MINERALOGY AND GEOCHEMISTRY OF DETRITAL RUTILE FROM THE SIBAYA FORMATION, KWAZULU-NATAL.

by

SIKSHA BRAMDEO

Submitted in fulfilment of the requirements for the Master's degree in Science in the Discipline of Geology at the University of Durban-Westville January 2002

Supervisor: Professor J.N. Dunlevey

÷

DECLARATION

I declare this is my original work, both in conception and in execution, except where specific acknowledgement is made to work of others.

Brando

S. Bramdeo

Date:January 2002 Place: Durban

TABLE OF CONTENTS

Abstract	i
Acknowledgements	iv
1 1 Titanium Deposits	2
1.2 South Africa and the World Titanium Market	ے ل
1.3 South African Titanium Deposits	5
1.4 Titanium Mineral Recovery from Placer Deposits	7
1.5 Rutile recovery problems	10
CHAPTER TWO: REGIONAL GEOLOGY	
2.1 Overview	11
2.1 Study Area	11
2.3 Stratigraphy Of KwaZulu-Natal	13
2.4 Cainozoic Sediments	15
2.5 Revised Stratigraphy	16
2.5.1 Uloa Formation	18
2.5.2 Umkwelane Formation	18
2.5.3 Port Durnford Formation	19
2.5.4 Kosi Bay Formation	19
2.5.5 Kwambonambi Formation	20
2.5.6 Sibaya Formation	20
CHAPTER THREE: MINERAL PROCESSING	
3.1 Overview of mineral processing	21
3.2 Heavy Mineral Extraction at Richards Bay	21
3.3 Dune Rehabilitation	22
3.4 Mineral Separation	23
3.5 Separation Techniques	25
3.5.1 Magnetic Separation	25
3.5.2 Electrostatic Separation	26
3.6 Laboratory Separation Results	27
3.7 Rutile Distribution In the Heavy Mineral Concentrate	32
3.8 Ilmenite sub-fractions	35
3.8.1 Mineralogy	37
3.9 Mag Others sub-fractions	38
3.9.1 Mineralogy	38

CHAPTER FOUR: RUTILE MINERAL CHEMISTRY	
4.1 Crystal Structure	41
4.2 Rutile Mineralogy	44
4.3 Solid Solution	46
4.4 Rutile Chemistry	49
4.4.1 Hydrogen in Rutile	49
4.4.2 TiO ₂ -NbO ₂ -TaO ₂ Relationship	50
4.4.3 Ti ³⁺ and Fe ³⁺ in rutile	51
4.4.4 Aluminium in rutile	52
4.4.5 Niobium and Tungsten in rutile	52
4.4.6 Tungsten in rutile	53
4.4.7 Niobium and chromium in rutile	54
4.4.8 Chromium in rutile	55
4.4.9 Zirconium in rutile	55
4.5 Rutile in geological environments	56
CHAPTER FIVE: DATA ANALYSIS	
5.1 Oversize and Magnetic Fractions	57
5.2 Ilmenite	58
5.2.1 Magnetic Ilmenite	58
5.2.1.1 Pond A	58
5.2.1.2 Pond B	61
5.2.1.3 Pond C	63
5.2.2 Non Magnetic Ilmenite	66
5.2.2.1 Pond A	66
5.2.2.2 Pond B	69
5.2.2.3 Pond C	71
5.3 Mag Others	74
5.3.1 Magnetic Mag Others	75
5.3.1.1 Pond A	75
5.3.1.2 Pond B	77
5.3.1.3 Pond C	80
5.3.2 Non Magnetic Mag Others	83
5.3.2.1 Pond A	83
5.3.2.2 Pond B	85
5.3.2.3 Pond C	88
5.4 Cleaner Mags	91
5.4.1 Pond A	91
5.4.2 Pond B	93

. . •

5.4.3 Pond C	96
5.5 Primary Mags	99
5.5.1 Pond A	99
5.5.2 Pond B	101
5.5.3 Pond C	104
5.6 Primary HT'S Conductors	106
5.6.1 Pond A	106
5.6.2 Pond B	109
5.6.3 Pond C	111
5.7 HT'S Scavengers	114
5.8 HT'S Cleaner Mids	117
5.8.1 Pond A	117
5.8.2 Pond B	119
5.8.3 Pond C	122
5.9 HT'S Cleaner Non-Conductors	125
5.9.1 Pond A	125
5.9.2 Pond B	127
5.9.3 Pond C	130
5.10 HT'S Cleaner Conductors	133
5.10.1 Pond A	133
5.10.2 Pond B	135
5.10.3 Pond C	138

CHAPTER SIX: DISCUSSION

6.1 Rutile Chemistry In Relation To Physical Properties	142
6.1.1 Magnetic effect	142
6.1.2 Electrostatic effect	147
6.1.3 Rutile colour	149
6.2 Overview Of Rutile Geochemistry In Magnetic Fractions	153
6.2.1 Magnetic ilmenite fraction	157
6.2.2 Non magnetic ilmenite fraction	157
6.2.3 Magnetic mag others fraction	157
6.2.4 Non magnetic mag othes fraction	161
6.2.5 Cleaner mags fraction	161
6.2.6 Primary mags	161
6.3 Overview Of Rutile Geochemistry In Electrostatic Fractions	165
6.3.1 Primary HT'S conductors fraction	165
6.3.2 HT's Scavengers fraction of Pond B	165
6.3.3 HT'S Cleaner Mids	165
6.3.4 HT'S Cleaner non-conductors	165

:

6.3.5 HT'S Cleaner conductors	171
6.3.6 A brief summary of radar graphs	171
CHAPTER SEVEN: CONCLUSION	
7.1 Special features of Ponds A, B and C	172
7.1.1 Magnetic ilmenite fraction	172
7.1.2 Non magnetic ilmenite fraction	172
7.1.3 Magnetic mag others fraction	172
7.1.4 Non magnetic mag others fraction	173
7.1.5 Cleaner mags fraction	173
7.1.6 Primary mags fraction	173
7.1.7 Primary HT'S conductor fraction	173
7.1.8 HT'S Scavengers fraction of Pond B	174
7.1.9 HT'S Cleaner Mids fraction	174
7.1.10 HT'S Cleaner non conductors fraction	174
7.1.11 HT'S Cleaner conductors fraction	174
7.2 Rutile chemistry in relation to magnetic susceptibility, electrostatic	175
conductivity and colour	
7.2.1 Magnetic susceptibility	175
7.2.2 Electrostatic conductivity	175
7.2.3 Colour	175
REFERENCE	176
APPENDIX A1 – Electron microprobe analysis APPENDIX A2 – Mineral separation techniques APPENDIX A3 – Electron microprobe data APPENDIX A4 – Electron microprobe analyses of reddish brown, black vellow and blue rutile grains	

black, yellow and blue rutile grains APPENDIX A5 – Colour plates rutile grains

.

LIST OF FIGURES

Fig. 1.3.1	Map displaying heavy mineral deposits along the east and west	6
Fig. 1.4.1	Flow chart illustrating mineral processing at Richards Bay Minerals	8
Fig. 2.2.1	Map of study area and sampling points.	12
Fig. 2.3.1	Schematic representation of the stratigraphy of KwaZulu-Natal.	14
Fig. 2.5.1	Revised stratigraphy of the Zululand coastal plain.	17
Fig. 3.5.1	Laboratory scheme for the separation of heavy mineral	24
	concentrates to produce rutile and zircon products.	
Fig. 3.6.1	Graphic representation of the results for the samples collected	29
	from RBM mining Pond A, B and C.	
Fig. 3.6.2	Laboratory separation for samples collected from RBM mining	31
	Pond A, B and C excluding the dominant ilmenite fraction.	
Fig. 3.7.1	The relative content of homogenous rutile grains in each	33
	fraction.	
Fig. 3.7.2	Ilmenite sub-fractions separated using the Frantz Isodynamic	36
	Magnetic Separator.	
Fig. 3.7.3	Mag others subfractions separated using the Frantz Isodynamic	39
	Magnetic Separator	
Fig. 4.1	Structural arrangement of the ions in titanium dioxide	43
	polymorphs	
Fig 4.2	The TiO_2 -Fe ₂ O ₃ -FeO system showing the extent of high	45
	temperature solid solution	
Fig. 4.3	Plot of ionic charge against ionic radius	48
Fig. 5.2.1.1	Geochemistry of homogenous rutile grains in the magnetic	59
	ilmenite fraction of Pond A	
Fig. 5.2.1.2	Geochemistry of homogenous rutile grains in the magnetic	62
	ilmenite fraction of Pond B	
Fig. 5.2.1.3	Geochemistry of homogenous rutile grains in the magnetic	64
	ilmenite fraction of Pond C	

:

Fig. 5.2.2.1	Geochemistry of homogenous rutile grains in the non magnetic	67
	ilmenite fraction of Pond A	
Fig. 5.2.2.2	Geochemistry of homogenous rutile grains in the non magnetic	70
	ilmenite fraction of Pond B	
Fig. 5.2.2.3	Geochemistry of homogenous rutile grains in the non magnetic	72
	ilmenite fraction of Pond C	
Fig 5.3.1.1	Geochemistry of homogenous rutile grains in the magnetic mag	76
	others fraction of Pond A	
Fig 5.3.1.2	Geochemistry of homogenous rutile grains in the magnetic mag	79
	others fraction of Pond B	
Fig 5.3.1.3	Geochemistry of homogenous rutile grains in the magnetic mag	81
	others fraction of Pond C	
Fig 5.3.2.1	Geochemistry of homogenous rutile grains in the non magnetic	84
	mag others fraction of Pond A	
Fig 5.3.2.2	Geochemistry of homogenous rutile grains in the non magnetic	86
	mag others fraction of Pond B	
Fig 5.3.2.3	Geochemistry of homogenous rutile grains in the non magnetic	89
	mag others fraction of Pond C	
Fig 5.4.1	Geochemistry of homogenous rutile grains in the cleaner mags	92
	fraction of Pond A.	
Fig. 5.4.2	Geochemistry of homogenous rutile grains in the cleaner mags	94
	fraction of Pond B.	
Fig. 5.4.3	Geochemistry of homogenous rutile grains in the cleaner mags	97
	fraction of Pond C.	
Fig. 5.5.1	Geochemistry of homogenous rutile grains in the primary mags	100
	fraction of Pond A.	
Fig. 5.5.2	Geochemistry of homogenous rutile grains in the primary mags	102
	fraction of Pond B.	
Fig. 5.5.3	Geochemistry of homogenous rutile grains in the primary mags	105
	fraction of Pond C.	
Fig. 5.6.1	Geochemistry of homogenous rutile grains in the primary HT'S	107
	conductors fraction of Pond A.	

Fig. 5.6.2	Geochemistry of homogenous rutile grains in the primary HT'S	110
	conductors fraction of Pond B.	
Fig. 5.6.3	Geochemistry of homogenous rutile grains in the primary HT'S	112
	conductors fraction of Pond C.	
Fig. 5.7.1	Geochemistry of homogenous rutile grains in the HT'S	115
	scavengers fraction of Pond B.	
Fig. 5.8.1	Geochemistry of homogenous rutile grains in the HT'S cleaner	118
	mids fraction of Pond A.	
Fig. 5.8.2	Geochemistry of homogenous rutile grains in the HT'S cleaner	120
	mids fraction of Pond B.	
Fig. 5.8.3	Geochemistry of homogenous rutile grains in the HT'S cleaner	123
	mids fraction of Pond C.	
Fig. 5.9.1	Geochemistry of homogenous rutile grains in the HT'S cleaner	126
	non-conductors fraction of Pond A.	
Fig. 5.9.2	Geochemistry of homogenous rutile grains in the HT'S cleaner	128
	non-conductors fraction of Pond B.	
Fig. 5.9.3	Geochemistry of homogenous rutile grains in the HT'S cleaner	131
	non-conductors fraction of Pond C.	
Fig. 5.10.1	Geochemistry of homogenous rutile grains in the HT'S cleaner	134
	conductors fraction of Pond A.	
Fig. 5.10.2	Geochemistry of homogenous rutile grains in the HT'S cleaner	136
	conductors fraction of Pond B.	
Fig. 5.10.3	Geochemistry of homogenous rutile grains in the HT'S cleaner	139
	conductors fraction of Pond C.	
Fig. 6.1.1.1	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	143
	from the magnetic ilmenite fraction.	
Fig. 6.1.1.2	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	143
	from the non magnetic ilmenite fraction.	
Fig. 6.1.1.3	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	145
	from the magnetic mag others fraction.	
Fig. 6.1.1.4	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	145
	from the non magnetic mag others fraction	

-

Fig. 6.1.1.5	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	146
	from the primary mag fraction.	
Fig. 6.1.1.6	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	146
	from the cleaner mag fraction.	
Fig. 6.1.2.1	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	148
	from the primary HT'S conductors fraction.	
Fig. 6.1.2.2	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	148
	from the primary HT'S scavengers fraction.	
Fig. 6.1.2.3	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	150
	from the HT'S cleaner mids fraction.	
Fig. 6.1.2.4	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	150
	from the HT'S cleaner non-conductors fraction.	
Fig. 6.1.2.5	Ternary plot of TiO ₂ , FeO and 'other' oxides for rutile grains	151
	from the HT'S cleaner conductors fraction.	
Fig. 6.1.3.1	Geochemistry of the reddish brown rutile grains from the rutile	152
	product.	
Fig. 6.1.3.2	Geochemistry of the black rutile grains from the rutile product.	154
Fig. 6.1.3.3	Geochemistry of the blue rutile grains from the rutile product.	155
Fig. 6.1.3.4	Geochemistry of the yellow rutile grains from the rutile product.	156
Fig. 6.3.1	Radar plot depicting the mean oxide value for Ponds A, B and	158
	C in the magnetic ilmenite fraction.	
Fig. 6.3.2	Radar plot depicting the mean oxide value for Ponds A, B and	159
	C in the non magnetic ilmenite fraction.	
Fig. 6.3.3	Radar plot depicting the mean oxide value for Ponds A, B and	160
	C in the magnetic mag others fraction.	
Fig. 6.3.4	Radar plot depicting the mean oxide value for Ponds A, B and	162
	C in the non magnetic mag others fraction.	
Fig. 6.3.5	Radar plot depicting the mean oxide value for Ponds A, B and	163
	C in the cleaner mags fraction	
Fig. 6.3.6	Radar plot depicting the mean oxide value for Ponds A, B and	164
	C in the primary mags fraction.	
Fig. 6.4.1	Radar plot depicting the mean oxide value for Ponds A, B and	166
	C in the Primary HT'S conductors fraction.	

- Fig 6.4.2Radar plot depicting the mean oxide value for Ponds A, B and167C in the HT'S scavengers fraction.
- Fig. 6.4.3Radar plot depicting the mean oxide value for Ponds A, B and168C in the HT'S cleaner mids fraction.
- Fig. 6.4.4Radar plot depicting the mean oxide value for Ponds A, B and169C in the HT'S cleaner non conductors fraction.
- Fig. 6.4.5Radar plot depicting the mean oxide value for Ponds A, B and170C in the HT'S cleaner conductors fraction.

LIST OF TABLES

Table 1.1	Composition of some common titanium minerals.	3
Table 1.2.1	World reserves, production and exports of titanium.	4
Table 1.4.1	Ilmenite, rutile and zircon: some products and uses.	9
Table 2.5.1	Summary of the revised stratigraphy of KwaZulu-Natal.	16
Table 3.5.1	Parameters set on the Induced Magnetic Roll (IMR)	26
	separators for magnetic separation of the samples	
	collected from mining Ponds A, B and C.	
Table 3.5.2	Parameters set on the High Tension Separators for	27
	electrostatic separation of the samples collected from	
	Ponds A, B and C.	
Table 3.6.1	Laboratory separation results for the samples collected at	28
	RBM mining Ponds A, B and C.	
Table 3.7.1	Average rutile content in magnetic and electrostatic	32
	fractions.	
Table 3.7.2	Ilmenite sub-fractions using Frantz Isodynamic Separator.	34
Table 3.7.3	Mag-others sub-fractions obtained using Frantz	35
	Isodynamic Separator.	
Table 4.1	Physical properties of the titanium oxide polymorphs.	42
Table 5.2.1.1	A summary of electron microprobe results from 'magnetic	60
	ilmenite' fraction of Pond A.	
Table 5.2.1.2	A summary of electron microprobe results from 'magnetic	63
	ilmenite' fraction of Pond B.	
Table 5.2.1.3	A summary of electron microprobe results from 'magnetic	65
	ilmenite' fraction of Pond C.	
Table 5.2.2.1	A summary of electron microprobe results from 'non	68
	magnetic ilmenite' fraction of Pond A.	
Table 5.2.2.2	A summary of electron microprobe results from 'non	71
	magnetic ilmenite' fraction of Pond B.	
Table 5.2.2.3	A summary of electron microprobe results from 'non	74
	magnetic ilmenite' fraction of Pond C.	

Table 5.3.1.1	A summary of electron microprobe results from 'magnetic	77
	mag others' fraction of Pond A.	
Table 5.3.1.2	A summary of electron microprobe results from 'magnetic	80
	mag others' fraction of Pond B.	
Table 5.3.1.3	A summary of electron microprobe results from 'magnetic	82
	mag others' fraction of Pond C.	
Table 5.3.2.1	A summary of electron microprobe results from 'non	85
	magnetic mag others' fraction of Pond A.	
Table 5.3.2.2	A summary of electron microprobe results from 'non	88
	magnetic mag others' fraction of Pond B.	
Table 5.3.2.3	A summary of electron microprobe results from 'non	90
	magnetic mag others' fraction of Pond C.	
Table 5.4.1	A summary of electron microprobe results from 'cleaner	93
	mags' fraction of Pond A.	
Table 5.4.2	A summary of electron microprobe results from 'cleaner	95
	mags' fraction of Pond B.	
Table 5.4.3	A summary of electron microprobe results from	98
	'cleaner mags' fraction of Pond C.	
Table 5.5.1	A summary of electron microprobe results from 'primary	101
	mags' fraction of Pond A.	
Table 5.5.2	A summary of electron microprobe results from 'primary	103
	mags' fraction of Pond B.	
Table 5.5.3	A summary of electron microprobe results from 'primary	106
	mags' fraction of Pond C.	
Table 5.6.1	A summary of electron microprobe results from 'primary	108
	HT'S conductors' fraction of Pond A.	
Table 5.6.2	A summary of electron microprobe results from 'primary	111
	HT'S conductors' fraction of Pond B.	
Table 5.6.3	A summary of electron microprobe results from 'primary	113
	HT'S conductors' fraction of Pond C.	
Table 5.7.1	A summary of electron microprobe results from 'HT'S	116
	scavengers' fraction of Pond B.	

Table 5.8.1	A summary of electron microprobe results from 'HT'S	119
	cleaner mids' fraction of Pond A.	
Table 5.8.2	A summary of electron microprobe results from 'HT'S	122
	cleaner mids' fraction of Pond B.	
Table 5.8.3	A summary of electron microprobe results from 'HT'S	124
	cleaner mids' fraction of Pond C.	
Table 5.9.1	A summary of electron microprobe results from 'HT'S	127
	cleaner non-conductors' fraction of Pond A.	
Table 5.9.2	A summary of electron microprobe results from 'HT'S	130
	cleaner non-conductors' fraction of Pond B.	
Table 5.9.3	A summary of electron microprobe results from 'HT'S	132
	cleaner non-conductors' fraction of Pond C.	
Table 5.10.1	A summary of electron microprobe results from 'HT'S	135
	cleaner conductors' fraction of Pond A.	
Table 5.10.2	A summary of electron microprobe results from 'HT'S	138
	cleaner conductors' fraction of Pond B.	
Table 5.10.3	A summary of electron microprobe results from 'HT'S	140
	cleaner conductors' fraction of Pond C.	

-

Abstract

Rutile, although not a major component of detrital heavy mineral deposits, is a valuable source of titanium oxide. Theoretically rutile is pure titanium dioxide (TiO₂) and should form white or colourless tetragonal crystals with a density of 4.25gm/ml. However, natural rutile although tetragonal, displays a variety of colours ranging from red through brown to black, yellow or blue, variable density between 4.23 to 5.50g/ml as well as a range in the magnetic susceptibility and electrical conductivity. In addition to these variations exhibited by natural rutile, samples from detrital heavy mineral deposits normally contain, in addition to homogenous grains, composite grains, in which rutile is intergrown with one or more mineral species, commonly quartz, feldspar and ilmenite.

The Sibaya Formation, like most detrital heavy mineral deposits, has a polymictic source, and as such contains rutile grains formed in many different chemical environments. Homogenous rutile grains display a chemical variation with a preference for the select few elements, which are compatible with the rutile cyrstallographic structure. The ions that substitute for titanium (Ti⁴⁺) in the crystal lattice are a reflection of chemical environment in which the crystal formed. The size and charge of the Ti⁴⁺ ion greatly restricts the species that may enter the rutile crystal lattice, with Sb³⁺, V³⁺, Fe³⁺, Cr³⁺, Sn⁴⁺, Mo⁴⁺, W⁴⁺, Mn⁴⁺, Bi⁵⁺, Nb⁵⁺, Ta^{5+} , Sb^{5+} , V^{5+} being theoretically compatible with the size and charge of the Ti^{4+} ion. Electron microprobe analysis of detrital rutile grains from the Sibaya Formation, KwaZulu-Natal show that elements, Nb⁵⁺, Ta⁵⁺, Al³⁺, Zr⁴⁺, Si⁴⁺, Fe³⁺, Cr³⁺, and V⁵⁺, commonly substitute for the Ti⁴⁺ ion. However, Sb³⁺, Sn⁴⁺, Mo⁴⁺, W⁴⁺ and Bi⁵⁺ were not present at detectable levels implying that the provenance area is not enriched in these elements. Although the high Fe³⁺ values were expected in the rutile grains, as Fe³⁺ is common in many rocks, the high Si⁴⁺ values encountered were not expected, as Si⁴⁺ is not normally compatible with Ti⁴⁺ ion, as noted by their distinct separation in rutilated quartz. The anomalous Si⁴⁺ content of certain grains suggests that within the provenance area rutile

i

bearing rocks formed under unusual conditions, such as high pressure, temperature and silicon activity where the high charge density of the Si⁴⁺ ion would favour the inclusion of Si⁴⁺ into the rutile lattice.

The chemical variation of the rutile grains causes significant variation in the magnetic susceptibility and electrical conductivity, and thus has marked effects on mineral processing, which relies heavily on magnetic and electrostatic separation techniques. The data presented indicates that individual homogenous rutile grains displays significant range of chemical composition, commonly containing other oxides from a fraction of a weight percent to well over 10wt%.

Data plots of TiO₂, FeO and 'other' oxides (Nb₂O₅, Ta₂O₅, Al₂O₃, ZrO₂, SiO₂, Cr₂O₃ and V₂O₃), showed that many of the more magnetic rutile grains appeared to be FeO enriched and contained a higher proportion of 'other' oxides. However, some grains that just had higher proportions of 'other' oxides and a lower FeO content were also magnetic. Thus magnetic susceptibility although strongly influenced by the presence of FeO, can also be enhanced by the substitutions of other oxides.

The vast majority of rutile grains from the electrostatic fractions were relatively TiO_2 pure, and contained low concentrations of 'other' oxides. However, some grains did have slightly enhanced SiO₂ and V₂O₃ concentrations, which appear to enhance the conductivity of the grains.

Four main colour groups were differentiated from the population of rutile grains from the Sibaya Formation, these being, reddish brown, black, blue and yellow. No single oxide seemed solely responsible for the colour of rutile grains. However, the red rutile grains had a slightly but significantly higher Cr_2O_3 and Nb_2O_5 content, whereas black rutile grains appeared to be V_2O_3 and Nb_2O_5 enriched. The blue colour of rutile grains appears to be influenced by a combination of SiO₂, Al₂O₃ and Nb₂O₅ substitutions. The yellow rutile grains had

÷

slightly enhanced FeO and Nb₂O₅ concentrations. Although these differences are very small, trace quantities of certain elements and different combinations of elements can have a strong effect on colour.

Apart from Fe^{3*}, no single element; appears to be solely responsible for variations noted in the physical characteristics (magnetic susceptibility, electrostatic conductivity and colour) of homogenous rutile grains from the Sibaya Formation. However a combination of substituting elements appears to influence magnetic susceptibility and electrical conductivity. An enhanced Fe³⁺ content normally increases the magnetic susceptibility although combinations of other elements may have the same effect on Fe³⁺ poor grains. In general terms, the purer the rutile grain, the more likely it is, to be non-magnetic and conductive. Substitutions of 'other' oxides appear to decrease the conductivity of rutile grains. The relationship between grain colour and chemistry is also not very clear, verifying the widely held view that grain colour is often the result of more than just mineral chemistry.

Acknowledgements

I would like to thank Richards Bay Minerals for sponsoring this project. I am especially grateful to Mr J. Selby and Dr. K. Pietersen for their interest and helpful discussions.

My grateful thanks for assistance go to:

My supervisor, Professor J.N. Dunlevey, for editing several versions of this thesis.

The staff of Richards Bay Mineral for their help during my stay at Richards Bay.

Professor A.A. Mitchell and Mr. T. Govender for the many hours spent helping me understand the finer aspects of EMPA.

Professor M. Gregory and Dr. Y. Naidoo, of the E.M Unit, for assistance during the initial stages of this project.

Mr. S. Pillay and Mr. A. Sudamah for the preparation of the numerous oremounts and thin sections.

The staff and students of the University of Durban-Westville and Rhodes University for the keen interest shown in this study.

Dr. Frank and Heike Holzförster for helping me put together several of the diagrams, as well as for the useful suggestions and advice. I can't thank you enough.

All my friends who were forced, many times, to listen to the trials and tribulations of this project.

Akshi, Shakti and Atish for all their help during the final editing. I don't think the deadline could have been met without your help.

Most importantly to my mum and dad for keeping me focused and always motivating me to do my best in all my years of study.

1. Introduction

Titanium is the ninth most abundant, as well as an economically important element within the earth's crust. Titanium does not occur as a native metal, but is found in a series of oxides and silicate minerals (Gribble, 1988). The two main industrial products from titanium minerals are:

- 1. titanium dioxide pigments
- 2. titanium metal

Currently most of the world's titanium production is used to satisfy the demand for pigment production, with only 5% used in the manufacture of titanium metal and alloys (Wipplinger, 1998).

The pigment industry consumes almost 95% of all titanium minerals mined (Force, 1991). Titanium dioxide, in the form of rutile has a very high refractive index (2.6 - 2.9) and this coupled with non-toxicity and relative abundance makes it a chief opacifying pigment. The main uses of titanium pigments are in the production of paints, lacquers, enamels (57%) plastics (17%), paper (15%), with the rubber, coated fabrics and textiles, printing ink, ceramics and cosmetics industries accounting for virtually all the remainder (Wipplinger, 1998). As TiO₂ is non-toxic, it has replaced virtually all the lead-based compounds and pigments used in the early twentieth century. Titanium dioxide is also able to absorb ultraviolet light, and thus when present in paint slows down the degradation by sunlight. Being non-toxic and biologically inert titanium dioxide is also used as a whitening agent in food preparation (Wipplinger, 1998). Currently there are no known cost-effective alternatives for titanium dioxide pigments (Wipplinger, 1998).

Compared to steel; titanium metal is 45% lighter but virtually as strong. In addition, titanium metal has twice the strength of aluminium while it is only 60% heavier. At normal atmospheric conditions, and even at elevated temperatures and pressures, titanium is resistant to corrosion and is unaffected by sea-water. Titanium metal does

1

not react with organic compounds, strong alkalis, sulphur and sulphur compounds, chlorinated solvents, chlorides and hydrochloric acid (Wipplinger, 1998). The inertness of titanium metal in these environments together with its resistance to corrosion make it ideal for use in electric utilities, chemical processing, off shore oil recovery, oil refining, water desalination, medical prosthetics and implants as well as in marine applications. Furthermore, as titanium metal is stable at high temperature it is widely used in the 'hot zones' of aircraft. To date no suitable substitutes have been found for titanium in these applications (Wipplinger, 1998).

1.1 Titanium Deposits

In titanium mineral mining emphasis is placed on the concentration of titanium within minerals as well as the phase in which titanium is present. Only minerals having titanium present in the oxide phase and in concentrations greater than 25% (Table 1.1) are considered to have economic value (Force, 1991).

Common titanium bearing minerals that are mined are the three polymorphs of TiO_2 (rutile, anatase, brookite), ilmenite (FeTiO₃), and perovskite (CaTiO₃) (Table 1.1).

Titanium minerals are mined from hard crystalline rocks, weathered rocks and unconsolidated sediments (Force, 1991). However, the unconsolidated sediments shoreline placer deposits are much more important than any other deposit type. At present shoreline placer deposits supply more than half the titanium minerals mined (Force, 1991) and contain reserves of many tens of million of tonnes of titanium oxide minerals. In placer shoreline deposits titanium oxides have been concentrated with other heavy minerals by wave action.

2

Minanal	Theoretical	TiO ₂ Content			
Mineral	Formula	%			
OXIDES					
Rutile	TiO ₂	>95			
Anatase	TiO ₂	>95			
Brookite	TiO ₂	>95			
Ilmenite	FeTiO ₃	~52			
Perovskite	CaTiO₃	~59			
Magnetite (titaniferous)	Fe ₃ O ₄	0-15			
SILICATES					
Titanite	CaTiSiO ₅	~41			
Melanitic garnet	Ca ₃ Fe ₂ Si ₃ O ₁₂	0-17			
Biotite	K ₂ (Mg,Fe) ₄ (Fe,Al,Ti) ₂	0-6			
	Si ₆ Al ₂ O ₂₀ (OH,F) ₄	0-0			
Calaia amphihalaa	(Na,K)Ca ₂ (Mg,Fe,Al) ₅	0-10			
	Si ₆ Al ₂ O ₂₂ (OH,F) ₂				
Augite (titanaugite)	Ca(Mg,Fe,Ti)(Si,Al) ₂ O ₆	0-9			

Table 1.1 Composition of some common titanium minerals

The value of shoreline placer deposits is further enhanced by the presence of several other economically important accessory minerals such as zircon and monazite. Weathering within placer deposits further enhances the titanium dioxide content as ilmenite loses iron to produce a titanium rich ilmenite, which can be refined using the chloride process. The chloride process converts TiO₂ to TiCl₄ that can be used either for the production of titanium pigments or titanium metal. The chloride process requires a high TiO₂ feedstock as it can be poisoned by some trace elements. The combination of having rutile, ilmenite, and enriched ilmenite together with a range of other economically important accessory minerals all in loose, well sorted sediments makes mining shoreline

placer deposits easier and more economically attractive than almost any other type of titanium deposit.

1.2 South Africa and the World Titanium Market

Information on titanium reserves, production and exports in the world is summarised in Table 1.2.1. Although South Africa has the world's largest reserve base, it is ranked second in terms of production and is the third largest exporter of titanium. The South African titanium mineral reserves account for 21% of the world's reserve base even though Australia is the world's largest producer and exporter of titanium.

Country	Reserve Base		Production			Exports			
Country	*Mt	%	Rank	*kt	%	Rank	kt	%	Rank
Austrailia	131	18.9	2	1 560	33.8	1	1 350	37.2	1
South Africa	146	21.0	1	1 043	22.6	2	526	14.5	3
Canada	36	5.2	8	890	19.3	3	800	22.0	2
Norway	40	5.8	7	264	5.7	4	[#] 401	11.0	4
India	46	6.6	5	214	4.6	5	[#] 50	1.4	7
Ukraine	16	2.3	10	150	3.2	6	212	5.8	5
USA	77	11.1	4	140	3.0	7	24	0.7	9
Malaysia	1	0.4	11	125	2.7	8	[#] 115	3.2	6
China	41	5.9	6	75	1.6	9	19	0.5	10
Brazil	103	14.9	3	60	1.4	10	-	_	-
Sri Lanka	18	2.6	9	20	0.4	11	30	0.8	8
Other	37	5.3	-	80	1.7	-	106	2.9	-
Total	692	100.0		4 621	100.0		3 633	100.0	
Notes: *	Metal c	ontent		# 1996	6 figures		- N	o data	

 Table 1.2.1
 World reserves, production and export of titanium, 1998 (Joseph 2000)

kt:thousand tons

Reviews in 1999, of the titanium feedstock market predicted a supply deficit early in the year 2000 (Murphy and Taylor, 1999). The market for titanium is driven by the demand for titanium dioxide pigments, which accounts for about 93% of total titanium mineral consumption. In a study undertaken by TZ Minerals International (Murphy and Taylor,

ŀ

Mt: million tons

1999) it was predicted that pigment consumption would increase by as much as 4% in 2000.

In the non-pigment sector (titanium metal and alloys) production declined substantially in 1999 due to a reduced demand, caused by a lower consumption in the commercial aircraft industry (Murphy and Taylor, 1999). The overall demand for titanium mineral can therefore be attributed to strong growth in the pigment industry (Murphy and Taylor, 1999).

In terms of titanium mineral production, Australia remained the largest supplier of titanium, accounting for 33.8% of supply in 1998, followed by South Africa at 22.6% and Canada at 19.3% (Murphy and Taylor, 1999).

1.3 South African Titanium Deposits

Heavy mineral placer deposits occur along both the east and west coasts of South Africa (Fig. 1.3.1). The importance of heavy mineral deposits along the east coast was first established by an extensive prospecting and drilling programme undertaken between 1968 and 1972 (Fockema, 1986). Based on the data obtained Richards Bay Minerals was established in 1975 and following a two year construction period, mining commenced in 1977.

The west coast of Southern Africa has for a long time been exploited for alluvial diamonds (Wipplinger, 1998). Heavy mineral deposits along the west coast were investigated in the 1950's by the Geological Survey of South Africa. However, these mineral deposits have only recently been mined, with mining in this area only commencing in 1994 (Wipplinger, 1998).

5

Fig. 1.3.1 Map showing the distribution of 'heavy mineral' deposits along east and west coast of South Africa.

The heavy mineral deposits along the west coast of South Africa extend from Strandfontein in the south to the mouth of the Orange River in the north. Economically viable heavy mineral deposits approximately 40km north of the Olifants River mouth led to the establishment of an open cast mining operation known as Namakwa Sands in 1994 (Rozendaal, *et al.*, 1999). These deposits have been described as Cainozoic to Recent sediments overlying a Pre-Cambrian Mokolian basement. The heavy minerals are concentrated in semi consolidated to unconsolidated sands of Palaeo and Recent strandlines, as well as in overlying aeolian dunes (Rozendaal, *et al.*, 1999).

1.4 Titanium Mineral Recovery from Placer Deposits

Unconsolidated heavy mineral placer deposits are commonly mined using a suction dredge technique. Artificial ponds are created within the dune fields to carry the suctioncutting dredges and floating gravity concentrators. The loose sand is mined by the dredger, which undercuts the ore-body causing the sand to slump into the pond forming a slurry. The slurry is pumped to the floating concentrator where it is first screened to remove oversize material, roots and other debris. The sand is then passed onto a gravity circuit where a series of Humphries Spirals separate the heavy from the light minerals. The light minerals are discarded as tailings and the heavy minerals undergo further processing (Fig. 1.4.1) in the main mineral separating plant. However, before the heavy minerals leave the floating concentrator magnetite is removed and rejected to tailings using low intensity wet magnets. The tailings from the floating concentrator are used to resculpture dunes prior to revegitation. The heavy mineral fraction known as the heavy mineral concentrate (HMC) is transported to stockpiles and then the Mineral Separation Plant (MSP) where the concentrate is further processed.

Fig. 1.4.1 Flow chart illustrating mineral processing at Richards Bay Minerals

At the MSP, wet high intensity magnets are used to separate the HMC into magnetic, non-magnetic and middling streams (Fig. 1.4.1). The middlings are sent to the monazite stockpile. The magnetic stream is treated by the ilmenite circuit using a roasting process to form two products, titanium slag and pig iron. The non-magnetic stream is processed using a series of dry magnets and electrostatic separators to form a non-magnetic and non-conductive zircon product and a non-magnetic and conductive rutile product. The major uses of the product from the ilmenite, conductive rutile and nonconductive zircon circuits are outlined in Table 1.4.1.

ILMENITE	RUTILE	ZIRCON		
(FeTiO₃)	(TiO ₂)	(ZrSiO₄)		
 High quality pig iron Used in the ductile iron foundry industry and the automotive industry (eg. brake callipers, crankshafts and steering knuckles). Titania slag Used as a basic pigment for paint manufacture. Used in high-quality paper, plastics, textiles, cosmetics, colouring of foodstuffs, white baked enamel finishes on domestic appliances. 	 Rutile sand A raw material used in the production of pigments for paints, plastics, rubber and textiles. Renders a high- quality titanium metal used in aeronautics industry. Used as flux for welding electrodes. Titanium metal Used in air and spacecraft manufacture, surgical, instruments, prosthetics and sporting equipment. 	 Zircon Used in ceramic glazes for tiles and sanitary ware. Used in the production of steel and glass and as a moulding sand in foundries. Coats television screens to protect viewers from x-rays. Used in control rods in nuclear reactors. Used in antiperspirants - the powdery white substance. 		

Table 1.4.1: Ilmenite, rutile and zircon: some products and uses (Coastal and
Environmental Services, 1982).

1.5 Rutile recovery problems

The recovery of valuable rutile involves several technical problems. In contrast to ilmenite, which contains over 40% of iron and can easily be extracted, using magnets; rutile may behave anomalously during mineral processing in the mineral separation plant.

There are two major reasons for the anomalous behaviour of rutile and subsequent losses during mineral separation i.e.:

- 1. the presence of composite grains (grains containing more that one mineral) and,
- 2. the anomalous chemistry of homogenous grains.

Previous studies have revealed that composite rutile grains influence the behaviour of rutile during mineral processing (Mdludlu, 1997). Apparently homogenous grains can sometimes contain up to 15wt% of other elements and this is believed to influence the physical properties, and adversely affect the efficiency of mineral processing (Mdludlu, 1997).

Theoretically rutile is composed of pure titanium dioxide (TiO₂) with predictable physical properties. However, natural rutile is composed of 85-99% titanium dioxide, with a density ranging from 4.23-5.5 g/cm³ (Deer *et al.*, 1985). There is also great diversity in the colour of natural rutile from reddish brown to black, violet, yellow and green.

The large variance in both colour and density shown by rutile can be attributed to the <1 to 15% of the other elements that are compatible with the rutile crystallographic structure (Deer *et al.* 1985). These elements within the rutile structure are also thought to influence the behaviour of rutile during mineral processing. Specifically the magnetic susceptibility and electrical conductivity of the rutile grains appear to be affected by small variations in chemical composition (K. Pietersen, *pers. comm.* 2000).

2. Regional Geology

2.1 Overview

Heavy mineral placer deposits occur intermittently along the west and east coast of Southern Africa (Fig. 1.3.1). At present, the South African titanium mineral industry has two major contributors, Richards Bay Minerals (RBM) and Namakwa Sands. This study involves samples extracted from the Richards Bay placer deposit in KwaZulu-Natal on the eastern coast.

2.2 Study Area

The economically important heavy minerals of the Sibaya Formation studied were obtained from Ponds A, B, and C in the ore body (a shoreline placer deposit) mined by Richards Bay Minerals. The ore body, which is situated in the late Pleistocene to Holocene coastal dune field at the southern end of the Zululand Plain, is approximately 125km in length and on average 5km wide, extends from some 25km south of the town of Richards Bay to 25km north of the St. Lucia Estuary (Fig. 2.2.1).

In the study area the Sibaya Formation rests unconformably upon the underlying Kwambonambi Formation. The heavy mineral suite within these young deposits has been concentrated due to coastal aeolian separation processes. The Kwambonambi and Sibaya Formations were formed by a complex series of marine transgressions and regressions associated with the last ice age (Hobday and Orme, 1974; Hobday and Jackson, 1979). Shallow marine and aeolian environments dominate both the Kwambonambi and Sibaya stratigraphic units, and the sediments were interpreted by Fockema (1986) as comprising of long seif dunes and large 'whale-back' dunes. The seif dunes of the Kwambonambi Formation are parallel to the modern day south-south westerly wind direction, while the 'whale back' dunes formed as seif dunes that migrated

Fig. 2.2.1 Geologic map of the study area indicating sampling points.

inland at an angle to the coast. As this study focuses on the titanium bearing heavy mineral of this shoreline placer deposit, in particular rutile, samples were collected from three currently worked mining ponds, within the RBM mining lease area (Fig. 2.2.1).

The samples collected consisted of the heavy mineral concentrate (HMC) produced by the mining Ponds A, B, and C. The samples were then separated under controlled laboratory conditions and are considered to be the equivalent of RBM's rutile, zircon and ilmenite products.

2.3 Stratigraphy of KwaZulu-Natal

The stratigraphy of KwaZulu-Natal (Fig. 2.3.1) ranges from the highly metamorphosed Archean Kaapvaal Craton of Swazian Age to the unconsolidated sediments of the Maputuland Group (Hugo 1993). The Natal Group rests unconformably on the older rocks of the Natal Structural and Metamorphic Province with a hiatus of approximately 500Ma. The Natal Group is a predominantly sedimentary sequence consisting of feldspathic and micaceous sandstone with subordinate quartz arenite, mudrock and conglomerate (Johnson, 1994). This succession is approximately 600m thick and contains cross-bedding and ripple marks that are preserved within the sandstones (Uken, 1999). Overlying the Natal Group unconformably is the Carboniferous to Lower Jurassic Karoo Supergroup. It forms a sedimentary-volcanic sequence up to 10 000m in thickness. The glacial diamictites, sandstones and shale of Dwyka Group were deposited throughout much of the Karoo Basin and forms the basal unit of the Karoo Supergroup (Smith, et al. 1993). The Dwyka Group is conformably overlain by marine sandstones and shales of the Permian Ecca Group (Johnson, 1994). The Ecca Group marks the environmental transition from glacial (deposits dominated by melt water flooding) to low energy fluvial systems (Smith, 1990). The succeeding Beaufort Group consists of 3000m of fluvial deposits accumulated over a period of 20Ma, was deposited

13

GROUPS AND FORMATIONS		AGE	LITHOLOGY
MAPUTULAND GROUP	Sibaya Formation Kwambonambi Formation Kosi Bay Formation Port Durnford Formation Umkwelane Formation Uloa Formation	Miocene - Recent	sand sand sand, clay sand, silt, clay, shale sandstones calcarenites, conglomerates, coquinas
Z	ULULAND GROUP	Cretaceous	Siltstones, sandstones
KAROO SUPERGROUP	Drakensberg Group Stormberg Group Beaufort Group Ecca Group Dwyka Group	Carboniferous-Jurassic	basalt sandstones, mudstones sandstones, mudstones shales, mudstones diamictites
	NATAL GROUP	Ordovician – Silurian	Sandstones, arkose, quartz- arenites, mudrocks, conglomerates
PONGOLA SUPERGROUP	Mozaan Group Nsuze Group	Namibian	sandstone, conglomerate, banded ironstone, shale basalt, pyroclastics, limestones
NATAL M	ETAMORPHIC PROVINCE	Mokolian	Amphibolites, gneisses, schists, granite, charnokite

Fig. 2.3.1 Schematic representation of the stratigraphy of KwaZulu-Natal.

in a swamp-like environment, giving rise to mudstones containing a rich fossil assemblage (Smith, *et al.* 1993). Immediately overlying the Beaufort Group are the sandstones of the Stormberg Group, which were deposited as large dunes in a desert environment (Smith, *et al.* 1993). Overlying the Stormberg Group is the Drakensberg Group, which consists of a 1.5km thick basalt accumulation. This violent episode of Jurassic volcanism terminated the infilling of the Karoo basin, and signalled the onset of the breakup of Gondwana (Smith, 1990).

The Zululand Group rests unconformably on the Karoo Sequence; the Cretaceous sediments of the Zululand Group are 10 to 733m thick and comprise siltstones and minor sandstones with concretions and shelly layers. Cainozoic sediments of the Maputoland Group accumulated unconformably upon the Zululand Group (SACS, 1980).

2.4 Cainozoic Sediments

Much controversy surrounds the post-Mesozoic stratigraphy of the Zululand coastal plain. Both Hobday and Orme, (1974); and Hobday and Jackson (1979) described the stratigraphy of the Zululand coastal plain, "as units of Recent/Holocene aeolian sediments; overlying a Cainozoic Port Durnford Formation; that has a base comprising of Cretaceous sediments". However, this nomenclature ignored the marked unconformities within the Port Durnford Formation as well as the unconformity between the Port Durnford Formation and the overlying aeolian sediments. The South African Council on Stratigraphy (SACS) Cainozoic Working Group has proposed that the term Port Durnford Formation should be restricted to the lagoonal sediments that were previously termed the Lower Argillaceous Member. The term Kosi Bay Formation was introduced for the red, brown and white sands previously termed the Upper Argillaceous Member of the Port Durnford Formation (Singh 1995; G. Botha *pers. comm.* 1999).

Hobday and Orme (1974) referred to all the Holocene sediments as 'cover-sands', which they considered to have been deposited during a marine transgression. Within these beds, large scale cross-bedding was identified by Hobday and Jackson (1979) who reinterpreted the sands as aeolian coastal dunes formed during a marine regression. Fockema (1986) suggested that the aeolian sediments be divided into older Inland Aeolianites and younger Coastal Aeolianites. SACS (1980) renamed the Inland Aeolianites of Fockema (1986) as the Kwambonambi Formation and the Coastal Aeolianites; as the Sibaya Formation.

2.5 Revised Stratigraphy

The latest informal stratigraphic subdivision (Botha, 1987, Botha *pers. comm.* 1999) of the Zululand coastal plain deposits emphasizes a Maputoland Group subdivided into, Uloa, Umkwelane, Port Durnford, Kosi Bay, Kwambonambi and Sibaya Formations (Fig. 2.5.1 and Table 2.5.1)

Table 2.5.1 Summary of the revised stratigraphy of KwaZulu-Natal (Maud and Botha, 2000)

Formation	Lithology	Age		
Sibaya Formation	Loose, medium to fine grained sands	Present day to Mid		
	forming coastal dune cordon.	Holocene		
Kwambonambi	Brown to grey fine grained,	Late Pleistocene and		
Formation	unconsolidated to semi-consolidated	Holocene		
	sands forming inland dunes.			
Kosi Bay Formation	Lignite and dune sands.	Late Pleistocene		
Port Durnford Formation	Mudstones and clayey sand .	Middle to late		
		Pleistocene		
Umkwelane Formation	Aeolianite and calcarenite.	Pliocene		
Uloa Formation	Calc-arenites, conglomerates and	Mio-Pliocene		
	coquinas			

Fig. 2.5.1 Revised stratigraphy of the Zululand coastal Plain after the Cainozoic Task Group (after Botha, 1987).

2.5.1 Uloa Formation

The Uloa Formation is approximately 10m thick and consists of calcarenites, conglomerates and coquinas (Johnson, 1994). The beds contain a rich assemblage of marine invertebrates, including the distinctive Pecten Beds (SACS 1980). This formation has been dated biostratigraphically as late Miocene to early Pliocene (Johnson, 1994). The concentration of shells in beds of this formation suggests deposition in lag deposits, most likely related to a marine regression (Johnson, 1994), indicating an overall littoral deposition environment.

2.5.2 Umkwelane Formation

The Umkwelane Formation consists of compact, poorly cemented, medium to coarse grained sandstones, interbedded with free flowing coarse sands (Fockema 1986), with intercalated thin gravel beds formed in slightly incised channel beds. Marine shell fragments occur throughout this formation and are sometimes concentrated in shell beds (Fockema, 1986). The top of the Umkwelane Formation has been re-worked, and forms a red, sandy palaeosoil devoid of fossils (Singh, 1995). Fockema (1986) deduced a biostratigraphically constrained Pliocene Age for these strata. The thin gravel beds are considered to represent fluvially confined deposition and the gravel beds in association with shell bearing layers an indication of a marginal marine or lacustrine depositional environment. The Umkwelane Formation is of Pliocene Age and considered to have been deposited during a marine transgression (Fockema, 1986). Taking into account the marine character of the shells the formation, it is considered to have been deposited during a marine transgression (Fockema, 1986).
2.5.3 Port Durnford Formation

The Port Durnford Formation is 4 to 6m thick and, consists of a basal unit of unconsolidated fine-grained sandstones, silts and clays (Johnson, 1994), containing fossil wood and mammal remains as well as fragments of marine invertebrate, and fish (Hobday and Orme, 1974). The Port Durnford Formation is considered to be of mid Pleistocene Age (Singh 1995), and is overlain in places by a lignite bed, up to 0.25m thick and unconsolidated medium-grained sands are characterised by large-scale cross-bedding (Hobday and Orme, 1974). The lignite bed is found in the lower 1.5m of the Kosi Bay Formation.

Grain-size characteristics, the lignite bed and the assemblage of both marine and terrestrial animals together with tree logs suggest a lagoonal or perhaps estuarine depositional environment (Hobday and Orme, 1974) for the Port Durnford Formation.

2.5.4 Kosi Bay Formation

There is a marked erosive unconformity between the Port Durnford Formation and the Kosi Bay Formation. The Kosi Bay Formation overlying the Port Durnford Formation has a thickness of up to 100m. Singh (1995), distinguished three distinct units with gradational contacts in the Kosi Bay Formation; a basal unit consisting of a white clay rich sand; an intermediate unit composed of white clay-rich layer with reddish patches that coalesce towards the top of the unit; and an uppermost unit made up of unconsolidated to semi-consolidated red sands.

Singh (1995) interpreted the Kosi Bay Formation as an aeolian deposit and attributed the variation to weathering and interaction with ground water.

2.5.5 Kwambonambi Formation

The Kwambonambi Formation is composed of brown and grey fine-grained, unconsolidated to semi-consolidated sands with large scale cross-bedding and is approximately 50-80m thick. These sands are characterised by well-rounded, partly frosted grains. Johnson (1994) interpreted the Kwambonambi Formation as coastal seif dunes that have a Holocene Age.

2.5.6 Sibaya Formation

The Sibaya Formation consists of loose, medium to fine-grained sands, containing abundant bioclasts and heavy minerals (ilmenite, rutile, zircon and monazite) in high concentrations. The maximum observed dune height in the Sibaya Formation is 100m, containing large-scale, cross-bedding. Abundant low-order truncation surfaces separate the beds into numerous cross-bed sets. The dune sands of the Sibaya Formation are still accumulating as the strong on-shore winds carry beach sands inland.

From the bedding characteristics and relationship to the underlying Kwambonambi Formation Fockema (1986) interpreted the Sibaya Formation as a series of large aeolian dunes resulting from the inland migration of self dunes.

The depositional environment of the Sibaya Formation is considered to have been very similar to that of the Kwambonambi Formation. Beach sands, enriched in heavy minerals by tidal and wave action, were blown into relatively narrow, parallel series of coastal seif dunes. Westward directed palaeocurrents indicate that the strong on-shore winds were responsible for eventual accumulation of the sands in to prominent high dunes further inland (Force, 1991).

3. Mineral Processing

3.1 Overview of mineral processing

The heavy mineral deposit at Richards Bay is an unconsolidated sedimentary deposit of aeolian origin with the heavy minerals disseminated throughout coastal dunes of the Sibaya Formation. Extraction of heavy mineral bearing sands involves suction dredge techniques in which artificial ponds are created, to carry the suction-cutting dredges and floating gravity concentrators. The heavy minerals are separated from the light gangue before leaving the mining ponds for further processing at the centralised mineral separation plant. Behind the mining ponds, dunes are re-shaped and rehabilitated, returning the land to its appearance prior to mining. The dune rehabilitation scheme initiates and develops the processes that developed the Coastal Dune Forest Ecosystem. Although the complete rehabilitation sequence takes over 20 years the final product is virtually identical to that found in pristine areas (K. Pietersen pers. comm. 1999).

3.2 Heavy Mineral Extraction at Richards Bay

The area to be mined is surveyed and ore reserve drilling is done on a 50 x 50m grid. This provides information of the ore-body, aids in the design of economic mine paths for the dredger to follow and provides data for topographic reconstruction.

Before mining commences, trees and other vegetation are stripped about 100 m ahead of the mining pond, commercial timber species are harvested, stumps uprooted and non-commercial trees are felled and stacked. The area is bulldozed and the tree material (stumps, roots and felled trees) is collected and transported to mined out areas. The top 10-15 cm of the topsoil containing humus and seeds, is removed and either stockpiled or directly transferred to an area undergoing rehabilitation. Stockpiles of organic-rich material are kept for a minimum time period only, in order to avoid the loss of seed viability.

A rotating bucket wheel mines the face ahead of the dredger, undercutting the face and causing the loose sand to slump into the pond. Densely compacted sand is mined using high pressure water jets. The ponds can advance up to 12m a week at a rate of 3000 tons/hour mining a 17m long face.

The suction dredger feeds the slurry (water and sand mixture) to the floating concentrator where the sand is screened to remove roots and other debris, which is transported to the mined out areas and used for the re-shaping of the dunes back to their original appearance. In the floating concentrator the heavy valuable minerals are separated from the light minerals. The difference in density between the valuable and valueless minerals allows the use of a gravity separation process. The slurry is passed over a series of Humphries spirals, separating the heavy from the light minerals. At this stage magnetite and chromite are removed from the heavy mineral fraction using magnetic roll separators. The magnetite and chromite together with the light minerals (tailings) are returned to the dunes. The heavy mineral concentrate, HMC as it is now known, leaves the floating concentrator and is pumped ashore, de-watered and temporarily stockpiled for transportation to the mineral separation plant. The heavy mineral concentrate represents about 5% of the total sand mined, thus the bulk of the sand mined (95%) which consists of light minerals and non-valued heavy minerals is used to re-shape the dunes. (Coastal and Environmental Services, 1982)

3.3 Dune Rehabilitation

The light minerals and non-valued heavy minerals (tailings) are pumped to a tailings stacker and de-watered. Together with the collected tree material the tailings are used to re-shape the dunes, bringing back the original topography. The topsoil, which was stripped off ahead of mining is spread over the re-shaped dunes, providing a source of humus as well as seeds of indigenous species. Artificial windbreaks are erected at 10m intervals for additional protection against wind. A mixture of babala grass (*Pennisetum*)

americanum) an annual millet grass, sunnhemp (*Crotalaria sp.*) and sunflower (*Helio annuus*), together with as many indigenous seeds as possible are sown in the topsoil. The cereals germinate quickly and serve to protect the other young seedlings against harsh wind and rain. The cereals die off after 12 to 15 months leaving behind a healthy cover of indigenous species and within a few months the area is covered with *Acacia karoo* pioneer trees. After five to ten years the pioneer species form a canopy under which trees of a mature coastal forest begin to appear. After 15 to 20 years the acacia trees die off, leaving vegetation virtually identical to the indigenous dune forest. At the land owners' request, a desired crop of commercial trees, mostly *Casserina*, is planted (Coastal and Environmental Services, 1982).

3.4 Mineral Separation

In this study samples of about 9kg each were collected from the heavy mineral concentrate stockpiles at each of the three different mining ponds A, B and C operated by Richards Bay Minerals in May 1999. These samples were subsequently separated by the author, under controlled laboratory conditions using equipment (roll magnets and high tension electrostatic separators) at the RBM mineral processing laboratories. The separation scheme used (Fig. 3.5.1) replicates, as closely as possible on the laboratory scale, that utilised in the RBM mineral separation plants for bulk processing of HMC from the mining ponds. Three main mineral separation techniques were applied; (1) magnetic separation, (2) electrostatic separation and (3) heavy liquid separation (Appendix A2). Density separation was always the last step after the magnetic separation and electrostatic separation.

The first step of the separation scheme was to de-slime and dry the three samples in an oven set at 100 °C. In comparison with mining Ponds B and C; Pond A had a high slimes content implying that the ore-body at Pond A had, at the time of sampling, a higher slimes (i.e. clay) content or that the washing process on the barge was significantly less efficient.

3.5 Separation Techniques

3.5.1 Magnetic Separation

After de-sliming the samples were screened at 710 μ m, to remove the oversize particles. The heavy mineral concentrate was then passed through a Carpco Induced Magnetic Roll (IMR) Separator (Appendix A2) at 5, 26, 60 Amp and Max Amp settings respectively. The magnetic fraction was collected at the following stages:

- 1. after two passes through the Induced Magnetic Roll (IMR) separator set at 5 Amp the 'magnetite' total fraction was removed
- 2. after two passes at the 26 Amp setting, the 'ilmenite' fraction was removed
- 3. after one pass at the 60 Amp setting the "mag others" fraction was collected
- 4. at the max Amp setting, the residual non magnetic sample was split into the 'IMR (1) mags' and the 'IMR (1) non mags' fraction.

The 'IMR (1) non-mags' (NM) followed a circuit that produced a 'zircon product.' Samples were first treated using cleaner magnets; in order to remove the magnetic fraction. The non-magnetic fraction was then screened at 300µm, and the undersize fraction treated with tetra-bromo-ethane (TBE) before commencing with the final stage of electrostatic separation on the heavy fraction (Section 3.5.2).

The 'IMR (1) mags' followed a circuit that produced a 'rutile product'. As with the 'IMR (1) NM'; the 'IMR (1) mags' were first treated with primary magnets, in order to remove the magnetic fraction. The magnetic portion was screened at 300 µm and the undersize

fraction treated with TBE. The 'heavy mineral' fraction was retained for the final stage of electrostatic separation. Table 3.5.1 lists the parameters used for the Induced Magnetic Roll Separator.

Fraction	Dial Setting	Roll Speed	Vibration Rate	Split setting
Magnetite	5 Amp	60 rpm	4 units	-2
Ilmenite	26 Amp	60 rpm	4 units	3
Mag Others	60 Amp	60 rpm	4 units	0
IMR (1)	Max Amp	40 rpm	4 units	2
Primary Mags	Max Amp	40 r pm	4 units	2
Cleaner Mags	Max Amp	40 rpm	4 units	3

Table 3.5.1: Parameters on the Induced Magnetic Roll (IMR) separators for magneticseparation of the samples collected from mining Ponds A, B and C.

3.5.2 Electrostatic Separation

A Carpco High Tension Roll Separator was used for the electrostatic separation of the non magnetic samples (Appendix A2). To minimise the effect of atmospheric humidity on the efficiency of the separation, each sample was heated in an oven to 130°C prior to being passed through the High Tension Separators (HT'S). The heavy fraction from the zircon circuit was passed through the Primary HT'S at 18 kV and split into 'conductors' and 'non-conductors' subfractions. The 'non-conductors' were treated with TBE to remove any residual light minerals, and the remaining 'heavies' fraction formed the 'Zircon Product'.

The heavy fraction from the rutile circuit was passed through the Primary HT'S at 20 kV to separate it into 'conductors', 'mids' and 'non-conductors'. The 'non-conductors' were

passed through the HT'S Scavengers at 20 kV. The conductors and mids were combined with the 'conductors' from HT'S Scavengers and used as feed for HT'S Cleaner. After 3 passes on the HT'S Cleaner set at 24 kV, the feed was separated into the three products, HT'S Cleaner Mids, HT'S Cleaner Non-Conductors and HT'S Cleaner Conductors. The HT'S Cleaner 'conductors' were then treated with TBE to remove any residual light minerals. The remaining 'heavies' fraction formed the final 'Rutile Product'. Table 3.5.2 lists the parameters for electrostatic separation.

Fraction	Setting	Roll Speed	Temperature	Split
Zircon - Primary HT'S	18 kV	220 rpm	130°C	open
Rutile - Primary HT'S	20 kV	220 rpm	130°C	-1 & 0
HT'S Scavengers	20 kV	220 rpm	130°C	-1 & 0
HT'S Cleaners	20 kV	220 rpm	130°C	-1 & 0

Table 3.5.2The parameters on the Carpco High Tension Separators for electrostaticseparation of samples collected from ponds A, B and C.

3.6 Laboratory Separation Results

The results from the laboratory scale separation are given in Table 3.6.1, and graphical representation of the data is given in Fig. 3.6.1. The dominant fraction from all three mining ponds was the ilmenite fraction (Fig. 3.6.1) as in all cases this constituted almost 80% of the heavy mineral concentrate (HMC). Although Pond C had the highest ilmenite count in the HMC the difference of 0.15% compared to Pond B is of questionable significance, and the difference of 1.52% between Ponds C and A very minor.

FRACTIONS	POND A	POND B	POND C
	%	%	%
Oversize (>710µm)	0.50	0.02	0.07
Magnetite	1.38	1.14	1.66
Ilmenite	78.12	79.49	79.64
Cleaner Mags	4.65	3.89	4.90
Primary Mags	3.54	6.22	4.27
Mag others	1.90	3.16	1.47
Oversize - >300µm(Cleaner Mags)	1.63	0.02	0.09
Oversize - >300µm (Primary Mags)	0.01	0.00	0.00
Zircon product	4.47	3.61	3.89
Primary HT'S (C)	0.99	0.92	0.83
HT'S Scavengers (M+NC)	0.05	0.26	0.16
HT'S Cleaner (M)	0.08	0.16	0.13
HT'S Cleaner (NC)	0.27	0.25	0.34
Rutlile product	0.09	0.14	0.22
Lights	2.31	0.72	2.33
TOTAL	99.99	100.00	100.00

Table 3.6.1Laboratory separation data for the samples collected RBM Mining PondsA, B and C.

•

The distribution of the fractions other than ilmenite shown in Fig. 3.6.2 as relationships are somewhat obscured by the very high ilmenite peak in Fig. 3.6.1.

The total 'lights' fraction consists of less than 2½ % of the HMC (Fig. 3.6.2), implying that the density separation at the ponds is effective in removing most of the light minerals from the concentrate. However, the fact that the HMC from Pond B contained less than a third of the light minerals of Ponds A and C suggests that, either the primary separation of the Pond B ore is significantly more efficient, or that the "cut off" conditions could be set too high and maybe causing some loss of valuable heavy minerals.

The magnetite fraction from all three ponds accounted for less than 2% of the total HMC. The initial magnetic separation on the barges therefore appears effective in reducing quantity of magnetite in the HMC.

The screening process on the barges appears relatively efficient in removing the oversize particles from HMC. Pond A however, had a greater percentage of oversize (0.50% >710 μ m and 1.60% > 300 μ m) indicating a possible problem in the separation technique on the pond.

Pond A had the lowest ilmenite content (78.12% of HMC) and the lowest rutile product yield (0.09% of HMC), but the highest zircon product yield (4.47% of HMC). This suggests that the ore-body at Pond A is more zircon enriched than the ore bodies mined at Pond B and Pond C.

Pond B had a high ilmenite yield (79.48% of HMC) and a rutile yield of 0.14% of HMC. The zircon yield for Pond B (3.61% of HMC) was lower than that of Ponds A and C. Pond B had a high proportion of 'mag others' fraction compared to Ponds A and C,

which implies that the ore body at Pond B has a relatively higher proportion of silicate minerals.

Pond C had the highest yield of ilmenite (79.64% of HMC) as well as the highest rutile yield (0.22% of HMC). Pond C had a higher magnetite content then Ponds A and B. The ore body at Pond C was therefore considered to be ilmenite and rutile enriched compared to Ponds A and B.

3.7 Rutile Distribution in the Heavy Mineral Concentrate

Optical microscope studies on polished sections prepared from the three mining ponds revealed that rutile occurs in most of the magnetic and electrostatic fractions. The only fractions containing less than 5% rutile were the 'magnetite' fraction, 'oversize' fractions, 'zircon product', the 'HTS scavenger mids' and 'HTS scavenger non-conductors' as well as the 'lights' mineral fractions. Table 3.7.1 shows the fractions containing more than 5% homogenous rutile grains were; 'ilmenite' fraction (6%), 'mag others' (23%), 'cleaner mags' (13%), 'primary mags' (52%) 'primary HT'S conductors' (5%), 'rutile product' (98%), 'HT'S cleaner mids' (78%) and 'HT'S non-conductors' (13%) (Fig. 3.7.1).

FRACTIONS	% RUTILE
Ilmenite	6
Mag Others	23
Cleaner Mags	13
Primary Mags	52
Primary HT'S (C)	5
HT'S Cleaner (C)	98
HT'S Cleaner (M)	78
HT'S Cleaner (NC)	13

Table 3.7.1 Average rutile content in magnetic and electrostatic fractions.

:

The occurrence of rutile grains in most fractions of the heavy mineral concentrates confirms observations (sections 1.5 and 4.4) of the variability of magnetic susceptibility and electrical conductivity of homogenous rutile grains

Representative samples of the 'ilmenite' and 'mag others' fractions were further separated using a Frantz Isodynamic Magnetic Separator (Tables 3.7.2 and 3.7.3). The advantage of using the Frantz Isodynamic Magnetic Separator was that it allowed for the fine adjustment of current, giving better manipulation of the magnetic field than the Carpco Induced Magnetic Roll Separators, and provides an opportunity to separate individual minerals according to their particular properties (Appendix A2). Polished sections of each sub-fraction were studied using optical microscopy and electron probe micro-analysis.

Current	PON	ID A	PON	ND B	PO	ND C
Settings (A)	g	%	g	%	g	%
0.1 Amp	0.78	7.94	0.59	5.97	0.64	6.79
0.2 Amp	6.48	65.86	5.77	58.41	5.83	61.82
0.3 Amp	0.87	8.85	0.56	5.67	1.36	14.42
0.4 Amp	0.43	4.37	1.11	11.23	0.49	5.20
0.5 Amp	0.53	5.39	0.76	7.69	0.43	4.56
0.6 Amp	0.20	2.03	0.52	5.26	0.16	1.70
0.7 Amp	0.12	1.22	0.17	1.72	0.07	0.74
Non mags	0.43	4.34	0.40	4.05	0.45	4.77
TOTAL	9.84	100.00	9.88	100.00	9.43	100.00

Table 3.7.2 : Ilmenite sub-fractions obtained using the Frantz Isodynamic Separator.

Current	PON	ID A	PON	DB	PON	ND C
Settings	g	%	g	%	g	%
0.4 Amp	0.51	5.13	0.24	2.40	0.20	1.99
0.5 Amp	1.94	19.50	2.05	20.46	2.33	23.16
0.6 Amp	2.49	25.02	2.87	28.64	1.37	13.62
0.7 Amp	3.06	30.75	3.61	36.02	2.91	28.93
0.8 Amp	0.42	4.22	0.23	2.30	0.63	6.26
0.9 Amp	0.29	2.91	0.14	1.40	0.29	2.88
1.0 Amp	0.15	1.51	0.08	0.80	0.45	4.47
1.1 Amp	0.10	1.01	0.08	0.80	0.29	2.88
1.2 Amp	0.14	1.41	0.08	0.80	0.23	2.29
1.3 Amp	0.13	1.31	0.13	1.30	0.21	2.09
1.4 Amp	0.08	0.80	0.07	0.70	0.17	1.69
1.5 Amp	0.58	5.83	0.11	1.10	0.11	1.09
Non mags	0.06	0.60	0.33	3.29	0.87	8.65
TOTAL	9.95	100.00	10.02	100.01	10.06	100.00

Table 3.7.3: Mag others sub-fractions separated using Frantz Isodynamic Separator.

3.8 Ilmenite sub-fractions

The ilmenite fractions treated using the Frantz Isodynamic Magnet Separator at a variety of current settings produced a number of ilmenite sub-fractions (Table 3.7.2). All three ponds showed similar trends (Fig. 3.8.1), with the largest fraction (approximately 60%) extracted at 0.2 Amp. The smallest fraction (approximately 3.0%) was removed at 0.7 Amp.

3.8.1 Mineralogy

The first three ilmenite sub-fractions (0.1 to 0.3 Amp) consisted of mostly ilmenite, haematite and garnets. Minor minerals include olivine (fayalite variety), amphiboles (actinolite) and pyriboles (Mn enriched silicates, as described by Hugo, 1993).

The 0.4 to 0.5 Amp sub-fraction contained a wider range of minerals, i.e. ilmenite and altered hematite as well as amphiboles, pyroxenes and epidote. Amphiboles were of the hornblende and actinolite variety.

The ilmenites from the 0.6 Amp sub-fraction were titanium enriched; however, most of the fraction consisted of silicates, i.e. garnets, pyroxenes (augite), amphiboles (hornblende, epidote, and actinolite), and olivine (forsterite). Iron-enriched rutile occurred within this magnetic fraction.

The 0.7 Amp sub-fraction was composed of silicates and monazite, with many of the monazite grains having one or more quartz inclusions. Monazite was often found intergrown with rutile, which suggests that a rare earth element enriched environment maybe a possible source area for a significant quantity of the rutile. The rutile grains in this fraction appeared to be iron-enriched (Section 5.2.1.).

Zircon and rutile made up virtually all the non-magnetic fraction. The rutile grains from this fraction appeared to be chemically impure, as they contain silica, iron and aluminium (Section 5.2.2.).

3.9 Mag Others sub-fractions

The Mag Others fraction was also separated into sub-fractions using a Frantz Isodynamic Magnetic Separator (Table 3.7.3). As with the ilmenite sub-fractions, all 3 mining ponds showed a similar distribution (Fig. 3.9.1). The bulk of the sample was extracted approximately 75 - 80% within the first four current settings (0.4 - 0.7 Amp).

3.9.1 Mineralogy

The first four sub-fractions (0.4 to 0.7 Amp) had the same mineralogy as the corresponding ilmenite sub-fractions

The 0.4 (and 0.7 Amp) sub-fractions(s) contained mostly silicates minerals (garnets, hornblende, epidote, and pyriboles) with some haematite, chromite and ilmenite.

The first occurrence of an iron-enriched rutile was in the 0.6 Amp sub-fraction. The 0.7 Amp sub-fraction contained a range of silicates (garnets, augite and tourmaline), altered ilmenites and rutile. The rutile within this sub-fraction was iron-enriched and also contained traces of silica and alumina (Section 5.3.1.).

Within the 0.8 Amp and 0.9 Amp sub-fractions the dominant minerals extracted were the silicates, with some monazite and zircon. The rutile extracted in this range was iron-enriched, containing impurities of silica and alumina (Section 5.3.1)

At 1.0 Amp the three main minerals extracted were monazite, zircon and silicates. Very few rutile grains were removed at this setting.

In the 1.1 to 1.5 Amp range, the quantity of rutile grains increased in relation to the lower currents. Zircons, together with the minerals apatite, titanite and quartz were also extracted. The rutile grains within this range contained only traces of silica and alumina.

The non-magnetic sub-fraction consisted of predominantly rutile and zircon grains, with minor contaminants of iron, silica and alumina.

4. Rutile Mineral Chemistry

Titanium dioxide has three polymorphs; rutile, anatase and brookite (Ramdohr 1969) that, although physically different, are almost identical in polished section. Rutile is the high temperature polymorph that is stable at almost all temperatures and pressures. Anatase normally forms at very low temperature and pressure, in part, as a result of weathering (Ramdohr 1980). Anatase is only stable at low temperature and converts to rutile at approximately 600°C, while brookite is metastable and readily transforms to rutile or anatase (Hugo 1993). Table 4.1 gives an outline of the properties of the three polymorphs of titanium dioxide.

4.1 Crystal Structure

Each of the three polymorphs of titanium dioxide has a distinctive arrangement of the titanium and oxygen ions and crystal structure. (Fig. 4.1).

In the rutile crystal structure each titanium ion (Ti^{4+}) is surrounded by six oxygen ions (O^{2-}) at the corners of a slightly distorted octahedron, while each oxygen ion is in turn surrounded by three titanium ions lying in a plane at the apices of an approximately equilateral triangle (Fig. 4.1A) (Lindsley *et al.*, 1976).

Anatase has a similar arrangement of ions to rutile with each titanium ion surrounded by six oxygen ions and every oxygen ion surrounded by three titanium ions. There is, however a structural difference in the mutual arrangement of the oxygen octahedra. In anatase the shared edges at the top and bottom of the octahedra are at right angle (Fig. 4.1B), whilst in rutile the two opposite edges are shared (Lindsley *et al.*, 1976).

In brookite, each titanium ion in the structure is surrounded by three oxygen ions. The structure of brookite (Fig. 4.1C) differs from rutile and anatase in that the mutual

arrangement of the oxygen octahedra lie in zig-zag lines rather than straight lines or rows (Lindsley et al., 1976).

	Rutile	Brookite	Anatase
Density (g/cm ³)	4.23 to 5.50	4.08 to 4.18	3.82 to 3.97
Hardness	6.0 to 6.5	5.5 to 6.0	5.5 to 6.0
Crystal System	Tetragonal	Orthorhombic	Tetragonal
Optical Character	Uniaxial (+)	Biaxial (+)	Uniaxial (-)
	High	Medium to low	Low
Conditions of formation	temperature and	temperature	temperature and
	pressure	and pressure	pressure

Table 4.1 Physical properties of the titanium oxide polymorphs (Deer *et al.* 1985).

.:

Fig. 4.1 The structures of the TiO₂ polymorphs rutile, anatase and brookite (Lindsley, 1976). A. Four unit cells of rutile showing the octahedral of oxygen about Ti at the centre of each cell. B. Two unit cells of anatase showing the distorted octahedral of oxygen about the Ti (shared edges (s)) are shorter than the unshared edges. C. The chain of distorted oxygen octahedral about the Ti ions which make-up the brookite structure.

4.2 Rutile Mineralogy

The mineral chemistry of rutile is closely associated with that of iron-titanium oxides due to their complex behaviour at elevated temperatures and pressures (Fig. 4.2). Most iron-titanium oxide minerals can be represented on the $TiO_2 - Fe_2O_3 - FeO$ system (Fig. 4.2). Although magnetite, ilmenite and haematite are common minerals, their exact chemical composition is difficult to determine due to extensive chemical substitution and problems in establishing the oxidation states of the ions (Force 1991).

The following can be noted for the ternary $TiO_2 - Fe_2O_3 - FeO$ system (Fig. 4.2):

- the TiO₂ polymorphs:
 - rutile is tetragonal and stable at most temperatures and pressures,
 - anatase Is tetragonal and converts to rutile at above approximately 600°C
 - brookite Is orthorhombic; metastable, and will readily transform to anatase and rutile (Hugo 1993)
- ferropseudobrookite (FeTi₂O₅) is only stable above 1100°C (Gribble and Hall, 1992) and is an optically homogeneous orthorhombic iron-titanium phase with less than 50mol% Fe₂TiO₅ (Hugo 1993)
- pseudobrookite (Fe₂TiO₅) is only stable above 585°C (Gribble and Hall, 1992); it is similar to ferropseudobrookite, but with more than 50 mole percent FeTi₂O₅ (Hugo 1993)
- ilmenite (FeTiO₃) haematite (Fe₂O₃) solid solution series is only complete above 950°C (Gribble and Hall, 1992)

Fig. 4.2 The $TiO_2 - Fe_2O_3 - FeO$ system showing the extent of high temperature solid solution. (After Hugo, 1990 and Mdludlu, 1998)

- ilmenite is a rhombohedral (trigonal) phase consisting of FeTiO₃ with up to 6wt%
 Fe₂O₃ in solid solution (Hugo 1993)
- hematite is a trigonal phase with a stoichiometry approaching Fe₂O₃ normally with less than 5wt% TiO₂ (Hugo 1993)
- bulk composition of hemo-ilmenite and ilmeno-hematite grains depends on the equilibrium temperature (Gribble and Hall, 1992)
- the ulvospinel (Fe₂TiO₄) magnetite (Fe₃O₄) solid solution series is only complete above 600°C (Gribble and Hall, 1992);
- magnetite Fe₃O₄ is a spinel phase with a stoichiometry approaching Fe₂O₃ normally containing less than 5wt% TiO₂ (Gribble and Hall, 1992);

4.3 Solid Solution

The definition of solid solution is that a single crystalline phase may vary in composition within finite limits without the appearance of an additional phase (Bates and Jackson, 1980). The three mechanisms for solid solution are substitution solid solution, omissional solid solution and interstitial solid solution.

Substitution solid solution is when different atoms may occupy the site if their sizes and charges are such that the geometrical stability and local charge balance is maintained.

Omission solid solution is the removal of atoms from the structure leaving vacancies, in the structure to maintain charge balance during a substitution mechanism.

Interstitial solid solution takes place when mineral interstices which occur between the atomic structural framework of a mineral are used to accommodate cations to balance off substitution solid solution (Putnis and McConnell 1980).

Solid solution is governed by Goldschmidt's Rules, which state (Bloss, 1971):

- ions of similar radii (< 15% size difference) and having a charge difference of no more than one may enter into the same crystal lattice site
- when two ions with the same charge compete for a lattice site the ion of smaller radius will be preferred
- when two ions of the same radius (± 15%) compete for a lattice site the ion with the higher charge will be preferred.

When these ionic substitution rules are applied to the Ti^{4+} ion, only a limited number of ions are found to be compatible. The plot of ionic radius and charge (Fig. 4.3) clearly indicates that Sb³⁺, V³⁺, Fe³⁺, Cr³⁺, Sn⁴⁺, Mo⁴⁺, W⁴⁺, Mn⁴⁺, Bi⁵⁺, Nb⁵⁺, Ta⁵⁺, Sb⁵⁺, V⁵⁺ must be considered as compatible with the Ti⁴⁺ ion.

The oxidation states of minor components in rutile are governed by the electroneutrality condition (Vlassopoulos *et al.* 1993).

- Aluminium in rutile is present in the Al³⁺ state and is compensated for by OH⁻ groups.
- Vanadium in rutile structures may occur in the trivalent or pentavalent state.
- Chromium occurs as a trivalent cation in natural rutile.
- Iron in rutile can be either divalent or trivalent.
- Rutile crystals can be synthesised at 1400°C with up to 25 mol% Nb₂O₅ solid solution, but inversion voltammetric studies have shown that above 3 mol% Nb₂O₅, the niobium is partly reduced to Nb⁴⁺. Niobium occupies titanium sites though it can be tetravalent or pentavalent. The niobium content of natural rutile from kimberlite can be up to 20.9 wt%.
- Tantalum is pentavalent and substitutes for titanium

Fig. 4.3 Plot of ionic charge against ionic radius. The ions in the inner portion (i.e.±15% of the titanium ion radius) are considered to be competent for solid solution with titanium, whilst those in the outer portion will only be considered in exceptional circumstances. (After Bramdeo and Dunlevey 1999)

At elevated temperatures and pressures it appears possible that zirconium ions (Zr⁴⁺) may substitute for titanium ions (Ti⁴⁺). Under elevated conditions, lead and aluminium may also possibly substitute for titanium. At extremely high temperatures and pressures such as those found in near anatectic metamorphic environments, silicon, which has the same charge and a smaller radius than titanium, may enter solid solution with titanium dioxide from a silicate melt. However as Ti⁴⁺ ion is approximately 1.7 times larger than the Si⁴⁺ ion, it cannot enter the quartz lattice; exsolution occurs to form composite mineral grains. This feature is illustrated by rutilated quartz, which has titanium dioxide (rutile) exsolved as needles within quartz (Bramdeo and Dunlevey, 1999, 2000).

Some rutile crystals contain considerable amounts of Fe²⁺ and Fe³⁺, major amounts of niobium and tantalum as well as minor amounts of chromium, aluminium and silicon. The close similarity in the ionic radius between Ti⁴⁺ and both Nb⁵⁺ and Ta⁵⁺ enable the latter ions to enter the titanium lattice site, in these cases the rutile structure is electrostatically balanced either by vacancies in some lattice positions or by the complementary substitution of divalent or trivalent ions such as Fe²⁺, Fe³⁺, Cr³⁺, or V³⁺ (Deer *et al.* 1985).

4.4 Rutile Chemistry

4.4.1 Hydrogen in Rutile

In general rutile has an affinity for hydrogen. Research done by Vlassopoulos *et al.* (1993) has demonstrated that the H⁺ content in rutile can be as high as the equivalent of 0.8 wt% H₂O. The highest concentration occurs in mantle derived (high pressure) Nb and Cr rich rutile of metasomatic origin. Vlassopoulos *et al.* (1993) considered hydrogen to be present in the crystal structure to compensate for trivalent substitutional cations (Cr³⁺, Fe³⁺, Al³⁺, and V³⁺) that are only partly compensated by pentavalent ions (Nb⁵⁺, V⁵⁺ and Ta⁵⁺).

Coupled substitution of the types:

$$M^{3+} + M^{5+} \leftrightarrow 2Ti^{4+}$$
 and
 $M^{2+} + 2M^{5+} \leftrightarrow 3Ti^{4+}$

are common in synthetic rutile to maintain electrostatically neutral compounds.

In natural rutile, however, there is normally an overall excess of trivalent over pentavalent impurities per formula unit that is then compensated for by interstitial H^+ . According to Vlassopoulos *et al.* (1993), the concentration of H^+ per formula unit and the mechanism for substitution is:

$$[H^+] = \sum [M^{3+}]_{Ti} + 2\sum [M^{2+}]_{Ti} - \sum [M^{5+}]_{Ti}$$

4.4.2 TiO₂ - NbO₂ - TaO₂ Relationship

Minerals of the columbite - tantalite group have the general formula AB_2O_6 where; A = Ni²⁺ Fe²⁺, Mn²⁺ and B = Nb⁵⁺, Ta⁵⁺. When Nb > Ta, the mineral is called columbite and when Ta > Nb, the mineral is called tantalite. Wenger and Armbruster (1993) synthesised a columbite-type compound and a rutile-type compound from a NiNb₂O₆ - TiO₂ system.

Niobium and tantalum are both pentavalent (for most geologic redox conditions) and have a similar ionic radius. Linnen and Keppler (1997), found that rutile forms an extended solid solution series with columbite due to the structural similarities of the niobium and tantalum ions, and also reported rutile grains with up to 66wt% columbite or tantalite component. Linnen and Keppler (1997), concluded that most of the Nb⁵⁺ and Ta⁵⁺ incorporated in rutile is through solid solution with columbite - tantalite end members.

Hassan (1994) demonstrated that homogenous Nb - Ta containing rutiles from Malaysia are magnetic. Furthermore, the study by Hassan (1994) indicates the existence of an isomorphous series between rutile (sensu-stricto) and Ta - Nb enriched rutiles.

4.4.3 Ti³⁺ and Fe³⁺ in rutile

In addition to containing Ti^{4+} rutile may also contain Ti^{3+} cations within the crystal lattice (Banfield and Veblen, 1991). These Ti^{3+} ions appear in planes forming potential crystallographic shears within the rutile crystal lattice, and act as a zone of weakness. Furthermore, these zones allow for the substitution of trivalent (Fe³⁺) in the rutile lattice (Banfield and Veblen, 1991). The replacement of Ti^{3+} by Fe³⁺ in the rutile lattice may also form sub microscopic platelets with a hematite structure (Banfield and Veblen, 1991). Bursill *et al.* (1984) proposed a model explaining the formation of pairs of crystallographic shear planes; their model requires that three Ti^{4+} cations replace four Ti^{3+} cations.

 $3Ti^{4+} \leftrightarrow 4Ti^{3+}$

As much as 16 wt% Fe_2O_3 can be accommodated in rutile crystals through crystallographic shear structures and the replacement of Ti^{3+} by Fe^{3+} (Blanchin and Bursill, 1989). According to Banfield and Veblen (1991) the appearance of regularly spaced iron-rich lamellae throughout rutile crystals is due to the exsolution of iron that was originally present in the rutile structure. High temperature and pressure metamorphic conditions would be likely to provide the environment most conducive for iron inclusion by this process.

4.4.4 Aluminium in rutile

Bursill et al, 1984 studied aluminium in rutile using synthetic aluminium-doped rutile crystals and proposed that the mechanism whereby Ti^{4+} is replaced by Ti^{3+} , allowed for the substitution of trivalent ions (Al^{3+} , Fe^{3+} , Cr^{3+} etc) for Ti^{3+} . Studies conducted by Blanchin and Bursill (1989) revealed that aluminium-doped rutile crystals produced heart-shaped alumina precipitates about $5\mu m$ in diameter, after the application of a compressive force at 1000° C. The results indicated that concentrations of about 0.5wt% Al_2O_3 could be accommodated in the TiO_2 lattice at temperatures below approximately 1000° C by two mechanisms;

- In crystallographic shear planes developed at low temperature Al₂O₃ can be accommodated by the precipitation of small defects that can exist in equilibrium with rutile matrix at higher temperatures. Such defects involve Al³⁺ and Ti³⁺ as substituted and as well as interstitial cations.
- 2. In the case of Al_2O_3 being the predominant solute phase in TiO₂, Al^{3+} would substitute for Ti³⁺

The heart-shaped alumina precipitates have a complex bisecting twin interface, which contains modulated structures intermediate between rutile and alumina. These structures act as an efficient buffer to accommodate both changes in stoichiometry and finite lattice misfits between rutile and alumina (Bursill and Blanchin 1989).

4.4.5 Niobium and Tungsten in rutile

÷

Michailidis (1997) described chemically inhomogenous accessory rutile grains from the Fanos Aplitic Granite North of Greece, which varied in composition, not only with respect to their niobium, iron and tungsten content, but also with minor to substantial quantities of strontium, tantalum, silica, tin and zirconium. Traces of aluminium, molybdenum, manganese, magnesium and calcium were also present in these anomalous rutile

crystals indicating that, in a niobium-tantalum enriched environment such as that of the Fanos Aplitic Granite, rutile can accept significant quantities niobium and tantalum into the structure.

Given the proper physiochemical environment, the following mechanisms facilitate accommodation of Nb⁵⁺, Fe³⁺, Fe²⁺, W⁶⁺, Sr²⁺, Ta⁵⁺, Si⁴⁺, Sn⁴⁺, Al³⁺, Mo⁶⁺, Ca²⁺, Mn²⁺, Mg²⁺ and Zr⁴⁺ into the rutile structure:

$$Ti^{4+} \leftrightarrow (Si, Sn, Zr)^{4+}$$

2Ti⁴⁺ ↔ (Nb, Ta)⁵⁺ + (Al, Fe)³⁺
2Ti⁴⁺ ↔ (Mo, W)⁶⁺ + (Fe, Mn, Mg, Sr, Ca)²⁺

Michailidis (1997) concluded that the concentration and diffusion of Nb and W in aplitic granite melts are important factors controlling the chemical composition of rutile crystals. However, the coexisting fluorine-rich aqueous fluids and the growth dynamics of the rutile crystals were of considerable importance as well.

4.4.6 Tungsten in rutile

Tungsten-bearing rutiles are rare (Rice *et al.*, 1998). The first report of a tungsten rich rutile (containing 5.8wt% of WO₃) was recorded from Big Bell, Australia, by Graham and Morris, (1973). Other tungsten-rich rutile grains have been reported from the Hemlo Gold Deposits of Ontario, Canada, (Harris, 1986) and the Fanos Aplitic Granite of Northern Greece (Michailidis, 1997). These tungsten-enriched rutile crystals contain 2.3 wt% and 7.5 wt% of WO₃ respectively.

Rice *et al.* (1998) examined tungsten-rich rutile from the Kori Kollo Gold Mine, Bolivia, and found multiple growth and sector zoning. The overall tungsten content ranged from 0.1 to 5.3wt% WO₃ with minor amounts of iron, niobium, aluminium and chromium. Although the radii of W^{6+} , Nb^{5+} , Ti^{4+} , Al^{3+} , Cr^{3+} and Fe^{3+} are similar, the charge

differences requires additional substitutions to maintain electrical neutrality. The presence of W⁶⁺ suggests a double substitution mechanism such as

$$2\text{Ti}^{4+} \rightarrow \text{Fe}^{3+} + \text{W}^{6+}$$

with the excess positive charge being balanced by the vacancies created in the Ti-sites by the loss of oxygen (Rice *et al.*, 1998). There also exists the possibility that iron is present in the reduced state (Fe^{2+}) and then the mechanism,

$$2\text{Ti}^{4+} \rightarrow \text{Fe}^{2+} + \text{W}^{6+}$$

would provide electrical neutrality (Rice et al., 1998).

4.4.7. Niobium and chromium in rutile

Nodules of rutile occurring in the Orapa Kimberlite, Botswana, contain lamellar intergrowths of ilmenite (Tollo and Haggerty, 1987). The rutile host is Nb and Cr enriched, whereas the ilmenite intergrowths are Mg and Cr enriched. The mineral chemistry of the rutile host shows a broad range of compositional variation characterised by substitution of niobium (6.5 to 20.9wt% Nb₂O₅) and chromium (5.2 to 8.2wt% Cr₂O₃) the minor concentrations of iron (Fe²⁺), tantalum (Ta⁵⁺) and zirconium (Zr⁴⁺) (Tollo and Haggerty, 1987).

The high pressure Nb and Cr-rutile nodules from the Orapa Kinmberlite are considered to be the result of an exsolution-like process; with a strong partitioning of Nb⁵⁺ and Zr⁴⁺ in rutile; and Mg²⁺ in ilmenite, while the Cr³⁺ selectively partitions to a lesser extent in rutile. The equilibrated intergrowths of rutile and ilmenite appear to be related to high-pressure crystallographic shear structures (Tollo and Haggerty, 1987).
4.4.8 Chromium in rutile

In view of the constraints based on ionic charge and radii, only chromium ions with charges Cr³⁺ and Cr⁴⁺ are able to substitute for the Ti⁴⁺ ion. This substitution is induced industrially for the production of yellow Cr - Ti containing pigments, synthesised by 'firing' oxide mixtures in air at 1 200°C where the stable forms of chromium have oxidation numbers higher than III (Ishida *et al.*, 1990).

Producing Cr-doped TiO₂, Ishida et al., (1990) came to the following conclusions:

- Cr-doped rutile has a yellow colour resulting from dissolved Cr³⁺ when the Cr content was less than 0.1wt% CrO₃.
- Cr doped rutile with a Cr-content equal to 0.2 wt% CrO₃ has a maple colour.
- Cr content of up to 1 wt% CrO₃; the Cr doped rutile has a black colour caused from undissolved CrO_{3-x}.

4.4.9 Zirconium in rutile

During a study of the Khibina Alkaline Complex, NW Russia, Nb - Zr bearing rutile was found to be an accessory mineral (Barkov *et al.* 1997). This rutile occurred as anhedral grains ranging in size from about 20μ m to 0.5mm. Electron microprobe data showed that the accessory rutile contained up to 2.5 wt% Nb₂O₅ and up to 1.2 wt% ZrO₂ (Barkov, pers. comm. 1999). The high alkali and Zr content of the igneous melt was considered to have contributed to formation of this unusual substitution. However, Zr⁴⁺ is rarely analysed for in rutile grains, the true distribution of Zr⁴⁺ is not known in any detail.

4.5 Rutile in geological environments

Rutile is formed in both igneous and metamorphic environments, but in the sedimentary environment the other polymorphs (anatase and brookite) are generated. In the igneous environment rutile precipitates from a fluid phase, but in a metamorphic environment rutile is produced by both solid state metamorphic reactions and crystallisation from a fluid phase. The chemical environment governs the ions available for substitution, with rutile acting as a sink for the tetravalent and pentavalent ions that are not readily compatible with silicate mineral structures.

÷

5. Data Analysis

Rutile was found in most of the fifteen sub-fractions of the HMC (Section 4.7, Fig. 4.7.1). The relationship between the geochemistry and the anomalous behaviour of rutile was investigated by means of Electron Probe Micro-Analysis (EPMA).

All fifteen fractions from mining Ponds A, B and C were sub-divided using a sample splitter. Representative samples were taken from each and polished resin ore mounts prepared. Each sample was carbon-coated to approximately 300 Å. Homogenous rutile grains were identified using electron backscatter imagery and then analysed on a JEOL JX8800 RL Superprobe at the University of Durban-Westville. (Appendix A1)

All elements (oxide phase), which according to theory (Section 4.3), could substitute with ease for the Ti⁴⁺ ion into the rutile crystal lattice were analysed. The suite of elements expressed as oxides; FeO, SiO₂, TiO₂, ZrO₂, V₂O₃, Cr₂O₃, Al₂O₃, Ta₂O₅ and Nb₂O₅; were analysed by Electron Probe Micro Analysis. Initial analytical schemes also included PbO, MoO₃, WO₃, UO₂, BiO₂, and Sb₂O₅. However, after completing scans over a number of rutile grains these elements were found to be below the detection limit (Appendix A1) and hence excluded from subsequent analyses. The most common oxide phases found to be substituting for Ti⁴⁺ (TiO₂) in rutile were FeO, SiO₂, ZrO₂, V₂O₃, Al₂O₃, Al₂O₃, Al₂O₃, and Nb₂O₅.

5.1 Oversize and Magnetite Fractions

The oversize fraction from all ponds accounted for less than 0.5 wt% of the total HMC. The composition of this fraction included remnants of sea-shells, roots and plant debris, and well-rounded quartz grains. Back-scattered electron imaging was used to detect rutile grains. X-ray maps showing the distribution of titanium were also compiled for these probe sections. No homogenous rutile grains were found to be present in the oversize fraction.

The magnetite fraction from all three ponds, separated during the laboratory separation constituted less than 2.00wt% of the total HMC. Virtually all of the magnetite had been removed on the dredgers and sent to the tailings. The remaining magnetite was probably the result of entrainment during the initial magnetic separation. Back-scattered electron imaging and x-ray maps for titanium did not reveal the presence of any homogenous rutile in the magnetic fraction.

5.2 Ilmenite

A representative ilmenite sample was chosen from each of the Ponds and separated magnetically using a Frantz Isodynamic Magnetic Separator (Hutchison, 1974). The magnetic field created can be manipulated by fine adjustments to the current. The ilmenite fraction was split using currents of 0.1 Amp to 0.7 Amp (Table $\frac{3}{4.7.2}$). The magnetic fraction was collected at each stage and the non magnetic fraction formed the feed for the next stage. The residual fraction, which could not be split further, was referred to as the 'non-magnetic ilmenite'. The ilmenite fractions separated at 0.1Amp to 0.7Amp, was referred to as the magnetic ilmenite.

5.2.1 Magnetic Ilmenite

5.2.1.1 Pond A

Fig. 5.2.1.1 and Table 5.2.1.1 show the distribution of FeO, SiO₂, ZrO₂, V₂O₃, Al₂O₃, Nb₂O₅, against TiO₂ in the magnetic ilmenite fraction of Pond A. The six rutile grains analysed in this fraction had a TiO₂ content of 93.292wt% to 98.514wt%, however most grains had TiO₂ values of approximately 98.119wt%. The SiO₂ values range from 0.331 to 1.167wt% (Fig. 5.2.1.1) with most values clustered around a mean of 0.402wt%.

Fig. 5.2.1.1 Geochemistry of homogenous rutile grains in the magnetic ilmenite fraction of Pond A.

One grain appeared to be SiO₂ enriched and containing 1.167wt%. ZrO₂ values were all between 0.053 and 0.219wt%, with a mean value of 0.128 wt%. There was a wide range in V₂O₃ values from 0.227 to 0.892wt%. The Nb₂O₅ values were from 0.106 to 0.416wt%, most rutile grains had an average Nb₂O₅ of 0.158wt%, with the exception of one grain, which contained 0.416wt% Nb₂O₅. The rutile grains had very little Al₂O₃ with values between 0.011 and 0.162wt% (Fig. 5.2.1.1). The mean Al₂O₃ content was 0.059wt%. The FeO content of this population had a range of values from 0.126 to 2.079wt%. Although one grain had an extremely high FeO content (2.079wt%), all the others were below 0.600wt% with an average FeO content is 0.251wt%. Cr₂O₃ occurred at very low concentrations in these rutile grains with values from below the detection limit of 0.036wt% in all but one grain, which contained 0.052wt% Ta₂O₅ (Table 5.2.1.1).

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO₂	93.292	98.514	98.119
SiO ₂	0.331	1.167	0.402
ZrO ₂	0.053	0.219	0.128
V ₂ O ₃	0.227	0.892	0.501
Nb ₂ O ₅	0.106	0.416	0.158
FeO	0.126	2.079	0.251
Al ₂ O ₃	#	0.162	0.059

Table 5.2.1.1 A summary of electron microprobe results from 'magnetic ilmenite' fraction of Pond A.

- *Mean: Mean values exclude values that are below the detection limit and very high values (see details in text)
- # Lowest values are below the lld

Predictably, the grain in the 'magnetic ilmenite' fraction of Pond A, with the lowest TiO_2 content of 93.292 wt%, had relatively high proportions of the other elements, and contained 1.167wt% SiO₂, 0.416wt% V₂O₃ and 2.079wt% FeO.

5.2.1.2 Pond B

Fig. 5.2.1.2 shows the distribution of FeO, SiO₂, ZrO₂, V₂O₃, Al₂O₃, Nb₂O₅, against TiO₂ in the magnetic ilmenite fraction of Pond B and Table 5.2.1.2 presents the analytical data. Eight rutile grains were found and analysed in this fraction. The titanium content of rutile grains from Pond B, 'magnetic ilmenite' fraction (Fig. 5.2.1.2) was from 80.424 to 99.985wt%. All but one of the grains had titanium values in the 95.306 to 99.985wt%, range with a mean of 98.192wt%. The SiO₂ values were between 0.076wt% and 4.061wt%, with most grains in the 0.076 to 0.356wt% range and an average SiO₂ value of 0.161wt%. One grain had an uncharacteristically high SiO₂ value of 4.016wt%. These rutile grains contained very little ZrO₂, with values from below the detection limit of 0.017wt% to 0.160wt%. A similar trend was observed for both V₂O₃ and Nb₂O₅; with values for V₂O₃ extending from 0.133wt% the lower limit of detection (IId), to 0.270wt% and Nb₂O₅ from 0.049wt% (IId) to 0.249wt%. The mean V₂O₃ and Nb₂O₅ values were 0.112 and 0.086wt% respectively. There was a large variation in Al₂O₃ content, with values from just above the lld (0.026wt%) to as high as 2.601wt%. All rutile grains, with the exception of one grain, had Al₂O₃ values in the range of 0.011wt% (IId) to 0.079wt%, with mean value of 0.045wt%. A single grain had a high Al₂O₃ value of 2.601wt%, but two grains contained Al₂O₃ below the lld. The FeO content showed the largest variation, with values from 0.065wt% to as high as 11.118wt%. Although most grains had FeO values in the range of 0.065wt% to 0.388wt% (mean of 0.229wt%); two grains had very high FeO content of 4.080wt% and 11.118wt%. The grains from this fraction contained virtually no Cr₂O₃ or Ta₂O₅. Only three grains were Ta₂O₅ and Cr₂O₃ bearing and these had means of 0.115wt% and 0.030wt% respectively (Table 5.2.1.2).

Fig. 5.2.1.2 Geochemistry of homogenous rutile grains in the magnetic ilmenite fraction of Pond B.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
 TiO ₂	80.424	99.985	98.192
SiO ₂	0.076	4.061	0.161
ZrO ₂	#	0.160	0.075
V2O2	#	0.270	0.112
Nb ₂ O ₅	#	0.249	0.086
Al ₂ O ₂	#	2.601	0.045
FeO	0.065	11.118	0.229

- Table 5.2.1.2 A summary of electron microprobe results from 'magnetic ilmenite' fraction of Pond B.
- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text)

Lowest values are below the lld

The rutile grain with the lowest titanium content of 80.424wt% had a SiO₂ content of 4.061 wt%, Al₂O₃ of 2.601wt% and FeO of 11.118wt%.

5.2.1.3 Pond C

Fig. 5.2.1.3 is a plot shows the distribution of FeO, SiO₂, ZrO₂, V₂O₃, Al₂O₃, Nb₂O₅, against TiO₂ in the magnetic ilmenite fraction of Pond C and Table 5.2.1.3 the analytical data. Four rutile grains were found in this fraction of 'magnetic ilmenite' from Pond C (Fig. 5.2.1.3) and had a TiO₂ content of 97.854 to 97.243wt%, with a mean of 97.594wt%.

Fig. 5.2.1.3 Geochemistry of homogenous rutile grains in the magnetic ilmenite fraction of Pond C.

The SiO₂ values were within a very small range, 0.206 to 0.256wt% and had an average SiO₂ content of 0.228wt%. Most of the rutile grains had low ZrO₂ values with concentrations of 0.035wt% to 0.249wt%. Apart from the single grain containing 0.035wt% ZrO₂, the mean ZrO₂ value for this rutile population was 0.233wt%. V₂O₃ values were from just above the Ild (0.133wt%) to 0.706wt% with a mean V₂O₃ content of 0.602wt%. The Nb₂O₅ values showed the greatest variation with one grain below the Ild, to another with a maximum of 0.849wt%. The mean Nb₂O₅ value was 0.391wt%. Only two grains had detectable Al₂O₃, of 0.013 and 0.024wt% respectively. The FeO content of the grains varied from 0.027wt% (one grain was below the Ild) to 0.267wt%, with a mean of 0.219wt%. Cr₂O₃ was present at slightly higher concentrations than in the similar fraction from Pond A and B, with values in the range of 0.120 to 0.218wt%, and a mean Cr₂O₃ content of 0.161wt%. Ta₂O₅ however was below the detection limit for most grains with only one grain having 0.260wt% (Table 5.2.1.3).

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO₂	97.243	97.854	97.594
SiO ₂	0.206	0.256	0.228
ZrO ₂	0.035	0.249	0.233
V2O3	#	0.706	0.602
Nb ₂ O ₅	#	0.849	0.391
AlaOa	#	0.024	0.010
FeO	#	0.267	0.019
180	#	0.207	0.219
Cr ₂ O ₃	0.120	0.218	0.161

Table 5.2.1.3 A summary of electron microprobe results from 'magnetic ilmenite' fraction of Pond C.

Lowest values are below the lld

^{*}Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text)

All grains from the 'magnetic ilmenite' fraction of Pond C had consistent, SiO₂ values (0.228wt%) and almost no Al₂O₃ (0.019wt%). Rutile grains appeared to be Cr_2O_3 (0.161wt%) enriched. Both the V₂O₃ and Nb₂O₃ content demonstrated the most variability within rutile grains from the 'magnetic ilmenite' fraction of Pond C.

5.2.2 Non-Magnetic Ilmenite

5.2.2.1 Pond A

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'non-magnetic ilmenite' fraction of Pond A is presented in Fig. 5.2.2.1 and Table 5.2.2.1 the analytical data. Rutile grains in this sub-fraction had TiO₂ values in a range from 94.759wt% to 99.993wt%. Of the thirteen grains only two grains had low TiO₂ contents (94.759 and 95.650wt%); the others having an average TiO₂ content of 99.495wt%. Grains had a maximum SiO₂ content of 1.185wt% and a minimum of 0.074 wt%. Three grains had unusually high SiO₂ values of 0.928, 0.952 and 1.185wt%; however, most grains, contain less than 0.300wt% SiO₂ with a mean of 0.154wt%. ZrO₂ ranged from below the IId (0.017wt%) to 0.475wt%, with a mean of 0.226wt%. V_2O_3 was distributed in an array from 0.133wt% to 0.834wt%, with a mean of 0.423wt%. The Nb₂O₅ contents of the analysed rutile grains were from below the lld (0.049wt%) to 0.167wt%, with an average value of 0.101wt%. Al₂O₃ was below the detection limit (0.011wt%) for most of the grains from this fraction. However, the rutile grains with a significant Al₂O₃ content contained on average 0.028wt%, with the exception of two very enriched grains containing 0.694 and 0.717wt% Al₂O₃. The distribution of FeO in rutile grains was from 0.027 to 1.085wt%. Three grains had high FeO values of 0.811, 1.082, and 1.085 wt%, the rest had a mean of 0.123wt%. Cr₂O₃ was present at concentrations of 0.021 to 0.211wt% with the average Cr_2O_3 value of 0.099wt% (Table 5.2.2.1).

Fig. 5.2.2.1 Geochemistry of homogenous rutile grains in the non magnetic ilmenite fraction of Pond A.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	94.759	99.993	99.495
SiO ₂	0.074	1.185	0.154
ZrO ₂	#	0.475	0.226
V ₂ O ₃	#	0.834	0.423
Nb ₂ O ₅	#	0.167	0.101
Al ₂ O ₃	#	0.717	0.028
FeO	#	1.085	0.123
Cr ₂ O ₃	#	0.211	0.099

- Table 5.2.2.1 A summary of electron microprobe results from 'non magnetic ilmenite' fraction of Pond A.
- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text)

Lowest values are below the IId

- 3

Rutile grains from the 'non magnetic ilmenite' fraction of Pond A, appeared to be quite chemically pure with most grains having TiO_2 contents of less than 98wt%. SiO_2 , and FeO were present in rutile grains at levels greater than 1.00wt%, while V_2O_3 and Al_2O_3 were present in some grains at levels greater than 0.500wt%.

5.2.2.2 Pond B

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'non-magnetic ilmenite' fraction of Pond B is presented in Fig. 5.2.2.2 and Table 5.2.2.2 the analytical data. Only four grains were identified and analysed from the non-magnetic ilmenite fraction of Pond B. The TiO2 contents varied between 94.343 to 97.489wt%. All four grains had very similar SiO₂ values (0.468 to 0.541wt%) with a mean of 0.508wt% SiO₂. The rutile grains had ZrO₂ values from 0.091 to 0.527wt%. Three of the four analysed grains had an average ZrO₂ value of 0.108wt%, with the remaining grain being much higher at 0.527wt% ZrO₂. The distribution of V_2O_3 in these grains was from 0.479 to 0.964wt%, with a mean value of 0.699wt%. Nb₂O₅ had a minimum value of 0.164 and a maximum of 2.185wt%. Apart from the grain having the higher Nb₂O₅ content of 2.185wt% the remaining three of the four grains had an average of 0.192wt%. All four grains had very low Al₂O₃ values of 0.015 to 0.059wt%, with an average of only 0.034wt%. The FeO content of this rutile fraction was from 0.037 to 0.916wt% with three of the four grains having FeO values with an average of 0.119wt%, and the remaining grain had a higher FeO content of 0.916wt%. Cr₂O₃ was present in all the grains analysed, with a minimum of 0.133, a maximum of 0.158wt% and an average value of 0.148wt% (Table 5.2.2.2).

The grains from Pond B had a lower TiO_2 content (mean of 96.133wt%) than rutile grains from Pond A (mean of 99.495wt%), for the same fraction. One grain from this fraction appeared to be very Nb₂O₅ enriched.

Fig. 5.2.2.2 Geochemistry of homogenous rutile grains in the non magnetic ilmenite fraction of Pond B.

÷.,

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	94.343	97.484	96.133
SiO ₂	0.468	0.541	0.508
ZrO2	0.091	0.527	0.108
V2O2	0.479	0.964	0.699
Nb ₂ O ₂	0,164	2.185	0.192
	0.015	0.059	0.034
EeO	0.037	0.916	0,119
Cr ₂ O ₃	0.133	0.158	0.148

- Table 5.2.2.2 A summary of electron microprobe results from 'non magnetic ilmenite' fraction of Pond B.
- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

5.2.2.3 Pond C

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'non-magnetic ilmenite' fraction of Pond C is presented in Fig. 5.2.2.3 and Table 5.2.2.3 the analytical data. Rutile grains from the non-magnetic fraction of Pond C had a minimum TiO₂ value of 92.989wt% and a maximum value of 99.202wt%. The mean TiO₂ value for this population of rutile grains was 97.463wt%. The SiO₂ content of these grains was from 0.120wt% to 1.386wt%, however two of the twelve grains had SiO₂ contents in excess of 1.000wt% (1.076 and 1.386wt%). The average SiO₂ content for all rutile grains in this set was 0.507wt%. Five of the twelve rutile grains had ZrO₂ values in the range of

Fig. 5.2.2.3 Geochemistry of homogenous rutile grains in the non magnetic ilmenite fraction of Pond C.

1.4

0.017wt% to 0.343wt%. The mean ZrO_2 content was 0.126wt%. The V₂O₃ content in rutile showed a large distribution of values from below the lld (0.133wt%) to 0.858wt%, with a mean V₂O₃ content of 0.392wt%. All the rutile grains contained Nb₂O₅ well above the detection limit, with ten grains having Nb₂O₅ that was less 0.5wt%; the exception being a single grain that had Nb₂O₅ value of 2.825wt%. The mean Nb₂O₅ value (excluding the anomalously high Nb₂O₅ grain) was 0.259wt%. Five grains had Al₂O₃ below the detection limit of 0.011wt%, the rest had concentrations ranging up to 0.240wt%. The mean Al₂O₃ content was 0.086wt%. The FeO content of the grains varied from 0.206 to 1.002wt%, with an average at 0.429wt%. Cr₂O₃ was also present at low concentrations from below the lld (0.021wt%) to 0.185wt%, with a mean of 0.070wt%. Ta₂O was below the detection limit for most grains; only three grains had a significant Ta₂O₅ content, which was on average 0.780wt% (Table 5.2.2.3).

Rutile grains from Pond C had a larger range in TiO_2 contents (92.989 to 99.202 wt%), than Ponds A (94.759 to 99.993wt%) and Pond B (94.343 to 97.484wt%). Three grains contain SiO_2 , Nb_2O_5 and FeO at concentrations above 1.000wt%.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	92.989	99.202	97.463
SiO ₂	0.120	1.386	0.507
7rO ₂	#	0.343	0.126
<u> </u>	<u>"</u> #	0.858	0.392
Nb-O-	0.058	2 825	0.259
	#	0.240	0.086
	0.206	1.002	0.429
FeU	0.208	0.405	0.070
$ Cr_2O_3$	#	0.185	0.070

Table 5.2.2.3 A summary of electron microprobe results from 'non magnetic ilmenite' fraction of Pond C.

*Mean: Mean values excludes values that are below the detection limit and very high or low values (see details in text)

Lowest values are below the lld

5.3 Mag Others

The mag others fraction contained a large variety of minerals (Section 4.9), and was treated using the same procedure as with the ilmenite fraction (Section 5.2). A representative sub-fraction was taken from each of the Ponds A, B and C and split magnetically using the Frantz Isodynamic Separator (Hutchison, 1974). Separation commenced with a current of 0.4 Amp, which was increased at increments of 0.1 Amp, to 1.5 Amp (Section 4.7). Over 80% of each mag others fraction was removed at current settings between 0.4 to 1.0 Amp (Pond A, 89%; Pond B, 92% and Pond C, 81.31%). The fractions removed between 0.4 to 1.0Amp, were more magnetic than the fractions

removed at 1.1 to 1.5Amp. Thus the fractions removed by the Frantz at current settings of 0.4 to 1.0Amp were referred to as the 'magnetic mag others' and those removed at settings of 1.1 to 1.5Amp referred to as the 'non-magnetic mag others'.

5.3.1 Magnetic Mag Others

5.3.1.1 Pond A

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'magnetic mag others' fraction of Pond A is presented in Fig. 5.3.1.1 and Table 5.3.1.1 the analytical data. The seven rutile grains analysed from the 'magnetic mag others' fraction and were found to have TiO₂ from 94.779wt% to 98.522wt%, and a mean of 97.189wt%. The SiO₂ values had a range from 0.135wt% to as high as 4.525wt%. With the exception of the one grain (SiO₂, 4.525wt%), the other six grains had an average of 0.465wt%. Only four grains had ZrO₂ contents above the detection limit of 0.017wt%. The average ZrO₂ values were 0.179wt%. V₂O₃ values ranged from below the lld (0.133wt%) to 0.763wt%, with a mean of 0.515wt%. Nb₂O₅ displays a trend that was similar to V₂O₃, having values from below the lld (0.049wt%) to 0.573wt% and a mean of 0.315wt%. Al₂O₃ had a range from below the IId (0.011wt%) to 0.732; however, most grains had a mean of 0.026wt%, with only a single grain reporting a high Al₂O₃ value of 0.732wt%. There was a large range in the FeO values, from a minimum of 0.087 to a maximum of 3.540wt%. However, only one grain had a very high FeO (3.54wt%), all other grains from this population had a mean FeO content of 0.370wt%. Only three grains contained Cr₂O₃ above the detection limit of 0.021wt% and these had a mean of 0.065wt%. Ta₂O₅ was present at concentrations above the lld in all but two of the grains, with a range of 0.036 to 0.110wt% and a mean of 0.061 (Table 5.3.1.1).

Fig. 5.3.1.1 Geochemistry of homogenous rutile grains in the magnetic mag others fraction of Pond A.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	94.779	98.522	97.189
SiO ₂	0.135	4.525	0.465
ZrOa	#	0.283	0.179
V ₂ O ₂	#	0.732	0.515
Nh ₂ O ₂	#	0.573	0.315
	#	0.732	0.026
<u> </u>	π 0.087	3.540	0.370
	0.007	0.000	0.005
Cr_2O_3	0.036	0.093	0.085

- Table 5.3.1.1 A summary of electron microprobe results from 'magnetic mag others' fraction of Pond A.
- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

The rutile grain that had the high SiO_2 also had a high Al_2O_3 content. The FeO enriched grain did not contain a high concentration of any other elements. Grains from the magnetic mag others fraction of Pond A appeared to be Ta_2O_5 enriched.

5.3.1.2 Pond B

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'magnetic mag others' fraction of Pond B is presented in Fig. 5.3.1.2 and Table 5.3.1.2 the analytical data. There was a great variation in the TiO₂ content of rutile with values ranging from

76.844 wt% to 99.138wt% (Fig. 5.3.1.2). However, only two of the thirteen rutile grains had very low TiO₂ values of 87.773 and 76.844wt%, the rest had an average TiO₂ content of 97.503wt%. SiO₂ had a distribution from 0.046 to 1.689wt%, with the mean SiO₂ content for this sample being 0.362wt%. Two grains had ZrO₂ contents below the detection limit (0.017wt%) whereas other grains had ZrO₂ contents up to 0.236wt%. The average ZrO₂ value was 0.128wt%. The V₂O₃ content in these grains did not exceed 1.000wt%, but values ranged from below the detection limit (0.133wt%) to 0.801wt% with an average of 0.433wt%. Rutile grains showed a great variation in the Nb₂O₅ composition, with one grain having a Nb₂O₅ content which was below the detection limit (0.049wt%) to another grain that contained 4.567wt% Nb₂O₅; however, most grains had an average Nb₂O₅ content of 0.233wt%. Al₂O₃ was present in the analysed grains at concentrations ranging from a minimum that was below the detection limit of 0.011wt% to a maximum of 2.163wt%. With the exception of the grain with the high Al₂O₃ content (2.163wt%), the remaining grains had an average Al₂O₃ constituent of 0.328wt%. The FeO content of these grains showed the greatest variability, with grains having as little as 0.069wt% FeO to as much as 21.509wt%. Four of the thirteen grains contained more than 1.000wt% FeO, (5.562wt%, 1.277wt%, 1.012 wt%, and 21.509wt%). Apart from the grain with a FeO content of 21.509wt%, the rest of the grains had an average of 0.780 wt% FeO. Cr₂O₃ had a range from below the lld (0.021 wt%) to 0.166 wt%, with an average value of 0.079wt% Cr₂O₃. Ta₂O₅ was below the detection limits (0.036wt%) for all but one grain that had a value of 0.075wt% (Table 5.3.1.2).

The 'magnetic mag others' fraction contained some grains that were enriched in FeO, (21.509wt%), Al₂O₃ (2.163wt%), Nb₂O₅ (4.567wt%) and SiO₂ (1.689wt%).

Fig. 5.3.1.2 Geochemistry of homogenous rutile grains in the magnetic mag others fraction of Pond B.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	76.844	99.138	97.503
SiO ₂	0.046	1.689	0.362
ZrO ₂	#	0.236	0.128
V2O2	#	0.801	0.433
Nb ₂ O ₅	#	4.567	0.233
AlaOa	#	2.163	0.328
FeO	0.069	21.509	0.780
Cr ₂ O ₃	#	0.166	0.079

Table 5.3.1.2 A summary of electron microprobe results from 'magnetic mag others' fraction of Pond B.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

5.3.1.3 Pond C

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'magnetic mag others' fraction of Pond C is presented in Fig. 5.3.1.3 and Table 5.3.1.3 the analytical data. As with Pond B, the TiO₂ values display great variation with a minimum value of 82.519wt%, a maximum value of 99.740wt% and a mean TIO₂ value of 95.626wt% (Table 5.3.1.3). SiO₂ values of the analysed rutile grains were from 0.077wt% to 12.431wt%. However, most of the grains had SiO₂ values less than 3.000wt% and a mean 0.551wt%. Only two of the thirty-seven grains had very high SiO₂ contents (12.431 and 4.816wt%). ZrO₂ forms a minor constituent of the rutile grains, rarely exceeding

Fig. 5.3.1.3 Geochemistry of homogenous rutile grains in the magnetic mag others fraction of Pond C.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	82.519	99.740	95.626
SiO ₂	0.077	12.430	0.551
ZrO ₂	#	0.322	0.077
 	· #	0.734	0.470
Nb ₂ O ₅	#	4.741	0.291
Al ₂ O ₂	#	0.583	0.131
FeO	#	16.482	1.175
Cr ₂ O ₃	#	0.155	0.071

Table 5.3.1.3 A summary of electron microprobe results from 'magnetic mag others' fraction of Pond C.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see text for details).

Lowest values are below the lld.

0.300wt%, individual values ranged from below the detection limit (0.017wt%) to 0.322wt%, with an average of 0.077wt%. The V₂O₃ content of rutile grains did not exceed 1.000wt%; with twenty-two values distributed from below the detection limit (0.133wt%) to 0.734wt%. The average V₂O₃ value for the remaining fifteen grains was 0.470wt%. Nb₂O₅ values were from the lld (0.049wt%) to 4.741wt%. With the exception of the single grain that had a much higher Nb₂O₅ content (4.741wt%), most grains had an average Nb₂O₅ content of 0.291wt%. The Al₂O₃ values were from below the lld (0.011wt%) to a maximum of 0.583wt%, with a mean Al₂O₃ value of 0.131wt%. The FeO content of rutile grains displayed the greatest variation, with values from below the lld (0.027wt%) to as high as 16.482wt%. Although the vast majority of the grains (32 grains) contained less than 5wt% (mean of 1.175wt%), four grains had values of 9.544, 16.482, 6.559 and 7.583wt%. Cr₂O₃ values were from below the lld to 0.155wt%, with a mean of

0.071wt%. Majority of the grains (28) had Ta_2O_5 values below the detection limit of 0.036wt%. The maximum Ta_2O_5 content of a rutile grain from this fraction was 0.193wt% and the average Ta_2O_5 content was 0.082wt% (Table 5.3.1.3).

5.3.2 Non-Magnetic Mag Others

5.3.2.1 Pond A

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'non-magnetic mag others' fraction of Pond A is presented in Fig. 5.3.2.1 and Table 5.3.2.1 the analytical data. The TiO₂ content of the analysed grains ranged between 79.873wt% to 99.409wt%. A single grain reported a very low value (79.873wt%) whereas all the others (25 grains) had an average of 97.337wt%. SiO₂ had a minimum of 0.078wt% and a maximum of 2.933wt%. Only two grains had SiO₂ contents of greater than 1.000wt% (2.933 and 2.109wt%); however, the rest of the grains had a mean of 0.227wt%. All the rutile grains from this fraction contained less than 0.260wt% ZrO₂, (below the lld, 0.017 to 0.257wt%) with an average of 0.115wt%. V₂O₃ had values in the range from below the lld to 1.225wt%. The overall average V_2O_3 content for these grains was 0.693wt%. Nb₂O₅ displayed large variations in rutile, with a minimum from below the IId 0.049wt% to a maximum of 2.778wt%. The average Nb₂O₅ content was 0.535wt%. Al₂O₃ content ranged from below the detection limit (0.011wt%) to as high as 3.456wt%. Apart from the single grain with a very high Al_2O_3 (3.456wt%) all the other grains had a mean of 0.100wt%. The FeO content in rutile grains from this fraction showed the most variation, with values in a range from lower than detection limit (0.027wt%) to 11.59wt%. With the exception of a single grain containing 11.59wt% FeO, the rest of the grains had a mean FeO content of 0.827wt%. Cr₂O₅ had a range from below the lld, (0.021wt%) to 0.034wt% with a mean of 0.122wt%. Ta₂O₅ was below the detection limit in twenty of the analysed grains, and the remaining six grains had a range of 0.036 to 0.044wt% (Table 5.3.2.1).

Fig. 5.3.2.1 Geochemistry of homogenous rutile grains in the non magnetic mag others fraction of Pond A.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	79.873	99.409	97.337
SiO ₂	0.078	2.933	0.227
ZrO ₂	#	0.257	0.115
V ₂ O ₃	#	1.225	0.693
Nb ₂ O ₅	#	2.778	0.535
Al ₂ O ₃	#	3.456	0.100
FeO	#	11.590	0.827
Cr ₂ O ₃	#	0.034	0.122

- Table 5.3.2.1 A summary of electron microprobe results from 'non magnetic mag others' fraction of Pond A.
- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

Some of the rutile grains from the 'non-magnetic mag others' fraction appeared to be enriched in FeO (11.590wt%), Nb₂O₅ (2.778wt%) and SiO₂ (2.933wt%).

5.3.2.2 Pond B

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'non-magnetic mag others' fraction of Pond B is presented in Fig. 5.3.2.2 and Table 5.3.2.2 the analytical data. The titanium content of rutile grains found in the 'non-magnetic mag others' fraction from Pond B was between 89.703wt% and 98.843wt%.

Fig. 5.3.2.2 Geochemistry of homogenous rutile grains in the non magnetic mag others fraction of Pond B.

Only one grain reported a very low TiO₂ (89,703wt%), content with the remaining seventeen grains having a mean of 97.149wt%. SiO₂ had a distribution from 0.231wt% to 0.629wt%, with an overall average at 0.379wt%. The 'non-magnetic mag others' rutile grains contained less than 0.200wt% ZrO₂ having values that ranged from below the lld (0.017wt%) to 0.124wt% with a mean of 0.084wt%. The maximum V₂O₃ hosted in a grain was 0.849wt%; although some grains contained less than the detection limit of 0.133wt% V₂O₃, the average V₂O₃ content of grains was 0.490wt%. The Nb₂O₅ content of seventeen of the eighteen analysed rutile grains varied from below the lld to 1.614wt%, with a single enriched grain containing 5.057wt%. The other (seventeen) grains had an average Nb₂O₅ content of 0.393wt%. Al₂O₃ contents varied from below the detection limit (0.011wt%) to 0.261wt%, with two grains containing slightly higher Al₂O₃ contents (0.168 and 0.261wt%). The average Al₂O₃ content for the majority of this population was 0.037wt%. The concentration of FeO in rutile grains varied from below the detection limit (0.027wt%) to 1.974wt%. The average FeO content was 0.502wt%. Cr₂O₃ content in rutile grains varied from below the detection limit (0.021wt%) to 0.326wt%, with a mean 0.098wt%. Ta₂O₅ ranged from 0.098 to 0.800wt% having an average of 0.347wt% (Table 5.3.2.2).

The grains from the 'non-magnetic mag others' fraction contained a grain that was both Nb_2O_5 and FeO enriched. Although Ta_2O_5 was below the detection limit in ten of the eighteen grains analysed; this fraction had a higher average Ta_2O_5 value than any of the other fractions.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	89.703	98.843	97.149
SiO2	0.231	0.624	0.379
ZrOo	#	0.124	0.084
× 0	#	0.849	0.490
V ₂ O ₃	π μ	5.057	0.393
Nb ₂ O ₅	#	5.057	0.007
Al ₂ O ₃	#	0.261	0.037
FeO	#	1.974	0.502
Cr ₂ O ₃	#	0.326	0.098

Table 5.3.2.2 A summary of electron microprobe results from 'non-magnetic mag others' fraction of Pond B.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

5.3.2.3 Pond C

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'non-magnetic mag others' fraction of Pond C is presented in Fig. 5.3.2.3 and Table 5.3.2.3 the analytical data. The TiO₂ content of the non-magnetic mag others' fraction from Pond C varied between 93.092wt% and 98.826wt%. Apart from one TiO₂ poor rutile grain (93.092wt%) the other grains had an average of 97.493wt%. The distribution of SiO₂ values in these rutile grains, have ranged from 0.045wt% to 0.361wt% with an average of 0.179wt%. As with Ponds A and B, ZrO₂ occurred at low concentrations ranging from the Ild (0.017wt%) to 0.298wt%. The average ZrO₂ content for this rutile population was 0.109wt%. The V₂O₃ distribution in rutile grains ranged from the detection limit

Fig. 5.3.2.3 Geochemistry of homogenous rutile grains in the non magnetic mag others fraction of Pond C.

÷ ...

(0.133wt%) to 0.743wt% with a mean value of 0.422wt%. Majority of the rutile grains (18 grains) had Nb₂O₅ values in a range from the detection limit (0.049wt%) to 0.731wt%, with an average of 0.211wt%. A single grain appeared to be Nb₂O₅ enriched and had a value of 3.161wt%. Al₂O₃ had a relatively narrow range of values from the lld to 0.213wt%, with an average of 0.053wt% Al₂O₃ for the rutile grains in this fraction. The FeO content of grains varied from 0.068 to 1.635wt%, with a mean of 0.450wt%. Three rutile grains were FeO enriched having FeO content greater than 1.000wt%. The Cr₂O₃ content of rutile grains varied from below the lld (0.021wt%) to 0.213wt%, with a mean of 0.072wt%. Ta₂O₅ was below the detection limit in sixteen of twenty-one analysed grains. The rutile grains had a Ta₂O₅ range from below the detection limit (0.030wt%) to 0.232wt%, with a mean of 0.108wt% (Table 5.3.2.3).

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	96.271	98.826	97.493
SiO ₂	0.045	0.361	0.179
ZrO ₂	#	0.298	0.109
V_2O_3	#	0.743	0.422
Nb ₂ O ₅	#	3.161	0.211
Al ₂ O ₃	#	0.213	0.053
FeO	0.068	1.635	0.450
Cr ₂ O ₃	#	0.213	0.072

Table 5.3.2.3 A summary of electron microprobe results from 'non magnetic mag others' fraction of Pond C.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld
Almost all grains from the 'non-magnetic mag others' fraction contained detectable quantities of SiO_2 , and FeO. One grain from this fraction was Nb_2O_5 enriched, and further three grains were FeO enriched.

5.4 Cleaner Mags

5.4.1 Pond A

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'cleaner mags' fraction of Pond A is presented in Fig. 5.4.1 and in Table 5.4.1 the analytical data. The TiO₂ values of this fraction did not display much variation (98.338 to 99.574wt%), and had a mean TiO₂ content of 98.995wt%. As expected, in grains having a high TiO₂ content the other elements rarely exceed 1.000wt%. SiO₂ occurred at concentrations of 0.065wt% to 0.524wt%, with an average of 0.231wt%. The ZrO₂ was content was found to be below 0.200wt% in all of the rutile grains from this fraction. The range of values was from below the lld (0.017wt%) to 0.187wt% with an average for all grains of 0.092wt%. Only three of the fifteen grains contained V₂O₃ above the lld, with one of the three grains having 0.283wt%. The average V_2O_3 content of these three rutile grains was 0.271wt%. Two grains contained Nb₂O₅ below the detection limit (0.049wt%), however, in most grains Nb₂O₅ did not exceed 0.3wt%. Values were in a scatter from the Ild to 0.264wt%, with an average of 0.189wt%. Rutile grains displayed some variability in the Al_2O_3 content with three grains having Al_2O_3 content below the IId (0.011wt%), whereas one grain had 0.371wt%. The mean Al₂O₃ content (excluding grain with high Al₂O₃ and those below the lld) was 0.029wt%. All grains contained FeO, even though in most case it was present at low concentrations. The FeO content ranged from 0.065 to 0.426wt%. Only one grain had a relatively enriched FeO composition of 0.426wt%. whilst the other grains had an average of 0.157wt%. Cr₂O₃ had values in the range from below the IId (0.021wt%) to 0.191wt%, with an average of 0.082wt%. Most grains (9 grains) had Ta₂O₅ below the lld, the remaining six grains had values ranging from 0.036wt% to 0.335wt%, with an average of 0.1974wt% (Table 5.4.1).

× ...

The grains in the 'cleaner mags' fraction had a very high TiO_2 contents with very few significant quantities of impurities impurities. With the exception of SiO₂, the other elements had concentrations below 0.500wt%.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	98.337	99.574	98.995
SiO ₂	0.065	0.524	0.231
ZrO ₂	#	0.187	0.092
V ₂ O ₃	#	0.283	0.271
Nb ₂ O ₅	#	0.264	0.189
Al ₂ O ₃	#	0.371	0.029
FeO	0.065	0.426	0.157
Cr ₂ O ₃	#	0.191	0.082

Table 5.4.1 A summary of electron microprobe results from 'cleaner mags' fraction of Pond A.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

5.4.2 Pond B

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'cleaner mags' fraction of Pond B is presented in Fig. 5.4.2 and in Table 5.4.2 the analytical data. The

Fig. 5.4.2 Geochemistry of homogenous rutile grains in the cleaner mags fraction of Pond B.

TiO₂ values were between 97.845wt% and 99.901wt% with an average of 98.991. All the rutile grains from this fraction had SiO₂ present at concentrations between 0.145wt% to 0.504wt% with a mean SiO₂ of 0.281wt%. ZrO₂ had values in a much smaller range (0.023wt% to 0.267wt%), with a mean of 0.113wt%. Of the fifteen grains, only four had V₂O₃ contents above the detection limit (0.133wt%), ranging up to 0.362wt% with a mean of 0.234wt%. The Nb₂O₃ content in rutile grains from this fraction had values in the range from below the IId (0.049wt%) to 0.831wt%, with only a single Nb₂O₅ enriched (0.831wt%) grain being, the rest of the grains had an average of 0.197wt% of Nb₂O₅. Al₂O₃ content in the rutile grains were relatively low, (below the Al₂O₃ detection limit of 0.011wt% to 0.711wt%) with most grains containing less than 0.100wt% Al₂O₃ with a mean of 0.025wt%. the exception was a single grain that contained 0.711wt% Al₂O₃. (Table 5.4.2).

Oxides_	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	97.845	99.901	98.991
SiO ₂	0.145	0.504	0.281
ZrO ₂	0.023	0.267	0 113
<u>_</u>	#	0.362	0.234
Nb ₂ O ₅	#	0.831	0.107
	#	0.711	0.197
		0.711	0.088
FeO	#	0.590	0.117
Cr ₂ O ₃	#	0.514	0.131

Table 5.4.2 A summary of electron microprobe results from 'cleaner mags' fraction of Pond B.

- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).
- # Lowest values are below the lld

The FeO content varied from below the IId (0.027wt%) to 0.590wt%, with a mean of 0.177wt%. Cr₂O₃ values varied from below the IId (0.021wt%) to 0.514wt%, and had a mean of 0.131wt%. Ta₂O₅ was above the detection limit for nine of the fifteen grains, ranging up to 0.292, with an average of 0.146wt% (Table 5.4.2).

All the grains analysed in the 'cleaner mags' fraction were virtually pure TiO_2 and contained only small amounts of SiO_2 , ZrO_2 and Nb_2O_5 .

5.4.3 Pond C

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'cleaner mags' fraction of Pond C is presented in Fig. 5.4.3 and in Table 5.4.3 the analytical data. The TiO₂ values in these rutile grains from Pond C have a larger spread than Ponds A and B, with values from 96.187 to 98.856wt%, and a mean of 97.903wt%. The SiO₂ content varied between 0.224wt% and 1.076wt%, with fifteen of the sixteen grains having a mean SiO₂ content of 0.370wt%. Only a single grain had a much higher SiO₂ content of 1.076wt%. Almost all grains contained ZrO₂, (one grain had ZrO₂ below the detection limit) ranging up to 0.299wt%. The average ZrO_2 content of these grains was 0.127wt%. Only four grains contained V_2O_3 above the detection limit of 0.133wt%, with the maximum V_2O_3 content being 0.414wt%. The mean V_2O_3 for this fraction was 0.245wt%. All the analysed grains were Nb₂O₅ bearing, with values that ranged from the detection limit of 0.049wt% to 0.858wt%, and a mean of 0.284wt%. Seven of the seventeen analysed rutile grains contained Al₂O₃ above the detection limit (0.011wt%) to 1.522wt%, with only a single grain containing a high Al₂O₃ content (1.522wt%), whereas the other grains contained an average of 0.036wt% Al₂O₃. The FeO content in grains ranged from below the detection limit (0.027) to a maximum of 0.593wt%, with an average FeO content for these rutile grains being 0.248wt%. All the grains contained Cr₂O₃, varying from 0.033 to 0.197wt%. The average Cr₂O₃ content in this fraction was 0.107wt%. Most grains (nine grains) contained Ta₂O₅ ranging up to 0.261wt%, with an average 0.137wt% (Table 5.4.3).

Fig. 5.4.3 Geochemistry of homogenous rutile grains in the cleaner mags fraction of Pond C.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	96.187	98.856	97.903
SiO ₂	0.224	0.601	0.370
ZrO ₂	0.038	0.299	0.135
V ₂ O ₃	#	0.414	0.245
Nb ₂ O ₅	#	0.858	0.284
Al ₂ O ₃	#	1.522	0.058
FeO	#	0.593	0.248
Cr ₂ O ₃	0.033	0.197	0.107

- Table 5.4.3 A summary of electron microprobe results from 'cleaner mags' fraction of Pond C.
- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

All the rutiles from the 'cleaner mags' fraction of Pond C contained SiO₂ and Nb₂O₅. In comparison to Ponds A and B, rutile grains from Pond C rutile grains had a greater spread in the Al_2O_3 content. Only one grain had a slightly higher Al_2O_3 content of 1.522wt%.

5.5 Primary Mags

5.5.1 Pond A

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'primary mags' fraction of Pond A is presented in Fig. 5.5.1 and in Table 5.5.1 the analytical data. The TiO₂ content of these grains ranged from 96.526 to 99.658wt%. One grain had a slightly lower TiO₂ content of 96.526wt, while the remaining fifteen grains contained on average 99.054wt% TiO₂. The SiO₂ content of rutile, varied from 0.065wt% to 0.394wt%. The grain that had the very low TiO₂ content had a correspondingly high SiO₂ content of 0.394wt%. The average SiO₂ content for all sixteen grains was 0.166wt%. Even though all grains contained measurable ZrO₂ concentrations, these did not exceed 0.500wt%. The values ranged from 0.102wt% to 0.442wt% with a mean ZrO₂ content of 0.227wt%. There was a large spread of V_2O_3 values; three grains had V_2O_3 below the detection limit while others ranged up to a single enriched grain with 1.162wt% V₂O₃. Most of the grains (with exception to the enriched grain) had a mean V_2O_3 value of 0.276wt%. The Nb₂O₅ bearing grains, had values confined to a range from 0.049wt% to 0.259wt%. The average Nb₂O₅ composition for the fourteen rutile grains was 0.132wt%. Although most rutile grains (ten grains) contained Al_2O_3 , above the lld, one grain had a relatively higher Al₂O₃ content of 0.159wt%. With the exception of this grain, the rest of the grains had Al₂O₃ content of up to 0.072wt%, with an average of 0.035wt%. Fifteen of the sixteen grains contained FeO, with values ranging up to 0.889wt%. One grain had a relatively higher proportion of FeO (0.889wt%) than the other grains, which had an average FeO content of 0.184wt%. Cr₂O₃ was above the detection limit for all except one grain. having a maximum of 0.226wt%, and with a mean of 0.113wt%. Ta₂O₅ was present at concentration above the detection limit in nine of the sixteen grains ranging from 0.036 to 0.289wt%, with a mean of 0.128wt% (Table 5.5.1).

All the rutile grains analysed in the 'primary mags' fraction contain a proportion of SiO₂, Nb₂O₅ and FeO. Two grains reported higher Al₂O₃ values, and one grain, a high V_2O_3 value.

Fig. 5.5.1 Geochemistry of homogenous rutile grains in the primary mags fraction of Pond A.

÷...

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	96.526	99.658	99.054
SiO ₂	0.065	0.394	0.166
ZrO ₂	0.102	0.442	0.227
V ₂ O ₂	#	1 162	0.347
		0.050	0.100
ND ₂ O ₅	#	0.259	0.132
Al ₂ O ₃	#	0.401	0.035
FeO	#	0.889	0.184
Cr ₂ O ₃	#	0.226	0.113

- Table 5.5.1 A summary of electron microprobe results from 'primary mags' fraction of Pond A.
- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the Ild

÷

5.5.2 Pond B

The distribution of SiO₂, ZrO_2 , V_2O_3 , Nb_2O_5 , Al_2O_3 and FeO from the 'primary mags' fraction of Pond B is presented in Fig. 5.5.2 and in Table 5.2.2 the analytical data. The TiO₂ content of rutile grains from this fraction varied from 96.226wt% to 99.959wt%, having an average TiO₂ content of 98.463wt%. All grains contained SiO₂ at levels ranging from 0.168wt% up to 2.203wt%. Two grains had much higher SiO₂ contents (1.515wt% and 2.203wt%) than the other grains, which had on average 0.254wt% SiO₂.

Fig. 5.5.2 Geochemistry of homogenous rutile grains in the primary mags fraction of Pond B.

The ZrO₂ composition of rutile grains was up to 0.223wt%, although some grains contained ZrO₂ below the lld. The mean ZrO₂ content was 0.113wt%. The distribution of V₂O₃ in rutile grains had a large spread, two grains had values below the detection limit (0.133wt%) while others contained up to 1.746wt% V₂O₃, with a mean V₂O₃ content of 0.928wt%. Nb₂O₅ was present in all rutile grains, at concentrations from 0.081 to 0.501wt%. The mean Nb₂O₅ content for rutile grains was 0.286wt%. The six grains that contained Al₂O₃ ranged from just above the lld (0.011wt%) to a single grain with 0.479wt% Al₂O₃. The mean Al₂O₃ content was 0.183wt%. The FeO composition of rutile grains varied from one grain that had FeO below the lld (0.027wt%) to 1.664wt%. The mean FeO content for the other grains from this fraction (excluding the grain with 1.664wr% FeO) was 0.202wt%. Cr₂O₃ had a varied distribution in rutile grains from one grain with a value below the lld (0.021wt%) to a maximum of 0.758wt%, with a mean Cr₂O₃ content of 0.314wt%. Ta₂O₅ was detected in only four grains and ranged from 0.036 to 0.202wt%, with a mean of 0.164wt% (Table 5.5.2).

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	96.226	99.959	98.463
SiO ₂	0.168	2.203	0.254
ZrO ₂	0.017	0.223	0 113
V ₂ O ₂	0 133	1 746	0.928
Nh ₂ O ₅	0.081	0.501	0.326
	0.081	0.501	0.286
Al ₂ O ₃	0.011	0.479	0.183
FeO	0.027	1.664	0.202
Cr ₂ O ₃	0.021	0.758	0.314

Table 5.5.2 A summary of electron microprobe results from 'primary mags' fraction of Pond B.

*Mean: Mean values exclude values that are below the detection limit and very high or low values.

Lowest values are below the lld 103 The rutile grains from 'primary mags' fraction of Pond B, all contain SiO_2 , and Nb_2O_5 . Most grains had a very low FeO content, and some grains contained FeO below the IId of 0.027wt%.

5.5.3 Pond C

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'primary mags' fraction of Pond C is presented in Fig. 5.5.3 and in Table 5.5.3 the analytical data. All grains had a high TiO₂ content, ranging from 96.982wt% to 99.868wt%, with an average of 98.451wt%. All the rutile grains from this fraction contained some SiO₂, varying from 0.080wt% to 1.188wt%. With the exception of the grain consisting of 1.188wt% SiO₂, the grains had an average of 0.224wt% SiO2. The ZrO2 composition of rutile grains was from one grain below the lld (0.017wt%) to 0.300wt%, with a mean of 0.126wt%. The V₂O₃, content ranged from 0.133wt% to 0.893wt% with an average of 0.517wt%. Although two grains contained less than a detectable amount of Nb₂O₅, other twelve grains contained up to 0.610wt%, the average Nb₂O₅ content was 0.199wt%. Of the fourteen grains, only two grains contained Al₂O₃ below the lld; however, most of the twelve rutile grains contained very little Al₂O₃ (ranging to 0.488wt%), with three distinct grains having Al₂O₃ values of 0.185, 0.221 and 0.488wt%. The overall mean Al₂O₃ value for the analysed grains was, 0.093wt%. FeO was present in all the grains at concentrations ranging from 0.037 to 1.028wt%, with the average FeO content being 0.314wt%. Cr₂O₃ was present in all but one grain, ranging up to 0.303wt% with a mean of 0.131wt%. Only eight grains contained Ta₂O₅, but this was present at very low concentrations of 0.072wt%, and in the other six grains Ta₂O₅ was below the detection limit (Table 5.5.3).

All grains from the 'primary mags' fraction of Pond C contained significant amounts of SiO_2 , V_2O_3 , FeO and Cr_2O_3 . A single grain had a SiO_2 content of greater than 1wt%. The other elements occurred at concentrations well below 1.000wt%.

Fig. 5.5.3 Geochemistry of homogenous rutile grains in the primary mags fraction of Pond C.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	96.982	99.868	98.451
SiO ₂	0.080	1.188	0.224
ZrO ₂	#	0.300	0.126
V2O3	#	0.893	0.517
Nb ₂ O ₅	#	0.610	0.199
Al ₂ O ₂	#	0.488	0.093
FeO	#	1 028	0 314
Cr ₂ O ₃	#	0.303	0.131

Table 5.5.3 A summary of electron microprobe results from 'primary mags' fraction of Pond C.

Lowest values are below the lld

5.6 Primary HT'S Conductors

5.6.1 Pond A

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'primary HT'S conductors' fraction of Pond A is presented in Fig. 5.6.1 and in Table 5.6.1 the analytical data. The TiO₂ content of rutile grains from this fraction was restricted to a narrow range between, 98.704wt% to 99.678wt% with a mean of 98.976wt%. All the grains analysed contain traces of SiO₂ varying from 0.309wt% to 0.606wt% with an average SiO₂ content of 0.406wt%. All grains also contained ZrO₂, at concentrations of 0.059wt% to

^{*}Mean: Mean values exclude values that are below the detection limit and very high or low values.

Fig. 5.6.1 Geochemistry of homogenous rutile grains in the primary HT'S conductors fraction of Pond A.

0.321wt%, and a mean of 0.130wt%. Only three grains of the eight grains contained V₂O₃ at levels above the lld, with others containing as much as 0.335wt%. The overall mean for V₂O₃ was 0.303wt%. Only one grain contained Nb₂O₅ below the detection limit (0.049wt%), the others contained up to 0.234wt%, with an average of 0.159wt%. Only two grains contained Al₂O₃ above the detection limit, and these had values of 0.021 and 0.138wt% with the average of the two grains being 0.080wt%. The FeO content of two rutile grains was below the lld, the other seven ranged from 0.027 to 0.175wt%, with a mean of 0.095wt%. Cr₂O₃ was present in grains from 0.038wt% to 0.218wt% and had an average of 0.111wt%. Ta₂O₅ was below detection in most grains with with only three grains having Ta₂O₅ of 0.046, 0.100 and 0.181wt%, giving a mean of 0.109wt% (Table 5.6.1).

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	98.704	99.678	98.976
SiO2	0.309	0.606	0.406
ZrO ₂	0.059	0.321	0.130
V_2O_3	#	0.335	0.303
Nb ₂ O ₅	#	0.234	0.159
Al ₂ O ₃	#	0.138	0.080
FeO	#	0.175	0.095
Cr ₂ O ₃	0.038	0.218	0.111

Table 5.6.1 A summary of electron microprobe results from 'primary mags' fraction of Pond A.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

The rutile grains in 'primary mags' fraction of Pond A all had very high TiO_2 contents (>98.700wt%). No other element occurred at concentration above 1.00wt%, although all grains contained some SiO₂, ZrO₂, Nb₂O₅, Cr₂O₃ and FeO.

5.6.2 Pond B

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'primary HT'S conductors' fraction of Pond B is presented in Fig. 5.6.2 and in Table 5.6.2 the analytical data. The analysed rutile grains were very TiO₂ pure, with TiO₂ contents, in the range of 98.010wt% to 99.872, and a mean of 98.967wt%. All the grains contained between 0.271wt% to 0.468wt% SiO₂, with a mean SiO₂ content of 0.370wt%. Most of the grains (six of eight analysed grains) contain ZrO₂, above the IId (0.017wt%) varying up to 0.314wt%, with a mean of 0.165wt%. Only three grains contained V_2O_3 above the detection limit (0.133wt%), ranging to a maximum of 0.352wt%, with a mean of 0.238wt%. The Nb₂O₅ content of rutile grains varied from one grain, which was below the lld (0.049) to 0.261wt%; the average Nb₂O₅ content being 0.150wt%. The Al₂O₃ content in the rutile grains did not exceed 0.100wt%, and was confined to a narrow range, three grains were below the detection limit (0.011wt%) the other five had up to 0.044wt%, with an average of 0.018wt%. Only one grain had FeO content below the lld (0.027wt%), the other grains ranged up to 0.312wt%, having an average FeO content of 0.137wt%. Significant Cr₂O₃ measured in six of the eight grains and ranged up to 0.202wt%, with a mean Cr₂O₃ content of 0.126wt%. Most grains did not contain Ta₂O₅, however three grains had Ta₂O₅ contents above the detection limit, ranging from 0.036 to 0.270wt%, with an average of 0.096wt% (Table 5.6.2).

The rutile grains from the 'primary HT'S conductors' fraction of Pond B had a very high TiO_2 content, thus restricting the quantity of other ions substituting into the rutile lattice, with no element contributing more than 0.500wt% to the rutile grain. However, all grains contain detectable levels of SiO₂.

Fig. 5.6.2 Geochemistry of homogenous rutile grains in the primary HT'S conductors fraction of Pond B.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	98.010	99.827	98.967
SiO ₂	0.271	0.468	0.370
ZrO ₂	#	0.314	0.165
V2O3	#	0.352	0.238
Nb ₂ O ₅	#	0.261	0.150
Al ₂ O ₂	#	0.044	0.029
FeO	#	0.312	0.137
Cr ₂ O ₃	#	0.202	0.126

- Table 5.6.2 A summary of electron microprobe results from 'primary HT'S conductors' fraction of Pond B.
- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

5.6.3 Pond C

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'primary HT'S conductors' fraction of Pond C is presented in Fig. 5.6.3 and Table 5.6.3 the analytical data. All eight grains from this fraction had relatively high TiO₂ contents of 96.956wt% to 98.050wt%, with a mean of 97.409wt%. Grains all contained varying amounts of SiO₂, ZrO₂, V₂O₃, Nb₂O₅ and FeO. The SiO₂ content ranged from 0.299wt% to 0.589wt%, with

0.3

wt%

0.4

0.5

0.6

0.0 wt% = below detection limit

112

96.5

0.0

0.1

0.2

with a mean of 0.390wt%. The ZrO₂ content in these rutile grains was much lower than the SiO₂ content, varying from 0.050wt% to 0.195wt% and having an average ZrO₂ content of 0.089wt%. V₂O₃ had five values below the IId (0.133wt%) with the other three having as much as 0.264wt%, with an average of 0.187wt%. One rutile grain contained Nb₂O₅ below the IId while the other seven varied up to 0.273wt%, with an average content of 0.213wt% Nb₂O₅. Four grains contained Al₂O₃ below the IId (<0.011wt%), the remaining four grains had Al₂O₃ confined to a narrow range of 0.015wt% to 0.047wt%, with a mean of 0.033wt%. Most of the grains (seven grains) contained FeO, ranging up to a maximum of only 0.156wt% and a mean of 0.077wt%. Only two grains contained detectable quantities of Ta₂O₅, at 0.068 and 0.168wt% respectively. Seven of the grains contained Cr₂O₃ (albeit at low concentrations) from the IId (0.021wt%) to 0.153wt% with the average Cr₂O₃ content at 0.077wt% (Table 5.6.3).

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO₂	96.956	98.05	97.409
SiO ₂	0.299	0.589	. 0.390
ZrO ₂	0.050	0.195	0.089
V2O2	#	0.264	0.187
Nh ₂ Or	#	0.273	0.212
	#	0.273	0.213
	#	0.047	0.033
FeO	#	0.156	0.086
Cr ₂ O ₃	#	0.153	0.088

Table 5.6.3 A summary of electron microprobe results from 'primary HT'S conductors' fraction of Pond C.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

The proportion of substituting elements into the rutile lattice of the 'primary HT'S conductors was restricted because of the high TiO_2 content. Other than TiO_2 , SiO_2 formed the highest proportion in the rutile grains and AI_2O_3 had the lowest concentration in rutile grains.

5.7 HT'S Scavengers

The HT'S scavengers, non-conductors and mids fraction, was the fraction removed when the Primary HT'S non-conductors fraction was used as the feed for the roller magnets at the same settings as the feed to the Primary HT'S stage. This step ensured that grains caught by entrapment and accidentally reporting as non-conductors were removed and returned to the zircon circuit. Thus this fraction consisted almost exclusively of non-conducting zircon grains. Very few rutile grains were found in this fraction, as rutile is a conducting mineral. Rutile grains were only recovered from the HT'S Scavengers of Pond B, no rutile grains were encountered in this fraction from Ponds A and C.

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'HT'S scavengers non-conductors and mids' fraction of Pond B is presented in Fig. 5.7.1 and in Table 5.7.1 the analytical data The rutile grains had a relatively high TiO₂ content in the range of 97.389 to 98.488 wt%, and an average TiO₂ content of 97.830wt%. The SiO₂ content was restricted to a very narrow range between 0.210wt% to 0.344wt% with a mean of 0.271wt%. ZrO₂ varied from a minimum of 0.038wt% to a maximum of 0.343wt%, with a mean ZrO₂ content of 0.182wt%. V₂O₃ contents differed significantly, with two grains having values below the detection limit (0.133wt%) and the other seven ranging up to 0.946wt%, with an average V₂O₃ content of 0.628wt%. Nb₂O₅ was detectable in seven of the nine rutile grains with values ranging from below the lld (0.049wt%) to 0.249wt%. The mean Nb₂O₅ content was 0.174wt%. The Al₂O₃ below the lld while the other seven ranged up to 0.033wt%.

Fig. 5.7.1 Geochemistry of homogenous rutile grains in the HT'S scavengers fraction of Pond B.

· ..

The average Al_2O_3 content was 0.022wt%. Even though all grains had FeO values above the detection limit these were restricted to a very narrow range of 0.035wt% to 0.226wt%. The mean FeO content was 0.130wt% Cr_2O_3 was detected in most of the grains (eight grains) ranging from 0.024wt% to 0.094wt%, with an average of 0.061wt%. Ta_2O_5 content in rutile grains was below the lower limit of detection (0.036wt%) in seven of the nine grains, with only two grains having values of 0.067 and 0.065wt%(Table 5.7.1).

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	97.389	98.488	97.830
SiO ₂	0.210	0.344	0.271
ZrO ₂	0.038	0.343	0.182
V2O3	#	0.946	0.628
Nb ₂ O ₅	#	0.249	0.174
Al-O-	#	0.033	0.022
FeO	0.035	0.000	0.022
0:0	0.035	0.220	0.130
	#	0.094	0.061

Table 5.7.1 A summary of electron microprobe results from 'HT'S scavengers' fraction of Pond B.

- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).
- # Lowest values are below the lld

All grains in the HT'S Scavengers fraction were composed almost entirely of TiO_2 , with only V_2O_3 occurring at concentrations greater than 0.400wt%. However, every grain contained some SiO₂, ZrO₂ and FeO.

5.8 HT'S Cleaner Mids

÷

5.8.1 Pond A

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'HT'S cleaner mids' fraction of Pond A is presented in Fig. 5.8.1 and in Table 5.8.1 the analytical data. All grains had relatively high TiO₂ contents, between 96.688 and 98.164wt%, with an average of 97.203wt% TiO₂. All thirteen grains contained SiO₂, ranging from 0.151wt% to 0.456wt%, with the average SiO₂ composition for all grains of 0.331wt%. ZrO₂ content occupied a range between 0.051 and 0.475wt%, with an overall average of 0.180wt%. V₂O₃ had a varied distribution in this fraction, one grain had a value below the lld (0.133wt%) but the other thirteen had up to a maximum of 0.797wt%. The mean V₂O₃ content for grains from this fraction was 0.446wt%. Nb₂O₅ constituted as much as 0.302wt%; however six grains contained Nb₂O₅ below the detection limit. The average Nb₂O₅ for grains from this fraction was 0.156wt%. The Al₂O₃ content of rutile grains did not display much variation, five grains had values below the IId (0.011wt%) and the other eight had values up to 0.045wt%. The average Al₂O₃ content was 0.025wt%. The FeO content varied from below the detection limit, (one grain) to a maximum of 0.272wt%. The average FeO content was 0.118wt%. Most grains (eleven grains) contained Cr₂O₃ at levels above the detection limit of 0.021wt% but values did not exceed a maximum of 0.218wt%, with a mean Cr_2O_3 content of 0.127wt%. Majority of the grains (eight grains) did not contain detectable quantities of Ta_2O_5 . Of the five Ta_2O_5 bearing grains, one grain had a Ta₂O₅ content of 0.215wt% with the average for all grains being 0.098wt% Ta₂O₅ (Table 5.8.1).

Fig. 5.8.1 Geochemistry of homogenous rutile grains in the HT'S cleaner mids fraction of Pond A.

1.0

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	96.688	98.164	97.203
SiO ₂	0.151	0.456	0.331
ZrO ₂	0.051	0.475	0.180
V2O2	#	0.797	0.446
Nb ₂ O ₅	#	0.302	0.156
Al ₂ O ₂	#	0.045	0.025
FeO	#	0.272	0.118
Cr ₂ O ₃	#	0.218	0.127

Table 5.8.1 A summary of electron microprobe results from 'HT'S cleaner mids' fraction of Pond A.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

Rutile grains from the 'HT'S cleaner mids' fraction of Pond A contained a significant proportion of SiO₂ and ZrO₂. Although the mean V_2O_3 content was higher than either SiO₂ or ZrO₂, not all the grains contained a higher portion of V_2O_3 .

5.8.2 Pond B

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'HT'S cleaner mids' fraction of Pond B is presented in Fig. 5.8.2 and in Table 5.8.2 the analytical data. TiO₂ content of the grains from this fraction varied from 96.758wt% to 98.794wt%, with the average being 97.731wt%. All twenty grains from this fraction contained significant amounts of SiO₂ and ZrO₂. Rutile grains from this fraction contained SiO₂ at $\frac{119}{119}$

Fig. 5.8.2 Geochemistry of homogenous rutile grains in the HT'S cleaner mids fraction of Pond B.

concentrations from 0.219wt% to 0.704wt%, though only two grains contained higher SiO₂ than the other grains, (0.493 and 0.704wt%). The average SiO₂ for the other grains (i.e. excluding high SiO₂ grains) was 0.304wt%. Two grains had relatively higher ZrO₂ concentrations of 0.336 and 0.668wt%. The other grains had an average of 0.091wt% confined to a range of 0.034wt% to 0.202wt%. The V2O3 content was below the detection limit for nine of the twenty grains analysed and was restricted to a range from below the IId (0.133wt%) to 0.238wt%. The average V_2O_3 content for grains from this fraction was 0.183wt%. Nb₂O₅ had a larger spread of values, with one grain below the detection limit of 0.049wt% and the other nineteen grains varying up to 1.005wt%. The average Nb₂O₅ content was 0.275wt%. Most of the grains contained little or no Al₂O₃; however one contained 0.673wt% Al₂O₃. Apart from the single grain that had over 1.00wt% Al₂O₃, all the other grains (nineteen) had an average of 0.035wt%. FeO content of rutile grains from this fraction fluctuated in a narrow range from below the detection limit of 0.027wt% (four grains) to 0.301wt%, with a mean FeO content of 0.124wt%. Though Ta₂O₅ was below the detection limit for most grains, there were eight grains that contained significant Ta_2O_5 concentrations (up to 0.260wt%), with the average Ta_2O_5 content of 0.127wt%. Cr₂O₃ was also present at low concentrations in most grains ranging from a minimum of 0.022wt% to 0.377wt%. The average Cr₂O₃ content for the analysed grains from this fraction was 0.098wt% (Table 5.8.2).

In the 'HT'S cleaner mids' fraction of Pond B, SiO_2 and ZrO_2 were found at levels significantly above the detection limit in all of the analysed rutile grains. Although the Nb₂O₅ content sometimes far exceed that of SiO₂ not all grains contained Nb₂O₅, and only one grain had a high Al₂O₃ content.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	96.758	98.794	97.731
SiO2	0.219	0.362	0.304
$\frac{1}{2}$	0.034	0.202	0.091
<u> </u>	#	0.238	0.183
	#	1 005	0.275
	# 	0.130	0.035
	#	0.139	0.035
FeO	#	0.301	0.124
Cr ₂ O ₃	#	0.377	0.098

Table 5.8.2 A summary of electron microprobe results from 'HT'S cleaner mids' fraction of Pond B.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

5.8.3 Pond C

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'HT'S cleaner mids' fraction of Pond C is presented in Fig. 5.8.3 and the analytical data in Table 5.8.1. As expected, the rutile grains from this fraction had a very high TiO₂ content, as most of these grains were virtually pure with the TiO₂ content varying from 97.739wt% to 99.633wt%, with an average TiO₂ content of 98.438wt%. All nine analysed rutile grains contained a little SiO₂, ranging from 0.034wt% to 0.202wt%, with an average SiO₂ content for all the grains is 0.110wt%. The distribution of ZrO₂ varied significantly, with only one grain reporting a value below the detection limit (0.017wt%), the other eight containing up to 0.433wt%, with a mean ZrO₂ content of 0.261wt%.

Fig. 5.8.3 Geochemistry of homogenous rutile grains in the HT'S cleaner mids fraction of Pond C.

÷ ...

Rutile grains also contained varying concentrations of V_2O_3 , from below the detection limit in one grain (0.133wt%) to 0.679wt%, with an average of 0.361wt%. Nb₂O₅ content of the six grains that contained Nb₂O₅ above the lld averaged 0.116wt% with one grain that contained 0.370wt% Nb₂O₅. However, three grains contained Nb₂O₅ below the lld of 0.133wt%. Only four of the nine rutile grains contained Al₂O₃ at concentration above the detection limit. Values ranged up to a maximum of 0.046wt% with the four grains having a mean of 0.028wt%. Only one grain had FeO below the lld. The other eight grains contained FeO compositions that ranged up to 0.308wt%. The overall average FeO content was 0.135wt%. Only two grains had a significant Ta₂O₅ content, (0.219wt% and 0.142wt% respectively), all the other grains had Ta₂O₅ below the detection limit (0.036wt%). Cr₂O₃ content in rutiles varied from below the detection limit in two grains to 0.145wt%. The average Cr₂O₃ content was 0.111wt% (Table 5.8.3).

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO₂	97.739	99.633	98.438
SiO ₂	0.034	0.202	0.110
ZrO ₂	0.017	0.433	0.261
V ₂ O ₃	0.133	0.679	0.361
Nb ₂ O ₅	0.049	0.157	0.116
Al ₂ O ₃	0.011	0.046	0.028
FeO	0.027	0.308	0 135
Cr ₂ O ₃	0.021	0.145	0.111

Table 5.8.3 A summary of electron microprobe results from 'HT'S cleaner mids' fraction of Pond C.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

The grains from the 'HT'S cleaner mids' fraction of Pond C are composed almost entirely of TiO₂, with the other elements making up only a very small percentage of the rutile grains. Some grains from this fraction contained a high percentage of V_2O_3 and ZrO_2 . Grains contain almost no Al₂O₃.

5.9 HT'S Cleaner Non-Conductors

5.9.1 Pond A

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'HT'S cleaner non-conductors' fraction of Pond A is presented in Fig. 5.9.1 and in Table 5.9.1 the analytical data. The rutile grains from this fraction had a fairly high TiO₂ content, which was confined to a narrow range from 97.172 to 98.41wt%, with a mean TiO₂ content of 97.823wt%. All thirteen grains from this fraction contained SiO₂, in the range from 0.138 to 0.429wt%, with an average SiO₂ content for all grains of 0.243wt%. Most of the grains contained measurable amounts of ZrO₂; only two grains had ZrO₂ below the detection limit of 0.017wt%, the values of the other grains ranged up to 0.263wt%, with a mean ZrO_2 content of 0.133wt%. The V₂O₃ content of rutile grains varied from eight grains containing V₂O₃ below the detection limit (0.133wt%) to as much as 0.414wt%, with an average V₂O₃ content of 0.296wt%. Nb₂O₅ had the largest range within these rutile grains, three values were below the detection limit (0.049wt%) while another grain contained up to 0.629wt%. Discounting this grain with the exceptionally higher Nb₂O₅ content, the remaining grains had a mean of 0.160wt%. Al₂O₃ in the rutile grains occurred at very low concentrations, and was found above the detection limit in nine grains, and ranged up to 0.120wt%. The average Al₂O₃ content was 0.044wt%. Only one of the thirteen grains contained less than the detection limit of (0.027wt%) FeO. The maximum FeO hosted within a rutile grain in this fraction was 0.407wt%, with a mean FeO content of 0.168wt%. Only two of the thirteen grains contained Ta₂O₅ at levels above the detection limit, giving values of 0.203 and 0.125wt% respectively. Cr₂O₃ was present in all the grains, at concentrations of 0.027 to 0.147wt%. The mean Cr2O3 content for all grains was 0.077wt% (Table 5.9.1).

Fig. 5.9.1 Geochemistry of homogenous rutile grains in the HT'S cleaner non-conductors fraction of Pond A.
Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	97.172	98.41	97.823
SiO ₂	0.138	0.429	0.243
ZrO ₂	0.057	0.263	0.133
V ₂ O ₃	#	0.414	0.296
Nb ₂ O ₅	#	0.629	0.160
Al ₂ O ₃	#	0.120	0.044
FeO	0.038	0.407	0.168
Cr ₂ O ₃	0.027	0.147	0.077

Table 5.9.1 A summary of electron microprobe results from 'HT'S cleaner nonconductors' fraction of Pond A.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

Significant amounts of SiO₂, ZrO₂ and Cr₂O₃, were found in all the analysed grains from the 'HT'S cleaner non-conductors' fraction of Pond A. Most grains had low concentrations of substituting ions; however, one grain contained 0.629wt% Nb₂O₅. Al₂O₃ and Cr₂O₃ occurred at concentrations that did not exceed 0.200wt%. However, SiO₂, V₂O₃, Nb₂O₅ and FeO concentrations in some grains exceeded 0.400wt%.

5.9.2 Pond B

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'HT'S cleaner non-conductors' fraction of Pond B is presented in Fig. 5.9.2 and in Table 5.9.2 the

Fig. 5.9.2 Geochemistry of homogenous rutile grains in the HT'S cleaner non-conductors fraction of Pond B.

analytical data. All fifteen grains had a high concentration of TiO₂ ranging from 97.585wt% to 99.946wt%. The mean TIO₂ content was 98.407wt%. Although SiO₂ was present at levels above the detection limit in all the grains, it had a limited range of 0.257wt% to 0.451wt%, with an average of 0.337wt%. Only one of the analysed grains reported ZrO₂ below the detection limit, whereas most of the other fourteen grains contained substantial ZrO₂, one grain containing as much as 0.342wt%. The mean ZrO₂ content for grains was 0.135wt%. Most of the grains (eight grains) contained V₂O₃ below the lld, and the remaining seven grains had an average of 0.240wt%. Nb₂O₅ was present in all grains above the lld, the distribution varied from a minimum of 0.070wt% to a maximum of 0.629wt% with an average of 0.239wt%. Most of the rutile grains had Al₂O₃ contents that were below the detection limit (0.011wt%), but seven grains contained low levels of Al₂O₃ (from just above the lld to 0.111wt%) with a mean of 0.023wt%. FeO was also present in all the grains, at concentrations above the detection levels with values that differ from 0.061 to 0.304wt%, with an average FeO content of 0.139wt%. From all the grains analysed only two grains contained Ta₂O₅ above the IId (0.139 and 0.078wt%). Cr₂O₃ ranged from below the detection limit (0.021wt%) in four grains to 0.262wt%, for the other eleven grains, which had a mean Cr₂O₃ content of 0.130wt% (Table 5.9.2).

All grains from the 'HT'S cleaner non-conductors' fraction of Pond B contained SiO_2 , Nb_2O_5 and FeO, but Nb_2O_5 had the largest range of values within rutile grains.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	97.585	99.946	98.407
SiO ₂	0.257	0.451	0.337
ZrO2	#	0.342	0.135
V_00	#	0.326	0.240
NboOr	0.070	0.629	0.239
AlaOa	#	0.111	0.023
FeO	0.061	0.304	0.139
Cr ₂ O ₃	#	0.262	0.130

Table 5.9.2 A summary of electron microprobe results from 'HT'S cleaner nonconductors' fraction of Pond B.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

5.9.3 Pond C

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'HT'S cleaner non-conductors' fraction of Pond C is presented in Fig. 5.9.3 and Table 5.9.3 contains the analytical data. The rutile grains from this fraction had high TiO₂ contents, with value's ranging from 97.772wt% to 99.016wt%, and an average of 98.469wt%. SiO₂ was present in all the grains and ranged from 0.202wt% to 0.598wt%, with a mean SiO₂ content of 0.317wt%. ZrO₂ was present in eight of the nine grains, at concentrations above the detection limit of 0.017wt%, ranging up to 0.298wt% with an average ZrO₂ content of 0.173wt%. Although five of the analysed rutile grains had V₂O₃ contents that were below the detection limit, four grains had V₂O₃ contents above the detection limit, four grains had V₂O₃ contents above the detection limit, four grains had V₂O₃ contents above the detection limit, four grains had V₂O₃ contents above the detection limit, four grains had V₂O₃ contents above the detection limit, four grains had V₂O₃ contents above the detection limit, four grains had V₂O₃ contents above the detection limit, four grains had V₂O₃ contents above the detection limits,

Fig. 5.9.3 Geochemistry of homogenous rutile grains in the HT'S cleaner non-conductors fraction of Pond C.

with values extending from 0.141wt% to 0.326wt%. The average V₂O₃ content for these four grains was 0.212wt%. Nb₂O₅ was present in seven of the nine grains, and ranged from a minimum of 0.067wt% to a maximum of 0.616wt%. With the exception of a single grain that had a much higher Nb₂O₅ (four times the mean) the remaining grains had an average of 0.154wt% Nb₂O₅. Four grains had Al₂O₃, content below the detection limit of 0.011wt%; the remaining five grains with significant Al₂O₃ content had values restricted to a narrow range of 0.033wt% to 0.095wt%, with an average of 0.065wt%. FeO was present in eight of the grains, varying from 0.057wt% to 0.939wt%. The average FeO content, with the exception of the grain with the high FeO content (0.939wt%), was 0.164wt%. Four grains contained Ta₂O₅ with values from 0.039wt% to 0.185wt%, with an average of 0.027wt% (Table 5.9.3).

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	97.772	99.016	98.469
SiO ₂	0.202	0.598	0.317
ZrO ₂	#	0.298	0.173
V2O3	#	0.326	0.212
Nb ₂ O ₅	#	0.252	0.154
AlaOa	#	0.095	0.065
FeO	#	0.030	0.164
	# 	0.939	0.164
Cr_2O_3	#	0.027	0.027

- Table 5.9.3 A summary of electron microprobe results from 'HT'S cleaner nonconductors' fraction of Pond C.
- *Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).
- # Lowest values are below the lld

Notably SiO₂ was present in all of the analysed grains in this fraction. The highest proportion of a substituting element in this fraction was FeO with an individual grain containing 0.939 wt%; FeO also had the largest range of values.

5.10 HT'S Cleaner Conductors

÷

5.10.1 Pond A

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'HT'S cleaner conductors' fraction of Pond A is presented in Fig. 5.10.1 and in Table 5.10.1 the analytical data. Fourteen rutile grains from this fraction were analysed, of which thirteen grains contained a high TiO₂ content (96.48 to 97.938wt%); however, one grain had a lower than expected TiO₂ content (94.711wt%). The average TiO₂ content, with the exception of the low TiO₂ grain, was 97.192wt%. SiO₂ was found in all of the grains within a narrow range, at concentrations from 0.128wt% to 0.377wt%, with an average of 0.290wt% SiO₂. The ZrO₂ content in grains was above the lld and ranged from 0.057wt% to 0.464wt%, with a mean ZrO₂ content of 0.205wt%. V₂O₃ had a large array in concentrations, varying from 0.146wt% to 0.651wt%, with an average of 0.430wt%. Five grains had Nb₂O₅ below the detection limit; the balance (nine grains) had a distribution that ranged from 0.052wt% to 0.564wt%, with a mean of 0.200wt%. The Al₂O₃ content in rutile grains had a limited range of 0.012wt% to 0.056wt% (mean of 0.026wt%), with the exception of one grain that had an Al₂O₃ content 0.213wt%. FeO ranged from a minimum of 0.027wt% to a maximum of 1.167wt% with one grain having a FeO content that was far higher (1.167wt%) than the other grains. The rest of the grains had a mean FeO content of 0.149wt%. Seven grains had Ta₂O₅ contents below the detection limit, the remaining seven grains contained Ta₂O₅ with a distribution of 0.053wt% to 0.272wt% and a mean of 0.168wt%. All the grains contained Cr₂O₃, varying from 0.055wt% to a single enriched grain with 0.569wt%. The average Cr₂O₃ content was 0.131wt% (excluding the enriched grain) (Table 5.10.1).

Fig. 5.10.1 Geochemistry of homogenous rutile grains in the HT'S cleaner conductors fraction of Pond A.

۰..

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	96.480	97.938	97.192
SiO ₂	0.128	0.377	0.290
ZrO ₂	0.057	0.464	0.205
V2O3	#	0.651	0.430
Nb ₂ O ₅	#	0 564	0.200
Al ₂ O ₂	#	0.056	0.026
FeO	#	1 167	0.222
Cr ₂ O ₃	0.055	0.184	0.131

Table 5.10.1 A summary of electron microprobe results from 'HT'S cleaner conductors' fraction of Pond A.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

All the grains analysed contained SiO_2 , ZrO_2 and FeO, and very little Al_2O_3 . FeO had the largest range in values, with one grain containing 1.167wt%.

5.10.2 Pond B

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'HT'S cleaner conductors' fraction of Pond B is presented in Fig. 5.10.2 and in Table 5.10.2 the analytical data. TiO₂ had a range of 95.84 to 98.847wt%, however one grain had a significantly lower TiO₂ content of 95.84wt%. With the exception of the single low TiO₂ grain the others had a mean TiO₂ content of 97.973wt%. SiO₂ was detectable in all

Fig. 5.10.2 Geochemistry of homogenous rutile grains in the HT'S cleaner conductors fraction of Pond B.

÷ ...

eighteen rutile grains, at concentrations ranging from 0.357wt% to 0.544wt%, with an average of 0.422wt% SiO2. ZrO2 was below the lld in only one grain, the other seventeen grains contained from 0.057wt% to 0.250wt% ZrO₂ with a mean of 0.102wt%. All but five grains had V₂O₃ at levels below the detection limit (0.133wt%). These five significant values were spread between 0.141wt% and 0.44wt%, with the mean at 0.243wt%. Three grains had very high Nb₂O₅ contents of 1.319wt%, 0.623wt% and 0.675wt%, of the other fifteen grains only two grains reported Nb₂O₅ contents below the detection limit (0.049wt%) with the others had up to 0.408wt% and a mean of 0.255wt%. Al₂O₃ contents were confined to a narrow range; four grains were below the lld, the other fourteen grains ranged from 0.013wt% to 0.052wt%, with a mean of 0.031wt%. Only one grain reported a FeO content below the detection limit, the other seventeen grains had a distribution varying from 0.057wt% to 0.468wt%, with an average FeO content for seventeen grains of 0.174wt%. Ta₂O₅ was below the lld in all but four grains, and the highest concentrations did not exceed 0.217wt%. Four grains contained Cr₂O₃ levels that were below detection limit of 0.027wt%, but the other fourteen varied between 0.033wt% and 0.229wt% of Cr₂O₃ with an average of 0.098wt% (Table 5.10.2).

All the rutile grains from 'HT'S cleaner conductors' fraction of Pond B had a high proportion of SiO₂. Most of the grains contained a significant proportion ZrO_2 , Nb₂O₅ and FeO.

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO ₂	97.073	98.847	97.973
SiO2	0.357	0.544	0.422
7rO ₂	#	0.250	0.102
	ш	0.440	0.243
V ₂ O ₃	#	0.440	0.243
Nb ₂ O ₅	#	0.408	0.255
Al ₂ O ₃	#	0.052	0.031
FeO	0.057	0.468	0.174
Cr ₂ O ₃	#	0.229	0.098

Table 5.10.2 A summary of electron microprobe results from 'HT'S cleaner conductors' fraction of Pond B.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the lld

5.10.3 Pond C

The distribution of TiO₂, SiO₂, ZrO₂, V₂O₃, Nb₂O₅, Al₂O₃ and FeO from the 'HT'S cleaner conductors' fraction of Pond C is presented in Fig. 5.10.3 and in Table 5.10.3 the analytical data. The TiO₂ content of the analysed grains from this fraction varied from 96.677wt% to 99.802wt%, with an average of 98.641wt% TiO₂. All twenty grains contained SiO₂ that was well above the detection limit of 0.018wt%. There appeared to be significant variation in the SiO₂ content with values ranging from 0.058wt% to 0.535wt%; however, the mean SiO₂ content was 0.196wt%. Nineteen grains contain significant amounts of ZrO₂, at concentrations from 0.019wt% to 0.458wt%, with the average ZrO₂ content of 0.144wt%. Most of the grains (sixteen grains) contained

Fig. 5.10.3 Geochemistry of homogenous rutile grains in the HT'S cleaner conductors fraction of Pond C.

139

Oxides	Minimum (wt%)	Maximum (wt%)	*Mean (wt%)
TiO2	96.677	99.802	98.641
SiO ₂	0.058	0.535	0.196
ZrO ₂	#	0.458	0.144
V ₂ O ₃	#	0.731	0.373
Nb ₂ O ₅	#	0.618	0 190
Al ₂ O ₃	#	0 154	0.048
FeO	0.057	0.606	0.160
Cr ₂ O ₃	#	0.617	0.129

Table 5.10.3 A summary of electron microprobe results from 'HT'S cleaner conductors' fraction of Pond C.

*Mean: Mean values exclude values that are below the detection limit and very high or low values (see details in text).

Lowest values are below the Ild

140

 SiO_2 was present in all the grains, but not at very high concentrations. Some of the rutile grains from the 'HT'S cleaner conductors' fraction of Pond C had high concentrations of V_2O_3 , Nb_2O_5 and FeO. However, Al_2O_3 occurred only in minor concentrations.

6. Discussion

6.1 Rutile Chemistry in relation to physical properties

During mineral separation four magnetic fractions were produced:

- 1. ilmenite fraction magnetic and non magnetic (most magnetic)
- 2. mag others fraction magnetic and non-magnetic
- 3. cleaner mags
- 4. primary mags (least magnetic)

and five electrostatic fractions were produced:

- 5. primary HT'S conductors (most conductive)
- 6. HT'S scavengers
- 7. HT'S cleaner mids
- 8. HT'S cleaner conductors
- 9. HT'S cleaner non-conductors (least conductive).

The oxides commonly found to be substituting for TiO_2 within rutile are SiO_2 , ZrO_2 , V_2O_3 , Nb_2O_5 , Al_2O_3 , FeO and Cr_2O_3 , although there are significant variations between the different fractions.

6.1.1 Magnetic effect

Ternary plots were compiled for the magnetic fractions listed above, these show the composition range of rutile grains in terms of, TiO₂, FeO, and 'others' (all the other oxides that occur in rutile).

The majority of the grains (15) from the 'magnetic ilmenite' fraction (Fig. 6.1.1.1) were composed of almost pure TiO_2 with the substituting oxides making up less than 1wt% of

Fig. 6.1.1.1 Ternary plot of TiO₂, FeO and other oxides for rutile grains from the 'magnetic ilmenite' fraction

Fig. 6.1.1.2 Ternary plot of TiO₂, FeO and other oxides for rutile grains from the 'non magnetic ilmenite' fraction

the grain. Three grains (22%), however, did contain a high percentage of FeO, and 'other' oxides but had a correspondingly low TiO_2 content. None of the grains contained more than 10% 'others'. The magnetic ilmenite showed variability in FeO content rather than in the 'other' oxides with a high FeO:others ratio.

The non-magnetic ilmenite fraction (Fig. 6.1.1.2) grains all contained well over 90wt% TiO₂. All the grains had less than 1wt% FeO. Although most grains had a low 'others' component, some grains had as much as much as 5wt% others. The non-magnetic ilmenite showed a distinct trend in the 'other' oxides, with very little variation in the FeO (low FeO:others ratio).

The grains of the 'magnetic mag others' fraction (Fig. 6.1.1.3) consisted of TiO_2 in the range of 70 to 99wt%, with substitutions of both FeO and 'other' oxides. Although some grains had much higher compositions of other oxides than FeO, most of the grains had less than 10% of 'other' oxides. However, a single grain had about 14% 'other' oxides, 12wt% of which was SiO₂.

Most of the grains in the non-magnetic mag others fraction (Fig. 6.1.1.4) had TiO_2 in the range of 90 to 100wt%, with the exception of one grain with approximately 82% TiO_2 . This single grain had a high FeO content (approximately 12wt%), although majority of the grains had less than 5wt% FeO. Most of the 'other' oxides constituted less than 5wt% of the grains; only two grains had about 7wt% 'others'. Grains from the non-magnetic mag others had a high FeO:others ratio.

Grains from the 'primary mags' fraction (Fig. 6.1.1.5) all had high TiO₂ content of 95 to 100%. Rutile grains from this fraction had low FeO contents, ranging from below the detection limit of 0.027wt% to approximately 1.6wt%. The proportion of other oxides that substituted into the rutile structure made up less than 5wt%, of which SiO₂ was the highest substituting element at 2.203wt% and V_2O_3 at 1.746wt%. Grains from the 'primary mags' fraction had a low FeO:others ratio.

Fig. 6.1.1.3 Ternary plot of TiO₂, FeO and other oxides for rutile grains from the 'magnetic mag others' fraction

Fig. 6.1.1.4 Ternary plot of TiO₂, FeO and other oxides for rutile grains from the 'non magnetic mag others' fraction

Fig. 6.1.1.5 Ternary plot of TiO₂, FeO and other oxides for rutile grains from the 'primary mags' fraction

Fig. 6.1.1.6 Ternary plot of TiO₂, FeO and other oxides for rutile grains from the 'cleaner mags' fraction

Rutile grains from the cleaner mags fraction plot in the upper most region of the ternary diagram (Fig. 6.1.1.6), with 96 – 100wt% TiO₂. All grains had very low FeO with the maximum FeO content being 0.593wt%. All the other oxides in the rutile grains accounted for approximately 5wt% of the grain. One grain contained a very high Al_2O_3 content of 1.522wt% and a correspondingly high SiO₂ content of 1.076wt%. This fraction had a trend of variability in the 'others' and was characterised by a very low FeO:others ratio.

The more magnetic fractions (i.e., magnetic ilmenite and mag others fraction), as expected contained high FeO. However, these fractions also contained higher proportions of 'others' (notably V_2O_3 and Nb_2O_5). Magnetic effect although influenced by FeO, also appears to be enhanced by substitutions of other oxides.

6.1.2 Electrostatic effect

.:

Ternary diagrams were compiled of TiO₂, FeO and 'others' in the electrostatic fractions, 'primary HT'S conductors', 'HT'S Scavengers', 'HT'S cleaner mids', 'HT'S cleaner non-conductors' and 'HT'S cleaner conductors'.

Rutile grains from the 'primary HT'S conductors' fraction (Fig. 6.1.2.1) showed rutile grains were composed of almost entirely TiO_2 . FeO was less than 0.5wt% in any of the grains. The other oxides combined made up only about 2% in rutile grains. The 'others' showed a greater variability than the FeO.

The HT'S scavengers ternary plot (Fig. 6.1.2.2) showed most grains were almost entirely composed of TiO_2 with virtually no FeO. This fraction contained only a trace less FeO than the 'primary HT'S conductors'. Some grains, however, contained up to 1.5wt% of other oxides. The HT'S scavengers showed a trend of slight variability in the concentration of the 'other' oxides.

All the grains from the 'HT'S cleaner mids' fraction (Fig. 6.1.2.3) had TiO₂ contents of between 97 to 100wt%. The FeO content of grains was found to be lower than 0.3wt%. The other oxides made up approximately 2.5wt% of the rutile grains. This fraction had a very low FeO:others ratio.

Grains from the 'HT'S cleaner non-conductors' fraction, (Fig. 6.1.2.4) were made up dominantly of TiO_2 (97 to 99wt%) with very little FeO. Only one grain contained approximately 1wt% FeO. The other substituting oxides made up at most 2.5wt% of the grain yielding very low FeO:others ratio.

The TiO₂ content of rutile grains from the 'HT'S cleaner conductors' (Fig. 6.1.2.5) varied from 94 to 100wt%. Apart from TiO₂ the grains from the 'HT'S cleaner conductors' (Fig. 6.1.2.5) appeared to be dominated by the other oxides (approximately 5wt%) substituting into the rutile lattice. Only one grain had FeO content exceeding 1wt% giving a very low FeO:others ratio.

All the electrostatic fractions had very high TiO_2 contents, mostly above 96wt%. All grains contained SiO_2 and ZrO_2 , while FeO occurred at much lower concentrations than in the magnetic fractions. The electrostatic fractions were more pure (had higher TiO_2 content) and contained fewer substitutions of FeO and 'others'. The magnetic fraction conversely was less pure (lower TiO_2 content) and contained a higher proportion of FeO and 'others'.

6.1.3 Rutile colour

:

Grains were selected according to colour from the final rutile product. The most common colours for rutile grains were reddish brown and black followed by yellows and blues respectively (see Appendix A5 for colour plates).

The reddish brown grains (10R 3/4 - Rock and Colour Chart Committee, 1979) were the

Fig. 6.1.2.4 Ternary plot of TiO₂, FeO and other oxides for rutile grains from the 'HT's cleaner non conductors' fraction

Fig. 6.1.2.5 Ternary plot of TiO₂, FeO and other oxides for rutile grains from the 'HT's cleaner conductors' fraction

Fig 6.1.3.1 Geochemistry of reddish brown rutile grains from the rutile product.

most abundant. Fig. 6.1.3.1 depicts the geochemical results for the reddish brown grains. Red colouration is generally attributed to high FeO contents (Deer et. al., 1983). However in all the reddish brown rutile grains this high FeO content was not evident. but some grains did contain slightly higher Nb₂O₅ and Cr_2O_3 values.

The geochemical data for black rutile grains (brownish black 5YR 2/1 – Rock and Colour Chart Committee, 1979) is presented in Fig. 6.1.3.2. Black rutile grains were generally V_2O_3 and Nb_2O_5 enriched. Many grains had V_2O_3 in excess of 1wt%. FeO was not present in all the grains; the maximum FeO content of black rutile was approximately 0.6wt%, which was the same for red rutile grains.

Fig. 6.1.3.3 displays the geochemical data for blue rutile grain (pale blue 5PB 7/2 – Rock and Colour Chart Committee, 1979). All grains contained significant amounts of Nb₂O₅, but not all grains contained enhanced concentrations of Al₂O₃. There appears therefore to be a correlation between the Al₂O₃ and SiO₂ content and the blue colour of rutile grains. The colour appears to be the result of a multiple substitution of SiO₂, Al₂O₃ and Nb₂O₅ or an interaction of these oxides.

The graphical representation of the geochemical data for the yellow rutile grains (dark yellowish orange 10YR 6/6 – Rock and Colour Chart Committee, 1979) is Fig. 6.1.3.4. The yellow rutile grains had a higher FeO and Nb₂O₅ content in comparison to the other oxides. The yellow colour of rutile grains may therefore be the result of FeO and Nb₂O₅ substitution into the rutile lattice.

6.2 Overview of rutile geochemistry in the magnetic fractions

Radar diagrams were compiled for each fraction, with the means plotted from all three ponds for the oxides SiO₂, ZrO_2 , V_2O_3 , Ta_2O_5 , Nb_2O_5 , Al_2O_3 , Cr_2O_3 and FeO. The trace oxide patterns all show the same overall distribution for each Pond, although in some cases one pond may show a significantly higher oxide content.

Fig 6.1.3.2 Geochemistry of black rutile grains from the rutile product.

Fig 6.1.3.3 Geochemistry of blue rutile grains from the rutile product.

 γ_{12}

Fig 6.1.3.4 Geochemistry of yellow rutile grains from the rutile product.

٠.,

6.2.1 Magnetic ilmenite fraction

This fraction had a high proportion of impurities in the rutile grain. Pond B showed the largest variation with respect to FeO (2.0wt%); SiO₂ of 0.6wt% and Al₂O₃ of 0.5wt%. Pond A had three main components, SiO₂ (0.5wt%); FeO (>0.5wt%) and V₂O₃ (0.5wt%). Pond C appeared to be SiO₂ (>0.75wt%); V₂O₃ (0.5wt%) and Al₂O₃ (0.6wt%) enriched (Fig. 6.2.1).

6.2.2 Non-magnetic ilmenite fraction

All three ponds had relatively pure rutile grains, with impurities making up less than 0.75wt%. The three ponds showed enrichment trends towards SiO₂, FeO and V₂O₃. Ponds B and C were Nb₂O₅ enriched, whereas Pond A was distinctly Nb₂O₅ poor. Only Pond A had significant Al₂O₃, where as rutile grains from Ponds B and C contained virtually no Al₂O₃ (Fig. 6.2.2).

6.2.3 Magnetic mag others fraction

All three ponds showed similar trends. Ponds B and C had a strong preponderance for FeO, with grains containing 2.45 and 2.4wt% respectively. Pond A contained FeO at a much lower concentration (less than 0.75wt%), with a higher SiO₂ composition of 1.0wt%. Pond C also had a SiO₂ content of 1.0wt%, however Pond B had a lower SiO₂ content (0.3wt%). All three ponds had a V_2O_3 component of 0.5wt%. Only Pond B had an Al₂O₃ composition of 0.3wt% (Fig. 6.2.3).

Fig. 6.2.1 Radar plot depicting the mean oxide values for Ponds A, B and C in the 'magnetic ilmenite' fraction

Fig. 6.2.2 Radar plot depicting the mean oxide values for Ponds A, B and C in the 'non magnetic ilmenite' fraction

Fig. 6.2.3 Radar plot depicting the mean oxide values for Ponds A, B and C in the 'magnetic mag others fraction

6.2.4 Non magnetic mag others fraction

All three ponds had very similar trends (Fig. 6.2.4) with three distinct leaves towards, FeO, V_2O_3 and Nb_2O_5 enrichment. Pond A showed the most variation with FeO of 1.25wt%, V_2O_3 0.75 and Nb_2O_5 0.5wt%. Pond B had a FeO composition of less than 0.5wt%, V_2O_3 at 0.5wt% and Nb_2O_5 of 0.7wt%. Pond C showed the least variation, with a FeO content of 0.4wt%, V_2O_3 of 0.3wt%, and Nb_2O_5 of 0.35wt%. Pond A had a Ta₂O₅ composition of 0.3wt% (Fig. 6.2.4).

6.2.5 Cleaner mags fraction

The rutile grains from all three ponds had an almost identical trend on the radar plot (Fig. 6.2.5), and were dominated by SiO_2 , V_2O_3 and Nb_2O_5 . Pond C had a higher SiO_2 content (0.6wt%) as well as a higher Al_2O_3 content than Ponds A and B. Pond A had a slightly higher Ta_2O_5 content than the other two Ponds.

6.2.6 Primary mags fraction

All ponds showed a distinct trend in the V_2O_3 content (Fig. 6.2.6), with V_2O_3 the dominating oxide in all three ponds. Pond A was more ZrO_2 enriched than the other ponds. Pond B had a higher proportion of most oxides in comparison to Ponds A and C. All three ponds contained significant amounts of FeO.

Fig. 6.2.4 Radar plot depicting the mean oxide values for Ponds A, B and C in the 'non magnetic mag others' fraction

Fig. 6.2.5 Radar plot depicting the mean oxide values for Ponds A, B and C in the 'cleaner mags' fraction

Fig. 6.2.6 Radar plot depicting the mean oxide values for Ponds A, B and C in the 'primary mags' fraction

6.3 Overview of rutile geochemistry in the electrostatic fractions

6.3.1 Primary HT'S conductors fraction

All ponds had very similar trends (Fig. 6.3.1), with SiO₂ being the dominant component in the rutile grains, at approximately 0.38wt% for all Ponds. The diagram (Fig. 6.3.1) also revealed a trend in V₂O₃ and Nb₂O₅ content. Also evident was the lower FeO and ZrO₂ content of rutile grains from all three ponds. Pond B had a notably higher Ta₂O₅ content.

6.3.2 HT'S scavengers fraction of Pond B

The Radar plot (Fig 6.3.2) shows that SiO_2 and V_2O_3 were the only oxides that occurred at concentrations greater than 0.25wt%. Grains from this fraction contained virtually no Al_2O_3 , Cr_2O_3 and Ta_2O_5 .

6.3.3 HT'S cleaner mids fraction

No distinct trend was observed between the three ponds A, B and C (Fig. 6.3.3). Rutile grains from Pond A consisted of SiO₂ and V₂O₃, whereas grains from Pond B were dominated by SiO₂ and Nb₂O₅. Pond C contained V₂O₃, and ZrO₂ but had a low SiO₂ content. All three ponds however contained much lower FeO contents than the magnetic fractions.

6.3.4 HT'S cleaner non-conductors fraction

All three ponds had similar oxide trends with regards to SiO_2 , V_2O_3 and Nb_2O_5 (Fig. 6.3.4). Pond A had a higher V_2O_3 content than the other ponds. Pond B had a high SiO_2 and Nb_2O_5 content. All three ponds contained virtually no Al_2O_3 , as well as a much lower FeO content than the magnetic fractions.

Fig. 6.3.1 Radar plot depicting the mean oxide values for Ponds A, B and C in the 'primary HT's conductors' fraction

Fig. 6.3.3 Radar plot depicting the mean oxide values for Ponds A, B and C in the 'HT's cleaner mids' fraction

Fig. 6.3.4 Radar plot depicting the mean oxide values for Ponds A, B and C in the 'HT's cleaner non conductors' fraction

Fig. 6.3.5 Radar plot depicting the mean oxide values for Ponds A, B and C in the 'HT's cleaner conductors' fraction

6.3.5 HT'S cleaner conductors fraction

All three ponds showed a similar trend with regards the oxides SiO_2 , V_2O_3 and Nb_2O_5 (Fig. 6.3.5). This fraction was relatively pure, with very few impurities, (less than 0.3wt%). Only Pond A shows a higher FeO content (0.25wt%) than Ponds B and C. All grains from all three ponds contained virtually no Al_2O_3 and Cr_2O_3 .

6.3.6 A brief summary on Radar graphs

The magnetic fractions contained more impurities than the electrostatic fractions, with the magnetic fractions having at least one oxide above 0.5wt%. The electrostatic fractions however, had with exception to V_2O_3 in the HT'S scavengers; all oxide contents below 0.5wt%.

The strong presence of FeO in the magnetic fractions, suggested that this element had a significant influence on the magnetic properties of the rutile grains. This was further reinforced, by the distinct absence of FeO in the electrostatic fractions. Similarly the presence of a slightly higher Al_2O_3 content in rutiles from the magnetic fractions implied that small amounts of Al_2O_3 might enhance the magnetic influence of FeO.

The electrostatic fractions were purer in terms of TiO_2 content, with very few impurities. There appeared to be no single oxide that had a marked affect on conductivity. However, V_2O_3 and SiO_2 appeared to have some influence on conductivity, as almost all grains in the electrostatic fraction had an enhanced V_2O_3 and SiO_2 content.

7. Conclusions

7.1 Special features of Ponds A, B and C

In many ways the chemical composition of the rutile grains from all three ponds were very similar, however, certain distinct features were noted in the different fractions.

7.1.1 Magnetic ilmenite fraction

The 'magnetic ilmenite fraction' of Pond A contained a single grain that had a very high SiO₂ content of 1.2wt%. This grain also had a high FeO content of 2.079wt%. In Pond B, one grain had an uncharacteristically high SiO₂ value of 4.016wt% and two grains had very high FeO content of 4.080wt% and 11.118wt%. Rutile grains from Pond C were relatively TiO₂ pure and had no anomalous grains.

7.1.2 Non-magnetic ilmenite fraction

The 'non magnetic ilmenite fraction' of Pond A had one grain containing SiO₂ at 1.185wt% and three grains with high FeO values (0.811, 1.082, and 1.085 wt%) but Pond B had no grains with anomalous SiO₂ or FeO values, although Pond C yielded a FeO enriched grain (up to 1.002wt%). In contrast to Pond A, Pond B and C contained grains with very high Nb₂O₅ concentrations (2.185wt% and 2.825wt% respectively). Unlike Ponds A and C, Pond B rutile grains had a large range in V₂O₃, with most grains having V₂O₃ over 0.4wt%.

7.1.3 Magnetic mag others fraction

The 'magnetic mag others' fraction of Ponds A, B and C all showed a preponderance for FeO. The most FeO enriched grain came from Pond B and contained 21.5wt% FeO, whilst Pond A yielded a grain with an FeO content of 3.54wt% and Pond C had four FeO enriched grains.

7.1.4 Non magnetic mag others fraction

Rutile grains in the 'non magnetic mag others' fraction of Pond A, were Al_2O_3 (3.456wt%), SiO₂ (2.933wt%), V₂O₃ (1.225wt%), Nb₂O₅ (2.778wt%) and FeO (11.59wt%) enriched. The Al_2O_3 content in this fraction from Pond A was higher than in any other fraction. Unlike the non magnetic mag others fraction of Pond A this fraction from Ponds B and C contained rutile grains that were Nb₂O₅ (5.057 and 3.160 wt%) and FeO (1.974 and 1.635wt%) enriched.

7.1.5 Cleaner mags fraction

No element in particular dominated the 'cleaner mags' fraction of Ponds A, B and C, although, most grains contained varying concentrations of other ions. Virtually all grains had significant quantities of SiO_2 , Nb_2O_5 and FeO. Only Pond C contained a grain with a high Al_2O_3 content (1.522wt%).

7.1.6 Primary mags fraction

All the rutile grains analysed in the 'primary mags' fraction of Pond A contained some SiO_2 and FeO. However, one grain from Pond A reported a very high V_2O_3 value of 1.162wt%. Conversely, Pond B contained grains enriched in SiO_2 (2.203wt%), V_2O_3 (1.746wt%) and FeO (1.664wt%). Like Pond A, Pond C also contained SiO_2 (1.188wt%) and FeO (1.028wt%) enriched grains.

7.1.7 Primary HT'S conductors fraction

The rutile grains from 'primary HT'S conductors' fraction of Ponds A, B and C, are almost pure TiO_2 , and contained very limited substitutions of any other oxides. Although all grains had minor quantities of SiO_2 , ZrO_2 , Nb_2O_5 , Cr_2O_3 and FeO, no grain contains more than 0.6wt% of any oxide.

7.1.8 HT'S scavengers fraction of Pond B

Grains from the HT'S scavengers fraction of Pond B all contained SiO₂, ZrO_2 and FeO at low concentrations with only V₂O₃ having concentrations close to 1wt%. Ponds A and C contained no rutile grains.

7.1.9 HT'S cleaner mids fraction

Rutile grains from the "HT'S cleaner mids' fraction of all three ponds contained significant amounts of SiO₂ and ZrO₂. Ponds A and C contained slightly higher V₂O₃ and ZrO₂ concentrations than Pond B. Although the mean V₂O₃ content of grains from all ponds was higher than either SiO₂ or ZrO₂, not all the grains contained a higher proportion of V₂O₃. Pond B unlike Ponds A and C yielded some grains, that contained higher levels of Nb₂O₅.

7.1.10 HT'S cleaner non-conductors fraction

A notable quantity of SiO₂ was present in all of the 'HT'S cleaner non-conductors' grains analysed from Ponds A, B and C. All grains of Pond A had low concentrations ZrO_2 , and Cr_2O_3 , however, one grain contained 0.629wt% Nb₂O₅. Grains from Pond B all contained enriched Nb₂O₅ and FeO, with Nb₂O₅ in the highest proportion in grains, while those from Pond C had the highest proportion of FeO.

7.1.11 HT'S cleaner conductors fraction

÷

All the grains analysed in the 'HT'S cleaner conductors' fraction of Ponds A, B and C contained significant amounts of SiO₂ and FeO, with one grain in Pond A containing 1.167wt% FeO. Pond B grains contained significant ZrO_2 and Nb_2O_5 compared to the other two ponds, while Pond C had a higher V_2O_3 and Nb_2O_5 content.

7.2 Rutile chemistry in relation to magnetic susceptibility, electrostatic conductivity and colour

7.2.1 Magnetic Susceptibility

The most magnetic fractions contained a higher proportion of FeO as well as a higher proportion of 'others' (particularly V_2O_3 , Nb_2O_5 and Al_2O_3). Magnetic effects although clearly influenced by FeO content are also enhanced by the substitution of other oxides.

7.2.2 Electrostatic Conductivity

The electrostatic fractions are more TiO_2 pure and contain lower concentrations of other oxides notably SiO_2 , ZrO_2 and FeO. No direct correlation can be made between any of the analysed oxide phases and conductivity. However SiO_2 and V_2O_3 appear to contribute to electrostatic conductivity as almost all grains in the electrostatic fraction contain notable quantities of these oxides.

7.2.3 Colour

Red rutile grains have a slightly higher Cr_2O_3 and Nb_2O_5 contents, whereas black rutile grains are generally V_2O_3 and Nb_2O_5 enriched. The blue colouration of rutile grains appears to be the product of multiple substitutions by SiO_2 , Al_2O_3 and Nb_2O_5 . While yellow colouration is most probably caused by FeO and Nb_2O_5 substitutions into the rutile lattice.

Colour may also be influenced by elements such as C^{4+} and H^+ , which cannot be determined by electron microprobe analysis, or by the interaction of these, and other elements. Colouration may also be due to lattice defects related to ionising radiation and therefore colour and trace element composition relationships must be considered as tentative.

REFERENCES

- Banfield, J.F. and Veblen, D.R. (1991) The structure and origin of Fe-bearing platelets in metamorphic rutile. *Amer. Mineral.*, 76, 113-127.
- Barkov, A., Laajoki, K.V.O., Menshikov, Y.P., Alapieti, T.T., Sivonen, S.J. (1997) First terrestrial occurrence of titanium-rich pyrrhottite, marcasite and pyrite in a fenitized xenolith from the Khibina Alkaline Complex, Russia, *Can. Mineral* 35, 875-885.
- Bates, R.L. and Jackson J.A. (1980) Glossary of Geology. Am. Geol. Inst. Falls Church, Virginia, 749pp.
- Blanchin, M.G., and Bursill, L.A. (1989) Non-classical twinning of alumina precipitates in rutile. *Phil. Mag*, 60, (5), 619-630.
- Bloss, D.F. (1971) Crystallography and Crystal Chemistry. Holt, Rinehort and Winston Inc. 543pp.
- Botha, G.A. (1987) The Maputaland Group: a provisional lithostratigraphy for coastal KwaZulu-Natal. In: Maputaland. Focus on the Quaternary evolution of the southeast African coastal plain. Field Guide and Conference Abstracts. Botha, G.A.(ed.). Pietermaritzburg. International Union for Quaternary Research. Commission on Quaternary Shorelines. African Subcommission.
- Bursill, L.A. and Blanchin, M.G. (1989) Interphase structures observed as alumina precipitates in rutile. *Phil. Mag. A*, 60, No.5, 631-642.

.

176

:

- Bursill, L.A., Blanchin, M.G., and Smith, D.J. (1984) Precipitation phenomena in non stoichiometric oxides II. {100} Platelet defects in reduced rutiles. *Proc. Royal Soc. of Lon.*, A 391, 373-391.
- Bramdeo, S. and Dunlevey, J.N. (1999) The mineral chemistry of rutile. S. Afr. Inst. Mining Metal. Symposium Series S23, 63-65.
- Bramdeo, S. and Dunlevey, J.N. (2000) The geochemistry of detrital rutile. *Afr. J. Earth Sci.*, 31 (1A), 8-9.
- Coastal and Environmental Services (1993) *Environmental Impact Assessment, Eastern Shores of Lake St Lucia (Kingsa/Tojan Lease Area).* Volume 3. Environmental Impact Report, CSIR Env. Serv., 185pp.
- Coastal and Environmental Services (1982) Environmental Impact Assessment, Eastern Shores of Lake St Lucia (Kingsa/Tojan Lease Area). Volume 1, Part 1. Special reports, CSIR Env. Serv., 741pp.
- Deer, W.A., Howie, R.A., and Zussman, J. (1985) An Introduction to the Rock Forming Minerals. Longmans 528pp.
- Fockema, P.D. (1986) *The heavy mineral deposits north of Richards Bay.* In: Anhaeusser, C.R. and Maske, S. (Eds.), Mineral Deposits of Southern Africa, Geol. Soc. S. Afr., Johannesburg, 2301-2307pp.
- Force, E.R. (1991) *Geology of titanium mineral deposits*. Geol. Soc. Am., Special Paper, 259, 112pp.
- Graham, J. and Morris, R.C. (1973) Tungsten and antimony-substituted rutile. *Min. Mag.*, 39, 470-473pp.

177

- Gribble, C.D. (1988) Rutley's Elements of Mineralogy. Unwin and Hyman, London, 482pp.
- ------ and Hall, A.J. (1992) Optical Mineralogy; Principles and Practice. UCL Press, London, 302pp.
- Harris, D.C. (1986) Mineralogy and geochemistry of the main Hemlo Gold Deposit, Hemlo, Ontario, Canada. *Proc. of Gold '86 Symposium, Toronto*, 297-310.
- Hassan, W.F. (1994) Geochemistry and mineralogy of Ta-Nb rutlie from Peninsular Malaysia. J. SE. Asian. Earth. Sc., 10, 11-23.
- Hobday, D.K. and Orme, A.R. (1974) The Port Durnford Formation. A major Pleistocene barrier lagoon complex along the Zululand coast. *Trans. Geol. Soc. S. Afr.*, 77, 141 149.
- Hobday, D.K. and Jackson, M.P.A. (1979) Transgressive shore zone sedimentation and syndepositional deformation in the Pleistocene of Zululand, South Africa. *J. Sed. Pet., 49,* 145-158.
- Hugo, V.E. (1993) The study of titanium-bearing oxides in heavy minerals deposited along the east coast of South Africa. PhD thesis (unpubl.), Univ. Natal, (Durban) 357pp.
- Hutchison, C.S. (1974) Laboratory Handbook of Petrographic Techniques: John Wiley and Sons, Canada, 527pp
- Ishida, S., Hayashi, M., Fujimura, Y. and Fujiyoshi, K. (1990) Spectroscopic study of the chemical state and coloration of chromium in rutile. *J. Amer. Ceramic Soc.*, 73 (11), 3351-3355.

178

- Johnson, M.R. (1994) *Lexicon of South African Stratigraphy Part 1: Phanerozoic Units*. South African Council for Stratigraphy, Council for Geoscience, Pretoria, RSA.
- Joseph, K.R. (2000) Titanium. *In:* South Africa's Mineral Industry 1998/1999. 16th Revised Edition, Department of Minerals and Energy, Directorate: Mineral Economics, Pretoria, 115-118.
- Linnen, R.L., and Keppler, H. (1997) Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the earth's crust. *Contrib. Mineral. Pet.*, 128, 213-227.
- Lindsley, D.H. (1976) The crystal structure of the oxide minerals as exemplified by the Fe-Ti oxides. *Reviews in Mineral.*, 3, L1-L60.
- -----, Rumble III, D., Haggerty, S.E. El Goresy, A., and Huebner, S.J. (1976) Oxide
 Minerals *Mineralogical Society of America Short Course Notes* Vol 3. Rumble III,
 D.(ed.). Southern Printing Company, Virginia L1-Hg300.
- Maud, R.R. and Botha, G.A. (2000) Deposits of the South Eastern and Southern coasts, 19-32, (In Partridge T.C. and Maud, R.R., The Cenozoic of Southern Africa. Monograph 40), Oxford University Press. 406pp.
- Mdludlu, S. (1997) *Mineralogy of the titanium oxide and associated minerals of the Sibaya Formation.* M.Sc thesis (unpubl.) Univ. Durban-Westville. 128pp.
- Michailidis, K.M. (1997) An EPMA and SEM study of niobian tungstenian rutile from the Fanos Aplitic Granite, Central Macedonia, Northern Greece. *N. Jb. Miner.*, 12, 549-563.

- Murphy, P.W. and Taylor, R.K.A. (1999) Market Opportunities for titanium mineral Projects in South Africa. Heavy Minerals 1999, S. Afr. Inst. Mining Metal. Symposium Series, S23.
- Putnis, A. and McConnell, J.D.C. (1980) *Principles of Mineral Behaviour*. Blackwell Scientific Publications, Oxford, 257pp.
- Ramdohr, P. (1969) The ore minerals and their intergrowths. Vol. 1, Pergamon Press, London. 174pp.
- ----- (1980) The ore minerals and their intergrowths. Vol. 2 Pergamon Press, Oxford, 207pp.
- Rice, C.M., Darke, K.E., Still, J.W. and Lachowski, E.E. (1998) Tungsten-bearing rutile from the Kori Kollo gold mine, Bolivia. *Mineral. Mag.*, 62(3), 421-429.
- Rock and Colour Chart Committee (1979). *Rock-colour chart with Munsel colour chips*. The Geological Society of America, Boulder, Colorado.
- Rozendaal, A., Philander, C. and de Meijer, R.J. (1999) Mineralogy of heavy mineral placers along the West Coast of South Africa. Heavy Minerals 1999, S. Afr. Inst.
 Min. Metal. Symposium Series S23, Symposium Series S23, 67-73.
- Smith, R.M.H. (1990) A review of stratigraphy and sedimentary environments of the Karoo Basin of South Africa. *J. Afr. Earth Sci.*, 10, (1/2), 117-137.
- Smith, R.H., Eriksson, P.G. and Botha, W.J. (1993) A review of the stratigraphy and sedimentary environments of the Karoo-aged basins of Southern Africa. J. Afr. Earth Sc., 16, (1/2), 143-169.
- Singh, V. (1995) *Mineral Stratigraphy of the Kosi Bay Formation*. M.Sc thesis (unpubl) Univ. Durban-Westville. 148pp.

- South African Committee for Stratigraphy (SACS) (1980) *Stratigraphy of South Africa. Part 1* (comp. L.E. Kent). Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia, and the Republics of Bophuthatswana, Transkei and Venda. Handbook 8. Geol. Surv. S. Afr., 690pp
- Tollo, R.P. and Haggerty, S.E. (1987) Nb-Cr rutile in the Orapa kimberlite, Botswana. *Can. Mineral.*, 25, 251-264.
- Uken R. (2000) KwaZulu-Natal. In: An Introduction to South Africa's geological and mining Heritage. (M.J. Viljoen and W.U. Reimold, eds) Geol. Soc. S. Afr., 42-54.
- Vlassopoulos, D., Rossman, G.R., and Haggerty, S.E. (1993) Coupled substitution of H⁺ and minor elements in rutile and the implications of high OH contents in Nb and Cr-rich rutile from the upper mantle. *Amer. Mineral.*, 78, 1181-1191.
- Wenger, M. and Armbruster, T. (1993) Phase relations of columbite and rutile type compounds in the system NiNb₂O₆ TiO₂. *N. Jb. Miner. Mh.*, 5, 224-232.
- Wipplinger, P.E. (1998) Titanium *In:* The Mineral Resources of South Africa. (M.G.C.
 Wilson and C.R. Anhaeusser, eds) Handbook16, Council for Geoscience, 621 632.
- Wilson, M.G.C. and Anhaeusser, C.R. (eds) (1998) *Mineral Resources of South Africa, Handbook* 16, Council for Geoscience, 740pp.

APPENDIX A1 Electron microprobe analysis

Appendix A1

The chemical analyses of rutile grains reported in this dissertation were analysed using the JEOL 8800 RXL Superprobe Electron Microprobe in the Discipline of Geology at the University of Durban-Westville working at the operating conditions detailed in Table A1.1 The MAC corrections were carried out using the proprietary software supplied with the JEOL 8800 RXL Super Electron Microprobe. The instrument calibration was checked prior to the commencement of each probe session against a rutile standard.

Operating conditions:

Accelerating voltage: 15kV Probe current: 2.00 X 10⁻⁸ Amp Probe diameter: 4 micron

Ovide	X-ray line	Counting	Detection	Standard
Oxide	X-ldy line	time	Limit	Deviation
Nb2O5	Κα	40s	0.049wt%	0.0163
Ta₂O₅	Κα	20s	0.036wt%	0.0120
TiO ₂	Κα	20s	0.030wt%	0.0100
Al ₂ O ₃	Κα	20s	0.011wt%	0.0036
ZrO ₂	Κα	20s	0.017wt%	0.0056
SiO ₂	Κα	20s	0.018wt%	0.0059
FeO	Κα	20s	0.027wt%	0.0089
Cr ₂ O ₃	Κα	40s	0.021wt%	0.0069
V_2O_3	Кβ	40s	0.133wt%	0.0443

Table A1.1 Electron Microprobe operating conditions.

Standards:

Nb ₂ O ₅	Niobium (metal)
Ta ₂ O ₅	Tantalum (metal)
TiO ₂	Titanium (metal)
Al ₂ O ₃	Spinel
ZrO ₂	Baddeleyite
SiO ₂	Silicon
FeO	Magnetite
Cr_2O_3	Chromite
V ₂ O ₃	Vanadium (metal)
MnO	Spessartine

Problems encountered

Analysis for V and Cr, are problematic due to the high concentratons of Ti that cause overlap problems with V and Cr peaks. There is an overlap of the very strong Ti_k line on the V_k line. A solution to this problem is to use the K β line of V for analysis. However, this still poses a problem because of the interference and an overlap of Cr_k on V_k line. A Cr-diopside standard was used to assess the the influence of Cr on V. It was found that at low concentrations of Cr (less than 0.5wt%) the of Cr had virtually no affect on V₂O₃. However the smaller K β line used for V analysis, had a significantly lower count rate and hence the higher detection limit for V₂O₃.

Homogeneity of rutile grains

The homogeneity of grains was assessed using electron backscatter imaging. Element mapping was done on a JEOL Electron Microprobe, for SiO₂, FeO, TiO₂, ZrO₂. Images showed that rutile grain were free from any inclusions.

APPENDIX A2 Mineral separation techniques

Appendix A2

Mineral Separation Techniques

1. Magnetic Separation

Frantz Isodynamic Magnetic Separator uses a magnetic field generated by a electric current to exploit the magnetic tendencies of grains. Adjusting this current controls the strength of the magnetic field. A low current induces a low intensity magnetic field and can be used to extract more magnetic minerals. Details of this technique are given in Hutchison (1974).

The Frantz Isodynamic Magnetic Separator was used to separate the 'ilmenite fraction' into 'magnetic ilmenite' and 'non magnetic ilmenite'. The 'mag others' fraction was also split into 'magnetic mag others' and 'non magnetic mag others'.

2. Electrostatic Separation

Electrical separation employs an electrostatic field to separate minerals of different electrical properties by exploiting the attraction between unlike charges and the repulsion between like charges. High-tension separators use a high rate of electrical discharge with electron flow and gaseous ionization. Commercial use has been made possible by employing the "pinning effect" in which non-conducting mineral particles receive a surface charge from the electrode, retain this charge and are "pinned" to the oppositely charged separator surface by positive-negative attraction. When ionization occurs minerals are sprayed with a discharge of electrons, which gives poor conductors a high surface charge, causing them to become "pinned" to the rotor surface

3. Density separation

This technique uses differences in the specific gravity. The dense heavy liquid; tetrabromoethane (TBE) which has a specific gravity of 2.95g/ml at 20°C, causes minerals with a density less than that of the liquid to float and minerals with a density greater than the liquid will sink. Due to the toxicity and high cost of TBE this technique cannot be used on an industrial scale, but in the laboratory provides a relatively quick and efficient method of removing any light mineral grains that were entrained by the Humphries Spirals.

APPENDIX A3

Electron microprobe analyses of rutile

a second second second

nd - not detected

APPENDIX A3 – ELECTRON MICROPROBE ANALYSES OF RUTILE

Magnetic ilmenite

 V_2O_3

Ta₂O₅

Nb₂O₅

 AI_2O_3

Cr₂O₃

FeO

Total

nd

nd

nd

0.206

0.060

4.080

100.028

nd

nd

nd

nd

2.601

11.118

98.204

nd

nd

nd

0.067

0.031

0.065

98.433

nd

nd

0.124

0.029

0.033

0.152

99.913

						Po	ond B				
1	2	3	4	5	6		No.	1	2	3	4
0.565	1.167	0.351	0.342	0.331	0.420		SiO₂	0.107	0.147	0.092	0.076
97.477	93.292	97.963	98.409	98.232	98.514	-	۲iO₂	98.248	98.415	98.145	99.985
0.135	0.096	0.219	0.155	0.112	0.053	2	ZrO ₂	0.052	0.065	0.073	0.060
0.521	0.731	0.280	0.357	0.892	0.227	`	/ ₂ O ₃	0.270	0.203	nd	nd
nd	0.052	nd	nd	nd	nd	-	Гa₂O₅	nd	nd	0.075	0.064
0.110	0.412	0.106	0.280	0.169	0.124	1	Nb ₂ O ₅	0.121	0.079	0.249	nd
0.011	0.162	0.033	0.028	nd	nd		Al ₂ O ₃	nd	0.026	0.079	nd
0.068	0.063	0.028	nd	0.154	0.070	(Cr ₂ O ₃		0.034	nd	0.022
0.492	2.079	0.318	0.132	0.126	0.186	1	FeO	0.252	0.291	0.388	0.224
99.379	98.054	99.298	99.703	100.016	99.594	Тс	otal	99.050	99.260	99.101	100.431
				P	ond C						
5	6	7	8		No.	1	3	4	5		
0.356	4.061	0.118	0.229	:	SiO₂	0.238	0.206	0.256	0.213		
95.306	80.424	97.992	99.252		TiO ₂	97.854	97.243	97.681	97.596		
0.020	nd	0.160	0.094	:	ZrO ₂	0.035	0.243	0.249	0.208		
	1 0.565 97.477 0.135 0.521 nd 0.110 0.011 0.068 0.492 99.379 5 0.356 95.306 0.020	1 2 0.565 1.167 97.477 93.292 0.135 0.096 0.521 0.731 nd 0.052 0.110 0.412 0.011 0.162 0.068 0.063 0.492 2.079 99.379 98.054 5 6 0.356 4.061 95.306 80.424 0.020 nd	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 0.565 1.167 0.351 0.342 0.331 97.477 93.292 97.963 98.409 98.232 0.135 0.096 0.219 0.155 0.112 0.521 0.731 0.280 0.357 0.892 nd 0.052 nd nd nd 0.110 0.412 0.106 0.280 0.169 0.011 0.162 0.033 0.028 nd 0.068 0.063 0.028 nd 0.154 0.492 2.079 0.318 0.132 0.126 99.379 98.054 99.298 99.703 100.016 Provide the second sec	1 2 3 4 5 6 0.565 1.167 0.351 0.342 0.331 0.420 97.477 93.292 97.963 98.409 98.232 98.514 0.135 0.096 0.219 0.155 0.112 0.053 0.521 0.731 0.280 0.357 0.892 0.227 nd 0.052 nd nd nd nd 0.110 0.412 0.106 0.280 0.169 0.124 0.011 0.162 0.033 0.028 nd nd 0.0492 2.079 0.318 0.132 0.126 0.186 99.379 98.054 99.298 99.703 100.016 99.594 Pond C 5 6 7 8 No. 0.356 4.061 0.118 0.229 SiO ₂ 95.306 80.424 97.992 99.252 TiO ₂ 0.020 nd 0.160 0.094 ZrO ₂	Pc12345610.5651.1670.3510.3420.3310.420597.47793.29297.96398.40998.23298.51410.1350.0960.2190.1550.1120.05320.5210.7310.2800.3570.8920.227Nnd0.052ndndndnd10.1100.4120.1060.2800.1690.12410.0110.1620.0330.028ndnd10.0680.0630.028nd0.1540.07000.4922.0790.3180.1320.1260.186199.37998.05499.29899.703100.01699.594ToPond C5678No.10.3564.0610.1180.229SiO20.23891.229SiO20.2389.29291.229SiO20.2389.29291.229SiO20.2389.29291.229SiO2	Pond B 1 2 3 4 5 6 No. 0.565 1.167 0.351 0.342 0.331 0.420 SiO2 97.477 93.292 97.963 98.409 98.232 98.514 TiO2 0.135 0.096 0.219 0.155 0.112 0.053 ZrO2 0.521 0.731 0.280 0.357 0.892 0.227 V2O3 nd 0.052 nd nd nd nd Td22O5 0.110 0.412 0.106 0.280 0.169 0.124 Nb2O5 0.011 0.162 0.033 0.028 nd nd Alg2O3 0.068 0.063 0.028 nd 0.154 0.070 Cr2O3 99.379 98.054 99.298 99.703 100.016 99.594 Total Pond C 5 6 7 8 No. 1 3 0.356	Pond B 1 2 3 4 5 6 No. 1 0.565 1.167 0.351 0.342 0.331 0.420 SiO2 0.107 97.477 93.292 97.963 98.409 98.232 98.514 TiO2 98.248 0.135 0.096 0.219 0.155 0.112 0.053 ZrO2 0.052 0.521 0.731 0.280 0.357 0.892 0.227 V2O3 0.270 nd 0.052 nd nd nd nd Ta2O5 nd 0.110 0.412 0.106 0.280 0.169 0.124 Nb2O5 0.121 0.011 0.162 0.033 0.028 nd nd AlgO3 nd 0.492 2.079 0.318 0.132 0.126 0.186 FeO 0.252 99.379 98.054 99.298 99.703 100.016 99.594 Total 99.050 <t< td=""><td>Pond B 1 2 3 4 5 6 No. 1 2 0.565 1.167 0.351 0.342 0.331 0.420 SiO2 0.107 0.147 97.477 93.292 97.963 98.409 98.232 98.514 TiO2 98.248 98.415 0.135 0.096 0.219 0.155 0.112 0.053 ZrO2 0.052 0.065 0.521 0.731 0.280 0.357 0.892 0.227 V2O3 0.270 0.203 nd 0.052 nd nd nd nd Ta2O5 nd nd 0.110 0.412 0.106 0.280 0.169 0.124 Nb2O5 0.121 0.079 0.011 0.162 0.033 0.028 nd nd AlgO3 nd 0.026 0.068 0.063 0.028 nd 0.154 0.070 Cr_2O3 nd 0.034 <td< td=""><td>Pond B 1 2 3 4 5 6 No. 1 2 3 0.565 1.167 0.351 0.342 0.331 0.420 SiO2 0.107 0.147 0.092 97.477 93.292 97.963 98.409 98.232 98.514 TiO2 98.248 98.415 98.145 0.135 0.096 0.219 0.155 0.112 0.053 ZrO2 0.052 0.065 0.073 0.521 0.731 0.280 0.357 0.892 0.227 V2O3 0.270 0.203 nd nd 0.052 nd nd nd nd nd 0.073 0.110 0.412 0.106 0.280 0.169 0.124 Nb2O5 0.121 0.079 0.249 0.011 0.162 0.033 0.028 nd nd AlgO3 nd 0.026 0.079 0.068 0.063 0.028 nd</td></td<></td></t<>	Pond B 1 2 3 4 5 6 No. 1 2 0.565 1.167 0.351 0.342 0.331 0.420 SiO2 0.107 0.147 97.477 93.292 97.963 98.409 98.232 98.514 TiO2 98.248 98.415 0.135 0.096 0.219 0.155 0.112 0.053 ZrO2 0.052 0.065 0.521 0.731 0.280 0.357 0.892 0.227 V2O3 0.270 0.203 nd 0.052 nd nd nd nd Ta2O5 nd nd 0.110 0.412 0.106 0.280 0.169 0.124 Nb2O5 0.121 0.079 0.011 0.162 0.033 0.028 nd nd AlgO3 nd 0.026 0.068 0.063 0.028 nd 0.154 0.070 Cr_2O3 nd 0.034 <td< td=""><td>Pond B 1 2 3 4 5 6 No. 1 2 3 0.565 1.167 0.351 0.342 0.331 0.420 SiO2 0.107 0.147 0.092 97.477 93.292 97.963 98.409 98.232 98.514 TiO2 98.248 98.415 98.145 0.135 0.096 0.219 0.155 0.112 0.053 ZrO2 0.052 0.065 0.073 0.521 0.731 0.280 0.357 0.892 0.227 V2O3 0.270 0.203 nd nd 0.052 nd nd nd nd nd 0.073 0.110 0.412 0.106 0.280 0.169 0.124 Nb2O5 0.121 0.079 0.249 0.011 0.162 0.033 0.028 nd nd AlgO3 nd 0.026 0.079 0.068 0.063 0.028 nd</td></td<>	Pond B 1 2 3 4 5 6 No. 1 2 3 0.565 1.167 0.351 0.342 0.331 0.420 SiO2 0.107 0.147 0.092 97.477 93.292 97.963 98.409 98.232 98.514 TiO2 98.248 98.415 98.145 0.135 0.096 0.219 0.155 0.112 0.053 ZrO2 0.052 0.065 0.073 0.521 0.731 0.280 0.357 0.892 0.227 V2O3 0.270 0.203 nd nd 0.052 nd nd nd nd nd 0.073 0.110 0.412 0.106 0.280 0.169 0.124 Nb2O5 0.121 0.079 0.249 0.011 0.162 0.033 0.028 nd nd AlgO3 nd 0.026 0.079 0.068 0.063 0.028 nd

 V_2O_3

Ta₂O₅

Nb₂O₅

 AI_2O_3

Cr₂O₃

FeO

Total

0.706

0.260

0.849

0.024

0.218

0.267

100.451

0.547

0.126

0.120

0.193

99.172

nd

nd

0.554

nd

nd

nd

nd

0.154

98.400

nd

0.083

0.199

0.013

0.151

0.197

98.660

Non magnetic ilmenite Pond A

No.	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	0.298	0.077	0.245	0.928	0.201	0.074	0.131	0.134	1.185	0.098	0.116
TiO ₂	99.363	99.766	99.464	98.698	99.133	99.881	99.993	99.086	94.759	99.823	99.499
ZrO ₂	0.225	0.092	0.200	0.260	0.272	0.218	0.048	nd	0.239	0.223	0.475
V_2O_3	0.571	0.402	nd	0.322	0.834	0.146	0.154	0.445	nd	0.270	0.745
Ta ₂ O ₅	nd	nd	nd	nd	nd	0.217	nd	nd	nd	0.193	0.136
Nb ₂ O ₅	0.087	0.068	0.110	nd	0.056	nd	0.091	0.112	0.167	0.085	nd
	0.062	0.023	0.020	0.384	nd	0.013	nd	0.020	0.694	nd	nd
Cr ₂ O ₃	0.125	0.119	0.021	0.211	0.144	0.098	0.068	0.128	0.034	0.038	0.137
FeO	0.135	0.084	0.394	0.167	0.049	0.054	0.119	0.069	1.085	0.811	0.033
Total	100.866	100.631	100.454	100.970	100.689	100.701	100.604	99.994	98.163	101.541	101.141

•

Pond A			Pond B				
No.	12	13	No.	1	2	3	4
SiO ₂	0.952	0.165	SiO ₂	0.541	0.531	0.468	0.491
TiO₂	95.650	99.737	TiO ₂	94.343	96.143	97.489	96.555
ZrO ₂	0.355	0.106	ZrO ₂	0.091	0.106	0.128	0.527
V_2O_3	nd	0.344	V ₂ O ₃	0.479	0.964	0.737	0.616
Ta₂O₅	0.303	0.105	Ta₂O₅	0.063	nd	nd	nd
Nb ₂ O ₅	0.136	nd	Nb ₂ O ₅	2.185	0.219	0.164	0.193
	0.717	nd	Al ₂ O ₃	0.059	0.021	0.042	0.015
Cr ₂ O ₃	0.044	0.125	Cr ₂ O ₃	0.152	0.147	0.158	0.133
FeO	1.082	nd	FeO	0.916	0.116	0.037	0.205
Total	99.239	100.582	Total	98.829	98.247	99.223	98.735

Pond C											
No.	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	1.076	0.158	0.120	0.147	0.825	0.163	1.386	0.383	0.484	0.377	0.402
TiO ₂	98.682	97.901	97.520	97.727	97.113	98.210	95.297	92.989	98.733	98.652	99.202
ZrO₂	nd	0.030	0.237	0.097	nd	nd	0.037	0.343	0.058	0.080	nd
V ₂ O ₃	0.135	0.367	0.154	0.135	0.396	0.858	0.656	0.644	0.569	0.212	0.183
Ta ₂ O ₅	nd	0.057	nd	nd	nd	0.039	nd	nd	nd	nd	nd
Nb ₂ O ₅	0.122	0.474	0.194	0.134	0.231	0.246	0.284	2.825	0.304	0.389	0.058
	0.022	nd	nd	nd	0.048	nd	0.240	0.082	0.022	nd	0.054
Cr ₂ O ₃	0.033	0.087	0.053	0.057	0.125	0.029	0.185	0.094	0.036	nd	0.027
FeO	0.591	0.273	0.253	0.206	0.519	0.395	0.402	1.002	0.265	0.277	0.306
Total	100.661	99.347	98.531	98.503	99.257	99.940	98.487	98.362	100.471	99.987	100.232

Pond C

۰..

No.	12
SiO ₂	0.559
TiO₂	97.530
ZrO₂	nd
V_2O_3	nd
Ta₂O₅	0.137
Nb ₂ O ₅	0.411
Al ₂ O ₃	0.134
Cr ₂ O ₃	0.039
FeO	0.663
Total	99.473

Magnetic Mag-other

Pond A								Pond B				
No.	1	2	3	4	5	6	7	No.	1	2	3	4
SiO ₂	0.627	0.714	0.730	4.525	0.193	0.135	0.390	SiO ₂	1.689	0.166	1.029	0.100
TiO₂	98.128	94.779	98.522	95.166	97.379	97.376	96.048	TiO ₂	87.773	99.138	96.345	98.113
ZrO ₂	nd	nd	0.023	0.147	nd	0.283	0.264	ZrO ₂	0.067	0.039	nd	0.117
V ₂ O ₃	nd	0.308	nd	0.255	nd	0.763	0.733	V_2O_3	0.325	0.367	0.251	0.377
Ta₂O₅	0.057	0.049	0.110	nd	nd	0.044	0.047	Ta ₂ O ₅	nd	nd	nd	nd
Nb ₂ O ₅	0.109	nd	nd	0.573	0.422	nd	0.155	Nb ₂ O ₅	0.342	0.285	0.146	0.137
	0.011	0.035	0.018	0.732	0.025	nđ	0.043		2.163	0.047	0.125	0.022
Cr ₂ O ₃	nd	nd	nd	nd	0.036	0.067	0.093	Cr ₂ O ₃	0.100	0.053	nd	0.060
FeO	0.121	3.540	0.087	0.594	0.459	0.201	0.757	FeO	5.562	0.219	1.277	0.069
Total	99.053	99.425	99.490	101.992	98.514	98.869	98.530	Total	98.021	100.314	99.173	98.995

Pond B									Pond C			
5	6	7	8	9	10	11	12	13	No.	1	2	3
0.093	0.153	0.674	0.091	0.048	0.065	0.062	0.046	0.494	SiO ₂	1.081	0.808	0.770
97.529	98.458	95.344	98.127	98.128	97.685	96.378	97.286	76.844	TiO₂	87.330	82.519	94.347
0.209	0.046	0.236	0.219	0.122	nd	0.095	0.236	0.022	ZrO ₂	0.114	0.055	0.030
0.589	0.512	nd	nd	0.328	nd	0.801	0.396	0.382	V_2O_3	0.223	nd	nd
nd	0.075	nd	Ta ₂ O ₅	0.099	nd	0.092						
0.176	nd	0.399	0.155	0.158	0.134	0.556	0.234	0.078	Nb ₂ O ₅	0.071	0.063	0.675
0.082	0.054	0.604	0.033	0.037	nd	0.044	nd	0.399		0.161	0.176	0.092
0.039	0.099	nd	nd	0.078	nd	0.166	nd	0.035	Cr ₂ O ₃	0.065	0.043	0.102
0.198	0.079	1.012	0.299	0.159	0.158	0.175	0.152	21.509	FeO	9.544	16.482	4.031
98.915	99.401	98.269	98.924	99.058	98.042	98.277	98.425	99.763	Total	98.688	100.146	100.139

Pond C													
No.	4	5	6	7	8	9	10	11	12	13	14	15	16
SiO₂	0.139	0.748	0.092	0.312	0.077	0.088	0.118	0.195	1.297	0.337	0.555	0.386	12.431
TiO ₂	96.083	97.577	98.434	96.726	97.568	97.420	99.020	97.209	94.121	99.740	98.810	99.043	85.574
ZrO ₂	0.054	nd	0.121	0.024	0.308	0.322	nd	0.033	0.104	nd	nd	0.036	0.027
V_2O_3	nd	nd	0.734	nd	0.598	0.695	nd	nd	nd	0.351	nd	nd	0.357
Ta₂O₅	0.103	nd	nd	nd	nd	nd	0.054	nd	nd	nd	nd	nd	nd
Nb ₂ O ₅	0.084	0.053	0.182	0.155	0.282	0.228	0.079	nd	0.260	nd	0.068	0.479	0.554
Al ₂ O ₃	0.036	0.016	nd	0.027	0.013	0.026	0.029	nd	0.533	0.016	0.020	0.070	0.020
Cr ₂ O ₃	0.034	nd	nd	nd	0.054	0.090	nd	nd	0.098	0.095	0.072	nd	0.063
FeO	2.952	3.207	0.069	1.262	0.059	0.057	0.405	1.646	3.342	0.506	0.527	0.567	1.644
Total	99.485	101.601	99.632	98.506	98.959	98.926	99.705	99.083	99.755	101.045	100.052	100.581	100.67
Pond C													
No.	17	18	19	20	21	22	23	24	25	26	27	28	29
SiO ₂	0.077	0.089	0.084	4.816	0.392	1.426	0.481	2.350	2.165	1.826	0.449	0.415	0.230
TiO ₂	96.129	98.494	97.648	91.062	99.107	96.925	96.278	96.219	90.531	87.529	98.851	99.032	95.235
ZrO ₂	0.075	0.035	0.046	0.027	0.108	0.065	0.038	0.099	0.062	0.314	nd	0.186	0.023
V_2O_3	0.337	nd	nd	0.615	0.447	0.300	nd	nd	nd	0.498	nd	0.425	nd
Ta₂O₅	0.054	nd	nd	nd	nd	nd	nd	nd	0.193	nd	nd	nd	nd
Nb ₂ O ₅	0.332	0.091	0.796	0.192	0.194	0.183	0.177	0.105	0.077	0.387	0.128	nd	0.289
	0.124	0.031	0.117	0.467	nd	0.320	nd	0.166	0.583	0.258	0.028	nd	0.023
Cr ₂ O ₃	0.04	0.041	nd	0.044	0.143	0.076	nd	0.032	0.042	0.155	nd	0.106	0.044
FeO	2.581	0.244	0.837	3.654	0.081	0.295	2.407	0.147	6.559	7.583	nd	0.065	2.627
Total	99.749	99.025	99.528	100.877	100.472	99.590	99.381	99.118	100.212	98.550	99.456	100.229	98.471

Pond C								
No.	30	31	32	33	34	35	36	37
SiO ₂	0.258	0.212	0.238	0.654	0.250	0.277	0.206	0.209
TiO₂	96.728	98.033	97.938	96.419	91.320	97.262	97.762	98.148
ZrO₂	0.185	nd	nd	0.074	0.094	0.061	0.082	0.041
V_2O_3	0.704	nd	nd	nd	0.355	nd	0.406	nd
Ta₂O₅	nd	0.052	0.036	nd	nd	nd	nd	0.057
Nb ₂ O ₅	0.395	0.222	0.383	0.235	4.741	1.167	0.401	0.602
	0.041	nd	0.028	0.382	0.051	0.018	0.043	nd
Cr ₂ O ₃	0.036	nd	0.101	nd	0.057	nd	nd	nd
FeO	0.156	0.193	0.165	1.007	2.450	0.812	0.159	0.605
Total	98.503	98.712	98.889	98.771	99.318	99.597	99.059	99.662

· ..

Non magnetic mag others

Pond A													
No.	1	2	3	4	5	6	7	8	9	10	11	12	13
SIO ₂	0.911	0.097	2.933	0.079	0.078	0.176	0.756	0.124	0.162	0.152	0.108	0.146	0.162
TiO ₂	92.933	100.354	79.873	98.692	91.108	99.409	96.822	99.086	98.608	98.615	98.282	97.655	96.854
ZrO ₂	nd	0.185	0.133	0.028	0.130	0.160	0.047	0.121	0.100	0.197	0.118	0.114	0.080
V_2O_3	0.576	nd	0.379	0.221	0.479	0.724	nd	1.215	0.174	1.023	0.791	0.955	0.886
Ta₂O₅	nd	nd	0.067	nd	0.070	nd	nd	0.044	nd	nd	nd	nd	nd
Nb ₂ O ₅	0.138	0.155	nd	0.125	2.778	0.270	0.201	0.279	0.097	0.179	0.282	0.522	1.654
	0.140	nd	3.456	0.040	0.136	0.020	0.503	0.022	nd	0.017	0.014	0.022	nd
	nd	0.033	0.153	nd	0.046	0.060	nd	0.055	nd	0.148	0.065	0.073	0.106
FeO	4.139	0.242	11.590	2.622	3.705	0.085	1.288	nd	0.033	0.092	0.127	0.137	0.379
Total	98.837	101.066	98.584	101.807	98.530	100.904	99.617	100.946	99.174	100.423	99.787	99.624	100.121
Pond A													
No.	14	15	16	17	18	19	20	21	22	23	24	25	26
SiO ₂	0.158	0.189	0.205	0.164	0.180	0.175	2.109	0.193	0.291	0.310	0.182	0.184	0.284
TiO₂	98.207	97.594	97.665	95.614	98.522	97.747	98.110	97.026	97.335	97.065	96.422	97.326	98.036
ZrO ₂	0.116	0.133	0.152	0.257	0.155	0.179	nd	0.102	nd	0.021	nd	0.052	nd
V_2O_3	1.225	0.482	0.521	0.683	0.888	1.109	nd	0.801	0.338	0.550	0.713	0.993	nd
Ta ₂ O ₅	nd	0.067	nd	0.059	nd	0.052	nd	nd	nd	nd	nd	nd	nd
Nb ₂ O ₅	0.164	0.283	0.552	2.268	0.173	0.100	0.284	0.161	0.058	0.529	1.172	0.425	0.547
	nd	nd	nd	0.242	nd	0.017	0.278	0.011	0.064	0.076	nd	nd	0.060
Cr ₂ O ₃	0.138	0.068	nd	0.163	0.069	0.052	nd	0.114	0.034	0.226	0.220	0.230	nd
FeO	nd	0.545	0.065	0.577	0.108	0.116	0.348	0.080	0.239	0.343	0.659	0.152	0.562
Total	100.008	99.361	99.160	100.027	100.095	99.547	101.129	98.488	98.359	99.120	99.368	99.362	99.489

I

۰..

Pond B													
No.	1	2	3	4	5	6	7	8	9	10	11	12	13
SiO₂	0.629	0.340	0.249	0.564	0.329	0.273	0.286	0.288	0.496	0.592	0.463	0.462	0.231
TiO₂	98.439	98.043	98.843	96.614	89.703	97.705	97.453	96.643	96.364	94.548	96.115	97.258	98.371
ZrO₂	0.097	0.048	0.124	0.103	0.046	0.100	0.119	0.091	nd	nd	nd	nd	nd
V_2O_3	0.666	0.550	nd	0.386	0.767	0.849	nd	0.232	0.704	0.264	nd	nd	nd
Ta₂O₅	nd	nd	nd	nd	nd	nd	nd	nd	0.800	0.103	0.542	0.568	nd
Nb ₂ O ₅	0.365	0.185	0.212	0.310	5.057	0.282	0.112	0.550	0.061	1.614	0.914	0.244	0.070
	0.012	0.027	nd	0.028	0.168	0.026	0.036	nd	0.037	0.261	nd	nd	0.074
	0.045	0.061	nd	nd	0.115	0.060	nd	0.075	nd	0.326	nd	nd	nd
FeO	0.080	0.211	0.109	0.327	1.974	0.190	0.094	0.512	0.114	1.063	0.835	nd	0.174
Total	100.333	99.465	99.537	98.332	98.159	99.485	98.100	98.391	98.576	98.771	98.869	98.532	98.920
Pond B						F	ond C						
No.	14	15	16	17	18		No.	1	2	3	4	5	6
SiO ₂	0.309	0.374	0.265	0.336	0.342		SiO ₂	0.238	0.153	0.210	0.223	0.172	0.222
TiO ₂	97.569	97.452	96.159	96.840	97.112		TiO ₂	93.092	97.927	97.681	98.283	98.056	97.327
ZrO ₂	0.068	nd	0.047	nd	nd		ZrO ₂	nd	0.055	0.149	0.136	0.167	0.298
V_2O_3	0.342	nd	nd	nd	0.141		V_2O_3	0.644	0.627	0.589	0.135	0.145	0.743
Ta₂O₅	0.265	nd	0.271	0.098	0.132		Ta₂O₅	nd	nd	nd	0.070	nd	0.067
Nb ₂ O ₅	nd	0.191	0.745	0.140	0.285		Nb ₂ O ₅	3.616	0.219	0.191	0.270	0.079	0.352
AI_2O_3	nd	nd	0.058	0.026	0.046		Al ₂ O ₃	0.213	0.024	0.040	0.034	nd	0.037
Cr ₂ O ₃	0.060	0.071	nd	0.082	0.082		Cr ₂ O ₃	0.103	nd	0.044	0.040	0.075	0.055

FeO

Total

0.222

99.227

0.664

98.570

0.118

99.022

0.180

99.371

0.103

98.797

0.081

99.182

FeO

Total

0.144

98.757

0.693

98.781

0.891

98.436

0.961

98.483

0.167

98.307

۰.,

		-	~	~
-	Ο	r I	u	J.

No.	7	8	9	10	11	12	13	14	15	16	17	18	19
SiO ₂	0.226	0.160	0.128	0.281	0.262	0.288	0.361	0.248	0.082	0.168	0.062	0.086	0.091
TiO₂	97.661	97.970	98.826	97.709	96.271	96.968	97.325	97.471	97.128	96.513	96.829	96.958	97.655
ZrO ₂	0.028	nd	0.094	0.159	0.020	0.019	nd	nd	0.120	0.065	0.085	0.068	0.094
V_2O_3	0.222	0.135	0.270	0.444	0.289	nd	nd	nd	nd	0.376	nd	0.724	0.117
Ta₂O₅	nd	nd	nd	nd	nd	nd	nd	nd	0.057	nd	nd	0.116	0.232
Nb ₂ O ₅	0.246	0.731	0.167	0.155	0.283	nd	0.061	0.204	0.291	nd	0.085	0.134	0.180
Al ₂ O ₃	0.038	nd	0.033	0.032	0.022	0.053	0.116	nd	0.030	nd	0.063	nd	0.030
	0.078	nd	0.036	0.055	0.033	0.022	0.021	nd	nd	0.079	0.031	0.213	0.052
FeO	0.156	0.177	1.635	0.255	1.290	0.711	0.374	0.534	0.369	0.869	1.203	0.068	0.194
Total	98.655	99.173	101.189	99.090	98.470	98.061	98.258	98.457	98.077	98.070	98.358	98.367	98.645

D	-	-	-	~
Γ.	υ	u	u	J.

· ..

No.	20	21
SiO ₂	0.061	0.045
TiO ₂	97.616	97.681
ZrO ₂	0.157	0.132
V_2O_3	0.592	0.402
Ta₂O₅	nd	nd
Nb ₂ O ₅	0.064	0.083
	0.012	0.072
Cr ₂ O ₃	0.192	0.096
FeO	0.132	0.125
Total	98.826	98.636

Cleaner Mags

Pond A

No.	1	2	3	4	5	6	7	8	9	10	11	12
SiO ₂	0.090	0.065	0.135	0.524	0.145	0.202	0.226	0.207	0.322	0.232	0.199	0.225
TiO ₂	98.543	99.350	99.456	98.337	99.316	98.724	99.161	98.717	98.726	99.340	99.574	98.839
ZrO ₂	0.153	0.071	nd	0.054	0.128	0.101	0.065	0.074	0.187	0.092	0.032	0.081
V_2O_3	nd	nd	nd	nd	nd	nd	nd	0.247	0.282	nd	nd	nd
Ta₂O₅	nd	0.153	0.068	0.335	nd	nd	nd	0.128	0.274	nd	nd	0.221
Nb ₂ O ₅	0.167	0.228	nd	0.235	0.264	0.188	0.164	0.259	0.167	0.167	0.213	0.067
Al ₂ O ₃	0.035	0.028	nd	0.371	0.031	nd	0.017	nd	0.012	0.048	0.013	0.020
Cr ₂ O ₃	0.082	0.049	0.060	0.191	nd	0.049	0.071	0.164	0.060	0.038	nd	0.076
FeO	0.164	0.232	0.225	0.148	0.240	0.187	0.088	0.076	0.072	0.263	0.065	0.426
Total	99.234	100.176	99.944	100.195	100.124	99.451	99.792	99.872	100.102	100.180	100.096	99.955
Pond A			P	ond B								
No.	14	15		No.	1	2	3	4	5	6	7	8
SiO ₂	0.306	0.341		SiO ₂	0.334	0.287	0.257	0.326	0.295	0.245	0.245	0.210
TiO ₂	98.590	99.138		TiO₂	99.670	99.373	98.627	98.187	99.123	99.446	99.901	99.339
ZrO ₂	0.101	0.079		ZrO ₂	0.188	0.267	0.037	0.211	0.055	0.089	0.023	0.122
V_2O_3	nd	nd		V_2O_3	nd	nd	nd	0.168	nd	0.212	0.194	nd
Ta₂O₅	nd	nd		Ta₂O₅	0.082	nd	0.107	0.224	0.249	nd	nd	0.039
Nb ₂ O ₅	0.222	nd		Nb ₂ O ₅	0.152	0.097	0.356	nd	0.222	0.243	0.070	0.146
Al ₂ O ₃	0.062	0.049		Al ₂ O ₃	0.022	0.011	0.020	0.711	0.098	0.020	nd	0.031
Cr ₂ O ₃	0.060	nd		Cr ₂ O ₃	0.159	0.049	0.033	0.055	0.082	0.071	nd	0.082
FeO	0.091	0.210		FeO	0.107	0.107	0.152	0.168	0.590	0.171	0.320	0.046
Total	99.432	99.817	-	Total	100.714	100.191	99.589	100.050	100.714	100.497	100.753	100.015
Pond B							P	ond C				
--------------------------------	--------	--------	--------	--------	--------	---------	--------	--------------------------------	--------	--------	--------	--------
No.	10	11	12	13	14	15		No.	1	2	3	4
SiO ₂	0.162	0.243	0.145	0.420	0.380	0.504		SiO ₂	0.498	0.521	0.332	0.309
TiO₂	98.882	98.575	98.870	98.832	97.845	99.144		TiO₂	97.520	97.597	96.464	97.878
ZrO ₂	0.087	0.075	0.038	0.099	0.159	0.097		ZrO₂	0.038	0.056	0.299	0.112
V_2O_3	nd	0.362	nd	nd	nd	nd		V ₂ O ₃	nd	nd	nd	0.238
Ta ₂ O ₅	nd	nd	nd	0.039	0.178	0.100		Ta₂O₅	0.171	nd	0.140	0.153
Nb ₂ O ₅	0.155	0.116	0.219	nd	0.831	0.487		Nb ₂ O ₅	0.673	0.776	0.858	0.234
Al ₂ O ₃	0.044	nd	0.027	nd	0.016	0.027		Al ₂ O ₃	0.028	0.019	0.112	nd
Cr ₂ O ₃	0.202	0.514	0.098	0.098	0.038	0.148		Cr ₂ O ₃	0.060	0.033	0.164	0.197
FeO	0.046	nd	0.190	nd	0.517	0.107		FeO	0.593	0.521	0.304	0.053
Total	99.578	99.885	99.587	99.488	99.964	100.614	-	Total	99.581	99.523	98.673	99.174
Pond C												
No.	6	7	8	9	10	11	12	13	14	15	16	
SiO ₂	0.224	0.342	0.435	1.076	0.379	0.368	0.377	0.331	0.242	0.335	0.601	
TiO₂	98.438	97.566	98.609	96.187	98.564	98.668	98.856	98.382	97.847	98.407	97.437	
ZrO ₂	0.098	0.131	0.109	nd	0.171	0.093	0.039	0.101	0.232	0.166	0.267	
V_2O_3	nd	0.141	nd	nd	nd	nd	nd	nd	nd	0.185	0.414	
Ta₂O₅	nd	0.096	nd	0.065	nd	nd	0.171	nd	nd	0.127	0.261	
Nb ₂ O ₅	0.255	0.049	0.234	0.101	0.055	0.207	0.067	0.112	0.359	0.155	0.222	
Al ₂ O ₃	0.044	nd	0.047	1.522	0.015	nd	nd	0.040	0.202	nd	0.011	
Cr ₂ O ₃	0.071	0.153	0.055	0.137	0.115	0.104	0.093	0.066	0.066	0.060	0.175	
FeO	0.168	0.506	0.228	0.290	0.065	0.049	nd	0.103	0.213	0.145	nd	
Total	99.298	98.984	99.717	99.378	99.364	99.489	99.603	99.135	99.161	99.580	99.388	

Primary mags

Pond A

No.	1	2	3	4	5	6	7	8	9	10	11	12	13
SiO ₂	0.111	0.065	0.189	0.233	0.173	0.193	0.208	0.197	0.191	0.107	0.161	0.394	0.100
TiO ₂	98.899	98.976	99.062	98.881	98.691	98.444	99.638	98.542	99.055	99.161	99.203	96.526	99.573
ZrO ₂	0.271	0.202	0.108	0.432	0.267	0.162	0.102	0.266	0.210	0.174	0.253	0.442	0.186
V_2O_3	0.366	0.183	0.139	0.278	0.490	1.162	nd	0.285	0.439	nd	0.490	0.161	nd
Ta ₂ O ₅	nd	0.149	nd	0.072	0.081	nd	0.050	nd	0.208	0.289	nd	0.077	0.167
Nb_2O_5	0.054	0.151	0.232	0.132	0.105	0.209	nd	0.259	nd	0.099	0.124	0.087	0.201
Al_2O_3	nd	0.024	nd	0.043	0.014	nd	0.067	0.016	0.072	nd	nd	0.401	nd
Cr ₂ O ₃	0.077	0.117	0.114	0.081	0.156	0.168	nd	0.226	0.091	0.023	0.083	0.040	0.122
FeO	0.115	0.176	0.192	0.267	0.212	0.056	0.364	0.079	0.151	0.279	0.103	0.889	0.123
Total	99.893	100.043	100.036	100.419	100.189	100.394	100.429	99.870	100.417	100.132	100.417	99.017	100.472

Pond A				Pond B								
No.	14	15	16	No.	1	2	3	4	5	6	7	8
SiO ₂	0.130	0.105	0.105	SiO ₂	0.222	0.168	0.197	0.409	0.184	0.222	1.515	0.413
TiO₂	99.246	98.777	99.658	TiO₂	97.442	97.858	99.358	99.959	99.539	99.702	97.580	97.978
ZrO ₂	0.260	0.187	0.113	ZrO ₂	0.104	0.138	0.105	nd	0.123	0.223	0.043	0.047
V_2O_3	0.570	0.534	0.234	V ₂ O ₃	1.746	1.519	0.709	0.403	0.680	1.090	0.154	nd
Ta₂O₅	0.061	nd	nd	Ta₂O₅	nd	0.202	0.182	nd	nd	0.121	nd	0.149
Nb_2O_5	0.091	0.054	0.052	Nb ₂ O ₅	0.494	0.501	0.374	0.134	0.355	0.081	0.088	0.348
Al ₂ O ₃	0.017	0.024	0.036	Al ₂ O ₃	nd	nd	0.012	0.081	nd	nd	0.479	0.104
Cr ₂ O ₃	0.167	0.171	0.057	Cr ₂ O ₃	0.523	0.339	0.083	0.135	0.075	0.203	0.303	nd
FeO	nd	0.111	0.352	FeO	0.062	0.040	0.179	0.186	0.153	nd	0.631	1.664
Total	100.542	99.963	100.607	Total	100.593	100.765	101.199	101.307	101.109	101.642	100.793	100.703

Pond B			Pond C									
No.	9	10	No.	1	2	3	4	5	6	7	8	9
SiO ₂	0.215	2.203	SiO ₂	0.288	0.283	0.293	0.265	0.338	0.246	1.188	0.258	0.200
TiO₂	98.991	96.226	TiO₂	97.034	98.591	99.770	99.263	96.982	98.430	97.229	99.868	99.666
ZrO ₂	0.119	nd	ZrO ₂	0.091	nd	0.079	nd	0.042	0.300	nd	0.142	0.146
V_2O_3	1.126	nd	V_2O_3	0.313	nd	0.285	0.634	nd	0.685	0.831	nd	0.893
Ta₂O₅	nd	nd	Ta ₂ O ₅	0.151	0.103	nd	nd	0.061	nd	nd	0.199	0.068
Nb ₂ O ₅	0.351	0.129	Nb ₂ O ₅	0.344	0.153	0.095	0.230	0.103	0.124	nd	nd	0.217
AI_2O_3	0.028	0.395	Al ₂ O ₃	nd	0.032	0.012	nd	0.488	0.011	0.221	0.015	0.022
Cr ₂ O ₃	0.409	0.758	Cr ₂ O ₃	nd	0.076	0.053	0.192	0.065	0.140	0.303	0.045	0.208
FeO	0.033	0.332	FeO	1.028	0.382	0.112	0.083	0.992	0.037	0.165	0.209	0.059
Total	101.272	100.043	Total	99.249	99.620	100.699	100.667	99.071	99.973	99.937	100.736	101.479

Pond C

No.	10	11	12	13	14
SiO₂	0.192	0.126	0.158	0.080	0.188
TiO₂	98.100	98.103	97.492	98.356	99.424
ZrO ₂	0.042	0.175	0.099	0.252	0.020
V_2O_3	0.220	0.176	nd	0.864	0.271
Ta ₂ O ₅	0.068	0.244	0.099	nd	nd
Nb ₂ O ₅	0.213	0.083	0.610	0.081	0.130
Al_2O_3	0.015	0.085	0.185	0.022	0.012
Cr ₂ O ₃	0.084	0.107	0.097	0.168	0.159
FeO	0.203	0.315	0.514	0.088	0.205
Total	99.137	99.414	99.254	99.911	100.409

HT'S Scavengers (mid and non-conductors)

Pond B									
No.	1	2	3	4	5	6	7	8	9
SiO₂	0.292	0.249	0.268	0.305	0.210	0.256	0.283	0.228	0.344
TiO₂	97.721	97.598	97.734	97.389	97.806	97.777	97.887	98.066	98.488
ZrO ₂	0.038	0.190	0.201	0.250	0.198	0.071	0.160	0.343	0.189
V_2O_3	0.203	0.782	0.879	0.241	0.946	nd	0.801	0.541	nd
Ta₂O₅	0.067	nd	0.065	nd	nd	nd	nd	nd	nd
Nb ₂ O ₅	nd	0.249	0.143	0.103	nd	0.100	0.246	0.203	0.176
	0.033	nd	0.015	0.023	0.023	0.016	nd	0.025	0.018
Cr ₂ O ₃	0.094	0.047	0.059	nd	0.039	0.024	0.090	0.092	0.046
FeO	0.226	0.048	0.035	0.220	0.078	0.225	0.188	0.093	0.060
Total	98.674	99.163	99.399	98.531	99.300	98.469	99.655	99.591	99.321

Primary HT'S Conductors

Pond A										Р	ond B	
No.	1	2	3	4	5	6	7	8	9		No.	1
SiO₂	0.342	0.592	0.606	0.441	0.368	0.342	0.356	0.309	0.333		SiO₂	0.401
TiO₂	99.000	98.704	98.876	100.439	98.713	99.678	99.252	98.749	98.839		TiO ₂	98.242
ZrO ₂	0.110	0.117	0.163	0.040	0.097	0.083	0.093	0.321	0.059		ZrO ₂	0.267
V_2O_3	nd	0.300	nd	nd	0.335	nd	nd	0.273	nd		V_2O_3	0.352
Ta₂O₅	nd	nd	nd	nd	nd	0.181	nd	0.100	0.046		Ta₂O₅	0.199
Nb ₂ O ₅	0.234	0.140	0.158	nd	0.161	0.049	0.212	0.161	0.158		Nb ₂ O ₅	0.167
	nd	nd	0.021	nd	0.138	nd	nd	nd	nd		Al ₂ O ₃	nd
	0.098	0.131	0.082	0.044	0.038	0.093	0.049	0.218	0.180			0.202
FeO	0.049	0.057	0.084	nd	0.175	0.065	nd	0.122	0.114		FeO	0.027
Total	99.833	100.041	99.990	100.964	100.025	100.491	99.962	100.253	99.729		Total	99.857
Pond B								F	Pond C			
No.	2	3	4	5	6	7	8		No.	1	2	3
SiO ₂	0.322	0.460	0.390	0.291	0.271	0.468	0.354		SiO ₂	0.388	0.342	0.299
TiO ₂	98.735	98.010	99.825	98.524	99.827	98.799	99.772		TiO₂	97.587	97.632	98.050
ZrO ₂	0.206	0.111	0.041	0.314	nd	nd	0.049		ZrO ₂	0.077	0.055	0.065
V_2O_3	0.203	nd	nd	nd	nd	nd	0.159		V_2O_3	0.150	0.123	0.062
Ta₂O₅	nd	0.156	nd	0.270	nd	nd	nd		Ta₂O₅	nd	nd	nd
Nb ₂ O ₅	0.097	0.164	0.067	0.185	nd	0.112	0.261		Nb ₂ O ₅	0.067	0.261	0.167
	0.014	0.024	nd	0.028	0.034	0.044	nd		Al ₂ O ₃	0.029	nd	0.047
Cr ₂ O ₃	0.109	0.093	0.109	0.093	0.147	nd	nd		Cr ₂ O ₃	0.071	0.044	nd
FeO	nd	0.152	0.312	0.114	0.068	0.034	0.251		FeO	nd	0.156	0.156
Total	99.686	99.170	100.744	99.819	100.347	99.457	100.846		Total	98.369	98.613	98.846

Pond C					
No.	4	5	6	7	8
SiO ₂	0.426	0.374	0.589	0.327	0.375
TiO₂	96.956	97.180	97.136	97.376	97.353
ZrO ₂	0.050	0.083	0.195	0.077	0.109
V_2O_3	0.132	0.264	0.194	0.212	0.168
Ta ₂ O ₅	nd	0.167	nd	0.068	nd
Nb ₂ O ₅	0.222	0.237	nd	0.273	0.264
	nd	0.015	nd	nd	0.042
Cr ₂ O ₃	0.137	0.082	0.022	0.104	0.153
FeO	0.110	0.049	0.034	0.034	0.061
Total	98.033	98.451	98.170	98.471	98.525

HT'S cleaner conductors

Pond A												
No.	1	2	3	4	5	6	7	8	9	10	11	12
SiO₂	0.316	0.377	0.236	0.347	0.265	0.372	0.297	0.213	0.374	0.251	0.317	0.128
TiO₂	96.480	97.433	96.639	97.938	97.128	97.001	96.975	96.975	94.711	97.127	97.915	96.650
ZrO ₂	0.218	0.381	0.172	0.090	0.075	0.335	0.158	0.203	0.464	0.188	0.057	0.153
V_2O_3	0.651	nd	0.446	nd	0.227	0.358	0.446	0.146	0.452	0.490	nd	0.577
Ta₂O₅	0.167	nd	0.053	0.138	nd	nd	nd	nd	0.272	nd	0.213	0.164
Nb ₂ O ₅	nd	0.114	0.186	0.052	nd	0.099	0.306	0.564	nd	0.064	nd	0.159
Al ₂ O ₃	0.022	0.014	nd	0.012	0.025	nd	0.019	0.056	0.213	0.016	0.034	0.018
Cr ₂ O ₃	0.175	0.058	0.182	0.055	0.063	0.166	0.184	0.122	0.569	0.178	0.108	0.115
FeO	0.027	0.223	0.171	0.176	0.392	0.054	0.220	0.208	1.167	0.038	0.249	0.071
Total	98.056	98.600	98.085	98.808	98.175	98.385	98.605	98.487	98.222	98.352	98.893	98.035

Pond A			Pond B								
No.	13	14	No.	1	2	3	4	5	6	7	8
SiO ₂	0.247	0.316	SiO₂	0.424	0.437	0.470	0.357	0.526	0.402	0.398	0.379
TiO₂	97.758	97.480	TiO ₂	97.073	98.049	97.806	97.474	97.934	97.127	97.964	98.689
ZrO₂	0.153	0.218	ZrO ₂	0.149	0.250	0.218	0.080	0.093	0.124	0.100	0.100
V_2O_3	0.285	0.651	V_2O_3	0.282	nd	nd	0.194	nd	nd	nd	nd
Ta₂O₅	nd	0.167	Ta₂O₅	0.060	nd	nd	nd	nd	nd	0.217	nd
Nb ₂ O ₅	0.256	nd	Nb ₂ O ₅	0.623	nd	nd	0.377	0.176	0.401	0.408	0.261
Al ₂ O ₃	0.049	0.022		0.013	0.017	0.033	nd	nd	0.015	0.019	0.045
Cr ₂ O ₃	0.116	0.175	Cr ₂ O ₃	0.066	0.038	0.109	0.120	0.055	0.164	0.104	nd
FeO	0.081	0.027	FeO	0.076	0.095	0.114	0.080	0.171	0.148	0.129	0.213
Total	98.945	99.056	Total	98.766	98.886	98.750	98.682	98.955	98.381	99.339	99.687

Pond B										
No.	9	10	11	12	13	14	15	16	17	18
SiO ₂	0.388	0.544	0.442	0.383	0.365	0.454	0.372	0.418	0.363	0.478
TiO₂	97.719	97.642	98.847	98.558	97.990	98.600	97.368	98.327	98.372	95.840
ZrO₂	0.064	nd	0.089	0.033	0.124	0.039	0.028	0.102	0.092	0.054
V_2O_3	nd	nd	nd	nd	0.159	nd	nd	nd	0.141	0.440
Ta₂O₅	0.036	0.203	nd	nd	nd	nd	nd	nd	nd	nd
Nb ₂ O ₅	0.675	0.304	0.210	0.195	0.340	0.204	0.119	0.122	0.204	1.319
Al ₂ O ₃	nd	0.052	0.034	0.039	nd	0.034	0.035	0.034	0.024	0.040
Cr ₂ O ₃	0.229	0.049	0.033	nd	nd	nd	0.147	0.082	0.066	0.115
FeO	0.015	0.148	0.232	0.244	0.080	0.065	0.426	0.468	0.209	0.057
Total	99.126	98.942	99.887	99.452	99.058	99.396	98.495	99.553	99.471	98.343
Pond C										
No.	1	2	3	4	5	6	7	8	9	10
SiO₂	0.535	0.150	0.186	0.124	0.188	0.183	0.195	0.150	0.107	0.135
TiO₂	96.677	99.081	97.112	98.599	97.711	99.244	98.566	98.797	99.449	99.068
ZrO₂	0.019	0.060	0.069	0.271	0.087	0.076	0.124	0.458	0.052	0.235
V_2O_3	nd	nd	0.402	0.417	0.372	nd	0.731	0.329	0.300	0.387
Ta₂O₅	0.323	0.116	nd	nd	0.278	nd	0.162	0.094	nd	0.182
Nb₂O₅	0.313	nd	0.472	nd	0.618	nd	nd	0.101	0.070	0.083
	0.154	0.043	nd	0.026	0.075	nd	0.038	nd	0.013	nd
Cr ₂ O ₃	0.051	0.080	0.617	0.075	0.096	0.042	0.111	0.100	0.074	0.109
FeO	0.606	0.327	0.098	0.098	0.208	0.296	0.082	0.064	0.116	0.030
Total	98.678	99.857	98.956	99.610	99.633	99.841	100.009	100.093	100.181	100.229

Pond C										
No.	11	12	13	14	15	16	17	18	19	20
SiO ₂	0.169	0.269	0.356	0.254	0.145	0.058	0.127	0.148	0.160	0.280
TiO₂	99.036	99.150	98.463	99.802	98.517	98.532	98.905	98.858	98.737	98.516
ZrO ₂	0.100	0.170	nd	0.173	0.162	0.166	0.057	0.150	0.209	0.098
V_2O_3	0.219	0.468	nd	0.183	0.475	0.402	0.468	0.329	0.227	0.263
Ta₂O₅	nd	0.213	0.044	nd	nd	nd	nd	0.112	nd	nd
Nb ₂ O ₅	0.211	0.143	nd	nd	0.114	0.087	0.103	nd	0.083	0.070
Al ₂ O ₃	nd	0.037	0.085	nd	0.016	0.037	nd	0.026	0.029	nd
Cr ₂ O ₃	0.089	0.079	nd	0.241	0.117	0.067	0.085	0.114	0.208	0.093
FeO	0.246	0.055	0.109	0.065	0.055	0.121	nd	nd	0.100	0.201
Total	100.070	100.584	99.057	100.718	99.601	99.470	99.745	99.737	99.753	99.521

HT'S cleaner mids

Pond A

No.	1	2	3	4	5	6	7	8	9	10	11	12
SiO ₂	0.355	0.268	0.293	0.313	0.411	0.456	0.431	0.392	0.366	0.355	0.484	0.373
TiO ₂	97.241	94.303	96.491	96.123	96.915	96.688	97.073	96.996	97.143	96.338	96.210	96.297
ZrO ₂	0.198	0.217	0.203	0.097	0.318	0.188	0.058	0.173	0.051	0.109	0.058	0.232
V_2O_3	0.359	0.497	0.329	0.585	0.797	0.731	0.461	0.344	0.307	0.622	nd	0.826
Ta₂O₅	nd	0.300	0.213	nd	0.068	nd	nd	nd	nd	0.118	nd	nd
Nb ₂ O ₅	0.066	0.891	0.161	0.095	nd	0.149	0.136	nd	nd	0.151	0.142	nd
	0.045	0.175	0.014	0.022	nd	0.014	nd	0.024	0.019	0.033	0.038	0.036
Cr ₂ O ₃	0.150	nd	0.079	0.104	0.139	0.170	0.169	0.138	nd	0.104	0.078	0.137
FeO	0.088	0.610	0.147	0.100	0.132	0.081	0.038	0.068	0.272	0.098	0.135	0.032
Total	98.502	97.261	97.930	97.439	98.780	98.477	98.366	98.135	98.158	97.928	97.145	97.933
Pond A												
No.	13	14	15	16	17	18	19	20	21	22	23	24
SiO₂	0.367	0.283	0.300	0.331	0.365	0.362	0.385	0.295	0.303	0.325	0.225	0.341
TiO ₂	95.557	96.491	96.685	96.615	97.021	95.568	97.878	96.920	98.164	96.265	97.336	96.608
ZrO ₂	0.184	0.167	0.053	0.250	0.124	0.098	0.093	0.475	0.174	0.259	0.118	0.099
V_2O_3	0.848	0.322	0.176	0.359	nd	0.563	0.702	0.278	0.154	0.322	0.168	0.402
Ta₂O₅	nd	0.068	0.075	nd	0.042	nd	0.215	nd	nd	nd	nd	nd
Nb ₂ O ₅	nd	0.062	0.089	nd	0.302	0.256	nd	0.114	0.163	0.279	nd	0.056
Al ₂ O ₃	0.025	0.057	0.020	nd	0.023	nd	nd	nd	0.018	0.074	0.036	nd
Cr ₂ O ₃	0.204	0.061	0.088	0.120	0.081	0.265	0.107	0.078	nd	0.055	0.037	0.249
FeO	nd	0.272	0.117	0.053	0.179	0.070	0.042	0.058	0.201	0.200	0.151	0.069
Total	97.185	97.783	97.603	97.728	98.137	97.182	99.422	98.218	99.177	97.779	98.071	97.824

Pond A			F	ond B								
No.	25	26		No.	1	2	3	4	5	6	7	8
SiO ₂	0.151	0.164		SiO ₂	0.493	0.362	0.318	0.291	0.298	0.297	0.333	0.264
TiO ₂	97.483	96.775		TiO₂	97.939	97.827	97.882	98.794	97.982	97.990	97.520	97.280
ZrO ₂	0.198	0.177		ZrO ₂	0.078	0.034	0.071	0.123	0.077	0.107	0.102	0.045
V_2O_3	0.329	0.723		V_2O_3	nd	0.238	nd	0.159	0.159	0.220	0.168	0.212
Ta₂O₅	0.059	0.107		Ta₂O₅	0.260	nd	0.093	nd	0.093	nd	nd	0.139
Nb₂O₅	nd	0.159		Nb ₂ O ₅	nd	0.185	0.219	0.131	0.194	0.286	0.146	0.264
Al ₂ O ₃	0.024	nd		Al ₂ O ₃	0.021	nd	0.139	0.033	0.016	0.020	0.034	0.012
	0.108	0.218		Cr ₂ O ₃	0.044	0.109	nd	0.044	0.109	0.186	0.071	0.142
FeO	0.101	nd		FeO	0.049	0.160	0.213	0.042	0.046	nd	nd	0.038
Total	98.453	98.323		Total	98.884	98.915	98.935	99.617	98.974	99.106	98.374	98.396
Pond B												
No.	9	10	11	12	13	14	15	16	17	18	19	20
SiO ₂	0.704	0.307	0.350	0.322	0.285	0.350	0.297	0.324	0.219	0.223	0.292	0.346
TiO₂	96.790	98.039	97.870	97.819	98.361	97.641	97.864	96.838	98.081	96.758	98.035	97.305
ZrO ₂	0.668	0.054	0.202	0.121	0.056	0.044	0.109	0.082	0.166	0.064	0.111	0.336
V_2O_3	0.167	0.229	nd	0.115	0.123	nd	nd	nd	nd	nd	nd	0.220
Ta₂O₅	nd	nd	0.093	nd	0.132	0.128	nd	nd	nd	nd	0.075	nd
Nb ₂ O ₅	0.322	0.182	0.167	0.182	0.204	0.605	0.207	0.402	0.043	1.005	0.425	0.061
Al ₂ O ₃	nd	nd	nd	nd	nd	0.033	0.020	0.673	0.017	0.021	0.049	nd
Cr ₂ O ₃	0.060	0.377	0.038	0.022	0.022	0.060	0.098	0.049	0.044	0.164	0.060	0.169
FeO	0.148	0.038	nd	0.141	0.107	0.221	0.072	0.301	0.053	0.224	nd	0.129
Total	98.859	99.226	98.720	98.722	99.290	99.082	98.667	98.669	98.623	98.459	99.047	98.566

Pond C									
No.	1	2	3	4	5	6	7	8	9
SiO ₂	0.098	0.088	0.034	0.175	0.076	0.091	0.046	0.184	0.202
TiO₂	99.633	98.126	97.739	98.739	98.353	98.036	98.808	98.727	97.782
ZrO ₂	0.040	0.319	0.433	0.356	0.256	0.117	0.389	nd	0.178
V_2O_3	0.190	0.453	0.679	0.365	0.621	0.212	nd	0.168	0.197
Ta₂O₅	nd	0.219	0.142	nd	nd	nd	nd	nd	nd
Nb ₂ O ₅	nd	0.151	nd	0.077	0.143	0.370	0.050	0.157	nd
Al ₂ O ₃	nd	0.013	nd	nd	nd	0.032	0.046	nd	0.020
Cr ₂ O ₃	nd	0.134	0.145	0.132	0.116	0.082	0.092	nd	0.075
FeO	0.207	0.057	0.100	0.136	nd	0.308	0.102	0.078	0.095
Total	100.168	99.560	99.272	99.980	99.565	99.248	99.533	99.314	98.549

÷ ..

HT'S Cleaner Non Conductors

Folia A												
No.	1	2	3	4	5	6	7	8	9	10	11	12
SiO ₂	0.222	0.138	0.310	0.160	0.148	0.243	0.429	0.318	0.226	0.231	0.205	0.249
TiO ₂	98.331	98.245	97.306	97.944	97.561	97.653	97.651	97.579	97.172	98.410	98.072	97.942
ZrO₂	nd	0.144	nd	0.096	0.114	0.263	0.102	0.071	0.129	0.068	0.178	0.057
V_2O_3	nd	nd	nd	0.388	nd	nd	nd	nd	0.308	nd	0.168	0.203
Ta ₂ O ₅	nd	nd	nd	nd	nd	nd	nd	nd	0.203	nd	nd	nd
Nb ₂ O ₅	nd	0.206	0.277	0.191	0.234	0.194	0.091	0.629	0.055	nd	nd	0.140
	nd	0.022	0.040	0.043	0.063	0.036	nd	0.018	0.120	nd	0.033	nd
Cr ₂ O ₃	0.027	0.093	0.076	0.049	0.082	0.082	0.060	0.076	0.142	0.087	0.038	0.147
FeO	0.167	0.095	0.407	0.164	0.255	0.038	0.228	0.065	0.205	0.072	0.152	0.171
Total	98.747	98.943	98.416	99.035	98.457	98.509	98.561	98.756	98.560	98.868	98.846	98.909
Pond A		F	ond B									
No.	13		No.	1	2	3	4	5	6	7	8	9
SiO ₂	0.278		SiO ₂	0.338	0.355	0.451	0.406	0.404	0.334	0.355	0.322	0.278
TiO₂	97.835		TiO₂	98.270	99.103	98.660	98.608	98.871	98.121	97.840	99.946	98.725
ZrO ₂	0.246		ZrO ₂	0.288	0.034	0.118	0.049	0.062	0.089	nd	0.098	0.090
V_2O_3	0.414		V ₂ O ₃	nd	nd	0.273	0.220	0.291	nd	nd	nd	nd
Ta₂O₅	0.125		Ta₂O₅	nd	nd	nd	nd	0.139	nd	nd	nd	nd
Nb ₂ O ₅	0.049		Nb ₂ O ₅	0.179	0.073	0.070	0.119	0.210	0.629	0.182	0.510	0.125
Al ₂ O ₃	0.017		Al ₂ O ₃	0.023	0.018	nd	nd	nd	0.111	0.017	0.056	nd
Cr ₂ O ₃	0.044		Cr ₂ O ₃	0.262	0.208	0.142	0.049	0.076	0.147	0.044	nd	nd
FeO	nd		FeO	0.137	0.061	0.099	0.133	0.186	0.152	0.186	0.137	0.217
Total	99.008		Total	99.497	99.852	99.813	99.584	100.239	99.583	98.624	101.069	99.435

Pond A

Pond B							Pond C				
No.	10	11	12	13	14	15	No.	1	2	3	4
SiO₂	0.285	0.340	0.325	0.297	0.257	0.308	SiO ₂	0.202	0.253	0.218	0.386
TIO ₂	97.913	98.565	97.585	98.161	98.114	97.629	TiO ₂	98.825	98.613	98.656	97.999
ZrO ₂	0.070	0.084	0.243	0.173	0.154	0.342	ZrO₂	0.132	0.105	0.279	0.298
V_2O_3	nd	nd	0.264	0.141	0.168	0.326	V ₂ O ₃	0.300	0.150	nd	nd
Ta ₂ O ₅	nd	nd	0.078	nd	nd	nd	Ta₂O₅	0.132	nd	nd	0.039
Nb ₂ O ₅	0.444	0.100	0.198	0.292	0.128	0.328	Nb ₂ O ₅	0.252	0.167	0.085	0.225
Al ₂ O ₃	0.042	nd	nd	0.039	nd	0.018	Al ₂ O ₃	0.095	nd	nd	nd
Cr ₂ O ₃	nď	0.033	0.197	nd	0.093	0.180	Cr ₂ O ₃	nd	nd	nd	0.027
FeO	0.304	0.145	0.065	0.091	0.065	0.103	FeO	0.182	0.114	0.156	0.057
Total	99.058	99.267	98.955	99.194	98.979	99.234	Total	100.120	99.402	99.394	99.031

Pond C

No.	5	6	7	8	9
SiO₂	0.385	0.598	0.248	0.254	0.312
TiO₂	98.041	99.003	97.772	98.294	99.016
ZrO ₂	0.202	0.025	0.251	0.093	nd
V_2O_3	nd	0.141	nd	0.326	0.141
Ta₂O₅	nd	nd	0.039	nd	0.185
Nb ₂ O ₅	0.103	0.067	0.616	0.182	nd
Al ₂ O ₃	0.033	0.091	0.055	0.052	nd
Cr ₂ O ₃	nd	nd	nd	nd	nd
FeO	nd	0.289	0.285	0.068	0.939
Total	98.764	100.214	99.266	99.269	100.593

APPENDIX A4

Electron microprobe analyses of reddish brown, black, yellow and blue rutile grains

٠.,

:

APPENDIX A4 – ELECTRON MICROPROBE ANALYSES OF REDDISH BROWN, BLACK, YELLOW AND BLUE RUTILE GRAINS

×.

nd – not detected

Reddish brown

No.	1	2	3	4	5	6	7	8	9	10	11	12	13
SiO2	0.049	nd	0.033	0.040	0.041	nd	nd	0.026	0.061	0.043	0.109	0.078	0.142
TiO2	98.422	98.229	98.219	98.337	98.554	98.401	98.281	98.924	97.877	98.738	98.856	98.263	97.547
ZrO2	0.084	0.235	0.216	0.166	0.043	0.317	0.114	0.107	0.131	0.062	0.161	0.216	0.148
V2O3	nd	nd	nd	0.210	nd	nd	0.272	0.202	0.254	nd	0.316	nd	0.193
Ta2O5	nd	0.044	nd	nd	nd	0.093	nd	nd	nd	0.272	0.051	nd	nd
Nb2O5	0.160	0.184	0.223	0.199	0.160	0.166	0.408	0.078	0.239	0.166	0.160	0.172	nd
AI2O3	nd	0.060	nd	0.013	0.038	nd	0.051	nd	0.050	0.013	0.029	0.064	0.095
Cr2O3	nd	0.103	0.141	0.119	0.022	0.071	nd	0.092	0.071	0.065	nd	0.158	0.114
FeO	0.499	0.178	0.250	0.148	0.386	0.132	0.280	0.087	0.204	0.083	0.242	0.193	0.182
Total	99.214	99.033	99.082	99.232	99.244	99.180	99.406	99.516	98.887	99.442	99.924	99.144	98.421
No.	14	15	16	17	18	19	20	21	22	23	24	25	26
No. SiO2	14 0.056	15 0.045	16 0.034	17 0.044	18 0.071	19 0.080	20 0.053	21 0.078	22 0.039	23 0.042	24 0.047	25 0.170	26 0.029
No. SiO2 TiO2	14 0.056 97.863	15 0.045 97.858	16 0.034 98.390	17 0.044 97.909	18 0.071 97.658	19 0.080 97.058	20 0.053 98.219	21 0.078 97.449	22 0.039 98.049	23 0.042 97.698	24 0.047 96.431	25 0.170 97.673	26 0.029 98.598
No. SiO2 TiO2 ZrO2	14 0.056 97.863 0.326	15 0.045 97.858 0.329	16 0.034 98.390 0.123	17 0.044 97.909 0.141	18 0.071 97.658 0.105	19 0.080 97.058 0.176	20 0.053 98.219 0.040	21 0.078 97.449 0.160	22 0.039 98.049 0.048	23 0.042 97.698 0.033	24 0.047 96.431 0.077	25 0.170 97.673 0.168	26 0.029 98.598 0.216
No. SiO2 TiO2 ZrO2 V2O3	14 0.056 97.863 0.326 nd	15 0.045 97.858 0.329 0.307	16 0.034 98.390 0.123 nd	17 0.044 97.909 0.141 0.175	18 0.071 97.658 0.105 nd	19 0.080 97.058 0.176 0.386	20 0.053 98.219 0.040 0.167	21 0.078 97.449 0.160 0.149	22 0.039 98.049 0.048 0.272	23 0.042 97.698 0.033 nd	24 0.047 96.431 0.077 nd	25 0.170 97.673 0.168 nd	26 0.029 98.598 0.216 nd
No. SiO2 TiO2 ZrO2 V2O3 Ta2O5	14 0.056 97.863 0.326 nd nd	15 0.045 97.858 0.329 0.307 0.082	16 0.034 98.390 0.123 nd 0.062	17 0.044 97.909 0.141 0.175 nd	18 0.071 97.658 0.105 nd 0.051	19 0.080 97.058 0.176 0.386 nd	20 0.053 98.219 0.040 0.167 nd	21 0.078 97.449 0.160 0.149 0.041	22 0.039 98.049 0.048 0.272 0.111	23 0.042 97.698 0.033 nd 0.108	24 0.047 96.431 0.077 nd 0.136	25 0.170 97.673 0.168 nd 0.234	26 0.029 98.598 0.216 nd 0.236
No. SiO2 TiO2 ZrO2 V2O3 Ta2O5 Nb2O5	14 0.056 97.863 0.326 nd nd 0.160	15 0.045 97.858 0.329 0.307 0.082 0.142	16 0.034 98.390 0.123 nd 0.062 0.133	17 0.044 97.909 0.141 0.175 nd nd	18 0.071 97.658 0.105 nd 0.051 0.251	19 0.080 97.058 0.176 0.386 nd 0.344	20 0.053 98.219 0.040 0.167 nd 0.229	21 0.078 97.449 0.160 0.149 0.041 nd	22 0.039 98.049 0.048 0.272 0.111 nd	23 0.042 97.698 0.033 nd 0.108 0.305	24 0.047 96.431 0.077 nd 0.136 0.701	25 0.170 97.673 0.168 nd 0.234 0.157	26 0.029 98.598 0.216 nd 0.236 0.133
No. SiO2 TiO2 ZrO2 V2O3 Ta2O5 Nb2O5 Al2O3	14 0.056 97.863 0.326 nd nd 0.160 0.029	15 0.045 97.858 0.329 0.307 0.082 0.142 0.029	16 0.034 98.390 0.123 nd 0.062 0.133 0.012	17 0.044 97.909 0.141 0.175 nd nd nd	18 0.071 97.658 0.105 nd 0.051 0.251 0.020	19 0.080 97.058 0.176 0.386 nd 0.344 0.105	20 0.053 98.219 0.040 0.167 nd 0.229 nd	21 0.078 97.449 0.160 0.149 0.041 nd 0.019	22 0.039 98.049 0.048 0.272 0.111 nd 0.021	23 0.042 97.698 0.033 nd 0.108 0.305 0.043	24 0.047 96.431 0.077 nd 0.136 0.701 0.145	25 0.170 97.673 0.168 nd 0.234 0.157 nd	26 0.029 98.598 0.216 nd 0.236 0.133 0.024
No. SiO2 TiO2 ZrO2 V2O3 Ta2O5 Nb2O5 Al2O3 Cr2O3	14 0.056 97.863 0.326 nd nd 0.160 0.029 0.152	15 0.045 97.858 0.329 0.307 0.082 0.142 0.029 0.152	16 0.034 98.390 0.123 nd 0.062 0.133 0.012 0.043	17 0.044 97.909 0.141 0.175 nd nd nd 0.043	18 0.071 97.658 0.105 nd 0.051 0.251 0.020 0.049	19 0.080 97.058 0.176 0.386 nd 0.344 0.105 0.054	20 0.053 98.219 0.040 0.167 nd 0.229 nd 0.136	21 0.078 97.449 0.160 0.149 0.041 nd 0.019 0.206	22 0.039 98.049 0.048 0.272 0.111 nd 0.021 0.315	23 0.042 97.698 0.033 nd 0.108 0.305 0.043 0.043	24 0.047 96.431 0.077 nd 0.136 0.701 0.145 0.673	25 0.170 97.673 0.168 nd 0.234 0.157 nd 0.081	26 0.029 98.598 0.216 nd 0.236 0.133 0.024 0.195
No. SiO2 TiO2 ZrO2 V2O3 Ta2O5 Nb2O5 Al2O3 Cr2O3 FeO	14 0.056 97.863 0.326 nd nd 0.160 0.029 0.152 0.102	15 0.045 97.858 0.329 0.307 0.082 0.142 0.029 0.152 0.053	16 0.034 98.390 0.123 nd 0.062 0.133 0.012 0.043 0.174	17 0.044 97.909 0.141 0.175 nd nd nd 0.043 0.223	18 0.071 97.658 0.105 nd 0.051 0.251 0.020 0.049 0.095	19 0.080 97.058 0.176 0.386 nd 0.344 0.105 0.054 0.204	20 0.053 98.219 0.040 0.167 nd 0.229 nd 0.136 0.121	21 0.078 97.449 0.160 0.149 0.041 nd 0.019 0.206 0.114	22 0.039 98.049 0.048 0.272 0.111 nd 0.021 0.315 0.061	23 0.042 97.698 0.033 nd 0.108 0.305 0.043 0.043 0.043	24 0.047 96.431 0.077 nd 0.136 0.701 0.145 0.673 0.132	25 0.170 97.673 0.168 nd 0.234 0.157 nd 0.081 0.076	26 0.029 98.598 0.216 nd 0.236 0.133 0.024 0.195 0.238

· ...

APPENDIX A4 – ELECTRON MICROPROBE ANALYSES OF REDDISH BROWN, BLACK, YELLOW AND BLUE RUTILE GRAINS

13 0.064

98.177

0.138 0.149

0.190

0.019

0.092 0.057

98.886

Reddish Brown

No.	27	28	29	30	31							
SiO2	0.082	0.030	0.072	0.033	0.038							
TiO2	97.373	97.245	98.158	98.141	97.607							
ZrO2	0.131	0.134	0.042	0.054	0.059							
V2O3	nd	0.158	nd	nd	nd							
Ta2O5	0.162	nd	0.067	nd	0.257							
Nb2O5	0.082	0.157	0.109	0.154	0.088							
AI2O3	0.062	nd	0.012	0.012	0.033							
Cr2O3	0.054	0.315	0.114	0.092	0.130							
FeO	0.174	0.140	0.136	0.280	0.359							
Total	98.120	98.179	98.710	98.766	98.571							
Black												
No.	1	2	3	4	5	6	7	8	9	10	11	12
SiO2	0.020	nd	nd	nd	0.040	0.026	nd	nd	nd	nd	0.023	0.040
TiO2	98.096	96.723	96.782	96.615	97.258	96.232	96.903	96.443	97.125	96.560	96.547	95.732
ZrO2	0.106	0.160	0.168	0.129	0.039	0.497	0.153	0.047	0.035	0.129	0.503	0.163
V2O3	1.107	1.183	0.757	1.681	0.364	0.624	1.117	0.566	0.824	1.117	0.838	0.246
Nb2O5	0.200	0.129	0.205	0.106	0.847	0.580	0.181	1.011	0.448	0.228	0.215	1.094
AI2O3	nd	nď	nd	nd	0.024	nd	nd	0.062	nd	nd	nd	0.314
	0.044			0 105	0.405	0.400	0.000	0 4 0 7	0.027	0 4 4 5	0.004	0.054
Cr2O3	0.341	0.199	0.077	0.125	0.125	0.193	0.060	0.187	0.037	0.145	0.221	0.051
Cr2O3 FeO	0.341 nd	0.199 nd	0.077 0.117	0.125 nd	0.125	0.193	0.060	0.187 0.164	0.037 nd	0.145	0.221	0.051

						GIV	AINO					
Blue								Yellow				
No.	1	2	3	4	5	6	7	No.	1	2	3	4
SiO2	0.105	0.037	1.438	0.428	0.035	0.110	0.671	SiO2	nd	0.038	0.020	0.045
TiO2	96.812	97.660	94.779	96.327	98.198	98.931	96.464	TiO2	97.349	96.556	97.427	97.920
ZrO2	0.110	nd	0.120	0.078	0.029	0.036	0.083	ZrO2	nd	nd	nd	0.055
V2O3	nd	nd	nd	nd	nd	nd	nd	V2O3	nd	nd	0.236	nd
Nb2O5	0.176	0.447	0.277	0.243	0.277	0.337	0.291	Nb2O5	0.481	0.372	0.056	0.834
AI2O3	2.871	nd	1.365	0.686	0.026	0.015	0.595	AI2O3	0.093	nd	0.021	nd
Cr2O3	nd	nd	nd	0.119	nd	nd	0.125	Cr2O3	0.042	0.153	nd	nd
FeO	0.168	nd	0.057	0.129	0.052	0.115	0.149	FeO	0.359	0.845	0.240	0.631
Total	100.242	98.144	98.036	98.010	98.617	99.544	98.378	Total	98.324	97.964	98.000	99.485

APPENDIX A4 – ELECTRON MICROPROBE ANALYSES OF REDDISH BROWN, BLACK, YELLOW AND BLUE RUTILE GRAINS

APPENDIX A5

`

.

,

Colour plates of reddish brown, black, yellow and blue rutile grains

100 µm

Plate 1: Reddish brown rutile grains from the Sibaya Formation (63 X Magnification).

100 µm

Plate 2: Black rutile grains from the Sibaya Formation (63 X Magnification).

Plate 3: Yellow rutile grain from the Sibaya Formation (63 X Magnification).

100 µm

Plate 4: Blue rutile grains from the Sibaya Formation (63 X Magnification).