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ABSTRACT  

   

Temperate eucalypts are an important part of the commercial forestry landscape in 

South Africa, comprising approximately 50% of the total Eucalyptus planted area. The 

majority of the commercial temperate eucalypts grown in South Africa are reticent, shy 

flowerers, and subsequently erratic seed producers. Disadvantages associated with 

sub-optimum (inconsistent and sparse) flowering in Eucalyptus orchards include 

decreased levels of out-crossing and compromised quantity and (genetic) quality of the 

seed produced. Genotype, physiological age and a range of environmental factors are 

known to influence flower bud production in temperate eucalypts. To date, winter cold 

and paclobutrazol (PBZ), a plant growth regulator, remain the most effective treatments 

for encouraging early and prolific flowering in temperate eucalypts. Disadvantages 

associated with the use of PBZ in the outdoor environment include the toxicity and 

recalcitrant nature and persistence of the chemical in soils, the high cost of PBZ and its 

orchard application, and the need to re-apply the chemical approximately every five 

years. 

 

The main aim of this study was to provide a practical solution to the problem of shy 

flowering and seed crop production in important temperate Eucalyptus species in South 

Africa. The study focused on investigating key environmental factors associated with 

optimum flower bud production in temperate eucalypts. The resultant data were used to 

achieve optimization of flower bud production in temperate eucalypts in the summer 

rainfall forestry areas of South Africa, via informed site selection and/or manipulation of 

the environmental conditions. A subsidiary aim of the project was to lessen the 

dependency on PBZ for achieving satisfactory flowering levels in temperate eucalypts 

via improved site-orchard matching and environmental manipulation. The key objectives 

in the study included definition of summer rainfall area site conditions for maximal floral 

bud production in two important species, viz. E. nitens and E. smithii, investigation of 

the effects of optimum flowering environmental conditions on post-initiation floral 

development and seed maturation in temperate eucalypts, and development of a 

method for supplementing winter cold and increasing flower bud production in orchards 

located at marginal winter chilling sites. 
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For the undertaking of the field trial component, a reliable method of accurately 

measuring and recording Eucalyptus bud temperature at high elevation, remote summer 

rainfall sites in South Africa was required. A robust structure for housing the Hobo ® 

miniature loggers, termed “Hobo pole”, was designed and progressively modified for this 

purpose. Calibration tests were conducted to investigate the relationship between E. 

nitens bud temperature (BudT), Hobo pole air temperature (HoboAT) and screen air 

temperature (ScrnAT). In mid-winter, BudT on HoboAT gave the highest R2 value (0.99) 

and lowest SE value (0.49 oC) of all regressions. In mid-summer, BudT on HoboAT 

together with BudT on ScrnAT gave the highest R2 value (0.98). Bud winter chill units 

calculated from modelled bud temperature data were suitably accurate. It was 

concluded that the use of loggers having greater temperature measurement accuracy 

may reduce Hobo pole air temperature measurement error even further. 

 

Two separate flowering field trial series, one E. nitens and the other E. smithii, were 

established across a range of high elevation (> 1550 m asl), cool temperate (13.5 to 

16.0 oC mean annual temperature (MAT)) sites within the summer rainfall area. The 

interactive effects of a range of climate and landscape factors and paclobutrazol 

application on floral bud production in either species were investigated. The main 

objective was to broadly define temperate eucalypt site requirements for optimal floral 

bud production. Within the applied elevation and MAT ranges, of all landform factors, 

slope aspect had the greatest influence on floral bud production in both species. South-

west, south and west-facing slopes were highly promotive of floral bud production, 

regardless of whether PBZ was applied or not. On sites selected for optimal floral bud 

production in E. nitens, E. smithii was a more prolific flowerer. Eucalyptus smithii 

showed a substantially lower chill requirement and greater responsiveness to PBZ for 

floral bud production than E. nitens. Eucalyptus smithii orchards situated in low 

landscape positions within the above elevational and MAT ranges, particularly those at 

high elevation (> 1800 m asl), cold (MAT < 14.0 oC) sites, carry a high risk of being 

severely damaged by frost and snow. Based on these findings, it is crucial to manage 

seed orchards of the various temperate eucalypt species differently. The results of the 

investigations indicated that, through careful site selection, the dependency on PBZ to 
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achieve satisfactory floral bud crop production in temperate eucalypts may be 

substantially reduced. 

 

To provide a practical solution to the problem of shy-flowering in temperate eucalypt 

breeding orchards due to inconsistent and/or insufficient winter chilling, supplementing 

winter chilling via evaporative cooling (overhead sprinkling) was investigated in the high 

chill requiring species E. nitens. The trial was conducted at Mondi’s Mountain Home 

Research Centre near Hilton in KwaZulu-Natal. Treatments included three levels of 

sprinkling, two levels of PBZ and two grafted clones (prolific flowerer, shy-flowerer). 

Sprinkling reduced E. nitens daytime bud temperatures by as much as 16.2 oC on 

warm, dry winter days. During the relatively cold (2009) and warm (2010) winters, 

sprinkling increased chilling accumulation by 44% and 72%, respectively. In 2009, in the 

absence of PBZ, sprinkling resulted in a higher percentage trees of either clone 

producing umbels (flower buds) compared with the control. In the warmer 2010 winter, 

sprinkling again increased flowering, with the number of flowering shoots and umbels 

per tree being significantly higher than the control at p < 0.05. In both, 2009 and 2010, 

PBZ showed a strong additive effect to winter chilling on E. nitens floral bud production. 

The E. nitens clone x chilling x PBZ flowering interaction was complex, and therefore 

warrants more detailed investigation in future. Over three years, no negative affects of 

intermittent overhead sprinkling over a period of four months in (May to August) in 

winter on tree health were observed. It was concluded that evaporative cooling offers a 

practical method of supplementing winter chilling and optimizing floral bud production in 

high chill requiring temperate eucalypt species. The importance of this technology is 

likely to increase in view of the predicted ongoing climate warming. 

 

To investigate the effects of PBZ and environmental conditions deemed highly 

promotive of flower bud production on post-initiation reproductive development in 

temperate eucalypts, the reproductive phenology of a single species, E. nitens, was 

monitored across four sites in KwaZulu-Natal over 2.4 years. The sites differed 

predominantly in elevation, with the lowest site being the maximum chilling treatment 

block in the evaporative cooling trial at Mountain Home (1133 m asl), and the highest 

being the field trial at Willowmere near Underberg (1708 m asl). Regardless of PBZ 



viii 
 

application, there was a distinct trend across sites of anthesis being delayed (by at least 

120 days) and anthesis duration being shortened (by at least 80 days) as elevation 

increased from the lowest to highest elevation. At Netherby3 (1678 m asl), a top-ranking 

field trial site on the basis of umbel crop production, anthesis was delayed by 33 days. 

The general effect of paclobutrazol application across sites was a decrease in anthesis 

duration of between 17 and 34%, from lowest to highest elevation. Although based on a 

narrow range of E. nitens genetic material, the observed trends in the study should be 

taken note of by local temperate eucalypt tree breeders and seed producers. At 

optimum temperate eucalypt flower bud production sites in South Africa, the levels of 

out-crossing and capture of genetic gain and variation may be substantially 

compromised. Further research, entailing a wider range of temperate eucalypt genetic 

material and investigating important orchard-related factors such as pollination and 

gene flow, is advocated.  
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CHAPTER 1 

 

 

Introduction 

 

Rationale for the research 

The majority of the temperate eucalypts used in commercial forestry are difficult to 

propagate vegetatively (Jones et al. 2000, Le Roux and Van Staden 1991), and 

therefore, to date, seedlings have been used for establishing the majority of temperate 

eucalypt plantations in South Africa. Inter-specific hybrids between the sub-tropical E. 

grandis and temperate E. nitens have met with a good degree of success in South 

Africa (Zwolinsky and Bayley 2001). High rooting capability conferred by E. grandis has 

resulted in the majority of these hybrids being deployed into the commercial plantation 

environment as rooted cuttings (Mokotedi et al. 2000). Of the total temperate eucalypt 

plantation area in South Africa, only 14% comprises clonal material (R Gardner 

unpublished data 2014). The industry is therefore largely dependent on the production 

of locally-improved, high (genetic) quality seed for establishing the local temperate 

eucalypt plantations (Eldridge et al. 1993).  

 

A barrier to local production of sufficient quantities of temperate eucalypt seed for 

plantation establishment is the shy-flowering and erratic seed production habit of the 

most important temperate eucalypt species. In South Africa, seedling trees of species 

such as E. nitens, E. smithii, E. dunnii and E. badjensis rarely flower before the age of 

eight years, and even then, the floral bud and seed crops produced are sparse and 

erratic (Jones 2002, Swain and Gardner 2003). Genotype, physiological age and 

hormonal status of plants, and a range of environmental factors, are known to influence 

flower bud production in temperate eucalypts (Meilan 1997, Moncur and Boland 2000, 

Williams et al. 2003). To date, winter cold and paclobutrazol (a plant growth regulating 

chemical) remain the most effective treatments for encouraging flowering in temperate 

eucalypts (Hamilton et al. 2008, Moncur and Hasan 1994). In the absence of sufficient 

winter cold, paclobutrazol (PBZ) treatment is relatively ineffective. In South Africa and 

abroad, PBZ is used almost routinely as an orchard management tool, i.e. for assisting 
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vegetative and reproductive growth control, in temperate eucalypts (Gardner et al. 2013, 

Hamilton et al. 2008). Disadvantages associated with the use of PBZ include the 

chemical’s recalcitrant nature and persistence in soils (Fletcher et al. 2000, Jackson et 

al. 1996) and the high cost of its application in orchards. There is a need to develop a 

method of lessening the dependency on PBZ for achieving satisfactory flowering and 

seed crop production in temperate eucalypt species.   

 

During the early 1990s, in the temperate eucalypt growing areas of South Africa, it was 

noted that non paclobutrazol-treated trees of E. nitens and E. dunnii flowered more 

prolifically and consistently at exposed, uniformly cool sites in the landscape, rather 

than low-lying sites typically prone to high diurnal temperature amplitudes in winter 

(Gardner 2003). This prompted an initial investigation (carried out between 1996 and 

2001) into the relationship between winter chilling and flower bud production in 

temperate eucalypts with E. nitens as the test species.  This investigation, based on a 

semi-controlled environment experiment and four field trials, yielded initial insight into E. 

nitens winter chilling requirement for floral induction, and the interaction between 

chilling, paclobutrazol and E. nitens floral bud production (Gardner 2003, Gardner and 

Bertling 2005). Interestingly, where trees were exposed to very high levels of winter 

chilling, E. nitens flowered equally as well in PBZ-treated and non-treated trees.    

 

Objectives of the study 

Due mainly to the restricted number of field sites, treatments and replicates applied in 

the 1996 to 2001 E. nitens flowering trial series, the results emanating from this 

research were fairly coarse, allowing only tentative guidelines to be drawn up. The 

information yielded was not detailed enough to allow accurate prediction of optimal E. 

nitens orchard sites within the South African forestry landscape. There remained a need 

to carry out further research as follows: 

• More comprehensive investigation of the interactive effect of winter chilling and 

PBZ on floral bud production in temperate eucalypts.  

• Definition of site conditions, including landscape and climatic factors, for optimal 

flower bud production in temperate eucalypt orchards within the summer rainfall 
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forestry area. This investigation should include at least two species evaluated 

over a far wider range of site conditions.  

• The effect of the optimal flower bud production orchard site conditions on post-

initiation reproductive development through to seed maturity.  

Furthermore, the research centers of the major forestry companies are mostly located at 

low elevation (< 1200 m asl) sites within the summer rainfall region, where winter 

conditions are relatively warm and non-conducive to floral induction and initiation in 

high-chill requiring temperate eucalypt species such as E. nitens and E. smithii 

(Gardner 2003, Gardner and Bertling 2005, Jones 2002). The risk of annual floral bud 

and seed crop failure due to warm winter conditions is set to increase in accordance 

with predicted climate change (Linkosalo et al. 2009, Warburton and Schulze 2008). 

There was a need to explore a means of reducing the risk of insufficient winter chilling in 

high value, temperate eucalypt breeding orchards located at the research centers. 

Therefore, the following research was proposed:      

• Development of a practical method of supplementing winter chilling to increase 

the consistency and abundance of flowering in temperate eucalypt breeding 

orchards located at marginal chilling sites. 

 

Outline of thesis structure 

Chapter 1 of the thesis discusses the rationale behind the research undertaken.    

 

Chapter 2 is a Literature Review, covering all the important aspects relating to the 

research undertaken.   

 

Chapter 3 is the first of the empirical chapters. It discusses the development of a 

method for monitoring air temperature at remote, high elevation sites in the summer 

rainfall area. The equipment designed, tested and adapted was essential to the site x 

PBZ x temperate eucalypt flowering interaction field trial research undertaken. The 

results of a calibration experiment, where the relationship between air temperature and 

E. nitens bud temperature was investigated, are also discussed.  
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Chapter 4 discusses E. nitens field research conducted across thirteen high altitude 

sites within the summer rainfall forestry area. Previous research and observations 

suggested that E. nitens has the highest cold requirement for floral bud production of all 

locally important temperate eucalypt species (Gardner 2003, Jones et al. 2000). Hence, 

it was important to include E. nitens as one of the species in the investigation. The main 

objective of the research was to define E. nitens orchard site requirements, on the basis 

of climatic and landscape factors, for optimal (consistent and prolific) flower bud 

production.  

 

Chapter 5 discusses E. smithii field research conducted across thirteen high altitude 

sites within the summer rainfall forestry area. The methodology applied was almost 

identical to that carried out in the E. nitens project described in Chapter 4.  Eucalyptus 

smithii produces the highest quality pulpwood of all commercial temperate eucalypts 

planted in South Africa. Previous research and observations indicated that E. smithii is a 

shy-flowering species, having a high cold requirement for floral bud production (Gardner 

2003, Jones et al. 2000). Hence, it was important to include E. smithii as one of the 

species in the “definition of site conditions for optimal (consistent and prolific) flower bud 

production in temperate eucalypt species” investigation.    

 

The research conducted and described in Chapter 6 was aimed at investigating whether 

sites optimal for floral bud production in temperate eucalypt species are also optimal for 

post-floral initiation reproductive growth, particularly production of high (genetic) quality 

seed. This investigation focused on a single species, viz. E. nitens, mainly due to 

resource constraints.  

 

The final chapter, Chapter 7, provides a brief discussion and conclusion based on the 

work carried out. Recommendations for further research are also presented. 
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 CHAPTER 2 

 

 

Literature Review 

 

The genus Eucalyptus 

 

Taxonomical classification  

The genus Eucalyptus belongs to the family Myrtaceae.  The name Eucalyptus is 

derived from the Greek words ‘eu’, meaning ‘well’, and ‘calyptos’, meaning ‘covered’ 

(Chippendale 1988). The term ‘well-covered’ refers to the reproductive organs in the 

flower bud being protected by an operculum (cap) prior to anthesis (Pryor 1976). Since 

the first publishing of the species name in 1788 by Charles-Louis L’Héritier de Brutelle 

(E. obliqua), hundreds of species and infraspecific taxa have been described, with about 

900 being currently recognized (Boland et al. 2006). Pryor and Johnson’s (1971) 

comprehensive classification of the eucalypts became the benchmark for all eucalypt 

taxonomists and researchers. These authors based their classification primarily on an 

appreciation of the genetic relationships between species. Effectively, the genus was 

divided into seven subgenera, and these into sections, series, subseries, superspecies, 

species and subspecies (Brooker 2000, Florence 1996). The subgenera are effectively 

genetically isolated groups, which has important practical implications for disciplines 

such as tree breeding, genetics and conservation ecology (Boland et al. 2006). Brooker 

(2000) proposed a new classification of the eucalypts, based largely on Pryor and 

Johnson’s classification of 1971, but with a number of alterations based on new 

information emerging since the latter classification. Certain of the latter proposed 

changes to the Pryor and Johnson (1971) classification have gained acceptance, whilst 

others not (Boland et al. 2006). For the purpose of this thesis, the classification system 

of Brooker (2000) will be adopted. 

 

Natural distribution 

Virtually all eucalypts occur naturally only in Australia, with only two species endemic 

outside Australia (Indonesia and New Guinea), viz. E. urophylla and E. deglupta 
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(Boland et al. 2006). The latitudinal distribution of the eucalypts is approximately 9 oN 

(E. deglupta) to 44 oS (E. obliqua and other species) (Williams and Brooker 1997). The 

eucalypts occur naturally across most of Australia, their form ranging from short shrubs 

to tall forest trees depending on the environmental conditions to which they have 

adapted (Pryor 1976).  

 

Eucalypts in South Africa   

 

The first eucalypts were introduced into South Africa in 1828. These were in the form of 

nine E. globulus seedlings established in the Governor’s Garden in Cape Town by then 

Governor of the Cape Colony, Sir Lowry Cole (Showers 2010). Since this time, many 

other Eucalyptus taxa have been introduced into South Africa for testing and/or 

commercial planting in both sub-tropical and temperate areas of the country (Poynton 

1979). The development of the gold mining industry on the Witwatersrand from the early 

1900s onwards was the major driver of the expansion of Eucalyptus plantings in South 

Africa (Darrow 1984). Eucalyptus grandis, mainly due to its rapid growth and 

remarkable adaptability to widely ranging climatic and edaphic conditions, established 

itself as the major commercial timber species in South Africa by the mid-20th century 

(Schönau 1991).  

 

The majority of the gold (and later diamond) mines were located in high elevation (> 

1200 m asl) areas of the inland plateau however, and there was an ongoing need to 

identify eucalypt species suitably adapted to the severe winter frosts and drought 

conditions typical to these areas (Poynton 1979, Schönau and Gardner 1991). During 

these early times, the terms “hard gums”, “cold-resistant eucalypts” and “cold-tolerant 

eucalypts” were colloquially used in South Africa to describe these cold-hardy eucalypts 

(Beard 1958, Darrow 1984, Gardner and Swain 1996). Eucalyptus species finding initial 

favor due to high levels of cold-hardiness and suitability for mining timber (high strength 

and durability of wood) included E. bridgesiana, E. dalrympleana, E. elata, E. fastigata, 

E. macarthurii, E. maidenii, E. sideroxlyon and E. viminalis (Beard 1958, Nixon 1983). 

Over the past four decades, several other eucalypt species, e.g. E. dunnii, E. 

fraxinoides, E. nitens and E. smithii, emerged as popular alternatives to the original 



9 
 

“hard gums” (Schönau and Gardner 1991, Schönau and Purnell 1987). The significant 

developments in the pulp and paper industry in South Africa and associated expansion 

of plantation forestry into cold highland areas of western KwaZulu-Natal and northern 

Eastern Cape during the early 1980s, added significant impetus to the search for 

alternative cold-hardy eucalypt species (Gardner 2001, Swain and Gardner 2002).  

 

Internationally, and indeed in Australia, to date “temperate eucalypt” is the preferred 

term used to describe eucalypt species originating from temperate forest communities in 

the latter country (Boland et al. 2006, Florence 1981, Wardell-Johnson et al. 1997). 

Therefore, for the purpose of this thesis, the term “temperate eucalypt” will be used in 

preference to “cold-tolerant eucalypt” in all further discussion. Temperate eucalypts are 

an important part of the current commercial forestry landscape in South Africa. Of the 

total Eucalyptus plantation area (515 000 ha), about 50% comprises temperate species 

(Forestry South Africa 2013). The positive attributes of the current commercial 

temperate eucalypt species are numerous. These include good adaptation to cold 

climatic conditions (rapid vegetative growth, frost and snow tolerance, etc) and highly 

desirable wood and pulping properties (Gardner 2001, Swain and Gardner 2003). 

 

Eucalyptus nitens 

Taxonomical classification 

Eucalyptus nitens (Deane & Maiden) Maiden (Shining Gum), is included in subgenus 

Symphyomyrtus, section Maidenaria, subsection Euryotae, series Globulares (Brooker 

2000). Other species included in this series include the commercially important 

Southern Blue Gums, E. bicostata, E. globulus and E. maidenii.  

 

Natural distribution 

Eucalyptus nitens occurs naturally on the slopes and mountain tops of high tablelands 

and coastal ranges in south-eastern Australia. The species occurs in several disjunct 

populations, from the Dorrigo Plateau in eastern New South Wales (about 30 0 23.0 ' S 

latitude) to the central highlands of Victoria (38 0 0.0 ' S latitude) (Brooker and Kleinig 

1983, Chippendale 1988). Shining Gum occurs over a range of elevations, from about 

1600 m asl in the north, to 600 m asl in the Victorian coastal ranges (Boland et al. 2006, 
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Eldridge et al. 1993). Eucalyptus nitens grows in tall open forest formations and in many 

instances pure stands. Preferred soils are well-drained, acidic loams. Parent materials 

include basalt, granite schist, shale and sandstone (Boland et al. 2006, Chippendale 

1988).  

 

The climate of the majority of the areas in which E. nitens occurs is cool temperate, with 

mild summers and cool to cold winters (Poynton 1979). Mean maximum temperature of 

the hottest month ranges from 19 - 27 0C, mean minimum of the coldest month ranges 

from -3 to -4 0C and mean annual temperature (MAT) ranges from 5 - 15 oC (Jovanovic 

and Booth 2002). In winter, frosts are numerous and severe. Light to moderate 

snowfalls possibly remaining on the ground for several days to a week or more at a time 

occur in the winter months throughout most of the species habitat (Boland et al. 2006). 

Eucalyptus nitens is confined to areas with a mean annual precipitation (MAP) of at 

least 550 mm, rising to over 2000 mm at certain locations (Boland et al. 2006, 

Jovanovic and Booth 2002). Rainfall distribution is more or less evenly spread 

throughout the year apart from the most northerly areas where rainfall has a distinct 

summer maximum. Months with less than 50 mm, even in the drier localities, are rare.  

 

Significance of Eucalyptus nitens   

Eucalyptus nitens is an important eucalypt species grown for commercial wood 

production in several countries around the world (Hamilton et al. 2008, Tibbits et al. 

1997). The species is the most important of all commercial temperate eucalypts grown 

in South Africa, mainly due to its high levels of cold, frost and snow tolerance, and 

excellent pulping properties (Gardner 2001, Swain et al. 2014). The results of a recent 

survey showed that commercial plantations of E. nitens currently cover approximately 

45 000 ha or 17.5% of the temperate eucalypt plantation forestry area in South Africa 

(Forestry South Africa 2013, R Gardner unpublished data 2014). Hybrids between E. 

nitens and the sub-tropical E. grandis have met with substantial success in South Africa 

over the past two decades (Gardner 2007, Zwolinsky and Bayley 2001). Clones of these 

hybrids tend to out-perform either parent species at sites in the warm temperate forestry 

zone where the conditions are too cold for successful E. grandis cultivation and/or too 

warm for optimal E. nitens growth (Smith et al. 2005, Zwolinsky and Bayley 2001). 
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Approximately 27 000 ha of the total Eucalyptus plantation area in South Africa is 

currently planted to E. grandis x E. nitens and E. nitens x E. grandis clonal material (R 

Gardner unpublished data 2014).    

 

Eucalyptus nitens in South Africa 

In South Africa, E. nitens is planted commercially in high elevation areas of the summer 

rainfall forestry regions. The approximate altitudinal and latitudinal ranges of the current 

E. nitens commercial plantings in South Africa are 1350 to 1900 m asl and 25.7 to 31.3 
0 S, respectively (R Gardner unpublished data 2014). The current recommended 

summer rainfall area climatic boundaries for optimum E. nitens vegetative growth are 

between 14 °C and 16 °C MAT, and > 825 mm MAP (Smit h et al. 2005, Swain and 

Gardner 2003). Research has shown that overall the central and northern provenances 

of E. nitens are best adapted for commercial pulpwood production in South Africa 

(Purnell and Lundquist 1986, Swain et al. 2013b).   

 

Eucalyptus nitens floral morphology 

Inflorescence 

The inflorescence in E. nitens is first discerned as a single bud (hereafter termed 

“inflorescence bud”) in the axil of a newly developing leaf (Pryor and Johnson 1971). 

The unit inflorescence consists of a condensed dichasial cyme, generally referred to as 

‘umbel’ or ‘umbellaster’ (Pryor 1976). All component incipient flower buds are enclosed 

by an involucre of bracts. As growth and expansion of the enclosed floral bud cluster 

takes place, the involucral bract is shed and the separate flower buds appear. It is 

customary to refer to the flower as a “bud” until the stage of opercula shed, after which it 

is referred to as a “flower” (Potts and Gore 1995). The sessile flower buds are attached 

to a common peduncle, forming an umbel (Brooker and Kleinig 1983). In E. nitens, the 

umbel is normally 7-flowered and is borne on an angular to slightly flattened peduncle 

(Boland et al. 2006).  

 

Flowers and fruits 

The individual flower buds within the umbel average about 7 mm (long) by 3 mm (wide) 

in size (Brooker and Kleinig 1983). Prior to anthesis, the developing inner floral organs 
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are protected by two conical bud caps (opercula), the outer operculum consisting of 

fused sepals (calycine/ sepaline operculum) and the inner operculum consisting of 

fused petals (corolline/ petaline operculum) (Pryor 1976, Pryor and Knox 1971). The 

sepaline operculum is shed at a relatively early stage of bud development, whereas the 

petaline operculum is shed shortly before commencement of anthesis (Ladiges et al. 

1995, Potts and Gore 1995, Pryor 1985, W Jones unpublished data 2014). Fruits 

(woody capsules) are sessile, ovoid in shape and approximately 7 x 5 mm in size 

(Brooker and Kleinig 1983). The valves (three to four) extend to rim level or are slightly 

exserted. 

 

Eucalyptus smithii 

Taxonomical classification 

Eucalyptus smithii (R.T. Baker), Gully Gum, is included in subgenus Symphyomyrtus, 

section Maidenaria, sub-section Euryotae, series Compactae (Brooker 2000). The only 

other species included in the latter series is E. badjensis (Big Badja Gum), also of 

commercial forestry importance in South Africa.  

 

Natural distribution 

Eucalyptus smithii occurs naturally over a range of habitats in rolling country in south 

eastern Australia. The species is found primarily on lower hillslopes, beside streams 

and at the edges of swamps, where the soils never dry out completely (Boland et al. 

1991). Eucalyptus smithii’s distribution is from the south-eastern end of the central 

tablelands in New South Wales (about 33 0 35.0 ' S latitude) southwards to south-west 

and eastern Victoria (about 37 0 34.0 ' S latitude) (Brooker and Kleinig 1983, 

Chippendale 1988). Gully Gum occurs over a range of elevations, from 1150 m asl in 

the north to 50 m asl in the south (Poynton 1979). Preferred soils are clay-loams or 

deep sandy loams over clays derived from sedimentary or volcanic parent material 

(Boland et al. 2006, Chippendale 1988). The climate of the majority of the areas in 

which E. smithii occurs is cool temperate to sub-humid (Poynton 1979). Mean maximum 

temperature of the hottest month ranges from 20 - 27 0C, mean minimum of the coldest 

month ranges from -3 to -7 0C and MAT ranges from 7 – 17 oC (Jovanovic and Booth 

2002). Regular, moderate frosts and light snowfalls occur during the winter months at 
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the inland sites (Boland et al. 2006). Eucalyptus smithii is confined to areas with a MAP 

of at least 610 mm, but this rises to about 1930 mm at certain locations (Jovanovic and 

Booth 2002, Poynton 1979). Rainfall is more or less uniformly distributed throughout the 

year with months recording less than 50 mm being rare.  

 

Significance of E. smithii  

Eucalyptus smithii is an important eucalypt species grown predominantly for essential 

oil production in various parts of the world (Clarke et al. 2008). 1,8-Cineole is the major 

component in the essential oil (Boland et al. 1991). In countries such as South Africa, 

China and Australia E. smithii is predominantly grown for pulpwood production due to 

the excellent pulping properties of its wood (Arnold et al. 2004, Swain and Gardner 

2002). The wood of the species ranks second to E. globulus on the basis of eucalypt 

pulpwood quality (Norris 2014). Due to the fairly high density of the wood, E. smithii is 

also highly suitable for wood-chip exporting for pulping purpose (Clarke et al. 1999, 

Gardner 2001). The results of a recent survey showed that commercial E. smithii 

plantations currently cover approximately 22 000 ha or 8.3% of the temperate eucalypt 

plantation forestry area in South Africa (Forestry South Africa 2013, R Gardner 

unpublished data 2014). 

 

Eucalyptus smithii in South Africa 

In South Africa, E. smithii is planted commercially in high elevation areas of the summer 

rainfall forestry belt (Gardner 2001). The species tolerates light to moderate frosts and 

snowfalls (Gardner and Swain 1996). The approximate altitudinal and latitudinal ranges 

of the current E. smithii commercial plantings in South Africa are 1050 to 1650 m asl 

and 25.5 to 30.5 0 S, respectively (R Gardner unpublished data 2014). The current 

recommended summer rainfall area climatic boundaries for optimum E. smithii 

vegetative growth are between 15 °C and 17 °C MAT, and > 825 mm MAP (Gardner 

2006, Smith et al. 2005). Research has shown that the northern and central 

provenances of E. smithii, e.g. Wombeyan Road and Tallaganda, respectively, in New 

South Wales, are best adapted for commercial pulpwood production in the summer 

rainfall area (Swain and Gardner 2002, Swain and Gardner 2003).  
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Eucalyptus smithii floral morphology 

Inflorescence 

The inflorescence in E. smithii is first discerned as a single bud (hereafter termed 

“inflorescence bud”) in the axil of a newly developing leaf (Pryor 1985). All component 

incipient flower buds are enclosed by an involucre of bracts. As growth and expansion 

of the enclosed floral bud cluster takes place, the involucral bract is shed and the 

separate flower buds appear. The inflorescence is axillary and simple, consisting of a 

condensed dichasial cyme (Pryor 1985). The pedicellate flower buds are attached to a 

common peduncle, forming an umbel (Brooker and Kleinig 1983). In E. smithii, the 

umbel is normally 7-flowered and is borne on an angular to slightly flattened peduncle 

(Boland et al. 2006).  

 

Flowers and fruits 

The individual flower buds within the umbel average about 7 mm x 4 mm in size 

(Brooker and Kleinig 1983). Prior to anthesis, the developing inner floral organs are 

protected by two conical bud caps (opercula), the outer operculum consisting of fused 

sepals (calycine/ sepaline operculum) and the inner operculum consisting of fused 

petals (coralline/ petaline operculum) (Pryor 1976, Pryor and Knox 1971). The sepaline 

operculum is shed at a relatively early stage of bud development, whereas the petaline 

operculum is shed shortly before commencement anthesis (Ladiges et al. 1995, Potts 

and Gore 1995, Pryor 1985, W Jones unpublished data 2014). The capsules are 

pedicellate, ovoid to subglobular or campanulate in shape and approximately 7 x 7 mm 

in size (Brooker and Kleinig 1983). The valves (usually three) are exserted. 

 

Temperate eucalypt flowering and seed production   

 

Reproductive growth and development 

Most eucalypts are heteroblastic (Ashton 1975, Pryor 1985). In E. nitens and E. smithii, 

the juvenile foliage is conspicuously different from adult foliage (Brooker and Kleinig 

1983). In most temperate eucalypts, including E. nitens and E. smithii, flowers are 

produced on the adult foliage spring flush of reproductively mature trees (Pryor 1985). 

The results of recent work on E. nitens and E. globulus suggest that the timing of 
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vegetative phase change and that of first flowering in temperate eucalypts are both 

physiologically (Gardner and Bertling 2005, Hasan and Reid 1995) and genetically 

(Jordan et al. 1999) independent. Genotype, physiological age and hormonal status of 

plants, and a range of environmental factors, are known to influence flower bud 

production in temperate eucalypts (Meilan 1997, Moncur and Boland 2000, Williams et 

al. 2003). 

 

Biological restraints to flower and seed production 

In South Africa, the main positive attributes of the commercial temperate eucalypt 

species are good adaptation to the cold, high elevation climatic conditions and 

favourable wood and pulping properties (Gardner 2001, Swain and Gardner 2003). A 

major negative though, is the shy-flowering and erratic seed production tendencies of 

the majority of the temperate eucalypt species (Chambers et al. 1997, Swain and 

Gardner 2002). Genotype, physiological age and hormonal status of plants, and a range 

of environmental factors, are known to influence flower bud production in temperate 

eucalypts (Meilan 1997, Moncur and Boland 2000, Williams et al. 2003). Seedling trees 

of important species such as E. badjensis, E. dunnii, E. nitens and E. smithii rarely 

flower before the age of eight years, and even then, the annual floral bud crops 

produced are sparse and erratic (Jones 2002, Swain and Gardner 2003, T-L Swain 

unpublished data 2014). The problem appears to lie not only in the lengthy juvenile 

phase, but also the exacting environmental requirements for triggering of flowering of 

the temperate eucalypt species (Hamilton et al. 2008, Jordan et al. 1999, Moncur and 

Hasan 1994). Reticent and inconsistent flowering are indeed a major hindrance to 

genetic improvement and commercial seed production in important temperate eucalypt 

species (Moncur et al. 1994, Reid et al. 1995, Swain and Gardner 2002). Over the past 

three decades, considerable temperate eucalypt reproductive biological research has 

been undertaken around the world, aimed at improving flowering and seed crop 

production in important temperate species such as E. globulus and E. nitens (Hamilton 

et al. 2008, Moncur and Boland 2000, Potts et al. 2007).  
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Environmental effects on flowering 

To date, winter cold and paclobutrazol (a plant growth regulating chemical) remain the 

most effective treatments for encouraging flowering in temperate Eucalyptus species 

(Hamilton et al. 2008, Hetherington and Jones 1990, Meilan 1997, Moncur 1992).  

 

Temperature 

Cold winter conditions appear pre-requisite for floral bud production in temperate 

eucalypts (Gardner 2003, Moncur 1992, Moncur and Hasan 1994). Amount of 

accumulated winter chilling correlated well with the ensuing floral bud crop in E. nitens 

(Gardner and Bertling 2005). Eucalyptus nitens appears to have a minimum winter 

chilling requirement of ≈ 40 CP (Chilling Portion, the chill unit of the Dynamic Model 

(Fishman et al. 1987, Erez and Fishman 1998)) for floral induction, regardless of 

whether paclobutrazol has been applied or not (Gardner and Bertling 2005). In South 

Africa, the climatic conditions of areas in which the temperate eucalypt commercial 

plantations and seed orchards are located offer inconsistent, apparently often 

insufficient, winter chilling for floral bud production in temperate eucalypts (Gardner and 

Bertling 2005, Schulze and Maharaj 2007). Sites suitable for rapid vegetative growth 

and timber production may not necessarily be suitable for flowering and seed 

production. In high elevation (> 1200 m asl) areas of the summer rainfall forestry belt, 

temperate eucalypts such as E. fraxinoides, E. nitens and E. smithii have been 

observed to produce flower buds more prolifically and consistently at exposed, rather 

than low-lying, sites (Gardner 2003).  

 

Soil moisture 

Drought stress has been implicated in the stimulation of flower bud production in a 

range of conifers and broadleaf forestry tree species (Philipson 1990, Nilsen and Orcutt 

1996). There is some evidence that a period of low water status in autumn/early winter 

may predispose reproductively mature field-grown eucalypts to flower (Moncur 1998). 

The results of a trial with potted E. globulus seedlings suggested that water stress may 

play a complimentary role together with other promoting factors such as cold and anti-

gibberellin treatments in the stimulation of floral induction in the species (Hasan and 

Reid 1995). However, Moncur and Boland (2000) reported that flower-bud production 
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did not occur in potted E. nitens grafts following subjection of the plants to various levels 

of soil moisture stress. In an experiment conducted across four high elevation sites in 

South Africa, cumulative drought stress days through winter did not correlate 

significantly with E. nitens floral bud crop in the ensuing summer (Gardner 2003). 

  

Photoperiod 

Precision of timing of developmental processes is of particular ecological significance 

for successful reproduction of plants (Larcher 1995). The role of photoperiod in 

stimulating a timeous floral response in a variety of crops (photoperiodic induction) has 

been intensively researched and is well documented (Salisbury and Ross 1992). 

Eucalyptus species produce flower buds in the leaf axils of new growth in spring (Tibbits 

1989, Jones and van Staden 2001), which suggests that floral initiation may be linked to 

photoperiod. However, Moncur (1992) and Moncur and Hasan (1994) found that, in 

contrast to many tree genera, floral development in temperate eucalypts is not day-

length dependent.  

 

Paclobutrazol 

Over the past two decades, paclobutrazol ((2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-

2-1,2,4-triazol-1-yl-pentan-3-ol), a chemical plant growth regulator, has been used 

almost routinely in temperate eucalypt seed orchards for assisting vegetative growth 

control and promoting precocious and abundant flowering (Williams et al. 2003, 

Hamilton et al. 2008). Paclobutrazol, a triazole derivative, interferes with the 

biosynthesis of gibberellin by inhibiting the oxidation of ent-kaurene to ent-kaurenoic 

acid (Graebe 1987, Hedden and Graebe 1985). Paclobutrazol, hereafter referred to as 

“PBZ”, does not replace winter chilling in the floral induction process in temperate 

eucalypts (Gardner 2003, Gardner and Bertling 2005). Rather, the chemical appears to 

act in an additive manner together with other inductive factors (Moncur and Hasan 

1994, Hasan and Reid 1995, Meilan 1997). Major negatives associated with the use of 

PBZ include its high cost, recalcitrant nature, and persistence in soils (Jackson et al. 

1996). For the latter two reasons, the chemical is not popular with environmentalists 

(Reid et al. 1995, Fletcher et al. 2000). Clearly, there is a need to develop a method of 
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lessening the dependency on PBZ for achieving satisfactory flowering and seed crop 

production in temperate eucalypt species in South Africa.   

 

Pollination and associated orchard problems  

In eucalypts, nectar production appears to be a function of the epidermal cells lining the 

floral cup between the staminal ring and the base of the style (Davis 1968). The 

breeding system of Eucalyptus appears to be well adapted for pollen-mediated gene 

flow (Pryor 1976). In South Africa, eucalypts are a major source of nectar for honey 

production (Johannsmeier and Mostert 2001). In the summer rainfall area, in contrast to 

the prolific flowering and nectar producing sub-tropical E. grandis, temperate eucalypt 

species cultivated for commercial pulpwood production (including E. nitens and smithii) 

are generally poor flowerers and unsuitable for commercial honey production (Gardner 

2004). Local eucalypt breeders and seed producers rely predominantly on insect cross-

pollination of small-flowered species such as E. nitens and E. smithii (Eldridge et al. 

1993, Swain et al. 2013a). In Australia, Hingston et al. (2004) found that E. nitens 

flowers seemed to be consistently unattractive to honeybees. In South Africa, flies and 

ants appear to be the predominant visitors to E. nitens and E. smithii flowers (Jones 

2002, R Gardner unpublished data 2013). Inter-tree (cross-) pollination success can be 

affected by an number of factors, including presence of pollination vectors, distance 

between trees/ flowers, difference in flowering times between genotypes and difference 

in flowering intensity (House 1997, Moncur and Boland 2000).  

 

The timing and duration of anthesis among genotypes within an orchard affects the 

degree of out-crossing and genetic makeup of the resultant seed crop (Kang et al. 2004, 

Stoehr et al. 1998). The genetic gain from seed orchards where sub-optimal flowering 

levels, synchronicity between genotypes and cross-pollination occur is at risk of being 

severely compromised (Griffin and Cotterill 1988, Swain et al. 2013a). In species such 

as E. nitens where geitonogamy is known to occur (Tibbits 1989), orchard-related 

problems include reduced capsule set, seed yield and seed viability (Moncur and 

Boland 2000, Williams et al. 1999). Although perusal of the published literature revealed 

scant information on E. smithii pollination biology, a similar problem may be present in 

orchards of the species.   
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Abstract 

Temperature is a key environmental trigger of flowering in many temperate woody 

plants. Over the past two decades, considerable site x Eucalyptus flowering interaction 

research has been undertaken in high elevation (> 1100 m asl) areas of the summer 

rainfall forestry regions in South Africa. A reliable method of accurately measuring and 

recording Eucalyptus bud temperature in field trials located at high elevation remote 

sites was required. Utilization of traditional methods for the purpose was not viable, due 

to the significant risk of data and meteorological equipment loss posed by vandalism, 

theft and severe weather. Between 1996 and 2004, a robust structure for housing the 

miniature Hobo® temperature logger (hereafter termed “Hobo pole”) was designed. 

During 2009 and 2010, a calibration experiment was conducted to investigate the 

relationship between E. nitens bud temperature (BudT), Hobo pole air temperature 

(HoboAT) and screen air temperature (ScrnAT). In the simple linear regression 

analyses for BudT on HoboAT, BudT on ScrnAT and ScrnAT on HoboAT, R2 values 

were generally greater and SE values lower for mid-winter data than for mid-summer 

data. In mid-winter, BudT on HoboAT gave the highest R2 value (0.99) and lowest SE 

value (0.49 oC) of all regressions. In mid-summer, BudT on HoboAT together with BudT 

on ScrnAT gave the highest R2 value (0.98). On the basis of SE, BudT on ScrnAT (0.77 

oC) ranked first, with BudT on HoboAT (0.79 oC) ranking second. Although these results 

could be seen as extremely promising, the degree of accuracy of representation of bud 

temperature by Hobo pole air temperature will likely only suffice for certain applications. 

Bud winter chill units calculated from modelled bud temperature data were suitably 

accurate. The use of loggers having greater temperature measurement accuracy, would 

likely contribute to a reduction in Hobo pole air temperature measurement error. 

 

 

Keywords: chill unit, Eucalyptus nitens, flowering, remote weather station, temperate 

eucalypt, temperature logger, thermocouple 
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Introduction 

 

The monitoring and measuring of climate variables in forestry field research trials in 

South Africa poses a major challenge. The trials are often in remote locations, and, 

based on experience, vandalism and/or theft of meteorological equipment poses a 

significant risk of data loss. Furthermore, in the case of temperate Eucalyptus site x 

flowering interaction research, trials are frequently located at high elevation (> 1200 m 

asl) sites in mountainous areas, where weather conditions are typically extreme. 

Frequent visits to such sites for equipment maintenance and downloading of data are 

often impractical, due to difficult road access and time and resource constraints. The 

potential costs of damage to/ loss of equipment are also considerable.   

 

The South African Atlas of Climatology and Agrohydrology (Schulze 2007) is a 

comprehensive source of South African climate information. However, the data is fairly 

coarse, being based on 1 minute by 1 minute (~ 1.7 x 1.7 km) grids derived from 

historical data from weather stations distributed across the country. The data are 

therefore only suitable for use on a macro-climatic scale. Geographical factors such as 

latitude, elevation and distance from sea/ ocean typically affect the macro-climate of 

particular areas. On a finer micro-climatic scale, topographical factors such as aspect, 

slope and relief can exert major influences on air, soil and plant foliage temperatures 

(Schulze and Horan 2007, Sharma et al. 2010). Air temperature commonly exerts a 

major influence on reproductive growth and development in temperate woody 

perennials (Meilan 1997, Tooke and Battey 2010). Winter cold is a key environmental 

trigger of floral induction in temperate eucalypts (Moncur and Hasan 1994, Moncur and 

Boland 2000, Gardner et al. 2013). The flowering stimulus is generally perceived in the 

leaves of temperate plants (Bernier 1988) and subsequently translocated to the apical 

meristems (Aukerman and Amasino 1998, Tremblay and Colasanti 2006). Following 

induction, in temperate evergreen crops such as domestic olive (Olea europea), buds 

can undergo conditioning according to influences, both internal and external 

(environmental), in their path towards irreversible commitment to the formation of 

reproductive structures (Fabbri and Benelli 2000, Jordan 2006). Little is known about 

the precise physiological processes implicated in temperate eucalypt flowering. 
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Progress has been made in quantifying the different levels of winter chilling associated 

with floral induction and initiation of important temperate eucalypts such as E. nitens 

and E. smithii (Gardner and Bertling 2005, Gardner et al. 2013, Gardner et al. 2014). 

Agricultural chill models, such as the Dynamic Model (Fishman et al. 1987, Allan 2004), 

require hourly temperature data for accurate calculation of chill units (Erez et al. 1990, 

Seeley 1996). For the purpose of conducting temperate Eucalyptus site-flowering 

interaction research in South Africa, there was a need to develop a reliable and secure 

method of measuring and recording Eucalyptus bud temperature, at remote, high 

elevation forestry sites within the summer rainfall area.    

 

In 1996, the Institute for Commercial Forestry Research (ICFR) established a series of 

E. nitens site x flowering interaction trials across a range of high elevation (> 1450 m 

asl), cool temperate (mean annual temperature ≤16 oC; Smith et al. 2005) sites in the 

summer rainfall area. There was a need to measure and record air and bud temperature 

in each of the trials. The Hobo® -Temp loggers (Onset Computer Corporation, Bourne, 

USA) had previously demonstrated suitability (adequate robustness, accuracy and 

memory capacity) for measurement and recording of air temperature and relative 

humidity via conventional methods (loggers housed in Stevenson Screens) in secure 

orchards located at research centres (Gardner 2003). The use of the Hobo thermistors 

for direct measurement of Eucalyptus nitens bud temperatures in high elevation field 

trials was found to be impractical. The thermistor measurements were sufficiently 

accurate, but the safety of the loggers and data was severely compromised due to the 

typical severity of weather (hail- and snow-storms) and risk of equipment theft at such 

sites (Gardner 2003). For the purpose of housing the Hobo loggers on-site in the 1996-

established field trials, in the same year the ICFR designed an initial robust structure 

and embarked upon experimenting with a few different prototypes of the latter. In 1999, 

the Hobo H8 Family loggers were introduced. With the establishment of a further more 

extensive site x eucalypt flowering interaction trial series in 2003/2004 (Gardner et al. 

2014), an improvement to the Hobo logger housing structure was carried out during 

2004. This facilitated increased accuracy of representation of actual air temperature, 

without comprising the robustness of the logger housing. This particular design was 
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used successfully in the monitoring of air temperature in all further ICFR site x flowering 

interaction research trials. 

 

We describe the specifications of the 2004-improved Hobo logger housing (hereafter 

termed “Hobo pole”). The results of an investigation into the relationship between Hobo 

pole air temperature, E. nitens bud temperature and radiation screen (hereafter termed 

“screen”) air temperature, and the relationship between chill units derived from the three 

temperature variables, are also discussed.     

 

 

Material and methods 

 

Hobo pole design specifications 

The 2004 Hobo pole basic design specifications are illustrated (Figure 1). The entire 

housing was constructed out of 1 mm-thick, mild steel. The exterior of the Hobo pole 

was painted with glossy white enamel paint.  

 

On-site Hobo pole and Hobo logger installation specifications 

The Hobo pole was installed upright in an open (un-shaded), grassed area alongside 

the northern boundary of each research block (Figure 1). On installation, the base plate 

was covered with a 100 mm-deep layer of poured concrete (15 kg dry weight), and this 

layer covered with topsoil to match the level of the surrounding soil surface. The Hobo 

logger was housed within a PVC pill-box within the cap of the Hobo pole, at a height of 

1.3 m above ground level (WMO 2008). The Hobo pole and cap was cleaned and re-

painted as necessary on a biannual basis.  

 

Bud and air temperature calibration experiment  

This experiment was conducted in and alongside an E. nitens grafted breeding seed 

orchard at the Mondi Mountain Home Research Centre in KwaZulu-Natal (29° 34.070’ 

S; 30° 16.467’ E; elevation 1133 m; mean annual air  temperature (MAT_Air) 16.2 °C). 

The orchard was protected by a covering of 20% shade rated (80% solar irradiance 

transmittance) hail-netting. Screen air temperature was measured at 1.3 m above 
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ground level using a HygroClip® S3 probe (Rotronic AB, Bassersdorf, Switzerland) 

mounted in a 6-plate gill radiation shield supported on a white-painted wooden pole. 

The HygroClip probes were connected to a CR1000 datalogger and AM16/32 Channel 

Multiplexer (Campbell Scientific Inc., Logan, USA). Hobo pole air temperature was 

measured and logged using the procedure described previously. Thermistor accuracy 

and resolution data for the Hobo H8 series temperature logger are presented in Figure 2 

(Borsari pers. comm.1). At 0 oC and 20 oC thermistor temperature, Hobo H8 temperature 

logger measurement accuracy (including sensor resolution error) was 0.75 oC and 0.70 
oC, respectively. The Hobo and HygroClip logger poles were positioned 2.0 m apart in 

an open (un-shaded), grassed area alongside the northern boundary of the orchard. 

Within the orchard, bud temperatures were measured in two three-year old grafted E. 

nitens trees at 1.3 m above ground using copper-constantan thermocouple (TC) 

sensors, constructed from 24-gauge (insulated) wire, connected to the datalogger 

system. The calibration differences between the TCs and HygroClip were negligible. In 

each tree, one TC was inserted in a shoot located on the north side of the tree and the 

other in a shoot on the south side of the tree. Each TC was inserted beneath the bark 

within the cambial layer alongside an axillary bud located on the south-facing side of an 

actively growing, mature (woody) lateral shoot. The logged temperatures of the four 

buds were averaged to represent E. nitens bud temperature. The measured trees were 

situated approximately 10 m from one another and the Hobo and HygroClip logger 

poles. Each tree was surrounded by two buffer rows of E. nitens grafted trees of similar 

age. Bud temperature, Hobo pole air temperature and screen air temperature were 

logged on a 2-min interval basis, between 1 April 2009 and 30 September 2010. These 

data were later averaged to hourly temperature data. Chill units were calculated from 

hourly temperature data using the Dynamic Model, which assigns chill units termed 

Chilling Portions (CP) (Erez and Fishman 1998). 

 

Statistical analysis 

Simple linear regression analyses using Genstat® (2008) were carried out to determine 

the relationship between E. nitens bud temperature, Hobo pole air temperature and 

                                            
1 Borsari P. 2006. Onset Computer Corporation, Bourne, USA. www.onsetcomp.com 
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screen air temperature, and the relationship between chill units derived from the three 

temperature variables. 

 

 

Results 

 

Over a five year period of continuous recording of Hobo air temperature at 13 trial sites 

across the summer rainfall temperate forestry area, minimal problems were 

encountered with the functioning of the equipment (Gardner et al. 2014). At one site, in 

two consecutive years, the Hobo pole cap lock was broken and the loggers stolen. The 

vandalism problem at the particular site was eventually solved by semi-permanently 

welding the cap onto the pole upright.  Missing data were patched using measured data 

from a nearby Hobo logger and pole. 

 

Bud and air temperature calibration experiment 

During 2009, mean hourly Hobo pole air temperature (14.77 °C) and mean hourly 

screen air temperature (15.53 °C) were 0.6 °C lower  and 0.16 °C higher than mean 

hourly E. nitens bud temperature (15.37 °C), respectively (Table 1) . During 2010, the 

differences were similar to 2009, with mean hourly Hobo pole air temperature (15.81°C) 

and mean hourly screen air temperature (16.57 °C) b eing 0.62 °C lower and  0.14 °C 

higher than mean hourly bud temperature (16.43 °C),  respectively. Based on screen air 

temperature, the mean hourly temperature for 2009 (15.53 °C) was more relevant to the 

MAT range of the 2003/2004 field trial series (13.8 - 15.5 °C) (Gardner et al. 2014) than 

the mean hourly temperature for 2010 (16.57 °C).  

 

During mid-winter 2009 and mid-summer 2009/2010, Hobo pole air mean daily 

maximum temperatures (18.63 °C and 23.48 °C, respec tively) and screen air mean 

daily maximum temperatures (18.35 °C and 23.41 °C) were lower than E. nitens bud 

mean daily maximum temperatures (18.96 °C and 25.21  °C) (Table 1). However, in the 

same mid-winter and mid-summer periods, Hobo pole air mean daily maximum 

temperatures were closer to bud mean daily maximum temperatures than were screen 

air mean daily maximum temperatures. 
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During mid-winter 2009 and mid-summer 2009/2010, Hobo pole air mean daily 

minimum temperatures (4.42 °C and 13.0 °C, respecti vely) were lower than E. nitens 

bud mean minimum temperatures (5.32 °C and 14.15 °C ), whereas screen air mean 

daily minimum temperatures (6.64 °C and 14.18 °C) w ere higher than bud mean 

minimum temperatures (Table 1). During winter, Hobo pole air mean daily minimum 

temperature was closer to bud mean daily minimum temperature than was screen air 

mean daily minimum temperature, but in mid-summer, screen air mean daily minimum 

temperature was closer to bud mean daily minimum temperature than was Hobo air 

mean daily minimum temperature (Table 1).  

 

During mid-winter 2009, Hobo pole air mean diurnal temperature range (14.21 °C) 

differed from that of E. nitens bud (13.64 °C) by 0.57 °C, whereas screen air mean  

diurnal temperature range (11.71 °C) differed from that of bud by 1.93°C (Table 1). A 

similar trend was observed in mid-summer 2009/2010, where Hobo pole air mean 

diurnal temperature range (10.48 °C) differed from that of E. nitens bud (11.06 °C) by 

0.58 °C, and screen air mean diurnal range (9.23 °C ) differed from bud by 1.83 °C.  

The mean diurnal temperature waves for mid-winter 2009 and mid-summer 2009/ 2010 

(Figures 3 and 4, respectively) illustrated seasonal effects regarding the relationships 

between E. nitens bud temperature, Hobo pole air temperature and screen air 

temperature. During mid-winter 2009, Hobo pole air mean daily maximum and minimum 

temperatures were on average 0.33 °C and 0.9 °C low er than bud mean daily maximum 

and minimum temperatures. In mid-summer, Hobo pole air mean daily maximum and 

minimum temperatures were on average 1.73 °C and 1. 16 °C lower than E. nitens bud 

mean daily maximum and minimum temperatures. Alternatively, during mid-winter 2009, 

screen air mean daily maximum and minimum temperatures were on average 0.61 °C 

lower and 1.32 °C higher than bud mean daily maximu m and minimum temperatures, 

whereas during mid-summer, screen air mean daily maximum and minimum 

temperatures were 1.8 °C and 0.03 °C higher than E. nitens bud mean daily maximum 

and minimum temperatures. Thus, for increased calibration accuracy, separate models 

would need to be developed for winter and summer temperature data. A window period 

of a few weeks could be used for this purpose.  
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The results of simple linear regression analyses (including best fit models) for E. nitens 

bud temperature on Hobo pole air temperature, E. nitens bud temperature on screen air 

temperature, and screen air temperature on Hobo pole air temperature during mid-

winter (2009) and mid-summer (2009/2010) are presented (Figures 5 to 10). In all three 

of the latter relationships, higher percentage variances were accounted for during mid-

winter than in mid-summer (Table 2). In mid-winter, the regression of bud temperature 

on Hobo pole air temperature produced the highest R2 value (0.99) of all regressions. In 

mid-summer, the regressions of bud temperature on Hobo pole air temperature and bud 

temperature on screen air temperature produced the highest R2 value of 0.98. 

 

Accumulated winter (April to September) chill units were calculated for E. nitens bud 

temperature, Hobo pole air temperature and screen air temperature at Mountain Home 

during 2009 and 2010 (Figure 11). According to 2009 and 2010 winter CP totals for bud 

temperature (54.8 CP and 39.6 CP), Hobo pole air temperature (55.3 CP and 41.6 CP) 

and screen air temperature (56.6 CP and 39.6 CP), the 2009 winter was markedly 

cooler than the 2010 winter (Table 3). In 2009, Hobo pole air temperature and screen 

air temperature accumulated 0.5 CP and 1.8 CP more than bud temperature (0.91% 

and 3.3% respective differences) (Table 3 and Figure 11). During the warmer 2010 

winter, Hobo pole air temperature began accumulating chill units 13 days prior to chill 

unit accumulation commencement by bud temperature and screen air temperature on 

24 April (Table 3). The additional 3.4 CP accumulated by Hobo pole air temperature in 

this 13-day period were carried through the end of winter total (41.6 CP).  

 

 

Discussion 

 

Based on the minimal problems encountered in-field over a period of five years, the 

Hobo logger/Hobo pole combination appears to offer one practical method of monitoring 

Eucalyptus bud temperature at remote, high elevation forestry sites in South Africa.      
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Bud and air temperature calibration 

The lower temperature measurement accuracy capability of the Hobo H8 logger 

compared to that of the HygroClip should be considered in all deductions concerning 

Hobo logger temperature data. On the basis of accuracy of measurement, the Hobo 

pole yielded satisfactory results in the bud and air temperature calibration experiment.  

 

The greatest disparity between Hobo pole air and screen air temperatures occurred 

during nighttime. Mean daily minimum temperatures for Hobo pole air were slightly 

lower than those for screen air, in both the winter and summer months. The most likely 

reason for this was the greater thermal conductivity of the metal Hobo pole compared to 

that of air. The disparity between Hobo pole air and E. nitens bud mean daily 

temperature minima was substantially less than that between Hobo pole air and screen 

air mean daily temperature minima. Substituting the steel material of the Hobo pole 

structure with plastic or wood material would likely reduce the bias between Hobo pole 

air and screen air temperature (WMO 2008). However, based on experience, the safety 

of the housed meteorological equipment and stored data would be substantially 

compromised. 

 

Based on the 2009 mid-winter and 2009/2010 mid-summer data, Hobo pole air mean 

daily maximum and minimum temperatures and diurnal temperature ranges were closer 

to the same temperature criteria for E. nitens bud than were screen air mean daily 

maximum and minimum temperatures and diurnal temperature ranges (Table 1). During 

mid-winter, Hobo pole air mean hourly temperature correlated perfectly with bud mean 

hourly temperature, whereas screen air mean hourly temperature did not. During mid-

summer, both Hobo pole and screen air temperatures (15.45 °C and 15.96 °C) 

underestimated bud mean hourly temperature (18.98 °C) by fairly large margins (Table 

1). The developed seasonal regression equations provide a means of improving the 

accuracy of E. nitens bud and screen air temperature data modelled from Hobo pole air 

temperature data. All regression analyses carried out in this study utilized hourly 

temperature data calculated from 2-min interval data in order to increase the accuracy 

of the developed relationships. Hourly Hobo pole air temperature data calculated from 
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coarser interval temperature data may yield a less accurate result, and this would need 

investigating, so that corrections can be made where necessary. 

 

Based on Mountain Home 2009 winter temperature data, total CP (chill units of the 

Dynamic Model) modelled for Hobo pole air temperature were closer to that for E. nitens 

bud temperature than for screen air temperature (Table 3). A possible reason for this 

was the smaller winter diurnal temperature ranges of screen air temperature compared 

to that for Hobo pole air and E. nitens bud temperature, as indicated by the hourly 

means for 2009 and 2010 (Table 1). High daily temperature maxima and diurnal 

temperature amplitudes during winter are generally associated with chilling negation 

and lowered levels of chilling accumulation (Couvillon and Erez 1985, Seeley 1996), 

particularly in areas with mild winters (Erez 2000). This is further indicative of the 

importance of using bud temperature, rather than air temperature, in studies such as 

this. The additional 3.4 CP accumulated by Hobo pole air temperature (41.6 CP total) 

over that accumulated by bud or screen air temperature (39.6 CP total) during 2010 

winter is possible further indication that the Hobo pole method of monitoring bud 

temperature is most suitable for high elevation (> 1200 m asl) sites in the summer 

rainfall temperate eucalypt forestry areas. 

 

 

Conclusions  

 

A practical method of monitoring Eucalyptus bud temperature with a satisfactory level of 

accuracy at remote, high elevation sites in the summer rainfall forestry areas of South 

Africa was developed. The Hobo pole/ logger combination developed demonstrated a 

high level of robustness, i.e. the ability to withstand inclement weather and general lack 

of vulnerability to vandalism. Through application of the separate temperature 

regression models developed for winter and summer temperature data, Hobo pole air 

temperature has the ability to serve as a surrogate to bud temperature. The use of 

miniature loggers having greater temperature measurement accuracy would likely 

contribute to a reduction in Hobo pole air temperature measurement error and therefore 

improved estimates of bud temperature.           
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Table 1: Mean daily maximum, daily minimum, diurnal range and hourly E. nitens bud, Hobo pole air and screen air 
temperatures for 2009 and 2010 at Mountain Home. 
  

  Annual1  Mid-winter2  Mid-summer3 
2009  BudT HoboAT  ScrnAT  BudT HoboAT  ScrnAT  BudT HoboAT  ScrnAT 
Mean daily maximum (oC)  23.21 22.42 21.87  18.96 18.63 18.35  25.21 23.48 23.41 
Mean daily minimum (oC)  9.75 8.90 10.57  5.32 4.42 6.64  14.15 13.00 14.18 
Mean diurnal range (oC)  13.46 13.52 11.30  13.64 14.21 11.71  11.06 10.48 9.23 
Mean hourly (oC)  15.37 14.77 15.53  11.25 11.25 12.59  18.98 15.45 15.96 
2010             
Mean daily maximum (oC)  24.58 24.16 23.22  19.83 19.60 19.25  25.28 24.02 23.21 
Mean daily minimum (oC)  10.62 9.66 11.42  5.10 3.45 6.06  13.97 13.40 14.64 
Mean diurnal range (oC)  13.96 14.50 11.80  14.73 16.15 13.19  11.31 10.62 8.57 
Mean hourly (oC)  16.43 15.81 16.57  11.41 10.53 11.96  18.50 17.87 18.36 
1 Means for the entire year (1 January to 31 December)  
2 Means for the period 7 June to 5 July 
3 Means for the periods 7 December 2009 to 4 January 2010 (termed 2009) and 8 December 2010 to 5 January 2011 (termed 2010) 
BudT = Eucalyptus nitens bud temperature; HoboAT = Hobo pole air temperature; ScrnAT = screen air temperature  
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Table 2: R-squared (R2) values and estimates of the standard error of observation (SE) 
from the 2009 mid-winter and 2009/2010 mid-summer hourly Eucalyptus nitens bud, 
Hobo pole air and screen air temperature simple linear regressions. 
 
Response/ Explanatory variable  Mid-winter1  Mid-summer2 
  R2  SE (oC)  R2  SE (oC) 
BudT on HoboAT  0.99 0.49  0.98 0.79 
BudT on ScrnAT  0.98 0.67  0.98 0.77 
ScrnAT on HoboAT  0.98 0.72  0.97 0.86 
1The period 7 June 2009 to 5 July 2009 
2The period 7 December 2009 to 4 January 2010  
BudT = Eucalyptus nitens bud temperature; HoboAT = Hobo pole air temperature; ScrnAT = screen air temperature  
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Table 3: Chilling Portion (CP) accumulation for the variables Eucalyptus nitens bud 
temperature, Hobo pole air temperature and screen air temperature at Mountain Home 
during 2009 and 2010. 
 
  BudT  HoboAT  ScrnAT 

 Commence1 Total2  Commence1 Total2  Commence1 Total2 
Year  CP  CP  CP  CP  CP CP 
2009  21 April 54.8  21 April  55.3   21 April 56.6 
2010  24 April 39.6  11 April 41.6  24 April 39.6 
1Date of commencement of chill unit accumulation 
2Total CPs accumulated between the date of commencement and 30 September each year 
BudT = Eucalyptus nitens bud temperature; HoboAT = Hobo pole air temperature; ScrnAT = screen air temperature  
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Figure 1: Basic design specifications (not to scale) of the structure, termed “Hobo pole”, 
used to house the Hobo H8 series miniature temperature loggers. [1 = PVC (0.8 mm 
thick) cylindrical container with screw-top, 80 mm high x 50 mm diameter (Ø); 1a = 
horizontal circular apertures, 25 mm Ø; 1b = four vertical circular apertures, 25 mm Ø; 2 
= Hobo H8 series logger; 3 = Hobo pole “cap”; 4 = cap locking pin; 5 = Hobo pole main 
upright, 50 mm outside Ø; 6 = ventilator holes, 15.6 mm x 24.8 mm apart, 9 mm Ø; 7 = 
Hobo pole base plate, 200 mm x 200 mm]. Insert shows positioning of Hobo pole 
alongside field trial block 
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Figure 2: Temperature accuracy and resolution of Hobo H8 series miniature 
temperature logger 
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Figure 3: Mean mid-winter (7 June to 5 July) diurnal temperature variation at Mountain 
Home during 2009. BudT= E. nitens bud temperature; HoboAT = Hobo pole air 
temperature; ScrnAT = screen air temperature. Mean sunrise and sunset times for this 
period were 06:51 and 17:05, respectively (SAAO 2013)  
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Figure 4: Mean mid-summer (7 December 2009 to 4 January 2010) diurnal temperature 
variation at Mountain Home. BudT = E. nitens bud temperature; HoboAT = Hobo pole 
air temperature; ScrnAT = screen air temperature. Mean sunrise and sunset times for 
this period were 04:52 and 18:57, respectively  
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Figure 5: Relationship between E. nitens bud temperature and Hobo pole air 
temperature during mid-winter 2009 (7 June to 5 July) at Mountain Home. BudT = E. 
nitens bud temperature; HoboAT = Hobo pole air temperature. Temperatures were 
logged on a 2-min interval basis and these data averaged to hourly data and then 
plotted. Dashed line represents 1:1 relationship 
  

y = 0.9518x + 1.1222
R² = 0.99

-5

0

5

10

15

20

25

-10 -5 0 5 10 15 20 25

B
ud

T
 (

o C
)

HoboAT (oC)



50 
 

 
 
 
Figure 6: Relationship between E. nitens bud temperature and screen air temperature 
during mid-winter 2009 (7 June to 5 July) at Mountain Home. BudT= E. nitens bud 
temperature; ScrnAT = screen air temperature. Temperatures were logged on a 2-min 
interval basis. These data were averaged to hourly data and then plotted. Dashed line 
represents 1:1 relationship 
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Figure 7: Relationship between screen air temperature and Hobo pole air temperature 
during mid-winter 2009 (7 June to 5 July) at Mountain Home. ScrnAT= screen air 
temperature; HoboAT = Hobo pole air temperature. Temperatures were logged on a 2-
min interval basis. These data were averaged to hourly data and then plotted. Dashed 
line represents 1:1 relationship 
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Figure 8: Relationship between E. nitens bud temperature and Hobo pole air 
temperature during mid-summer 2009/2010 (7 December to 4 January) at Mountain 
Home. BudT = E. nitens bud temperature; HoboAT = Hobo pole air temperature. 
Temperatures were logged on a 2-min interval basis. These data were averaged to 
hourly data and then plotted.Dashed line represents 1:1 relationship 
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Figure 9: Relationship between E. nitens bud temperature and screen air temperature 
during mid-summer 2009/2010 (7 December to 4 January) at Mountain Home. BudT = 
E. nitens bud temperature; ScrnAT = screen air temperature. Temperatures were 
logged on a 2-min interval basis. These data were averaged to hourly data and then 
plotted. Dashed line represents 1:1 relationship 
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Figure 10: Relationship between screen air temperature and Hobo pole air temperature 
during mid-summer 2009/2010 (7 December to 4 January) at Mountain Home. ScrnAT = 
screen air temperature; HoboAT = Hobo pole air temperature. Temperatures were 
logged on a 2-min interval basis. These data were averaged to hourly data and then 
plotted. Dashed line represents 1:1 relationship  
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Figure 11: Accumulation of Chilling Portions (CP) for E. nitens bud temperature, Hobo 
pole air temperature and screen air temperature at Mountain Home during (a) 2009 and 
(b) 2010. BudT= CP for E. nitens bud temperature; HoboAT = CP for Hobo pole air 
temperature; ScrnAT = CP for screen air temperature  
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Abstract 

 

In 2003/ 2004, a series of Eucalyptus nitens flowering trials were established across a 

range of high elevation sites within the summer rainfall forestry areas of South Africa. 

The interaction between a range of climate and landform factors and paclobutrazol 

application on E. nitens floral bud production was investigated. The main aim was to 

define E. nitens site requirements for optimal floral bud crop production. At five years, 

paclobutrazol application reduced E. nitens tree height (mean of four grafted clones) by 

30%. Regardless of whether PBZ was applied or not, E. nitens floral bud production 

varied markedly across sites, in both fifth and sixth crop years. Of all landform factors, 

slope aspect had the greatest influence on E. nitens floral bud crop production.  Within 

the applied elevation and MAT ranges (> 1550 m asl and ≤ 15.5 °C, respectively), 

south-west, south and west-facing slopes (in order of decreasing effectiveness) exerted 

a strong positive effect on E. nitens floral bud production, regardless of whether PBZ 

was applied or not. The specific environmental factors associated with the positive 

reproductive growth response in E. nitens to these slope aspects remain to be 

determined. The results of the investigations indicated that, through careful site 

selection, the dependency on paclobutrazol to achieve satisfactory floral bud crop 

production in E. nitens can be substantially reduced.   

 

 

Keywords  

 

Chill models, cold-tolerant eucalypt, E. nitens, floral induction, flowering, seed orchard, 

temperate eucalypt, winter chilling  
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Introduction 

 

Eucalyptus nitens is an important species planted for commercial wood production in 

the cool temperate, summer rainfall forestry areas of South Africa (Smith et al. 2005, 

Swain et al. 2014). The species is renowned for high levels of cold, frost and snow 

tolerance, and excellent wood and pulping properties (Gardner 2001, Swain and 

Gardner 2003). Eucalyptus nitens is difficult to propagate vegetatively, and to date all 

commercial plantings of the species have comprised seedlings. The South African 

forestry industry is highly dependent on the production of high quality, locally-bred E. 

nitens seed for the purpose. Seedling trees of E. nitens rarely flower before the age of 

eight years, and even then, annual floral bud crops produced are sparse and erratic 

(Jones 2002, Swain and Gardner 2003). The latter traits hinder E. nitens genetic 

improvement and commercial seed production (Moncur and Boland 2000, Swain and 

Gardner 2002). 

 

Eucalyptus nitens flowering controls are not fully understood. Neither photoperiod nor 

drought stress exerted a noticeable effect on E. nitens floral induction (Gardner 2003, 

Hasan and Reid 1995, Moncur 1998). A certain period, or amount, of winter cold is a 

pre-requisite for the species to produce flower buds (Moncur and Hasan 1994, Williams 

et al. 2003). In South Africa, E. nitens was noticed to flower more prolifically and 

consistently at exposed, rather than low-lying, sites in the high elevation (> 1200 m asl) 

areas where the species is grown commercially (Gardner 2003). The sites suitable for 

E. nitens timber production are not necessarily those suitable for floral bud and seed 

crop production in the same species (Gardner et al. 2013).  

 

Eucalyptus nitens has a minimum winter chilling requirement of approximately 40 

Chilling Portions (CP, the unit of the Dynamic Model (Erez and Fishman 1998, Fishman 

et al. 1987)) for floral induction (Gardner and Bertling 2005, Gardner et al. 2013). 

Eucalyptus nitens genotypes appear to differ in chilling requirement for floral bud 

production, both across and within provenance (Gardner 2003, Gardner et al. 2013). 

This phenomenon resembles the genotypical/ cultivar chilling requirement differences 

for endodormancy release occurring in temperate fruit crops (George and Erez 2000, 
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Powell et al. 1986, Seeley 1996). In E. nitens, paclobutrazol (PBZ) has the potential to 

significantly reduce time to first flowering in seedlings and increase overall flower and 

seed crop production (Potts et al. 2007, Williams et al. 2003), depending on whether 

trees have been exposed to sufficient winter cold or not. PBZ is highly promotive of 

flowering in E. nitens at medium to high winter chilling levels, i.e. between 55 and 90 CP 

(Gardner and Bertling 2005, Gardner et al. 2013). PBZ is used almost routinely in 

temperate eucalypt seed orchards for the promotion of precocious and abundant 

flowering (Gardner et al. 2013, Hamilton et al. 2008). Disadvantages associated with the 

use of PBZ include the recalcitrant nature and persistence of the chemical in soils 

(Fletcher et al. 2000, Jackson et al. 1996), and the high cost of its application. 

Therefore, investigating ways of lessening the dependency on PBZ to achieve 

satisfactory flowering and seed crop production in E. nitens is warranted.  

 

During the summer of 2003/ 2004, an E. nitens site x PBZ x flowering interaction trial 

series was established across a wide range of high elevation, high chill temperate 

eucalypt forestry sites in the summer rainfall area of South Africa. The main objective 

was to explore the interactive effect of a range of climate and landscape factors 

(particularly those associated with air temperature) and PBZ on E. nitens floral bud 

production. The main aim was to define the site requirements for maximal floral bud 

production in E. nitens. Such information would allow future informed siting of E. nitens 

orchards, and possibly lead to a reduced dependency on PBZ to achieve satisfactory 

flowering and seed production levels in the same species. Furthermore, the data could 

be used in the development of a GIS (Geographical Information System) tool for the 

prediction of optimal E. nitens flowering sites in the summer rainfall area.  

 

This paper discusses the outcomes of the research carried out between 2003 and 2011. 

 

 

Material and methods 

The trial series was established across 12 sites within the summer rainfall forestry 

region, between December 2003 and April 2004.  
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Site conditions 

The latitudinal range of trial sites covered almost the entire span of the summer rainfall 

temperate eucalypt forestry belt, i.e. from 29° 54’  S in the south near Maclear, to 25° 02’ 

S in the north near Sabie (Table 1). The primary site selection criteria were mean 

annual air temperature (MAT) between 13.5 and 16.0 °C, elevation of more than 1550 

and less than 1850 m (asl) and soil depth ≥ 0.8 m. In South Africa, the altitudinal and 

MAT criteria for optimum E. nitens vegetative growth is 1350-1900 m and 14-16 °C 

(Smith et al. 2005, Swain and Gardner 2003). Water stress is known to stimulate flower 

bud production in a number of woody angiosperms (Davenport 1990, George and Erez 

2000, Meilan 1997), and therefore drought stress was minimized as a factor in floral bud 

production by selecting sites with high mean annual precipitation (MAP) (> 840 mm) and 

uniformly deep soils (> 0.8 m) (Table 1) (Darrow 1994, Schönau and Grey 1987). Within 

the above MAT and altitudinal confines, sites were selected for maximum likelihood of 

high levels of annual winter chilling, i.e. sites with high levels of exposure, relative relief 

and steepness of slope (Gardner and Bertling 2005, Schulze 2007a, Schulze and Horan 

2007). The altitudinal range of this trial series (1568-1828 m) was substantially narrower 

than that of the 1996 trial series (1465-1995 m), although the MAT ranges were similar 

(13.8-15.5 °C versus 13.6-15.2 °C) (Gardner and Ber tling 2005). Most of the sites 

selected were within the optimal E. nitens vegetative growth range (Smith et al. 2005, 

Swain and Gardner 2003). Following trial establishment, regular uniform weed control 

was carried across all sites on a biannual basis.    

 

Plant material 

In August 2003, scions from four genotypes (ICFR breeding selections) (Table 2) were 

grafted onto six-month old E. nitens seedlings grown from South African improved 

commercial seed. The scions were collected from reproductively mature (nine years or 

older) grafted ramets in the ICFR and Sappi clonal seed orchards (CSOs) at Mountain 

Home and Tweedie, respectively. Eucalyptus nitens was represented by two (scion) 

provenances forming part of the South African breeding populations (Swain and 

Gardner 2002). Each provenance was represented by two (scion) genotypes differing in 

flowering potential (Table 3). 



61 
 

Experimental design and treatments 

A 2 x 4 factorial experiment consisting of 32 grafted trees, with treatments replicated 

twice, was laid out as a split plot design (Gomez and Gomez 1984). “PBZ application” 

(PBZ0 = nil PBZ applied (control), PBZ1 = PBZ soil drench applied) was assigned as 

whole plot Factor A, and “Clone (scion genotype)” (four individual clones) as sub-plot 

Factor B (Table 3). Each experimental unit consisted of two trees (2-tree contiguous 

plot) with both trees being measured. Trees were spaced 4 m (across slope) x 5 m 

apart. Due to the sloped nature of most of the sites, even though PBZ is known to have 

low mobility in soils (Jackson et al. 1996, Reid et al. 1995), the whole plots (PBZ 

treatments) were laid out across the slope to exclude possible contamination of the 

PBZ0 treatment plots by PBZ from the PBZ1 plots. Each experiment was surrounded by 

two buffer rows of grafted trees of similar species. 

 

Paclobutrazol treatment 

The PBZ treatment was applied during late summer 2006 (March-April), approximately 

two years after trial establishment. A suspension of Avocet® (formulation 250 g L-1 PBZ, 

Fine Agrochemicals Ltd, Whittington, UK) was applied as a soil drench at a rate of 0.025 

g a.i. per mm basal stem circumference (BSC) (Gardner and Bertling 2005, Gardner et 

al. 2013). The latter measurement was taken at the narrowest point between graft union 

and lowest primary lateral (branch) on the scion. Each calculated PBZ dose was 

dispersed in 5.0 L water and applied evenly to the soil surface in a 1.0 m radius around 

the base of the tree. Prior to application, a 150 mm high “wall” was created around each 

tree at about 1.25 m radius to prevent possible run-off of the PBZ / water suspension 

due to steepness of slope or heavy rain within the ensuing few days.  

 

Data collection    

Air temperature measurement  

Air temperature was measured on an hourly basis at each of the experimental sites, 

from time of establishment to time of completion of the experiments. Because of the risk 

of vandalism and/ or theft of meteorological equipment at the remote trial localities, a 

robust data logger housing (hereafter termed “Hobo pole”) was used to house the 
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Hobo® H8 series miniature temperature loggers (Onset Computer Corporation, Bourne, 

USA). The Hobo pole was designed, tested and refined by the ICFR over a period of 

eight years, between 1996 and 2004 (Gardner et al. 2014). At each site, the Hobo pole 

was positioned in a non-shaded, grassed area 10 m from the northern boundary (outer 

surround row) of the trial. Calibration curves developed were used to model hourly 

radiation screen (hereafter termed “screen”) air temperature data from hourly Hobo pole 

air temperature data (refer Chapter 3).  

 

Chill unit calculation 

Of three popular models tested, the Dynamic Model (Erez and Fishman 1998, Fishman 

et al. 1987) quantified E. nitens winter chilling accumulation most accurately across a 

range of South African summer rainfall temperate eucalypt plantation forestry sites 

(Gardner and Bertling 2005). The Dynamic Model gives a more accurate account of the 

effectiveness of winter chilling in areas with mild winters than the Utah Model (Linsley-

Noakes and Allan 1994, Richardson et al. 1974). However, the Daily Positive Utah Chill 

Unit Model, a modification of the Utah Model, showed a high degree of accuracy in 

calculating deciduous fruit tree crop chilling accumulation in warmer growing areas of 

South Africa (Linsley-Noakes et al. 1994). The latter model assigns Daily Positive Utah 

Chill Units (DPCUs), and long-term mean DPCUs for May to September are available 

on a 1 minute by 1 minute grid basis for the whole of South Africa (Schulze 2007a). 

Comparison of the results obtained for screen air temperature data measured at 

Mountain Home over three seasons (2008 - 2010) using the Dynamic and the Daily 

Positive Utah Chill Unit Models indicated that the ratio between the two (CP:DPCU) is 

approximately 1:17 (R. Gardner, unpublished data, 2014). In the main deciduous fruit-

growing areas of South Africa, winter chill units generally begin accumulating in May 

(Schulze and Maharaj 2007a). However, in the main temperate eucalypt plantation 

forestry areas of the country which are located predominantly in the summer rainfall 

region, chill units generally begin accumulating in April (Gardner 2003, Gardner et al. 

2013). Winter daily CP and DPCU totals were calculated for each site using modelled 

hourly screen air temperature data (Gardner et al. 2014). 
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Vegetative growth measurement 

Tree height was measured on trial planting anniversary date each year following trial 

establishment for five years.  

 

Reproductive growth assessment 

A flowchart illustrating the sequence of events pertaining to E. nitens annual floral bud 

crop production and assessments between 2004 and 2010 is presented in Figure 1. 

Floral bud abundance was assessed on an individual tree basis in February and May/ 

June of each year. In the summer rainfall area, E. nitens inflorescence buds emerge 

between October and late January, the timing of emergence depending on long- and 

short-term environmental conditions (R. Gardner, unpublished data, 2014). By mid-May/ 

early June, the majority of the involucral bracts are shed and the umbels 

(inflorescences) with their individual flower buds in pre-anthesis or early anthesis stage 

are at their most conspicuous. Individual tree floral bud crop was estimated using the 

following scoring system: 0 = no umbels; 1 = very light crop, 25% or less of the 

secondary laterals bearing one or more umbels (secondary laterals defined as branches 

originating from primary stems); 2 = light crop, between 26 and 50% of secondary 

laterals bearing one or more umbels; 3 = moderate crop, between 51 and 75% of 

secondary laterals bearing one or more umbels; 4 = heavy crop, between 76 and 100% 

of secondary laterals bearing one or more umbels (Gardner and Bertling 2005).  

 

Statistical analysis 

Vegetative and reproductive growth assessments 

Statistical analyses were performed to investigate the effect of site, PBZ and clone on 

tree height at five years and the fifth and sixth floral bud crops. As illustrated in Figure 1, 

the fifth and sixth floral bud crops were those initiated in 2008 and 2009 (respectively) 

and scored in 2009 and 2010 (respectively). The reasons why the previous years’ floral 

bud crops were not included in the analyses are as follows: 

• The possible confounding effects of trial establishment differences, e.g. the 

different planting and blanking dates, on analytical results were likely to be 

avoided 
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• The possible negative effect of transmission of juvenile (reproductive immaturity) 

signal from seedling rootstock to reproductively mature scion on flowering 

potential of the scion would likely be minimized (Gardner and Bertling 2005, 

Siniscalco and Pavelettoni 1988).  

The Chamisso site was excluded from the analysis of height growth (at five years) but 

included for the analysis for floral bud crop (fifth and sixth crops). The main reason was 

that the outer surround row at the site was planted to E. nitens seedlings due to a 

shortage of planting material at time of establishment and blanking. By four years after 

planting, the vigorous growth of the seedlings exerted a significant negative impact on 

the height growth of the immediate neighbouring (inner surround) row of grafted trees, 

and minimal negative effect on the height growth of the first row of data (grafted) trees 

(R. Gardner, unpublished data, 2010). Chamisso was a valuable component of the site 

x flowering interaction trial series as it was one of only two sites located in the far south 

(Table 1). It was therefore decided to include the site for the fifth and sixth floral bud 

crop analyses, but not for the fifth year height analyses.  

 

The effects of PBZ and clone (scion genotype) on tree height and floral crop load were 

explored in individual trial analyses using restricted maximum likelihood (REML) 

analysis in GenStat® (2012) (Payne et al. 2012). Fixed effects were specified as PBZ, 

clone and the PBZ by clone interaction. Fisher’s protected least significant difference 

test was used to compare main effect and interaction means at the 5% level (Steel and 

Torrie 1981). 

 

The interactive effect of site, PBZ and clone on tree height and floral crop score was 

investigated using REML meta-analysis in GenStat® (2012). REML meta analysis 

produces estimates of means and variances, which are more accurate than that of a 

combined Analysis of Variance (ANOVA) (Patterson and Thompson 1971, Robinson 

1987) as separate residual terms per site are utilised, and not a pooled residual over all 

sites. The fixed effects were specified as site, PBZ and clone and all their interactions. 

For the across-site analyses, trees were treated as nested within plots and plots within 

sites. All assumptions for valid REML analyses were satisfied. 
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Correlation analyses were carried out in GenStat® (2012) to investigate the degree of 

relatedness between selected environmental factors, PBZ and the sixth floral bud crop. 

The main objective was to investigate the relatedness of the different explanatory 

variables, particularly those climate-related. For the purpose of the correlation analyses, 

variate “FLW” (floral bud crop) represented average floral crop score for clones over 

replicates in the sixth year after planting.    

 

Multiple linear regression analyses in GenStat® (2012) were used to investigate the 

relationships between selected climatic and landform factors, PBZ application and E. 

nitens fifth and sixth floral bud crops. The landform factors described in Table 4 were 

fitted into the statistical models as factors, and therefore handled as dummy variables in 

the analyses. Preliminary multiple regressions established that the linear model most 

accurately fitted the relationship between the environmental and floral response data. 

Separate sets of multiple linear regressions were then carried out, for the fifth and sixth 

crops, and with and without PBZ included as a treatment. The response and 

explanatory variables included in the multiple linear regression analyses are described 

in Tables 4 and 5.  

 

 

Results 

 

Effect of site, PBZ and clone on tree height  

A summary of the results of the across-site REML analyses for tree height at five years, 

including calculated F-test values for the fixed effects, is presented in Table 6. Site, 

PBZ, clone and the PBZ x site and clone x site interactions were all highly significant (p 

< 0.01). The PBZ x clone and site x PBZ x clone were both non-significant (p = 0.757 

and p = 0.411, respectively). On average (across-site), PBZ application reduced tree 

height by 30.4%, i.e. from 10.84 m to 7.54 m (p < 0.001) (Table 7). 

 

Mean five year tree heights for the site x PBZ interactions are presented in Figure 2, 

and ranked according to height for the control (PBZ0) trees in Table 8. PBZ is known to 

retard vegetative growth in various woody perennials, including Eucalyptus (Fletcher et 
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al. 2000), therefore the mean heights of the PBZ0 (control) trees, rather than those of 

the PBZ1 (PBZ-treated) trees, are a more accurate reflection of site effect on vegetative 

growth of E. nitens. The sites with highest tree growth (Table 8) did not coincide with 

sites having the highest MAP figures (Table 1). The three top-ranking sites for tree 

height growth, Wyntoun (13.81 m), Netherby1 (13.19 m) and The Peak (12.81 m), 

ranked only 7th, 3rd and 4th for MAP (905 mm, 948 mm and 929 mm, respectively). To 

the contrary, the site ranking lowest for tree height at five years, Gilboa (7.46 m), ranked 

2nd highest for MAP (957 mm). The regression of E. nitens five year height on MAP 

(Schulze and Lynch 2007) yielded an R2 value of 0.002 (p = 0.901) (data not 

presented). Based on five year height, no clear linear relationship between MAP and 

vegetative growth was observed.  

 

Similarly, no clear trend between MAT and height growth was evident (Tables 1 and 8, 

respectively). Virtually the entire MAT range of the trial series (13.8 - 15.5 °C) applied to 

the three top-ranking sites for height, viz. Wyntoun (13.8 m, 15.0 °C), Netherby1 (13.2 

m, 14.1 °C) and The Peak (12.8 m, 15.5 °C). However , the lowest mean tree height was 

recorded at the site having the lowest MAT, i.e. Thoresway (8.1 m, 13.8 °C). The 

regression of E. nitens five year height on MAT (Schulze and Maharaj 2007b) yielded 

an R2 value of 0.029 (p = 0.615) (RAW Gardner, data not presented).  

 

Separate t-tests were carried out for each site, to compare height growth of PBZ0 

(control) trees against that of PBZ1 (PBZ-treated) trees. PBZ significantly reduced tree 

height at all but one site, viz. Netherby1 (Table 8). PBZ had the greatest growth 

retarding effect at Willowmere (6.6 m (60%) height reduction), the 2nd coldest site in the 

series (MAT 14.1 °C), and at Thoresway (4.7 m (58%)  height reduction), the coldest site 

in the series (MAT 13.8 °C). The two sites where PB Z had the least effect, viz. 

Netherby1 (zero height reduction) and Netherby3 (1.0 m (10%) height reduction) were 

also at the lower end of the series MAT range (14.1 °C). 

 

Regarding mean clonal effect on tree height at five years, clone EN08 (Ebor 

provenance, moderate flowerer) outperformed all other clones at 10.81 m (p < 0.001) 

(Tables 3 and 9). Clone EN47 (Barrington Tops, moderate flowerer) recorded the lowest 
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mean tree height at 8.13 m. There were highly significant (p < 0.001) site x clone 

interactions for height at five years. The scion genotypes (clones) included in the trial 

series were a relatively narrow sample of the South African breeding and commercial 

planting stock, therefore a detailed discussion on the relative performance of the 

different clones across sites is not warranted. Mean five-year height across clones was 

a useful indicator of the relative growth potential of the different sites in the series. No 

visible signs of graft incompatibility were present in any of the plants throughout the 

duration of the trials, and therefore it appears unlikely that this phenomenon could have 

confounded the results for tree height growth. Summaries of the results of the separate 

REML analyses for E. nitens tree height at five years for the individual sites are 

presented in Appendix 1.  

 

Effect of site, PBZ and clone on umbel production  

In all years assessed (2008 to 2010), the new season’s flower buds emerged over a 

period of about three months, from early October to late December. The first, sparse 

umbel crops were recorded in several of the E. nitens trials during May/ June 2006, 

approximately 28 months after trial establishment. The first significant umbel crops were 

scored in May/ June 2007. Summaries of the results of the across-site REML analyses 

for E. nitens fifth and sixth floral bud crops (initiated 2008 and 2009), including the 

calculated F-test values for fixed effects, are presented in Tables 10 and 11, 

respectively. In the PBZ0 (control) treatment, mean umbel production (across clones 

and sites) increased dramatically from year five (2008) to year six (2009) (114% 

increase) (Table 12). In the PBZ1 treatment (PBZ applied), only a slight increase in 

mean umbel production from fifth to sixth year was recorded (16%).    

 

In the fifth year (2008), all E. nitens treatments and their interactions, except PBZ x 

clone and site x PBZ x clone, were highly significant for umbel crop score (p < 0.001) 

(Table 10) in the across-site REML analysis. The site x PBZ x clone interaction was 

significant at p = 0.025. PBZ application almost tripled umbel production, elevating 

mean umbel crop score from 0.57 (PBZ0) to 1.61 (PBZ1) (Table 12).  
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Mean fifth year (2008) umbel crop scores for E. nitens site x PBZ interactions are 

illustrated in Figure 3, and ranked according to umbel crop scores for PBZ0 in Table 13. 

PBZ is known to stimulate floral bud production in Eucalyptus species (Fletcher et al. 

2000). Therefore umbel crop scores for E. nitens non-PBZ-treated trees (PBZ0 

treatment) were a more accurate representation of the true effect of site on reproductive 

growth. In the control (PBZ0) treatment, Netherby3 ranked first for umbel production 

(crop score 1.508), significantly (p < 0.05) outperforming all other sites in this regard 

(Table 13). In the same PBZ treatment (PBZ0), Thoresway (1.071), the second best 

site, significantly outperformed the remaining two treatments in the upper tertile, viz. 

Willowmere (0.821) and In De Diepte (0.817) (p < 0.05).   

 

Separate t-tests were carried out for each of the E. nitens trials comparing mean fifth 

year umbel crop production for the PBZ0 (control) and PBZ1 (PBZ-treated) trees (Table 

13). The level of significance for difference in umbel production between PBZ0 and 

PBZ1 treatments varied considerably across sites. PBZ application significantly 

increased umbel production at nine of twelve (66.7%) sites (p < 0.05). At five of these 

nine sites, the positive effect of PBZ application on umbel production was highly 

significant (p < 0.001).  

 

Regarding mean clonal effect on E. nitens fifth year umbel crop, clone EN47 (Barrington 

Tops, moderate flowerer) outperformed all other clones at 1.772 (p < 0.001), 

irrespective of PBZ level (Table 14). The site x clone interaction for fifth year umbel crop 

was significant (p < 0.001) (Table 10). The summaries of the results of the separate 

REML analyses for E. nitens fifth year umbel crop scores for the individual sites are 

presented in Appendix 2. Clone (mean of PBZ treatments) was significant (p < 0.05) at 

seven out of twelve sites (Appendix 2). The significant (p < 0.05) site x PBZ x clone 

interaction evident in the results of the across-site REML analysis (Table 10) was further 

investigated by means of the individual site REML analysis. The results of the latter 

indicated that the clone effect (mean of PBZ treatments) was significant (p < 0.05) at 

seven out of twelve sites (Appendix 2). The scion genotypes (clones) included in the 

trial series represent a narrow sample of the South African breeding and commercial 
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planting stock, therefore a detailed discussion on the relative performance of the 

different clones across sites is not warranted. 

 

In the sixth crop year (2009), with the exception the PBZ x clone x site interaction 

(significant at p < 0.05), all treatments and their interactions were highly significant (p < 

0.001) for umbel crop score (Table 11). PBZ application caused a 53% increase in 

mean (across-site) umbel crop production in E. nitens, elevating mean umbel crop score 

from 1.22 (PBZ0) to 1.86 (PBZ1) (Table 12). 

 

Mean sixth year umbel crop scores for E. nitens site x PBZ interactions are presented in 

Figure 4, and ranked according to umbel crop scores for the control (PBZ0) treatment in 

Table 15. Regarding the non PBZ-treated (PBZ0) trees, in the sixth year Netherby3 

again ranked first for umbel production (crop score 1.943) (Table 15). Tweefontein 

(1.818), Thoresway (1.756) and Willowmere (1.631) were the only other sites ranking 

within the upper tertile, although these did not differ apart significantly (p < 0.05). In 

summary, regarding the control (PBZ0) treatment, Netherby3, Thoresway and 

Willowmere were the only three sites ranking within the upper tertile for umbel crop 

score in both the 2008 and 2009 floral crop years (Tables 13 and 15).  

 

Mean sixth year (2009) umbel crop scores of control trees were compared to those of 

PBZ1 (PBZ-treated) trees for the different sites (Table 15). The effect of PBZ application 

on sixth year umbel crop score was generally less distinct than in the previous (fifth) 

crop year. The levels of significance for the difference in umbel crop score between 

control and PBZ1 treatments ranged substantially across sites, from non-significant 

(seven out of 12 sites) to highly significant (p < 0.001) (three out of 12 sites).  

 

Regarding mean clonal effect on sixth year umbel crop score, clone EN47 (Barrington 

Tops, moderate flowerer) again outperformed all other clones at 2.413 (p < 0.001) 

(Table 14). The umbel crop score of lowest ranking treatment, clone EN08 (Ebor, 

moderate flowerer) (1.088), was less than half that of clone EN47. A closer investigation 

of the clonal differences for umbel production through individual site REML analyses 

revealed that the clonal effect was significant (p < 0.05) at half of the twelve sites, whilst 
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the PBZ x clone interaction was significant (p < 0.05) at only three of the twelve sites 

(Appendix 3).  

 

Relationship between site factors, PBZ and umbel production 

The results of the correlation analyses for the range of environmental factors, PBZ 

application and E. nitens sixth year (2009) floral bud crops, are presented in Table 16. 

The correlations between the different chill model x chill period combinations were all 

highly significant (p < 0.01) (Table 16). Across the E. nitens sites, correlations ranged 

from 0.863 (CP_2 with DPCU_2) to 0.996 (DPCU_1 with DPCU_2). CP_1 (Dynamic 

Model, April to September) correlated highly with DPCU_1 (Daily Positive Utah Chill 

Unit Model, April to September) at 0.900. MAT (mean annual temperature) was 

moderately negatively correlated with LAT (-0.639), CP_1 (-0.598) and CP_2 (0.577) (p 

< 0.01). There was a moderate positive correlation between PBZ and FLW in E. nitens 

(r = 0.447). The correlations between FLW and all other factors were weak and 

insignificant.  

 

Summaries of the results of the multiple linear regressions yielding the highest R2 

values and significance in each set (fifth and sixth year umbel crops, with and without 

PBZ treatment) are presented in Table 17. ASPECT was consistently the most 

influential environmental explanatory variable across the suite of regression analyses 

carried out. In both fifth and sixth crop years, the relationships between explanatory and 

response variables were generally noticeably weaker where PBZ was included as an 

explanatory variable than where it was not (Table 17). 

 

In the linear models pertaining to control (PBZ0) trees only, in the fifth year (2008), 81% 

of the variance was accounted for by MAT and ASPECT (R2 = 0.814, p < 0.05) (Table 

17). The south-west (SW) aspect exerted the strongest positive influence on FLW5 (fifth 

year umbel crop) (p < 0.01), followed by the west (W) and south (S) aspects at p < 0.05 

The impacts of the ASPECT categories were measured relative to that for the north (N) 

aspect category, the latter being closest to the mean umbel crop score for the particular 

explanatory variable. Mean hourly air temperature for 2008 (MAT) was strongly 
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negatively related to umbel crop (FLW5) in the same year (p < 0.05). With respect to the 

sixth year (2009) umbel crop, 96% of the variance was accounted for by MAT, SLOPE 

and ASPECT (R2 = 0.961, p < 0.01). South (S) aspects exerted the greatest positive 

effect on umbel production (p < 0.01), with all other aspects exerting relatively minor 

positive or negative influences on crop response. Steep (ST) slopes exerted the 

strongest positive effect on umbel production (significant at p < 0.01), with moderate 

(MO) to very gentle (VG) slopes exerting the greatest negative effects on umbel 

production (p < 0.01 and p < 0.05, respectively). The impacts of the slope categories 

were measured relative to that for the gentle (GE) slope category, the latter being 

closest to mean umbel crop response for SLOPE. Again, mean hourly air temperature 

for 2009 (MAT) was significantly negatively related to umbel production in the same 

year (FLW6) (p < 0.05).  

 

In the E. nitens linear models where PBZ was included as an explanatory variable, in 

the fifth umbel crop year (2008), a maximum of 47% of the variance could be accounted 

for by the best combination of explanatory variables, i.e. PBZ, MAT and ASPECT (R2 = 

0.474, p < 0.05) (Table 17). In the same model, PBZ exerted the strongest and most 

significant positive influence (p < 0.001) on umbel crop. All other factors were non-

significant at p ≥ 0.05. In the sixth crop year (2009), 32% of the variance was accounted 

for by PBZ, CP_1 and ASPECT (R2 = 0.319, p = 0.06). South-west (SW) aspect 

followed by south (S) aspect categories exerted the strongest positive effects on umbel 

crop production (both significant at p = 0.05). PBZ was the only other explanatory 

variable in the model showing a significant (and positive) relationship with sixth year 

umbel crop (p < 0.05). 
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Discussion 

 

Suitability of chill models 

Chilling requirements for plant physiological processes such as dormancy completion 

and floral bud induction differ across species (Naor et al. 2003), ecotypes (Ghelardini et 

al. 2009, Myking and Heide 1995), cultivars within-species (De Melo-Abreu et al. 2004, 

Fabbri and Benelli 2000) and bud types within-cultivar (Erez 2000). Furthermore, the 

optimum temperature criteria for chilling accumulation has been established for 

relatively few species/ crops, and limited cultivars/ genotypes within species. The 

temperatures at which chilling accumulation begins are likely to be species- (and 

genotype within-species) specific (Erez pers. comm.2). Regarding chilling accumulation, 

Naor et al. (2003) found that apple responded to lower temperatures than peach. This is 

not surprising, considering apple (M. sylvestris) originates from, and is generally planted 

at, higher latitudes than peach (Janick and Moore 1996). In contrast to this, Myking and 

Heide (1995) found that high latitude ecotypes of Betula pendula and B. pubescens had 

lower chilling requirements for bud dormancy release than low latitude ecotypes of the 

same species. They hypothesized that the low latitude ecotypes of either species have 

adapted to a milder and more variable winter climate by developing greater dormancy 

stability involving both a longer chilling requirement and a higher base temperature for 

active vegetative growth. 

 

Of the two chill models evaluated in the field trial series, the Dynamic Model again 

demonstrated greater suitability than the Daily Positive Utah Chill Unit Model for the 

particular purpose, i.e. quantification of winter chilling across a wide range of summer 

rainfall temperate Eucalyptus forestry site conditions in South Africa (Gardner and 

Bertling 2005). Luedeling et al. (2011) pointed out the main shortcomings of the 

agricultural chill models in use today, including the Dynamic Model, is that they are 

purely empirical, and are not based on a functional understanding of plant physiology. 

The models likely need some degree of fine-tuning in order to adapt them to each 

particular plant species and/or genotype for increased accuracy of chilling quantification. 

The effectiveness of temperatures, and the duration of exposure to these on the floral 

                                            
2Erez A. 2013. Volcani Center, ARO, Bet-Dagan, Israel  
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bud induction and differentiation processes in the key commercial temperate eucalypt 

species in South Africa, such as E. nitens and E. smithii, warrant further investigation, 

i.e. if a more thorough understanding of the accumulation of chilling, and the effect of 

chilling on floral bud production in the different species is to be acquired. 

 

Effect of site and PBZ on tree height 

Mean height of control (PBZ0) trees were more indicative of the true effect of site on 

tree vegetative growth than mean height of PBZ1 trees. Based on mean tree height for 

the control treatment at five years, the relationship between (long-term) MAP and height 

was not strong (Tables 1 and 8). The deep soil conditions (≥ 1.0 m) at each of the sites 

may have played an ameliorative role in preventing soil water shortages from 

developing, particularly during the dry winter months, at the lower rainfall sites in the 

series during the first five years after planting (Darrow 1994, Schönau and Grey 1987). 

Analysis of the relationship between actual MAP (mean for 2004 to 2009) and five year 

tree height and may have yielded a somewhat different result. Soil water availability is 

commonly the most limiting growth factor for plantation stands at any site (Louw 1999, 

Schönau and Grey 1987). Similarly, the relationship between MAT and five-year height 

growth of control trees was not strong. The site recording the second lowest tree height 

at five years (Thoresway) coincided with the site having the lowest MAT in the series 

(13.8°C). However, the site recording the absolute lowest tree height in this species 

(Gilboa) was at the other end of the MAT scale at 15.31 °C (Tables 1 and 8).  

 

Thus, according to E. nitens five-year mean height data, vegetative growth did not 

appear to be linearly related to either MAP or MAT across the range of site conditions. It 

is postulated that other environmental factors such as those relating to micro-

topography, e.g. slope aspect and steepness, and genetic factors such as frost and 

heat tolerance of the different scion genotypes, may have exerted a stronger effect on 

tree height growth over the first five years. It was unlikely that soil nutrient content 

differences impacted on the results. Soil sampling and nutrient analyses carried out in 

2012 at each of the sites revealed no significant deficiencies for any of the elements 

(and organic carbon) commonly associated with tree vegetative growth (R Gardner, 

unpublished results). Furthermore, graft incompatibility was discounted as a possible 
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cause of confounding five-year tree height growth measurements, both within and 

across trial sites, due to the absence of incompatibility symptoms in any of the trees at 

the five year measurement.  

 

PBZ application significantly reduced mean tree height in E. nitens (30.4% reduction) 

(Table 7), as would be expected (Hetherington and Jones 1990). The site x PBZ 

interaction showed a general trend of the growth suppressive effect of PBZ being most 

evident at sites having both low MAP and low MAT. However, this was not always the 

case. For example, at Gilboa, the site with second highest MAP and MAT values (957 

mm and 15.31 °C, respectively), a large percentage height growth reduction occurred 

as a result of PBZ application. As referred to earlier, with respect to the PBZ0 treatment, 

Gilboa recorded the lowest tree height growth of all sites for E. nitens. The varying 

effect of PBZ application on tree height growth at five years across 11 sites did not 

relate well to MAP and MAT data for the sites (Table 1). Possibly, long-term data for the 

key climatic variables did not adequately represent actual site conditions that occurred 

over the period in which the trials were conducted. The micro-topographies of the trial 

sites may have contributed to the effect. Topographical factors such as aspect, 

steepness of slope and relative relief are known to influence air, soil and plant canopy 

temperatures (Dahlgren et al. 2007, Sader 1986, Schulze 2007b, Schulze and Horan 

2007).   

 

Effect of site, PBZ and clone on umbel production 

Regardless of whether PBZ was applied or not, mean umbel production in E. nitens 

varied markedly across sites, in both the fifth and sixth crop years (Tables 13 and 15). 

This indicated the existence of important differences in environmental conditions across 

the range of sites in each of the years. Environmental conditions can exert a strong 

influence on floral induction and development in temperate eucalypts (Moncur et al. 

1994, Potts et al. 2007).  

 

The increase in mean umbel production from fifth to sixth crop year differed 

substantially for E. nitens control (PBZ0) trees (Table 12). The sixth year umbel crop 
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more than doubled that of the fifth year (increase of 144%) even though winter chilling 

increased by only 2.6 CP (3.1%). This suggested that some factor other than winter 

chilling was responsible for the substantial increase in floral bud production between the 

fifth and sixth crop years. The scions used in the production of the E. nitens grafted 

propagules for the trials were collected from reproductively mature trees, but the 

rootstock propagules were grown from seed and thus were only 5.5 and 6.5 years old at 

the time of floral initiation in the scions in the fifth and sixth crop years (Moncur and 

Hasan 1994, Moncur et al. 1994). In the South African E. nitens breeding populations, 

open grown seedlings rarely produce flower buds before the age of eight years if not 

treated with PBZ, and even from this age onwards, flower bud crops are sparse (Jones 

2002, Swain and Gardner 2003). The fifth and sixth year crop results for PBZ0 

treatment suggest that stage of reproductive maturity of the seedling rootstocks, or 

possibly climatic differences between 2008 and 2009, or both of these, may have been 

responsible for the marked difference in reproductive performances between the two 

years. Temporary setback of reproductive maturity of adult scions by transmission of a 

juvenile signal from reproductively immature seedling rootstocks has been reported for 

fruit tree crops (Pliego-Alfaro and Murashige 1987) and Eucalyptus (Gardner and 

Bertling 2005, Gardner et al. 2013, Siniscalco and Pavellettoni 1988). Given the 

observed increase in E. nitens floral bud production between fifth and sixth crop year, a 

longer-term study aimed at investigating the effect of rootstock physiological age on 

scion (reproductive) phenotypic expression would appear to be worthwhile.    

 

Mean umbel production across sites and clones in the PBZ1 treatment was at least 

double that of the control treatment on an annual basis (Appendices 2 and 3). The 

ability of PBZ application to significantly increase flowering in temperate eucalypts, 

given favourable environmental conditions, is well documented (Hasan and Reid 1995, 

Meilan 1997, Moncur and Hasan 1994). A general reduction in the enhancing effect of 

PBZ on floral bud production occurred from the fifth to the sixth crop year (Tables 13 

and 15). As trees were older, and the accumulated winter chilling was generally greater 

across all sites in the sixth crop year (2009) compared to the fifth year (2008), the most 

likely cause of this overall drop off in the difference in umbel production between the two 

PBZ treatments was lowered levels of active PBZ within the trees of the PBZ1 treatment 
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in the sixth crop year (2009). The PBZ doses were applied in autumn (March/ April) 

2006, therefore the results imply that a drop-off in the floral stimulatory effect of PBZ in 

temperate eucalypt orchard trees can be expected from the fourth winter after 

application. Moncur (1998) reported soil-applied PBZ exerting a positive effect on floral 

bud production in E. nitens espalier orchards for at least five years. Gardner et al. 

(2013) reported a rapid drop-off in the vegetative growth-retarding effect of soil-applied 

PBZ in overhead irrigated, potted (organic growing medium) E. nitens grafts, from 12 

months after application. Therefore, where the success of a commercial temperate 

eucalypt seed production enterprise is dependent on PBZ application for achieving a 

consistent supply of high (genetic) quality seed, the need to re-apply PBZ to orchards 

approximately every five years should be taken into consideration.            

 

Assessment of the clonal effect on E. nitens mean umbel production showed that the 

floral productivities of the different clones were significantly influenced by both site and 

PBZ. The response of the different E. nitens clones to PBZ application varied 

substantially across sites, although Clone EN47 (Barrington Tops, moderate flowerer) 

performed consistently well across all sites in both years where the clone effect was 

significant. These results confirm that the interaction between environment (site), PBZ 

and genotype regarding floral induction in E. nitens is complex, and tend to support 

existing evidence that environment and PBZ act independently of one another in the E. 

nitens floral induction process (Gardner and Bertling 2005, Gardner et al. 2013, Moncur 

and Hasan 1994). However, cognisance should be taken of the fact that a significant 

site by PBZ interaction was observed in both the fifth and sixth years.  

 

Relationship between site factors, PBZ and umbel production 

The results of the correlation analyses at five years (Table 16) indicated several 

important points (described below). Firstly, none of the environmental factors 

individually correlated highly with umbel crop, suggesting multiple linear regression 

analysis was warranted in order to investigate the significance of different combinations 

of explanatory variables. Secondly, PBZ correlated moderately with umbel crop in E. 

nitens. Thirdly, the strongest inter-chill model correlation was between the CP_1 
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(Dynamic Model, April to September) and DPCU_1 (Daily Positive Utah Chill Unit 

Model, April to September) combinations. Fourthly, MAT (mean hourly temperature) had 

a fairly high negative correlation with CP_1.   

 

In the multiple regressions, environmental variables played a significant role in 

accounting for the percentage variance (Table 17). The sites for the E. nitens field trials 

were all selected for maximum likelihood of a high level of annual winter chilling, based 

on knowledge of the effects of latitude, altitude and certain topographical factors on air 

and soil temperatures (Sharma et al. 2010, Schulze and Horan 2007) and winter chilling 

accumulation (Erez et al. 1990, Schulze and Maharaj 2007a). Due to the availability of 

suitable sites at the time of trial establishment, the variations in landform factors 

(landform classes) could not be replicated equally. Rather, these were applied on a 

fairly ad hoc basis. Hence this should be taken into consideration when interpreting the 

results of the regressions. The results of the regressions where PBZ was excluded as 

an explanatory variable are more indicative of the true effect of site on floral bud 

production. The results of the trial series indicated that, in E. nitens, sites with 

sufficiently low MAT and southerly (S) to south-westerly (SW) slope aspects were most 

conducive to floral bud production (high umbel crop scores). Where PBZ was applied, 

southerly (S) to south-westerly (SW) slope aspects in combination with PBZ were again 

the most positively influential environmental factors on floral bud production in both 

years.  

 

Regarding the positive effect of southerly slope aspects on floral bud production, what 

remain unclear are the portions of positive floral responses that are due to factors such 

as air, bud and soil temperature, soil water level and solar irradiance at these sites. 

Such factors are typically responsible for variations in plant vegetative and reproductive 

growth across sites (Dahlgren et al. 2007, Granger and Schulze 1977, Sader 1986, 

Schulze 2007b, Sharma et al. 2010). In the field trial series, even though deep soil 

conditions were selected for all trials, to reduce the chance of pronounced soil water 

deficits from developing during the course of the trials, soil water levels in the topsoil 

horizons would most likely have declined to some degree during the relatively dry winter 

months. However, in the E. nitens semi-controlled environment and field trial 
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investigations undertaken by the ICFR between 1996 and 2001, neither low 

temperature stress nor drought stress significantly influenced floral bud production in 

the particular species (Gardner 2003). These findings support existing reports that soil 

water deficit does not play a significant positive role in E. nitens floral induction 

(Hamilton et al. 2008, Moncur and Boland 2000).    

 

In Southern Hemisphere countries such as South Africa, south-facing slope aspects are 

generally cooler with respect to both soil and air temperature, resulting in slower plant 

growth rates occurring on southerly, compared to northerly, aspects (Granger and 

Schulze 1977, Schulze 2007b). A similar phenomenon was evident in the current trial 

series at Netherby in the KwaZulu-Natal Midlands. In the PBZ0 treatment, significantly 

lower mean tree heights were recorded at five years on the south-facing slope 

(Netherby3 trial) compared to the north-facing slope (Netherby1 trial) (Table 8). In 

addition, in both fifth and sixth crop years, Netherby3 significantly (p < 0.05) 

outperformed Netherby1 on the basis of umbel crop production (Tables 13 and 15). 

Eucalyptus nitens appears to require an extended period of slowed, rather than a 

cessation of, vegetative growth during winter to initiate flower buds (Gardner 2003). The 

results of the 2003/ 2004 E. nitens field trial series tend to concur with this. The cool air, 

soil and foliage temperatures, and moist soil conditions, all features commonly 

associated with sites on southerly slope aspects in the Southern Hemisphere (Bale et 

al. 1998, Schulze 2007b, Sharma et al. 2010), may in part be responsible for providing 

the cold, relatively stress-free growing conditions during the winter months that are 

required by E. nitens for floral induction. At inland sites in the winter and uniform rainfall 

areas in South Africa, because of the more frequent cloud cover and associated 

increased chilling during the winter months (Schulze and Maharaj 2007a), aspect may 

not be such an important criterion as it is in the summer rainfall temperate forestry 

areas. However, decreased solar irradiance associated with increased cloud cover, and 

increased number of rainy days during the winter months may exert negative effects on 

other aspects of E. nitens reproductive growth and development (Moncur and Boland 

2000). These site x E. nitens reproductive development dynamics all warrant 

investigating.  
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Conclusions 

 

New information that will assist the accurate siting of E. nitens orchards in the South 

African summer rainfall area was derived from the research. The data produced lends 

itself to the development of a GIS tool for identifying potential E. nitens seed orchard 

sites based on climate and topography. The results suggested that, through careful site 

selection, the dependency on PBZ to achieve satisfactory levels of flowering and seed 

crop production in E. nitens can be considerably reduced. In areas where E. nitens 

winter chilling requirement for floral induction (based on air temperature) is met, south-

west, south and west-facing slope aspects (in order of decreasing effectiveness) have a 

significant additive effect on floral bud production. The specific environmental factors 

associated with the positive E. nitens reproductive growth effect of these slope aspects 

remain to be determined. Further research is needed to elucidate these findings. 

Environmental conditions conducive to floral bud production in E. nitens may not 

necessarily favour E. nitens reproductive growth and development in the post-floral bud 

emergence phase. This aspect warrants urgent investigating.  
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Table 1: Site details for the Eucalyptus nitens flowering trials  

 
Trial name 

In De 
Diepte 

Wyntoun Gilboa The Peak Tweefontein Netherby1 Netherby2 Netherby3 Willowmere Blair Athol Thoresway Chamisso 

Locality:             
Province MPU MPU KZN KZN KZN KZN KZN KZN KZN KZN EC EC 
Latitude 25° 02’ S  26° 12' S  29° 14' S  29° 15' S  29° 15' S  29° 39’ S  29° 38' S  29° 38' S  29° 51' S  29° 52’ S  30° 50' S  30° 54’ S  
Longitude 30° 44’ E  30° 44’ E  30° 17’ E  30° 09' E  30° 13’ E  29° 38' E  29° 38' E  29° 38' E  29° 26' E  29° 37’ E  28° 13' E  28° 11’ E  
Elevation (m) 1828 1733 1595 1629 1588 1688 1700 1678 1708 1568 1809 1686 
Climatic factors:             
MAP (mm)1 1241 905 957 929 842 948 948 948 914 843 908 904 
MAT (oC)2 14.5 15.0 15.3 15.5 15.1 14.1 14.1 14.1 14.1 14.6 13.8 14.1 
MAC (DPCU)3 962.1 784.8 764.8 727.0 811.0 865.3 865.3 865.3 863.2 799.8 1078.2 951.4 
Edaphic factors:             
Soil form and 
series4 

Magwa 
 1100 

Clovelly 
1200 

Kranskop 
1200 

Magwa 
1200 

Magwa 
1200 

Inanda 
1200 

Magwa 
 1100 

Kranskop 
1200 

Kranskop 
1200 

Magwa 
1200 

Kranskop 
1100 

Magwa 
1200 

Soil unit5 
Haplic 

Ferralsol 
Haplic 

Ferralsol 
Haplic 
Acrisol 

Haplic 
Acrisol 

Haplic 
Acrisol 

Haplic 
Acrisol 

Haplic 
Ferralsol 

Haplic 
Acrisol 

Haplic 
Acrisol 

Haplic 
Acrisol 

Haplic 
Ferralsol 

Haplic 
Acrisol 

Soil depth (m) 1.0  1.0 > 1.2 > 1.2 > 1.2 > 1.2 1.0 > 1.2 > 1.2 > 1.2 > 1.2 > 1.2 
Landform 
elements: 

            

Aspect6 NW S N SE N N E SW E E E NE 
Slope6 VS VG VG VG GE MO GE ST GE MO GE MO 
Relief6 H L H H VL VH VH H VL L H L 

MAP = Mean annual precipitation; MAT = Mean annual temperature; MAC = Mean annual chill units; DPCU = Daily Positive Utah Chill Units 

MPU = Mpumalanga, KZN = KwaZulu-Natal, EC = Eastern Cape 
1 Schulze and Lynch (2007) 
2 Schulze and Maharaj (2007b) 
3 Schulze and Maharaj (2007a) 
4 Soil Classification Working Group (1991) 
5 IUSS Working Group (2006) 
6 Refer to Table 5 for landform elemental class description 
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Table 2: Details of the origins of the Eucalyptus nitens scion genotypes represented in 
the field trials  
 

Clone No.  Origins 
 Provenance Latitude (S) Longitude (E) Altitude (m asl) 

EN08  Ebor, NSW 30° 23' S 152° 27' E 1400 
EN35  Barrington Tops, NSW 31° 55' S 151° 30' E 145 0 
EN47  Barrington Tops, NSW 31° 55' S 151° 30' E 145 0 
EN55  Ebor, NSW 30° 23' S 152° 27' E 1400 

NSW = New South Wales, Australia 

 

Table 3: Allocation of the treatments in the Eucalyptus nitens split-plot design 
experiments  
 

 Treatment Treatment level description 
Factor A: PBZ soil application  
Level 1 PBZ0 Nil PBZ (control) 
Level 2 PBZ1 PBZ soil drench applied 
Factor B: Clone (scion genotype) Provenance, flowering potential* 
Level 1 EN08 Ebor, moderate 
Level 2 EN35 Barrington Tops, shy 
Level 3 EN47 Barrington Tops, moderate 
Level 4 EN55 Ebor, shy 

PBZ = Paclobutrazol 
* Flowering potential rating derived from ICFR historical orchard records 

 

Table 4: Description of all response and explanatory variables used in the multiple 
linear regression analyses 

 

Variate assessed 
Abbreviation 
used in text 

Response variables:  
Fifth year mean umbel crop score per tree (floral buds initiated 2008)1    FLW5 
Sixth year mean umbel crop score per tree (floral buds initiated 2009)1   FLW6 
  
Explanatory variables:   
Cultural factors:  
Paclobutrazol soil application  PBZ 
Climatic factors:  
Latitude (oS) LAT 
Altitude (m asl) ALT 
Annual mean hourly air temperature for year of floral bud initiation (oC)2 MAT 
Accumulated Chilling Portions (CP)3 for the period 01 April to 30 September in year of floral bud initiation CP_1 
Accumulated Chilling Portions (CP) for the period 01 May to 30 September in year of floral bud initiation CP_2 
Accumulated Daily Positive Utah Chill Units (DPCU)4 for the period 01 April to 30 September in year of floral bud initiation DPCU_1 
Accumulated Daily Positive Utah Chill Units (DPCU) for the period 01 May to 30 September in year of floral bud initiation DPCU_2 
Landform factors:  
Slope aspect ASPECT 
Slope steepness SLOPE 
Relative relief RELIEF 
1 Site mean for umbel crop score 

2 Air temperature modeled from hourly Hobo pole air temperature data  
3 The chill units assigned by the Dynamic Model (Erez and Fishman 1998)  
4 The chill units assigned by the Daily Positive Utah Chill Unit Model (Linsley-Noakes et al. 1994)  
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Table 5: Description of the landform factors and classes included in the multiple linear 
regressions 

 

Factor and class 
Class 

abbreviation 
Class definition 

Slope aspect1 :  Average 
North N North-facing 
East E East-facing 
South S South-facing 
West W West-facing 
North East NE North East-facing 
South East SE South East-facing 
South West SW South West-facing 
North West NW North West-facing 
   
Slope steepness2:  Average (upper boundary) 
Level LE 0o 20’ (0o 35’) 
Very gently inclined VG 1o (1o 45’) 
Gently inclined GE 3o (5o 45’) 
Moderately inclined MO 10o (18o) 
Steep ST 23o (30o) 
Very steep VS 37o (45o) 
   
Relative relief2:   
Very low VL 9 – 30 m 
Low L 31 – 90 m 
High H 91 – 300 m 
Very high VH 300 - 600 m 
1 Compass bearing 
2 Adapted from McDonald et al. (1984) 

 
Table 6: Wald-statistics and calculated F-test values for fixed effects in the Eucalyptus 
nitens across-site REML analyses for tree height at five years  
 

Fixed term Wald statistic d.f. F statistic F prob 
SITE 865.53 10 81.65 <0.001 
PBZ 368.3 1 368.3 <0.001 
CLONE 100.79 3 33.6 <0.001 
SITE.PBZ 115.03 10 10.85 <0.001 
SITE.CLONE 86.05 30 2.69 <0.001 
PBZ.CLONE 1.18 3 0.39 0.757 
SITE.PBZ.CLONE 61.42 31 1.09 0.411 
PBZ = Paclobutrazol 
d.f. = Degrees of freedom 
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Table 7: Effect of PBZ treatment on Eucalyptus nitens tree height at five years 
 

 PBZ treatment  
 PBZ0 PBZ1 Difference1 
Mean 10.84a 7.54b 3.30*** 
SED 0.14 0.14 - 

PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
SED = Standard error of the differences between means 

1 Difference between means (ns = not significant, * = significant at p < 0.05, ** = significant at p < 0.01, 
 *** = significant at p < 0.001) 
 
 
Table 8: Mean Eucalyptus nitens tree height at five years for the SITE x PBZ 
interactions, ranked according to height for the PBZ0 treatment 
 

 PBZ treatment  
SITE1 PBZ0# PBZ1# Difference2 
Wyntoun 13.81a 9.51b 4.29*** 
Netherby1 13.19b 13.26a 0.07ns 
The Peak 12.81b 8.49c 4.32*** 
Blair Athol 11.23c 7.11d 4.12*** 
Willowmere 11.09c 4.48e 6.61*** 
In De Diepte 10.88cd 8.90c 1.98** 
Netherby3 10.56d 9.56b 1.01* 
Tweefontein 10.53d 7.20d 3.33*** 
Netherby2 9.89e 7.26d 2.64*** 
Thoresway 8.13f 3.45f 4.68*** 
Gilboa 7.46g 3.74f 3.73*** 
SED 0.45 0.45 - 

PBZ0 = Nil PBZ (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
SED = Standard error of the differences between means 

1 Sites ranked according to height for the PBZ0 treatment 
2 Difference between means (ns = not significant, * = significant at p < 0.05, ** = significant at p < 0.01,  
*** = significant at p < 0.001) 
# Within this column, values followed by the same letter do not differ significantly (p < 0.05) 

 

 

Table 9: Effect of clone on Eucalyptus nitens tree height at five years of age 
 

Clone no. Provenance Height (m)# 
EN08 Ebor 10.81a 
EN35 Barrington Tops 9.25b 
EN55 Ebor 8.58c 
EN47 Barrington Tops 8.13c 
Mean - 9.19 

# Within this column, values followed by the same letter do not differ significantly from each other (p < 0.001) 
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Table 10: Wald statistics and calculated F-test values for fixed effects in the Eucalyptus 
nitens across-site REML analyses for fifth year umbel crop score  
 

Fixed term Wald statistic d.f. F statistic F prob 
SITE 94.45 11 8.07 <0.001 
PBZ 139.98 1 139.98 <0.001 
CLONE 90.43 3 30.14 <0.001 
SITE.PBZ 125.53 11 10.73 <0.001 
SITE.CLONE 96.2 33 2.74 <0.001 
PBZ.CLONE 7.39 3 2.46 0.063 
SITE.PBZ.CLONE 57.72 33 1.63 0.025 
PBZ = Paclobutrazol 
d.f. = Degrees of freedom 
 
 
Table 11: Wald statistics and calculated F-test values for fixed effects in the Eucalyptus 
nitens across-site REML analyses for sixth year umbel crop score  

 

Fixed term Wald statistic d.f. F statistic F prob 
SITE 125.19 11 10.7 <0.001 
PBZ 81.44 1 81.44 <0.001 
CLONE 238.66 3 79.55 <0.001 
SITE.PBZ 109.07 11 9.33 <0.001 
SITE.CLONE 174.02 33 4.93 <0.001 
PBZ.CLONE 15.54 3 5.18 0.002 
SITE.PBZ.CLONE 57.88 33 1.64 0.024 
PBZ = Paclobutrazol 
d.f. = Degrees of freedom 
 
 
Table 12: Effect of PBZ treatment on Eucalyptus nitens fifth and sixth year umbel crop 
scores 
 

 PBZ treatment  
 PBZ0 PBZ1 Difference1 
Fifth year (2008)    
Mean 0.57a 1.61b 1.05*** 
SED 0.09 0.09 - 
Sixth year (2009)    
Mean 1.22a 1.86b 0.64*** 
SED 0.09 0.09 - 

PBZ0 = Nil PBZ (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
SED = Standard error of the differences between means 

1 Difference between means (ns = not significant, * = significant at p < 0.05, ** = significant at p < 0.01,  
*** = significant at p < 0.001) 
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Table 13: Mean Eucalyptus nitens fifth year umbel crop scores for the SITE x PBZ 
interactions, ranked according to umbel crop score for the PBZ0 treatment 
 

PBZ treatment 
SITE1 PBZ0# PBZ1# Difference2 
Netherby3 1.508a 1.304f 0.204ns 
Thoresway 1.071b 1.554de 0.483ns 
Willowmere 0.821c 2.054c 1.233*** 
In De Diepte 0.817c 1.433ef 0.616* 
Wyntoun 0.633cd 2.179c 1.546*** 
Tweefontein 0.571de 1.679d 1.108*** 
Chamisso 0.446def 0.742h 0.296ns 
Netherby1 0.258fg 0.867gh 0.609* 
Blair Athol 0.196g 2.992a 2.796*** 
Gilboa 0.196g 1.054g 0.858** 
The Peak 0.133g 2.429b 2.296*** 
Netherby2 0.133g 1.054g 0.921** 
SED 0.226 0.226 - 

PBZ0 = Nil PBZ (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
SED = Standard error of the differences between means 

1 Sites ranked according to umbel crop score for the PBZ0 treatment 
2 Difference between means (ns = not significant, * = significant at p < 0.05, ** = significant at p < 0.01, 
*** = significant at p < 0.001) 
# Within this column, values followed by the same letter do not differ significantly (p < 0.05) 

 
 
Table 14: Effect of clone on Eucalyptus nitens fifth and sixth year umbel crop scores 
 

Fifth year (2008)  Sixth year (2009) 

Clone no. Provenance 
Umbel crop 

score# 
 Clone no. Provenance 

Umbel crop 
score# 

EN47 Barrington Tops 1.772a  EN47 Barrington Tops 2.413a 
EN08 Ebor 0.938b  EN35 Barrington Tops 1.380b 
EN55 Ebor 0.832b  EN55 Ebor 1.275bc 
EN35 Barrington Tops 0.813b  EN08 Ebor 1.088c 
Mean - 1.089  Mean - 1.539 

# Within this column, values followed by the same letter do not differ significantly (p < 0.001) 
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Table 15: Mean Eucalyptus nitens sixth year umbel crop scores for the SITE x PBZ 
interaction, ranked according to umbel crop score for the PBZ0 treatment 
  

PBZ treatment 
SITE1 PBZ0# PBZ1# Difference2 
Netherby3 1.943a 2.557c 0.614* 
Tweefontein 1.818ab 1.932de 0.114ns 
Thoresway 1.756ab 1.744efg 0.012ns 
Willowmere 1.631b 1.807ef 0.176ns 
In De Diepte 1.253c 1.497g 0.244ns 
Wyntoun 1.193c 2.619bc 1.426*** 
Netherby2 1.193c 1.619fg 0.426ns 
The Peak 0.943d 3.057ab 2.114*** 
Chamisso 0.881d 0.619i 0.262ns 
Blair Athol 0.818de 3.119a 2.301*** 
Gilboa 0.631ef 0.619i 0.012ns 
Netherby1 0.568f 1.119h 0.551* 
SED 0.247 0.247 - 

PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
SED = Standard error of the differences between means 

1 Sites ranked according to umbel crop score for the PBZ0 treatment 
2 Difference between means (ns = not significant, * = significant at p < 0.05, ** = significant at p < 0.01,  
*** = significant at p < 0.001) 
# Within this column, values followed by the same letter do not differ significantly (p < 0.05) 

 
 
Table 16: Correlation matrix for selected explanatory variables included in the 
regressions between environmental factors, PBZ and Eucalyptus nitens floral crop 
response (sixth year umbel crop score).  
[Critical values for Pearson’s r (df = 22): p < 0.05 = 0.404; p < 0.01 = 0.515] 

 
 
 
 
 
 
 
 
 
 
 
 
 

LAT = South latitude in degrees 
ALT = Altitude in metres 
MAT = Mean hourly (modeled) screen air temperature for 2009 
CP_1 = Accumulated Chilling Portions (CP) for the period 01 April-30 September 2009 
CP_2 = Accumulated Chilling Portions (CP) for the period 01 May-30 September 2009 
DPCU_1 = Accumulated Daily Positive Utah Chill Units (DPCU) for the period 01 April-30 September 2009 
DPCU_2 = Accumulated Daily Positive Utah Chill Units (DPCU) for the period 01 May-30 September 2009 
PBZ = Paclobutrazol soil treatment (PBZ0 or PBZ1) 
FLW = Eucalyptus nitens sixth year umbel crop score 
N/A = Not applicable 

  

LAT 1.000         
ALT -0.430 1.000        
MAT -0.639 0.053 1.000       
CP_1 0.365 -0.319 -0.598 1.000      
CP_2 0.444 -0.385 -0.577 0.987 1.000     
DPCU_1 0.174 -0.211 -0.380 0.900 0.873 1.000    
DPCU_2 0.183 -0.241 -0.329 0.879 0.863 0.996 1.000   
PBZ N/A N/A  N/A N/A  N/A  N/A  N/A  1.000  
FLW -0.146 -0.023 -0.116 0.132 0.098 0.118 0.097 0.447 1.000 

  LAT ALT MAT CP_1 CP_2 DPCU_1 DPCU_2 PBZ FLW 
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Table 17: Summary of the results of the multiple linear regression analyses for 
Eucalyptus nitens fifth and sixth year floral bud crops on environmental factors and PBZ 
treatment  
 

PBZ = Paclobutrazol soil treatment (levels described in Table 3)  
MAT = Mean hourly (modeled) screen air temperature for the year 2008 (FLW5) or 2009 (FLW6)1 
CP_1 = Accumulated Chilling Portions (CP) for the period 01 April-30 September 20091 
SLOPE = Slope steepness categories (described in Table 5) 
ASPECT = Slope aspect categories (described in Table 5) 
FLW5 = Eucalyptus nitens fifth year (2008) umbel crop score 
FLW6 = Eucalyptus nitens sixth year (2009) umbel crop score 
1Calculated from modeled screen air temperature   
2 Parameter could not be included in model as aliased with parameter SLOPE ST 
3 Parameter could not be included in model as aliased with parameter SLOPE VS 
* = significant at p < 0.05, ** = significant at p < 0.01, *** = significant at p < 0.001)

   FLW5   FLW6 

      PBZ   MAT   PBZ 
   MAT   MAT   SLOPE   CP_1 
   ASPECT   ASPECT   ASPECT   ASPECT 
SOURCE  d.f. m.s.  d.f. m.s.  d.f. m.s.  d.f. m.s. 

Regression  6 0.2865*  7 1.2756*  8 0.2970**  7 0.9703 
Residual  5 0.0318  16 0.3217  3 0.0085  16 0.3821 
Total  11 0.1707  23 0.6120  11 0.2183  23 0.5611 
             
R2   0.814   0.474   0.961   0.319 
SED   0.178   0.567   0.092   0.618 
             
Estimate of parameters:             
Constant   5.59   5.48   5.90   -2.44 
PBZ      1.083      0.656 
MAT   -0.395   -0.394   -0.341    
CP_1            0.035 
SLOPE MO         -0.679    
SLOPE ST         0.472    
SLOPE VG         -0.725    
SLOPE VS         -0.032    
ASPECT E   0.028   0.197   -0.140   0.577 
ASPECT SE   -0.252   0.467   0.190   0.754 
ASPECT S   0.651   0.994   0.801   1.373 
ASPECT SW   1.115   0.584   0.0001   1.507 
ASPECT W   0.609   0.484   0.0002   0.772 
             
Parameter t-values:  5   16   3   16  
Constant   3.77*   1.64   7.42**   -1.41 
PBZ      4.68***      2.60* 
MAT   -3.56*   -1.58   -5.43*    
CP_1            1.89 
SLOPE MO         -8.95**    
SLOPE ST         3.91*    
SLOPE VG         -5.71*    
SLOPE VS         -0.24    
ASPECT E   0.21   0.65   -1.76   1.73 
ASPECT SE   -1.22   1.01   1.44   1.48 
ASPECT S   2.84*   1.93   5.84**   2.32* 
ASPECT SW   5.41**   1.26   na2   2.78* 
ASPECT W   2.92*   1.03   na3   1.35 
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Figure 1: Sequence of events associated with E. nitens annual floral bud crop production between 2004 and 2010 
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Figure 2: Eucalyptus nitens mean tree heights for PBZ treatments in the individual trials 
in the series at five years of age (2009). The trials are ranked alphabetically from left to 
right, with the across-site mean at the extreme right. PBZ0 = Nil PBZ (control), PBZ1 = 
PBZ applied to the soil in March/ April 2006. Error bars represent the standard error 
(SE) of the predicted mean  
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Figure 3: Eucalyptus nitens mean fifth year (2008) umbel crop score for PBZ 
treatments in the individual trials in the series. The trials are ranked alphabetically from 
left to right, with the across-site mean at the extreme right. PBZ0 = Nil PBZ (control), 
PBZ1 = PBZ applied to the soil in March/ April 2006. Error bars represent the standard 
error (SE) of the predicted mean 
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Figure 4: Eucalyptus nitens mean sixth year (2009) umbel crop score for PBZ 
treatments in the individual trials in the series. The trials are ranked alphabetically from 
left to right, with the across-site mean at the extreme right. PBZ0 = Nil PBZ (control), 
PBZ1 = PBZ applied to the soil in March/ April 2006. Error bars represent the standard 
error (SE) of the predicted mean 
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Abstract 

 

During the summer of 2003/ 2004, an E. smithii flowering field trial series was 

established across a range of high elevation (> 1550 m asl), cool temperate (13.5 to 

16.0 oC mean annual temperature (MAT)) sites in the South African summer rainfall 

forestry regions. The interactive effect of a range of climatic and landscape factors and 

paclobutrazol application on E. smithii floral bud (umbel) production was investigated. 

The main aim was to define E. smithii site requirements for optimal (consistent and 

prolific) floral crop production.  

 

Paclobutrazol application reduced mean tree height in the E. smithii grafted clones by 

20% at five years, and at least doubled the mean (across-site) umbel production in the 

same clones in the fifth and sixth crop years. At some of the sites, where the 

environmental conditions were apparently highly inductive of flowering in E. smithii, 

excessive production of umbels and reduction of vegetative growth resulted. The study 

demonstrated that, through careful site selection, the dependency on paclobutrazol to 

achieve satisfactory umbel production levels in reproductively mature E. smithii trees 

can be substantially reduced. In the absence of paclobutrazol application, high elevation 

(> 1700 m asl), cold (MAT ≤ 14.5 oC) sites were generally the most productive on the 

basis of E. smithii umbel crop. However, orchards situated in low landscape positions 

within the elevational and MAT ranges applied in the trial series, and those at high 

elevation (> 1800 m asl), cold (MAT < 14.0 oC) sites carry a high risk of being severely 

damaged by frost. 

 

 

Keywords 

 

Cold-tolerant eucalypt, E. smithii, floral induction, flowering, seed orchard, site-species 

matching, winter chilling  
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Introduction 

 

Eucalyptus smithii, Gully Gum, is an important tree species grown predominantly for 

essential oil production in various parts of the world (Clarke et al. 2008). In countries 

such as South Africa, Australia and China, E. smithii is grown mainly for commercial 

pulpwood production due to the species’ excellent fibre productivity and quality (Arnold 

et al. 2004, Clarke et al. 1999). In South Africa, the species has shown moderate cold-, 

drought-, frost- and snow-tolerance (Darrow 1994, Gardner and Swain 1996, Schönau 

and Gardner 1991). Optimum tree growth is achieved at high elevation (> 1100 m asl), 

moderately cool (15 oC to 17 oC mean annual temperature) sites within the summer 

rainfall forestry area (Swain and Gardner 2002, Gardner 2007). Eucalyptus smithii 

plantations cover approximately 22 000 ha, or 8.3%, of the temperate eucalypt 

plantation forestry area in South Africa (Forestry South Africa 2013, R Gardner 

unpublished data 2014). The species is difficult to propagate vegetatively (Jones et al. 

2000), and thus, to date, seedlings are used in the establishment of the E. smithii 

commercial plantations. The South African forestry industry is largely dependent on the 

production of locally-improved E. smithii seed for plantation use. Seedlings of E. smithii 

rarely flower before the age of eight years, and even then, annual floral bud crops of the 

species are sparse and erratic (Jones 2002). The latter traits hinder E. smithii genetic 

improvement and commercial seed production (Swain and Gardner 2002). 

 

Eucalyptus smithii flowering controls are not well understood. Cold winter conditions 

appear to be pre-requisite for floral bud production in temperate eucalypts (Moncur and 

Hasan 1994, Williams et al. 2003, Gardner and Bertling 2005). To date, cold and 

paclobutrazol (a plant growth regulating chemical) have proven to be the most effective 

treatments for encouraging flowering in the commercial temperate eucalypt species 

(Gardner et al. 2013, Hamilton 2008, Swain and Gardner 2002). In temperate eucalypts, 

depending on whether trees have received sufficient winter cold or not, paclobutrazol 

(PBZ) has the potential to significantly reduce time to first flowering in seedlings and 

increase overall flower and seed crop production (Potts et al. 2007, Williams et al. 

2003).  
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In South Africa, in the high elevation (> 1200 m asl) summer rainfall forestry areas, 

temperate eucalypts such as E. fraxinoides, E. nitens and E. smithii have been 

observed to produce flower buds more consistently and prolifically at exposed, rather 

than low-lying, sites (Gardner 2003). Considerable environment x PBZ x flowering 

interaction research was carried out in an attempt to quantify E. nitens cold requirement 

for floral induction. Of all agricultural chill models evaluated, the Dynamic Model 

(Fishman et al. 1987) performed best over the range of high elevation site conditions 

(Gardner and Bertling 2005). The results indicated that E. nitens has a minimum winter 

chilling requirement of 40 CP (Chilling Portion, the unit of the Dynamic Model; Erez and 

Fishman 1998) for floral induction (Gardner and Bertling 2005, Gardner et al. 2013). At 

medium to high winter chilling levels, i.e. between 55 and 90 CP, PBZ was highly 

promotive of flowering in E. nitens (Gardner et al. 2013, Gardner et al. 2014). 

Eucalyptus smithii chilling requirement for floral induction remains to be investigated.    

 

In South Africa, and indeed abroad, PBZ is used almost routinely as an orchard 

management tool for controlling vegetative growth and enhancing floral bud and seed 

crop production in important temperate species such as E. globulus (Hasan and Reid 

1995, Potts et al. 2007), E. nitens (Gardner et al. 2013, Hamilton et al. 2008) and E. 

smithii (Jones et al. 2000, Jones and Van Staden 2001). Disadvantages associated with 

the reliance on PBZ for achieving early and prolific flowering and seed production in 

temperate eucalypt orchards include the chemical’s recalcitrance and persistence in 

soils (Fletcher et al. 2000, Jackson et al. 1996) and the high financial cost of the 

necessary repetitive applications of PBZ (Gardner et al. 2013). Investigating ways of 

lessening the dependency on PBZ to achieve satisfactory flowering and seed crop 

production in E. smithii is well-warranted.  

 

During the summer of 2003/ 2004, an E. smithii site x PBZ x flowering interaction trial 

series was established across a range of high elevation, high chill temperate forestry 

sites in the summer rainfall forestry area. The main objective was to investigate the 

interactive effect of climate and landscape factors, particularly those associated with air 

temperature, and PBZ on E. smithii floral bud production. The main goal was to derive a 

set of data that would assist the selection of sites for optimal (consistent and prolific) 
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flower bud production in E. smithii. This article discusses the outcomes of the 

investigation. 

 

 

Material and methods 

 

The trial series was established across 12 sites within the summer rainfall forestry 

region, between December 2003 and March 2004.  

 

Site conditions 

The latitudinal range of trial sites covered almost the entire span of the summer rainfall 

temperate eucalypt forestry belt, i.e. from 30° 53’  S in the south near Maclear (Eastern 

Cape), to 25° 02’ S in the north near Sabie (Mpumal anga) (Table 1). The primary site 

selection criteria were mean annual air temperature (MAT) between 13.5 and 16.0 °C, 

elevation between 1550 and 1850 m asl and soil depth ≥ 0.8 m. Some of the sites 

selected for the trials were colder and/or at higher elevations than those recommended 

for optimum E. smithii vegetative growth (Swain and Gardner 2002, Gardner 2007) 

(Table 1). Water stress is known to stimulate flower bud production in a number of 

woody angiosperms (Davenport 1990, George and Erez 2000, Meilan 1997), therefore 

drought stress was minimized as an inductive factor by selecting sites with both high 

mean annual precipitation (MAP) (> 840 mm) and uniformly deep soils (> 0.8 m) (Table 

1) (Darrow 1994, Schönau and Grey 1987). Within the above MAT and elevation 

boundaries, sites were selected for maximum likelihood of high levels of chilling 

accumulating in winter, i.e. those with moderate to high levels of exposure and relative 

relief (Gardner and Bertling 2005, Schulze 2007a, Schulze and Horan 2007). From date 

of trial establishment, uniform weed control was carried out across all trial sites on a 

biannual basis.  

 

Plant material 

In August 2003, scions from four genotypes (ICFR breeding selections) (Table 2) were 

grafted onto six-month old E. smithii seedlings grown from South African improved 

commercial seed. The scions were collected from reproductively mature (nine years or 
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older) grafted ramets in the ICFR and Sappi clonal seed orchards (CSOs) at Mountain 

Home and Tweedie (KwaZulu-Natal midlands), respectively. Eucalyptus smithii was 

represented by two (scion) provenances forming part of the South African E. smithii 

breeding population (Swain and Gardner 2002). Each provenance was represented by 

two (scion) genotypes differing in flowering propensity according to ICFR records (Table 

3).     

 

Experimental design and treatments 

A 2 x 4 factorial experiment consisting of 32 grafted trees, with treatments replicated 

twice, was laid out as a split plot design (Gomez and Gomez 1984). “PBZ application” 

(PBZ0 = nil PBZ applied (control), PBZ1 = PBZ soil drench applied) was assigned as 

whole plot Factor A, and “Clone (scion genotype)” (four individual clones) as sub-plot 

Factor B (Table 3). Each experimental unit consisted of two trees (2-tree contiguous 

plot) with both trees being measured. Due to the sloped nature of most of the sites, 

even though PBZ is known to have low mobility in soils (Jackson et al. 1996, Reid et al. 

1995), the whole plots (PBZ treatments) were laid out across the slope to exclude 

contamination of the PBZ0 treatment plots by PBZ from the PBZ1 plots. Each 

experiment was surrounded by two buffer rows of grafted trees of similar species. 

 

Paclobutrazol treatment 

The PBZ treatment was applied during late summer 2006 (March-April), approximately 

two years after trial establishment. A suspension of Avocet® (formulation 250 g L-1 PBZ, 

Fine Agrochemicals Ltd, Whittington, UK) was applied as a soil drench at a rate of 0.025 

g a.i. per mm basal stem circumference (BSC) (Gardner and Bertling 2005, Gardner et 

al. 2013). The latter measurement was taken at the narrowest point between graft union 

and lowest primary lateral (branch) on the scion. Each calculated PBZ dose was 

dispersed in 5.0 L water and applied evenly to the soil surface in a 1.0 m radius around 

the base of the tree. Prior to application, a 150 mm high “wall” was created around each 

tree at about 1.25 m radius to prevent possible run-off of the PBZ/ water suspension 

due to steepness of slope or heavy rain within the ensuing few days.  
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Data collection    

 

Air temperature measurement  

Air temperature was measured on an hourly basis at each of the experimental sites, 

from time of establishment to time of completion of the experiments. Because of the risk 

of vandalism and/ or theft of meteorological equipment at the remote trial localities, a 

robust data logger housing (hereafter termed “Hobo pole”) was used to house Hobo® H8 

series miniature temperature loggers (Onset Computer Corporation, Bourne, USA). At 

each site, the Hobo pole was positioned in a non-shaded, grassed area, 10 m from the 

northern boundary (outer surround row) of the trial. The Hobo pole was designed, tested 

and refined over a period of eight years, between 1996 and 2004 (Gardner et al. 2014). 

Temperature calibration curves developed by Gardner et al. (2014) were used to model 

hourly radiation screen (hereafter termed “screen”) air temperature data from hourly 

Hobo pole air temperature data (refer Chapter 3), for the period March 2004 to February 

2011.  

 

Chill unit calculation 

Of three popular models tested, the Dynamic Model (Erez and Fishman 1998, Fishman 

et al. 1987) quantified E. nitens winter chilling accumulation most accurately across a 

range of South African temperate eucalypt plantation forestry sites (Gardner and 

Bertling 2005). The Daily Positive Utah Chill Unit Model, a modification of the Utah 

Model (Linsley-Noakes and Allan 1994, Richardson et al. 1974) used by the South 

African deciduous fruit industry, assigns Daily Positive Utah Chill Units (DPCUs). Long-

term mean DPCUs for May to September are available on a 1 minute by 1 minute grid 

basis for the whole of South Africa (Schulze 2007a). In the main deciduous fruit-growing 

areas of South Africa, winter chill units generally begin accumulating in May (Schulze 

and Maharaj 2007a). However, in the temperate eucalypt plantation forestry areas of 

the country, which are located predominantly in the summer rainfall region, chill units 

generally begin accumulating in April (Gardner 2003, Gardner et al. 2013). Based on 

research carried out over three winters, between 01 April and 30 September in 2008, 

2009 and 2010 in KwaZulu-Natal, the ratio between CP and DPCU is approximately 

1:17 (R Gardner, unpublished data, 2014). CP and DPCU daily totals between April and 
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September each year, for the period 2004 to 2010, were calculated using modelled 

hourly screen air temperature data (Gardner et al. 2014). 

 

Vegetative growth measurement 

Tree height was measured on trial planting anniversary date of each year following trial 

establishment for five years. 

 

Reproductive growth assessment 

A flowchart illustrating the sequence of events pertaining to E. smithii annual floral bud 

crop production and assessments between 2004 and 2010 is presented in Figure 1. 

Floral bud abundance was assessed on an individual tree basis in February and May/ 

June of each year. In the summer rainfall area, E. smithii inflorescence buds emerge 

between October and late January, the timing of emergence depending on both long- 

and short-term environmental conditions (R. Gardner, unpublished data, 2014). By mid-

May/ early June, the majority of the involucral bracts are shed and the umbels 

(inflorescences) with their individual flower buds in pre-anthesis or early anthesis stage 

are at their most conspicuous. Individual tree floral bud crop was estimated using the 

following scoring system: 0 = no umbels; 1 = very light crop, 25% or less of the 

secondary laterals bearing one or more umbels (secondary laterals defined as branches 

originating from primary stems); 2 = light crop, between 26 and 50% of secondary 

laterals bearing one or more umbels; 3 = moderate crop, between 51 and 75% of 

secondary laterals bearing one or more umbels; 4 = heavy crop, between 76 and 100% 

of secondary laterals bearing one or more umbels (Gardner and Bertling 2005).  

 

Statistical analysis 

 

Vegetative and reproductive growth assessments 

Statistical analyses were performed to investigate the effect of site, PBZ and clone on 

tree height at five years and the fifth and sixth floral bud crops. As illustrated in Figure 1, 

the fifth and sixth floral bud crops were those initiated in 2008 and 2009, respectively, 

and scored in 2009 and 2010, respectively. The reasons why the previous years’ floral 

bud crops were not included in the analyses are as follows: 
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• The possible confounding effects of trial establishment differences, e.g. the 

different planting and blanking dates, on analytical results were likely to be 

avoided 

• The possible negative effect of transmission of juvenile (reproductive immaturity) 

signal from seedling rootstock to reproductively mature scion on flowering 

potential of the scion would likely be minimized (Gardner and Bertling 2005, 

Siniscalco and Pavelettoni 1988).  

The effects of PBZ and clone (scion genotype) on tree height and floral crop load were 

explored in individual trial analyses using restricted maximum likelihood (REML) 

analysis in GenStat® (2012) (Payne et al. 2012). Fixed effects were specified as PBZ, 

clone and the PBZ by clone interaction. Fisher’s protected least significant difference 

test was used to compare main effect and interaction means at the 5% level (Steel and 

Torrie 1981).  

 

The interactive effect of site, PBZ and clone on tree height and floral crop score was 

investigated using REML meta-analysis in GenStat®. REML meta analysis produces 

estimates of means and variances which are more accurate than that of a combined 

Analysis of Variance (ANOVA) (Patterson and Thompson 1971, Robinson 1987), as 

separate residual terms per site are utilised and not a pooled residual over all sites. The 

fixed effects were specified as site, PBZ and clone and all their interactions. For the 

across-site analyses, trees were treated as nested within plots and plots within sites. All 

assumptions for valid REML analyses were satisfied. 

 

Correlation analyses were carried out in GenStat® to investigate the degree of 

relatedness between selected environmental factors, PBZ and the sixth floral bud crop. 

The main objective was to investigate the relatedness of the different explanatory 

variables, particularly those that were climate-related. For the purpose of the correlation 

analyses, variate “FLW” (floral bud crop) represented average floral crop score for 

clones over replicates in the sixth year after planting.    

 

Multiple linear regression analyses in GenStat® were used to investigate the 

relationships between selected climatic and landform factors, PBZ application and E. 
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smithii fifth and sixth floral bud crops. The landform factors described in Table 4 were 

fitted into the statistical models as factors, and therefore handled as dummy variables in 

the analyses.Preliminary multiple regressions established that the model most 

accurately fitted the relationship between the environmental and floral response data. 

Separate sets of multiple linear regressions were then carried out, for the fifth and sixth 

crops, and with and without PBZ included as a treatment. The response and 

explanatory variables included in the multiple linear regression analyses are described 

in Tables 4 and 5.  

 

 

Results 

 

At Thoresway and Chamisso (Eastern Cape) and Tweefontein (KwaZulu-Natal), sites all 

highly frost-prone due to their low-lying landscape situations, all E. smithii trees were 

killed by frost seven months after the initial planting, and again during winter following 

the February 2005 re-planting. Therefore, these three sites were excluded from all 

growth data analyses. 

 

Effect of site, PBZ and clone on tree height  

A summary of the results of the across-site REML analyses for tree height at five years, 

including calculated F-test values for the fixed effects, is presented in Table 6. Site and 

PBZ, and all interactions implicating site, PBZ and clone were highly significant (p < 

0.01). The clonal effect was non-significant (p = 0.846). PBZ application reduced mean 

tree height in E. smithii by 20.7%, i.e. from 10.98 m to 8.71 m) (p < 0.01) (Table 7). 

 

Mean five year tree heights in the E. smithii site x PBZ interaction are presented in 

Figure 2, and ranked according to height for the control (PBZ0) trees in Table 8. PBZ is 

known to retard vegetative growth in various woody perennials, including Eucalyptus 

(Fletcher et al. 2000), thus mean heights of the control trees, rather than those of PBZ-

treated (PBZ1) trees, are a more accurate reflection of site effect on vegetative growth 

of E. smithii. The sites with highest tree growth (Table 8) did not coincide with sites 

having the highest MAP figures (Table 1). The three top-ranking sites for height, 
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Netherby1 (14.73 m), Wyntoun (13.64 m) and Netherby3 (12.76 m), ranked only 3rd, 6th 

and 3rd for MAP (948 mm, 905 mm and 948 mm, respectively). The site ranking lowest 

for tree height at five years, Netherby2 (7.00 m), also ranked 3rd for MAP (948 mm). The 

regression of E. smithii five year height on MAP (Schulze and Lynch 2007) yielded an 

R2 value of 0.089 (p = 0.436) (data not presented). Based on five year height, no clear 

linear relationship between MAP and vegetative growth was observed.  

 

Similarly, no clear trend between MAT and height growth was evident (Tables 1 and 8, 

respectively). The site producing the tallest trees (Netherby1, 14.7 m) and shortest trees 

(Netherby2, 7.0 m) were both at the lower end of the MAT range (14.1 °C). The 

regression of E. smithii five year height on MAT (Schulze and Maharaj 2007a) yielded 

an R2 value of 0.052 (p = 0.554). 

 

Separate t-tests were carried out for each site, to compare height growth of PBZ0 

(control) trees against that of PBZ1 (PBZ-treated) trees. PBZ significantly reduced tree 

height at all but one site, viz. The Peak (Table 8). PBZ had the greatest growth retarding 

effect at Willowmere (5.5 m, or 47%, height reduction), a site at the lower end of the 

MAT range (14.1 °C), and Blair Athol (4.5 m, or 40% , height reduction), a moderately 

cold site in the series (MAT 14.6 °C). The two site s where PBZ had the least effect, viz. 

The Peak (0.7 m, or 7%, height reduction) and In De Diepte (1.5 m, or 17%, height 

reduction) were at either end of the MAT range (15.5 °C for The Peak, 14.5°C for In De 

Diepte) (Table 1). 

 

The site x clone interaction for height at five years was highly significant (p < 0.001). 

The four clones (scion genotypes) included in the trial series represented a narrow 

sample of the South African breeding and commercial planting stock. Therefore, a 

detailed discussion on the relative performance of the different clones across sites is not 

warranted. The E. smithii clonal mean for height at five years is a useful indicator of the 

relative growth potential of each of the 11 sites. No visible signs of graft incompatibility 

were present in any of the plants throughout the duration of the trials. Thus it seems 

unlikely that incompatibility between scion genotype and rootstock confounded the 

results for tree height. Summaries of the results of the separate REML analyses for E. 
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smithii tree height at five years for the individual sites in the series are presented in 

Appendix 4. 

 

Effect of site, PBZ and clone on umbel production  

In all years assessed (2008 to 2010), the new season’s flower buds emerged over a 

period of about three months, from early October to late December. The first, sparse 

umbel crops were recorded in several of the E. smithii trials during May/ June 2006, 

approximately 28 months after trial establishment. The first significant umbel crops were 

scored in May/ June 2007, 40 months after trial establishment. Summaries of the results 

of the across-site REML analyses for E. smithii fifth and sixth floral bud crops (initiated 

2008 and 2009), including the calculated F-test values for fixed effects, are presented in 

Tables 9 and 10, respectively. In the PBZ0 (control) treatment, mean umbel production 

(across clones and sites) increased dramatically from year five (2008) to year six (2009) 

(47% increase) (Table 11). In the PBZ1 treatment, a slight decrease in mean umbel 

production from fifth to sixth year was recorded (-6.7%).    

 

In the fifth year (2008), site, PBZ and site x PBZ interaction were all highly significant (p 

< 0.001), and clone x site interaction significant at p = 0.034 (Table 9). Clone and PBZ x 

clone and PBZ x clone x site interactions were all non-significant at p ≤ 0.05. 

Paclobutrazol application more than doubled umbel production, increasing mean umbel 

crop score from 1.24 (PBZ0) to 2.88 (PBZ1) (Table 11). 

 

Mean fifth year (2008) umbel crop scores in the E. smithii site x PBZ interaction are 

presented graphically in Figure 3, and ranked according to umbel crop scores for the 

PBZ0 treatment in Table 12. PBZ is known to stimulate floral bud production in 

Eucalyptus species (Fletcher et al. 2000), therefore umbel crop scores for E. smithii 

non-PBZ-treated trees (PBZ0 treatment) were more indicative of the site effect on 

reproductive growth. In the control (PBZ0) treatment, Netherby3 ranked first for umbel 

production (crop score 2.062), significantly (p < 0.05) outperforming all other sites in this 

regard (Table 12). Willowmere also performed well, ranking second at 1.687 and 

significantly (p < 0.05) outperforming all other sites except Netherby3 (2.062) and 

Netherby1 (1.437). Separate t-tests were carried out for each of the E. smithii trials 
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comparing mean fifth year umbel crop production for the control and PBZ1 trees (Table 

12). The levels of significance for the difference in umbel production between the PBZ0 

and PBZ1 treatments ranged markedly across sites. PBZ application significantly 

increased umbel production at all nine sites (p < 0.05). At six of the nine sites, the 

positive effect of PBZ on umbel crop was highly significant (p < 0.001). 

 

Mean clonal effect on fifth year umbel crop was non-significant (p = 0.512) (Table 9). 

The site x clone interaction for fifth year umbel crop was significant at p < 0.05 (Table 

9). Summaries of the results of the separate REML analyses for E. smithii fifth year 

umbel crop scores for the individual sites are presented in Appendix 5. Clone was 

significant (p < 0.05) at only one out of nine sites, viz. Willowmere (p < 0.01). The scion 

genotypes (clones) included in the trial series are a relatively narrow sample of the 

South African breeding and commercial planting stock, therefore a detailed discussion 

on the relative performance of the different clones across sites was not warranted. 

 

In the sixth year (2009), site and PBZ were the only treatments to significantly (p < 

0.001) influence umbel crop score (Table 10). The effects of clone, and the interactions 

between site, PBZ and clone, were all non-significant (p ≤ 0.05). PBZ increased mean 

(across-site) umbel crop production by 48%, elevating mean umbel crop score from 

1.82 (control) to 2.69 (PBZ1) (Table 11).  

 

Mean sixth year umbel crop scores in the E. smithii site x PBZ interaction are presented 

graphically in Figure 4, and ranked according to umbel crop scores for control treatment 

in Table 13. In the control (PBZ0) treatment, Netherby2 ranked first for umbel 

production (crop score 2.5), significantly (p < 0.05) outperforming all other sites except 

Willowmere (2.438), the second most productive site (Table 13).  

Willowmere, one of the coldest (MAT 14.1oC) and highest elevation (1708 m asl) sites 

evaluated (Table 1), was the only site to rank within the top third sites for umbel 

production in both fifth and sixth crop years (Tables 12 and 13). Separate t-tests were 

carried out for each of the nine sites comparing the sixth year umbel crop scores of the 

control trees against that of the PBZ1 trees. The effect of PBZ application on sixth year 

umbel crop score was generally less distinct than in the previous (fifth) crop year (Table 
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13). The levels of significance for the difference in umbel crop score between PBZ0 and 

PBZ1 treatments ranged substantially, from non-significant (two out of nine sites) to 

moderately significant (p < 0.01) (five out of nine sites). 

 

The effect of clone and all interactions involving clone were all non-significant in the 

across-site REML analyses for sixth year umbel crop (Table 10). In the REML analyses 

for individual sites for the same variate, clone was significant (p < 0.05) at one of the 

sites, viz. Netherby2. The results for the individual REML analyses of sixth year umbel 

crop scores are presented in Appendix 6.  

 

Relationship between site factors, PBZ and umbel production 

The results of the correlation analyses for the range of environmental factors, PBZ 

application and E. smithii sixth year floral bud crop are presented in Table 14. The 

correlations between the different chill model x chill period combinations were all highly 

significant (p < 0.01) (Table 14). Correlations ranged from 0.862 (CP_2 versus 

DPCU_2) to 0.995 (DPCU_1 with DPCU_2). CP_1 (Dynamic Model, April to 

September) correlated highly with DPCU_1 (Daily Positive Utah Chill Unit Model, April 

to September) at 0.889. Mean annual temperature (MAT) was moderately negatively 

correlated with LAT (-0.580), CP_1 (-0.719) and CP_2 (-0.691) (p < 0.01). A moderate 

positive correlation existed between PBZ and FLW (r = 0.645). The correlations 

between FLW and all other factors were weak and insignificant.  

 

Summaries of the results of multiple linear regressions yielding the highest R2 values 

and significance in each set (fifth and sixth year umbel crops, with and without PBZ 

treatment) are presented in Table 15. ASPECT was consistently the most influential 

environmental explanatory variable across the suite of regressions. The analyses 

implicating fifth crop year data generally yielded substantially higher R2 values than 

those implicating sixth crop year data (Table 15).  

 

In the models pertaining to control (PBZ0) trees, in the fifth year (2008), 92% of the 

variance was accounted for by MAT and ASPECT (R2 = 0.924, p = 0.06) (Table 15, 

FLW5a). The south-west (SW) aspect exerted the strongest positive effect on umbel 
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crop (refer FLW5a) of all ASPECT categories, although this was only significant at p = 

0.22. South-east (SE) aspect was significantly negatively related to umbel crop 

production (p < 0.05). The impacts of the ASPECT categories were measured relative to 

that for north (N) ASPECT category, the latter being closest to mean umbel crop score 

for ASPECT. In the sixth crop year (Table15, FLW6a), 75% of the variance was 

accounted for by DPCU_1 and RELIEF (R2 = 0.753, p < 0.05). The very low (VL) 

RELIEF category exerted the greatest positive effect on umbel crop production (FLW6) 

(p < 0.05), with the remaining RELIEF categories exerting relatively minor positive or 

negative influences on umbel crop. Daily Positive Utah Chill units for the period April to 

September 2009 (DPCU_1) demonstrated a significant (p < 0.05) but negative 

relationship with umbel crop production. 

 

Where PBZ was included as an explanatory variable, in the fifth year 79% of the 

variance was accounted for by PBZ and ASPECT (R2 = 0.794, p < 0.001) (Table 15, 

FLW5b). South-west (SW) followed by west (W) aspects (p < 0.05 and p = 0.05, 

respectively), showed strong positive relationships with fifth year umbel crop. The 

relationship between PBZ and FLW5 was highly significant (p < 0.001). In the sixth crop 

year (Table 15, FLW6b), 61% of the variance was accounted for by PBZ and ASPECT 

(R2 = 0.610, p < 0.01). None of the ASPECT categories were particularly dominant in 

the relationship with umbel crop, although east (E) aspect was the highest positively 

correlated category (p = 0.09) and south-east (SE) aspect the highest negatively 

correlated category (p = 0.63) with FLW6b. Again, the relationship between PBZ and 

sixth year umbel crop (FLW6b) was highly significant (p < 0.001).     

 

 

Discussion  

 

Effect of site and PBZ on tree height 

Mean height of the control (PBZ0) trees were more indicative of the true effect of site on 

tree vegetative growth than mean height of the PBZ1 trees. Based on mean tree height 

for control trees at five years, the relationship between MAP and height was not strong 

(Tables 1 and 8). The deep soil conditions (≥ 1.0 m) at each of the sites may have 
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played an ameliorative role in preventing soil water shortages from developing, 

particularly during the dry winter months, at the lower rainfall sites in the series (Darrow 

1994, Owens 1995). Analysis of the relationship between five year tree height and 

actual MAP (mean for the period 2004 to 2009) may have yielded a somewhat different 

result. Soil water availability is the most common growth-limiting factor in Eucalyptus 

stands (Louw 1999, Schönau and Grey 1987). Similarly, the relationship between MAT 

and five-year height growth of the control (PBZ0) trees was not strong. Two sites at the 

lower end of the MAT range, viz. Netherby1 (MAT 14.1 °C) and Netherby2 (14.1 °C), 

produced mean tree heights at the opposite ends of the height range (14.7 m and 7.0 

m, respectively). According to E. smithii five-year mean height data, vegetative growth 

did not appear to be linearly related to either MAP or MAT across the range of site 

conditions. It is postulated that other environmental factors, such as those relating to 

micro-topography, e.g. slope aspect and steepness, and genetic factors such as frost 

and heat tolerance of the different scion genotypes, may have exerted a stronger effect 

on tree height growth over the first five years. It was unlikely that soil nutrient content 

differences impacted on the results. Soil sampling and nutrient analyses carried out at 

each of the sites during 2012 revealed no significant deficiencies for any of the 

elements (and organic carbon) typically associated with Eucalyptus vegetative growth 

(R Gardner unpublished data 2012). Furthermore, graft incompatibility was excluded as 

a cause of confounding five-year tree height growth measurements, both within and 

across trial sites, due to the absence of incompatibility symptoms in any of the trees 

during the five years after planting.  

 

Paclobutrazol application significantly reduced mean tree height in E. smithii (20.7% 

reduction) (Table 7) as would be expected (Hetherington and Jones 1990). The SITE x 

PBZ interaction showed a general trend of the growth suppressing effect of PBZ being 

most evident at sites having both low MAP and low MAT figures. However, this was not 

always the case. For example, at Gilboa, the site with the second highest MAP and 

MAT values (957 mm and 15.31 °C, respectively), a l arge percentage height growth 

reduction occurred as a result of PBZ application. As referred to earlier, with respect to 

the PBZ0 treatment, Gilboa recorded the second lowest tree height growth of all sites. 

The varying effect of PBZ application on five-year  tree height growth across the nine 
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sites did not relate well to MAP and MAT data for the sites (Tables 1 and 8). Possibly, 

long-term data for the key climatic variables did not adequately represent actual site 

conditions that occurred over the period in which the trials were conducted. The micro-

topographies of the trial sites may have contributed to the effect. Topographical factors 

such as aspect, steepness of slope and relative relief are known to influence air, soil 

and plant canopy temperatures (Dahlgren et al. 2007, Sader 1986, Schulze 2007b, 

Schulze and Horan 2007).   

 

Effect of site, PBZ and clone on umbel production 

Regardless of whether PBZ was applied or not, in both the fifth and sixth crop years 

mean umbel production varied markedly across sites (Tables 12 and 13). This indicated 

the existence of important differences in environmental conditions across the range of 

sites in each of the years. Environmental conditions are known to exert a strong 

influence on floral induction and development in temperate eucalypts (Moncur et al 

1994, Potts et al. 2007). 

  

In the control (PBZ0) treatment, between the fifth and sixth crop years a marked (47%) 

increase in mean (across site) umbel production occurred (Table 11), even though the 

mean (across site) increase in winter chilling of 5.2% (from 81.5 CP to 85.7 CP), was 

minimal. This suggested that some factor other than winter chilling was responsible for 

the substantial increase in floral bud production between the fifth and sixth crop years. 

The scions used in the production of the E. smithii grafted propagules for the trials were 

collected from reproductively mature trees, but the rootstock propagules were grown 

from seed. Thus, at the likely time of initiation of the fifth and sixth year floral bud crops, 

the seedling rootstocks were only 5.5 and 6.5 years old. In South Africa, open grown 

non-PBZ treated E. smithii seedlings rarely produce flower buds before the age of eight 

years and even thereafter flower bud crops are typically sparse (Jones 2002, Swain and 

Gardner 2003). The increase in floral bud crop from fifth to sixth crop year suggested 

that the stage of reproductive maturity of the seedling rootstocks, or possibly climatic 

differences between 2008 and 2009, or both of these, may have been responsible for 

the marked difference in reproductive performance between the two years. Temporary 

setback of reproductive maturity of adult scions by transmission of a juvenile signal from 
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reproductively immature seedling rootstocks has been reported for fruit tree crops 

(Pliego-Alfaro and Murashige 1987) and Eucalyptus (Gardner and Bertling 2005, 

Gardner et al. 2013, Siniscalco and Pavellettoni 1988).  

 

The high levels of floral bud production in non-PBZ treated (PBZ0) trees at certain of the 

sites in both crop years, e.g. Netherby3, Willowmere, Netherby1 and In De Diepte, was 

highly encouraging. These were the only sites with umbel scores above the across-site 

mean for PBZ0 in both years (Tables 11, 12 and 13). The most common environmental 

criteria across these sites appeared to be low MAT (≤ 14.5 oC) and high elevation (≥ 

1678 m asl) (Table 1), though it is possible that such factors played an interactive role 

together with one or more other environmental factors in stimulating floral bud 

production in E. smithii. The effects of the highly inductive site conditions (on the basis 

of floral bud production) on other post-initiation aspects of reproductive growth in E. 

smithii, such as anthesis timing and duration, and rate of capsule and seed 

development, warrant investigating. Moncur et al. (1994) reported a three-week delay in 

E. nitens anthesis commencement coinciding with an elevational increase of 672 m in 

Tasmania.    

 

Mean umbel production across sites and clones in the PBZ1 treatment was at least 

double that of the control (PBZ0) treatment on an annual basis (Appendices 5 and 6). 

The ability of PBZ application to significantly increase flowering in temperate eucalypts, 

given favourable environmental conditions, is well documented (Hasan and Reid 1995, 

Meilan 1997, Moncur and Hasan 1994). Moncur (1988) reported soil-applied PBZ 

exerting a positive floral stimulatory effect on E. nitens espalier-grown trees for a 

minimum of five years. In the E. smithii trials, a general reduction in the positive effect of 

PBZ on floral bud production was observed between fifth and sixth crop year (Tables 12 

and 13). As trees were older and levels of winter chilling generally higher across sites 

during the sixth crop year, the most likely cause of the overall drop-off in difference in 

umbel production between the two PBZ treatments was lowered levels of active PBZ 

within PBZ-treated trees during the 2009 winter. The PBZ doses were applied in autumn 

(March/April) 2006 and therefore the results imply that a drop-off in the floral stimulatory 

effect of PBZ in temperate eucalypt orchards can be expected from the fourth winter 
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after application. In South Africa, where the success of a commercial temperate 

eucalypt seed production enterprise is dependent on PBZ application to achieve a 

consistent abundant supply of improved seed, the need to re-apply the chemical 

approximately every five years needs to be taken into consideration in the economics of 

the operation. The cost of the chemical alone needed to treat one average orchard of 

young (9 yr old), elite (grafted) Eucalyptus trees (@ 200 trees per ha and mean breast 

height diameter = 30 cm) is approximately R 17 100 (±US$1480) (R Gardner 

unpublished data 2014).  

 

Regarding clonal effect on mean umbel production, the general lack of significance of 

difference regarding floral crop production amongst the four E. smithii clones, within or 

across-site, and PBZ-treated or not, in both years (Tables 9 and 10) suggested that the 

environmental conditions applied in the trial series were close to optimal for E. smithii 

floral induction.  

 

At sites where PBZ application caused the greatest reductions in tree height (Table 8) 

as well as the greatest increases in floral bud crops (Tables 12 and 13) over the control, 

e.g. Willowmere and Blair Athol, excessive bearing was noted in more than 33.3% of 

the PBZ treated trees. This phenomenon was not clone-specific (R Gardner 

unpublished data 2013). Possibly, in both the 2008 and 2009 winters, E. smithii’s 

chilling requirement for floral induction was adeqately met or even far exceeded, and 

under such conditions the additional floral stimulatory effect of PBZ resulted in over-

bearing of certain scion/ rootstock genotype combinations. If so, possibly the ideal 

approach in future would be to apply the PBZ doses in two split-applications, particularly 

at sites where high levels of winter chilling are anticipated to occur on an annual basis. 

Negative consequences commonly associated with excessive flowering in temperate 

eucalypt seed orchard trees include reduced tree vigour, increased self-pollination, in-

breeding and capsule abortion rates, and lowered genetic quality of seed (Eldridge et al. 

1993, Moncur 1998, Moncur and Boland 2000, Reid et al. 1995). The merits of split-

dose PBZ applications for controlling flower and seed crop production in commercial 

temperate eucalypts remain to be investigated in South Africa. 
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Relationship between site factors, PBZ and umbel production 

The results of the correlation analysis for environmental factors, PBZ and E. smithii sixth 

year floral crop (Table 14) gave three main indications. Firstly, none of the 

environmental factors individually correlated highly with E. smithii sixth year umbel crop 

score, suggesting multiple linear regression analysis was warranted in order to 

investigate the significance of the different explanatory variable combinations. Secondly, 

PBZ correlated moderately with E. smithii umbel crop. Thirdly, the strongest inter-chill 

model correlation was between CP_1 (Dynamic Model, April to September) and 

DPCU_1 (Daily Positive Utah Chill Unit Model, April to September). Fourthly, MAT 

(mean annual temperature) showed a fairly high negative correlation with CP_1.   

 

In the multiple regressions, environmental variables played a significant role in 

accounting for percentage variance (Table 15). The sites in the E. smithii trial series 

were all selected for high levels of annual winter chilling, based on knowledge of the 

effects of latitude, elevation and certain topographical factors on air and soil 

temperatures (Schulze and Horan 2007, Sharma et al. 2010) and chill unit databases 

for South Africa (Schulze and Maharaj 2007b). Due to the limited number of sites 

available at the time of trial establishment, the variations in landform factors (landform 

classes) could not be replicated equally. Rather, these were applied on a fairly ad hoc 

basis. Hence this should be taken into consideration when interpreting the results of the 

regressions.  

 

The results of the regressions where PBZ was excluded as an explanatory variable are 

more indicative of the true effect of site on floral bud production. In the fifth crop year, 

low MAT and southerly (S) to south-westerly (SW) slope aspects were highly promotive 

of flowering, but in the sixth year there was some indication that sites with low levels of 

accumulated DPCU and very low relative relief were more conducive to floral bud 

production. Where PBZ was applied, southerly (S) to south-westerly (SW) slope aspects 

were again the most dominant positively influential environmental factors on floral bud 

production in both years. Regarding the positive effect of more southerly slope aspects 

on E. smithii floral bud production, what remains unclear are the portions of the positive 

floral responses due to environmental factors such as air, bud and soil temperature, soil 
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water level and solar irradiance. Such factors have been known to substantially 

influence plant vegetative and reproductive growth, as well as species composition 

(Austin et al. 1983, Granger and Schulze 1977, Moore et al. 1993), over a range of 

environments (Dahlgren et al. 2007, Sader 1986, Schulze 2007b, Sharma et al. 2010).  

 

In the E. smithii field trials, even though all sites were selected to have deep soils to 

prevent any major soil water deficit from developing at any stage through the lifespan of 

the trials, soil water levels in the topsoil horizons would most likely have declined to 

some degree during the drier winter months. In an earlier field trial series, neither low 

temperature nor drought stress significantly enhanced floral bud production in E. nitens 

grafts or seedlings (Gardner 2003). In South Africa, E. smithii has demonstrated high 

levels of drought tolerance at cool temperate (MAT ≤ 16 oC) sites in the summer rainfall 

area (Darrow 1994, Gardner 2007, Smith et al. 2005). Based on earlier investigations 

undertaken on E. nitens, indications are that soil water deficit does not play a 

stimulatory role in floral bud production in either E. nitens or E. smithii. Thus it seems 

unlikely that minor soil water deficits, such as those that may have occurred in the 

topsoil horizons during winter, could have played a significant positive role in E. smithii 

floral bud crop production.  

 

In Southern Hemisphere countries such as South Africa, south-facing slope aspects are 

generally cooler with respect to both soil and air temperature, resulting in slower plant 

growth rates occurring on southerly compared to northerly aspects (Granger and 

Schulze 1977, Schulze 2007b). A similar phenomenon was noted at Netherby plantation 

in the KwaZulu-Natal midlands. In the E. smithii control (PBZ0) treatment, in the fifth 

crop year, significantly lower mean tree heights (p < 0.05) were recorded in the trial on 

the south-facing slope (Netherby3) compared to the trial on the north-facing slope 

(Netherby1) (Table 8). In the same crop year, the two sites, both in the top three for 

umbel crop production (Table 12), differed significantly (p < 0.05) for the same variate, 

with Netherby3 (2.062) outperforming Netherby1 (1.437). In the following (sixth) crop 

year, the difference between the two sites on the basis of umbel crop production was 

neglible and non-significant (p = 0.05) (Table 13). The particular pattern of vegetative 

and reproductive growth across the two sites suggests the following: 
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• E. smithii‘s chilling requirement for floral induction is more consistently met when 

exposed to the environmental conditions associated with south-facing slopes in 

the summer rainfall area 

• Slowed vegetative growth during the winter months may be a key factor in E. 

smithii floral induction process 

The results of semi-controlled environment and field trial research carried out by the 

ICFR during the period 1996 to 2001 tended to suggest that cold, moist, stress-free 

growing conditions during winter favour E. nitens floral bud production (Gardner 2003). 

In the summer rainfall area of South Africa, such environmental conditions are typically 

associated with sites located on south-west facing slopes and having deep (> 1.0 m) 

soil profiles (Bale et al. 1998, Louw 1999, Schulze 2007b). In the winter and uniform 

rainfall areas, because of the more frequent cloud cover and associated increased 

chilling during the winter months (Schulze and Maharaj 2007b), aspect may not play 

such an important role as it does in the summer rainfall area. Decreased solar 

irradiance due to increased cloud cover during winter and spring may negatively affect 

temperate eucalypt vegetative and reproductive growth (Bell and Williams 1997, House 

1997, Moncur 1992), and this would need investigating.  

 

 

Conclusions 

 

The research yielded new information that will be invaluable in assisting tree breeders 

and commercial seed producers select sites for E. smithii orchards where optimum floral 

crop production is aimed at. Plant-soil-atmospheric environmental factors associated 

with the highly inductive slope aspects need closer investigating. Increased knowledge 

of the key environmental triggers and associated plant physiological processes 

implicated in floral induction in temperate eucalypts may increase the ability to 

manipulate flower and seed crop production in high value species such as E. smithii. 

The value of methods of manipulating temperate eucalypt flowering may increase 

substantially in future if the current climate warming scenario continues at the predicted 

rate.  
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The application of PBZ generally resulted in a significant improvement in E. smithii floral 

crop yield. However, in the same species, PBZ in combination with highly inductive 

environmental conditions carries a high risk of excessive flowering and capsule 

production and compromised genetic quality of seed, as well as significantly decreased 

vegetative growth. The study demonstrated that through careful selection of sites within 

the high elevation, summer rainfall forestry landscape in South Africa, the dependency 

on PBZ to achieve satisfactory levels of flower bud production in E. smithii may be 

substantially reduced. This is an important finding, due not only to the negative 

environmental connotations associated with the use of triazoles in the outdoor 

environment, but also the temporary nature of PBZ’s effectiveness in the stimulation of 

flowering. The investigation and application of other enabling horticultural technologies, 

such as the use of low-chill, precocious rootstocks, could lead to a further reduction in 

the dependency on PBZ to improve temperate eucalypt orchard economics. In the 

absence of PBZ application, high elevation (> 1700 m asl), cold (MAT ≤ 14.5 oC) sites 

were generally the most productive on the basis of E. smithii umbel crop. However, 

within the elevational and MAT ranges applied in the trial series (1550 to 1850 m asl, 

and 13.5 to 16.0 oC, respectively), caution needs to be exercised in selecting sites for E. 

smithii orchards. Based on our experience, the siting of E. smithii orchards in low 

landscape positions within the above elevational and MAT confines, or at high elevation 

(> 1800 m asl) sites in cold (MAT < 14.0 oC) areas carries with it a high risk of trees 

being severely damaged and/or killed by frost. The effects of the environmental 

conditions of highly inductive sites (on the basis of floral bud production) on various 

aspects of E. smithii post-initiation reproductive growth, such as anthesis timing and 

duration and rate of capsule and seed development, remain to be investigated.   
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Table 1: Site details for the Eucalyptus smithii flowering trials  

 
Trial name 

In De 
Diepte 

Wyntoun Gilboa The Peak Tweefontein Netherby1 Netherby2 Netherby3 Willowmere Blair Athol Thoresway Chamisso 

Locality:             
Province MPU MPU KZN KZN KZN KZN KZN KZN KZN KZN EC EC 
Latitude 25° 02’ S  26° 12' S  29° 14' S  29° 15' S  29° 15' S  29° 39’ S  29° 38' S  29° 38' S  29° 51' S  29° 52’ S  30° 50' S  30° 54’ S  
Longitude 30° 44’ E  30° 44’ E  30° 17’ E  30° 09' E  30° 13’ E  29° 38' E  29° 38' E  29° 38' E  29° 26' E  29° 37’ E  28° 13' E  28° 11’ E  
Elevation (m) 1828 1733 1595 1629 1588 1688 1700 1678 1708 1568 1809 1686 
Climatic factors:             
MAP (mm)1 1241 905 957 929 842 948 948 948 914 843 908 904 
MAT (oC)2 14.5 15.0 15.3 15.5 15.1 14.1 14.1 14.1 14.1 14.6 13.8 14.1 
MAC (DPCU)3 962.1 784.8 764.8 727.0 811.0 865.3 865.3 865.3 863.2 799.8 1078.2 951.4 
Edaphic factors:             
Soil form and 
series4 

Magwa 
 1100 

Clovelly 
1200 

Kranskop 
1200 

Magwa 
1200 

Magwa 
1200 

Inanda 
1200 

Magwa 
 1100 

Kranskop 
1200 

Kranskop 
1200 

Magwa 
1200 

Kranskop 
1100 

Magwa 
1200 

Soil unit5 
Haplic 

Ferralsol 
Haplic 

Ferralsol 
Haplic 
Acrisol 

Haplic 
Acrisol 

Haplic 
Acrisol 

Haplic 
Acrisol 

Haplic 
Ferralsol 

Haplic 
Acrisol 

Haplic 
Acrisol 

Haplic 
Acrisol 

Haplic 
Ferralsol 

Haplic 
Acrisol 

Soil depth (m) 1.0  1.0 > 1.2 > 1.2 > 1.2 > 1.2 1.0 > 1.2 > 1.2 > 1.2 > 1.2 > 1.2 
Landform 
elements: 

            

Aspect6 NW S N SE N N E SW E E E NE 
Slope6 VS VG VG VG GE MO GE ST GE MO GE MO 
Relief6 H L H H VL VH VH H VL L H L 

MAP = Mean annual precipitation; MAT = Mean annual temperature; MAC = Mean annual (long-term) chill units; DPCU = Daily Positive Utah Chill Units 

MPU = Mpumalanga, KZN = KwaZulu-Natal, EC = Eastern Cape 
1 Schulze and Lynch (2007) 
2 Schulze and Maharaj (2007b) 
3 Schulze and Maharaj (2007a) 
4 Soil Classification Working Group (1991) 
5 IUSS Working Group (2006) 
6 Refer to Table 5 for landform elemental class description 
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Table 2: Details of the origins of the Eucalyptus smithii scion genotypes represented in 
the field trials  

 

Clone No.  Origins 
 Provenance Latitude (S) Longitude (E) Elevation (m asl) 

ES01  Wombeyan Road, NSW 34° 21' S 150° 12' E 700 
ES06  Tallaganda, NSW 35° 23' S 149° 37' E 950 
ES71  Tallaganda, NSW 35° 23' S 149° 37' E 950 
ES74  Wombeyan Road, NSW 34° 21' S 150° 12' E 700 

NSW = New South Wales, Australia 
 
 
Table 3: Allocation of the treatments in the Eucalyptus smithii split-plot design 
experiments 

 

 Treatment Treatment level description 
Factor A: PBZ soil application  
Level 1 PBZ0 Nil PBZ (control) 
Level 2 PBZ1 PBZ soil drench applied 
Factor B: Clone (scion genotype) Provenance, flowering potential* 
Level 1 ES01 Wombeyan Road, moderate 
Level 2 ES06 Tallaganda, moderate 
Level 3 ES71 Tallaganda, shy 
Level 4 ES74 Wombeyan Road, shy 

PBZ = Paclobutrazol 
* Flowering potential rating derived from ICFR historical orchard records 
 
Table 4: Description of all response and explanatory variables used in the multiple 
linear regression analyses 

 

Variate assessed 
Abbreviation 
used in text 

Response variables:  
Fifth year mean umbel crop score per tree (floral buds initiated 2008)1    FLW5 
Sixth year mean umbel crop score per tree (floral buds initiated 2009)1   FLW6 
  
Explanatory variables:   
Cultural factors:  
Paclobutrazol soil application  PBZ 
Climatic factors:  
Latitude (oS) LAT 
Altitude (m asl) ALT 
Annual mean hourly air temperature for year of floral bud initiation (oC)2 MAT 
Accumulated Chilling Portions (CP)3 for the period 01 April to 30 September in year of floral bud initiation CP_1 
Accumulated Chilling Portions (CP) for the period 01 May to 30 September in year of floral bud initiation CP_2 
Accumulated Daily Positive Utah Chill Units (DPCU)4 for the period 01 April to 30 September in year of floral bud initiation DPCU_1 
Accumulated Daily Positive Utah Chill Units (DPCU) for the period 01 May to 30 September in year of floral bud initiation DPCU_2 
Landform factors:  
Slope aspect ASPECT 
Slope steepness SLOPE 
Relative relief RELIEF 
1 Site mean for umbel crop score 

2 Air temperature modeled from hourly Hobo pole air temperature data  
3 The chill units assigned by the Dynamic Model (Erez and Fishman 1998)  
4 The chill units assigned by the Daily Positive Utah Chill Unit Model (Linsley-Noakes et al. 1994)  
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Table 5: Description of the landform factors and classes included in the multiple linear 
regressions 

 

Factor and class 
Class 

abbreviation 
Class definition 

Slope aspect1 :  Average 
North N North-facing 
East E East-facing 
South S South-facing 
West W West-facing 
North East NE North East-facing 
South East SE South East-facing 
South West SW South West-facing 
North West NW North West-facing 
   
Slope steepness2:  Average (upper boundary) 
Level LE 0o 20’ (0o 35’) 
Very gently inclined VG 1o (1o 45’) 
Gently inclined GE 3o (5o 45’) 
Moderately inclined MO 10o (18o) 
Steep ST 23o (30o) 
Very steep VS 37o (45o) 
   
Relative relief2:   
Very low VL 9 – 30 m 
Low L 31 – 90 m 
High H 91 – 300 m 
Very high VH 300 - 600 m 
1 Compass bearing 
2 Adapted from McDonald et al. (1984) 

 
Table 6: Wald-statistics and calculated F-test values for fixed effects in the Eucalyptus 
smithii across-site REML analyses for tree height at five years  
 

Fixed term Wald statistic d.f. F statistic F prob 
SITE 127.13 8 15.05 <0.001 
PBZ 29.17 1 29.17 0.008 
CLONE 0.81 3 0.27 0.846 
SITE.PBZ 142.17 8 16.83 <0.001 
SITE.CLONE 85.38 24 3.34 <0.001 
PBZ.CLONE 21.09 3 7.03 <0.001 
SITE.PBZ.CLONE 84.74 24 3.32 <0.001 
PBZ = Paclobutrazol 
d.f. = Degrees of freedom 
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Table 7: Effect of PBZ treatment on Eucalyptus smithii tree height at five years 
 

PBZ treatment 
 PBZ0 PBZ1 Difference1 
Mean 10.98a 8.71b 2.27** 
SED 0.27 0.27 - 
PBZ0 = Control 
PBZ1 = PBZ applied to soil in March/ April 2006 
SED = Standard error of the differences between means 

1 Difference between means (ns = not significant, * = significant at p < 0.05, ** = significant at p < 0.01,  
*** = significant at p < 0.001) 
 
 
Table 8: Mean Eucalyptus smithii tree height at five years for the SITE x PBZ 
interactions, ranked according to height for the PBZ0 treatment 
 

 PBZ treatment   
SITE1 PBZ0# PBZ1# Difference2 
Netherby1 14.73a 10.52a 4.21*** 
Wyntoun 13.64b 10.46a 3.19** 
Netherby3 12.76c 9.60b 3.16** 
Willowmere 11.59d 6.13d 5.46*** 
Blair Athol 11.36d 6.86c 4.50*** 
The Peak 9.69e 8.98b 0.71ns 
In De Diepte 9.29ef 10.83a 1.54* 
Gilboa 8.78f 5.36e 3.43*** 
Netherby2 7.00g 9.64b 2.64** 
SED 0.66 0.66 - 
PBZ0 = Nil PBZ (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
SED = Standard error of the differences between means 

1 Sites ranked according to height for the PBZ0 treatment 
2 Difference between means (ns = not significant, * = significant at p < 0.05, ** = significant at p < 0.01,  
*** = significant at p < 0.001) 
# Within this column, values followed by the same letter do not differ significantly (p < 0.05) 

 

 

Table 9: Wald statistics and calculated F-test values for fixed effects in the Eucalyptus 
smithii across-site REML analyses for fifth year umbel crop score  

 

Fixed term Wald statistic d.f. F statistic F prob 
SITE 31.28 8 3.71 <0.001 
PBZ 200.44 1 200.44 <0.001 
CLONE 2.31 3 0.77 0.512 
SITE.PBZ 25.9 8 3.07 0.004 
SITE.CLONE 43.2 24 1.69 0.034 
PBZ.CLONE 4.35 3 1.45 0.230 
SITE.PBZ.CLONE 21.31 24 0.84 0.686 
PBZ = Paclobutrazol 
d.f. = Degrees of freedom 
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Table 10: Wald statistics and calculated F-test values for fixed effects in the Eucalyptus 
smithii across-site REML analyses for sixth year umbel crop score  

 

Fixed term Wald statistic d.f. F statistic F prob 
SITE 58.53 8 6.94 <0.001 
PBZ 54.28 1 54.28 <0.001 
CLONE 5.51 3 1.84 0.142 
SITE.PBZ 14.84 8 1.76 0.097 
SITE.CLONE 31.47 24 1.23 0.227 
PBZ.CLONE 0.07 3 0.02 0.995 
SITE.PBZ.CLONE 25.88 24 1.01 0.453 
PBZ = Paclobutrazol 
d.f. = Degrees of freedom 
 
Table 11: Effect of PBZ treatment on Eucalyptus smithii fifth and sixth year umbel crop 
scores 
 

 PBZ treatment  
 PBZ0 PBZ1 Difference1 
Fifth year 
(2008)    
Mean 1.24a 2.88b 1.64*** 
SED 0.93 0.93 - 
Sixth year 
(2009)    
Mean 1.82a 2.69b 0.88*** 
SED 0.10 0.10 - 
PBZ0 = Nil PBZ (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
SED = Standard error of the differences between means 

1 Difference between means (ns = not significant, * = significant at p < 0.05, ** = significant at p < 0.01,  
*** = significant at p < 0.001) 
 
Table 12: Mean Eucalyptus smithii fifth year umbel crop scores for the SITE x PBZ 
interactions, ranked according to umbel crop score for the PBZ0 treatment 
 

PBZ treatment 
SITE1 PBZ0# PBZ1# Difference2 
Netherby3 2.062a 3.188bc 1.126** 
Willowmere 1.687b 3.125c 1.438*** 
Netherby1 1.437bc 2.125e 0.688* 
In De Diepte 1.312c 3.438ab 2.126*** 
Blair Athol 1.188cd 3.500a 2.312*** 
Gilboa 1.187cd 2.000e 0.813* 
Netherby2 1.000de 2.812d 1.812*** 
Wyntoun 0.875e 2.750d 1.875*** 
The Peak 0.437f 3.021cd 2.584*** 
SED 0.276 0.276 - 
PBZ0 = Nil PBZ (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
SED = Standard error of the differences between means 

1 Sites ranked according to umbel crop score for the PBZ0 treatment 
2 Difference between means (ns = not significant, * = significant at p < 0.05, ** = significant at p < 0.01, 
*** = significant at p < 0.001) 
# Within this column, values followed by the same letter do not differ significantly (p < 0.05) 
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Table 13: Mean Eucalyptus smithii sixth year umbel crop scores for the SITE x PBZ 
interaction, ranked according to umbel crop score for the PBZ0 treatment 
  

PBZ treatment 
SITE1 PBZ0# PBZ1# Difference2 
Netherby2 2.500a 3.312a 0.812** 
Willowmere 2.438a 3.250a 0.812* 
In De Diepte 2.063b 2.188de 0.125ns 
Netherby1 2.000b 2.000e 0.000ns 
Netherby3 1.937bc 2.937b 1.000* 
Gilboa 1.875bc 2.625c 0.750** 
Wyntoun 1.687cd 2.750bc 1.063** 
Blair Athol 1.500d 2.875bc 1.375** 
The Peak 0.375e 2.312d 1.937*** 
SED 0.286 0.286 - 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
SED = Standard error of the differences between means 

1 Sites ranked according to umbel crop score for the PBZ0 treatment 
2 Difference between means (ns = not significant, * = significant at p < 0.05, ** = significant at p < 0.01,  
*** = significant at p < 0.001) 
# Within this column, values followed by the same letter do not differ significantly (p < 0.05) 
 
 
 
Table 14: Correlation matrix for selected explanatory variables included in the 
regressions between environmental factors, PBZ and Eucalyptus smithii floral crop 
response (sixth year umbel crop score).  
[Critical values for Pearson’s r (df = 22): p < 0.05 = 0.404; p < 0.01 = 0.515] 

 
 
 
 
 
 
 
 
 
 
 
 
 

LAT = South latitude in degrees 
ALT = Elevation in metres 
MAT = Mean hourly (modeled) screen air temperature for 2009 
CP_1 = Accumulated Chilling Portions (CP) for the period 01 April-30 September 2009 
CP_2 = Accumulated Chilling Portions (CP) for the period 01 May-30 September 2009 
DPCU_1 = Accumulated Daily Positive Utah Chill Units (DPCU) for the period 01 April-30 September 2009 
DPCU_2 = Accumulated Daily Positive Utah Chill Units (DPCU) for the period 01 May-30 September 2009 
PBZ = Paclobutrazol soil treatment (PBZ0 or PBZ1) 
FLW = Eucalyptus smithii sixth year umbel crop score 
N/A = Not applicable 
 
 
 

LAT 1.000         
ALT -0.784 1.000        
MAT -0.580 0.351 1.000       
CP_1 0.478 -0.257 -0.719 1.000      
CP_2 0.544 -0.347 -0.691 0.991 1.000     
DPCU_1 0.343 -0.076 -0.538 0.889 0.876 1.000    
DPCU_2 0.360 -0.106 -0.480 0.866 0.862 0.995 1.000   
PBZ N/A N/A N/A N/A N/A N/A N/A 1.000  
FLW 0.112 0.135 -0.135 -0.146 -0.147 -0.168 -0.191 0.645 1.000 
  LAT ALT MAT CP_1 CP_2 DPCU_1 DPCU_2 PBZ FLW 
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Table 15: Summary of the results of the multiple linear regression analyses for 
Eucalyptus smithii fifth and sixth year floral bud crops on environmental factors and PBZ 
treatment 

 

* = significant at p < 0.05, ** = significant at p < 0.01, *** = significant at p < 0.001 
PBZ = Paclobutrazol soil treatment (levels described in Table 3)  
MAT = Mean hourly (modeled) screen air temperature for the year 2008 (FLW5) or 2009 (FLW6) 
DPCU_1 = Accumulated Daily Positive Utah Chill Units (DPCU) for the period 01 April-30 September 20091 
RELIEF = Relative relief categories (described in Table 5) 
ASPECT = Slope aspect categories (described in Table 5) 
FLW5a = Eucalyptus smithii fifth year (2008) umbel crop score regressions, PBZ treatment excluded as an 
explanatory variable  
FLW5b = Eucalyptus smithii fifth year (2008) umbel crop score regressions, PBZ treatment included as an 
explanatory variable  
FLW6a = Eucalyptus smithii sixth year (2009) umbel crop score regressions, PBZ treatment excluded as an 
explanatory variable 
FLW6b = Eucalyptus smithii sixth year (2009) umbel crop score regressions, PBZ treatment included as an 
explanatory variable 
1DPCU modelled from hourly Hobo pole air temperature data  

   FLW5a  FLW5b   FLW6a  FLW6b 
   MAT   PBZ   DPCU_1   PBZ 
   ASPECT   ASPECT   RELIEF   ASPECT 
SOURCE  d.f. m.s.  d.f. m.s.  d.f. m.s.  d.f. m.s. 
Regression  6 0.2880  6 2.3418***  4 0.6922*  6 1.0322** 
Residual  2 0.0167  11 0.1960  4 0.0977  11 0.1897 
Total  8 0.2202  17 0.9534  8 0.3950  17 0.4871 
             
R2   0.924   0.794   0.753   0.610 
SED   0.129   0.443   0.313   0.436 
             
Estimate of parameters:             
Constant   10.34   0.864   6.08   1.688 
PBZ      1.646      0.875 
MAT   -0.653          
DPCU_1         -0.00269    
RELIEF VL         1.874    
RELIEF L         -0.549    
RELIEF VH         0.669    
ASPECT E   -0.433   0.531      0.521 
ASPECT SE   -1.277   0.065      -0.781 
ASPECT S   -0.173   0.125      0.094 
ASPECT SW   0.335   0.938      0.313 
ASPECT W   -0.114   0.688      0.000 
             
Parameter t-values:  2   11   4   11  
Constant   4.43*   3.53**   5.48**   7.01*** 
PBZ      7.89***      4.26*** 
MAT   -3.87          
DPCU_1         -4.11*    
RELIEF VL         4.40*    
RELIEF L         -1.80    
RELIEF VH         2.47    
ASPECT E   -2.73   1.86      1.85 
ASPECT SE   -6.75*   0.17      -2.07 
ASPECT S   -1.00   0.33      0.25 
ASPECT SW   1.76   2.44*      0.83 
ASPECT W   -0.71   1.79      0.00 
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Figure 1: Sequence of events associated with E. smithii annual floral bud crop production between 2004 and 2010 
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Figure 2: Eucalyptus smithii mean tree heights for PBZ treatments in the individual 
trials in the series at five years of age (2009). The trials are ranked alphabetically from 
left to right, with the across-site mean at the extreme right. PBZ0 = Nil PBZ (control), 
PBZ1 = PBZ applied to the soil in March/ April 2006. Error bars represent the standard 
error (SE) of the predicted mean  
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Figure 3: Eucalyptus smithii mean fifth year (2008) umbel crop score for PBZ 
treatments in the individual trials in the series. The trials are ranked alphabetically from 
left to right, with the across-site mean at the extreme right. PBZ0 = Nil PBZ (control), 
PBZ1 = PBZ applied to the soil in March/ April 2006. Error bars represent the standard 
error (SE) of the predicted mean 
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Figure 4: Eucalyptus smithii mean sixth year (2009) umbel crop score for PBZ 
treatments in the individual trials in the series. The trials are ranked alphabetically from 
left to right, with the across-site mean at the extreme right. PBZ0 = Nil PBZ (control), 
PBZ1 = PBZ applied to the soil in March/ April 2006. Error bars represent the standard 
error (SE) of the predicted mean 
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Abstract 

 

Eucalyptus nitens requires a sufficiently cold winter to produce flower buds. In areas in 

South Africa where E. nitens commercial plantations as well as breeding and production 

seed orchards are located, winter chilling is often insufficient for floral bud initiation. 

Hence, under such conditions, E. nitens floral bud and seed crops are poor and 

inconsistent. The local industry is almost entirely dependent on paclobutrazol (PBZ) 

applications for encouraging flowering in E. nitens seed orchards. Between 2008 and 

2010, an experiment was conducted to investigate the potential of overhead irrigation 

(sprinkling) as a means of supplementing winter chilling to improve floral bud production 

in E. nitens. The treatments included three levels of sprinkling (nil, 10-week duration, 

16-week duration), two levels of PBZ (nil, 0.025 g a.i. per mm basal stem 

circumference) and two grafted clones (prolific flowerer, shy-flowerer). Sprinkling 

reduced E. nitens daytime bud temperatures by as much as 16.2 oC on warm, dry 

winter days. In 2009 (cold winter) and 2010 (warm winter), sprinkling increased chilling 

accumulation by 44% and 72% (nil versus maximum sprinkling), respectively. In 2009, 

in the absence of PBZ, sprinkling resulted in a higher percentage trees of either clone 

producing umbels (flower buds) compared with the control. In the warmer 2010 winter, 

sprinkling again increased flowering, with the number of flowering shoots and umbels 

per tree being significantly higher than the control at p < 0.05. In both, 2009 and 2010, 

PBZ showed a strong additive effect to winter chilling on E. nitens floral bud production. 

The E. nitens clone x chilling x PBZ flowering interaction was complex, and warrants 

more detailed investigation in future. Overhead sprinkling offers a practical method of 

supplementing winter chilling and improving floral bud production in high chill requiring 

temperate eucalypt species such as E. nitens.  

 

Keywords: chill modelling, evaporative cooling, global warming, insufficient chilling, 

paclobutrazol, seed orchard 
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Introduction 

 

Eucalyptus nitens is an important temperate eucalypt cultivated for commercial 

pulpwood production in South Africa (Van den Berg and Stanger 2007, Velilla et al. 

2007). The species is typically planted at high elevation (> 1300 m asl) sites within the 

summer rainfall forestry areas (Swain and Gardner 2003, Smith et al. 2005). The 

breeding and production seed orchards of the species are also located within these 

areas. The reticent and erratic flowering habit of E. nitens poses major challenges to 

tree breeders and commercial tree seed producers (Reid et al. 1995, Moncur and 

Boland 2000, Hamilton et al. 2008). In South Africa, E. nitens plantation-grown and/or 

seed orchard seedling trees rarely flower before the age of eight years, and annual 

floral bud and seed crops are typically sparse (Jones 2002, Swain and Gardner 2003). 

An added factor hampering flower and seed crop production in E. nitens is the species’ 

high cold requirement for floral initiation (Moncur and Hasan 1994, Moncur 1998).  

 

In most years, E. nitens cold requirement for floral bud production is not adequately met 

at South African seed orchard sites (Gardner 2003). The frequent sparse flower and 

seed crops that follow “warm” winters are a major hindrance to local temperate eucalypt 

tree improvement and seed production efforts. Increased global warming is likely to 

exacerbate the problem (Linkosalo et al. 2009, Warburton and Schulze 2008). Floral 

induction in E. nitens likely results from a cumulative chill process rather than a single 

chill event (Moncur and Hasan 1994, Gardner and Bertling 2005). A strong correlation 

exists between accumulated winter chilling and ensuing E. nitens floral bud crop 

(Gardner 2003, Gardner and Bertling 2005). Over the past half-century, several 

agricultural models have been developed for the quantification of winter chill. These 

models are based predominantly on the results of pioneering experiments where the 

effectiveness of temperatures, and the duration of exposure to the particular 

temperatures, on a range of cold-dependent plant physiological processes such as 

vernalization and endodormancy release of seeds and buds were established (Seeley 

1996). The chill accumulation models in use today are purely empirical and based on 

the results of controlled environment and field experiments, rather than on a functional 

understanding of plant physiology (Luedeling et al. 2011).   
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The Dynamic Model (Fishman et al. 1987, Erez and Fishman 1998) is accurate in areas 

with either mild or cold winters (Allan 2008, Luedeling and Brown 2011). The chill unit 

that this model assigns is termed a Chilling Portion (CP) (Erez and Fishman 1998). 

Research in South Africa indicated that the minimum winter chilling requirement for 

floral bud production in E. nitens is approximately 40 CPs (Gardner 2003, Gardner and 

Bertling 2005). At less than 90 CPs, only 20% of reproductively mature trees can be 

expected to produce umbels (flower buds), but at sites where more than 95 CPs are 

accumulated, more than 50% of the trees can be expected to produce umbels. The 

relationship between winter chill units and E. nitens floral bud production (percentage 

trees producing umbels) does not appear to be linear. Rather, a minimum winter chilling 

threshold seems to exist for the majority of trees to be stimulated into producing umbels.  

 

Where the plant growth regulator paclobutrazol (PBZ) is applied, the minimum chilling 

requirement to achieve 50% trees producing umbels can be lowered to about 80 CPs 

(Gardner 2003, Gardner and Bertling 2005). Similarly, where PBZ is applied, to achieve 

20% trees producing umbels the chilling requirement can be lowered to about 70 CPs. 

Worldwide, PBZ is used almost routinely in E. nitens orchards for assisting vegetative 

growth control and promoting precocious and abundant flowering (Williams et al. 2003, 

Hamilton et al. 2008). However, PBZ application is relatively ineffective in the absence 

of a period of sufficient winter cold (Moncur and Hasan 1994, Williams et al. 1999).       

 

In the South African temperate eucalypt plantation forestry areas, sites that have the 

high winter chilling levels needed by E. nitens for satisfactory flowering and seed set are 

restricted to fairly remote, highland areas distant from the main forestry research 

centres (Gardner 2004). The location of breeding and production seed orchards at such 

sites is inconvenient from a breeding and orchard management perspective and 

increases risks and financial costs. Therefore, investigating more practical and 

economically viable methods of winter chilling supplementation for improved flower and 

seed crop production in high value temperate eucalypt orchards is warranted. 

  



 

145 
 

During 1999 and 2000, a controlled environment experiment was carried out by the 

Institute for Commercial Forestry Research (ICFR) to investigate the relationship 

between artificially applied winter chilling and floral bud production in E. nitens (Gardner 

2003). The facilities consisted of an artificially-lit growth cabinet and a cold room. 

Applied winter chilling significantly increased floral bud production, but the method did 

not hold particular promise for future Eucalyptus seed production efforts.  This was due 

to impracticalities such as the inherent large size of the plants, the limited space and 

high running costs of the growing rooms and the high maintenance requirements of 

plants growing in such indoor environments. Therefore, an outdoor experiment was 

conducted between 2008 and 2010 to investigate the feasibility of using overhead 

irrigation (sprinkling) to cool plants, supplement winter chilling and increase floral bud 

production in E. nitens orchard trees. Intermittent overhead sprinkling has been used 

successfully in a number of temperate fruit crops for a variety of purposes, including the 

reduction of bud temperature and improvement in winter dormancy break in deciduous 

fruit crops (Gilreath and Buchanan 1979, Allan and Hattingh 1998, Allan 2004) and the 

manipulation of flowering and fruit ripening dates in both deciduous and evergreen 

crops (Matthews and Magein 1996, Allan et al. 1994, Iglesias et al. 2005).  

 

The main objective of the current study was to investigate the feasibility of using 

overhead sprinkling to increase winter chilling and improve floral bud production in E. 

nitens orchard trees in South Africa. If the technique was successful in E. nitens, it may 

hold promise for improving flower and seed crop production in other important, yet 

inconsistent flowering, temperate eucalypt species in similar climates with marginal 

winter chilling. 
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Material and methods 

 

Experimental site 

This chilling response study was conducted between 2008 and 2010 using potted, 

grafted E. nitens trees at the Mondi Mountain Home Research Centre near Hilton, 

KwaZulu-Natal, South Africa (29o 34.070' S; 30o 16.467' E), having an elevation of 1133 

m asl and long-term mean annual precipitation (MAP) and air temperature (MAT) of 924 

mm and 16.2 oC, respectively (Schulze 2007). The site was selected for marginality of 

floral bud production in E. nitens, close access to electrical power and irrigation water 

supply and adequate exposure and slope to facilitate free air movement across the site. 

 

In South Africa, establishment of E. nitens plantations is not recommended for areas 

where altitude is less than 1300 m asl and/or MAT exceeds 16.0 oC, due to the 

increased likelihood of poor tree growth and infection by diseases such as 

Mycosphaerella leaf blotch (Swain and Gardner 2003, Smith et al. 2005, Hunter et al. 

2008). Based on air temperature data for the period 2001 to 2010 (De Nysschen pers. 

comm.3), mean annual accumulated winter chilling for the nearby Cedara Experimental 

Station (29o 32.515' S; 30o 15.896' E; 1066 m asl), 3.0 km to the north of Mountain 

Home, is 52 CPs. This amount of chilling can be considered marginal for reproductive 

growth in E. nitens (Gardner and Bertling 2005).          

 

Plant material  

In September 2006 scions from two E. nitens genotypes (ICFR breeding selections) 

were grafted onto six-month old E. nitens seedlings grown from South African 

commercial orchard seed. The scions were collected from two 11-year old grafted 

ramets in the ICFR Gowan Brae E. nitens Clonal Seed Orchard (CSO). In February 

2007, six months after grafting, the plants were transplanted into 100 L (0.6 m diameter) 

black polythene plant bags containing a 1:1:1:1 mixture (by volume) of coir, perlite, pine-

bark and coarse river-sand. The potted plants were then positioned on 0.6 m x 0.6 m 

concrete slabs spaced 2.0 m diagonally apart. The trees received alternate, fortnightly 

soil drench applications of Gromor Plant Food® (3:1:3 (37) + microelements) (National 

                                            
3 De Nysschen G. 2011. Institute for Soil, Climate and Water, ARC, Pretoria, South Africa  



 

147 
 

Plant Food cc, Cato Ridge, RSA) and NutriplexTM (1:1:6 (38) + microelements) (Omnia, 

Johannesburg, RSA) hydroponic fertiliser. The applications consisted of 1.5 g Gromor 

Plant Food® or 10 g NutriplexTM per litre water per plant. The nutritional status of the 

trees was monitored on a quarterly basis throughout the year, and any developing 

elemental deficiencies corrected accordingly via foliar application. Tree height was 

restricted to 1.5 m by tying down emerging dominant shoots to between 30o and 45o 

above the horizontal on a fortnightly basis.           

 

Experimental design and treatments 

The choice of design was determined by the available plant material, site dimensions 

and practicalities relating to the overhead sprinkling treatments and associated 

infrastructure. A 3 x 2 x 2 factorial experiment, consisting of 120 grafted trees, with 

treatments replicated five times was laid out as a split-split plot design (Gomez and 

Gomez 1984). "Sprinkling" (0 = nil sprinkling (control), 1 = controlled intermittent 

sprinkling for 10 weeks, 2 = controlled intermittent sprinkling for 16 weeks) was 

assigned as main-plot factor and “PBZ soil application” (PBZ 0 = control, PBZ 1 = soil 

drench applied) and "Scion genotype” (Clone 1, Clone 2) as sub-plot factors (Table 1). 

Each experimental unit consisted of two trees, both trees being measured. Due to 

practicalities associated with the application of the sprinkling treatments, the whole plots 

were laid out in three separate blocks across the site. During winter, panels of white 

80% weave plastic netting, each 2.0 m high by 2.5 m wide, were erected between 

sprinkling treatments to prevent contamination of the Sprinkle 0 treatment trees by 

sprinkled droplets from the Sprinkle 1 and Sprinkle 2 treatments during sprinkler ON 

intervals. In addition, two isolation (non-measured) trees were positioned between 

sprinkling treatments within rows to add a further measure of protection against 

sprinkling contamination and possible confounding of growth effects resulting from the 

sprinkling treatments.    

 

Paclobutrazol treatment 

A suspension of Cultar® (formulation 250 g L-1 PBZ, Syngenta (Pty) Ltd, Johannesburg, 

RSA) was applied as a soil drench on two separate occasions, viz. 12 November 2007 

and 03 May 2010, at a rate of 0.025 g a.i. per mm basal stem circumference (BSC). The 
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latter measurement was taken at the narrowest point between graft union and first 

primary lateral (branch). Each calculated PBZ dose was mixed in 1.0 L water and 

poured onto the surface of the growing medium in a circle around the tree stem, midway 

between stem and plant bag perimeter. The reason for the second PBZ application was 

that the vegetative growth-suppressing effect of the initial PBZ application had 

substantially diminished by early 2009 (indicated by the diminishing difference in BSC) 

(Figure 1).  

  

Infrastructure and instrumentation 

The experiment was established under a pitched roof anti-hail shelter incorporating 20% 

shade (80% solar irradiance transmittance) rated black polythene hail-netting. The plant 

rows and irrigation lines were orientated approximately North-South (330o-150o).  

 

A CR1000 Logger/Controller in tandem with AM16/32 Channel Multiplexer (Campbell 

Scientific Inc., Logan, USA) was used to schedule and control the irrigation (watering 

and overhead sprinkling) systems and the agro-meteorological instrumentation. The 

logger/ controller was programmed to measure every 30 s and average/convert and 

store these data as 2 min interval data. A simple 220 V centrifugal pump was used to 

maintain a water pressure of between 250 to 350 kPa during irrigation intervals. 

Watering was carried out via four peg drippers per plant fed from one 4 L h-1 button 

dripper. The frequency of watering was scheduled to maintain 75 to 100% field capacity 

of the potting soil. Soil water content (m3 m-3) was monitored in one non-sprinkled E. 

nitens "dummy" plant on a 2 min basis throughout the year using two Echo EC20 Soil 

Moisture Probes (Decagon Devices Inc., Pullman, USA). During occasional excessively 

hot and dry periods, the need for supplementary watering was indicated by the 

measured soil water content and irrigation supplied by the manual opening of solenoid 

valves. Furthermore, the irrigation schedule was updated every two months to 

accommodate seasonal alterations in weather. 

 

Installation of the overhead sprinkling system was completed mid-June 2008 and 

controlled intermittent sprinkling first commenced on 7 July of the same year. In the 

subsequent years (2009 and 2010), overhead sprinkling began in May once the 
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following climatic criteria were regularly met: nighttime minimum air temperature of 12 
oC or lower; daytime maximum air temperature ≤ 26 oC; daytime minimum RH ≤ 25%. 

According to the Dynamic Model (Fishman et al. 1987), chilling will accumulate when 

nighttime temperatures are 12 oC or lower and daytime temperatures remain below 19 
oC (Erez and Fishman 1998). The overhead sprinkling system utilised hanging Gulf 

Micro Sprinklers (Agriplas (Pty) Ltd, Cape Town, RSA) comprising coarse-droplet, short-

range spinners with wetting radius of ca. 1.5 m and nominal flow rate of 30 L h-1 at 150 

kPa. Sprinkling was controlled by the data-logger and switched on when mean E. nitens 

bud temperature within the sprinkled block reached 16 oC and switched off after 5 min 

sprinkling, i.e., the sprinkling OFF periods were of variable duration whereas the ON 

periods were consistently 5 min to ensure all plants became fully wet. Two durations of 

sprinkling were evaluated: 10 weeks and 16 weeks.  

 

Rainfall outside the anti-hail shelter was measured using a Rain Collector II rain gauge 

(Davis Instruments Corporation, Hayward, USA) connected to a Hobo® Pendant Event 

Logger (Onset Computer Corporation, Bourne, USA). Rainfall plus sprinkled water 

within the anti-hail shelter was measured with a Rain-o-matic Professional Rain Gauge 

(Pronamic®, Rinkoebing, Denmark). Air temperature and RH were measured in the 

center of the sprinkled block and outside the anti-hail shelter using HygroClip® S3 

probes (Rotronic® AB, Bassersdorf, Switzerland) mounted in 6-plate radiation shields. 

Wind direction and speed were measured at sprinkler height within the anti-hail shelter 

using an R.M. Young Company (Traverse City, USA) Model 03001 Wind Sentry. 

 

Eucalyptus nitens “bud temperature” was measured by inserting the tip of fine copper-

constantan thermocouple (TC) wire immediately beneath the bark and positioning it 

alongside a developing axillary bud located 250 to 300 mm below the tip of an actively 

growing lateral shoot (Savage and Allan 1997, Gardner 2003). Bud temperatures were 

measured on the northern and southern sides of each of two spatially separated sample 

trees per sprinkling treatment, thus employing a total of 12 TCs. The TCs remained in 

place throughout the year but were re-positioned early April each year before 

commencement of the winter sprinkling period to accommodate past and present 

changes in tree canopy architecture. Prior to the initial installation of the TC cables in 
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the experiment in June 2008, the accuracy of all TCs was checked against each other 

and a mercury thermometer over a range of temperatures (0.0 to 26.0 oC) in a 

laboratory. Furthermore, prior to commencement of controlled intermittent sprinkling in 

2008, 2009 and 2010, mean bud temperature in each of the sprinkling treatment blocks 

was investigated to identify and rectify any incorrectly positioned TCs, e.g. those not 

sufficiently shaded by foliage. This ensured that the bud temperature measurement 

methodology and accuracy was similar across the different sprinkling treatment blocks. 

 

Data collection 

Photosynthetic photon flux density  

During September 2010, photosynthetic photon flux density (PPFD) across the 

experimental area was investigated using a Sunfleck Ceptometer Model SF-80 

(Decagon Devices Inc., Pullman, USA). Statistical analysis of the data revealed that 

PPFD did not differ significantly for sprinkling treatments (R Gardner unpublished data 

2012). 

  

Vegetative growth and floral assessments 

Fortnightly measuring of BSC and monitoring for symptoms of foliar diseases was 

carried out from mid-September 2007 to the end of December 2010. For these 

purposes all trees were measured and assessed. It was anticipated that the intermittent 

sprinkling of E. nitens foliage over extended periods in winter could result in significant 

outbreaks of eucalypt foliar and root diseases such as Mycosphaerella leaf blotch and 

Phytophthora root-rot. Stem/ shoot internode length is a good indicator of vegetative 

growth rate, particularly in experiments implicating PBZ treatments (Davis et al. 1988, 

Fletcher and Hofstra 1988). However, in the Mountain Home experiment, BSC was 

elected as the preferred indicator of E. nitens vegetative growth due to the anticipated 

lengthy duration of the experiment, high measurement frequency, large number of 

treatments and the concern that manipulation of the tree canopies (water-shoot control) 

may affect the accuracy of shoot length (SL) measurements. Shoot length was 

measured fortnightly between 06 April 2010, one month before the second PBZ 

application, and 06 December 2010 to monitor the rapidity of uptake of PBZ after the 

second application of the chemical (03 May 2010) had taken place. For this purpose, 
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four actively-growing secondary shoots distributed equally around the tree canopy 

periphery (eastern, southern, western and northern sides) were tagged and measured 

during the eight month period. Due to logistical constraints, shoot growth was only 

monitored in trees of one scion genotype, viz. Clone 2. Flowering shoot and umbel 

counts per tree (all trees) were carried out during mid-December in 2008, 2009 and 

2010.  

 

Statistical analysis 

The effects of sprinkling, clone and PBZ on BSC and shoot length increment and 

number of flowering shoots and umbels per tree in 2009 and 2010 were investigated 

using the method of restricted maximum likelihood (REML) analysis (Robinson 1987, 

Lane and Payne 1996) in GenStat® (2008). Prior to analysis, flowering shoot and umbel 

count data were logarithmically (log10(x + 1)) transformed to normalize the residuals and 

homogeneity of the error variances (Steel and Torrie 1981, Gomez and Gomez 1984).   

 

Results  

 

Plant-atmosphere environmental effects 

Mean daytime (07:00 to 18:00) wind direction and speed within the anti-hail shelter for 

2009 and 2010 sprinkling periods were 260.1o/1.34 km h-1 and 253.8o/1.06 km h-1, 

respectively. The absolute maximum daytime wind speeds reached during the 2009 and 

2010 sprinkling periods were 17.3 km h-1 and 15.6 km h-1, respectively. Thus, daytime 

wind directions and wind speeds within the anti-hail shelter during the 2009 and 2010 

sprinkling periods were not conducive to contamination of trees in the non-sprinkled 

(control) blocks by sprinkled droplets and/or cooled air originating from the sprinkled 

blocks. 

 

Prior to the commencement of sprinkling in 2009 (13 May) and 2010 (14 May), E. nitens 

diurnal bud temperatures were similar across the three sprinkling treatment blocks 

(Figure 2). Over the 14-day pre-sprinkling calibration period, nighttime bud temperatures 

(mean of 2009 and 2010) were almost identical but daytime maximum bud 

temperatures differed by as much as 1.6 oC across sprinkling treatments. Ambient 
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nighttime air temperatures within and outside the anti-hail shelter were almost identical, 

but were approximately 1.0 oC warmer than mean nighttime bud temperatures. A 

possible reason for the latter was the conductive heat losses from plant canopy to 

ground through the damp growing medium. Daytime air temperature maxima within the 

anti-hail shelter were on average 1.0 oC higher than the air temperature maxima outside 

the anti-hail shelter. This was possibly due to the solar energy absorbed by the black 

anti-hail netting being transmitted to the air within the anti-hail shelter, and not being 

able to dissipate freely to the outside air due to restriction in air movement imposed by 

the hail-netting. Daytime bud temperature maxima were between 0.01 and 1.5 oC higher 

than outside air temperature maxima.  

 

Overhead sprinkling substantially reduced E. nitens bud temperature over that of control 

bud, open air and shaded air, for the majority of time during the 2009 and 2010 

sprinkling periods (Table 2). Mean daytime (07:00 to 18:00) sprinkled bud temperature 

reductions over that of control bud, open air and shaded air temperatures during the 

2009 and 2010 sprinkling periods were 3.0, 3.2 and 2.6 oC and 4.1, 3.8 and 3.1 oC, 

respectively. The highest maximum daytime sprinkled bud temperature reductions over 

control bud, open air and shaded air temperatures occurred during the relatively warm 

2010 winter (16.2, 15.5 and 13.6 oC, respectively). On typical warm, cloudless winter 

days when the overhead sprinklers were intermittently operating between about 09:30 

and 16:00, the temperature patterns for sprinkled bud and outside wet bulb 

thermometer followed similar trends (Figure 3). 

 

Mean daily temperature maxima for shaded air, open air, E. nitens control and E. nitens 

sprinkled buds during the 2010 sprinkling period were 20.3, 21.0, 21.8 and 15.9 oC, 

respectively. The absolute daily temperature maxima for the same variables in the same 

year were 31.7, 32.0, 32.0 and 16.3 oC, respectively. Regardless of the 2010 winter 

being warmer than the 2009 winter, in both years the greatest bud temperature 

reductions from sprinkling occurred during the late August - early September period, 

when daytime RH was lowest and ambient air and control bud temperature maxima 

were highest.  
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In 2008, 2009 and 2010, E. nitens buds commenced accumulating winter chilling on 08 

April, 21 April and 24 April, respectively, and outside (full sun) air temperature 

conditions showed a similar trend in the same years (Table 3). In 2009 and 2010, when 

overhead sprinkling was applied for the full season (110- and 116-day periods, 

respectively), 4.7 CPs and 1.8 CPs accumulated in the periods prior to commencement 

of overhead sprinkling in May (Figure 4). In all three years, overhead sprinkling 

substantially increased bud chilling accumulation over that of control trees (Table 3). In 

2008, when the overhead sprinkling system was operational for only half the winter (59-

day period), sprinkling was able to increase control bud chilling level by 40.5% from 

50.1 CPs (control) to 70.4 CPs. In 2009, sprinkling increased control bud chilling from 

55.0 CPs (control) to 79.0 CPs (43.6%) and in 2010 from 39.6 to 68.0 CPs (71.7%). In 

all three years, total accumulated chilling for the control buds was similar to that for 

outside (full sun) air temperature conditions, differing by a maximum of 1.4 CPs in 2008. 

During the relatively warm 2010 winter, accumulated chilling for open air and control 

bud were identical. Further investigations are needed to substantiate this phenomenon.  

 

Vegetative growth response 

Paclobutrazol rapidly suppressed tree growth following both, the 2007 and 2010 PBZ 

treatments (Figure 1). In the maximum winter chilling (Sprinkle 2) block, following the 

initial (12 November 2007) PBZ application, a maximum difference in BSC between the 

PBZ-treated (PBZ 1) and control (PBZ 0) trees of 8.8 mm (13.1%) was reached about 

six months after application in late April 2008. From thereon, the difference in BSC 

between PBZ 1 and PBZ 0 trees steadily diminished over a seven-month period till late 

summer 2008, following which the difference in BSC between the two PBZ treatments 

remained fairly constant till re-application of PBZ in May 2010 (Figure 1). From April 

2008, canopies of the PBZ-treated trees remained substantially more compact and 

required less water-shoot control than those of the control trees.  

 

In 2009, there was a significant (p < 0.05) PBZ x Clone interaction effect for percentage 

BSC increment over winter (Table 4). In Clone 1, mean percentage BSC increment for 

PBZ 1 trees was 2.0% less than that of PBZ 0 trees. Conversely, in Clone 2, mean BSC 

increment of PBZ 1 trees was 2.1% greater than that of PBZ 0 trees. In 2010, the effect 
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of the PBZ x Clone interaction on BSC increment was non-significant (p < 0.05). 

However, the effect of PBZ on percentage BSC increment (mean of two clones) was 

significant (p < 0.05) and highly significant (p < 0.01) on percentage shoot length 

increment in Clone 2 (SL was not measured in Clone 1) (Table 4). Mean percentage 

BSC increment of the PBZ 1 trees was 2.4% less than that of the PBZ 0 trees, whereas 

mean percentage SL increment of the PBZ 1 Clone 2 trees was 30.8% less than that of 

the PBZ 0 Clone 2 trees.  

 

From the establishment of the E. nitens plants in situ at Mountain Home in November 

2007 through till December 2010, no noteworthy foliar, stem or root disease symptoms 

were observed in the experimental trees. 

 

Reproductive growth response 

Number of trees producing umbels  

The first umbels were recorded on five trees in November 2008, 21 months after 

establishment in situ at Mountain Home. Three of the five trees had been PBZ-treated 

and subjected to the maximum chilling amount of 70 CPs (Sprinkle 1).   

 

In 2009, 23% of the total number of plants (120) produced umbels (Table 5). One and a 

half times as many Clone 1 plants produced umbels as those of Clone 2 (16/60 versus 

11/60). In the PBZ 0 treatment with Sprinkle 0, 55 CPs occurred (Table 3) resulting in a 

poor flowering response i.e. ≤ 10% of the plants of either clone produced umbels (Table 

5). At the moderately high chilling levels of 70 and 79 CPs (Sprinkle 1 and Sprinkle 2 

treatments), Clone 1 produced a moderate flowering response, i.e., 30% trees produced 

umbels in either case. At these chilling levels (70 and 79 CPs) less than 20% of the 

Clone 2 plants produced umbels. This suggested Clone 2 may have a higher chilling 

requirement for floral bud production than Clone 1.   

 

Application of PBZ (PBZ 1 treatment) had a positive effect on flowering of Clone 1 and 

Clone 2 at the moderately low chilling level of 55 CPs (Sprinkle 0) (30% trees producing 

umbels in either clone). At the moderately high chilling levels of 70 and 79CPs (Sprinkle 

1 and Sprinkle 2), PBZ application had a minimal additive effect on the number of trees 
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producing umbels in Clone 1, but in Clone 2, the application of the chemical increased 

the number of flowering trees substantially, from 0 to 30% (Table 5). On the basis of 

percentage trees producing umbels, the 2009 results suggested that not only is Clone 2 

an inherent less prolific flowering genotype than Clone 1, but the former clone may have 

a substantially higher chilling requirement for floral bud production than Clone 1.   

 

In 2010, 32% of the total number of plants produced umbels following a winter when the 

accumulated chilling in each of the three sprinkling treatments was substantially lower 

than that of the previous year (Sprinkle 0 = 40 CPs, Sprinkle 1 = 53 CPs, Sprinkle 2 = 

68 CPs) (Tables 3 and 5). Three times as many Clone 1 plants produced umbels as 

those of Clone 2 (29/60 versus 9/60) in the 2010 season. 

 

In the PBZ 0 treatment, at the low chilling level of 40 CPs (Sprinkle 0) no flowering was 

observed in either clone (Table 5). In Clone 1, the supplementary 13 and 28 CPs 

provided in Sprinkle 1 and Sprinkle 2 (total chilling 53 CPs and 68 CPs, respectively) 

increased the number of flowering trees by 40% and 20%, respectively. Clone 1’s 

flowering response to the moderately low chilling level of 53 CPs in 2010 (Sprinkle 1, 

40% trees producing umbels) contrasted strongly with the clone’s response to the 

similar chilling level of 55 CPs (Sprinkle 0, 0% trees producing umbels) in 2009. This 

suggested that age may have had an influential effect on the reproductive growth of the 

grafted trees in the experiment. In Clone 2, the moderately low chilling levels of 53 and 

68 CPs (Sprinkle 1 and Sprinkle 2) in 2010 produced poor flowering responses, with ≤ 

10% plants producing umbels in either case.     

 

PBZ application (PBZ 1) showed a strong positive effect regarding flowering in either 

clone across all levels of winter chilling (Table 5). In Clone 1, at the low chilling level of 

40 CPs the application of PBZ markedly increased the percentage trees producing 

umbels, from nil to 40%. With the supplementary 13 and 28 CPs provided in Sprinkle 1 

and Sprinkle 2 (total chilling 53 CPs and 68 CPs, respectively), PBZ application more 

than doubled the percentage trees with umbels in Clone 1 (90% and 100%, 

respectively). This suggested that PBZ application resulted in Clone 1’s cold 

requirement for flowering being considerably lowered. In Clone 2, PBZ application had a 
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mild positive effect on flowering across all three chilling levels (24% mean increase in 

percentage trees producing umbels). At any of the chilling levels, PBZ was not able to 

stimulate more than 30% of the trees to produce umbels. This suggested Clone 2 

genotype may have a high chilling threshold that needs surpassing before flowering can 

be triggered, and/or the clone is an inherent shy-flowering genotype.        

 

Number of flowering shoots and umbels produced per tree  

In 2009, neither sprinkling, PBZ nor clone had a significant (p > 0.05) effect on the 

number of flowering shoots or number of umbels produced per tree (Table 5). 

Nevertheless, the significance of the sprinkling x PBZ x clone interaction on number of 

umbels per tree (p = 0.093) far exceeded that of all other treatments and their 

interactions regarding the same reproductive variable. In 2010, sprinkling exerted a 

significant effect (p < 0.05) on number of flowering shoots and number of umbels 

produced per tree (Table 5). PBZ, clone, and sprinkling x clone, PBZ x clone and 

sprinkling x PBZ x clone interactions were all highly significant (p < 0.01) for number of 

flowering shoots and number of umbels produced per tree. The only treatment or 

interaction not exerting a significant effect on either reproductive attribute was the 

sprinkling x PBZ interaction. 

 

Discussion 

 

Plant-atmosphere environmental effects 

The maximum temperature reduction in E. nitens buds achieved through sprinkling at 

Mountain Home, viz. 16.2 oC in 2010 (Table 2), was of similar magnitude to that 

reported for sprinkled winter-dormant kiwi-fruit (Actinidia deliciosa) buds (ca. 10.0 oC) 

(Allan et al. 1994) and macadamia (Macadamia integrifolia) sunlit leaves (16 to 18 oC) 

(Allan et al. 1994, Savage et al.1997). At Mountain Home, the greatest bud temperature 

reductions took place around midday when RH figures were at their lowest and 

evaporative cooling rates (of E. nitens foliage) likely highest (refer daytime hourly wet 

bulb temperature pattern in Figure 3). This daytime evaporative cooling pattern 

concurred with that observed for macadamia (Allan et al. 1994) and apple (Malus 

domestica) (Iglesias et al. 2002). It generally became impractical to operate the 
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overhead sprinkling system beyond the first week of September due to persistent 

excessively high night- and daytime bud temperatures coupled with increasingly higher 

daytime RHs. 

 

Eucalyptus nitens buds began accumulating winter chilling at Mountain Home well 

before the dates of overhead sprinkling initiation in 2009 (13 May) and 2010 (14 May) 

(Table 3). High daytime RH values at Mountain Home prior to these dates each year 

was the main climatic factor hampering the cooling system and accumulation of chill 

units. At drier and less humid sites further inland, initiation of sprinkling in April and 

accumulation of additional chilling may be possible. At higher altitudes and/or more 

southerly latitudes than Mountain Home, lower winter daytime air temperatures between 

April and September would likely result in substantially less sprinkler “ON” time and total 

irrigation water being necessary to maintain daytime foliage temperatures below 16 oC 

(Allan et al. 1994). The additional chill units accrued in April and September would 

increase total winter chilling accumulation considerably, possibly further enhancing floral 

bud and seed crop production. 

 

In orchards where overhead sprinkling is employed, climate and canopy density and 

spatial dimension are the major determinants of the actual water volumes needed to 

achieve similar or greater levels of supplementary winter chilling (Evans 1999, Wand et 

al. 2005). Over the past two decades, the effectiveness of different sprinkler nozzle 

types and overhead sprinkling application rates for fruit crops have been investigated 

fairly extensively. For macadamia and table grape (Vitis vinifera), mini-sprinklers that 

wet 360o simultaneously with small droplets were more effective than rotating impact-

type sprinklers that produce large drops of water and take longer to wet all plant parts 

(Savage et al. 1997, Allan and Hattingh 1998). For apples, higher application rates 

reduced fruit temperatures better than lower rates (Evans 1999); rapid wetting of apple 

foliage and fruit followed by evaporation of water directly from the fruit surface was more 

effective in reducing fruit temperatures and resulted in water conservation. In windy 

areas, large droplet size and closer spacing of sprinkler nozzles were increasingly 

necessary for adequate penetration of the canopy and uniform wetting of foliage. In the 

relatively protected (low wind speed) conditions under the hail-netting at Mountain 
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Home, the particular mini-sprinklers functioned efficiently. In open air (not hail-net 

protected) orchards, higher wind speeds would likely necessitate the employment of 

coarser-droplet sprinklers to achieve a similar efficiency of plant foliage wetting. 

 

Vegetative growth response 

A likely reason for PBZ significantly affecting tree growth (percentage increase in BSC) 

in 2010, but not in 2009, is the contrasting response of Clone 1 and Clone 2 trees to 

PBZ application in 2009 (Table 4). Mean percentage BSC increment for PBZ 1 trees 

was less than that of PBZ 0 trees in both, 2009 and 2010. For Clone 2, in 2009 the 

mean percentage BSC increment of PBZ 1 trees was 2.1% greater than that of PBZ 0 

trees, but in 2010 the mean percentage BSC increment for PBZ 1 trees was 2.7% less 

than that of PBZ 0 trees. A possible explanation for the contrasting vegetative growth 

responses of the two different genotypes to PBZ treatment in 2009 is that an inherent 

difference in cold resistance between the two E. nitens genotypes existed. PBZ is 

known to increase cold stress resistance and even enhance vegetative growth under 

cold conditions in a number of herbaceous and woody crops (Fletcher et al. 2000). The 

likely low levels of PBZ present in the foliage of PBZ 1 trees during 2009, as indicated 

by the minimal growth suppressive effect of PBZ from December 2008 onwards (Figure 

1), may have resulted in the relatively cold 2009 winter conditions (across all sprinkling 

treatments) negatively impacting more on the vegetative growth of the lesser cold stress 

resistant genotype. Based on the BSC increment data, Clone 1 appeared to be less 

cold stress resistant than Clone 2. Under the substantially warmer winter conditions of 

2010, when trees were one year older and scions vegetatively more mature, and PBZ 

levels in the PBZ 1 trees high due to the second PBZ application, the cold stress 

resistance enhancing effect of PBZ would have been masked to a greater extent in 

Clone 1. Eucalyptus nitens seedlots of Barrington Tops provenance have previously 

demonstrated superior cold and frost resistance to those of Ebor provenance in field 

trials in South Africa (Darrow 1983, Nixon 1983, Purnell and Lundquist 1986). Variation 

in cold resistance between provenance, and among genotypes within provenance, has 

been reported for temperate eucalypt species such as E. nitens (Tibbits and Hodge 

2003, Hamilton et al. 2008).     
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Sprinkling alone did not significantly (p ≤ 0.05) affect vegetative growth rate (as 

indicated by percentage increase in BSC and/or SL) in either 2009 or 2010. This 

suggested that it was unlikely that overhead sprinkling caused total or partial leaching of 

PBZ from the growing medium of PBZ 1 trees in the Sprinkle 1 and Sprinkle 2 

treatments. The PBZ applied to the growing medium was taken up rapidly by trees soon 

after application resulting in an almost immediate effect on BSC (Figure 1). To 

encourage rapid uptake of water plus PBZ dose, immediately prior to each PBZ 

application the growing medium was maintained in a slightly dry state. This was 

followed by controlled conservative irrigation for a two-day period. PBZ is known to be 

relatively immobile in soil and bound mainly by organic matter (Lever 1986, Davis et al. 

1988). The high proportion of organic matter in the growing medium at Mountain Home 

would have further contributed to the prevention of loss of PBZ into the environment 

outside the plant growing bags.    

 

Soil application of PBZ remains a highly successful method of achieving rapid and 

sustained vegetative growth suppression and enhanced floral bud and seed crop 

production in Eucalyptus orchard trees (Williams et al. 2003, Hamilton et al. 2008). With 

an evidently increasing worldwide trend towards more intensively planted and managed 

commercial eucalypt orchards, the dependency on plant growth regulating chemicals 

(PGRs), such as PBZ, to achieve the necessary levels of growth control is likely to 

increase (Moncur 1998, Potts et al. 2007, Gardner and Oscroft 2009). However, the 

recalcitrant nature of triazoles, such as PBZ, and their persistence in soil (Jackson et al. 

1996) remains problematic regarding their use in the outdoor environment. Thus, it is 

prerogative to investigate alternative methods to achieve similar vegetative and 

reproductive growth control. These would include improvement in application technique 

(e.g. better targeting) of PGRs (Fletcher et al. 2000), development and testing of PGRs 

with less negative environmental impact (Meilan 1997), environmental manipulation 

(Moncur 1998) and the use of inductive and semi-dwarfing rootstocks and containerized 

orchards for breeding purpose (Gardner and Bertling 2005). 

 

The lengthy periods of wet, humid conditions imposed on the E. nitens trees in the 

Sprinkle 1 and Sprinkle 2 treatments in three successive winters did not result in any 
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problematic foliar, stem or root disease symptoms manifesting in the experiment. The 

high tolerance of the specific clones to persistent high humidity winter conditions may in 

part be explained by the climates of the areas of origin of the particular scion genotypes. 

Ebor and Barrington Tops both experience a summer rainfall climate, with fairly high 

MAPs (1232 mm and 1963 mm, respectively). They also have moist winters (May to 

September) with monthly rainfall totals generally above 60 mm on average (Australian 

Government Bureau of Meteorology 2013). 

 

Reproductive growth response 

Tree age appeared to exert a strong influence on the reproductive growth of the trees in 

the experiment. The percentage trees producing umbels increased almost linearly over 

time, from the date of establishment in situ at Mountain Home to end of the experiment. 

PBZ was applied in early November 2007, and, based on the fortnightly vegetative 

growth measurements PBZ was still present in the foliage of the treated trees by onset 

of winter 2008. However, following winter 2008, only five out of 120 trees produced 

umbels, and, of these, three had been treated with PBZ and experienced a moderately 

high winter chilling amount of 70 CPs. This suggests that the reproductive maturity of 

the scions was temporarily set back by transmission of a juvenile signal from the 

reproductively immature seedling rootstock to the scion (Pliego-Alfaro and Murashige 

1987, Siniscalco and Pavolettoni 1988). Establishment of the exact magnitude and 

duration of reversion to partial reproductive immaturity (juvenility) in the E. nitens scions 

was not within the scope of this experiment. If the reversion (to reproductive juvenility) 

was still present in the scions during 2010, then it is possible that the transmitted 

juvenile effect would have lessened even further with time, predisposing an even higher 

number of trees to produce umbels, given adequate winter chilling.  

 

The timing of vegetative phase change and first flowering are genetically independent in 

E. globulus ssp. globulus (Jordan et al. 1999). Flowering in the juvenile phase has been 

induced chemically, using PBZ, without any effect on vegetative phase change in E. 

globulus (Hasan and Reid 1995). Evidence exists that the timing of vegetative phase 

change and first flowering is independent and able to be manipulated separately in E. 

nitens (Moncur 1998, Gardner and Bertling 2005). In a series of field experiments, four-
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year old PBZ-treated E. nitens seedlings, still entirely in juvenile leaf, produced floral 

buds following particularly cold winter conditions (85 CPs accumulated) (Gardner 2003). 

However, this same phenomenon did not occur in non-PBZ-treated seedlings of the 

same seedlot at the same site, or in the same half-sib related seedlings at warmer sites 

in the experimental series in the same year, whether treated with PBZ or not. In the 

case of E. nitens, it would appear that severe cold, possibly high levels of winter chilling, 

and PBZ act together in an additive manner enabling the timing of vegetative phase 

change and first flowering to be manipulated independently. Griffin et al. (1993) and 

Williams et al. (1999) suggested that a large difference in the ability to induce 

precocious flowering exists between the two closely related temperate species E. 

globulus and E. nitens. Based on our results, we propose that the major difference 

between E. globulus and E. nitens in this regard lies in a difference in cold, possibly 

chilling, requirement for floral induction between the two species.  

 

Scion genotype (clone) had a strong effect on flowering propensity; the results for 2009 

and 2010 not only confirmed a large difference in floral bud production between the two 

clones, but also suggested that a substantial difference in winter chilling requirement for 

floral bud production existed between the two genotypes. This was clearly borne out by 

the strongly contrasting floral responses of the two clones to either PBZ treatment in 

2010 (Table 5). In 2009, the significance of the sprinkling x PBZ x clone interaction on 

number of umbels per flowering tree (p = 0.093) over that of all other treatments and 

interactions in 2009 added strength to the suggestion that the interaction between 

winter chilling, PBZ and genotype is a complex one, and that winter chilling and PBZ 

tend to act more powerfully in tandem, rather than singularly, in the stimulation of 

flowering in temperate eucalypt species such as E. nitens (Moncur and Hasan 1994, 

Hasan and Reid 1995). The floral bud production trends of either clone at Mountain 

Home reinforced the argument that, as for temperate fruit species (Hartmann and 

Whisler 1975, Powell et al. 1986), reproductively mature E. nitens genotypes have 

individual winter chilling thresholds which must be surpassed before the particular 

chilling-dependent plant physiological responses (floral bud initiation in the case of E. 

nitens) can be triggered (Gardner and Bertling 2005). This chilling threshold may, to a 
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certain extent, be lowered by the application of PBZ (Hasan and Reid 1995, Meilan 

1997). 

 

The results of local field research, implicating a fairly wide range of E. nitens 

provenance material and chilling requirements, suggested that, on average, depending 

on whether PBZ is applied or not, ≈70 or 90 CPs are necessary to achieve a mild 

flowering response (20% of reproductively mature trees producing umbels) (Gardner 

2003, Gardner and Bertling 2005). According to four years Mountain Home air 

temperature data (2007 to 2010), the mean annual winter chilling for the area is about 

48 CPs. Under such marginal winter chilling conditions, the supplementary 26 CPs 

achieved through overhead sprinkling (mean of 2009 and 2010 CPs) (Table 3) would 

increase total chilling to 74 CPs and could be expected to result in a mild flowering 

response, i.e. a maximum of 20% reproductively mature E. nitens trees producing 

umbels, with or without the application of PBZ. Based on the clonal means for PBZ-

treated and non-treated trees in the Sprinkle 2 treatment at Mountain Home during 2010 

(PBZ 1 = 6/10 trees, PBZ 0 = 1.5/10 trees), the total winter chilling amount of 68 CPs 

resulted in 60% or 15% of reproductively mature trees producing umbels, depending on 

whether PBZ was applied or not (Tables 3 and 5). The difference in reproductive 

response of PBZ-treated trees in the field trials and the Mountain Home experiment to a 

winter chilling amount of ≈70 CPs was marked, i.e. 20% and 60% trees producing 

umbels, respectively. The most likely reason for this was that the range of genetic 

material in the Mountain Home experiment was particularly narrow (two clones), and the 

exceptionally high floral response of Clone 1 (100% of PBZ-treated trees producing 

umbels) inflated the clonal mean. In future controlled environment investigations where 

a greater range of chilling levels might be applied, real time monitoring of chilling 

accumulation to determine the exact timing of sprinkler shutdown for each specific 

chilling treatment would be advisable. This would facilitate far more accurate 

quantification of chilling requirement for flowering.  
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Conclusions 

 

Overhead sprinkling increased winter chilling accumulation and floral bud production in 

E. nitens without negatively affecting tree health. Greater bud temperature reductions 

and winter chilling gains through sprinkling occurred with increasingly warmer winter 

conditions. Thus the technique has good potential for improving floral bud and seed 

crop production in high chill requiring temperate eucalypt species such as E. nitens in 

areas with inadequate or unreliable winter chilling. With increased global warming, the 

usefulness of overhead sprinkling as a means of supplementing winter chilling and 

increasing the consistency of floral bud production in temperate eucalypt species such 

as E. nitens is likely to increase. The cooling system needs to be tested on a wider 

range of clones and on a larger scale in an open air environment. Here, a wider range 

of chilling treatments and genotypes should be tested in order to gain a more accurate 

understanding of E. nitens chilling requirement for floral bud production.  
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Table 1: Allocation of treatments in the E. nitens split-split-plot design overhead 
sprinkling experiment at Mountain Home 

 Treatment Description of treatment levels 

Factor A: Sprinkling  
Level 1 Sprinkle 0 Nil sprinkling (control) 
Level 2 Sprinkle 1 Minimum duration (sprinkling for ≈10 weeks) 
Level 3 Sprinkle 2 Maximum duration (sprinkling for ≈16 weeks) 

Factor B: PBZ soil application   
Level 1 PBZ 0 Nil PBZ (control) 
Level 2 PBZ 1 PBZ soil drench applied  

Factor C Scion genotype  
Level 1 Clone 1 E. nitens Ebor provenance (NSW), prolific flowerer  
Level 2 Clone 2 E. nitens Barrington Tops provenance (NSW), shy flowerer 

NSW = New South Wales (Australia) 
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Table 2: Mean daytime (07:00 to 18:00) E. nitens bud temperature reductions in winter as a result of overhead sprinkling 
in the experiment at Mountain Home. Controlled intermittent sprinkling in winter was carried between 13/05/2009 and 
31/08/2009, and 14/05/2010-7/09/2010     
 

 
 

Daytime 
hours1 

 Percentage of daytime2 

(%) 
 Mean temperature reduction3 

(oC) 
 Temperature reduction variance4 

(oC) 
 Maximum temperature reduction5 

(oC) 

Year   
SprklBT 
< CtrlBT 

SprklBT 
< OutAT 

SprklBT 
< ShdAT  

SprklBT 
< CtrlBT 

SprklBT 
< OutAT 

SprklBT 
< ShdAT  

SprklBT 
< CtrlBT 

SprklBT 
< OutAT 

SprklBT 
< ShdAT  

SprklBT 
< CtrlBT 

SprklBT 
< OutAT 

SprklBT 
< ShdAT 

2009 1332  92.0 90.1 92.2  3.0 3.2 2.6  8.4 6.6 4.3  12.7 12.2 11.8 
2010 1404  81.3 87.0 92.4  4.1 3.8 3.1  15.8 12.5 7.5  16.2 15.5 13.6 

Mean 1368  86.7 88.6 92.3  3.6 3.5 2.9  12.1 9.6 5.9  14.5 13.9 12.7 
1 Total number of daytime (07:00 to 18:00) hours during the winter controlled intermittent sprinkling periods 

2 Percentage daytime hours in the sprinkling period where SprklBT < CtrlBT, OutAT or ShdAT 
3 Mean daytime reduction of sprinkled bud temperature (SprklBT) over that of control bud (CtrlBT), open air (OutAT) or shaded air (ShdAT).     
4 Variance for daytime reduction of sprinkled bud temperature (SprklBT) over that of control bud (CtrlBT), open air (OutAT) or shaded air (ShdAT) 
5  Maximum reduction of daytime sprinkled bud temperature (SprklBT) over that of control bud (CtrlBT), open air (OutAT) or shaded air (ShdAT)     
SprklBT = Mean bud temperature of sprinkled trees; CtrlBT = Mean bud temperature of control (non-sprinkled) trees; OutAT = Mean air temperature outside the anti-hail structure 
(open air); ShdAT = Mean air temperature within the anti-hail structure (shaded air) 

 
 
Table 3: Effect of sprinkling treatment on E. nitens bud chilling accumulation in the experiment at Mountain Home 
 
  Commencement date  Sprinkle 0  Sprinkle 1  Sprinkle 2  OutAT 
Year  Chilling (CP) 

accumulation  
Overhead 
sprinkling  

 Sprkl 
days1 

CP 
total2 

 Sprkl 
days1 

CP 
total2 

 Sprkl 
days1 

CP 
total2 

 Sprkl 
days1 

CP 
total2 

2008  08th April 07th July  0 50.1 (45.3)  59 70.4 (65.6)  n/a n/a  n/a 48.7 (44.7) 
2009  21st April 13th May  0 55.0 (52.0)  75 70.0 (67.0)  110 79.0 (76.0)  n/a 56.6 (53.6) 
2010  24th April 14th May  0 39.6 (37.8)  64 53.1 (51.2)  116 68.0 (66.2)  n/a 39.6 (37.6) 
Mean  - -  0 48.2 (45.0)  66 64.5 (61.3)  113‡ 73.5‡ (71.1‡)  n/a 48.3 (45.3) 
Sprinkle 0 = Nil sprinkling (control); Sprinkle 1 = Minimum duration sprinkling; Sprinkle 2 = Maximum duration sprinkling 
CP = Chilling Portion of the Dynamic Model (Erez and Fishman 1998) 
OutAT = Air temperature in full sun conditions outside the anti-hail shelter   
1 Total length of the annual controlled intermittent sprinkling period (in days) 
2 Total CPs accumulated between 1 April and 30 September (total CPs for 1 May to 30 September are given in parentheses for the reader’s benefit)  
n/a = Not applicable 

‡ Mean of two values only 
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Table 4: Effect of PBZ and sprinkling on the vegetative growth of two E. nitens clones in 
the experiment at Mountain Home 
 
Treatment PBZ 1  PBZ 0 
 BSC increment (%)  SL increment (%)  BSC increment (%)  SL increment (%) 
 Oct20091 Oct20102  Oct20103  Oct20091 Oct20102  Oct20103 
Clone 1          
Sprinkle 0 12.7 9.8  na  14.4 8.5  na 
Sprinkle 1 14.1 6.8  na  13.4 12.1  na 
Sprinkle 2 10.6 9.1  na  15.8 11.5  na 
Mean  12.5 8.6  na  14.5 10.7  na 
          
Clone 2          
Sprinkle 0 15.7 10.9   33.9  11.7 13.2  74.8 
Sprinkle 1 14.5 9.2  na  13.7 10.7  na 
Sprinkle 2 14.8 7.7  40.9  13.2 12.1  61.6 
Mean  15.0 9.3  37.4‡  12.9 12.0  68.2‡ 
Mean (PBZ) 13.7 8.9  37.4‡  13.7 11.3  68.2‡ 
ANOVA          
 F probability      
Source Oct20091 Oct20102  Oct20103      
Sprinkle  0.958 0.838  0.766      
PBZ 0.984 0.024  0.003      
Clone  0.658 0.284  na      
Sprinkle x PBZ 0.409 0.270  0.332      
Sprinkle x Clone 0.955 0.437  na      
PBZ x Clone 0.036 0.781  na      
Sprinkle x PBZ x Clone 0.322 0.277  na      
Sprinkle 0 = Nil sprinkling (control); Sprinkle 1 = Minimum duration sprinkling; Sprinkle 2 = Maximum duration sprinkling 
PBZ 0 = Nil PBZ applied (control) 
PBZ 1 = PBZ applied to growing medium on 12/11/2007 and 3/05/2010 
BSC = Basal stem circumference 
SL = Shoot length 
1 Percentage increase in BSC between 6/04/2009 and 5/10/2009 
2 Percentage increase in BSC between 6/04/2010 and 5/10/2010 
3 Percentage increase in SL between 6/04/2010 and 5/10/2010 
4 Mean of two values only 
na = Not available 
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Table 5: Effect of PBZ and accumulated winter chilling on the reproductive growth of two E. nitens clones in the 
experiment at Mountain Home. The annual flowering assessments were carried out on 14/12/2009 and 14/12/2010     
 
Treatment 2009#  2010# 
 PBZ 0  PBZ 1  PBZ 0  PBZ 1 
 Plants1 Shoots2 Umbels3  Plants1 Shoots2 Umbels3  Plants1 Shoots2 Umbels3  Plants1 Shoots2 Umbels3 
Clone 1                
Sprinkle 0 0/10 0.000 0.000  3/10 0.994 1.326  0/10 0.000 0.000  4/10 0.947 1.485 
Sprinkle 1 3/10 1.586 2.367  3/10 0.545 0.715  4/10 0.942 1.190  9/10 18.238 39.039 
Sprinkle 2 3/10 0.406 0.432  4/10 1.457 1.805  2/10 0.232 0.232  10/10 29.440 61.838 
Mean 2.0/10 0.539 0.691  3.3/10 0.964 1.238  2.0/10 0.338 0.393  7.7/10 9.460 17.439 
                
Clone 2                
Sprinkle 0 1/10 0.330 0.398  3/10 1.391 1.878  0/10 0.000 0.000  3/10 1.834 2.127 
Sprinkle 1 0/10 0.000 0.000  3/10 1.093 1.856  0/10 0.000 0.000  3/10 0.765 1.176 
Sprinkle 2 2/10 0.521 0.582  2/10 0.456 0.557  1/10 0.149 0.284  2/10 0.710 0.935 
Mean 1.0/10 0.265 0.303  2.7/10 0.939 1.340  0.3/10 0.048 0.087  2.7/10 1.046 1.361 
Mean (PBZ)  1.5/10 0.395 0.485  3.0/10 0.951 1.288  1.2/10 0.184 0.230  5.2/10 3.630 5.605 
ANOVA                
  F probability          
  2009  2010          
Source  Shoots2 Umbels3  Shoots2 Umbels3          
Sprinkle  0.957 0.865  0.022 0.013          
PBZ  0.151 0.141  <0.001 <0.001          
Clone  0.587 0.652  <0.001 <0.001          
Sprinkle x PBZ  0.605 0.647  0.168 0.135          
Sprinkle x Clone  0.439 0.501  0.002 0.003          
PBZ x Clone  0.596 0.470  0.001 <0.001          
Sprinkle x PBZ x Clone  0.125 0.093  0.009 0.009          
# The original flowering data were log10(x + 1) transformed. In this table, back transformed data are presented for the benefit of the reader 
PBZ 0 = Nil PBZ applied (control) 
PBZ 1 = PBZ applied to growing medium on 12/11/2007 and 3/05/2010 
1 Number of plants out of 10 that produced umbels 
2 Mean number of flowering shoots per plant  
3 Mean number of umbels per plant 
Sprinkle 0 = Nil sprinkling (control); Sprinkle 1 = Minimum duration sprinkling treatment; Sprinkle 2= Maximum duration sprinkling treatment    
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Figure 1:  The effect of PBZ on the vegetative growth of E. nitens grafted trees in the 
maximum duration sprinkling (Sprinkle 2) treatment at Mountain Home over time. The 
basal stem circumferences (BSC) of the PBZ 1 (PBZ-treated) and PBZ 0 (control) trees 
are indicated by dotted lines. The percentage difference between the two (((BSC PBZ 0 
– BSC PBZ 1)/BSC PBZ1)*100) is indicated by the solid line. Standard errors for BSC 
measurements of PBZ 0 and PBZ 1 trees are shown in parenthese (in respective order) 
at certain stages through the trial duration as follows: PBZ =  PBZ application, MD = 
maximum difference in BSC between PBZ 0 and PBZ 1 trees after the 1st PBZ 
application, FLW = floral crop assessment. The annual sprinkling period initialization 
and cessation dates are also indicated in the graph as follows: S08 = initialization of 
2008 sprinkling period, ST08 = cessation of 2008 sprinkling period, S09 = initialization 
of 2009 sprinkling period, ST09 = cessation of 2009 sprinkling period, S10 = 
initialization of 2010 sprinkling period, ST10 = cessation of 2010 sprinkling period 
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Figure 2: Mean diurnal variation in E. nitens bud and air temperatures over a period of 
14 days (29 April to 12 May) prior to the initialization of controlled intermittent sprinkling 
in (a) 2009 and (b) 2010 at Mountain Home. CtrlBT = mean bud temperature in the 
control (Sprinkle 0) treatment; Sprkl1BT = mean bud temperature in the minimum 
duration sprinkling (Sprinkle 1) treatment; Sprkl2BT = mean bud temperature in the 
maximum duration sprinkling (Sprinkle 2) treatment; OutAT = air temperature outside 
the anti-hail shelter (open air); ShdAT = air temperature within the anti-hail shelter 
(shaded) 
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Figure 3: Effect of overhead sprinkling on E. nitens bud and air temperatures on a 
typical winter day (26 July 2010) at Mountain Home. CtrlBT = mean bud temperature in 
the control (Sprinkle 0) treatment; Sprkl1BT = mean bud temperature in the minimum 
duration sprinkling (Sprinkle 1) treatment; OutAT = air temperature outside the anti-hail 
shelter (open air); ShdAT = air temperature within the anti-hail shelter (shaded); 
OutWBT = wet bulb temperature outside the anti-hail shelter (open air) 
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Figure 4: Accumulating Chilling Portions for E. nitens bud and air temperatures 
measured at Mountain Home, during (a) 2009 and (b) 2010. CtrlBT = mean bud 
temperature in the control (Sprinkle 0) treatment; Sprkl1BT = mean bud temperature in 
the minimum sprinkling duration (Sprinkle 1) treatment; Sprkl2BT = mean bud 
temperature in the maximum duration sprinkling (Sprinkle 2) treatment; OutAT = air 
temperature outside the anti-hail shelter (open air); ShdAT = air temperature within the 
anti-hail shelter (shaded) 
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ABSTRACT 

 

Eucalyptus nitens is an important, yet shy-flowering, temperate tree species planted for 

commercial pulpwood production in the summer rainfall forestry areas of South Africa. 

To initiate flower buds, E. nitens requires a cold winter followed by warm conditions. 

Paclobutrazol is commonly applied in E. nitens orchards to encourage precocious and 

prolific flowering. In South Africa, E. nitens produces flower buds most prolifically at 

sites located on cold slopes in high elevation (> 1550 m asl), cool temperate (mean 

annual air temperature ≤ 16.0 oC) areas. We investigated the effect of these 

environmental conditions and paclobutrazol application on the reproductive phenology 

of E. nitens across four sites in KwaZulu-Natal province between November 2008 and 

March 2011.  

 

With or without paclobutrazol application, a distinct trend across sites of anthesis being 

delayed (by at least 120 days) and anthesis duration being shortened (by at least 80 

days) as elevation increased from 1133 to 1708 m asl was evident. At Netherby3 (1678 

m asl), a top-ranking site on the basis of E. nitens floral bud crop production, anthesis 

was delayed by 33 days. Generally, the effect of paclobutrazol application across sites 

was a decrease in anthesis duration of between 17 and 34%, from lowest to highest 

elevation. Although the study was based on a narrow range of E. nitens genetic 

material, the observed trends should be taken note of by local temperate eucalypt tree 

breeders and seed producers. At optimum temperate eucalypt flower bud production 

sites in South Africa, the levels of out-crossing and capture of genetic gain and variation 

may be substantially compromised.  

 

Keywords: 

Floral initiation 

Flowering 

Seed orchard 

Temperate eucalypt 

Thermal time 

Winter chilling 
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Abbreviations: BFV, inflorescence buds first visible; BSC, basal stem circumference; 

CP, Chilling Portion; MAP, mean annual precipitation; MAT, mean annual temperature; 

PBZ, paclobutrazol 
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1. Introduction 

 

Eucalyptus nitens is the most widely planted temperate eucalypt species in South 

Africa. The species has exceptional cold, frost and snow tolerance (Darrow, 1996; 

Gardner and Swain, 1996) and desirable pulping properties (Gardner, 2001; Swain and 

Gardner, 2003) making it highly suitable for commercial plantings in high elevation (> 

1300 m asl) areas of the summer rainfall forestry regions (Swain et al., 2014). 

Eucalyptus nitens‘ shy flowering and seed producing tendencies hamper the species’ 

breeding and commercial seed production programmes (Williams et al., 2003). Mature 

individuals rarely produce flower buds before the age of eight years, and even then the 

flower and seed crops are sparse (Eldridge et al., 1993; Gardner and Bertling, 2005). 

The plant growth regulator paclobutrazol (PBZ) has proven to be a valuable tool for 

temperate eucalypt orchard management (Hamilton et al., 2008). Applications of the 

chemical not only assist with vegetative growth control, but under favourable 

environmental conditions can also advance the onset of flowering in seedlings and 

increase floral bud crop production (Williams et al., 2003). No negative carryover effects 

as a result of PBZ application have been noted with respect to pollen and seed 

produced from E. nitens trees treated with the chemical (Griffin et al., 1993; Moncur 

1998). However, abnormally low flower bud numbers within umbels of PBZ-treated E. 

nitens seedlings still in juvenile leaf occur fairly commonly (Gardner, 2003; Moncur, 

1998). Applications of PBZ are expensive and need to be repeated periodically 

(Gardner et al., 2013, 2014). The chemical’s relative persistence and immobility in soil 

(Fletcher et al., 2000) and toxicity to a range of soil microflora (Jackson et al., 1996; 

Silva et al., 2003) make it a non-ideal field tool from an environmental conservation 

perspective (Meilan, 1997; Moncur, 1998). When unaccompanied by sufficient winter 

cold, however, PBZ is ineffective in the stimulation of flowering in E. nitens (Hasan and 

Reid, 1995; Williams et al., 1999a; Gardner et al., 2013).  

 

Over the past two-and-a-half decades, considerable reproductive biological research 

has been carried out aimed at improving flowering and seed crop production in 

important temperate eucalypt species such as E. globulus and E. nitens (Hamilton et al., 

2008; Potts et al., 2007). In temperate plants, the flowering process is attuned to 



 

182 
 

seasons through environmental cues, particularly photoperiod and temperature (Tooke 

and Battey, 2010). In E. nitens, neither photoperiod nor drought stress appear to play an 

influential role in the floral induction process (Gardner, 2003; Hasan and Reid, 1995; 

Moncur, 1998; Moncur and Boland, 2000). A period of winter cold seems obligatory for 

E. nitens floral induction (Moncur and Hasan, 1994; Williams et al., 1999a). 

Environmental conditions favouring temperate eucalypt vegetative growth do not 

necessarily favour floral induction in the same species (Moncur, 1998; Moncur and 

Boland, 2000). In South Africa, E. nitens chilling requirement for floral bud production is 

mostly not met in areas where the commercial plantations and seed orchards are 

situated (Gardner, 2004b; Gardner et al., 2014). Eucalyptus nitens has a minimum 

winter chilling requirement of approximately 40 Chilling Portions (CP, the chill unit of the 

Dynamic Model (Erez and Fishman, 1998; Fishman et al., 1987)) for floral induction 

(Gardner et al., 2013, 2014; Gardner and Bertling, 2005). A minimum of 90 CPs 

appears necessary to pre-dispose mature non-PBZ-treated trees to achieve maximum 

flower bud production. Eucalyptus nitens fIoral induction response in the intermediate 

chilling range (> 40 < 90 CP) appears largely genotype-, possibly provenance-, 

dependent, with respect to chilling requirement (Gardner, 2003; Gardner et al., 2013, 

2014).  

 

Extensive field research carried out over the past two decades in South Africa resulted 

in the identification of key climatic and landform parameters influencing E. nitens floral 

bud production (Germishuizen and Gardner, 2014; Gardner et al., 2014). In the summer 

rainfall area, E. nitens produces flower buds most prolifically and consistently at sites 

located on cold (south-west to west-facing) slopes in high elevation (> 1550 m asl), cool 

temperate (mean annual air temperature (MAT_Air) ≤ 16.0 oC) areas (Gardner et al., 

2014). Nevertheless, even at these sites, the periodic deviations from mean climatic 

conditions, e.g. unusually warm winter conditions, negatively impact on E. nitens floral 

bud and seed crop production. Furthermore, increased seasonal weather extremes 

associated with global warming are likely to exacerbate this situation in the future 

(Linkosalo et al., 2009; Luedeling et al., 2011). Therefore, a previous investigation into 

the feasibility of using evaporative cooling to apply controlled winter chilling to improve 

the consistency of flower bud production in E. nitens orchards located at marginal 
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chilling sites was undertaken between 2007 and 2011 (Gardner et al., 2013). In two 

consecutive years, controlled overhead sprinkling substantially increased winter chilling 

and flower bud production in non-PBZ-treated E. nitens grafts. PBZ application 

produced a strong additive effect in combination with winter chilling on E. nitens floral 

bud production.  

 

Environmental conditions favouring E. nitens floral induction and initiation may not 

necessarily favour E. nitens reproductive development in the post-floral initiation phase 

(Hamilton et al., 2008). Sites typically experiencing cold winter conditions required for 

prolific flower bud production in E. nitens may not necessarily be conducive to rapid 

flower, capsule and seed development (Moncur et al., 1994). In temperate south-

eastern Australia, the time taken for E. nitens flower buds to develop from bud 

emergence to seed maturity stage differed by more than 12 months between two sites 

similar in latitude, but differing in elevation and mean annual temperature, with the 

highest elevation and coldest site of the two taking longest (Moncur and Boland, 2000). 

In E. nitens, vegetative growth ceased at temperatures below 5 oC (Moncur and Hasan, 

1994). Accumulated daily heat sums (degree days above 4 oC), rather than total 

number of days, was a fairly reliable predictor of the time taken from (inflorescence) 

buds first visible (BFV) stage to commencement of anthesis in E. nitens, and from BFV 

to seed maturity stage in the same species (Moncur and Boland, 2000).  

 

In this study, the main aim was to investigate the effects of PBZ treatment and the site 

conditions deemed optimal for E. nitens flower bud production in the summer rainfall 

area on flower and fruit development and seed maturation in the same species. The 

timing of E. nitens floral initiation relative to chilling accumulation was explored since 

such knowledge is likely to be useful in further molecular biological investigations 

pertaining to E. nitens floral induction and development. 
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2. Materials and methods 

 

2.1. Semi-controlled environment (potted) trial 

 

In August 2006, scions from two different E. nitens genotypes (ICFR breeding 

selections) were grafted onto six-month-old E. nitens seedlings grown from South 

African commercial orchard seed. In February 2007, six months after grafting, the plants 

were transplanted into 100 L (0.6 m diameter) black polythene bags containing 

commercial growing medium. The potted plants were then positioned 2.0 m apart at an 

experimental site at Mondi Mountain Home Research Centre, Hilton, KwaZulu-Natal 

(Table 1). The site was considered marginal for E. nitens floral bud production on the 

basis of mean annual winter chilling (Gardner et al., 2013), and, therefore ideal for 

evaluating the effect of supplementary chilling on E. nitens floral bud production. The 

original experimental layout, infrastructure and instrumentation were comprehensively 

described by Gardner et al. (2013). All 40 trees of two clones within the maximum winter 

chilling treatment block were used in this study on E. nitens reproductive development 

and floral phenology. 

 

Provision of supplementary winter chilling during the months of May to August 2007 was 

achieved by evaporatively cooling the trees using controlled intermittent overhead 

sprinkling. Two levels of PBZ treatment were applied, PBZ0 (nil PBZ) and PBZ1 (PBZ 

applied as a soil drench). For the PBZ1 treatment, a suspension of Cultar® (formulation 

250 g L-1 PBZ, ICI Agrochemicals) was applied on two separate occasions (12 

November 2007 and 03 May 2010) at a rate of 0.025 g a.i. per mm basal stem 

circumference (BSC). BSC was measured at the narrowest point between graft union 

and first lateral (scion) branch. Two scion genotypes were included: Clone 1 (Ebor 

provenance, prolific flowerer) and Clone 2 (Barrington Tops provenance, moderate-shy 

flowerer). The frequency of watering was scheduled to maintain soil water level at 

between 75% and 100% field capacity throughout the year.  

 

Air and E. nitens bud temperatures were measured at 1.3 m above ground level on a 30 

s interval basis throughout each year using the methodology described by Gardner et 
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al. (2013), and mean hourly data calculated for use in chill and heat unit modelling. Bud 

temperatures were measured on the northern and southern sides of each of two 

spatially separate sample trees (approximately15 m apart) in the maximum winter 

chilling block and the mean of these four values calculated (refer Chapter 6).  

 

2.1.1. Floral initiation and early development  

 

During late April 2010, only the 24 trees of E. nitens Clone 1 from the maximum winter 

chilling treatment block which had produced inflorescences in the preceding floral crop 

season were selected for the study. Twelve of these trees had been treated with PBZ. 

On each tree, one healthy secondary branch was flagged at each of the four aspects 

(east, south, west and north) around the tree canopy. On a fortnightly basis, between 05 

May and 01 November 2010, one actively growing shoot apex per secondary branch 

was collected from each flagged branch. On each sampling occasion, the four shoot 

apices per tree were bulked and fixed in formalin acetic acid alcohol (FAA; 10 ml 

formaldehyde: 5 ml acetic acid: 50 ml ethanol: 35 ml water) for a minimum of 48 hours. 

During the first week of November 2010, samples of recently emerged (within the past 

48 h) inflorescence buds were also collected and stored separately in FAA. In mid-

December 2010 and mid-January 2011, all 24 trees from which the shoot apex samples 

were collected were inspected for the presence of inflorescence buds. Stored shoot 

apices from the three PBZ0 trees that had produced the greatest number of 

reproductive shoots (current season shoots having one or more inflorescence buds) by 

mid-January 2011, as well as three trees that had produced no inflorescence buds by 

the same date, were retained for the microscopy investigation.  

 

The total number of samples for light microscopy (LM) was reduced by selecting 

samples according to level of accumulated winter chilling. Eight bulked samples from 

trees that produced inflorescence buds in 2010 were selected at intervals of 

approximately 10 CP (as calculated from bud temperature), from 1.8 CP to 73.2 CP 

(Table 2). For samples from trees that did not produce inflorescence buds in 2010, three 

intervals spread roughly across the entire 2010 winter chilling range were selected 

(controls). Thus, a total of 132 samples (3 trees x 4 apices x 11 chill unit intervals) were 
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subjected to LM. Standard LM sample preparation and sectioning procedures were 

carried out (Baker, 1958; Johansen, 1940). Sections were studied using a Zeiss Axio 

Imager M2 light microscope, and micrographs captured using a Zeiss AxioCam MRm 

monochrome digital camera (Carl Zeiss Microscopy GmbH, Göttingen, Germany).  

 

2.1.2. Flower and fruit development phenology  

 

Floral bud and capsule development were tracked in all 40 trees (Clones 1 and 2, PBZ0 

and PBZ1) in the maximum winter chilling treatment block on a fortnightly basis over 

one floral bud crop year, i.e. from beginning October 2009 to end January 2011. On 

each assessment occasion, the presence of four key E. nitens reproductive 

developmental stages (Table 3 and Fig. 1) was scored, and the commencement and 

ending dates of each stage estimated. In E. nitens, depending on weather conditions, 

dehiscence of anthers and pollen dispersal typically commences within one to two days 

of the inner operculum being shed (Gardner, unpublished results; Tibbits, 1989). For the 

purpose of this study, commencement of anthesis, i.e. commencement Stage 3 (Table 

3), was designated as that stage where the inner operculum of any one flower within the 

umbel was shed, leaving the filaments and stigma exposed. This stage of floral 

development is clearly distinguishable in E. nitens, a species with relatively small flower 

buds (Tibbits, 1989; Williams et al., 1999b). Typically, most pollen is shed on the fourth 

day after the (designated) commencement of anthesis, and it is around this time that 

stigmas are most receptive (Tibbits, 1989).   

 

2.2. Field trials 

 

In August 2003, scions from four different E. nitens genotypes (ICFR breeding 

selections, i.e. Clones 2-5) were grafted onto six-month-old E. nitens seedlings grown 

from South African commercial orchard seed. Two of the clones, Clone 1 (Ebor 

provenance, prolific flowerer) and Clone 2 (Barrington Tops provenance, moderate-shy 

flowerer), were identical to the two clones applied in the semi-controlled environment 

(potted) trial at Mountain Home.In March-April 2004, a series of 13 site x PBZ x 

flowering interaction trials were established across a range of high elevation/ high chill 
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summer rainfall sites within the optimum range for E. nitens growth (elevation ≥ 1 350 m 

asl; mean annual air temperature (MAT_Air) 14-16 oC; mean annual precipitation (MAP) 

≥ 840 mm; Gardner et al., 2014; Smith et al., 2005; Swain and Gardner, 2003). Water 

stress is known to stimulate flower bud production in a number of temperate woody 

angiosperms (George and Erez, 2000; Meilan, 1997), and, therefore, drought stress 

was minimized as a factor in the stimulation of flowering by selecting all sites having 

high MAP (> 840 mm) and uniformly deep soils (> 0.8 m) (Owens, 1995; Schönau and 

Grey, 1997). Tree spacing in the trials was 4 m x 5 m. Two levels of PBZ were applied, 

PBZ0 (nil PBZ) and PBZ1 (PBZ applied as a soil drench). For the PBZ1 treatment, a 

suspension of Cultar® was applied during March 2006, at a rate of 0.025 g a.i. per mm 

BSC. Air temperature was measured at each site on an hourly basis throughout the 

year from trial inception to termination using Hobo® temperature loggers (Onset 

Computer Corporation, Bourne, USA) according to the methodology described by 

Gardner et al. (2014). Equations developed in a temperature calibration experiment at 

the Mountain Home experimental site were used to model E. nitens bud temperature 

from hourly air temperature data for each site.  

 

2.2.1. Flower and fruit development phenology  

 

During November/ December 2009, four Clone 2 trees bearing newly emerged 

inflorescence buds were selected at each of the eight sites for the study. The reason for 

selecting the Clone 2 for the study was that in earlier environment x flowering interaction 

research, the particular clone demonstrated consistent and prolific flowering when 

grafted onto seedlings and subjected to high levels of accumulated winter chilling 

(Gardner, 2003; Gardner, unpublished results). At each site, two of the four trees had 

been PBZ-treated (PBZ1 treatment) and the other two not (PBZ0 treatment). On each 

tree, two healthy primary branches, one each on the north and south aspects of the 

canopy, bearing recently emerged (within the past 2-3 days) inflorescence buds were 

selected and flagged. Floral bud and capsule development was tracked in all 32 E. 

nitens trees (one clone x two PBZ levels x 8 sites x 2 replicates) on a fortnightly basis, 

from November 2009 through till end of March 2011 (one floral crop season). The two 

replicates of Clone 2 were from different replicates of the main plots. On each 
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assessment occasion, the presence of four key E. nitens reproductive developmental 

stages (Table 3, Fig. 1), and estimates of the commencement and end dates of the 

particular stages, were recorded.  

 

During the second year of the survey (2010), the assessments were reduced to the 

three best overall E. nitens flowering sites in KwaZulu-Natal based on floral crop 

production (refer Chapter 4). Site details for the three sites are presented in Table 1. 

 

2.3. Seed maturity  

 

For both the Mountain Home potted trial and the KwaZulu-Natal field trials, the “seed 

maturity” stage was defined as that stage at which 70% seed germination was reached 

(Moncur et al., 1994). From completion of anthesis, ripening capsules were collected 

fortnightly on a random basis from the pertinent treatments. The capsules were dried 

and the seed and chaff extracted and stored in labeled sealed polythene bags at 5 oC 

for a minimum of one month. Germination tests and counts were carried out according 

to the protocols described by Boland et al. (1980).  

 

2.4. Thermal time calculations  

 

Thermal time (oCd), also known as heat units or degree days (Bonhomme, 2000; 

Schulze and Maharaj, 2007a; Tsimba et al., 2013), accumulated between key E. nitens 

reproductive growth stages was calculated for trees in both the evaporative cooling and 

field trial experiments. Daily thermal time (TT) was calculated as: TT = Tmean - Tbase, 

where Tmean = daily mean temperature calculated as ((Tmax - Tmin) /2), Tmax = daily 

maximum temperature, Tmin = daily minimum temperature and Tbase = base temperature 

for E. nitens vegetative growth, i.e. 4 oC (Moncur and Hasan, 1994). 

 

 

3. Results 

 

3.1. Semi-controlled environment (potted) trial 
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3.1.1. Floral initiation 

 

The vegetative apical meristem is enclosed by developing leaf primordia (Fig. 2A). An 

increase in the size of E. nitens Clone 1 apical meristems was first observed on 6 

September 2010 (Fig. 2B), by which stage the trees had been exposed to 63 CP (Table 

2). At this point in time, bracteate inflorescence buds were also observed developing 

spirally around the growing point (Fig. 2C). Due to the sampling intervals being one 

month apart, and inflorescence buds in early stage of development already evident on 

06 September, apical meristem size increase in Clone 1 likely began at some point 

between 10 August (51 CP accumulated) and 6 September 2010 sampling dates (Table 

2).   

 

3.1.2. Early development of reproductive buds 

 

Newly emerging E. nitens Clone 1 inflorescence buds (Fig. 1A) first became visible to 

the naked eye (BFV stage) during the second week of October 2010. By this stage, a 

thermal time of 472 oCd had passed since an increase in apical meristem size was first 

noted in Clone 1 on 6 September 2010 (Table 4). The timing of BFV in Clone 1 was 

approximately six weeks earlier than for mature E. nitens trees in a natural stand at 

Tallaganda State Forest, New South Wales, Australia (35o 30' S; 149o 32' E; elevation 

1000 m asl; MAT_Air 15.6 oC; Australian Government Bureau of Meteorology, 2014; 

Moncur et al., 1994). At Mountain Home, by late October 2010, individual flower buds 

within the umbels were elongated, and well-defined (Fig. 2D). By early November the 

same year, approximately three weeks after BFV, the differentiation of floral organs was 

well underway (Fig. 2E).     

 

3.1.3. Flower and fruit development phenology 

 

The first floral bud crops were produced by trees in both PBZ0 and PBZ1 treatments in 

early November 2008 (Gardner et al., 2013). Based on observations carried out over 

three crop seasons (October 2008 to March 2011), new season’s inflorescence buds 
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(Fig. 1A) emerged over a period of 14 weeks, from beginning of October at the earliest, 

through to early January at the latest, regardless of PBZ treatment. The clonal effect 

regarding timing of inflorescence bud emergence (BFV stage) was fairly consistent 

across years and PBZ treatments. In both 2009 (Table 5) and 2010 (data not 

presented), Clone 1 buds emerged at least two weeks prior to those of Clone 2. An 

interaction occurred between PBZ and clone regarding timing of BFV stage. In the 

PBZ0 treatment, inflorescence buds of Clone 1 trees emerged 27 and 28 days earlier 

than those of Clone 2, in 2009 and 2010, respectively. In the PBZ1 treatment, 

inflorescence buds of Clone 1 trees emerged 16 and 17 days earlier than those of 

Clone 2 in the same respective years.  

 

On average (2008 to 2011), bract shed (Fig. 1C) commenced 10-11 weeks after BFV 

stage, i.e. late December (Table 5), regardless of clone or PBZ treatment.  

 

Anthesis commenced during April 2010 (Fig. 1E), approximately six months after BFV, 

across clone and PBZ treatments (Table 5). The effect of clone on timing of anthesis 

commencement date was negligible (Table 5), but a slight delay in commencement of 

anthesis was observed in the PBZ1 treatment compared to that in the control (PBZ0) 

treatment. Mean (across-clone) timing of anthesis commencement for PBZ0 trees (14 

April 2010) was 11 days prior to that of PBZ1 trees (25 April 2010). Clone 2 anthesis 

commenced 12 days earlier in PBZ0 treatment than in PBZ1 treatment, i.e. 12 April and 

24 April, respectively (Table 5). 

 

Regarding duration of anthesis, the across-clone means for PBZ0 and PBZ1 treatments 

were similar (133 and 132 days, respectively) (Table 6). In the PBZ0 treatment, the two 

clones differed considerably with respect to anthesis duration, with Clone 1 and Clone 2 

recording four and five months for this period, respectively. A clone x PBZ interaction 

was evident, with anthesis duration in Clone 1 being approximately three weeks shorter 

in PBZ0 treatment than in PBZ1 treatment, and anthesis duration in Clone 2 being 

approximately three weeks longer in PBZ0 treatment than in PBZ1 treatment (Table 6).  
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Mean (across-clone) time taken between BFV and seed maturity was 32 days/ 456 oCd 

less in PBZ0 treatment than in PBZ1 treatment (Table 6). The least time taken between 

BFV and seed maturity stage (374 days, 4736 oCd) occurred in the non-PBZ-treated 

Clone 2 treatment trees (Table 6). In the same clone, PBZ application (PBZ1) increased 

the time taken between earliest BFV and seed maturity by 46 days/ 641 oCd to 15 

months/ 5377 oCd. Twelve of the 46 days were possibly carried over from the earlier 

inflorescence bud emergence date of PBZ0 trees during spring 2009 (Table 5).  

 

3.2. Field trials 

 

3.2.1. Flower and fruit development phenology 

 

Based on observations carried out over two crop seasons (November 2009 to March 

2011) in Clone 2, new season’s inflorescence buds (Fig. 1A) emerged over a period of 

approximately 14 weeks at each of the sites, i.e. from late November through to early 

March, regardless of PBZ treatment.  

 

Apart from Willowmere, commencement of bract shed (Fig. 1C) in Clone 2 occurred 

later in PBZ0 trees than in PBZ1 trees (Table 7). In the PBZ0 treatment, timing of bract 

shed ranged from early March (Willowmere) through to late May (Tweefontein), i.e. on 

average 21 weeks after BFV stage. In the PBZ1 treatment, bract shed ranged from 

beginning January (Tweefontein) through to early March (Willowmere), i.e. on average 

10 weeks after BFV.  

 

Regardless of PBZ treatment, earliest and latest Clone 2 anthesis commencement 

dates occurred at the lowest and highest elevation sites of the three, viz. Tweefontein 

(1588 m asl) and Willowmere (1708 m asl), respectively (Tables 1 and 7). Mean 

(across-site) Clone 2 anthesis commencement date was nine days earlier in the control 

than in the PBZ1 treatment (Table 7). At Willowmere, the highest elevation site of the 

three, anthesis commencement date was similar in both PBZ treatments (30 

September). At Tweefontein, the lowest elevation site of the three, anthesis commenced 

slightly later in PBZ0 treatment compared to PBZ1 treatment (19 September versus 12 
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September).  At Netherby3, the intermediate site (Table 1), anthesis commenced 33 

days earlier in the control (20 August) than the PBZ1 treatment (22 September).   

 

Mean (across-site) duration of anthesis for PBZ0 and PBZ1 treatments were 82 days (≈ 

12 weeks) and 72 days (≈10 weeks), respectively. These durations were both 

considerably shorter than Mountain Home mean (across-clone) anthesis durations for 

PBZ0 and PBZ1 (19 weeks in either treatment) (Tables 6 and 8), and considerably 

shorter than Mountain Home Clone 2 anthesis duration (21 and 18 weeks for PBZ0 and 

PBZ1, respectively). In both PBZ0 and PBZ1 treatments, the KwaZulu-Natal field sites 

where the shortest and longest anthesis durations occurred (Table 8) were those 

located at the highest and lowest elevations respectively, namely Willowmere (51 and 

48 days) and Tweefontein (98 and 105 days) (Table 1).  

 

Mean (across-site) time taken between BFV and seed maturity stages in Clone 2 was 

23 days/ 357 oCd greater in PBZ0 treatment than in PBZ1 treatment (Table 8). The least 

time taken between BFV and seed maturity (413 days, 4576 oCd) occurred in PBZ1 

treatment at Tweefontein, the lowest elevation site of the three field trials (Tables 1 and 

8). At the same site, trees in the control treatment took on average 40 days/ 630 oCd 

longer than trees in the PBZ1 treatment to reach seed maturity. At the highest elevation 

field trial site (Willowmere), there was minimal difference between the control trees (437 

days, 5310 oCd) and PBZ-treated trees (442 days, 5405 oCd). In the absence of PBZ 

application, the greatest time taken between BFV and seed maturity occurred at 

Netherby3 (464 days, 5850 oCd).  

 

 

4. Discussion 

 

4.1. Timing of floral initiation 

Eucalyptus nitens floral initiation was investigated in non-PBZ treated trees of one 

prolific flowering genotype (Clone 1, Ebor provenance) in the maximum winter chilling 

treatment block at Mountain Home. The size increase in E. nitens apical meristems 

observed during the first week of September indicated that the processes relating to 
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floral evocation, including changes in gene expression and associated metabolisms 

(O’Neill, 1993; Meilan, 1997) began some days, possibly weeks, prior to this particular 

point in time. The findings, although based on a single genotype, resulted from an 

experiment where winter chilling was applied on a controlled basis. Bud temperature 

was measured continuously on a 30 sec basis, and the 51 and 63 CP accumulated by 

the 10 August and 6 September (Table 2) respectively, represented actual amount of 

chilling to which the sampled trees had been exposed. Paclobutrazol may influence 

timing of floral induction, evocation and initiation, but this was not investigated in the 

Mountain Home trial. Perez-Barraza et al. (2000) reported that a soil application of PBZ 

resulted in 45-day advancement of the timing of commencement of inflorescence 

initiation in mango (Mangifera indica). A perusal of the published literature suggested 

that the effect of PBZ on timing of the latter events remains to be investigated in 

temperate eucalypt species such as E. nitens.   

 

4.2. Timing of inflorescence bud emergence  

The earlier timing of inflorescence bud emergence (BFV) at sites at the warm end of E. 

nitens growth range in South Africa (MAT_Air > 16.0 oC) (Smith et al., 2005), i.e. 

beginning October to early January (Mountain Home and Tweedie), compared to that at 

sites at the cooler end of the species growth range (MAT_Air ≤ 15.5.0 oC) and where 

conditions were deemed favourable for E. nitens floral bud production (Gardner et al., 

2014), i.e. late November to early March (e.g. Tweefontein and Netherby3), appeared to 

be carried through  to anthesis onset and seed maturity stage (Tables 5 and 7). The 

earlier bud emergence at warmer sites potentially offers breeders and/or seed 

producers a means of shortening E. nitens breeding and/ or seed production cycles to 

some extent, particularly in environments where adequate heat and soil water levels 

conducive to rapid post-emergence reproductive growth and development are typically 

present (Luedeling et al., 2013; Moncur and Hasan, 1994; Owens, 1995).         

 

4.3. Timing of bract shed 

 

At Canberra, Australia (latitude 35° 18’ S; elevati on 550 m asl; MAT_Air 13.1 °C), bract 

shed occurs 6-8 weeks following BFV in early December (Moncur and Boland, 2000). At 
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Tallaganda State Forest (Australia), with similar latitude but substantially higher 

elevation and mean annual temperature than Canberra (35° 30’ S; 1000 m asl; MAT_Air 

15.6 °C), bract shed is delayed until October, 9-10  months following BFV in late 

December. A similar effect of elevation on bract shed timing was observed in non-PBZ 

treated Clone 2 trees across the four South African sites. At the low elevation, warm 

Mountain Home site, bract shed commenced 10-11 weeks following BFV in late 

October-early November (Table 1). At the cooler KwaZulu-Natal high altitude field trial 

sites which were of fairly similar latitude to Mountain Home, bract shed commenced on 

average 21 weeks after BFV in late November-early March.    

 

4.4. Timing of anthesis 

Timing of flowering in temperate trees is generally regulated by mechanisms which act 

to ensure that flower emergence occurs during suitable conditions (Powell et al., 1986; 

Tooke and Battey, 2010). Seasonal shifts in flowering times of E. nitens genotypes 

occur, though differences in relative flowering times between genotypes remain fairly 

consistent across seasons (Jones, 2002; Moncur et al., 1994; Tibbits, 1989). In South 

Africa, E. nitens provenance differences on the basis of time of year when anthesis 

commences are a common phenomenon. In PBZ-treated, grafted E. nitens orchard 

trees at Tweedie, KwaZulu-Natal province (elevation 1100 m asl; MAT 16.7 oC), 

genotypes of northern New South Wales (NSW) provenances Ebor, Barren Mountain 

and Barrington Tops consistently commenced flowering later than grafted clones of the 

southern NSW provenances Tallaganda and Badja (Jones and Van Staden, 2001).  

 

In the four E. nitens trials (one semi-controlled environment and three field trials) 

located across southern KwaZulu-Natal, of all treatments applied, environment exerted 

the most pronounced effect on timing of anthesis. In Clone 2, regardless of PBZ 

treatment, the commencement of anthesis was delayed by four months when elevation 

increased from 1133 m asl (Mountain Home) to 1588 m asl (Tweefontein), and by a 

further month when elevation increased to 1708 m asl (Willowmere) (Tables 1, 5 and 7). 

A similar trend was observed in non-PBZ treated E. nitens planted stands in south-

eastern Australia, where trees at lower elevations consistently flowered earlier and for 

longer than those at higher elevations (Barbour et al., 2006; Moncur and Boland, 2000; 
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Williams, 2000). In Tasmania, an increase in elevation from 40 m asl to 712 m asl 

showed a consistent annual delay of about 21 weeks in the commencement of E. nitens 

flowering (Moncur et al., 1994).  

 

At lower elevation (≤ 1200 m asl) temperate eucalypt forestry sites in KwaZulu-Natal 

(e.g. Mountain Home and Tweedie), E. nitens flowers predominantly through the winter 

months (Table 5; Gardner, unpublished results; Jones and Van Staden, 2001). At sites 

such as these, the severities of winter climatic risk factors such as low temperature, 

frost and snow are low, with such factors rarely posing a threat to E. nitens young trees, 

flowers and fruit (Gardner and Swain, 1996; Kunz and Gardner, 2001; Smith et al., 

2005). At the higher elevation (> 1550 m asl) temperate eucalypt forestry sites in 

KwaZulu-Natal where environmental conditions have been rated as optimum for E. 

nitens floral bud production (Gardner et al., 2014) (e.g. Tweefontein, Netherby3 and 

Willowmere), E. nitens flowers from late July onwards (Table 7; Jones and Van Staden, 

2001). At such high elevation sites, the severities of the winter climatic risk factors are 

generally high, posing a substantial threat to E. nitens young trees, flowers and fruit.  

 

In Clone 2, the mean effect of PBZ observed across the four trial sites was an 11-day 

delay in anthesis commencement in the PBZ1 treatment (Tables 6 and 7). The 

substantial (33-day) delay in anthesis commencement that occurred in PBZ-treated 

trees at Netherby3 is cause for concern. Based on the results of the comprehensive E. 

nitens site x genotype x flowering interaction trial series stratified across a wide range of 

high elevation sites within the summer rainfall forestry area of South Africa, Netherby3 

was the top-performing site on the basis of provision of near optimal environmental 

conditions for consistent floral bud production in the species (Germishuizen and 

Gardner, 2014; Gardner et al., 2014). If the anthesis delaying effect of PBZ proves a 

general phenomenon across the range of genotypes comprising the South African E. 

nitens base breeding population (Swain et al., 2013b), the negative implications could 

be substantial. In south-eastern Australia, a marked delay in E. nitens anthesis 

commencement (non-PBZ treated trees) was accompanied by a significant condensing 

of anthesis period, and extended time between floral bud emergence and seed maturity 

(Moncur et al., 1994). The observed anthesis delaying effect of PBZ treatment in E. 
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nitens Clone 2 at Netherby3 in 2010 suggests there may be potential to utilize PBZ 

application as a manipulative tool for synchronizing flowering in asynchronous flowering 

genotypes within the orchard. This could be advantageous to temperate eucalypt 

breeders and commercial seed producers in South Africa. In this case, PBZ treatment 

would likely need to be applied in a more precise manner, e.g. via foliar application 

(Hetherington et al., 1991; Williams et al., 1999a). Manipulation of timing and duration of 

anthesis using PBZ applications has been reported for a number of horticultural tree 

crops, including peach (Erez, 1986), sweet cherry (Looney and McKellar, 1987), 

pistachio (Porlingis and Voyiatzis, 1993) and mango (Perez-Barazza et al., 2000).   

 

4.5. Duration of anthesis 

A trend of decreasing anthesis duration with increasing elevation, regardless of PBZ 

treatment, was observed across the four KwaZulu-Natal sites (Tables 1, 6 and 8). If only 

the three field trial sites were considered, in both the PBZ0 and PBZ1 treatments there 

was a considerable difference in Clone 2 anthesis duration between lowest and highest 

elevation sites, viz. Tweefontein and Willowmere (47 days and 57 days, respectively). If 

the Mountain Home site was included in the comparison, the difference in Clone 2 

anthesis duration between the lowest and highest elevation sites increased to 99 days 

and 80 days for PBZ0 and PBZ1 treatments, respectively. A similar trend was reported 

for non-PBZ treated E. nitens trees in natural and/or planted stands located across a 

wide range of sites in south-eastern Australia, where trees at lower elevations 

consistently flowered for longer than those at higher elevations (Barbour et al., 2006; 

Moncur and Boland, 2000; Williams, 2000).  

 

The trend towards decreasing anthesis duration with increasing elevation in the local E. 

nitens trials is cause for concern. In South Africa, temperate eucalypt tree breeders and 

commercial seed producers rely predominantly on insects for effecting cross-pollination 

within orchards of small-flowered species such as E. nitens (Eldridge et al., 1993; Swain 

et al., 2013a). Decreased duration of anthesis is generally accompanied by decreased 

chance of flowering synchronicity among parents within an orchard (Funda et al., 2009; 

Lindgren and Mullin, 1998). The timing of anthesis onset and duration of anthesis 

among genotypes within an orchard is critical (El-Kassaby et al., 1984; Stoehr et al., 



 

197 
 

1998). Sub-optimal flowering synchronicity and out-crossing among genotypes can 

severly compromise capture of genetic gain within Eucalyptus orchards (Griffin and 

Cotterill, 1988; Swain et al., 2014; Varghese et al., 2009). Notwithstanding E. nitens 

habits of (partial) protandry (Moncur and Boland 2000; Tibbits, 1989) and varying levels 

of self-incompatibility (Pound et al., 2003), the species (geitonogamous) self-pollinating 

nature predisposes E. nitens to common orchard-related problems such as reduced 

capsule set, seed yield and seed viability, and nursery-related problems such as 

increased abnormality and mortality of developing seedlings (Moncur and Boland, 2000; 

Tibbits, 1989; Williams et al., 1999b). In the summer rainfall area of South Africa, 

optimum (satisfactory) flower bud production in E. nitens is generally only achieved in 

those orchards sited on cold slopes in high elevation (> 1550 m asl), cool temperate 

(MAT ≤ 16.0 oC) forestry areas (Gardner et al., 2014; Germishuizen and Gardner, 

2014). The fact that E. nitens is inherently shy-flowering further elevates the importance 

of achieving maximal duration of anthesis in all genotypes within an orchard (Hamilton 

et al., 2008; Swain et al., 2013a).            

 

The effect of PBZ application on anthesis duration across the four KwaZulu-Natal sites 

in 2010 deserves comment. In Clone 2, the mean trend across sites was a 13-day 

reduction in anthesis duration where PBZ was applied (Tables 1, 6 and 8). There was 

one exception, viz. Tweefontein, the lowest elevation of the three field trial sites, where 

anthesis duration in PBZ1 trees (105 days) was seven days greater than that for non-

PBZ treated trees (98 days). It is difficult to speculate what the particular reason(s) for 

this exception was, as several key climatic variables commonly associated with both 

vegetative and reproductive tree growth, e.g. rainfall and available soil water (Moncur 

and Hasan, 1994; Owens, 1995), were not measured on-site during the course of the 

trials. Any of these factors, either singularly or in combination with one another, may 

have played an interactive role, together with PBZ, in influencing reproductive 

development during the particular developmental phase. Where only the three field trial 

sites were considered, on average, non-PBZ treated trees flowered for 10 days longer 

than PBZ-treated trees (Table 8). The marked reduction in E. nitens Clone 2 anthesis 

duration where PBZ treatment was applied, at both Mountain Home (22 day reduction) 

and Netherby3 (33 day reduction) (Tables 6 and 8), is cause for concern. As discussed 
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above, reduction in anthesis duration decreases the chance of flowering synchronicity 

among parents within orchards (Lindgren and Mullin, 1998; Funda et al., 2009), pre-

disposing tree breeders and seed producers to seed production and seed quality 

problems.  

      

The effect of PBZ treatment on anthesis duration differed across clones at Mountain 

Home (Table 6). In Clone 1, anthesis duration in the control treatment (116 days) was 

20 days shorter than that in the PBZ1 treatment (136 days). In Clone 2, anthesis 

duration in the control treatment (150 days total) was 22 days longer than that in the 

PBZ1 treatment (128 days). Possibly, anthesis duration was confounded by differences 

in umbel abundance between clones in either PBZ treatment in the same year, either 

wholly or in part. In the same crop year (2009), umbel abundance did not differ 

statistically between clones or for PBZ x clone interaction (Gardner et al., 2013), thus 

the latter possibility seems unlikely.       

 

The results of our study indicate that the interaction between environment, PBZ, 

genotype and timing and duration of anthesis in E. nitens warrants closer investigation. 

Such an investigation should not be limited to E. nitens, but also include all other locally 

important temperate eucalypts of which the breeding and production orchards are 

typically located at high elevation (> 1200 m asl) sites in South Africa. Particularly in the 

case of important, yet shy-flowering temperate eucalypt species such as E. nitens, E. 

smithii, E. dunnii and E. badjensis, the effect of the high altitude orchard environmental 

conditions on insect pollinator dynamics deserves investigating. Due to inherent scarcity 

of flowers, pollen and nectar, these eucalypt species are renowned for their relative 

unattractiveness to important pollination vectors such as honey bee, Apis mellifera 

(Gardner, 2004a; Johannsmeier and Mostert, 2001). 

 

4.6. Time from inflorescence bud emergence to seed maturity 

Fastest time taken (in days) from BFV to seed maturity was recorded in control (PBZ0) 

Clone 2 trees at Mountain Home (374 days, Table 6). This was 63 days faster than the 

time taken by the best-performing field trial control, Willowmere (437 days, Table 8). 

Netherby3, with its high elevation and steep-sloped, south-west facing disposition within 
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the landscape (Table 1), provided the most optimum environmental conditions for E. 

nitens flower bud production of all 13 sites evaluated (Gardner et al., 2014). However, 

on the basis of time taken from BFV to seed maturity in the PBZ0 treatment (464 days), 

the site ranked relatively poorly compared to the lowest elevation Mountain Home (374 

days) and highest elevation Willowmere (437 days) sites. The results suggest that in 

situations where the use of PBZ is not an option, but where rapid generation turnover is 

required, there may be merit in utilizing a semi-controlled environment orchard system 

situated at low elevation (< 1200 m asl), warm (MAT_Air 16.0 – 16.5 oC) KwaZulu-Natal 

site, similar to that implemented at Mountain Home (Table 1). The trees at Mountain 

Home were grown in containers, and it remains to be established whether trees grown 

in open soil and subjected to similar evaporative cooling for the fulfilling of winter chilling 

requirement would perform similarly on the basis of floral bud production and rate of 

flower and fruit development. Across the field trial sites, the time taken from BFV to 

seed maturity in the control treatment did not correlate to elevation (Table 8). 

Furthermore, the thermal time taken from BFV to seed maturity in the control treatment 

varied across sites by as much as 12.3% (644 oCd). Hence, it is probable that some 

other environmental factors(s), possibly in addition to elevation and/or thermal time, 

exerted a strong influence on E. nitens reproductive development in the BFV to seed 

maturity phase. Photoperiod was an unlikely factor, as daylength differed across the 

KwaZulu-Natal trial sites by a maximum of eight minutes, on both the shortest and 

longest days of the year (SAAO, 2014). 

 

Where PBZ was applied (PBZ1) at Mountain Home, the time between BFV and seed 

maturity in Clone 2 increased from 374 to 420 days (Table 6). The latter time was 

similar to that for the KwaZulu-Natal field trial PBZ1 mean (428 days) (Table 8). On 

average, the time taken from BFV to seed maturity across the field trials decreased from 

451 to 428 days. The only exception was at Willowmere, the highest elevation site of 

the three, where a slight (5 day) increase in time from BFV to seed maturity was 

recorded. Across the field sites, the general trend in the PBZ1 treatment was a 

decrease in time between BFV and seed maturity as elevation increased.  
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Of all four KwaZulu-Natal trials evaluated, an increase in the time taken (days and 

thermal time) between BFV and seed maturity through application of PBZ occurred only 

at the lowest and warmest Mountain Home site (MAT_Bud 15.3 oC) and highest and 

second coolest Willowmere site (MAT_Bud 13.2 oC) (Tables 1, 6 and 8). The increase in 

time was greater at Mountain Home (46 days, 641 oCd) than at Willowmere (5 days, 95 

oCd). It is difficult to speculate what the particular reason was for this difference in 

magnitude of E. nitens Clone 2’s response to PBZ across the two sites, as PBZ is 

known to interact with a wide range of environmental factors regarding its effect on plant 

vegetative and reproductive growth (Davis et al., 1988). One possibility is that the 

environmental conditions at Mountain Home provided far more stressful growing 

conditions for E. nitens than those at Willowmere, and PBZ in combination with the 

Mountain Home environmental conditions slowed E. nitens post-emergence 

reproductive growth even further. At Mountain Home, although drought was not a risk 

factor as soil water levels were maintained at between 75% and 100% field capacity 

throughout the year, mean annual air temperature (MAT_Air 16.2 oC) was close to the 

upper MAT boundary for successful E. nitens vegetative growth (MAT_Air 16.5 oC) 

(Jovanovic and Booth, 2002; Smith et al., 2005). At Mountain Home, during winter when 

the evaporative cooling system was operational, daytime maximum temperatures were 

similarly low as the KwaZulu-Natal high elevation field trial sites (Gardner et al., 2013; 

Gardner, unpublished results). However, during the summer months, the average daily 

air temperatures at Mountain Home were substantially higher than at the KwaZulu-Natal 

field sites. The high summer temperatures at Mountain Home (in comparison to those at 

the high elevation sites) may have been responsible for encouraging rapid reproductive 

growth between time of BFV and seed maturity in control trees (Table 6), but in 

combination with PBZ the same high temperatures may have exerted a negative effect 

on reproductive growth rate in E. nitens.  

 

Soil temperatures were never monitored at Mountain Home or in the KwaZulu-Natal 

field trials. It is possible that mean daytime soil temperatures within the plant bags at 

Mountain Home were substantially higher than those in the upper and lower soil profiles 

at the high elevation field trial sites, particularly during the summer months when the 

evaporative cooling system at Mountain Home was not operational. Again, these high 
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root and canopy temperatures in combination with the growth-retarding effect of PBZ 

may have been responsible for significant slowing of E. nitens post-emergence 

reproductive growth at Mountain Home. Paclobutrazol has been known to increase 

plant resistance to high temperature stress (Fletcher and Hofstra, 1988). Experiments 

with wheat suggested that triazole-induced heat stress protection may be a result of 

increased efficiency of free radical scavenging systems (Fletcher et al., 2000).   

 

4.7. Thermal time approach 

To investigate whether accumulated heat units related more strongly than number of 

days to rate of reproductive development between BFV and seed maturity in E. nitens 

(Moncur and Boland, 2000), thermal time over one seed crop cycle was calculated for 

the range of E. nitens orchard sites in KwaZulu-Natal. Where PBZ was not applied 

(PBZ0), on the basis of thermal time between BFV and seed maturity in the particular E. 

nitens material tested there was a noticeable lack of similarity (> 12% < 60% difference) 

between Mountain Home (clonal mean 4848 oCd), KwaZulu-Natal high elevation trials 

(mean 5455 oCd) and Australian sites (mean 3396 oCd) trial sites (Tables 6 and 8; 

Moncur and Boland, 2000). Where PBZ was applied (PBZ1), in the particular E. nitens 

material tested there was a strong similarity (4% difference) between Mountain Home 

(clonal mean 5304 oCd) and the KwaZulu-Natal high elevation trials (mean 5098 oCd), 

but a noticeable dissimilarity (38% and 43% difference) between either of the latter and 

the Tweedie site (clonal mean 7293 oCd) (Tables 6 and 8; Jones and Van Staden, 

2001). This raises doubt as to the usefulness and/or applicability of the thermal time 

approach in explaining E. nitens reproductive growth and development rate. 

Photoperiod cannot be excluded as a possible causal factor in the substantially differing 

thermal time for E. nitens BFV to seed maturity phase between the South African and 

Australian survey sites, even though daylength differed by a maximum of ≈30 min on 

both the shortest and longest days of the year (SAAO, 2014).   

 

Difference in E. nitens genetic material across trial groups was a possible source of 

discrepancy on the basis of thermal time taken between BFV and seed maturity stages. 

However, even where a single scion genotype, Clone 2, was evaluated across the 

range of KwaZulu-Natal high elevation sites, there was still substantial variation in 
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thermal time between BFV and seed maturity (12% and 18% for PBZ0 and PBZ1, 

respectively) (Tables 6 and 8). A further possible source of discrepancy across trial 

groups and sites may be the difference in origin of temperature data. At Mountain 

Home, E. nitens foliage was evaporatively cooled during the winter months and 

therefore bud temperature, rather than air temperature, was measured (Gardner et al., 

2013) and these data utilized in calculating daily heat sums. However, in the non-

evaporatively cooled (control) plots at Mountain Home, E. nitens bud temperature was 

found to correlate closely with radiation screen air temperature (R2 = 0.98) in both the 

summer and winter months (Gardner et al., 2014). Regarding all other local and 

Australian sites and trials, actual and/or modeled standard air temperature (WMO, 

2008) data were utilized in the daily heat sum calculations (Gardner et al., 2014; Jones, 

2002; Moncur et al., 1994).  

 

In the Mountain Home maximum winter chilling block, the (bud) temperature 

measurements and thermal time calculations for two different E. nitens clones (Clone 1 

and Clone 2) growing at two different PBZ treatment levels (PBZ0 and PBZ1) were 

precise. However, in the monitored 2009/2010 crop cycle, substantial differences in 

thermal time for BFV to seed maturity stage were observed between clones within each 

PBZ treatment, and between PBZ treatments (clonal means). Therefore, apart from 

genetics, some environmental factor(s) other than, but possibly in combination with, 

daily heat sums, exerted an influence on E. nitens post bud emergence reproductive 

growth and development at the particular site. Bonhomme (2000) re-iterated that plant 

reproductive development rate can rarely be quantified by thermal time alone. Apart 

from air and canopy temperature (Dahlgren et al., 2007; Luedeling et al., 2013; Tooke 

and Battey, 2010), plant/soil/atmospheric environmental factors commonly associated 

with vegetative and reproductive growth and development in temperate woody 

perennials include solar irradiance (Granger and Schulze, 1997; Schulze, 2007), soil 

water availability (Owens, 1995; Louw, 1999) and soil and root temperature (Lahti et al., 

2005; Lopushinsky and Max, 1990).  
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5. Conclusions 

To our knowledge, this is the first attempt at investigating the interactive effect of 

environment and PBZ on E. nitens reproductive phenology in South Africa. The 

observed trends, although based on a narrow range of E. nitens genetic material, 

provide a strong indication that both disadvantages and opportunities may be 

associated with the use of PBZ and the locating of orchards at high elevation/ high chill 

sites to achieve prolific floral bud production. These need to be explored more fully, i.e. 

by investigating a broader range of genetic material over a wider range of high elevation 

sites. The locating of E. nitens orchards at more moderate elevation (< 1400 m asl) sites 

where adequate winter chilling for floral bud production is provided through careful site 

selection and/or winter chilling supplementation via “artificial” means such as 

evaporative cooling, may provide the necessary degree of climatic amelioration. Under 

such orchard site conditions, the risk of damage to E. nitens young trees, flowers and 

fruit and seed crop loss by inclement winter weather might be minimized, and anthesis 

duration, level of out-crossing and genetic quality of seed quality maximized. The 

relative dearth of knowledge that exists in South Africa regarding high elevation orchard 

environment x temperate eucalypt flowering x insect pollinator dynamics needs urgent 

attention. Such information is necessary to facilitate the future designing of elite (clonal) 

temperate eucalypt orchard layouts in South Africa.  
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Table 1 
Site details for the E. nitens flowering trials in KwaZulu-Natal.  

Trial name  
Mountain 

Home1 
Netherby32 Tweefontein2 Willowmere2 

Latitude  29° 34’ S 29° 38' S 29° 15’ S 29° 51' S 
Longitude  30° 17' E 29° 38' E 30° 13' E 29° 26' E 
Elevation (m asl)  1133 1678 1588 1708 
Climatic factors:      
MAP (mm)3  924 948 842 914 
MAT_Air (oC)4  16.2 14.1 15.1 14.1 
MAT_Bud (oC)5  15.3 13.9 13.0 13.2 
MAC_Air (CP)6  48.3 76.0 93.2 86.8 
MAC_Bud (CP)7  73.5 80.0 93.5 88.5 
Soil form and 
series8 

 na Kranskop 1200 
Magwa 

200 
Kranskop 1200 

Soil unit9  na Haplic Acrisol Haplic Acrisol Haplic Acrisol 
Soil depth (m)  na > 1.2 > 1.2 > 1.2 
Landscape factors:      
Aspect10  NE SW N E 
Slope11  Moderate Steep Gentle Gentle 
CP = Chilling Portion, the chill unit of the Dynamic Model (Erez and Fishman, 1998). 
na = Not applicable.  
1Potted trial, maximum chilling treatment block. 
2Field trial. 
3Long term mean annual precipitation (Schulze and Lynch, 2007). 
4Long term mean annual air temperature (Schulze and Maharaj, 2007b). 
5Mean annual E. nitens bud temperature for the period 2008 to 2010. Except for Mountain Home, bud temperature 
data were modeled from hourly Hobo-logger data. 
6Mean annual accumulated winter (April to September) CP for the period 2008 to 2010. Except for Mountain Home, 
screen air temperature data were modeled from hourly Hobo-logger data. 
7Mean annual accumulated winter (April to September) CP for the period 2008 to 2010. Except for Mountain Home, 
bud temperature data were modeled from hourly Hobo-logger data. 
8Soil Classification Working Group (1991). 
9IUSS Working Group (2006). 
10Compass bearing. 
11McDonald et al. (1984). 
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Table 2 
Details of the E. nitens shoot apex samples investigated. 

Sample  Accumulated CP  
collection date Day of year Bud1 Air1 Inflorescence buds2 

17/05/2010 137 1.8 2.0 No 
17/05/2010 137 1.8 2.0 Yes 
14/06/2010 165 14.1 8.9 Yes 
28/06/2010 179 23.5 16.1 Yes 
12/07/2010 193 32.0 20.1 Yes 
26/07/2010 207 41.3 24.6 No 
26/07/2010 207 41.3 24.6 Yes 
10/08/2010 222 50.7 27.6 Yes 
06/09/2010 249 63.1 35.6 Yes 
01/11/2010 305 73.2 44.7 No 
01/11/2010 305 73.2 44.7 Yes 
CP= Chilling Portion of the Dynamic Model (Erez and Fishman, 1998) 
Bud = CP calculated from E. nitens bud temperatures in the maximum winter chilling block (Gardner et al., 2013) 
Air = CP calculated from radiation screen air temperatures in the maximum winter chilling block (Gardner et al., 
2013) 
1CP began accumulating on 24 April 2010 
2Inflorescence buds initiated in the spring of 2010 

 
Table 3 
Description of E. nitens reproductive stages scored#. 

Stage  Description of reproductive stage 
1  Inflorescence bud with involucral bract fully intact  
2 

 

Involucral bract shed and individual flower buds within the 
umbel fully exposed. Opercula of individual flower buds fully 
intact.   

3 

 

Two-layered operculum shed from one or all of the individual 
flower buds within umbel leaving anthers and stigma 
exposed.  

4 
 

Anthesis completed in all flowers within the umbel. Stamens 
withered and/or abscised and capsule ripening underway. 

#Modification of a scoring system devised by Jones and Van Staden (2001) 
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Table 4 
Accumulated winter chilling and thermal time during the early reproductive development 
stages of E. nitens Clone 1 at Mountain Home during 2010. 
  

  Meristems1  BFV2  Floral organs3 
Temperature 
variable 

 CP oCd  CP oCd  CP oCd 

AirT  35.4 0  40.4 479  44.5 786 
BudT  63.1 0  69.2 472  73.2 786 

1Apical meristem size increase first detected (6 September 2010). 
2New season’s inflorescence buds first became visible to the naked eye (BFV stage, 10 October 2010).   
3Individual flower buds appear (microscopically) as finger-like structures, with floral organs initiated (5 November 
2010). 

AirT = Air temperature within maximum chilling treatment block. 
BudT = Mean E. nitens bud temperature within maximum chilling treatment block. 
CP = Total Chilling Portions accumulated since 24 April 2010 when the first CP was irreversibly fixed. 
oCd = Thermal time taken since date apical meristem size increase first observed (6 September 2010). 
 
  

 

Table 5 
Floral phenology of two E. nitens clones grown at two levels of paclobutrazol 
application in the maximum winter chilling treatment block at Mountain Home during 
2009/ 2010.  

Treatment BFV Bract Anthesis1 Anthesis2 Seed 
PBZ0      
Clone 1 02/10/2009 22/12/2009 16/04/2010 10/08/2010 30/10/2010 
Clone 2 30/10/2009 28/12/2009 12/04/2010 09/09/2010 08/11/2010 
PBZ1      
Clone 1 02/10/2009 26/12/2009 26/04/2010 09/09/2010 17/11/2010 
Clone 2 18/10/2009 23/12/2009 24/04/2010 30/08/2010 12/12/2010 

PBZ0 = Nil paclobutrazol applied (control). 
PBZ1 = Paclobutrazol applied to growing medium on 12/11/2007 and 3/05/2010. 
BFV = Earliest date emerging inflorescence buds visible to the naked eye. 
Bract = Earliest date of total shedding of involucral bracts. 
Anthesis1 = Date anthesis commenced. 
Anthesis2 = Date anthesis ceased. 
Seed = Earliest date mature seed available. 
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Table 6 
Number of days and thermal time (in parentheses) between key E. nitens phenological 
events at Mountain Home during 2009/ 2010. Thermal time (oCd) was calculated from 
E. nitens bud temperature.   

Treatment Anthesis1 to Anthesis2  BFV to Seed 
PBZ0   
Clone 1 116 (925) 393 (4960) 
Clone 2 150 (1212) 374 (4736) 
Mean 133 (1069) 384 (4848) 
PBZ1   
Clone 1 136 (1019) 411 (5232) 
Clone 2 128 (949) 420 (5377) 
Mean 132 (984) 416 (5304) 

PBZ0 = Nil paclobutrazol applied (control). 
PBZ1 = Paclobutrazol applied to growing medium on 12/11/2007 and 3/05/2010. 
BFV = Earliest date emerging inflorescence buds became visible to the naked eye. 
Anthesis1 = Date anthesis commenced. 
Anthesis2 = Date anthesis ceased. 
Seed = Earliest date mature seed available. 

 

 
Table 7 
Floral phenology of E. nitens Clone 2 grown at two levels of paclobutrazol (PBZ) 
application at three high elevation sites in KwaZulu-Natal over one floral crop season. 

Treatment BFV Bract Anthesis1 Anthesis2 Seed 
PBZ0      
Netherby3 02/12/2009 19/05/2010 20/08/2010 24/11/2010 11/03/2011 
Tweefontein 25/11/2009 24/05/2010 19/08/2010 25/11/2010 21/02/2011 
Willowmere 02/12/2009 10/03/2010 30/09/2010 20/11/2010 12/02/2011 
PBZ1      
Netherby3 30/11/2009 10/02/2010 22/09/2010 24/11/2010 03/02/2011 
Tweefontein 26/11/2009 01/01/2010 12/08/2010 25/11/2010 13/01/2011 
Willowmere 02/12/2009 10/03/2010 30/09/2010 17/11/2010 17/02/2011 

PBZ0 = Nil paclobutrazol applied (control). 
PBZ1 = Paclobutrazol applied to soil in March 2006. 
BFV = Earliest date emerging inflorescence buds visible to the naked eye. 
Bract1 = Earliest date of total shedding of involucral bracts. 
Anthesis1 = Date anthesis commenced. 
Anthesis2 = Date anthesis ceased. 
Seed = Earliest date mature seed available. 
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Table 8 
Number of days and thermal time (in parentheses) between key phenological events 
for one E. nitens clone (Clone 2) grown at two levels of paclobutrazol (PBZ) 
application at three high elevation sites in KwaZulu-Natal, over one floral crop 
season. Thermal time (oCd) calculated from modeled E. nitens bud temperature.   

Treatment Anthesis1 to Anthesis2  BFV to Seed 
PBZ0   
Netherby3 96 (1211) 464 (5850) 
Tweefontein 98 (1100) 453 (5206) 
Willowmere 51 (659) 437 (5310) 
Mean 82 (990 451 (5455) 
PBZ1   
Netherby3 63 (800) 430 (5314) 
Tweefontein 105 (1153) 413 (4576) 
Willowmere 48 (614) 442 (5405) 
Mean 72 (856) 428 (5098) 

PBZ0 = Nil paclobutrazol applied (control). 
PBZ1 = Paclobutrazol applied to soil in March 2006. 
BFV = Earliest date emerging inflorescence buds visible to the naked eye. 
Anthesis1 = Date anthesis commenced. 
Anthesis2 = Date anthesis ceased. 
Seed = Earliest date mature seed available. 
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Fig. 1. Flower and fruit development in E. nitens. (A) Emerging inflorescence buds 
(early Stage 1, Table 3). (B)  Early stage of involucral bract shedding (late Stage 1). (C) 
Involucral bract shed, leaving individual flower buds within the umbel exposed (early 
Stage 2). (D) Seven-flowered umbels immediately prior to anthesis (late Stage 2). (E) 
Commencement of anthesis (early Stage 3). (F) Inflorescence in full bloom (late Stage 
3). (G) End of anthesis, fruit (capsule) development commenced (early Stage 4). (H) 
Ripening capsules (late Stage 4). 
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Fig. 2. Floral initiation and development in E. nitens. Longitudinal sections of (A) 
vegetative shoot apex, showing apical meristem (m), leaf primordium (lp) and 
developing terminal leaf (tl); (B) early stage of apical meristem broadening, showing 
lateral apex (la), terminal apex (ta) and developing terminal leaf (tl); (C) inflorescence 
buds developing spirally around the growing point, with lateral inflorescence bud (li), 
terminal inflorescence bud (ti) and developing terminal leaf (tl); (D) inflorescence bud 
approximately three weeks after the BFV stage, with individual flower bud/s (f) at pre- 
organ differentiation stage, inner bract (ib), outer bract (ob) and oil gland (y); and (E) 
individual flower bud with floral organ differentiation underway, showing stamen initials 
(a), carpel initials (c), petaline operculum (p), sepaline operculum (s), inner bract (ib) 
and oil gland (y).  
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CHAPTER 8 

 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH 

 

 

Introduction 

 

Temperate (cold-tolerant) eucalypt species and hybrids comprise approximately 50% of 

the total planted Eucalyptus area in South Africa (Forestry South Africa 2014). Due to 

their high levels of cold, frost and snow tolerance, as well as favorable pulping 

properties, temperate species such as E. badjensis, E. benthamii, E. dunnii, E. nitens, 

E. macarthurii and E. smithii are the most popular choice for high elevation (> 1100 m 

asl) commercial plantings in frost- and snow-prone areas of the summer rainfall forestry 

region (Schönau and Gardner 1991, Gardner 2001, Swain and Gardner 2002). Cuttings 

of temperate eucalypts generally do not root well, and therefore, to date, the majority of 

the temperate eucalypt plantations in South Africa have been established with seedlings 

(Zwolinsky and Bayley 2001). This practice seems set to continue, and therefore the 

local industry is dependent on the production of locally-improved seed for the 

establishment of temperate eucalypt plantations. The majority of the commercial 

temperate species in South Africa are reticent flowerers (Swain and Gardner 2002), for 

reasons genetic and environmental (Gardner 2004). This hinders breeding and 

commercial seed production pertaining to the species (Eldridge et al. 1993). Temperate 

eucalypts appear to have a minimum winter chilling requirement for floral bud 

production (Gardner and Bertling 2005). This has proven problematic in the summer 

rainfall plantation areas of South Africa, where winter chilling levels are notoriously 

inconsistent and insufficient for satisfactory floral bud production in the higher chill 

requiring Eucalyptus species such as E. nitens. Climate warming seems set to increase 

the extent of the problem (Warburton and Schulze 2008, Luedeling et al. 2009). For the 

past two and a half decades, the local industry has depended on paclobutrazol (PBZ) 

soil treatment to encourage flowering and seed crop production (Jones 2002, Gardner 

and Bertling 2005, Gardner et al. 2013). For reasons explained in previous chapters of 
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this thesis, the use of paclobutrazol in the outdoor environment is an unsatisfactory 

practice (Jackson et al. 1996, Fletcher et al. 2000). 

 

 

Aims and objectives 

 

The research facets of this PhD project represent a combined effort aimed at not only 

improving flower and seed crop production in temperate eucalypts through informed site 

selection and environmental manipulation, but also lessening the dependency on PBZ. 

Substantial progress was made in achieving this goal. Scope exists for further research, 

aimed at investigating some of the findings of the PhD project in more detail.  

 

 

Challenges and opportunities 

 

Species representation  

Of the six main temperate eucalypt species currently grown for commercial pulpwood 

production in the summer rainfall area (refer above), those most prone to shy-flowering 

are E. badjensis, E. benthamii, E. dunnii, E. nitens and E. smithii. According to a recent 

survey carried out by the author, the combined land area currently planted to the latter 

four species represents about 60% of the total temperate Eucalyptus plantation area 

(approximately 264 000 ha) (Forestry South Africa 2014, R Gardner unpublished data 

2014). Due to the nature of the research in this PhD project, as well as resource 

constraints, the challenge was that not all of the shy-flowering temperate eucalypts 

could be included in the investigations. Two species, E. nitens and E. smithii, were 

selected for use as test species in the investigations for the following reasons: 

• Based on field observations during the early 1990s, E. nitens, E. fraxinoides and 

E. smithii appeared to be most reticent seed producers and have the highest cold 

requirements for flower bud production of all then-current commercial eucalypts  

• During the planning phase of the 2003/ 2004 site x PBZ x flowering field trial 

series, due to the commercial importance of E. nitens and E. smithii, the request 
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of the funding companies was to include the latter two species in the 

investigations 

The research findings emanating from this PhD project should be applied tentatively to 

other shy-flowering temperate eucalypt species. It is recommended that, firstly, the 

necessary tests be conducted to evaluate the extent to which the recommendations for 

E. nitens and E. smithii apply to species such as E. badjensis, E. benthamii and E. 

dunnii. Secondly, regarding each of the species already investigated, i.e. E. nitens and 

E. smithii, it would be worthwhile exploring the flowering response of a wider range of 

genetic material to the recommended environmental conditions.      

 

Bud and air temperature measurement 

One of the major challenges of the PhD project research, particularly with respect to  

the field trial component, was the need to develop a practical and suitably accurate 

method of monitoring air and bud temperature “on site” in remote, high elevation areas 

of the summer rainfall forestry regions. Temperature is one of the key environmental 

factors implicated in various aspects of temperate eucalypt flowering, including floral 

induction and initiation (Moncur and Hasan 1994, Hasan and Reid 1995). The available 

infrastructure and instrumentation at the Mountain Home E. nitens overhead sprinkling 

trial presented the ideal opportunity to investigate the relationship between bud, screen 

air and Hobo pole air temperature. This opportunity was siezed, the necessary 

investigations carried out, and a set of calibration curves developed. The four year old 

E. nitens grafts utilized in the study were all in adult leaf, and care was taken to position 

the thermocouples (TCs) alongside buds in the canopy periphery without exposing the 

TC sites to direct sunlight. The question remains as to the relevance of the temperature 

calibration equations to temperate eucalypt species other than E. nitens. Eucalypt 

species differ in leaf morphology, canopy architecture and canopy density to various 

extents (Pryor 1976, Brooker and Kleinig 1983, Florence 1996). Due to the careful 

positioning and maintenance of TCs within the canopy peripheries, although unlikely, it 

is possible that the inter-specific differences in adult leaf morphology and canopy 

architecture may affect the relevance of the developed temperature calibration 

equations which were based on E. nitens. Therefore, although not priority in the opinion 

of the author, it would be worthwhile investigating the relationship between the same 
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three temperature variables in each of the above-mentioned shy-flowering temperate 

eucalypt species. 

 

Species growth responses to PBZ and environmental conditions  

The E. nitens and E. smithii site x PBZ x flowering interaction field trial series yielded 

valuable new information that has assisted the siting of orchards of these species. 

Utilizing combined data from the 1996-established and the 2003/ 2004 E. nitens site x 

PBZ x flowering interaction trial series, an additional output (at the request of the 

funding companies) was the development of a computerized GIS tool based on climatic 

and topographical factors to assist forestry planners identify potential E. nitens orchard 

sites in the summer rainfall area (Germishuizen and Gardner 2014). The results of the 

2003/ 2004 E. nitens and E. smithii trial series highlighted the fact that species can differ 

substantially in winter chilling requirement for floral induction and reproductive growth 

response to PBZ application. Eucalyptus smithii showed a lower chill requirement and 

greater responsiveness to PBZ than E. nitens. At sites optimum (highly inductive) for E. 

nitens flower bud production: 

• PBZ-treated trees of E. smithii are prone to production of excessive flowers and 

capsules and experiencing die-back of bearing branches, probably as a result of 

nutrient competition and/or depletion 

• PBZ-treated trees of E. smithii trees are prone to increased risk of selfing due to 

the excessive flower crops produced 

• Trees of E. smithii are at risk of frost and snow damage 

Within the recommended climatic and topographical specifications for establishment of 

temperate eucalypt orchards for optimal flower bud production (based on the field 

research in this project), species need to be treated differently, according to both 

tolerance to climate risk factors such as frost and snow, and reproductive growth 

response to PBZ application. In order to accrue additional data needed for fine-tuning of 

the orchard site x temperate species matching specifications, it is recommended that 

test orchards of shy-flowering temperate species such as E. badjensis, E. benthamii 

and E. dunnii be established over ranges of carefully selected high elevation sites, to 

monitor reproductive and vegetative growth responses to site factors and PBZ 

application over several years. Species such as E. badjensis, E. benthamii and E. 
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dunnii differ substantially on the basis of frost- and snow-tolerance (Gardner and Swain 

1996, Gardner 2001).  

 

Environment x plant growth dynamics  

The results of the E. nitens controlled environment and field trial research carried out by 

the ICFR between 1996 and 2001 suggested that temperate eucalypts require an 

extended period of slowed vegetative growth provided by cool, stress-free growing 

conditions during winter to initiate flower buds (Gardner 2003, Gardner and Bertling 

2005). The results of the 2003/ 2004 E. nitens and E. smithii field trial series tended to 

concur with this. One of the key outcomes of the latter was the strong positive effect of 

south-facing slope aspects on floral bud production. In South Africa, and indeed other 

Southern Hemisphere countries, south-facing slopes are generally associated with 

cooler soil, air and foliage temperatures and slower plant growth rates, compared to 

those on north-facing slopes (Granger and Schulze 1977, Bale et al. 1998, Schulze 

2007, Sharma et al. 2010).  

 

At Netherby plantation in KwaZulu-Natal (2003/ 2004 E. nitens and E. smithii field trial 

series), two sites of similar elevation, MAT and MAC but differing vastly in slope aspect, 

viz. Netherby1 (1688 m asl, 14.1 oC, 865 DPCU, N-facing) and Netherby3 (1678 m asl, 

14.1 oC, 865 DPCU, SW-facing) differed substantially in floral bud production over two 

floral crop seasons. In general, non-PBZ treated trees of E. nitens and E. smithii 

produced substantially more flower buds (umbels) at Netherby3 than at Netherby1. This 

suggests a strong possibility that soil and/or or root environmental factors, possibly 

together with plant canopy factors, are implicated in temperate eucalypt floral induction. 

Root-zone temperatures have been known to influence a range of reproductive growth 

aspects in woody tree crops, including root growth and nutrient uptake, induction, bud 

dormancy, development and phenology (Menzel and Simpson 1994, O’Hare 2004, 

Greer et al. 2005, Lahti et al. 2005). It would be worthwhile investigating the interaction 

between the particular inductive environmental conditions and floral induction on the 

basis of plant physiological aspects such as assimilate and hormonal balances and 

proteomics. Such a study could be undertaken over two to three floral crop years in 

reproductively mature research orchards. Information gained from such an investigation 
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could contribute substantially towards the ability to manipulate flower and seed crop 

production in temperate eucalypts under controlled conditions. Such technology would 

be useful in temperate eucalypt breeding and hybridization, and be highly applicable to 

elite breeding orchards situated at research centres where natural environmental 

conditions are generally marginal for floral induction in commercial temperate eucalypts.   

 

Effect of optimal floral bud production site conditions on flower and fruit 

development 

The results of the research work described in Chapter 7 indicated that the interaction 

between environment, PBZ, genotype and post-floral initiation reproductive 

development warrants more intensive investigation. The main objectives of the 

recommended further work would be: 

•  To investigate the effect of optimum flowering site conditions (cold slopes in high 

elevation areas of the summer rainfall forestry regions) on important orchard-

related factors such as flower abundance, timing and duration of anthesis, 

pollination (pollen abundance and range and pollination vector diversity and 

activity), capsule and seed development, and genetic quality of the seed 

produced. 

• To investigate ideal sites for temperate eucalypt orchards based on both floral 

crop abundance and seed production (quantity and quality).  

For the purpose of such an investigation, a fairly wide range of genetic material (grafted 

elite selections) of at least two species should be evaluated across three to four 

temperate sites ranging in elevation within the summer rainfall area of South Africa. 

Apart from elevation, MAT and MAC, all other environmental factors should remain 

similar. The results of the reproductive phenological research work also indicated that 

sites with cold winters but warm spring and summer conditions (maximum chilling 

treatment block at Mountain Home) are more conducive to rapid capsule and seed 

development, and possibly more suitable for commercial seed production, than those at 

higher elevations (optimum flowering field trials) in KwaZulu-Natal. This confirms an 

earlier proposition that there may be merit in establishing test orchards of high-chill 

requiring commercial Eucalyptus species, such as E. nitens, in southern areas of the 

Western Cape (Gardner 2003, Barrington 2006). Although most parts of the Western 
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Cape receive abundant heat units (Schulze and Maharaj 2007), the test sites would 

need to be carefully selected for sufficiently cold winters (≥ 80 CP).  

 

Application of rootstocks 

The problem of the reproductive maturity of scions being temporarily set back by 

transmission of a juvenile signal from reproductively immature seedling rootstocks was 

briefly discussed in Chapter 6. The influence of rootstock on scion phenotypic 

expression following grafting is a well-known phenomenon in woody crops (Janick and 

Moore 1996, Hartmann et al. 2011). Transferred positive characteristics include 

increased reproductive precocity, lowered chilling requirement and reduced vegetative 

growth (Du Plooy and Van Huysteen 2000, George and Erez 2000). The use of 

rootstocks appears to hold several opportunities for temperate Eucalyptus seed 

orchards (Adejumo 2014), and this warrants further investigation.   

 

Climate change 

Should climate change and warming continue as predicted (Warburton and Schulze 

2008, Linkosalo et al. 2009), the importance of the findings and relevance of the 

technologies developed within this PhD project may be set to increase substantially.   
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APPENDICES 
 
 

 
Appendix 1: Results of Eucalyptus nitens individual site REML analyses of variance for 
height at five years after planting  

 
    Clone    

Site   8 35 47 55 PBZ mean2 
Blair Athol  PBZ0 12.4 11.7 9.4 11.4 11.2a 

  PBZ1 8.1 5.9 7.3 7.2 7.1b 
  Clone mean1 10.2 8.8 8.3 9.3 - 

F-pr   PBZ = 0.001  Clone = 0.129  PBZ.Clone = 0.161 
SE   0.43  0.58  0.83 

    Clone    
Site   8 35 47 55 PBZ mean2 

Gilboa  PBZ0 8.2 6.9 6.7 8.1 7.5a 
  PBZ1 5.6 4.6 2.4 2.3 3.7b 
  Clone mean1 6.9a 5.8ab 4.6b 5.2b - 

F-pr   PBZ = < 0.001  Clone = 0.030  PBZ.Clone = 0.098 
SE   0.37  0.53  0.75 

    Clone    
Site   8 35 47 55 PBZ mean2 

In de Diepte  PBZ0 14.0 9.6 9.9 10.1 10.9a 
  PBZ1 13.0 10.4 6.2 6.1 8.9a 
  Clone mean1 13.5a 10.0b 8.0b 8.1b - 

F-pr   PBZ = 0.063  Clone = 0.003  PBZ.Clone = 0.303 
SE   0.72  1.02  1.44 

    Clone    
Site   8 35 47 55 PBZ mean2 

Netherby 1  PBZ0 15.3 12.2 10.0 14.1 12.9a 
  PBZ1 14.3 14.0 10.2 14.6 13.3a 
  Clone mean1 14.8a 13.1b 10.1c 14.4ab - 

F-pr   PBZ = 0.435  Clone = < 0.001  PBZ.Clone = 0.269 
SE   0.35  0.49  0.69 

    Clone    
Site   8 35 47 55 PBZ mean2 

Netherby 2  PBZ0 12.1 9.3 8.4 9.8 9.9a 
  PBZ1 8.8 7.7 5.8 6.7 7.3b 
  Clone mean1 10.4a 8.5b 7.1b 8.3b - 

F-pr   PBZ = 0.013  Clone = 0.005  PBZ.Clone = 0.741 
SE   0.49  0.63  0.88 

    Clone    
Site   8 35 47 55 PBZ mean2 

Netherby 3  PBZ0 14.0 11.7 9.3 7.3 10.6a 
  PBZ1 11.5 9.5 8.7 8.6 9.6a 
  Clone mean1 12.8a 10.6b 9.0bc 7.9c - 

F-pr   PBZ = 0.273  Clone = < 0.001  PBZ.Clone = 0.185 
SE   0.58  0.69  0.98 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 1 (contd.): Results of Eucalyptus nitens individual site REML analyses of 
variance for height at five years after planting  
 

    Clone    
Site   8 35 47 55 PBZ mean2 

The Peak  PBZ0 14.7 12.6 11.4 12.6 12.8a 
  PBZ1 11.0 8.9 6.9 7.3 8.5b 
  Clone mean1 12.8a 10.7ab 9.1b 9.9b - 

F-pr   PBZ = < 0.001  Clone = 0.030  PBZ.Clone = 0.881 
SE   0.60  0.85  1.20 

    Clone    
Site   8 35 47 55 PBZ mean2 

Thoresway  PBZ0 7.8 8.8 7.1 8.9 8.1a 
  PBZ1 4.7 2.8 3.9 2.4 3.5b 
  Clone mean1 6.2 5.8 5.5 5.6 - 

F-pr   PBZ = < 0.001  Clone = 0.604  PBZ.Clone = 0.006 
SE   0.27  0.38  0.54 

    Clone    
Site   8 35 47 55 PBZ mean2 

Tweefontein  PBZ0 11.4 12.2 10.9 7.7 10.5a 
  PBZ1 6.0 8.1 6.9 7.9 7.2b 
  Clone mean1 8.7 10.1 8.9 7.8 - 

F-pr   PBZ = < 0.001  Clone = 0.119  PBZ.Clone = 0.036 
SE   0.47  0.66  0.93 

    Clone    
Site   8 35 47 55 PBZ mean2 

Willowmere  PBZ0 11.8 9.4 12.2 11.0 11.1a 
  PBZ1 5.3 5.0 4.2 3.5 4.5b 
  Clone mean1 8.5 7.2 8.2 7.2 - 

F-pr   PBZ = < 0.001  Clone = 0.365  PBZ.Clone = 0.189 
SE   0.67  0.71  1.01 

    Clone    
Site   8 35 47 55 PBZ mean2 

Wyntoun  PBZ0 16.6 12.9 13.3 12.4 13.8a 
  PBZ1 11.4 9.4 8.0 9.2 9.5b 
  Clone mean1 14.0 11.1 10.7 10.8 - 

F-pr   PBZ = < 0.001  Clone = < 0.001  PBZ.Clone = 0.395 
SE   0.42  0.54  0.77 

 

PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 2: Results of Eucalyptus nitens individual site REML analyses of variance for 
fifth year umbel crop score (floral buds initiated in 2008 and scored in 2009) 
 

    Clone    
Site   8 35 47 55 PBZ mean2 

Blair Athol  PBZ0 0.000 0.000 0.500 0.250 0.187a 
  PBZ1 2.750 2.250 3.750 3.250 3.000b 
  Clone mean1 1.375bc 1.125c 2.125a 1.750ab - 

F-pr   PBZ = < 0.001  Clone = 0.005  PBZ.Clone = 0.299 
SE   0.133  0.188  0.265 

    Clone    
Site   8 35 47 55 PBZ mean2 

Chamisso  PBZ0 0.000 0.500 0.500 0.750 0.438 
  PBZ1 0.250 0.250 2.000 0.500 0.750 
  Clone mean1 0.125 0.375 1.250 0.625 - 

F-pr   PBZ = 0.334  Clone = 0.100  PBZ.Clone = 0.193 
SE   0.224  0.317  0.448 

    Clone    
Site   8 35 47 55 PBZ mean2 

Gilboa  PBZ0 0.000 0.000 0.750 0.029 0.188 
  PBZ1 1.693 0.750 0.750 1.057 1.063 
  Clone mean1 0.832 0.375 0.750 0.543 - 

F-pr   PBZ = 0.078  Clone = 0.766  PBZ.Clone = 0.351 
SE   0.248  0.335  0.474 

    Clone    
Site   8 35 47 55 PBZ mean2 

In de Diepte  PBZ0 0.750 0.500 2.000 0.000 0.813 
  PBZ1 1.250 1.250 3.250 0.000 1.437 
  Clone mean1 1.000b 0.875b 2.625a 0.000b - 

F-pr   PBZ = 0.151  Clone = 0.002  PBZ.Clone = 0.767 
SE   0.298  0.421  0.595 

    Clone    
Site   8 35 47 55 PBZ mean2 

Netherby 1  PBZ0 0.051 0.000 1.000 0.000 0.250 
  PBZ1 0.776 0.250 2.500 0.000 0.875 
  Clone mean1 0.413b 0.125b 1.750a 0.000b - 

F-pr   PBZ = 0.091  Clone = < 0.001  PBZ.Clone = 0.191 
SE   0.211  0.263  0.372 

    Clone    
Site   8 35 47 55 PBZ mean2 

Netherby 2  PBZ0 0.000 0.000 0.000 0.500 0.125a 
  PBZ1 0.000 0.500 1.500 2.250 1.063b 
  Clone mean1 0.000b 0.250b 0.750ab 1.375a  

F-pr   PBZ = 0.005  Clone = 0.019  PBZ.Clone = 0.166 
SE   0.215  0.304  0.430 

    Clone    
Site   8 35 47 55 PBZ mean2 

Netherby 3  PBZ0 1.000 1.221 2.250 1.529 1.500 
  PBZ1 1.558 1.000 1.692 1.000 1.312 
  Clone mean1 1.279 1.110 1.971 1.265 - 

F-pr   PBZ = 0.724  Clone = 0.429  PBZ.Clone = 0.761 
SE   0.356  0.437  0.618 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 2 (contd.): Results of Eucalyptus nitens individual site REML analyses of 
variance for fifth year umbel crop score (floral buds initiated in 2008 and scored in 2009) 
 

    Clone    
Site   8 35 47 55 PBZ mean2 

The Peak  PBZ0 0.000 0.000 0.500 0.000 0.125a 
  PBZ1 2.615 1.250 3.500 2.385 2.437b 
  Clone mean1 1.308b 0.625c 2.000a 1.192bc - 

F-pr   PBZ = < 0.001  Clone = 0.004  PBZ.Clone = 0.069 
SE   0.233  0.260  0.368 

    Clone    
Site   8 35 47 55 PBZ mean2 

Thoresway  PBZ0 0.000 0.250 2.750 1.250 1.063 
  PBZ1 0.750 1.750 1.000 2.750 1.563 
  Clone mean1 0.375b 1.000ab 1.875a 2.000a  

F-pr   PBZ = 0.191  Clone = 0.015  PBZ.Clone = 0.015 
SE   0.263  0.372  0.525 

    Clone    
Site   8 35 47 55 PBZ mean2 

Tweefontein  PBZ0 0.500 0.249 1.250 0.251 0.563a 
  PBZ1 1.750 2.500 2.000 0.500 1.688b 
  Clone mean1 1.125 1.374 1.625 0.376 - 

F-pr   PBZ = 0.022  Clone = 0.073  PBZ.Clone = 0.203 
SE   0.230  0.324  0.458 

    Clone    
Site   8 35 47 55 PBZ mean2 

Willowmere  PBZ0 0.500 0.750 1.250 0.750 0.813a 
  PBZ1 2.047 2.250 2.750 1.203 2.063b 
  Clone mean1 1.274 1.500 2.000 0.976 - 

F-pr   PBZ = 0.008  Clone = 0.063  PBZ.Clone = 0.395 
SE   0.216  0.269  0.381 

    Clone    
Site   8 35 47 55 PBZ mean2 

Wyntoun  PBZ0 1.250 0.000 1.304 0.000 0.625a 
  PBZ1 3.162 2.000 3.750 0.000 2.188b 
  Clone mean1 2.206a 1.000b 2.527a 0.000c - 

F-pr   PBZ = 0.009  Clone = < 0.001  PBZ.Clone = 0.014 
SE   0.266  0.289  0.409 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 3: Results of Eucalyptus nitens individual site REML analyses of variance for 
sixth year umbel crop score (floral buds initiated in 2009 and scored in 2010) 
 

    Clone    
Site   8 35 47 55 PBZ mean2 

Blair Athol  PBZ0 0.250 1.203 1.250 0.547 0.812a 
  PBZ1 2.726 2.500 3.774 3.500 3.125b 
  Clone mean1 1.488 1.851 2.512 2.024 - 

F-pr   PBZ = 0.002  Clone = 0.131  PBZ.Clone = 0.258 
SE   0.225  0.300  0.424 

    Clone    
Site   8 35 47 55 PBZ mean2 

Chamisso  PBZ0 0.000 1.750 0.750 1.000 0.875 
  PBZ1 0.250 0.250 1.500 0.500 0.625 
  Clone mean1 0.125 1.000 1.125 0.750 - 

F-pr   PBZ = 0.552  Clone = 0.349  PBZ.Clone = 0.269 
SE   0.293  0.415  0.586 

    Clone    
Site   8 35 47 55 PBZ mean2 

Gilboa  PBZ0 0.481 0.250 1.750 0.019 0.625 
  PBZ1 0.736 1.250 0.500 0.015 0.625 
  Clone mean1 0.608 0.750 1.125 0.017 - 

F-pr   PBZ = 1.000  Clone = 0.160  PBZ.Clone = 0.147 
SE   0.241  0.333  0.471 

    Clone    
Site   8 35 47 55 PBZ mean2 

In de Diepte  PBZ0 0.752 0.251 3.999 0.000 1.250 
  PBZ1 0.499 1.751 3.749 0.000 1.500 
  Clone mean1 0.626b 1.001b 3.874a 0.000c - 

F-pr   PBZ = 0.217  Clone = < 0.001  PBZ.Clone = 0.021 
SE   0.145  0.205  0.289 

    Clone    
Site   8 35 47 55 PBZ mean2 

Netherby 1  PBZ0 0.250 0.250 1.750 0.000 0.563 
  PBZ1 0.750 0.500 2.500 0.750 1.125 
  Clone mean1 0.500b 0.375b 2.125a 0.375b - 

F-pr   PBZ = 0.061  Clone = < 0.001  PBZ.Clone = 0.913 
SE   0.203  0.286  0.405 

    Clone    
Site   8 35 47 55 PBZ mean2 

Netherby 2  PBZ0 1.000 0.000 1.500 2.250 1.188 
  PBZ1 0.250 1.750 2.000 2.500 1.625 
  Clone mean1 0.625c 0.875bc 1.750ab 2.375a - 

F-pr   PBZ = 0.378  Clone = 0.010  PBZ.Clone = 0.173 
SE   0.321  0.396  0.560 

    Clone    
Site   8 35 47 55 PBZ mean2 

Netherby 3  PBZ0 0.750 1.500 3.000 2.500 1.938 
  PBZ1 2.750 1.750 2.250 3.500 2.563 
  Clone mean1 1.750 1.625 2.625 3.000 - 

F-pr   PBZ = 0.184  Clone = 0.120  PBZ.Clone = 0.210 
SE   0.323  0.456  0.645 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 3 (contd.): Results of Eucalyptus nitens individual site REML analyses of 
variance for sixth year umbel crop score (floral buds initiated in 2009 and scored in 
2010) 
 

    Clone    
Site   8 35 47 55 PBZ mean2 

The Peak  PBZ0 1.250 0.000 2.500 0.000 0.937a 
  PBZ1 3.000 2.500 4.000 2.750 3.062b 
  Clone mean1 2.125b 1.250c 3.250a 1.375c - 

F-pr   PBZ = < 0.001  Clone = < 0.001  PBZ.Clone = 0.107 
SE   0.140  0.198  0.280 

    Clone    
Site   8 35 47 55 PBZ mean2 

Thoresway  PBZ0 0.250 1.500 3.500 1.750 1.750 
  PBZ1 0.500 1.750 1.750 3.000 1.750 
  Clone mean1 0.375b 1.625a 2.625a 2.375a - 

F-pr   PBZ = 1.000  Clone = 0.001  PBZ.Clone = 0.054 
SE   0.260  0.368  0.520 

    Clone    
Site   8 35 47 55 PBZ mean2 

Tweefontein  PBZ0 1.500 1.250 2.750 1.750 1.812 
  PBZ1 1.500 3.250 2.500 0.500 1.937 
  Clone mean1 1.500 2.250 2.625 1.125 - 

F-pr   PBZ = 0.798  Clone = 0.141  PBZ.Clone = 0.144 
SE   0.342  0.484  0.685 

    Clone    
Site   8 35 47 55 PBZ mean2 

Willowmere  PBZ0 1.500 1.750 2.000 1.250 1.625 
  PBZ1 1.054 2.250 2.750 1.196 1.812 
  Clone mean1 1.277 2.000 2.375 1.223 - 

F-pr   PBZ = 0.695  Clone = 0.099  PBZ.Clone = 0.659 
SE   0.321  0.393  0.556 

    Clone    
Site   8 35 47 55 PBZ mean2 

Wyntoun  PBZ0 1.500 0.500 2.500 0.250 1.188a 
  PBZ1 2.750 3.500 3.250 1.000 2.625b 
  Clone mean1 2.125ab 2.000b 2.875a 0.625c - 

F-pr   PBZ = < 0.001  Clone = < 0.001  PBZ.Clone = 0.022 
SE   0.193  0.272  0.385 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 4: Results of Eucalyptus smithii individual site REML analyses of variance for 
height at five years after planting 

 
    Clone    

Site   1 6 71 74 PBZ mean2 
Blair Athol  PBZ0 12.0 12.1 10.1 11.3 11.4a 

  PBZ1 7.9 6.8 5.7 7.1 6.9b 
  Clone mean1 9.9 9.4 7.9 9.2 - 

F-pr   PBZ = 0.006  Clone = 0.451  PBZ.Clone = 0.953 
SE   0.67  0.91  1.28 

    Clone    
Site   1 6 71 74 PBZ mean2 

Gilboa  PBZ0 10.6 3.8 9.1 11.6 8.8a 
  PBZ1 4.3 5.6 5.5 6.0 5.4b 
  Clone mean1 7.4a 4.7b 7.3a 8.8a - 

F-pr   PBZ = < 0.001  Clone = 0.005  PBZ.Clone = 0.003 
SE   0.51  0.73  1.03 

    Clone    
Site   1 6 71 74 PBZ mean2 

In de Diepte  PBZ0 6.2 8.9 13.1 9 9.3a 
  PBZ1 11.3 9.9 11.8 10.4 10.8a 
  Clone mean1 8.7b 9.4b 12.4a 9.7b  

F-pr   PBZ = 0.217  Clone = 0.018  PBZ.Clone = 0.065 
SE   0.77  0.90  1.28 

    Clone    
Site   1 6 71 74 PBZ mean2 

Netherby 1  PBZ0 14.5 14.1 15.9 14.5 14.7a 
  PBZ1 8.4 11.2 12.3 10.2 10.5b 
  Clone mean1 11.4 12.7 14.1 12.3 - 

F-pr   PBZ = 0.002  Clone = 0.495  PBZ.Clone = 0.819 
SE   0.87  1.24  1.75 

    Clone    
Site   1 6 71 74 PBZ mean2 

Netherby 2  PBZ0 5.2 9.1 6.0 7.6 7.0a 
  PBZ1 12.4 11.5 9.6 5.1 9.6b 
  Clone mean1 8.8ab 10.3a 7.8bc 6.3c - 

F-pr   PBZ = < 0.001  Clone = < 0.001  PBZ.Clone = < 0.001 
SE   0.39  0.55  0.78 

    Clone    
Site   1 6 71 74 PBZ mean2 

Netherby 3  PBZ0 8.5 15.1 14 13.4 12.8a 
  PBZ1 15.4 8.2 8.1  9.6a 
  Clone mean1 11.9 11.7 11.6.71 10.1  

F-pr   PBZ = 0.141  Clone = 0.949  PBZ.Clone = < 0.001 
SE   1.26  1.21  1.71 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of the predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 4 (contd.): Results of Eucalyptus smithii individual site REML analyses of 
variance for height at five years after planting 

 
    Clone    

Site   1 6 71 74 PBZ mean2 
The Peak  PBZ0 11.5 10.8 6.4 10.1 9.7a 

  PBZ1 7.8 12.2 8.7 7.3 9.0a 
  Clone mean1 9.6 11.5 7.5 8.7 - 

F-pr   PBZ = 0.633  Clone = 0.131  PBZ.Clone = 0.209 
SE   0.99  1.23  1.74 

    Clone    
Site   1 6 71 74 PBZ mean2 

Willowmere  PBZ0 10.5 12.4 12.2 11.3 11.6a 
  PBZ1 6.0 6.1 5.7 6.8 6.1b 
  Clone mean1 8.2 9.3 9.0 9 - 

F-pr   PBZ = < 0.001  Clone = 0.651  PBZ.Clone = 0.500 
SE   0.42  0.60  0.85 

    Clone    
Site   1 6 71 74 PBZ mean2 

Wyntoun  PBZ0 14.5 13.5 11.5 15.1 13.6a 
  PBZ1 14.0 3.5 11.3 13.0 10.5a 
  Clone mean1 14.3a 8.5b 11.4ab 14.1a  

F-pr   PBZ = 0.005  Clone = 0.002  PBZ.Clone = 0.007 
SE   0.72  1.02  1.45 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of the predicted mean 
1 Within this row, values followed by the same letter do not differ significantly each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 5: Results of Eucalyptus smithii individual site REML analyses of variance for 
fifth year umbel crop score (floral buds initiated in 2008 and scored in 2009) 
 

    Clone    
Site   1 6 71 74 PBZ mean2 

Blair Athol  PBZ0 1.250 1.250 0.750 1.500 1.188a 
  PBZ1 2.500 3.500 4.000 4.000 3.500b 
  Clone mean1 1.875 2.375 2.375 2.750 - 

F-pr   PBZ = < 0.001  Clone = 0.257  PBZ.Clone = 0.157 
SE   0.212  0.300  0.424 

    Clone    
Site   1 6 71 74 PBZ mean2 

Gilboa  PBZ0 1.500 0.750 2.000 0.500 1.188a 
  PBZ1 1.250 1.750 2.000 3.000 2.000a 
  Clone mean1 1.375 1.250 2.000 1.750 - 

F-pr   PBZ = 0.059  Clone = 0.558  PBZ.Clone = 0.101 
SE   0.290  0.410  0.580 

    Clone    
Site   1 6 71 74 PBZ mean2 

In de Diepte  PBZ0 2.000 1.938 1.000 0.312 1.313a 
  PBZ1 3.250 3.500 3.250 3.750 3.437b 
  Clone mean1 2.625 2.719 2.125 2.031 - 

F-pr   PBZ = 0.026  Clone = 0.741  PBZ.Clone = 0.423 
SE   0.430  0.522  0.738 

    Clone    
Site   1 6 71 74 PBZ mean2 

Netherby 1  PBZ0 1.500 1.482 1.268 1.500 1.437a 
  PBZ1 1.482 2.518 1.250 3.250 2.125a 
  Clone mean1 1.491 2.000 1.259 2.375 - 

F-pr   PBZ = 0.229  Clone = 0.356  PBZ.Clone = 0.488 
SE   0.355  0.480  0.679 

    Clone    
Site   1 6 71 74 PBZ mean2 

Netherby 2  PBZ0 1.250 0.500 0.500 1.750 1.000a 
  PBZ1 3.250 3.250 2.250 2.500 2.812b 
  Clone mean1 2.250 1.875 1.375 2.125 - 

F-pr   PBZ = < 0.001  Clone = 0.515  PBZ.Clone = 0.460 
SE   0.309  0.438  0.619 

    Clone    
Site   1 6 71 74 PBZ mean2 

Netherby 3  PBZ0 2.500 2.500 1.500 1.750 2.063a 
  PBZ1 3.500 3.000 3.250 3.000 3.187b 
  Clone mean1 3.000 2.750 2.375 2.375 - 

F-pr   PBZ = 0.008  Clone = 0.615  PBZ.Clone = 0.726 
SE   0.277  0.392  0.554 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 5 (contd.): Results of Eucalyptus smithii individual site REML analyses of 
variance for fifth year umbel crop score (floral buds initiated in 2008 and scored in 2009) 

 
    Clone    

Site   1 6 71 74 PBZ mean2 
The Peak  PBZ0 0.750 0.000 0.750 0.250 0.437a 

  PBZ1 3.378 2.750 3.500 2.329 2.989b 
  Clone mean1 2.064 1.375 2.125 1.290 - 

F-pr   PBZ = 0.001  Clone = 0.141  PBZ.Clone = 0.847 
SE   0.282  0.324  0.458 

    Clone    
Site   1 6 71 74 PBZ mean2 

Willowmere  PBZ0 0.750 2.500 1.500 2.000 1.688a 
  PBZ1 2.000 3.750 3.000 3.750 3.125b 
  Clone mean1 1.375b 3.125a 2.250ab 2.875a - 

F-pr   PBZ = < 0.001  Clone = 0.002  PBZ.Clone = 0.928 
SE   0.218  0.308  0.436 

    Clone    
Site   1 6 71 74 PBZ mean2 

Wyntoun  PBZ0 1.250 1.500 0.250 0.500 0.875a 
  PBZ1 3.343 2.750 2.500 2.407 2.750b 
  Clone mean1 2.297 2.125 1.375 1.453 - 

F-pr   PBZ = 0.007  Clone = 0.207  PBZ.Clone = 0.759 
SE   0.318  0.382  0.540 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 6: Results of Eucalyptus smithii individual site REML analyses of variance for 
sixth year umbel crop score (floral buds initiated in 2009 and scored in 2010) 
 

    Clone    
Site   1 6 71 74 PBZ mean2 

Blair Athol  PBZ0 1.750 1.481 0.769 2.000 1.500a 
  PBZ1 2.347 3.500 2.750 2.903 2.875b 
  Clone mean1 2.049 2.409 1.760 2.451 - 

F-pr   PBZ = 0.029  Clone = 0.508  PBZ.Clone = 0.433 
SE   0.310  0.398  0.563 

    Clone    
Site   1 6 71 74 PBZ mean2 

Gilboa  PBZ0 2.000 2.200 2.050 1.250 1.875a 
  PBZ1 2.252 1.998 2.750 3.500 2.625a 
  Clone mean1 2.126 2.099 2.400 2.375 - 

F-pr   PBZ = 0.233  Clone = 0.874  PBZ.Clone = 0.126 
SE   0.391  0.432  0.611 

    Clone    
Site   1 6 71 74 PBZ mean2 

In de Diepte  PBZ0 2.000 1.477 2.500 2.273 2.063a 
  PBZ1 2.750 1.477 2.023 2.500 2.187a 
  Clone mean1 2.375 1.477 2.261 2.386 - 

F-pr   PBZ = 0.862  Clone = 0.513  PBZ.Clone = 0.831 
SE   0.481  0.545  0.770 

    Clone    
Site   1 6 71 74 PBZ mean2 

Netherby 1  PBZ0 2.250 1.750 1.250 2.750 2.000a 
  PBZ1 1.843 1.157 2.000 3.000 2.000a 
  Clone mean1 2.046 1.454 1.625 2.875 - 

F-pr   PBZ = 1.000  Clone = 0.191  PBZ.Clone = 0.766 
SE   0.409  0.5169  0.7309 

    Clone    
Site   1 6 71 74 PBZ mean2 

Netherby 2  PBZ0 2.750 1.750 2.250 3.250 2.500a 
  PBZ1 3.750 3.500 2.250 3.750 3.312b 
  Clone mean1 3.250ab 2.625bc 2.250c 3.500a - 

F-pr   PBZ = 0.010  Clone = 0.022  PBZ.Clone = 0.205 
SE   0.206  0.291  0.411 

    Clone    
Site   1 6 71 74 PBZ mean2 

Netherby 3  PBZ0 2.250 1.443 2.057 2.000 1.938a 
  PBZ1 3.834 2.500 2.500 2.916 2.938a 
  Clone mean1 3.042 1.972 2.278 2.458 - 

F-pr   PBZ = 0.123  Clone = 0.332  PBZ.Clone = 0.803 
SE   0.349  0.431  0.6098 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
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Appendix 6 (contd.): Results of Eucalyptus smithii individual site REML analyses of 
variance for sixth year umbel crop score (floral buds initiated in 2009 and scored in 
2010) 
 

    Clone    
Site   1 6 71 74 PBZ mean2 

The Peak  PBZ0 0.500 0.250 0.000 0.750 0.375a 
  PBZ1 2.750 2.250 2.750 1.500 2.312b 
  Clone mean1 1.625 1.250 1.375 1.125 - 

F-pr   PBZ = < 0.001  Clone = 0.814  PBZ.Clone = 0.313 
SE   0.269  0.380  0.538 

    Clone    
Site   1 6 71 74 PBZ mean2 

Willowmere  PBZ0 1.500 3.250 2.250 2.750 2.438a 
  PBZ1 3.000 3.250 3.250 3.500 3.250b 
  Clone mean1 2.250 3.250 2.750 3.125 - 

F-pr   PBZ = 0.009  Clone = 0.087  PBZ.Clone = 0.334 
SE   0.203  0.286  0.405 

    Clone    
Site   1 6 71 74 PBZ mean2 

Wyntoun  PBZ0 2.750 1.500 1.500 1.000 1.687a 
  PBZ1 2.592 2.750 3.000 2.658 2.750a 
  Clone mean1 2.671 2.125 2.250 1.829 - 

F-pr   PBZ = 0.106  Clone = 0.523  PBZ.Clone = 0.466 
SE   0.386  0.461  0.652 

 
PBZ0 = No PBZ applied (control) 
PBZ1 = PBZ applied to soil in March/ April 2006 
F-pr = F-probability value 
SE = Standard error of predicted mean 
1 Within this row, values followed by the same letter do not differ significantly from each other (level of significance given in Table) 
2 Within this column, values followed by the same letter do not differ significantly from each other (level of significance given in 
Table) 
 

 


