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ABSTRACT

Persea americana Mill. cv. Hass is predisposed towards producing a high proportion of
undersized fruit. Reasons for phenotypically small 'Hass' fruit are obscure, but it does
appear to be aggravated by adverse growing conditions. A detailed study of the metabolic
control of avocado fruit growth was carried out to determine the underlying physiological
reasons for the appearance of the ‘Hass' small fruit phenotype. Furthermore, the
application of a mulch was evaluated as a possible management strategy to increase
‘Hass’ fruit size.

Anatomical and morphological comparisons were made between normal and small ‘Hass’
fruit in an attempt to characterise the ‘Hass' small fruit phenotype. Small fruit always
contained a degenerate seed coat and fruit size was closely correlated with seed size.
Kinetic analysis of changes in cell number and size during fruit development revealed that
growth was limited by cell number in phenotypically small fruit. Analysis of endogenous
isopentenyladenine (iP) and abscisic acid (ABA) revealed that ABA concentration was
negatively correlated with size of similarly aged fruit. Calculation of the iP:ABA ratio
showed a linear relationship with increasing fruit size. Qualitative and quantitative
differences in mesocarp sterol composition were observed between normal and
phenotypically small fruit.

Both the normal and small-fruit phenotypes were used to probe the interaction between
end-products of isoprenoid biosynthesis and activity of mesocarp 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMGR) in the metabolic control of avocado fruit
growth. In phenotypically small fruit, a 70% reduction in microsomal HMGR activity was
associated with a substantial rise in mesocarp ABA concentration at all stages of
development. Application of mevastatin, a competitive inhibitor of HMGR, via the pedicel
reduced growth of phenotypically normal fruit and increased mesocarp ABA concentration.
These effects were reversed by co-treatment of fruit with either mevalonate, iP or the
synthetic cytokinin (CK) analogue, N-(2-chloro-4-pyridyl)-N-phenylurea, but were
unaffected by gibberellic acid. Likewise, in vivo application of ABA reduced fruit growth and
HMGR activity, and accelerated abscission at all stages of development, effects that were
reversed by co-treatment with iP. In contrast, the effect of sterols on mevastatin-induced
inhibition of fruit growth was temporally different. Application of either stigmasterol or
cholesterol during phase | caused a decline in growth, accelerated fruit abscission and
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exacerbated the effects of mevastatin whereas during phase Il and lll, stigmasterol
reversed inhibition of fruit growth. Stigmasterol did not however, reverse the inhibitory
effect of mevastatin on HMGR activity - presumably as a result of mevastatin-induced
increased endogenous ABA. It was therefore concluded that ABA accumulation down-
regulates mesocarp HMGR activity and that in situ CK biosynthesis modulates the effect
of ABA during phase | of fruit growth whereas, both CK and sterols perform this function
during the later stages to sustain the developmental programme.

The effect of an altered CK:ABA ratio on solute allocation, cell-to-cell communication and
plasmodesmatal structure was investigated in ‘Hass’' avocado fruits to determine the
relationship between a change in hormone balance and expression of phenotypically small
fruit. Exogenous application of ABA induced early seed coat senescence and retarded fruit
growth, and these effects were negated in fruit co-injected with ABA and iP. The underlying
physiological mechanisms associated with ABA-induced retardation of ‘Hass’ avocado fruit
growth included: diminution of mesocarp and seed coat plasmodesmatal branching; gating
of mesocarp and seed coat plasmodesmata by deposition of apparently proteinaceous
material in the neck region; abolishment of the electrochemical gradient between mesocarp
and seed coat parenchyma; and arrest of cell-to-cell chemical communication. In addition,
solute allocation in ABA-treated fruit resembled closely that of phenotypically small fruit
confirming that elevated ABA concentration had contributed to the decline in postphloem
symplastic continuity.

In a field trial in the KwaZulu-Natal midlands, root growth was substantially increased
throughout three seasons by the application of a coarse composted pinebark mulch.
Mulching resulted in a significant 6.6% increase in mean fruit mass, in spite of 14.7% more
fruits per tree. The combined effect was a 22.6% increase in overall yield. Differences in
productivity between treatments closely correlated to levels of bark carbohydrate reserves.
Data collated during this study to suggest that mulching at least partly ameliorated tree
stress included: a reduction in the incidence of premature seed coat senescence and
pedicel ring-neck, both of which are considered to be advanced symptoms of the stress
syndrome; a lowering of mean foliage temperatures; and a reduction in the degree of
photoinhibition during the heat of the day.
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CHAPTER 1
GENERAL INTRODUCTION

The avocado (Persea americana Mill.) is a member of Lauraceae and falls under the
valid genus Persea (Scora and Bergh, 1990). Persea americana originates from central
America and Mexico, though its precise origin is obscure due to its long history of
utilization (Whiley and Schaffer, 1994). Three distinguishable ecological races, viz.
Mexican, Guatamalan and West Indian have been identified and named after their
presumed centres of origin (Storey et al., 1986). These races freely hybridize, giving
rise to a variety of genotypes with adaptation from cool, semi-arid to hot, humid tropical
lowland climates (Whiley and Schaffer, 1994). The 'Hass' cultivar is a hybrid clone, and
is derived from the Guatamalan (85 - 90%) and Mexican (10 - 15%) races (Bergh and
Ellstrand, 1986). Botanically, the avocado fruit is described as a berry with a thick
fleshy pericarp (consisting of three distinct regions viz. exocarp, mesocarp and
endocarp) surrounding a single large seed (Valmayor, 1967). The fruit is pyriform or
glabose in shape and has a yellow-green to purple-black skin which can be smooth or
warty (Whiley and Schaffer, 1994).

By 1991 ‘Hass’ accounted for approximately 35% of avocado fruit production in South
Africa and has since become increasingly important to the local industry (van Zyl and
Ferreira, 1995). This cultivar is utilized in nearly all sub-tropical avocado producing
regions because of its higher yield potential and superior quality fruit. Furthermore,
'Hass' is a late-maturing cultivar and can therefore be used by growers to extend the
avocado harvest period, which has obvious economic implications. Unfortunately, this
cultivar has a tendency to bear a large number of phenotypically small fruit (less than
200 g at harvestable maturity). The ‘Hass’ small fruit syndrome is estimated to cost the
South African industry between R30 and R40 million in lost revenue each year
(Wolstenholme', pers. comm.), and hence there is some urgency within the industry to

reduce the extent of this problem.

'B.N. Wolstenholme, Dept. Hort. Science, University of Natal, Pietermaritzburg, South Africa



1.1 AVOCADO FRUIT DEVELOPMENT

The development of fléshy fruit was last comprehensively reviewed twenty years ago
(Coombe, 1976) while fruit development in avocado, has been reviewed as recently as
1988 (Bower and Cutting, 1988). Since that time, very little progress has been made
in our understanding of fruit developmental programmes and in particular that of
avocado. Nevertheless, it is now accepted that fruit morphogenesis can generally be
divided into three distinct phases (Gillaspy et al., 1993). The first phase includes ovary
development, fertilization and fruit set; the second, cell division, seed formation and

early embryo development; and the third, cell expansion and embryo maturation.

1.1.1 Ovary development, fertilization and fruit set

Nothing is known about the molecular signals that control ovary development in
avocado although, it would be expected that both spatial and temporal molecular
interaction between cells/tissues of the developing structure would occur. In avocado,
flowering behaviour is described as “complementary synchronous dichogamy” where
each flower opens twice on consecutive days, and is an adaptation to promote cross
pollination. At the first opening the flower is functionally pistillate (i.e. the stigma is
receptive and no pollen is shed), and at the second opening the flower is functionally
staminate (i.e. the stigma is deteriorated and the stamens are pollen shedding) (Whiley
and Schaffer, 1994). ‘Hass’ is classified as having a type "A” dichogamy pattern where
flowers open as females in the morning of the first day and as males during the
afternoon of the following day (Bergh, 1986). Irradiance (light quality and quantity),
temperature and plant water status seem to be important abiotic factors in determining
floral function in the avocado (Whiley and Schaffer, 1994). Alterations in photoperiod
influence the dichogamy of the floral cycle (Sedgley, 1985) while low temperatures
appear to inhibit pollen tube development (Sedgley, 1977; 1979). It is therefore not
unreasonable to expect abiotic stimuli to exert an effect on floral development through
changes in concentration of endogenous signals. However, the identity of these

endogenous signals remains obscure.

Fruit set follows successful completion of pollination and fertilization. Anatomical



studies have revealed that within 3 days of pollination, initiation of endosperm formation
has occurred and by 9 days, the endosperm has formed a large cellular body and a
pre-embryo of two to six cells is evident (Tomer and Gazit,1979). These early stages
of avocado fruit development are schematically illustrated in Figure 1.1. What is
immediately evident from the studies of Tomer and Gazit (1979) is that the early stages
of cell division appear anticlinal and are followed primarily by periclinal cell divisions.
This suggests both spatial and temporal control of cell division in developing avocado
fruit. The early anticlinal divisions presumably result in formation of ground tissue to
support embryo development, suggesting that formation of a pre-embryo is required as
the possible source of chemical trigger(s) needed for extension/expansion growth of

developing fruit.

I I [ [
5 14 21 42

Days alter pollination

Figure 1.1 :
Schematic illustration of early stages of avocado fruit development (E = embryo; En = endosperm;
Co = cotyledon; Ra = radicle) (adapted from Tomer and Gazit, 1978).



1.1.2 Fruit growth

Avocado fruit growth follows a single sigmoid curve (Valmayor, 1967; Lee and Young,
1983; Munoz-Perez et al., 1987) in which the lag phase persists for approximately 10
weeks after full bloom. The exponential or rapid growth phase lasts for about 30 weeks
after full bloom, although it does depend on cultivar and environment, and is followed

by a mature phase during which growth slows.

Initiation of fruit development in angiosperms is considered to involve both auxins and
gibberellins (GAs) produced during pollen-tube growth while a secondary stimulus,
apparently produced in the developing seed, is required to maintain growth (Lee,
1987). Avocado seeds must therefore play an important role in the development of fruit
(Blumenfeld and Gazit, 1970, Gazit and Blumenfeld, 1970; Wolstenholme et al., 1985;
Bower and Cutting, 1988). For example, seed-bearing avocado fruits are many times
larger than parthenocarpic fruit (Blumenfeld and Gazit, 1974) and a close correlation
between seed size and fruit size has been observed in avocado (Wolstenholme and
Whiley, 1995). Seeds contribute to fruit growth and development by synthesizing and/or
accumulating growth promoting substances and nutrients (Blumenfeld and Gazit, 1970;
Cannell, 1985; Wolstenholme et al., 1985).

Cell number and size influence the capacity of developing fruits to import assimilate,
and therefore contribute directly to fruit growth (Bohner and Bangerth, 1988a; 1988b).
The dynamics of avocado fruit growth can be related to the rate of cell division and cell
expansion in mesocarp tissue (Schroeder, 1960). Unlike most sub-tropical fruits, cell
division in avocado mesocarp proceeds throughout fruit development (Schroeder,
1953; 1958; Coombe, 1976), albeit at a slower rate during the later stages of this
programme. During the exponential growth phase, rate of cell division is at a maximum
(Schroeder, 1953). Schroeder (1953) observed that different sizes of horticulturally
mature avocado fruit comprised similarly sized cells, and concluded that differences in
fruit size appeared to be a consequence of cell number. This latter observation
suggests that the impact of cell division on final fruit size of avocado is determined by
the number of cell divisions that occur, particularly during the early stages of fruit

development.



1.1.3 Regulation of fruit development

Control of fruit size reduires maximisation of cell division and expansion during the
developmental programme (Valmayor, 1967; Coombe, 1976) and any reduction in
availability of required resources will impact on fruit growth. Of the requirements for fruit
growth and development, photoassimilate, mineral nutrients and adequate water
availability are amongst the most important. In addition, developmental programmes
such as fruit growth are known to be co-ordinated, at least in part, by plant hormones
which act either directly or indirectly to alter gene expression. However, appreciation
of the pleiotropic effects of plant hormones suggésts that no single growth regulator can
account for a complex process such as fruit morphogenesis (Trewavas, 1980; 1983)
and it is now generally accepted that hormones exert multiple control on development
through changes in endogenous concentration and via alterations in sensitivity of

developing tissue to respective plant hormones (Trewavas, 1982; 1991, Firn; 1986).

With regard to the latter, a quantitative model has recently been proposed to account
for the wide range of hormone-induced phenomena that occur during growth and
development (Bradford and Trewavas, 1994). In view of this, it becomes apparent that
development must be considered the result of intricate spatial and temporal interactions
between the resources required for growth and hormonal mediation through the
regulation of gene expression (Barendse and Peeters, 1995). Even so, the fruit
developmental programme remains obscure. As stated by Gillaspy et al. (1993) -
"Despite centuries of intensive genetic selection of agriculturally valuable fruit, we still
lack most information about how fruits develop, how this development is coordinated
with embryonic development and seed formation, and the molecular, cellular, and

physiological events that control fruit growth and differentiation."

Figure 1.2 illustrates the temporal changes in phytohormone content and shows that
auxins, cytokinins (CKs) and GAs are required for most of the normal course of fruit
development, but their function during ovary development prior to fertilization is poorly
understood (Gillaspy et al., 1993). Positive growth stimuli, including auxins and GAs,
are produced by pollen during pollen tube growth and influence fruit set (Nitsch, 1970).

Poor pollination leads to incomplete fruit set which in turn results in undersize fruits or
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ovary abortion (Nitsch, 1970). Wolstenholme et al. (1985) showed that mesocarp auxin
concentrations of ‘Fuerte’ avocado fruit were highest early in the developmental
programme and then steadily decreased towards maturity. Blumenfeld and Gazit (1972)
noted high levels of GA activity in seed and seed coat of developing avocados, the

latter decreasing with fruit growth, but no measureable GA-like activity in fruit flesh.

D

Auxin

Gibberretins e 'l | llIIIB!b

Cytokinins

ABA

Ethylene

Figure 1.2
Changes in the concentration of plant growth substance during fruit development of the avocado
(A = flowering and fruit set; B = cell division; C = cell expansion; and D = ripening). Adapted from
Wolstenholme et al., 1985; Blumenfeld et al., 1986; Cutting et al., 1986; Donkin, 1995.

Cell number is a function of the number of mitotic divisions and is balanced in the cell
cycle by both differentiation and dedifferentiation. It is generally accepted that CKs
contribute to the control of cell division in plants (Lee, 1987), although synergistic
relationships between CKs and other promotive plant growth substances (PGS) have
been observed (Ferreira et al., 1994), e.g. freshly isolated protoplasts can be
stimulated to divide if provided with adequate concentrations of both auxin and CK
(Binns, 1994). A good correlation exists between CK concentration in developing
Lycopersicon seeds and cell division activity in surrounding tissue (Abdel-Rahman,
1975; Bohner and Bangerth, 1988b). In Arabidopsis, transcription of cdc2 (the catalytic
subunit of the protein kinase that triggers mitosis) can be both inhibited and induced

depending on which hormone is applied. Thus, cdc2 expression is induced during
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auxin-mediated lateral root formation whereas CK-induced cdc2 expression is
associated with primary thickening of roots (Hemerly et al., 1993). Cdc2 expression is
positively correlated with physiological competence for cell division, a process that
apparently requires cyclins (the regulatory subunit of the protein kinase that initiates
cell division), cdc2 and mitogen-activated protein (MAP) kinase (Ferreira et al., 1994).
Furthermore, expression of cyclin genes and control of cyclin gene expression seems

to be necessary for activation of the cdc2 kinase and, thus, cell division.

Although the precise mechanism determining entry of plant cells into mitosis (M)
remains obscure, it is nevertheless evident that negative influences on cell division
cycle activity will impact on cell number and ultimately fruit size. CKs might regulate
processes either in G, (post-DNA synthetic, pre-mitotic period) or in the transition from
G, to M in the cell cycle (Binns, 1994; Jacobs, 1995). In the absence of CK, cells may
accumulate in the G, to M transition for a period of time and then leave the cell cycle
entirely (Fosket, 1977). As pointed out by Ferreira et al. (1994), the G, to M transition
is crucial for entry into mitosis. If, however, certain conditions are not met, e.g.

replication of DNA must have been completed, then differentiation ensues.

MAP kinase is another potential regulator of cell division in plants (Ruderman, 1993;
Mizoguchi et al., 1994). This phosphorylating enzyme is part of the cascade triggered
by ras, a super-family of low-molecular-weight guanine nucleotide-binding proteins
involved in control of cell growth and differentiation, cytokinesis and membrane
trafficking and characterized by protein prenylation (Schafer and Rine, 1992).
Prenylation refers to the covalent modification of a molecule by the attachment of a
lipophilic isoprenoid group, and protein prenylation may be important for the regulation
of 3-hydroxymethyl-3-glutaryl-CoA reductase (HMGR), the primary enzyme of
isoprenoid synthesis (Schafer and Rine, 1992; Clarke, 1992). Although a true ras
homologue has yet to be identified in plants, recent evidence would appear to suggest
that isoprenoid biosynthesis is required early in the fruit developmental programme
(Narita and Gruissem, 1989). These authors concluded that growth inhibition and
morphological differences caused by blocking HMGR was the direct result of depletion
of phytosterols (Gillaspy et al., 1993).



Expression and activity of HMGR are regulated at many levels including transcription,
translation, thiol status of the cell, phosphorylation and enzyme stability (Narita and
Gruissem, 1989). Degradation of HMGR is relatively slow and requires both a steroidal
and non-steroidal derivative of mevalonic acid (MVA). Farnesol has recently been
identified as a possible non-steroidal derivative which initiates and promotes
degradation of HMGR in animal cells (Correll and Edwards, 1994). In plants, increased
ABA concentration has been correlated with reduced HMGR activity in developing

endosperm of maize vivipary mutants (Moore and Qishi, 1994).

1.2 FACTORS AFFECTING ‘HASS’ AVOCADO FRUIT SIZE

Phenotypical aspects such as growth rate, duration of growth and response of
plants/plant parts to the environment are co-ordinated by expression of genetic
material. Likewise, fruit size, which is also influenced by cultural practises, must
ultimately be determined/controlled at the genetic level. Expression of genetic material
involves a pracess termed signal-response-coupling in which the signal may constitute
either a chemical or physical stimulus. Physical stimuli (e.g. temperature and water
availability) need to be translated into a chemical form (e.g. change in hormone
balance) before effective signalling can take place. Once this has occurred, chemical
signals interact with receptor proteins inducing a cascade of second messengers which
act either directly or indirectly to alter gene expression. There is substantial evidence
to suggest that ‘Hass' fruit growth is affected by abiotic/biotic pressure including poor
climatic conditions, inadequate availability of water and nutrients, changes in supply

and composition of photoassimilate and alterations in hormone balance.

1.2.1 Temperature

Mean temperature during fruit ontogeny has a pronounced effect on fruit growth and
final fruit size in late-maturing cultivars such as ‘Hass’ (Whiley and Schaffer, 1994). In
South Africa, where avocado is cultivated under more severe conditions, up to 50% of
the 'Hass' crop may be undersize in any particular season (Kéhne, 1992). A similar,
albeit less pronounced, situation has been observed for 'Hass' fruit produced in other

avocado growing regions. For example, in subtropical Australia, fruit are on average
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30% smaller in a warm coastal environment than those cultivated in a cool highland
climate, while fruit pro'duced in southern Florida are much smaller than fruit grown
under the cooler conditions of California (Whiley and Schaffer, 1994). Since fruit
respiration increase with increasing temperature (Blanke and Whiley, 1995), and ‘Hass’
has a long period of development on the tree, the small fruit condition in warmer
districts might be due to assimilate deficiency as a result of a higher fruit respiration
rate (Whiley and Schaffer, 1994).

1.2.2 Water availability

Obviously water and minerals are important in fruit growth and development. Water is
generally considered the most important limiting factor to plant growth (Syvertsen,
1985; Smith and Griffiths, 1993) and water deficit stress impacts negatively on
productivity and fruit size of avocado (Whiley et al., 1988). Optimal plant water status
is therefore vital for maximum fruit growth. Water stress during critical stages of fruit
ontogeny results in increased pedicel ring-neck, a symptom associated with premature
seed coat senescence (Whiley et al., 1986). Furthermore, avocado fruits acts as
reservoirs and under conditions of water deficit, moisture required for leaf growth may
be drawn from fruits (Schroeder and Wieland, 1956). Consequently, leaves of avocado
trees exert a priority over fruits for water which will again impact on fruit growth and

final fruit size (Wolstenholme, 1986).

It is well established that plants exposed to sustained abiotic/biotic pressure
accumulate the plant hormone abscisic acid (ABA). Stress-induced accumulation of
ABA occurs readily in aerial plant parts when leaf water potential nears a critical
threshold value (Milborrow, 1981; Zeevaart and Creelman, 1988). Furthermore, there
is increasing evidence in support of root-synthesized ABA accumulating in the xylem
of plants growing in drying soil (Davies and Zhang, 1991; Davies ef al., 1994). An
alternative hypothesis is that leaves export ABA into the phloem which is translocated
to the roots and then re-translocated in the xylem, from roots to shoots (Hoad, 1975;
1995). Elevated xylem ABA levels may also impact on fruit growth and development

directly by down-regulating activity and/or synthesis of components essential for control



of fruit morphogenesis. With regard to the latter, Barlow and Pilet (1983; 1984)
demonstrated that AB;‘\ retards completion of the cell cycle by preventing exit from
either the G, (an interval in the cell cycle during which there is a high rate of RNA
formation and protein synthesis) or G, (a period of cell growth before entrance into
prophase of M) phase (Muller et al., 1994). G, is considered a possible point of control
in the signal transduction pathway for CK control of the cell cycle (Binns, 1994). This
suggests that abiotic/biotic factors which decrease the endogenous CK:ABA ratio either
during or immediately after fruit set, impact on cell cycle activity to reduce the number

of cell divisions in fruit ontogeny and thus final fruit size.

1.2.3 Nutrient availability

Potassium (K*), calcium (Ca*") and boron (B) are important minerals affecting avocado
fruit growth (Robertson, 1971; Moore and Hirsch, 1983). B deficiency causes reduced
growth of rapidly expanding organs, such as young fruits. Smith et al. (1995)
demonstrated that application of B increased 'Hass' fruit weight by 15% on trees
cultivated in B-deficient soils. Although the exact function of B in plants is unknown,
there is increasing evidence that it is required for membrane integrity and function.
Apparently B exerts its effect by promoting K* uptake and H* extrusion (Pollard et al.,
1977). Both K* and Ca*, the latter being maintaired at low endogenous levels, play
major roles in membrane trafficking and in signal-response coupling, i.e. the integration
of abiotic and biotic stimuli with changes in intracellular biochemistry and whole-plant

physiological responses (Ward et al., 1995).

Nitrogen (N) is critical in maintaining the desired balance between vegetative and
reproductive growth in avocado trees (Whiley et al., 1988). An over-supply of N results
in excessively luxuriant foliage at the expense of fruit production (Wolstenholme and
Whiley, 1989), and fruit yields decline when N is limiting (Embleton et al., 1959). Plant
N status appears to affect CK biosynthesis in a number of species (Horgan and
Wareing, 1980). Sattelmacher and Marschner (1978b) demonstrated that N enhanced
CK formation in roots. Furthermore, N deficiency resulted in reduced CK translocation

from roots to aerial parts of the tree (Sattelmacher and Marschner, 1978a). Horgan and
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Wareing (1970) suggest that the response of CK biogenesis to plant N status is more
pronounced in species which are sensitive to this element. Since avocado trees are
highly sensitive to N (Klein and Zilkah, 1986; Whiley et al., 1988), levels of this nutrient

may have a marked effect on biosynthesis of CK.

Adequate CK supply to developing fruit is necessary for full morphogenic expression
of the fruit developmental programme of many plant species, e.g. apple and tomato
(Wareing et al., 1976). The effect of CKs on fruit size may be attributed to the
hormones involvement in promoting cell division and/or increasing sink strength.
CKs have been shown to promote cell division (Lackie and Dow, 1989; Smith and
Wood, 1992) and increase sink strength (Mothes and Engelbrecht, 1961; Richards,

1980; Ronzhina et al., 1995) of a number of plant organs, including fruits.

CKs also interact with other plant hormones, e.g. mitotic activity of meristematic cells
requires the presence of both CKs and auxins (Das et al., 1956; Patau et al., 1957,
Binns, 1994; Ferreira et al,, 1994). However, it is unlikely that auxins have a direct
effect on avocado fruit size, as they are involved primarily in control of cell expansion
(Cleland, 1971; 1995; Theologis, 1986; Cosgrove, 1986; 1993), a process that is not
limiting in avocado (Schroeder, 1953; Valmayor, 1967). CKs could therefore be the
limiting factor required for full morphogenic expression of the fruit developmental
programme. Although some CK could arise from tRNA breakdown in developing fruits
(Maalk and Klambt, 1981a; 1981b; Letham and Palni, 1983; Roberts and Hooley, 1988),
it seems that root-derived CKs imported during anthesis also contributes to the CK pool
in sink structures such as developing fruit (Bohner and Bangerth, 1988a; 1988b; Bower
et al., 1990; Baker and Allen, 1992; Bernier et al., 1993).

1.2.4 Availability, composition and utilization of photoassimilate

During development of fleshy fruits assimilate supply is required for maintenance of cell
division, establishment of sink strength and ultimately fruit size (Ho, 1988; Patrick,
1988). Sink strength is influenced by a number of factors including proximity of sink to

source and the relative strength of other sinks. Developing fruits usually attract
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assimilate from adjacent leaves, but also import assimilate over considerable distances
(Feree and Palmer, 1982). Generally the closer the sink to source, the greater its
command on available nutrients (Cook and Evans, 1983), albeit complicated by sink
competition (Monselise and Goldschmidt, 1982). For example the panicle in avocado
trees is sub-terminal while vegetative shoots are terminal (Halle et al., 1978), i.e.
vegetative and reproductive components are in close proximity. Competition between
these structures is therefore intense, particularly in early spring, before developing
shoots become sources (Scholefield et al., 1985; Finazzo and Davenport, 1987).
Whiley (1994) recorded that 'Hass' fruits from determinate flowering shoots were
significantly larger than those from indeterminate (ending in a vegetative bud) flowering
shoots, presumably due to less vegetative competition. In addition, inter-fruit
competition has a profound effect on fruit size, e.g. Lahav and Kalmer (1977) observed
that mean avocado fruit size was reduced in years of abundant yield, i.e. available

resources had to be allocated to more sinks.

Nutrient/assimilate accumulation in developing fruits occurs via the vasculature and is
driven by gradients of decreasing water potential established by transpirational water
loss coupled to fruit photosynthesis during the early stages of fruit ontogeny (Blanke
and Lenz, 1989). As shown in Figure 1.3, vascular traces permeate the mesocarp of
avocado fruit and coalesce towards the distal end where they enter the seed coat as
a single group (Kaiser, 1993). Early senescence of the seed coat substantially reduces
the source of nutrients required for fruit growth thus retarding or arresting the process

completely (Cutting et al., 1986).

Photoassimilate required for fruit growth is manufactured by leaves, and hence it is
important that trees have sufficient foliage to produce the required carbohydrate during
the course of fruit development (Cull, 1989). Mature, healthy leaves export the most
photoassimilate (Salisbury and Ross, 1978), whereas young developing leaves act as
sinks to which material is exported by mature leaves, i.e. leaves pass through a period
where they are metabolic sinks before gradually assuming the role as sources for
photoassimilate (Salisbury and Ross, 1978; Whiley, 1990; Wolstenholme, 1990).

12



Although leaves are the major source of photoassimilate, other green plant parts such
as young green stems, fruits and flowers may also contribute (Bazzaz et al., 1979;
Blanke and Lenz, 1989), although photoassimilate supply by these plant parts is
usually very small (Todd et al., 1961, Whiley ef al., 1992). Source leaves control timing
and supply of carbohydrate (Gifford and Evans, 1981; Wright, 1989), whilst sinks play

a key role in the distribution of assimilate (Walker and Ho, 1977).

Pedicel

A -

) “ “ \ Seed coat

Vascular traces

Figure 1.3
Diagramatic representation of longitudinal section of avocado fruit illustrating vasculature and
direction of assimilate movement into the fruit (adapted from Kaiser, 1993).

1.3 DEFINING THE ‘HASS’ SMALL FRUIT SYNDROME

‘Hass’ avocado produces two distinct populations of fruit, the distinguishing feature
being size (Zilkah and Klein, 1987). Phenotypically small fruit are not the result of
disease (Kremer-Kéhne and Kéhne, 1995), and the syndrome is therefore considered
a physiological disorder (Blanke and Bower, 1991). As trees age, so the syndrome

becomes more pronounced (Cutting, 1993), and it is particularly noticeable in orchards
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situated in warmer and/or drier climates (Hilton-Barber, 1992; Whiley and Schaffer,
1994). Therefore, both abiotic stress and ageing appear to be major contributing factors

in the determination of 'Hass' avocado fruit size.

Based on a study of grdwth kinetics, and the determination of fruit shape and size,
Zilkkah and Klein (1987) concluded that small and large fruit arose due to earlier fruit
set of large fruit. However, casual observation has revealed that the small fruit
phenotype is always associated with early senescence and or death of the seed coat.
Figure 1.4 shows a typical example of a phenotypically small ‘Hass’ fruit in which
premature senescence and death of the seed coat has occurred. Although these fruit
are of similar age, growth has clearly been arrested in the small fruit. The question
therefore arises: Are small fruit the result of early seed coat senescence and death?
or, Is seed coat senescence the result of some other factor which causes growth in
these fruit to slow? Furthermore, it is important to appreciate that all fruit, irrespective
of final fruit size, will eventually develop degenerate seed coats which can be used as
a measure of fruit maturity. This suggests that seed coat senescence is a normal event
during the avocado fruit developmental programme and as such, must be genetically
co-ordinated. ‘Hass’ is predominantly of Guatamalan origin, and avocado fruits from
natural forest of Guatamala tend to be smaller than fruits from other centres of origin,
which suggests that the ‘Hass’ small fruit syndrome is a genetic disorder (Chandler,
1957). Confirmation of a genetic basis for the small fruit syndome might best be

achieved by comparing key aspects of metabolism in small and normal sized fruit.

Aside from the obvious morphological differences between fruit of different cultivars,
biochemical studies have revealed differences between ‘Hass’ and ‘Fuerte’ which
produces substantially larger fruit. For example, 'Hass' fruit displays higher respiration
rates and greater transpirational water loss than 'Fuerte' during fruit development and
it has been suggested that the higher energy requirement of 'Hass' fruit (or the less
efficient fruit photosynthesis) could lead to smaller sized fruit (Blanke and Whiley,
1995). A similar argument has been developed to account for the small fruit syndrome

in Citrus sinensis cv. Valencia (Blanke and Bower, 1991).
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Figure 1.4
Photograph illustrating the relationship between fruit size and seed coat viability. The larger fruit
still has a healthy functional seed coat, whereas the seed coat of the smaller fruit appears
senescent, dessicated and brown in colour.

1.4 OBJECTIVES
Little is known about the biochemistry, physiology and molecular biology of fruit growth
and in particular that of the avocado. If the ‘Hass’ small fruit syndrome is to be resolved
to the benefit of the industry, a greater understanding of fruit growth and development
is required. The objectives of this study were to;

(1) Examine the dynamics of ‘Hass’ avocado fruit growth.

(2) Investigate factors involved in the metabaolic control of ‘Hass’ avocado fruit

growth.
(3) Evaluate the significance of (1) and (2) in terms of orchard mulching as a viable

short term management strategy.
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CHAPTER 2
MATERIALS AND METHODS

2.1 CHEMICALS

2.1.1 Radiochemicals

DL-cis, trans-[2-"*C]-abscisic acid (35.2mCi/mmol), [U-'*C]-sucrose (23.2 mCi/mmol),
DL-3-Hydroxy-3-methyl-3-[*C]glutaryl CoA (HMG-CoA) (58.0 mCi/mmol), 'f4- C]-
cholesterol (53.0mCi/mmol), and [*H]-isopentenyladenine were purchased from

Amersham International, Buckinghamshire, U.K.

2.1.2 Growth regulators and isoprenoids

Mevastatin (compactin), DL-mevalonic acid lactone (MVAL), (+)-cis,trans-abscisic acid
(ABA), gibberellic acid (GA;), 6-(y,y-dimethylallylamino)-purine (iP), N-(2-chloro-4-
pyridyl)-N-phenylurea (CPPU), 3B-hydroxy-24-ethyl-5,22-cholestadiene (stigmasterol),
5-cholesten-3B-ol (cholesterol), 24a-methyl-5-cholesten-33-ol (campesterol) and 33-
hydroxy-8.24-lanostadiene (lanesterol) were purchased from Sigma, St Louis, U.S.A.
2'-isopropyl-4'-(trimethylammonium chloride)-5'methyl pheny! piperidine-1'-carboxylate
(AMO 1618) was purchased from Calbiochem, Durban, South Africa.

2.1.3 General chemicals

Lucifer yellow-CH (LYCH), 4-amino-antipyrene, p-hydroxybenzoic acid, D-glucose
oxidase, peroxidase, amyloglucosidase (Novo 200L) and termamy!| were purchased
from Sigma, St Louis, U.S.A. Hampt's adhesive solution, safranin, fast green, Canada
balsam, tetrabromofluorescein (eosin) and Tween-20 were purchased from BDH
Chemicals, Johannesburg, South Africa. Sodium cacodylate, glutaraldehyde, osmium
tetroxide, propylene oxide, 2.4.6-tri (dimethylaminomethyl) phenol (DMP-30), epon,
lead citrate and uranyl acetate were purchased from Wirsam Scientific, Johannesburg,
South Africa.
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2.1.4 Solvents

HPLC grade solvents (acetonitrile, ethyl acetate and methanol) were purchased from
Burdick and Jackson, Muskegon, U.S.A. All other solvents were of analytical grade and
were purchased either from Associated Chemical Enterprises, Johannesburg, South

Africa or Saarchem, Krugersdorp, South Africa.

2.2 CHROMATOGRAPHIC MEDIA

Sep-Pak C,; cartridges were purchased from Waters Chromatography division,
Millipore. Thin layer plates of silica gel (GF,s,) (20 x 20 cm; 0.2 mm thick) were
purchased from Whatman, New Jersey, U.S.A. For high performance liquid
chromatography (HPLC) an ODS 2 (Spherisorb) 5 pm Cw column (250 x 4.6 mm i.d.)
was purchased from Phase Separations Limited, Deeside, U.K,, and an ODS 2
(Prodigy) 5 um C,4 column (150 x 4.6 mm i.d.) was purchased from Phencmenex,

Torrance, California, U.S.A.

2.3 STUDY SITE
The study was conducted on Everdon Estate in the KwaZulu-Natal midlands (30°16'E
and 29°27'S). The orchard was situated in Phillips' Bioclimatic region 3, which is

characterised by cool mesic conditions, typical of a "mist-belt" climate.

The mean annual temperature was 17.3°C with a daily temperature range of 12.0°C
averaged over a 15 year period (Anon., 1997). Maximum and minimum temperatures
in January are 26.1°C and 15.0 °C respectively, with the July maximum and minimum
being 19.4°C and 6.7°C. The mean elevation is 1082 m above sea level and the rainfall
has averaged 1051.7 mm over an 87 year period (Anon., 1997). In this region, the
period from May to August is considered to be ecologically dry, with the remaining
months being ecologically humid (Fig. 2.1). Mean, maximum and minimum monthly

temperatures for Everdon Estate during the study period are summarised in Figure 2.2.
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Figure 2.1

Climatograph for Everdon Estate illustrating humid and dry periods. (Rainfall above 100 mm plotted
at '/10 of value).
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Figure 2.2
Temperature data for Everdon Estate from January 1993 through to December 1996. Maximum (A),
minimum (), and mean (O). (Source: .S.C.W., Pretoria).
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Trees were cultivated in a Hutton form soil which is characterised by an orthic A horizon
overlying a red apedal B horizon (Fig. 2.3). Typically these soils are medium to heavy
textured (with a clay content of 35-55%) and 'form in well-drained, oxidising

environments. They generally have weakly structured, acidic topsoils (MacVicar et al.,
1984).

Orthic A horizon

Red apedal B horizon

Figure 2.3
Soil profile of Hutton form soil at trial site, on Everdon Estate, KwaZulu-Natal midlands.

No cover crop was planted in the orchard and mechanical weed control was
implemented. The orchard was irrigated through a micro-jet system, with two micro-jets
per tree, and scheduled according to tensiometer readings. Tensiometers were placed
at depths of 30 and 60 cm, and water was applied when the tensiometer pressure

reading dropped to -40 kPa.

24 PLANT MATERIAL
Six year old 'Hass' trees on clonal 'Duke 7' rootstocks were selected for the trial. Trees
were planted in 1988 on gently sloping land with a south-easterly aspect. Tree rows

were orientated in a north-westerly to south-easterly direction, i.e. parallel to the slope.
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2.5 APPLICATION OF MULCH

A total of 1.5 m® coarse pinebark was applied in February 1993 under six trees to a
depth of approximately 15 cm. Pinebark was supplied by Kynoch Soil Services
(Johannesburg, South Africa) and the specific product used was Gromed coarse potting

mix.

2.6 PHENOLOGICAL MEASUREMENTS

Vegetative shoot flushes were estimated by measuring shoot extension. Ten shoots per
tree were tagged and marked in 1993 prior to the spring flush. At the end of each major
vegetative flush, shoots were marked with a different colour to distinguish between the
different flushes. At the end of each month shoot length was measured, and from this

shoot flushing periods were estimated.

Root flushes were monitored by visually estimating the area covered by white healthy
feeder roots under a newspaper mulch (with an approximate area equal to 1250 cm?).
The newspaper mulch was placed 1 m from the micro-jet nozzle on the south-west side
of the trees to avoid direct sunlight. Three measurements per tree were taken at the
end of each month. Visual estimates of root flushing were performed using a rating of
0 to 10. Groupings of "poor"”, "medium" and "good" were chosen, viz. 0 to 2, 3 to 4, and

>5 respectively, as described by Kaiser and Wolstenholme (1994).

2.7 MEASUREMENT OF FRUIT GROWTH AND YIELD

To measure fruit growth, 40 fruits per tree were tagged when fruit were approximately
10 mm in length. Subsequent length and diameter measurements, using digital calipers
(Mitutoyo-500, Tokyo, Japan), were taken at regular intervals throughout the growing
season. These measurements were fitted to a gompertz curve and an analysis of

variance (ANOVA) was performed on each parameter of the equation.
At the end of each season, fruit were harvested and fruit size distributions were

recorded for each tree. Fruit size was determined gravimetrically and classified

according to the number of fruit per standard 4 kg export carton. Fruits were graded as
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follows: Count 10, 366 to 450 g; count 12, 306 to 365 g; count 14, 266 to 305 g; count
16, 236 to 265 g; count 18, 211 to 235 g; count 20, 191 to 210 g; count 22, 171 to 190g;
count 24, 156 to 170 g; count 26, 146 to 155 g; and factory grade, <146 g. Total tree
yields were calculated by adding the product of the number of fruit per count size and

the class centre of all the count sizes.

2.8 MEASUREMENT OF PHYSIOLOGICAL DISORDERS ASSOCIATED WITH
SMALL FRUIT

2.8.1 Seed coat viability

To determine the relationship between seed coat viability and fruit size, all fruit from a
single eight year old 'Hass' tree on Everdon Estate were harvested in July 1995. These
fruits were weighed, and allocated a seed coat viability rating. Broad groupings of
"healthy", "degenerate" and "intermediate" were selected, where healthy seed coats
were still white and fleshy, degenerate seed coats brown and thin, with the intermediate
category falling between these two extremes. Once fruit had been passed through the
packhouse, the impact of mulching on seed coat abortion was determined. For this,
10% of fruit in each count were randomly selected and bisected longitudinally, and the

presence or absence of a degenerate seed coat was recorded.

2.8.2 Incidence of pedicel ring-neck

To determine the effect of mulching on the incidence of pedicel ring-neck, 100 fruit per
tree were randomly harvested, with care being taken to ensure that the fruit were still
attached to their pedicels. Before fruit were passed through the packhouse, presence

or absence of the ring-neck syndrome was recorded for each fruit.

2.9 CANOPY TEMPERATURE MEASUREMENTS

Using weather-proof infra-red thermometers (IRT's), surface canopy temperatures of
two trees per treatment were recorded continuously from November 19594 to May 1996.
Insulation and protective foil were applied to the IRT’s to reduce temperature effects.
The IRT's were mounted 2.5 m from the trees, facing south, on tripod stands at a height

of 4.5 m above the ground. IRT’s were connected to a Campbell Scientific CR10 data
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logger beneath the trees. Simultaneous air temperature measurements were recorded

by two thermocouples, and these data were also recorded by the data-logger.

2.10 MEASUREMENT OF CHLOROPHYLL FLUORESCENCE

Using a Hansatech-MK2 Plant Efficiency Analyser (Hansatech Instruments Ltd.,
Norfolk, U.K.), photochemical efficiency was measured in leaves on trees from mulched
and non-mulched treatments. Diurnal comparisons were made between these two
treatments, and data were selected for days that showed typical trends. Ten leaves per
tree were covered with small light-weight leaf-clips and the leaves allowed to dark
adapt for 15 min (‘Hass’ avocado leaves took at least 8 min to fully dark adapt (Fig.
2.4a)). Thereafter, the sensor unit was attached to each leaf clip and the leaves
exposed to 80% red light (with a peak wavelength of 650 nm) from high intensity light-

emitting diodes housed in the sensor unit, for 2.5 s.
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Relationship between F /F,, and time of dark adaptation (a), and red light intensity (b).

The initial fluorescence level (F,) is reached immediately upon illumination, and this
represents the level of constant fluorescence emission in a completely “dark adapted”

plant. If illumination is sufficiently strong (greater than 60% red light ensures light
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saturation (Fig. 2.4b)), fluorescence increases from F, to its peak (F,,). This increase
in chlorophyll fluorescence emission is termed the variable fluorescence component
(F,), i.e. F,=F_-F, The ratio F /F, can then be derived from the values obtained. This
value has been shown to be proportional to the quantum yield of photochemistry (Butler
and Kitajima, 1975), and correlates with the quantum yield of net photosynthesis
(Bjérkman and Demmig, 1987), which is a measure of the efficiency by which light is

utilized by leaves.

2.11 APPLICATION OF CHEMICALS

For application of chemicals, compounds of interest were formulated in Tween 20:
acetone:water (1:1:8, by vol.) to a final concentration of 1 mg mL™" and 20 pL of each,
or combinations thereof, injected into the pedicel of individual fruits (8 fruits per
treatment) using a Hamilton-7105 micro-litre syringe, 55 (phase 1), 92 (phase Il) and
210 d (phase Ill) after full bloom, unless otherwise stated. Control fruit were treated with
and without Tween 20:acetone:water (1:1:8, by vol.). Following injection, the wound
was covered with silicone grease and fruit growth monitored by measuring the increase
in both fruit length and diameter using digital calipers (Mitutoyo-500), at the intervals
specified in Results (Chapter 4, sections 4.2.1. and 4.2.2). Since identical trends were
observed for both fruit length and diameter, only results for % increase in fruit length

are shown.

212 TRANSPORT OF EOSIN AND ['“C]-SUCROSE

Following harvest, 226 d old fruits (3 per treatment) were immediately supplied either
a 5 mL solution of eosin or 0.5 mL solution of U-["*C]-sucrose (2 Mbq in distilled water)
via the pedicel. After uptake, excess water was added and transport allowed to proceed
for 48 h at room temperature. For analysis of the distribution of eosin, fruit was
bisected, the stone removed and the two halves photographed. For analysis of the
distribution of radioactivity, three 1 g dry weight samples of mesocarp, seed coat and
seed from at least three different fruits were extracted in 80% aqueous methanol at 4°C
for 24 h. Residual tissue was removed by centrifugation and radioactivity in the

supernatant determined, after the addition of 2 mL Picofluor 40, using a Packard Tri-
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Carb 1500 liquid scintillation spectrometer programmed for automatic quench

correction.

2.13 MICROSCOPY

2.13.1 Fluorescence microscopy

2.13.1.1 Electrophysiological and microinjection procedure

Sections (approximately 2.5 cm in length) of mesocarp/seed coat tissue from freshly-
harvested 226 d old ‘Hass’ fruit were placed in cold (6°C) MES buffer (10 mM NaOH-
MES (pH 7.2), containing KCI, MgCl, and CaCl, (all 0.5 mM) in 125 mM Mannitol), and
allowed to recover for a minimum of 30 min. Prior to electrophysiological and/or
microiontophoretic experimentation, 0.25 mm sections, in a Perspex slide well
containing MES buffer, were examined under blue light using an Olympus BHWI erect-

image UV microscope with a fixed stage and extra-long working distance objectives.

All electrophysiological measurements were made using a WPI Duo-773 electrometer
(World Precision Instruments Inc., Sarasota, Florida, U.S.A.) fitted with high
impedance, active probes. Inner-filamented glass microelectrodes were made using
1mm diameter pipettes, (WPI Kwik-Fil K100-F3) which were pulled with a Narishige PB-
7 Pipette Puller (Narishige Co. Ltd., Tokyo, Japan). Tips were routinely between 0.5
and 1 um in diameter. Microelectrodes were back-filled with a Lucifer Yellow (5% w:v,
in 3 M LiCl) solution, and the shank of the microelectrode filled with 3 M LiCl.
Microelectrodes were attached to KCI half cells filled with 3 M LiCl, coupled to a WPI
high impedance probe and attached to a WPI PM-10 Piezo controller unit, and to a WPI
DC-3 motorised micro manipulator. Once impaled, cell potentials were monitored using
the Duo 773 electrometer, to ascertain viability of cells. Cell potentials of the impaled
cells were monitored in the dark, by inserting a shutter in the light path to prevent UV
exposure and damage to the cells. Once membrane potentials had stabilised (at least
-40 mV as prescribed by Farrar et al. (1992) and van Bel ef al. (1996)), impaled cells
were reverse iontophoresed, using pulsed current (-2 to -30 nA, for 5 to a maximum of
60 s) in order to inject the dye. Impaled, injected cells were photographed using an
Olympus AD PM-10 camera system, (Fujichrome Sensia 400 ASA slide, or Super HVG
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200 ASA print film) or the data were recorded using a Panasonic CL-WV 350 video
camera, connected to a Panasonic NV-SD3 video recorder. Selected images were
captured and saved to disk on a 486 personal computer, fitted with a digital image
recording and capture system. All equipment used was supplied by Wirsam Scientific
(Port Elizabeth, South Africa).

2.13.1.2 Digital Imaging

Video recordings showing cell-to-cell transport of LYCH were examined and frames of
interest captured in digital format. Image files were converted to 300 dpi 256 colour
images and a five-colour “pseudocolour” palette based on fluorescence intensity of
LYCH concentrations, ranging from black (zero), to aquamarine (low), blue (medium),
purple (high), and white (highest), was applied. The computer-enhanced digitized
images enabled easy visualisation of the actual distribution of LYCH within avocado

mesocarp tissue.

2.13.2 Light microscopy

2.13.2.1 Sample preparation

Whole fruits (during phase 1) and three 5 mm? tissue samples (during phase Il and Il1),
excised from three distinct zones (viz. a zone including the endocarp and seed coat,
a zone including the exocarp, and a zone from mesocarp tissue mid-way between the
exo- and endocarp, across the equatorial region of each of three randomly selected
fruit) were collected at regular intervals throughout the season. Samples were fixed in
FAA (formalin:acetic acid:ethanol:.water made up in the following proportions 2:1:10:7),
then dehydrated in a graded ethanol/tert-butanol series (Table 2.1a) and finally
embedded in wax (Table 2.1b). Thin sections were prepared using a Reichert rotary
microtome, de-waxed and stained with Safranin and Fast Green (Table 2.1c) and

examined using an Olympus BH-2 light microscope.
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Table 2.1
Summary of the dehydration (a) and wax embedding (b) series and the staining procedure (c) used
for sample preparation for the light microscope study.

(a) Dehydration series

Solution
(Water : ethanol : butanol) Minimum time (hr) Temperature (°C)

1. 45:45:10 1 20
2 30:50:50 12 20
3 15:50:35 1 20
4, 15:40:55 1 20
5, 0:25:75 1 20
6. 0: 0:100 2 40
7 0: 0:100 18 40
(b) Wax embedding series

Solution Minimum time (hr) Temperature (°C)
1 Butanol : liquid paraffin (50:50) 24 40
2. Liquid paraffin 12 40
3. Liquid paraffin + wax pellets 12 40
4, Liquid paraffin + wax pellets 24 60
5, Pure molten wax 48 60
(c) Staining procedure

Solution Time (s)

1. xylene/alcohol 60

2! 95% alcohol 30

3. 70% alcohol 30

4, Safranin stain 24 h

5. 95% alcohol 30

6. absolute alcohol 60

7, absolute alcohol 60

8. xylene/alcohol 60

9. Fast Green stain 5

10. xylene/alcchol 30

11. xylene 60
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2.13.2.2 Estimation of cell size and cell number

Detailed studies of cell size and number in the mesocarp tissue were made in
transverse section along the diameter axis. The number of cells present in a
representative area of 90 000 um? was determined. For cells at the borders, if greater
than 50% of cell area was within the designated sample area, the cell was regarded as
part of the sample. The number of cells per 90 000 um? was used to estimate apparent
cell size. To convert number of cells in sample area to number of cells across fruit, the
following expression was used: n = dvx; where n, is the number of cells across fruit; d,
fruit diameter in mm at the equatorial region; and x, number of cells in sample area.
Measurements of mean cell size and number across fruit diameter throughout
development were fitted to a general logistic curve and an analysis of variance was

performed on each parameter of the resultant cellular development curves.

2.13.3 Electron microscopy

Sample material was fixed in a 3% glutaraldehyde solution containing a 0.05 M sodium
cacodylate buffer (pH 7.1) for 24 h. Samples were post-fixed for 4 h in 2% osmium
tetroxide and then dehydrated in a graded ethanol series (10 to 100%). Following this,
specimens were resin infiltrated using a graded series of epon and a mixture of
propylene oxide and DMP-30. Infiltrated specimens were placed into fresh epon resin,
and allowed to polymerise in at 70°C for 48 h. Using an LKB Ultratome Il
ultramicrotome, sections were trimmed, and areas of interest were isolated using a light
microscope. Thin (70-90 um) gold sections were cut using a tungsten-coated glass
knife attached to the ultramicrotome, and collected on 200-mesh copper grids. Sections
were stained in uranyl acetate, followed by lead citrate and viewed in a Jeol 100-CX

(Jeol, Japan) transmission electron microscope at an accelerating voltage of 80 kV.

214 HMGR ASSAY

Freeze-dried mesocarp tissue was homogenized in ice-cold 100 mM K-phosphate
buffer (pH 7.0) containing 4 mM MgCl, and 5 mM DTT, the homogenate filtered through
2 layers of Miracloth and centrifuged at 10 000g for 15 min at 2°C. To the supernatant
was added 8 mM CaCl, and the microsomes sedimented at 27 000g for 15 min at 2°C
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as described by Cinti et al. (1972). The pellet was washed in 150 mM KCI, re-
centrifuged at 27 000g for 15 min at 2°C and the microsomes resuspended in a small
volume of 100 mM K-phosphate buffer (pH 7.0) containing 50 mM DTT. Approximately
100 pg of microsomal protein (Bradford, 1976) was incubated in a total volume of 300
uL containing 5 mM NADPH and 1.72 nmol [3-*C]-HMG-CoA. Reactions were initiated
by addition of substrate and allowed to proceed for 45 min at 30°C. On conclusion of
incubation, reactions were terminated by addition of 2 uL of MVAL (100 mg mL™") and
20 pL HCI (6 N) followed by vortexing, and the MVA lactonized at room temperature for
15 min. Particulate material was removed by centrifugation and the supernatant
analysed for ["“C]-MVA. Using a modification of the method described by Chappell et
al. (1995), 700 pL 0.5 M K-phosphate (pH 6.0) followed by 1 mL ethyl acetate was
added to the supernatant. After thorough mixing and centrifugation, radioactivity in the
ethyl acetate phase was determined by liquid scintillation spectrometry. Alternatively,
the ethyl acetate fraction was applied to thin layers of silica gel (GF,s,) and plates
developed to 15 cm in chloroform:acetone (2:1, by vol.) and radioactivity in the MVAL-
containing zone (R; 0.65) determined by liquid scintillation spectrometry. Assays were
performed in triplicate, with less than 10% variation between samples and the two

methods of analysis.

2,15 CARBOHYDRATE ANALYSIS

Soluble and storage carbohydrate extraction was based on the method described by
Rasmussen and Henry (1990). Determination of soluble carbohydrate was performed
by tissue extraction in 70% ethanol, whilst determination of insoluble carbohydrate

concentration involved enzymatic hydrolysis of the remaining starch.

Three trunk bark disc samples ca. 3 cm? were collected from each tree on a bi-monthly
basis throughout the duration of the trial. Discs were dried to constant mass in a forced
draught oven at 70°C and milled. 50 mg (dry weight) samples were extracted in a 5 ml
aliquot of 80% ethanol for 30 min at a temperature of 80°C. This process was repeated
three times and the combined extracts were centrifuged (BHG Hermle Z-510) at 3000g

for 10 min. The supernatant was decanted and percentage sugar determined (via a
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glucose-specific colour reaction followed by a comparison against the glucose standard
curve). To the pellet 2.5 ml acetate buffer (pH §) and 50 pl Termamyl were added, and
the samples allowed to incubate at 90°C for 30 min. After cooling to room temperature,
50 pl amyloglucosidase was added and incubated for 20 h at 60°C. Particulate material
was removed by centrifugation for 10 min at 3000g, and 100 ul aliquots of the
supernatant diluted to 5 ml using glucose oxidase colour solution prepared as follows:
Into 2000 ml distilled water dissolve; (1) 24.8 g disodium hydrogen orthophosphate
dodecahydrate, (2) 12.4 g sodium dihydrogen orthophosphate-2-hydrate, (3) 4.0 g
benzoic acid (dispersed in a small volume of ethanol), (4) 0.2 g 4-amino-antipyrene, (5)
3.0 g p-hydroxybenzoic acid, (6) 0.04 g glucose oxidase, and (7) 0.001 g peroxidase.
The solution was incubated in a water bath at 40°C for 15 min, and subsequently
cooled to room temperature for a further 60 min. Absorbance was measured at 505 nm
using a Metertek SP-850 spectrophotometer, and percentage carbohydrate determined

by comparison against a D-glucose standard curve.

2.16 ABA ANALYSIS

For analysis of ABA, aliquots of freeze-dried mesocarp tissue were homogenized in ice-
cold methanol/ethyl acetate (50:50, by vol.), containing a known amount of radio
labelled ABA (to correct for losses) and diethyldithiocarbamate (200 mg L) as an
antioxidant, in the presence of insoluble PVP (10% w/w) and extracted for 24 h in
darkness at -20°C. The homogenate was centrifuged and the pellet extracted with
further methanol/ethyl acetate (50:50, by vol.). The combined supernatants were
reduced in vacuo and the residue resuspended in 0.5 M K-phosphate buffer (pH 8.5)
and partitioned three times against equal volumes of diethyl ether to remove neutral
and basic impurities. The pH of the agueous phase was adjusted to 2.5 and ABA
partitioned into diethyl ether (repeated three times). Purified ABA-containing samples
were analysed by reversed-phase HPLC. Chromatography was carried out on an ODS
2 (Spherisorb) 5pm C,5 column (250 x 4.6 mm i.d.) eluted with a linear gradient of O to
100% methanol in 1% aqueous acetic acid over 60 min at a flow rate of 1.0 mL min™.
ABA was quantified at 254 nm by peak integration following calibration with authentic

standards using a Waters 990 programmable UV-Vis detector.
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After quantification, fractions corresponding to authentic ABA were collected and
pooled. Pooled fractions were methylated with ethereal diazomethane and further
analysed by GC-MS to identify the chemical nature of the peak using a Hewlett-
Packard 5890 gas chromatogram fitted with a fused-silica capillary column (12 m x 0.32
mm i.d.) programmed from 120°C at 5°C min™' with He as the carrier gas (1.5t0 2.0 mL
min™). The electron impact mass spectrum of ABA methyl ester is shown in Figure 2.5,
which is identical to the published mass spectrum of this compound (Gray et al., 1974

Dérffling and Tietz, 1983).
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Figure 2.5
(a) Electron impact mass spectrum of authentic ABA methyl ester from ‘Hass’ avocado mesocarp.
(b) Total ion chromatogram of the ABA methyl ester purified from the avocado mesocarp samples.
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2.17 iP ANALYSIS

To determine iP concentration, 1 g freeze-dried samples were extracted in 80%
methanol containing 0.1 g PVP and BHT (50 mg L) as an anti-oxidant and a known
amount of radio labelled iP (to correct for losses) in the dark for 24 h at 4°C. Samples
were centrifuged at 10 000g for 10 min, and the supernatant reduced to dryness in a
Savant vacuum concentrator. The extracts were resuspended in water (adjusted to pH
3 with acetic acid) and loaded onto a pre-conditioned SepPak C,; cartridge. The
cartridge was first washed with 2 ml 50% methanol and then eluted with 2ml 80%
methanol. 0.5 ml aliquots were then dried down in vacuo and used for quantification of

iP by radioimmunoassay (RIA).

For quantification by RIA, 100 ul tritiated iP radio tracer, 100ul antibody (for antiserum
production, see Cutting et al., 1984) dissolved in 0.1% phosphate buffered saline (PBS)
(pH 7.2) bovine serum albumen and 0.5 ml bovine serum in PBS were added to each
sample. The mixture was allowed to incubate at 37°C for 30 min. Following this, 0.75
ml 85% (NH,), SO, was added and the samples allowed to stand for a further 30 min.
Thereafter the solution was centrifuged at 4000g for 15 min and the pellet washed in
1.5 ml 55% (NH,), SO, and re-centifuged at 4000g for a further 15 min. The pellet was
then dissolved in 0.25 ml water, and radioactivity determined using a Packard Tri-Carb
1500 liquid scintillation spectrometer programmed for automatic quenching, following
the addition of 1 ml Picofluor 40. Samples were processed in triplicate and raw data
were analysed using the SecuRia 2200 data reduction radioimmunoassay package

(Packard Instrument Company).

2.18 STEROL ANALYSIS

Sterols were extracted from avocado mesocarp tissue (1 g freeze-dried samples) after
homogenization in 15 ml methanol, containing known amount of [4-'“C]-cholesterol (to
correct for losses). To the homogenate was added 6 ml chloroform and 2 m| water, then
vortexed and centifuged at 15 000 g for 10 min. To the supernatant was added 6 ml
chloroform and 8 ml water, mixed and centrifuged at 15 000 g for a further 10 min. The

organic phase was collected and reduced in vacuo, and the residue resuspended in
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chloroform. Purified sterol-containing samples were analysed by reverse-phase
chromatography (Figure 2.6 illustrates the chromatograph for a range of sterol
standards). Separations were achieved on a Prodigy column (150 x 4.6 mm i.d.), and
the column was eluted with an acetonitrile/methanol (2:1) mixture for 35 min at a flow

rate of 1 mL min™.
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Figure 2.6

Chromatograph of sterol standards observed over a range of wavelengths (a = lanesterol, b =
cholesterol, ¢ = stigmasterol, and d = campesterol).
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CHAPTER 3
CHARACTERIZATION OF THE ‘HASS’ SMALL FRUIT PHENOTYPE

3.1 INTRODUCTION

Although Zilkah and Klein (1987) demonstrated that ‘Hass’ produces two distinct
populations of fruit, the small fruit variant remains physiologically ill-defined. In
attempting to relate fruit size to differences in the time of fruit set these authors
demonstrated that small fruit were set 2-3 days later than large fruit. One explanation
for this observation is that fruit which are set earlier may establish sink priority and
consequently obtain more assimilate to fuel growth and development (Monselise and
Goldschmidt, 1982). Even so, there is evidence to suggest that fruit size of ‘Hass’
differs from other cultivars because of genetic differences (Chandler, 1957). However,
there is no evidence to suggest similar differences between the two populations of
‘Hass’ fruit. Furthermore, no studies have been carried out to determine whether
physiological and biochemical differences exist between the two populations of fruit.
This is surprising, given the enormous economic impact that appearance of small fruit

has on the ‘Hass’ avocado industry, particularly in South Africa.

Clearly without a detailed understanding of the physiological basis of the ‘Hass’ small
fruit syndrome, a solution seems unlikely. Thus the present investigation attempts to
characterize the ‘Hass’ small fruit syndrome. This was achieved by: (1) relating final
fruit size to morphological aspects such as seed size and seed coat viability; (2)
examining the contribution of cell number and cell size to overall size of the fruit; and
(3) measuring the endogenous concentration of key regulatory chemicals thought to
play a role in fruit growth and development, as a function of final fruit size.

3.2 RESULTS

3.2.1 Fruit growth

Length and diameter measurements were taken throughout two seasons and the
growth kinetics of differently sized ‘Hass’ avocado fruits compared by fitting these
measurements to a gompertz curve with the mathematical equation; y = C exp {-exp [-B
(x-M)]} + A (where; A = starting value (mm), B = growth rate (mm day™), C = total growth
(mm), and M = point of inflection (mm)), and the results are presented in Figures 3.1
and 3.2.

33



100 - kA kA A AA

Y000
r'y OOOQOC

[=-]
o
i
| 3
@
@

H._-.—l.—-‘.

F el ERIRR B EEE IS
P ) et
: I/I pot

Fruit growth (mm)
o =]
o o
»
Q
A N
+ a
s
_§.

)

O-qlllllillllflll LI LI | LI

10 40 70 100 130 160 190 220 250 280
Days after full bloom

Figure 3.1

'Hass' fruit growth curves for the 1993/1994 season. Full bloom was reached by 12 October 1993.
For normal fruit, regression line for the length axis (A) is represented by y = 110.0 exp {-exp [-
0.02297 (x - 51.61)]} - 8.16; and the diameter axis (M) by y = 77.08 exp {-exp [-0.02222 (x - 48.29)]} -
7.07. For phenotypically small fruit, regression line for the length axis (O) is represented by y =
95.84 exp {-exp [-0.02252 (x - 53.86)]} - 5.20; and the diameter axis (+) by y = 67.53 exp {-exp [-
0.02336 (x - 54.13)]} - 2.66. (Growth curves were constructed from a total of 82 normal fruits and 92
phenotypically small fruits).

Starting values (A) were not significantly different between normal and phenotypically
small fruit for both axes (Table 3.1), indicating that all fruit were set at the same time,

i.e. 'Hass' trees can produce variable sized fruit even if they are set at the same time.

Total growth (C) of normal ‘Hass’ fruits was significantly (P < 0.01) greater than
phenotypically small fruits (Table 3.1). At the time of harvest in 1993/1994,
approximately 284 d after full bloom, normal fruit had grown an average of 14.3 + 2.3
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mm more along the length axis than phenotypically small fruit. Similarly, fruit expansion
in the diameter axis was 9.6 + 3.3 mm more in normal ‘Hass’ fruit during the same
period. Fruit growth measurements for the 1994/1995 season show similar trends (Fig.
3.2): at time of harvest, 255 d after full bloom, normal ‘Hass’ fruit had grown an average
of 8.8 £+ 24 mm and 6.8 £ 2.7 mm more along the length and diameter axes
respectively. Increased mass of fruit was attributed to increased growth in both major
axes. The results support work carried out by Zilkah and Klein (1987) who showed that
avocado fruit grows proportionately in all directions once fruit shape is established at

the early stages of fruit development.
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Figure 3.2

'Hass' fruit growth curves for the 1994/1995 season. Full bloom was reached by 8 November 1994.
For normal fruit, regression line for the length axis (A) is represented by y = 98.92 exp {-exp [-
0.02281 (x - 49.44)]} - 7.34; and the diameter axis (M) by y = 68.34 exp {-exp [-0.02303 (x - 48.32)]} -
5.72. For phenotypically small fruits, regression line for the length axis (O) is represented by y =
90.14 exp {-exp [-0.02316 (x - 55.23)]} - 6.49; and the diameter axis (+) by y = 61.57 exp {-exp [-
0.02279 (x - 54.73)]} - 5.03. (Growth curves were constructed from a total of 73 normal fruits and 71
phenotypically small fruits).
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For the gompertz equation, growth up to the point of inflection (M) is exponential and
thereafter growth slows down. At M, fruit size was substantially greater in normal fruit
(Table 3.1), i.e. during the period of rapid exponential growth, rate of fruit expansion
was greater in normal fruit. Towards the end of the growth period (after the point of
inflection), differences in length and diameter of normal and phenotypically small fruit
remained approximately constant (Figs. 3.1 and 3.2), i.e. final fruit size was determined

early in the fruit developmental programme, before the point of inflection.

Table 3.1
A summary of mean values and standard errors for each growth parameter (A, B, C, and M) of the
gompertz curve for measurements of labelled 'Hass' fruit over 2 seasons. Values are means of 155
normal fruits and 163 phenotypically small fruits.

x t SE (x)
Parameter Normal Small Significance!
A -7.77 £0.97 -5.61 +0.83 NS
Length B 0.02289 + 0.00083 0.02280 + 0.00087 NS
C 104.83 + 1.69 93.36 + 1.48 * %
M 54.51 £ 1.06 50.66 + 1.01 *
A -6.77 £ 1.68 -3.70 £ 1.47 NS
Diameter B 0.02245 + 0.0098 0.02311 + 0.00094 NS
C 72.96 +1.84 64.93 + 1.88 * %
M 54.41 £1.03 48.30 £ 1.05 * %

t Using an F-test, NS denotes parameters are not significantly different; % denotes parameters are
significantly different (P < 0.05); and %% denotes parameters are significantly different (P < 0.01).

3.2.2 Seed size and fruit growth

To determine whether ‘Hass’ fruit size was dependant on seed size, a range of
differently sized fruits were weighed and the corresponding seed weights also
recorded. Seedless avocado fruits are many times smaller than seed-bearing fruits
(Fig. 3.3a) and results show that there was a positive correlation between seed and fruit
size (Fig. 3.3b).
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Figure 3.3
Photograph illustrating the importance of the seed to avocado fruit growth (a), and linear regression
to illustrate the effect of seed size on fruit size (b). Linear regression line for whole fruit weight (4A)
is represented by y = 2.881x + 84.266 (R* = 71.6%), and for flesh weight (O) by y = 1.881x + 84.266
(R? = 51.8%). Regression was performed on a sample population of 120 fruits.
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By extrapolation, linear regression equations for whole fruit weight and flesh weight had
the common intercept of 84.27 + 12.01 g. As shown in Fig. 3.3b the slope coefficient
for whole fruit weight was greater than that of fruit flesh weight alone (2.88 + 0.17
compared to 1.88 + 0.17). Thus, it can be concluded that the increase in whole fruit
weight was dependant on the percentage increase in seed weight and was less
affected by the percentage increase in flesh weight, i.e. larger fruit generally had a
higher seed:fruit flesh ratio. In other words, although an increase in fruit size was
accompanied by an increase in mesocarp weight, there was a proportionally greater

increase in seed weight.

3.2.3 Seed coat senescence and fruit growth

3.2.3.1 Seed coat senescence and fruit size

To determine whether a relationship existed between ‘Hass’ avocado fruit size and
seed coat senescence, a range of differently sized fruits were weighed and then
sectioned longitudinally to examine the seed coats after removal of the seed. Fruits
were allocated a seed coat viability rating ranging from healthy and functional to
senescent and dessicated (Fig. 3.4a). Results show that a reasonably good
relationship existed between fruit size and seed coat viability of fruit at maturity (Fig.
3.4b). Fruit less than 100 g fresh weight had completely degenerate seed coats or seed
coats that showed signs of the onset of senescence, whereas larger (normal) fruits had

a greater proportion of seed coats that appeared to be healthy and functional.

3.2.3.2 Seed coat structure

In the early stages of avocado fruit development, before the small fruit condition is
evident, the outer seed coat boundary appears as a continuous lignified layer of fairly
large and irregular stone cells (Fig. 3.5a). Adjacent to this layer is the endocarp
(innermost portion of the mesocarp) which is characterised by two or three layers of
partly lignified sclerenchyma cells (Fig. 3.5a). The inner seed coat boundary is thicker
than the outer seed coat boundary and is less regular in appearance. It is tightly
adhered to the seed, which is characterised by relatively small and tightly packed
parenchyma cells (Fig. 3.5a). Between the two seed coat boundaries are several layers
of parenchyma, which collectively make up the pachychalazal (seed coat) tissue.
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Figure 3.4
Relationship between seed coat viability and fruit size in ‘Hass’ avocado (a). Similarly aged fruit of
harvestable maturity from 8 year old trees were sectioned longitudinally and the seed coats
examined after removal of the seed (b). “Healthy” seed coats were turgid and white/pale yellow in
colour, “degenerate” seed coats appeared senescent, dessicated and brown in colour, Seed coats
of “intermediate” appearance were neither “healthy” nor “degenerate” but showed signs of
dehydration and onset of senescence.
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During the course of normal fruit development, the pachychalazal tissue increases in

thickness as the parenchyma cells continue to divide (Fig. 3.5d).

Large fruits have well-developed vascular systems within the pachychalazal tissue,
indicating that the seed coat forms a physiological connection between the seed and
mesocarp. Xylem, viz. vessel elements and tracheids, become lignified and have
thickened secondary walls (Fig. 3.5b). In longitudinal section, annular-ringed and
spiral-form secondary wall thickening is evident (Fig. 3.5c). Presumably this imparts
strength to the conducting tissue while allowing for expansion of the cells. Phloem
tissue appears as a collection of irregularly shaped cells making up sieve elements,
companion cells and parenchyma (Fig. 3.5b). This network of conducting tissue
branches frequently, so towards the end of fruit development many vascular bundles

permeate the seed coat tissue.

In contrast, small fruit, with degenerate or senescent seed coats, typically show a
considerable degree of seed coat cell and tissue degeneration (Fig. 3.5e). The
parenchyma tissue between the two seed coat boundaries is broken down. The dry
seed coat becomes heavily lignified and there is evidence of tannin- and phenolic-
accumulation. Unlike functional seed coats which adhere tightly to the seed (Fig. 3.5d),

degenerate seed coats become physically separated from the seed (Fig. 3.5e).

The most obvious ultra-structural difference between functional and degenerate seed
coat tissue is the state of their cell walls and membranes. In aborted seed coat tissue,
cell wall breakdown was evident (Fig. 3.6a), whereas in healthy seed coat tissue, cell
walls were rigid and organised (Fig. 3.6b). In degenerate seed coat cells, the cell
membrane pulls away from the cell wall (Fig. 3.6a), in contrast to functional seed coat
tissue where the cell membrane is still intact and closely bound to the cell wall (Fig.
3.6b). Furthermore, movement of rough endoplasmic reticuli across cell wall via
plasmodesmata was common in healthy seed coat tissue and absent in degenerate

seed coat tissue (Fig. 3.6b).
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Figure 3.5

Light micrographs of transverse sections of developing ‘Hass’ avocado fruits illustrating gross
structural changes to the seed coat. (a) 30 d after full bloom; (b) vascular system permeating
functional seed coat tissue, 161 d after full bloom; (c) LS illustrating annular-ringed and spiral-form
secondary wall thickening of xylem conducting elements, 161 d after full bloom; (d) large fruit, 161
d after full bloom; (e) small fruit, 161 d after full bloom. (S = seed tissue; SCP = seed coat
parenchyma; IB = inner seed coat boundary; OB = outer seed coat boundary; M = mesocarp; V=
vascular system; Ph = phloem; X = xylem; A = annular-ringed; Sp = spiral form).
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Figure 3.6
Transmission electron micrographs of ‘Hass’ avocado seed coat tissue, 161 d after fruit set. (a)
Small fruit with degenerate seed coat (arrows indicate where plasma membrane has pulled away
from the cell wall (CW)). (b) Large fruit with functional seed coat (RER = rough endoplasmic
reticulum; arrow = plasmédesmata).

3.2.4 Cell size vs cell number

Measurements of cellular development included mean rate of cell division and mean
rate of cell expansion. These measurements were fitted to a general logistic curve
which has the following mathematical equation; y = (a + b).r* (where; a = asymptote,

a+b = starting value, and r = rate). The resultant trends are illustrated in Figures 3.7

and 3.8.

There were no significant differences between normal and phenotypically small fruit for
the parameter representing rate of cell expansion (Table 3.2). This supports work done
by Schroeder (1953) who found that different sizes of horticulturally mature 'Fuerte' fruit

had the same average cell size. In contrast, the parameter representing rate of cell
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division was significantly different between normal and phenotypically small fruit (P <
0.01) (Table 3.2). Anatomically then, the limiting factor for growth in small 'Hass' fruit
was a reduction of cell division in the mesocarp tissue. By the end of fruit development

there were an average of 84.5 + 2.1 more cells across the fruit diameter of normal

fruits.
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Figure 3.7

Estimated changes in mean equatorial mesocarp cell number during the course of ‘Hass’ fruit
development. The vertical line at 57 d after full bloom represents time at which fruit with degenerate
seed coats were first recorded. Regression line for normal fruit (1) is represented by y = 833.9 -
2560.5(0.9488)"; fruit with healthy seed coats (+) by y = 839.6 - 2661.8(0.9480) ; and fruit with
degenerate seed coats (A) by y = 746.9 - 5576.3(0.9222)". (Curves were calculated from a total of
54 measurements per treatment at each time interval).

When comparing r for cell size and cell number measurements of fruit with degenerate
seed coats and those with functional ones, it is apparent that cell size is not a function
of seed coat degeneration (Fig. 3.8; Table 3.2). Seed coat degeneration has a marked
effect on rate of cell division, with rate being significantly greater (P < 0.01) in fruits with
functional seed coats (Table 3.2). From the time at which fruits with aborted seed coats
were first recorded, 57 d after full bloom, rate of cell division in fruits with degenerate
seed coats slowed markedly, whereas in fruits with healthy seed coats, cell division

continued for at least a further 50 d (Fig. 3.7).
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Mean mesocarp cell size during the course of ‘Hass’ avocado fruit development. Regression line
for normal fruit (Q) is represented by y = 1854.5 - 2330.0(0.9808)%; fruit with healthy seed coats (+)
by y = 1859.5 - 2311.3(0.9812)*; and fruits with degenerate seed coats (A) by y = 1852.9 -
2390.8(0.9806)" (Curves were calculated from a total of 54 measurements per treatment at each time

interval).

Table 3.2
Summary of mean values for the parameter representing rate (r) of the general logistic curve for cell
size and cell number measurements. Values are means of 54 measurements at each time interval.

Rate (r)
Cell number Cell size
Normal fruit 0.9488° 0.9808°
Small fruit 0.9233° 0.9814?
Healthy seed coat 0.9480° 0.98122
Degenerate seed coat 0.9222° 0.9806°

The LSD (1%) between treatments is 0.0018 and 0.0008 for cell number and cell size measurements
respectively. 'Treatments having different letters are significantly different between treatments (P
< 0.01).
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3.2.5 Fruit size and concentration of iP and ABA

To determine what relationship, if any, exists between iP and ABA and expression of
the ‘Hass’ avocado small fruit phenotype, mesocarp iP and ABA concentrations of fruit
at harvestable maturity were measured by RIA and HPLC respectively. The results
presented in Figure 3.9 show that phenotypically small fruit contained substantially less
iP than similarly aged large fruit and that with an increase in fruit size there is a
concomitant increase in iP concentration. A similar effect of fruit size on fruit ABA
content was observed. Normal ‘Hass' fruit contained substantially less ABA than
phenotypically small fruit (Fig. 3.10). The combined effect was an elevation in the

mesocarp iP:ABA ratio with increasing fruit size (Fig. 3.11).
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Figure 3.9
Relationship between fruit size and mesocarp ABA concentration. Regression line is represented
by the equation y = 18.62 + [-27.3/(1 - 0.0407x)], R* = 85.0%.
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Figure 3.10
Relationship between fruit size and mesocarp iP concentration. Regression line is represented by
the equation y = 0.053x + 12.07, R* = 79.6% (o represents a high residual point and was excluded
from the regression analysis).
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Figure 3.11
Relationship between fruit size and mesocarp iP:ABA ratio. Regression line is represented by the
equation y = 0.00278x + 0.01103, R? = 76.2% (o represents a high leverage point and was excluded
from the regression analysis).
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Figure 3.12
Chromatograph of sterols in the mesocarp of phenotypically small (blue) and normal (red) ‘Hass’
avocado fruit, 55 d (a) and 146 d (b) after full bloom.
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3.2.6 Fruit size and sterols

Sterols of mesocarp of phenotypically small and normal fruit were analysed by reverse
phase HPLC and data are illustrated in Figure 3.12 (a and b). Results show that four
major sterol-like components were resolved, and one of these (labelled C) clearly
comprised more than one compound. Although identification of these sterols was
unfortunately not determined in the present study, it is evident that small fruit contained
higher concentrations of phytosterols A, B, C and D on two consecutive sampling dates
(Fig. 3.12a and b), indicating that these products of isoprenoid metabolism are not
limiting in small ‘Hass’ fruit. Even so, sterol accumulation has been associated with
increased ageing and onset of membrane maturity (Stalleant and Geuns, 1994),
processes that would be expected to occur in small ‘Hass’ fruit in which cell division
ceases early and is followed by seed coat senescence and the onset of horticultural

maturity.

3.3 SUMMARY

(1) Phenotypically small ‘Hass’ fruit (less than 100g) always contained a degenerate
seed coat, and fruit size was closely correlated to seed size.

(2) Final "Hass’ avocado fruit size is a function of mesocarp cell number and not
mesocarp cell size.

(3) Fruit size was positively correlated with CK concentration and negatively
correlated with ABA concentration, and mesocarp sterol complement showed
qualitative and quantitative differences between phenotypically small and normal

fruit. Mesocarp iP:ABA ratio was linearly correlated with increasing fruit size.
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CHAPTER 4

ROLE OF ISOPRENOIDS AND 3-HYDROXY-3-METHYLGLUTARYL COENZYME A
IN THE METABOLIC CONTROL OF AVOCADO FRUIT GROWTH

4.1 INTRODUCTION

For plant growth and development, synthesis of isoprenoids is fundamental because
the pathway supplies compounds which are essential for full morphogenic expression.
This class of compounds is of structural significance, e.g, carotenoids and the side
chain chlorophylls and plastoquinone for photosynthesis, the side chain of ubiquinone
for respiration, sterols for membrane structure and phytoalexins for defence. The
pathway also supplies several regulatory molecules including ABA, brassinosteroids,
gibberellins and the side chain of CKs (Fig. 4.1) that contribute to control of both
temporal and spatial events during higher plant ontogeny. Despite this, surprisingly
little information is available concerning regulation of isoprenoid biosynthesis in plants

and plant parts, particularly developing fruit.

While controversy still surrounds the subcellular site of MVA metabolism (Campos and
Boronat, 1995; Chappell, 1995a; 1995b), it is generally agreed that reduction of 3-
hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) is potentially a major point of
regulation of isoprenoid biosynthesis in plants (Bach, 1987; Gray, 1987; Gondet et al.,
1992; Moore and Oishi, 1994; Chappell et al., 1995). HMG-CoA arises from the
sequential condensation of three acetyl-CoA units (Chappell, 1995a) (Fig. 4.1). The
conversion of HMG-CoA to mevalonate (Fig. 4.1) is irreversible, and is considered to
be the rate limiting step for sterol metabolism in mammals (Goldstein and Brown, 1990).
Whether HMGR plays a similar rate-limiting role in controlling plant isoprenoid
biosynthesis remains unresolved (Bach et al,, 1991; Choi et al., 1992). In plants,
increased ABA concentration, associated with stress, has been correlated with
decreased HMGR activity in developing endosperm of maize vivipary mutants (Moore
and Oishi, 1994). Using tomato as a model system, Narita and Gruissem (1989)
demonstrated that HMGR expression and activity is required during early fruit

development. Furthermore, these authors showed that in vivo inhibition of HMGR
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during early fruit development disrupted the process whereas inhibition during the later,
expansion stage had no significant effect. Since ripening was apparently unaffected it
was concluded that inhibition of HMGR reduced the MVA pool required for phytosterol

biosynthesis.

acetyl-coA

v

HMG-coA

HMGR +

mevalonate

v

IPP r~ | cytokinins

ag

GPP

7 v

FPP > | sterols

1y

GGPP ——>

gibberellins

carotenoids | ABA

Figure 4.1
Schematic representation of the isoprenoid biosynthetic pathway. Light arrows indicate multiple
steps or reactions (IPP = isopentenyl diphosphate; GPP = geranyl diphosphate; FPP = farnesyl
diphosphate; GGPP = geranylgeranyl diphosphate; and PT = prenyltransferase-controlled reaction).

The small fruit condition is closely correlated to a low CK:ABA ratio (Fig. 3.11). It is
therefore proposed that a decline in the CK:ABA ratio lessens sink strength of
developing organs by influencing HMGR and cell division cycle activity to reduce final

fruit size. This hypothesis is supported by evidence which shows that ABA retards cell
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division cycle activity (Muller et al.,, 1994) and inhibits HMGR activity (Russell and
Davidson, 1982; Moore and Oishi, 1994) in several higher plant tissue systems. In
order to examine the interrelationship between HMGR, isoprenoid growth regulators
and the small fruit phenotype in ‘Hass’ avocado, mevastatin was used to specifically
inhibit in vivo HMGR activity during phase |, Il and lll of the developmental programme.
Supplementation with products of the isoprenoid biosynthetic pathway, and similarly
derived plant hormones, was performed to reveal which isoprenoids were the most

limiting during fruit growth and development.

4.2 RESULTS

4.2.1 Inhibition of fruit growth by mevastatin and effect of sterols

Injection of mevastatin, a competitive inhibitor of HMGR, through the pedicel during
either phase | or phase I retarded avocado fruit growth and development by 60% (Figs.
4.2 and 4.3).

w7

P

o :fi‘,;éfﬁd“f&

= Figure 4.2
Photograph illustrating the effect of mevastatin on ‘Hass’ avocado fruit growth, and the reversal of
this effect by co-injection with MVAL. 20 ug of mevastatin was injected into each fruit.
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Figure 4.3
Effect of mevastatin, stigmasterol and cholesterol on ‘Hass' avocado fruit growth. Compounds of
interest were applied during the 1994/95 season. 20 pL Tween 20:acetone:water (1:1:8, by vol.) via
the pedicel at concentrations of 1 ug pL™" (a) 55 d (Phase 1) and (b) 92 d (Phase ll) after full bloom,
and growth monitored as % increase in fruit length. Each value represents the mean of 8
determinations. SE (diff) = 9.0 (a) and 0.9 (b). Control (O); mevastatin (®); mevastatin + MVAL (H);
stigmasterol (+); mevastatin + stigmasterol (x); cholesterol (A); stigmasterol + cholesterol (1).
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In both experiments, mevastatin-induced retardation of fruit growth was reversed by co-
injection with MVAL resulting in recovery of the normal phenotype. Sterols reduced
avocado fruit growth when applied either in phase | or phase |l (Figs. 4.3 aand b). A
combination of cholesterol and stigmasterol, administered during phase |, also reduced
fruit growth and eventually arrested the process (Fig. 4.3a), causing 50% fruit
abscission 70 d after treatment. Although stigmasterol retarded avocado fruit growth
to the same extent when applied in phase I, it partially reversed the inhibitory effect of

mevastatin (Fig. 4.3b).

4.2.2 Effect of plant growth regulators on mevastatin-induced inhibition of fruit
growth
To determine the relationship between the plant growth regulators, iP and ABA, and
expression of the ‘Hass’ avocado small fruit phenotype, a single 20 ug dose of ABA
was administered via the pedicel to large fruit in the linear phase of rapid growth, either
in the presence or absence of iP, and the effect of each treatment compared with
respect to untreated large and phenotypically small fruit at harvest. Application of
exogenous ABA to large fruit during the linear phase of rapid growth caused fruit
growth to slow and induced seed coat senescence (Fig. 4.4). When ABA was co-
injected with an equal concentration of iP the deleterious effects of ABA were negated,
suggesting that an imbalance in the CK:ABA ratio may be pivotal in determination of

phenotypic expression.

Results presented in Figure 4.5a show that mevastatin-induced retardation of ‘Hass'
avocado fruit growth during phase | (55 d after full bloom), could be completely
reversed by co-injection with either MVAL, iP or the CK analogue CPPU. GA; and

stigmasterol by comparison, had little or no effect.

As shown in Figure 4.5b, neither CK, stigmasterol or GA; markedly influenced the
‘normal’ course of ‘Hass' avocado fruit development when applied during phase |,
although towards conclusion of this growth period both GA;- and stigmasterol-treated
fruit showed a slowing of growth. Likewise, AMO-1618, a purported inhibitor of kaurene
synthase activity (Dennis et al., 1965) and sterol biosynthesis (Douglas and Paleg,
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1972), did not markedly affect fruit growth, although it did cause growth to slow towards
the end of the experimental time frame. Exogenously applied ABA, however, reduced
fruit growth substantially and caused 90% fruit abscission within 50 d of application.
Co-injection with iP reversed the growth-retarding effect of ABA (Fig. 4.5b) and reduced
the incidence of fruit abscission compared to that observed in control treatments (Fig.
4.7).

Figure 4.4
Photograph comparing small and large ‘Hass’ fruit with fruit pre-treated with ABA, iP and ABA + iP,
and illustrating the effect of these plant growth substances on seed coat senescence.

During phase Il (146 d after full bloom), treatment of fruit with iP countered the growth
retarding effect of mevastatin (Fig. 4.5c). iP alone, however, did not increase fruit

growth during this phése.

In phase [l (210 d after full bloom), mevastatin reduced growth by 50% (Fig. 4.6a)
whereas treatment with iP stimulated this process (Fig. 4.6b). Surprisingly, only iP
completely reversed the growth retarding effect of mevastatin, although co-injection of
mevastatin with either MVAL or stigmasterol reduced the effect of this inhibitor (Fig.
4.6a). ABA reduced avocado fruit growth by 50% and this effect was reversed in fruits

co-treated with iP.
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Increase in fruit length (%)

influence of isoprenoid growth regulators on mevastatin-induced inhibition of ‘Hass' fruit growth.
(a and c), mevastatin treated; and (b), control. Compounds of interest were applied in phase | (a, 55
d after full bloom), phase Il (b, 146 d after full bloom) and phase il (c, 210 d after full bloom) of the
1995/96 season, and growth monitored as a % increase in fruit length. Each value represents the
mean of 8 determinations. SE (diff) = 6.0 (a and b), and SE (diff) = 3.5 (c). Control (O); mevastatin
(®); MVAL (M); mevastatin + iP (A); iP (A); ABA (¥); iP + ABA (Q); AMO 1618 (l); CPPU (V); GA, (+);

stigmasterol (x).
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Figure 4.6

Effect of iP, MVAL and stigmasterol on growth of mevastatin-treated fruit (a), and effect of iP, ABA
and stigmasterol on growth of control fruit (b) during phase lll. Chemicals were applied in 20 pL
Tween 20:acetone:;water (1:1, by vol.) via the pedicel 210 d after full bloom (phase Ill) during the
1995/96 season at concentrations of 1 ug pL ™! and growth monitored as a % increase in fruit length.
Determinations are the mean of 8 fruits per treatment. SE (diff) = 1.4. Control (O); mevastatin (®);
MVAL (H); iP (A); stigmasterol (x); ABA (V¥); iP + ABA (O).
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Figure 4.7
Comparison between the effect of ABA, ABA + iP, and all other treatments on ‘Hass' avocado fruit
abscission following pedicel injection of compounds during phase | of development. Experimental
conditions were as described for Figure 4.5. Control (@); ABA (R); ABA +iP (O); all others (Q).

4.2.3 Microsomal HMGR activity of mevastatin treated and non-treated fruit
In an attempt to further elucidate the proposed link between CKs, sterols, and the
synthesis of MVA, HMGR activity in fruits treated with or without mevastatin in phase

I, Il and Il was determined and the results are presented in Figure 4.8.

During the course of ‘Hass' avocado fruit development, activity of microsomal HMGR
remained unchanged (Fig. 4.8a). Although a similar trend was observed for small fruit,
specific activity of microsomal HMGR was approximately 30% that of untreated and
control fruit of comparable age (Fig. 4.8c). Fruit pretreated with mevastatin in either
phase |, Il or lll showed a substantial reduction in HMGR activity (Fig. 4.8d), with levels
similar to those observed for small fruit. Likewise, ABA treatment of fruit in phase I
reduced in vivo HMGR activity by 70% to 1.41 + 0.27 nmol h™ mg protein.
Unfortunately, insufficient samples, due to fruit ébscission, precluded a comprehensive

assessment of the effect of ABA on in vivo HMGR activity during avocado fruit
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development. Even so, co-injection of ABA with iP during phase Il partially restored
HMGR activity (cf. 2.15 + 0.24 versus 6.35 + 0.92 nmol h' mg™ protein in untreated
fruit). HMGR activity was unaffected in fruits co-injected with MVAL and mevastatin
(Fig. 4.8e), whereas stigmasterol was inhibitory and exacerbated the effect of
mevastatin on enzyme activity (Figs. 4.8f and g). Treatment of fruit with iP did not affect
HMGR activity significantly during the course of fruit development (Fig. 4.8h). At all
stages of fruit growth iP treatment reversed the inhibitory effect of mevastatin (Fig.
4.8i).
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Figure 4.8

HMGR enzyme activity in developing ‘Hass’ avocado fruit and fruit pretreated with mevastatin
and/or iP and/or stigmasterol. Batches of fruit (8 per treatment were injected with 20 pL of
mevastatin and/or MVAL and/or iP and/or stigmasterol (all 1 ug uL™") 55 (phase 1), 146 (phase ll) and
210 (phase lll) d after full bloom and the fruit harvested 40 d later. HMGR activity was determined
in Ca*-sedimented microsomal membranes derived from freeze-dried mesocarp tissue as described
in Section 2.14. Each value is the mean of three to six determinations. SE (diff) = 0.63. (a), Untreated;
(b), control; (c), small fruit; (d), mevastatin; (e), mevastatin + MVAL; (f), stigmasterol; (g), mevastatin
+ stigmasterol; (h), iP; (i), mevastatin + iP.
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4.2.4 Effect of mevastatin on mesocarp ABA content

Analysis of ABA in mesocarp from small fruit and fruit pretreated with or without
mevastatin and/or MVAL, iP, and stigmasterol revealed the trends shown in Table 4.1.
ABA concentration declined over the normal course of avocado fruit growth and
development. By comparison, mesocarp ABA content of small fruit increased and at all
stages of growth, small fruit contained substantially more ABA than fruit from control
treatments. Mevastatin treatment significantly enhanced ABA concentration at all
stages of fruit growth while co-injection of this inhibitor with either MVAL or iP reversed
the effect. MVAL resulted in a return to basal ABA concentration at all stages of fruit
growth. In contrast, exogenous application of iP reduced basal ABA content by >50%
during the early stage of fruit growth but was only 50% as effective as MVAL during the
later stages of this process. Stigmasterol reduced mevastatin-induced ABA
accumulation by 30% in fruits treated in phase | and by more than 50% when co-

injected with mevastatin in phase lll.

Table 4.1

ABA content of mesocarp tissue from developing small fruit and fruit pretreated with mevastatin,
MVAL, stigmasterol and iP. Batches of fruit (8 fruit per treatment) were injected via the pedicel with
20 pL solutions of Tween 20:acetone:water (1:1:8, by vol.) containing mevastatin, mevastatin +
MVAL , mevastatin + stigmasterol and mevastatin + iP (all 1 pg L) 55 (phase 1), 146 (phase ll) and
210 (phase lll) d after full bloom. Fruits were harvested between 50 and 100 d after application of
chemicals and ABA content determined as described in Chapter 2. Data are the mean of at least
three determinations (LSD,, = 109).

Time after full bloom (d)
Treatment 163 216 290

[ABA] ng g dry weight (%)"

Control 293 (100)%* 122 (100)° 109 (100)°
Small fruit 636 (217)° 818 (670)° 755 (693)°
Mevastatin 669 (228)° 390 (320)° 673 (617)°
Mevastatin + MVAL 330 (113)° 161 (132)*® 111 (102)?
Mevastatin + iP 141 (48)° 264 (216)° 249 (228)°
Mevastatin + Stigmasterol 446 (152)° ND 315 (289)°

'Percent relative to control! At each time interval, values followed by different letters are
significantly different (P < 0.05). ND = not determined.
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4.3 SUMMARY

(1) Isoprenoid biosyhthesis is intimately involved in the regulation of ‘Hass’ avocado
fruit growth, and a role for the key regulating enzyme of this pathway, HMGR,
was confirmed.

(2) Application of ABA or mevastatin (a competitve inhibitor of HMGR) reduced
‘Hass' fruit growth and increased mesocarp ABA concentration.

(3) Mevastatin-induced inhibition of fruit growth was reversed by stigmasterol during
phase Il and Il but not during phase |.

(4) Down-regulation of HMGR by mevastatin and ABA was reversed by co-treatment
with either MVAL or CKs and CKs respectively.
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CHAPTER §

CYTOKININ AND ABSCISIC ACID MEDIATION OF SYMPLASTIC
SOLUTE TRANSPORT IN DEVELOPING AVOCADO FRUIT

5.1 INTRODUCTION

The limiting parameter for growth of phenotypically small fruit appears to be cell
number, and the observed reduction in cell division occurred coincident with increased
mesocarp ABA concentration and reduced HMGR activity. Since ABA-induced
retardation of fruit growth, and inhibition of HMGR activity were negated by co-
treatment with iP, a relationship between activity of HMGR and endogenous ABA and
CK concentration in the metabolic control of ‘Hass’ avocado fruit growth was
suggested. Similarly, previous reports on phytohormone regulation of HMGR suggested
that a change in hormone balance during development could impact on growth through
modulation of HMGR (Bach and Lichtenthaler, 1983; Brooker and Russell, 1979; Moore
and Oishi, 1994; Russell and Davidson, 1982). Although changes in hormone content.
of phenotypically small fruit presumably result from alterations in metabolism and
transport of affected bioactive molecules, the underlying stimulus responsible for these
changes has yet to be elucidated. One possibility might be the supply of
photoassimilate required for cell growth and differentiation during fruit ontogeny,
particularly as both ABA and iP are products of MVA metabolism.

Formation of MVA is considered to involve condensation of three units of acetyl-CoA
to HMG-CoA, which is then reduced to MVA by HMGR. In developing fruit the bulk of
newly formed acetate is derived from sugars, imported from source tissue (Ho, 1988).
In avocado, source tissues include photosynthetically active leaves and fruitlets
(Coombe, 1976; Thorne, 1985; Blanke and Lenz, 1989; Blanke and Whiley, 1994).
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Additionally, stored tree reserves are mobilized during periods of organ growth to
sustain development of these structures (Kozlowski, 1992). Phloem is the most likely
path of solute movement in dicotyledonous species and in developing fruit, phloem
unloading occurs in the testa (Thorne, 1985). However, in avocado the seed is
exotestal (i.e. completely pachychalazal) and enclosed by a highly vascularized seed
coat (Steyn et al. 1993). It is the developing pachychalaza (i.e. the seed coat) that

supplies photo assimilate, mineral nutrients and water to the expanding mesocarp.

Two possible paths exist for the uptake of sugars from the seed coat in developing
avocado fruit. Firstly, active transport via the plasma membrane and secondly, passive
transport via plasmodesmata. Plasmodesmata are dynamic structures in which pore
size, and hence molecular exclusion limit, is up- or down-regulated by processes
involving callose deposition and removal from the annulus, and by structural
modifications to the central lipoprotein core (Lucas et al., 1993; Morris, 1996). A variety
of agents are considered to be involved in the regulation of transport via
plasmodesmata including: Ca®* release, initiated by the inositol triphosphate-
diacylglycerol (IPs/DAG) second messenger system (Robards and Lucas, 1990);
phosphorylation of the callose synthesizing enzyme (Lucas et al., 1993); and, plant
hormones (Morris, 1996). Since many hormone responses appear to be mediated by
the IP/DAG signal transduction system it has been suggested that hormones like ABA,
that are transported in the phloem, might act to modulate symplastic phloem loading

and unloading by influencing protein phosphorylation (Morris, 1996).

Casual observation has revealed that a characteristic of phenotypically small ‘Hass'’
fruit is early senescence of the seed coat. The question therefore arises: Are
phenotypically small fruit a consequence of early seed coat senescence, or is the
abortion of seed coat function a response to some other factor induced by a reduction

in HMGR activity and diminished cell division cycle activity?
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It has recently been demonstrated that transgenic tobacco plants that constitutively
express a yeast insoluble-acid invertase gene develop symptoms which are
characteristic of the onset of early leaf senescence (Ding et al., 1993). Ultrastructural
analysis of these transgenic plants revealed that development of secondary
plasmodesmata was inhibited in the greenish-yellow sectors of affected leaves. Based
on these observations, Ding et al. (1993) hypothesized that secondary plasmodesmata
differ from primary plasmodesmata in being able to traffic regulatory molecules that are
involved in the coordination of development and physiological function. In addition to
these structural changes, biochemical and physiological studies showed, accumulation
of carbohydrates, a decline in photosynthesis and increased respiration in leaves of
transgenic tobacco expressing the yeast invertase gene (von Schaewen et al., 1990).
Since these alterations in metabolism can also contribute to accelerated leaf
senescence, it was further suggested that inhibition of secondary plasmodesmatal
development may be the consequence of any change in carbon catabolism (Ding et al.,
1993).

The terms “feast” and “famine” have been used to describe developmental trends in
response to changes in carbohydrate concentration and composition in higher plants
(Koch, 1996). Carbohydrate availability affects carbohydrate allocation through altered
gene expression and may therefore be crucial in the metabolic control of fruit growth.
For example, sugar availability strongly affects cell differentiation and cell cycle activity
in higher plants (Ballard and Wildman, 1963; Webster and Henry, 1987). Furthermore,
carbohydrate supply is critical for kernel set in maize (Zinselmeier et al., 1995), fruit
size of tomato (Klann et al., 1996), and utilization of sugars in developing leaves, seed
and fruit is strongly dependent on Suc metabolizing enzymes (Klann et al., 1993; 1996;
Miller and Chourey, 1992; Morris and Arthur, 1984; Ohyama et al., 1995) that are
encoded by sugar responsive genes (Koch et al., 1992). This information suggests that
availability of sugars and the composition thereof, are crucial for fruit development.

Furthermore, plant HMGR Kinase, responsible for regulating the activity of HMGR, has
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been classified as a member of the Suc nonfermenting-1 (SNF-1) family of protein
kinases (Barker ef al., 1996). SNF-1 represents a primary target of the Gluc repression
pathway in budding yeast, and Gluc repression of metabolism involves a signal
transduction pathway that links perception of Gluc concentration with repression and/or
derepression of Gluc-repressible genes (Thevelein, 1994). For example, down-
regulated genes function in gluconeogenesis and respiration while those up-regulated,
function in glycolysis and storage carbohydrate breakdown. SNF-1 is integral to this
pathway and Gluc-repressible genes cannot be switched on in response to Gluc
deprivation in the absence of SNF-1 activity (Celenza and Carlson, 1989; Gancedo,
1993). Thus, it is tempting to suggest that avocado mesocarp HMGR is likewise
modulated by the effects of carbohydrate concentration and composition on HMGR

kinase activity.

This chapter describes experiments that were carried out to determine the effect of fruit
size on the endogenous iP and ABA concentration and to establish the effects of an
altered CK:ABA ratio on symplastic solute transport, mesocarp cell-to-cell
communication and plasmodesmata structure/function in developing ‘Hass’ avocado

fruit.

5.2 RESULTS

5.2.1 Carbohydrate cycling and fruit growth

To determine fluctuations in stored carbohydrate reserves relative to timing of the major
phenological events, bark starch levels were determined on a monthly basis. Results
show that a period of rapid decline of stored starch coincided with early fruit growth
(Fig. 5.1), i.e. stored carbohydrate reserves were mobilized during this period to sustain
the energy expensive event of fruit growth. Towards the end of the fruit growth period,

trees again accumulated stored carbohydrate reserves (Fig. 5.1).
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Figure 5.1
Relationship between fruit growth and storage carbohydrate mobilization in ‘Hass’ avocado trees
(A) in relation to fruit growth (Q). SE (diff) = 0.25.

5.2.2 Path of assimilate movement and solute allocation

Phloem-translocated carbohydrate drives growth of developing sinks. Since both ABA
and CK are translocated in the phloem it was of interest to determine the effect of an
increase in concentration of these growth substances on solute allocation in developing
avocado fruit. To examine the functional significance of the seed coat and vasculature,
the major path of sugar movement was established by application of an aqueous
solution of tetrabromofluorescein (eosin) via the pedicel. Figure 5.2 illustrates the
pattern of eosin distribution in developing avocado fruit. Eosin cannot permeate
membranes and is therefore restricted to the syplastic pathway of solute flux. As
expected, dye was restricted to the vasculature, which permeates the mesocarp and
coallesces at the chalaza, i.e. the basal region where the nucellus and integuments
fuse, coincident with the funiculus. From the chalazal region, eosin appeared to enter
the seed (data not shown) and permeate seed coat tissue via vascular traces. No
lateral diffusion of eosin from vascular traces in either mesocarp or seed coat tissue
was observed suggesting that bulk solute movement into the developing fruit was
apoplastic and occurred along the continuum: pedicel vasculature — mesocarp

vasculature — chalaza — seed; or seed coat — seed — mesocarp.

65



Figure 5.2
Photograph illustrating the pattern of eosin distribution in developing ‘Hass’ avocado fruit.

A more detailed examination of this path and the effect of applied ABA and iP on solute
movement was made by monitoring the accumulation of radioactivity, from pulsed ["C)-
sucrose, in seed, seed coat and mesocarp tissue. As shown in Figure 5.3, the
distribution of accumulated radioactivity was essentially similar for untreated control-
fruit, iP-treated fruit and fruit co-treated with equal amounts of ABA and iP.
Interestingly, the bulk of radioactivity was associated with seed coat tissue in all
treatments. Both phenotypically small fruit and ABA-treated fruit preferentially
accumulated radioactivity in the seed, suggesting that only the path via the seed coat
had been affected by ABA and expression of the small-fruit phenotype. The pattern of
distribution of radioactivity in ABA-treated fruit was restored to that of the control by co-
treatment with iP. The relatively high proportion of radioactivity in mesocarp of small

fruit and ABA-treated fruit probably reflects reduced transport capacity, a suggestion
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supported by the observation that uptake of [**C]-sucrose by these fruit was <10% that

of the control.

100

40 A

20 -

Distribution of radioactivity (%)

0 -
Control Small iP ABA ABA +iP
Treatment
. seed seed coat mesocarp
Figure 5.3

Effect of ABA, iP and stigmasterol on distribution of radioactivity in the seed, seed coat and
mesocarp tissue of 226 day old ‘Hass’ avocado fruit pulsed with ['“C]-sucrose (2 Mbq in 0.5 mL
distilled H,0) followed by water via the pedicel and incubated for 48 h at room temperature.

5.2.3 Membrane potential of seed coat and mesocarp parenchyma

In attempting to define the cellular pathway of post-phloem sugar transport in
developing avocado fruit, the membrane potential (E,) of seed coat and mesocarp
parenchyma was determined. Although measurement of E_, is extremely difficult (van
Bel and Kempers, 1990), with due precaution cells were successfully impaled and after
sealing of the plasma membrane (indicated by voltage stabilization) values were
recorded and are shown in Table 5.1. It is evident that an electrical potential gradient
exists between seed coat and mesocarp parenchyma and that this gradient is

maintained in fruit pretreated with iP. However, in response to exogenous ABA the
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gradient is flattened suggesting reduced transport of sugars between these tissues.
Interestingly, co—treatmént of ABA with iP was unable to restore the E,, between seed
coat and mesocarp tissue. Since the steepness in E,, between neighbouring cells
(tissues) reflects symplastic connectivity, i.e. the steeper the gradient the poorer the
symplastic connectivity (van Bel and Kempers, 1990), the present results indicate good

symplastic connectivity between avocado seed coat and mesocarp tissue.

Table 5.1
Plasma membrane electrical potentials (+SE) of tissues of developing ‘Hass’ avocado fruit pre-
treated in vivo with or without ABA, iP and iP + ABA. Number of E,, measurements in brackets,

Membrane potential (E,,) (mV)

Seed coat Mesocarp
Treatment parenchyma parenchyma Difference
Control -44 +7 (9) -56 £ 6 (8) 12
iP -46 £ 5 (11) -61 17 (3) 15
ABA -45 +5 (8) -47 + 5 (8) 2
iP + ABA -45+ 8 (11) -48 £ 6 (7) 3

5.2.4 lontophoresis of Lucifer Yellow in avocado mesocarp

As shown in Figure 5.4a, labelling of impaled mesocarp cells by post-injection of LYCH
by iontophoresis substantiated the claim for a high degree of symplastic connectivity
in control fruit. Even so, one of the major limitations of using fluorescence microscopy
is that image visualization is difficult, often as a result of low level fluorescence from
insignificant injected fluorochrome volumes, or masking effects due to autofluorescence
from surrounding cells/tissues. Thus, pseudocolour images, based on the intensity of
fluorescence, were generated by digitizing video pictures and these are presented in
Figure 5.4b. The enhanced ease of interpretation clearly indicates that most of the
LYCH had diffused radially from the injected cell by 2 min. Similar observations were
made for seed coat tissue (data not show) in which radial diffusion of LYCH was

extremely rapid.
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Figure 5.4
Microiontophoresis of LYCH in mesocarp of ‘Hass' avocado fruit. (a1) to (b1) Fluorescence micrographs of hand-cut
sections of avocado mesocarp parenchyma cells reverse microiontophoresesd with LYCH as described in Materials
and Methods, immediately (a1), 1 min (a2) and 2 min (a3) after time of injection. (B1) to (b3) Digitized pseudocolor
images of (a). A five-colour “pseudocolour” palette based on fluorescence intensity of LYCH concentrations,
ranging from black (zero), to aquamarine (low), blue (medium), purple (high), and white (highest), was applied.




: Figure 5.5

Microiontophoresis of LYCH in mesocarp parenchyma of ‘Hass’ avocado fruits pre-treated with ABA, iP, and ABA
+ iP. Digitized images of fluorescence micrographs of hand-cut sections of mesocarp from fruit pre-treated with
iP and microiontophoresed with LYCH immediately (a1), 1 min (a2) and 2 min (a3) after injection. Digitized images
of fluorescence micrographs of mesocarp parenchyma from fruit pre-treated with ABA, microiontophoresed with
LYCH, immediately (b1), 2 min (b2) and 6 min (b3) after injection. Digitized images of fluorescence micrographs of
mesocarp parenchyma from fruit pre-treated with ABA + iP and microiontophoresed with LYCH immediately (c1),
1 min (c2) and 2 min (c3) after injection.
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Pre-treatment of avocado fruit with exogenous iP did not affect mesocarp cell-to-cell
communication as depicted by the pseudocolour images presented in Figure 5.5a. By
comparison, pre-treatment of fruit with exogenous ABA retarded mesocarp cell-to-cell
transfer significantly and LYCH was contained within the injected cell for periods in
excess of 6 min (Fig. 5.5b). Cell-to-cell communication in mesocarp from fruit co-treated
with iP and ABA was rapid and resembled that observed in control and iP-treated tissue

(Fig. 5.5¢)

5.2.5 Plasmodesmata structure/function in avocado mesocarp
The principal results of plasmodesmatal ultrastructure in mesocarp of developing small
and normal ‘Hass’ avocado fruit and fruits pre-treated with iP, ABA, and iP+ABA are

illustrated in Figures 5.6a to 5.8b.

Figure 5.6a shows that plasmodesmatal aggregates occur within primary pitfields in
mesocarp of developing ‘Hass' avocado fruit. Both branched and unbranched
plasmodesmata are evident (Fig. 5.6a & b) and these are usually associated with rough
endoplasmic reticulum (RER, Fig. 5.6b). As illustrated in Figure 5.6c¢, plastids appear
intact and well preserved with no evidence of senescence. Longitudinal (Fig. 5.6b) as
well as transverse views (Fig. 5.6d) show that plasmodesmata contain a clearly defined
desmotubule, surrounding a cytoplasmic annulus of variable electron density. All
plasmodesmata in mesocarp tissue appeared to have slightly constricted outer
plasmodesmatal orifices, which could be argued as neck constrictions (Gunning, 1975).
In many cases, as shown in Figures 5.6b, ¢ & d, the plasmodesmata are associated
with large, complex-structured median cavities, that seem to cross link many
plasmodesmata. Median cavities occur in the middle lamella region and
plasmodesmata are sometimes branched on one side only (Fig. 5.6c). In many
instances, plasmodesmata are highly convoluted (Fig. 5.6e). Similarly the plasma

membrane is convoluted.
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Figure 5.6

Ultrastructure of untreated “normal” ‘Hass’ fruit plasmodesmata. (a) Transection through the
tangential wall between two mesocarp cells, showing mostly branched plasmodesmata, associated
with large median cavities (MC) in the middle lamella interface between the two common cell walls.
Note the close conformation between the endoplasmic reticulum (ER) and the outer orifice of the
plasmodesmata (darts). (b) Transection of a common radial wall between two mesocarp cells, but
close to the mesocarp-seed coat interface, Unbranched and branched plasmodesmata, associated
with ER and rough ER (RER), occur commonly within these cells. (c) Shows part of two adjacent
mesocarp cells (P = plastid). (d) Transection through part of a plasmodesmatal pit field in the radial
wall of an inner mesocarp cell. Note the tight conformational structure of the plasmodesmata and
the desmotubule with central rod. Most plasmodesmata have an electron-lucent cytoplasmic sleeve
in these sections. (e) Shows part of a plasmodesmata pit field in the tangential wall of inner
mesocarp cell, with highly convoluted MC. Note ER in close association with plasmodesmata.
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Figure 5.7

Ultrastructure of plasmodesmata in mesocarp of ABA-treated and phenotypically small ‘Hass’
avocado fruit. (a) Transection of a tangential wall between mesocarp cells of ABA-treated fruit. Note
unbranched and branched plasmodesmata, which are all occluded by granular electron-dense
material, which appears to form a tight collar, plugging the outer orifices of the plasmodesmata
(darts). (b) Transection of a tangential wall between mesocarp cells of small fruit. Plasmodesmata
appear “plugged” similar to those from ABA-treated tissue (darts). (c) Transection through part of
plasmodesmatal pitfield in the radial wall of an inner mesocarp cell from ABA-treated fruit,
illustrating collar-like structure on outer surface (darts) .
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Figure 5.7 shows that striking structural changes were manifested in sections prepared
from mesocarp of fruit pre-treated with ABA. Furthermore, structural similarities
between small (Fig. 5.7b) and ABA-treated (Fig. 5.7;a) ‘Hass' fruit were apparent. The
plasma membrane, as illustrated in Figure 5.7a, lacks the highly convoluted
appearance evident in control tissue (cf. Figs. 5.6 a, b & c). Most plasmodesmatal
orifices appear to be ‘plugged’ by a granular electron-dense substance, which forms
a collar-like structure when viewed in transverse (darts, Fig. 5.7c) or plug-like
formations (darts, Fig. 5.7a) on the outer surface of the plasmodesmata. The complexity
of median cavities in avocado mesocarp tissue is again apparent, indicating a high

degree of interconnectivity of the plasmodesmata.

Figure 5.8
Ultrastructure of plasmodesmata in mesocarp of iP- and iP + ABA- treated ‘Hass’ avocado fruit. (a)
Transection of tangential wall between mesocarp cells of iP-treated fruit. Plasmodesmata are
separated by an electron-lucent wall region (darts). Commonly and of interest, are the large
electron-dense (possibly coalesced) plasmodesmata (CPD). (b) Transection showing tangential wall
between mesocarp cells of iP + ABA treated tissue. Note the wide electron-lucent outer wall zone
(darts), between concomitant plasmodesmata (arrows).

Figure 5.8a shows plasmodesmata from the tangential wall of a mesocarp cell from iP-
treated avocado fruit. The plasmodesmata appear less electron-dense than those in

control tissue and are complex, cross-linked and multi-branched in appearance.
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Plasmodesmata from mesocarp of iP-treated fruit do not appear to be constricted. A
striking feature of iP—’;reated avocado tissues, are large, electron-dense regions,
possibly coalesced plasmodesmata (CPD), which occur within otherwise normal-looking
plasmodesmatal pit fields. Outer wall regions are more electron-lucent than in control
tissues (darts). Plasmodesmata in mesocarp of fruit co-injected with iP and ABA are
occluded by globular electron-dense material at the plasmodesmatal orifices (arrows)
and others lack this material (Fig. 5.8b). Of interest is the absence of neck constrictions

in unoccluded plasmodesmata.

5.3 SUMMARY

(1) Solute transport was similarly affected in phenotypically small and in normal fruit
injected with ABA, whilst co-treatment with ABA plus iP restored solute transport
to sinks in a manner similar to that in control fruit and/or in iP-treated fruit.

(2) An electrical potential gradient was observed between seed coat and mesocarp
parenchyma cells of normal ‘Hass' fruit. This gradient is reduced by the
application of ABA, and this reduction was unaffected by co-treatment with ABA
plus iP.

(3) Plugging of plasmodesmata in avocado mesocarp was observed in
phenotypically small and ABA-treated fruit, but not in control and iP-treated fruit.

When iP was co-injected with ABA, the ABA effects were negated or reversed.
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CHAPTER 6

STRESS AND THE ‘HASS’ SMALL FRUIT SYNDROME:
ALLEVIATION THROUGH MULCHING

6.1 INTRODUCTION

Previous chapters have revealed that a complex of interrelated factors are apparently
involved in the control of fruit size, and the results suggest that the ‘Hass’ small fruit
phenotype is induced by a low CK:ABA ratio, which through a cascade of events
reduces HMGR activity and retards fruit development. A reduction of the CK:ABA ratio
is considered to be initiated by abiotic/biotic plant stress (Chapin, 1991). In drying soils,
xylem ABA concentration increases (Davies and Zhang, 1991; Davies et al., 1994),
which presumably leads to a lowering of the CK:ABA ratio in leaves and developing
fruits. During conditions of water stress, ABA acts on stomata in the leaf epidermis to
cause closure or inhibit the opening of stomata (Wartinger et al., 1990; Tardieu et a/.,
1992a; 1992b; Davies et al, 1994). Since the amount of CO, required for
photosynthesis is balanced against available water, a limitation in supply of CO, as a
result of elevated xylem ABA levels, is transducted into mechanistic down-regulation
of carbon fixation (Cowan, 1994). Thus under sustained abiotic/biotic pressure,

photoassimilate required to drive fruit growth and development becomes limiting.

Furthermore, water availability also affects the efficiency of light utilization by leaves
(Flore and Lakso, 1989; Thomas and Strain, 1991; Schaffer et al., 1994). Under
conditions of water stress, a decrease in the efficiency of photosynthetic conversion,
a phenomenon known as photoinhibition takes place (Powles, 1984; Adams et al.,
1987; Bjorkman and Schafer, 1989; Demmig-Adams and Adams, 1992). Photoinhibition
is a response that apparently protects photosynthetic pigments and electron transport
apparatus from severe photooxidative destruction (Demmig-Adams et al., 1988; Krause
et al., 1995). Photoinhibition is associated with a loss of productivity (Ogren and
Sjostrom, 1990), and so under prolonged periods of water stress, avocado yields may

be reduced.
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Symptoms of the ‘Hass’ small fruit syndrome are aggravated by incorrect cultural

practise and are more prevalent under adverse growing conditions. The present study

has highlighted a correlation between the ‘Hass’ small fruit phenotype and early seed

coat senescence, a physiological response that is apparently stress-induced (Whiley

et al., 1986). Early senescence of the seed coat substantially reduces-supply of

nutrients, assimilates and plant hormones required for fruit development, thus retarding -
fruit growth considerably (Cutting et al., 1986).

Figure 6.1
Photograph illustrating the control (a) and coarse composted pinebark mulch (b) treatments. 1.5m
pinebark was applied under each tree to a depth of 15 cm.

3

This study proposed mulching as a strategy to alleviate stressful growing conditions
and increase fruit size. This strategy is based on the avocado evolving as a "litter-
feeder" and its adaptation to soils with a high humic content. Coarse composted
pinebark was chosen for this study (Fig. 6.1) because of its excellent physical
properties and relatively slow speed of breakdown. The application of a mulch to the
orchard floor creates edaphic conditions that avocado trees are more acclimatized to.
It was hoped that this would reduce the occurrence of small fruit by eliminating the
confounding effects of either stress-induced ABA accumulation and/or feedback
regulation of photosynthesis. In addition, photochemical efficiency of leaves from
mulched trees might be improved resulting in enhanced tree productivity. The purpose
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of this research was to determine whether mulching could be employed as an effective
method of improving growing conditions and elevating overall fruit productivity. The
effect of mulching on various phenological events and its impact on efficiency of light
utilization and accumulation of stored carbohydrate was also assessed. Finally, the
effect of mulching on yield and fruit size, as well as its economic significance was also
evaluated.

6.2 RESULTS

6.2.1 Canopy temperatures

In order to compare transpirational activity of mulched and non-mulched trees, canopy
temperatures were monitored using infra-red thermometers for two seasons, and the
results are presented in Figures 6.2 and 6.3.
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Figure 6.2

Comparison of seasonal fluctuations in canopy temperatures (minus air temperature) of trees in
the presence or absence of a pinebark mulch. Data are the means of measurements recorded every
15 sec between 0800H and 1600H. Arrows indicate onset of rapid increase in canopy temperature
of non-mulched or control trees (T 0 = Tarr)-
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Figure 6.3
Comparison of diurnal fluctuations of canopy temperatures of mulched and control trees (T, -
Tauen) before (a) and after (b) the period of rapid increase in canopy temperatures. Data are the
means of measurements recorded every 15 sec.
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Seasonal fluctuation in canopy temperatures (T oo - Tair) Show a flux ranging from ca.
1°C through to 6°C (Fié. 6.2). For two consecutive seasons a dramatic rise in foliage
temperature coincided with the onset of fruit drop, apparently a response by avocado
trees associated with stress (Whiley et al., 1988). The period of maximum canopy
temperature coincided with the physiological window associated with seed coat
senescence, approximately 106 and 95 days after full bloom for the 1994/95 and
1995/96 seasons respectively (assuming that full bloom was reached by mid-November
in each season). For the majority of the sampling period foliage temperatures of
mulched trees were lower than non-mulched control trees (T .o = Tmuch WaS pOSsitive)

indicating increased transpirational activity by mulched trees (Fig. 6.2).

By comparing diurnal fluctuations of foliage temperatures immediately before and
during the period of rapid increase in canopy temperature (T o - T.ir), differences
between the two treatments were apparent. T_,.o - Tmuen Was greater during the period
of rapid rise in foliage temperature (Fig. 6.3b) than immediately before it (Fig. 6.3a), i.e.
differences in canopy temperature between control and mulched trees was greater
during this critical stress period. Interestingly, night leaf temperatures of control trees
were greater than leaves from mulched trees during the period of high canopy
temperatures (Fig. 6.3b), whereas before the time of rapid rise in foliage temperatures,
no differences in night temperatures between leaves from mulched and non-mulched

trees were recorded (Fig. 6.3a).

6.2.2 Measurement of chlorophyll fluorescence

To compare photochemical efficiency of foliage from mulched and non-mulched trees,
a plant efficiency analyser was used to determine the rate of variable to maximum
chlorophyll fluorescence emission (F/F,, ratio). Typically, throughout the season,
efficiency of light utilization (the F /F, ratio) by leaves on both treatments had values
ranging from 0.75 to 0.85 early in the morning (Fig. 6.4 a to d). During the period of
greatest abiotic pressure (viz. the heat of the day) this value dropped, afterwhich the
F,/F., ratio returned to its original level in the evening. The magnitude of this drop

varied throughout the season with the greatest flux in the F /F,, ratio occurring 78 d
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after fruit set. At all time periods, the magnitude of this drop was reduced on trees
growing under mulched conditions, suggesting elevated photochemical efficiency of

leaves from mulched trees.
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Figure 6.4

Typical diurnal fluctuation in F /F, ratio of ‘Hass’ trees on the pinebark muich (A) and control (O)
treatments, 36 (a), 78 (b), 113 (c) and 176 (d) days after full bloom. Values are means of 10
measurements per treatment at each time interval. SE (diff) = 0.0031 (a), 0.0046 (b), 0.0037 (c) and

0.0028 (d).
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6.2.3 Physiological disorders associated with small fruit

Mulching with pinebark significantly (P < 0.05) reduced the incidence of fruit with
degenerate seed coats by 38.6% over two seasons (Table 6.1). Mulching also reduced
the incidence of fruit with pedicel ring-neck by 57.1%, 45.9% and 28.7% for the first,

second and third seasons respectively (Table 6.1).

Table 6.1
Effect of mulching on the incidence of pedicel ring-neck and seed coat abortion. To determine the
impact of mulching on seed coat abortion, 10% of harvested fruit were randomly selected and
bisected longitudinally, and the absence or presence of a degenerate seed coat was recorded. To
ascertain the effect of mulching on pedicel ring-neck, 100 fruit per tree were randomly selected and
presence or absence of the syndrome was recorded.

1993/94 1994/95 1995/96 Overall
Control 17.5+2.2 13.322.7 9.4+16 134124
Pedicel ring neck Mulch 7.5£2.4 72419 6.7+1.3 7.1+1.8
% decrease 57:1% 45.9* 28.7"° 47.0"
Control ND 31.444.2 19.443.2 25.4+3.7
Degenerate seed coat  Mulch ND 13.9424 17.323.0 15.6+2.8
% decrease ND 557> 10.8"° 386"

NS denotes not significantly different; « denotes a significant decrease (P < 0.05); «+ denotes a
significant decrease (P < 0.01). (ND = not determined).

6.2.4 Carbohydrate cycling

6.2.4.1 Starch cycling

The concentration of bark starch for both the mulch and control treatments showed
marked seasonal changes throughout the sampling period, with a flux ranging between
ca. 2% and 9% (Fig. 6.5). In each season, accumulation of starch reserves started in
autumn, with the cessation of shoot growth, and continued throughout winter. Maximum
levels of starch occurred in early spring and from then decreased sharply until the

following autumn (Fig. 6.5).
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Figure 6.5
Bark starch cycling in trees on the mulch (A) and control (O) treatments. Histograms show relative
yields for the mulch (solid) and control (striped) treatments each season. SE (diff) = 0.25.

These fluctuations follow the general pattern noted by Whiley et a/. (1996a and b) in
sub-tropical Queensland, but with a slightly greater amplitude. Although flux periods of
starch levels were consistent in each season, amount of starch accumulated and
depleted varied from season to season. Seasons of depressed yield followed a period

of low starch accumulation during the previous winter and were followed by high levels
of starch accumulation the ensuing season (Fig. 6.5).

6.2.4.2 Sugar cycling

Trunk bark sugar levels fluctuated rhythmically throughout the sampling period (Fig.
6.6), and the amplitude of these fluxes were less than that of fluctuations in starch
levels. In all seasons, peak sugar levels were reached towards the end of winter.
Thereafter, rapid depletion took place, coinciding with the periods of flowering, fruit set
and early fruit growth. Minimum levels of sugar occurred during late summer (Fig. 6.6),
which roughly corresponded with the time of least concentration of starch. For the
majority of the sampling period, percentage bark sugar content was slightly higher in

the mulched trees, i.e. there was a larger pool of immediately accessible carbohydrates
available to trees growing on the pinebark muich.
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Figure 6.6
Bark sugar cycling in trees on the mulch (4A) and control (O) treatments. Histograms show relative
yields of the mulch (solid) and control (striped) treatments for each season. SE (diff) = 0.23.

6.2.5 Phenology

6.2.5.1 Shoot flushing

No differences in flushing periods were observed between the mulch and control
treatments. Typically, trees entered the spring flush in late August / early September
and shoot extension had ceased by December / January. This spring flush coincided
with the onset of fruit set and early fruit growth. A second period of shoot extension (the
summer flush) was measured within two months after the cessation of the spring flush.
Surprisingly, the summer flush was very weak compared to the spring flush (Fig. 6.7).
In each season mean shoot extension during the spring flush was slightly greater on
mulched trees than on control trees (118 mm cf. 113 mm in 1993/94, 101 mm cf. 91 mm

in 1994/95, and 149 mm cf. 125 mm in 1995/96).
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Figure 6.7

Vegetative flushing periods of shoots on the mulch (A) and control (O) treatments. Solid arrows
indicate start of spring flush and light arrows indicate start of summer flush. Measurements are
means of 10 shoots per tree.
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6.2.5.2 Root flushing
Root flushing periods occurred at approximately the same time, but in the mulch

treatment were slightly earlier and for a more prolonged period (Fig. 6.8). Decline in
root activity coincided with flowering. Root activity in the mulch treatment was always
more intense than in the control (Fig. 6.8). In the mulch treatment, root growth fell into
the "medium" category for the majority of each season, whereas in the control mainly
"poor" root growth was recorded. For a substantial part of each season root activity was
allocated a "good" rating in mulched trees (Fig. 6.8). A small flush of surface root

activity was observed each winter, this being earlier in onset and more pronounced in

mulched trees.
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Figure 6.8
Root flushes for the mulch (A) and control (O) treatments as determined by a visual rating where
there is no root growth for a rating of 0 and extensive root growth for a rating of 10. Values are the

mean of 6 measurements per treatment.
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6.2.5.3 Flowering, fruit set and fruit drop

There were no differen;:es in periods of flowering, fruit set and fruit drop between the
mulch and control treatments. Periods of these phenological events are summarised
in Figure 6.9. Reproductive phenological events occurred one month later in the
1994/95 and 1995/96 seasons, and this might be related to the colder winters
experienced during these seasons (Fig. 2.2), with the resultant delay in floral bud
break.
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Figure 6.9
Schematic representation of periods of reproductive phenological events,

Fruit retention was strong for the 1993/94 and 1995/96 seasons, probably due to a
favourable leaf : fruit ratio after completion of the spring drop. This contributed to the
greater number of fruit and higher yields in these seasons. Typically, fruit drop is most
intense in the first six weeks after fruit set, e.g. a total of 70.6% and 67.4% of the fruit
tagged in spring 1993 and 1994 respectively, had abscised within four weeks. Fruitlet
drop for the 1994/95 season was more intense than in the other two seasons, and

consequently yields were lower for this crop.
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6.2.6 Yield and fruit size

Overall productivity was‘ significantly (P < 0.01) increased by mulching with composted
pinebark, and this positive response was achieved in three successive seasons (Table
6.2). Over the three year duration of the trial, mulched trees produced an average of
22.0 + 1.2 kg more than control trees, representing a 22.6% increase in yield. Harvest
results also confirm the biennial bearing nature of cropping in avocado trees. A heavy
crop in 1993/94 was followed by a relatively light crop in 1994/95, with high yields for
the following season (Table 6.2). Furthermore, the positive effects of pinebark mulching
on overall productivity was more pronounced during a season of low yield (1994/95)
(Table 6.2). Control trees show a typical fruit size distribution of the 'Hass' cultivar with
many fruit in the count size range of 22 to 26, and a high proportion of factory grade

avocados (Figs. 6.10a to d).

Table 6.2
Summary of the effects of pinebark mulching on ‘Hass’ avocado productivity. Figures are means
of six trees. %% denotes a significant (p < 0.01) increase in response to mulching.

Control Muich Percentage increase
1993/1994
Mean fruit mass (g) 198.0 221.3 11.8**
Fruit number / tree 509 540 6.1
Yield (kg / tree) 101 119 18.5**
1994/1995
Mean fruit mass (g) 178.2 199.2 11.8™
Fruit number / tree 262 333 O
Yield (kg / tree) 47 67 42.2**
1995/1996
Mean fruit mass (g) 216.1 220.4 2.0
Fruit number / tree 698 814 16.6**
Yield (kg / tree) 151 179 18.9**
Overall
Mean fruit mass (g) 203.1 216.5 6.6™*
Fruit number / tree 509 540 14.7%*
Yield (kg / tree) 100 122 22.6**
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Figure 6.10

‘Hass’ fruit size distributions for the 1993/94 (a), 1994/95 (b) and 1995/96 (c) seasons, and a total for
all three seasons (d). Solid histograms represent the mulch treatment and striped histograms
represent the control.

Mulching with pinebark resulted in fruit size being significantly (P < 0.01) increased by
an average 13.4 + 1.2 g, representing an overall shift of one count in favour of larger
fruit. Furthermore, this average 6.6% increase in fruit size was achieved in spite of a
14.7% increase in the number of fruit per tree. It was noteworthy however that
significant differences were obtained in the two seasons when yields were lower, and

not in the 1995/96 season of very high yield.
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6.2.7 Economic significance

The increase in mean erit mass coupled with elevated yields in response to mulching
resulted in an increase in the number of fruit that meet export requirements of fruit size
(Table 6.3), a beneficial response since the South African avocado industry is
predominantly export-orientated. Over the three season duration of the trial, mulching
increased the number of fruit that are considered highly suitable for export (counts 14 -
18) by 45.0%, and in addition the number of fruit that are acceptable for export (counts
10 -12; 20 - 22) by 20.0%. During the same period the number of fruit that are deemed

unsuitable for export was reduced by 29.0% in the muich treatment (Table 6.3).

Table 6.3
Summary of the effects of pinebark mulching on export potential related to fruit size. Counts 14 -
18 were considered to be highly suitable for export; counts 10 - 12 and 20 -22 were considered to
be acceptable for export; and counts > 24 were considered to be not suitable for export. Figures
are mean numbers of fruits per category per tree.

Control Mulch Percentage difference’
1993/1994
Suitable 200 344 +72.0
Acceptable 152 145 -46
Not suitable 157 51 -67.5
1994/1995
Suitable 53 i i 7 +120.8
Acceptable 71 114 +60.6
Not suitable 138 102 -26.1
1995/1996
Suitable 374 447 +19.5
Acceptable 1852 190 +25.0
Not suitable 172 177 +29
Overall
Suitable 209 303 +45.0
Acceptable 125 150 +20.0
Not suitable 155 110 -29.0

'Figures preceded by a positive sign indicate an increase by mulching, and figures preceded by a
negative sign indicate a decrease by mulching.
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The increased yield and mean fruit size coupled with improved export potential as a
result of mulching, méans that financial rewards to avocado producers could be
considerably boosted, although costs of the mulch would have to be off-set.
Considering that the half-life of composted pinebark is regarded as five years
(Wolstenholme et al., 1996), and that the initial costs of the pinebark were off-set within
two seasons (Table 6.4), the application of pinebark or similar mulches provides

avocado growers with another option of increasing profitability.

Table 6.4
Breakdown of costs of and extra revenue generated by the application of a pinebark mulch on
Everdon Estate, KwaZulu-Natal midlands.

1993/94 Cost of pinebark + transport = R26 300 / ha (-R26 300)
Return / ha (On farm)
Control Muich Extra revenue
1993/94 R34 700 R47 800 R13 100 (-R13 200)
1994/95 R16 300 R30 100 R13 800 (+R600)
1995/96 R70 500 R85 400 R14 900 (+R 15500)
6.3 SUMMARY

(1) Root growth was substantially increased by the application of a coarse
composted pinebark mulch.

(2) Mulching decreased the incidence of fruit with degenerate seed coats, lowered
mean canopy temperatures, improved photosynthesis and increased starch and
glucose availability.

(3) The mulch treatment proved to be cost-effective.
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CHAPTER 7
GENERAL DISCUSSION AND CONCLUSIONS

7.1 GENERAL DISCUSSION

Under South African conditions, ‘Hass' avocado is predisposed to producing a high
proportion of phenotypically small fruit which cannot be marketed. The large number
of small fryit costs the South African avocado industry between R30 and R40 million
per season. Although substantial investment in management strategies have been
made by growers and researchers, the underlying reasons for the appearance of

phenotypically small ‘Hass’ fruit have remained obscure.

Recourse to the literature revealed that surprisingly little information was available
concerning the metabolic control of avocado fruit growth and in particular processes
that might be affected by abiotic/biotic pressure and cultural practise. Furthermore, no
attempt had been made to characterise the ‘Hass' small fruit phenotype either
biochemically, physiologically or using molecular technology. It was therefore reasoned
that without a basic knowledge and understanding of the major metabolic processes
contributing to growth and development of avocado fruit, it was unlikely that an
appropriate management strategy could be adapted and implemented with confidence.
In an attempt to address these issues, the present study has characterised the ‘Hass’
small fruit phenotype, demonstrated the role of isoprenoid metabolism and symplastic
transport in the metabolic control of avocado fruit growth, and examined the
contribution of tree stress to appearance of the small fruit phenotype. Finally, mulching
was evaluated as a potential orchard management strategy to reduce or eliminate the

high incidence of ‘Hass’ small fruit under South African conditions.

7.1.1 Characterization of the ‘Hass’ small fruit phenotype

Zilkah and Klein (1987) first studied details of the growth of ‘Hass’ avocado fruit. This
study showed that ‘Hass’ typically produces two distinct populations of fruit, the
distinguishing feature being size. These authors analysed measurements of small and

large fruit length and diameter using a hyperbolic function and concluded that final fruit
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size was dictated by the time of fruit set, with large fruit being set approximately 2 to 3
d earlier than small fruit.' They also showed that length and diameter measurements of
small fruits approached those of large fruits, i.e. by extrapolation from the growth
curves, small fruit during the initial stages of development eventually reached the same
size as large fruit. In contrast, the present study showed that small fruit never reached
the same size as large fruit. An asymptotic function (i.e. a gompertz equation) proved
to be the line of best fit for the data (a regression coefficient of 0.998 for the asymptotic
function cf. to 0.937 for the hyperbolic function used by Zilkah and Klein (1987)). A
weakness of the study by Zilkah and Klein (1987) was that fruit growth was only
monitored for the first 140 d after full bloom. Had the authors used an extended
sampling period, the growth data thus obtained would have revealed that small fruit
never reach the same size as large fruit. An advantage of the present study is that
growth was measured throughout fruit development, up to the time of harvest (viz. 284

and 255 d in the first and second seasons respectively).

Although the author appreciates that final fruit size is influenced by time of fruit set
(Zilkah and Klein, 1987), this study has shown that even fruit which are set at the same
time also produce different sized fruit, i.e. some other factor must play a role in
influencing fruit size. The time of seed coat senescence is also important in the
determination of final fruit size (see Section 3.2.3.1). Casual observation revealed that
the small fruit phenotype was always associated with early senescence and/or death
of the seed coat. Growth was arrested earlier in phenotypically small fruit and
progressively later in fruit of increasing size. Thus, and as illustrated in Figure 7.1, seed
coat senescence and/or death, and cessation of growth can occur at any stage during
‘Hass’ avocado fruit ontogeny. Furthermore, it is important to appreciate that all fruit,
irrespective of final fruit size, will eventually develop degenerate seed coats. This study
has demonstrated the presence of a physiolagical window (time period in development)
60-90 d after full bloom, when ‘Hass’ fruit first becomes susceptible and expresses the
small fruit phenotype. Appearance of small fruit during this critical period, assuming the
fruit is retained on the tree, will yield small fruit at time of harvest. Since the emergence
of small fruit is less frequent as growth and development proceeds, it is clear that the

time of seed coat senescence determines final fruit size (Fig. 7.1).

93



Fruit growth =
<}—

*
Time after fruit set

Figure 7.1
Proposed relationship between final ‘Hass’ avocado fruit size and time of onset of seed coat
senescence as a function of growth. Arrows indicate the time at which seed coat senescence is
induced.

7.1.2 Metabolic control of ‘Hass’ avocado fruit development

7.1.2.1 HMGR activity and the ‘Hass’ small fruit syndrome

When the present study was initiated nothing was known about the metabolic control
of avocado fruit growth. However, several reports had implicated HMGR activity and
phytosterols in the control of fruit development (Narita and Gruissem, 1989; Gillaspy
et al., 1993) and at least one study had suggested an essential role for stigmasterol in
the support of plant cell division (Haughan et al., 1987). Since cell division in avocado

proceeds throughout development, it was hoped that by using a specific inhibitor of
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HMGR the interaction between isoprenoid growth regulators, phytosterols and HMGR

in the control of ‘Hass’ fruit growth and development could be elucidated.

Although deprivation of MVA and sterols is reported to increase HMGR half life, high
levels of sterol enhance the rate of HMGR degradation (Correll and Edwards, 1994).
Thus, it was not unexpected that treatment with stigmasterol (and/or cholesterol) would
reduce in vivo HMGR activity and fruit growth. Co-injection of mevastatin with
stigmasterol however, caused fruit to respond differently in phases |, Il and lll. In phase
|, stigmasterol reduced fruit growth and accelerated abscission whereas, fruit treated
in phase |l showed partial recovery from mevastatin-induced inhibition of growth and
rates of abscission closely resembled those of control treatments. In phase |1l however,
stigmasterol alone did not affect fruit growth and reversed the growth retarding effect
of mevastatin to the same extent as MVAL. Even so, stigmasterol did not reverse
mevastatin-induced inhibition of HMGR, presumably due to mevastatin-induced ABA
accumulation. Likewise, the ABA content of small fruit resembled closely that of

mevastatin-treated fruit and in these, HMGR activity was substantially reduced.

Earlier studies on regulation of higher plant cytosolic HMGR suggested hormonal
mediation of enzyme activity (Russell and Davidson, 1982). These authors
demonstrated in vivo ABA-, stigmasterol- and cholesterol-inhibition of enzyme activity.
When added to reaction mixtures in vitro however, these products of isoprenoid
biosynthesis had no effect on enzyme activity. It was therefore concluded that hormonal
control was not allosteric but exerted via some unknown phosphorylation system.
Similar conclusions were reached in studies on the effect of endogenous ABA on
HMGR activity during seed maturation. Vivipary mutants of maize which are defective
in ABA biosynthesis and the Vp1 mutant which is defective in an ABA response
element, all show enhanced HMGR activity relative to wild-type siblings (Moore and
Qishi, 1994). Since the Vp1 gene product is involved in ABA signal transduction during
seed development, it was proposed that HMGR activity during seed maturation is
regulated via a Vp1-dependent signal transduction pathway that is affected by reduced
ABA.
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Mevastatin-induced ABA accumulation in avocado mesocarp was both surprising and
interesting. First, this observation supports plastid-localized ABA synthesis (Zeevaart
and Creelman, 1988) as mevastatin and its structural analogues are unable to inhibit
chloroplast isoprenoid synthesis (Bach and Lichtenthaler, 1983; Bach, 1987). Second,
the result might suggest that a product(s) of cytosolic isoprenoid biosynthesis is
responsible for regulating ABA formation in or by chloroplasts. Two possible candidates
include CKs and phytosterols. iP reversed the inhibitory effects of mevastatin at all
stages of avocado fruit development. Similarly, inhibition of tobacco cell growth by
lovastatin (a mevastatin analogue) was reversed by CKs (Crowell and Salaz, 1992).
Furthermore, iP and its hydroxylated derivative zeatin replaced the essential role of
MVA in initiating DNA replication in the cell cycle (Siperstein, 1984). Since CK
biosynthesis is purported to involve prenylation of the purine moiety catalysed by
isopentenyl transferase, a process in which dimethylallylpyrophosphate (DMAPP) is
added to AMP at position N° (Binns, 1994), the above observations might suggest that
inhibition of HMGR limits the MVA pool available for synthesis of DMAPP
(isomerization of IPP) and hence in situ CK biosynthesis. iP also reversed the inhibitory
effects of ABA. The role of ABA in plant stress responses and its ability to retard
developmental processes (Zeevaart and Creelman, 1988) suggests that it is a likely
candidate to influence fruit growth under adverse conditions and thereby contribute to

down-regulation of developmental programmes.

Several studies have intimated a cell-cycle-regulating function for ABA because
exogenous ABA inhibits nucleic acid and protein synthesis (Owen and Napier, 1988).
Meyers et al. (1990) showed that exogenously applied ABA consistently inhibited cell
division in cultures of maize kernels. More recently, Miller et al. (1994) obtained
evidence to suggest that ABA functions to reduce cell division cycle activity by retarding
completion of the cell cycle. Stress-induced accumulation of ABA might therefore be
expected to exert an effect on fruit growth during the early stages, when cell division

cycle activity is at a maximum.

Fruit enlargement is correlated with both cell division and expansion, developmental
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processes requiring a significant level of sterol biosynthesis (Narita and Gruissem,
1989; Chappell, 19953i. It is well established that ABA increases permeability of lipid
membranes (Stiliwell and Hester, 1984; Bach, 1986; Stillwell et al., 1989; Purohit et al.,
1992; Burner et al, 1993) and that phytosterols inhibit these ABA-induced
perturbations (Stillwell et al., 1990). ABA also appears to inhibit HMGR activity (Russell
and Davidson, 1982; Moore and Oishi, 1994). In light of these observations it is
tempting to suggest that stress-induced initiation of the ABA signal transduction
pathway depresses HMGR activity limiting synthesis of both CKs and phytosterols to
reduce cell division cycle activity in affected ‘Hass' fruits. Furthermore, accumulation
of ABA during fruit growth might be sufficient to induce ‘lipid melting' in affected
membranes (e.g. seed coat), causing onset of senescence and cessation of fruit
development, processes that would be reversed in the presence of sufficient sterol.
This proposal is supported by the observation that fruit treated with stigmasterol in the
presence of mevastatin, an inhibitor of HMGR that induces ABA accumulation, show

a decline in endogenous ABA concentration and recovery of growth.

7.1.2.2 ABA and ‘Hass’ avocado fruit size

Results from the present investigation provide good evidence to support an interaction
between fruit (mesocarp) ABA concentration and expression of the ‘Hass' avocado
small-fruit phenotype. Mesocarp ABA concentration of mature fruit was negatively
correlated to fruit size and exogenous application of ABA during the linear phase of

rapid growth caused early seed coat senescence and retarded fruit growth.

The ability of ABA to induce expression of the ‘Hass’ small fruit phenotype at all stages
of fruit growth and development suggests that an altered endogenous ABA
concentration is a major contributing factor. However, the mechanism involved remains
to be elucidated. Several studies have revealed that the ABA content of young fruit is
high and declines during the course of development (Fraser ef al., 1995; Guinn, 1982).
Likewise, the present study showed that the ABA concentration of developing ‘Hass'
fruit is initially high and declines with increasing fruit age. Although the physiological

significance of elevated ABA levels during the initial stages of fruit growth remains
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unresolved, there is evidence to support a role for ABA in photosynthate unloading from
phloem in developing gfains, seeds and fleshy fruits. For example, application of ABA
to wheat and barley grains promoted import of recently fixed photo assimilate (Dewdney
and McWha, 1979; Tietz et al., 1981). Furthermore, Schussler et al. (1984)
demonstrated that testa of large seeded genotypes of soybean had higher ABA content
than small-seeded genotypes and suggested that the additional ABA acted to increase
sieve element unloading into the testa apoplast. Likewise, ABA enhanced the uptake
of sugar into, vacuoles of apple fruit flesh (Beruter, 1983; Yamaki and Asakura, 1991),
sugar beet root tissue discs (Saftner and Wyse, 1984) and increased the sugar content

of developing citrus fruit (Kojima et al., 1995).

The diminution in concentration of free ABA during the course of fruit development
presumably occurs due to catabolism and more specifically, due to formation of ABA-
glucose ester and ether derivatives (Harris and Dugger, 1986; Hirai and Koshimizu,
1983; Loveys and Milborrow, 1984). Conjugation of ABA to ABA-glucose ester is
irreversible and appears to be a means whereby ABA is sequestered in an inactive
form in the vacuole (Zeevaart and Creelman, 1988). While the biosynthesis and
regulation of hormone conjugates has yet to be elucidated (Semdbner et al., 1994),
changes in glucose concentration could impact on activity of the glucosyltransferase
responsible for ABA glucosylation, which is purported to take place at the cytosolic face

of the tonoplast (Kaiser et al., 1985), and hence the concentration of free ABA.

7.1.2.3 Mediation of symplastic solute transport in developing ‘Hass’ fruit

The antagonistic effects of ABA and CKs in the regulation of plant organ senescence
are well documented (Beevers, 1976; Biswal and Biswal, 1988; Noodeén, 1988; Smart,
1994). In addition, CKs appear to antagonize many other physiological processes
thought to be mediated, all or in part by ABA. For example, ABA-induced stomatal
closure and leaf and fruit abscission are reversed by exogenous application of CK while
CK-mediated release of seed dormancy contrasts with ABA inhibition of germination
(Salisbury, 1994). Although the biochemical and molecular basis for this antagonism

remains to be elucidated, a possible cause of ABA-induced seed coat senescence and
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cessation of avocado fruit growth may be a reduction in the supply of photoassimilate

required for the maintenance of cell division and cell expansion.

In addition, the low level of iP in phenotypically small fruit might suggest that the small
fruit syndrome arises as a result of impaired CK biosynthesis. Sugars have been shown
to promote CK synthesis (Koch, 1996) and both sugars and CKs delay senescence
(Smart, 1994). Alternatively, the small fruit phenotype may be a consequence of tree
stress and an associated rise in fruit ABA levels which would be expected to accelerate
the onset of senescence. To evaluate the antagonism between CKs and ABA in the
metabolic control of avocado fruit growth, the effect of these hormone applied either
singly or in combination on syplastic solute flow and plasmodesmatal structure was

investigated.

7.1.2.3.1 ABA and iP, and symplastic solute transport

The distribution of radioactivity in small ‘Hass’ fruit and fruit pre-treated with ABA,
following pulsed application of ['“C]sucrose, was similar. Thus, when compared to
control and iP-treated fruit, incorporation of label into seed coat tissue was reduced by
50% whereas the amount of ['*C] associated with the seed increased two-fold.
Measurement of seed coat and mesocarp E,, revealed an electrical potential gradient
between seed coat and mesocarp tissue that was abolished in fruit pre-treated with
ABA. Furthermore, microiontophoretic and detailed ultrastructural studies of mesocarp
and seed coat tissue revealed that plasmodesmata in ABA-treated tissue were gated
by electron dense material deposited at the annuli, a phenomenon that was negated
by co-injection of fruit with iP. Although the pattern of ['“C] allocation from pulsed
[“Clsucrose, and cell-to-cell transport of LYCH were similar for control fruit and fruit
pre-treated with iP and iP plus ABA, co-injection of iP with ABA did not reverse the
apparent ABA-induced membrane depolarization of mesocarp parenchyma suggesting
operation of a second, plasma membrane-localized pathway, that is unaffected by iP
but sensitive to ABA.

Hartung et al. (1980) demonstrated that exogenous ABA caused plasma membrane
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hyperpolarization, increased soluble sugar content (measured as glucose units) and
reduced glucose-induced changes in membrane potential in Lemna gibba. These
authors suggested that stimulation of invertase activity could have caused the increase

in glucose concentration.

ABA is purported to stimulate soluble acid invertase activity, at least in developing
soybean seeds (Ackerson, 1985). Acid invertase, a glycosylated enzyme responsible
for the hydrolysis of sucrose (Wagner and Wiemken, 1987), is located both in the
vacuole and apoplast and is thought to increase the sucrose gradient between source
and sink tissue to facilitate phloem unloading (Ruffner et al., 1990). Several studies
have revealed that increased expression of extracellular (insoluble) acid invertase
reduces plant organ growth (Dickinson ef al, 1991; Heineke et al., 1992; von
Schaewen et al., 1990), whereas Klann et al. (1996) showed that expression of an
antisense soluble acid invertase in tomato results in sucrose accumulation, decreased
hexose sugar concentration and reduced fruit. It has recently been observed that
insoluble acid invertase activity of avocado seed tissue is substantially higher in the
small-fruit phenotype and that mesocarp soluble and insoluble acid invertase activity
of this phenotype is reduced (Cowan’, pers. comm.). In addition, expression of the
small-fruit phenotype caused a reduction in seed and seed coat sucrose concentration
without affecting total fruit hexose concentration although, glucose accumulated in the
seed and fructose in the mesocarp (Cowan', pers. comm.). Together, these
observations suggest a change in the sucrose gradient between seed coat, and seed
and mesocarp tissue. Since symplastic continuity in both seed coat and mesocarp
tissue is arrested and the E,, gradient between seed coat and mesocarp parenchyma
is abolished by exogenous ABA and expression of the small-fruit phenotype, it is
suggested that the seed assumes dominance over the mesocarp for available sugar.
Whilst measurements of E,, obtained using avocado tissues were not high, it must be
remembered that this is mature, pre-climacteric tissue and would thus not be expected
to yield high values such as those obtained in leaf mesophyll cells (van Bel et al.,
1996). Nevertheless, it is generally accepted that the more negative E, becomes,

the more physiologically active cells are assumed to be in terms of cell-to-cell
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transport. Thus, our results appear to indicate that seed coat and mesocarp tissue are
within the same elecirophysiological (and by implication, structurally-connected)

continuum.

7.1.2.3.2 Plasmodesmatal structure/function in response to ABA and iP

Analysis of ‘Hass’ avocado plasmodesmatal ultrastructure revealed three distinct
changes induced by pre-treatment of fruit with ABA that were reversed or negated by
co-injection of ABA and iP. Firstly, median cavities were clearly evident in continuous
branched plasmodesmata in control and iP-treated fruit. Plasmodesmatal branching
was apparently reduced in fruit that had been pre-treated with ABA whereas this effect
was negated in fruit co-injected with ABA and iP. A correlation between arrested
branched plasmodesmatal development and onset of accelerated senescence has
been established for leaf tissue (Ding et al., 1993). Thus expression of the ‘Hass' small
fruit phenotype which is associated with senescence of the seed coat, implies that
development and structure/function of plasmodesmata may be crucial in the
determination of final fruit size. Since primary plasmodesmata are formed
cytokinetically during cell plate assembly and secondary plasmodesmata arise de novo,
post-cytokinesis, in pre-existing cell walls (Lucas et al., 1993), it is concluded that
avocado mesocarp and seed coat plasmodesmata are morphological modifications of
simple primary plasmodesmata. As stated by Ehlers and Kollmann (1996), primary
plasmodesmata may undergo morphological change but will not develop into
plasmodesmata of a truly secondary origin. Whether CKs play a role in mediating

branching of primary plasmodesmata is currently unknown.

Secondly, the data illustrates the presence of electron-dense, particulate material
associated with the neck region of plasmodesmata in mesocarp and seed coat tissue
of small, ABA- and ABA + iP-treated avocado fruit. Coupled with microiontophoretic
analysis, these data suggest that application of ABA stimulated gating by inducing
deposition of globular (and assumedly proteinaceous) plasmodesmatal-localized
material. The absence of this material in control and iP-treated tissues, as well as its
apparent reduction in ABA + iP-treated material, suggests that it is formed in response

to exogenous ABA application.

101



It is essential that plasmodesmata are dynamic to accommodate larger or smaller
trafficked molecules in cell-to-cell chemical communication. Robards and Lucas (1990)
suggest that up- or down-regulation of plasmodesmatal pore size is achieved by either
modification of the central lipoprotein core or, by deposition of callose near the
cytoplasmic annulus. Thus, a central role for ABA in the regulation of plasmodesmatal
pore diameter, as a means of either controlling or curtailing molecular trafficking in
developing avocado fruit seems very plausible. Since integrity of the seed coat and
associated mesocarp is essential for maintenance of sink strength throughout fruit
development, ABA-induced down-regulation of plasmodesmatal pore size may cause

loss of sink strength and induce early seed coat senescence.

Finally, the plasma membrane adjacent to the primary pitfields appears highly
convoluted in mesocarp from control and iP-treated fruit. In contrast, the plasma
membrane in mesocarp of fruit pre-treated with ABA lacks this convoluted appearance
suggesting ABA-induced diminution of membrane activity. A similar response was
observed in seed coat tissue. Interestingly, injection of fruit with ABA + iP reversed this
effect but only on one side of the plasma membrane/cell wall complex of adjacent cells,
i.e. opposite occluded plasmodesmata. Although the physiological significance of this
observation has yet to be established, it does suggest that ABA affects both symplastic

and apoplastic solute flux in avocado mesocarp.

7.1.2.4 An integrated model for the metabolic control of avocado fruit growth
Based on the findings of this study a model presented in Figure 7.2 is proposed to
explain appearance of phenotypically small ‘Hass’ fruit. The model is consistent with
recent reports that ABA retards cell division cycle activity (Meyers et al., 1990; Muller
et al.,, 1994) whereas CKs promote this process and do so by regulating the G, to
mitosis transition, i.e. stimulating tyrosine dephosphorylation and activation of p34°#°2-
like H1 histone kinase (Zhang et al., 1996). Similarly, withdrawal of CK causes
cessation of the cell cycle and cells accumulate in M, S and G, (Mander and Hanke,
1996). An imbalance in the CK:ABA ratio, through reduced CK synthesis or increased

ABA, might therefore be expected to impact on avocado fruit cell division activity and
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sink strength, particularly as growth of phenotypically small ‘Hass’ fruit is limited by cell

number, not cell size.
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Figure 7.2
Proposed interaction between ABA and iP, and processes thought to be involved in mediating the
appearance of ‘Hass’ avocado small fruit phenotypes. X denotes inhibition.

Assuming CK is derived in situ by isoprenylation of purine, inhibition of isopentenyl
diphosphate synthesis will limit the amount of dimethylallyl pyrophosphate available for
CK biosynthesis. Isopentenyl diphosphate is formed from MVA, the product of the
reaction catalysed by HMGR, and inhibition of HMGR by mevastatin is reversed by both
MVAL and CK (Bach, 1987; Crowell and Salaz, 1992). HMGR is subject to regulation
by phytochrome, reaction end product feedback and post-translational modification
(Bach, 1987). The latter process is a well documented regulatory system in mammalian
cells where enzyme activity is inactivated by a reversible phosphorylation mechanism

involving an AMP- or ADP-stimulated kinase (Chappell, 1995b). Biochemical evidence
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for the existence of plant HMGR kinase activity, with similar properties to AMP kinases,
includes the purificatioh and characterization of HRK-A (Ball et a/., 1994) and HMGR
kinase-B (MacKintosh et al., 1992) from cauliflower and other species. More recently,
a protein kinase capable of phosphorylating Arabidopsis HMGR was isolated from
barley endosperm (Barker et al., 1996). Inhibition of HMGR activity is known to impact
on mammalian cell division cycle activity (Sinensky and Logel, 1985; Jakobisiak et al.,
1991). Similar findings have been obtained for higher plants using cultured tobacco
cells (Crowell and Salaz, 1992). In the latter instance, inhibition of HMGR activity and

cell growth was attributed to reduced CK biosynthesis.

Recent information suggests that in addition to CK, pyrophosphorylated intermediates
in isoprenoid synthesis are equally important. Thus isoprenylation of Rab and GTP-
binding proteins has been shown (Morehead et al., 1995; Biermann et al., 1996;
Yalovsky et al., 1996) and farnesyl protein transferase (FPTase), biochemically
characterized in tomato (Schmitt et al., 1996) and pea (Qian et al., 1996). More
importantly however, inhibition of FPTase by manumycin completely blocked mitosis
when added at the S stage but not when added at G, (Qian et al., 1996). This
observation suggests that FPTase is required for cell division cycle activity and that it
modulates progression of the cycle through S and in the transition from G, to S.
Furthermore, it has been demonstrated that mutations that confer enhanced response
to ABA (era? mutants) arise due to perturbed farnesylation of a protein(s) that
negatively regulates ABA signaling (Cutler et al., 1996). Thus, the appearance of an
ABA-supersensitive Arabidopsis phenotype. Whether a similar perturbation is
responsible for the appearance of phenotypically small ‘Hass’ fruit is currently under
investigation. Nevertheless, the accumulated information strongly suggests that the

aforesaid molecular responses could be manifestations of altered HMGR activity.

Analysis of a partially purified protein kinase from developing barley endosperm has
revealed in vitro phosphorylation of HMGR, confirming it to be HMGR kinase (Barker
et al., 1996). These authors also presented convincing evidence to support the

hypothesis that barley HMGR kinase is a member of the sucrose nonfermenting-1
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protein kinase family. This latter observation indicates that higher plant HMGR kinase

may be mediated by carbohydrate status.

Carbohydrate-modulated enzymes are thought to be regulated by a hexose sensor
comprising phosphorylated glucose and fructose and a putative plasma membrane
signal (Koch, 1996). The concentration of each component is determined by the
mechanism of sugar uptake. For example, hydrolysis of symplastically imported
sucrose by soluble invertase generates more substrate for the hexose sensor than
does sucrose synthase whereas uptake of sugar, hydrolysed extracellularly, requires
expression of an energy-coupled plasma membrane hexose carrier that may be sterol-
modulated (Grandmougin-Ferjani et al., 1997) and ABA-sensitive. Availability of
carbohydrate might also impact on plasmodesmatal pore size to promote pathway
switching from symplastic to apoplastic transfer. Tentative evidence in support of this
phenomenon has recently been obtained from studies of the pathway of postphloem
sugar transport in developing tomato fruit (Ruan and Patrick, 1995; Patrick and Offler,
1996). Results from the present investigation therefore suggest that sugar transport
pathway switching in ‘Hass' avocado may be a response to altered CK:ABA ratio and
that accumulation of ABA arrests both symplastic and apoplastic sugar transport
causing early seed coat senescence, loss of sink strength and reduced fruit growth.
Taken together, the complexity of expression of the ‘Hass' small fruit phenotype and
the potential role of ABA in this process indicates operation of multiple signalling
pathways that are influenced by hormone balance and sugar concentration and

composition.

7.1.3 Tree stress and the small fruit syndrome

Water is considered to be the most important limiting factor to plant growth (Syvertsen,
1985; Smith and Griffiths, 1993), and water stress has been shown to lead to reduced
avocado yield and fruit size (Whiley et al., 1988). In drying soils, ABA biosynthesis by
roots is enhanced and a decline in soil water status has been correlated with an
increase in xylem ABA concentration (Davies and Zhang, 1991; Tardieu et al., 1992a;

1992b; Davies et al., 1994). Plants which are exposed to conditions of water stress
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have been shown to accumulate ABA in leaves but more specifically in the region
surrounding the stomatal guard cells (Davies and Mansfield, 1983). Associated with this
increase in ABA is rapid stomatal closure brought about by osmotic adjustments in the
two opposing guard cells surrounding each stoma (Zeevaart and Creelman, 1988;
Hartung and Slovik, 1991). This mechanism is thought to involve a signal transduction
system in which ABA interacts with the plasma membrane to induce stimulus-response
coupling and involves changes in cytosolic [Ca®], [K'] and pH, and initiation of second
messengers (Hetherington and Quatrano, 1991). ABA also exerts an effect on the
enzymes that regulate proton movement across the outer membrane of guard cells
(Anderson et al., 1994). Stomatal aperture regulates transpirational water loss and CO,
uptake from the atmosphere (Zhang and Davies, 1991). Stomatal pore size impacts on
photochemical efficiency via its effect on photosynthesis (Demmig-Adams and Adams,
1988) and leaf temperatures (via its effect on energy dissipation (Raschke, 1960)), both

of which were monitored during this study.

The surface temperature of a leaf is the tangible manifestation of its energy balance
and therefore is affected by abiotic and biotic factors. The most prominent of the latter
are the stomates which, in closing, limit the amount of energy that can be dissipated by
transpiration, and consequently cause leaf temperatures to increase (Raschke, 1960).
These observations led Tanner (1963) to postulate that the surface temperature of the
leaf may be used to assess the water status of the canopy, i.e. the degree of water
stress. For the majority of the present study period leaf canopy temperatures of control
trees were higher than those from mulched trees, which implies that mulched trees
experienced conditions of reduced water stress. Interestingly, for two consecutive
seasons there was a rapid rise in the canopy temperature (relative to air temperature)
approximately 60 to 90 d after full bloom. The rapid increase in temperature during this
period coincided with fruit drop, which is apparently a stress related phenomenon
(Whiley et al., 1988). Furthermore, the time at which small fruit first became evident
(and presumably when seed coat abortion first took place) occurred during this critical
period, and this provides further evidence that the ‘Hass’ small fruit syndrome is

exacerbated by tree stress.
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Light stress results not from high light per se, but rather from a build up of excess
photochemical energy which cannot be utilized photochemically or quenched non-
photochemically (Bjérkman and Schéafer, 1989; Krause et al., 1995). An excess of light
can arise when the ratio of photon flux density (PFD) relative to photosynthesis is high.
This ratio increases either through an increase in the PFD or, due to a reduction in
photosynthesis at constant PFD, e.g. in response to water stress (Demmig-Adams and
Adams, 1992). A reduction in the yield of chlorophyll fluorescence, indicative of thermal
dissipation, has been reported for several plant species experiencing water stress
under natural conditions (Adams ef al., 1987; Bjérkman and Schafer, 1989). Demmig-
Adams ef al. (1988) showed that leaves of Nerium oleander exhibited reduced
photochemical efficiency when water was witheld from the plants and the PFD kept
constant. In the present study, measurement of photosynthetic energy conversion by
avocado leaves revealed there to be marked differences between mulched and non-
mulched trees. Mulched trees consistently showed a reduction in chlorophyll
fluorescence during the heat of the day. Photoinhibition has been related to a loss of
productivity in some tree species (Ogren and Sjéstrém, 1990), and might explain the

observed differences in productivity between mulched and non-mulched trees.

7.1.4 Mulching: A strategy to increase ‘Hass’ fruit size

As previously mentioned, ‘Hass' is sensitive to abiotic/biotic pressure and the small fruit
syndrome appears to be aggravated by tree stress (Kéhne, 1992; Whiley and Schaffer,
1994). The current study evaluated mulching as a practical management strategy to
alleviate tree stress and increase mean fruit size. Avocado trees, being of rainforest
origin, are natural "litter-feeder" adapted to growing in soils with a high humic content
(Broadbent and Baker, 1974a; 1974b).

The proposed interactive effects of mulching on avocado tree physiology are
summarised in Figure 7.3. Avocado trees produce the majority of their roots in the top
20 to 40 cm of soil (Whiley, 1994), a region of low hydraulic conductivity. Water in this
zone is subject to evaporative forces, drainage and is also bound by matric forces

operating within and between soil particles, factors that compete with roots for available
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water (Boyer, 1985; Passioura, 1988). Mulching improves soil-water relations, the
availability of nutrients and other resources, such that trees are less likely to

experience stress.
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Figure 7.3
Mode of action of mulching in control of turgor maintenance, water/nutrient extraction and

assimilate partitioning during avocado fruit growth and development.

The present study illustrated that changes in the CK:ABA ratio is the trigger that directly
elicits reduced growth and it is a low resource environment that initiates the stress
response system (Chapin, 1991). With respect to the small fruit syndrome, the following
cascade of events might be expected to constitute the stress signal-response
mechanism as a result of low resource availability; (1) reduced root activity; (2)
evapotranspiration in excess of water (nutrient) uptake; (3) elevated xylem ABA; (4)

reduced stomatal conductance; (5) down regulation of photosynthesis; (6) availability
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of photoassimilate declines; (7) rise in fruit respiration; (8) enhanced ABA synthesis in
situ in developing fruit; (9) down regulation of HMGR and CK biosynthesis; and (10)
retarded cell division cycle activity. Although this sequence of events is illustrated as
a consequence of poor root health, it is accepted that all abiotic/biotic factors that

decrease the endogenous CK:ABA ratio will impact on developing structures similarly.

Anatomical investigations in this study revealed that the limiting factor in avocado fruit
development is cell division. The chemical signal involved is in all probability a change
in CK balance. It is proposed that the seed is the most important source of CKs in early
fruit ontogeny although roots may assume significance as the source of CKs during the
later stages of fruit development, provided roots are actively growing. When availability
of resources for growth and development is limited, water movement through the
vascular system is reduced. Consequently, availability of root-derived CKs to
developing fruit is reduced. Mulched soils contain a large amount of available water at
field capacity (Gregoriou and Rajkumar, 1984) and the increased availability of water,
coupled with improved root health should, together with adequate assimilate/nutrient
supply, sustain fruit growth and development and reduce the incidence of small fruit by
eliminating the confounding effects of either stress-induced ABA accumulation and/or

feedback regulation of photosynthesis.

7.1.5 Impact of mulching on fruit growth and phenophysiology

Mean fruit mass was significantly increased in mulched trees, and this was achieved
in spite of a greater number of fruit per tree. This response is particularly significant
since problems of fruit size principally arise in trees with heavy crops, as resources
available for fruit growth have to be allocated to more sinks (Lahav and Kalmer, 1977).
Mulching appeared to have a greater effect on yield during an "off” year. Assuming that
assimilate supply to growing fruits in a season of low yield is limiting, any improvement
in resource accumulation and distribution to developing fruits as a result of mulching
should considerably enhance fruit productivity. Yields were shown to be closely related
to bark carbohydrate levels. Both soluble (immediately available) and insoluble

(storage) carbohydrate content of the bark samples were determined. Starch is
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considered to be the only important storage carbohydrate in avocado trees and the
main repository is the trunk and major scaffold branches (Scholefield et al., 1985).
Consequently direct determination of trunk starch levels provided an accurate measure
of seasonal fluctuations in storage reserves. Soluble carbohydrates, e.g. glucose and

sucrose, are mobile and constitute a pool for immediate use by the trees (Cull, 1989).

Trees from both treatments showed a marked biennial bearing cycle, with alternate
heavy and relatively light crops. It appears that alternate bearing in ‘Hass’ avocado is
closely related to storage carbohydrate levels in the tree, as also observed by Whiley
et al. (1996b) for ‘Hass'. Scholefield et al. (1985) showed similar trends in ‘Fuerte’
avocados in temperate southern Australia. Whiley and Schaffer (1994) noted that
avocado trees growing in mild Mediterranean or generally cool and dry climates, store
greater amounts of reserve carbohydrates. This is borne out by Scholefield's (1985)
studies on ‘Fuerte’ in southern Australia, where trunk starch concentrations reached ca.
18% in winter and fell to ca. 3% by late summer. This study also found that high starch
levels resulted in high yields, followed by low accumulation and low yields. However,
the position is more complicated, and Whiley et al. (1996a) note the much lower trunk
starch cycle flux in the summer rainfall subtropics of Queensland, with peak levels in
‘Hass’ of ca. 6 to 8% in winter. The current study found winter peaks in the 6 to 9%
range, similar to Queensland. Unlike bark starch reserves, there was no obvious
correlation between sugar content and yield, i.e. it appears that immediately available
carbohydrates had little effect on the biennial bearing nature of ‘Hass’ trees in this

study.

Whiley et al. (1996a), in a study of delayed harvest of ‘Hass’ in relation to starch
cycling, noted that peak starch concentrations were reduced by heavy fruiting, and that
pre-flowering peaks in shoots or trunks were directly correlated to the next seasons
yield. However, this relationship did not occur in the early maturing ‘Fuerte’ cultivar
(Whiley et al., 1996b), which is more vigorous. They also point out that crop size can
be strongly affected by climatic aberrations and poor flowering. They conclude that the

relative importance of stored as compared to current carbohydrate differs in different
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climates, with trees in the summer rainfall subtropics being relatively more dependant
on current photosynthéte than trees in cool, dry areas, which appear to be more

dependant on stored carbohydrate.

Differences in levels of trunk bark starch reserves were also evident between the mulch
and control treatments. The amplitude of bark starch cycling was greater in mulched
trees throughout the sampling period, i.e. starch accumulation and depletion was
greater in all three seasons. Furthermore, this enhanced ability by mulched trees to
accumulate storage carbohydrate was achieved in spite of a larger crop load on these
trees. Since accumulation of storage carbohydrate was consistently greater in mulched
trees, this implies that these trees are better equipped to recover from the critical
energy expensive periods of flowering, fruit set and early fruit growth. Trees under
these improved edaphic conditions can therefore support a greater crop load for
several successive seasons, without adversely affecting levels of storage carbohydrate.
A study by Kaiser and Wolstenholme (1994) on late-hanging of ‘Hass’ showed that
avocado trees in a cool, mesic area in KwaZulu-Natal have an ability to recover from
periods of high energy demand, but also stressed the importance of careful
management under these conditions. Mulching possibly enhanced the ability of the

trees to recover from periods of extreme starch depletion.

The level of assimilate available for growth and development of fruits is partly
dependent on the activity of the vegetative tree component (Hansen, 1989). Since
intensity of shoot growth was greater on the mulch treatment, it is possible that the
increased fruit size on mulched trees could be related to a greater availability of
photoassimilate produced by the leaves. An interesting feature was that a second shoot
flush period was not pronounced at the trial site. This unusual shoot phenology at
Everdon Estates was also noted by Kaizer and Wolstenholme (1994), and is contrary
to observations by Whiley et al. (1988), who stated that a strong summer flush is
necessary to provide the "fuel" for fruit growth and the following seasons flowering and
fruit set period. A possible reason for this is that the cool mesic conditions of the Natal

midlands are not ideal for avocado production, bearing in mind the avocado's highland
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tropical to sub-tropical origin, and so the trees have a different phenotypic expression.
A second shoot flush’ may not be necessary, for energy requirements are less
demanding under these cooler conditions as respiration rates are lower. A contrary
view might be that this research has highlighted a problem with orchard management
at Everdon in heavy cropping years, viz. that insufficient summer flushing occurs. Since
avocado |eaf longevity is short (up to 10-12 months, according to Whiley and Schaffer
(1994)), the trees would have gone into autumn and winter with predominantly aged
and less efficient spring flush leaves. This would have aggravated any tendency
towards alternate bearing. Active encouragement of the summer flush by nitrogen
fertilization would have resulted in the important leaf renewal, accompanied by greater

carbohydrate build-up, that predisposes the tree to more regular bearing.

7.2 CONCLUSIONS AND FUTURE PROSPECTS

This study has demonstrated that ‘Hass’ fruit which start growing at the same time tend
to produce variable sized fruit at maturity, and confirmed that a healthy, functional seed
coat is essential for fruit growth. However, we still do not know whether phenotypically
small fruit are the consequence of early seed coat senescence or whether abortion of
the seed coat is a response to diminished cell division cycle activity and/or sink
strength. This study also demonstrated that an increase in fruit size was associated
with a rise in the CK:ABA ratio and that this ratio impacts on seed coat senescence,
HMGR activity, solute allocation, cell-to-cell communication and plasmodesmata
structure of developing avocado fruit. Although it is recognised that concentrations of
these hormones influence fruit growth and development, it is still unclear where the
site(s) of synthesis are, i.e. whether they are synthesised in situ or imported into the

fruit.

There is a need to positively identify the primary stress stimuli (e.g. inadequate water
and/or nutrient supply, high light and high temperatures) that contribute to production
of large numbers of phenotypically small fruit. Although it is appreciated that yield and
fruit size are under the control of many interacting factors, and crop failures can be

caused by climatic extremes and poor flowering, inter alia, this study has shown that
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mulching, through creating a more mesic root environment, has the potential to
substantially increase ‘Hass’ avocado productivity. It is notable that these results were
obtained in a relatively low stress (more mesic) environment and in a well managed
orchard. Logically, one would expect greater increases in more stressful environments,
provided that fruit number (crop load) is in balance with the ability of the canopy to
supply photosynthate. It is also noteworthy that this study was conducted predominantly
during a drought period, so there is a need to test mulches under a variety of conditions

before fully assessing their practical value.
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ABSTRACT

The ‘Hass' cultivar is important to the South African avocado industry as it is late maturing and is
preferred by overseas consumers. How:v:r, it pmduces a variable percentage of undersized fruit,

which cannot be exported. Mulching was

st had

iasap of increasing fruit size

through improved root activity and rcduccd tree sl.mss Ina ﬁeid trial at Everdon Estate, Howick, root
growth was increased throughout two seasons by the application of a coarse composted pinebark
mulch beneath the tree canopy. All measured fruits, in both the length and diameter axes, fitted a
Gompertz growth curve. Rate of fruit growth and total growth were significantly greater on the mulch

treat QOver two , the mulch

1 in a significant 11.8% increase in mean

fruit mass, in spite of 16.7% more fruits per tree, The combined effect was a 30.4% increase in yield.

INTRODUCTION

Since the South African avocado industry is largely export
orientated, cultivars such as ‘Hass', which are preferred by overseas
consumers, are impartant to the industry (Cutting, 1993). This
cultivar is also late maturing and is therefore useful for extending
the harvesting season. Unfortunately, ‘Hass® trees have a tendency
to bear large numbers of undersize fruit, and fruit size is on average
much smaller than in other major commercial varieties such as
‘Fuerte’, *Pinkerton’, ‘Edranol’ and 'Ryan’. Up to 50% of the
‘Hass" crop may be undersize (less than 200g or counts of more
than 20 fruits per standard 4kg export carton) in any particular
season (KBhoe, 1992), and in 1994 this problem was estimated 1o
have cost the South African industry R30 million in lost revenue.

The phenomenon is not restricted 1o diseased andfor unhealthy
trees. Even healthy *Hass’ trees produce a significant proportion (3
to 25%) of small fruit (Kremer-Kdhne & Kohne, 1995), which are
unsuitable for export. The small fruil problem is thus physiological
and also occurs in trees without pathogen involvement. The
problem is exacerbated by the onset of symptoms of pedicel ring-
neck and early seed coat senescence, pollen incompatibility and
poor cultural practices. The problem b mare pro
with tree age (Cutting, 1993) and is particularly noticeable in
orchards situated in warmer and/or drier climates (Hilton-
Barbcr, 1992; Whiley & Schaffer, 1994). Both stress and ageing are

£, y

e major i of "Hass' avocado fruil size.

Fruit size is fundamentally determined by genome, so the long
term and ultimate approach is to discover or breed new large-
fruited, black-skinned cultivars. U 1y, breeding and lesting
new cultivars is time-consuming and does not resolve the problem
immediately. There is thus a requirement for an interim solution,’
We hypothesized that the application of a mulch could be a
practical short term solution to promole root health, ameliorate
stressful growing conditions and reduce the extent of the problem.
This stralegy is based on the avocado evolving in 2 highland
tropical to subtropical environment, and adaptation to soils with a
litter layer and a high humic content. Reinforced mulch:ng (in
addition to natural litter fall) simul infi floor condition
thus providing roots with improved and more natural edaphic
growing conditions. Improved root growth should impact posilively
on a cascade of physiological events promoting cell division in
fruits, and prolonging seed coat viability. It is well known that
premature seed coat abortion contributes to smaller fruit size
(Blumenfeld & Gazit, 1974: Steyn, Robbertse & Smith, 1993).

Any layer of plant material that occurs naturally or is applied 10
the soil can be considered a mulch (Tumey & Menge, 1994). The
benefits derived from mulching include, increased water and
nulrient availability (Gregoriou & Rajkumar, 1984), improved soil
structure and porosity (Gallardo-Laro & Nogales, 1987) and a
narrowing in the diurnal soil temperature range (Gregoriou &
Rajkumar, 1984). In addition, mulching ereales a suppressive
environment for Phytophthora cinnamonmi thus reducing the impact
of this phytopathogen (Tumey & Menge, 1994).

The objective of this trial was to evaluate the effect of a
composted pinebark mulch on "Hass’ fruit growth and yield, over
two seasons, in a cool, humid, high rainfall environment in the
KwaZulu-Natal midlands.

MATERIALS AND METHODS
Treatment

This study was conducted on six year old (in 1993) ‘Hass' trees on
clonal “Duke 7' rootstock, on Everdon Estate, near Howick; in the
Kwazulu-Natal midiands (30°16'E and 29°27'S). The orchard is
situated in Phillips' Bioclimatic region 3, which is characterised by
cool mesic conditions, typical of a “mist-belt” climate. Mean
maximum and minimum temperatures range from 26.1 to 15.0C in
January and 19.4 to 6.7C in July; mean annual rainfall is 1052mm
and altitude is ca. 1082m. Orchards receive standard cultural
treatment, including micro-jet irrigation based on tensiometers, and
management efficiency is excellent. The soil is an oxisol of the
Hutton form, dystrophic, with a high clay content of ca. 50%. A
total of 1.5m~ of coarse composted pinebark {Gromed® coarse
potting mix) was applied in February 1993 under the canopy of six
trees to a depth of approximately 15cm, and these trees were
compared with six adjacent unmulched trees,

Data collection

The data coll period for phenological events s d from
May 1993 through to October 1995. Root flushes were monitored
by visually estimating the area covered by while healthy feeder
roots under a newspaper mulch (Whiley, Saranah, Cull & Pegg,
1988) (with an approximate area equal to 12501:1112). The newspaper
mulch was placed 1m from the micro-jet nozzle on the south-west
side of the tree, 50 as to avoid direct sunlight. Three readings per
treatment were laken at the end of each month. Visual estimates of
root flushing were performed using a rating of 0 to 10. Kaiser &
Wolstenholme's (1994), groupings of “poor”, “medium™ and
“goad” were chosen, viz. 010 2, 310 4. and =5 respectively.

For the purpose of measuring fruit growth, 40 fruits per tree were
tagged at the beginning of each season, when all fruit were
approximately 10mm in length. Subsequent length and diameter
measurements, using digital calipers, were laken al regular intervals
throughout the growing season. The number of fruits measured per
tree gradually declined through the growing season because of fruit
abscission, so that at harvest an average of 15 fruits per tree were
measured. Using GENSTAT (1994), fruit measurements were fitted
to a Gompertz curve which has the following mathematical
equation;

y=Cexp {-exp [-B (x-M)]} + A
where;x = time from fruit set (days)
y = fruit measurement {mm)
A = starting value
B = growth rate
C = total growth
M = point of inflection

At the end of cach season the trials were harvested, and fruit size
distributions were recorded for each tree, Fruit size was determined
gravimetrically and classified according to the number of fruit per
standard 4kg export carton. Fruits were graded as follows: Count
10, 366 1o 450g; count 12, 306 10 365g; count 14, 266 1o 305g;
count 16, 236 to 265g; count 18, 211 to 235g; count 20, 191 to
210g; count 22, 171 to 190g; count 24, 156 to 170g; count 26, 146
to 155g; and factory grade, <146g. Total tree yields were calculated
by adding the product of the number of fruit per count size and the
class centre of all the count sizes.

RESULTS AND DISCUSSION
Root flushing

Root activity in the mulch treatment was always more intense than
in the control. In the mulch treatment root growth fell into the
“medium” category for the majority of the season, whereas in the
control mainly “poor” rool growth was recorded. For a substantial
part of the season (December 1993 through to April 1994, and
December 1994 through 1o March 1995) rool activity was allocated
a “good" rating in the mulched treatment (Fig. 1). Root flushing
periods followed a similar pattern, but in the mulch treatment were
two to four weeks earlier and continued for a longer peried (Fig. 1).
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FIGURE 1. Roat flushes as determined by a visual rating where
there is no root growth for a rating of 0 and extensive root growth
for a rating of 10.
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Avocado trees are adapled lo growing in soils with a thick litter
layer and a high organic content, and avocado roots, being “litter
fecders™ with a high oxygen requirement (Moore-Gordon,
Waolstenholme & Levin 1995), thrive under such edaphic
conditions. Although healthy trees shed large numbers of Jeaves
(which are relatively short-lived for an evergreen tree), application

of the composted pinebark mulch reinforced rain-forest Moor
condilions. resuliing in the more intense and prolonged surface
feeder root activity. The rhizotron studies of Whiley (1994) are
more represzotative of root activity at depth, and have indicated the
potential for new root growth through winter in deep. cool. high
organic matter krasnozem soils in the high rainfall areas of S.E.
Queensland. Whether such root activity. at depths of up 1o 1m,
occurs under the climate and edaphic environment of Everdon is
unknown, although the soils are substantially similar,

Fruit growth

Each fruit measured had a regression coefficient (RZ; value
greater than 0.99 indicating an extremely good fit. This was the case
for both length-wavs and diameter measutements. Results of an
analysis of variance on each parameter of the Gompenz curve
equation 2re summarized in Tables 1 and 2. Figurés 2 and 3 give a
graphic presentation of the resultant growth curves,
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FIGURE 1. ‘Hass’ fruit growth curves for the 1993/1994 season.
Regression line for the mulch treatment (length axis) is represented
by y = 110.0 exp {-exp [-0.02297 (x - 51.61)]} - 8.16: the control
{length axis) by y = 95.84 exp {-exp [-0.02252 (x - 53.56)]} - 5.20;
the mulch treatment (diameter axis) by y = 77.08 exp {-exp [-
0.02222 (x - 48.29)]} - 7.07; and the control (diameter axis) by y =
67.53 exp {-exp [-0.02336 (x - 54.13)]} - 2.66. (Growth curves
were constructed from a total of 82 fruits on the mulch treatment
and 92 fruits on the contral).
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FIGURE 3. ‘Hass™ fruit growth curves for the 1994/1995 season.
Regression line for the mulch treatment (length axis) is represented
by y = 98.92 exp {-exp [-0.02281 (x - 49.44)]} - 7.34: the control
(bength axis) by ¥ = 90.14 exp {-exp [-0.02316 (x - 55.23)]} - 6.21;
the mulch treatment (diameter axis) by v = 68.34 exp {-exp [-
(102303 (x - 48.321]} - 5.72; and the control (diameter axis) by v =
61.57 exp {-exp [-0.02279 (x - 54.73)]} - 5.03. (Growth curves
were consiructed from a toral of 43 fruits on the mulch treatment
and 39 fruits on the control).



TABLE 1. Summary of mean values for each growth parameter
(where A is the starting value, B is the growth rate, C is the total
growth and M is the point of inflection) of the Gompenz curve for
length measurements on ‘Hass’ fruit. Values are expressed in mm.
Using an F-test, N5 denotes paramelers are not significantly
different; and 4 denoles parameters are significantly different at
the 1% significance level.

P Coatrol Mulck Significance
1993194
A =107 216 N3
B 002252 nore7 NS
c k] 110.10 *k
M 4829 5161 NS
19541945
A 421 TH NS
B 002316 oozss N3
L 0.4 LRl ik
A 550 4941 *

TABLE 2 Summary of mean values for each growth parameter
(where A is the starting valuc, B is the growth rate, C is the total
growth and M is the point of inflection) of the Gompertz curve for
diameter measurements on ‘Hass' fruit. Values are expressed in
mm.

Parameter Control Mulch Significance
19931994
A 266 107 *
B 0.02336 .02 NS
c 6753 T7.08 ok
M M1 48.29 *
19941995
A 503 572 NS
B 0.02219 0.02303 NS
g 6157 6834 *k
M 5413 4832 *k

Using an F-test, NS denotes parameters are not significantly
different; * denoles parameters are significantly different at the 5%
significance level; and k% denotes parameters are significantly
different at the 1% significance level.

It is possible that those fruit which set early may monopolize
available resources at the expense of smaller fruits. Hence for a
valid comparison of fruit growth dynamics on different treatments it
is important that all fruits are initially the same size. For the first
year of study, the starting value (A) for the length axis was not
significanily different between treatments (Table 1), indicating that
all fruit were tagged at approximately the same length. In the
diameter axis, the starting value (A) was significantly greater (P =
0.05) for control fruit for the 1993/1994 season (Table 2), so if
anything, control fruit may initially have been slightly stronger
sinks. Fruit growth measurements during the second season confirm
that starting values (4) were not significantly different between
treatments; this was the case for both length and diameter
measurements (Tables 1 and 2). This implies that differences in
fruit growth rates between the mulch and control treatments could
be attributed to factors during the fruit growth period, after the
fruitiets had been tagged.

Total fruit growth (C) was significantly different (P = 0.01)
berween treatments for the first season's measurements. At the time
of harvest, approximately 284 days after fruit set, fruit from the
pinebark mulch treatment had grown an average of 143 = 23mm
more along the length axis than fruit from the control. Similarly,
fruit expansion in the diameter axis was 9.6 = 3.3mm more in the
mulch treatment during the same period (Fig. 2). Fruit growth
measurements for the 1994/1995 season showed similar trends: at
the 1ime of harvest, 255 days after fruit sev. fruit from the pinebark
treatment had grown an average of 8.8 * 2.4mm and 6.8 = 2.7mm
more along the length and diameter axes, respectively (Fig. 3).

These results show that mulching with pincbark led to an overall
increase in fruit growth and ultimately increased average final fruit

size in both seasons. Furthermore, the resulls suggest that increased
average fruit mass at harvest in the mulch treatment was not solely
attributed to increased growth in one direction, but rather increased
growth in both major axes. The results support work done by Zilkah
& Klein (1987} in Israel, who showed that ‘Hass' avocado fruits
grow proportionately in all directions from the fruit shape
established at fruit set. This result does not preclude the well known
observation that fruit shape of the same cultivar can vary in
different areas, i.c. that a genetic x environment interaction does
exisl.

The cause of differences in the growth curves of the two fruil
populations is not related to the parameter measuring growth rate
(B) as there were no significant differences between treatments for
this parameter in both axes (Tables 1 and 2). Instead, differences in
average fruit size at harvest may be sought in the parameter
representing the point of inflection (M), which occurred later in the
mulch treatment (Tables 1 and 2). Since growth is exponential up 1o
the point of inflection, fruit in the mulch treatment grew
exponentially for a longer period. This implies that fruit in the
mulch treatment grew faster initially, unlil a point was reached
when difference in fruit length between the treatments remained
approximately constant.

Yield and fruit size distribution

The control trees showed a typical fruit size distribution for the
‘Hass' cultivar with many fruit in the count size range of 22 to 26
(small fruits), and a high proportion of factory grade avocados (Figs
4 and 5). Mulching with pinebark had the effect of shifting the
overall count size distribution in favour of large fruit, i.c. the mulch
trealment yielded fewer small fruit and more large fruit (Figs 4. and

5).

Humber of frull

FIGURE 4. Overall *Hass' fruit size distribution at harvest for the
1993/1994 season.
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FIGURE 5. Overall *Hass’ fruit size distribution at harvest for the
1994/1995 season.

For the purpose of measuring fruit growth, 40 [ruits per tree were
tagged at the beginning of each season, when all fruit were
approximately 10mm in length. Subsequent length and diameter
measurements, using digital calipers, were taken al regular intervals
throughout the growing season. The number of fruils measured per
tree gradually declined through the growing season because of fruit
abscission, so that at harvest an average of 15 fruils per tree were
measured, Using GENSTAT (1994), fruit measurements were fitled
to a Gompertz curve which has the following mathematical
equation;

y=Cexp (-exp[-B (x-M)]} + A
whereix = time from fruit set (days)
y = fruit measurement (mm)
A = starting value
B = growth rate
C = total growth
M = point of inflection

At the end of each season the trials were harvested, and fruit size
distributions were recorded for each tree. Fruit size was determined
gravimetrically and classified according to the number of fruit per
standard 4kg export carton. Fruits were graded as follows: Count
10, 366 to 450g; count 12, 306 to 365g; count 14, 266 to 305g;
count 16, 236 to 265g; count 18, 211 to 235g; count 20, 191 to
210g; count 22, 171 to 190g; count 24, 156 to 170g; count 26, 146
1o 155g; and factory grade, <146g. Total tree yields were calculated
by adding the product of the number of fruit per count size and the
class centre of all the count sizes.

RESULTS AND DISCUSSION
Root flushing

Root activity in the mulch treatment was always mere intense than
in the control. In the mulch treatment root growth fell into the
“medium"” category for the majority of the scason, whereas in the
control mainly “poor” root growth was recorded. For a substantial
part of the season (December 1993 through to April 1994, and
December 1994 through to March 1995) root activity was allocated
a “good"” rating in the mulched treatment (Fig. 1). Root flushing
periods followed a similar pattern, but in the mulch treatment were
two to four weeks carlier and continued for a longer period (Fig. 1)

Fool growih [Visusl ratlng 6-10)

— Conltrol —.— Muich

FIGURE 1. Root flushes as determined by a visual rating where
there is no root growth for 2 rating of 0 and extensive root growth
for a rating of 10.

Avocado trees are adapted to growing in soils with a thick liner
layer and a high crganic conlent, and avocado roots, being “lier
feeders™ with a high oxygen requirement (Moore-Gordon,
Waolstenholme & Levin 1995), thrive under such edaphic
conditions. Alithough healthy trees shed large numbers of leaves
(which are relatively shori-lived for an evergreen tree), application

of the composied pincbark mulch reinforced rain-forest MMoor
conditions, resulting in the more intense and prolonged surface
feeder root activity, The rhizotron studies of Whiley (1994) are
more representative of rool activity at depth, and have indicated the
potential for new root growth through winter in deep, cool. high
organic matler krasnozem soils in the high rainfall areas of S.E.
Queensland. Whether such root activity, at depths of up to 1m,
occurs under the climate and edaphic environment of Everdon is
unknown, although the soils are substantially similar.

Fruit growth

Each fruit measured had a regression coefficient {R3; value
greater than 0.99 indicating an extremely good fit. This was the case
for both length-ways and diameter measurements, Results of an
analysis of variance on each parameter of the Gomperiz curve
equation are summarized in Tabies 1 and 2. Figures 2 and 3 give a
graphic presentation of the resultant growth curves.
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FIGURE 2. ‘Hass' fruit growth curves for the 1993/1994 season,
Regression line for the mulch treatrment (length axis) is represented
by y = 110.0 exp {-exp [-0.02297 (x - 51.61)]} - 8.16; the conirol
(length axis) by y = 95.84 exp {-exp [-0.02252 (x - 53.86)]} - 5.20;
the mulch treatment (diameter axis) by y = 77.08 exp {-exp [-
0.02222 (x - 48.29)]} - 7.07, and the control (diameter axis) by v =
67.53 exp {-exp [-0.02336 (x - 54.13)]} - 2.66. (Growth curves
were constructed from a total of 82 fruits on the mulch treatment
and 92 fruils on the control).
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FIGURE 3. ‘Hass’ fruit growth curves for the 1994/1995 season.
Regression line for the mulch treatment (length axis) is represented
by y = 98.92 exp {-exp [-0.02281 (x - 49.44)]} - 7.34; the control
(length axis) by y = 90.14 exp {-exp [-0.02316 (x - 55.23)]} - 6.21:
the muich treatment (diameter axis) by y = 68.34 exp {-exp [-
0.02303 (x - 48.32}]} - 5.72; and the control (diameter axis) by ¥ =
61.57 exp {-exp [-0.02279 (x - 54.73)]} - 5.03, (Growth curves
were consirucled from a total of 43 fruits on the mulch treatment
and 39 fruns on the controf),
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Metabolic Control of Avocado Fruit Growth'

Isoprenoid Growth Regulators and the Reaction Catalyzed by 3-Hydroxy-3-Methylglutaryl
Coenzyme A Reductase

A. Keith Cowan*, Clive S. Moore-Gordon, Isa Bertling, and B. Nigel Wolstenholme

Department of Horticultural Science, University of Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209,
South Africa

The effect of isop id growth regulators on avocado (Persea
americana Mill. cv Hass) fruit growth and mesocarp 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMGR) activity was inves-
tigated during the course of fruil ontogeny, Both normal and small-
fruit phenotypes were used to probe the interaction between the
end products of isoprenoid biosynthesis and the activity of HMGR
in the metabolic control of avocado fruit growth. Kinetic analysis of
the changes in both cell number and size revealed that growth was
limited by cell number in phenatypically small fruit. In small fruit a
70% reduction in microsomal HMGR activity was associated with
an increased mesocarp abscisic acid (ABA) concentration. Applica-
tion of mevastatin, a competitive inhibitor of HMGR, reduced the
growth of normal fruit and increased mesocarp ABA concentration.
These effects were reversed by co-treat of fruit with m
acid lactone, isopentenyladenine, or N-(2-chloro-d4-pyridyl)-N-
phenylurea, but were nol significantly affected by either gibberellic
acid or stigmasterol. However, stigmasterol appeared to partially
restore fruit growth when co-injected with mevastatin in either
phase 11 or 11l of fruil growth. In vive application of ABA reduced
fruit growth and mesocarp HMGR activity and accelerated fruit
abscission, effects that were reversed by co-treatment with isopen-
tenyladenine. Together, these ohservations indicate that ABA accu-
mulation down-regulates mesocarp HMGR activity and fruit
growth, and that in situ cytokinin biosynthesis modulates these
effects during phase | of fruit ontogeny, whereas both cylokinins
and sterols seem to perform this function during the later phases.

HMGR catalyzes the irreversible conversion of HMG-
CoA to MVA, the committed step in isoprenoid biosynthe-
sis in all eukaryotic organisms (Goldstein and Brown,
1990). For plant growth and develapment, synthesis of
isoprenoids is fundamental because the pathway supplies
compounds that are essential for full morphogenic expres-
sion. This class of compounds is of structural significance,
e.g. carotenoids and the side chain of chlorophylls and
plastoquinone for photosynthesis, the side chain of ubiqui-
none for respiration, sterols for membrane structure, and
phytoalexins for defense. The pathway also supplies sev-

' This work was supported by grants from the Foundation for
Research Development (GUN 2034569), the University of Natal,
and the South African Avocado Growers' Association.

* Corresponding authar; e-mail cowan@hort.unpac.za; fax 27-
331-260-5073.
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eral regulatory molecules, including ABA, brassinos-
teroids, GAs, and the side chain of CKs, which contribute
to the control of both temporal and spatial events during
higher plant ontogeny. Despite this, surprisingly little in-
formation is available concerning regulation of isoprenoid
biosynthesis in plants and plant parts, particularly devel-
oping fruit. Whereas controversy still surrounds the sub-
cellular site of MVA metabolism (Campos and Boronat,
1995; Chappell, 1995a, 1995b), it is generally agreed that
reduction of HMG-CoA is potentially a major point of
regulation of isoprencid biosynthesis in plants (Bach, 1987;
Gray, 1987; Gondet et al, 1992; Moore and Oishi, 1994;
Chappell et al,, 1995).

Using tomato as a model system, Narita and Gruissem
(1989) demonstrated that HMGR expression and activity
are required during early fruit development. Furthermore,
these authors showed that in vivo inhibition of HMGR
during early fruit development disrupted the process,
whereas inhibition during the later expansion stage had no
significant effect, Since ripening was apparently unaf-
fected, it was concluded that inhibition of HMGR reduced
the MVA pool required for phytosterol biosynthesis, that
phytosterols were produced during early fruit develop-
ment, and that fruit expansion and ripening were indepen-
dent of HMGR activity.

Why phytasterols? In an attempt to address this question,
Gillaspy et al. (1993) produced a comprehensive overview of
the potential regulatory networks operating in the metabolic
control of fruit development, including cell division, expan-
sion, and differentiation. Although the arguments did little
to cement a direct role for phytosterols in metabolic control
of fruit growth and development, it was suggested that
intermediates in isoprenoid biosynthesis (eg. farnesyl
diphosphate and geranylgeranyl diphosphate) could be im-
portant components in this program. Thus, it was concluded
that cell proliferation during fruit ontogeny may be an ideal
system with which to dissect the regulatory interactions

Abbreviations: AMO 1618, 2'-isopropyl-4’-(trimethylam-
monium chloride}-5" methyl phenyl piperidine-1'-carboxylate;
ANOVA, analysis of variance; CK, cytokinin; CPPU, N-(2-chloro-
4-pyridyl)-N-phenylurea; HMG-CoA, 3-hydroxy-3-methylglutaryl
CoA; HMGR, 3-hydroxy-3-methylglutaryl CoA reductase; il
6-(y.y-dimethylaliylaming}-purine; MV &, mevalonic acid; MVAL,
mevalonic acid lactone,
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between synthesis of isoprenoids and signal transduction
pathways that lead to differentiation.

Development of avocado (Persea americana Mill.) fruit,
like that of most fleshy fruits, follows a single sigmoid
curve with a lag period of approximately 10 weeks {phase
1) followed by a growth phase of about 30 weeks (phase II),
dependent on cultivar and environment, and finally a ma-
ture phase (phase 1) during which growth slows (Val-
mayor, 1967). Unlike most fruits, cell division in avocado
mesocarp tissue is not restricted to phase I, but proceeds
throughout ontogeny (Schroeder, 1953), albeit at a slower
rate during the latter stages. Thus, avocade presents an
ideal system with which to study the role of isoprenocids in
the metabolic control of fruit growth from fruit set to
maturity.

The avocado cv Hass produces a large number of phe-
notypically small fruit. Results from our recent investiga-
tions show that the incidence of the small-fruit variant
correlates with sensitivity of cv Hass trees to abiotic/biotic
pressure, and that environmental perturbations affect crop
yield (i.e. fruit quality and quantity) seemingly through
modulation of the CK:ABA ratio (C.5. Moore-Gordon, A.K.
Cowan, and B.N. Wol holme, unpublished data). In
short, we propose that a decline in the CK:ABA ratio
lessens sink strength of developing organs by influencing
HMGR and cell division cycle activity to reduce final fruit
size. This hypothesis is supported by evidence that shows
that ABA retards cell division cycle activity (Miller et al.,
1994) and inhibits HMGR activity (Russell and Davidson,
1982; Moore and Qishi, 1994) in several higher plant tissue
systems.

To examine the interrelationship between HMGR, iso-
prenoid growth regulators, and the small-fruit phenotype,
we used mevastatin to specifically inhibit in vivo HMGR
activity in normal avocado fruit during phases I, If, and 111
of the developmental program. Supplementation with
products of the isoprenoid biosynthetic pathway and sim-
ilarly derived plant hormones revealed that CKs were the
most important limiting factors during Hass avocado fruit
growth and development.

MATERIALS AND METHODS
Isotopes, Isoprenoid Compounds, and Inhibitors

oL-[3-HCIHMG-CoA (58.0 mCi/mmol} was purchased
from Amersham. Mevastatin (compactin), MVAL, ABA, GA,,
iP, CPPU, stigmasterol, and cholesterol were purchased from
Sigma. AMC 1618 was purchased from Calbiochem.

Plant Material and Application of Chemicals

Experiments were conducted during the 1994-1995 and
1995-1996 seasons using 7-year-old trees of avocado (Persen
americana Mill. cv Hass) propagated on clonal Duke 7 root-
stocks in an orchard on the Everdon Estate in the KwaZulu-
Natal midlands, South Africa.

For application of chemicals, compounds of interest were
formulated in Tween 20:acetonewater (1:1:8, v/ v) to a final
concentration of 1 mg mL™, and 20 ub of each or combi-
nations thereof were injected into the pedicels of individual
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fruits (eight fruits per treatment) using a 1-ul syringe
(7105, Hamilton Co., Reng, NV) 55 d (phase I), 92 d {phase
11}, and 210 d (phase IIT) after full bloom, unless stated
otherwise. Control fruit were treated with and without
Tween 20:acetone:water (1:1:8, v/v). Following injection,
the wound was covered with silicone grease, and fruit
growth was monitored by measuring the increase in both
the fruit length and diameter using digital calipers
(Mitatoyo-500, Mitutoyo Corp., Tokyo, Japan) at the inter-
vals specified in “Results.” Since identical trends were
observed for both the fruit length and fruit diameter, only
results for percentage increase in {ruit length are shown.

Estimation of Cell Size and Cell Number

Whaole fruits (during phase I) and three 5-mm® tissue
ples (during ph 11 and III), excised from three
distinct zones (viz. a zone including the endocarp and seed
coat, a zone including the exocarp, and a zone from meso-
carp tissue midway between the exo- and endocarp, across
the equatorial region of each of the three randomly selected
fruit), were fixed in formalin:acetic acid:95% ethanolwater
(21:10:7, v/v), dehydrated in a graded ethanol/tert-
butanol series, and embedded in wax. Thin sections were
prepared using a rotary microtome (Reichert, Vienna, Aus-
tria), dewaxed and stained with Safranin and Fast Green
(Merck, Darmstadt, Germany), and examined using a light
microscope (BH-2, Olympus). The number of cells present
in a representative area of 90,000 pm?* was determined. For
cells at the borders, if greater than 50% of cell area was
within the designated sample area, the cell was regarded as
part of the sample. The number of cells per 90,000 wm?® was
used to estimate apparent cell size. To convert the number
of cells in the sample area to the number of cells across the
fruit, the following expression was used: 1 = dy/x, where
n is the number of cells across the fruit. d is the fruit
diameter in millimeters at the equatorial region, and x is
the number of cells in the sample area.

HMGR Assay

Freeze-dried mesocarp tissue was homogenized in an
ice-cold 100 mxy potassium phosphate buffer (pH 7.0) con-
taining 4 mm MgCl, and 5 ma DTT, and the homogenate
was filtered through two layers of Miracloth (Calbiochem)
and centrifuged at 10,000g for 15 min at 2°C. Microsomes
were prepared by adding 8 mm CaCl; to the 10,000g su-
pernatant and the membranes sedimented at 27,000g for 15
min at 2°C, as described by Cinti et al. (1972). The pellet
was washed in 150 mm KCl and recentrifuged at 27,000z
for 15 min at 2°C, and the microsomes were resuspended in
a small volume of 100 mu potassium phosphate buffer (pH
7.0) containing 50 mm DTT. Approximately 100 ug of the
microsomal protein (Bradford, 1976) was incubated in a
total volume of 300 pL containing 5 mym NADPH and 1.72
nmol [3-"CJHMG-CoA.

Reactions were initiated by addition of the substrate and
allowed to proceed for 45 min at 30°C. At the end of the
incubation period, reactions were terminated by the addi-
tion of 2 uL of MVAL (100 mg mL™') and 20 uL of HCI (6



Metabolic Control of Avocado Fruit Growth 513

x) followed by vortexing, and the MVA was lactonized at
room temperature for 15 min. Particulate material was
removed by centrifugation and the supernatant analyzed
for [MCJMVA. Using a modification of the method de-
scribed by Chappell et al. (1995), 700 uL of 0.5 M potassium
phosphate (pH 6.0) followed by 1 mL of ethyl acetate was
added to the supernatant, After thorough mixing and cen-
trifugation, radioactivity in the ethyl-acetate phase was
determined by liquid scintillation spectrometry. Alterna-
tively, the ethyl-acetate fraction was applied to thin layers
of silica gel (GFys;) and plates developed to 15 cm in
chloroform:acetone (21, v/v), and radioactivity in the
MVAL-containing zone (R 0.65) was determined by liquid
scintillation spectrometry. Assays were performed in trip-
licate, with less than 10% variation between samples and
the two methods of analysis.

Determination of ABA Content

For analysis of ABA, aliquots of freeze-dried mesacarp
tissue were homogenized in ice-cold methanolethyl ace-
tate (50:50, v/v), containing a known amount of radicla-
beled ABA (to correct for losses) and diethyldithiocarbam-
ate (200 mg L™7) as an antioxidant, in the presence of
insoluble PVP (10%, w/w) and extracted for 24 h in dark-
ness at —20°C. The homogenate was centrifuged and the
pellet extracted with further methanol:ethyl acetate (50:50,
v/v). The combined supernatants were reduced in vacuo,
and the residue was resuspended in 0.5 M potassium phos-
phate buffer (pH 8.5) and partitioned three times against
equal volumes of diethyl ether to remove neutral and basic
impurities. The pH of the aqueous phase was adjusted to
2.5 and ABA partitioned into diethyl ether (repeated three
times). Purified ABA-containing samples were analyzed by
reversed-phase HPLC. Chromatography was carried out
on a 5-um C,a column (250 X 4.6 mm id, ODS 2, Spheri-
sorb, Phase Separations, Inc,, Clwyd, UK) eluted with a
linear gradient of 0 to 100% methanol in 1% aqueous acetic
acid over 60 min at a flow rate of 1.0 mL min~". ABA was
quantified at 254 nm by peak integration following calibra-
tion with authentic standards using a programmable UV-
visible light detector (model 990, Waters).

Data Analysis

Treatment effects on fruit growth and differences in cell
size and number were analyzed using Genstat (Rotham-
sted Experimental Station, UK), compared by ANOVA and
F tests used to determine the level of significance (P <
0.01). All other data are the mean of at least four indepen-
dent measurements and were either compared by ANOVA
and sk (difference) generated (P < 0.05) or presented as the
mean * sE for a treatment.

RESULTS

Inhibition of Avocado Fruit by Mevastatin and
Effect of Sterols

Injection of mevastatin, a competitive inhibitor of
HMGR, through the pedicel during either phase L or phase

II retarded avocado fruit growth and development by 60%
(Fig. 1). In both experiments, mevastatin-induced retarda-
tion of fruit growth was reversed by co-injection with
MVAL, resulting in recovery of the normal phenotype.
Sterols reduced avocado fruit growth when applied either
in phase | or phase Il (Fig- 1, A and B). A combination of
cholesterol and stigmasterol, administered during phase L.
also reduced fruit growth and eventually arrested the pro-
cess (Fig. 1A), causing 50% fruit abscission 70 d after treat-
ment. Although stigmasterol retarded avocado fruit
growth to the same extent when applied in phase II, it
partially reversed the inhibitory effect of mevastatin (Fig.
1B).

Cell Number: The Limiting Factor in Avocado
Fruit Growth

To determine whether cell size and/or cell number was
limiting during development of phenotypically small cv
Hass avocado fruit, measurements of cell number and cell
size were taken throughout the course of this program. The
data were computed using a general logistic curve and an
ANOVA performed on each parameter in the nonlinear
regression. The resultant trends are shown in Figure 2. The
mean equatorial mesocarp cell number was significantly
higher in control fruit (Fig. 2A), whereas there was no
significant difference between mean mesocarp cell size of
the small and control fruit (Fig. 2B).
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Figure 1. Effect of in, stig I, and cholesterol on cv
Hass avocado fruit growth. Compounds of interest were applied
during the 1994-1995 season in 20 pl of Tween 20:acelone:water
(1:1:8, wiv) via the pedicel at concentrations of 1 ug pl=" either 55 d
(A, phase 1) or 92 d (B, phase I} after full bloam, and growth was
monitored as percentage increase in fruit length Each value repre-
sents the mean of eight determinations. st (difference) in A = 9.0; %
(difference} in B = 0.9. O, Control; ®, mevastatin; , mevastatin plus
MVAL; ¥, me tin plus stig 1: O, stig I; &, choles-
terol; and &, sti terol plus chelesteral
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Figure 2. Estimated change in mean equatorial mesocarp cell num-
ber and cell size of small (M) and large () cv Hass avecado fruit
throughout development, A, Cell number was estimated as described
in “Materials and Methods” and regression lines for large and small
fruit are represented as y = 833.9 — 2560.5(0.9466)x and y =
7469 — 5576.3(0.9222)x, respectively. B, For average cell size,
regression lines for large and small fruit were y = 18545 -
2330.0(0.9808)x and y = 1852.9 — 2390.8(0.9806)x, respectively.
Regression lines were calculated from 54 measurements per treat-
ment at each time interval.

Effect of Plant Growth Regulators on Mevastatin-Induced
Inhibition of Fruit Growth

Results presented in Figure 3A show that mevastatin-
induced retardation of cv Hass avocado fruit growth dur-
ing phase 1 (55 d after full bloom) could be completely
reversed by co-injection with MVAL, iP, or the cytokinin
analog CPPU. GA, and stigmasterol, by comparison, had
little or no effect. As shown in Figure 3B, CK, stigmasterol,
or GA, did not markedly influence the “normal” course of
cv Hass avocado fruit development when applied during
phase I, although toward the conclusion of this growth
period both GA,- and stigmasterol-treated fruit showed a
slowing of growth relative to the control. Likewise, AMO
1618, a purported inhibitor of kaurene synthase activity
{Dennis et al,, 1965) and sterol biosynthesis (Douglas and
Paleg, 1972) did not markedly affect fruit growth, although
it did cause growth to slow toward the end of the experi-
mental period. Exogenously applied ABA, however, re-
duced fruit growth substantially and caused 90% fruit
abscission within 50 d of application. Co-injection with iP
reversed the growth-retarding effect of ABA (Fig. 3B) and
reduced the incidence of fruit abscission to that observed in
control treatments (Fig. 4).

During phase 11 (146 d after full bloom), treatment of
fruit with iP countered the growth-retarding effect of me-
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vastatin (Fig. 3C). lsopentenyladenine alone, however, had
little or no effect on fruit growth during this phase.

In phase 111 (210 d after full bloom) mevastatin treatment
reduced growth by 50% (Fig. SA), whereas treatment with
iP did not markedly affect this process (Fig. 5B). Surpris-
ingly, only iP completely reversed the growth‘:ekarding
effect of mevastatin, although co-injection of mevastatin
with either MVAL or stigmasterol reduced the effect of this
inhibitor (Fig. 5A). ABA reduced avecado fruit growth by
50%, and this effect was reversed in fruits co-treated with iP.

Microsomal HMGR Activity of Mevastatin-Treated and
Nontreated Avocado Fruit

In an attempt to further elucidate the proposed link
between the CKs, the sterols, the small-fruit phenotype,
and the synthesis of MVA, HMGR activity in small fruit
and fruits treated with or without mevastatin in phases I,
11, and III was determined and the results are presented in
Figure 6.

During the course of cv Hass avocado fruit development,
activity of microsomal HMGR remained unchanged (Fig.
6A). Although a similar trend was observed for small fruit,
specific activity of microsomal HMGR was approximately
30% that of untreated and control fruit of a comparable age
(Fig. 6C). Fruit pretreated with mevastatin in phase I, I, or
1II showed a substantial reduction in HMGR activity (Fig.
60)), with levels similar to those observed for small fruit.
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Figure 3. Influence of i id growth regul on mevastatin-
induced retardation of cv Hass avocado fruit growth. A and C,
Mevastatin-treated. B, Control. Compounds of interest were applied
in phase | (A and B, 55 d after full bloom) and phase I (C, 146 d after
full bloom) of the 1995-1996 season, and fruit growth was measured
as described in Figure 1. Each value represents the mean of ersht
determinations. st (difference) in A =< 6.0; st {difference} in 8 = 5'.0:
se tdifference) in C = 3.5, O, Control; @, mevastatin; [J, stigmasterol;
+, GA; %, CPPU: B MVAL; &, iP plus mevastatin: &, iP; ¢, ASA;
¥, AMO 1618: <. ABA plus iP,
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Figure 4. Comparison of the effect of ABA, ABA plus iP, and all other
treatments on cv Hass avocado fruit abscission following pedicel
injection of compounds during phase | of development. Experimental
conditions were as described for Figure 3. O, ABA plus iP; O, ABA;
®, all other treatments; W, control.

Likewise, ABA treatment of fruit in phase III reduced in
vivo HMGR activity by 70% to 1.41 = 0.27 nmol h™' mg ™!
protein. Unfortunately, insufficient samples due to fruit
abscission precluded a comprehensive assessment of the
effect of ABA on in vivo HMGR activity during avocado
fruit development. Even so, co-injection of ABA with iP
during phase III partially restored HMGR activity (2.15 =
0.24 versus 6.35 = 0.92 nmol h™" mg ™" protein in untreated
fruit). HMGR activity was unaffected in fruits co-injected
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Figure 5. Effect of iP, MVAL, and stigmasterol on growth of
mevastatin-treated fruit {A) and eifect of iP, ABA, and stigmasterol on
growth of control fruit (B) during phase lIl. Chemicals were applied in
20 pl of Tween 20:acetone:water (1:1:8, w/v) via the pedicel 210 d
after full bloom (phase Wll) during the 1995-1996 season at concen-
trations of 1 pg pL~", and fruit growth was monitored as described
in “Materials and Methods.” Determinations are the mean of eight
fruits per treatment. st (difference} s 1.4. O, Control; ®, mevastatin;
W, mevastatin plus MVAL; ¥, astatin plus stig I; &, mev-
astatin plus iP; 4, ABA; ¢, ABA plus iP; [0, stigmasterol; 4, iP.
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Figure 6. HMGR enzyme activity in developing cv Hass avecado
fruit and fruit pretreated with mewvastatin and/or iP and/or stigmas-
terol. Batches of fruit (eight per treatment) were injected with 20 L
of mevastatin and/or MVAL andfor iP and/or stigmasterol (all 1 ug
#L=") 55 d (phase 1), 146 d (phase 11}, and 210 d {phase 1ll) after full
bicom and the fruit were han«es&ed 40 d later. HMGR activity was
d in Ca®"-sedi micl | membranes derived
from freeze-dried mesocarp tissue, as described in “Materials and
Methods.” Each value is the mean £ se of three to six determinations.
A, Untreated; B, control: C, small fruit; D, mevastatin; E, mevastatin
plus MVAL; F, stig I; G, mevastatin plus IH, 1P 1,
mevastatin plus iP.

with MVAL and mevastatin (Fig. 6E), whereas stigmasterol
was inhibitory and exacerbated the effect of mevastatin on
enzyme activity (Fig. 6, F and G). Treatment of fruit with iP
did not affect HMGR activity significantly during the
course of fruit development (Fig. 6H). At all stages of fruit
growth iP treatment reversed the inhibitory effect of mev-
astatin (Fig. 61).

Effect of Mevastatin on Avocado Mesocarp ABA Content

Analysis of ABA in mesocarp from small fruit and fruit
pretreated with or without mevastatin and/or MVAL, iP,
or stigmasterol revealed the trends shown in Table 1. ABA
concentration declined over the normal course of avocado
fruit growth and development. By comparison, mesocarp
ABA content of small fruit increased, and at all stages of
growth small fruit contained substantially more ABA than
fruit from the control treatments. Mevastatin treatment
significantly enhanced ABA concentration at all stages of
fruit growth, whereas co-injection of this inhibitor with
either MVAL or iP reversed the effect. MVAL resulted in a
return to basal ABA concentration at all stages of fruit
growth. In contrast, exogenous application of i’ reduced
basal ABA content by >50% during the early stage (phase
1} of fruit growth, but was only 50% as effective as MVAL
during the later stages (phases Il and I1I} of this process.
Stigmasterol reduced mevastatin-induced ABA accumula-
tion by 30% in fruits treated in phase I, and by more than
50% when co-injected with mevastatin in phase IIL

DISCUSSION

The occurrence of a substantial percentage of phenotyp-
ically small cv Hass fruit is common to all avocado-
producing regions. Even healthy trees in well-managed
orchards produce a significant number of small fruit, usu-
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Table I. ABA concentration of mesocarp lissue from developing
small fruit and fruit pretreated with mevastatin, MVAL, stigmas-
terol, and iP 5

Batches of fruit (eight fruit per treatment) were injected via the
pedicel with 20-ul solutions of Tween 20:acetone:water (1:1:8, viv)
conlaining mevastatin, mevastatin plus MVAL, mevastatin plus stig-
masterol, and mevastatio plus iP (all 1 pg w!™") 55 d (phase 1), 146 d
{phase 1), and 210 d (phase II] after full bloom. Fruits were harvested
between 50 and 100 d afier application of chemicals and ABA
content was determined as described in “Materials and Methods.”
Data are the mean of at leas! three determinations (15D, = 10.9).

Time after Full Bloom

163 d 216d 230 d
ug”" dry wi %
Control 293 (1001a% 12.2 (100)a  10.9 (100)a
Small fruit 63.64217)d  B1.8 (670K 75.5(693)c
Mevastatin 66,91228)d 39.0 (320 673 (617)c

Mevastatin + MVAL 33000136 163 (1321a,b 11.1 (102)a
Mevastatin + iP 14.1 (48)a 26.4(216lb 24,9 (228)b
Mevastatin + stigmasterol 44,6 (152)c ND® 31.5(289)b

* Percent relative to contral. AL each time interval, values
followed by different letters are significantly different (P =
0.05). £ ND, Mot determined.

ally characterized by early seed coat senescence and cessa-
tion of fruit growth 50 to 60 d after full bloom. We hoped
to exploit this phenotypic variant and gain insight into the
interaction between isoprenoid growth regulators, phytos-
terols, and HMGR activity in the metabolic control of av-
ocado fruit growth and development.

Results from the present investigation provide convinc-
ing evidence for involvement of sterols, CKs, ABA, and
HMGR in the metabolic centrol of avocado fruit growth. In
this regard, several interesting observations were made.
First, growth of phenotypically small cv Hass fruit was
limited by cell number, and not by cell size, and these fruit
showed reduced HMGR activity and elevated endogenous
ABA during each phase of development. Second, in vivo
inhibition of HMGR by mevastatin resulted in reduced
fruit growth and increased fruit ABA concentration, irre-
spective of time of application after fruit set. Third, phy-
tasterols did not appear limiting in phase I of cv Hass fruit
growth. During phases I1 and IIl, however, stigmasterol
reversed, albeit partially, the growth-retarding effect of
mevastatin. Fourth, retardation of avocado fruit growth by
mevastatin was reversed by co-injection with iP and the CK
analog CPPU, in addition to MVAL. Only MVAL com-
pletely reversed mevastatin-induced inhibition of HMGR
activity. MVAL was also more effective at reversing the
mevastatin-induced increase in ABA than was iP, particu-
larly during the later stages of fruit growth. This observa-
tion might account for the inability of iF to completely
reverse ABA inhibition of HMGR in phase IIL. Retardation
of fruit growtn by exogenous ABA, and ABA induction of
fruit abscission were reversed following co-injection with
iP. Together, these findings support our proposed interac-
tion between CKs, ABA, sterols, and HMGR, in which an
increase in endogenous ABA causes down-regulation of
HMGR enzyme activity and fruit growth, typified by the
occurrence of phenotypically small fruit.
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Several reports have implicated phytosterols in the con-
trol of fruit development (Narita and Gruissem, 1989; Gil-
laspy et al,, 1993), and at least one study has suggested an
essential role for stigmasterol in the support of plant cell
division (Haughan et al,, 1987). Although deprivation of
MVA and sterols is reported to increase HMGR half-life,
high levels of sterol enhance the rate of HMGR degradation
(Correll and Edwards, 1994). Thus, it was not unexpected
that treatment with stigmasterol (and/or cholesterol)
would reduce in vivo HMGR activity and fruit growth.

Co-injection of mevastatin with stigmasterol, however,
caused fruit to respond differently in phases I, II, and IIT. In
phase I stigmasterol reduced fruit growth and accelerated
abscission, whereas fruit treated in phase Il showed partial
recovery from mevastatin-induced inhibition of growth,
and rates of abscission closely resembled those of control
treatments. In phase [II, however, stigmasterol alone did
not affect fruit growth, but reversed the growth-retarding
effect of mevastatin to the same extent as MVAL. Even so,
stigmasterol did not reverse mevastatin-induced inhibition
of HMGR, presumably due to mevastatin-induced ABA
accumulation. Likewise, the ABA content of phenotvpi-
cally small fruit resembled that of mevastatin-treated fruit
and HMGR activity was substantially reduced.

Earlier studies on regulation of higher plant cytosolic
HMGR suggested hormonal mediation of enzyme activity
(Russell and Davidson, 1982). The authors demonstrated
in vivo ABA, stigmastercl, and cholesterol inhibition of
enzyme activity. When added to reaction mixtures in
vitro, however, these products of isoprenoid biosynthesis
had no effect on enzyme activity. It was therefore con-
cluded that hormonal control was not allosteric, but was
exerted via some unknown phosphorylation system. Sim-
ilar conclusions were reached in studies on the effect of
endogenous ABA on HMGR activity during seed matura-
tion. Vivipary mutants of maize, which are defective in
ABA biosynthesis, and the Vpl mutant, which is defective
in an ABA response element, all show enhanced HMGR
activity relative to wild-type siblings (Moore and Oishi,
1994). Since the Vpl gene product is involved in ABA
signal transduction during seed development, it was pro-
posed that HMGR activity during seed maturation is reg-
ulated via a Vpl-dependent signal transduction pathway
that is affected by reduced ABA.

Mevastatin-induced ABA accumulation in avocado me-
socarp was both surprising and interesting. First, this
observation supports plastid-localized ABA synthesis (Zee-
vaart and Creelman, 1988), since mevastatin and its struc-
tural analogs are unable to inhibit chleroplast isoprenocid
synthesis (Bach and Lichtenthaler, 1983; Bach, 1987). Sec-
ond, the existence of an alternative pathway that does not
involve MVA synthesis, similar to that proposed recently
by Schwender et al. (1996), cannot be ignored. In this
pathway, isopentenyl diphosphate is formed intrachloro-
plastically via condensation of pyruvate and glyceralde-
hyde phosphate. Third, the result might suggest that a
product(s) of cytosolic isoprenoid biosynthesis is responsi-
ble for regulating ABA formation in or by chloroplasts.
Two possible candidates include CKs and phytosterols.
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Isopentenyladenine reversed the inhibitory effects of mev-
astatin at all stages of avocado fruit development. Simi-
larly, inhibition of tobacco cell growth by lovastatin (a
mevastatin analog) was reversed by CKs (Crowell and
Salaz, 1992). Furthermore, iP and its hydroxylated deriva-
tive zeatin replaced the essential role of MVA in initiating
DNA replication in the cell cycle (Siperstein, 1984). Since
CK biosynthesis is purported to involve prenylation of the
purine moiety catalyzed by isopentenyl transferase, a pro-
cess in which dimethylallylpyrophosphate is added to
AMP at position N® (Binns, 1994), the above observations
might suggest that inhibition of HMGR limits the MVA
pool available for synthesis of dimethylallylpyrophosphate
(isomerization of isopentenyl diphosphate) and, hence, in
situ CK biosynthesis. Similar conclusions were reached by
Crowell and Salaz (1992), who suggested that CK biosyn-
thesis is more sensitive to HMGR inhibition than biosyn-
thesis of other essential isoprenoids, Further support for
this proposal comes from the observation that CPPU, a CK
analog, was as effective as iP at overriding the inhibitory
effect of mevastatin on avocado fruit growth.

Isopentenyladenine also reversed the inhibitory effects
of ABA. The role of ABA in plant stress responses and its
ability to retard developmental processes.(Zeevaart and
Creelman, 1988) suggest that it is a likely candidate to
influence fruit growth under adverse conditions and
thereby contribute to down-regulation of fruit develop-
ment and emergence of small-fruit phenotypes. However,
ABA concentration is high and declines during the normal
course of fruit growth (Table I). Thus, an alternative inter-
pretation might be related to CK homeostasis, which is
purportedly regulated by a substrate-inducible (specifical-
ly iP) oxidase (Motyka et al.,, 1996). High concentrations of
ABA during the early phase of fruit ontogeny may there-
fore be necessary to modulate CK synth possibly at the
level of HMGR, and hence cell proliferation.

Several studies have intimated a cell-cycle-regulating
function for ABA because exogenous ABA inhibits nucleic
acid and protein synthesis (Owen and Napier, 1988). Mey-
ers et al. (1990) showed that exogenously applied ABA
consistently inhibited cell division in cultures of maize
kernels. More recently, Miiller et al. (1994) obtained evi-
dence to suggest that ABA functions to reduce cell-division
cycle activity by retarding completion of the cell cycle. In
addition, water deficit in developing endosperm of maize
has also been reported to inhibit cell division (Artlip et al,,
1995). Stress-induced accumulation of ABA might there-
fore be expected to exert an effect on fruit growth during
the early stages, when cell-division cycle activity is at a
maxirmum.

Avocado fruit enlargement in phases 11 and IIl is corre-
lated with both cell division and expansion, developmental
processes that require a significant level of sterol biosyn-
thesis (Narita and Gruissem, 1989; Chappell, 1995a). It is
well established that ABA increases permeability of lipid
membranes (Stillwell and Hester, 1984; Bach, 1986; Stillwell
et al., 1989; Purohit et al,, 1992; Biirner et al., 1993) and that
phytosterols inhibit these ABA-induced perturbations
(Stillwell et al,, 1990). ABA also appears to inhibit HMGR

activity (Russell and Davidson, 1982; Moore and Qishi,
1994). In light of these observations it is templing to sug-
gest that stress-induced initiation of the ABA signal trans-
duction pathway depresses HMGR activity, limiting syn-
thesis of both CKs and phytosterols to reduce cell-division
cycle activity in affected ev Hass fruits. Furthermore, accu-
mulation of stress-induced ABA during fruit growth might
be sufficient to induce “lipid melting” in affected mem-
branes (e.g. seed coat), causing onset of senescence and
cessation of fruit development, processes that would be
reversed in the presence of sufficient sterol. This proposal
is supported by the observation that fruit treated with
stigmasterol in the presence of mevastatin, an inhibitor of
HMGR that induces ABA accumulation, show a decline in
endogenous ABA concentration and partial recovery of
growth.

In conclusion, pessible sources that may contribute to
elevated fruit ABA concentration and, hence, reduced fruit
growth in cv Hass avocado include the xylem/phloem
continuum (i.e. stress-induced root- and leaf-derived ABA)
and the developing fruit itself (i.e. in situ ABA biosynthe-
sis). We have recently demonstrated more efficient incor-
poration of label from [1-C]Glc into ABA than from
[2-"*C]MVAL in mesocarp of cv Hass avocado (J.C.G. Mau-
rel and A.K. Cowan, unpublished data), which might in-
dicate a novel source of carbon for ABA biosynthesis. In
addition to reducing HMGR activity and fruit growth, in
vivo application of ABA via the pedicel inhibits seed coat
and mesocarp cell-cell communication {A.K. Cowan, C.E.J.
Botha, RH.M. Cross, C.5. Moore-Gordon, and 1. Bertling,
unpublished data). Whether this effect of ABA is linked to
down-regulation of HMGR directly or indirectly remains to
be investigated, The recent demonstration that plant
HMGR kinase is related to Suc nonfermenting-1 protein
kinase (Barker et al,, 1996), a gene essential for release from
Gle repression, suggests that isoprenoid metabolism, car-
bohydrate status, and fruit growth are indeed interrelated
processes that could contribute to development of small-
fruit phenotypes. This is particularly so given that ABA
stimulates acid invertase activity (Ackerson, 1985) and
transgenic tomato fruit, expressing a constitutive antisense
acid invertase gene, show increased Suc concentration and
decreased fruit size (Klann et al., 1996).
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The Hass Small-Fruit Problem: Role of Physiological Stress and its

Amelioration by Mulching
C.S. Moore-Gordon * B.N. Wolstenholme

Department of Horticultural Science, University of Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg

ABSTRACT

The Hass cultivar is important to the South African avocado industry because it matures late and is preferred by overseas consumers.
However, it produces a variable percentage of undersized fruit that cannot be exported. Mulching was investigated as a possible method
of increasing fruit size through improved root activity and reduced tree stress. In a field trial at Everdon Estate, Howick, feeder root
growth was greatly increased throughout two seasons by the application of a coarse composted pine bark mulch beneath the tree
canopy. Over two seasons, the mulch treatment resulted in a significant 11,8 % increase in mean fruit mass, in spite of 16,7 % more
fruits per tree. The combined effect was a 30,4 % greater yield, in spite of a high level of management and a relatively mesic environment.
The probable explanation for this increase is that mulching amelicrates overall plant stress. Mulching reduced the incidence of premature
seed coat abortion and pedicel ring-neck, both of which are associated with plant water stress. Furthermore, mulching reduced foliage
temperatures during stress periods, indicating a reduction in plant water stress during these critical periods.

INTRODUCTION

Because the South African avocado industry is largely export
oriented, cultivars such as Hass, which are preferred by overseas
consumers, are important to the industry (Cutting, 1993), This
cultivar is also late maturing and is therefore useful for extending
the harvesting season. Unfortunately, Hass trees have a tendency
to bear large numbers of undersize fruit, and fruit size is on
average much smaller than in other major commercial varieties
such as Fuerte, Pinkerton, Edranol and Ryan. Up to 50 % of the
Hass crop may be undersize (less than 200 g or counts of more
than 20 fruits per standard 4 kg export carton) in any particular
season (Kéhne, 1992), and in 1994 this problem was estimated to
have cost the South African industry R30 million in lost revenue.

The phenomenon Is not restricted to diseased and/or
unhealthy trees. Even healthy Hass trees produce a significant
proportion (5-25 %) of small fruit (Kremer-Kohne & Kohne,
1995) unsuitable for export. The small-fruit problem is physio-
logical and occurs in trees without pathogen involvement
(Blanke & Bower, 1991). It is exacerbated by the onset of symp-
toms of pedicel ring-neck and early seed coat senescence, and s
aggravated by poor cultural practices. The problem becomes
more pronounced with tree age (Cutting, 1993) and is particu-
larly noticeable in orchards situated in warmer and/or drier cli-
mates (Hilton-Barber, 1992; Whiley & Schaffer, 1994). Stress and
ageing are therefore both major determinants of Hass avocado
fruit size.

Fruit size is fundamentally determined by genome, so the
long-term and ultimate approach is to discover or breed new
large-fruited black-skinned cultivars. Unfortunately, breeding
and testing new cultivars is time-consuming and does not resolve
the problem immediately. There is therefore a requi tforan
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Root flushes as determined by a visual rating where:
0= no reot growth; 10 = extensive root growth

Any layer of plant material that occurs naturally or is applied
to the soil can be considered a mulch (Turney & Menge, 1994).
The benefits derived from mulching include increased water and
nutrient availability (Gregoriou & Rajkumar, 1984), improved
soil structure and porosity (Gallardo-Laro & Nogales, 1987) and
a narrowing in the diurnal soil temperature range (Gregoriou &
Rajkumar, 1984), In addition, mulching creates a suppressive

interim solution. We hypothesized that the application of a
mulch could be a practical short-term solution to promote root
growth and health, ameliorate stressful growing conditions and
reduce the extent of the problem. This strategy is based on the
avocado having evolved in a tropical to subtropical highland
rainforest environment, and adaptation to soils with a litter layer
and 2 high humic content. Reinforced mulching (in addition to
natural litter fall) simulates rainforest floor conditions, thus pro-
viding roots with improved and more natural edaphic growing
conditions. Improved root growth should impact positively on a
cascade of physiological events promoting cell division in fruits,
and prolonging seed coat viability. It is well known that prema-
ture seed coat abortion contributes to smaller fruit size (Blumen-
feld & Gazit, 1974; Steyn et al., 1993).

envir t for Phytopiitl 3 i, thus reducing the
impact of this phytopathogen (Turney & Menge, 1994). All of the
above benefits of mulching serve to reduce the impact of envi-
ronmental stress on the tree.

The objective of this study was to investigate whether mulch-
ing could be a practical cultural method of increasing mean Hass
fruit size through improved root activity and reduced tree stress,

MATERIALS AND METHODS

Treatment

This study was conducted on six-year-old (in 1993) Hass trees on
clonal Duke 7 rootstock at Everdon Estate, mear Howick, in the
Kwazulu-Natal midlands (30° 16’ Eand 29° 27" §). The orchard is
situated in Phillips’ Bioclimatic region 3, which is characterized
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by cool mesic conditions, typical of a ‘mist-belt’ climate. Mean
maximum and minimum temperatures range from 26,1 and
15,0 °Cin January to 19,4 and 6,7 °C in July. Mean annual rainfall
is'1 052 mm and altitude is ca. 1 080 m. Orchards receive stand-
ard cultural treatment, including microjet irrigation based on
tensiometers, and management efficiency is excellent. The soil is
an oxisol of the Hutton form, dystrophic, with a high clay content
of ca. 50%. A total of 1,5 m* of coarse composted pine bark
(Gromed® coarse potting mix) was applied in February 1993
under the canopy of six trees to a depth of approximately 15 cm,
and these trees were compared with six adjacent unmulched trees.

Data collection

The data collection period for phenological events spanned from
May 1993 through to October 1995. Root flushes were monitored
by visually estimating the area covered by white healthy feeder
roots under a newspaper mulch (Whiley ef al., 1988) with an
approximate area of 1 250 cm®. The newspaper mulch was placed
1 m from the microjet nozzle on the south-west side of the tree,
50 as to avoid direct sunlight. Three readings per treatment were
taken at the end of each month. Visual estimates of root flushing
were performed using a rating of 0-10. Kalser & Wolstenhalme's
(1994), groupings of 'poor’, ‘medium’ and ‘good’ were chosen,
viz. 0-2, 3-4, and 5 respectively.

At the end of each scason the trials were harvested, and fruit
size distributions were recorded for each tree. Fruit size was
determined gravimetrically and classified according to the
number of fruit per standard 4 kg export carton. Fruits were
graded as follows:

» Count 10: 366-450 g
*+ Count12: 306-365g
* Count 141 266-305 g
* Countl6: 236-265¢g
*+ Count18: 211-235g
+ Count20: 191-210g
+ Count22: 171-190g
* Count24: 156-170g
« Count 26: 146-155g

* Factory grade: <146 g

Total tree yiclds were calculated by adding the product of the
number of fruit per count size and the class centre of all the count
sizes.
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Overall Hass fruit size distribution at harvest for the 1994/1995 season
Monitoring of tree stress

Seed coat viability

To determine the refationship between seed coat viability and
fruit size, all fruit from a single eight-year-old Hass tree on
Everdon Estate was harvested on 21 July 1995, at the time of initial
fruit harvest. These fruits were welghed and allocated a seed coat
viability rating. Broad groupings of ‘healthy’, ‘degenerate’ and
‘intermediate’ were selected (healthy seed coats were still white
and fleshy, degenerate seed coats, brown and thin, and the
intermediate category falling between these two extremes).

Incidence of pedicel ring-neck

To determine the effect of mulching on the incidence of pedicel
ring-neck, 100 fruits per tree were randomly harvested, with care
being taken to ensure that the fruit were still attached to their
pedicels. Before fruits were passed through the packhouse, the
presence or absence of the ring-neck syndrome was recorded for
each fruit,

Foliage temperature

Using weather-proof infra-red thermometers (IRTs), surface can-
opy temperatures of two trees per treatment were recorded con-
tinuously from November 1994. Insulation and reflective foil
were applied to the IRTs to reduce temperature effects. The [RTs
were mounted 2,5m from the trees, facing south, on tripod
stands ata height of 4,5 m above the ground. IRTs were connected
to a Campbell Scientific CR10® data-logger beneath the trees.
Simultaneous air temperature measurements were recorded by
two thermocouples, and these data were also fed into the dara-
logger.

RESULTS AND DISCUSSION

Root flushing

Root activity in the mulch treatinent was always more intense
than in the control. In the mulch treatment root growth fell into
the ‘medium’ category for most of the season, whereas in the
control mainly ‘poor’ root growth was recorded. For a substantial
part of the season (December 1993 through to April 1994, and
December 1994 through to March 1995) root activity was allocat-
ed a ‘good’ rating in the mulched treatment (figure 1} Hoot
flushing periods followed a similar pattern, but in the mulch
treatment they occurred two to four weeks earlier and continued
longer (figure 1),
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Figure 4
Allocation on a percentage basis of seed coat viability into categories of
‘healthy’, ‘intermediate’ and ‘degenerate’

Avocado trees are adapted to growing in soils with a thick lit-
ter layer and a high organic content, and avocado roots, being
‘litter feeders’ with a high oxygen requirement (Moore-Gordon et
al., 1995), thrive under such edaphic conditions. Although
healthy trees shed large numbers of leaves (which are relatively
short-lived for an evergreen tree), application of the composted
pine bark mulch reinforced rain-forest floor conditions, resulting
in the more intense and prolonged surface feeder root activity.
The rhizotron studies of Whiley (1994) are more representative
of root activity at depth, and have indicated the potential for
new root growth through winter in deep, cool, high organic mat-
ter krasnozem soils in the high rainfall areas of 5.E. Queensland.
It is not known whether such root activity, at depths of up to
1 m, occurs under the climate and edaphic environment of Ever-
don, but the soils are substantially similar.

Yield and frult size distribution

The control trees showed a typical fruit size distribution for the
Hass cultivar with many fruit in the count size range of 22-26
(small fruits), and a high proportion of factory-grade avocados
(figures 2 and 3). Mulching with pine bark had the effect of
shifting the overall count size distribution towards large frults,
i.e. the mulch treatment yielded fewer small fruits and more large
fruits (figures 2 and 3).

Average fruit mass was significantly (P < 0,01) increased in
response to pine bark mulching. Fruits from the mulch treatment
were on average 23,3 g £ 1,2 g heavier than control fruit after one
year of the treatment, representing an 11,8 % increase in mass,
in spite of more fruits per tree (table 1). Harvest results for the
1994/1995 season confirm that the pine bark treatment resulted
in a significant (P £0,01) increase in fruit size, with fruit from this
treatment being on average 21,0 g £ 1,4 g heavier (11,8 %) than
control fruit (table 1).

Seasonal effects on mean fruit size are also evident, with fruits
being 10 % smaller in the control and 10 % smaller in mulched
trees in the second season. This might be attributed to the shorter
fruit growth period during the second season (255 days in
1994/1995 compared to 284 days in 1993/1994). Since avocado
fruit expansion proceeds throughout fruit development
(Schroeder, 1953), albeit at a slower rate during the later stages, a
prolonged period of fruit growth would be expected to result in
larger fruit size.

Assimllate supply to a fruit will depend on the extent of com-
petition from other established fruit sinks (Monselise & Gold-

Incidence of degenerate seed conts (%)

20 60 100 140 180 220
Days from fruit set

Figure 5
Incidence of fruits having degenerate seed coats from the mulch and
control treatments on a percentage basis (values were calculated from 18
fruits per treatment at each time interval)

schmidt, 1982), and so fewer sinks should yield larger fruit. Table
1 shows that increase in fruit size was achieved in spite of 2 6,1 %
and 27,2 % increase in number of fruits per tree in the mulch
treatment in the first and second seasons respectively. This sup-
ports the hypothesis that mulching has altered endogenous
physiological conditions in favour of increased fruit growth, The
increased fruit size coupled with increase in number of fruits per
tree resulted in an overall 18,5 % increase In yield at the end of
the first year, and a 42,2 % increase in yield for the second season
(table 1), i.e. an average increase in yield of 30,4 % over the two
seasons.

Table 1
Summary of the effects of pine bark mulching on average fruit mass,
number of fruits per tree and total yield. Figures are means of six trees.
*Denotes a significant (P < 0,01) increase by mulching.

Control Mulch % increase
§ Mean fruit mass (g) 198,0 221,3 11,8*
S Fruit number/tree 509 540 61
& Yield (ha) ; 20,16 23,88 18,5
§ Mean fruit mass (g)  178,2 199,2 11,8
= Frult number/tree 262 333 27,2
& e ama) 9.32 13,26 2,2

Seed coat viability

Results show that there is a good cormelation between Hass frult
size and the extent of seed coat degeneration. Smaller fruits had
a higher proportion of degenerate seed coats, while larger fruits
had a higher percentage of healthy ones (figure 4). The practice
of mulching reduced the incldence of frult with degenerate seed
coats (figure 5). Assuming that seed coat degeneration is a conse-
quence of plant stress, this implies that mulching reduces plant
stress, probably through improved water uptake as a result of
Increased water availability and increased root absorbing surface.
Maintenance of seed coat health means that the seed still has the
capacity to import minerals and assimilate, and other factors
necessary for fruit growth: this partly explains why fruit growth
was enhanced by mulching.
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Incldence of pedicel ring-neck

The practice of mulching reduced the incidence of fruit with
pedicel ring-neck by 57,1 % and 45,9 % for the first and second
seasons respectively (table 2). Since pedicel ring-neck is associated
with plant water stress (Whiley et al., 1986), one could surmise
that mulching reduced the impact of adverse environmental
pressure. It is worth noting here that the degree of this disorder
is less advanced in the mesic KwaZulu-Natal midlands climate
than in the more stressful environment of the Northern Province
and Mpumalanga.

Table 2
Summary of the effect of mulching on the incidence of pedicel ring-neck.
Values were calculated from a total of 100 fruits per tree

Year Inciderice of pedicel ring-neck (%)
Cantral Mulch
1993/1994 17,5222 75524
1994/1995 133227 72+19

Foliage temperature

The surface temperature of a leaf is the tangible manifestation of
its energy balance and therefore is affected by abiotic and blotic
factors. The maost prominent of the latter are the stomates which,
in closing, limit the amount of energy that can be dissipated by
transpiration, and consequently cause the leal temperature to
increase (Raschke, 1960). These facts led Tanner (1963) to postu-
late that the surlace temperature of the leaf may be used to assess
the water status of the canopy, L.e. the degree of water stress, Since
leaf canopy temperatures of control trees are generally higher
than that on the mulch treatment (Tepqum — Tayien 15 3pPTOXimate-
ly 0,5°C on average) (figure 6), this implies that mulching has
reduced overall plant water stress,

1t d il |
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Temperaturedifference (°C)

Figure 6
Foliage canopy temperature differences between the control and mulch
treatments (T onm = Tonuicn)

CONCLUSIONS

A thick, composted pine bark mulch applied in February 1993,
supplemented by the natural avocado leaf mulch, was compared
to no mulch (regular removal of fallen leaves). Mulched trees
showed more prolonged and more extensive root growth, espe-
cially in the summer/autumn root flush but also throughout the
year, including the critical fruit set period. Fruit growth on the
mulch treatment was significantly increased, in spite of increased
numbers of fruit per tree. Resultant fruit mass at harvest was
11,8 % greater in both years, and total yield per tree 18,5 % and
42,2 % greater, in the first and second seasons respectively. These
results lend support to the hypothesis that a healthy and vigorous
root environment, ameliorated by reinforced mulching, can lead
to larger average fruit size and mass.

A probable explanation why mulching has a positive effect on
fruit size is that this practice might reduce overall plant stress,
thus creating favourable physiological conditions for fruit
growth. Mulching considerably reduced the incidence of prema-

ture seed coat degencration and pedicel ring-neck, both of which
are associated with tree water stress. Mulching also reduced leaf
canopy temperatures by approximately 0,5 °C during the ecolog-
ical dry period, providing further evidence that mulching
reduced overall plant stress. In addition, the role of Improved
mineral uptake must be mentioned. In leached acid soils in
Queensland, Australia, Smith et al, (1995} found that soil boron
applications improved Hass fruit size by 11-15 % Improved
boron nutrition may be another beneficial effect of mulching.

Properly regulated mulches thus provide a practical solution
to the grower to increase average fruit size, presumably by amel-
iorating plant stress at critical periods. The Everdon climate can
be classified as only moderately stressful, being cool and mesic
with high rainfall and humidity, and with good orchard manage-
ment. Benefits of mulching are therefore likely to be greater in
more stressful environments, provided that crop load is not
excessive. Canopy management to ensure sufficient leal area per
fruit is therefore vital, particularly for Hass in warmer areas where
initial fruit set can be excessive.
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Some Pros and Cons of Mulching Avocado Orchards
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ABSTRACT

Muiching is a powerful manipulatory tool to ameliorate the root environment and reduce tree stress. It has been shown to improve
both fruit size and yield in Hass in the cool, mesic KwaZulu-Natal midfands, and could be expected to be even more beneficial in more
stressful areas. Pros and cons of mulching are discussed. Choice is affected by C : N ratio of the mulch, availability, expense and speed
of decomposition. Timing is important, and tree nutrition and soil moisture must be monitored. Overall, in most situations the
advantages of mulching, including water conservation, outweigh the disadvantages.

INTRODUCTION

Mulching is the application of any layer of plant material or other
suitable material to the surface of the soil, without incorporation
into the soil. It is an ancient technique and has three main
benefits, viz. improved soil physical properties, improved water
conservation and reduction of weed growth. Overriding these
benefits are the effects on root growth and root health, ie.
amelioration of the root environment to improve conditions for
the vitally important ‘hidden half® of the plant, Wolstenholme
(1981) stressed the importance of the roots in avecado tree
performance.

A wide range of materials are used for mulching, e.g. manure,
sludge, sawdust, wood-chips, straw, shredded prunings, plant
foliage, paper, plastic, sand and gravel (Turney & Menge, 1994).
These authors reviewed the use of mulching to contral root dis-
ease in avocado and citrus trees, Recent research by Moore-Gor-
don et al. (1995 1996) has highlighted the benefits of a
composted pine bark mulch in increasing Hass fruit size, through
the partial alleviation of stress associated with improved root
growth, This ongoing research, surprisingly one of the few
detailed studies of avocado orchard mulching, has raised ques-
tions in the minds of growers, mare particularly the practical and
economic implications of the promising research results.

This paper gives a broad overview of the pros and cons of
arganic mulching, with particular reference to the South African
situation. Readers wishing for more general detail are referred to
the excellent book on growing media by Handreck & Black
(1994). The principles of composting are, however, not discussed
in this overview,

BENEFITS OF MULCHING
Water conservation

Mulching conserves water by reducing evaporation from the soil;
decreasing water run-off, soil puddling, compaction and erosion;
increasing soil permeability; and increasing soil water holding
capacity (Turney & Menge, 1994). More water is therefore avail-
able during stress and drought periods. This is of cardinal impor-
tance for maintenance of tree function during prolonged
droughts such as we have experienced for the past four or five
years, and during critical periods such as fruit set and early fruit
growth. Furthermore, substantial savings in irrigation water can
be effected — a scarce resource which will become far more
expensive in future. These water savings need to be quantified in
avocado orchards.

Improved root growth and reduced physiological stress

Good mulches allow more root growth, both in the litter layer
and In the more fertile topsoil. Addition of organic matter im-
proves soil structure, porosity and aeration and therefore also
allows deeper root growth. Avocado roots have a high oxygen

requirement (Stolzy et al., 1971). Moore-Gordon of al. (1995;
1996) showed substantially more root growth, and for longer
periods during the two main root growth flushes (Whiley et al.,
1988) as a result of mulching under the drip with composted pine
bark.

More root growth means greater uptake of water and miner-
als, and probably also greater synthesis and translocation of
growth-promoting hormones such as cytokinins and gibberelling
in and from the roots. This is accompanied by reduced levels of
the growth inhibitor abscisic acid in aerfal parts, The net result is
reduced stress, resulting in miore cell division in flowers and
fruits, better fruit set, larger fruits, and higher yields. Moore-Gor-
don et al. (1995, 1996) have shown that anatomical (less ring-
neck of fruit stalks) and physiological (reduced incidence of pre-
mature seed eoat abortion) indicators of stress are ameliorated.

More mesic soil environment

It is well known that mulched soils experience less temperature
fluctuation, mainly because of improved moisture status (Grego-
riou & Rajkumar, 1985; Lanini et al,, 1988). This also improves
root growth and reduces plant stress. Optimum temperatures for
root growth of Duke 7 and Velvick avecado rootstocks lay be-
tween 18 and 28 °C (Whiley et al., 1950).

Suppressive soils for root disease reduction

The use of mulches and gypsum to help create more suppressive
soils to combat Phytophthora cinnamomi root rot in avocado
orchards was pioneered in Australia (Broadbent & Baker, 1974;
Pegg et al, 1982} In the 1970s, before chemical control of
Phytophthora was available, the so-called ‘Pegg Wheel' concept
was widely promoted in South Africa (Wolstenholme, 1977).
However, Trochoulias et al. (1986) showed in eastern Australia
that organic amendments plus gypsum were unable to prevent
tree decline on shallow and/or poorly drained soils, especially
during high rainfall episodes. This has also been the South African
experience, where Wolstenholme & Le Roux (1974) recommend-
ed unimpeded drainage to at least 1,5-2,00 m to ensure reasonable
long-term success in the fight against root rot. The return of heavy
rains during the 1995/96 season has resulted in rapid decline of
many trees on poorly drained or shallow parts of orchards,

The mechani of root di and nematode control by
mulching are fully discussed by Turney & Menge (1994). They
include increased soil populations of microbial antagonists; pro-
duction of inhibitory volatiles such as ammonia and nitrite, and
toxins such as saponins and organic aclds; encystment of Phy-
tophthora zoospores by organic matter; fncreased host resistance
(phytoalexins); and improved aeration and drainage in mulch
and soil. Lower soil temperatures also favour the tree over Phy-
tophthora,

The advent of effective chemical control, and especially phos-
phonate fungicides (Darvas et al,, 1984, Pegg et al, 1985), has
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shifted the emphasis from biological to Integrated control. Nev-
ertheless, the principles of multi-faceted control still appiy, and
mulches are an important component.

¢

Mineral nutrition
Although the primary aims of mulching are not specifically
related to organic fertilization, all erganic mulches decompose to
release mineral elements for root uptake, Humus, the end-product
of decomposition, substantially increases the cation exchange

African pine bark had ratio of more than 100, up to 450, the lat-
ter especially when the wood (cellulose) content is high.

Table 1
Carbon ; nitrogen ratios, and percentage nitrogen content of a range of
mulching materials (modified from Handreck & Black, 1994)

capacity of the soll. Nitrogen is initially released as i
which can be taken up by plant roots or adsorbed to clay and
humus particles. Ammonium can also be nitrified to nitrate,
which is more subject to leaching and may pollute groundwater,
However, the fact that nitrogen from organic matter is released
slowly, reduces this risk, and if the mulch has a low C : N ratio
(see later) the need for inorganic N fertilization will be reduced
(Maynard, 1989).

Three mineral elements are regarded as especially important
for healthy and prolific root growth, viz. phosphorus (P), calcium
(Ca) and boron (B). All three have been observed to increase
under a mulch (Stephenson & Schuster, 1945). Whiley et al.
(1996) regard better root boron uptake in deficient soils as one
reason for the increased Hass fruit size in mulched trees found by
Moore-Gordon et al. (1995; 1996). Composted pine bark mulches
are good sources of, inter alia, potassium and boron. In fact, in
acld leached soils most of the boron will be in the organic matter
(and mulch), from where it is slowly released by the action of
micro-organisms (Gupta, 1979).

Weed control

Mulches usually reduce weed problems by reducing weed seed
germination or reducing light levels, However, the opposite may
apply with uncomposted mulches infested with weed seed.

MULCHING PROBLEMS
Cost

One of the main reasons cited for not using mulches is their cost.
This applies more to mulching materials not available on site.
Costs of transport are high due to the bulky nature of mulches,
and application costs must be considered. These costs must be
balanced against the Increased fruit size (Hass) and yield, and the
water and fertilizer savings achieved. This is a difficult exercise in
view of lack of data. However, where the very existence of trees
and yield was seriously compromized, as in the recent prolonged
drought where irrigation water often ran out, surely some form
of mulching was obligatory! The senior author was amazed to see
avocado trees and bare orchard soils in extreme water stress
baking in the sun, while all around was grass and other litter
which could have relieved their plight. A partial costing for a
commercial composted pine bark mulch is presented later.

Danger of nitrogen 'draw-down’ (negative perlod)

Mulches with a high carbon to nitrogen (C : N) ratio have insuf-
ficient nitrogen for the increased populations of soil micro-
organisms which help to decompose them. This nitrogen must
also be supplied by the soil. The result is a N ‘draw-down’ or
‘negative period’, when the tree roots cannot obtain sufficient N,

This can be overcome, at some expense by extra N fertilization

{Handreck & Black, 1994; Turney & Menge, 1994),

Table 1 gives typical N contents and C : N ratios for a range of
materials which have been used as mulches. C : N ratios above
100 are very high, so that material such as sawdusts (containing
mostly cellulose-rich wood) and uncomposted barks are not
good mulching materials. On the other hand, humus hasaC: N
ratio of 10 : 1. Proper composting usually reduces the C : N ratio
of bark to about 30, and a ratio of 10 : 1 is hardly ever achleved.
Maggs (1985) and Wright {1987) found that uncomposted South

Material %N in D.M. C:N Ratig
Pinus radiata sawdust 0,09 550
Cardboard - 500
Pinus radiata bark 0,1 500
Eucalyptus sawdust o1 500
Eucalyptus bark 0,2 250
Paper 02 170
Bagasse 0.4 120
Woody prunings — 106
Comp d eucalyptus di 0,45 100
Composted P! radiata bark 0.4 100
‘Wheat or oats, straw 0,4 100
Mature leaves 0,7 60
Composted pine bark' 1,1 30-40
Maize stalks ¥ 3 33
Peat L3 30
Grasses 1,8 22
Mixed weeds 2,0 19
Cow manure 2.6 15
Lucerne hay 31 13
Peanut shells 4.4 12
Poultry litter 24 16-11
Poultry droppings 5.5 7
Pig manure =2 5
Urine - 2

'The Gromed Organics composted pine bark used in the
mulching trial at Everdon had a nitrogen content of 1,1 %
and a C : N ratlo of about 37.

Avallablility of mulch

Availability is determined by the nature of nearby farming oper-
ations. Most avocado growing areas in South Africa are adjacent
to exatic forestry plantations of eucalyptus or pines. Waste ma-
terials, especially barks (composted andfor thoroughly aged)
should be utilized, but sawdusts make poor mulches, In KwaZulu-
Natal, aged sugarcane bagasse can be used, although its C : N ratio
is rather high. Poultry droppings and broiler/pullet and breeder
deep litter, as well as kraal manure can be considered, but have a
very low C : Nratio and a high N content. Van Ryssen et al. (1977)
also noted their high copper content.

Stubbles of various kinds (wheat, oats, barley etc.) have been
widely used in subtropical high rainfall Australia, usually
together with gypsum (CaS0,). They make excellent mulches.
Similarly, stalky grasses with a high fibre content can be used.
Remains of weeds, grasses and cover crops in the orchard can and
should be used to reinforce the natural leaf mulch under avocado
trees. However, fresh blady grass clippings (e.g. kikuyu) are rela-
tively high In N, low in fibre, compact easily, get slimy, and are
poor mulches. In Australia, peanut shell mulches are discouraged
because they increase Verticillium root rot.

Increased frost hazard

In the U.S.A., mulches extending beyond the tree drip have
increased the frost hazard in orchards where frost is a danger.
They do this by reducing soil heating and storage of heat (from
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the sun} In the soil, and by ralsing the coldest alr by the helght
of the mulch (Leyden & Rohrbaugh, 1963), In South Africa this
is unlikely to be a problem, since frost hazard is lower and most
mulches are placed enly under the drip of the tree.

Increased fire hazard in winter

Dry winters increase the possibility of runaway fires gaining
access to orchards, especially if dry vegetation is present. Mulches
may then act as ‘funeral pyres’ for trees, and the result can be
devastating. Sensible precautions will reduce this risk.

Incorrect use of mulches

Mulches are a powerful management tool if correctly used. Prob.
lems arise where the wrong mulch is chosen, or applied at the
wrong time, These issues are discussed further below.

Upset nutrient balance

Again, mulches (especially those with a low C : N ratio and which
decompose rapidly) can supply significant amounts of nutrients.
The danger then exists of upsetting the vegetative-reproductive
batance of the tree (Wolstenholme & Whiley, 1990). 1t stands to
reason that leaf and soil analysis becomes even more important
in the correct management of mulches in avocado orchands
Farm-yard and chicken manures applied to heavy soils in lsrael
reduced avocado yields, possibly through reducing soil hydraulic
conductivity and through nutrient imbalances (Lahav, 1984).

IDEAL MULCHES

Ideal avocado orchard mulches include those with the following

properties:

= . Nratio of more than 25 @ 1, but less than 100 : 1

= Fibrous, stalky, strawy materials with a moderate rate of break-
down

* Composted, chunky pine barks

As previously noted, sawdust is a poor mulch material. It was

widely used in avocado orchards in the drought years of the

1960s, and did help to save drought-stricken trees. However, its

disadvantages became apparent when the rains returned — poor

physical properties; very low N content; excessive wetness; and

toxic residues (pine sawdust) if not composted or aged. Similarly,

paper and waste cardboard make poor mulches — they must be

forked to allow water Infiltration, are untidy, also have a high

C: N ratio, and scon become a soggy mess (Handreck & Black,

1994).

Rapidity of mulch decomposition

The speed of decompeosition (mineralization) of a mulch depends
on its nature, and on environmental conditions. An organic
mulch should not break down quickly — its prime function is soil
cover rather than organic fertilizer. To reduce decompasition, it
is never worked into the soil.

*  Quick: Mulches derived from young plant materials with low
C : Nratios and little fibre break down very quickly, e.g. young
leaves, weeds, green manure crops and most animal manures
(Handreck & Black, 1994), More stalky materials such as hay
and straw do not last much longer, as they are usually well
chopped up.

= More slowly: Bulkier, fibrous materials such as mealie cobs and

stubble, and wood chips break down fairly slowly.

Very slowly: Composted pine barks with medium particle size,

and bark products as used for landscaping decompose very

slowly, The same applies to large wood prunings.

Gromed avocado mulch (composted pine bark)

The mulch chosen for the Hass small-fruit trial at Everdon Estate,
Haowick was initially a commercial composted pine bark. At the
time, it was selected because of its good physical properties, ready
availability, known composition, and to establish a principle.

Economle viabllity was not an Issue. This Gromed mulch, avall-
able from Gromed Organics at Cramond, KwaZulu-Natal, is wide-
ly used in the nursery industry and has the following character-
istics:

= thoroughly composted pine bark;

* particle size (graded) 16-24 mm, i.e. cannot compact;

= half-life of 5 years, Le. very slow decomposition;

* high levels of potassium, calcium and boron.

The mulching trial at Everdon has now run for over 3 years, with
no addition to the original mulch and little evidence of decom-
position. Originally, 1,5 m*® was applied under the drip of the
seven-year-old trees, in a layer approximately 15 cm thick, to
simulate {with the natural leaf mulch) the deep litter layer of an
ideal indigenous avocado rainforest habitat. Due to this longevity
of the mulch, It is conceivable that when orchards are thinned,
the mulch under thinned trees could be transferred to the remain-
ing trees.

An exercise in economic viability of this mulch showed that
initial costs per hectare were very high, but that these could be
amortized over the life of the mulch, and offset against the gains.
Some salien!t figures are:

Cost of mulch @ 1,5 my/tree, 200 trees/ha, delivered from Cra-
mond to Everdon was R26 035/ha in 1994 and R31 265/ha in
1996. Equivalent costs for Cramond to Tzaneen would be
45 673 and R55 340.

However, based on 1994 FOB less export costs supplied by
Avodata, Tzaneen, the increased fruit size (ca. 12 %) and greater
yield {ca. 42 %) over 2 years resulting from mulching, greatly
increased the value of the crop. In 1993/94, extrapolating from
the mulching trial, control trees would have grossed R42 377/ha,
compared with R78 834 for mulched trees. Figures for 1994/95, 2
lower crop season, were R15 390 and R38 426. These figures do
not take all costs into consideration, nor all benefits such as
reduced fertilizer bill and reduced irrigation. Nor is it certain
whether these mulching benefits will be as great in a good rain-
fall season. Nevertheless, they indicate that the ‘pay-back’ time
for Everdon would have been about 11 months, and for Tzaneen
19 months. So even expensive mulches, applied under the tree
drip, are not quite as expensive as perceived if their benefits and
longevity are taken into account.

IMPORTANT DO'S FOR MULCHING

* Choose a suitable, economic mulch.

= The main aim is to reinforce the natural leaf and litter mulch
under the tree, Avocado trees typically produce spring and
summeér/autumn growth flushes, but the leaves are short-lived
(9-10 months, Whiley & Schalffer, 1994). Therefore a healthy
avocado tree will have a good, thick natural leaf mulch, with
most leaves falling in late spring (or before flowering in
stressed trees). The excellent leaf mulch under avocado trees
in Israel was a feature of field tours during the recent World
Avocado Congress I11, In contrast, weak and unhealthy trees
will have virtually no natural mulch,

* The best time to apply the mulch, under our climatic condi-
tions, Is in autumn — after the summer rains, and in time to
tide the trees over the dry, stressful winter and spring. The
mulch will also have broken down significantly before the
onset of the heavy summer rains (this does not of course apply
to chunky composted pine bark, or to large tree prunings
which take years to decompose).

= Donot mulch excessively wet soils, or areas of the orchard that
become wet after heavy rains — e.g. the lower slopes where
drainage water reaches the surface.

» Monitor tree nutrient status (annual leaf and seil analysis) as
well as molsture status/irrigation need (tensiometers), both of
which are affected by mulches.

« Never remove vegetative materlal from orchards. Cut up larger
limbs and trunks of thinned trees, and place them under the
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drip — although they have a high C : N ratio, they decompose
very slowly so thelr adverse N draw-down effect is diluted over
time. Use a brush-cutter to break down smaller prunings.

* Adjust mulch type, thickness and timing to suit ydur particular
orchard situation. A thickness of 7,5 cm may be quite suffi-
cient in some situations; 10~15 em in others.

SOME DON'TS FOR MULCHING

» Do not use materials that pack into a water-shedding layer
(Hantlreck & Black, 1994), e.g. green lawn clippings, sawdust,
Green grass with little fibre soon turns slimy, due to poor
aeration and encouragement of anaerobic organisms. Anaero-
bic organisms produce organic acids that are toxic to plants
(the pH can drop as low as 2), and nitrogen loss can be high
(Handreck & Black, 1994).

= Avoid materials with very high C: N ratios (> 100 : 1, unless
they decompose very slowly and have good physical proper-
ties), or very low C:N ratios (<20:1). The latter supply
considerable nutrients as they decompose, and must be con-
sidered as organic fertilizers rather than mulches.

+ Don't mulch already wet areas (lower slopes) or during very
wet periods.

= [f tree barks are used, they should be composted or aged,
especially pine bark which contains resins.

* Do not apply thick, poorly aerated mulches just before the
surnmer rains.

* Do not use wet, unleached composts or manures from, for
example, kraals or piggeries — they may have a high salt
content if they have not been thoroughly leached.

+ Do not place mulches right up against the tree trunk — they
can encourage Phytophthora collar rot.

CONCLUSIONS

Under South African and Australian conditions, with warm to
cool climates and summer rainfall, mulching under and some-
times slightly beyond the drip of the tree has proven highly
beneficial on well-drained soils. It the rainforest floor
conditions of the indigenous habitat, and benefits the rather
shallow feeder root system of this ‘litter feeder’, Root growth and
root health are promoted, reducing the tree stress syndrome,
especially at critical periods. This has led to larger fruit size and
increased yield in Hass. Suppressive soils are also encouraged.

However, the choice of mulch must take into account factors
such as C: N ratio, cost and availability, and speed of break-
down. Mulches must be applied correctly, and avoided where soil
wetness Is a problem. Composted pine bark has proved highly
beneficial, and its initial expense is offset by a long life and
greatly improved tree performance. The do's and don'ts of
mulching are discussed. Overall, advantages outweigh disadvan-
tages, and growers are strongly advised to use suitable mulches to
their advantage, especially where water conservation is impor-
tant. Moreover, mulching is environmentally friendly in a world
increasingly conscious of ‘clean and green' issues,
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Mulching of Avocado Orchards to Increase Hass Yield and Fruit
Size and Boost Financial Rewards — a Three Season Summary of

Research Findings
C Moore-Gordon * A K Cowan * B N Wolstenholme

Department of Horticultural Science, University of Matal, Private Bag X01, Pietermaritzburg 3209

ABSTRACT

Avaocado yields are low when compared to other fruit tree crops, and the Hass cultivar, specifically, possesses an inherent tendency to produce a.
high percentage of small fruic. The application of a thick composted pinebark mulch was investigated as a strategy to increase yield and to alleviate
the small fruit problem in this cultivar. Mulched trees showed more prolonged and extensive root growth throughout the duration of the trial. Over
three seasons, mulching elevated average fruit yields by 22,6%, and increased mean fruit mass by 6.6% The number of fruit that were considered
highly suitable, and acceptable for export, were increased by 45% and 20% respectively. Initial costs of the pinebark were off-set within two sea-
sons, thus providing growers with a practical means of boosting financial returns, especially since pinebark is considered to have a half life of approx-

imately five years,

S ——

INTRODUCTION

Avocado yields are low when compared to other fruit crops
(Wolstenholme, 1986). In the Hass cultivar, problems of low fruit
productivity are intensified by its inherent tendency to produce
large numbers of small fruit (Kremer-Kéhne & Kohne, 1995).
There is poor consumer acceptance for small Fruit on the
overseas market, and since the South African avocado industry
is predominantly export orientated, yearly financial losses by the
industry are considerable. There is thus a need to find solutions
to these problems, as potential financial rewards to producers
could be substantial,

The long-term approach is to breed or select a new high-
yielding, large-fruited and black-skinned cultivar. Unfortunately,
breeding programmes are time consuming and thus there is a
need for an interim solution. Mulching with composted
pinebark was investigated as a strategy to at least partly alleviate
the extent of the problem. This strategy is based on the avocado’s
rainforest origin and adaptation to soils with a litter layer and a
high humic content. Reinforced mulching (in addition to natural
litter fall) simulates rainforest floor conditions, thus providing
roots with improved and more natural edaphic growing condi-
tions. It also alleviates several aspects of environmental stress.

The benefits derived from mulching include increased water
and nutrient availability (Gregoriou & Rajkumar, 1984),
improved soil structure and porosity (Gallardo-Laro & Nogales,
1987) and a narrowing in the diurnal soil temperature range
(Gregoriou & Rajkumar, 1984), In addition, mulching creates a
suppressive environment for Phytophthora cinmamomi thus
reducing the impact of this phytopathogen (Turmey & Menge,
1994). All of these benefits of mulching, together with an
adequate assimilate/nutrient supply, sustain fruit growth and
development and reduce the incidence of small fruit by reducing
the confounding effects of either stress-induced abscisic acid
(ABA) accumulation and/or feedback regulation of photosynthe-
sis. Mulching would be expected to increase the proportion of
growth promoting hormones (especially cytokinins) relative to
inhibitors (ABA), and seed coat viability would therefore be
maintained and prolonged. This is known to be critical in per-
mitting the fruit to continue rapid growth, through maintaining
anatomical and physiological connections between fruit flesh
and the seed (Blumenfeld & Gazit, 1974). Likewise, the inci-
dence of pedicel ‘ring neck’ which may occur due to elevated
xylem ABA levels (Adato & Gazit, 1976), would be reduced in
healthy, non-waterstressed trees (Whiley et al., 1986).

The objective of this research was lo investigate whether
mulching could be a practical cultural method of increasing
mean Hass fruit size and overall yield through improved root
actlivity, and to assess whether this practice was a commercially
viable option available to growers. The authars have reported on
the first two seasons results (Moore-Gordon et al, 1996). This
paper summarizes results for a full three seasons.

MATERIALS AND METHODS

The study was conducted using six-year-old (in 1993) Hass trees
on clonal Duke 7 rootstocks at a spacing of 7m x 7m. A total of
1,5m? per tree of coarse composted pinebark (Gromed® coarse
potting mix) was applied in February 1993 under the canopy of
six trees to a depth of approximately 15cm, and these trees were
compared to six adjacent unmulched trees (figure 1). No addi-
tions were made to this mulch during the three year duration of
the trial.

At harvest, fruit size distributions were determined for each
tree and classified according to the number of fruit per standard
4 kg export carton. Total tree yields were calculated by adding
the product of the number of fruit per count size and the class
centre of all the count sizes.

To determine the effect of pinebark mulching on export
potential, fruit was classified into three broad categories:

Highly suitable for export: Counts 14 - 18
Acceptable for export: Counts 10-12; 20-22
Not suitable for export: Counts 2 24

For the breakdown of costs and financial rewards of the
pinebark mulch, the following assumptions were made:

*  65% of fruil in the count size range of 10 - 22 were exported.

*  Yearly mean on farm retums per hectare were used for the
calculations,

* Labour costs of application were not taken into account.

* Potential savings on water and fertilizer bills were not taken
into account.

It is important to remember that the cost of transport will
obviously vary with distance from source.

RESULTS AND DISCUSSION
Control (unmulched) trees show a typical fruit size distribution
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Figure |
The composted pinebark mulch and control treatment

of the Hass cultivar with many fruit in the count size range of 22
to 26, and a high progportion of [actory grade avocados (figure
7). Mulching with pinebark had the effect of shifting the overall
count size distribution in favour of large fruit (figure 2). Overall
fruit productivity was. significantly (P £ 0,01) increased by
mulching with composted pinebark, and this positive response
was achieved in three successive seasons (table 1). Over the
three year duration of the trial, mulched trees produfcd an aver-
age of 22,0 £ 1,2 kg more than control trees, representing a _22,6_%
increase in yield. Harvest results also confirmed the bwnmlal
bearing nature of cropping in avocado trees. A be:wy crop in
1993/1994 was followed by a relatively light crop in 199:1#19‘-)5,
with high yields for the following season (table 1), Assuming 1_h::l
assimilate supply to growing fruit in a season of low _m-id_ is !am-
iting, any improvement in resource accumulation and dzsu_-:bu-
tion to developing fruit as a result of mulching should consider-
ably enhance fruit productivity.
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Figure 2

Mean Hass fruit size distribution at harvest.Values are expressed
as a mean for each tree averaged over three seasons
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Table |
Summary of the effects of pinebark mulching on Hass avocado fruit
quality and quantity

Coniral Mudch Percentage
increase
19931994
Mean fruit mass (g) 198,0 2213 11.8*
Yield (t ha!) 21.2 238 18,5
1994/1995
Mean fruit mass (g) 1782 199.2 118
Yield (t ha™!) 94 13,4 42,2**
1995/1996
Mean fruit mass (g) 216,1 2204 2.0
Yield (t ha-1) 3,7 358 18,9+
Overall
Mean fruit mass (g) 203,1 216.5 6.6**
Yield (t ha't) 20,0 244 12.6*

Dala are means of six trees. .
**denotes a signilicant (p 0,01} increase in response lo mulching

Mulching also resulted in fruit size being ssgnificamin(P <
0,01) increased by an average 13,4 + 1.2g, and ll_us was achlc\'e.d
in spite of the increase in the number of fruil per tree. This
response is particularly significant since problems of fruit size
principally arise in trees with heavy crops (Lahav & Kalmer,
1977), as resources available for fruit growth have to _be allocat-
ed ta more sinks. A 12% increase in fruit mass in the first season
was achieved despite a yield of over 20 t ha! in control trees anld
nearly 24  ha' in mulched trees. A similar 12% increase in fruit
size was obtained in the second season of low yield (9.4 t ha'
and 13.4 ¢ ha! in control and mulched trees respectively). Only
in the third season of a very high yield (30,2 t ha' and 35,8 t ha-!
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respectively), was fruil size not significantly increased. To have
maintained an excellent mean fruit size in this season, despite
the high yield, was nevertheless remarkable.

Since the South African avocado industry is predominantly
export orientated, it would be extremely beneficial to increase
the proportion of export quality fruit. The increase in mean fruit
mass coupled with elevated yields in response to mulching,
resulted in an increase in the number of fruit that meet export
requirements for fruit size (table 2). Over the three season dura-
tion of the trial, mulching increased the number of fruit that are
considered highly suitable for export (counts 14 - 18) by 45%,
and in addition the number of fruit that are acceptable for
export (counts 10 - 12; 20~ 22) by 20%. During the same period
the number of fruit that are deemed unsuitable for export was
reduced by 29% in the mulch treatment (table 2),

Table2
Summary of the effects of pinebark mulching on export potential related
o fruit size
C-‘nmmf Mulch Percentage
inerease
199371994
Suitable 200 344 +72,0
Acceptable 152 145 -46
Not suitable 157 51 -675 .
1594/1995
Suitable 53 17 + 1208
Acceptable 7l 114 + 60,6
Not suitable 138 102 -26,1
1995/1996
Suitable 374 447 +19,5
Acceptable 152 190 +250
Not suitable 172 177 +29
Overall
Suitable - 209 303 +45.0
Acceptable 125 150 + 200
Not suitable 155 110 -29.0

Counts 14 ~ 18 were considered to be highly suitable for export; counts
10 - 12 and 20 - 22 were considered to be acceptable for export; and
counts = 24 were idered not to be suitable for export. Figures are
mean numbers of fruit per category per tree. Figures preceded by a
positive sign indicate an increase by mulching, and figures preceded by
a negative sign indicate a decrease by mulching,

The increased yield and mean fruit size coupled with
improved export potential as a result of mulching, means that
financial rewards to avocado producers could be considerably
boosted, although costs of the mulch would have to be off-set.
Considering that the half-life of composted pinebark is regarded
as five years (Wolstenholme et al., 1996), and that the initial cost
of the pinebark were off-set within two seasons (table 3), the
application of pinebark or similar mulches provides avocado
growers with another aption of increasing profitability.

CONCLUSIONS

Although yield and fruit size are under the control of many inter-
acling factors, and crop failures can be caused by climatic
extremes and poor flowering, inter alia, this study has shown
that mulching, through creating a more mesic root environment

Table 3
Breakdown of costs of and extra revenue generated by the application
of a pinebark mulch

1993/94 Cost of pinebark + transport =
F26 300 { ha (-R26 300)

Return / ha (On farm)
Control Mulch Extra revenue
1993/94 R34 700 R47 800 R13 100 {-R13 200)
1594/95 R1& 300 R30 100 R13 EDO (+R600)

1995196 R70 500 RE5 400 RI4500  (+R15500)

and reduced environmental stress, has the potential to
substantially increase avocado yield and Hass fruit size. The
practice of mulching thus presents avocado producers with an
oplion to increase {inancial rewards, although cost of the mulch
would have to be off-set. Choice of mulch must take into account
factors such as cost, availability, C:N ratios and speed of break-
down. The initial expense of the coarse composted muleh used
in this trial was off-set by a long life (the half-life is approxi-
mately five years), and greatly improved tree performance. It
should be noted that these resulis were obtained in a relatively
low stress (more mesic) environment and in a well managed
orchard. Benefits of mulching might be greater under more
stressful growing conditions.
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