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ABSTRACT 

Due to the significant cost of transport in the sugar industry, a model, named FastTrack, was 

developed to investigate infrastructure planning opportunities. The model mathematically 

incorporates road construction and maintenance costs, terrain and land-use maps, vehicle 

performance specifications and annual sugarcane volumes to determine the most cost 

effective route, per vehicle type, from a production region to a mill. Route planning using 

geographical information systems (GIS) is a standard approach for determining the optimum 

alignment for pipelines, roads and canals. Theory of this approach was reviewed to create a 

foundation for the development of FastTrack. 

A small portion of the Noodsberg sugar mill region in the KwaZulu-Natal midlands was 

selected as a case study area to test the capabilities of FastTrack. A start location was 

identified as a natural flow point for 70 000 tons of sugarcane hauled from an area south of 

the mill. Currently this volume is transported along a 9.3 km stretch of national road from the 

start location to the sugar mill, while the Euclidean distance is approximately 7 km. 

Three vehicle types, differing in payload, fuel consumption and road speed were assessed. 

Two common and currently utilised vehicles, the tractor hilo and interlink combinations, 

were aligned by FastTrack along existing national roads. A financial penalty for driving on 

national roads was assumed for the third vehicle type considered, land trains, as these are 

currently not permitted to operate on national roads in South Africa. This high bulk vehicle 

was selected to test the capabilities of FastTrack and to identify if cost savings could be 

realised through increased consignment capacity as has been achieved in Australia, Malawi 

and Brazil. Utilising the model a new and more direct theoretical route was generated for the 

land train with a length of 7.4 km. Existing farm roads which would require upgrading made 

up 34 % of this proposed route. An economic analysis was conducted and showed that under 

current conditions, the private route generated by FastTrack for land train use, would be the 

most cost effective, with a system cost of R 57.50 t" . The tractor hilo and interlink had 

system costs of R 59.58 t" and R 60.98 t"1 respectively. Repeating the economic analysis with 

projected fuel prices indentified that the cost saving advantage of the land train system over 

the other two vehicle configurations increases with increasing fuel costs. 
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A rigorous validation process, including a sensitivity analysis of results from FastTrack, 

revealed that the model performs predictably under a wide range of input conditions and 

could be a valuable tool for decision making in the sugar industry. However, further research 

is required to combine more economic and logistical aspects into FastTrack and to increase 

its usability. 
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1 INTRODUCTION 

The South African sugar industry is one of the most important agricultural sectors in the 

country with an annual turnover of R 5 - 6 billion derived from a crop of approximately 21 

million tons (Anon, 2008). South Africa is currently ranked as the eighth largest sugar 

exporter in the world market (Macleod, 2007) with approximately 80 % of the industry being 

located in the province of KwaZulu-Natal, and the remainder situated in the Mpumalanga 

province. The industry provides an estimated 350 000 jobs, which support roughly one 

million dependants (Anon, 2008). 

Fuel prices have over the past four years risen significantly faster than the growth in the 

recoverable value (RV) price paid to farmers for delivered sugarcane. In the 2004 / 2005 

season one ton of RV could purchase approximately 342 litres of diesel, whereas, in the 

2007/2008 season, less than half this amount (169 litres) could be purchased. A study carried 

out by Pearce (2008) showed that, as a result the disproportionate escalation of transport costs 

compared to the price per ton RV, the break even crop yield for a 50 km farm to mill haul in 

the KwaZulu-Natal midlands has increased from 74 t.ha"1 to 84 t.ha"1 over the four year 

period from the 2004/2005 season to the 2007/2008 season. This is a significant increase and 

excludes depreciation, interest and management costs, which have also increased. According 

to Pearce (2008), current conditions will force farmers who have suitable soils and prevailing 

climatic conditions to consider replacing land under sugarcane with more profitable crops. 

This could have a significant effect on sugarcane supply to the mills. 

Despite the increase in haulage costs and increasing road congestion, road freight accounts 

for more than 70 % of the total annual cost of all haulage logistics in South Africa (Braun, 

2008). The development of improved infrastructure planning methods to create specialised 

and efficient freight routes is one of many areas where haulage costs can be reduced. There is 

possibly greater scope for infrastructure planning pertaining to specialised freight routes in 

localised areas, around central agricultural milling operations and storage facilities, such as in 

the sugar industry, compared to long-haul routes where land use and terrain can vary 

significantly. Other areas where haulage costs could be reduced include the pooling of farm 

resources, centralised logistics coordination and improved risk management strategies. 
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Traditional infrastructure planning methods consisted of assessing data from various sources 

in hard copy. Due to the amount of time required to prepare a precise result in this manner, 

only a few alternatives were ever considered for comparative purposes. G1S is described by 

Sadek et al. (1999) as a tool for overlaying layers of information, spatial or other, and for the 

display and analysis in a digital format. Information about any point on the digital surface 

can, therefore, be extracted or manipulated depending on the desired outcome (Lee and 

Stucky, 1998). GIS is consequently a tool used by modern infrastructure planners to enable a 

quick evaluation and selection of the most advantageous route between any two desired 

source and destination points (Saha et al., 2005). GIS has been used to locate the optimum 

alignment of pipelines (Feldman et al., 1995; Luettinger and Clark, 2005), forest road 

networks (Musa and Mohamed, 2002), and even a link road through the Himalayas based on 

minimising maintenance costs by effectively avoiding landslide risk areas (Saha et al., 2005). 

Various route planning algorithms such as that presented by Yu et al. (2003) and Rees 

(2004), which are often based on graph theory developed by Dijkstra (1959), can be applied 

to layered information surfaces created in a GIS environment. These algorithms can be used 

to consider every possible path between any two or more selected points, indicating an 

optimal route based on predefined design criteria (Luettinger and Clark, 2005). 

The aim of the research was to develop a spatial model which could be used to identify the 

most cost effective haulage routes for sugarcane transportation from field loading zones to 

the nearest mill. The model developed, named FastTrack, was required to consider not only 

existing roads but also the construction and maintenance of new, alternative, vehicle-specific, 

route alignments. Specific objectives of the research include: 

• synthesising relevant literature to ensure that current knowledge is utilised in the 

development of an appropriate modelling solution, 

• model development and validation, and 

• practical implementation of the model in a case study. 

2 



2 THEORY AND PROCEDURES FOR ROUTE PLANNING IN 
GEOGRAPHICAL INFORMATION SYSTEMS 

Route planning is the determination of a path alignment between any two or more points in 

space based on the optimisation of specific design criteria. Route planning exists because a 

straight line traced between two points is not consistently the most efficient path within a 

given set of design objectives. It can be conducted on existing infrastructure, such as 

identifying the fastest or shortest route between points with various limitations, and 

constraints being assigned to each of several available routes. It can also be used to locate the 

optimal position for new infrastracture, such as highways or pipelines. The latter type of 

route planning is the focus of this chapter. 

2.1 GIS Route Planning Applications and Theory 

2.1.1 Routing examples 

Work carried out by engineers, scientists and computer programmers using GIS as a tool for 

route planning is considered in this section. The examples have been selected to demonstrate 

the wide variety of applications. Sections 2.1.2 - 2.1.4 contain more detail of the 

methodologies behind several of the presented models. The studies discussed below do not 

exhaust the literature, but rather provide suitable examples for this studies' specific context. 

Feldman et al. (1995) developed an ARC / INFO - GIS model and tested it on a proposed 

section of an oil pipeline in the proximity of the Caspian Sea. The model was used to run a 

least-cost path analysis for the chosen section of pipeline and included base data, such as 

pipeline length, river, road and rail crossings, wetland zones, land-use, geology and 

topography. The determined solution, using the model, was a 51 km long pipeline as opposed 

to the straight line distance of 42 km, but the cost of construction was 14 % lower due to the 

reduced number of support structures required as a result of avoiding large topographic 

features and unnecessary crossings. This cost saving is the key advantage of almost all least-

cost route planning applications in GIS. 

Musa and Mohamed (2002) demonstrated the superiority of GIS route planning over 

traditional methods after comparing a hypothetical road network produced in both GIS and 
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on paper to an actual route cut out by a civil contractor in a case study area. The results show 

that G1S route planning, in general, is both more time and cost effective than traditional 

methods, an argument also supported by Huang et al. (2004). The exception to this occurs 

when limited digitised data are available for a particular area, such as in a study by Sadek et 

al. (1999) where the project had to be extended by one year to collate the required data. The 

major cost-saving advantage of GIS route planning is realised in the ability of the algorithm 

to avoid "the most costly anomalies'", such as existing infrastructure, steep slopes, river 

crossings etc. (Feldman et al, 1995; Musa and Mohamed, 2002). 

Lee and Stucky (1998) evaluated least-cost path (LCP) methods in a military application by 

introducing viewshed, or line-of-sight information into a GIS route planning model. The 

model was used to consider four differing sets of route criteria, based on inter-visibility 

factors, slope and distance derived from Digital Elevation Models (DEM), all aimed at 

concealing troops or enabling increased travel speeds. Varying weights were applied and a 

rasterised or grided friction surface was created for each criterion. Source and destination 

zones were later indicated enabling the model to create an accumulated friction surface from 

a specified source point. The model subsequently made use of an iterative searching 

procedure based on work by Douglas (1994) and indicated the path of least resistance or least 

cost depending on the various viewshed criteria for each of the four scenarios. The potential 

of this model for military use is evident, however, slight modifications could also extend its 

usefulness to town planning applications. 

Collischonn and Pilar (2000) also formulated an algorithm developed for a rasterised GIS 

surface. The algorithm was of the least-cost path type and incorporated constraints, such as 

topography, slope, distance and construction costs. The authors applied the algorithm to two 

hypothetical cases viz. the construction of a road up a conical hill and a canal traversing 

undulating ground. Despite not using real values, the results were remarkably coherent with 

results anticipated from traditional route planning techniques (Husdal, 1999). The difference 

between this and other least-cost route planning algorithms available at the time is that the 

route plotted not only traces the least-cost path, but includes both the degree and direction of 

slope of an obstacle. This provides the potential for modelling certain circumstances where it 

may be more cost-effective to circumvent a slope rather than to proceed directly upward or 

downward (Husdal, 1999; Collischonn and Pilar, 2000). The concept of direction dependent 
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movement proved an essential aspect for subsequent least-cost path algorithms (Yu et al, 

2003; Sahara/ . , 2005). 

Similar to work by Berg and Kreveld (1997) on pathways in the Alps based on vector 

surfaces, Rees (2004) analysed footpaths in Wales in the United Kingdom with raster GIS. 

Topography was initially considered as the only cost function, but potential new pathways 

were later considered based on both time of travel and metabolic effect imposed by the 

terrain on human locomotion. This was a relatively simple study but built on existing 

knowledge and further widened the scope of application for GIS route planning. 

Saha et al. (2005) proposed a route planning model in the Himalayan mountains, building on 

many of the techniques proposed by the above-cited authors. Of particular note are the 

advances made by Yu et al. (2003), such as the bridge and tunnel function, and improvements 

in distance calculations which are discussed in Section 2.1.3. The model's major objective 

was to incorporate various thematic layers in an attempt to avoid landslide hazard zones, thus 

improving road safety and reducing future maintenance costs. 

New algorithms for plotting and evaluating a route in GIS are continually being formulated 

and manipulated. None have, however, been as successful in their objective in determining a 

least-cost path than the one presented by Dijkstra (1959), which forms the starting point for 

many new route planning algorithms and is discussed further in Section 2.2.2. 

2.1.2 Least-cost theory 

Locating a path of least cost is, in most cases the intention when planning a new route. The 

cost can be expressed, as has been described in the examples in Section 2.1.1, in non­

monetary terms. Included in this section is a description of the basic methodology followed 

by least-cost route planners and an explanation of Dijkstra's (1959) Algorithm, which is used 

as the starting point for many route planning applications. 
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2.1.2.1 Least-cost methodology 

In GIS, the working surface, on which paths are plotted, can be considered as a grid made up 

of cells, containing information or evaluation criteria added in a GIS interface in layers. The 

following set of steps are necessary to create a least cost path, viz. 

• Each layer of information is converted into a "friction surface" that relates to the cost of 

passage across any one of many cells constituting each surface (Douglas, 1994; 

Collischonn and Pilar, 2000; Atkinson et al, 2005). In addition, each surface is 

required to be ranked in relation to the other remaining surfaces in a manner specific to 

a particular project (Lee and Stucky, 1998). As an example, the Caspian Sea was given 

a very high cost of passage, as a penalty, in a least-cost pipeline routing exercise carried 

out by Feldman et al. (1995), so that any route generated by the model would be forced 

to avoid it in an attempt to find the least-cost path. 

• The layers of friction surfaces are then combined to create a "total friction surface", 

which represents the total cost of passage across each cell (Lee and Stucky, 1998; 

Atkinson et al, 2005). 

• A "spreading function" is then utilised, which calculates the total cost of passage from 

one or many initialising points, travelling onward to one or many destination points 

(Douglas, 1994; Lee and Stucky, 1998; Atkinson et al, 2005). Dijkstra's Algorithm is 

often used for this as it allows for the selection of the path of minimum resistance 

(Rees, 2004). Fundamental to any spreading function is the manner in which the 

distance between any two cells is calculated. Yu et al. (2003) made significant 

improvements in this operation by considering variations in surface elevation. This is 

elaborated on in Section 2.1.3. 

• Finally, the path of least resistance is traced across the accumulated cost surface 

resulting in the desired least-cost route from the start cell/s to the desired target cell/s 

(Lee and Stucky, 1998; Anderson and Nelson, 2004). An alternative to this is the 

generation of a "back-link'" path, which allocates a number to each cell indicating the 

direction of least resistance between any start and destination points on the accumulated 

cost surface, thus mapping the least cost path in reverse (Xu and Lathrop, 1995; Lee 

and Stucky, 1998). 
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The least-cost methodology provides the basic structure for all route planning applications in 

GIS. Each step, however, is continually being refined in an effort to improve accuracy and 

computational speed. 

2.1.2.2 Dijkstra's algorithm 

Dijkstra's Algorithm (Dijkstra, 1959) has been widely utilised as a least-cost path function 

and, although modifications have been made to improve computational speed, such as by 

Solka et al. (1995) who introduced a parallel Dijkstra's Algorithm, the fundamentals remain 

intrinsically intact (Rees, 2004; Saha et al, 2005). 

Dijkstra (1959) posed two problems relating to identifying the shortest path between two 

nodes and across a network of nodes on a graph. In raster GIS, these nodes are the centres of 

the image or data grid cells, while the links between the nodes are represented by the 

connections between cells (Xu and Lathrop, 1994, 1995). Instead of describing Dijkstra's 

Algorithm as applied to graph theory, Rees (2004) listed the following six steps related to 

applying Dijkstra's Algorithm in GIS. 

i. A cost of zero is applied to the target cell. The target cell is the destination or end point 

of the anticipated least-cost linear path, 

ii. All the cells neighbouring the target cell are identified and placed in the list of 'active" 

cells. For each of these cells, the cost of reaching the target cell is calculated and 

assigned a pointer that points to the target cell, 

iii. The cell in the list that has the lowest cost is identified and is called cell C with a cost k 

associated with it. 

iv. The set S of all the neighbouring cells of C is identified. For each cell C in S, the cost 

/ of moving to C is calculated. 

o If C is not yet a member of the list, it is then added to it with a cost k + I and a 

pointer that points to C. 

o If C is already a member of the list, then the value of k + / and the provisional 

cost of this cell are compared. If k + / is greater than or equal to the provisional 

cost, then no action is to be taken. However, if k + / is less than the provisional 

cost, the attributes of the cell C need to be adjusted so that its cost becomes k + / 

and its pointer points to the cell C. This procedure is termed "relaxation'. 
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v. The attributes of the cell C are then changed from provisional to definite, and removed 

from the list, 

vi. The procedure restarts at (iii) and repeats until the list is empty. 

Rees (2004) claims that the benefit of the above-applied version of Dijkstra's Algorithm is 

valuable in the sense that it computes the least-cost route from every included cell to the 

destination or target cell. Rees (2004) notes three points to be aware of when constructing a 

least-cost path using Dijkstra's Algorithm. The first, raised by Sedgewick (2001), is that the 

algorithm will work for all cases except where the cost of the path between two cells is 

negative. This must be avoided and is highlighted by the second point where it is stressed that 

an accurate choice and allocation of the cost function to the model is imperative. This would 

ensure that the cost between any two cells is positive. The third point raised describes the 

scenario where if two cells are identical in cost or weighting, then alternative but equal-cost 

paths could exist on any particular surface. The choice of one equal-cost path over another 

would, therefore, depend on the order in which the cells are processed (Rees, 2004). 

Although the concept of Dijkstra's algorithm remains essentially the same, improvements 

have been made in recent years such as those presented in the following section. 

2.1.3 Smart terrain (ST) algorithm 

Yu et al. (2003) presented an argument for the superior performance of what is called the ST 

Algorithm by identifying weaknesses in existing algorithms for roadway route planning. 

The investigation emanated from the fact that, due to existing algorithms which consider only 

adjacent nodes in generating the accumulated cost-surface, the potential for using bridges and 

tunnels is not considered and obstacles are commonly circumvented as a result, such as 

mentioned by Collischonn and Pilar (2000). On occasion, bridges or tunnels prove a more 

cost-effective option when the alternative is a long detour. Yu et al. (2003) proposed a new 

algorithm which is able to consider the linking of nonadjacent cells by extending contour 

lines between them. The example in Figure 2.1 is from Yu et al. (2003) and demonstrates the 

ST concept. The numbers in each cell indicates the elevation of a cell in meters while a 
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contour line of 1000 m is traced across the grid. The cells over which the contour is traced are 

highlighted in yellow. 

Contour line 

Raster grid 

Figure 2.1 Contouring on a raster grid for bridge or 
tunnel determination (after Yu et al, 

2003). 

There are two key assumptions made in the ST Algorithm. The first is that the start and end 

points of bridges and tunnels are at the same elevation. The second is that a straight line can 

be plotted between these points. These assumptions simplify the problem and reduce the 

estimated cost of construction. Although these assumptions are true in many cases, there 

remain certain circumstances where they are false, resulting in the estimated construction 

costs, per unit length, being inaccurate. This could potentially lead to a tunnel or bridge being 

incorrectly selected over a detour. Assumptions, therefore, need always be carefully 

considered and noted when analysing model results. 

If Cell A in Figure 2.1 is assumed to be the new starting point of a least-cost path, then the 

aim of the algorithm is to link it with non adjacent Cells C and D of the same elevation. This 

is done in four key steps (Yu et al, 2003): 

Step 1. Initially the algorithm would scan the candidate cells around Cell A for 

adjacency. If there were no non-adjacent cells then the algorithm would 

continue to move along the contour line. 

Step 2. The decision is then made by the ST Algorithm as to whether a bridge or 

tunnel should be added between any two non-adjacent cells (NAC's) on the 

contour line. Taking into account the assumption of a bridge or tunnel having 

no corners, the algorithm has then to consider all instances where a straight 

line between any two NAC's is intersected by the contour line only twice, 
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including the two intersecting points. If this is satisfied then a bridge or tunnel 

is to be considered. Considering Figure 2.1, AC, intersecting the contour line 

at A and C only, would be considered for a bridge or tunnel but the line A and 

D would not as it intersects the contour line in the middle at C. AC is termed a 

true connection while AD is labelled a false connection and is not considered 

further (Yu et al., 2003). 

Step 3. A decision is then made by the algorithm as to whether a tunnel or bridge 

should be inserted by considering a random cell on a straight line between 

any two true connections. If the elevation of this random cell was found to be 

higher than the contour elevation of the start cell then a tunnel would be 

considered and the cost then calculated based on the distance between the two 

connections and the unit cost for a tunnel. The converse scenario applies. 

From the example in Figure 2.1, Cell B was selected between the true 

connection AC. With an elevation of 1022 m, Point B is higher than the 1000 

m contour and a tunnel costing would then be evaluated. Once all the 

candidate NAC's for cell A have been assessed for their suitability, Cell A is 

marked and excluded from further searches and the cell with the next lowest 

base model value is selected. Step 1 is then reinitiated. 

Step 4. By repeating Steps 1-3, an accumulated-cost surface is created. As with Xu 

and Lathrop (1995) and Lee and Stucky (1998), the least-cost route 

between two specified points can therefore be determined by following the 

back-link cells from destination to starting point. 

The advantage of the algorithm presented above is that, included in this least-cost route, will 

be the addition of tunnels and bridges allowing for a more realistic and cost-effective route to 

be identified. In the development of the ST algorithm, Yu et al. (2003) made several 

noteworthy computational contributions to GIS route planning. The advancement came 

through improving the accuracy at which the distance between cell nodes are calculated i.e. 

considering the slope distance and slope direction between cells, thus analysing the terrain in 

three dimensions as opposed to two (Yu et al, 2003; Saha et al., 2005). This is discussed in 

detail in Section 2.1.4. 

A problem with raster surfaces in GIS is that changes in direction of a path occur at right 

angles creating a zigzagged line where curves are intended (Douglas, 1994). Several authors 
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such as Collischonn and Pilar (2000) and Douglas (1994) have attempted to reduce the 

cornering angle in order to smoothen a plotted path and produce more realistic results. More 

recent work on path smoothing has been carried out by Yu et al. (2003) and later by Saha et 

al. (2005) where a larger number of adjacent cells are included in the spreading function 

procedure and is detailed below. 

The movement across a cost surface in a least-cost path procedure has been compared to the 

movement of chess pieces, viz. Rook, Bishop and Knight (Goodchild, 1977; Xu and Lathrop, 

1994, 1995; Yu et al, 2003; Saha et al, 2005). Figure 2.2 and the accompanying text explain 

these moves as well as two additional movement types, viz. Knight31 and Knight32 (Saha et 

al, 2005). 
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Figure 2.2 Increasing the search area of a spreading function 
has the effect of smoothing a route alignment's 

direction changes (after Saha et al, 2005). 

The various searching options from the centre 0 in the 3 * 3, 5 * 5 and 7 * 7 active cell 

matrixes in Figure 2.2 relate to chess moves as follows: 

• Rook movement = cells 1-4, axis movement 

• Bishop movement = cells 5 - 8 , diagonal movement 

• Knight movement = cells 9 - 16, two cells forward, one block left or right 

• Kinght31 movement = cells 17-24, three cells forward, one cell left or right 

• Knight32 movement = cells 25 - 32, three cells forward, two cell left or right. 

In Figure 2.2, the cell 0 is activated and is in the process of searching its neighbouring cells 

for the one of lowest cost-of-passage. If only Rook and Bishop patterns are searched then any 

pathway created on the total friction surface (Section 2.1.2.1, Bullet 2) would only be able to 

change direction by 90° or 45° respectively. Similarly, by extending the search to the Knight 
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pattern incorporating a 5 * 5 matrix, a direction change of 26.6° from either the X or Y axis is 

possible and is calculated in Equation 2.1. 

_\( Horizontal distance ^ 
cr = tan (2.1) 

V Vertical distance J 

where, o = the change in direction of the corner. 

Thus the 5 * 5 matrix allows for direction changes of 90°, 45° and 26.6° and a smoother 

traced path as opposed to the 3 * 3 matrix in the case of the Rook and Bishop patterns. The 

Knight31 and Knight32 patterns are additions by Saha et al. (2005) and extend the 

neighbourhood search to a 7 * 7 matrix as in Figure 2.2. These two patterns allow for 18.4° 

and 14.0° direction changes, respectively, as well as those in a 5 * 5 matrix. This has the 

effect of further smoothening the least-cost path, but will increase computational complexity 

(Saha et ah, 2005). As valuable as these improvements are, the smoothness of the path will 

ultimately depend on the resolution of the rasterised surface. Improvements in cost surface 

calculations are considered in the following section. 

2.1.4 Cost surface calculations 

Various calculations are considered in this section relating to the creation of an accumulated 

cost surface driven by the spreading function as described in Bullet 3 of Section 2.1.2.1. In 

order to derive an accumulated cost surface, several information types are required as listed 

by Saha et al. (2005): 

• distance between cell centres (isotropic versus anisotropic surfaces), 

• relative surface weight, and 

• surface severity range (cost). 

Xu and Lathrop (1995) described an isotropic surface as being one where a uniform cost, 

measured in any particular units, applies throughout a surface. On an isotropic rasterised 

surface a unit distance would apply to the width of a cell. Saha et al. (2005) presented an 

equation which is used in the generation of an accumulated cost surface and determines the 

cost of moving between two cells on an isotropic surface (Equation 2.2). The accumulated 
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cost from a known start point to the activated cell is added to the cost of movement between 

the two cells in question in determining the accumulated cost surface (Yu et al, 2003). 

MCost = DBCx^WjXLCi (2.2) 

MCost 

DBC 

W 

LC 

N 

i 

the cost of movement between any two 

neighbouring cells, 

the distance between any two cells, 

the weight associated with each data layer 

the data layer cost. 

Number of layers, and 

layer number. 

Weights are applied to each data layer to rank information from the most to the least critical, 

depending on any particular project's specific design requirements. As an example, slope 

may be deemed more critical in a canal design than land use and therefore provided with a 

higher rank. Saha et al. (2005) suggest an ordinal weighting system in the range of nine to 

zero, with 9 being assigned to the most critical data layer. In addition, each data layer is 

divided into categories relating to their severity and indicated by a cost. An anisotropic 

example of both weight and cost from Saha et al. (2005) is the breakdown of rock type into 

classes assigned on the difficulty or ease of excavation, blasting, and cut-and-fill works, as 

contained in Table 2.1. 

Table 2.1 An example of lithology classes (after Saha et al, 2005) 

Rock type 

Granite 
Granite-Granodiorite-Gneiss 

Schist and Gneiss 
Quartzite with Slates 

Limestone and Greywacke 

Weight 

4 

Cost 

6 
6 
5 
4 
3 

In the route planning process for roads, canals and pipelines, slope and direction are critical 

factors, forcing designers to consider anisotropic surfaces (Collischonn and Pilar, 2000). In 

order to include this in the accumulated cost calculation, a gradient cost and weight has to be 
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included in Equation 2.2 as well as an alteration for the distance (DBC) calculation to account 

for slope. If a Rook move is considered from cell 0 to cell 1, 2, 3 or 4 in Figure 2.2, the 

following equations may be used to calculate the distance between cell centres for both 

isotropic and anisotropic surfaces as presented by Yu et al. (2003) and Saha et al. (2005), 

respectively. 

Isotropic distance = /u (2.3) 

Anisotropic distance = Jfr+\HPj-H0J (2.4) 

where JU = Pixel size / cell width, 

j = block 1 - 4 (Figure 2.2), 

Hpj = elevation of the connected neighbour cell, and 

H0 = elevation of the active cell. 

Note that the distance calculations are more realistic for anisoptropic surfaces because they 

consider the differences in elevation between each cell. Equation 2.2 is expanded to include 

gradient cost and severity level as shown in Equation 2.5 (Saha et al., 2005). Note that DBC 

in Equation 2.5 represents the anisotropic distance between any two cells as determined using 

Equation 2.4. 

N 

MCost = DBCx^fWiXLCi+WjxG,] (2.5) 
i=i 

where G = gradient. 

The use of anisotropic surfaces, as well as the reduction in corner angles of route alignments, 

are both major milestones in the development of route planning in GIS. The ability to 

circumvent an obstacle (Collischonn and Pilar, 2000) and the capacity to consider bridges and 

tunnels (Yu et al., 2003) in a least cost path are marked improvements to spreading function 

procedures. It is important that weights are applied objectively to the various layers of spatial 

information so as to avoid "forcing" results according to a design team's perception of the 
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anticipated output. The potential of GIS as a route planning tool is expanded upon in Section 

2.2, where, several civil engineering aspects are incorporated in a route planning model. 

2.2 Beirut Highway Alignment Model 

Although the techniques used for the route planning of new roads, canals and pipelines are 

fundamentally the same, it was decided to consider the following GIS based highway route 

alignment model as several pertinent civil engineering concepts are well demonstrated. Lee 

and Stucky (1998) states that GIS projects need not necessarily be confined to route planning 

applications. Finding the optimal location for a quarry, park or depot, or predicting the 

environmental impact of a certain land use change can all be analysed with the same tools 

and techniques. 

This case study was conducted to test a multicriteria decision-aid tool (MDAT) developed by 

Sadek et al. (1999) under real conditions. A 12 km section of highway outside the city of 

Beirut, Lebanon, was to be constructed from the town of Khalde to Damour. Three route 

alternatives were tested for ease of comparison, viz. South Mountain Highway (SMH), SMH-

Al and SMH-A2. 

At the commencement of the project only the start and finish points were known and an 

unlimited number of additional routes could theoretically be tested with minimal additional 

effort and time. 

2.2.1 Model construction 

A route selection model was developed which used ArcView as the model interface and 

engine (Sadek et al., 1999). AutoCIVIL, a software package that utilises AutoCAD and 

performs roadway design among other features, was linked to the model. This was done to 

incorporate its' powerful roadway design capabilities while slope-stability packages were 

also employed in an effort to develop a comprehensive model. Several programming 

languages were utilised to include these additions, such as, 

• ARC/INFO and ArcView script, 

• CAD (Computer-Aided-Design) script, and 
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• LISP (list Processing language) functions. 

Once the user has created the database required for a specific study area, any number of 

constraining points need only be selected before the model is initialised to work through the 

various platforms in seven defined steps, as presented in Table 2.2 (Sadek et al, 1999). 

Table 2.2 Stepwise procedure of the multi-criteria decision aid tool to design and compare 
different road alignments (MDAT) (after Sadek et al, 1999) 

Step 

1 

2 

3 

4 

5 

6 

7 

Process 

Consideration of soil and geological formations beneath the proposed route 

Cut and Fill (C&F) analysis 

Classify C&F into soil and geological functions 

Plot C&F functions 

Slope stability analysis and designation of Factor of Safety (FS) 

Where FS < 1.5 a file is created for analysis in a more advanced slope stability 
program 

Summary report table produced 

The results are output into four evaluation sections, which were used to compare the three 

route alignment options in this case study, viz. 

• Community disruption: Consideration of the number of structures obstructing a 

route or within a prescribed minimum distance of a structure. 

• Environmental Issues: Consideration of noise pollution from traffic volumes and is 

directly related to distance from the highway. 

• Geometric Design Issues: This evaluation criterion considers both horizontal and 

vertical alignments analysed in AutoCIVIL and gives an indication of road safety. A 

route's specific length is also indicated here, as well as the number of necessary road 

structures, such as where fill depths become excessive warranting the construction of a 

bridge. 

• Geotechnical evaluation criteria: Earthworks and slope stability are considered here. 

The project engineer is able to use the ratings from these criteria to identify key areas where 

further or specialised design work is required. 
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2.2.2 Data requirements and methodology for the base model 

Data collection for the base model of GIS projects is often the most time consuming phase, 

and this case study was no exception. Due to the Lebanon War from 1975 to 1990 there was 

limited availability of digitised spatial information and many hardcopy maps were out of date 

and without sufficient detail (Sadek et al, 1999). The result of this lack of quality 

information prolonged this phase of the project by approximately one year as new maps were 

created and existing ones updated. 

The base model required digitised information on the following: roads, cities, towns, villages, 

land cover, land use, geology, soil, rifts, depth to water table and topography. It must be 

noted that the final output of any model is only as accurate as the information collected and 

entered in the base model and hence it is important to treat the outputs of such models with 

caution. It is recommended by Sadek et al. (1999) that the output from this particular model 

be used as a comparative tool for route selection purposes and only as a reference for the final 

design calculations. 

Once the data had been collected and the base model compilation was completed, the users 

merely had to indicate the start and finish points, as well as other compulsory highway 

intersections, and the model ran automatically through the seven described steps (Table 2.2). 

2.2.3 Summary of results 

Three potential route alignments were compared in the model, the results of which are 

displayed in Table 2.3. The four evaluation criteria are highlighted in grey with specific 

criterion listed below each of the four categories on the left of the table. Displayed in the 

three columns on the right of the table are the results for the three routes being compared 

namely, SMH-A2, SMH and SMH-A1. 
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Table 2.3 Summary of model outputs enabling a direct comparison between the three 
specified routes of the Beirut highway (after Sadek et al, 1999) 

CRITERIA SMH-A2 SMH SMH-A1 
a) COMMUNITY DISRUPTION 
Number of structures within road width + 10 m 13 12 1 

b) ENVIRONMENTAL ISSUES - NOISE 
Number of structures within edge of road + 150 m 315 102 65 

c) GEOMETRIC DESIGN ISSUES 
Number of horizontal curves with radii < 200 m 

Cumulative length of route segments (m) 

0 - 5 % slope 

5 - 8 % 

> 8 % 

Total route length (m) 

6 7 7 

12 053 

0 

0 

12 053 

11 405 

1 268 

no data 

12 673 

8 030 

4 182 

1 428 

13 640 

d) EARTHWORKS / GEOTECHNICAL 
Slope stability 

Number of sections with FS < 1.0 

Number of sections with 1.0 < FS < 1.5 

Cut and fill (m3) 

Cumulative cut volume 

Cumulative fill volume 
Potential number of road structures 

0 

0 
0 
0 

8 
11 

3.06 x 106 

3.82 x 106 

9 

4.38 x 106 

4.05 x 106 

9 

6.35 xlO6 

17.19x 106 

12 

Table 2.3 indicates that SMH-A1 interferes with only one structure and is the cause of less 

noise pollution than SMH-A2 and SMH. The trade-off is that this route is almost one 

kilometre longer than SMH and one and a half kilometres longer than SMH-A2, which is the 

most direct route. SMH-A2, being the most direct route is, however, responsible for the 

largest community disruption and by far the highest noise polluter. The engineer can use 

these results to select the most appropriate route under project specific constraints. These 

results, as well as others provided by the model's final output, can be used as a starting point 

for the final design. 

2.2.4 Conclusions 

A multicriteria decision-aid tool (MDAT) was used to evaluate the most appropriate of three 

potential highway routes between the town of Khalde and Damour in Lebanon (Sadek et al, 

1999). Various criteria were used to evaluate the suitability of each route by direct 

comparison as in Table 2.3. Only three routes were tested for ease of comparison, however, 
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the model is capable of processing many routes simultaneously, therefore allowing for a 

comprehensive search for the optimum route between two or more points to be conducted 

(Sadek et al., 1999). 

The model does not remove the need for civil engineers and other construction professionals 

but merely enables the design team to rapidly analyse and directly compare a large number of 

alternatives. This ensures that the most efficient solution is selected according to specific 

project requirements. Sadek et al. (1999) warned that the output from such a model should be 

used as a means of comparison rather than as exact design values. 

The data collection and construction of the base model for this project took approximately 

one year to complete. However, with the increasing availability of digitised imagery and land 

cover information this time will be cut down dramatically in future projects (Sadek et al., 

1999). Any GIS model is only as good as the information entered and for that reason digital 

maps should be continually updated to maintain accuracy and to ensure readily available 

information for the future. Further to this the accuracy of the base model, and ultimately the 

model output is subject to the resolution at which the data is captured. 

Although GIS route planning is not yet at the stage where route alignment can suffice as a 

final road design, Sadek et al. (1999) have comprehensively demonstrated the potential of 

GIS as a route planning tool. 

2.3 Discussion and Conclusions 

It is evident that GIS as a route planning tool is superior to traditional route planning 

techniques in many respects. It offers the advantage that algorithms, applied in a GIS 

environment, are able to consider every possible route alignment between two or more 

selected points in space and indicate the most cost effective route according to a number of 

optimisation criteria. A large quantity and variety of spatial information can also be processed 

simultaneously due to the nature of information overlaid in a GIS interface. This supersedes 

previous methods where maps and additional data had to be considered separately. The 

primary cost minimisation technique applied by algorithms in GIS is to avoid costly 

obstructions, such as river crossings, steep slopes and existing infrastructure. 
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The algorithms proposed by Dijkstra (1959) set the stage for modern route planning in GIS 

and has been modified little in principle over the last half-century. Several additions have, 

however, been made to either improve efficiency or to include additional features, such as 

consideration of bridges and tunnels in routing solutions. 

It can be concluded that, despite advancements in the field of route planning in GIS, these 

methods are still only as effective as a route selection and comparison tool and have not 

developed sufficiently for model outputs to be utilised for final civil design purposes. It is, 

therefore, still critical to include road design professionals in any road alignment project from 

model design through to auditing the output. 

In all GIS models, assumptions have to be made, and with assumptions there are exceptions 

which could affect the accuracy of model output. In the construction of new models it is 

therefore imperative that all assumptions have adequate justification and are acknowledged 

when presenting model output. It is also important to the accuracy of model output that 

weights are applied objectively to the various layers of spatial information so as to avoid 

"forcing" results according to a design team's perception of the anticipated output. GIS 

models are only as accurate as the information entered, thus an improvement in the spatial 

resolution of data would have the desired effect of improving the precision of model output. 

From the literature reviewed it is clear that route planning in GIS has a wide scope of 

application and is effective within the bounds of valid assumptions. Advances in both route 

planning algorithm thoroughness and the computational ability of modern computer 

processors provide a robust platform with which to plot optimal route alignments according 

to a large variety of design criteria. 
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3 MODEL DEVELOPMENT 

The transport sector of the sugar supply chain contributes approximately 25 % to the total 

production costs of the industry. It was hypothesised that a GIS based infrastructure planning 

model could assist in reducing these transport costs. The FastTrack transport infrastructure 

planning model is a generic model developed within ArcGIS 9.2 to fulfil this role. It 

incorporates inputs, such as road construction and maintenance costs, terrain and land-use 

maps, vehicle performance specifications and annual sugarcane volumes in order to 

mathematically determine the most cost effective route from a production region to the mill. 

The alignment of existing roads and the potential for new specialised roads are 

simultaneously considered. The aim of the chapter is to describe FastTrack and the different 

assumptions made during the model development. 

3.1 Model Input 

All input data are entered on a per pixel or unit area basis, based on a set annual volume of 

harvested sugarcane, a desired Capital Expenditure Repayment Period (CERP) and design 

and performance specifications of each particular vehicle type. All inputs (represented in blue 

in Figure 3.1 and Table 3.1) are manipulated and reclassified within the model through a 

series of calculations. All inputs are discussed in general terms in this section. Details of 

gathering and organising the data will be considered more closely in Chapter 4 during a case 

study. 

The road maintenance costs layer (II, Figure 3.1 and Table 3.1) includes the annual cost of 

maintaining various types of roads in a study area, including, maintenance of any new roads 

that are to be built. Maintenance costs are normally affected by several factors, such as 

geographic location and the proximity to a source of quality aggregate material, soil types, 

road gradient, drainage, number of culverts and significantly, the type and volume of traffic 

operating on the road. Users of FastTrack need to use location specific values and, where 

these are unavailable, conservative best guess estimates, based on the type and volume of 

traffic, will suffice for initial investigations. 
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Zero additional slope costs for 
tarred national roads 

Figure 3.1 The FastTrack model flow diagram showing inputs, functions and outputs. The codes within the individual shapes refer to Table 3.1. 



Table 3.1 Inputs, functions and outputs for the FastTrack model. The reference column can 
be used to identify each particular section of the model in the model diagram on 

the previous page (Figure 3.1) 

Type 

e o *J 
s 
1 
M 

| 

Reference 
11 
12 
13 
14 
15 
16 
17 
18 
19 
F1,F6,F17,F24 
F3,F4,F10,F20 
F15 
F2,F5,F7,F16,F18,F21,F25 
F26,F9,F11,F12,F13 
F8,F19 
F14 
F22 
F23,F7,F29 
F28 
O1-O30 
021 
1028 
029 
030 

Discription 
Road maintenance costs 
Landuse specific expropriation costs 
Mill location (destination) 
Road purchase cost 
Vehicle season average fuel consumption 
Start point (point of departure) 
Digital Elevation Model (DEM) 
Zero cost to tarred regional routes 
Road upgrade and construction costs 
Convert polyline to raster 
Convert polygon to raster 
Convert DEM to slope map 
Reclassify raster values 
Addition 
Multiplication 
Cost distance/direction 
Least Cost Path (LCP) 
Extract by mask 
Convert raster to polyline 
Output layers 
Cumulative cost surface 
Total per trip maintenance costs 
Final route alignment 
Total per trip construction costs 

Land use specific expropriation costs (12, Figure 3.1 and Table 3.1) are applied to a detailed 

land use map. These values are based on regional norms, except where specific costs are 

known. This layer requires significant user input, especially where detailed land use maps are 

not available. Aerial photography of a suitable resolution can be used to manually digitise the 

boundaries of the various land use types. 

The mill location is a layer created by the user (13, Figure 3.1 and Table 3.1). It is used by the 

cost distance / direction function (F14), which are both required in the generation of a least 

cost path (LCP), (F22, 026). The start point also needs to be input (16, Figure 3.1 and Table 

3.1) and can be an existing or potential depot site, or a natural haulage flow point where all 

sugarcane from a specific area will pass over. 
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The road purchase cost layer (14, Figure 3.1 and Table 3.1) is based on the assumption that 

any land occupied by an existing road, carries a zero cost of purchase. The FastTrack model 

is therefore encouraged to identify route alignments where existing roads are either 

immediately suitable or could be upgraded and utilised. Alternatively and depending on the 

density of the existing road network, the FastTrack model may identify a more cost effective 

new and more direct route. 

A critical component of the model in terms of vehicle comparison is the accurate estimation 

of a vehicle's season average fuel consumption (15. Figure 3.1 and Table 3.1). It was decided 

that season average fuel consumption figures would provide a more accurate means of 

gauging the fuel cost of a vehicle rather than adding a terrain-specific fuel costing module to 

FastTrack. Users need to gather information from vehicle manufacturers, such as the most 

fuel efficient travel speed, maximum slope and payload limitations, purchase price and 

expected vehicle utilization, among others. It is useful to compare manufacturer information 

with hauliers operating over similar terrain and lead distances in order to confirm or adjust 

values where necessary. Season average values incorporate all the variations in a mill season 

including operating in a variety of weather conditions, road traffic and sugar mill queue 

delays, and differences in driver skill level and attitude. 

In raster GIS, the spatial accuracy of a combination of layers is affected by the layer with the 

lowest resolution. It is important that relatively small features, such as pylons, which would 

be unnecessary and costly items to relocate, are considered and avoided by any new road 

alignment. It is therefore recommended that the Digital Elevation Model (DEM - 17, Figure 

3.1 and Table 3.1), which is a vital layer, be of a resolution of 10 m * 10 m, or finer. The 

DEM is converted to a slope map and is subsequently categorised into several slope ranges, 

which either affect or have no consequence on average road construction costs. 

The input 18 (Figure 3.1 and Table 3.1) ensures that additional slope-dependent construction 

costs are not applied to existing national tarred roads. The reference to national roads here 

includes all tarred roads under the control of the relevant regional roads authority and it was 

assumed that additional private construction work would not take place on these. National 

roads within a study area should be analysed separately to determine whether there are any 

sections on these roads where the gradient exceeds that of the hill climbing capability for a 
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specific vehicle type or configuration. Additional costs need to be applied on these sections to 

ensure that a realistic economic estimate is reached. 

Road construction and upgrade costs (19, Figure 3.1 and Table 3.1) are considered in a critical 

and region specific layer in the model. These costs should be based on area averages and 

several independent best estimates are required to ensure that the layer is both consistent and 

conservative. It was decided that area average construction costs would be assumed instead of 

considering all the compounding factors, such as soil type, culvert design, availability of 

quality aggregate and the distance to quarry sites. Paige-Green (2008) confirmed that tenders 

for road construction are often calculated using average road construction costs due to the 

large number of variables and the complexity of the relationships between these and the 

actual construction costs. The average cost would include typical cut and fill volumes, which 

would only vary significantly if the terrain were particularly flat or steep, where excessive 

earthworks and culverts will be required. These categories are also influenced by a particular 

vehicle's climbing ability, ensuring that the vehicle would be able to maintain a constant and 

fuel efficient speed on any new road that the FastTrack model recommends. 

3.2 Functions and Output 

All inputs are manipulated and reclassified within the model through a series of functions 

(represented in yellow in Figure 3.1 and Table 3.1) which result in outputs (represented in 

green in Figure 3.1 and Table 3.1). 

Once the cumulative cost surface, 021 (Figure 3.1 and Table 3.1), has been created, the 

FastTrack model makes use of the least cost direction / distance surface generating function 

within ArcGIS 9.2 (discussed further in Section 3.3), which is based on Dijkstra's (1959) 

shortest path algorithm. This function considers the cumulative cost surface as well as the 

destination location and creates the cost distance and cost direction surfaces. A cost distance 

layer is a raster surface representing the lowest combined cost from each cell to the nearest 

destination point (McCoy and Johnston, 2001). In the FastTrack model the destination is the 

sugar mill. Each cell in a cost direction layer has a numerical value assigned to it, according 

to the direction to the closest surrounding raster cell along the cumulative LCP to the source 
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(McCoy and Johnston, 2001). A detailed account of LCP theory and its various applications 

can be found in Chapter 2. 

The LCP function utilises the cost direction and cost distance layers as well as the user input 

start point location to identify the alignment of the most cost effective route from the start 

point to the mill. This alignment is used in a second and independent step to extract the 

cumulative cost as well as separate infrastructural and road maintenance costs payable per 

trip (F23, F27, F29 in Figure 3.1 and Table 3.1). 

Model results are output as the charge a vehicle would incur, per consignment, if 

infrastructural improvements were to be repaid within the stipulated CERP. In other words 

results are output as the sum of the cost of each pixel crossed on the devised path from the 

designated starting and finishing points, including road maintenance charges and fuel 

expenses. In order to compare various transport scenarios, the model results are required to be 

multiplied by the number of consignments necessary to transport a set crop volume, within 

the limited number of days allocated to the milling season. This is a post processing operation 

and is discussed further in Section 4.3. 

In order for a user to differentiate between different transport systems and new routes, it is 

recommended that an economic analysis of the transport system be conducted and the results 

be considered in conjunction with the output acquired from the model. These analyses are 

discussed further in Section 4.3. 

3.3 Software Implementation 

ArcGIS 9.2 is an extensive GIS platform created by the Environmental Systems Research 

Institute (ESRI) and offers a wide range of geospatial tools. The modelling tools offered in 

ArcGIS 9.2 are easy to use where all available functions can be dragged into, and linked 

together within the modelling window. This allows for extensive spatial models to be created 

and modified. The FastTrack model was created in this manner and users will be required to 

use the model in conjunction with an ArcGIS 9.2 user licence. General GIS experience and a 

working knowledge of ArcGIS 9.2 and Microsoft Office systems are also required. 
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Numeric values to all FastTrack inputs, from region and vehicle specific data gathered by the 

user, are generated in Microsoft Excel. The outputs from these tables are entered directly into 

the model. A summary of model input values is located in Appendix A. 

3.4 Model Verification 

Utilising data from the case study which is further described in Chapter 4, each branch of the 

FastTrack model was excluded independently, in a systematic procedure to verify model 

performance. The model was run repeatedly in this manner in an effort to identify 

inconsistencies and consequently to verify the operations of the model. In all cases the 

FastTrack model behaved predictably. In addition, the reclassification of raster values (Figure 

3.1 and Table 3.1) were manipulated to test the sensitivity of these on the model output. In all 

cases notable output variations only occurred when the reclassified values were altered 

significantly. A large number of model runs were performed in this process with predictable 

results. In order to not dilute the results presented in Chapter 5 and due to the repetitive 

nature of the verification procedure, it was decided that further elaboration was to be 

excluded. 

3.5 Conclusions 

A wide range of input variables dictate whether a more direct route to the mill should be 

constructed, or whether it is more cost effective for haulage vehicles to operate on existing 

national roads. These inputs range from general and slope dependant construction costs to 

land use, road maintenance and vehicle performance characteristics, and are logically 

organised in a series of tables within Microsoft Excel. Inputs are calculated on a per trip basis 

with the premise that all infrastructural improvements are to be repaid within a predetermined 

capital expenditure repayment period (CERP). 

Model output should therefore be multiplied by the number of trips necessary to transport the 

set volume of sugarcane within one milling season. The FastTrack model is based on a 

framework of spatial calculations within ArcGIS 9.2 (Figure 3.1), which culminate in the 

determination of a least cost path (LCP) from start point to mill for each vehicle 

configuration. 
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An economic analysis of total transport system costs is required if the vehicle configurations 

selected are to be compared directly. This should be completed externally to the G1S 

environment and is discussed further in Section 4.3. 

After a rigorous verification process it was concluded that the model behaved predictably 

under a wide range of input variables and reclassification scenarios. The FastTrack model, 

therefore, ensures that the route selected is the optimum route in terms of vehicle and 

infrastructural utilisation efficiency and economics. 
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4 DEMONSTRATION OF THE FASTTRACK MODEL: CASE STUDY 
- METHODS 

4.1 Introduction 

The Noodsberg mill region is located in the KwaZulu-Natal Midlands in South Africa (Figure 

4.1). It is a major sugarcane producing region crushing approximately 1.45 million tons of 

sugarcane per annum which relates to 150 000 tons of sugar. All of the harvested sugarcane is 

transported to the mill by road with sugarcane supply areas being located as far as 70 km 

away. More than 60 % of the finished product, including 70 000 tons of molasses, is 

transported to Durban by road, while the remainder of the sugar is transported to Germiston 

by rail. Noodsberg is a well established agricultural region with the majority of farms being 

commercial. Several towns are situated in the area, including Wartburg, Harburg and Dalton, 

which are linked by a network of regional and district roads on which the sugarcane is 

transported to the mill. 

Noodsberg sugar 
growing region 

Figure 4.1 Location of the Noodsberg sugar growing region in Southern Africa. 

The region was selected for the case study by virtue of the mill's close proximity to the 

University of KwaZulu-Natal and the large volume of sugarcane transported by road. The 

aim of the case study was to test FastTrack with real data to demonstrate its capabilities. It 

was decided that a small portion of the region, with minimal data collection requirements but 

with multiple land uses and an integrated network of farm and national roads, should be 

selected to exhibit the model's potential. 
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Two common vehicle configurations and a third, utilised by sugar industries in other 

countries, but not common to the region nor legal on South Africa's roads, were selected to 

compare Fast Track's infrastructural planning capabilities. Apart from fuel costs, FastTrack 

does not consider any of a vehicle's additional system costs, like ownership, operational and 

labour costs. The model is also not used to determine the number of vehicles required to haul 

a set volume of sugarcane to the mill within the limited milling season length. In order to 

compare FastTrack?s infrastructural routing solutions, in terms of these additional system 

costs, an economic analysis was conducted on the results for the three vehicles. The 

methodology of this analysis as well as that of a sensitivity analysis, also conducted on 

FastTrack's results, are included in this chapter. Results of the case study and the economic 

and sensitivity analyses are detailed and discussed in Chapter 5. 

4.2 Input Data and Assumptions 

Included in this section is an account of all the input data collected for the case study area and 

the selected haulage vehicles. 

4.2.1 Case study description 

Figure 4.2 is a land use map of the study area, which represents only a small portion of the 

Noodsberg sugar growing region. Represented by an orange square is the location of the 

Noodsberg sugar mill while the start point, represented by an orange circle, indicates the 

position of a natural haulage flow point. It is assumed that all sugarcane hauled from the 

region south of the start point (Area B) will flow through or near this point, as indicated by 

the arrows in Figure 4.2. Area B comprises of approximately 1750 ha of commercial 

sugarcane. The cool and dry winter conditions within the area suppresses sugarcane growth 

and the crop of approximately 140 000 tons is normally harvested on a 24 month rotation. It 

is assumed that the crop is staggered so that approximately half is harvested and hauled to the 

mill for crushing annually. 
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Noodsberg Sugar mill 

Dalton 
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Figure 4.2 Land use map of the case study area showing 
Areas A and B and the location of the start point 

and the Noodsberg sugar mill. 

'iM Natural vegetation 

It was decided that only the volume of sugarcane from Area B would be considered in the 

case study. Benefits to sugarcane growers between the start point and the mill (Area A) as a 

result of potential infrastructural improvements were not considered. Area A was, therefore, 

modelled in FastTrack in terms of terrain, land use, road construction and road maintenance 

costs with respect to the volume of sugarcane from Area B only. A number of land uses exist 

within Area A, as shown in Figure 4.2. Table 4.1 contains the area occupied by each land use 
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and the associated expropriation and additional construction costs for a particular feature 

within Area A, through which any potential new road infrastructure would pass. The 

expropriation cost is represented in R / ha as these costs are more easily understood in these 

units. The additional construction costs represented in R /pixel with a standard pixel size for 

all layers based on the 10 m * 10m resolution of the digital elevation model (DEM). This 

represents the construction cost or exaggerated construction cost as detailed below the table. 

All values are required to be converted into R / pixel values before being entered into 

FastTrack. 

Table 4.1 Land use types, the area occupied by each and the expropriation and additional 
construction costs within Area A near Noodsberg, South Africa 

Land use 

Sugarcane 
Forestry 
Farm buildings 
Dams 
Natural 
vegetation 
Pylons 
Powerlines 

Area 
(ha) 

1795 
131 
47 

9 

103 

3 
31 

Expropriation 
cost 

(R/ha) 

30000 
23000 

2000000 

30000 

Additional 
construction cost 

(R/pixel) 

2000000 

50000 

3000000 

In Table 4.1 the column "Expropriation cost", refers to the once-off cost required to purchase 

the land, based on the current land use through which a proposed new road passes. 

"Additional construction costs" in Table 4.1 refers to the cost to construct on or across a 

particular land use. Extremely high costs were given to both dams and pylons as it was 

assumed that a large high voltage pylon would not be moved or a bridge be constructed over 

a small farm dam to allow for a new haulage route to pass through. After considering aerial 

photography of the area, it was found that all "natural vegetation" within the study area, were 

either wetlands or riparian zones. The associated natural vegetation cost, as depicted in Table 

4.1, therefore, includes the cost of a low level crossing based on the average cost for a 20 m 

long crossing amounting to approximately R 100 000 (Pike, 2008). It is recommended that 

any proposed alignments passing through such areas should be subject to further investigation 

and an environmental impact assessment. 
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As discussed in Chapter 3, capital costs are spread out over the capital expenditure repayment 

period (CERP), which for the case study was assumed to be 5 years. All costs are divided by 

the total number of consignments required to haul a set volume of sugarcane, for a particular 

vehicle type. This ensures that all cost surfaces are added within FastTrack on a per trip basis. 

It should be noted that Farm buildings (cf Figure 4.2) include the space in between adjacent 

buildings and all fenced off areas, such as private gardens and vehicle workshop yards. It was 

assumed that these areas would not be considered for the alignment of any new roads and an 

exaggerated expropriation cost was, therefore, assigned to these to ensure that a realistic 

solution was selected by FastTrack. 

4.2.2 Road construction and maintenance 

A gravel road of 10 m in width was selected for the construction of any new roads within the 

area. The cost of construction is R 300 000 km" plus a preventative maintenance plan with a 

cost of R 20 000 km"1.an"1 (Oloo, 2008; Paige-Green, 2008; Pike, 2008). 

Resurfacing, which depends on numerous variables, such as traffic volume, drainage and the 

quality of the aggregate used, would normally be required after 6 years (Paige-Green, 2008). 

As the repayment period was set at five years, it was decided that this additional cost would 

not be included in the study. 

4.2.3 Vehicle data 

The current haulage to Noodsberg mill comprises of a range of vehicle-trailer combinations. 

The most commonly used vehicles are the interlink, the rigid haulage tractor / tractor hilo and 

the rigid draw bar truck with different trailer combinations. In order to demonstrate the 

capabilities of FastTrack, three distinctly different vehicle types were selected and compared, 

viz. 

• A tractor hilo - Bell 1866 AF (cf. Figure 4.3), 

• A land train - Bell 2306D4x4 (cf. Figure 4.4), and 

• An interlink - Mercedes-Benz Actros 3350 / 33S (cf. Figure 4.5). 
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A land train type, not currently utilised at Noodsberg and not permitted on public roads in 

South Africa, was included to expand the range of haulage vehicles tested and to demonstrate 

the flexibility of the model by forcing it to consider route alignments off public roads. 

TRACTOR HILO 

The Bell 1866 AF, fitted with a standard sugarcane trailer supported on a walking beam axle 

with tyres set at 6 bar was selected as a first vehicle type (Figure 4.3). In this region the 

selected trailer configuration has an average payload of 14.3 tons. Approximately 39 of these 

vehicles currently operate in the Noodsberg region and are responsible for hauling 217 000 

tons or 20.4 % of the annual crop. The vehicle is characterised by relatively fast road speeds, 

excellent infield capabilities and a single material handling regime. Fuel consumption of the 

Bell 1866 AF operating over similar terrain and with the same payload and lead distance is 

approximately 60 1 per 100 km (Lyne, 2008). 

Figure 4.3 A Bell 1866 F with a typical walking beam axle trailer. The 1866 AF is the front 
wheel assist version of the 1866 F. 

The Bell 1866 AF is commonly used when haul distances are less than 15 km (Lyne, 2008). 

Lyne (2008) indicated that it is generally more cost effective to double handle sugarcane 

using an infield tractor in combination with an interlink or rigid drawbar truck for distances 

greater than 15 km. This is based on the fact that, as haulage distances increase, vehicle 

efficiency and speed becomes more critical factors. 
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When fully loaded, the Bell 1866 AF can maintain a speed of 30 km.h', which is only 

significantly affected by slopes above 8 % (Bell Equipment, 2007). In order for routes to not 

include slopes that will exceed 8 %, additional construction costs are applied to such slopes 

(cf. Section 3.1). 

LAND TRAIN 

Land trains are used successfully in several countries around the world, including Malawi, 

Australia and Argentina. The vehicle is four-wheel driven and articulated allowing for good 

infield manoeuvrability. Low levels of soil compaction and stool damage can be attributed to 

large high floatation tyres inflated to 2 bar, fitted throughout the rig. The trailers are 

supported on a walking-beam axle, which assists in driving on uneven terrain. The trailers 

have no suspension, which can cause vibrations through the rig when driving at high speeds 

on well surfaced roads (Prinsloo and Hayworth, 2008). 

Figure 4.4 A Bell 2306D4x4 pulling six trailers in a field in Malawi (Prinsloo and Hayworth, 
2008). 

Payloads of 57 tons can be hauled to the mill in six trailers at reasonable speeds of 19 km.h"' 

laden and 28 km.h" empty. The gross combination mass (GCM) of the particular land train 

modelled is approximately 110 tons. The maximum permissible GCM on South Africa's 

roads is 56 tons (Fleetwatch, 2007). With such a disparity between the legal weight and that 

of the land train combination, a significant fine was imposed in the model in the form of a 

maintenance charge for travelling on national roads. 
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The vehicle trailer combination is limited by slopes above 8 % (Prinsloo and Hayworth, 

2008), but it was conservatively decided to restrict the model to slopes of 7 % and below. 

Slopes above 7 % were assumed to incur additional construction costs, to cover the necessary 

cutting and filling. The 7 % restriction on all potential land train roads will ensure that both 

the speed and efficiency of the vehicle are maintained. As infield and loading considerations 

are not considered in much detail in the model, a post modelling assessment of loading areas 

for a particular region may be required. Fuel consumption of the Bell 2306D operating with 

the same payload and lead distance was increased by 15 % to account for the undulating 

terrain within the region. The value used was 78 1 per 100 km (Prinsloo and Hayworth, 2008). 

INTERLINK 

Within the Noodsberg region, interlinks are responsible for hauling approximately 34 % of 

the region's sugarcane to the mill using thirteen vehicles. The type of interlink that was 

selected for the project was the Mercedes-Benz Actros 3350/33S truck tractor fitted with an 

Afrit tandem/tandem axle sugarcane interlink combination trailer set (Figure 4.5). 

Figure 4.5 A Mercedes-Benz Actros 3348 sugarcane interlink. 

Lyne (2008) stated that the infield use of interlinks should be avoided wherever possible due 

to high tyre pressures (± 6 bars), which can cause severe soil compaction and stool damage, 

especially under wet conditions (Van Antwerpen et al, 2000). As a result, interlinks are most 

commonly loaded at specially prepared loading zones adjacent to sugarcane fields. This 

requires sugarcane to be extracted to the loading zones, by an infield tractor and trailer. The 
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sugarcane is transloaded into an interlink using a standard three-wheeled cane loader. As a 

result of the double handling nature of interlink haulage, it is generally considered that only 

lead distances of greater than 15 km are more profitable compared to a single handling 

system, such as that of the tractor hilo (Lyne, 2008). 

Despite the large engine capacity of an Actros, it is an efficient vehicle capable of average 

speeds of 60 km.h"1 empty and 40 km.h" laden with fuel consumption being approximately 

65 1 per 100 km (Lyne, 2008) on slopes of less than 10%. These figures vary according to 

terrain, traffic obstructions and flow and lead distances. Due to the fast road speed and large 

consignment capacity of approximately 32 tons, interlinks are well suited haulage vehicles 

for the sugar industry. 

4.3 Economic Analysis 

FastTrack was used to delineate the optimal route for each vehicle configuration and an 

economic analysis was conducted to assess total system costs associated with each selected 

route. This was used to identify which system would accrue the lowest cost in hauling the set 

volume of sugarcane from the start point to the mill. 

A commercially available costing model, based on sound logistics principles and economic 

fundamentals was utilised for this purpose (Bell Equipment, 2008). Figure 4.6 details the 

basic flow of costs through the economic model while a detailed table including all costs is 

located in Appendix B. Management costs were assumed to be equal for the three systems 

and were therefore excluded from calculations. Output from the model, therefore, allows for a 

direct comparison of the differential costs between the three systems. Total annual vehicle 

costs (light grey shaded, Figure 4.6) were added to construction and maintenance costs 

derived from each FastTrack routing solution to determine a total system cost (dark grey 

shaded, Figure 4.6) for each vehicle type. 
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Annual vehicle 
hours (h) 

Operating 
costs (R.h1) 

v 
Ownership 
costs (R.h"1) 

-> 
Total hourly 
costs (R.h1) 

A 

Annual ownership 
costs (R) 

<- Labour costs 
(R.h"1) 

Logistics considerations 
including loading & 
offloading times, non 
productive travel time 
queue delays, travel 
speeds, lead distance, 
payload, total harvest 
volume and hourly costs 

No. of vehicles required 
(fractional result) 

Harvest 
volume (tons) 

Haulage cost 
(R-t1) 

Rounded up 
whole no. of 
vehicles 

Rounded whole no. 
minus initial fraction 
(eg 5 - 4.63 vehicles 
= 0.37 vehicles) 

Total annual vehicle cost (R) = (Harvest volume * Haulage cost) + 
(Rounded whole no. minus initial 
fraction * Annual ownership cost) 

<-

FastTrack annual construction 
and maintenance costs (R.an- ) 

-K _ Total system cost (R.f ) = (Total annual vehicle cost + FastTrack annual 
construction and maintenance costs) •*• harvest volume 

Figure 4.6 Basic flow of costs through the commercially available costing model used to compare 
differentia] costs of the three haulage systems. 
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The general operating costs of a vehicle differs depending on the quality of the road surface 

on which the vehicle drives (Lyne et ai, 2005). These costs were therefore collected based on 

the type of surface each vehicle was likely to operate on within the case study area. As an 

example and excluding haulage from within specific farms in Area B (cf. Figure 4.2), 

interlinks and tractor hilos hauling through the start point to the mill would drive on tarred 

roads. Operational costs relating to these two vehicles, therefore, reflected this. Land trains 

would only drive on newly constructed or upgraded gravel roads and thus appropriate 

operational costs relating only to the use of land trains on gravel roads was collected and 

utilised. 

A detailed calculation of ownership costs was performed which included consideration of 

vehicle and trailer costs, residual value, vehicle availability, the number and length of shifts 

worked, interest rates licence and insurance fees among others. All capital expenditure was 

calculated excluding value added tax (VAT). The decision was made that the entire system 

would work on a 5 year capital expenditure repayment plan (CERP). It was assumed that new 

vehicles would be purchased with zero initial capital and were expected to hold a 20 % 

residual after 5 years (Ortmann, 2008) while the trailers are assumed to retain a residual of 50 

%. The annual ownership cost for each vehicle was divided by each vehicle's annual 

operating hours to determine the cost of owning the vehicle per operating hour. 

The predominant operating cost is fuel usage, which was calculated in terms of litres per 

hour. These figures, as with all input data, were acquired from industry where vehicles 

operate under similar lead distances, terrain and road surfaces. Oil, tyre and maintenance 

costs were included in the calculation of the total operating cost for each vehicle 

configuration. Tyre cost can be a significant contributing variable. In the land train scenario, 

for example, where the prime mover has four wheels and its' six trailers have twenty-four 

wheels, total tyre replacement costs are approximately R 616 000. This occurs approximately 

every 4000 hours except for the front wheels which are replaced approximately every 3000 

hours (Prinsloo and Hayworth, 2008). 

Only the cost of the driver per vehicle was considered in the determination of total labour 

costs. Drivers were assumed to be paid R 167 per shift, which accumulates to approximately 

R 4000 per month considering a six day working week. 
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Adding ownership, operating and labour costs will resulted in an hourly cost per vehicle. 

However, to determine the number of vehicles required and therefore the system cost 

excluding construction and maintenance costs associated with each routing solution, several 

other variables also needed to be considered. These included, total annual crop volume, 

loading time, vehicle speed - loaded vs. unloaded, offloading time, vehicle delays and 

unproductive periods. To standardise loading time, a super zone was assumed at the start 

point with loading times being determined by the number and capacity of the trailers to be 

filled. All these variables influence a vehicle's per shift haulage productivity, which, when 

multiplied by the total annual shifts worked, relates to a total achievable annual haulage 

capacity per vehicle type. The total annual production was divided by this value to determine 

the total number of vehicles required. If the result included a fraction of a vehicle, then the 

difference between the next ascending whole number and the fractional result was required to 

be multiplied by the ownership cost for the vehicle as this is spare capacity and is not subject 

to operational and labour costs. This result was added to the product of the total harvest 

volume (t) and the calculated haulage cost (R.t~) to derive the total cost associated with 

owning and operating the required number of each vehicle type. This value was added to the 

construction and maintenance costs derived from the FastTrack model to determine the 

differential cost of each system for direct comparison over the stipulated CERP. In addition 

to this comparison, the effect of renting out the spare capacity of each system was also 

considered (Section 5.2). It should be noted that the calculations above are simplistic and a 

detailed discrete simulation model such as McDonald et al. (2008) should ideally be used to 

determine the number of vehicles required. This falls outside the scope of this project. 

4.4 Sensitivity Analysis 

Climatic variability results in varying annual yields. These differ further from field to field 

according to soil characteristics, ratoon number, field aspect and management approaches. 

With variability being expected it is critical to determine how fluctuations in certain inputs to 

the model will affect the routing from start point to the mill. It was the intention of this 

section to assess the sensitivity of the routing results to changes in key input variables. Three 

sensitivity analyses were performed. Firstly, FastTrack's route selection as a function of 

annual tonnage was considered. Route selection as a function of vehicle slope limitations was 

considered second. Thirdly, an additional analysis was conducted utilising the economic 
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model to compare how changes in fuel price would affect total system costs. This was done 

by changing the fuel price in the economic model and plotting the result on a graph. The 

sensitivity analyses were conducted on one FastTrack routing solution to avoid unnecessary 

duplication. 

4.4.1 Route selection as a function of annual tonnage 

The volume of sugarcane produced is critical to the feasibility of the route selected. It was 

hypothesised that the greater the volume of sugarcane to be transported, the more direct the 

route linking the start point with the mill will be. The number of consignments required to 

haul each harvest volume depends on each vehicle's haulage capacity. The capital 

expenditure for each vehicle is divided by the set CERP and is further divided by the total 

number of consignments required per annum. As the annual haulage volume increases, so the 

capita] expenditure payable per consignment decreases and operational expenses increase in 

proportion to the total system costs. Fuel expense is a significant operational cost and is the 

only one considered in FastTrack. It was assumed that this would have sufficient influence on 

the routing result. Although this section does not consider the financial implications of these 

expected fluctuations in yield, it does consider the stability of the route selected under a range 

of yields, both above and below the previously assumed average. 

The range of total crop volumes assumed is displayed in Table 4.2 and, although it is perhaps 

unrealistic to expect a harvest to ever reach fifty percent above the average, it does provide 

consideration of a scenario where a larger area, below the start point, could be planted to 

sugarcane. 

Table 4.2 Test-range of total tons of transported sugarcane used to test the sensitivity of 
FastTrack routing solutions 

Variation (%) 

Range (tons) 

0 
70000 

+ 10 

77000 

-10 
63000 

+ 25 

87500 

-25 
52500 

+ 50 

105000 

-50 
35000 

4.4.2 Route selection as a function of slope restrictions 

The digital elevation model (DEM) was converted into a slope map in process F15 in Figure 

3.1. Slopes were divided into default categories depending on the range of slope present in an 
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area. These were organised into specific slope sets in process F16 in Figure 3.1 depending on 

the climbing ability of each vehicle configuration. Slopes above the set maximum per vehicle 

type, were ascribed incremental costs based on the additional construction costs required for 

cut and fill operations. This ensures that the maximum slope would not be exceeded by any 

route selected by the model. These costs are added in addition to the general construction 

costs, 19 in Figure 3.1, which cover a range of construction scenarios and average cut and fill 

volumes. The range of slopes input into FastTrack for the purpose of the sensitivity analysis 

is included in Table 4.3 and will be used with data from only one vehicle solution. 

Table 4.3 The range of slopes used to assess the sensitivity of a selected route to changes in 
the vehicle's maximum achievable slope 

Variation (%) 

Slope range (%) 

0 

7 

+ 10 

7.7 

-10 

6.3 

+ 25 

8.8 

-25 

5.3 

+ 50 

10.5 

-50 

3.5 

Research results are reported and synthesised in Chapter 5. 
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5 DEMONSTRATION OF THE FASTTRACK MODEL: CASE STUDY 
RESULTS 

5.1 Routing Results 

Figure 5.1 illustrates the FastTrack output for both the tractor hilo and the interlink as 

described in the previous chapter. The result is a 9300 m route along national roads from the 

start point to the mill. 

Figure 5.1 The LCP indicated in blue and white is the FastTrack 
route alignment for both the tractor hilo and the interlink 

on the tractor hilo cost surface map. 

The solution presented in Figure 5.1 is acceptable as both vehicles can legally operate on 

national roads. With fuel costs being the only operating expense considered by FastTrack for 

the two vehicles, the volume of sugarcane, the terrain and distance to the mill, provided 

insufficient financial incentive to warrant a more direct path. 
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In contrast to the two previous solutions and with an assumed fine accounting for the 

illegality of the Bell23064x4 land train on national roads, FastTrack's solution only utilised a 

short 500 m section of national road directly before the mill, starting at Point A (Figure 5.2). 

Legend 
— — Route A 

" — — Route B 

Farm roads 

District gravel roads 

Regional tar road 

Cost Surface 

^ ^ High : 110c/ pixel 

Low : 50c / pixel 

Figure 5.2 Two routing solutions for the Bell23064X4 land train 
system overlaid on the associated cost surface map. 

Figure 5.2 illustrates two routes of differing length but equal cost. This cost includes the total 

road construction costs, maintenance thereof and the fuel costs accrued in hauling the set 

volume of 70 000 tons of sugarcane from the start point to the mill on a per trip basis as 

described in Section 3.1. This unique and unexpected result prompted vast testing and 

investigations into the workings of FastTrack (described in Section 3.4). FastTrack performed 

predictably under all of the tests carried out. The results for the land train were therefore 

accepted but a decision was required over the final selection of either Route A or Route B. 

This decision was made based on the consideration of various features associated with each 

alignment, such as route length, specific land use through which either alignment passes and 

the potential benefit which these offered to hauliers within Area A. 
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The first differentiating feature between the two routes is length. Route A is approximately 

7983 m which is shorter than the 9300 m route suggested by the FastTrack model for the 

tractor hilo and the interlink, but is longer than Route B at approximately 7448 m. The cost of 

upgrading an existing road is in most circumstances less costly than constructing an entirely 

new one. The construction of Route A would result in 73 % of existing farm gravel roads 

being upgraded and utilised, as opposed to only 34 % for the more direct Route B. A shorter 

road has operational benefits in addition to reduced fuel usage, which were not considered in 

FastTrack. These include increased turn-around times and reduced long term road 

maintenance costs. Route B would, therefore, be selected if only route length were considered 

and if long term feasibility were considered more seriously. 

If road safety and noise pollution were considered, then Route A may be selected. Route B 

passes close to a farm house with out-buildings, indicated in red in Figure 5.3. Depending on 

the particular land owner, this may be considered unacceptably close or pose a safety risk to 

residents of the farm house. 

Figure 5.3 Land use map route comparison for a small 
subsection of the case study area (cf. Figure 5.2). 

It is possible to add further constraints to the model, such as not allowing any new road to 

pass within 100 m of a wetland or farm building. These considerations need to be discussed 

within a study area to ensure that the best interests of all affected stakeholders are 

incorporated. For the purpose of this study it was decided that no further restrictions or cost 
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surfaces would be imposed. It is recommended that Route A's path across the dam wall on an 

existing farm road be assessed in terms of the dam wall's suitability to handle heavy vehicle 

traffic. Similar to the route selection model presented by Sadek et al. (1999), the 

interpretation and final selection of a FastTrack solution is required to be made by the design 

team of each particular project. 

As mentioned in Section 4.2.1, it is assumed that the haulage of harvested sugarcane within 

Area A would benefit from the addition of new transport routes through shorter haulage 

distances, quality road surfaces and improved turn-around times. The determination of the 

volume of sugarcane in close proximity to either of the two routes was utilised as another 

method of selecting the most cost effective route (Figure 5.4). A one kilometre buffer of land 

under sugarcane was added on both sides of each route. It was assumed that the buffered 

sugarcane would flow onto the proposed routes. 

Noodsberg mill 

Legend 
^ • " Route A 

^ ^ » Route B 

I 1 km sugarcane buffer around Route A 

1 km sugarcane buffer around Route B 

Overlapping sugarcane buffers 

• • ^ ™ Regional tar roads 

District gravel roads 

Farm roads 

Cost Surface 
High : 110c /pixel 

- Low : 50c / pixel 

Figure 5.4 Buffers indicating the potential flow of 
sugarcane onto the proposed routes. 
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Route B passing nearest to the geometric centre of the study area, could potentially draw a 

volume of 41 200 tons of sugarcane annually, while Route A has a potential of 40 160 tons. 

This difference is not significant, however, much of the sugarcane assumed to flow onto 

Route A (indicated by the green buffer in Figure 5.4) borders national roads or is closer to a 

national road than to Route A. This sugarcane could be transported along the national roads 

using tractor hilos, therefore, reducing the volume which was assumed to flow onto Route A. 

Route B has the potential to transport a greater volume of the sugarcane in Area A than Route 

A and was thus preferred. 

It was assumed that, despite land trains not being permitted to operate on national roads, an 

agreement could be reached between the land train operators and the relevant roads authority 

for the use of the 500 m stretch of the R614 between Point A and the mill (Figure 5.2). The 

assumption was based on the benefits which either of the proposed land train roads would 

offer to the regional roads authority. These include reduced traffic congestion and road 

maintenance costs on approximately 8700 m of national road. Hauliers could provide safety 

measures to improve road safety in return for the use of the 500 m stretch of road, including 

officials, road markings and appropriate signage. As an alternative it could be agreed upon to 

grade the road reserve adjacent to the national road on this short stretch as a continuation of 

either Route A or B. In this case, special measures would still be required when crossing over 

national roads as is necessary directly before the mill entrance. 

Considering route length and sugarcane supply volumes within the study area, while 

disregarding the need for a buffer area around farmsteads and wetlands, Route B seems like 

the desired route selection. Route A was therefore not considered in the economic and 

sensitivity analyses which follow. 

5.2 Economic Analysis Results 

An economic analysis was conducted as described in Section 4.3 which enabled the 

FastTrack solutions for the three vehicles to be directly compared in terms of the differential 

system costs. In this way the optimum vehicle and infrastructural solution could be identified 

for the particular case study. Table 5.1 is a summary of the results with the final cost being 

expressed in terms of the cost in Rands to haul a ton of sugarcane from the start point to the 
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mill. This includes all infrastructural and vehicle repayment concerns as detailed in Section 

4.3. 

Table 5.1 A summary of total system costs assembled to directly compare the three 
FastTrack solutions 

Total road construction cost (R) 

Total road maintenance cost (R) 

Ownership cost (R.h") 

Operational cost (R.h" ) 

Labour costs (R.h") 
Number of vehicles required 

Annual spare capacity (tons) 

Total system cost over 5 years (R) 
Effective cost (R/ton) 
Cost if spare capacity is utilised 
(R/ton) 

Bell 1866 AF 

0.00 

0.00 

166.38 

221.65 

13.92 

6 

2587 

21172405 

60.49 

59.58 

Bell 2306D4x4 

1725340.00 

593405.00 

366.44 

425.15 

13.92 

3 

16184 

21984302 

62.81 

57.50 

M-B Actros 3350/33S 

0.00 

0.00 

200.97 

578.69 

13.92 

3 

848 

21406587 

61.16 

60.98 

The effective cost per ton (Table 5.1) indicates that the three systems return fairly similar 

costs, with a difference of only R 2.32 between the land train and the tractor hilo which are 

the least and most cost effective options respectively. However, after considering the number 

of vehicles required to haul the set crop volume within the limited milling season length and 

the spare capacity available to each, an opportunity to reduce system costs was identified. 

This was based on the assumption that the spare capacity available to each vehicle, after the 

set volume had been delivered, could be rented to hauliers within the surrounding areas. The 

rent set for each vehicle was conservatively assumed to equal the hourly ownership cost for 

each vehicle type (Table 5.1). In the land train case there is a significantly large spare 

capacity of 16 184 tons which could be utilised to service Area A, where 41 200 tons of 

sugarcane within one kilometre of the proposed Route B exist. If the spare capacity was 

rented as described and the generated revenue was used to repay debts then the land train 

system is the most cost effective option with a difference of R 3.48 between it and the 

interlink system (Table 5.1). 

It should be emphasised that the results were based on a five year capital expenditure 

repayment period (CERP). Savings generated utilising the land train system are, thus, 

expected to be more pronounced from year six onwards as road construction costs would be 
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replaced with resurfacing costs, which, due to the assumed preventative maintenance plan (cf. 

Section 4.2.2), are expected to be reduced. 

Under the current described conditions, haulage by means of a road train system, on the 

proposed Route B, is the most cost effective option. 

5.3 Sensitivity Analysis 

Only Route B for the land train system was considered in the sensitivity analysis due to its' 

significance in being the only result, bar Route A, that was not aligned exclusively along 

national roads. In addition, the majority of Route B (76 %) consisted of new road 

construction. It was therefore the aim of this section to determine how sensitive Route B was 

to changes in key input variables and in so doing to assess the sensitivity of FastTrack output 

in general. Further to this the effect of fuel price increases on operational costs are also 

considered. 

The first variable to be manipulated in the analysis was the annual haulage volume of 

sugarcane according to input data from Table 4.2. Routes A and B {cf. Figure 5.2) were again 

output from FastTrack but were only simultaneously produced for the original crop volume 

of 70 000 tons of sugarcane (Figure 5.5). 
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Figure 5.5 Land train routes selected according to 
annual haulage volume. 

A threshold volume of sugarcane to be transported exists in-between 52 500 tons and 63 000 

tons per annum. Below this value it was deemed more cost effective to make use of Route A, 

which, as described in Section 5.1, is slightly longer but makes use of 73 % of existing roads 

en route to the mill. Above the threshold volume, the more direct Route B was selected. This 

outcome demonstrates that, as operational expenses increase due to increases in crop volume, 

operational expenses eventually outweigh capital expenditure. The route that minimises 

operational expenses, i.e. the more direct route, which in this case is Route B, is consequently 

selected. 
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The second input variable adjusted for the sensitivity analysis was the slope climbing ability 

of the Bell 2306D4x4. After running the model with the slopes indicated in Table 4.3, a few 

variations to the original Routes A and B were determined {cf Figure 5.2). Interestingly 

Route B was selected by FastTrack for slopes 5.25 %, 6.3 % and 7.7 %. At slopes 8.75 % and 

10.5 %, which represent a 25 % and 50 % slope climbing improvement for the land train, 

respectively, Route C was produced (Figure 5.6). Route C varies only slightly from the 

original Routes A and B combined {cf Figure 5.2) showing the robustness of the original 

FastTrack Solution {cf Chapter 5.1). 

Harburg 

Legend 
— — Route C (8.75%, 10.5 % slope) 

^ ^ • ~ Route D (3.5 % slope) 
Farm roads 

District gravel roads 

Regional tar roads 

Cost Surface 

High : 110c/pixel 

Low : 50c / pixel 

Figure 5.6 Land train routes selected according 
to vehicle slope limitations. 

Route D is the outcome if the Bell 2306D4X4 was limited to climbing slopes of 3.5 % or less. 

This represents a 50 % restriction on the actual limitation decided upon in Section 4.2.3. 

Route D consists of two routes which separate initially and later rejoin at Point Dl (Figure 

5.6). Following this, the alignment of Route A {cf Figure 5.2) is deemed the most cost 

effective under the conditions and followed toward the mill yard. The two portions of Route 

D differ in length by approximately 200 m but are equal in cost according to FastTrack. If the 

land train were limited to slopes of 3.5 % or less, then a decision between the two branches 
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could be made based on the potential benefit to Area A (cf. Figure 4.2) while considering any 

wetland and dam wall crossings and each routes proximity to farm buildings and worker 

compounds. 

From the two sensitivity analyses carried out it is noted that the model results appear to be 

more sensitive to changes in slope than to changes in annual tonnage. This is affected by the 

geography of the area and a different result should be expected with each new study. The 

results however emphasized the stability of Route B, affirming its selection and 

demonstrating the robustness of FastTrack by not producing inexplicable anomalies. 

After considering the sensitivity of FastTrack output to changes in input variables it was 

decided to investigate the affects that increasing fuel prices would have on the transport 

system costs as reviewed in the economic analysis {cf Section 4.3 and Section 5.2). The 

resulting graph (Figure 5.7) illustrates that as the fuel price increases, the difference in system 

cost between the land train system and the other two systems also increases. 

120.00 

I 
1 

9.87 10.00 12.00 14.00 16.00 18.00 20.00 

Fuel Price (R/l) 

Figure 5.7 The system cost for each solution increases at a different yet constant rate as the 
fuel price increases. 

The land train with its six trailers, road construction costs and maintenance expenses require 

the greatest capital investment. However, as the fuel price increases so the operational 

expenses increase and become more significant than the capital expenditure costs. The 

system with the greatest operational efficiency is therefore rendered the most cost effective 
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option as well. With the current trends of increasing fuel prices, consideration of this on the 

system selection process is essential. 

The sensitivity analysis has shown that FastTrack responded predictably under a range of 

input variables. The decision to select Route B over Route A in Section 5.1 was strengthened 

by the results of the sensitivity analysis as Route B was repeatedly plotted for data both above 

and below the values initialled input into the study. 

5.4 Conclusions 

FastTrack produced three infrastructural solutions for the vehicles modelled according to a 

variety of the input layers. The interlink and tractor hilo solutions followed existing roads en 

route to the mill while the land train alignment followed a more direct path on a proposed 

new road. 

Results from the economic analysis showed that under current conditions the three vehicles 

modelled in FastTrack return fairly similar system costs within the stipulated CERP with the 

land train system offering a marginal cost advantage. Considering a second five year period 

where construction costs for the land train system are expected to drop, in conjunction with 

potential fuel price increases, the construction of Route B and the use of land trains thereon is 

expected to yield significant savings. 

The sensitivity analyses confirmed the decision to select Route B and demonstrated the 

versatility and robust nature of FastTrack. Results indicated that for the particular study area 

FastTrack results are more sensitive to changes in vehicle slope limitations than changes in 

the total volume of sugarcane to be transported. 
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6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 
RESEARCH 

6.1 Conclusions 

It is evident from the literature that infrastructure planning using GIS is superior to traditional 

methods. Although excellent at rapidly identifying the most efficient route based on any 

number of criteria, GIS infrastructure planning models can not yet produce full civil designs. 

Further to this the interpretation of model results often requires consideration of area specific 

social issues including public safety, relocation and political concerns which cannot be 

modelled easily. Complex algorithms identifying the least cost path operate within a GIS 

platform continue to evolve and adapt to suit new applications. As efficient as these models 

may be, the accuracy of the outcome depends on the precision of the input data. 

Model development was aimed at creating a tool to assist in reducing costs in the transport 

sector of the sugar supply chain which contributes significantly to the total production costs 

of the industry. It was hypothesised that a GIS based infrastructure planning model could 

achieve this by identifying optimum routing solutions, per vehicle configuration, from depot 

to mill. The FastTrack model was therefore created and considers many input variables such 

as terrain, land use, distance, total crop volume and vehicle payloads in identifying the most 

cost effective route. An extensive verification process confirmed the functionality of the 

model. FastTrack proved an effective and valuable infrastructure planning tool by having the 

capacity to consider a wide range of attributes over a relatively large area and sufficiently 

propose suitable haulage routes under different assumptions. 

A case study was conducted to demonstrate the capabilities of FastTrack. An area with a 

range of land uses and slopes, containing a network of farm infrastructure, and bordered by 

national roads and near the Noodsberg sugar mill in KwaZulu-Natal, was selected for this 

purpose. Data was collected for three different vehicle configurations, namely the Bell 1866 

AF tractor hilo, the Bell 2306D4x4 land train and the Mercedes-Benz Actros 3350/33S 

interlink, varying in capacity and potential speed among other attributes. Despite the 

Euclidean distance being almost 20 % shorter in length than the route currently utilised by 

haulage vehicles from the selected start point, only the proposed alignment for the land train 

offered a viable alternative to travelling on existing national roads. An economic analysis on 
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the results for the three vehicles identified that under current conditions the land train system, 

including the construction and maintenance of new road infrastructure, was the most cost 

effective transport solution. A variation of the economic analysis identified an increasing 

need for efficient transport systems as fuel prices increase. This strengthens the case for 

introducing land trains into the study area, as does the assumption that the cost savings 

derived from the land train system would increase during a second five year period as the 

proposed road would have been repaid. 

A sensitivity analysis conducted on the proposed land train alignment highlighted the 

robustness of the FastTrack model by generating predictable results. It can be concluded 

therefore that GIS based infrastructure planning models, such as FastTrack, can indeed assist 

in reducing sugarcane haulage costs by identifying vehicle specific least-cost haulage routes. 

6.2 Recommendations for Future Research 

The information gathered during the case study was sourced from industry experts and 

researchers, including many industry guided assumptions. It is, however, proposed that 

several aspects of the FastTrack model can be expanded to include greater detail with the 

intention of increasing the thoroughness of future infrastructure planning studies. 

Recommendations for future research are listed below, viz. 

• Currently the FastTrack model is able to plot the most efficient haulage route for any 

vehicle modelled based on a number of input variables including the performance 

capabilities of the selected vehicle. There is, however, no feedback facility which 

would enable FastTrack to propose an alignment based on a combination of vehicle 

types which may already be available to a haulier. This would be a major addition and 

would require the remodelling of many aspects of FastTrack to include several loops 

and iterations. 

• The conversion of the road reserve next to a national road into a suitable gravel road 

for bulk agricultural haulage was not considered. Potential benefits of utilising this 

road reserve include reduced construction costs due to prior preparation of the road 

shoulder and zero expropriation costs. National road maintenance costs are also 

reduced due to the decrease in heavy vehicle traffic. If this were agreed upon by the 
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regional roads authority then a buffer could be included on either side of the national 

roads in the study area. The buffer would be incorporated into the land use layer of 

FastTrack and would contain the relevant construction, expropriation and 

maintenance cost information. 

• It is recommended that a function which correlates vehicle maintenance cost to road 

surface type be added to FastTrack. Data were gathered for each vehicle type in the 

case study based on conditions that it was likely to experience. By differentiating 

between vehicle maintenance costs according to road surface, a greater level of 

accuracy will added to FastTrack. 

• It was deemed out of project scope to consider loading and infield operations. Adding 

a module to consider these and the costs involved with double handling, would 

broaden the scope of FastTrack. 

• The model was constructed and operates within ArcGIS 9.2. It is recommended that 

the model be constructed in other GIS software packages which perhaps use different 

least cost algorithms. This would either confirm the results already obtained or offer 

an alternative to users. This would be of particular use if it were found that one 

algorithm performed better on a certain terrain type than another. Further to this, 

linking FastTrack to civil packages could assist in determining accurate cut and fill 

estimations while including soil specific costs would improve construction cost 

estimations. 

• It is recommended that an environmental impact assessment (EIA) be conducted on 

all new road alignments proposed by FastTrack. 

• Many of the system costs considered in the economic analysis such as ownership and 

operational costs could be included as broad cost surfaces within FastTrack. This 

would remove the need to utilise economic analyses to compare and quantify 

FastTrack results. 
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• The model is currently not user friendly. Programming is required to develop an input 

window where maps and excel tables can be added and where the model can be run at 

the click of a button. The same applies to developing an easily understood output 

showing the breakdown of costs for each solution. This would enable FastTrack to 

efficiently consider numerous transport combinations and would allow for easy 

comparisons between solutions. 

• Off loading at the mill will need to change to accommodate a land train and to avoid 

delays to other vehicles. The cost of these changes also needs to be considered in a 

whole system change analysis. 
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8 APPENDICES 

Appendix Al. Summary of Model Inputs 

Input 
Fuel 

Construction 
District tar 

District gravel 

Farm gravel 

Everywhere else 

Slope adjustment 
R50000 extra 

R100000 extra 

R200000 extra 

R1000000 extra 

Maintenance 
District tar 

District gravel 

Farm gravel 

Everywhere else 

Landuse 
Sugarcane 

Forest (plantation) 

Farm buildings 

Dams 

Riparian zones 

Pylons 

Land under pylons 

District tar 

District gravel 

Farm gravel 

Vehicle Type (R/pixel)* 

1866 AF 
0.048 

2306 D 
0.062 

Actros 3350 
0.052 

0.000 

0.082 

0.102 

0.123 

0.000 

0.326 

0.407 

0.489 

0.000 

0.183 

0.229 

0.274 

0.020 

0.041 

0.082 

0.409 

0.081 

0.163 

0.326 

1.629 

0.046 

0.091 

0.183 

0.914 

0.015 

0.041 

0.041 

0.041 

0.611 

0.163 

0.163 

0.163 

0.034 

0.091 

0.091 

0.091 

Expropriation costs 
0.012 

0.009 

0.817 

0.817 

0.082 

1.226 

0.012 

0.000 

0.000 

0.000 

0.049 

0.037 

3.257 

3.257 

0.326 

4.886 

0.049 

0.000 

0.000 

0.000 

0.027 

0.021 

1.829 

1.829 

0.183 

2.743 

0.027 

0.000 

0.000 

0.000 

*R/pixel/consignment based on the carrying capacity of each vehicle and the volume of 

sugarcane to be transported each season to ensure repayment of capital expenditure within a 

period of five years as discussed in Sections 4.3 and 5.2. 
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Appendix Bl. Bell Equipment (PTY) LTD Costing Model for the Bell 1866AF 

BELL EQUIPMENT Co.S.A.(PTY) LTD. MACHINE COST ANALYSIS 

MACHINE DESCRIPTION 

OPERATION 

STUDY FOR 

PREPARED BY 

1ELL1866AF with standard walk ing b e a m axle cane trailer. 

HAULING SUGAR CANE 

Alasdair Harris 

Atasdair Harris 

NOTE: ALL FIGURES QUOTED ARE ESTIMATES.SITE SPECIFIC 1 ASSUME FULLY TRAINED OPERATORS 

1.0 COST ANALYSIS 

1.1 OWNERSHIP COSTS 

Machine Price,Exc.VAT 860000 Rands 

Trailer cost, Exc. VAT 430000 Rands 

Less Cost of Tyres 0 Rands 

Residual Va lue® 20% 172000 Rands 

trailer Residual 50% 215000 Rands 

Paid Hours/Shift 12.00 Hours 

Mach. ld le Time/Shift 2.00 Hours 

Machine Avai lab i l i ty 90 % 

Av.Mach.Hrs/Shift 9.00 Hours 

Machine Utilisation 75 % 

No.Mach.Shitts/Day 1 # 

Av.Mach.Hrs/Day 9.00 Hours 

Avail.Work.Days/Yr. 200 Days 

Mach. ld le Days/Year 0 Days 

Annual Hours Worked 1800 Hours 

Machine Lite/Years 6.4 Years 

Machine Lite/Hours 11500 Hours 

Interest Rate 14.50 % 

LicS.lns,%Mach. Price 3 .0% 

Monthly Installment 22807 Rands 

Annual Installment 273682 Rands 

Annual Cost Llc&lns. 25800 Rands 

Annual Ownership Cost 299482 Rands 

Ownership.Cosl/Hr. 166.38 R/Hr 

2.0 IDLE TIME ANALYSIS 

2.1 DAILY MAINTENANCE 

Mins./Shift 30 Mlns 

2.2 REST ALLOWANCE 

% Paid Hours/Shitl 0 % 

Mins./Shift 0 Mins 

2.3 WAITING TIM 

% Pald.Hours/Sh' ft 0 % 

Wait Time.Mins/Shlft 0 Mins 

.2 OPTRATING COSTS 

Waint.% Cap.Cost/lOOOOHrs 

uel Consumption 

Fuel Cost 

Oil,% Fuel Consumption 

Oil Cost 

yres: 

:ront 

Rear 

Trailer 

Qty. 

2 

2 

4 

R/Tyre 

5000 

15000 

8000 

Maintenance,Cost/Hr. 

Fuel,Cost/Hr. 

Oi l , Cost/Hr. 

Tyres,Cost/Hr. 

Operating,Cost/Hr. 

4 5 % 

15.0 L/Hr 

9.87 R/L 

4 . 0 % 

26.78 R/L 

•tours 

3000 

4000 

4000 

38.70 R/Hr 

148.05 R/Hr 

16.07 R/Hr 

18.83 R/Hr 

221.65 R/Hr 

1.3 LABOUR COSTS 

Driver Wage/Shift 

No. Drivers/Shift 

Labour Wage/Shift 

No.Lobourers/Shlft 

Lab.O/Heads.% Wage 

Supervision.% wage 

Dir.Labour,Cost/Hr. 

Lab.O/Head,Cost/Hr. 

Supervision,Cost/Hr. 

Labour,Cost/Hr. 

1.4 SUMMARY 

Ownership,Cost/Hr. 

Operating,Cost/Hr. 

Labour.Cost/Hr. 

Total, Cost/Hr. 

167.00 Rands 

1 # 

0.00 Rands 

0 # 

0 % 

0 % 

13.92 R/Hr 

0.00 R/Hr 

0.00 R/Hr 

13.92 R/Hr 

166.38 R/Hr 

221.65 R/Hr 

13.92 R/Hr 

401.95 R/Hr 

3.0 WORK STUDY ANALYSIS 

3.1 AVERAGE TRAILER LOAD 

Average load 

3.2 NON PRODUCTIVE TRAVEL TIME 

Mins./Shift 

3.3 LOADING TIME 

Enter Rack 

l o a d Trailer 

Exit rack 

Loading Time 

14.3 Tons 

20.0 Mlns 

3.0 Mins 

14.3 Mlns 

3.0 Mins 

20.3 Mins 

3.5 TRAVELLING SPEEDS 

Av.Speed Loaded 

Av.Speed Empty 

3.5 OFFLOADING TIME 

Enter Depot 

Off load 

Exit Depot 

c leaning 

Off loading Time 

30.0 Km/Hr 

50.0 Km/Hr 

60.0 Mins 

2.9 Mlns 

5.0 Mlns 

5.0 Mlns 

729 Mlns 

3.6 REQUIRED ANNUAL PRODUCTION 

Req.Annual Prod. 70000 Ions 

4.0 SUMMARY 

ROAD 

LEAD 

DIST 

/Km 

8.0 

LOADS/ 

SHIFT 

4.9 

TONS/ 

WORK 

HOUR 

7 

TONS/ 

SHIFT® 

100% 

AVAIL. 

70 

TONS/ 

ANNUM® 

90% 

AVAIL. 

12613 

NON PROD. 

TRAVEL TIME 

Rand/ 

TON 

1.91 

Rand/ 

TON.Km 

0.24 

TRAVEL TO & 

FROM DEPOT 

M i n / 

LOAD 

25.6 

Rand/ 

TON 

11.99 

Rand/ 

TON.Km 

1.50 

10.0 I 4.6 I 7 I 66 11840 | 2.04 | 0.20 I 32.0 I 14.99 I 1.50 

Total cos of hau lage 4234481 This equ lis the cc st of haula ge for 5.7 

LOADING 

Rand/ 

TON 

9.51 

Rand/ 

TON.Km 

1.19 

9.51 | 0.95 

36 vehicle + owner 

OFFLOADING 

Rand/ 

TON 

34.13 

Rand/ 

lON.Km 

4.27 

NO. OF 

UNITS 

REQ. 

5.550 

34.13 | 3.41 | 5.912 

hip cost or (6-5.78 6) vehicles 

TOTAL 

COST 

Rand/ 

TON 

57.55 

TOTAL 

COST 

Rand/ 

TON.Km 

7.19 1 

60.67 | 6.07 

62 



Appendix B2. Bell Equipment (PTY) LTD Costing Model for the Bell 2306D4x4 

BELL EQUIPMENT Co.S.A.(PTY) LTD. MACHINE COST ANALYSIS 

MACHINE DESCRIPTION 

OPERATION 

STUDY FOR 

PREPARED BY 

BELL 2306D l 6 w a l k i n g b e a m s u g a r c a n e t r a i l e r s . 

HAULING SUGAR CANE 

A l a s d a i r Harr is 

A l a s d a i r Harr is 

NOTE: ALL FIGURES QUOTED ARE ESTIMATES.SITE SPECIFIC 8. ASSUME FULLY TRAINED OPERATORS 

1.0 COST ANALYSIS 

1.1 OWNERSHIP COSTS 

M a c h i n e Price,Exc.VAT 

Trai ler cost , Exc. VAT 

Less Cost of Tyres 

Res idua l V a l u e @ 

t ra i le r Res idua l 

Pa id Hours/Shi f t 

M a c h . I d l e T ime/Shi f t 

M a c h i n e A v a i l a b i l i t y 

Av .Mach .H rs /Sh i f t 

M a c h i n e Ut i l i sa t ion 

N o . M a c h . S h i t t s / D a y 

A v . M a c h . H r s / D a y 

A v a i l . W o r k . D a y s / Y r . 

M a c h . I d l e D a y s / Y e a r 

A n n u a l Hours W o r k e d 

M a c h i n e L i fe /Years 

M a c h i n e L i fe /Hours 

In terest Rate 

L i c i l n s , % M a c h . P r i c e 

M o n t h l y i n s t a l l m e n t 

A n n u a l I n s t a l l m e n t 

A n n u a l Cost L ic&lns. 

A n n u a l O w n e r s h i p Cost 

Owne r sh ip , Cos t /Hr . 

1470238 Rands 

1500000 Rands 

0 Rands 

20% 294048 Rands 

50% 750000 Rands 

12.00 Hours 

2.00 Hours 

90 % 

9.00 Hours 

75 % 

1 # 

9.00 Hours 

200 Days 

0 Days 

1800 Hours 

4.4 Years 

11500 Hours 

14.50 % 

3 . 0 % 

51290 Rands 

615480 Rands 

44107 Rands 

659587 Rands 

366.44 R/Hr 

2 0 IDLE TIME ANALYSIS 

2.1 DAILY MAINTENANCE 

Mins . /Sh i f t 

2.2 REST ALLOWANCE 

% Paid Hours/Shi f t 

M ins . /Sh i f t 

2.3 WAITING TIM 

% Pa id .Hours /Sh i ft 

W a i t T i m e . M l n s / S h l f t 

30 M ins 

0 % 

0 M i n s 

0 % 

0 M ins 

1.2 OPERATING COSTS 

M a i n t , % Cap.Cost/ lOOOOHrs 

Fuel C o n s u m p t i o n (+15% for t e r r a i n ) 

Fuel Cost 

O i l , % Fuel C o n s u m p t i o n 

O i l Cost 

Tyres: 

Front 

Rear 

Tra i le r 

Q t y . 

2 

2 

24 

R/Tyre 

22000 

22000 

22000 

M a i n t e n a n c e , C o s t / H r . 

Fuel ,Cost /Hr . 

O i l , Cos t /Hr . 

Tyres ,Cost /Hr . 

O p e r a t i n t I, Cost /Hr . 

4 5 % 

18.4 L/Hr 

9.87 R/L 

4 . 0 % 

26.78 R/L 

Hours 

3000 

4000 

4000 

66.16 R/Hr 

181.61 R/Hr 

19.71 R/Hr 

157.67 R/Hr 

425.15 R/Hr 

.3 LABOUR COSTS 

Driver W a g e / S h i f t 

Mo.Dr ivers/Shi f t 

Labou r W a g e / S h i f t 

"Jo. Labourers /Sh i f t 

L a b . 0 / H e a d s , % W a g e 

Supe rv i s i on ,% w a g e 

D i r .Labour ,Cos t /H r . 

Lab . O / H e a d , Cost /Hr . 

Superv i s ion ,Cos t /Hr . 

L a b o u r , Cost /Hr . 

1.4 SUMMARY 

O w n e r s h i p , C o s t / H r . 

O p e r a t i n g , Cost /Hr . 

Labou r ,Cos t /H r . 

To ta l , Cost /Hr . 

167.00 Rands 

1 # 

0.00 Rands 

0 # 

0 % 

0 % 

13.92 R/Hr 

0.00 R/Hr 

0.00 R/Hr 

13.92 R/Hr 

366.44 R/Hr 

425.15 R/Hr 

13.92 R/Hr 

805.50 R/Hr 

3.0 WORK STUDY ANALYSIS 

3.1 AVERAGE TRAILER LOAD 

A v e r a g e l o a d 

3.2 NON PRODUCTIVE TRAVEL TIME 

Mins . /Sh i f t 

3.3 LOADING TIME 

Enter R a c k 

L o a d Tra i ler 

Exit r a c k 

L o a d i n g T ime 

57.0 Tons 

20.0 M i n s 

3.0 M i n s 

57.0 M ins 

3.0 M ins 

63.0 M ins 

3.5 TRAVELLING SPEEDS 

A v . S p e e d L o a d e d 

A v . S p e e d Empty 

3.5 OFFLOADING TIME 

Enter Depot 

O f f l o a d 

Exit Depo t 

C l e a n i n g 

O f f l o a d i n g T ime 

19.0 K m / H r 

28.0 Km/Hr 

60.0 M l n s 

11.4 M l n s 

5.0 M i n s 

30.0 M i n s 

106.4 M l n s 

3.6 REQUIRED ANNUAL PRODUCTION 

R e q . A n n u a l Prod. 70000 I o n s 

4.0 SUMMARY 

ROAD 

LEAD 

DIST 

/ K m 

6.0 

9.3 

10.0 

LOADS/ 

SHIFT 

2.9 

2.7 

2.6 

TONS/ 

WORK 

HOUR 

17.10 

15.92 

15.33 

TONS/ 

SHIFT® 

100% 

A V A I L . 

165 

154 

148 

TONS/ 

A N N U M ® 

90% 

AVAIL . 

29754 

27702 

26676 

N O N 

TRAVE 

R a n d / 

TON 

1.62 

1.74 

1.81 

i o t a l an n u a l cos t of h a u l a g e 

PROD. 

LTIME 

R a n d / 

TON.Km 

0.27 

0.19 

0.18 

| 3933111 

TRAVEL TO & 

FROM DEPOT 

M i n / 

LOAD 

31.8 

49.3 

53.0 

R a n d / 

TON 

7.49 

11.61 

12.48 

R a n d / 

TON.Km 

1.25 

1.25 

1.25 

T h l s i equals cos of h a u l a 

LOADING 

R a n d / 

TON 

14.84 

14.84 

14.84 

R a n d / 

I O N . K m 

2.47 

1.60 

1.48 

ge for 2.43 ' v e h i c l e 

OFFLOADING 

R a n d / 

TON 

25.06 

25.06 

25.06 

R a n d / 

TON.Km 

4.18 

2.69 

2.51 

N O . OF 

UNITS 

REQ. 

2.353 

2.527 

2.624 

• owners f i p cos t fc r (3-2.437) 

TOTAL 

COST 

R a n d / 

TON 

49.01 

53.25 

54.19 

IOTAL 

COST 

R a n d / 

TON.Km 

8.17 

5.73 

5.42 

veh i c l es 

63 



Appendix B3. Bell Equipment (PTY) LTD Costing Model for the Mercedes-Benz Actros 
3350/33S 

BELL EQUIPMENT Co.S.A.(PTY) LTD. MACHINE COST ANALYSIS 

MACHINE DESCRIPTION 

OPERATION 

STUDY FOR 

PREPARED BY 

BELL1866 & TANDEM TRAILERS. 

HAULING SUGAR CANE 

Alasdalr Harris 

Alasdair Harris 

NOTE: ALL FIGURES QUOTED ARE ESTIMATES.SITE SPECIFIC & ASSUME FULLY TRAINED OPERATORS 

1.0 COST ANALYSIS 

1.1 OWNERSHIP COSTS 

Machine Price.Exc.VAT 

Trailer cost, Exc. VAT 

Less Cost ot Tyres 

Residual Value® 

trailer Residual 

Paid Hours/Shift 

Mach.ldle Time/Shift 

Machine Availabil i ty 

Av.Mach.Hrs/Shift 

Machine Utilisation 

No.Mach.Shifts/Day 

Av.Mach.Hrs/Day 

Avail.Work.Days/Yr. 

Mach.ldle Days/Year 

Annual Hours Worked 

Machine Life/Years 

Machine Lite/Hours 

Interest Rate 

l ic&lns,%Mach.Price 

Monthly Installment 

Annual Installment 

Annual Cost Llc&lns. 

Annual Ownership Cost 

Owner ship,Cost/Hr. 

999999 Rands 

570000 Rands 

0 Rands 

20% 200000 Rands 

50% 285000 Rands 

12.00 Hours 

2.00 Hours 

90% 

9.00 Hours 

75% 

1 # 

9.00 Hours 

200 Days 

0 Days 

1800 Hours 

6.4 Years 

11500 Hours 

14.50 % 

3.0% 

27645 Rands 

331743 Rands 

30000 Rands 

361743 Rands 

200.97 R/Hr 

2.0 IDLE TIME ANALYSIS 

2.1 DAILY MAINTENANCE 

Mins./Shlft 

2.2 REST ALLOWANCE 

% Paid Hours/Shift 

Mins./Shift 

2.3 WAITING TIM 

% Pald.Hours/Sh ft 

Walt Time.Mins/Shifl 

30 Mins 

0 % 

0 Mins 

0 % 

0 Mins 

1.2 OPERATING COSTS 

Moint,% Cap.Cost/lOOOOHrs 

Fuel Consumption 

Fuel Cost 

Oil,% Fuel Consumption 

Oil Cost 

Fyres: 

Front 

Rear 

Trailer 

Qty. 

2 

8 

16 

R/Tyre 

6000 

6000 

6000 

Maintenance,Cost/Hr. 

Fuel,Cost/Hr. 

Oil, Cost/Hr. 

Tyres,Cost/Hr. 

Operatin g,Cost/Hr. 

4 5 % 

45.0 L/Hr 

9.87 R/L 

4.0% 

26.78 R/L 

Hours 

3000 

3000 

4500 

45.00 R/Hr 

444.15 R/Hr 

48.20 R/Hr 

41.33 R/Hr 

578.69 R/Hr 

1.3 LABOUR COSTS 

Driver Wage/Shift 

No.Drivers/Shift 

.abour Wage/Shift 

Nlo.Labourers/Shift 

Lab.O/Heads.% Wage 

Supervision,% wage 

Dir.Labour,Cost/Hr. 

Lab.O/Head,Cost/Hr. 

Supervision,Cost/Hr. 

Labour,Cost/Hr. 

1.4 SUMMARY 

Owner ship,Cost/Hr. 

Operating, Cost/Hr. 

Labour,Cost/Hr. 

Total, Cost/Hr. 

167.00 Rands 

1 # 

0.00 Rands 

0 # 

0 % 

0 % 

13.92 R/Hr 

0.00 R/Hr 

0.00 R/Hr 

13.92 R/Hr 

200.97 R/Hr 

578.69 R/Hr 

13.92 R/Hr 

793.57 R/Hr 

3.0 WORK STUDY ANALYSIS 

3.1 AVERAGE TRAILER LOAD 

Average load 

3.2 NON PRODUCTIVE TRAVEL TIME 

Mlns./Shift 

3.3 LOADING TIME 

Enter Rack 

Load Trailer 

Exit rack 

Loading Time 

32.0 Tons 

20.0 Mins 

3.0 Mins 

32.0 Mins 

3.0 Mins 

38.0 Mins 

3.5 TRAVELLING SPEEDS 

Av.Speed Loaded 

Av.Speed Empty 

3.5 OFFLOADING TIME 

Enter Depot 

Offload 

Exit Depot 

cleaning 

Offloading Time 

40.0 Km/Hr 

60.0 Km/Hr 

60.0 Mins 

6.4 Mins 

5.0 Mins 

10.0 Mins 

81.4 Mins 

3.6 REQUIRED ANNUAL PRODUCTION 

Req.Annual Prod. 70000 Tons 
4.0 SUMMARY 

ROAD 

LEAD 

DIST 

/Km 

8.0 

LOADS/ 

SHIFT 

4.2 

TONS/ 

WORK 

HOUR 

14 

10.0 [ To \ 13 

TONS/ 

SHIFT® 

100% 

AVAIL. 

134 

TONS/ 

ANNUM® 

90% 

AVAIL. 

24192 

NON PROD. 

TRAVEL TIME 

Rand/ 

TON 

1.97 

Rand/ 

TON.Km 

0.25 

TRAVEL TO 8. 

FROM DEPOT 

Mln/ 

LOAD 

20.0 

Rand/ 

TON 

8.27 

Rand/ 

TON.Km 

1.03 

128 23040 2.07 | 0.21 | 25.0 I 10.33 | 1.03 

Total cos ' of harvest 4281317 This equ< lis the cc st of haula ge for 2.9 

LOADING 

Rand/ 

TON 

15.71 

Rand/ 

TON.Km 

1.96 

15.71 | 1.57 

64 vehicle • ownersl 

OFFLOADING 

Rand/ 

TON 

33.64 

Rand/ 

TON.Km 

4.21 

NO OF 

UNITS 

REQ. 

2.894 

33.64 | 3.36 | 3.038 

ip cost fc « (3-2.964 1 vehicles 

TOTAL 

COST 

Rand/ 

TON 

59.58 

TOTAL 

COST 

Rand/ 

TON.Km 

7.45 

61.75 6.17 

64 


