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Abstract

A credit default swap is a contract that ensures protection against losses occurring due to a

default event of an certain entity. It is crucial to know how default should be modelled for

valuation or estimating of credit derivatives. In this dissertation, we first review the structural

approach for modelling credit risk. The model is an approach for assessing the credit risk of

a firm by typifying the firms equity as a European call option on its assets, with the strike

price (or exercise price) being the promised debt repayment at the maturity. The model can

be used to determine the probability that the firm will default (default probability) and the

Credit Spread.

We second concentrate on the valuation of credit derivatives, in particular the Credit Default

Swap (CDS) when the hazard rate (or even of default) is modelled as the Vasicek-type model.

The other objective is, by using South African credit spread data on defaultable bonds to

estimate parameters on CIR and Vasicek-type Hazard rate models such as stochastic differential

equation models of term structure. The parameters are estimated numerically by the Moment

Method.
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List of notation

SDE stochastic differential equation

ZCB zero-coupon bond

r risk free interest rate or yield on Treasury bond

rd yield of the bond

B(.) bank account process

a.s. almost surely

N (.) cumulative standard normal distribution function

Q risk neutral probability

PD probability of default

T maturity time

F filtration

E(...) expectation value

var(...) variance

PDM default probability given by the Merton model

CDs Credit Derivatives

CDS Credit Default Swap

CIR Cox-Ingersoll-Ross

B(t, T ) Price at time t of a zero free coupon bond with maturity T

p(τ < t) survival probability in term of default intensity

γ(t) hazard rate function

δ recovery rate

S(t, T ) credit spread at time t < T
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Dp price of the fixed side of CDS

CC(t) cum-coupon amount of the underlying defaultable bond

DR price of the recovery side of CDS

D(t, T ) the price of a zero-coupon defaultable bond with notional value 1 or price of a

defaultable bond, which pays 1 at maturity if no default and δ at maturity T if the default has

occurred before maturity
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Chapter 1

Introduction

The major credit problems and important failures faced by Banks during Global Financial

Crises, for example the recent financial crisis or credit crisis of 2007-2008 [?] and the failures of

large prestigious institutions such as Lehman Brothers, Bear Sterns, Fannie Mae and Freddie

Mac [?, ?], have highlighted the importance of modelling and providing for a Credit Risk

quantifier. Credit Risk is the risk that a borrower (company, individual, sovereign government)

will default on any type of debt by failing to meet its financial obligation. It emerged to be

not just the traditional risk that lenders or ownership of the bonds or loans (example financial

institutions) spare when lending out money, but also a financial contract traded or exchanged

around the world.

The designation or development of new products, such as Credit Derivatives (CDs), by all

investors and financial institutions to reduce or remove any Credit Risk arise from lenders or

bondholders (example banks), and to allow banks to deliver more loans seemed to want a share

in it. The most widely used product of CDs is the Credit Default Swap (CDS). The Credit

Default Swap is a contract entered between two parties that provides a protection against losses

occurring due to a default event of an certain entity. Since its introduction in the mid-1990s,

the growth of the global market has been overwhelming: for example the market size for CDS

almost doubled biannually from 1996 to 2004, and even quadrupled to over a peak notional

outstanding amount of US $ 20 trillion during 2004-2006 [?].
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The measurement or modelling of Credit Risk, however, provides its own set of challenges.

There exist many ways of modelling Credit Risk with the implication that Banks can face a

quandary of choosing the models. Historically, the most important models include Merton

Models (Structural approach model and Reduced form approach [?, ?, ?], which main goal is to

determine the probability that the firm will default), the Credit Rating Model (ratings are given

by rating agencies like Moodys, Standard and Poors (S&P) and Fitch, and provide a measure of

the relative creditworthiness of the entity [?, ?]), and the Financial Statement Analysis Model

(the model provides the rating based on the financial statements of the borrowers, [?, ?]). We

only study a particular class of credit risk models such as the Merton structural model (or asset

values approach) through the thesis.

Merton’s model is known to us, as a Structural Approach to Credit risk modelling because it

reposes completely upon the capital structure of the firm (firm’s asset value, equity and firm’s

debt) for modelling credit risk of the firm. Merton’s model was the genesis for understanding

the link between the market value of the firm’s assets, the market value of the firm’s debt, and

the market value of firm equity. In the Merton’s approach, the default event was modelled

as the time when the firm’s asset values drop below some default barriers. This assumption

served to evaluate a pricing formula for corporate bonds. Black and Cox[?] extended Merton’s

framework in several directions, including some of the realities of corporate bonds, like safety

covenants, debt subordinates, and the dividend payments. Longstaff and Schwartz [?], devel-

oped the Structural Approach for stochastic interest rate, and for the firm’s total asset values

and interest rate processes to be correlated (related). Zhou [?] initiated a jump-diffusion ap-

proach to the firm’s asset value. Bryis and Vanne [?] extended this approach by evaluating the

risk-free interest rates and firm’s asset value with more general diffusion processes. Although

considerable advances have been made within the Merton’s framework, the predictability of

default events has remained the weak assumption that actually limits their practical imple-

mentation. Therefore, the introduction of an assumption (an early default event) has led to

considerable effort directed toward another class of credit risk analysis, such as the Reduced

form Approach.

In the case of the Reduced form approach, the default time is assumed to be specified exoge-
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nously with the time being evaluated directly, and the relationship between the default and the

firm’s asset value is not explicitly evaluated. A characteristic of the reduced form approach is

that the firm may default at any time, not only at maturity of the debt. This makes the default

event unpredictable, and comes as a complete shock to the financial market. This is a threat

that is more literal than the nature of predicted default even in structure approach. Jarrow

and al.[?] studied the default event to be the time at which a company’s credit rating enters

in default state, specified by Markov process. Furthermore, the most current reduced form

approaches are those that employ or involve hazard rate and stochastic intensities to model the

default time.

The main point of this dissertation is to consider how the Credit Default Swap is modelled

for estimating the value of CDS. There are different ways for modelling the Credit Derivatives,

typically characterised by how they characterize the default event. Duffie and Signeton [?]

suggested the approach in which the default is indicated or characterized by a hazard rate

largely related to the distribution of default time. Their approach suggests that the defaultable

claims can be priced the same way as the non default claims. Using the Duffie and Signeton

framework, David and Mavroid [?] suppose the hazard rate is a Gaussian model with time-

dependent deterministic drift to revise the valuation of the Credit Default Swap. Aonuma and

Nakagawa [?] extend David and Mavroid work to model the hazard rate in form of affine type

or quadratic Gaussian type term structure model, such as Vasick model and give the valuation

formula for the credit default swap that contains basket type. In this thesis we also inspire for

these previous models, to consider the default model which takes the hazard rate as principal

factor.

This dissertation is structured into seven chapters, and we work under the following organisa-

tion:

In Chapter[2], we introduce and deal with some preliminary knowledge that is required for

the remainder of this dissertation.We studied a survey of the most widely accepted single-

factor models of the short-term interest rate with their solutions, among them, Vasicek and

Cox-Ingersoll-Ross models (CIR).

Chapter[3] presents the brief summary of the main development within the Structural approach
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to modelling and valuation of Credit Risk. Specially, we review the classical Structural models,

introduce by Merton [?] and we make its application to South Africa market data.

In Chapter[4], we follow the framework proposed by David and Mavroidis[?], and Aonuma and

Nakagawa [?] to give the main techniques used to value credit default swap under the Vasicek-

type hazard rate. These are done for the only one defaultable bond issued by the company.

Here the explicit value of the credit default swap for both the fixed side, and the recovery side,

are established in a quite general form.

In chapter[5], we discuss how to estimate hazard rate which follows the dynamic of the Vasicek-

type model and a CIR-type model by using the relationship between credit spread and hazard

rate, that, is necessary for switching the market credit spread data collecting directly from the

market data into the CIR and the Vasicek-type Hazard rate data. We analyse the conditional

survival probability for both the CIR and the Vasicek processes and give some results.

Chapter[6] treats the parameter estimation associated to the hazard rate models using the

Generalized Moment Method. And we shall investigate 20 South African firm’s debt terms,

with different rating from AAA to BBB and different market credit spread for maturity one

year, three years and five years to analyse and estimate the parameters in 2 models (Vasicek-

type model and a CIR-type model).

In chapter[7] we summarize the dissertation, make our conclusions, and discuss potential future-

work.

In the appendix, we present some basic results concerning the Merton model (the default

probability and credit spread).
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Chapter 2

Preliminaries

Here we introduce some terms useful in bond derivative pricing. In addition, we specify the

filtered probability space and the fundamental concepts that will be needed in the following

discussion. We also studied a survey of the most widely accepted single-factor models of the

short-term interest rate with their solutions, among them, Vasicek and Cox-Ingersoll-Ross

models.

2.1 Filtered space

Definition 2.1.1. (σ−algebra, Measurable sets and Measurable space.) Let Ω be a set, and 2Ω

symbolically represent its power set. Then a subset F ⊂ 2Ω is called a σ−algebra if it satisfies

the following properties:

1. F 6= ∅.

2. F is closed under complementation which means that, if C ∈ F , then its complement

Ω�C ∈ F .

3. F is closed under countable unions which means that, if C1, C2, . . . are in F , then C =

C1 ∪ C2 ∪ C3 ∪ · · · ∈ F .
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The magma (Ω,F) is called a measurable space and we refer to the element of F as measurable

sets or events. By applying De Morgan’s laws to these properties, it follows that the σ−algebra

is also closed under countable intersections.

Note that F = {∅,Ω} is a trial set.

Definition 2.1.2. (General filtration) Let us consider 0 ≤ t ≤ T the trading date, the filtration

F = {Ft}0≤t≤T presents an information system of subsets and satisfies

σ({Ω}) = F0 ⊂ F1 ⊂ . . . ⊂ FT and ∪Tt=0 Ft = σ(Ω).

The algebra F gives all the information that is available at time t and we never lose any

information and our knowledge increases with time t, as action is finite t = 0, 1, . . . , T , FT =

σ(Ω). The gradually available information is modelled by the triple (Ω,F ,P).

Throughout this thesis, if we consider the probability P to be a martingale measure (or risk

neutral measure) then all the discounted asset price under the probability P, are martingales.

Definition 2.1.3. (Probability space and filtered space) Let us fix a finite date T , and assume

that the underlying probability space (Ω,F ,P), which models all states of the financial market,is

endowed with some filtration F = {Ft}0≤t≤T . Note that the collection (Ω,F ,F,P) is referred

as a filtered probability space.

Definition 2.1.4. (Continuity and completeness of filtered probability space.) Given the prob-

ability space (Ω,F ,P), if B ⊂ A, P(A) = 0 ⇒ B ∈ F , then the space is complete. When the

probability space is complete and F0 contains all sets A ∈ F such that P(A) = 0, then the

filtered probability space is complete.

The right limit of a filtration F is designed by

Ft+ =
⋂
t<s

Fs,

and whenever we have

Ft+ = Ft, ∀t

then F is a right continuous.
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The left limit of a filtration F is designed by

Ft− = σ

(⋃
t>s

Fs

)
if

Ft− = Ft, ∀t

then F is a left continuous.

2.2 Terms related to Bond Derivative

Let us describe the fundamental elements of Bond Derivative Pricing and define important

definitions, that will be helpful through the whole of this dissertation.

Definition 2.2.1. (Maturity time). The maturity time T of the bond is the prescribed time

in the future, and is also known as the expiry date of the bond. This date is also referred to as

the life of the bond ends.

Though the maturity date is the expiration date, it must be specified at the time of opening

the contract. The payment of the face value of bond is made at the maturity time. Therefore,

is also known as redemption date.

Definition 2.2.2. (Bank account or Saving account). A bank account evolves deterministically

as

B(t) = exp

(∫ t

0

rudu

)
,

i.e. dB(t) = r(t)B(t)dt,

B(0) = 1,

where r is specified adapted stochastic process. The bank account can be viewed as a money

market-account, and describes a bank with the stochastic short rate interest r. The obvious and

most common use of the bank account is to be chosen as the numeraire to find the martingale

price of the bond.
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Definition 2.2.3. (Discount factor.) At given time t < T , the discount factor B(t, T ) is the

value of one unit cash of payment at maturity T and is expressed as

B(t, T ) =
B(t)

B(T )
= exp

(
−
∫ T

t

rudu

)
. (2.1)

Since, in order to have one unit of cash at time T the amount 1/B(T ) has to be invested at the

beginning. Then, the value of this initial investment constitutes B(t)(1/B(T )) at time t > 0.

Definition 2.2.4. (Bond). A bond is a financial security of debts, which matures at a precise

date in the future T , refunds its face value at future date T and pays interest rate periodically

in form of coupon payment. A zero coupon bond with maturity date T is a contract that

guarantees to pay the bond holder δ dollars at time T . The face value δ is usually substituted

by 1 for computational convenience. Denote the price of a bond with maturity date T at time

t as p(t, T ) and p(T, T ) = 1 for all t.

With visible prices of zero-coupon bonds in the market, one can define interest rates.

Definition 2.2.5. (Risk-free zero coupon bond). Let rt be the short rate interest independent

of Wt. Then the price of risk-free zero coupon bond at time t ∈ [0, T ] is given by

D(t, T ) = E

[
exp

(
−
∫ T

t

rudu

)]
(2.2)

This is actually the martingale price of bond at time t with payoff 1 dollars at maturity T ,

given the dynamic of short rate interest rate rt we can deduce the bond value D(t, T ).

Observe that there is a close relationship between the price of the bond and the discount factor

B(t, T ). Where Wt is the wiener process or standard Brownian motion defined in (??) below.

Definition 2.2.6. (Yield or spread). Give p(t, T ) the value of the bond. The yield to the

maturity rd(t, T ) of the bond p(t, T ) is the discounted value that make the current value of the

cashflows equal to the value of the bond at time t, it is determine by the below formula

p(t, T ) = e−r
d(t,T )(T−t) (2.3)

thereafter

rd(t, T ) = − ln (p(t, T ))

T − t
. (2.4)
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The value rd(t, t) can be used to evaluate, or model the evolution of the short rate interest

process rt or hazard rate process of zero-coupon bonds through the maturity time T . The

trajectory of the term structure yield can have the flat shape, decreasing or increasing depend

on the value of the interest rate rt, and other related parameters values.

Definition 2.2.7. (Premium). A premium is a kind of loan, which the ownership of the bond

delivers to the bond’s issuer.

This quantity establishes the value of the bond. Actually, the value of bond is giving by

summing the principal and its premium. The principal of the bond is also termed the face

value or the par value.

Definition 2.2.8. (Cum-coupon and ex-coupon). The cum-coupon bond is a contract that

require the buyer of the bond to pay the seller the accrued interest rate on the bond, and

ex-coupon is its opposite. United State’s bonds are always cum-coupon bonds.

Definition 2.2.9. (Recovery rules). Let δ be the recovery value, if default does not occur before

or at the maturity time T , then the claim is paid one monetary unit. Otherwise, depending on

the market convention, either (1) the payment of δ monetary is made at the maturity time T ,

or (2) the payment of δ(τ) monetary units is paid at time τ .

Definition 2.2.10. (Contingent claim). Contingent claim is defined as a contract that specifies

X, the stochastic amount of money is to be redeemed at the maturity time T to the holder of

contract.

Example 2.2.11. For the famous Black-Scholes model, an example of a contingent claim is

that of a European Call option X on S (asset price) with the exercise price (strike price) K

and the maturity date T . The pay off is given by

X = (S(T )−K)+ (2.5)

and gives the holder the right, but not the obligation to purchase one share of the stock at the

prescribed price K, at the prescribed time in the future T . Where S(T ) denoted the asset price

at maturity date T .
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The section below introduces credit risk from a modelling perspective. We first explain credit

risk and measure of credit risk.

2.3 Credit risk

Credit risk is gaining much attention and becoming an increasingly important subject for

evaluation in the financial market (or industry). There are several types of risk that a smart

investor should consider and pay careful attention to. The most important of all risks are

Credit risk and market risk. Market risk, is also known as a systematic risk, is the risk of losses

experienced by the investor due to factors that affect the overall performance of markets prices.

Market risks are characterized by currency risk, equity risk, commodity risk, and interest rate

risk. Credit risk and its measurement are discuss below.

Definition 2.3.1. (Credit risk). Credit Risk is defined as the risk that a borrower (company,

individual, sovereign government) will default on any type of debt by failing to meet its financial

commitment. In other word, is the chance of a loss due to inability of a counterpart (borrower)

to fulfil its financial obligation. US treasure securities are assumed to be free of credit risk.

The following example of a financial transaction elucidates the definition of the credit risk : A

bank gives a loan of R1m to the company and they agree that the company refunds the loan

two years from now on. The bank lends the money to the counter-party bower in the contract.

From this time on, the bank deals with the credit risk of the transaction. Basically, the bower

pays back the outstanding amounts of Rand 1m (plus coupon) to the lender. However, if the

default happens or the debtor fails to meet its financial commitment, a procedure is started to

recover moneys from the firms assets to refund the lenders. This is probably causing a great

loss to the lender (or bank): in instance only 30% of the loan can be recovered causing a loss of

Rand 0.7m. This exemplifies that credit risk in a financial transaction can cause large losses.

Wherefore, lenders will carefully evaluate or measure this risk of a counter-party before entering

into the agreement.

Definition 2.3.2. (Counterparty risk). Counterparty risk is traditionally thought of as credit

12



risk between derivatives counterparties or is in one sense a specific form of credit risk. Hence,

in the context of financial risk, it is merely a subset of a single risk type [?]. The counterparty

risk has been considered by most market participants to be the key financial risk since the

global credit crisis of 2007 onwards and the failures of large prestigious institutions such as

Bear Sterns, Lehman Brothers, Fannie Mae and Freddie Mac.

Definition 2.3.3. (Credit spread). The credit spread is the excess return on a defaultable

bond, (or the difference in yield between two bonds of similar maturity but different credit

quality). The credit spread is influenced by the credit quality of the issuer and the maturity

time of the bond, and is the recompense an investor received for undertaking the credit risk

originally secured with the same security.

2.4 Credit Derivatives

Credit derivatives (CDs) are financial securities whose payoff depends on the occurrence of a

credit event affecting an underlying financial entity or reference entity.

Credit derivatives are primarily used to:

1. express a positive or negative credit view on a single entity or a portfolio of entities,

independent of any other exposures to the entity one might have.

2. reduce risk arising from ownership of bonds or loans.

Since its introduction in the mid-1990s, the growth of the global market has been overwhelming.

The most widely used product of CDs is the Credit Default Swap (CDS). The CDS is defined

in Chapter 4, Section (??).

2.5 Stochastic processes

This section will provide a very brief overview of stochastic calculus.
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Definition 2.5.1. (Wiener process). The Wiener process or standard Brownian motion Wt,

t ≥ 0 is actually a stochastic process which satisfies the following conditions:

1. W (0) = 0,

2. the trajectory Wt is almost surely continuous,

3. the process Wt has independent increments, which mean that

for 0 6 s1 6 t1 6 s2 6 t2, then Wt1 −Ws1 and Wt2 −Ws2 are independent.

4. For any 0 ≤ s ≤ t, Wt −Ws ∼ N (0, t− s),

whereN (µ, σ2) characterises the normal distribution with µ and σ2 expected value and variance

respectively.

This definition allowed us to deduce the following basic properties related to Brownian motion.

Note that Brownian motion is described by the Wiener process.

Property 2.5.2. E (Wt) = 0 and V ar (Wt) = t. Since its variance increases respect to the

time t, and when t increases the trajectory of Wt moves away from the horizontal axis [?].

Definition 2.5.3. (Predictable process.) Given a filtered probability space (Ω,F ,F,P). For

any t ≥ 1, if Zt is Ft−1−measurable and Z0 is F0−measurable, then a stochastic process

Z = {Zt} (t ∈ [0, T ]) is predictable. Note that F0 is assumed to be trivially measurable

for all t. The similarity of predictable in continues time is less consider. For example, let

Z : R+×Ω −→ R be a continuous stochastic process, if the process is measurable with respect

to the predictable σ-algebra, then it is predictable.

Definition 2.5.4. (Stopping time.) Let τ be a random variable defined on the filtered space

(Ω,F ,F,P). If for all t ≥ 0, τ is measurable i.e {τ ≤ t} ∈ Ft and taking values in [0,∞], then

τ is a stopping time.

Definition 2.5.5. (Default indicator process and survival indicator.) Given the random default

time τ , we characterize the right continuous jump process H, for any t ∈ R+, as following

Ht = 1{τ≤t}, (2.6)
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this process is referred to as the jump or default indicator process and the process 1−Ht = 1{τ>t}

is the survival indicator of the company. The process H jumps from 0 to 1 at the default time

τ .

Definition 2.5.6. (Conditional expectation.) Let X be an integral random variable on a given

a filtered probability space (Ω,F ,F,P), and H ⊂ F . The conditional expectation of X given

H satisfies the following equation ∫
B

E (X|H) dP =

∫
B

XdP, (2.7)

for any B ∈ H.

Theorem 2.5.1. Given a filtered probability space (Ω,F ,F,P). Let Z and Y be random vari-

ables defined on a given space and, with sub-σ-algebras H and G. We characterize below the

results with respect to the conditional expectation values:

1. E(Z|Ht) = E(Z), if Z is independent of Ft,

2. E(ZY |Ht) = ZE(Y |Ht), given Z-Ht measurable,

3. E (E(Z|Ht)) = E(Z),

4. E (E(Z|Ht)|Gt) = E(Z|Ht), given Gt ⊂ Ht.

Proof 2.5.7. See [?].

Definition 2.5.8. (Martingale and sub-Martingale.) Let a random Xt be an F− adapted

process, then the process Xt is a martingale if

E (|Xt|) <∞,∀t ∈ [0, T ] (2.8)

and

given t ∈ [0, T − 1], E (Xt+1/Ft) = Xt. (2.9)

This definition can be interpreted as: The best prediction for future values that could be

constructed based on available information of a martingale process is its current value.

Notice that if we replace the equality ?? by ≥ or ≤, Xt is said sub-martingale and super-

martingale respectively.
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Definition 2.5.9. (Martingale measure.) Given Q and P on measure space (Ω,F), if

1. Q(w) ≥ 0, ∀w ∈ Ω, and

2. Q(B) = 0, iff P(B) = 0, ∀B ∈ F ,

we said the probability measure Q is equivalent to P on measure space (Ω,F), and Q is called

a martingale measure for discounted process X∗t if the below condition satisfies

EQ
(
X∗t+1/Ft

)
= X∗t . (2.10)

Note that a martingale measure is similar to the risk-neutral probability measure.

Definition 2.5.10. (Markov process.) Given a filtered probability space (Ω,F ,F,P) and

{Xt}t<T defined as Markov, if for every n and t < t < · · · < tn we have

P(Xtn|Xtn−1 , . . . , Xt1) = P(Xtn|Xtn−1), (2.11)

then we have a Markov process.

Theorem 2.5.2. The Markov property for Itô processes. Let Xx
t be a time-homogeneous Itô

process on it expressible in the form

dXx
t = µ(Xx

t )dt+ σ(Xx
t )dWt, Xx

0 = x, (2.12)

where µ and σ are Lipschitians and let h : Rn −→ R be a bounded Borel function. Therefore,

for any t, s ≥ 0

E(h(Xx
t )|Fs) = E(h(Xy

t ))|y=Xx
t
. (2.13)

Proof 2.5.11. See [?, ?].

The Markov’s property is useful for calculating the price of a zero-coupon defaultable bond,

the hazard rate and the conditional survival probability.

Lemma 2.5.12. Suppose Q is a continuous martingale on the filtered space (Ω,F ,F,P), and

let φ be a function that defines the process Q =
∫ t

0
φ(s, w)dWs, then

E

[(∫ t

0

φ(s, w)dWs

)2
]

=

∫ t

0

E [φ(s, w)]2 dWs (2.14)

We shall refer to this important lemma in the subsequent chapter(s).
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2.6 Short-Term Rate Models (Single-factor Models)

In this section, we provide a survey of the most widely accepted single-factor models of the

short-term interest rate. It is assumed throughout that the dynamics of rt are specified under

the martingale probability measure Q, and the the underlying Brownian motion W is assumed

to be one-dimensional. As a consequence, the risk premium does not appear explicitly in our

formulas. In this sense, the models considered in this section are based on a single source of

uncertainty, so that they belong to the class of single-factor models. we will consider various

commonly used models. We will list their properties and make comparisons between them.

2.6.1 Vasicek model and its properties

Vasicek model defines the short rate process rt by the affine stochastic differential equation

(SDE):

drt = a(b− rt)dt+ σdWt, r(0) = r0 > 0, (2.15)

where a, b and σ are strictly positive constants and Wt is a standard Wienner process. Note that

one can write r(t) = rt. The parameters a, b and σ are viewed as the mean reversion rate, the

mean reversion level, and the volatility respectively. This SDE is known as the mean-reverting

Ornstein-Uhlenbeck process.

The solution of the Vasicek process.

By applying Itô’s lemma we can determine the solution of the stochastic differential equation

(??). Let assume Xt = rt − b. Therefore, the stochastic equation (??) can be written as

dXt = drt = −aXtdt+ σdWt.

Substituting Zt = eatXt, yields

dZt = aeatXtdt+ eatdXt

= aeatXtdt+ (−aXtdt+ σdWt) e
at

= σeatdWt.
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By applying the Itô’s integral we obtain

Zt = Z(0) +

∫ t

0

σeasdWs. (2.16)

Besides

Zt = eatXt = eat (rt − b) . (2.17)

Clearly, from the previous equation (??) we see for t = 0, Z(0) = r(0) − b. Thereafter, the

equation (??) maybe expressed as

eat (rt − b) = (r0 − b) +

∫ t

0

σeasdWs. (2.18)

Then, we find the value of rt as follows:

rt = b+ (r0 − b) e−at + e−at
∫ t

0

σeasdWs = b+ (r0 − b) e−at + σ

∫ t

0

e−a(t−s)dWs. (2.19)

This is the solution of the stochastic differential equation (SDE) that defines the Vasicek-type

mode.

Lemma 2.6.1. For any t ≥ s, the unique solution to the stochastic differential equation (SDE)

(??) is given by the formula:

rt = b+ (rs − b) e−a(t−s) + σ

∫ t

s

e−a(t−u)dWu. (2.20)

The conditional law of the short rate rt with respect to the σ−field Fs is Gaussian.

• The mean of the Vasicek-type model.

For any t ≥ s, the mean is determined by evaluation of the expectation value of rt given

in equation (??), so

E (rt|Fs) = E

(
b+ (rs − b) e−a(t−s) + σ

∫ t

s

e−a(t−u)dWu|Fs
)

= b+ (rs − b) e−a(t−s) + σ

∫ t

s

e−a(t−u)E (dWu) ,

since, for any function f , the Itô integral
∫ t
s
f(u)dWu is a random variable independent

of the filtration Fs, and applying the Brownian motion’s properties, E (dWU) = 0, we

obtain

E (rt|Fs) = b+ (rs − b) e−a(t−s). (2.21)

18



The limit of E (rt|Fs), when t goes to infinity (i.e. t− s =⇒∞),

lim
(t−s)→∞

E (rt|Fs) = b. (2.22)

• The variance of the Vasicek-type model.

To evaluate the conditional variance of Vasicek process, we re-express equation (??) as

rt −
(
b+ (rs − b) e−a(t−s)) = σ

∫ t

s

e−a(t−u)dWu. (2.23)

We clearly see that expression b + (rs − b) e−a(t−s) on the left hand side of previous Equation

(??) is equal to the conditional mean of Vasicek short rate model rt. Hence, one may rewrite

Equation (??) as follows:

rt −
(
b+ (rs − b) e−a(t−s)) = rt − E (rt|Fs) = σ

∫ t

s

e−a(t−u)dWu. (2.24)

It is well known that the variance is defined by

var (rt|Fs) = E
[
(rt − E (rt))

2 |Fs
]
. (2.25)

Substituting equation (??) into equation (??), the variance is

var (rt|Fs) =E

[(
σ

∫ t

s

e−a(t−u)dWu

)2

|Fs

]

= σ2E

[(∫ t

s

e−a(t−u)dWu

)2
]

= σ2E

[(∫ t

s

e−2a(t−u)du

)]
=
σ2

2a
E
[
e−2a(t−t) − e−2a(t−s)]

=
σ2

2a

[
1− e−2a(t−s)] .

Taking the limit (t − s) −→ ∞, the conditional variance of the Vasicek-type model converges

to

lim
(t−s)−→∞

var (rt|Fs) =
σ2

2a
. (2.26)
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With regard to equation (??) and (??), the conditional expectation value tends to b when (t−s)

goes to infinity, the Vasicek model rt is mean reverting, which can be interpreted as a long-term

average and make sense economically. The drawback of the process is simply the serious defect

of allowing the interest rate to take negative value with a positive probability.

It is obvious that Vasicek’s model, as indeed any Gaussian approach, allows for negative values

for the short term interest rate . This property is obviously incompatible with no-arbitrage

in the presence of cash in the economy. This significant drawback of Gaussian models was

explored or investigated by, among others, Dothan (1978). To overcome this shortcoming or

imperfection of Vasicek’s model, Cox et al (1985) proposed the modification of the short-term

rate process rt discussed in the following section.

2.6.2 Cox-Ingersoll-Ross (CIR) model (or square-root process)

This model was developed in 1985 by Cox et at. to eliminate any negative value of interest

rate, by the following modification of the mean-reverting Ornstein-Uhlenbeck process, known

as the square-root process and expressed by the SDE:

drt = a(b− rt)dt+ σ
√
rtdWt, (2.27)

where a, b are strictly positive constants, and σ constant volatility and Wt is a standard Wien-

ner process.

Regarding to the square-root in the diffusion coefficient, the CIR model yields positive values.

Specifically, it can reach zero value, but it never takes negative value.

Lemma 2.6.2. For any s ≤ t, the unique solution to the stochastic differential equation (SDE)

(??) is given by the formula:

rt = b+ (rs − b) e−a(t−s) + σ

∫ t

s

e−a(t−u)√rudWu. (2.28)

with conditional expectation value

E (rt|Fs) = b+ (rs − b) e−a(t−s), (2.29)
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and conditional variance

var (rt|Fs) =
σ2b

2a

(
1− e−a(t−s))2

+
σ2rs
a

(
e−a(t−s) − e−2a(t−s)) . (2.30)

When (t− s) goes to infinity, the limits of E (rt|Fs) and var (rt|Fs) are given by:

lim
(t−s)→∞

E (rt|Fs) = b, (2.31)

and

lim
(t−s)−→∞

var (rt|Fs) =
σ2b

2a
. (2.32)

Proof 2.6.3. In a way similar to the previous case, we prove that the CIR model has a unique

solution, and has the property of positive interest rate.

Assuming the process Zt = rte
at taking its derivative, and using equation (??), we obtain

dZt = eatdrt + arte
atdt+ d < eat, rt >

= eat (a(b− rt)dt+ σ
√
rtdWt) + arte

atdt

= eat (ab dt+ σ
√
rtdWt) ,

for all t ≥ s. Taking the integral of previous equation yields

Zt − Zs = ab

∫ t

s

eaudu+ σ

∫ t

s

eau
√
rudWu, (2.33)

substituting the process Zt = rte
at, we obtain after rearranging

rt = rse
−a(t−s) + abe−at

∫ t

s

eaudu+ σe−at
∫ t

s

eau
√
rudWu

= rse
−a(t−s) + b

(
1− e−a(t−s))+ σe−at

∫ t

s

eau
√
rudWu

= b+ (rs − b) e−a(t−s) + σ

∫ t

s

e−a(t−u)√rudWu.

• The mean of the CIR-type model.

For any t ≥ s, the mean is determined by evaluation of the expectation value of rt given

in previous equation , so

E (rt|Fs) = E

(
b+ (rs − b) e−a(t−s) + σ

∫ t

s

e−a(t−u)√rudWu|Fs
)

(2.34)

= b+ (rs − b) e−a(t−s) + E

(
σ

∫ t

s

e−a(t−u)√rudWu|Fs
)
, (2.35)

21



and for any function f , the Itô integral
∫ t
s
f(u)dWu is a random variable independent of

the filtration Fs, and applying the Wienner process’s property, E (dWU) = 0, we obtain

E (rt|Fs) = b+ (rs − b) e−a(t−s). (2.36)

The limit of E (rt|Fs), when t goes to infinity (i.e. t− s =⇒∞),

lim
(t−s)→∞

E (rt|Fs) = b. (2.37)

• The Variance of the CIR-type model.

To evaluate the conditional variance of CIR process, we re-express equation (??) as

rt −
(
b+ (rs − b) e−a(t−s)) = σ

∫ t

s

e−a(t−u)√rudWu. (2.38)

We clearly see that, expression b+b+(rs − b) e−a(t−s) on the left hand side of previous Equation

(??) is equal to the conditional mean of CIR short rate model rt. We may write Equation (??)

as following

rt −
(
b+ (rs − b) e−a(t−s)) = rt − E (rt|Fs) = σ

∫ t

s

e−a(t−u)√rudWu. (2.39)

Again, the variance is defined by

var (rt|Fs) = E
[
(rt − E (rt))

2 |Fs
]
. (2.40)
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Substituting equation (??) into equation (??) and using lemma(??) , the variance is :

var (rt|Fs) =E

[(
σ

∫ t

s

e−a(t−u)√rudWu

)2

|Fs

]

= σ2

∫ t

s

(
e−2a(t−u)E (ru|Fs)

)
du

= σ2

∫ t

s

(
e−2a(t−u)

(
b+ (rs − b) e−a(u−s))) du

= σ2b

∫ t

s

e−2a(t−u)du+ σ2 (rs − b) e−2at

∫ t

s

ea(u+s)du

=
bσ2

2a

(
1− e−2a(t−s))+

σ2 (rs − b)
a

(
e−a(t−s) − e−2a(t−s))

=
bσ2

2a

(
1− e−2a(t−s))− bσ2

a

(
e−a(t−s) − e−2a(t−s))+

σ2rs
a

(
e−a(t−s) − e−2a(t−s))

=
bσ2

2a

(
1− e−2a(t−s) − 2e−a(t−s) + 2e−2a(t−s))+

σ2rs
a

(
e−a(t−s) − e−2a(t−s))

=
bσ2

2a

(
1− 2e−a(t−s) + e−2a(t−s))+

σ2rs
a

(
e−a(t−s) − e−2a(t−s))

=
bσ2

2a

(
1− e−a(t−s))2

+
σ2rs
a

(
e−a(t−s) − e−2a(t−s)) .

Taking the limit (t− s) −→∞, the conditional variance of the CIR-type model converges to

lim
(t−s)−→∞

var (rt|Fs) = lim
(t−s)−→∞

[
bσ2

2a

(
1− e−a(t−s))2

+
σ2rs
a

(
e−a(t−s) − e−2a(t−s))]

=
bσ2

2a
.

Our future goal in this dissertation is to find the credit risk, the price of credit derivative swaps

under Vasicek-type hazard model (refer in Chapter 4), the hazard rate function for the Vasicek

and CIR models, and the survival probability under Vasicek-type hazard model and CIR-type

model (these will be discussed in Chapter 5). To this end, we shall use the probability risk-

neutral measure or martingale valuation formula directly. The following is the valuation of

the bond price under CIR, which is helpful in determining the CIR mode type hazard rate in

Section (??).

Bond price under the CIR model

Firstly, we consider the Laplace transform of the joint integral of the squared CIR process and
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squared root process (∫ T

t

rudu, rT

)
given rt.

By using the representation of the Laplace transform obtained in [?].

Indeed, we observe

L(t, T, r, λ, η) = E

[
exp

(
−λ
∫ T

t

rudu− ηrT
)
|rt = r

]
(2.41)

A quick way to determine the value of the bond is to modify the equation (??), taking λ = 1

and η = 0, we come out with the CIR formula for the price of a zero-coupon bond (Cox et al,

1985) L(t, T, r, λ, η) = B(t, T, r).

Theorem 2.6.1. Suppose rt is a solution of squared root process, the Laplace L is affine process

and characterise by

L(t, T, r, λ, η) = exp (Φ(t, T, λ, η)−Ψ(t, T, λ, η)) (2.42)

where

Φ(t, T, λ, η) =
2ab

σ2
ln

(
2h(λ)e(a+h(λ))(T−t)/2

2h(λ) + (a+ σ2η + h(λ)) (eh(λ)(T−t) − 1)

)
,

h(λ) =
√
a2 + 2λσ2

and

Ψ(t, T, λ, η) =
2ηh(λ) + η (h(λ)− a)

(
eh(λ)(T−t) − 1

)
+ 2λ

(
eh(λ)(T−t) − 1

)
2h(λ) + (a+ σ2η + h(λ)) (eh(λ)(T−t) − 1)

.

Let us take now λ = 1 and η = 0, we find the bond price maturing in T year, under CIR model

as

D(t, T, r) = exp (Φ∗(t, T )−Ψ∗(t, T )rt) (2.43)
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where

Φ∗(t, T ) =
2ab

σ2
ln

(
2he(a+h)(T−t)/2

2h+ (a+ h) (eh(T−t) − 1)

)
,

Ψ∗(t, T ) =
2
(
eh(T−t) − 1

)
2h+ (a+ h) (eh(T−t) − 1)

,

h =
√
a2 + 2σ2.

Furthermore we will refer to this process to find the hazard rate function and survival probability

under the CIR-type model in Chapter 5.

2.7 Summary

In this chapter, we provide the basics on modelling credit risk and credit derivatives necessary

to understand the remainder of this dissertation. We have specified the filtered probability

space and the fundamental concepts that will be needed in the following discussion.

Furthermore, we studied a survey of the most widely accepted single-factor models of the

short-term interest rate with their solutions. Among them, we focussed on Vasicek and Cox-

Ingersoll-Ross models and determined that structural models are able to meet the research

objectives or main scope of this study: prediction of the survival probability. These models are

therefore further investigated in the sequel.
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Chapter 3

Classical Structural Approach

3.1 Merton Approach

The structural approach for credit risk was first articulated by the famous Robert Merton

(1974) in his paper on the valuation of corporate debt. Merton extends the existing framework

that relates the asset value of the firm and its credit risk. Therefore, use of the Black-Scholes

(1973) option pricing formulas to determine the defaultable bond price and firm’s equity, and

for evaluating credit risk of a firm. The Merton model is an important quantity to consider

when predicting default. In this chapter, we will be presented a literature overview of Merton

model and its application to South Africa market data. The present chapter is largely based

on Bielecki and Rutkowski[?], and [?]; the interested reader may thus consult [?], [?] for more

details.

3.1.1 Basic assumption and default conditions

The Merton model is a somewhat stylized structural approach that requires the following as-

sumptions

• The assumption of a constant and flat risk-free interest rate r.

• The default happens only at maturity time T and not before. If, the firm’s asset value
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falls down to the default point (minimal levels of debt) before the debt’s maturity but it

is possible to recover and face the payment of the debt at time T , then the default will

be avoided in the model.

• The rest of the assumptions Merton (1974) adopts are: the inexistence of bankruptcy

costs, transaction costs, taxes or problems with indivisibilities of assets; continuous time

trading; unrestricted borrowing and lending at a constant interest rate r; no restrictions

on the short selling of the assets; and that the value of the firm is invariant under changes

in its capital structure (Modigliani-Miller Theorem1).

• The dynamics of the firm’s asset value Vt are given by the SDE:

dVt = Vt ((µV − κ)dt+ σV dWt) , (3.1)

where κ is the constant payout (dividend) ratio per unit time, µV is the expected return

of the firm’s assets per unit time, σV is the volatility of the firm’s assets per unit time,

and dWt is a standard Brownian motion.

With regard to the Merton model (1974) not all of these assumptions are required to realize

the model, but the assumptions are assumed for success of the model. The most important

assumptions are that the firms asset value follows a diffusion process ( the last assumption)

and continuous time trading. Moreover, the model adopts a simplified of the firm’s capital

structure. The model does not distinguish amongst different types of debt and consist of only

one zero-coupon bond (ZCB) that will become due at maturity date T . The equity of the firm

represent the ordinary share. The equity and debt’s face value are a contingent claim on the

firm’s assets, and the market value of the firm’s asset Vt comprises of the value equity Et and

market value of total debt Dt, given by Vt = Et +Dt.

The ZCB has a payoff L at maturity T (or face value of ZCB).

If, at maturity T , the firm’s assets value exceeds the promised payment L (notional value), the

1Modigliani-Miller Theorem stipulates that, under a certain market price process (the classical random walk),

in the absence of taxes, agency costs, bankruptcy costs, in an efficient market with asymmetric information, the

value of a firm is independent of its capital structure (equity and debt).
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bondholders will receive the full face value L and the equityholders (shareholders) then receive

the residual asset value VT−L. Otherwise, the firm defaults, the bondholders take control of the

firm and receive the firm value VT , and the shareholders receive nothing when the firm’s value

falls below the notional value L at maturity T . At default the equityholders never compensated

the losses of the bondholders. This maybe viewed as: ET cannot be negative.

Figure 3.1: Merton model representation by Duffie and Singleton (2003)

This figure (??) shows the dynamic in the Merton Approach. The evolution of the firm’s asset

value process is obtained by stimulating varies paths until maturity. As we can observe, the

total value of the debt does not change over time and the firm’s equity value fluctuates under

the firm’s assets value. Default happens only when the asset value of the firm falls below the

default point (default barrier) at future time T so that VT < L. The tinted zone of this figure

(??) should be the expected default frequency or the probability of default.
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3.1.2 Merton’s formula (Security Pricing)

Referring to the assumptions and default conditions described above, we can derive the price

of equity and debt in the Merton framework.

In accordance with the Black-Scholes option pricing theory, we will consider ourselves under

risk neutral framework (probability measure Q2). We follow Jin al. (2004) and Hull (2003) to

derive the formulas.

The payment of equity and debt at maturity, can be represented as a European style written

on the assets of firm with the strike price being the debt’s face value L.

Specifically, a bit of algebra show that the payoff at maturity to the bondholders equals

DT = min (VT , L) = L−max (VT , L) = L− (L− VT )+ . (3.3)

The latter equality shows that the risky debt (payoff to the bondholders) is equivalent to a

portfolio consisting of (a) a long term default-risk free bond paying L, and (b) a short term

a European put option on the firm’s assets with the strike price L and maturity T . This

decomposition of the debt’s payoff is illustrated in figure(??) below. 3 Note that the notation

(...)+ represents the pay off of an European Call option, see (??).

Once the payment of the debt is made at maturity the remaining assets value belongs to the

equityholders. Actually, the payoff to the shareholders is similar to the payoff of a European

2Working under risk neutral measure, allows us to replace the expected return of the firm’s asset value µV ,

by the risk free interest rate r to evaluate the firm’s asset value as a diffusion process (and assuming payout

zero e.i κ = 0):

dVt = Vt(rdt+ σV dWt) (3.2)

More generally, in risk-neutralized world, the expected return of asset is the risk-free rate r.
3The similar, but alternative, way of representing the payoff to the bondholders as an option position is

given below. At maturity, it is easily verified that the payoff to the bondholders can also be expressed as

VT −max {VT −D, 0} .

That means, the risky debt (payoff to the bondholders) is equivalent to a portfolio consisting of (a) a long

position in assets of the firm, and (b) a short position of the call option on the firm’s assets with exercise price

L and maturity T . Obviously, both decompositions are similar by put-call parity, so either can be worked out

for the problem of pricing bond.
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call option written on the firm’s assets with strike price L:

ET = max {VT − L, 0} . (3.4)

Thus, in figure(??), the line from 0 to upper part of graph represents the market value of the

firm’s debt as a function of the assets value e.i. D(Vt). let D(t, T ) be the price at t < T of the

debt. Clearly, the value of firm’s debt equals

D(Vt) = D(t, T ) = LB(t, T )− (L− Vt)+ .

The right graph illustrates the equityholders and the payoff of a European call option as function

of the assets value E(Vt) given by

E(Vt) = Vt −D(Vt) = Vt − LB(t, T ) + (L− Vt)+ = max {Vt − L, 0} . (3.5)

Figure 3.2: Debt and equity values depending on assets value, under Merton Model

The holders of the call option, will not exercise their option and will leave the firm to its credi-

tors. Applying the Black and Scholes pricing formula, Merton derived a closed-form expression

for its arbitrage price. For every 0 6 t 6 T the value of the firm’s debt and equity equal

D(t, T ) = VtN (−d1) + Le−r(T−t)N (d2) (3.6)

Et = VtN (d1)− Le−r(T−t)N (d2) (3.7)

where
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• r is the risk-free interest rate,

• N (.) is the standard normal distribution function characterized by

N (d1) =
1√
2π

∫ d1

−∞
exp

(
−x

2

2

)
dx,

and d1 and d2 are given by

d1 =
ln(Vt/L) + (r +

σ2
V

2
)(T − t)

σV
√
T − t

and d2 = d1 − σV
√
T − t. (3.8)

However, we use risk neutral measure (the martingale approach) based on the Feynman Kac

stochastic representation formula to find equation (??). More detail can be seen in Appendix

A. One can also solve the PDE4, with its boundary conditions directly to find (??), and the

value of the firm’s debt (??) can also be found in the same way.

3.1.3 Measurement of the risk neutral probability and objective

probability of default

The figure (??) above illustrated that the probability of default in the Merton model is given

by the probability that the firm’s assets value drops below the promised debt payment L at

maturity:

PD = Pr(VT ≤ L). (3.10)

Therefore, at time t = 0, in the Merton framework under risk neutral measure, the default

probability is simply expressed by

PDM = N (−d2) = N

(
−

ln(V0
L

) + (r − 1
2
σ2
V )T

σ
√
T

)
. (3.11)

4The payoff to the shareholders (or equity’s value) is a European call option in Merton framework, and

expressed as (??). As usual in contingent claim modelling, the equity’s value process follows the PDE :

∂Et

∂t
+ rVt

∂Et

∂Vt
+

1

2
σ2
V V

2
t

∂2Et

∂V 2
t

− rEt = 0, (3.9)

subjected to the following boundaries conditions: ET (VT ) = max(VT − L, 0), E(0) = 0,
E(V )

V
≤ 1.
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The probabilities of the Merton formula do not represent actually, the probability of sitting

above or below the face value at maturity. Since the firm’s asset is risky, it does not drift at

risk free rate.

If, we change the risk free interest rate r, in equation (??) to the expected return on the firm’s

asset value µV , we get the probability of default of the firm under an objective probability

measure

PD = N

(
−

ln(V0
L

) + (µV − 1
2
σ2
V )T

σ
√
T

)
. (3.12)

As shown in Deliandes and Geske [2003], risk neutral probabilities serve as an upper bound

to objective default probabilities. Despite the different distributions of the firm’s asset value

under risk neutral and objective measure, both have the similar volatility terms (i.e variance).

Therefore, the objective distributions must basically have a mean or expected return greater

than risk-free rate, in other word, the drift is generally higher than the risk free interest rate,

it proves that the risk free neutral distribution allows a higher default probability.

Deliandes and Geske [2003] also demonstrates that risk neutral default probabilities have the

equivalent sensitivities as objective default probabilities [?].

3.1.4 Term structure of Credit spreads (CS) under Merton Ap-

proach

For simplicity of notation, suppose the quantity Πt = Vt
Le−r(T−t) is viewed as a proxy of the asset

to debt ratio Vt/D(t, T ).

Then, Merton’s debt value (??) becomes

D(t, T ) = Le−r(T−t) (ΠtN (−d1) +N (d2)) , (3.13)

so the corporate debt is a risk bond, and thus should be modelled at a credit spread (risk

premium). Let S(t, T ) be denoted the continuously compounded credit spread at time t < T ,

while Le−r(T−t) represents the current (or present) value of the face value of firm’s debt. 5

5The inequality D(t, T ) < Le−r(T−t) can be easily checked and it similar to the property of positivity of

credit spread.
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Observe that the yield to maturity, rd(t, T ), of a corporate ZCB in continuous-time is implicitly

expressed as

D(t, T ) = Le−r
d(t,T )(T−t).

From this equality, and substituting D(t, T ) with expression (??), it follows :

rd(t, T ) = −
ln
(
Πte

−r(T−t)N (−d1) +N (d2)e−r(T−t)
)

T − t
.

At t < T , the credit spread is the excess return on a defaultable bond (or the difference in yield

between two bonds of similar maturity but different credit quality) S(t, T ) = rd(t, T )−r(t, T ).6

Using the last equality, the credit spread in Merton’s model is expressing as

S(t, T ) = − ln (ΠtN (−d1) +N (d2))

T − t
> 0. (3.14)

This shows that, credit spread is a function of asset to debt ratio, time to maturity and the

volatility of the firm’s asset, and well agrees with the theory that risk bonds have the higher

expected return than the risk-free interest rate (i.e, yields on Treasury bonds with matching

notional value are lower than the yields on corporate bonds).

Therefore, let us analyse the behaviour of the credit spread in the Merton framework. When t

belongs to [0, T ], the credit spread goes either to 0 or to infinity, according to whether we have

default or not (VT < L or VT > T ). For this propose, we define the forward short spread at

time T , as :

FssT = lim
t→T

S(t, T ),

and observe that

FssT (θ) =

∞, if θ ∈ {VT < L} ,

0, if θ ∈ {VT > L} .

6Here r(t, T ) is a yield continuously compound at time t on the future time T of the Treasure ZCB, and is

a constant, equal to the risk free interest rate r. We assume

B(t, T ) = e−r(t,T )(T−t) = e−r(T−t).

(see appendix for a more detailed of credit spread)
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While the volatility of the firm’s asset can be obtained from historical data (or be modelled as

in implied volatility), the market value of the firms asset Vt is not directly observable (Hull,

2000). On the other hand, Et is easily observed in the marketplace, and we can estimate σE.

We know that, according to our assumptions, the processes for the equity can be given by the

following stochastic differential equation

dEt = µEEdt+ σEdWt, (3.15)

where µE represent the drift in the equity and σE its volatility or diffusion term.

Given the market value of the firms asset Vt comprises of the value equity Et and market value

of total debt Dt , as Vt = Et +Dt, by applying Itos lemma, we can also represent the value of

equity Et as:

dEt =

(
∂Et
∂t

+ µV Vt
∂Et
∂Vt

+
1

2
σ2
V V

2
t

∂2Et
∂V 2

t

)
dt+ σV V

∂Et
∂Vt

dWt. (3.16)

By comparing the diffusion terms in the equity value process in (??) and (??) we obtain the

following relationship:

σE = σV

(
V

E

)
∂Et
∂Vt

= σV

(
V

E

)
N (d1), (3.17)

where N (d1) is viewed as the hedge ratio or the “ delta ” in standard option terminology. This

equation enable us to determine σV and Vt in terms of known values Et, σE and L. Substituting

d1 and d2 given by (??) into equation (??), and substituting d1 from (??) into (??), yields the

following system of 2 nonlinear equations after rearranging terms:

VtN

(
ln(Vt/L) + (r +

σ2
V

2
)(T − t)

σV
√
T − t

)
− Le−r(T−t)N

(
ln(Vt/L) + (r +

σ2
V

2
)(T − t)

σV
√
T − t

− σV
√
T − t

)
= Et,

(3.18)

σV VtN

(
ln(Vt/L) + (r +

σ2
V

2
)(T − t)

σV
√
T − t

)
− σEE = 0.

(3.19)

Basically, if the values r, L, T, Et and σE are given then, we can find the unknown variable σV

and Vt by solving the system 7.

7This system of 2 nonlinear equations and 2 unknown variables basically, can be solved by applying a

standard Newton Raphson algorithm, see [?].
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3.1.5 Application of the Merton Approach to South African Bonds

In this section, we use the data given by [?] to find the credit spread (basis points abbreviated

by bp) under Merton approach, we investigate a range of 20 South African firms, with different

ratings ranging from AAA to BBB. We utilize the current debt of the firm and measure the

debt financing amount (or the market value of the total debt) at different maturity times. The

debt term of five years, three years and one year were considered and shown in below Table

(??). Clearly, the credit spread increases with regard to the volatility of the firm’s asset value

and debt’s face value L (formulated in term of the leverage ratio or the inverse of the proxy of

the asset to debt ratio d = 1
πt

). We find that, in the Banking sector the credit spread calculated

varies from 6 bp to 297 bp, and in other sectors the credit spread calculated varies from 3 bp

to 85 bp for a debt term of 5 years maturity. Considering a debt term of maturity 3 years,

the credit spreads oscillates between 2 bp and 12 bp for companies rated AA. We notice that

for the year’s data, the credit spreads in the South African market in general were fluctuating

between 30 and 60 Bps. Therefore, the result is in accord with the prediction.
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Table 3.1: Credit spread for Merton’s approach using various South African debt terms

company Rating Volatility of Leverage ratio 1 year 3 years 5 year

the firm’s asset (%) (%) CS (Bp) CS (Bp) CS (Bp)

1 AAA 32 25 0.00 7 28

2∗ AA+ 19 37 0.00 1 6

3 AA 27 24 0.00 2 11

4∗ AA 5 84 0.2 7 18

5∗ AA 4 87 0.2 7 18

6∗ AA 7 82 0.4 12 29

7∗ AA 3 91 0.2 6 15

8 AA− 17 41 0.00 0 3

9 AA− 20 46 0.00 5 19

10 A+ 21 37 0.00 2 10

11 A+ 29 38 0.6 33 85

12∗ A+ 3 93 0.4 7 17

13∗ A+ 7 84 0.7 15 36

14∗ A− 4 89 0.0 8 21

15 A− 24 36 0.0 6 24

16 A− 41 13 16 3 18

17∗ BBB+ 30 49 1.6 160 297

18∗ BBB 15 69 1.6 34 77

19∗ BBB 18 67 7.4 84 169

20∗ BBB 22 60 9.8 108 211

An asterisk indicates that the firm is in the banking sector.

3.2 Summary

This chapter presented a literature overview of the structural approach for modelling credit risk.

We started with the first structural model of Merton (1974) and identified its shortcomings from
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a comparison between the measurement of the risk neutral probability and objective probability

of default. The purpose of this study is to implement a credit risk model that can be used to

value CDS contracts, estimate market CDS term structures and to perform analysis on several

credit risk measures. Based on the analysis in this chapter and the evaluation of the structure

of Credit spreads under the Merton approach in Section (??), we investigated a range of 20

South African firms, with different ratings from AAA to BBB and found the CS using the

Merton model.

We further use those credit spreads calculated on South Africa Bonds from different maturities

such as one year, three years and five years as data to estimate the parameters associated with

Vasicek and CIR processes in the numerical aanalysis part. Chapter 4 further determines the

credit default swap under a Vasicek-type hazard rate, and in Chapter 5, we estimate hazard

rates type Vasicek model and CIR models, and analyse the results.
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Chapter 4

Pricing Credit Default Swap under

Vasicek-type Hazard rate

The primary motivation for using credit derivatives is to reduce risk arising from bondholders or

owners of the loans. The credit default swap (CDS) is the cornerstone of the credit derivatives

market, and is actually the most widely used credit derivative product. In this chapter we

will follow [?] and the framework proposed by David and Mavroidis. We outline the main

techniques used to value credit default swaps under a Vasicek-type hazard rate. We consider

the procedure for only one bond issued by a firm or where there is only one reference bond in

the market. These tools build on the framework of arbitrage-free opportunity pricing which

was discussed in the previous chapter .

4.0.1 Framework

Given the filtered space (Ω,F ,F,P) and a standard Brownian motion W on space, we let

G = {Gt}(t ∈ [0, T ]) be a two dimensional filtration Brownian motion and denote by τ a

non-negative random default time. We assume the 2-dimensional (Ω,Gt,P)-Brownian motion

(W,W ∗), that means, {Gt}(t ∈ [0, T ]) satisfies the ‘ regular conditions’ of completeness and

right-continue. Also Gt is the smallest filtration which made W and W ∗ adapted (refer back to

Preliminaries chapter).
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If we suppose that we are given an auxiliary reference filtration σ{τ ∧ t} such that Ft =⋂
t<s (Gs ∨ σ{τ ∧ s}), then the all possible information available at time t is captured by the

filtration Ft, it is a right continuous τ and also is an Ft-stopping time. In the above τ ∧ s is an

abbreviation for min{t, s}.

The following important lemma are introduced for further evaluation of credit default swaps.

Lemma 4.0.1. Assume that the hazard rate process γt is a non-negative Gt progressively mea-

surable. Then the process

Mt = Ht −
∫ t

0

γs1{τ>s}ds (4.1)

is a Martingale on (Ω,F ,F,P).

Proof 4.0.2. See [?, ?].

Lemma 4.0.3. Assume that, for 0 ≤ t < T , X be a FT−measurable and Q−integrable random

variable, then we have

EQ
[
X1{τ>t}|Gt

]
= 1{τ>t}EQ

[
X exp

(
−
∫ T

t

γ(u)du

)
|Ft
]
. (4.2)

Proof 4.0.4. See Nakagawa[?], Duffie et al.[?] and Kusuoka[?].

Corollary 4.0.5. For any bounded G[0,T ]-predictable process Z

E
[
Zτ1{τ≤T}

]
= E

[∫ T

0

Ztγ(t) exp

(
−
∫ t

0

γ(u)du

)
dt

]
(4.3)

[?].

Proof 4.0.6. See Nakagawa[?], Duffie et al.[?] and Kusuoka[?] .

4.1 Definition of CDS and pricing CDS

We follow the framework of David and Mavroidis, [?] and Hidetoshi and al.[?] to value the

CDS, starting first, by defining the credit default swaps, specifying the rule of the default swap

and pricing CDS.
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4.1.1 Definition of CDS

A credit default swap is an agreement designed between two parties that provides a protection

or assurance against losses occurring due to a default event of an certain entity.

One party agreed to buy protection called protection buyer B (e.g a firm) and provides a regu-

lar payment ci (i = 1, 2, . . . , n) until the credit event occurs or at maturity of the contract (at

expected time ti < · · · < tn 6 T ), the other is the seller of the protection S. Typically banks or

insurance companies will assume the credit risk and deliver the difference between the notional

value and some recovered value δ 1 from the bond issuer for the owner of the bond B, if the

credit event of the bond issuer happens before the maturity date T . 2 The risky bond that the

buyer B holds permits a fixed coupon wj (j = 1, 2, . . . ) at each adopted time sj (j = 1, 2, . . . ,

0 6 s1 < s2 < . . . ) except when the default even occurs.

Reference entity

Issuer of the bond

Interest rate (wj)−−−−−−−−−−⇀↽−−−−−−−−−−
loan a bond

Protection Buyer B

owns the bond

or underlying risk

Periodic fees ci−−−−−−−−⇀↽−−−−−−−−
Payoff

Protection Seller S

sold credit protection

or assume the credit risk

A credit default swap agreement includes a fixed premium leg or fixed side and a recovery side

(or contingent default leg).

• The fixed side corresponds to the series of payments made by the buyer B of the CDS-

contract to the protection seller S of the contract up to the maturity time, unless a

bankruptcy event or other credit event perturbs the contingent payment on a CDS.

• The recovery side corresponds to the net payment delivered by the counterparty protection

seller S to the protection buyer in case of such default event happens.

1In this case, we assume the recovered value from the bond issuer is specified by δ× (the instant pre-default

bond’s face value ), where 0 < δ < 1 defined as the constant.
2T is the expiry date of the contract. Whether the default of the bond issuer happens before T , then the

contract is strictly stopped.
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The main goal of valuation of CDS is to obtain equilibrium premium (or regular payment)

ci’s paid periodically by the reference holder, which is followed from the equality of the value

between fixed premium leg and contingent default leg. Consider the risk-free interest rate r

be independent of all factors related to credit risk, alike default time and the hazard rates.

This assumption implies that we can value default swap in term of the default-free zero coupon

bond’s prices as follows.

4.1.2 The price of the fixed side

Since all payments are evaluated at the starting level of the contract and no payment is made

after any default event occurs, the actual value of the fixed side Dp is basically defined by

Dp = E

[
n∑
i=1

ci exp

(
−
∫ ti

0

rudu

)
1{τ>ti}

]
, (4.4)

where r is the short rate interest and E(.) is the expectation value under the risk neutral

measure Q. It follow

Dp =
n∑
i=1

ciE

[
exp

(
−
∫ ti

0

rudu

)
1{τ>ti}

]
=

n∑
i=1

ciE

[
E

[
exp

(
−
∫ ti

0

rudu

)
1{τ>ti}

]
|Ft
]

=
n∑
i=1

ciB(0, ti)E

[
exp

(
−
∫ ti

0

γudu

)]
=

n∑
i=1

ciB(0, ti)p(τ > ti),

using the previous work we get

Dp =
n∑
i=1

ciB(0, ti) exp

[
γ0

a

(
e−ati − 1

)
− 1

a

(
e−ati − 1

)(
b+

σ2

4a2

(
e−ati − 3

))
− ti

(
b− σ2

2a2

)]
(4.5)

is an explicit value of the fixed side. The next section discuss about the price of recovery side.
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4.1.3 The price of the contingent default leg (recovery side)

We define CC(t) be the cum-coupon amount of the underlying defaultable bond and its value

is given by

CC(t) = E

[∑
si≥t

wi exp

(
−
∫ si

t

(ru + (1− δ)γu)du
)
|Ft

]
.

It is supposed that the fixed premium leg to the contract can recover the specific amount

δCC(τ), when the default event occurs to the issuer of the bond, at default time τ .

Then, the price of the recovery side has been defined by Hidetoshi Nakagawa [?] as follow

DR = E

[
exp

(
−
∫ τ

0

rudu

)
(1− δCC(τ)) 1{τ6T}

]
= E

[
exp

(
−
∫ τ

0

rudu

)
1{τ6T}

]
− δE

[
exp

(
−
∫ τ

0

rudu

)
CC(τ)1{τ6T}

]
.

This equation can be evaluated separately as

E

[
exp

(
−
∫ τ

0

rudu

)
1{τ6T}

]
= E

[
E

[
exp

(
−
∫ τ

0

rudu

)
1{τ6T}

]
|Ft
]

= E
[
B(0, τ)1{τ6T}

]
= E

[∫ T

0

B(0, t)γt exp

(
−
∫ t

0

γudu

)
dt

]
=

∫ T

0

B(0, t)E

[
γt exp

(
−
∫ t

0

γudu

)]
dt.

Since corollary (??), lemma (??) and using hazard rate mean reversion we get

E

[
exp

(
−
∫ τ

0

rudu

)
1{τ6T}

]
=

∫ T

0

B(0, t)E

[
γt

(
bt+ (γ0 − b)

1− e−at

a
+
σ

a

∫ t

0

(
1− ea(u−t)) dWu

)]
dt

=

∫ T

0

B(0, t)γt

(
bt+ (γ0 − b)

1− e−at

a

)
dt.

42



And for second term with application of corollary (??)

δE

[
exp

(
−
∫ τ

0

rudu

)
CC(τ)1{τ6T}

]
=δE

[∫ T

0

exp

(
−
∫ t

0

rudu

)
CC(t)γt exp

(
−
∫ t

0

γudu

)
dt

]
=δE

[∫ T

0

exp

(
−
∫ t

0

rudu

)(
E

[∑
si≥t

wi exp

(
−
∫ si

t

(ru + (1− δ)γu)du
)
|Ft

])
γt exp

(
−
∫ t

0

γudu

)
dt

]

=δ
∑
si≥t

wiE

[∫ T

0

exp

(
−
∫ t

0

rudu

)(
E

[
exp

(
−
∫ si

t

(ru + (1− δ)γu)du
)
|Ft
])

γt exp

(
−
∫ t

0

γudu

)
dt

]

=δ
∑
si≥t

wiE

[∫ T

0

exp

(
−
∫ t

0

rudu

)(
exp

(
−
∫ si

t

(ru + (1− δ)γu)du
))

γt exp

(
−
∫ t

0

γudu

)
dt

]

=δ
∑
si≥t

wiE

[∫ T

0

γt exp

(
−
∫ si

0

rudu

)
exp

(
−(1− δ)

∫ si

t

γu)du

)
exp

(
−
∫ t

0

γudu

)
dt

]

=δ
∑
si≥t

wiB(0, ti)E

[∫ T

0

γt exp

(
−
∫ t

0

γudu

)
exp

(
−(1− δ)

∫ si

t

γu)du

)
dt

]

=δ
∑
si≥t

wiB(0, ti)E

[∫ T

0

γt exp

(
−
∫ t

0

γudu

)
E

[
exp

(
−(1− δ)

∫ si

t

γu)du

)
|Gt
]
dt

]
.

From the above the term

E

[
exp

(
−(1− δ)

∫ si

t

γu)du

)
|Gt
]

= exp

[
1

a
(1− δ)

(
e−a(si−t) − 1

)
(γ(t)− b)−

(
e−a(si−t) − 1

)
ψi(t)

]
,

(4.6)

where

ψi(t) =

(1−δ)
a

(si − t)
[
b− σ2

2a
(1− δ)

]
e−a(si−t) − 1

+
σ2

2a3
(1− δ)2

(
e−a(si−t) − 3

)
.

So

E

[
exp

(
−
∫ τ

0

rudu

)
CC(τ)1{τ6T}

]
=
∑
si≥t

wiB(0, ti)

∫ T

0

(
bt+ (γ0 − b)

1− e−at

a

)
γt exp

[
(1− δ)
a

(
e−a(si−t) − 1

)
(γt − b)−

(
e−a(si−t) − 1

)
ψi(t)

]
dt.
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Therefore,

DR =

∫ T

0

B(0, t)γt

(
bt+ (γ0 − b)

1− e−at

a

)
dt

−δ
∑
si≥t

wiB(0, ti)

∫ T

0

(
bt+ (γ0 − b)

1− e−at

a

)
γt exp

[
(1− δ)
a

(
e−a(si−t) − 1

)
(γt − b)−

(
e−a(si−t) − 1

)
ψi

]
dt.

This is the price of the recovery side or contingent default leg, given the value of the default

free zero coupon bond B(0, t) its explicit value can be derived.

4.2 Summary

This chapter explained a credit default swap and determined the explicit value of the fixed

side and recovery side of the credit default swap in a quite general form under hazard rates

distributed by the Vasicek process, that is, it contains the type with counter party risk (or

basket type). The next chapter estimates the hazard rate for Vasicek models and CIR models

using the market data of credit spreads.
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Chapter 5

Estimating Hazard rate process and

Defautable Zero coupon bonds

In this chapter, we discuss how to estimate hazard rate type Vasicek model and CIR model.

Using the relationship between credit spread and hazard rate, it is possible to convert the

market credit spread data (collected directly from the market data) into CIR and Vasicek type

Hazard rate data. We also analyse the conditional survival probability for both processes. Our

first analysis, thus, assumes the risk-free interest rate r to be independent of all the hazard

rates. Therefore the occurrence of default is not correlated with bond prices. This assumption

implies that the level of default is cause by some factors affecting the issuer, not the level of

risk-free interest rate.

5.1 Bond Valuation under stochastic hazard rate

Let assume that the reference bond is represented by the defaultable zero coupon bond with

the single payoff 1 (notional value) and maturity time T .

This leads to the following description :

let τ be the default time, for an hazard process with stochastic intensity γ; then the price of a
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zero-coupon defaultable bond with notional value 1 is given by

D(t, T ) = B(t, T ).E

[
exp

(
−
∫ T

t

(1− δ)γ(s)ds

)]
, (5.1)

where t ∈ [0, T ], and δ is the recovery rate. Similarly, at time t the credit spread, viewed as

the difference between the default adjusted interest rate and the risk-free interest rate is given

by (1− δ)γ(t) [?].

We are now in a position to define the relationship between the credit spread and hazard rate

process. This is useful in converting the credit spread data given from market data into the

hazard rate.

For t < T , the credit spread process S(t, T ) for the bond with maturity T satisfies the relation-

ship :

exp (−S(t, T )(T − t)) =
D(t, T )

B(t, T )
(5.2)

= E

[
exp

(
−
∫ T

t

(1− δ)γ(s)ds

)]
. (5.3)

Note that it is impossible to estimate the recovery rate δ and the hazard rate γ separately from

the credit spread: knowing δ (given by another technique), we may determine the parameters

of the hazard rate γ. We therefore need to determine the distribution of the random variable

−
∫ T
t

(1−δ)γ(s)ds. To manage this, we need to know how the hazard rate process is distributed.

For example :

Case of a constant hazard rate, γ(t) = γ0 > 0.

Since exp (−S(t, T )(T − t)) = exp (−(1− δ)γ0(T − t)) then

S(t, T ) = (1− δ)γ0. (5.4)

We calculate the estimators using this important data. The following section treats the hazard

rate process distributed by the Vasicek model.
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5.1.1 The Vasicek model type hazard rate

We define the hazard rate process γ by means of the affine stochastic differential equation

(SDE)

dγ(t) = a(b− γ(t))dt+ σdWt, γ(0) = γ0 > 0, (5.5)

where a, b and σ are strictly positive constants, Wt is a standard Wienner process. The pa-

rameters a, b and σ are viewed as the mean reversion rate (or the mean reverting velocity), the

mean reversion level, and the volatility respectively. This SDE is known as a mean-reverting

Ornstein-Uhlenbeck process (discussed in Section (??)) and its solution γ(t) is given by

γ(t) = b+ (γ0 − b)e−at + σe−at
∫ t

0

easdWs. (5.6)

From equation (??) we see that; given γ0, the possible values of γ are being normally distributed.

The reason is that the distribution of dWs is normal with mean zero and variance one. Therefore,

the integral itself is normally distributed and, since the remaining part of the equation other

than the stochastic part is deterministic, the current distribution of the stochastic part does

not change except its mean and variance. Therefore, γ(t) is normally distributed with mean

and variance expressed respectively by

EQ(γ(t)) = b+ (γ0 − b)e−at, (5.7)

varQ(γ(t)) = σ2e−2at

(∫ t

0

easdWs

)2

= σ2e−2at

∫ t

0

e2asds =
σ2

2a
(1− e−2at). (5.8)

Remark. According to equation (??), γ is mean reverting, since the expectation value tends

to b, for t goes to infinity, which can be viewed as a long-term average value.

Given the relation of credit spread

exp (−S(t, T )(T − t)) = E

[
exp

(
−
∫ T

t

(1− δ)γ(s)ds

)]
, (5.9)

we can now derive the hazard rate by computing the expectation. Using the Markov property

for Itô processes (Theorem (??)) this expression can be represented as

EQ

(
exp

(
−
∫ T−t

0

(1− δ)γ(s)yds

))
|y=γ(t). (5.10)
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Hence, we first evaluate
(
−
∫ T−t

0
(1− δ)γ(s)yds

)
|y=γ(t) :

(∫ T−t

0

γ(s)yds

)
|y=γ(t) = b(T − t) + (γ(t)− b)1− e−a(T−t)

a
+ σ

∫ T−t

0

∫ s

0

ea(u−s)dWuds

= b(T − t) + (γ(t)− b)1− e−a(T−t)

a
+ σ

∫ T−t

0

(∫ s

0

ea(u−s)ds

)
dWu

= b(T − t) + (γ(t)− b)1− e−a(T−t)

a
+
σ

a

∫ T−t

0

(
1− ea[u−(T−t)]) dWu.

As
(∫ T−t

0
γ(s)yds

)
|y=γ(t) is clearly a Gaussian variable, we can now easily determine the ex-

pectation

EQ

(
exp

(
−
∫ T−t

0

(1− δ)γ(s)yds

))
|y=γ(t)

= exp

[
EQ

(
−
∫ T−t

0

(1− δ)γ(s)yds

)
|y=γ(t) +

1

2
varQ

(
−
∫ T−t

0

(1− δ)γ(s)yds|y=γ(t)

)]
,

where

EQ

(
−
∫ T−t

0

(1− δ)γ(s)yds

)
|y=γ(t) = E

(
b(T − t) + (γ(t)− b)1− e−a(T−t)

a
+
σ

a

∫ T−t

0

(
1− ea[u−(T−t)]) dWu

)
= b(T − t) + (γ(t)− b)1− e−a(T−t)

a
+
σ

a
E

(∫ T−t

0

(
1− ea[u−(T−t)]) dWu

)
= −(1− δ)

(
b(T − t) + (γ(t)− b)1− e−a(T−t)

a

)
,

and

varQ
(
−
∫ T−t

0

(1− δ)γ(s)yds|y=γ(t)

)
= EQ

[(
−
∫ T−t

0

(1− δ)γ(s)ds

)
− EQ

(
−
∫ T−t

0

(1− δ)γ(s)ds

)]2

|y=γ(t)

= EQ

[(
−(1− δ)σ

a

∫ T−t

0

(
1− ea[u−(T−t)]) dWu

)]2

|y=γ(t)

=
σ2

a2
(1− δ)2

∫ T−t

0

(
1− ea[u−(T−t)])2

du

=
σ2

a2
(1− δ)2(T − t) +

σ2

a2
(1− δ)2 e

−a(T−t) − 1

2a
.

Hence the relation (??) becomes

exp (−S(t, T )(T − t)) = exp

[
1

a
(1− δ)

(
e−a(T−t) − 1

)
(γ(t)− b)−

(
e−a(T−t) − 1

)
ψ(t)

]
.
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Equivalently, the hazard rate is given by

γ(t) =
a

(1− δ)

(
−S(t, T )(T − t)
e−a(T−t) − 1

− ψ(t)

)
+ b, (5.11)

where

ψ(t) =

(1−δ)
a

(T − t)
[
b− σ2

2a
(1− δ)

]
e−a(T−t) − 1

+
σ2

2a3
(1− δ)2

(
e−a(T−t) − 3

)
.
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Figure 5.1: hazard rate function γ(t) with σ = 0.01

Figure 5.2: hazard rate function γ(t) with σ = 0.1
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Figure 5.3: hazard rate function γ(t) with σ = 0.2

Figure 5.4: hazard rate function γ(t) with σ = 0.5
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Figure 5.5: hazard rate function γ(t) with σ = 0.9

These figures (??), (??), (??), (??) and (??) illustrate the hazard rate function of time, dis-

tributed as the Vasicek model of twenty years from now on, given the market price of credit

spread. We took the volatility to be σ = 0.01, σ = 0.1, σ = 0.2, σ = 0.5 and σ = 0.9 re-

spectively. Such curves as in figures(??), (??), (??), (??) and (??) are upward sloping curves.

Those upward sloping curves show that hazard rate functions are increasing over time.

Intuitively, this means that the probability of defaulting in any period (conditional on not

having defaulted until then) increases as time goes on. Upward sloping curves mean that the

market is implying not only that firms are more likely to default with every year that goes

by, but also that the likelihood in each year is ever increasing. Credit risk is therefore getting

increasingly worse for every year into the future.

5.1.2 The CIR model type hazard rate

Here the hazard rate process γ follows a stochastic differential equation (SDE) of the form

dγ(t) = a(b− γ(t))dt+ σ
√
γtdWt, γ(0) = γ0 > 0, (5.12)
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where a, b and σ are strictly positive constants and Wt is a standard Wienner process. The

solution γ(t) is obtained by equation (??). The principal advantage of the CIR-type model

compared to the Vasicek-type model is that the solution γ(t) of the SDE is guaranteed to

remain positive (non-negative). Dissimilar to the Vasicek process, however, the squared root

process is not Gaussian and is an affine process. Therefore, it is, considerably more bother to

study.

The quick way to determine E
[
exp

(
−
∫ T
t

(1− δ)γ(s)ds
)]

is to suitably transform it as

E

[
exp

(
−
∫ T

t

(1− δ)γ(s)ds

)]
= e(1−δ)E

[
exp

(
−
∫ T

t

γ(s)ds

)]
.

The second right hand expression is contained in the formula of the bond price (for δ = 0),

which is the expectation of the exponential of minus the integral of the short term process.

Analogously to the previous work of the CIR model and Bond price under CIR in chapter [1]

section (??), the CIR formula for the price of a zero-coupon bond is

E

[
exp

(
−
∫ T

t

γ(s)ds

)]
= exp (Φ∗(t, T )−Ψ∗(t, T )γt)

where

Φ∗(t, T ) =
2ab

σ2
ln

(
2he(a+h)(T−t)/2

2h+ (a+ h) (eh(T−t) − 1)

)
,

Ψ∗(t, T ) =
2
(
eh(T−t) − 1

)
2h+ (a+ h) (eh(T−t) − 1)

,

h =
√
a2 + 2σ2.

This new process immediately yields

E

[
exp

(
−
∫ T

t

(1− δ)γ(s)ds

)]
= exp [(1− δ) Φ∗(t, T )− (1− δ) Ψ∗(t, T )γt] .

Given the relation of credit spread (??), we obtain

exp (−S(t, T )(T − t)) = E

[
exp

(
−
∫ T

t

(1− δ)γ(s)ds

)]
(5.13)

= exp [(1− δ) Φ∗(t, T )− (1− δ) Ψ∗(t, T )γt] . (5.14)
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Equivalently, the hazard rate in a CIR-type model is given by

γ(t) =
1

(1− δ) Ψ∗(t, T )
[(1− δ) Φ∗(t, T ) + S(t, T )(T − t)] , (5.15)

where

Φ∗(t, T ) =
2ab

σ2
ln

(
2he(a+h)(T−t)/2

2h+ (a+ h) (eh(T−t) − 1)

)
,

Ψ∗(t, T ) =
2
(
eh(T−t) − 1

)
2h+ (a+ h) (eh(T−t) − 1)

,

h =
√
a2 + 2σ2.

Figure 5.6: Hazard rate function γ(t) with σ = 10%
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Figure 5.7: Hazard rate function γ(t) with σ = 20%

Figure 5.8: Hazard rate function γ(t) with σ = 50%
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Figure 5.9: Hazard rate function γ(t) with σ = 90%

These figures (??), (??), (??) and (??) illustrate the hazard rate function of time of twenty

years from now on, and distributed as the CIR-type model; given the market price of credit

spread. We took the volatility to be σ = 0.1, σ = 0.2, σ = 0.5 and σ = 0.9 respectively.

These figures monotonic increasing behaviour is subject to the same interpretation as for the

Vasicek-type hazard rate (see, section (??)).

The survival probability (see section (??) below) can be calculated now if the law of hazard

rate ( that is, each parameter of the model) is given. We typically model survival probabilities

by making them a function of a hazard rate.
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5.2 A model for default

In this section, we define the joint survival probability in terms of default intensity processes

under the assumption of conditional independence. The Probability of Survival p(τ > t) is the

probability of not having defaulted in the period. We analyse the two different cases when the

default intensity or hazard rate follow a Vasicek process or a CIR process.

Let τ be a default time associated with the filtration Ft of the reference issuer. Then the

stochastic process γ(t) is called an intensity process for τ . Duffie (1998) defines the conditional

survival probability p(τ > t) of τ as follow :

p(τ > t) = E

[
exp

(
−
∫ t

0

γ(s)ds

)]
. (5.16)

The material below investigates the survival probability under the Vasicek-type hazard rate

and the CIR-type hazard rate.

5.2.1 The conditional survival probability, under Vasicek-type haz-

ard rate

Similar reasoning to that used to evaluate equations (??) and (??), maybe used to express

p(τ > t) as

p(τ > t) = exp

[
γ0

a

(
e−at − 1

)
− 1

a

(
e−at − 1

)(
b+

σ2

4a2

(
e−at − 3

))
− t
(
b− σ2

2a2

)]
. (5.17)

We note that, if using the Vasicek approach, the distribution of the default time may be not

monotonously decreasing [?, ?]. Equivalently, the survival probability may be over one.
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Figure 5.10: Survival probability with σ = 0.1%

Figure 5.11: Survival probability with σ = 1%
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Figure 5.12: Survival probability with σ = 5%

Figures (??), (??) and (??) illustrate the survival probability of the firm at time of twenty

years from now on. We took the volatility to be σ = 0.1%, σ = 1% and σ = 5% respectively,

and the annually hazard rate at initial time is γ0 = 1%. In each figure, the two curves illustrate

respectively the Vasicek-type process with mean-reversion rates a = 0.2 and a = 0.5 .

We observe, at early times from the Vasicek-type model that the misgivings that the survival

probability exceeds one is getting less for the smaller mean-reverting velocity (mean-reverting

speed) Vasicek-type than the higher mean-reverting velocity Vasicek-type model. Analysing

that the survival probability exhibits patterns that might correspond to the market’s expec-

tation in the issuer’s ability to meet its debt obligation in early period [?]. It is essential to

set a desirable value of the velocity (or speed) cautiously since the higher mean-reversion rate

removes of the impact (or influence) of the volatility. Thereafter, it is concluded that Vasicek-

type model with the high velocity is improved compared to the Vasicek-type with the smaller

velocity (or speed).
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5.2.2 The conditional survival probability, under CIR-type model

hazard rate

Analogously to the previous discussion about the CIR model (see section (??)) and the CIR

formula for the price of a zero-coupon bond (section (??)), we have

E

[
exp

(
−
∫ T

t

γ(s)ds

)]
= exp (Φ∗(t, T )−Ψ∗(t, T )γt) , (5.18)

where

Φ∗(t, T ) =
2ab

σ2
ln

(
2he(a+h)(T−t)/2

2h+ (a+ h) (eh(T−t) − 1)

)
,

Ψ∗(t, T ) =
2
(
eh(T−t) − 1

)
2h+ (a+ h) (eh(T−t) − 1)

,

h =
√
a2 + 2σ2.

Therefore we get

p(τ > t) = exp (Φ∗(t)−Ψ∗(t)γ0) , (5.19)

read

Φ∗(t) =
2ab

σ2
ln

(
2he(a+h)t/2

2h+ (a+ h) (eht − 1)

)
,

Ψ∗(t) =
2
(
eht − 1

)
2h+ (a+ h) (eht − 1)

,

h =
√
a2 + 2σ2.
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Figure 5.13: Survival probability with σ = 0.1%
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Figure 5.14: Survival probability with σ = 1%
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Figure 5.15: Survival probability with σ = 5%

Figures (??), (??) and (??) illustrate the probability of the firm’s survival in time of twenty

years from now on. We took the volatility to be σ = 0.1%, σ = 1% and σ = 5% respectively,

and the annually hazard rate at initial time is γ0 = 1%.

These decreasing curves do imply a declining probability of survival over time (and therefore

an increasing probability of default), as shown in exhibit(??), (??) and (??). Also means that

we have an increasing hazard rate for each period as shown in figure (??), (??), (??) and

(??). Similar conclusions can also be drawn with regard to the Vasicek-type model discussed

in section (??).

63



5.3 Summary

We have seen in this chapter how one may model the hazard rate. Firstly, the hazard rate

process was modelled as the Vasicek diffusion process, and the conditional survival probability

is determined under this assumption. Secondly, we viewed the hazard rate as a CIR process,

and analysed the conditional survival probability when the hazard rate follows a CIR model.

By analysing the survival probability function under the two models with different values of

mean-reverting speeds and volatility, we find that the higher mean-reversion rate removes the

effect of the volatility and basically, the firm’s remain stable at early times. The next chapter

treats the parameter estimation associated to the hazard rate models using the Generalized

Moment Method.
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Chapter 6

Analysis and Numerical Results

6.1 Introduction

In this chapter we shall estimate parameters associated with hazard rate models using the

Moment Method. We shall investigate 20 South African firm’s debt terms, with different rating

from AAA to BBB and different market credit spread for maturity one year, three years and

five years to analyse and estimate the parameters for each of the 2 models described previously.

6.2 Parameter Estimation with Vasicek and CIR models

We recall from the previous chapter that the parameter of hazard rate process can be estimated

from historical market data of credit spread. In the special cases such as :

-Vasicek model,

- and CIR model

(except for the recovery rate δ) we have to secure the estimator for a, b and σ. Meaning that

we need to have at least four different credit spread S(t, T ) from market data of the firm.

Nevertheless, it is not easy to get all those data since only a limited number of bonds are issued

by each company and the amount traded in the marketplace is not enough to evaluate all

the parameters. Thus, we cannot simplify the task by supposing some exogenous parameters

65



and finding the remaining ones implicitly. Hence, we consider the procedure of estimating

parameters when only one defaultable bond issued by the company. As before we shall treat

each of the Vasicek type model and the CIR type model below.

6.3 Parameter estimation

There exist different methods of estimating the parameters, including the implied volatility

which is used in option valuation. Typically they are characterized or evaluated from the

historical data. Though we consider the CIR and Vasicek processes in particular, we note that

a similar procedure is possible for other models. We follow [?] to estimate the parameters, such

as recovery rate δ and the long-term mean b using the South Africa data:

• Characteristic of the long-term mean hazard rate process b.

Following the assumption that the long-term mean hazard rate process is similar for the

same category of industry and the rating of the same class, we consider the estimation of

b as the mean value of the probability of default on every category of industry and rating

collected from rating agencies such as Standard & Poor, Moody’s and Fitch.

• Rule of estimating recovery rate δ.

Moody Agency’s database includes detailed bond prices information after default, the

historical market price of the bond for 30 days (one month) after the firm experienced the

default event. This is viewed as the recovery rate from the default bond. Basically, the

average of debt differs from issuers to issuers (or from firm to firm), in this discussion we

assume that the recovery rate of the same class of financial rating and the same class of

industry are shared and regard as the recovery rate δ of the firm. That is the mean value

computed from Moody’s data of recovery rate every class of industry and rating [?].

Furthermore, the recovery rate can also be determined by different methods such as

Ordinary Least Squares (OLS)[?], Multiple Additive Regression Trees (MART)[?], Clas-

sification And Regression Trees (CART)[?] and Waterfall model[?]. These listed methods

estimate the recovery rate in default by using their capital structure and some economet-
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ric factors at the time of default. Moody’s examined the determinants of recovery rates

of defaulted corporate bonds and loans and proved that the recovery rates are strongly

affected by many factors such as type of default event (eg. Bankruptcy, failure to pay and

restructuring), the tangibility of its assets, the amount of the debt and macroeconomic

factors [?].

Due to the difficulty of estimating the volatility σ and mean-reverting speed a separately from

market data of credit spread using only one bond issuer (or reference bond), we restrict ourself

to the limit distribution of the CIR hazard rate-type model and the Vasicek hazard rate-type

model, and attempt to use the moment method to find those parameters. The moment method

is a generic method or the most preferred numerical technique of estimating parameters in

statistical model due to its less requirements of information.

6.3.1 Moment Method

Consider a set of observations of hazard rate γ(t), which is obtained from historical market

data calculated from the formula (??) and (??), respectively (for a hazard rate of Vasicek or

CIR type models) for a certain period of time. The market data can be collected daily or at

the end of the month.

From the discussion about hazard rate models in Chapter 5, we recall that the elements of γ

are the speed of mean reversion a, the long mean rate b and the volatility σ.

In the case of the CIR model, CIR hazard rate γ(t) has the following limits when t −→∞,
limt→∞E (γ(t)) = b

=⇒ γ(t) ∼ N
(
a, σ

2b
2a

)
limt−→∞ var (γ(t)) = σ2b

2a

(6.1)

In the case of the Vasicek model, Vasicek hazard rate γ(t) has the following limits when t −→∞,
limt→∞E (γ(t)) = b

=⇒ γ(t) ∼ N
(
a, σ

2

2a

)
limt−→∞ var (γ(t)) = σ2b

2a

(6.2)
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We assume that the relations (??) and (??) are satisfied in general for any value of t. In order

to use the moment method technique, we consider as data the value of hazard rates γ(t) at n

points t1, t2, . . . , tn analogue as a vector :

t = (t1, t2, . . . , tn) ,

obtained by historical market data calculated from the formula (??) and (??). Using (??) and

substituting equation (??) for the CIR model, we have

b = E (γ(t)) =
1

n

n∑
k=1

γ(tk). (6.3)

Using (??) and the formula (??), and substituting Equation (??) for the CIR model, we have

σ2b

2a
= var (γ(t)) = E [(γt − E (γt))]

2

= E
[
γ2(t)

]
− [E (γt)]

2

=
1

n

n∑
k=1

γ2(tk)− b2.

We have, therefore,
1

n

n∑
k=1

γ2(tk) = b2 +
σ2b

2a
. (6.4)

Having the estimator parameters δ and b, we have only to obtain the parameters values σ and

a which obey the equations (??) and (??) simultaneously. This may be done by solving, for

example, the following the system of two equations with two unknowns a and σ :
1
n

∑n
k=1 γ(tk) = b

1
n

∑n
k=1 γ

2(tk)− σ2b
2a

= b2.

(6.5)

This system is for the CIR-type hazard rate process. For the Vasicek-type hazard one may

similarly obtain the system : 
1
n

∑n
k=1γ(tk) = b

1
n

∑n
k=1 γ

2(tk)− σ2

2a
= b2.

(6.6)
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Note that both equations in system (??) and (??) are nonlinear equations. The solution of the

system a and σ can be obtained by solving the systems of nonlinear simultaneous equations.

(Typically, this is very difficult). Assume that


χ1 = 1

n

∑n
k=1γ(tk)− b = 0

χ2 = 1
n

∑n
k=1 γ

2(tk)− b2 − σ2b
2a

= 0,

(6.7)

this systems of two nonlinear simultaneous equations can be solved on Matlab.

This problem can also be formulated as the optimization problem means that we will seek to

minimize χ2
1 and χ2

2 subject to σ ≥ 0 and a > 0. This optimization problem is the problem of

making the best possible choice of σ and a that can minimize the objective function χ2
1 and χ2

2

simultaneously.

Because of the rarity of data, we use data from [?]. We use matlab to find the solution to

the system of non-linear equations (??), with different initial guess values of a and σ. These

solutions are given in Tables ?? and ?? for Vasicek and CIR hazard rate-types respectively.

Table ?? shows the results for estimation of mean reversion a and volatility σ, using various

debt terms for 20 South African firms, with different rating from AAA to BBB and different

market credit spreads : for maturity in one year, three years, and five years. These are done

when hazard rates are distributed using a Vasicek model. The results show that the mean

reversion a increases when volatility decreases, and decreases when volatility increases for firms

from banking sector and non-banking sector. We notice that volatilities found are quit similar

to those for South African firms’ market data given in [?] or (Table ??, Chapter [4]).
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Table 6.1: Hazard rate parameters for Vasicek-type model

company Rating Volatility of mean reversion a 1 year 3 years 5 year

σ (%) (%) CS (Bp) CS (Bp) CS (Bp)

1 AAA 03.170 03.49 0.00 7 28

2∗ AA+ 94.03 07.49 0.00 1 6

3 AA 26.98 0.1018 0.00 2 11

4∗ AA 5.31 10.30 0.2 7 18

5∗ AA 4.212 04.48 0.2 7 18

6∗ AA 7.153 0.0349 0.4 12 29

7∗ AA 3.31 1.2945 0.2 6 15

8 AA− 17.39 10.24 0.00 0 3

9 AA− 20.75 04.25 0.00 5 19

10 A+ 21.18 05.85 0.00 2 10

11 A+ 29.12 0.0205 0.6 33 85

12∗ A+ 3.13 04.61 0.4 7 17

13∗ A+ 1.33 1.5287 0.7 15 36

14∗ A− 41.3 0.0412 0.0 8 21

15 A− 23.60 03.77 0.0 6 24

16 A− 41.37 04.97 16 3 18

17∗ BBB+ 30.02 01.11 1.6 160 297

18∗ BBB 15.07 02.18 1.6 34 77

19∗ BBB 18.0 01.49 7.4 84 169

20∗ BBB 22.02 01.33 9.8 108 211

An asterisk indicates that the firm is in the banking sector.

The results shown in Table ?? are the estimation of volatility σ and mean reversion a, when

hazard rates are distributed using a CIR model. Those are estimated by using various debt

terms for 20 South African firms, with different rating from AAA to BBB and different market

credit spreads for maturity in one year, three years, and five years. the result show that the
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Table 6.2: Hazard rate parameters for CIR-type model

company Rating Volatility of mean reversion a 1 year 3 years 5 year

σ (%) (%) CS (Bp) CS (Bp) CS (Bp)

1 AAA 32.10 03.29 0.00 7 28

2∗ AA+ 19.03 01.09 0.00 1 6

3 AA 26.98 0.1018 0.00 2 11

4∗ AA 5.31 10.30 0.2 7 18

5∗ AA 4.212 04.48 0.2 7 18

6∗ AA 7.153 0.0349 0.4 12 29

7∗ AA 3.31 1.2945 0.2 6 15

8 AA− 17.39 10.24 0.00 0 3

9 AA− 20.15 04.25 0.00 5 19

10 A+ 21.18 05.85 0.00 2 10

11 A+ 29.02 0.0205 0.6 33 85

12∗ A+ 3.13 04.61 0.4 7 17

13∗ A+ 7.33 1.5287 0.7 15 36

14∗ A− 4.13 0.0412 0.0 8 21

15 A− 23.60 03.77 0.0 6 24

16 A− 41.37 04.97 16 3 18

17∗ BBB+ 30.02 01.11 1.6 160 297

18∗ BBB 15.07 02.18 1.6 34 77

19∗ BBB 18.0 01.49 7.4 84 169

20∗ BBB 22.02 01.33 9.8 108 211

An asterisk indicates that the firm is in the banking sector.

mean reversion a increases when volatility decreases, and decreases when volatility increases

for firms from banking sector and non-banking sector. We notice that, the results are quit

similar to those for the Vasicek-type model, and that the volatilities found are generally similar

to volatilities of South African firm’s market data given in [?] or (Table ??, Chapter [4]).
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6.4 Summary

This chapter provided the estimation of parameters associated to the hazard rate models using

the Generalized Moment Method. We investigated 20 South African firms debt terms, with

different ratings from AAA to BBB and different market credit spreads for maturity one year,

three years and five years to analyse the results and estimate the parameters for each of the 2

models, such as, a Vasicek- type model and a CIR-type model. The next chapter summarizes

the dissertation, makes a conclusion, and discusses potential future-work.
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Chapter 7

Conclusion

The main research objective of this dissertation, was to determine the explicit value of fixed

side and recovery side credit default swaps in a quite general form that contains counter party

risk, under the hazard rates distributed as the Vasicek process that :

- can be used to value the single credit default swap,

- and can be used to reduce risk arising from bondholders (ownership of bonds) or lenders

(ownership of loans).

The other objective was, to calculate the conditional survival probability in terms of default

intensity processes (or hazard rates), and to estimate parameters associated with hazard rates

Vasicek and CIR models using the relationship between credit spread and hazard rate necessary

to switch market credit spread data collected directly from market into Vasicek and CIR type

hazard rates. In particular, we modelled hazard rate as Vasicek and CIR type processes since

they have some significant properties: mean-reverting and Gaussian, and affine respectively.

We suggested one implementation procedure when the available market data are not sufficiently

rich and provided some simulation results.

We gave a review of the one-factor short rate models focussing on two models: Vasicek and

CIR, possessing different properties. We also gave a literature review of credit risk modelling

and noted that structural credit risk models are able to meet these research objectives of the
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dissertation. In this approach the firm’s asset value follows a diffusion process and continuous

time trading, and default happens only when the asset value of the firm falls below the default

point (default barrier) before maturity time T . In this manner, the structural approach eluci-

dates an economic explanation for the default process. Moreover, it can be performed to derive

default probabilities and credit spreads. We investigated a range of 20 South African firms,

with different ratings: from AAA to BBB, and with different maturity dates one year, three

years and five years. We found that the result is in accord with the prediction regarding the

low credit spreads found using the Merton model made by L Smit, B Swart and F van Niekerk

[?] and others researches.(Kim, Ramaswamy and Sundaresan 1993, Jarrow and Turnbull 1995,

and Shimko 1999).

However, the work done in this dissertation has mainly been on the study of credit default swap

under single factor hazard rate models, and the estimation of parameters for single factor hazard

rate models and the conditional survival probability. These are done under the original risk-

neutral or martingale measure. Moreover, as in real world the market is often incomplete, that

is existence of many martingale measures or the risk-neutral probability is not unique.(Refer

to Asset Pricing theorem ). In future research work, we propose the following main topics

: we should execute calculation under real world probability (or objective probability) and

consider hazard rates in multi-factor models. We will investigate a case, when there is a

correlation between a defaultable bond and risk-free interest rate (or correlation between the

risk-free interest rate r and all the hazard rates), and consider when defaultable bonds issued

by different firms.

There are many more interesting topics to study and thereby develop our models, such as

modified CIR and Vasicek models (making the long term mean level time-dependent). However,

the suggested future research indications are the first most significant steps to do the approaches

more practical and to truly meet the research objectives of this dissertation.
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Appendix

In the Merton framework under risk neutral measure, the default probability is simply expressed

by

PDM = N (−d2). (7.1)

To obtain this probability, more information about the distribution of firm’s asset value V has

to be known. However, using the assumption that the asset value of the firm follows a diffusion

process under risk neutral Q ( equation (??)), we obtain the firm’s asset value at maturity

VT = V0e
(r− 1

2
σ2
V )T+σ

√
TWT .

We can get information about probability distribution of lnVT

lnVT ∼ N
(

lnV0 + (r − 1

2
σ2
V )T, σ

√
TWT

)
.

The probability (??) is expressed as

PDM =Pr(VT ≤ L)

=Pr (lnVT ≤ lnL)

=Pr

(
lnV0 + (r − 1

2
σ2
V )T + σ

√
TWT ≤ lnL

)
=Pr

(
σ
√
TWT ≤ lnL− lnV0 − (r − 1

2
σ2
V )T

)
=Pr

(
WT ≤ −

ln(V0
L

) + (r − 1
2
σ2
V )T

σ
√
T

)
=Pr (WT ≤ −d2)

=N (−d2)
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That is the default probability given by the Merton model. The following section discusses the

credit spread under Merton model.

7.0.1 Credit spread in Merton Model

An important element of a defaultable bond is the difference between its yield and the yield of

a similar default free bond, i.e, the credit spread. It is defined as

S(t, T ) = rd(t, T )− r(t, T ) (7.2)

where rd(t, T ) and r(t, T ) are calculated through

B(t, T ) = e−r(t,T ) =⇒ r(t, T ) = − lnB(t, T )

T − t
(7.3)

D(t, T ) = Le−r(t,T ) =⇒ rd(t, T ) = − lnD(t, T )/L

T − t
. (7.4)

Substituting (??) and (??) into (??) yields

S(t, T ) = − ln [D(t, T )/LB(t, T )]

T − t
. (7.5)
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