case analysis, also known as listwise deletion, casewise deletion or available case 

analysis. Listwise deletion excludes all cases with any missing item(s) from the analysis. 

Consequently there can be a substantial decrease in the number of cases included in the 

analysis which results in a loss of power. While applying this method to data that are MCAR 

generally leads to unbiased parameter estimates, this may not be the case if the cases with 

missing values differ significantly from the complete cases., It has been suggested that if the 

data are not MCAR, bias will result in the parameter estimates (Howell, 2007). Contrary to this, 

Graham (2012) reported that ‘when missingness is MAR, regression coefficients for pre-test 

variables predicting post-test variables will often be tolerably unbiased’. 

Despite the above reservations, Howell (2007) suggests that this method may, even in the case 

of data missing not at random, be better than many of the alternatives. Graham (2009)  

believes that this method can still be useful, especially if the loss of cases due to missing data is 

less than about 5%, since both biases and loss of power are likely to be negligible. 

Pairwise deletion 

In pairwise deletion, cases are excluded from any calculation involving variables for which they 

have missing data. Although this method does make use of the largest possible sample to 

estimate parameters, different calculations are based on different sets of data, with different 

sample sizes and different standard errors. Furthermore, unless missingness is MCAR, bias in 

the parameter estimates may still exist. It is also possible, and in fact not uncommon, that the 

correlation or covariance matrices resulting from this deletion will not be positive definite thus 

preventing analysis from being completed (Howell, 2007). A further limitation is that standard 

errors cannot be estimated because the sample size is needed for this calculation and this 

value is not constant with pairwise deletion. This method is not recommended as a general 

solution to missing data (Graham, 2009, Howell, 2007). A variation of pairwise deletion is what 

is called complete variable analysis. In this case, variables are omitted from analysis if they 

suffer from missingness. This can result in a potentially important predictor being omitted 

from analysis. 
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Both of the methods described above lose potential valuable information because of the 

special selection of cases or variables. 

Instead of decreasing the size of the data set by removing incomplete cases or variables, many 

methods have been developed whereby missing data are imputed. These methods range from 

extremely simple to rather complex. Some methods do single imputations, i.e. each variable 

with missing observations is imputed independently of the next. Other methods impute 

missing data across several variables simultaneously.  

Hot deck imputation 

Hot deck imputation was first used in 1947 at the U.S. Census Bureau for item non-response in 

the Income Supplement of the Current Population Survey (CPS) (Andridge and Little, 2010).  

For a case with single or multiple missing values, a similar complete case, based on the 

observed responses, is selected. The missing values are then replaced by the corresponding 

values from the complete case. This works reasonably well providing the missing data are kept 

to a minimum. As non-response increases and more data are replaced, the parameter 

estimates and their standard errors are compromised. Although hot deck imputation may be 

useful in some circumstances, it is not commonly used today. It has been suggested that while 

hot deck has some ‘attractive features’, it underestimates the variance and its ‘bias reduction 

properties are suspect, at best, without some form of supplementation’ (Scheuren, 2005). 

Mean substitution 

As the name suggests, mean substitution involves replacing the missing value by the mean of 

the observed values for that variable. This method of imputation results in an underestimation 

of the standard error as, in effect, no new information has been added to the data. It is 

generally thought that this method should not be considered (Graham, 2009, Howell, 2007). It 

has even been suggested that this method is ‘the worst of all possible strategies’ for dealing 

with missing data (Graham, 2012). 
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Missing value coding 

One idea that was made popular in the behavioural sciences by Cohen et al. (2003) was the 

addition of indicator variables to code for missing items while replacing missing data with 

mean values. This method, however, results in biased parameter estimates (Jones, 1996) and is 

no longer recommended (Allison, 2002, Graham, 2009, Howell, 2007). A similar method is 

applied to categorical data when a single categorical covariate has missing data. In this case, a 

separate category is introduced for the missing data. This, too, has been shown to lead to 

significant bias (Vach and Blettner, 1991). 

Last Observation Carried Forward (LOCF) 

Specific to longitudinal data problems, where multiple measurements are taken per subject 

over time, this method replaces a missing measurement with the last measurement taken. 

Whether for a multi-stage longitudinal analysis, where a subject drops out of the study before 

completion, or with single time point analysis, biased results and an underestimation of 

variability will result. This will negatively impact on precision and hence inferences may not be 

valid. This is true even under MCAR. Molnar et al. (2008) report that this method ‘provides no 

benefits’, and ‘creates unnecessary risk of generating biased or even false conclusions’.  

Because the researcher is making assumptions about a subject had they not dropped out, this 

method is not recommended (Howell, 2007). 

Regression-based single imputation  

A slight improvement on mean substitution, regression-based substitution uses additional 

information about the case to impute the missing value. Howell (2007) suggests that this 

works reasonably well providing the variable with the missing data is strongly related to the 

other independent variables. The higher the correlation between the missing variable and the 

predictor variables, the better will be the imputation (Graham, 2012). It has even been 

described as the ‘best of the simple solutions to missing data’ (Lynch, 2003). However, because 

the missing value is replaced with a value predicted from the other variables, new information 

is not added but rather the sample size is increased and the standard error is underestimated. 

This will, in turn, affect the resulting regression coefficients. According to Graham (2012), even 

though the concept is a sound one, he does not recommend its use in general. It is important 
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to note, nonetheless, that regression-based imputation forms the basis for many of the 

modern and highly recommended missing data methods. 

All of the methods described above in which there is ad hoc deletion or replacement of missing 

data are appealing in that they are easy to implement. In addition, some of them are readily 

available in most statistical software packages. Graham (2012) suggests, however, that none of 

these methods deals effectively with missing data but they instead circumvent the problem so 

that some further analyses can be attempted. There is general consensus that care should be 

taken when using these ad hoc methods as they have been shown to have serious drawbacks 

(Little and Schenker, 1995, Schafer and Graham, 2002). Graham et al. (2003) refer to them as 

“unacceptable methods”  and in a later publication, Graham (2009) encourages researchers to 

use modern missing data procedures that are known to be good and that will produce 

unbiased results even when the data are MAR.  

1.3.2 Modern methods    

Two more conventional methods, both based on strong statistical principles and 

recommended to deal with missing data, are maximum-likelihood (ML) and multiple 

imputation (MI) procedures. Graham (2009) believes that, compared to over 25 years ago, 

these methods are 90% of the way to reaching the ‘hypothetical ideal’ in terms of missing data 

solutions. Simulation studies have shown that ML algorithms produce superior results to the 

traditional ad hoc methods when dealing with missing data (Arbuckle et al., 1996, Enders and 

Bandalos, 2001, Muthén et al., 1987). There is also much support for the use of MI (Azur et al., 

2011, Desai et al., 2011, Donders et al., 2006) and Scheffer (2002)  even suggests that ‘multiple 

imputation is always better than case deletion or single ad hoc methods’. 

Maximum likelihood  

A number of ML algorithms for use with missing data are available. In each case, multivariate 

normality is assumed.  Possibly the most commonly used of these is the full information 

maximum likelihood (FIML) estimation method, which is implemented in the AMOS software  

(Arbuckle, 2006). In this process, a single case of raw data is read in and, using the available 

information in the case, the ML function is maximized. An overall estimate of the ML function 

is then obtained by summing across the individual cases. In this procedure the missing data 
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and the parameter estimation are dealt with in a single step. FIML is thought to provide 

excellent parameter estimates as well as reasonable standard errors (Enders, 2001, Graham, 

2012). 

Multiple imputation 

Adding random error to overcome the problem of underestimation of standard errors is a key 

factor in all variations of MI. Several algorithms have been developed to perform MI. The two 

most widely used approaches are multivariate normal imputation (MVNI) and fully conditional 

specification (FCS). Both are iterative techniques and produce multiple (m) complete data sets. 

Estimates for the missing data are obtained by regressing the incomplete variable on all other 

variables in the model. While MVNI assumes all variables follow a multivariate normal 

distribution, FCS is less restrictive and tailors the regression model to suit the type of variable 

to be imputed. 

The MVNI algorithm is adopted by the NORM software (Schafer, 1999) while FCS is 

implemented in the MICE routine in S-Plus and R (Van Buuren and Groothuis-Oudshoorn, 

2011).   

Each of the m data sets produced at the imputation stage using both MVNI and FCS is analysed 

using the analysis of choice. The resulting parameter estimates are then combined using 

Rubin’s rules (Rubin, 2004b) to yield the point estimate of the parameters and the MI-based 

standard errors. It has been suggested that, ‘until something even better comes along’, it is 

‘likely that MI will be the solution of choice’ for the treatment of missing data (Howell, 2007).  

Under the assumption of MAR, these MI and ML methods are specifically designed to provide 

unbiased parameter estimates and, even if this assumption is not met, these methods will 

always perform at least as well as the older ad hoc methods (Graham, 2012). It has also been 

suggested that, while specific non-ignorable methods to manage MNAR data (Demirtas and 

Schafer, 2003, Demirtas, 2005, Little, 1995) may be very useful, it is not necessarily true that 

these methods will be better than MI or ML methods for any particular empirical study 

(Graham, 2009). If the missingness model and its assumptions are incorrect, the MNAR model 

may perform worse than standard MAR methods (Demirtas and Schafer, 2003). In a study 
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investigating the effect of different imputation methods and different missingness 

mechanisms on the mean and standard deviation it was found that MI produced good results 

for MNAR data at missingness levels of less than 25% (Scheffer, 2002). In another study 

comparing different imputation techniques to deal with missing data in a multi-question 

depression scale,  Shrive et al. (2006) found that MI performed well even with MNAR data. 

They report that this agrees with findings from Faris et al. (2002) who demonstrated a similarly 

strong performance by MI on MNAR data. It has also been shown that with both MI and ML, by 

including in the imputation model auxiliary variables – variables that are correlated with the 

missingness – the impact of non-ignorable missingness is reduced (Collins et al., 2001, Graham, 

2009, Schafer, 1997). 

 Not only is it important to include auxiliary variables in the imputation model, but all variables 

to be used in the analysis model, including the dependent variable and interactions, should be 

included. The exclusion of any variable to be used at the analysis stage will result in biased 

estimates (Graham, 2009). 

1.4 How researches are managing missing data  

Even though significant advancements in the management of missing data and availability of 

appropriate software have been evident since 2000, the adoption of these recommended 

methods is slow. In a review of literature on PubMed from January 2000 to December 2009, 

which included all cohort studies with a sample size of at least 1000, the authors highlighted 

the ‘continuing use of inappropriate methods to handle missing data’ with only 7% of the 

studies using a recommended method for dealing with the missing data (Karahalios et al., 

2012). 

Another article on the use of MI in epidemiologic literature (Klebanoff and Cole, 2008) 

searched four leading epidemiologic journals for articles published from January 2005 to 

December 2006. Of the 99 articles containing the text ‘imput’, only 12 used MI, while a further 

four used other acceptable methods. The authors of this review article expressed surprise at 

‘how infrequently multiple imputation appeared in epidemiologic manuscripts given the well-

described shortcomings of simpler approaches’. In another review of 262 studies from three 
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leading epidemiologic journals, all published in 2010, it was found that only 13% of the studies 

used recommended methods such as MI and ML estimation. Complete case analysis was 

performed in 81% of the studies, despite the fact that the average proportion of missing data 

exceeded 10% (Eekhout et al., 2012).  

 A search on PubMed for articles relevant to this study was carried out. All studies published 

from 1 January 2012 to 31 July 2013 on associations between childhood asthma and various 

environmental factors, were included. Of the 50 studies that satisfied the inclusion criteria, 27 

of them were cross-sectional. 89% of these suffered from missing data. The search revealed 

that not one of these cross-sectional studies indicated the use of MI or any other acceptable 

method of dealing with the missing data. Of the remaining 23 non-cross-sectional studies, only 

one indicated the use of MI to deal with the missing data. 

1.5 The objectives of this study  

This study addresses several aspects of analysis to deal with missing categorical data. Some MI 

algorithms are explored with a special investigation into the inclusion of interactions when 

data are incomplete. Another entirely different approach is also introduced that not only 

manages the missing data but is also unrestricted by the distributional requirements of the 

aforementioned MI methods. An investigation into the effect of the different missingness 

mechanisms on this method is also presented. These applications are carried out on a set of 

data from a study on childhood asthma in which the severity of asthma as well as 

environmental, behavioural, genetic and socio-economic factors are measured. 

The main objectives of the study, which are addressed in specific papers, follow. 

1.5.1 Research objective 1 

The inclusion of interactions in the imputation model is not always straight forward. There are 

two schools of thought on how this can be done. One way is to impute the individual variables 

first and thereafter form the interaction product terms using the imputed data. This is called 

‘passive’ imputation. Alternatively, the interaction product terms can be included in the 
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imputation model as additional variables – termed ‘JAV’ (just another variable) (White et al., 

2011) – and imputed along with the other variables. It has been shown that with passive 

imputation, while the interaction terms are compatible with the variables, parameter 

estimates in the analysis model are affected by bias (Von Hippel, 2009). On the other hand, 

treating the interaction terms as JAV will produce interactions that are not always compatible 

with the individual variables; but the resulting parameter estimates and standard errors are 

unbiased. 

Clearly, including the interactions as JAV at the imputation stage should be the method of 

choice if bias is to be avoided. This can present a challenge in practical terms since interactions 

are not always known a priori and need to be identified from the data. If the number of 

variables in the data is small, then all possible interactions can be included at the imputation 

stage. However, as the number of variables increases, this becomes impractical and in many 

cases computationally impossible. 

While studies have been done on MI with interactions included (Desai et al., 2011, White et al., 

2011), in all these cases the interactions are known prior to imputation. The dilemma that the 

researcher faces is: complete data is needed to identify interactions; but the interactions are 

needed to carry out the imputations. Addressing this practical challenge is thus one of the 

objectives of this study. 

1.5.2 Research objective 2 

Managing missing data with MI involves fitting the data to a model. This application is often 

restricted by complexities of models and distributional requirements. Furthermore, many of 

the MI algorithms are more suited to dealing with missingness in continuous variables, even 

though, in some applications, adaptations can be made to impute categorical variables and are 

found to work well (Graham, 2012).  

The second objective of this study is to investigate the application of subset correspondence 

analysis (s-CA) to address the issue of missingness in the analysis of categorical data. This 

method of analysis adopts a very different approach to the more traditional aforementioned 
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method in that it fits a model to the data and there are no distributional restrictions to 

consider.  

1.5.3 Research objective 3 

While many studies have examined the effect of missingness mechanisms and the amount of 

missingness on MI (Hardt et al., 2012, Marshall et al., 2010, Peyre et al., 2011, Shrive et al., 

2006) , it is not known what effect these factors might have on s-CA. The third objective is then 

to investigate the impact of the amount and mechanism of missingness on the application of s-

CA as a solution to missing data management problems. 

1.5.4 Research objective 4 

This study illustrates the use of both MI and s-CA to manage the missing data when analysing 

relationships between variables. What is not clear is whether these two diverse methods arrive 

at the same conclusions with regard to relationships between variables that suffer from 

missingness. Moreover, to the knowledge of the researcher, the inclusion of interactions with 

s-CA has not been demonstrated in the literature. The fourth objective is to compare 

outcomes from these two methods while at the same time demonstrating how interactions 

can be added to an s-CA analysis. 

1.5.5 Research objective 5 

Many studies have been done on the effect of the environment, socio-economic status, 

genetics and behavioural patterns on asthma in children. Relationships between asthma and 

these factors are well documented and presented in Chapter 2. While the vast majority of 

these studies are internationally based, very little is known about the impact of these factors 

on the respiratory health of children in South Africa. The fifth objective is therefore the 

intrinsic aim of this study which is to identify the factors that affect the severity of asthma in 

children specific to the Durban South basin. 
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Chapter 2 

The Data 

2.1  Background literature review on asthma in children 

Respiratory diseases are the most common cause of illness in children. Outdoor and indoor air 

quality, poverty, poor housing, malnutrition and poor medical services are contributory causes 

to the burden of illness from asthma and other respiratory problems in children (Ernst et al., 

1995, Gold and Wright, 2005, Litonjua et al., 1999, Peden, 2003).  Epidemiological and clinical 

studies link respiratory problems with unfavourable housing and living conditions (Rauh et al., 

2008) (Rosenstreich et al., 1997, Williamson et al., 1997).  

Laboratory and population-based studies have shown associations between stress experiences 

and asthma expression (Subramanian and Kennedy, 2009, Wright, 2008). In a study across 

cities in Los Angeles County, it was found that childhood asthma and community violence, as 

measured by assault hospitalisations,  were significantly associated (Jeffrey et al., 2006) . A 

Canadian study on the association between asthma prevalence in school children and 

neighbourhood stressors,  found that the stress in early childhood on children living in high 

crime neighbourhoods was associated with either the development of asthma or the 

worsening of symptoms (Pittman et al., 2012). Another study on the effect of community 

violence on childhood asthma was conducted in Brazil (Alves et al., 2012). This study 

investigated the degree of exposure to community violence and its effect on the respiratory 

health of the children. It was found that children that were more exposed to violence, 

including gang warfare and drug trafficking, showed higher asthma prevalence compared to 

non-exposed children. They further showed that children exposed to the maximum level of 

violence were nearly twice as likely to present asthma symptoms. For those who knew 

someone that had been either beaten or injured with a firearm or knife, there was a nearly 

40% higher prevalence of asthma. In a  study conducted in Vancouver, Canada, violence in the 

neighbourhood and lower socio-economic status (SES) of neighbourhoods were associated 

with asthma morbidity (Chen et al., 2007). 
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Even though SES has been linked to childhood asthma in different regions around the world, 

the findings cannot be reproduced in all regions (Von Mutius, 2000). In Britain, Singapore and 

Hong Kong, it was found that parent-reported asthma is more prevalent among subjects of a 

higher socio-economic status (Goh et al., 1996, Kaplan and Mascie-Taylor, 1985, Lai et al., 

1996, Peckham and Butler, 1978); while studies in the USA have found that asthma prevalence 

is associated with poverty (Litonjua et al., 1999, Persky et al., 1998). Poyser et al. (2002) , in 

their study on socio-economic deprivation and asthma prevalence and severity in young 

adolescence in Cape Town, South Africa, found that pupils living in ‘better-off areas’ reported a 

higher prevalence of ever having had asthma than those living in the poorer areas. In contrast, 

they found that greater severity of the disease was associated with lower socio-economic 

groups. Von Mutius (2000) suggests that the significant differences in asthma prevalence 

between regions of similar ethnic backgrounds are very likely strongly influenced by the 

environment. 

Later studies confirm this contradiction of the link between SES and development of asthma 

(Gold and Wright, 2005, Hancox et al., 2004, Kozyrskyj et al., 2010, Shankardass et al., 2007). It 

has been suggested that ‘SES is a rough marker of a variety of environmental/behavioural 

exposures’ including, amongst others, dietary habits, family size, access to health care, 

environmental tobacco smoke (ETS) and allergen exposure (Forno and Celedón, 2009).    

Kozyrskyj et al. (2010) suggest that the contradictory findings regarding the association 

between SES and childhood asthma may be a function of the variable(s) used to measure SES. 

Studies on the association between family size and asthma prevalence show conflicting results. 

While many studies have found a negative relationship between family size and asthma 

prevalence (Dik et al., 2004, Karmaus and Botezan, 2002, McKeever et al., 2001), others have 

found that asthma prevalence is higher in larger families (Davis and Bulpitt, 1981)  and others 

still have found no relationship between these variables (Nafstad et al., 2005). In a study on 

medical records of more than half a million 17 year olds in Israel who had ever had asthma, it 

was found that in families with more than three children, asthma prevalence was inversely 

related to the number of children in the family (Goldberg et al., 2007).  

A study on the association between household income and asthma symptoms among 

elementary school children in Seoul found that income and asthma were inversely associated 
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after adjusting for other potential risk factors (Choi et al., 2012). It further showed that this 

association was modified by the number of siblings. While there was no significant effect of 

income on asthma symptoms for children with two or more siblings, low income was still a 

significant factor for children with fewer than two siblings (OR 1.41; 95%CI, 1.09 – 1.81). 

According to Bae et al. (2008), studies confirm that insufficient food intake can result in 

asthma. In a community childhood hunger project, conducted in Washington DC, it was found 

that ‘poor hungry children were more likely than poor but not hungry children’ to suffer from 

health problems such as asthma (Alaimo et al., 2001). 

Domestic air quality has also been found to be linked to asthma. Airborne allergens, shown to 

exacerbate asthma, include dust mites, cockroaches and domestic cats and dogs (Gent et al., 

2009). It has also been shown that asthma prevalence is greater in homes with wood and coal 

burning stoves compared to those using other sources of heating (Jones, 1998). More recently, 

Bates et al. (2013) conducted  a study on the effect of cooking fuels on children in Nepal. They 

found that, compared to the use of electricity for cooking, there was increased incidence of 

lower respiratory infection with the use of solid fuels, including wood, coal and paraffin. 

A review of 32 articles up until 1999 with regard to exposure to pets and the risk of asthma 

(Apelberg et al., 2001) yielded conflicting results. However, combining results from these 

articles it was found that the pooled risk for asthma in studies on a population with median 

age in excess of 6 years indicated a small but significant effect (OR 1.19; 95% CI 1.02 – 1.40).  

According to a more recent review of similar articles from 1966 to 2007 (Takkouche et al., 

2008) , it was found that, on pooling results, there was evidence that while exposure to dogs 

slightly increases the risk of asthma (OR  1.14; 95% CI 1.01 – 1.29), exposure to cats has a slight 

preventative effect on asthma (OR 0.72; 95% CI 0.55 – 0.093). Exposure to furry pets of 

undetermined type was not conclusive. Carlsen et al. (2012), in their study of 11 European 

birth cohorts, investigated whether pet ownership in infancy leads to asthma or allergy at 

school  age. They found that ownership of single types of furry pets or birds in the first 2 years 

of life neither increased nor decreased the risk of asthma in school-aged children. However, 

they did find that living with furry pets in the first 2 years appeared to reduce the likelihood of 

becoming sensitised to aeroallergens in early school age.  
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Goodwin and Cowles (2008) found an association between both pre- and post-natal exposure 

to cigarette smoking. This is consistent with the findings of DiFranza et al. (2004) who also 

reported that respiratory risk associated with parental smoking seems to be greatest during 

foetal development and the first few years of life. Rayens et al. (2008) found a decrease in 

asthma related ER visits since smoke-free laws were introduced. A study on environmental 

tobacco smoke (ETS) in cars (Sendzik et al., 2009), found that ETS is associated with a greater 

likelihood of asthma and other chronic lung diseases. Furthermore, risks for children exposed 

to ETS in cars are greater than those of children exposed to ETS in the home and they further 

showed that children are more susceptible to the effects of ETS exposure than is the case for 

adults. It would seem that because of the restricted area in a car within which smoke 

circulates, the levels of ETS in cars pose a significant risk to children. Results from a 

longitudinal study (Sly et al., 2007) found that by the age of 14, children exposed to ETS in cars 

are more likely to have a current or persistent wheeze, and decreased lung function compared 

to children who were not similarly exposed. They further found that the risk for children 

exposed to ETS in cars was greater than that of children exposed to smoking in the home.  

A cross-sectional study on the effect of exposure to air stack emissions of sulphur dioxide from 

petroleum refineries on asthma among children aged 6 months to 12 years  was carried out in 

Montreal, Canada (Deger et al., 2012). It was found that a significant relationship exists 

between exposure to refinery stack emissions of SO2 and the prevalence of asthma (OR 1.14; 

95% CI 0.94 – 1.39). These results concur with numerous other studies reporting an increased 

prevalence of asthma among children living in proximity to industrial areas, including refineries 

and petrochemical industries (Charpin et al., 1988, Henry et al., 1991, Maantay, 2007, Roberts 

and Ehrlich, 2009).  

Approximately 250 occupational pollutants including chemicals, metals, enzymes, drugs, and 

others, are known as risk factors for asthma (Venables and Chan-Yeung, 1997). These 

pollutants and compounds usually occur in high concentrations in the work place. It has been 

suggested that prolonged exposure of the general population to lower concentrations of these 

compounds could initiate or exacerbate asthma in susceptible individuals  (Becher et al., 1996). 

The association between the prevalence of asthma in school children and passive smoking and 

obesity was carried out in Mexico (Bedolla-Barajas et al., 2013). They found that neither 
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obesity nor passive smoking, where one of the parents smoked, is significantly associated with 

asthma in children aged between 6 and 12 years. 

There is an increasing awareness that very low birth weight (VLBW) children are at risk of 

experiencing long-term health problems (McManus et al., 2012). These children suffer, most 

commonly, from respiratory disease and are three times as likely to get asthma as normal birth 

weight children (Brooks et al., 2001, Hack et al., 2005).   

 In a study on the relationship between very low birth weight (VLBW) and the development of 

asthma (Mai et al., 2003), it was found that, at age 12, asthma was more frequently found 

among the VLBW children than the term children. They also reported a significant association 

between the VLBW children who received neo-natal care in the form of mechanical ventilation 

and/or oxygen supplementation, and those with a history of asthma by the age of 12. 

 According to Corbo et al. (2008), high body weight and spending a lot of time watching TV 

each independently increase the risk of asthma symptoms being present in children. In their 

investigations on the associations between asthma and wheeze in children and body mass 

index (BMI), sports, television viewing and diet,  they found that subjects who spent 5 or more 

hours per day watching television, were more likely to experience wheeze or current asthma, 

compared with those who viewed TV less than 1 hour a day.   

A study on the effects of elevated BMI among low birth weight children on asthma prevalence 

was conducted in Taiwan (Lu et al., 2012).  Their results suggest that low birth weight 

predisposes one to develop asthma. They further showed that, amongst the low birth weight 

subjects, an elevated BMI in adolescence was associated with a higher risk for asthma. It was 

further found that low birth weight boys who were either normal weight or underweight 

adolescents, had an increased risk for developing asthma. The same association, however, was 

not true for girls. 

While childhood asthma is generally associated with younger children (Asher et al., 2006), it is 

more prevalent in boys, than in girls, before puberty. In fact, some investigations have shown 

male: female ratios for asthma prevalence to be as high as 4:1 (Bonner, 1984). Hospitalisation 
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rates for asthma reflect the difference in asthma severity between boys and girls. One study 

on asthma-related hospital admissions by age and sex in Finland shows that at age 1 year, 

hospital admission rate is 5.3/1000 for boys and 2.9/1000 for girls. These rates begin to 

equalize at puberty and remain similar throughout adolescence (Harju et al., 1996). A study in 

the USA on children of 2 – 11 years of age found that, in girls, asthma prevalence increased 

approximately linearly from 12% among underweight girls to 33.3% among overweight girls. In 

boys, asthma prevalence was 36.4% for those underweight, 19.1% for normal weight boys and 

34.8% among overweight boys (Kwon et al., 2006). Another study examined the influence of 

pre-natal exposure to particulate air pollution on the respiratory health of full-term children at 

6 years of age (Hsu et al., 2015). It was found that increased exposure at 16-25 weeks 

gestation was associated with early development of asthma. Further it was shown that this 

association was true only for boys. 

2.2 The survey and descriptive statistics 

In 2004 the eThekwini Municipality in KwaZulu-Natal, South Africa commissioned researchers 

from the University of KwaZulu-Natal (UKZN) to conduct a study on the effect of ambient air 

pollution on the respiratory health of children in the South Durban region (Naidoo et al., 2013).  

A highly industrialized area, the South Durban Industrial Basin is recognised as one of the 

worst polluted areas in Southern Africa (Matooane and Diab, 2001). It is home to large crude 

oil refineries, petrochemical plants, a paper mill, a bulk chemical storage facility, motor 

manufacturing plants and many other ‘smoke stack’ industries. 

Data were collected from seven schools in two regions – four schools in the industrialised 

Durban South region and a further three schools, from similar socio-economic backgrounds, in 

the non-industrialised Durban North region. In order to achieve a sample of persistent 

asthmatics with adequate power to determine association between asthma and variables of 

interest, all students from Grades 3 – 6 completed a ‘screening’ questionnaire to determine 

the status of their respiratory health with specific reference to asthma and asthma symptoms. 

The study sample comprised one or two randomly selected Grade 4 classes from each school 

as well as additional children from Grades 3 – 6 identified as having persistent asthma on the 

basis of the ‘screening’ questionnaire. Of the 422 children from the randomly selected classes, 
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342 agreed to participate in the study. A further 93 children across all grades were identified as 

having persistent asthma and were invited to join the study. Of these, 81 participated in the 

study. The total study sample thus consisted of 423 children. 

Data covering socio-economic, genetic, behavioural and environmental aspects were gathered 

from the children, their guardians and their families by means of four surveys administered by 

trained interviewers from the research team. ‘Caregiver’, ‘adult’ and ‘family’ interviews were 

conducted with family members at home while the ‘child’ interview was carried out at school.  

When preparing the data for this study, it was decided that any subject without an asthma 

classification would be excluded. In addition, it was found that, for a number of subjects, 

demographic information across the four surveys was not consistent and, because these 

records were deemed unreliable, they were also excluded from the final data set. In all 41 

subjects were excluded, thus leaving a final sample of 382 children for inclusion in this study.  

From the variables collected across the four surveys, 21 environmental, genetic, socio-

economic and behavioural variables as well as the four-tiered asthma severity variable were 

chosen to be included in this study. Careful selection was made to ensure that each of the 

environmental, genetic, socio-economic and behavioural constructs was adequately 

represented by several variables that are well studied as factors affecting asthma.  Details of 

these variables, as well as their frequencies, are presented in Table 2.1. 

Most of the variables used are self explanatory. However, some need further description to 

clarify their use in this study. The survey questions that lead to these variables are outlined 

below. 

The variables ‘age’ and ‘gender’ apply to the child in the study. Also concerned with the child 

are the variables ‘exercise’ (How many times per week do you play or exercise enough to make 

you sweat and breathe hard?); ‘TV’ (About how many hours did you watch TV yesterday?); 

‘fear’ (Are you afraid you will be hurt by violence in your neighbourhood?); ‘breakfast’ (How 

often do you eat breakfast – every day, on some days, rarely, never, or on weekends only?); 

‘perceived weight’ (Do you consider yourself to be overweight, underweight or about the right 
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weight?); ‘violence’ (While you have lived in your neighbourhood, has anyone ever used 

violence, such as in a fight (hitting, pushing, shoving), against you or any member of your 

family anywhere in your neighbourhood or home?); ‘weapons’ (Was there a fight in which a 

weapon was used anywhere in your neighbourhood during the past 6 months?); and 

‘smokevehicle’ (Does anyone smoke cigarettes in a car, taxi or bus while you are riding in it?).  

Data gathered from the caregivers includes the variables ‘birthweight’ (How much did the child 

weigh at birth?); ‘neo-natal’ (Did the child receive any newborn care in an intensive care unit, 

premature nursery or any other type of special care facility?); and ‘smokepregnant’ (Did the 

child’s biological mother smoke at any time while she was pregnant with the child?).  

Information about the home and environment includes ‘work ‘n wear’ (Is there anyone whose 

paying job is working around chemicals (such as pesticides, paints) or dust living in the home? / 

If yes, do they usually wear their work clothes home?); ‘pet’ (Do any pets live in this home? –

this was confined to the presence of cats and dogs only); ‘numpeople’ (How many adults (18 

years or older) usually live in your home? + How many children (less than 18 years of age) 

regularly live in your home?); ‘food’ (Which one of the following statements best describes the 

food eaten by your household? [enough food to eat; sometimes not enough food to eat; often 

not enough food to eat]); ‘stove’ (What is the primary source of heat for the stove or oven? 

[paraffin; gas; electricity; wood; coal]); ‘income’ (Which category best describes your total 

combined income of all members of your household during the last month? [less than R1000; 

… R10001 and above]); and ‘smokers’ (Does anyone who lives here smoke cigarettes in the 

home?).  

The variable ‘area’ refers to South Durban and North Durban while the ‘asthma severity’ 

variable is a 4-tiered classification of asthma severity based on criteria provided by the US 

National Asthma Education Program (NAEPP, 1991) (Table 2.2). 
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Table 2.1: Categories and frequencies for all variables

VARIABLE CATEGORIES - COUNT (N=382) 

gender male 163 female 219 

  

    

exercise <twice weekly 113 2-4 time/week 135 >4 times/week 110     

TV <1hr a day 86 1 - 3 hr/day 193 >3 hrs/day 78     

smokers yes 187 no 194 

  

    

breakfast daily 236 not daily 121 

  

    

pets yes 114 no 264 

  

    

food enough 265 not enough 85 

  

    

work 'n wear yes 36 no 332 

  

    

smokepregnant yes 35 no 328 

  

    

neo-natal yes 50 no 318 

  

    

birthweight up to 2.5 kgs 56 >2.5 kgs 280 don't know 42     

fear yes 165 no 192 

  

    

violence yes 185 no 169 

  

    

weapons yes 160 no 194 

  

    

perceived weight overweight 54 underweight 35 correct weight 267     

smokevehicle yes 94 no 259 

  

  

 stove paraffin 6 gas 3 electric 308 no stove 27 

numpeople 1 - 4 people 124 5 - 7 people 153 >7 people 70   

 age 8-9 years 25 10 years 196 11 years 135 12+ years 26 

income Up to R1000 79 R1001 - R4500 102 R4501 - R10000 88 R10001 + 39 

area South Durban 197 North Durban 195 

  

  

 asthma severity moderate/severe 27 mild persistent 47 mild intermittent 76 no asthma 232 
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Table 2.2: Classification of asthma severity 

 

 

 

 

 

 

 

 

2.3 Missingness 

Non-response in surveys is a common problem and this data set is no exception. Missingness 

affects 43.5% of the 382 child records used in this study. It varies across 18 of the 22 variables 

and amounts to a total of 5.3% of the data items (Figure 2.1). The frequency of non-response 

per variable is summarized in Figure 2.2.  
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Adapted from: Guidelines for the Diagnosis and Management of 

 
Asthma, NAEPP, Expert Panel Report 3, Pages 305-310. 

 
www.nhlbi.gov/guidelines/asthma 

 Figure 2.1: Summary of missing values 
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Examining the raw data for each missing item revealed that out of the 382 participating 

subjects, four did not complete a ‘caregiver’ survey, there were 23 missing ‘child’ surveys and 

16 missing ‘family’ surveys’.  

Analysis of the missingness present in the variables ‘birth weight’, ‘neo-natal’ and 

‘smokepregnant’ from the ’caregiver survey’, revealed the following: apart from the four 

missing surveys, 42 respondents indicated that they did not know the birth weight of the child; 

and there were 10 non-responses to the question regarding neo-natal care and 15 missing 

 

Figure 2.2: Frequency of missingness for each variable  
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items from the question regarding smoking while pregnant. It would seem that in many cases, 

these missing items were as a result of the respondent to the ‘caregiver’ survey genuinely not 

knowing the information asked for since nearly 60% of these respondents were family 

members, other than the mother, or foster parents. 

Information for the ‘work ‘n wear’, ‘pet’ and ‘smokers’ variables were obtained from multiple 

surveys. The few missing items were as a result of either missing surveys, or complete sections, 

or individual questions, being skipped in the completion of a survey.  It seems reasonable that, 

given the respondent to a survey is not always the head of the household, knowledge of 

whether a resident in the home works with chemicals and wears his/her work clothes home, 

would sometimes not be known to the respondent. 

The group of socio-economic variables – ‘numpeople’, ‘Income’, ‘food’ and ‘stove’ – are all 

from the ‘family’ survey used to gather information about the home and its inhabitants. These 

variables have the highest counts of non-response amongst all of the variables. It has been 

suggested that SES  is a sensitive area of inquiry for research studies with high percentages of 

item non-response (Shavers, 2007). Specifically, ‘income’ typically has one of the highest rates 

of item non-response in surveys (Pleis and Cohen, 2007). It has been found that item non-

response for household income generally ranges from 21% to 39% (Moore et al., 2000).  

Apart from the 16 missing ‘family’ surveys, there were numerous cases of incomplete sections 

or individual items not being answered. It is noteworthy that, for the ‘income’ variable, over 

8% of the respondents included in this study completed the full section on income that 

gathered information about those in the home who receive an income, as well as the source of 

the income, but failed to respond to the question that asked what their income was.  

The remaining incomplete variables are from the ‘child’ survey. Non-response was largely due 

to the 23 missing surveys and was supplemented by some individual missing data items and, in 

a few cases, complete sections being skipped. 
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From the exploration of the missingness in the raw data, it would appear that much of the 

missingness can be classified as MCAR. However, especially when one considers the socio-

economic variables, it is highly possible that there is some MNAR at play as well.  

Chi-square analysis was carried out to ascertain whether the missingness in any of the 

variables is significantly related to the fully measured variables of ‘gender’, ‘age’, ‘area’ and 

‘asthma severity’. It was found that missingness in ‘birth weight’ (p = 0.032), ‘neo-natal’ (p < 

.0005) and ‘smokepregnant’ (p=.001) is related to the ‘gender’ variable; missingness in 

‘exercise’ (p = 0.015), ‘TV’ (p = 0.010), ‘fear’ (p = 0.030), ‘breakfast’ (p = 0.010), ‘perceived 

weight’ (p = 0.002), ‘violence’ (p = 0.025) and ‘smokevehicle’ (p < 0.0005) is related to ‘area’; 

missingness in ‘stove’ (p = 0.042)is related to ‘age’ and missingness in ‘food’ (p = 0.029) is 

related to ‘asthma severity’. Thus all of these variables that suffer from missingness could be 

considered at worst to be MAR. It cannot be ruled out, however, that there exists some MNAR 

mechanism in the data. 

2.3.1 Missing value patterns 

The missingness values follow a non-monotonic pattern (Figure 2-3). There are 50 individual 

patterns present in this data, each of which represents a different combination of missing 

variables. Pattern 1 represents the 216 cases that do not have any missing data. Of those 

patterns that include missingness, the most common is pattern 35 which includes 39 cases 

with missingness only on ‘income’. This is followed by:  pattern 29, with 14 missing data items 

on ‘stove’ only; pattern 46 with 12 missing data on ‘food’, ‘numpeople’, stove’ and ‘income’; 

and pattern 25 with 11 missing data on ‘numpeople’ only. It is noteworthy to mention that 

these four variables that suffer from the most missingness are all socio-economic variables 

from the ‘family’ survey. One can also easily identify the blocks where complete surveys are 

missing. 

 

 

  

                      

 



27 
 

P
at

te
rn

s 
1                                             21

6 2                                             1 

3                                             4 

4                                             3 

5                                             1 

6                                             6 

7                                             1 

8                                             1 

9                                             1 

10                                             2 

11                                             1 

12                                             4 

13                                             3 

14                                             1 

15                                             3 

16                                             8 

17                                             4 

18                                             1 

19                                             1 

20                                             8 

21                                             1 

22                                             1 

23                                             1 

24                                             1 

25                                             11 

26                                             1 

27                                             1 

28                                             1 

29                                             14 

30                                             2 

31                                             1 

32                                             1 

33                                             1 

34                                             1 

35                                             39 

36                                             5 

37                                             2 

38                                             1 

39                                             1 

40                                             4 

41                                             1 

42                                             1 

43                                             2 

44                                             1 

45                                             1 

46                                             12 

47                                             1 

48                                             1 

49                                             1 

50                                             1 

  

ag
e 

ge
n

d
er

 

ar
ea

 

as
th

m
a 

se
ve

ri
ty

 

sm
o

ke
rs

 

b
ir

th
w

ei
gh

t 

p
et

 

N
e

o
-n

at
al

 

w
o

rk
 'n

 w
ea

r 

sm
o

ke
p

re
gn

an
t 

ex
er

ci
se

 

fe
ar

 

TV
 

b
re

ak
fa

st
 

p
er

ce
iv

ed
 w

ei
gh

t 

vi
o

le
n

ce
 

w
ea

p
o

n
s 

sm
o

ke
ve

h
ic

le
 

fo
o

d
 

n
u

m
p

eo
pl

e 

st
o

ve
 

in
co

m
e 

N
u

m
b

e
r 

ca
se

s 

  
Variables 

 
    

Missing 
                   

    
Observed 

                  

                         Figure 2.3: Missing value patterns 

 

  



28 
 

Chapter 3 

METHODOLOGY 

In this chapter a basic description of the theory behind both MI and subset correspondence 

analysis is presented. In addition, methodologies adopted in their different applications are 

outlined.  

3.1 Multiple imputation (MI) 

MI is a three-stage process. In the first stage, missing values are imputed.  Multiple imputed 

data sets are thus generated with different imputed values replacing the missing values in each 

set.  The second stage involves the analysis of each of the completed data sets. Parameter 

estimates and standard errors are retained from each analysis. In the third stage, results from 

the individual analyses of stage two are combined using what are commonly known as Rubin’s 

rules (Rubin, 2004b). 

Although, in the past, it was widely thought that as few as 3 imputed data sets are needed to 

obtain good results and inferences, new studies have shown that this may, in fact, not be 

enough (Graham et al., 2007). Studies have shown that there could be an important reduction 

in statistical power if the number of imputations, m, is small (Graham, 2012). Graham et al. 

(2007) completed a simulation study on the number of imputations needed to attain maximum 

power. Their recommendations for the number of imputations, m, as a function of the fraction 

of missing information are summarized in Table 3.1. On the basis of the percentage of data 

missing in this study (5.3%), 20 sets of data were imputed.  

In this study two different algorithms are considered to carry out the MI – multivariate normal 

imputation (MVNI) and fully conditional specification (FCS). The MVNI algorithm is a general 

purpose imputation application that assumes that the data follow a multivariate normal 

 



29 
 

Table 3.1: Recommended number of imputations needed for varying fractions of missing 
data 

Fraction of missing data 0.1 0.3 0.5 0.7 0.9 

Number of imputations 20 20 40 100 >100 

 

distribution. FCS is a more flexible approach to MI than MVNI since it is able to handle all types 

of data including continuous, binary, categorical and ordinal. Given that this study is concerned 

with categorical data, it would seem that FCS is a better choice for the imputation. However, it 

has been suggested that results from MVNI may often be sound even if multivariate normality 

does not hold as in the case of binary and categorical variables (Lee and Carlin, 2010). It is for 

this reason that both methods were studied and results compared both across methods and 

against a complete case analysis (Chapter 4). 

3.1.1  Theoretical background 

Imputation 

MVNI – This imputation algorithm, adopted by the NORM software(Schafer, 1999), assumes 

the complete data (observed and missing values) follows a multivariate normal distribution. 

NORM uses a data augmentation (DA) procedure to impute multiple sets of data using 

parameter estimates obtained from the EM algorithm as starting values. 

The EM algorithm for covariances matrices, as applied in MI, calculates sufficient statistics – 

building blocks of the particular analysis being done – and produces relevant parameters. In 

this case sufficient statistics are sums, sums of squares and sums of cross products; while 

relevant parameters are a variance-covariance matrix and vector of means. 

The EM algorithm is a two-step iterative procedure that goes back and forth between the E-

step and the M-step. 



30 
 

In the E-step, missing values are replaced by scores from a series of regression equations such 

that each missing variable for a specific case is regressed on the remaining observed variables 

for that case. Using these observed and imputed values, the sufficient statistics are calculated. 

In the M-step, ML estimates of the mean vector and covariance matrix are obtained using the 

sufficient statistics calculated at the previous E-step. The resulting covariance matrix and 

regression coefficients from the M-step are then used to derive new estimates of the missing 

values at the next E-step and the process begins again. 

The algorithm repeatedly cycles through these two steps until the difference between 

covariance matrices in subsequent M-steps satisfies some convergence criterion. The variance-

covariance matrix and vector of means thus produced are ML estimates of these quantities. 

The data augmentation that follows EM is also a two-step process. In the first step, DA 

randomly imputes the missing data using the assumed values of the parameters. In the second 

step, new parameter estimates are drawn from a Bayesian posterior distribution based on the 

observed and imputed data. The repetition of these two steps results in a Markov chain. DA 

converges when the distribution of parameter estimates stabilizes. Research has shown that 

DA nearly always converges in fewer cycles than does EM (Schafer and Olsen, 1998). This 

enables one to estimate the cycle length, k, of DA as being any number at least as large as the 

number of iterations needed for EM to converge. 

In order to impute m sets of data, DA is run for N = mk iterations and the data set at the end of 

every kth cycle is saved. 

When the data contain categorical variables, some adjustments are necessary both before and 

after imputation. Before imputation, dummy coding is applied to all the categorical variables 

and interaction product terms with more than two categories. After imputation, sensible 

rounding (Allison, 2002) is used on these variables to prepare the data for analysis. 

FCS – FCS, also termed ‘chained equations’, is the MI algorithm adopted by SPSS (SPSS inc.). 

This is a more flexible approach to imputation in that it is designed to handle different types of 
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variables (continuous, binary, categorical, ordinal) and does not assume multivariate normality 

of the data (Lee and Carlin, 2010). 

In practice, FCS involves running a series of regression models such that each variable with 

missing data is regressed on the other variables in the data set according to its distribution. So, 

for example, categorical variables will be modelled using logistic regression and continuous 

variables will be modelled using linear regression. 

Imputation by FCS, as applied in SPSS, is also an iterative process that starts by imputing every 

missing value with random draws from the distribution of the non-missing values. Continuous 

variables are replaced with draws from a normal distribution and categorical variables are 

replaced with draws from a multinomial distribution. Azur et al. (2011) refer to these 

replacements as ‘place holders’.  

Each iteration involves the following steps: 

 Set the ‘place holders’ of one variable that suffers from missing values back to 

missing 

 Set up a regression equation, according to the distribution of the variable, with 

the observed values as the dependent variable and the other variables as 

independent variables 

 Replace the missing values from this variable with predictions from the 

regression equation 

 Repeat these steps for each variable that has missing values. 

This forms one iteration of the process. At each iteration the imputed values are updated. This 

process is repeated for a specified number of iterations, n, after which the data set is retained 

as one complete imputed data set. The number of iterations, n, chosen so that the parameters 

from the regression models have stabilized, is generally about ten (Raghunathan et al., 2002). 

This entire process is repeated until the required number, m, of imputed data sets is 

generated.   
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Ordinal Regression 

Because the data in this study is primarily categorical with an ordinal dependent variable – 

asthma severity, ordinal regression – an extension of logistic regression – was chosen to 

analyse the m imputed data sets. 

Suppose the dependent variable, Y, has J levels ordered in increasing order of magnitude. Let 

the probability that Y takes on the value at level j be defined as             .  

For a given set of p independent variables               , the generalised logistic model 

takes the form of 

                           
  

     
                             (3.1) 

In ordinal regression, this model is modified to reflect the ordinal characteristics of the 

dependent variable by using one of a selection of link functions.  In this study, the cumulative 

logit link function is applied with an additional constraint imposed on the logit 

coefficients         , such that they are the same across all      logits. This results in the 

following ordinal logit model: 

                                                                

    
                  

                 
  

                                                                

This model is known as the proportional odds model with a cumulative logit link.  
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Note that the negative signs before the logit coefficients in equation (3.2) are to facilitate 

interpretation so that larger coefficients indicate an association with higher levels of the 

dependent variable. 

It can be seen that, while each of the J – 1 cumulative logits has a unique intercept value,     – 

called the threshold value, the values of the logit coefficients are the same across all logits. 

This imposed constraint as adopted by many applications, including SPSS, is tested using the 

‘parallel lines test’. 

When interpreting results from ordinal regression, it can be useful to examine the odds ratios. 

By calculating the odds ratio,   , for any given category of an independent variable, it is 

possible to determine the odds of scoring a higher value on the dependent variable, relative to 

the reference category of that independent variable. 

3.1.2  Methodologies adopted in the applications of MI 

Identification of interactions  

Prior to the imputation stage it was necessary to identify interactions present in the data to be 

included at the analysis stage to ensure that missingness was as close to MAR as possible. This 

was achieved by analysing a single data set imputed from EM parameters. This single imputed 

data set was generated using the EM step in the NORM software (Schafer, 1999). The default 

settings for maximum iterations (1000) and for convergence (.0001) were used and the 

standard maximum likelihood estimates were requested. All other default options regarding 

output and file names were retained. The strategies used in the identification of interactions 

and main effects are detailed in Chapter 4.  

Imputation of complete data sets 

For both imputation methods, all variables, the outcome variable (asthma severity) and the 

identified interactions were included in the imputation model. 
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MVNI 

MVNI was performed using the stand-alone NORM software (Schafer, 1999).  There are many 

steps to the process of running NORM – some are standard and others depend on the specific 

application. Details of the general steps common to all applications can be found in Graham 

(2012). Those steps specific to this study are outlined below. 

Preparing the data:  

Because MVNI assumes normality of the data, adjustments to the data were needed 

prior to imputation. No recoding was necessary for the continuous variable (age) or 

any of the dichotomous categorical variables before imputation. However, the 

categorical variables with more than two levels (exercise; TV watching; income; 

perceived weight; stove type; number of people; birth weight and asthma severity) 

and the 10 identified interactions were dummy coded such that a variable with p levels 

was represented by p-1 dummy variables.  

All missing values were set to -999.  

Variables: 

In order to ensure that all variables were of the required scale type (continuous, 

dichotomous and categorical) for analysis, some adjustments were necessary to the 

imputed values. For all the dichotomous variables, selecting the word ‘integer’ in the 

rounding column under the ‘variables’ tab was sufficient. For the interactions and 

categorical variables with more than two levels, automatic rounding of the dummy 

variable to 0 (absent) or 1 (present) for each of the levels was not always possible since 

it sometimes happened that more than one category rounded to one. In this case, 

‘sensible’ rounding (Allison, 2002) was performed which entailed selecting the 

category with the largest imputed value and rounding it to one with all the other levels 

to being rounded to zero.  
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EM Algorithm: 

This step was used to obtain starting values for the imputation process. The same 

settings were used as for the application of the EM algorithm in the identification of 

the interactions. 

Data Augmentation using NORM: 

Under the Series button, ‘Save all parameters at every kth cycle’ was selected and k = 1 

specified. 

Under the Imputation button, ‘Impute at every kth iteration’ was selected and k = 36 

was specified. The EM process took 36 iterations to converge, hence the choice for k. 

Under the Computing button, the number of iterations was specified as 36 x 20 = 720. 

FCS 

FCS was carried out using the MCMC algorithm available on SPSS (version 17) (SPSS inc.). The 

steps followed and specifications adopted follow:  

Preparing the data:  

All variables were defined in the variable view tab including the type of variable 

Incomplete variables were defined as nominal or scale prior to imputation 

Variables tab:  

Variables for the imputation model were selected. 

The number of imputed data sets was set to 20.  

File name for output data was specified. 
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Method tab:  

The fully conditional specification (MCMC) option was selected. 

Maximum iterations was specified as 10 (the default option). 

Output tab:  

Imputation model was selected. 

Create iteration history was selected. 

All categorical variables with missing data were imputed using logistic regression. The imputed 

data sets were stacked into a single file with a variable named IMPUTATION_ to differentiate 

between the data sets. 

Analysis of the multiple imputed data sets 

For each of the imputation methods the 20 imputed data sets were analysed. Since the 

dependent variable, asthma severity, is an ordered variable, the analysis tool used for this 

application was ordinal regression. The logit link function was applied. 

In applying ordinal regression with the logit link, it is assumed that the relationship between 

the independent variables and the log of the odds (logit) of a dependent variable is the same, 

in a statistical sense, for all dependent variable categories. This means that the regression 

coefficients for the independent variables are the same across all logits. This important 

assumption is tested using the test of parallel lines. This test has been described as ‘anti-

conservative’ in that ‘it nearly always results in the rejection of the proportional odds 

assumption’ (O'Connell, 2006). Some reasons for failure of the test are:  a large number of 

explanatory variables (Brant, 1990) ; large sample size (Allison, 1999) ; or the presence of a 

continuous explanatory variable (Allison, 1999). Failure of this test can compromise the results.  

In the initial application on the data used in this study, the test of parallel lines failed. Several 

solutions were considered to deal with the problem. While the reduction in the number of 

explanatory variables or the exclusion of the continuous variable (age), or its recoding into a 

categorical variable, might have solved the problem, all the variables were considered 
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important to the study and so this option was not considered. Another possibility was to apply 

multinomial logistic regression instead of ordinal regression. This, however, while having less 

stringent assumptions, would result in a loss of power and was, therefore, not considered 

further. Another solution, suggested by Garson (2008) was to combine categories until 

parallelism is achieved. It was found that by combining the two lowest categories of asthma 

severity – no asthma and mild intermittent asthma – the problem was solved. Hence, for the 

applications in this study, the dependent variable (asthma severity) has only three categories – 

moderate to severe, mild persistent and mild intermittent or no asthma. 

Combining results from multiple imputation and analysis 

In order to obtain statistical inference from MI, parameter estimates were combined following 

Rubin’s rules (Rubin, 2004b). The two quantities that were dealt with in this manner were the 

point estimate of the regression coefficients and the standard errors.  

The point estimate for each regression coefficient was calculated as the arithmetic mean of 

the regression coefficients across the 20 imputed data sets. 

The standard error for each regression coefficient is broken down into two parts – within- 

imputation variance and between-imputation variance. Within-imputation variance (W) 

reflects normal sampling variability found in all analyses. It was calculated as the average of 

the 20 squared standard error (SE) values resulting from the analyses of the 20 imputed data 

sets. Between-imputation variance (B) is a measure of the uncertainty or added variability due 

to the missing data. It was calculated as the sample variance of the regression coefficient 

across the 20 imputed data sets. The total variance (T) is the weighted sum of these two afore-

mentioned variances and was calculated as: 

        
 

  
                                                                  

The standard error used in the inference following MI was the square root of T. 
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3.2 Subset correspondence analysis 

In contrast to MI, and as yet not popularly adopted as a tool to manage missing data, is subset 

correspondence analysis (s-CA) - a variant of correspondence analysis (CA). The use of this 

relatively new method in the management of missing data forms a major part of this study.  

Correspondence analysis, as we know it today, is a graphical technique used in many 

disciplines to study relationships between the rows and columns of a matrix of non-negative 

numbers. A set of data in multi-dimensional space can be reduced to a lower dimensional 

space such that associations between variables are easily identified. According to Greenacre 

(1984), the algebra of CA can be traced back to the 1930’s when H. O. Hartley (also known by 

his original German name Hirschfeld) published an article outlining the mathematical 

formulation of the association between two quantitative variables in a two-way contingency 

table (Hirschfeld, 1935). Over the following 30 years, several researchers independently 

developed the same theory but in different contexts. These included  Fisher (1940), Horst 

(1935), Guttman (1941), Hayashi (1950) and Richardson and Kuder (1933) . It was not until the 

early 1960’s that the geometric form known as ‘correspondence analysis’ was first published.  

In this context, the word ‘correspondence’ refers to ‘associations’. Jean-Paul Benzécri, the 

French researcher responsible for this development, along with a group of data analysts, 

worked extensively in the area of descriptive multivariate techniques including CA and 

developed their own philosophy on data analysis. They believed that the data and how they 

are described is what is important and not the model that one may think the data fit. The 

statistical techniques developed by the group contained rigorous algebraic notation and were 

based on geometry which resulted in the graphical displays commonly associated with 

correspondence analysis.  

While CA is similar to several other techniques used to perform multivariate analysis, it is not 

the same as any of them. CA ‘derives sets of multidimensional ‘scores’ with a well-defined and 

intentional geometric interpretation’ (Greenacre, 1984). Over time, several variants of the 

original ‘simple correspondence analysis’ have been developed. These include multiple 

correspondence analysis (MCA); joint correspondence analysis (JCA) and subset 

correspondence analysis (s-CA). s-CA involves the application of CA to a subset of the data. This 
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variant has facilitated the analysis of the subset of the measured data, thus excluding the 

missing data, without the loss of any information. CA as applied to a subset is implemented as 

the function ca in R (RDevelopment_CORE_TEAM, 2006).  

3.2.1  Theoretical background 

Correspondence Analysis (CA) is an exploratory multivariate technique applied to any matrix of 

non-negative numbers in order to identify associations present in the data. In CA, the rows and 

columns of the matrix are represented by two separate clouds of points in multi-dimensional 

space. CA finds respective subspaces of low dimension that optimally contain these clouds of 

points. The principal axes are chosen such that the inertia of the clouds of points is maximised. 

The inertia of these clouds can be considered as a measure of dispersion or spread of the 

points taking into account both distance and attributed weights, called masses. CA thus 

provides a visual interpretation of the relative positions of both clouds in a common subspace 

of low dimension. Interpretation of the axes can be achieved by examining the decomposition 

of the inertia of each cloud of points along the principal axes and amongst the points 

themselves (Greenacre, 1984).  By studying the contributions that the points make to the 

principal axes and the contributions that the axes make to the inertia of the points, those 

points that are well defined in a plane can be identified. Using these points, it is usually 

possible to assign ‘meanings’ to the principal axes. Graphically, if the angle between this point 

vector and the axis is small, then the point is highly correlated with the principal axis. The 

distance between two points (either two row points or two column points) is said to be a 

‘weak’ approximation of the chi-square distance between the vectors of relative frequencies of 

the points (Greenacre, 1978) . One can get an idea of how close two points are by examining 

the angle the point vectors make with each other. The smaller the angle, the closer they are 

related. The interpretation of the graphical display is primarily done on the basis of where a 

point, or group of points, is positioned relative to the axes in the plane.   

The variables used in the calculation of the subspace are called active variables. It is possible to 

examine the position of additional variables, called supplementary variables, relative to this 

space. These variables play no part in the determination of the principal axes and the optimal 

subspace but are projected onto an existing subspace.  Relationships between these variables, 

both active and supplementary,  and the principal axes can be explored (Greenacre, 1984, 
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Greenacre and Blasius, 2006). In practice,  the associations of the active variables are displayed 

and then the supplementary variables are related a posteriori to these associations (Greenacre 

and Pardo, 2006b). 

In the same way that CA is applied to a full set of data, s-CA is applied to a subset of the data. 

An appealing feature of s-CA is that, as the full data matrix, N, can be partitioned into a 

number of separate non-overlapping and all-inclusive matrices, so is the inertia of the full 

matrix equal to the sum of the inertias of the separate matrices (Greenacre and Pardo, 2006a).  

So, if N = [N1:N2:N3] ,   it follows that the inertia of N, In(N), follows the rule 

     In(N) = In(N1) + In(N2) + In(N3)         (3.4) 

Thus one is able to see how much of the total variation in the data is accounted for in each 

sub-matrix.  

A description and basic calculations of s-CA as applied to a matrix N, in the form of a 

contingency table, is presented below. Further details can be found in Greenacre (1984), 

Greenacre and Pardo (2006a) and Greenacre (1992).  

From the matrix N of non-negative numbers                        , the 

correspondence matrix, P, is formed by dividing each element of N by its grand total such that  

                                                                   
   

       
                                  (3.5) 

with row and column sums, r and c, of P defined by 

                            and 

                                                                                                                                                         



41 
 

The elements of P can be thought of as the probability density of the cells of the matrix and 

the vectors of row and column sums of P, as marginal densities. The elements of r and c, 

termed masses, are a measure of the relative importance of each row and column point. They 

are represented in diagonal matrices as Dr and Dc respectively. By dividing each element of a 

row (column) by its respective row (column) sum, we form a vector of relative frequencies 

which is called a row (column) profile. These profiles define the two clouds of points, one for 

rows and one for columns, in multi-dimensional weighted Euclidean space. The dimension 

weights for the row and column clouds are defined by the inverse of the elements of c (Dc
-1) 

and r (Dr
-1) respectively.  

Under the assumption that the rows and columns of P are independent, the expected value of 

cell (i,j) of P is the product of the masses, ricj. Centring and normalising the correspondence 

matrix results in a matrix of standardised residuals S such that 

                                                           
         

     
                                                                                    

The sum of squared elements of S is a measure of the total variation in the data and is termed 

total inertia. 

It is at this stage that the CA process is ‘interrupted’ to implement the ‘adjustment’ needed for 

s-CA.  

From the matrix, S, of standardized residuals, select those rows and columns that make up the 

subset of variables/categories chosen to be included in further analysis. Let this matrix be S*. It 

is important to note that marginal densities, r and c, for the full matrix are retained for all 

future calculations (Greenacre and Pardo, 2006a).  

The objective of CA and its variants, including s-CA, is to identify low dimensional subspaces of 

the row and column clouds which are closest to the points in terms of weighted sum of 

squared distances. This is achieved by performing a singular value decomposition (SVD) on S*.  

In other words,  S* = U∆VT, where U and V are the left and right singular vectors, respectively, 
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and ∆ is a diagonal matrix of singular values in decreasing order of magnitude. The principal 

axes of the row and column clouds are defined, respectively, by the K* left and right singular 

vectors corresponding to the K* largest singular values. 

From the result of the SVD, we are able to define the principal co-ordinates of the points, i.e. 

co-ordinates with respect to their principal axes.  

The principal co-ordinates of row i and column j on dimension k are defined, respectively, as 

                                                                 
     

   
          and 

                                                             
     

   
                                                                               

It is these co-ordinates that are used to produce the graphical displays of the points. 

The amount of inertia explained by each principal axis is given by the square of the 

corresponding singular value.  

3.2.2  Methodologies adopted in the applications of s-CA 

Data preparation and analysis 

CA can be applied to any data providing they are non-negative and categorical. The continuous 

variable – age – was therefore recoded into four categories (8-9 years; 10 years; 11 years and 

12+ years) for all applications. 

For each variable with non-response, a separate missing category was introduced. Raw data 

were presented in the form of a contingency table, where the asthma categories were cross 

tabulated with the other variable categories. The rows represent the asthma categories and 

the columns represent the categories, including the missing categories, of the other selected 

variables. 
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To specify the subset for analysis, all column categories representing the missing data were 

labelled for exclusion. Where necessary, columns for treatment as supplementary columns 

were labelled as such. Principal co-ordinates were used to plot the variables in all the graphical 

displays. 

Where applicable, interactions were added to the data by forming dummy variables (yes/no) 

for all combinations of the cross variable categories. These dummy variables are treated as 

additional variable categories. 

Where applicable, individual variables involved in interactions were tagged to be treated as 

supplementary variables.  

Interpretation of output 

Graphical plots (as seen in figures 5.1, 6.1, 6.6 and 7.1) as well as numerical output showing 

both the decomposition of inertia (as seen in Tables 5.1, 6.2 and 7.2) and total inertia were 

used in the interpretation of the results. 

With reference to the plots, by joining each point to the origin with an imaginary line, it was 

possible to identify the strength of association between the points. The smaller the angle they 

make with each other, the closer is the association. This concept was also applied to the 

association of points with the axes. In addition, variables that are not well represented in the 

subspace are situated near the origin and do not add appreciably to the interpretation of the 

display. 

The total inertia, a measure of the variability in the data, and its decomposition along the axes 

and among the points were all used to aid in the interpretation of the results. By examining the 

percentage of the total inertia that is represented on each axis, it was possible to identify the 

relative importance of the axes and the amount of variability in the data that they 

represented.  

It was also possible to give ‘meanings’ to the axes by examining the absolute contributions 

(labelled CTR in the output) that the points make to the inertia of the axes. A row/column 
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point is deemed important to the orientation of an axis, if its CTR value exceeds ‘1000/the 

number of row/column points’ respectively.   

In the same way, by examining the relative contributions (labelled COR in the output) for each 

point, it was possible to identify the axis which best represents the point. These values are a 

measure of how close a point lies to each of the axes and are independent of its mass or 

distance from the origin. High values of COR indicate that the axis contributes highly to the 

point’s inertia; the angle the point makes with the axis will be small and the point is said to 

‘correlate’ with the axis. Points with extremely high COR values are positioned nearly on the 

axis; this indicates that there is very little error in its location on the display. 

The sum of the COR values across the dimensions is represented in the QLT column. This was 

used to indicate the quality of representation of the points in the subspace of chosen 

dimensionality. Values have been scaled so that, across all possible dimensions, QLT equals 

1000. 
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Chapter 4 

IDENTIFYING INTERACTIONS FOR MULTIPLE IMPUTATION 

IN THE PRESENCE OF MISSING DATA 

MI is a reliable tool to deal with missing data and is becoming increasingly popular in 

biostatistics. However, building a model with interactions that are not specified a priori, in the 

presence of missing data, presents a challenge. On the one hand, the interactions are needed 

to impute the data; while on the other hand, the data are needed to identify the interactions. 

In this chapter, two strategies are investigated in which model development, with interactions, 

is achieved using a single data set generated from the Expectation Maximization (EM) 

algorithm (4.2). Imputation using both the FCS approach and the MVNI approach is carried out 

and results are compared (4.4). These results are further compared to a complete case analysis 

in which only those child records with a full set of measured data were included. The theory of 

these imputation algorithms was presented in Chapter 3. 

4.1 Background 

MI is successfully applied to data that are MAR and yields unbiased results with accurate 

estimates for the standard errors (Donders et al., 2006). Unfortunately, the missingness 

mechanism is not usually fully known and is often a combination of more than one 

mechanism. However, by ensuring that the imputation model is more general than the analysis 

model, MI will usually produce sound results (Collins et al., 2001, Graham et al., 1997, Graham, 

2012, Schafer and Olsen, 1998). This is achieved by including, in the imputation model, 

variables that are related to the incomplete variables as well as those related to their 

missingness; the outcome variable; and all interactions that will be examined in the analysis.  

Rubin (1996) suggests that the need to include all possibly relevant predictors in the 

imputation model is demanding in practice. If interactions are selected a priori, it is a  
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straightforward exercise to include them in the imputation model (Graham, 2012). If, on the 

other hand, the relevant interactions have not been identified beforehand, then ideally all 

possible interactions should be included in the imputation model. This is neither practical nor, 

in some cases, possible (Schafer, 1997, Stuart et al., 2009), particularly when the number of 

variables is large. While model development with MI has been documented (Stuart et al., 

2009, Vergouwe et al., White et al., 2011, Wood et al., 2008), none of these studies addresses 

the issue of how to include, in the imputation model, interactions that are not known a priori. 

4.2 Model building for imputations with interactions 

In order to ensure that the imputation model is at least as complex as the analysis model, and 

that the assumption of MAR is plausible, it is necessary to include the outcome variable and all 

possible likely predictors for the analysis model, in the imputation model. The selection of the 

interaction terms presents difficulties (White et al., 2011, Wood et al., 2008) . Comparable to 

the suggestion made by White et al. (2011), a single complete set of data using the EM 

algorithm for covariance matrices is generated. The EM algorithm is an iterative procedure 

that can be used to create a complete data set in which all missing values are replaced by 

maximum likelihood (ML) values that are asymptotically unbiased. The process starts by 

replacing each missing value with an estimate calculated from a regression equation in which 

all the other variables are predictors. Once all the missing values have been replaced, a 

variance covariance matrix and a vector of means from the completed data are calculated. 

New regression equations are then formed to predict a new set of estimates for the missing 

values. This process is repeated until the variances, covariances and means converge, thus 

producing ML estimates of the parameters. The complete data set generated from this process 

is then used for model development and the identification of interactions. 

To develop the best model given the large number of variables available, the following three-

stage process is followed: Firstly, all variables are purposefully selected as main effects. 

Secondly, in developing the full model, interactions are chosen one at a time in a stepwise 

manner such that the interaction that makes the biggest significant improvement to the fit is 

added to the model. For this process a cut-off p-value of 0.05 is used. Thirdly, when no further 

improvement to the fit is possible, backward elimination is carried out to find the smallest 
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model that is as good as the full model. Here a  p-value of 0.10 is used for the stopping 

criterion.   

In the setting of the MI process, two possible strategies that can be applied to carry out the 

model development process are suggested. These are applied to both the MVNI and the FCS 

approaches to MI. 

Strategy 1 (S1). All three stages of the model development process – the selection of main 

effects, identification of interactions as well as the backward elimination – are performed on 

the initial data set generated by the EM parameters. The variables and interactions identified 

by this process are incorporated into the imputation model. Interactions are treated 

differently, depending on which imputation method is used. 

For MVNI as implemented in the NORM software, interactions with p categories are treated as 

categorical variables and coded into p-1 dummy variables before being added to the raw 

incomplete data. By way of an example: an interaction between gender (male/female) and 

smoking (yes/no) is broken down into separate categories – male/yes, male/no, female/yes 

and female/no – and binary coding (present/absent) is applied to the first three categories. 

For FCS, the interaction is coded according to the possible categories. So, in the example 

above, male/yes = 1, male/no = 2, female/yes = 3 and female/no = 4.  

The interactions as coded in the two scenarios above are merely treated as additional 

variables. This has been referred to as the ‘transform-then-impute’ method of dealing with 

interactions and, in a regression model that includes interactions, has been shown to yield 

good regression estimates, even though the imputed values are inconsistent with one another. 

In contrast to this is the ‘impute-then-transform’ method, also known as passive imputation, 

which yields plausible-looking imputed values but biased regression estimates(Von Hippel, 

2009).  

This imputation model is then used to produce the m sets of imputed data. These are analysed 

individually and the results are combined using Rubin’s rules (Rubin, 2004b). 
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Strategy 2 (S2). Using the initial EM generated data set, the first two stages of the model 

development process are completed: selection of main effects and identification of 

interactions. These are then incorporated into the imputation model as before and m sets of 

imputed data are produced. Analysis, followed by the third stage of model development 

(backward elimination), is then applied to each of these data sets. The final selection of 

variables for the model includes those that are selected in at least 50% of the individual data 

sets. In the event that no variables satisfy the selection criterion, the condition can be relaxed 

to a lower percentage. Once these variables are established, analysis is carried out on each 

data set and the results are combined. 

4.3   Analysis procedures 

Given that the outcome variable, asthma severity, is an ordinal measure, the chosen method 

of analysis for this data is ordinal regression. The three categories of the outcome variable are 

‘none/mild intermittent asthma’; ‘mild persistent asthma’ and ‘moderate/severe asthma’. For 

all the analyses, logit is the chosen link function.  

In addition to the analysis of the imputed data, a complete case analysis is carried out for 

comparative purposes. All main effects and interactions that are defined in stages 1 and 2 of 

the model building process are used with the complete case analysis and then backward 

elimination is applied to reduce the model.  

4.4 Results 

4.4.1   Model building 

Imputed data -MVNI  

The two different strategies suggested for building the model using the imputed data resulted 

in the identical set of variables and interactions being identified. In each case 17 main effects 

and 10 interactions were included in the final model (Table 4.1). While fewer than half of the 

main effects were significant, the interactions in which these variables were involved were 

largely significant. Main effects dropped from the model include birth weight, perceived 
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weight, weapons and stove type. However, these were left in the imputation model as they 

were shown to be associated with other variables and/or their missingness.   

Imputed data -FCS 

Model development following strategy 1 resulted in the identical model as identified when 

applying MVNI imputation. The set of significant variables from the two analyses were, 

however, not the same. Two main effects and three interactions differed in their significance. 

With strategy 2, the variable ‘smoke while pregnant’ and its interaction with ‘area’ did not 

make the cut to be included in the model. These two variables were significant in only 9 of the 

20 individual analyses, whereas, they were significant in 10 of the 20 analyses when MVNI 

imputation was applied. 

Complete case analysis 

The complete case analysis was based on 216 complete cases, representing 56.5% of the total 

available cases. The final model contained 16 main effects and 7 interactions (Table 4.1).  

The main effects selected with the complete case data compared to those selected with the 

imputed data differed slightly. ‘Perceived weight’ and ‘weapons’ are the only variables that are 

in the complete case model but not in the imputed data model.  Three of the 10 interactions 

and three of the main effects from the imputed data models were not retained in the 

complete case model. The models from the imputed data contained more variables than the 

complete case model. 

4.4.2 Analysis 

Results of the three different analyses of the imputed data (Table 4.1) were, in general, very 

similar. The size and direction of association between asthma severity and all the predictor 

variables, as well as the standard errors (SE’s) of the estimated coefficients were consistent 

across both types of imputation as well as for both model building strategies. Even though 

some differences in the significance of certain predictors did occur, in all cases the p-values 

showing significance of these predictors were only marginally different from the 5% cut-off 

value.  
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Table 4.1: Estimated coefficients (EST) and standard errors (SE) for the predictors selected in the different analyses 

Predictor Reference Category CC(N = 216) MVNI (N = 382) FCS1(N = 382) FCS2(N = 382) 

Category EST SE EST SE EST SE EST SE 

Gender Female Male -0.441 0.674 0.129 0.398 0.030 0.391 0.017 0.390 

Neo-natal care No Yes 2.484* 0.723 1.103* 0.444 1.112* 0.450 1.085* 0.446 

Fear No Yes -1.169 0.649 -0.958* 0.431 -1.009 * 0.451 -1.073 * 0.444 

Smoked while pregnant No Yes 4.256* 1.237 1.019 0.736 0.885 0.693 0 

 Smokers in home  No Yes 0.939 0.537 0.742* 0.352 0.761* 0.341 0.801* 0.335 

Smoke in vehicles  No Yes -2.584 * 0.921 -0.253 1.068 -0.308 1.011 -0.323 1.015 

Exercise  >4 times a week Up to once a week 2.805* 1.227 0.892 0.761 0.692 0.756 0.624 0.731 

  

 

2 – 4 times a week 3.313* 1.229 1.039 0.717 0.936 0.718 0.738 0.680 

TV watching >3 hours a day  Up to 1 hour a day -0.566 0.854 0.399 0.684 0.327 0.669 0.346 0.657 

  

 

1 – 3 hours a day  0.304 0.769 0.641 0.639 0.525 0.630 0.569 0.618 

Number people in home 8+ 1 - 4 0 

 

1.084 0.554 1.060* 0.539 1.101* 0.526 

  

 

5 - 7 0 

 

0.226 0.552 0.254 0.551 0.250 0.540 

Income  R100001+ up to R1000 2.840* 1.257 0.695 0.8 0.787 0.789 0.823 0.778 

  

 

R1001 – R4500  1.285 1.203 0.209 0.797 0.489 0.754 0.431 0.754 

  

 

R4501 – R10000  1.933 1.17 1.428 0.783 1.401* 0.692 1.356 0.692 

Food availability Enough Not always enough -0.575 0.64 0.604 0.503 0.665 0.464 0.677 0.455 

Perceived weight Correct weight Overweight -0.230 0.743 0 

 

0 

 

0 

   

 

Underweight 2.369* 0.97 0 

 

0 

 

0 

 Work’nWear No Yes 0 

 

-0.635 0.626 -0.543 0.629 -0.478 0.622 

Pets ever No Yes -3.770 * 0.994 -1.658* 0.501 -1.483 * 0.503 -1.413 * 0.467 

Area North Durban South Durban  6.278* 1.461 2.042* 0.76 1.948* 0.737 1.597* 0.671 

Breakfast habits  Daily Not daily -4.098 3.04 -0.492 1.512 -0.234 1.548 -0.110 1.518 

Violence No Yes 0 

 

-0.817* 0.382 -0.741 * 0.377 -0.715 0.373 

Weapons No Yes -1.147 * 0.555 0 

 

0 

 

0 

 Age     -1.068 * 0.438 -0.79* 0.254 -0.833 * 0.268 -0.834 * 0.265 
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Table 4.1: Estimated coefficients (EST) and standard errors (SE) for the predictors selected in the different analyses (continued)  

Predictor Reference Category CC(N = 216) MVNI (N = 382) FCS1(N = 382) FCS2(N = 382) 

Category EST SE EST SE EST SE EST SE 

Fear*Breakfast No/daily  Yes/not daily 2.635* 1.219 2.047* 0.866 2.123* 0.916 2.185* 0.911 

Gender*SmokeVehicle Female/No Male/yes 5.092* 1.342 2.535* 1.034 2.431* 0.977 2.464* 0.971 

SmokeVehicle*TV No/>3 hrs Yes/up to 1 hr 0 

 

0.891 1.298 0.675 1.265 0.722 1.250 

  

 

Yes/1 – 3 hrs 0 

 

-2.184* 1.085 -1.975 1.034 -2.002 1.037 

Food*Age enough/ Not always enough/  1.762* 0.743 0.925* 0.396 0.786* 0.385 0.778* 0.364 

Exercise*Area  >4 times/DN <once a week/DS  -4.573 * 1.533 -1.41 1.031 -1.255 0.954 -1.125 0.923 

  

 

2 – 4 times/DS  -6.331 * 1.627 -1.981* 0.913 -1.805 * 0.896 -1.551 0.850 

Income*Breakfast >R10000/daily ≤R1000/not daily  -4.051 2.5 -3.921* 1.8 -3.666 * 1.731 -3.808 * 1.733 

  

 

R1001-R4500/not daily 0.414 2.408 -1.218 1.636 -1.439 1.530 -1.513 1.516 

  

 

R4501-R10000/not daily    2.479 2.395 -1.374 1.541 -1.568 1.454 -1.715 1.431 

TV*Breakfast >3hrs/daily ≤1hr/not daily  6.310* 2.213 2.573* 1.259 2.051 1.192 1.976 1.186 

  

 

1-3 hrs/not daily  1.974 2.154 0.192 1.109 0.270 1.112 0.192 1.103 

SmokeVehicle*Age no/ yes/  0 

 

0.814* 0.375 0.809* 0.348 0.782* 0.341 

Smoke preg*Area no/DN yes/DS  -5.118 * 2.101 -1.875 1.363 -1.663 1.291 0 

 Work’nWear*Breakfast     no/not daily yes/daily 0 

 

2.349* 1.076 2.095 1.070 2.165* 1.090 

DN – North Durban;  DS – South Durban; preg – pregnant;  

    

    CC – Complete case 

    MVNI –  Multiple imputed MVNI strategies 1 and 2  

    FCS1  -Multiple imputed FCS strategy 1 

    FCS2  -Multiple imputed FCS strategy 2 

     

    *Significant at the 0.05 level 

    



52 
 

A comparison of results of the complete case analysis(CC) with the other analyses showed that 

the standard errors of the estimated coefficients for the CC analysis are appreciably larger in 

all but the one predictor variable – ‘smoke in vehicle’. There were also noticeable differences 

in the magnitude of the estimated coefficients for the CC analysis as compared to the other 

analyses. Contradictions were also present regarding the relationship with asthma severity for 

some of the predictors. 

4.5 Diagnostics  

In order to confirm that the imputed values are reasonable, each variable with missing data in 

excess of 8% was examined to identify variables with large differences between the measured 

and imputed. The variables considered included income, stove type, number of people and 

food availability (Figure 4.1). The Chi-square test was applied to assess whether significant 

differences exist between the distributions of the imputed data – both MVNI imputed and FCS 

imputed – and the measured data (Abayomi et al., 2008). No significant differences were 

found.  

In analysis testing for significant differences between the distributions of the imputed data 

sets and the complete case data, no significant differences were found.  

Another useful diagnostic that gives an indication of the stability of the estimates resulting 

from MI is the degrees of freedom (df) associated with the t-value in Rubin’s rules and adapted 

from Schafer (1997) (Graham, 2012, Schafer and Olsen, 1998). The df associated with MI is not 

the same as the df found in other statistical concepts and rather is a ‘measure’ of the ratio of 

the within-imputation variance (U) to the between-imputation variance (B) such that 

            
  

      
 
 

     (4.1) 

where m = number of imputations. Thus the degrees of freedom are influenced by both the 

number of imputations and the relative sizes of B and U. When B dominates U the degrees of 

freedom are close to the minimum value of m-1, but when U dominates B the degrees of 
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freedom approach infinity. If the computed value of df is very small (<10), it suggests that 

greater efficiency (more accurate estimates and narrower intervals) could be obtained by 

increasing the number of imputations, m. If df is large, however, it suggests that little will be 

gained from a larger m. 

 In this study, df ranged from 130.54 to 9073.51 for the NORM imputations and from 138.88 to 

15135.431 for the FCS imputations which, being large compared to the number of imputed 

sets, is an indication that the estimates have stabilised and can be trusted.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Differences in measured (observed) and imputed data. A comparison of the 
distributions of the 4 variables with the most missing data for the complete case data (CC), 
MVNI imputed data, FCS imputed data and measured 
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4.6 Discussion 

In this investigation of identifying interactions in the presence of missing data, support was 

found for building the model using an EM generated set of data and then applying MI as a 

robust method to address this common shortcoming in epidemiological studies.   

Epidemiological studies frequently suffer from missing data. Many researchers avoid this 

problem by dropping all cases with data missing on any variable and carrying out what is 

known as a complete case analysis. An advantage of this type of analysis is that it is 

computationally easy to apply and can be done with any reputable commercial software 

package. However, unless the data are MCAR, the values of the estimated coefficients 

produced with this analysis may be biased. Moreover, when the missingness is not only a 

function of the covariate(s) but also of the outcome variable, then the bias from a complete 

case analysis is heightened (Desai et al., 2011). Although complete case analysis and other ad 

hoc methods, like mean substitution and the missing-indicator method, are still widely used, 

researchers are becoming more aware of the perils of applying such methods and many are 

now employing MI methods to address the missingness in their data. While results from MI 

will be unbiased when data are MAR, it has been suggested that even when it is MNAR, 

adequately dealing with as much of the missingness mechanism as possible will usually 

produce sound results (Collins et al., 2001, Graham et al., 1997, Graham, 2012, Schafer and 

Olsen, 1998). This is achieved by including auxiliary variables – those variables related to the 

missingness but not necessarily included in the analysis, interactions and the outcome variable 

in the imputation model.  

While much has been published on the application of MI to epidemiological studies, there is 

limited literature that deals with model building in the presence of missing data, and more 

specifically model building including interactions. The aim here was to demonstrate a simple 

and easily applied strategy to build interactions, which are not known up front, into a model 

while at the same time imputing the missing data. 

The dilemma that was faced was a practical one. It is possible for the interactions to be added 

after imputation. This is termed passive imputation or ‘impute-then-transform’. However, it 
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has been shown that including interactions, as product terms, before imputation produces 

results superior to those achieved if the imputations are done first and the interactions are 

added at the analysis stage (Von Hippel, 2009).  For the best results, the identified interactions 

should be included in the imputation model along with the predictor variables, the auxiliary 

variables and the outcome variable. However, how can the interactions be identified and the 

best model built, when the data are incomplete?  

Two strategies for model building, S1 and S2,  were explored – both utilising a single imputed 

data set generated from the ML parameter estimates produced from the EM algorithm for 

covariance matrices.  

Imputation was carried out with both multivariate normal imputation (MVNI) and the more 

flexible fully conditioned specification (FCS). The same set of 17 predictor variables and 10 

interactions for the best model were identified when applying MVNI with both strategies S1 

and S2, as well as with the application of FCS and strategy S1. FCS with strategy S2 failed to 

include one of these predictors and an associated interaction in its best model. Since these 

dropped variables did not alter the interpretation of the results, it would seem that both 

strategies for model building are equally effective. The advantage of S1 over S2 is that it is 

easier and less time-consuming to execute and therefore probably the preferred choice. 

In comparison to the model variables selected from the imputed data, fewer variables were 

selected for the model on the complete case data. This is most likely caused by the enormous 

reduction in cases and the subsequent loss of power. 

A total of 5.3% missing items spread across 81.8% of variables, affecting 43.5% of cases was 

present in the dataset used for this analysis. Examination of the missingness revealed that it is 

possible that the missingness mechanism present in this data is a combination of MCAR, MAR 

and MNAR.  Analysis of the relationships between both the missingness of the variables and 

the variables themselves confirmed that significant relationships exist between each of the 

variables and at least one other variable in the set; furthermore, the missingness of all but 

three of the variables is significantly related to at least one other variable in the set.  
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For reliable and unbiased results to be obtained from a complete case analysis, the data are 

required to be MCAR, which is clearly not the case here. Furthermore, although this means of 

dealing with missing data is acceptable when the lost cases amount to no more that 5%, this 

data set is reduced by over 40% which will inevitably have a negative effect on the outcome of 

the analysis. 

On the other hand, MI, if applied correctly, is able to produce sound results when the data are 

MAR and it has been shown that even when the data are MNAR,  the effects of this mechanism 

are often surprisingly minimal (Graham et al., 1997). In order to ensure that the imputation 

model was general enough to encompass the subsequent analysis, the outcome variable, 

interactions and variables related to either the incomplete variables, or their missingness, or 

both, were included in the imputation model. By including variables that are correlated with 

each incomplete variable but not its missingness, we expect that the additional information 

will cause a decrease in the standard errors and hence an increase in efficiency and statistical 

power (Collins et al., 2001). If there is an element of MNAR present in the data, the inclusion of 

these variables in the imputation model should lessen the bias and make the assumption of 

MAR more plausible.  

It is unclear as to how many variables and interactions, given the sample size available, can be 

reliably assessed with MI applications. . It seems that this depends to some extent on the 

software being used. In some cases, convergence of large models is a problem in that it can 

make the imputation process unacceptably slow (White et al., 2011). Graham and Schafer 

(1999) , in a study using NORM to perform the imputations found that results were quite 

acceptable ‘even with sample sizes as low as 50, even with as much as 50% missing from most 

variables, and even with relatively large and complex models’. In a study on the imputation of 

categorical data (Finch, 2010) it was found that, while problems exist when imputing using a 

variant of NORM designed to deal with categorical data when many variables are present, the 

same limitations are not problematic for NORM.  In another study (Hardt and Görgen, 2008)  

on the inclusion of continuous auxiliary variables in the imputation model , the authors suggest 

the ratio of cases with complete data to variables should be at least 3:1. Given these 

guidelines, we found that convergence for both imputation methods was achieved quickly and 

reliably. Furthermore, even with the dummy coding of all the categorical variables and the 
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interactions, the ratio of complete cases to variables far exceeds 3:1. We are therefore 

confident that our results are reliable. 

Diagnostic tests on the distributions of the imputed data showed that data imputed both with 

MVNI and FCS were not significantly different from either the measured data or the CC data. 

These results confirm findings that MI with MVNI incorporating sensible rounding should work 

in most situations (Schafer, 1997), even in the presence of binary and ordinal variables (Lee 

and Carlin, 2010).  

The diagnostic measure, df, also indicated that the estimates obtained from both MI methods 

have stabilised and are therefore trustworthy.  

Analysis of the two sets of imputed data yielded very similar results. This is consistent with 

findings from a study comparing the two imputation approaches (Lee and Carlin, 2010) where 

it was found that ‘similar results can be expected from FCS and MVNI in a standard regression 

analysis involving variously scaled variables’. The magnitude of the standard errors and the 

magnitude and direction of the estimated coefficients were consistent across both these 

imputation types and for both model building strategies. While there were some 

inconsistencies in the significance of predictors, these did not affect the overall interpretation 

of the associations between asthma severity and the factors included on the models.   

A comparison of results for the complete case analysis and the analyses of the imputed data 

showed that standard errors for the estimated coefficients from the analysis of the imputed 

data were, in all but one case, considerably smaller than those from the complete case 

analysis. These smaller standard errors resulted in greater accuracy of the estimated 

coefficients. This increased precision indicates the superior efficiency and statistical power 

obtained for the analysis of the imputed data. The inconsistencies in the signs of the estimates 

and the significance of the predictors could result from the non-random fashion in which cases 

are dropped for the complete case analysis which may distort the joint distribution among the 

variables. The resulting bias in point estimates could lead to misidentification of significant 

predictors (He, 2010).  Another important factor that would negatively affect results of the 

complete case analysis is that the missingness mechanism present in the data is not confined 
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to being MCAR. While MI methods produce unbiased parameter estimates when the 

missingness is MAR, this is not the case with complete case analysis. This missingness 

mechanism factor could also have added to the large difference in magnitude of the standard 

errors for the complete case analysis as compared to the imputed data analysis that, some 

would argue, could not be explained on the basis of sample size alone. 

These results are consistent with what one would expect given the significant reduction in 

cases for the complete case analysis and the missingness mechanism present in the data that 

would almost certainly result in a loss of power and the introduction of bias into estimates.  

Given the rigid processes followed in the imputation of the data and subsequent analyses, it is 

suggested that the results from the imputed data can be considered reliable. On the other 

hand, the results from the complete case analysis should be treated with caution.  

4.7 Conclusions 

With the development of readily available and easily implemented software, MI methods for 

dealing with missing data are becoming more popular in epidemiological studies that have 

incomplete measured variables.  A critical part of the imputation process is the inclusion of 

those variables that are correlated with missingness as well as the interactions to be used in 

the analysis process.  While this can present a practical challenge if the interactions are not 

specified a priori, one possible approach has been illustrated that effectively identifies the best 

main effects and interactions for a model in the presence of missing data and at the same 

time, imputes the data items that are missing. Undoubtedly, further testing of these strategies 

on other data sets is needed. It is hoped that the ideas presented here can be further explored 

and developed so that, by addressing this practical dilemma, more medical researchers will be 

able to apply MI when data suffer from missingness. 
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Chapter 5 

THE USE OF SUBSET CORRESPONDENCE ANALYSIS IN THE 

MANAGEMENT OF MISSING CATEGORICAL DATA 

In Chapter 4, the management of missing data by means of MI was illustrated. This approach 

involved fitting the data to a model. Its application is restricted by complexities of models and 

distributional requirements. Many of the MI algorithms are more suited to dealing with 

missingness in continuous data. In this chapter, the application of subset correspondence 

analysis is investigated to address the issue of missingness in the analysis of categorical data. 

This method of analysis adopts a very different approach to the more traditional 

aforementioned method.  

The theory of s-CA and how its output is interpreted was presented in Chapter 3. An 

application to the asthma data and the results are discussed in Section 5.3. For comparative 

purposes, some chi-square analyses were done to investigate the associations between 

asthma severity and individual variables (5.3.2). 

5.1 Background 

Missing categorical data is frequently encountered with survey data. Two methods commonly 

used to manage this form of missing data are complete case analysis – in which all records with 

incomplete data are excluded from analysis, and the ‘indicator method’ – in which an extra 

‘missing’ category is added for each incomplete variable. These, and other ad hoc methods of 

dealing with missing data may, however, result in biased estimates and are thus not 

recommended (Greenland and Finkle, 1995, Little and Rubin, 1987) . A more acceptable tool 

that is becoming more popular for dealing with missing data, and often used in conjunction 

with some regression procedure to analyse multivariate data that suffer from missingness, is 

MI. This method of handling data is computationally complex and can be restrictive with its 

complexities of models and distributional requirements. An alternative approach is the 
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application of correspondence analysis (CA), and its variants, which is commonly used in the 

analysis of multivariate categorical data.  

CA is primarily a graphical technique used to explore the relationships between variables. 

Unlike the more classical regression-based methods for studying inter-variable relationships 

which hypothesise a model and fit the data to a model, the extended family of methods under 

CA do not hypothesise a model. Instead, the data are decomposed in order to study their 

‘structure’ (Greenacre, 1984). Points (rows and columns of a data matrix), represented as 

clouds in multi-dimensional space, are optimally displayed in a lower dimensional subspace 

that is easier to interpret due to the lower dimensionality. The development of s-CA has made 

it possible to analyse a subset of the original data. This can be applied to data that suffer from 

missingness. The non-response for each variable is categorised separately and the subset of 

observed categories is analysed. This method offers a way of dealing with missing categorical 

data while, at the same time, retaining all records, complete and incomplete. 

5.2 Preparation of the data 

The same set of 22 variables that was used in the application of MI (Chapter 4) is used for this 

analysis. Details of these variables and their categories can be found in Hendry et al. (2014a). 

Because CA requires that data be categorical, the continuous variable ‘age’ is categorised into 

a 4-level variable – 8-9 years; 10 years; 11 years; and 12+ years. These data are represented in 

the form of a contingency table (Table 5.1) with four rows –representing the four asthma 

categories – and 71 columns – representing the categories of the 21 remaining variables plus a 

separate missing category for each variable that suffered from non-response. 

All missing categories are excluded from the subset for analysis. Also excluded is the category 

BW? - of the birth weight variable. This category is a response option for respondents who did 

not know the birth weight of the child, and it is considered to play a similar role to BW* (non-

response to the birth weight question). 
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 Table 5.1: Contingency table (split up) showing frequencies of variables across asthma severity categories

  A1 A2 A3 A4 MAL FEM BW1 BW2 BW? BW* 
 

NNY  
 

NNN  NN*  FrY   FrN  Fr* SPY SPN SP* 

 ASMS 5 13 8 1 20 7 6 18 3 0 9 18 0 10 15 2 2 24 1 

 ASMP 7 22 14 4 17 30 10 32 5 0 9 36 2 17 26 4 5 40 2 

 ASMI 4 39 26 7 36 40 7 62 7 0 7 68 1 39 33 4 7 67 2 

 ASN  9 122 87 14 90 142 33 168 27 4 25 196 11 99 118 15 21 197 14 

                    

                      SY SN S* SVY SVN SV* E1 E2 E3 E* T1 T2 T3 T* N1 N2 N3 N* 

  ASMS 15 12 0 8 17 2 8 7 9 3 12 10 3 2 13 9 3 2 

  ASMP 25 22 0 13 30 4 14 17 12 4 8 26 8 5 19 17 6 5 

  ASMI 35 41 0 18 53 5 21 27 24 4 18 38 16 4 20 34 13 9 

  ASN  112 119 1 55 159 18 70 84 65 13 48 119 51 14 72 93 48 19 

 

                    

                    
   I1    I2    I3    I4   I* Fne Fe F* O C U PW* 

 
WWY  

 
WWN  WW* PY PN P* 

  ASMS 5 6 10 2 4 16 7 4 2 5 18 2 5 22 0 4 23 0 

  ASMP 9 13 13 4 8 29 10 8 5 3 35 4 8 37 2 9 36 2 

  ASMI 24 17 11 8 16 50 19 7 10 8 53 5 6 69 1 20 56 0 

  ASN  41 66 54 25 46 170 49 13 37 19 161 15 17 204 11 81 149 2 

 

                    

                      DS DN Bnd Bd B*  VY    VN   V*  WY    WN   W* p g e n St* 

    ASMS 18 9 17 8 2 9 15 3 9 15 3 1 0 22 2 2 

    ASMP 27 20 31 11 5 19 24 4 15 27 5 2 0 35 4 6 

    ASMI 39 37 45 26 5 41 31 4 39 33 4 0 1 60 5 10 

    ASN  103 129 143 76 13 116 99 17 97 119 16 3 2 191 16 20 
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5.3 Results 

5.3.1 Subset correspondence analysis 

With the application of this dataset, the objective was to identify relationships between the 

environmental, socio-economic, genetic and behavioural variables and to investigate possible 

relationships between these variables and asthma severity.  CA was initially applied to the full 

data set in which missing categories were present. The total inertia amounted to 0.0207.  

It was found that a number of the non-response categories contributed highly to the 

orientation of axis 2. This resulted in an elongation of the scale along this axis which, in turn, 

resulted in a clumping together of variables near the origin. This made it very difficult to 

distinguish between the points and interpret the maps, and masked more relevant 

relationships in the data. Furthermore, given the large number of variables in the data set, the 

inclusion of the non-response categories exacerbated the situation of an already crowded 

display. To address these phenomena, s-CA was applied to the subset of observed data, thus 

excluding the non-response categories from the analysis.  

The missing data accounted for 21.7% of the variability in the full data set (Hendry et al., 

2014a). The remaining 78.3%, which is the variability of the measured data, was further 

decomposed in the analysis of the subset of observed data. The first two axes of the analysis of 

this subset accounted for 88.92% of the total inertia. By examining the decomposition of 

inertia along these axes (Table 5.2), interpretation of the principal axes is possible. 

For axis 1, the variables that made the most contribution to the orientation of this axis are A1 

(age 8 – 9 years) and NNY (having received some form of special neo-natal care). Both 

physiological variables have been separated out from the other variables and are situated on 

the negative side of the axis. Other variables that contributed to this axis and are associated 

with the aforementioned variables are WWY (exposure to secondary smoke and chemicals), 

male, N1 (up to 4 people in the home), I3 (income of R4501 – R10000), T1 (<1hr TV a day), DS 

(from South Durban), p (those who use a paraffin stove) and BW1 (<2.5kg at birth). Opposing 

these, on the positive side, are PY (having had a pet), DN (from North Durban) and  
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Table 5.2: Decomposition of inertia for the first 2 principal axes 

Name Mass QLT INR k= 1 COR CTR k= 2 COR CTR 

A1 3 944 3 -717 943 149 -28 1 1 
A2 24 719 0 34 712 3 3 7 0 

A3 17 750 0 73 725 8 -13 25 1 

A4 3 154 0 57 59 1 72 95 5 

MAL 20 881 2 -149 455 42 144 426 116 

FEM  27 881 1 111 455 31 -107 426 86 

BW1 7 997 1 -220 673 31 -153 324 45 

BW2 35 907 0 37 350 4 46 557 21 

NNY 6 974 0 -475 974 131 -10 0 0 

NNN 40 958 68 65 882 16 19 76 4 

FrY  21 974 18 68 395 9 83 579 39 

FrN  24 944 19 -46 370 5 -58 574 22 

SPY 4 257 3 13 28 0 -37 229 2 

SPN 41 986 18 -7 152 0 16 834 3 

SY 23 998 0 -51 862 6 -20 136 3 

SN   24 991 32 47 816 5 22 175 3 

SVY 12 985 8 -76 975 6 -8 10 0 

SVN 32 989 4 30 870 3 11 119 1 

E1 14 737 17 -2 2 0 -29 735 3 

E2 17 824 5 60 666 6 -29 158 4 

E3 14 934 14 -15 41 0 71 893 19 

T1 11 751 18 -187 445 35 155 306 71 

T2 24 634 11 45 326 5 -44 308 13 

T3 10 999 92 147 985 19 -18 14 1 

N1 15 986 16 -169 890 41 -56 96 13 

N2 19 940 2 61 634 7 42 306 9 

N3 9 820 14 161 779 21 -37 41 3 

I1   10 722 3 38 21 1 221 701 132 

I2   13 951 13 34 118 1 -91 833 29 

I3   11 836 1 -189 612 36 -114 224 40 

I4   5 970 134 102 970 5 2 0 0 

Fne 33 763 29 59 646 11 -25 117 6 

Fe  11 989 9 -32 150 1 75 839 17 

O 7 914 22 169 832 18 -53 82 5 

C 4 814 88 -187 363 14 208 451 52 

U 33 260 32 -3 9 0 -13 251 2 

WWY  4 928 0 -406 911 69 -55 17 4 

WWN  41 944 42 35 663 5 23 281 6 

PY 14 816 0 200 739 53 -65 77 16 

PN 33 887 26 -80 702 20 41 185 15 

DS   23 932 26 -126 845 34 40 87 10 

DN   24 932 16 120 845 33 -39 87 10 

Bnd 29 952 1 -19 377 1 -23 575 4 

Bd 15 766 2 71 468 7 56 298 13 

VY   23 994 28 111 912 26 33 82 7 

VN   21 999 17 -95 945 18 -23 54 3 

WY   20 995 22 99 492 18 100 503 55 

WN   24 985 6 -50 358 6 -66 627 29 
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Table 5.2: Decomposition of inertia for the first 2 principal axes (continued) 

 

female. Moderate to severe (ASMS) and mild persistent (ASMP) asthma are associated with 

the groupings on the negative side and ‘no asthma’ (ASN) with the group on the positive side.  

Many variables did not play a major role in the orientation of the axis but are correlated with 

it, as evidenced by the large COR values. In particular, the smoke exposure variables, both in 

the home (SY) and in vehicles (SVY), are highly correlated with this axis and are situated on the 

negative side indicating an association with the more severe levels of asthma. 

It is evident that subjects are separated on this axis on the basis of both physiographic factors 

and smoke exposure. These were the biggest contrasts in the data and accounted for 66.52% 

of the total inertia.  

The orientation of axis 2 was defined mainly by the variables I1 (income of <R1000), male and 

female, T1 (less than 1 hour TV a day) and WY (being attacked with weapons). There was a 

separation on this axis of those subjects who: are from the lowest income group (I1); are male; 

experience fear in the neighbourhood (FrY); have been attacked with weapons (WY) and watch 

TV for less than an hour a day (T1); from those subjects who: are female; have not been 

Name Mass QLT INR k= 1 COR CTR k= 2 COR CTR 

p 1 983 15 -689 671 33 -470 312 45 

g 0 999 96 453 707 7 291 292 9 

e 38 174 1 14 173 1 1 1 0 

n 3 788 2 -55 451 1 -47 337 2 

ASMS 71 951 85 -312 909 638 67 42 88 

ASMP 123 777 148 -131 563 195 -80 214 220 

ASMI 199 887 197 45 142 38 103 745 585 

ASN  607 865 570 48 676 130 -25 189 108 

Mass (Mass) and inertia (INR) of each variable; the quality (QLT) of the variable’s representation in the 
subspace of the first 2 axes; Co-ordinates (k = ...); contributions of axes to the inertia of the variables 
(COR); and contributions of variables to the inertia of the axes (CTR)*. 
*For details of the formulae for calculations see Greenacre (1984), p 91. 
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attacked with weapons (WN); are from the R1001 – R4500 income group (I2) and do not 

experience fear in the neighbourhood (FrN). The mild intermittent asthma variable (ASMI) is 

correlated with the former grouping. Axis 2 can be thought of as distinguishing between 

subjects on the basis of their socio-economic status (SES) and accounted for 22.4% of the total 

inertia.     

When interpreting the graphical display, those variables that are not well represented in the 

subspace are situated near the origin and do not add to the interpretation of the display. By 

examining the angles that the points make with each other and with the principal axes, trends 

and relationships present in the data could be identified and interpreted. 

In the plane of the first and second axis (Figure 5.1), which accounted for 88.9% of the 

variation in the data, the physiological/smoke exposure axis was plotted against the socio-

economic axis. Variables indicative of low socio-economic status are situated above the 

horizontal axis and the higher socio-economic variables below. In the same way, the vertical 

axis separates the smoke exposure variables as well as those representing low birth weight 

(BW1); having had neo-natal care (NNY); male and low age (A1) from their ‘opposites’. The 

asthma variables are well represented in this subspace. The more severe asthma variables 

(ASMS and ASMP) are split from the other categories (ASMI and ASN) by the vertical axis 

indicating an association of worse asthma with those variables situated to the left of the axis. 

Mild intermittent asthma (ASMI) is removed from the other three asthma variables and tends 

in the direction of lower socio-economic status. Further distinctions between the levels of 

asthma severity are evidenced by their locations – each in a different quadrant. 

The strongest associations with moderate to severe asthma (ASMS) were shown by males, 

having had neo-natal care (NNY), smoke exposure in vehicles (SVY), 8-9 year olds (A1) and 

coming from South Durban (DS); mild persistent asthma was associated most with a birth 

weight of less than 2.5kg (BW1), using a paraffin stove (p) or not having a stove (n), smoke 

exposure in the home (SY), exposure to secondary smoke and chemicals (WWY), living in a 

home with up to 4 people (N1) and a monthly income of R4501 – R10000 (I3); and associations 

with mild intermittent asthma were shown by the lowest income group (I1), a birth weight of 

more than 2.5kg (BW2),  being attacked by weapons (WY), experiencing fear in the 

neighbourhood (FrY) and doing exercise more than 4 times a week (E3). 
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An interesting result is the distinction between the different forms of smoke exposure and 

their associations with asthma severity. A close association is evident between smoke 

exposure in the home (SY) and mild persistent asthma (ASMP). Smoke exposure in a vehicle 

(SVY) shows a stronger association with moderate to severe asthma (ASMS) than with mild 

persistent asthma (ASMP), as indicated by the angles that the point vectors make with the 

asthma variables. Exposure to severe levels of air pollution, as experienced in the South 

Durban region (DS), shows a strong association with moderate to severe asthma (ASMS). 

Smoking while pregnant (SPY) is not well represented in this subspace and is therefore not 

included in this discussion. 

Another interesting phenomenon is the positioning of the stove variables, paraffin (p) and gas 

(g), at opposite corners of the display. The association of gas stove (g) with mild intermittent 

asthma (ASMI) contrasts that of paraffin stove (p) with mild persistent asthma (ASMP).  

With regard to the number of people in the home and its association with asthma severity, 

results show that N1 (1-4 people) tends in the direction of mild persistent asthma (ASMP), N2 

(5-7 people) tends towards mild intermittent asthma (ASMI) and N3 (8+ people) tends towards 

no asthma (ASN). Thus there is an inverse relationship between asthma severity and the 

number of people there are in the home.  

It can be seen that the inertia associated with this subspace amounts to 0.0144 (0.0108 + 

0.0036) in total. This relatively low value indicates that there is not a lot of variability in the 

data and explains the bunching up of the variables in the display (Greenacre, 1992).  
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Figure 5.1: Subset CA map of a contingency table with the row and the column points projected onto the plane of the first and second principal 
axes. Values on the axes indicate principal inertias and their respective percentages of total inertia.

     Row points Column points 
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5.3.2 Chi-square analysis 

As a comparative method of association analysis of contingency tables, Pearson’s chi-square 

test was applied to individual cross-tabulations of asthma severity with each of the generic, 

socio-economic, behavioural and environmental variables. By examining the contributions of 

individual cells to the chi-square value, we were able to identify specific relationships between 

the two variables in the table. In addition, Cramer’s V statistic gave us an indication of the 

relative strength of the associations found. 

Results from Pearson’s chi-square (Table 5.3) showed that there was agreement, at the 5% 

level of significance, that gender, neo-natal care and ever having pets are significantly related 

to asthma severity. Specifically, significantly more than expected of the subjects who were 

male or who had had specialist care at birth and significantly fewer than expected of those 

who ever had pets suffered from moderate to severe asthma. Relaxing the level of significance 

to 10%, associations were found to exist between asthma severity and age, area and exposure 

to secondary chemicals and dust. More specifically, more than expected of the youngest age 

group as well as those who were exposed to secondary chemicals and smoke suffered from 

moderate to severe or mild persistent asthma; while more than expected of those from South 

Durban had moderate to severe asthma.  

Table 5.3: Results of Pearson’s chi-square and Cramer’s V tests for the 10 variables that 
exhibit the strongest relationship with asthma  

Variable (categories) Chi-square p-value 
Worse asthma 

associated with... 
Cramer’s V 

Gender (MAL/FEM) 0.003 MAL 0.190 

Neo-natal care (NNY/NNN)) 0.005 NNY 0.186 

Pets (PY/PN) 0.036 PN 0.150 

Work and wear (WWY/WWN) 0.070 WWY 0.138 

Area (DS/DN) 0.077 DS 0.134 

Age (A1/A2/A3/A4) 0.087 A1 0.120 

TV (T1/T2/T3) 0.137 TV1 0.117 

Birth weight (BW1/BW2) 0.182 BW1 0.120 

Income (I1/I2/I3/I4) 0.216 I3 0.114 

Weapons (WY/WN) 0.217 WN 0.112 
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Cramer’s V statistic (Table 5.3) indicates that the three strongest associations are exhibited 

between asthma severity and gender, neo-natal care and pets, respectively. While the values 

of this statistic signify only a low association for each of the variables shown, they are large 

enough to suggest that a relationship between asthma severity and each of these variables 

does exist.  

5.4 Discussion 

In this application of s-CA to a dataset with a substantial amount of missing data, the use of 

this technique was shown to provide a meaningful approach to exploring the relationships 

between categorical variables that suffer from missingness. This approach provides several 

advantages when compared to other methods of addressing such shortcomings of data sets. 

The advantages are that the method is not constrained by either model assumptions or 

distributional requirements; it is computationally simple; and it is able to handle large numbers 

of categorical variables. All the standard analysis was performed using SPSS (version 17), and a 

macro program was written to perform the s-CA. 

Applying CA to the full data set resulted in an elongation of the scale on axis 2, which 

exacerbated an already crowded display, thus making it difficult to identify points and 

interpret relationships between them. In addition, it is the relationships between the 

measured variables and level of asthma severity that are of interest in this study. Due to the 

useful property of s-CA, whereby the full data matrix can be partitioned into smaller mutually 

exclusive sub-matrices, with the respective decomposition of the total inertia, CA was applied 

to the sub-matrix of observed variable categories only, which allowed for a clearer display of 

the points and enabled the exploration of the relationships between the relevant variables. 

The application of this novel explorative statistical technique has enabled us to examine a large 

number of environmental, behavioural, genetic and socio-economic variables to uncover 

relationships between these variables and, at the same time, retain all records. Furthermore, 

associations between these variables and asthma have been found that generally confirm 

established theories regarding factors that exacerbate asthma. We have further been able to 
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distinguish between different levels of asthma severity and the factors that are associated with 

them. 

There is agreement that asthma is associated with younger children (Asher et al., 2006) ; a 

birth weight of less than 2.5kgs and having had neo-natal care (Mai et al., 2003); exposure to 

low concentrations of compounds and pollutants as a result of living in the same house with 

someone who works in a chemical/dust environment and wears their work clothes home 

(Becher et al., 1996, Venables and Chan-Yeung, 1997); male children (Almqvist et al., 2007, 

Bonner, 1984)  and smoke exposure both in vehicles (Sendzik et al., 2009) , in the home 

(Charoenca et al., 2013, Ehrlich et al., 1992) and in the form of air pollution (Neidell, 2004, 

Peden, 2005). These variables are shown to be associated with the higher levels of asthma 

severity in this application. The counter-intuitive association found between having pets and 

suffering from mild/no asthma does not contradict international findings that yield conflicting 

results on the association between pets and asthma. 

Other  studies that have led to results that confirm documented theories for factors that 

influence asthma severity include: that the risk from exposure to smoke in a car exceeds the 

risk from smoke in the home (Sly et al., 2007); that there is an association between asthma and 

indicators of low SES, viz. experiencing fear in the neighbourhood (Subramanian and Kennedy, 

2009);  neighbourhood stressors in the form of the use of weapons (Jeffrey et al., 2006, Wright 

et al., 2004); and low income homes (Cesaroni et al., 2003, Poyser et al., 2002); and that 

asthma occurrence is inversely related to the size of the family (Matricardi et al., 1998). This 

last, perhaps unexpected relationship, could result from the possibility that common infections 

acquired early in infancy because of unhygienic contacts with older siblings, could better 

‘protect’ from atopic diseases like asthma (Strachan, 1989).   

Relative weights and inter-point distances are retained from the analysis of the full data set 

and are not recalculated for the analysis of the subset. This allows for the decomposition of 

the inertia into parts representing mutually exclusive and exhaustive subsets. CA of the full 

data set resulted in a total inertia of 0.0207. This is a measure of the dispersion of the points in 

the full m-dimensional space. The analysis of the subset of observed categories yielded a total 

inertia of 0.0162 and total inertia from the analysis of the non-response categories is 0.0045. 

Due to the fact that the two subsets are mutually exclusive and exhaustive, the sums of their 
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total inertias equal the total inertia of the whole data set. Furthermore, the observed 

categories account for nearly four times as much of the inertia (0.0162 / 0.0207 = 78.3%) in the 

data as do the non-response categories (0.0045 / 0.0207 = 21.7%). While we have been able to 

identify many interesting relationships in the data, we can see from the correspondence map 

that the dispersion of the points is not extensive. This is borne out by the value of the total 

inertia (a relatively low 0.0162), which is a measure of how much the measured profiles are 

spread around the origin. The low variability present in the data is further confirmed by the 

small number of variables that show a significant relationship with asthma as demonstrated 

with the chi-square association analysis.  

While it is important to note that, with s-CA, relationships found to exist between 

variables/categories cannot be assumed to be statistically significant, comparative tests of 

association were carried out on cross-tabulations of asthma severity with the other variables. 

Relationships between asthma severity and a number of the variables included in the study 

were identified. Despite the fact that the associations were not necessarily strong, they do 

corroborate the associations found with s-CA. The fact that only a few variables were found to 

be significantly associated with asthma severity is consistent with our finding in s-CA that the 

dispersion of points was not large, as seen both in the graphical display and in the low inertia 

value.  

It has thus been shown that s-CA, as presented here, has a two-fold purpose: firstly, as an 

exploratory tool to seek inter-relationships between variable categories and to identify those 

variable categories that are associated with different levels of childhood asthma so that they 

can be taken further and used in more rigid analysis; and secondly, to manage the missing data 

and the problem of crowding created by it. Furthermore, where large numbers of 

variables/categories are involved, relationships between variables/categories are not generally 

easy to summarise. So this could be taken a step further and subsequent division of the data 

into numerous smaller, sensibly selected, mutually exclusive and exhaustive subsets is 

suggested. In these situations, it is proposed that s-CA is an ideal choice of method and 

produces easily interpreted graphical output to provide a general view of the associations 

between the many variables.    
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5.5 Conclusions 

Despite the presence of missing data, s-CA is able to explore the data as a whole and represent 

the variables graphically, thus implying relationships between variables. By identifying those 

variables important to the determination of the principal axes, the identification of a selection 

of the variables to take forward for further analysis is possible. It is believed that this 

exploratory method is easier to apply than the existing MI methods in which many 

complexities need to be considered. While MI allows one to carry out statistical analysis on 

data that encounter missingness, the sophistications in the assumptions about the model, 

missingness mechanisms and computational algorithms are restrictive and make it more 

difficult to use. The s-CA approach offers an alternative paradigm to dealing with the analysis 

of categorical data that suffer from missingness. 
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Chapter 6 

THE EFFECT OF THE MECHANISM AND AMOUNT OF 

MISSINGNESS ON SUBSET CORRESPONDENCE ANALYSIS 

The use of s-CA to manage missing categorical data was presented in Chapter 5. Its application 

is a relatively new technique in the handling of missing categorical data. While many studies 

have examined the effects of missingness mechanisms and the amount of missingness on MI 

(Hardt and Görgen, 2008, Marshall et al., 2010, Peyre et al., 2011, Shrive et al., 2006), it is not 

known what effect these factors have on s-CA. In this chapter a simulation study is presented 

that tests the effects of Little and Rubin’s missingness mechanisms as well as missingness of up 

to 50% on the analysis of data using s-CA. An outline of the different scenarios tested is given 

in Section 6.2 while Section 6.3 introduces the outcomes used to measure the effects of the 

mechanisms on s-CA.  Results from the analysis of a full set of data, used as a benchmark 

analysis, are presented in Section 6.4 followed by the results from the simulation study 

(Section 6.5). 

6.1 Selected variables 

From the original 22 variables included in this study, a purposeful selection of six variables was 

made. These included ‘age’ (categorized into 4 levels from 9 years to 12+ years); ‘gender’ 

(M/F); ‘neo-natal’ (whether or not special neo-natal care was received at birth); ‘smokers’ (the 

presence of smokers in the home) and ‘area’ (North or South Durban) and the ‘asthma 

severity’ variable (none/mild intermittent; mild persistent; moderate to severe). These 

variables were chosen because, in previous analyses (Chapter 4 and Chapter 5), they were 

shown to have some association with asthma severity. 

For the purpose of this investigation, the asthma severity variable was condensed into three 

categories, as was used in the analysis with MI. Thus ‘mild persistent’ and ‘no asthma’ were 

combined. This was done to facilitate interpretation of results since the set of data thus 

formed is fully represented in a 2-dimensional subspace. 
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All child records with complete data on all six variables were included in this study. This 

enabled a benchmark analysis to be made in which no missing data are present. A summary of 

this data, involving 368 cases, can be found in Table 6.1. 

 

Table 6.1: Categories, code names and frequencies for all variables  

6.2 Missing data mechanisms 

To explore the effect of missingness mechanisms (MM) and amount of missingness present 

(M%), 18 scenarios were considered, with each scenario simulated 10 times. Three MM’s were 

imposed – MCAR, MAR and MNAR – and missingness was generated at rates of 5%, 10%, 20%, 

25%, 30% and 50% for each mechanism. Two variables – ‘neo-natal’ and ‘smokers’ – were 

selected to experience missingness and the same amount of data were deleted from each of 

these variables for each scenario. 

Variables Categories Code names Count (N = 368) 

      

 Age 8 - 9 years A1 24 

  10 years A2 186 

  11 years A3 134 

  12+ years A4 24 

Gender Male MAL 149 

  Female FEM 219 

Neo-natal Yes NNY 50 

  No NNN 318 

Smokers Yes SY 180 

  No SN 188 

Area South Durban DS 177 

  North Durban DN 191 

Asthma severity None/ Mild intermittent ASNI 296 

  Mild persistent ASMP 45 

  Moderate/severe ASMS 27 
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For the six MCAR scenarios, data were deleted randomly across all categories for each of the 

variables.  

To simulate the MAR mechanism, missingness was imposed on the ‘neo-natal’ and ‘smoking’ 

variables according to their association with ‘area’ and ‘gender’ respectively. Data were 

randomly deleted from the ‘neo-natal’ variable such that 30% came from North Durban and 

70% from South Durban. This ratio was selected to mimic the missingness of ‘neo-natal’ with 

respect to ‘area’ in the full data set.  Random deletion on the ‘smoker’ variable was in the ratio 

30:70 for M:F. Since there was only one missing data item for this variable, there was nothing 

to guide this deletion, so this was a subjective choice. These deletions were completed for 

each of the six amounts of missingness. 

The MNAR mechanism was simulated so that the missing data depended on the actual value of 

the data item.  Deletion from the ‘neo-natal’ variable was carried out such that 10% of 

required deletions were from the variable category NNY and 90% from variable category NNN. 

In a similar manner, deletions from the ‘smoker’ variable involved randomly deleting 90% of 

required deletions from SY and 10% from SN. These deletion ratios were considered to be 

sensible, given the setting. Again this was repeated for the six amounts of missingness.  

6.3 Outcomes of interest 

s-CA was applied to each of the simulated data sets and several outcomes were examined to 

identify effects of the MM and M% on this method. These included: 

COR  - relative contributions that the axis makes to the inertia (variance) of  

the points 

CTR - absolute contributions that the points make to the inertia of the axis 

TOTINR - a measure of the degree of variation in the measured data  

TI%FULL-     the proportion that TOTINR is of the total inertia from an analysis 

which includes both the measured and the missing data, coded as 

separate ‘missing’ categories 
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Repeated measures ANOVA was applied to the above outcomes to test for significant 

differences across missingness mechanisms and amount of missingness.  

6.4 Full analysis 

For the purpose of comparison, s-CA was applied to the 368 data set with all variables fully 

measured. The data were in the form of a contingency table with the three asthma categories 

as rows and the five selected variables (12 variable categories) as columns. 

Results (Figure 6.1 and Table 6.2) showed that total inertia across the full subspace of two 

dimensions is 0.0271, thus indicating that there is limited variability in the data.  

 

 

 

 

 

 

Figure 6.1: Subset correspondence analysis map of the completely measured 368 data set. 
Values on the axes represent principal inertias and their respective percentages of total 
inertia. Labels as specified in Table 6.1. 

  

CTR values, a measure of the absolute contributions of the points to the inertia of the 

dimension, indicated that variable categories important to the orientation of axis 1 are A1, 

MAL, NNY and to a lesser extent FEM, DS and DN. This axis separated the lowest asthma 

Row points Column points 
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severity category (ASNI) on the left from the higher asthma severity categories (ASMP and 

ASMS) on the right. Associated with the latter categories are A1, MAL, NNY and DS. Variables 

that played an important part in the orientation of axis 2 are A1, MAL and FEM. This axis 

separated out ASMS from the other asthma categories, thus enabling a distinction between 

ASMP and ASMS. Associated with ASMP are FEM and A1.  

Variables that do not exhibit much variance are situated near the origin. They do not play an 

important role in the orientation of the axes. These included A2, A3, A4, SY, SN, NNN and ASNI. 

Associated with the lowest asthma severity classification were A2, A3, SN, DN and NNN. 

COR values indicated that axis 1 is more important in terms of contributions to inertia for all 

variable categories, except ASMP. 

Table 6.2: Decomposition of inertia for the two principal axes  

Name k = 1 COR CTR k = 2 COR CTR 

A1 723 875 297 -273 125 236 

A2 -26 606 3 21 394 10 

A3 -74 864 17 29 136 15 

A4 -110 819 7 -52 181 8 

MAL 188 631 125 144 369 407 

FEM -128 631 85 -98 369 277 

NNY 464 1000 255 -8 0 0 

NNN -73 1000 40 1 0 0 

SY 51 910 11 -16 90 6 

SN -49 910 11 16 90 6 

DS 136 961 78 -27 39 18 

DN -126 961 72 25 39 16 

ASNI -66 952 153 15 48 43 

ASMP 147 458 116 -160 542 762 

ASMS 479 954 732 105 46 195 

K=…    co-ordinates 

COR    relative contributions of inertia 

CTR     absolute contributions of inertia 
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6.5 Simulated study 

6.5.1 Relative contributions to inertia (COR) 

Average COR values for each missingness mechanism and across the six amounts of 

missingness are shown for each variable category in Figure 6.2.   

COR values indicate the amount that each axis contributes to the inertia of the point. This 

makes it possible to identify the axis which contributes most to the inertia of each point. These 

values are scaled to add to 1000 across all dimensions. Because there are only two possible 

dimensions for this analysis, and axis 1 accounts for more than 80% of the total inertia, only 

the COR values for axis 1 are examined. Of the 15 variable categories, only one (ASMP) had a 

higher COR value on axis 2. 

For the fully measured variable categories of ‘age’, ‘gender’ and ‘area’, no significant 

differences were found in COR values either across MM or for different M%. There were also 

no significant differences across for the asthma severity categories. However, significant 

decreases in COR values were found for ASNI and ASMP at 50% missingness. 

Examining results for the variables with missingness, while the MM’s did not show evidence of 

significant differences for the smoking category, SY, there were significant differences in the 

way these mechanisms behaved for SN. COR values for MNAR were significantly higher than 

for the other mechanisms and closer to the ‘true’ values.  With regard to the amount of 

missingness, when compared to values at 5%, there was a significant reduction in the COR 

value for MNAR at 50% on SY and from 25% for MCAR on SN.  

There were no significant differences across MM or M% for the NNY variable category. While 

no significant differences were found across MM for the NNN variable category, there was a 

significant drop in the COR values for MNAR from the 20% missingness point. 
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Figure 6.2: COR values for each variable across all scenarios on axis 1  
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Figure 6.2: COR values for each variable across all scenarios on axis 1 (continued)  
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6.5.2 Absolute contributions to inertia (CTR) 

Average CTR values for each MM and across the six M% are shown for each variable category 

in Figures 6.3 and 6.4.     

CTR values, which have been scaled to sum to 1000 for each axis, indicate the amount that 

each variable contributes to the inertia of the axis. As a rule of thumb, if the CTR value of a 

point exceeds the average contributions of all the points (rows or columns) for a particular 

axis, then that point can be considered important to the orientation of the axis and is used in 

the interpretation of the results. In this study, an approximate CTR threshold value for the 

asthma severity categories is 333 and for the other variable categories it is 83. 

AXIS 1 – contrasts lowest asthma severity category (ASNI) with higher asthma severity 

categories (ASMP and ASMS) 

Across all scenarios of MM and M%, A1, MAL, NNY and ASMS remained above the threshold 

value of importance while A2, A3, A4, NNN, SY, SN, DN, ASNI and ASMP remained below the 

threshold value of importance to this axis. Both FEM and DS were marginal with FEM 

positioned just above the threshold value and DS hovering around that value. 

No significant differences between MM’s were found for any variable category except NNN 

where, at 30% and 50%, CTR values for MAR were significantly higher than MNAR and MCAR 

values respectively. Furthermore, the only significant differences across M% were found for 

MAL, FEM and A4 where the CTR values increased significantly at 50% for all MM’s.  

AXIS 2 – contrasts the two highest asthma severity categories: ASMS vs ASMP 

All variable categories remained distinctly positioned relative to the threshold values except 

for SY which crossed the threshold at 50% for the MCAR and MNAR mechanisms. The only 

significant difference between MM’s across all scenarios was at 25% on SN where the CTR 

value for MCAR is significantly higher than the value for MNAR. The only significant differences 
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across M%’s were found for MAL, FEM and A4 where CTR values decreased significantly at 50% 

for all MM’s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: CTR values for all variables on axis 1 
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Figure 6.3: CTR values for all variables on axis 1   (continued)  
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Figure 6.4: CTR values for all variables on axis 2  
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Figure 6.4: CTR values for all variables on axis 2   (continued)  
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6.5.3 Model inertia values 

The total inertia of the measured data did not change significantly across either MM or M% 

(Figure 6.5(a)). However, the total inertia of the measured data, taken as a percentage of the 

total inertia of the full data set – measured and missing – was significantly higher for MCAR at 

50% than at 5%. There was no significant difference in this measure across MM (Figure 6.5 (b)). 

  

 

 

 

 

 

 

 

Figure 6.5: Measures of inertia 

 

 

6.5.4  Graphical display 

A degree of ‘movement’ is evident for some of the variable categories in the display of the 

subspace defined by axis 1 and axis 2 (Figure 6.6). This dispersion is more evident in the 

variables that have undergone missingness. For the variables that are fully measured, 

dispersion appears to be greater in those variable categories that have more variability and 

hence are situated further from the origin. On closer examination, it was found that variables 

further from their true positions are those with higher percentage missingness, with no 

specific correlation to mechanism. 
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6.6 Discussion 

The aim of this simulation study was to explore the effect of both the missingness mechanism 

and the amount of missingness present in data on the use of s-CA as applied to categorical 

data that suffer from missingness. 

Three accepted MM’s (MCAR, MAR and MNAR) were simulated, each across six degrees of 

missingness (5%, 10%, 20%, 25%, 30% and 50%). To allow for sampling variability, data for 

each of these 18 scenarios were generated 10 times and results were averaged. 

 It was found that the MM did not substantially affect the results. Furthermore, for 

missingness of up to 25% per variable, results were not notably affected. 

The effect of the MM on all outcomes is negligible. In terms of the COR outcome, the only 

effect of the MM is on the variable category SN. In this case, MNAR values are significantly 

different from MCAR and MAR values but are in fact closer to the ‘true’ values. 

Only one incident of significant difference across the MM’s in CTR values for axis 1 was found. 

For the variable category NNN, CTR values for MAR are greater than those for MNAR and 

MCAR at 30% and 50% respectively.  Likewise, the single significant difference across MM in 

CTR values for axis 2 was found for the variable category SN at 25% where the CTR value for 

MNAR is significantly smaller that the value for MCAR, but is in fact also closer to the ‘true’ 

value.  Since the position of these measures relative to the threshold values remains the same, 

the differences do not affect the interpretation and these variable categories remain trivial to 

the orientation of axes 1 and 2. 

These aforementioned differences across mechanisms all occur in the variable categories NNN 

and SN, which have been subjected to missingness but which are low in importance in terms of 

the orientation of the axes. The other variable categories that underwent missingness, SY and 

NNY, do not experience any significant differences across MM for any of the measures.  
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     Variable key: Age  A1/A2/A3/A4 Area  DS/DN 

Gender  MAL/FEM Smokers  SY/SN 

Neo-natal NNY/NNN  Asthma severity ASNI/ASMP/ASMS 

True positions  

Figure 6.6: Graphical representation of all variables for all scenarios.   
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Greater deviations from the true COR values as well as variations in COR values across 

missingness mechanisms are apparent for the variable categories that underwent missingness. 

For each of these four variable categories, COR values are consistently lower than the ‘true’ 

values. In the case of SY and SN, COR values decrease from 910 to below 500 for some 

scenarios, thus indicating that axis 1 is no longer the most important axis to these points for all 

scenarios. This suggests that the importance of an axis to the inertia of a point decreases when 

missingness is introduced and can result in a change in the axis that contributes most to the 

inertia of a point. So the point can, at times, ‘hop’ axes. However, it is clear from the graphical 

display of the points that even when there is a drastic reduction in COR value, resulting in a 

possible ‘hop’ to another axis, the final placement of the point in the subspace is not 

compromised . 

An effect of M% is found on COR values for the variable categories NNN, SY and SN. In the case 

of NNN, values of COR generally deviate more from the ‘true’ values as the percentage missing 

increases and there is a significant drop in COR value for MCAR at the 20% missing stage. A 

similar scenario exists for SN where there is a significant decrease in the COR value for MCAR 

as the amount of missingness increases. In the same way, the COR value for MNAR on SY is 

significantly lower at 50% missingness than at 5% missingness. The effect of M% on the asthma 

severity categories, ASNI and ASMP, indicates that there is a significant decrease in COR values 

at 50% missingness. 

For those variables that did not undergo missingness, COR values across the three mechanisms 

do not differ appreciably from the true values for up to at least 25% missingness.  Some 

differences, while not significant, are apparent for 30% and 50% missingness. Variables with 

missingness show erratic deviations from true values across all scenarios. These are especially 

pronounced in the variable categories that do not contribute appreciably to the general 

analysis. 

The only significant effects of M% on CTR values for both axes are the significant change in 

values at 50% missingness for A4, MAL and FEM.  
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Apart from deviations from true CTR values being experienced by some incomplete variables, 

some deviation is also apparent in completely measured variables whose CTR values lie above 

the importance threshold. In no instance does this affect the overall outcome and 

interpretation. 

While changes in the CTR values, in general, do not make a difference to the importance of 

points to the inertia of axes 1 and 2, there is one exception. CTR values for SY on axis 2 have 

increased from below to above the threshold level at 50% missingness for two of the MM’s – 

MCAR and MNAR.  This indicates that as missingness increases, it is possible for a variable to 

become ‘significantly’ important to the inertia of an axis. It must be remembered that, under 

the MNAR mechanism, data were deleted from the smoking variable at a ratio of 90:10 for 

SY:SN. Thus, compared to SN, a large proportion of data from SY would have been missing at 

50% missingness. This would account for the greater effect of M% on SY than on SN under the 

MNAR mechanism and could indicate that under extreme missingness, analyses can lose some 

stability. 

Total inertia for the measured data, a measure of the variability in the measured data, is not 

significantly affected by either the MM or the degree of missingness. However, when total 

inertia of the measured data is taken as a percentage of the total inertia of the full data set 

including the missing data, the percentage missing has an effect. For MCAR, this measure at 

50% missingness is significantly higher than at 5% missingness. Visually, there is an upward 

trend across all mechanisms as missingness increases.  This may imply that the variability in 

the missing data is significantly lower for the MCAR mechanism at 50% missingness than at 5% 

missingness.  

Examining the plot of all variables across the 18 scenarios confirms that there is some 

deviation from the true position for some variables. This is most evident in the variables that 

suffer from missingness; but is also present in the completely measured variables that show 

stronger associations with asthma severity (MAL and A1). In general it was found that, while 

points that are further from their ‘true’ position have a higher percentage, there is no evidence 

that the MM is a factor in this displacement. In all cases, the dispersion is well contained and 

the relative positioning of variable categories with each other and with the axes remains 

unchanged.  
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Results from this study suggest that there is no evidence that the type of MM has an effect on 

results after applying s-CA to data that suffer from missingness. In addition, the analysis has 

shown that only when missingness exceeds the 30% level, are some results affected. However, 

while deviations in the outcomes studied are present, they do not affect the overall 

interpretation of the analysis. 

6.6.1 Limitations 

While the results emanating from this study are reliable, some limitations have been noted.  

These results are specific to the variables included and the mechanisms imposed on this data. 

The variables were selected according to their relationships with asthma severity such that all 

strengths of relationship are represented. Three of the four variable categories that underwent 

missingness do not have strong relationships with asthma severity. For ease of interpretation, 

missingness was imposed on only two of the six variables. Furthermore, while the deletions on 

these variables were based on plausible judgements, they are subjective, and may have 

influenced the findings. Further studies need to be carried out to explore the effect of different 

ratios of missingness and a different or increased choice of variables.  

Ten simulations were performed on this data. The number of simulations to perform is 

dependent on the required accuracy with an increase in the number of simulations resulting in 

more accuracy (Burton et al., 2006, Ritter et al., 2011).  In contrast to confirmatory techniques, 

in which relationships are hypothesised and proved, CA (and its variants) is an exploratory 

approach in which relationships in the data are revealed and visualized for purposes of 

interpretation.  Relative positions of category points indicate levels of similarity or association 

between categories. No measures of statistical significance are applied (Greenacre, 1992). 

Thus accuracy is not of prime importance. There is little evidence to suggest that additional 

simulations would have produced meaningfully different results.  

6.7 Conclusions 

Under the conditions imposed in this study, no evidence was found to suggest that the 

missingness mechanism has an effect on results when s-CA is applied to data that suffer from 
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missingness. It was found that, in some cases, values of the outcomes studied deviate from the 

true values when the amount of missingness exceeds 30% per variable. These deviations do 

not, however, affect the overall interpretation of the results. It is believed that s-CA would 

have a similar impact on other data sets that comprise categorical variables that suffer from 

missingness.  
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Chapter 7 

A COMPARATIVE STUDY OF MULTIPLE IMPUTATION AND 

SUBSET CORRESPONDENCE ANALYSIS 

The applications of MI and s-CA to manage missing data were presented in Chapters 4 and 5 

respectively. In this chapter, interactions are introduced to analysis with s-CA and a 

comparison of the two methods is made. In order to compare the outcomes of these two 

diverse methods, a set of core variables and interactions is chosen to be used in the 

application of both methods. Results are compared and similarities and differences in the 

methods and the outcomes they produce are highlighted. 

7.1 Introduction 

Both MI and s-CA have successfully been used to identify associations between asthma 

severity and several environmental, socio-economic, genetic and behavioural variables in 

which missingness is present (Hendry et al., 2014a, Hendry et al., 2014b). It is also evident 

from the details of each method in Chapter 3 that the methodologies adopted by these two 

methods are vastly different.  

MI works under the assumptions of distributions and missingness mechanisms and fits the 

data to a pre-assumed model. In contrast, s-CA has no restrictions with respect to distributions 

and missingness mechanisms. The only requirement for application of this method is that the 

data be non-negative and categorical – a condition easily achieved through simple 

transformations. Thus no model is assumed but rather the data are decomposed to reveal 

their trends and relationships. 

The two approaches, therefore, have no common parameter estimates or model structure. 

Thus the conventional comparison of methods in terms of mean square errors or goodness of 

fit is not directly applicable. Accordingly a systematic holistic review of the two approaches is 
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adopted. Since results in this study from MVNI and FCS were shown to be similar (Chapter 4), 

only analysis using the FCS imputation algorithm is included in this comparative study as it is 

more suited to categorical data than MVNI. 

7.2 Selected variables 

The 17 variables identified for inclusion in the analysis with MI, following model building 

(Chapter 4), were selected to be used in this comparative study.  For the analysis with s-CA, the 

interval variable ‘age’ was transformed into a 4-level categorical variable, as before. For the 

purpose of comparison, the 3-tiered asthma severity variable was used for both analyses. This 

data has been previously detailed (Chapters 2, 4 and 5) 

Of the 10 identified interactions, the two strongest – ‘gender * smoke exposure in vehicles’ 

and ‘fear * breakfast habits’ were included in this analysis. 

7.3 Adding interactions to subset correspondence analysis 

In order to incorporate the interactions into a s-CA, each interaction was broken down into its 

product terms which were then treated as additional categories in the data. 

For example, the interaction gender (male/female) * smoke exposure in vehicles (yes/no) was 

broken down into: male/yes; male/no; female/yes and female/no. These categories were then 

added to the contingency table as extra columns. 

Variables involved in the interactions – ‘gender’,  ‘ smoke exposure in vehicles’, ‘fear’ and 

‘breakfast habits’ – were not included as individual active variables in the analysis but were 

treated as supplementary variables (Greenacre, 1984). By so doing, they do not participate in 

the orientation of the axes but their individual positions as ‘main effects’ relative to the 

associated interactions  (Torres-Lacomba, 2006) can still be studied.  
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7.4 Results 

The aim of this investigation was to illustrate and compare two methods to analyse categorical 

data that suffer from missingness. It was found that, while MI, in combination with ordinal 

regression, and CA applied to a subset of data are vastly different methodologically, the results 

that they produce in the analysis of inter-variable relationships are very similar. 

The application of these two methods enabled the identification of relationships between 

asthma severity and several environmental, genetic, socio-economic and behavioural variables 

while, at the same time, retaining all records. Furthermore, the associations between these 

variables and asthma (Table 7.1 and Table 7.2) were consistent across methods and generally 

confirmed established theories regarding factors that exacerbate asthma. There was 

agreement that confirmed asthma is associated with children who: are younger (Asher et al., 

2006);  have had some special neo-natal care (Mai et al., 2003); are exposed to smoke in the 

home (Charoenca et al., 2013, Ehrlich et al., 1992), in vehicles (Sendzik et al., 2009), in utero 

(DiFranza et al., 2004) and in the form of air pollution (Neidell, 2004, Peden, 2005); lived in a 

home with up to 4 people (Jarvis et al., 1997); come from a R4501 – R10000 income 

household; do not always have enough food; are exposed to low concentrations of compounds 

and pollutants (Becher et al., 1996, Venables and Chan-Yeung, 1997); never had a pet and do 

not experience fear in the neighbourhood. Both analyses also indicated an association 

between worse asthma and both lack of violence in the neighbourhood and watching up to 

one hour of TV a day. These associations are contrary to what other studies have found and, 

while the data were explored for reasons for these anomalies, none were found. It was 

concluded that there must be some underlying factor specific to this sample.  

The interpretation of the interactions was also consistent across methods. With regard to the 

‘gender * smoke exposure in vehicle’ interaction, it was found that male children who are 

exposed to smoke in a vehicle suffer from significantly worse asthma than girls not exposed to 

smoke in a vehicle. Further, amongst the females in this study, those who are exposed to 

smoke in a vehicle suffer from less severe asthma than those not exposed to smoke in a 

vehicle. For those in the study not exposed to smoke in a vehicle, asthma severity is marginally 

worse for the males.  
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Table 7.1: Estimated coefficients (EST) and standard errors (SE) 

 

Interpretation of the ‘fear * breakfast habits’ interaction showed that, compared to those who 

do not experience fear and eat breakfast daily, there is a significant chance that those who do 

experience fear but do not eat breakfast daily will suffer from worse asthma. Results also 

indicate that for those who eat breakfast daily, worse asthma is experienced by those who do 

not experience fear than by those who do experience fear. Furthermore, for those who do not 

experience fear, children who eat breakfast daily have marginally worse asthma than those 

who don’t eat breakfast daily. Whereas with s-CA the classifications as supplementary 

Predictor Reference Category FCS(N = 382) 

Category EST SE 

Gender Female Male 0.039 0.362 

Neo-natal care No Yes 0.847* 0.394 

Fear No Yes -1.042* 0.406 

Smoked while pregnant No Yes 0.379 0.488 

Smokers in home  No Yes 0.701* 0.309 

Smoke in vehicles  No Yes -0.706 0.512 

Exercise  >4 times a week Up to once a week 0.044 0.384 

  

 

2 – 4 times a week 0.011 0.384 

TV watching >3 hours a day  Up to 1 hour a day 0.786 0.465 

  

 

1 – 3 hours a day  0.046 0.43 

Number people in home 8+ 1 - 4 0.981* 0.481 

  

 

5 - 7 0.381 0.494 

Income  R100001+ up to R1000 -0.133 0.611 

  

 

R1001 – R4500  0.017 0.555 

  

 

R4501 – R10000  0.697 0.523 

Food availability Enough Not always enough 0.756 0.406 

Work’nWear No Yes 0.402 0.456 

Pets ever No Yes -1.072* 0.398 

Area North Durban South Durban  0.595 0.306 

Breakfast habits  Daily Not daily -1.011* 0.494 

Violence No Yes -0.709* 0.34 

Age 

  

-0.247 0.16 

Fear * Breakfast No/Daily Yes/Not daily 2.338* 0.725 

Gender * SmokeVehicle  Female/No Male/Yes 1.811* 0.699 

FCS  -Multiple imputed FCS 

*Significant at the 0.05 level 
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variables of those variables included in the interactions enabled the study of their positions 

relative to the asthma severity categories (male children suffer from worse asthma than 

female children (Almqvist et al., 2007, Bonner, 1984)), this was not possible with the MI 

approach. 

While on the surface these methods produce the same overall results, a deeper study of the 

results identified several differences in the outcomes from these methods. 

Whereas with MI and ordinal regression the interpretation of results indicated the relative 

severity of asthma from one category to another category of a specific variable, with the 

application of CA the identification of factors associated with the specific asthma severity 

classifications was possible. To illustrate this point, analysis with MI and ordinal regression 

showed that worse asthma is experienced by those who had neo-natal care than by those who 

did not have any neo-natal care. On the other hand, results from s-CA were more specific and 

having had neo-natal care was shown to be associated with moderate to severe asthma while 

not having neo-natal care is associated with mild intermittent or no asthma.  

An appealing feature of the MI approach is the ability to calculate the odds of severity of one 

category of asthma severity relative to the complementary categories for various explanatory 

variables relative to a reference category. It is seen, for example, that children who have had 

neonatal care are more than twice as likely (OR = e .847 = 2.22) as those who have not had 

neonatal care to suffer from worse asthma. Other significant results show that: children who 

come from a home where people smoke are twice as likely to suffer from worse asthma (OR = 

2.02) compared to those who don’t live with smokers; and those who come from a home with 

up to four people are 2.67 times as likely to experience worse asthma (OR = 2.67) than those in 

a home with eight or more people. Compared to children with no pets, the odds that children 

with pets will suffer from worse asthma are approximately one third. Children who experience 

fear in their neighbourhoods and do not eat breakfast daily are more than 10 times as likely to 

suffer from higher levels of asthma severity as children who do not experience fear and eat 

breakfast daily. It was also found that the odds of suffering from worse asthma are six times 

higher for boys who travel in vehicles with smokers than for girls who do not travel in cars with 

smokers. 
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Table 7.2: Decomposition of inertia for the 2 principal axes 

 

Name Mass INR k= 1 COR CTR k= 2 COR CTR 

A1 4 3 -717 955 146 -156 45 42 

A2 34 0 34 754 3 19 246 5 

A3 24 0 73 874 8 28 126 7 

A4 5 0 58 151 1 -138 849 34 

NNY 9 3 -476 985 129 59 15 12 

NNN 55 0 66 1000 16 -1 0 0 

SPY 6 3 13 27 0 -75 973 14 

SPN 57 57 -7 454 0 7 546 1 

SY 33 23 -51 969 6 -9 31 1 

SN   34 34 47 972 5 8 28 1 

E1 20 11 -2 480 0 -2 520 0 

E2 24 6 60 667 6 -42 333 17 

E3 19 24 -14 62 0 56 938 24 

T1 15 2 -186 454 34 204 546 248 

T2 34 4 45 326 4 -65 674 56 

T3 14 3 147 997 19 -8 3 0 

N1 22 18 -170 994 41 -13 6 1 

N2 27 7 61 983 7 8 17 1 

N3 12 48 160 934 21 43 66 9 

I1   14 0 41 952 2 9 48 0 

I2   18 13 33 501 1 -33 499 8 

I3   15 4 -191 992 37 18 8 2 

I4   7 73 102 977 5 16 23 1 

Fn 46 31 59 938 11 15 62 4 

Fe  15 6 -31 435 1 35 565 7 

WWY  6 11 -406 915 68 -124 85 38 

WWN  58 35 35 736 5 21 264 10 

PY 20 2 199 951 51 45 49 16 

PN 46 42 -80 998 19 -3 2 0 

DS   33 15 -125 997 33 -6 3 1 

DN   34 6 120 997 32 6 3 1 

VY   32 12 111 991 26 10 9 1 

VN   29 25 -95 978 17 -14 22 2 

Mass (Mass) and inertia (INR) of each variable; the quality (QLT) of the variable’s representation in the subspace 

of the first 2 axes; Co-ordinates (k = ...);  contributions of axes to the inertia of the variables (COR);  and 

contributions of variables to the inertia of the axes (CTR)*. 
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Table 7.2: Decomposition of inertia for the 2 principal axes (continued) 

 

Compared to the MI approach, CA was also able to identify specific associations that 

distinguished between the different levels of variables. This can be seen with the ‘TV watching’ 

variable. Results from the MI approach indicate that the amount of TV watched is inversely 

related to the severity of the asthma and in fact children from this study who watch up to one 

hour of TV a day are more than twice as likely to suffer from worse levels of asthma as those 

who watch in excess of 3 hours a day. With s-CA, by examining the positions of these variable 

categories in the graphical display (Figure 7.1), as well as the decomposition of the inertia 

(Table 7.2), it can be seen that watching 1 hour of TV a day (T1) is associated with moderate to 

severe asthma; watching between 1 and 3 hours a day (T2) is associated with mild persistent 

Name Mass INR k= 1 COR CTR k= 2 COR CTR 

 FYBd 20 12 179 987 41 20 13 3 

 FNBd 21 78 -203 931 58 -55 69 26 

 FYBn 9 6 -141 654 12 103 346 38 

 rNBn 12 9 228 957 40 48 43 11 

 mSVY 7 276 -363 998 60 16 2 1 

 mSVN 19 22 -76 158 7 176 842 228 

 fSVY 9 74 137 947 12 -32 53 4 

 fSVN 27 3 104 480 19 -109 520 124 

  

        ASMS 71 89 -371 929 635 103 71 295 

ASMP 123 130 -157 638 198 -118 362 679 

ASNI 806 781 56 975 168 9 25 26 

SUPPLEMENTARY  

        MAL 

  

-150 516 

 

146 484 

 FEM 

  

107 494 

 

-108 506 

 FrY 

  

66 808 

 

32 192 

 FrN 

  

-50 896 

 

17 104 

 SVY 

  

-79 980 

 

-11 20 

 SVN 

  

27 894 

 

9 106 

 Bnd 

  

68 462 

 

73 538 

 Bd 

  

-22 596 

 

-18 404 

 Mass (Mass) and inertia (INR) of each variable; the quality (QLT) of the variable’s representation in the subspace 

of the first 2 axes; Co-ordinates (k = ...);  contributions of axes to the inertia of the variables (COR);  and contributions 

 of variables to the inertia of the axes (CTR)*. 
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asthma; and watching more than 3 hours a day (T3) is associated with mild intermittent or no 

asthma. Thus a finer distinction is possible regarding categories of variables and their 

associations with levels of asthma severity. 

By using the graphical display produced by s-CA, it is possible to identify inter-variable 

relationships that do not include the asthma severity variable. For example, the positions of 

the variables I3, N1, DS and VN indicate that they share some relationship. This is not possible 

with the MI approach, when considering categorical data. 

With CA, it was also possible to compare the strengths of association with asthma severity of 

several predictor variables. For instance, from the positioning of the points on the display, it 

can be deduced that while the risk of having moderate to severe asthma from smoke exposure 

in a vehicle exceeds the risk from smoke exposure in the home (Sly et al., 2007) or smoke 

exposure in utero, the greatest risk is from air pollution as experienced in the South Durban 

region.  

All these factors discussed above illustrate the extent of the usefulness of the graphical display 

produced by s-CA as a tool to identify inter-variable relationships. 

Unlike the analysis with MI and ordinal regression, inter-variable relationships found to exist 

with the application of CA cannot be assumed to be statistically significant. While the relative 

strength of associations can be deduced by examining the angles that the points made with 

each other and with the principal axes in the graphical display (Hendry et al., 2014a), these 

results cannot be projected onto a broader population. Results from s-CA indicated that 

theassociation of ASMS (moderate to severe asthma) with NNY (having had neo-natal care) is 

stronger than its association with DS (South Durban) as seen by the relative size of the angles 

between them.  These results are confirmed in the MI and ordinal regression analysis and, in 

addition, the significance of the association between neo-natal care and asthma severity is 

indicated. 

Because MI is computationally intensive, complications and limitations can be encountered. 

This can occur with large data sets and even more so when a large number of variables suffer 
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from missingness (Lee and Carlin, 2010, Van Buuren, 2007). The need to include many 

interactions in the imputation model in order to ensure that it is more general than the 

analysis model, is often not feasible and computationally not possible (Lee and Carlin, 2010) – 

especially with data sets that have a large number of variables. These problems were not 

encountered with this analysis despite the seemingly large number of variables. In fact, in a 

previous study using this data (Hendry et al., 2014b), 10 interactions were included with no 

problems being experienced. In contrast, computationally, CA can cope with large numbers of 

variables and interactions, but this can cause overcrowding in the display which makes it 

difficult to identify points and interpret relationships between them. It is for this reason that 

the number of interactions in this study was limited to two. The possibility does, however, 

exist with s-CA to include more interactions and analyse them as a separate subset. 

Preliminary analysis of this data set indicated that the missingness is at best MAR with a 

possibility of some MNAR present (Hendry et al., 2014b). Because MI produces unbiased 

estimates providing that the missingness is at worst MAR, it was necessary to include, in the 

imputation model, variables associated with the missingness of the incomplete variables, the 

outcome variable – asthma severity – as well as the two interactions chosen for the analysis 

model. This inclusion of carefully selected variables should produce acceptable results even if 

some MNAR is present (Graham et al., 1997). In contrast to this, CA and its variants are not 

constrained by complexities of models or distribution requirements. It is also not sensitive to 

the missingness mechanism in the data (Hendry et al., 2015). Therefore no special adjustments 

were needed to counteract the possibility of some MNAR missingness. The only adjustment 

needed in this study was to categorise the interval variable ‘age’. While non-negative 

categorical data is a requirement of CA, it is generally a straightforward exercise to achieve this 

condition. 

The fact that only a few of the variables in the MI/ordinal regression analysis were significantly 

associated with asthma severity is consistent with the results from s-CA. The visible bunching 

up of the points in the graphical display and the low inertia values – a total of only 0.0178 –

indicate that only a limited amount of variability is present in this data (Greenacre, 1992).   



102 
 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: s-CA map of a contingency table with the row points and column points projected onto the plane of the first and second principal axes. 
Values on the axes indicate principal inertias and their respective percentages of total inertia. 

Column points Row points X      Supplementary  points 
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7.5 Conclusions 

Non-response is a reality in survey data and needs to be handled appropriately. The use of MI 

in conjunction with ordinal regression as well as CA as applied to the subset of measured data 

to analyse categorical data that suffer from missingness has been demonstrated. The addition 

of interactions to an analysis with s-CA has also been demonstrated. General relationships 

between the environmental, socio-economic, genetic and behavioural variables and asthma 

severity were found to be consistent across methods. Each method offers a different set of 

advantages in their applications. Analysis with s-CA is less demanding than with the MI 

approach – both in terms of conditions and the computational process – and finer distinctions 

in the inter-variable relationships can be made. These relationships are, however, ‘looser’ than 

those obtained from the MI approach and significance cannot be claimed. Despite their 

differences, the results produced in this investigation provide support for the greater use of 

less restrictive and less computationally intensive graphical methods to analyse categorical 

data that suffer from missingness.    
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Chapter 8 

Conclusions 

This study has striven to address the issue of missing categorical data by investigating the use 

of two diverse methods as applied to a set of data gathered from children with and without 

asthma in Durban, South Africa. 

Two approaches to MI, MVNI and FCS were presented and their results compared. Specific 

emphasis was placed on the inclusion of interactions not known a priori. In contrast to MI, the 

exploratory graphical technique of subset correspondence analysis (s-CA) was illustrated as a 

tool to manage missing categorical data. Furthermore, an investigation was made into the 

effect of the mechanism and amount of missingness present, on outcomes of s-CA. 

While imputation with MVNI assumes normality of variables and imputes all missing values 

according to the multinomial normal distribution, FCS is more flexible and imputes values in 

accordance with the type of variable suffering from missingness. This study showed that 

results from these two approaches, when applied to predominantly categorical data, were 

very similar, with the size and direction of association between all predictor variables and the 

outcome variable, asthma severity, remaining consistent across methods. There were some 

minor discrepancies in significance levels but these only affected variables with more than two 

categories. It is thought that these discrepancies could be as a result of the imputation model 

used and therefore dependent on the assumed distribution of the imputation model. This 

study also investigated and presented a method to identify interactions to be included in the 

imputation model by making use of a single data set imputed from the ML estimates of the EM 

algorithm for covariance matrices. While overall results produced from the two methods did 

not differ substantially, FCS was easier to apply to the categorical data in that no adjustments 

to the data were necessary either before or after imputation. This would suggest that FCS is a 

more suitable choice of imputation method for analysis of missing data in which variables are 

primarily categorical.  
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Where the more traditional methods of MI in conjunction with some regression analysis make 

assumptions on distributions and fit the data to a model, CA and its variants, including s-CA, 

have no such restrictions. While data are required to be categorical and non-negative, these 

conditions can usually be realized with some minor transformations prior to analysis. This 

makes this family of graphical multivariate techniques simple to use and applicable to most 

situations. 

This study illustrated the application of s-CA and successfully identified relationships between 

several factors and asthma severity without having to deal with the complications of the 

missing data.  The missing data were managed by introducing separate ‘missing’ categories for 

each variable that suffered from missingness. Furthermore, the overcrowding of the graphical 

display and domination by missing categories that can occur and make the identification of 

relevant inter-variable associations difficult, was alleviated by the analysis of the subset of data 

that excluded all ‘missing’ categories. This study also illustrated the addition and interpretation 

of interactions as applied to s-CA. A simulation study investigating the effect of the missingness 

mechanisms on outcomes of s-CA suggested that this method is not sensitive to the 

missingness mechanism present in the data. It was further found that, even though 

missingness of more than 30% affected some of the outcomes, the overall interpretation of 

relationships was not compromised. The results of this study suggest that s-CA is a suitable 

method to use when investigating relationships between categorical variables that are 

affected by non-response. 

In comparing these two aforementioned methods to identify inter-variable relationships in the 

presence of missing data, several differences were apparent in their application requirements 

and assumptions and in their outcomes. 

Because the presence of MNAR missingness in this data could not be ruled out, special care 

was needed in the application of MI to include, in the imputation model, all variables and 

interactions destined for the analysis model.  The identification of these variables required 

special attention and was a computationally intensive exercise. S-CA, on the other hand, was 

found not to be affected by the missingness mechanism and, while the possibility exists and 

was illustrated, it is not necessary for any special inclusions – specifically in the form of 

interactions – to be made.  
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Compared to s-CA, MI methods are computationally complex and can be too intensive, 

depending on the number of variables included and the algorithm adopted. No problems with 

the number of variables included in the imputation model were experienced in this study, 

despite warnings that complications can arise when large numbers of variables are considered. 

It was found, however, that the inclusion of a full set of variables and the 10 identified 

interactions with s-CA, while not restrictive computationally, caused some crowding in the 

graphical display making its interpretation difficult. It was for this reason that the number of 

interactions in the comparative study was limited to two.  

In many ways, the richness of inter-variable relationships from s-CA was superior to those from 

the MI procedure. With the application of s-CA all variables selected for inclusion in the study 

were retained in the analysis; whereas the development of the best model for analysis with MI 

and ordinal regression resulted in several variables being dropped altogether. Because of the 

sensitivity of model dependent analyses to the structure of the data, a specific problem was 

encountered in this study. With regard to the ‘STOVE’ variable, the incidence of ‘gas stove’ was 

only associated with the ‘mild intermittent/ no asthma’ level. This separation in the data 

caused problems during the application of ordinal regression and, consequently, the variable 

was dropped entirely from the analysis. 

Because of model limitations in the application of ordinal regression following imputation, the 

asthma severity variable was reduced to three categories which caused some loss of 

information. This action was not necessary with s-CA and a finer distinction between the four 

levels of asthma severity was possible. 

It was also found that, with s-CA, relationships between specific levels of asthma severity were 

identified and both within-variable category distinctions as well as between-variable category 

distinctions were possible. This enabled the identification of a specific set of variable 

categories associated with each asthma severity level to be made.  With the MI application, on 

the other hand, it was only possible to identify associations between factors and one level of 

asthma severity relative to another level. 
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Statements regarding the significance of relationships were possible from analysis with MI 

when followed by ordinal regression and associations found could therefore be projected onto 

the broader population with a certain confidence.  However, while strengths of associations 

between variables were suggested with s-CA, no significance, in the statistical sense, could be 

attached to these associations. 

By selecting a set of core variables and interactions for application, a comparison between MI 

and s-CA was possible. Despite the differences outlined above regarding the requirements and 

application of these two methods, associations found between selected factors and asthma 

severity were consistent across methods. Furthermore, relationships found in this study 

between environmental, socio-economic, genetic and behavioural factors and asthma severity 

generally concur with those found in international studies.  Higher levels of asthma severity 

were found to be associated with all forms of smoke exposure. Distinctions between the levels 

of asthma and the kinds of smoke exposure were also possible. From this study it can be 

concluded that the strongest association with moderate to severe asthma amongst this sample 

was found with smoke exposure in the form of industrial air pollution followed by smoke 

exposure in vehicles and then smoke exposure in the home. Smoke exposure in utero was 

found to have a closer association with mild persistent asthma. 

Other factors, including gender, age and having had some form of neo-natal care were also 

shown to be associated with asthma severity. Internationally, results from different 

populations are not always consistent when considering the effect of socio-economic status on 

asthma prevalence and severity. Furthermore, there is growing debate on what constitutes a 

good measure for socio-economic status. Results from this study linked smaller families with 

worse asthma; in addition it was not the lowest income bracket that was shown to be 

associated with worse asthma, nor was it those who experienced violence in their 

neighbourhoods. It is hoped that these results which are specific to a region of South Africa 

which includes the highly industrialised South Durban basin can add to the knowledge of what 

factors affect not only the occurrence, but also the severity, of asthma in school-going 

children.  

This study has clarified the diversity of two methods that can be used in the analysis of 

categorical data that suffer from missingness.  Requirements, advantages and drawbacks have 
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been discussed for each method and, in an application of child asthma severity data, a 

consistency of results was confirmed.  

On the basis of the findings of this study, both methods are equally reliable. It is up to the 

researcher to take into consideration limitations and requirements of the methods as well as 

the level of analysis required and the composition of the data and its missingness in order to 

make an informed choice of method that best serves his or her purpose. 

While this study has illustrated the successful use of MI and s-CA in the management of 

missing data, some limitations and areas of future investigations have been identified. 

Both MVNI and FCS were successfully applied to this set of categorical data with results being 

largely similar. Some minor discrepancies in significant levels relating to variables with more 

than two categories were, however, encountered.  It is thought that these differences could be 

as a result of the imputation model used and therefore dependent on the assumed 

distribution of the imputation model. Further investigations would be useful to establish 

whether, in fact, the number of categories in a variable has a negative effect on the MVNI 

approach which traditionally assumes that variables follow a multinomial distribution. 

The simulation study presented here was a simple one with a small selection of variables, only 

two of which were subjected to the pre-defined missingness scenarios. In addition, deletion 

ratios adopted were, in some cases, subjectively chosen. It would be a valuable exercise to 

expand the borders of this investigation by varying the number of variables imposed with 

missingness, as well as the ratios of these deletions. Whether deletions on inconsequential 

variables have the same effect as deletions on important variables would also be worthwhile 

exploring.   While the small number of simulations applied in this study appeared to be 

adequate for the required accuracy of results, this could be increased as well to ascertain if an 

increase in simulations would radically change the outcomes.  



109 
 

REFERENCES 

ABAYOMI, K., GELMAN, A. & LEVY, M. 2008. Diagnostics for multivariate imputations. Journal 
of the Royal Statistical Society: Series C (Applied Statistics), 57, 273-291. 

ALAIMO, K., OLSON, C. M., FRONGILLO JR, E. A. & BRIEFEL, R. R. 2001. Food insufficiency, 
family income, and health in US preschool and school-aged children. American Journal 
of Public Health, 91, 781-786. 

ALLISON, P. D. 1987. Estimation of linear models with incomplete data. Sociological 
Methodology, 17, 71-103. 

ALLISON, P. D. 1999. Logistic regression using the SAS system: theory and application. Cary, NC: 
SAS Institute Inc. 

ALLISON, P. D. 2002. Missing data, Thousand Oaks, CA, Sage. 
ALMQVIST, C., WORM, M. & LEYNAERT, B. 2007. Impact of gender on asthma in childhood and 

adolescence: a GA2LEN review. Allergy, 63, 47-57. 
ALVES, G. D. C., SANTOS, D. N., FEITOSA, C. A. & BARRETO, M. L. 2012. Community violence 

and childhood asthma prevalence in peripheral neighborhoods in Salvador, Bahia 
State, Brazil. Cadernos de Saúde Pública, 28, 86-94. 

ANDRIDGE, R. R. & LITTLE, R. J. 2010. A review of hot deck imputation for survey non‐response. 
International Statistical Review, 78, 40-64. 

APELBERG, B. J., AOKI, Y. & JAAKKOLA, J. J. 2001. Systematic review: Exposure to pets and risk 
of asthma and asthma-like symptoms. Journal of Allergy and Clinical Immunology, 107, 
455-460. 

ARBUCKLE, J. L., MARCOULIDES, G. A. & SCHUMACKER, R. E. 1996. Full information estimation 
in the presence of incomplete data. In: MARCOULIDES, G. A. & SCHUMACKER, R. E. 
(eds.) Advanced Structural Equation Modeling: Issues and Techniques. Mahwah, New 
Jersey: Lawrence Erlbaum, Inc. 

ARBUCKLE, J. L. 2006. AMOS (version 7.0)[Computer software]. . Chicago, SPSS  
ASHER, M. I., MONTEFORT, S., BJÖRKSTÉN, B., LAI, C. K., STRACHAN, D. P., WEILAND, S. K., 

WILLIAMS, H. & GROUP, I. P. T. S. 2006. Worldwide time trends in the prevalence of 
symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC 
Phases One and Three repeat multicountry cross-sectional surveys. The Lancet, 368, 
733-743. 

AZUR, M. J., STUART, E. A., FRANGAKIS, C. & LEAF, P. J. 2011. Multiple imputation by chained 
equations: what is it and how does it work? International Journal of Methods in 
Psychiatric Research, 20, 40-49. 

BAE, H.-O., KIM, M. & HONG, S. M. 2008. Meal skipping children in low-income families and 
community practice implications. Nutrition Research and Practice, 2, 100-106. 

BATES, M. N., CHANDYO, R. K., VALENTINER-BRANTH, P., POKHREL, A. K., MATHISEN, M., 
BASNET, S., SHRESTHA, P. S., STRAND, T. A. & SMITH, K. R. 2013. Acute lower 
respiratory infection in childhood and household fuel use in Bhaktapur, Nepal. 
Environmental health perspectives, 121, 637-642. 

BECHER, R., HONGSLO, J. K., JANTUNEN, M. J. & DYBING, E. 1996. Environmental chemicals 
relevant for respiratory hypersensitivity: the indoor environment. Toxicology Letters, 
86, 155-162. 

BEDOLLA-BARAJAS, M., BARRERA-ZEPEDA, A. T., LÓPEZ-ZALDO, J. B. & MORALES-ROMERO, J. 
2013. Asthma in Mexican school-age children is not associated with passive smoking or 
obesity. Asia Pacific Allergy, 3, 42-49. 



110 
 

BONNER, J. 1984. The epidemiology and natural history of asthma. Clinics in Chest Medicine, 5, 
557-565. 

BRANT, R. 1990. Assessing proportionality in the proportional odds model for ordinal logistic 
regression. Biometrics, 1171-1178. 

BROOKS, A.-M., BYRD, R. S., WEITZMAN, M., AUINGER, P. & MCBRIDE, J. T. 2001. Impact of low 
birth weight on early childhood asthma in the United States. Archives of Pediatrics & 
Adolescent Medicine, 155, 401-406. 

BURTON, A., ALTMAN, D. G., ROYSTON, P. & HOLDER, R. L. 2006. The design of simulation 
studies in medical statistics. Statistics in Medicine, 25, 4279-4292. 

CARLSEN, K. C. L., ROLL, S., CARLSEN, K.-H., MOWINCKEL, P., WIJGA, A. H., BRUNEKREEF, B., 
TORRENT, M., ROBERTS, G., ARSHAD, S. H. & KULL, I. 2012. Does pet ownership in 
infancy lead to asthma or allergy at school age? Pooled analysis of individual 
participant data from 11 European birth cohorts. PloS ONE, 7, e43214. 

CESARONI, G., FARCHI, S., DAVOLI, M., FORASTIERE, F. & PERUCCI, C. 2003. Individual and area-
based indicators of socioeconomic status and childhood asthma. European Respiratory 
Journal, 22, 619-624. 

CHAROENCA, N., KUNGSKULNITI, N., TIPAYAMONGKHOLGUL, M., SUJIRARAT, D., 
LOHCHINDARAT, S., MOCK, J. & HAMANN, S. L. 2013. Determining the burden of 
secondhand smoke exposure on the respiratory health of Thai children. Tobacco 
Induced Diseases, 11, 7-12. 

CHARPIN, D., KLEISBAUER, J., FONDARAI, J., GRALAND, B., VIALA, A. & GOUEZO, F. 1988. 
Respiratory symptoms and air pollution changes in children: the Gardanne coal-basin 
study. Archives of Environmental Health: An International Journal, 43, 22-27. 

CHEN, E., CHIM, L. S., STRUNK, R. C. & MILLER, G. E. 2007. The role of the social environment in 
children and adolescents with asthma. American Journal of Respiratory and Critical 
Care Medicine, 176, 644-649. 

CHOI, W.-J., UM, I.-Y., HONG, S., YUM, H. Y., KIM, H. & KWON, H. 2012. Association between 
household income and asthma symptoms among elementary school children in Seoul. 
Environmental Health and Toxicology, 27, e2012020. 

COHEN, J., COHEN, P., WEST, S. G. & AIKEN, L. S. 2003. Applied multiple regression/correlation 
analysis for the behavioral sciences, Mahwah, New Jersey, Lawrence Erlbaum 
Associates, Inc. 

COLLINS, L. M., SCHAFER, J. L. & KAM, C.-M. 2001. A Comparison of Inclusive and Restrictive 
Strategies in Modern Missing Data Procedures. Psychological Methods, 6, 330-351. 

CORBO, G. M., FORASTIERE, F., DE SARIO, M., BRUNETTI, L., BONCI, E., BUGIANI, M., CHELLINI, 
E., LA GRUTTA, S., MIGLIORE, E. & PISTELLI, R. 2008. Wheeze and asthma in children: 
associations with body mass index, sports, television viewing, and diet. Epidemiology, 
19, 747-755. 

DAVIS, J. B. & BULPITT, C. J. 1981. Atopy and wheeze in children according to parental atopy 
and family size. Thorax, 36, 185-189. 

DEGER, L., PLANTE, C., JACQUES, L., GOUDREAU, S., PERRON, S., HICKS, J., KOSATSKY, T. & 
SMARGIASSI, A. 2012. Active and uncontrolled asthma among children exposed to air 
stack emissions of sulphur dioxide from petroleum refineries in Montreal, Quebec: a 
cross-sectional study. Canadian Respiratory Journal: Journal of the Canadian Thoracic 
Society, 19, 97-102. 

DEMIRTAS, H. & SCHAFER, J. L. 2003. On the performance of random‐coefficient 
pattern‐mixture models for non‐ignorable drop‐out. Statistics in Medicine, 22, 2553-
2575. 

DEMIRTAS, H. 2005. Multiple imputation under Bayesianly smoothed pattern‐mixture models 
for non‐ignorable drop‐out. Statistics in Medicine, 24, 2345-2363. 



111 
 

DEMPSTER, A. P., LAIRD, N. M. & RUBIN, D. B. 1977. Maximum likelihood from incomplete data 
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 
1-38. 

DESAI, M., ESSERMAN, D. A., GAMMON, M. D. & TERRY, M. B. 2011. The use of complete-case 
and multiple imputation-based analyses in molecular epidemiology studies that assess 
interaction effects. Epidemiologic Perspectives & Innovations, 8, 1-17. 

DIFRANZA, J. R., ALIGNE, C. A. & WEITZMAN, M. 2004. Prenatal and postnatal environmental 
tobacco smoke exposure and children’s health. Pediatrics, 113, 1007-1015. 

DIK, N., TATE, R. B., MANFREDA, J. & ANTHONISEN, N. R. 2004. Risk of physician-diagnosed 
asthma in the first 6 years of life. CHEST Journal, 126, 1147-1153. 

DONDERS, A. R. T., VAN DER HEIJDEN, G. J., STIJNEN, T. & MOONS, K. G. 2006. Review: a gentle 
introduction to imputation of missing values. Journal of Clinical Epidemiology, 59, 
1087-1091. 

EEKHOUT, I., DE BOER, R. M., TWISK, J. W., DE VET, H. C. & HEYMANS, M. W. 2012. Missing 
Data: A Systematic Review of How They Are Reported and Handled. Epidemiology, 23, 
729-732. 

EHRLICH, R., KATTAN, M., GODBOLD, J., SALTZBERG, D. S., GRIMM, K. T., LANDRIGAN, P. & 
LILIENFELD, D. 1992. Childhood asthma and passive smoking. American Review of 
Respiratory Diseases, 145, 594-599. 

ENDERS, C. K. 2001. A primer on maximum likelihood algorithms available for use with missing 
data. Structural Equation Modeling, 8, 128-141. 

ENDERS, C. K. & BANDALOS, D. L. 2001. The relative performance of full information maximum 
likelihood estimation for missing data in structural equation models. Structural 
Equation Modeling, 8, 430-457. 

ERNST, P., DEMISSIE, K., JOSEPH, L., LOCHER, U. & BECKLAKE, M. R. 1995. Socioeconomic status 
and indicators of asthma in children. American Journal of Respiratory and Critical Care 
Medicine, 152, 570-575. 

FARIS, P. D., GHALI, W. A., BRANT, R., NORRIS, C. M., GALBRAITH, P. D., KNUDTSON, M. L. & 
INVESTIGATORS, A. 2002. Multiple imputation versus data enhancement for dealing 
with missing data in observational health care outcome analyses. Journal of Clinical 
Epidemiology, 55, 184-191. 

FINCH, W. H. 2010. Imputation methods for missing categorical questionnaire data: A 
comparison of approaches. Journal of Data Science, 8, 361-378. 

FISHER, R. A. 1940. The precision of discriminant functions. Annals of Eugenics, 10, 422-429. 
FORD, B. M. 1983. An Overview of Hot-Deck Procedures. In: MADOW, W., OLKIN, I. & RUBIN, 

D. (eds.) Incomplete Data in Sample Surveys, vol 2, Theory and Bibliographies. New 
York: Academic Press. 

FORNO, E. & CELEDÓN, J. C. 2009. Asthma and ethnic minorities: socioeconomic status and 
beyond. Current Opinion in Allergy and Clinical Immunology, 9, 154-160. 

GARSON, G. D. 2008. Ordinal regression. Statnotes: Topics in multivariate analysis. 
GENT, J. F., BELANGER, K., TRICHE, E. W., BRACKEN, M. B., BECKETT, W. S. & LEADERER, B. P. 

2009. Association of pediatric asthma severity with exposure to common household 
dust allergens. Environmental Research, 109, 768-774. 

GOH, D., CHEW, F., QUEK, S. & LEE, B. 1996. Prevalence and severity of asthma, rhinitis, and 
eczema in Singapore schoolchildren. Archives of Disease in Childhood, 74, 131-135. 

GOLD, D. R. & WRIGHT, R. 2005. Population disparities in asthma. Annual Review of Public 
Health, 26, 89-113. 

GOLDBERG, S., ISRAELI, E., SCHWARTZ, S., SHOCHAT, T., IZBICKI, G., TOKER-MAIMON, O., 
KLEMENT, E. & PICARD, E. 2007. Asthma prevalence, family size, and birth order. 
CHEST Journal, 131, 1747-1752. 



112 
 

GOODWIN, R. D. & COWLES, R. A. 2008. Household smoking and childhood asthma in the 
United States: a state-level analysis. Journal of Asthma, 45, 607-610. 

GRAHAM, J. W. & DONALDSON, S. I. 1993. Evaluating interventions with differential attrition: 
the importance of nonresponse mechanisms and use of follow-up data. Journal of 
Applied Psychology, 78, 119-128. 

GRAHAM, J. W., HOFER, S. M., DONALDSON, S. I., MACKINNON, D. P. & SCHAFER, J. L. 1997. 
Analysis with missing data in prevention research. The Science of Prevention: 
Methodological Advances from Alcohol and Substance Abuse Research, 1, 325-366. 

GRAHAM, J. W. & SCHAFER, J. L. 1999. On the performance of multiple imputation for 
multivariate data with small sample size. Statistical Strategies for Small Sample 
Research, 50, 1-27. 

GRAHAM, J. W., CUMSILLE, P. E. & ELEK‐FISK, E. 2003. Methods for handling missing data. In: 
WEINER, I. B. (ed.) Handbook of Psychology. Wiley online. 

GRAHAM, J. W., OLCHOWSKI, A. E. & GILREATH, T. D. 2007. How many imputations are really 
needed? Some practical clarifications of multiple imputation theory. Prevention 
Science, 8, 206-213. 

GRAHAM, J. W. 2009. Missing data analysis: Making it work in the real world. Annual Review of 
Psychology, 60, 549-576. 

GRAHAM, J. W. 2012. Missing data: Analysis and design, New York, Springer. 
GREENACRE, M. J. 1978. Some Objective Methods of Graphical Display of a Data Matrix: 

Special Report. Pretoria: Department of Statistics and Operations Research, University 
of South Africa. 

GREENACRE, M. J. 1984. Theory And Applications Of Correspondence Analysis, London, 
Academic Press. 

GREENACRE, M. J. 1992. Correspondence analysis in medical research. Statistical Methods in 
Medical Research, 1, 97-117. 

GREENACRE, M. J. & BLASIUS, J. 2006. Correspondence Analysis and Related Methods in 
Practice. In: GREENACRE, M. J. & BLASIUS, J. (eds.) Multiple Correspondence Analysis 
and Related Methods. Boca Raton: Chapman & Hall/CRC. 

GREENACRE, M. J. & PARDO, R. 2006a. Multiple Correspondence Analysis of Subsets of 
Response Categories. In: GREENACRE, M. & BLASIUS, J. (eds.) Multiple Correspondence 
Analysis and Related Methods. Boca Raton: Chapman & Hall/CRC. 

GREENACRE, M. J. & PARDO, R. 2006b. Subset correspondence analysis visualizing 
relationships among a selected set of response categories from a questionnaire survey. 
Sociological Methods & Research, 35, 193-218. 

GREENLAND, S. & FINKLE, W. D. 1995. A critical look at methods for handling missing 
covariates in epidemiologic regression analyses. American Journal of Epidemiology, 
142, 1255-1264. 

GUTTMAN, L. 1941. The quantification of a class of attributes: A theory and method of scale 
construction. The Prediction of Personal Adjustment, 319-348. 

HACK, M., TAYLOR, H. G., DROTAR, D., SCHLUCHTER, M., CARTAR, L., ANDREIAS, L., WILSON-
COSTELLO, D. & KLEIN, N. 2005. Chronic conditions, functional limitations, and special 
health care needs of school-aged children born with extremely low-birth-weight in the 
1990s. The Journal of the American Medical Association, 294, 318-325. 

HANCOX, R. J., MILNE, B. J., TAYLOR, D., GREENE, J. M., COWAN, J. O., FLANNERY, E. M., 
HERBISON, G., MCLACHLAN, C. R., POULTON, R. & SEARS, M. R. 2004. Relationship 
between socioeconomic status and asthma: a longitudinal cohort study. Thorax, 59, 
376-380. 

HARDT, J. & GÖRGEN, K. Multiple imputation using ICE: A simulation study on a binary 
response.  German Stata Users' Group Meetings 2008. Stata Users Group. 



113 
 

HARDT, J., HERKE, M. & LEONHART, R. 2012. Auxiliary variables in multiple imputation in 
regression with missing X: a warning against including too many in small sample 
research. BMC Medical Research Methodology, 12, 1-13. 

HARJU, T., KEISTINEN, T., TUUPONEN, T. & KIVELÄ, S. L. 1996. Hospital admissions of 
asthmatics bv age and sex. Allergy, 51, 693-696. 

HAYASHI, C. 1950. On the quantification of qualitative data from the mathematico-statistical 
point of view. Annals of the Institute of Statistical Mathematics, 2, 35-47. 

HE, Y. 2010. Missing Data Analysis Using Multiple Imputation Getting to the Heart of the 
Matter. Circulation: Cardiovascular Quality and Outcomes, 3, 98-105. 

HECKMAN, J. J. 1979. Sample selection bias as a specification error. Econometrica: Journal of 
the Econometric Society, 153-161. 

HENDRY, G., NORTH, D., ZEWOTIR, T. & NAIDOO, R. 2014a. The application of subset 
correspondence analysis to address the problem of missing data in a study on asthma 
severity in childhood. Statistics in Medicine, 33, 3882-3893. 

HENDRY, G. M., NAIDOO, R. N., ZEWOTIR, T., NORTH, D. & MENTZ, G. 2014b. Model 
development including interactions with multiple imputed data. BMC Medical 
Research Methodology, 14, 1-11. 

HENDRY, G. M., ZEWOTIR, T., NAIDOO, R. N. & NORTH, D. 2015. The Effect of the Mechanism 
and Amount of Missingness on Subset Correspondence Analysis. Correspondence in 
Statistics, Under review. 

HENRY, R. L., ABRAMSON, R., ADLER, J. A., WLODARCYZK, J. & HENSLEY, M. J. 1991. Asthma in 
the vicinity of power stations: I. A prevalence study. Pediatric Pulmonology, 11, 127-
133. 

HIRSCHFELD, H. O. A connection between correlation and contingency.  Mathematical 
Proceedings of the Cambridge Philosophical Society, 1935. Cambridge Univ Press, 520-
524. 

HORST, P. 1935. Measuring complex attitudes. The Journal of Social Psychology, 6, 369-374. 
HOWELL, D. C. 2007. The treatment of missing data. In: OUTHWAITE, W. & TURNER, S. (eds.) 

Handbook of Social Science Methodology. London: Sage. 
HSU, H.-H. L., CHIU, Y.-H. M., COULL, B. A., KLOOG, I., SCHWARTZ, J., LEE, A., WRIGHT, R. O. & 

WRIGHT, R. J. 2015. Prenatal Particulate Air Pollution and Asthma Onset in Urban 
Children: Identifying Sensitive Windows and Sex Differences. American Journal of 
Respiratory and Critical Care Medicine, In press. 

JARVIS, D., CHINN, S., LUCZYNSKA, C. & BURNEY, P. 1997. The association of family size with 
atopy and atopic disease. Clinical & Experimental Allergy, 27, 240-245. 

JEFFREY, J., STERNFELD, I. & TAGER, I. 2006. The association between childhood asthma and 
community violence, Los Angeles County, 2000. Public Health Reports, 121, 720-728. 

JONES, A. P. 1998. Asthma and domestic air quality. Social Science & Medicine, 47, 755-764. 
JONES, M. P. 1996. Indicator and stratification methods for missing explanatory variables in 

multiple linear regression. Journal of the American Statistical Association, 91, 222-230. 
KAPLAN, B. A. & MASCIE-TAYLOR, C. 1985. Biosocial factors in the epidemiology of childhood 

asthma in a British national sample. Journal of Epidemiology and Community Health, 
39, 152-156. 

KARAHALIOS, A., BAGLIETTO, L., CARLIN, J. B., ENGLISH, D. R. & SIMPSON, J. A. 2012. A review 
of the reporting and handling of missing data in cohort studies with repeated 
assessment of exposure measures. BMC Medical Research Methodology, 12, 1-10. 

KARMAUS, W. & BOTEZAN, C. 2002. Does a higher number of siblings protect against the 
development of allergy and asthma? A review. Journal of Epidemiology and 
Community Health, 56, 209-217. 



114 
 

KLEBANOFF, M. A. & COLE, S. R. 2008. Use of multiple imputation in the epidemiologic 
literature. American Journam of Epidemiology, 168, 355-357. 

KOZYRSKYJ, A. L., KENDALL, G. E., JACOBY, P., SLY, P. D. & ZUBRICK, S. R. 2010. Association 
between socioeconomic status and the development of asthma: analyses of income 
trajectories. American Journal of Public Health, 100, 540-546. 

KWON, H. L., ORTIZ, B., SWANER, R., SHOEMAKER, K., JEAN-LOUIS, B., NORTHRIDGE, M. E., 
VAUGHAN, R. D., MARX, T., GOODMAN, A. & BORRELL, L. N. 2006. Childhood asthma 
and extreme values of body mass index: the Harlem Children’s Zone Asthma Initiative. 
Journal of Urban Health, 83, 421-433. 

LAI, C., DOUGLASS, C., HO, S., LAU, J., WONG, G. & LEUNG, R. 1996. Asthma epidemiology in 
the Far East. Clinical & Experimental Allergy, 26, 5-12. 

LEE, K. J. & CARLIN, J. B. 2010. Multiple imputation for missing data: fully conditional 
specification versus multivariate normal imputation. American Journal of 
Epidemiology, 171, 624-632. 

LITONJUA, A. A., CAREY, V. J., WEISS, S. T. & GOLD, D. R. 1999. Race, socioeconomic factors, 
and area of residence are associated with asthma prevalence. Pediatric Pulmonology, 
28, 394-401. 

LITTLE, R. J. & RUBIN, D. B. 1987. Statistical Analysis With Missing Data, New York, Wiley. 
LITTLE, R. J. 1995. Modeling the drop-out mechanism in repeated-measures studies. Journal of 

the American Statistical Association, 90, 1112-1121. 
LITTLE, R. J. & SCHENKER, N. 1995. Missing data. Handbook of Statistical Modeling for the 

Social and Behavioral Sciences. New York: Springer. 
LU, F. L., HSIEH, C.-J., CAFFREY, J. L., LIN, M.-H., LIN, Y.-S., LIN, C.-C., TSAI, M.-S., HO, W.-C., 

CHEN, P.-C. & SUNG, F.-C. 2012. Body mass index may modify asthma prevalence 
among low-birth-weight children. American Journal of Epidemiology, 176, 32-42. 

LYNCH, S. 2003. Missing data (Soc 504). Princeton University Sociology 504 Class Notes. 
Princeton University. 

MAANTAY, J. 2007. Asthma and air pollution in the Bronx: methodological and data 
considerations in using GIS for environmental justice and health research. Health & 
Place, 13, 32-56. 

MAI, X. M., GÄDDLIN, P. O., NILSSON, L., FINNSTRÖM, O., BJÖRKSTÉN, B., JENMALM, M. C. & 
LEIJON, I. 2003. Asthma, lung function and allergy in 12‐year‐old children with very low 
birth weight: A prospective study. Pediatric Allergy and Immunology, 14, 184-192. 

MARSHALL, A., ALTMAN, D. G., ROYSTON, P. & HOLDER, R. L. 2010. Comparison of techniques 
for handling missing covariate data within prognostic modelling studies: a simulation 
study. BMC Medical Research Methodology, 10, 1-16. 

MATOOANE, L. & DIAB, R. 2001. Air pollution carrying capacity in the South Durban Industrial 
Basin: research in action. South African Journal of Science, 97, 450-453. 

MATRICARDI, P. M., FRANZINELLI, F., FRANCO, A., CAPRIO, G., MURRU, F., CIOFFI, D., 
FERRIGNOC, L., PALERMOA, A., CICCARELLI, N. & ROSMINI, F. 1998. Sibship size, birth 
order, and atopy in 11,371 Italian young men. Journal of Allergy and Clinical 
Immunology, 101, 439-444. 

MCKEEVER, T., LEWIS, S., SMITH, C., COLLINS, J., HEATLIE, H., FRISCHER, M. & HUBBARD, R. 
2001. Siblings, multiple births, and the incidence of allergic disease: a birth cohort 
study using the West Midlands general practice research database. Thorax, 56, 758-
762. 

MCMANUS, B. M., ROBERT, S., ALBANESE, A., SADEK-BADAWI, M. & PALTA, M. 2012. Racial 
disparities in health-related quality of life in a cohort of very-low-birth-weight 2-and 3-
year-olds with and without asthma. Journal of Epidemiology and Community Health, 
66, 579-585. 



115 
 

MOLNAR, F. J., HUTTON, B. & FERGUSSON, D. 2008. Does analysis using 'last observation 
carried forward' introduce bias in dementia research? Canadian Medical Association 
Journal, 179, 751-753. 

MOORE, J. C., STINSON, L. L. & WELNIAK, E. J. 2000. Income measurement error in surveys: a 
review. Journal of Official Statistics - Stockolm, 16, 331-362. 

MUTHÉN, B., KAPLAN, D. & HOLLIS, M. 1987. On structural equation modeling with data that 
are not missing completely at random. Psychometrika, 52, 431-462. 

NAEPP 1991. National Asthma Education Prevention Program. Expert Panel Report: Guidelines 
for the Diagnosis and Management of Asthma. Bethesda, MD: National Institutes of 
Health. 

NAFSTAD, P., BRUNEKREEF, B., SKRONDAL, A. & NYSTAD, W. 2005. Early respiratory infections, 
asthma, and allergy: 10-year follow-up of the Oslo Birth Cohort. Pediatrics, 116, 255-
262. 

NAIDOO, R. N., ROBINS, T. G., BATTERMAN, S., MENTZ, G. & JACK, C. 2013. Ambient pollution 
and respiratory outcomes among schoolchildren in Durban, South Africa. South African 
Journal of Child Health, 7, 127-134. 

NEIDELL, M. J. 2004. Air pollution, health, and socio-economic status: the effect of outdoor air 
quality on childhood asthma. Journal of Health Economics, 23, 1209-1236. 

NOVO, A. & SCHAFER, J. 2010. norm: Analysis of multivariate normal datasets with missing 
values. 

O'CONNELL, A. A. 2006. Logistic regression models for ordinal response variables, Thousand 
Oaks, Sage. 

PECKHAM, C. & BUTLER, N. 1978. A national study of asthma in childhood. Journal of 
Epidemiology and Community Health, 32, 79-85. 

PEDEN, D. 2003. Air pollution: indoor and outdoor. In: ADKINSON NF JR, Y. J., BUSSE WW, 
BOCHNER BS, HOLGATE SK, SIMONS FE (ed.) Middleton’s Allergy: Principles and 
Practice. Philadelphia: Mosby. 

PEDEN, D. B. 2005. The epidemiology and genetics of asthma risk associated with air pollution. 
Journal of Allergy and Clinical Immunology, 115, 213-219. 

PERSKY, V. W., SLEZAK, J., CONTRERAS, A., BECKER, L., HERNANDEZ, E., RAMAKRISHNAN, V. & 
PIORKOWSKI, J. 1998. Relationships of race and socioeconomic status with prevalence, 
severity, and symptoms of asthma in Chicago school children. Annals of Allergy, 
Asthma & Immunology, 81, 266-271. 

PEYRE, H., LEPLÈGE, A. & COSTE, J. 2011. Missing data methods for dealing with missing items 
in quality of life questionnaires. A comparison by simulation of personal mean score, 
full information maximum likelihood, multiple imputation, and hot deck techniques 
applied to the SF-36 in the French 2003 decennial health survey. Quality of Life 
Research, 20, 287-300. 

PITTMAN, T. P., NYKIFORUK, C. I., MIGNONE, J., MANDHANE, P. J., BECKER, A. B. & KOZYRSKYJ, 
A. L. 2012. The association between community stressors and asthma prevalence of 
school children in Winnipeg, Canada. International Journal of Environmental Research 
and Public Health, 9, 579-595. 

PLEIS, J. R. & COHEN, R. A. 2007. Impact of income bracketing on poverty measures used in the 
National Health Interview Survey’s Early Release Program: Preliminary data from the 
2007 NHIS. Hyattsville, MD: National Center for Health Statistics. December 2007. 
Hyattsville, MD: National Center for Health Statistics. 

POYSER, M., NELSON, H., EHRLICH, R., BATEMAN, E., PARNELL, S., PUTERMAN, A. & 
WEINBERG, E. 2002. Socioeconomic deprivation and asthma prevalence and severity in 
young adolescents. European Respiratory Journal, 19, 892-898. 



116 
 

RAGHUNATHAN, T. E., SOLENBERGER, P. W. & VAN HOEWYK, J. 2002. IVEware: Imputation and 
variance estimation software. Survey Methodology Program, Survey Research Center, 
Institute for Social Research, University of Michigan. Ann Arbor, MI. 

RAUH, V. A., LANDRIGAN, P. J. & CLAUDIO, L. 2008. Housing and Health. Annals of the New 
York Academy of Sciences, 1136, 276-288. 

RAYENS, M. K., BURKHART, P. V., ZHANG, M., LEE, S., MOSER, D. K., MANNINO, D. & HAHN, E. J. 
2008. Reduction in asthma-related emergency department visits after implementation 
of a smoke-free law. Journal of Allergy and Clinical Immunology, 122, 537-541. 

RDEVELOPMENT_CORE_TEAM 2006. R: A language and environment for statistical computing. 
Vienna, Austria. 

RICHARDSON, M. & KUDER, G. 1933. Making a rating scale that measures. Personnel 12, 36-40. 
RITTER, F. E., SCHOELLES, M. J., QUIGLEY, K. S. & KLEIN, L. C. 2011. Determining the number of 

simulation runs: Treating simulations as theories by not sampling their behavior. 
Human-in-the-Loop Simulations. London: Springer. 

ROBERTS, W. & EHRLICH, R. 2009. Meteorologically estimated exposure but not distance 
predicts asthma symptoms in schoolchildren in the environs of a petrochemical 
refinery: a cross-sectional study. Environmental Health, 8, 1-10. 

ROSENSTREICH, D. L., EGGLESTON, P., KATTAN, M., BAKER, D., SLAVIN, R. G., GERGEN, P., 
MITCHELL, H., MCNIFF-MORTIMER, K., LYNN, H. & OWNBY, D. 1997. The role of 
cockroach allergy and exposure to cockroach allergen in causing morbidity among 
inner-city children with asthma. New England Journal of Medicine, 336, 1356-1363. 

RUBIN, D. B. 1976. Inference and missing data. Biometrika, 63, 581-592. 
RUBIN, D. B. 1996. Multiple imputation after 18+ years. Journal of the American Statistical 

Association, 91, 473-489. 
RUBIN, D. B. 2004a. The design of a general and flexible system for handling nonresponse in 

sample surveys. The American Statistician, 58, 298-302. 
RUBIN, D. B. 2004b. Multiple imputation for nonresponse in surveys, New York, Wiley  
SCHAFER, J. L. 1997. Analysis of Incomplete Multivariate Data, New York, Chapman & Hall. 
SCHAFER, J. L. & OLSEN, M. K. 1998. Multiple imputation for multivariate missing-data 

problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571. 
SCHAFER, J. L. 1999. NORM: Multiple imputation of incomplete multivariate data under a 

normal model [Computer software]. University Park: Pennsylvania State University, 
Department of Statistics. 

SCHAFER, J. L. & GRAHAM, J. W. 2002. Missing data: our view of the state of the art. 
Psychological Methods, 7, 147. 

SCHEFFER, J. 2002. Dealing with missing data. Research Letters in the Information and 
Mathematical Sciences, 3, 153-160. 

SCHEUREN, F. 2005. Multiple imputation: How it began and continues. The American 
Statistician, 59, 315-319. 

SENDZIK, T., FONG, G. T., TRAVERS, M. J. & HYLAND, A. 2009. An experimental investigation of 
tobacco smoke pollution in cars. Nicotine & Tobacco Research, 11, 627-634. 

SHANKARDASS, K., MCCONNELL, R. S., MILAM, J., BERHANE, K., TATALOVICH, Z., WILSON, J. P. 
& JERRETT, M. 2007. The association between contextual socioeconomic factors and 
prevalent asthma in a cohort of Southern California school children. Social Science & 
Medicine, 65, 1792-1806. 

SHAVERS, V. L. 2007. Measurement of socioeconomic status in health disparities research. 
Journal of the National Medical Association, 99, 1013-1023. 

SHRIVE, F. M., STUART, H., QUAN, H. & GHALI, W. A. 2006. Dealing with missing data in a multi-
question depression scale: a comparison of imputation methods. BMC Medical 
Research Methodology, 6, 57. 



117 
 

SLY, P. D., DEVERELL, M., KUSEL, M. M. & HOLT, P. G. 2007. Exposure to environmental tobacco 
smoke in cars increases the risk of persistent wheeze in adolescents. Medical Journal 
of Australia, 186, 322-322. 

SPSS INC. Build Better Models When You Fill in the Blanks. Available from: 
http://www.spss.com/media/collateral/statistics/missing-values.pdfs (20 April 2014). 

STRACHAN, D. P. 1989. Hay fever, hygiene, and household size. British Medical Journal, 299, 
1259 - 1260. 

STUART, E. A., AZUR, M., FRANGAKIS, C. & LEAF, P. 2009. Multiple imputation with large data 
sets: a case study of the Children's Mental Health Initiative. American Jornal of 
Epidemiology, 169, 1133-1139. 

SUBRAMANIAN, S. & KENNEDY, M. H. 2009. Perception of neighborhood safety and reported 
childhood lifetime asthma in the United States (US): a study based on a national 
survey. PloS ONE, 4, e6091. 

TAKKOUCHE, B., GONZÁLEZ‐BARCALA, F. J., ETMINAN, M. & FITZGERALD, M. 2008. Exposure to 
furry pets and the risk of asthma and allergic rhinitis: a meta‐analysis. Allergy, 63, 857-
864. 

TANNER, M. A. & WONG, W. H. 1987. The calculation of posterior distributions by data 
augmentation. Journal of the American Statistical Association, 82, 528-540. 

TORRES-LACOMBA, A. 2006. Correspondence analysis and categorical conjoint measurement. 
In: GREENACRE, M. J. & BLASIUS, J. (eds.) Multiple Correspondence Analysis and 
Related Methods. Boca Raton: Chapman & Hall/CRC. 

VACH, W. & BLETTNER, M. 1991. Biased estimation of the odds ratio in case-control studies 
due to the use of ad hoc methods of correcting for missing values for confounding 
variables. American Journal of Epidemiology, 134, 895-907. 

VAN BUUREN, S. 2007. Multiple imputation of discrete and continuous data by fully conditional 
specification. Statistical Methods in Medical Research, 16, 219-242. 

VAN BUUREN, S. & GROOTHUIS-OUDSHOORN, K. 2011. MICE: Multivariate imputation by 
chained equations in R. Journal of Statistical Software, 45, 1-68. 

VENABLES, K. M. & CHAN-YEUNG, M. 1997. Occupational asthma. The Lancet, 349, 1465-1469. 
VERGOUWE, Y., ROYSTON, P., MOONS, K. G. & ALTMAN, D. G. 2010. Development and 

validation of a prediction model with missing predictor data: a practical approach. 
Journal of Clinical Epidemiology, 63, 205-214. 

VON HIPPEL, P. T. 2009. How to impute interactions, squares, and other transformed variables. 
Sociological Methodology, 39, 265-291. 

VON MUTIUS, E. 2000. The environmental predictors of allergic disease. Journal of Allergy and 
Clinical Immunology, 105, 9-19. 

WHITE, I. R., ROYSTON, P. & WOOD, A. M. 2011. Multiple imputation using chained equations: 
issues and guidance for practice. Statistics in Medicine, 30, 377-399. 

WILLIAMSON, I., MARTIN, C., MCGILL, G., MONIE, R. & FENNERTY, A. 1997. Damp housing and 
asthma: a case-control study. Thorax, 52, 229-234. 

WOOD, A. M., WHITE, I. R. & THOMPSON, S. G. 2004. Are missing outcome data adequately 
handled? A review of published randomized controlled trials in major medical journals. 
Clinical Trials, 1, 368-376. 

WOOD, A. M., WHITE, I. R. & ROYSTON, P. 2008. How should variable selection be performed 
with multiply imputed data? Statistics in Medicine, 27, 3227-3246. 

WRIGHT, R. J., MITCHELL, H., VISNESS, C. M., COHEN, S., STOUT, J., EVANS, R. & GOLD, D. R. 
2004. Community violence and asthma morbidity: the Inner-City Asthma Study. 
American Journal of Public Health, 94, 625-632. 

http://www.spss.com/media/collateral/statistics/missing-values.pdfs


118 
 

WRIGHT, R. J. 2008. Stress and childhood asthma risk: overlapping evidence from animal 
studies and epidemiologic research. Allergy, Asthma and Clinical Immunology, 4, 29-
36. 

 

 

  



119 
 

APPENDICES: Published and submitted papers 

 



Research Article

Received 10 December 2012, Accepted 6 April 2014 Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.6189

The application of subset
correspondence analysis to address the
problem of missing data in a study on
asthma severity in childhood
G. Hendry,a*† D. North,a T. Zewotira and R. N. Naidoob

Non-response in cross-sectional data is not uncommon and requires careful handling during the analysis stage
so as not to bias results. In this paper, we illustrate how subset correspondence analysis can be applied in order
to manage the non-response while at the same time retaining all observed data. This variant of correspondence
analysis was applied to a set of epidemiological data in which relationships between numerous environmental,
genetic, behavioural and socio-economic factors and their association with asthma severity in children were
explored. The application of subset correspondence analysis revealed interesting associations between the mea-
sured variables that otherwise may not have been exposed. Many of the associations found confirm established
theories found in literature regarding factors that exacerbate childhood asthma. Moderate to severe asthma was
found to be associated with needing neonatal care, male children, 8- to 9-year olds, exposure to tobacco smoke
in vehicles and living in areas that suffer from extreme air pollution. Associations were found between mild
persistent asthma and low birthweight, and being exposed to smoke in the home and living in a home with up
to four people. The classification of probable asthma was associated with a group of variables that indicate low
socio-economic status. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: asthma severity; categorical data analysis; missing data; subset correspondence analysis;
supplementary variables; total inertia

1. Introduction

Missing data is an ongoing challenge for many researchers and presents a particular problem in
community-based epidemiological studies. It is evident that missing data is still frequently being han-
dled by ad hoc methods, such as complete case analysis [1]. If the missing data are categorical, an extra
‘missing’ category is sometimes added for each incomplete variable. These methods of dealing with
missing data may, however, result in biased estimates and are thus not recommended [2, 3]. Multiple
imputation, a tool that is becoming more popular for dealing with missing data, is often used in conjunc-
tion with some regression procedures to analyse multivariate data that suffer from missingness. These
aforementioned methods of handling missing data are all sensitive to the missingness mechanism present
in the data. Furthermore, their use is often restricted by complexities of models and distributional require-
ments. We believe that a more favourable approach is the application of correspondence analysis (CA),
and its variants, which are commonly used in the analysis of multivariate categorical data. These meth-
ods do not assume a model and are therefore not restricted by distributional requirements nor are they
sensitive to the missingness mechanism present in the data. Specifically, this paper will focus on subset
CA (s-CA) as an exploratory tool to deal with missingness when the data are categorical. This proce-
dure thus takes an alternative approach to analyse data (that have missing values) than the conventional
methodology classically favoured by epidemiologists.
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The brainchild of Benzécri, CA, originated in France in the early 1960s and is gaining popularity
as an exploratory tool for analysing multivariate categorical data [4]. CA is primarily a graphical tech-
nique used to explore the relationships between variables. When the number of variables in a study is
large, CA can be used as a tool to select important variables to consider for further analysis. Unlike
the more classical regression-based methods for studying inter-variable relationships that hypothesise
a model and fit the data to a model, the extended family of methods under CA do not hypothesise a
model. Instead, the data are decomposed in order to study their ‘structure’ [5]. Points (rows and columns
of a data matrix), represented as clouds in multi-dimensional space, are optimally displayed in a lower
dimensional subspace, which is easier to interpret because of the lower dimensionality.

Although it is usual to apply CA to the full set of data, there are times when the analysis of a subset
of the data may be more appropriate or desirable: for instance, when one is only interested in the analy-
sis of agreement scores on a Likert-scale-type questionnaire. Another setting for opting for the analysis
of a reduced set of the data is when the data set has a large number of variables, often further broken
down into categories. In this case, the interpretation of the plots can become complicated because of
over-crowding. All the variables/categories load to some extent on all dimensions, and it is usually not
possible to obtain more than a broad overview of, often expected, relationships [6]. More information and
insight could thus be gained into associations of variables if smaller groups were analysed individually.

This has been made possible by the development of s-CA , a variant of CA [3]. In s-CA, as the name
suggests, a subset of the data matrix is selected for analysis. CA is then applied with the important
modification that the marginal frequencies of the full matrix are retained in the analysis of the subset.

While the application of s-CA had been documented illustrating the analysis of the subset of observed
responses in a study with Likert scale data [7], there is little evidence in the literature of its application
to studies with missing data.

We will illustrate s-CA on a set of epidemiological data with a large number of variables in which
missingness is present, from a study of asthma severity in children in Durban, South Africa. The
non-response for each variable was categorised separately, and the subset of observed categories was
analysed. This method offers a way of dealing with missing categorical data while, at the same time,
retaining all records, complete and incomplete. We believe this complementary approach is a better
choice for the analysis of categorical data that suffer from missingness, as it is simple to apply and
circumvents the model approximations and missingness mechanism dilemma.

2. Theoretical concepts

2.1. Correspondence analysis of a subset of the data

Correspondence analysis is an exploratory multivariate technique applied to any matrix of non-negative
numbers in order to identify associations present in the data. In CA, the rows and columns of the matrix
are represented by two separate clouds of points in multi-dimensional space. CA finds respective sub-
spaces of low dimension that optimally contain these clouds of points. The principal axes are chosen
such that the inertia of the clouds of points is maximised. The inertia of these clouds can be consid-
ered as a measure of dispersion or spread of the points taking into account both distance and attributed
weights, called masses. CA thus provides a visual interpretation of the relative positions of both clouds
in a common subspace of low dimension. Interpretation of the axes can be achieved by examining the
decomposition of the inertia of each cloud of points along the principal axes and amongst the points
themselves [5]. By studying the contributions that the points make to the principal axes and the contri-
butions that the axes make to the inertia of the points, those points that are well defined in a plane can
be identified. Using these points, it is usually possible to assign ‘meanings’ to the principal axes. Graph-
ically, if the angle between this point vector and the axis is small, then the point is highly correlated
with the principal axis. The distance between two points (either two row points or two column points) is
said to be a ‘weak’ approximation of the chi-square distance between the vectors of relative frequencies
of the points [8]. One can get an idea of how close two points are by examining the angle the point
vectors make with each other. The smaller the angle, the closer they are related. The interpretation of the
graphical display is primarily carried out on the basis of where a point, or group of points, is positioned
relative to the axes in the plane.

The variables used in the calculation of the subspace are called active variables. It is possible to
examine the position of additional variables, called supplementary variables, relative to this space.
These variables play no part in the determination of the principal axes and the optimal subspace but

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014
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are projected onto an existing subspace. Relationships between these variables, both active and supple-
mentary, and the principal axes can be explored [4,5]. In practice, the associations of the active variables
are displayed, and then, the supplementary variables are related a posteriori to these associations [6, 9].

In the same way that CA is applied to a full set of data, s-CA is applied to a subset of the data. An
appealing feature of s-CA is that, as the full data matrix,N , can be partitioned into a number of separate
non-overlapping and all-inclusive matrices, so is the inertia of the full matrix equal to the sum of the
inertias of the separate matrices [7].

So, if N D ŒN 1 WN 2 WN 3� , it follows that the inertia of N , In(N ), follows the rule

In.N /D In.N 1/C In.N 2/C In.N 3/

Thus, one is able to see how much of the total variation in the data is accounted for in each sub-matrix.
A description of s-CA as applied to a matrixN , in the form of a contingency table, is presented in the

succeeding text. Further details can be found in [5, 7, 10].
From the matrix N of non-negative numbers, the correspondence matrix, P , is formed by dividing

each element of N by its grand total. The elements of P can be thought of as the probability density of
the cells of the matrix and the vectors of row and column sums ofP , denoted by r and c, as marginal den-
sities. The elements of r and c, termed masses, are a measure of the relative importance of each row and
column point. They are represented in diagonal matrices as Dr and Dc respectively. By dividing each
element of a row (column) by its respective row (column) sum, we form a vector of relative frequencies
that is called a row (column) profile. These profiles define the two clouds of points, one for rows and one
for columns, in multi-dimensional weighted Euclidean space. The dimension weights for the row and
column clouds are defined by the inverse of the elements of c

�
D�1c

�
and r

�
D�1r

�
respectively.

Under the assumption that the rows and columns of P are independent, the expected value of cell (i,j)
of P is the product of the masses, ricj. Calculating the difference between pij and its expected value, ricj,
and then dividing by the square root of ricj, serves to centre and normalise the correspondence matrix
and results in a matrix of standardised residuals, which we shall call S . The sum of squared elements of
S is a measure of the total variation in the data and is termed total inertia.

It is at this stage that we ‘interrupt’ the CA process to implement the ‘adjustment’ needed for s-CA.
From the matrix, S; of standardised residuals, select those rows and columns that make up the subset

of variables/categories chosen to be included in further analysis. Let this matrix be S �: It is important to
note that marginal densities, r and c, for the full matrix are retained for all future calculations [7].

The objective of CA and its variants, including s-CA, is to identify low-dimensional subspaces of the
row and column clouds, which are closest to the points in terms of weighted sum of squared distances.
This is achieved by performing an SVD on S �. In other words, S � D U�V T , where U and V are the
left and right singular vectors, respectively, and � is a diagonal matrix of singular values in decreasing
order of magnitude. The principal axes of the row and column clouds are defined, respectively, by the
K� left and right singular vectors corresponding to the K� largest singular values.

From the result of the SVD, we are able to define the principal coordinates of the points, that is, coor-
dinates with respect to their principal axes. These row and column principal coordinates are calculated
as F D D�1=2r U� and G D D�1=2c V�, respectively. It is these coordinates that are used to produce
the graphical displays of the points.

The amount of inertia explained by each principal axis is given by the square of the corresponding
singular value.

2.2. Chi-square test for independence

Traditionally, the chi-square test for independence is used to test for significant associations between the
rows and columns of a contingency table.

Each element of a random sample of size n is classified according to two criteria. The first criteria,
broken down into r categories, and the second criteria, broken down into c categories, represent the r
rows and c columns of the table, respectively. The entry in the cell corresponding to row i and column j,
Oij, represents the number of elements that fall into that cell. The total number of observations in each
row and column is found in the row and column sums R and C, respectively. The expected frequency,
Eij, in cell (i,j) equals RiCj=n. The chi-square test statistic is then calculated as

�2 D

rX
iD1

cX
jD1

.Oij �Eij/
2

Eij

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014
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This commonly used statistic is a measure of how much the observed frequencies differ from what
is expected.

Using this data set, the chi-square test was applied to contingency tables where the rows represented
the asthma severity categories and the columns represented the categories of one of the environmen-
tal, genetic, behavioural and socio-economic variables. A significant result indicated that an association
between asthma and the second variable did exist.

As an extension to the chi-square test, Cramer’s V statistic was also calculated. This is defined as

V D

q
�2

n.k�1/
, where �2 and n are as defined earlier and k D min.r; c/. This gives a measure of the

relative strength of association between two variables. A minimum threshold value of 0.1 suggests that
there is a substantive relationship between the two variables.

3. The data

In 2004, the South Durban Health Study was commissioned by the eThekwini Municipality, South
Africa, and undertaken by researchers at the University of KwaZulu-Natal. The objective of the study
was to determine the effects of ambient pollution on childhood asthma, adjusting for covariates such
as socio-economic status, allergy, genetic, environmental tobacco smoke exposure and other associated
factors. Pollutants were monitored on a continuous basis throughout the study, while cross-sectional sur-
veys and serial peak flow monitoring and symptoms logs provided health outcome information. Data for
this study were gathered in the form of five surveys from children, their guardians and their families, at
four primary schools in the south Durban area and three primary schools in the north Durban area. The
data thus allow for comparisons to be made between data collected from the two areas [11].

At each school, in order to achieve a sample of persistent asthmatics with adequate power to deter-
mine association between asthma and the variables of interest, it was necessary for all students from
Grades 3–6 to complete the ‘screening’ questionnaire, which contained questions regarding the child’s
respiratory health with specific reference to asthma and asthma symptoms. The study sample comprised
all students from one randomly selected Grade 4 classroom and children with persistent asthma (on the
basis of the screening questionnaire responses) from all Grades 3–6.

Trained interviewers from the research team administered the surveys. The ‘caregiver’, ‘adult’ and
‘family’ interviews were conducted with family members at home, while the ‘child’ interview was
carried out at school.

From the 423 randomly selected and invited subjects in the study that formed the study sampling
frame, 41 were excluded either because of the absence of asthma classification or inconsistencies across
the five instruments for an individual participant. The final sample thus comprised 382 children.

Of the 382 subjects, 27 (7.1%) were classified as having moderate to severe asthma, 47 (12.3%)
suffered from mild persistent asthma, 76 (19.9%) showed symptoms for mild intermittent (probable)
asthma and the remaining 232 (60.7%) did not exhibit definite asthma symptoms. Classification into
probable, mild persistent or moderate to severe asthma was based on the criteria provided by the US
National Asthma Education Program [12].

Twenty one environmental, genetic, socio-economic and behavioural variables, broken down into 53
categories, and the four-tiered asthma severity variable were chosen from the different surveys to be used
as variables in the analysis. The details of these, along with their frequencies, are presented in Table I.

As is the norm for survey-related data, there are many instances of non-response resulting in missing
data. Of the 8404 possible data entries for the 22 variables, 445 (5.3%) are missing. There is a large
non-response for ‘income’ where 19.4% of the respondents were reluctant to divulge their income. The
missing items are confined to 166 (43.5%) of the 382 records, thus leaving a total of 216 complete
records. Only four of the 22 variables are complete. Frequencies of non-response for each variable are
included in Table I.

4. Application of the data set

4.1. Subset correspondence analysis

The data, in the form of a contingency table, consist of four columns—representing the four asthma
categories—and 71 rows—representing the categories of the 21 variables plus a separate missing
category for each variable that suffered from non-response.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014
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With the application of this data set, the objective was to identify relationships between the envi-
ronmental, socio-economic, genetic and behavioural variables and to investigate possible relationships
between these variables and asthma severity. CA was initially applied to the full data set. The total inertia
amounted to 0.0207.

A number of the non-response categories contributed highly to the orientation of axis 2. This resulted
in an elongation of the scale along this axis that, in turn, resulted in a clumping together of variables
near the origin. This made it very difficult to distinguish between the points and interpret the maps, and
masked more relevant relationships in the data. Furthermore, given the large number of variables in the
data set, the inclusion of the non-response categories exacerbated the situation of an already crowded
display. To address these phenomena, s-CA was applied to the subset of observed data, thus excluding
the non-response categories from the analysis. The category BW?, a response option for respondents
who did not know the birthweight, was also excluded as it was considered to play a similar role to BW*
(non-response to birthweight question).

The total inertia accounted for by the subset of observed categories is 0.0162, which is 78.3% of the
total inertia explained by the full data set.

4.1.1. Interpretation of the principal axes. The plots, in conjunction with the calculated contributions
to inertia across the chosen dimensions (Table II), are used to identify and interpret the trends and
relationships present in the data [5].

� For each principal axis, identify the largest values in the column headed CTR to interpret the dimen-
sions. This enables us to assign ‘meanings’ to each axis. These values are scaled so that each column
sums to 1000.

� For each point, examine the values in the COR columns across the dimensions to identify the axes
that best represent the point. These values are a measure of how close a point lies to each of the axes
and are independent of its mass or distance from the origin. High values of COR indicate that the
axis contributes highly to the point’s inertia; the angle the point makes with the axis will be small,
and we can say that the point ‘correlates’ with the axis. Points with extremely high COR values are
positioned nearly on the axis; this indicates that there is very little error in its location on the display.

� The values in the QLT column are calculated as the sum of the COR values across the dimen-
sions. This is a measure of the quality of representation of the points in the subspace of chosen
dimensionality. Values have been scaled so that, across all possible dimensions, QLT equals 1000.

We will interpret the first two axes that account for 88.92% of the total inertia. The total inertia is an
indication of the accuracy of the display. Thus, in this example, we have 11.08% error in the display.
Equivalently, the two-dimensional figure accounts for 88.92% of the variability in the data, which leaves
11.08% unaccounted for.

Axis 1—the variables that make the most contribution to the orientation of this axis are A1 (age 8—9
years) and NY (having received some form of special neonatal care). Both are physiological variables,
and they have been separated out from the other variables and are situated on the negative side of the axis.
Other variables that have contributed to this axis and are associated with the aforementioned variables
are WWY (exposure to secondary smoke and chemicals), male, N1 (up to four people in the home), I3
(income of R4501–R10000), T1 (<1 h TV a day), SD (from south Durban), p (those who use a paraffin
stove) and BW1 (<2.5 kg at birth). Opposing these, on the positive side, are PY (having had a pet),
ND (from north Durban) and female. Moderate to severe (ASMS) and mild persistent (ASMP) asthma
are associated with the groupings on the negative side and ‘no asthma’ (ASN) with the group on the
positive side.

Many variables have not played a major role in the orientation of the axis but are correlated with it,
as evidenced by the large COR values. In particular, the smoke exposure variables, both in the home
(SY) and in vehicles (SVY), are highly correlated with this axis and are situated on the negative side
indicating an association with the more severe levels of asthma.

It is evident that subjects are separated on this axis on the basis of both physiographic factors and
smoke exposure. These are the biggest contrasts in the data and account for 66.52% of the total inertia.

Axis 2—the orientation of this axis is defined mainly by the variables I1 (income of <R1000), male
and female, T1 ( less than 1 h TV a day) and WY (being attacked with weapons). There is a separation
on this axis of those subjects who are from the lowest income group (I1), are male, experience fear in
the neighbourhood (FrY), have been attacked with weapons (WY) and watch TV for less than an hour

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014



G. HENDRY ET AL.

Table II. Decomposition of inertia for the first three principal axes.

Name Mass QLT INR kD 1 COR CTR kD 2 COR CTR

A1 3 944 3 �717 943 149 �28 1 1
A2 24 719 0 34 712 3 3 7 0
A3 17 750 0 73 725 8 �13 25 1
A4 3 154 0 57 59 1 72 95 5
male 20 881 2 �149 455 42 144 426 116
fem 27 881 1 111 455 31 �107 426 86
BW1 7 997 1 �220 673 31 �153 324 45
BW2 35 907 0 37 350 4 46 557 21
NY 6 974 0 �475 974 131 �10 0 0
NN 40 958 68 65 882 16 19 76 4
FrY 21 974 18 68 395 9 83 579 39
FrN 24 944 19 �46 370 5 �58 574 22
SPY 4 257 3 13 28 0 �37 229 2
SPN 41 986 18 �7 152 0 16 834 3
SY 23 998 0 �51 862 6 �20 136 3
SN 24 991 32 47 816 5 22 175 3
SVY 12 985 8 �76 975 6 �8 10 0
SVN 32 989 4 30 870 3 11 119 1
E1 14 737 17 �2 2 0 �29 735 3
E2 17 824 5 60 666 6 �29 158 4
E3 14 934 14 �15 41 0 71 893 19
T1 11 751 18 �187 445 35 155 306 71
T2 24 634 11 45 326 5 �44 308 13
T3 10 999 92 147 985 19 �18 14 1
N1 15 986 16 �169 890 41 �56 96 13
N2 19 940 2 61 634 7 42 306 9
N3 9 820 14 161 779 21 �37 41 3
I1 10 722 3 38 21 1 221 701 132
I2 13 951 13 34 118 1 �91 833 29
I3 11 836 1 �189 612 36 �114 224 40
I4 5 970 134 102 970 5 2 0 0
FN 33 763 29 59 646 11 �25 117 6
FE 11 989 9 �32 150 1 75 839 17
O 7 914 22 169 832 18 �53 82 5
C 4 814 88 �187 363 14 208 451 52
U 33 260 32 �3 9 0 �13 251 2
WWY 4 928 0 �406 911 69 �55 17 4
WWN 41 944 42 35 663 5 23 281 6
PY 14 816 0 200 739 53 �65 77 16
PN 33 887 26 �80 702 20 41 185 15
SD 23 932 26 �126 845 34 40 87 10
ND 24 932 16 120 845 33 �39 87 10
BN 29 952 1 �19 377 1 �23 575 4
BD 15 766 2 71 468 7 56 298 13
VY 23 994 28 111 912 26 33 82 7
VN 21 999 17 �95 945 18 �23 54 3
WY 20 995 22 99 492 18 100 503 55
WN 24 985 6 �50 358 6 �66 627 29
p 1 983 15 �689 671 33 �470 312 45
g 0 999 96 453 707 7 291 292 9
e 38 174 1 14 173 1 1 1 0
n 3 788 2 �55 451 1 �47 337 2
ASMS 71 951 85 �312 909 638 67 42 88
ASMP 123 777 148 �131 563 195 �80 214 220
ASMI 199 887 197 45 142 38 103 745 585
ASN 607 865 570 48 676 130 �25 189 108

Mass (Mass) and inertia (INR) of each variable; the quality (QLT) of the variable’s
representation in the subspace of the first two axes; coordinates (k D : : :); contribu-
tions of axes to the inertia of the variables (COR); and contributions of variables to the
inertia of the axes (CTR)�.
�

For details of the formulae for calculations, see [5], p. 91.
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a day (T1) from those subjects who are female, have not been attacked with weapons (WN), are from
the R1001–R4500 income group (I2) and do not experience fear in the neighbourhood (FrN). The mild
intermittent asthma variable (ASMI) correlates with the former grouping. Axis 2 can be thought of as
distinguishing between subjects on the basis of their socio-economic status(SES) and accounts for 22.4%
of the total inertia.

4.1.2. Graphical displays. In the graphical display, those variables that are not well represented in the
subspace are situated near the origin and do not add to the interpretation of the display. By examining
the angles that the points make with each other and with the principal axes, we can identify and interpret
trends and relationships present in the data.

In the plane of the first and second axes (Figure 1), which accounts for 88.9% of the variation in the
data, the physiological/smoke exposure axis is plotted against the socio-economic axis. Variables indica-
tive of low socio-economic status are situated above the horizontal axis and the higher socio-economic
variables below. In the same way, the vertical axis separates the smoke exposure variables as well as
those representing low birthweight (BW1), having had neonatal care (NY), male and low age (A1) from
their ‘opposites’. The asthma variables are well represented in this subspace. The more severe asthma
variables (ASMS and ASMP) are split from the other categories (ASMI and ASN) by the vertical axis
indicating an association of worse asthma with those variables situated to the left of the axis. Mild inter-
mittent asthma (ASMI) is removed from the other three asthma variables and tends in the direction of
lower socio-economic status. Further distinctions between the levels of asthma severity are evidenced by
their locations—each in a different quadrant. The strongest associations with moderate to severe asthma
(ASMS) were shown by men, having had neonatal care (NY), smoke exposure in vehicles (SVY), 8- to
9-year olds (A1) and coming from south Durban (SD); mild persistent asthma was associated most with
a birthweight of less than 2.5 kg (BW1), using a paraffin stove (p) or not having a stove (n), smoke expo-
sure in the home (SY), exposure to secondary smoke and chemicals (WWY), living in a home with up to
four people (N1) and a monthly income of R4501–R10000 (I3); and associations with mild intermittent
asthma were shown by the lowest income group (I1), a birthweight of more than 2.5 kg (BW2), being
attacked by weapons (WY), experiencing fear in the neighbourhood (FrY) and doing exercise more than
four times a week (E3).

An interesting result is the distinction between the different forms of smoke exposure and their asso-
ciations with asthma severity. A close association is evident between smoke exposure in the home (SY)
and mild persistent asthma (ASMP). Smoke exposure in a vehicle (SVY) shows a stronger association
with moderate to severe asthma (ASMS) than with mild persistent asthma (ASMP), as indicated by the
angles that the point vectors make with the asthma variables. Exposure to severe levels of air pollution,
as experienced in the south Durban region (SD), shows a strong association with moderate to severe

Figure 1. Subset correspondence analysis map of contingency table with the row points represented by � and
the column points by � projected onto the plane of the first and second principal axes. Values on the axes indicate

principal inertias and their respective percentages of total inertia.

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014



G. HENDRY ET AL.

Table III. Results of Pearson’s chi-square and Cramer’s V tests
for the 10 variables that exhibit the strongest relationship with
asthma severity.

Variable (categories) Chi-square p-value Cramer’s V

Gender (male/female) 0.003 0.190
Neonatal care (NY/NN)) 0.005 0.186
Pets (PY/PN) 0.036 0.150
Work and wear (WWY/WWN) 0.070 0.138
Area (SD/ND) 0.077 0.134
Age (A1/A2/A3/A4) 0.087 0.120
TV (T1/T2/T3) 0.137 0.117
Birthweight (BW1/BW2) 0.182 0.120
Income (I1/I2/I3/I4) 0.216 0.114
Weapons (WY/WN) 0.217 0.112

asthma (ASMS). Smoking while pregnant (SPY) is not well represented in this subspace and is therefore
not included in this discussion.

Another interesting phenomenon is the positioning of the stove variables paraffin (p) and gas (g) at
opposite corners of the display. The association of gas stove (g) with mild intermittent asthma (ASMS)
contrasts that of paraffin stove (p) with mild persistent asthma (ASMP).

With regard to the number of people in the home and its association with asthma severity, results show
that N1 (1–4 people) tends in the direction of mild persistent asthma (ASMP), N2 (5–7 people) tends
towards mild intermittent asthma (ASMI) and N3 (8C people) tends towards no asthma (ASN). Thus,
the fewer people there are in the home, the higher the level of asthma severity.

It can be seen that the inertia associated with this subspace amounts to 0.0144 (0:0108C 0:0036) in
total. This relatively low value indicates that there is not a lot of variability in the data and explains the
bunching up of the variables in the display [10].

4.2. Chi-square analysis

As a comparative method of association analysis of contingency tables, Pearson’s chi-square test was
applied to individual cross-tabulations of asthma severity with each of the generic, socio-economic,
behavioural and environmental variables. By examining the contributions of individual cells to the chi-
square value, we were able to identify specific relationships between the two variables in the table. In
addition, Cramer’s V statistic gave us an indication of the relative strength of the associations found.

Results from Pearson’s chi-square (Table III) showed that there was agreement, at the 5% level of
significance, that gender, neonatal care and ever having pets are significantly related to asthma severity.
Specifically, significantly more than expected of the subjects who were male or who had had specialist
care at birth and significantly fewer than expected of those who ever had pets suffered from moderate
to severe asthma. Relaxing the level of significance to 10%, associations were found to exist between
asthma severity and age, area and exposure to secondary chemicals and dust. More specifically, more
than expected of the youngest age group as well as those who were exposed to secondary chemicals and
smoke suffered from moderate to severe or mild persistent asthma, while more than expected of those
from south Durban had moderate to severe asthma. Cramer’s V statistic (Table III) indicates that the
three strongest associations are exhibited between asthma severity and gender, neonatal care and pets,
respectively. While the values of this statistic signify only a low association for each of the variables
shown, they are large enough to suggest that a relationship between asthma severity and each of these
variables does exist.

5. Discussion

In our application of s-CA to a data set with a substantial amount of missing data, we were able to show
that the use of this technique provides a meaningful approach to exploring the relationships between
categorical variables that suffer from missingness. This approach provides several advantages when
compared with other methods of addressing such shortcomings of data sets. The advantages are that the
method is not constrained by either model assumptions or distributional requirements, it can be applied
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irrespective of the missingness mechanism present, it is computationally simple and it is able to handle
large numbers of categorical variables. All the standard analyses were performed using SPSS (version
17), and a macro program was written to perform the s-CA.

Applying CA to the full data set resulted in an elongation of the scale on axis 2, which exacerbated an
already crowded display, thus making it difficult to identify points and interpret relationships between
them. In addition, it is the relationships between the measured variables and level of asthma severity
that are of interest in this study. Because of the useful property of s-CA, whereby the full data matrix
can be partitioned into smaller mutually exclusive sub-matrices, with the respective decomposition of
the total inertia, CA was applied to the sub-matrix of observed variable categories only, which allowed
for a clearer display of the points and enabled the exploration of the relationships between the relevant
variables.

The application of this novel explorative statistical technique has enabled us to examine a large number
of environmental, behavioural, genetic and socio-economic variables to uncover relationships between
these variables and, at the same time, retain all records. Furthermore, associations between these vari-
ables and asthma have been found that generally confirm established theories regarding factors that
exacerbate asthma. We have further been able to distinguish between different levels of asthma severity
and the factors that are associated with them.

There is agreement that asthma is associated with the following: younger children [13]; a birthweight
of less than 2.5 kg and having had neonatal care [14]; exposure to low concentrations of compounds and
pollutants as a result of living in the same house with someone who works in a chemical/dust environ-
ment and wears their work clothes ate home [15, 16]; male children [17, 18]; and smoke exposure both
in vehicles [19], in the home [20,21] and in the form of air pollution [22,23]. These variables are shown
to be associated with the higher levels of asthma severity in this application.

Other studies that have lead to results that confirm documented theories for factors that influence
asthma severity include the following: that the risk from exposure to smoke in a car smoke exceeds the
risk from smoke in the home [24]; that there is an association between asthma and indicators of low
SES, viz. experiencing fear in the neighbourhood [25], neighbourhood stressors in the form of the use
of weapons [26, 27] and low income homes [28, 29]; and that asthma occurrence is inversely related to
the size of the family [30].

Relative weights and inter-point distances are retained from the analysis of the full data set and are
not recalculated for the analysis of the subset. This allows for the decomposition of the inertia into parts
representing mutually exclusive and exhaustive subsets. CA of the full data set resulted in a total inertia
of 0.0207. This is a measure of the dispersion of the points in the full m-dimensional space. The analysis
of the subset of observed categories yielded a total inertia of 0.0162, and total inertia from the analysis of
the non-response categories is 0.0045. Because the two subsets are mutually exclusive and exhaustive,
the sums of their total inertias equal the total inertia of the whole data set. Furthermore, the observed
categories account for nearly four times as much of the inertia (0:0162=0:0207 D 78:3%) in the data
as is attributed to the non-response categories (0:0045=0:0207 D 21:7%). While we have been able to
identify many interesting relationships in the data, we can see from the correspondence map that the
dispersion of the points is not extensive. This is borne out by the value of the total inertia (a relatively
low 0.0162), which is a measure of how much the measured profiles are spread around the origin.

While it is important to note that, with s-CA, relationships found to exist between variables/categories
cannot be assumed to be statistically significant, comparative tests of association were carried out on
cross-tabulations of asthma severity with the other variables. Relationships between asthma severity and
a number of the variables included in the study were identified. Despite the fact that the associations
were not necessarily strong, they do corroborate the associations found with s-CA. The fact that only
a few variables were found to be significantly associated with asthma severity is consistent with our
finding in s-CA that the dispersion of points was not large, as seen both in the graphical display and in
the low inertia value.

We thus have shown that s-CA, as presented here, has a two-fold purpose: firstly, as an exploratory
tool to seek interrelationships between variable categories and to identify those variable categories that
are associated with different levels of childhood asthma so that they can be taken further and used
in more rigid analysis, and secondly, to manage the missing data and the problem of crowding cre-
ated by it. Furthermore, where large numbers of variables/categories are involved, relationships between
variables/categories are not generally easy to summarise. So, we could take this a step further and sug-
gest subsequent division of the data into numerous smaller, sensibly selected, mutually exclusive and
exhaustive subsets. In these situations, we thus propose that s-CA is an ideal choice of method and
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produces easily interpreted graphical output to provide a general view of the associations between the
many variables.

In conclusion, despite the presence of missing data, s-CA is able to explore the data as a whole and
represent the variables graphically, thus implying relationships between variables. By identifying those
variables important to the determination of the principal axes, the identification of a selection of the vari-
ables to take forward for further analysis is possible. We believe that our exploratory method is easier
to apply than the existing multiple imputation methods in which many complexities need to be con-
sidered. While multiple imputation allows one to carry out statistical analysis on data that encounters
missingness, the sophistications in the assumptions about the model, the missingness mechanisms and
the computational algorithms are restrictive and make it more difficult to use. We hope that the s-CA
approach will offer an alternative paradigm to dealing with the analysis of categorical data that suffer
from missingness.
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Abstract

Background: Multiple imputation is a reliable tool to deal with missing data and is becoming increasingly popular
in biostatistics. However, building a model with interactions that are not specified a priori, in the presence of
missing data, presents a challenge. On the one hand, the interactions are needed to impute the data, while on the
other hand, the data is needed to identify the interactions. The objective of this study was to present a way in
which this challenge can be addressed.

Methods: This paper investigates two strategies in which model development with interactions is achieved using a
single data set generated from the Expectation Maximization (EM) algorithm. Imputation using both the fully
conditional specification approach and the multivariate normal approach is carried out and results are compared.
The strategies are illustrated with data from a study of ambient pollution and childhood asthma in Durban, South
Africa.

Results: The different approaches to model building and imputation yielded similar results despite the data being
mainly categorical. Both strategies investigated for building the model using the multivariate normal imputed data
resulted in the identical set of variables and interactions being identified; while models built using data imputed by
fully conditional specification were marginally different for the two strategies. It was found that, for both imputation
approaches, model building with backward elimination applied to the initial EM data set was easier to implement,
and produced good results, compared to those from a complete case analysis.

Conclusions: Developing a predictive model including interactions with data that suffers from missingness is easily
done by identifying significant interactions and then applying backward elimination to a single data set imputed
from the EM algorithm. It is hoped that this idea can be further developed and, by addressing this practical
dilemma, there will be increased adoption of multiple imputation in medical research when data suffers from
missingness.

Keywords: Interactions, Missing data, Model development, Multiple imputation, Ordinal regression

Background
It is not unusual to encounter missing data in epidemio-
logical studies [1,2]. Its presence affects the analysis of
the data, and the methods employed in handling missing
data can affect the results of the analysis. This could
compromise conclusions drawn from the results. Types
of missingness have been well documented [3]. Popular
classifications are “missing completely at random”
(MCAR – the missing values are independent of both

observed and unobserved data); “missing at random”
(MAR – the missing values are independent of unob-
served data but may depend on observed data) and
“not missing at random” (MNAR – the missing data
depends on both observed and unobserved data).
Commonly, missing data is managed by simply drop-

ping all cases that are not fully measured. However, such
a complete case analysis can introduce bias into the re-
sults and, in some cases, wrong conclusions can be
drawn [4]. While this approach is acceptable when the
incomplete cases do not exceed 5% [5] and for which
the missingness can be classified as MCAR, when these
conditions are not met, alternative means of dealing with
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the missing data need to be considered. One such
method that is increasingly being used is multiple im-
putation (MI) [6].
Imputation of missing data on a variable involves re-

placing the missing value by a value drawn from an esti-
mate of the distribution of the variable [7]. Multiple
imputation does not replace the missing item with a sin-
gle predicted value, but rather imputes multiple values
for each missing data item. These multiple imputations
and the addition of random error to each imputed item
ensures that the variation in the imputed values follows
closer the true distribution of the original measure. Mul-
tiple imputation is successfully applied to data that is
MAR and yields unbiased results with accurate estimates
for the standard errors [7]. Unfortunately, the missing-
ness mechanism is not usually fully known and is often
a combination of more than one mechanism. However,
by ensuring that the imputation model is more general
than the analysis model, multiple imputation will usually
produce sound results [8-11]. This is achieved by includ-
ing, in the imputation model, variables that are related
to the incomplete variables as well as those related to
their missingness; the outcome variable; and all interac-
tions that will be examined in the analysis.
Rubin [12] suggests that the need to include all pos-

sibly relevant predictors in the imputation model is
demanding in practice. If interactions are selected a
priori, it is a straightforward exercise to include them
in the imputation model [9]. If, on the other hand, the
relevant interactions have not been identified before-
hand, then ideally all possible interactions should be
included in the imputation model. This is neither
practical nor, in some cases, possible [13,14], particu-
larly when the number of variables is large. While
model development with multiple imputation has been
documented [13,15-17], none of these studies ad-
dresses the issue of how to include, in the imputation
model, interactions that are not known a priori. De-
veloping a model with many variables, in the presence
of missing data, when predictor variables include not
only main effects but also interactions that are not
pre-selected, presents a challenge, and not extensively
reported in the literature. On the one hand, the data is
needed to identify relevant interactions; on the other
hand, the interactions are needed to impute the data.
This paper addresses this dilemma and suggests a
method in which model development, including inter-
actions, and analysis can be carried out when missing
data is imputed using multiple imputation.
We propose to identify the relevant interactions

using a single complete set of data generated using the
expectation-maximization (EM) algorithm for covari-
ance matrices and then include these interactions in
the imputation model.

Methods
The data
The relationship between environmental, socio-economic
and genetic factors and the respiratory health of children
in the Durban South region of KwaZulu-Natal, South
Africa using cross-sectional data was investigated. The
data comes from research commissioned by the eThekwini
Municipality, Durban, South Africa in 2004 to investigate
possible causal effects of environmental and lifestyle fac-
tors on respiratory health in children [18]. Ethical approval
was obtained from the Ethics Committee of the University
of KwaZulu-Natal (Ref No.: E117/03). All the legal guard-
ians of the child participants in this study gave written in-
formed consent, participated voluntarily, and had the right
to withdraw at any stage.
After an asthma symptoms screening survey, a sam-

ple of 423 primary school children were invited to par-
ticipate in the study and from each participant multiple
questionnaires were required to be completed. Of the
423 children included in the study, 382 that were
deemed to have reliable data as well as complete data
on the outcome variable, asthma severity, were used for
this analysis. The removal of these children did not re-
sult in any selection bias.
Most of the predictor variables suffered from missing

data. A study on the missingness mechanism was made
prior to imputing the missing values. For each incom-
plete variable, an indicator variable was created and
Chi-square analyses were performed to test whether
either the incomplete variable or its missingness was re-
lated to observed values of other variables.

Selection of interactions for the imputation model
In order to ensure that the imputation model is at least as
complex as the analysis model, and that the assumption of
MAR is plausible, it is necessary to include the outcome
variable and all possible likely predictors for the analysis
model, in the imputation model. The selection of the inter-
action terms presents difficulties [16,17]. Comparable to
the suggestion made by White et al [16], we have generated
a single complete set of data using the EM algorithm for
covariance matrices. The EM algorithm is an iterative pro-
cedure that can be used to create a complete data set in
which all missing values are replaced by maximum likeli-
hood (ML) values that are asymptotically unbiased. The
process starts by replacing each missing value with an esti-
mate calculated from a regression equation in which all the
other variables are predictors. Once all the missing values
have been replaced, a variance covariance matrix and a vec-
tor of means from the completed data are calculated. New
regression equations are then formed to predict a new set
of estimates for the missing values. This process is repeated
until the variances, covariances and means converge, thus
producing ML estimates of the parameters.
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The complete data set generated from this process is
then used for model development and the identification
of interactions. In our application, convergence was
achieved in 36 iterations.

Multiple imputation
The imputation of multiple data sets was carried out using
two different algorithms – multivariate normal imputation
(MVNI) and fully conditional specification (FCS).
MVNI – This imputation algorithm, adopted by the

NORM software [19], assumes the complete data (ob-
served and missing values) follows a multivariate normal
distribution. NORM uses a data augmentation (DA) pro-
cedure to impute multiple sets of data.
This two-step process makes use of the ML estimates

from EM as parameter starting values. In the first step,
DA randomly imputes the missing data using the as-
sumed values of the parameters. In the second step, new
parameter estimates are drawn from a Bayesian posterior
distribution based on the observed and imputed data.
The repetition of these two steps results in a Markov
chain. DA converges when the distribution of parameter
estimates stabilizes. Research has shown that DA nearly
always converges in fewer cycles than does EM [8]. This
enables one to estimate the cycle length, k, of DA as be-
ing any number at least as large as the number of itera-
tions needed for EM to converge.
In order to impute m sets of data, DA is run for N =mk

iterations and the data set at the end of every kth cycle is
saved.
Because the data contained categorical variables, some

adjustments were necessary both before and after imput-
ation. Before imputation, dummy coding was applied
to all the categorical variables and interaction product
terms with more than two categories. After imputation,
sensible rounding [20] was used on these variables to
prepare the data for analysis.
FCS – FCS, also termed “chained equations”, is the

multiple imputation algorithm adopted by SPSS [21].
This is a more flexible approach to imputation in that it
is designed to handle different types of variables (con-
tinuous, binary, categorical, ordinal) and does not as-
sume multivariate normality of the data [6].
In practice, FCS involves running a series of regression

models such that each variable with missing data is
regressed on the other variables in the data set according
to its distribution. So, for example, categorical variables
will be modelled using logistic regression and continu-
ous variables will be modelled using linear regression.
Imputation by FCS, as applied in SPSS, is also an itera-

tive process that starts by imputing every missing value
with random draws from the distribution of the non-
missing values. Continuous variables are replaced with
draws from a normal distribution and categorical variables

are replaced with draws from a multinomial distribution.
Azur et al [22] refer to these replacements as “place
holders”.
Each iteration involves the following steps:

� Set the “place holders” of one variable that suffers
from missing values back to missing

� Set up a regression equation, according to the
distribution of the variable, with the observed values
as the dependent variable and the other variables as
independent variables

� Replace the missing values from this variable with
predictions from the regression equation

� Repeat these steps for each variable that has
missing values.

This forms one iteration of the process. At each iter-
ation the imputed values are updated. This process is re-
peated for a specified number of iterations, n, after
which the data set is retained as one complete imputed
data set. The number of iterations, n, chosen so that the
parameters from the regression models have stabilized,
is generally about ten [23]. This entire process is re-
peated until the required number, m, of imputed data
sets is generated.
Each of the m data sets were analysed with ordinal re-

gression – the chosen method of analysis – and the re-
sults were combined using Rubin’s rules [4]. Although,
in the past, it was widely thought that as few as 3 im-
puted data sets are needed to obtain good results and in-
ferences, new studies have shown that this may, in fact,
not be enough [24]. Studies have shown that there could
be an important reduction in statistical power if m is
small [9]. Graham et al [24] completed a simulation
study on the number of imputations needed to attain
maximum power. Their recommendations for the num-
ber of imputations, m, as a function of the fraction of
missing information are summarized in Table 1. On the
basis of the percentage of data missing in this study
(5.3%), 20 sets of data were imputed.

Model development
In order to develop the best model given the large num-
ber of variables available, the following three-stage
process was followed. Firstly, all variables were purpose-
fully selected as main effects. Secondly, in developing
the full model, interactions were chosen one at a time in
a stepwise manner such that the interaction that made

Table 1 Recommended number of imputations needed
for varying fractions of missing data (Graham [9])

Fraction of missing data 0.1 0.3 0.5 0.7 0.9

Number of imputations 20 20 40 100 >100
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the biggest significant improvement to the fit was added
to the model. For this process a cut-off p-value of 0.05
was used. Thirdly, when no further improvement to the
fit was possible, backward elimination was carried out to
find the smallest model that was as good as the full
model. Here a p-value of 0.10 was used for the stopping
criterion.

Model development with multiple imputation
In the setting of the multiple imputation process, we
suggested two possible strategies that can be applied to
carry out the model development process.

Strategy 1
All three stages of the model development process - the
selection of main effects, identification of interactions as
well as the backward elimination - are performed on the
initial data set generated by the EM parameters. The
variables and interactions identified by this process are
incorporated into the imputation model. Interactions
are treated differently, depending on which imputation
method is used.
For MVNI as implemented in the NORM software, in-

teractions with p categories are treated as categorical
variables and coded into p-1 dummy variables before
being added to the raw incomplete data. By way of an
example: an interaction between gender (male/female)
and smoking (yes/no) is broken down into separate
categories – male/yes, male/no, female/yes and female/
no – and binary coding (present/absent) is applied to
the first three categories.
For FCS, the interaction is coded according to the pos-

sible categories. So, in the example above, male/yes = 1,
male/no = 2, female/yes = 3 and female/no = 4.
The interactions as coded in the two scenarios above

are merely treated as additional variables. This has been
referred to as the ‘transform-then-impute’ method of
dealing with interactions and, in a regression model that
includes interactions, has been shown to yield good
regression estimates, even though the imputed values
are inconsistent with one another. In contrast to this is
the ‘impute-then-transform’ method, also known as pas-
sive imputation, which yields plausible-looking imputed
values but biased regression estimates [25].
This imputation model is then used to produce the m

sets of imputed data. These are analysed individually and
the results are combined using Rubin’s rules [4].

Strategy 2
Using the initial EM generated data set, the first two stages
of the model development process are completed - selec-
tion of main effects and identification of interactions.
These are then incorporated into the imputation model as
before and m sets of imputed data are produced. Analysis,

followed by the third stage of model development (back-
ward elimination), is then applied to each of these data
sets. The final selection of variables for the model includes
those that are selected in at least 50% of the individual
data sets. In the event that no variables satisfy the selec-
tion criterion, the condition can be relaxed to a lower per-
centage. Once these variables are established, analysis is
carried out on each data set and the results are combined.

Analysis
Analyses were carried out using the Statistical Package
for Social Sciences (SPSS v17). Given that the outcome
variable, asthma severity, is an ordinal measure, the
chosen method of analysis for this data was ordinal re-
gression. The three categories of the outcome variable
are ‘none/mild intermittent asthma’; ‘mild persistent
asthma’ and ‘moderate/severe asthma’. For all the ana-
lyses, logit was the chosen link function.
In addition to the analysis of the imputed data, a

complete case analysis was carried out for comparative
purposes. All main effects and interactions that were de-
fined in stages 1 and 2 of the model building process
were used with the complete case analysis and then
backward elimination was applied to reduce the model.

Results
Data review
A total of 22 variables make up the data for this analysis.
(1 interval and 21 categorical environmental, genetic and
socio-economic variables) (Table 2). Of these variables,
18 (81.8%) experienced some missing data; a total of 166
(43.5%) of the subjects had incomplete data; and, overall,
445 (5.3%) items of data were missing. Missingness in
variables ranged from 19.4% to less than 5%. Completely
measured variables include age, gender, area and the
outcome variable, asthma severity. The missing values
follow a nonmonotonic pattern. The majority of non-
response was as a result of whole sections or pages of
questionnaires being left out. In some instances, one or
more of the four questionnaires were missing. There
were also numerous cases of seemingly random omis-
sions of individual data items and, in some cases, it is
evident that the required information was not known.
Results from the chi-square analysis, to test whether

either the incomplete variable or its missingness was re-
lated to observed values of other variables, showed that
for all but three of the incomplete variables, missingness
was associated with measured values in other variables;
and all variables were associated with at least one other
variable in the set. Thus missingness for these variables
can be assumed to be MAR. However, it cannot be ruled
out that there exists some MNAR mechanism in the
data. Further analysis showed that the distribution of
the outcome variable, asthma severity, is the same (in a
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statistical sense) for whether data is present or missing
for all variables except ‘food availability’, where fewer
than expected of those with missing data on the food
variable did not have asthma. Because asthma severity is
related to the missingness of ‘food availability’ but not to
‘food availability’ itself, the inclusion of asthma severity
in the imputation model will make the MAR assumption
for ‘food availability’ more plausible [9].

Model development
Imputed data -MVNI
The two different strategies suggested for building the
model using the imputed data resulted in the identical
set of variables and interactions being identified. In each
case 17 main effects and 10 interactions were included

in the final model (Table 3). While fewer than half of the
main effects were significant, the interactions in which
these variables were involved were largely significant.
Main effects dropped from the model include birth
weight, perceived weight, weapons and stove type. How-
ever, these were left in the imputation model as they
were shown to be associated with other variables and/or
their missingness.

Imputed data -FCS
Model development following strategy 1 resulted in the
identical model as identified when applying MVNI im-
putation. The set of significant variables from the two
analyses were, however, not the same. Two main effects
and three interactions differed in their significance. With
strategy 2, the variable ‘Smoke while pregnant’ and its
interaction with ‘area’ did not make the cut to be in-
cluded in the model. These two variables were signifi-
cant in only 9 of the 20 individual analyses, whereas,
they were significant in 10 of the 20 analyses when
MVNI imputation was applied.

Complete case analysis
The complete case analysis was based on 216 complete
cases, representing 56.5% of the total available cases.
The final model contained 16 main effects and 7 interac-
tions (Table 3).
The main effects selected with the complete case data

compared to those selected with the imputed data dif-
fered slightly. ‘Perceived weight’ and ‘weapons’ are the
only variables that are in the complete case model but
not in the imputed data model. Three of the 10 interac-
tions and three of the main effects from the imputed
data models were not retained in the complete case
model. The models from the imputed data contained
more variables than the complete case model.

Analysis
Results of the three different analyses of the imputed
data (Table 3) are, in general, very similar. The size and
direction of association between asthma severity and all
the predictor variables, as well as the standard errors
(SE’s) of the estimated coefficients are consistent across
both types of imputation as well as for both model
building strategies. Even though some differences in the
significance of certain predictors did occur, in all cases
the p-values showing significance of these predictors
were only marginally different from the 5% cut-off value.
A comparison of results of the complete case analysis

(CC) with the other analyses shows that the standard er-
rors of the estimated coefficients for the CC analysis are
appreciably larger in all but the one predictor variable –
‘smoke in vehicle’. There are also noticeable differences
in the magnitude of the estimated coefficients for the

Table 2 Variables, categories and the percentage missing

Variable Response category % missing

Gender male/female 0

Neonatal care yes/no 3.7

Birth weight up to 2.5 kg/>2.5 kg/don’t know 1.0

Fear in
neighbourhood

yes/no 6.5

Smoked while
pregnant

yes/no 50.

Smokers in the
home

yes/no 0.3

Smoke exposure
in vehicles

yes/no 7.6

Exercise Up to once a week/2-4 times a
week/>4 times a week

6.3

TV watching Up to an hour a day/1-3 hours
a day/>3 hours a day

6.5

Number people
in home

1-4/5-7/8+ 9.2

Income
(monthly)

up to R1000/R1001-R4500/R4501-
R10000/R10001+

19.4

Food availability not always enough/enough 8.4

Perceived
weight

overweight/underweight/correct
weight

6.8

Work and wear yes/no 3.7

Pets at home
ever

yes/no 1.0

Area South Durban/North Durban 0

Breakfast habits Not every day/daily 6.5

Violence
experienced

yes/no 7.3

Attacked with
weapons

yes/no 7.3

Stove type paraffin/gas/electric/none 9.9

Age 0

Asthma severity Moderate-severe/mild persistent/
mild intermittent/no asthma

0
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Table 3 Estimated coefficients (EST) and standard errors (SE) for the predictors selected in the different analyses

Predictor Reference Category CC (N = 216) MVNI (N = 382) FCS1 (N = 382) FCS2 (N = 382)

Category EST SE EST SE EST SE EST SE

Gender Female Male -0.441 0.674 0.129 0.398 0.030 0.391 0.017 0.390

Neonatal care No Yes 2.484* 0.723 1.103* 0.444 1.112* 0.450 1.085* 0.446

Fear No Yes -1.169 0.649 -0.958* 0.431 -1.009* 0.451 -1.073* 0.444

Smoked while pregnant No Yes 4.256* 1.237 1.019 0.736 0.885 0.693 0

Smokers in home No Yes 0.939 0.537 0.742* 0.352 0.761* 0.341 0.801* 0.335

Smoke in vehicles No Yes -2.584* 0.921 -0.253 1.068 -0.308 1.011 -0.323 1.015

Exercise >4 times a week Up to once a week 2.805* 1.227 0.892 0.761 0.692 0.756 0.624 0.731

2 – 4 times a week 3.313* 1.229 1.039 0.717 0.936 0.718 0.738 0.680

TV watching >3 hours a day Up to 1 hour a day -0.566 0.854 0.399 0.684 0.327 0.669 0.346 0.657

1 – 3 hours a day 0.304 0.769 0.641 0.639 0.525 0.630 0.569 0.618

Number people in home 8+ 1 - 4 0 1.084 0.554 1.060* 0.539 1.101* 0.526

5 - 7 0 0.226 0.552 0.254 0.551 0.250 0.540

Income R100001+ up to R1000 2.840* 1.257 0.695 0.8 0.787 0.789 0.823 0.778

R1001 – R4500 1.285 1.203 0.209 0.797 0.489 0.754 0.431 0.754

R4501 – R10000 1.933 1.17 1.428 0.783 1.401* 0.692 1.356 0.692

Food availability Enough Not always enough -0.575 0.64 0.604 0.503 0.665 0.464 0.677 0.455

Perceived weight Correct weight Overweight -0.230 0.743 0 0 0

Underweight 2.369* 0.97 0 0 0

Work’nWear No Yes 0 -0.635 0.626 -0.543 0.629 -0.478 0.622

Pets ever No Yes -3.770* 0.994 1.658* 0.501 -1.483* 0.503 -1.413* 0.467

Area North Durban South Durban 6.278* 1.461 2.042* 0.76 1.948* 0.737 1.597* 0.671

Breakfast habits Daily Not daily -4.098 3.04 -0.492 1.512 -0.234 1.548 -0.110 1.518

Violence No Yes 0 -0.817* 0.382 -0.741* 0.377 -0.715 0.373

Weapons No Yes -1.147* 0.555 0 0 0

Age -1.068* 0.438 -0.79* 0.254 -0.833* 0.268 -0.834* 0.265
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Table 3 Estimated coefficients (EST) and standard errors (SE) for the predictors selected in the different analyses (Continued)

Predictor Reference Category CC (N = 216) MVNI (N = 382) FCS1 (N = 382) FCS2 (N = 382)

Category EST SE EST SE EST SE EST SE

Fear*Breakfast No/daily Yes/not daily 2.635* 1.219 2.047* 0.866 2.123* 0.916 2.185* 0.911

Gender*SmokeVehicle Female/No Male/yes 5.092* 1.342 2.535* 1.034 2.431* 0.977 2.464* 0.971

SmokeVehicle*TV No/>3 hrs Yes/up to 1 hr 0 0.891 1.298 0.675 1.265 0.722 1.250

Yes/1 – 3 hrs 0 -2.184* 1.085 -1.975 1.034 -2.002 1.037

Food*Age enough/ Not always enough/ 1.762* 0.743 0.925* 0.396 0.786* 0.385 0.778* 0.364

Exercise*Area >4 times/ND < once a week/SD -4.573* 1.533 -1.41 1.031 -1.255 0.954 -1.125 0.923

2 – 4 times/SD -6.331* 1.627 -1.981* 0.913 -1.805* 0.896 -1.551 0.850

Income*Breakfast > R10000/daily ≤R1000/not daily -4.051 2.5 -3.921* 1.8 -3.666* 1.731 -3.808* 1.733

R1001-R4500/not daily 0.414 2.408 -1.218 1.636 -1.439 1.530 -1.513 1.516

R4501-R10000/not daily 2.479 2.395 -1.374 1.541 -1.568 1.454 -1.715 1.431

TV*Breakfast >3 hrs/daily ≤1 hr/not daily 6.310* 2.213 2.573* 1.259 2.051 1.192 1.976 1.186

1-3 hrs/not daily 1.974 2.154 0.192 1.109 0.270 1.112 0.192 1.103

SmokeVehicle*Age no/ yes/ 0 0.814* 0.375 0.809* 0.348 0.782* 0.341

Smoke preg*Area no/ND yes/SD -5.118* 2.101 -1.875 1.363 -1.663 1.291 0

Work’nWear*Breakfast no/not daily yes/daily 0 2.349* 1.076 2.095 1.070 2.165* 1.090

ND – North Durban; SD – South Durban; preg – pregnant.
CC – Complete case.
MVNI – Multiple imputed MVNI strategies 1 and 2.
FCS1 -Multiple imputed FCS strategy 1.
FCS2 -Multiple imputed FCS strategy 2.
*Significant at the 0.05 level.
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CC analysis as compared to the other analyses. Contra-
dictions are also present regarding the relationship with
asthma severity for some of the predictors.

Diagnostics
In order to confirm that the imputed values are reason-
able, each variable with missing data in excess of 8% was
examined to identify variables with large differences be-
tween the measured and imputed. The variables consid-
ered included income, stove type, number of people and
food availability (Figure 1). The Kolmogorov-Smirnov
test was applied to assess whether significant differences
exist between the distributions of the imputed data – both
MVNI imputed and FCS imputed – and the measured
data [26]. No significant differences were found.
In analysis testing for significant differences between the

distributions of the imputed data sets and the complete
case data, no significant differences were found.
Another useful diagnostic that gives an indication of

the stability of the estimates resulting from multiple im-
putation is the degrees of freedom (df) associated with
the t-value in Rubin’s rules and adapted from Schafer
[8,9]. The df associated with multiple imputation is not
the same as the df found in other statistical concepts
and rather is a ‘measure’ of the ratio of the within-
imputation variance to the between-imputation variance.
In this study, df ranged from 130.54 to 9073.51 for the
NORM imputations and from 138.88 to 15135.431 for

the FCS imputations which, being large compared to the
number of imputed sets, is an indication that the esti-
mates have stabilized and can be trusted.

Discussion
In this study investigating methods for addressing miss-
ing data, specifically when including interactions in the
analysis, we found support for building the model using
an EM generated set of data and then applying multiple
imputation as a robust method to address this common
shortcoming in epidemiological studies.
Epidemiological studies frequently suffer from missing

data. Many researchers avoid this problem by dropping
all cases with data missing on any variable and carrying
out what is known as a complete case analysis. An ad-
vantage of this type of analysis is that it is computation-
ally easy to apply and can be done with any reputable
commercial software package. However, unless the data
is MCAR, the values of the estimated coefficients pro-
duced with this analysis may be biased. Moreover, when
the missingness is not only a function of the covariate(s)
but also of the outcome variable, then the bias from a
complete case analysis is heightened [27]. Although
complete case analysis and other ad hoc methods, like
mean substitution and the missing-indicator method, are
still widely used, researchers are becoming more aware
of the perils of applying such methods and many are
now employing multiple imputation methods to address

Figure 1 Differences in measured (observed) and imputed data. A comparison of the distributions of the 4 variables with the most missing
data for the complete case data (CC), MVNI imputed data, FCS imputed data and measured data.
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the missingness in their data. While results from mul-
tiple imputation will be unbiased when data is MAR, it
has been suggested that even when it is MNAR, ad-
equately dealing with as much of the missingness mech-
anism as possible will usually produce sound results
[8-11]. This is achieved by including auxiliary variables –
those variables related to the missingness but not neces-
sarily included in the analysis, interactions and the outcome
variable in the imputation model.
While much has been published on the application of

multiple imputation to epidemiological studies, there is
limited literature that deals with model building in the
presence of missing data, and more specifically model
building including interactions. The aim of this paper
was to demonstrate a simple and easily applied strategy
to build interactions, which are not known up front, into
a model while at the same time imputing the missing
data.
The dilemma that we faced was a practical one. It is

possible for the interactions to be added after imput-
ation. This is termed passive imputation or ‘impute-
then-transform’. However, it has been shown that
including interactions, as product terms, before im-
putation produces superior results than if the imputa-
tions are done first and the interactions are added at
the analysis stage [25]. For the best results, the identi-
fied interactions should be included in the imputation
model along with the predictor variables, the auxiliary
variables and the outcome variable. However, how can
the interactions be identified and the best model built,
when the data is incomplete?
Two strategies for model building, S1 and S2, were ex-

plored – both utilizing a single imputed data set gener-
ated from the ML parameter estimates produced from
the EM algorithm for covariance matrices.
Imputation was carried out with both multivariate nor-

mal imputation (MVNI) and the more flexible fully con-
ditioned specification (FCS). The same set of 17
predictor variables and 10 interactions for the best
model were identified when applying MVNI with both
strategies S1 and S2, as well as with the application of
FCS and strategy S1. FCS with strategy S2 failed to in-
clude one of these predictors and an associated inter-
action in its best model. Since these dropped variables
did not alter the interpretation of the results, it would
seem that both strategies for model building are equally
effective. The advantage of S1 over S2 is that it is easier
and less time-consuming to execute and therefore prob-
ably the preferred choice.
In comparison to the model variables selected from

the imputed data, fewer variables were selected for the
model on the complete case data. This is most likely
caused by the enormous reduction in cases and the sub-
sequent loss of power.

A total of 5.3% missing items spread across 81.8% of
variables, affecting 43.5% of cases was present in the
dataset used for this analysis. Examination of the miss-
ingness revealed that it is possible that the missingness
mechanism present in this data is a combination of
MCAR, MAR and MNAR. Analysis of the relationships
between both the missingness of the variables and the
variables themselves confirmed that significant relation-
ships exist between each of the variables and at least one
other variable in the set; furthermore, the missingness of
all but three of the variables is significantly related to at
least one other variable in the set.
For reliable and unbiased results to be obtained from a

complete case analysis, the data is required to be
MCAR, which is clearly not the case here. Furthermore,
although this means of dealing with missing data is ac-
ceptable when the lost cases amount to no more that
5%, this data set is reduced by over 40% which will
inevitably have a negative effect on the outcome of the
analysis.
On the other hand, multiple imputation, if applied cor-

rectly, is able to produce sound results when the data is
MAR and it has been shown that even when the data is
MNAR, the effects of this mechanism are often surpris-
ingly minimal [11]. In order to ensure that the imput-
ation model was general enough to encompass the
subsequent analysis, the outcome variable, interactions
and variables related to either the incomplete variables
or their missingness or both were included in the imput-
ation model. By including variables that are correlated
with each incomplete variable but not its missingness,
we expect that the additional information will cause a
decrease in the standard errors and hence an increase in
efficiency and statistical power [10]. If there is an elem-
ent of MNAR present in the data, the inclusion of these
variables in the imputation model should lessen the bias
and make the assumption of MAR more plausible.
It is unclear as to how many variables and interactions,

given the sample size available, can be reliably assessed
with multiple imputation applications. It seems that this
depends to some extent on the software being used. In
some cases, convergence of large models is a problem in
that it can make the imputation process unacceptably
slow [16]. Graham and Schafer [28], in a study using
NORM to perform the imputations found that results
were quite acceptable “even with sample sizes as low as
50, even with as much as 50% missing from most vari-
ables, and even with relatively large and complex
models”. In a study on the imputation of categorical data
[29] it was found that, while problems exist when imput-
ing using a variant of NORM designed to deal with
categorical data when many variables are present, the
same limitations are not problematic for NORM. In an-
other study [30] on the inclusion of continuous auxiliary

Hendry et al. BMC Medical Research Methodology 2014, 14:136 Page 9 of 11
http://www.biomedcentral.com/1471-2288/14/136



variables in the imputation model, the authors suggest
the ratio of cases with complete data to variables should
be at least 3:1. Given these guidelines, we found that
convergence for both imputation methods was achieved
quickly and reliably. Furthermore, even with the dummy
coding of all the categorical variables and the interac-
tions, the ratio of complete cases to variables far ex-
ceeds 3:1. We are therefore confident that our results
are reliable.
Diagnostic tests on the distributions of the imputed

data showed that data imputed both with MVNI and
FCS were not significantly different from either the mea-
sured data or the CC data. These results confirm find-
ings that multiple imputation with MVNI incorporating
sensible rounding should work in most situations [14],
even in the presence of binary and ordinal variables [6].
The diagnostic measure, df, also indicated that the esti-

mates obtained from both multiple imputation methods
have stabilized and are therefore trustworthy.
Analysis of the two sets of imputed data yielded very

similar results. This is consistent with findings from a
study comparing the two imputation approaches [6]
where it was found that “similar results can be expected
from FCS and MVNI in a standard regression analysis
involving variously scaled variables”. The magnitude of
the standard errors and the magnitude and direction of
the estimated coefficients were consistent across both
these imputation types and for both model building
strategies. While there were some inconsistencies in the
significance of predictors, these did not affect the overall
interpretation of the associations between asthma sever-
ity and the factors included on the models.
A comparison of results for the complete case analysis

and the analyses of the imputed data showed that
standard errors for the estimated coefficients from the
analysis of the imputed data were, in all but one case,
considerably smaller than those from the complete
case analysis. These smaller standard errors resulted
in greater accuracy of the estimated coefficients. This
increased precision indicates the superior efficiency
and statistical power obtained for the analysis of the
imputed data. The inconsistencies in the signs of the
estimates and the significance of the predictors could
result from the non-random fashion in which cases
are dropped for the complete case analysis which may
distort the joint distribution among the variables. The
resulting bias in point estimates could lead to misidentifi-
cation of significant predictors [31]. Another important
factor that would negatively affect results of the complete
case analysis is that the missingness mechanism present in
the data is not confined to being MCAR. While multiple
imputation methods produce unbiased parameter esti-
mates when the missingness is MAR, this is not the case
with complete case analysis. This missingness mechanism

factor could also have added to the large difference in
magnitude of the standard errors for the complete case
analysis as compared to the imputed data analysis that,
some would argue, could not be explained on the basis of
sample size alone.
These results are consistent with what we expect given

the significant reduction in cases for the complete case
analysis and the missingness mechanism present in the
data that would almost certainly result in a loss of power
and the introduction of bias into estimates.
Given the rigid processes followed in the imputation

of the data and subsequent analyses, we would suggest
that the results from the imputed data can be considered
reliable. On the other hand, the results from the complete
case analysis should be treated with caution.

Conclusions
With the development of readily available and easily im-
plemented software, multiple imputation methods for
dealing with missing data are becoming more popular in
epidemiological studies that have incomplete measured
variables. A critical part of the imputation process is the
inclusion of those variables that are correlated with
missingness as well as the interactions to be used in
the analysis process. While this can present a practical
challenge if the interactions are not specified a priori,
we have illustrated one possible approach that effectively
identifies the best main effects and interactions for a
model in the presence of missing data and at the same
time, imputes the data items that are missing. Undoubt-
edly, further testing of these strategies on other data sets
is needed. It is hoped that the ideas presented in this
paper can be further explored and developed so that, by
addressing this practical dilemma, more medical re-
searchers will be able to apply multiple imputation when
data suffers from missingness.
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Abstract 

The application of subset correspondence analysis is a relatively new technique to deal with the 

analysis of categorical data that suffers from missingness. This simulation study tests the effects 

of Little and Rubin’s missingness mechanisms, as well as missingness up to 50% on the analysis of 

data using sCA. Missingness was simulated across 18 different scenarios and each scenario was 

repeated 10 times, with outcomes averaged across the 10 simulations. It was found that while 

missingness in excess of 30% has some effect on certain outcomes, there is no evidence to 

suggest that the missingness mechanism significantly affects results.  

Introduction 

Missing data is common in many studies and presents a challenge, in particular if the data is 

categorical in nature. Missingness is traditionally categorized as missing completely at random 

(MCAR), in which each data item has an equal chance of being missing; missing at random (MAR), 

in which the missingness in a variable is dependent on another known and measured variable; 

and missing not at random (MNAR), in which the missingness in a variable depends on the value 

of the data item itself (Little & Rubin, 1987).   Many ad hoc approaches are used to address the 

issue of missingness but these are, on the whole, not recommended as results may be biased 

unless data is MCAR. 

More recently, multiple imputation (MI) has become a recommended method to deal with 

missing data and will produce unbiased estimates so long as the data is MAR (Donders, van der 

Heijden, Stijnen, & Moons, 2006). There are conflicting opinions regarding the treatment of data 

that is MNAR. It has been suggested that when data is MNAR, “there is no universal method of 

handling the missing data properly” (Donders et al., 2006; Greenland & Finkle, 1995; Rubin, 

2004). It is thought that missingness which is not completely at random must be explicitly 

modelled to obtain unbiased results and this can be a challenging exercise (Gelman & Hill, 2007; 
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Little & Rubin, 1987; Rubin, 2004). Some have suggested that, with careful application, MI will 

work with data that is MNAR (Graham, 2009; Van Buuren, 2007). It has been shown that as long 

as the missingness is kept to under 25%, multiple imputation will produce acceptable results 

(Scheffer, 2002). Furthermore, a sensitivity analysis carried out by Graham et al (Graham, Hofer, 

Donaldson, MacKinnon, & Schafer, 1997) found that the effects of an MNAR mechanism is often 

‘surprisingly minimal’ when multiple imputation is applied  (Wayman, 2003). 

An alternative approach that has been shown to successfully address the issue of missing 

categorical data is the application of subset correspondence analysis (sCA)(Greenacre & Pardo, 

2006; Hendry, North, Zewotir, & Naidoo, 2014).  

sCA is the application of correspondence analysis (CA)  on a subset of the data – in this case the 

subset of measured data. A graphical, exploratory technique, sCA reduces a matrix in multi-

dimensional space to a subspace of lower dimension, such that the variation (distance between 

the row and column points) is maximized. In CA and its variants, this variation is termed inertia. 

While many studies have been done on the effect of different missingness mechanisms on both 

ad hoc and multiple imputation methods for dealing with missing data (Little & Rubin, 1987; 

Marshall, Altman, Royston, & Holder, 2010; Peyre, Leplège, & Coste, 2011; Rubin, 2004; Scheffer, 

2002; Shrive, Stuart, Quan, & Ghali, 2006; Vach & Blettner, 1991) , we are not aware of any such 

study with regard to sCA and its use with missing data. 

The aim of this simulation study is to explore the effect of both the missingness mechanism and 

the amount of missingness present when sCA is applied to a set of categorical data that suffers 

from missingness. 

Methods 

The data 
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A study on the respiratory health of children in Durban, South Africa was undertaken in 2004 

(Naidoo, Robins, Batterman, Mentz, & Jack, 2013). The original data, gathered from several 

schools in the south Durban and north Durban regions, consisted of a number of generic, socio-

economic, environmental and behavioural variables as well as a measure of asthma severity. A 

subset of this data involving 368 cases with complete data across 6 selected variables is used for 

this study (Table 1). 

 

Table 1: Categories, code names and frequencies for all variables 

Variables Categories Code names Count (N = 368) 

        

Age 8 - 9 years A1 24 

  10 years A2 186 

  11 years A3 134 

  12+ years A4 24 

Gender Male MAL 149 

  Female FEM 219 

Neonatal Yes NNY 50 

  No NNN 318 

Smokers Yes SY 180 

  No SN 188 

Area south Durban DS 177 

  north Durban DN 191 

Asthma severity None/ Mild intermittent ASNI 296 

  Mild persistent ASMP 45 

  Moderate/severe ASMS 27 

 

The purpose of analysis is to explore the relationships between ‘age’ (categorized into 4 levels 

from 9 years to 12+ years); ‘gender’ (M/F); ‘neonatal’ (whether or not special neonatal care was 

received at birth); ‘smokers’ (the presence of smokers in the home) and ‘area’ (north or south 

Durban) and their association with ‘asthma severity’ (none/mild intermittent; mild persistent; 

moderate to severe). 
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Missing data mechanisms 

To explore the effect of missingness mechanisms (MM) and amount of missingness present (M%), 

18 scenarios were considered, with each scenario simulated 10 times. Three MM’s were imposed 

– MCAR, MAR and MNAR - and missingness was generated at rates of 5%, 10%, 20%, 25%, 30% 

and 50% for each mechanism. Two variables – ‘neonatal’ and ‘smokers’ were selected to 

experience missingness and data was deleted from each of these variables for each scenario. 

For the six MCAR scenarios, data was deleted randomly across all categories for each of the 

variables.  

To simulate the MAR mechanism, missingness was imposed on the ‘neonatal’ and ‘smoking’ 

variables according to their association with ‘area’ and ‘gender’ respectively. Data was randomly 

deleted from the ‘neonatal’ variable such that 30% came from north Durban and 70% from south 

Durban.  Random deletion on the ‘smoker’ variable was in the ratio 30:70 for M:F. These 

deletions were completed for each of the six amounts of missingness. 

The MNAR mechanism was simulated so that the missing data depended on the actual value of 

the data item.  Deletion from the ‘neonatal’ variable was carried out such that 10% of required 

deletions were from the variable category NNY and 90% from variable category NNN. In a similar 

manner, deletions from the ‘smoker’ variable involved randomly deleting 90% of required 

deletions from SY and 10% from SN. Again this was repeated for the six amounts of missingness.  

Analysis and outcomes of interest 

sCA was applied to each of the simulated data sets and several outcomes were examined to 

identify effects of the MM and M% on this method. These included: 

 COR  - relative contributions that the axis makes to the inertia ( variance) of the  

points 

 CTR - absolute contributions that the points make to the inertia of the axis 
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 TOTINR - a measure of the degree of variation in the measured data  

 TI%FULL-  the proportion that TOTINR is of the total inertia from an analysis which     

includes both the measured and the missing data, coded as separate 

‘missing’ categories 

Repeated measures ANOVA was applied to the above outcomes to test for significant differences 

across missingness mechanisms and amount of missingness.  

Results  

Full analysis 

For the purpose of comparison, sCA was applied to the 368 data set with all variables fully 

measured. The data is in the form of a contingency table with the three asthma categories as 

rows and the five selected variables (12 variable categories) as columns. 

 

 

Figure 1. Subset correspondence analysis map of the completely measured 368 data set with row 

points presented by        and column points by      . Values on the axes represent principal inertias 

and their respective percentages of total inertia. Labels as specified in Table 1. 
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Table 2: Decomposition of inertia for the two principal axes  

Name k = 1 COR CTR k = 2 COR  CTR 

A1 723 875 297 -273 125 236 

A2 -26 606 3 21 394 10 

A3 -74 864 17 29 136 15 

A4 -110 819 7 -52 181 8 

MAL 188 631 125 144 369 407 

FEM -128 631 85 -98 369 277 

NNY 464 1000 255 -8 0 0 

NNN -73 1000 40 1 0 0 

SY 51 910 11 -16 90 6 

SN -49 910 11 16 90 6 

DS 136 961 78 -27 39 18 

DN -126 961 72 25 39 16 

ASNI -66 952 153 15 48 43 

ASMP 147 458 116 -160 542 762 

ASMS 479 954 732 105 46 195 

K=…    coordinates 
COR    relative contributions of inertia 
CTR     absolute contributions of inertia 

 

Results (Figure 1 and Table 2) show that total inertia across the full subspace of two dimensions is 

0.0271, thus indicating that there is limited variability in the data. CTR values, a measure of the 

absolute contributions of the points to the inertia of the dimension, indicate that variable 

categories important to the orientation of axis 1 are A1, MAL, NNY and to a lesser extent FEM, DS 

and DN. This axis separates the lowest asthma severity category (ASNI) on the left from the higher 

asthma severity categories (ASMP and ASMS) on the right. Associated with the latter categories 

are A1, MAL, NNY and DS. Variables that play an important part in the orientation of axis 2 are A1, 

MAL and FEM. This axis separates out ASMS from the other asthma categories, thus enabling a 

distinction between ASMP and ASMS. Associated with ASMP are FEM and A1. Variables that do 

not exhibit much variance are situated near the origin. They do not play an important role in the 

orientation of the axes. These include A2, A3, A4, SY, SN, NNN and ASNI. Associated with the 

lowest asthma severity classification are A2, A3, SN, DN and NNN. 
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COR values indicate that axis 1 is more important in terms of contributions to inertia for all 

variable categories, except ASMP. 

Simulated study 

Relative contributions to inertia (COR) 

Average COR values for each missingness mechanism  and across the six amounts of missingness  

are shown for each variable category in Figure 2.   

COR values indicate the amount that each axis contributes to the inertia of the point. This makes 

it possible to identify the axis which contributes most to the inertia of each point. These values 

are scaled to add to 1000 across all dimensions. Because there are only two possible dimensions 

for this analysis, and axis 1 accounts for more than 80% of the total inertia, only the COR values 

for axis 1 are examined. Of the 15 variable categories, only one (ASMP) has a higher COR value on 

axis 2. 

For the fully measured variable categories of ‘age’, ‘gender’ and ‘area’, no significant differences 

were found in COR values either across MM or for different M%. There are also no significant 

differences across for the asthma severity categories. However, significant decreases in COR 

values were found for ASNI and ASMP at 50% missingness. 

Examining results for the variables with missingness, while the MM’s do not show evidence of 

significant differences for the smoking category, SY, there are significant differences in the way 

these mechanisms behave for SN. COR values for MNAR are significantly higher than for the other 

mechanisms and closer to the ‘true’ values.  With regard to the amount of missingness, when 

compared to values at 5%, there is a significant reduction in the COR value for MNAR at 50% on 

SY and from 25% for MCAR on SN.  
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There are no significant differences across MM or M% for the NNY variable category. While no 

significant differences were found across MM for the NNN variable category, there is a significant 

drop in the COR values for MNAR from the 20% missingness point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: COR values for each variable across all scenarios 
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Figure 2(continued): COR values for each variable across all scenarios 
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Absolute contributions to inertia (CTR) 

Average CTR values for each MM and across the six M% are shown for each variable category in 

Figures 3 and 4.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: CTR values for all variables on axis 1   (Dotted line indicates the threshold value) 
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Figure 3(continued): CTR values for all variables on axis 1   (Dotted line indicates the threshold 

value) 
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Figure 4: CTR values for all variables on axis 2   (Dotted line indicates the threshold value) 
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 Figure 4(continued): CTR values for all variables on axis 2   (Dotted line indicates the threshold 

value) 
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CTR values, which have been scaled to sum to 1000 for each axis, indicate the amount that each 

variable contributes to the inertia of the axis. As a rule of thumb, if the CTR value of a point 

exceeds the average contributions of all the points (rows or columns) for a particular axis, then 

that point can be considered important to the orientation of the axis and is used in the 

interpretation of the results. In this study, an approximate CTR threshold value for the asthma 

severity categories is 333 and for the other variable categories it is 83. 

AXIS 1  -  contrasts lowest asthma severity category (ASNI) with higher asthma severity categories 

(ASMP and ASMS) 

Across all scenarios of MM and M%, A1, MAL, NNY and ASMS remain above the threshold value 

of importance while A2, A3, A4, NNN, SY, SN, DN, ASNI and ASMP remain below the threshold 

value of importance to this axis. Both FEM and DS are marginal with FEM positioned just above 

the threshold value and DS hovering around that value. 

No significant differences between MM’s were found for any variable category except NNN 

where, at 30% and 50%, CTR values for MAR are significantly higher than MNAR and MCAR values 

respectively. Furthermore, the only significant differences across M% were found for MAL, FEM 

and A4 where the CTR values increase significantly at 50% for all MM’s. 

AXIS 2 – contrasts the two highest asthma severity categories: ASMS vs ASMP 

All variable categories remain distinctly positioned relative to the threshold values except for SY 

which crosses the threshold at 50% for the MCAR and MNAR mechanisms. The only significant 

difference between MM’s across all scenarios is at 25% on SN where the CTR value for MCAR is 

significantly higher than the value for MNAR. The only significant differences across M%’s were 

found for MAL, FEM and A4 where CTR values decrease significantly at 50% for all MM’s. 
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Model inertia values 

The total inertia of the measured data does not change significantly across either MM or M% 

(Figure 5). However, the total inertia of the measured data, taken as a percentage of the total 

inertia of the full data set – measured and missing – is significantly higher for MCAR at 50% than 

at 5%. There is no significant difference in this measure across MM (Figure 5).  

 

 

 

 

 

Figure 5: Measures of Inertia  

 

Graphical displays 

A degree of ‘movement’ is evident for some of the variable categories in the display of the 

subspace define by axis 1 and axis 2 (Figure 6). This dispersion is more evident in the variables 

that have undergone missingness. For the variables that are fully measured, dispersion appears to 

be greater in those variable categories that have more variability. The variables that are further 

from their true positions are those with higher percentage missingness, with no specific 

correlation to mechanism. 

Discussion 

The aim of this simulation study was to explore the effect of both the missingness mechanism and 

the amount of missingness present in data on the use of sCA as applied to categorical data that 

suffers from missingness. 
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Figure 6: Graphical representation of all variables for all scenarios.    

Key to variables: Age  A1/A2/A3/A4 Area   DS/DN 

Gender  MAL/FEM Smokers  SY/SN 

Neonatal NNY/NNN  Asthma severity ASNI/ASMP/ASMS 
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Three accepted MM’s (MCAR, MAR and MNAR) were simulated, each across six degrees of 

missingness (5%, 10%, 20%, 25%, 30% and 50%).To allow for sampling variability, data for each of 

these 18 scenarios was generated 10 times and results were averaged. 

It was found that the MM did not substantiallty affect the results. Furthermore, for missingness of 

up to 25% per variable, results were not notably affected. 

The effect of the MM on all outcomes is negligible. In terms of the COR outcome, the only effect 

of the MM is on the variable category SN. In this case, MNAR values are significantly different 

from MCAR and MAR values but are in fact closer to the ‘true’ values. 

Only one incident of significant difference across the MM’s in CTR values for axis 1 was found. For 

the variable category NNN, CTR values for MAR are greater than those for MNAR and MCAR at 

30% and 50% respectively.  Likewise, the single significant difference across MM in CTR values for 

axis 2 was found for the variable category SN at 25% where the CTR value for MNAR is 

significantly smaller that the value for MCAR, but in fact also closer to the ‘true’ value.  Since the 

position of these measures relative to the threshold values remains the same, the differences do 

not affect the interpretation and these variable categories remain trivial to the orientation of axes 

1 and 2. 

These aforementioned differences across mechanisms all occur in the variable categories NNN 

and SN, which have been subjected to missingness but which are low in importance in terms of 

the orientation of the axes. The other variable categories that underwent missingness, SY and 

NNY, do not experience any significant differences across MM for any of the measures.  

 Greater deviations from the true COR values as well as variations in COR values across 

missingness mechanisms are apparent for the variable categories that underwent missingness. 

For each of these four variable categories, COR values are consistently lower than the ‘true’ 

values. In the case of SY and SN, COR values decrease from 910 to below 500 for some scenarios, 



19 
 

thus indicating that axis 1 is no longer the most important axis to these points for all scenarios. 

This suggests that the importance of an axis to the inertia of a point decreases when missingness 

is introduced and can result in a change in the axis that contributes most to the inertia of a point. 

So the point can, at times, ‘hop axes’. However, it is clear from the graphical display of the points 

that even when there is a drastic reduction in COR value, resulting in a possible ‘hopping’ to 

another axis, the final placement of the point in the subspace is not compromised . 

An effect of M% is found on COR values for the variable categories NNN, SY and SN. In the case of 

NNN, values of COR generally deviate more from the ‘true’ values as the percentage missing 

increased and there is a significant drop in COR value for MCAR at the 20% missing stage. A 

similar scenario exists for SN where there is a significant decrease in the COR value for MCAR as 

the amount of missingness increases. In the same way, the COR value for MNAR on SY is 

significantly lower at 50% missingness than at 5% missingness. The effect of M% on the asthma 

severity categories, ASNI and ASMP, indicates that there is a significant decrease in COR values at 

50% missingness. 

For those variables that did not undergo missingness, COR values across the three mechanisms do 

not differ appreciably from the true values for up to at least 25% missingness.  Some differences, 

while not significant, are apparent for 30% and 50% missingness. Variables with missingness show 

erratic deviations from true values across all scenarios. These are especially pronounced in the 

variable categories that do not contribute appreciably to the general analysis. 

The only significant effects of M% on CTR values for both axes are the significant change in values 

at 50% missingness for A4, MAL and FEM.  

Apart from deviations from true CTR values being experienced by some incomplete variables, 

some deviation is also apparent in completely measured variables whose CTR values lie above the 

importance threshold. In no instance does this affect the overall outcome and interpretation. 
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While changes in the CTR values, in general, do not make a difference to the importance of points 

to the inertia of axes 1 and 2, there is one exception. CTR values for SY on axis 2 have increased 

from below to above the threshold level at 50% missingness for two of the MM’s – MCAR and 

MNAR.  This indicates that as missingness increases, it is possible for a variable to become 

‘significantly’ important to the inertia of an axis. It must be remembered that, under the MNAR 

mechanism, data was deleted from the smoking variable at a ratio of 90:10 for SY:SN. Thus, 

compared to SN, a large proportion of data from SY would have been missing at 50% missingness. 

This would account for the greater effect of M% on SY than on SN under the MNAR mechanism 

and could indicate that under extreme missingness, analyses can lose some stability. 

Total inertia for the measured data, a measure of the variability in the measured data, is not 

significantly affected by either the MM or the degree of missingness. However, when total inertia 

of the measured data is taken as a percentage of the total inertia of the full data set including the 

missing data, the percentage missing has an effect. For MCAR, this measure at 50% missingness is 

significantly higher than at 5% missingness. Visually, there is an upward trend across all 

mechanisms as missingness increases.  This may imply that the variability in the missing data is 

significantly lower for the MCAR mechanism at 50% missingness than at 5% missingness.  

Examining the plot of all variables across the 18 scenarios confirms that there is some deviation 

from the true position for some variables. This is most evident in the variables that suffer from 

missingness but is also present in the completely measured variables that show stronger 

associations with asthma severity (MAL and A1). In general, while points that are further from 

their ‘true’ position have a higher percentage missing (not shown on the plot), there is no 

evidence that the MM is a factor in this displacement. In all cases, the dispersion is well contained 

and the relative positioning of variable categories with each other and with the axes remains 

unchanged.  
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Results from this study suggest that there is no evidence that the MM has a negative effect on 

results after applying sCA to data that suffers from missingness. In addition, the analysis has 

shown that only when missingness exceeds the 30% level, are some results affected. However, 

while deviations in the outcomes studied are present, they do not affect the overall 

interpretation of the analysis. 

Limitations 

While we are confident that the results emanating from this study are reliable, there are some 

limitations.  These results are specific to the variables included and the mechanisms imposed on 

this data. The variables were selected according to their relationships with asthma severity such 

that all strengths of relationship are represented. Three of the four variable categories that 

underwent missingness do not have strong relationships with asthma severity. We chose to 

impose missingness on only two of the six variables. Furthermore, while the deletions on these 

variables were based on plausible judgements, they are subjective, and may have influenced the 

findings. Further studies need to be carried out to explore the effect of different ratios of 

missingness and a different or increased choice of variables.  

We performed 10 simulations on our data. The number of simulations to perform is dependent 

on the required accuracy with an increase in the number of simulations resulting in more 

accuracy (Burton, Altman, Royston, & Holder, 2006; Ritter, Schoelles, Quigley, & Klein, 2011).  In 

contrast to confirmatory techniques, in which relationships are hypothesised and proved, CA (and 

its variants) is an exploratory approach in which relationships in the data are revealed and 

visualized for purposes of interpretation.  Relative positions of category points indicate levels of 

similarity or association between categories. No measures of statistical significance are applied 

(Greenacre, 1992). Thus accuracy is not of prime importance. There is little evidence to suggest 

that additional simulations would have produced meaningfully different results.  

Conclusions 
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Under the conditions imposed in this study, we found that there is no evidence to suggest that 

the missingness mechanism has an effect on results when sCA is applied to data that suffers from 

missingness. It was found that, in some cases, values of the outcomes studied deviate from the 

true values when the amount of missingness exceeds 30% per variable. These deviations do not, 

however, affect the overall interpretation of the results. We believe that sCA would have a similar 

impact on other data sets that comprise categorical variables that suffer from missingness.  
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Abstract 

Background 

Missing data is commonly encountered in most studies where data is collected by 

means of surveys. Furthermore, it is likely that much of the data will be categorical. 

Among the methods, most frequently found in literature, that are used to handle the 

missing data are complete case analysis and mean substitution. These, and other ad 

hoc methods of dealing with missing data, however, can lead to biased estimates and 

are not, in general, recommended. Recently, there has been a move towards applying 

multiple imputation to take care of the non-response. This method has been shown to 

produce reliable parameter estimates under most conditions. Another, less well-

known method that takes a very different approach but that effectively deals with the 

missing data, is subset correspondence analysis.  

Methods 

In this paper, multiple imputation and subset correspondence analysis are applied to a 

set of child asthma data that is mainly categorical and suffers from non-response. 

Differences in the methods and in the outcomes they produce are studied. In addition, 

the inclusion of interactions in a subset correspondence analysis is illustrated. 

Results 

Despite the vast differences in the two approaches, they yielded similar results in the 

identification of genetic, environmental and socio-economic factors that affect 

childhood asthma. A number of exposure related variables were found to be 
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associated with the greater severity of asthma. It was also found that a finer distinction 

between the asthma severity levels and their associations with factors was possible 

with a subset correspondence analysis, compared to the multiple imputation 

approach.  

Conclusions 

Both multiple imputation and subset correspondence analysis were able to identify 

several factors associated with childhood asthma while at the same time successfully 

managing the missing data. This offers the researcher a choice to select the method 

that best suits his/her study.  

 

Background 

The collection of data by means of surveys generally elicits some non-response 

resulting in missing data. Depending on the reason for the non-response, the 

missingness can be classified according to the popular definitions suggested by Little 

and Rubin [1]. Missing values that do not depend on either observed or unobserved 

data are termed “missing completely at random” (MCAR); if the missing values are 

independent of unobserved data but may depend on observed data, they are referred 

to as “missing at random” (MAR); and missing values that depend on both observed 

and unobserved data are termed “missing not at random” (MNAR).  

It has been common practice to deal with the missing data by applying any of a 

number of ad hoc methods. These include, amongst others, mean substitution, hot 
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deck imputation, the indicator method and pairwise deletion. The most commonly 

applied method, however, is case-wise deletion, also called complete case analysis [2] , 

in which all cases with missing data items are dropped from the analysis. This can 

result in a significantly reduced sample size or bias and can negatively affect results. In 

most instances, unless the data is MCAR, the application of these aforementioned ad 

hoc methods, whether they impute missing values or drop cases, result in biased 

estimates and are therefore not recommended [1, 3]. In reality, the missingness 

mechanism present in the data is rarely solely MCAR but rather a combination of 

mechanisms and so another means of dealing with the missing data is required.  

More recently much work has been done on the development of multiple imputation 

methods to deal with missing data. The concept of multiple imputation was first 

introduced in the late 1970’s by Rubin [4]. However, due to the computationally 

intense nature of the process and the absence of sufficiently powerful computers, the 

application of multiple imputation did not take off until the 1990’s with the advent of 

computers with enhanced computational capabilities. Several algorithms have been 

developed and efficient software is now more freely available. 

Two algorithms that are widely available and frequently used for imputation when 

missing data occurs in a general pattern (nonmonotonic missingness) are: multiple 

imputation based on the multivariate normal distribution (MVNI), available in a 

standalone package – NORM – developed by Schafer [5]; and an algorithm known as 

“fully conditional specification” (FCS) or “chained equations” – implemented by, 

amongst others, van Buuren et al [6]  -  available in a number of commercially available 
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statistical packages. FCS is more flexible than MVNI in that it does not depend on the 

assumption of multivariate normality and is applicable to a mix of variable type. 

Because a large proportion of the non-response in survey data is often found in 

categorical variables, this paper addresses, in particular, the problem of exploring the 

relationships between categorical variables that suffer from missingness. We used the 

FCS approach to multiple imputation to deal with the missing data and then completed 

the analysis by applying ordinal regression to the imputed data sets. 

In contrast to this aforementioned approach which includes traditionally accepted 

methodology classically favoured by epidemiologists, subset correspondence analysis 

(s-CA) is also effective in exploring relationships between categorical variables and at 

the same time taking care of the missing data. s-CA is a variant of correspondence 

analysis (CA) and was developed by Greenacre and Pardo [7]. It involves the 

application of CA to a subset of the data. In its application to incomplete data, the non-

response for each variable is categorized separately and CA is applied to the subset of 

observed categories.  

These two methods adopt different philosophies in their approach to analysis and 

whereas the one is governed by distributional requirements and missingness 

mechanisms, the other is not. While the application of both methods to the analysis of 

missing data has been illustrated [8, 9] , no comparison has yet been made. 

Furthermore, the inclusion of interactions in the application of s-CA with missing data 

is not evident in the literature. 
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In this paper, we compare the use of these two somewhat different methods on a set 

of epidemiological data, with a large number of categorical variables in which 

missingness was present, from a study of asthma severity in children in Durban, South 

Africa. We also illustrate the inclusion of interactions in these analyses. 

Methods 

The motivating problem for this investigation was the analysis and reporting of the 

respiratory health of children in the South Durban region of KwaZulu-Natal, South 

Africa. The data (Table 1) includes information from 382 children on 17 environmental, 

socio-economic, genetic and behavioural variables as well as a three-tiered asthma 

severity measure. All but one of the variables – age – are categorical. Of the 382 

subjects, 27 (7.1%) were classified as having moderate to severe asthma; 47 (12.3%) 

suffered from mild persistent asthma; and the remaining 308 (80.6%) either showed 

symptoms for possible asthma or did not exhibit definite asthma symptoms. This data 

set is potentially rich in its ability to reveal relationships between the outcome variable 

asthma severity, an ordinal measure, and the environmental, genetic, socio-economic 

and behavioural variables. However, data amounting to 5.1 % of the total is missing 

from the data set. This is spread across 43.5% of the 382 records, thus leaving only 216 

complete records. A standard approach when seeing these data might be to run an 

ordinal logistic regression of asthma with the logit link function. However, the standard 

logistic regression estimation methods require complete data. Consequently, cases 

with incomplete data are ignored, leading to bias when data are MNAR or MAR, and a 

loss of power when data are MCAR.  
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Table1:  Categories, code names and frequencies for all variables 
 
 

* also available as a scale variable 

This table is modified from Table 1 in [9] 

Variables Categories (code names) – count (N = 382) 
Non-

response – 
count (%) 

Gender male (male) 163 female (fem) 219 

 
  

 
  0 

Exercise <twice weekly (E1) 113 2-4 times/wk (E2) 135 >4 times/wk (E3) 110 

 
  E* - 24(6) 

TV watching <1 hr a day (T1) 86 1 - 3 hours/day (T2) 193 > 3 hours/day (T3) 78 

 
  T* - 25(7) 

Smokers in the home yes (SY) 187 no (SN) 194 

 
  

 
  Sm* - 1(<1) 

Breakfast habits daily (BD) 236 not daily (BN) 121 

 
  

 
  B* - 25(7) 

Pets at home yes (PY) 114 no (PN) 264 

 
  

 
  P* - 4(1) 

Food availability enough food (Fe) 265 not enough (Fn) 85 

 
  

 
  F* - 32(8) 

Work and wear yes (WWY) 36 no (WWN) 332 

 
  

 
  WW* -14(4) 

Smoke while pregnant yes (SPY) 35 no (SPN) 328 

 
  

 
  SP*-19(5) 

Neonatal care yes (NY) 50 no (NN) 318 

 
  

 
  N*-14(4) 

Fear in neighbourhood yes (FrY) 165 no (FrN) 192 

 
  

 
  Fr* - 25(7) 

Violence experienced yes (VY) 185 no (VN) 169 

 
  

 
  V* - 28(7) 

Smokers in vehicles yes (SVY) 94 no (SVN) 259 

 
  

 
  SV*-29(8) 

Num of people in 
home 1 - 4 people (Np1) 124 5 - 7 people (Np2) 153 >7 people (Np3) 70 

 
  Np* -  35(9) 

Age* 8-9 yrs(A1) 25 10 years(A2) 196 11 years(A3) 135 12+years(A4) 26 0 

Income Up to R1000(I1) 79 R1001 – R4500(I2) 102 R4501– R10000(I3) 88 R100001+ (I4) 39 I* - 74(19) 

Area South Durban(SD) 197 North Durban(ND) 195 

 
  

 
  0 

Asthma severity Moderate/severe(ASMS) 27 Mild persistent(ASMP) 47 Probable/no.(ASPN) 308     0 
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Existing approaches for handling missing data 

Two methods that have previously been successfully applied to this data set are 

multiple imputation followed by ordinal regression and s-CA [8, 9].  

The multiple imputation process involves three basic steps: “filling in” the missing 

values with reasonable predictions multiple times, creating multiple complete data 

sets; separately analysing each of the imputed data sets; and combining the results 

according to Rubin’s rules [10]. 

With the application of the FCS approach to multiple imputation, a series of regression 

models are run such that each variable with missing data is regressed on the other 

variables according to its distribution. In particular, categorical variables are modelled 

using logistic regression. This is an iterative process that is repeated until parameters 

from the regression model have stabilized at which time one complete data set is 

produced. The entire process is repeated until the required number of imputed data 

sets is generated. The analysis of the imputed data sets followed by the combining of 

the results identifies the strength of the relationships between the independent 

variables and the dependent variable. Details of this iterative method can be found in 

Azur et al [11]. 

In contrast, CA is a graphical technique used in the analysis of categorical data. While 

the more classical regression-based methods for studying inter-variable relationships 

hypothesise a model and fit the data to the model, CA does not hypothesise a model 

but rather decomposes the data in order to study their structure [12]. Rows and 

columns of a rectangular data matrix, which represent points in multidimensional 
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space, are optimally displayed in a lower dimensional subspace thus enabling the 

interpretation of relationships between the variables. 

CA is usually applied to a full data set. However, with the development of s-CA, it is 

possible to effectively manage the missing data without losing any of the measured 

data. A more detailed description of this method as applied to incomplete data can be 

found in Hendry et al [9] . 

Methodologies adopted for this comparative study 

In order to understand the comparative strategies it is essential to understand how 

differently the two processes (Multiple imputation and s-CA) operate when identifying 

the factors associated with child asthmatic levels in the presence missingness.    

In the  multiple imputation approach, based on the amount of missingness present, 20 

data sets were imputed [13]. To ensure stability of the parameters, ten iterations of 

the imputation process were completed between each retained complete data set 

[14].  

Each of the 20 imputed data sets was analysed using ordinal regression with the logit 

link function. The results were then combined following Rubin’s rules [15]. Overall 

parameter estimates were calculated as the average of the parameter estimates 

obtained from the analysis of each data set; and the variances of the overall parameter 

estimates were calculated as a function of both the variance within each data set and 

the variance across the data sets. 
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Both the multiple imputation and the analysis of the imputed data sets were carried 

out using the Statistical Package for Social Sciences (SPSS version 17).  

Before imputing missing values, it was necessary to carry out tests in order to identify 

the missingness mechanism present in the data. For each incomplete variable, an 

indicator variable was created and chi-square analyses were performed to test 

whether either the incomplete variable or its missingness was related to observed 

values of other variables. This enabled the identification of variables necessary to 

include in the imputation model in order to make the MAR assumption as plausible as 

possible [13] .   

The identification of interactions, in the presence of missing data, presents a challenge  

[16, 17] . In a previous study using this data set, this problem was addressed and 10 

interactions were identified as being significant [8]. For the purposes of this study, the 

two strongest interactions – ‘gender * smoke exposure in vehicles’ and ‘fear * 

breakfast habits’ – were included in the analysis. Interaction product terms were 

coded into separate categories and treated as additional variables in the imputation 

model. For example: the interaction gender (male/female) * smoke exposure in 

vehicles (yes/no) was broken down and coded as male/yes = 1; male/no = 2; 

female/yes = 3; female/no = 4. The interaction categories, along with the remaining 17 

variables – one scale and 16 categorical – were treated as predictor variables. 

On the hand, the s-CA approach deals with the objective of identifying the association 

of environmental, genetic, behavioural and socio-economic variables with asthma 

severity, by re-organising the data in the form of a contingency table. The columns 
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represent the three asthma severity categories and the rows represent the categories 

of the 17 variables and two interactions, with the interactions broken down and coded 

as for the imputation model.  

For the purpose of this analysis, the variable ‘age’ was classified into 4 categories. To 

manage the missing data, a ‘missing’ category was introduced for each variable with 

missing data. The subset to be analysed was formed by excluding these missing 

categories.  

Variables involved in the interactions – ‘gender’,  ‘ smoke exposure in vehicles’, ‘fear’ 

and ‘breakfast habits’ - were not included as individual active variables in the analysis 

but were treated as supplementary variables [12]. By so doing, they do not participate 

in the orientation of the axes but their individual positions as “main effects” relative to 

the associated interactions  [18] can still be studied.  

A macro program was written to perform the s-CA. 

As seen above the two approaches have no common parameter estimates or model 

structure. Thus the conventional comparison of methods in terms of mean square 

errors or goodness of fit is not directly applicable. Accordingly a systematic holistic 

review of the two approaches is adopted. 

Results and discussion   

The aim of this study was to illustrate and compare two methods to analyse 

categorical data that suffers from missingness. We found that, while multiple 

imputation, in combination with ordinal regression, and CA applied to a subset of data 
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are vastly different methodologically, the results that they produce in the analysis of 

inter-variable relationships are very similar. 

The application of these two methods enabled us to identify relationships between 

asthma severity and several environmental, genetic, socio-economic and behavioural 

variables and, at the same time, retain all records. Furthermore the associations 

between these variables and asthma (Table 2 and Table 3) were consistent across 

methods and generally confirmed established theories regarding factors that 

exacerbate asthma. There was agreement that confirmed asthma is associated with 

children who: are younger [19];  have had some special neonatal care [20]; are 

exposed to smoke in the home [21, 22], in vehicles [23], in utero [24] and in the form 

of air pollution [25, 26]; lived in a home with up to 4 people [27]; come from a R4501 – 

R10000 income household; do not always have enough food; are exposed to low 

concentrations of compounds and pollutants [28, 29]; never had a pet and do not 

experience fear in the neighbourhood. Both analyses also indicated an association 

between worse asthma and both lack of violence in the neighbourhood and watching 

up to one hour of TV a day. These associations are contrary to what other studies have 

found and, while the data was explored for reasons for these anomalies, none were 

found. We concluded that there must be some underlying factor specific to this 

sample. 
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Table 2: Estimated Coefficients (EST) and Standard Errors (SE)   

Predictor 
Reference 

Category 
FCS(N = 382) 

Category EST SE 

Gender Female Male 0.039 0.362 

Neonatal care No Yes 0.847* 0.394 

Fear No Yes -1.042* 0.406 

Smoked while pregnant No Yes 0.379 0.488 

Smokers in home  No Yes 0.701* 0.309 

Smoke in vehicles  No Yes -0.706 0.512 

Exercise  >4 times a week Up to once a week 0.044 0.384 

  

 
2 – 4 times a week 0.011 0.384 

TV watching >3 hours a day  Up to 1 hour a day 0.786 0.465 

  

 
1 – 3 hours a day  0.046 0.43 

Number people in home 8+ 1 - 4 0.981* 0.481 

  

 
5 - 7 0.381 0.494 

Income  R100001+ up to R1000 -0.133 0.611 

  

 
R1001 – R4500  0.017 0.555 

  

 
R4501 – R10000  0.697 0.523 

Food availability Enough 

Not always 

enough 0.756 0.406 

Work’nWear No Yes 0.402 0.456 

Pets ever No Yes -1.072* 0.398 

Area North Durban South Durban  0.595 0.306 

Breakfast habits  Daily Not daily -1.011* 0.494 

Violence No Yes -0.709* 0.34 

Age 

  

-0.247 0.16 

Fear * Breakfast No/Daily Yes/Not daily 2.338* 0.725 

Gender * SmokeVehicle  Female/No Male/Yes 1.811* 0.699 

          
ND – North Durban;  SD – South Durban; preg – pregnant; 

FCS  -Multiple imputed FCS 

*Significant at the 0.05 level 
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Table 3: Decomposition of inertia for the 2 principal axes 

Name Mass INR k= 1 COR CTR k= 2 COR CTR 

A1 4 3 -717 955 146 -156 45 42 

A2 34 0 34 754 3 19 246 5 

A3 24 0 73 874 8 28 126 7 

A4 5 0 58 151 1 -138 849 34 

NNY 9 3 -476 985 129 59 15 12 

NNN 55 0 66 1000 16 -1 0 0 

SPY 6 3 13 27 0 -75 973 14 

SPN 57 57 -7 454 0 7 546 1 

SY 33 23 -51 969 6 -9 31 1 

SN   34 34 47 972 5 8 28 1 

E1 20 11 -2 480 0 -2 520 0 

E2 24 6 60 667 6 -42 333 17 

E3 19 24 -14 62 0 56 938 24 

T1 15 2 -186 454 34 204 546 248 

T2 34 4 45 326 4 -65 674 56 

T3 14 3 147 997 19 -8 3 0 

N1 22 18 -170 994 41 -13 6 1 

N2 27 7 61 983 7 8 17 1 

N3 12 48 160 934 21 43 66 9 

I1   14 0 41 952 2 9 48 0 

I2   18 13 33 501 1 -33 499 8 

I3   15 4 -191 992 37 18 8 2 

I4   7 73 102 977 5 16 23 1 

Fn 46 31 59 938 11 15 62 4 

Fe  15 6 -31 435 1 35 565 7 

WWY  6 11 -406 915 68 -124 85 38 

WWN  58 35 35 736 5 21 264 10 

PY 20 2 199 951 51 45 49 16 

PN 46 42 -80 998 19 -3 2 0 

DS   33 15 -125 997 33 -6 3 1 

DN   34 6 120 997 32 6 3 1 

VY   32 12 111 991 26 10 9 1 

VN   29 25 -95 978 17 -14 22 2 

Mass (Mass) and inertia (INR) of each variable; the quality (QLT) of the variable’s representation in the subspace of the 
first 2 axes; Co-ordinates (k = ...);  contributions of axes to the inertia of the variables (COR);  and contributions of  

 variables to the inertia of the axes (CTR)*. 
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Table 3: Decomposition of inertia for the 2 principal axes (continued) 

 

The interpretation of the interactions was also consistent across methods. With regard 

to the ‘gender * smoke exposure in vehicle’ interaction, it was found that male 

children who are exposed to smoke in a vehicle suffer from significantly worse asthma 

than girls not exposed to smoke in a vehicle. Further, amongst the females in this 

study, those who are exposed to smoke in a vehicle suffer from less severe asthma 

  

Name Mass INR k= 1 COR CTR k= 2 COR CTR 

 FYBd 20 12 179 987 41 20 13 3 

 FNBd 21 78 -203 931 58 -55 69 26 

 FYBn 9 6 -141 654 12 103 346 38 

 rNBn 12 9 228 957 40 48 43 11 

 mSVY 7 276 -363 998 60 16 2 1 

 mSVN 19 22 -76 158 7 176 842 228 

 fSVY 9 74 137 947 12 -32 53 4 

 fSVN 27 3 104 480 19 -109 520 124 

  

        ASMS 71 89 -371 929 635 103 71 295 

ASMP 123 130 -157 638 198 -118 362 679 

ASNI 806 781 56 975 168 9 25 26 

SUPPLEMENTARY  

        MAL 

  

-150 516 

 

146 484 

 FEM 

  

107 494 

 

-108 506 

 FrY 

  

66 808 

 

32 192 

 FrN 

  

-50 896 

 

17 104 

 SVY 

  

-79 980 

 

-11 20 

 SVN 

  

27 894 

 

9 106 

 Bnd 

  

68 462 

 

73 538 

 Bd 

  

-22 596 

 

-18 404 

 Mass (Mass) and inertia (INR) of each variable; the quality (QLT) of the variable’s representation in the subspace of the 

first 2 axes; Co-ordinates (k = ...);  contributions of axes to the inertia of the variables (COR);  and contributions of 

 variables to the inertia of the axes (CTR)*. 
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than those not exposed to smoke in a vehicle. For those in the study not exposed to 

smoke in a vehicle, asthma severity is marginally worse for the males. 

Interpretation of the ‘fear * breakfast habits’ interaction showed that, compared to 

those who do not experience fear and eat breakfast daily, there is a significant chance 

that those who do experience fear but do not eat breakfast daily will suffer from worse 

asthma. Results also indicate that for those who eat breakfast daily, worse asthma is 

experienced by those who do not experience fear than by those who do experience 

fear. Furthermore, for those who do not experience fear, children who eat breakfast 

daily have marginally worse asthma than those who don’t eat breakfast daily. Whereas 

with s-CA the classifications as supplementary variables of those variables included in 

the interactions enabled the study of their positions relative to the asthma severity 

categories (male children suffer from worse asthma than female children [30, 31]), this 

was not possible with the multiple imputation approach. 

While on the surface these methods produce the same overall results, a deeper study 

of the results identified several differences in the outcomes from these methods. 

Whereas with multiple imputation and ordinal regression the interpretation of results 

indicated the relative severity of asthma from one category to another category of a 

specific variable, with the application of CA we were able to identify factors associated 

with the specific asthma severity classifications. To illustrate this point, analysis with 

multiple imputation and ordinal regression showed that worse asthma is experienced 

by those who had neonatal care than by those who did not have any neonatal care. On 

the other hand, results from s-CA were more specific and having had neonatal care 
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was shown to be associated with moderate to severe asthma while not having 

neonatal care is associated with mild intermittent or no asthma.  

Compared to the multiple imputation approach, CA was also able to identify specific 

associations that distinguished between the different levels of variables. This can be 

seen with the ‘TV watching’ variable. Results from the multiple imputation approach 

indicate that the amount of TV watched is inversely proportional to the severity of the 

asthma. With s-CA, by examining the  

 positions of these variable categories in the graphical display (Figure 1) as well as the 

decomposition of the inertia (Table 3), we see that watching 1 hour of TV a day (T1) is 

associated with moderate to severe asthma; watching between 1 and 3 hours a day 

(TV2) is associated with mild persistent asthma; and watching more than 3 hours a day 

(T3) is associated with mild intermittent or no asthma. Thus a finer distinction is 

possible regarding categories of variables and their associations with levels of asthma 

severity. 

By using the graphical display produced by s-CA, it is possible to identify inter-variable 

relationships that do not include the asthma severity variable. For example, the 

positions of the variables I3, Np1, SD and VN indicate that they share some 

relationship. This is not possible with the MI approach. 

With CA, it was also possible to compare the strengths of association with asthma 

severity of several predictor variables. For instance, from the positioning of the points 

on the display, we can deduce that while the risk of having moderate to severe asthma 

from smoke exposure in a vehicle exceeds the risk from smoke exposure in the
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Figure 1: Subset CA map of a contingency tables with the row points represented by      and the column points by       projected onto the plane of the 

first and second principal axes. Supplementary points are represented with X. Values on the axes indicate principal inertias and their respective 

percentages of total inertia. 
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home [32] or smoke exposure in utero, the greatest risk is from air pollution as 

experienced in the South Durban region.  

All these factors discussed above illustrate the extent of the usefulness of the graphical 

display produced by s-CA as a tool to identify inter-variable relationships. 

Unlike the analysis with multiple imputation and ordinal regression, inter-variable 

relationships found to exist with the application of CA cannot be assumed to be 

statistically significant. While the relative strength of associations can be deduced by 

examining the angles that the points made with each other and with the principal axes 

in the graphical display [9], these results cannot be projected onto a broader 

population. Results from s-CA indicated that the association of ASMS (moderate to 

severe asthma) with NY (having had neonatal care) is stronger than its association with 

SD (South Durban) as seen by the relative size of the angles between them.  These 

results are confirmed in the multiple imputation and ordinal regression analysis and, in 

addition, the significance of the association between neonatal care and asthma 

severity is indicated. 

Because multiple imputation is computationally intensive, complications and 

limitations can be encountered. This can occur with large data sets and even more so 

when a large number of variables suffer from missingness [33, 34]. The need to include 

many interactions in the imputation model in order to ensure that it is more general 

than the analysis model, is often not feasible and computationally not possible [33] – 

especially with data sets that have a large number of variables. We did not encounter 

these problems with this analysis despite the seemingly large number of variables. In 
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fact, in a previous study using this data [8], 10 interactions were included with no 

problems being experienced. In contrast, computationally, CA can cope with large 

numbers of variables and interactions, but this can cause overcrowding in the display 

which makes it difficult to identify points and interpret relationships between them. It 

is for this reason that we limited the number of interactions in this study to two. The 

possibility does, however, exist with s-CA to include more interactions and analyse 

them as a separate subset. 

Preliminary analysis of this data set indicated that the missingness is at best MAR with 

a possibility of some MNAR present [8]. Because multiple imputation produces 

unbiased estimates providing the missingness is at worst MAR, it was necessary to 

include, in the imputation model, variables associated with the missingness of the 

incomplete variables, the outcome variable – asthma severity - as well as the two 

interactions chosen for the analysis model. This inclusion of carefully selected variables 

should produce acceptable results even if some MNAR is present [35]. In contrast to 

this, CA and its variants are not constrained by complexities of models or distribution 

requirements. It is also not sensitive to the missingness mechanism in the data [36]. 

Therefore no special adjustments were needed to counteract the possibility of some 

MNAR missingness. The only adjustment needed in this study was to categorize the 

interval variable ‘age’. While non-negative categorical data is a requirement of CA, it is 

generally a straightforward exercise to achieve this condition. 

The fact that only a few of the variables in the multiple imputation/ordinal regression 

analysis were significantly associated with asthma severity is consistent with the 
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results from s-CA. The visible bunching up of the points in the graphical display and the 

low inertia values – a total of only 0.0178 -  indicate that only a limited amount of 

variability is present in this data [37].   

Conclusion 

Non-response is a reality in survey data and needs to be handled appropriately. We 

have demonstrated the use of multiple imputation in conjunction with ordinal 

regression as well as CA as applied to the subset of measured data to analyse 

categorical data that suffer from missingness. We have also illustrated how 

interactions can be added to an analysis with s-CA.  We found that general 

relationships between the environmental, socio-economic, genetic and behavioural 

variables and asthma severity were consistent across methods. Each method offers a 

different set of advantages in their applications. Analysis with s-CA is less demanding 

than with the multiple imputation approach – both in terms of conditions and the 

computational process – and finer distinctions in the inter-variable relationships can be 

made. These relationships are, however, ‘looser’ than those obtained from the 

multiple imputation approach and significance cannot be claimed. Despite their 

differences, the results produced in this study provide support for the greater use of 

less restrictive and less computationally intensive graphical methods to analyse 

categorical data that suffer from missingness.    
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