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ABSTRACT 

Fifteen homoisoflavonoids (3-17) were synthesised using the base-catalysed aldol 

condensation, thirteen of which were of the 3-benzylidene-4-chromanone type and the 

remaining two of the 3-benzyl-4-chromanone type.  The substitution patterns of the 

homoisoflavonoids were varied by keeping the A-ring unsubstituted whilst changing the 

substituent’s on the 3' and 4' positions of the B-ring.  Methoxy, hydroxy, chloro, fluoro and 

nitro groups were inserted on the B-ring of the homoisoflavonoids.  All homoisoflavonoids 

were characterised by NMR (1D and 2D), IR, UV spectroscopy and GC-MS.  The crystal 

structures were obtained for seven of the homoisoflavonoids.  The homoisoflavonoids (3-17) 

were tested for their antibacterial activity against ten gram-positive and six gram-negative 

bacterial strains using the method of disc diffusion.  Five compounds showed moderate 

antibacterial activity whilst compound 14 showed good antibacterial activity against the gram 

positive bacteria.  The hydroxylated compounds were tested for their antioxidant activity 

using the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging method as well as the 

FRAP (ferric reducing antioxidant power) method.  Compound 15 showed good antioxidant 

activity, comparable to that of ascorbic acid, due to the presence of a catechol system within 

the molecule. 
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CHAPTER 1 INTRODUCTION 

 

Homoisoflavonoids are a group of naturally occurring oxygen heterocyclic compounds which 

consist of either a chromane or chromanone system with a benzyl or benzylidene group at the 

3-position (Figure 1) (Adinolfi et al., 1986).  They are referred to as homoisoflavonoids, 

homoisoflavanones or 3-benzyl-4-chromanones.  The basic structure and nomenclature for 

the homoisoflavonoids are shown below (Figure 1). 
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Figure 1: The basic structure of a 3-benzylidene homoisoflavonoid 

 

Homoisoflavonoids belong more broadly to the flavonoids, and differ from another subclass, 

the isoflavonoids in that they have a C-16 rather than a C-15 skeleton (du Toit et al., 2010).  

Whereas the isoflavonoids result from a phenyl shift from C-2 to C-3, the homoisoflavonoids 

have a varied biosynthetic pathway (Dewick, 1975), resulting in an extra carbon atom 

between the chromanone ring and the phenyl group, which distinguishes this subclass of 

isoflavonoids from the others (Dewick, 1975).   

 

The first homoisoflavonoids, eucomin and eucomol, were isolated from Eucomis bicolor 

(Hyacinthaceae) in 1967 (Figure 2) (Böhler and Tamm, 1967).  Since then, many 

homoisoflavonoids have been isolated from various plant families, but have remained to be a 

key chemotaxonomic marker amongst the Hyacinthaceae (Koorbanally et al., 2006).  Apart 
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from the Hyacinthaceae, they have also been isolated from the Fabaceae, Liliaceae, 

Dracaenaceae, Leguminosae and Convallariaceae plant families (Abegaz et al., 2007).  In 

recent studies, three new homoisoflavonoids which showed potent anti-inflammatory activity 

were isolated from Ophiopogon japonicas (Liliaceae) (Hung et al., 2010).   

 

O

O

O

O

HO

OH

O

OH

HO

OH

O

(a) (b)  

Figure 2: The chemical structures of eucomin (a) and eucomol (b) 

 

1.1 Classification, structure and biosynthesis of homoisoflavonoids 

Homoisoflavonoids contain a chromanone ring, which is a benzene ring fused with a 

tetrahydropyran ring, and a phenyl ring joined together by a carbon atom at C-3, which 

makes them different from both the flavonoids and the isoflavonoids (Figure 3).  In nature, 

different substitution patterns occur on both the chromanone and phenyl moieties, leading to 

various permutations of hydroxylated, methoxylated and acetylated compounds as well as 

others such as the prenylated compounds.   

 

OO

O O

(a) (b)

33

 

Figure 3: The structural skeleton of an isoflavonoid (a) and a homoisoflavonoid (b) 
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Homoisoflavonoids are biosynthesised from chalcone precursors.  The mechanism and 

biosynthetic pathways by which homoisoflavonoids are formed were determined by labeling 

studies with phenylalanine, sodium acetate and methionine in Eucomis comosum, where 

labeled precursors were incorporated into the chalcone intermediates and further into the 

homoisoflavonoid (Dewick, 1975).   

 

Phenolic compounds can be biosynthesised by two pathways: the shikimate pathway or the 

polyketide pathway.  Homoisoflavonoids are of mixed biosynthetic origin, the A-ring is 

polyketide derived and the B-ring is shikimate derived (Figure 4) (Mann et al., 1994). 

 

O

A B

polyketide
derived

shikimate
derived  

Figure 4: The formation of the A and B ring of the chalcone which is further cyclised into 

the homoisoflavonoid 

 

The first step to the biosynthesis of homoisoflavonoids is the biosynthesis of the chalcone 

precursor (Figure 4).  Chalcone biosynthesis (Scheme 1) starts with the deamination of L-

phenylalanine to cinnamic acid and oxidized at the para-position to 4-coumaric acid, which is 

then converted to 4-coumaryl CoA (Bhandari et al., 1992).  This process is mediated by three 

enzymes, L-phenylalanine ammonia lyase, cinnamate-4-hydroxylase and coumarate-CoA-

ligase.  The 4-coumaryl CoA intermediate then combines with three molecules of malonyl 

CoA yielding the polyketide ester, which cyclises via a Claisen type condensation, producing 

the chalcone precursor, 2',4',6',4-tetrahydroxychalcone.  This process is catalyzed by 
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chalcone synthase.  Methionine is the source of the extra carbon atom, methylating the 2'-

hydroxy group (Scheme 1-E), a key step in the biosynthesis of the homoisoflavonoids, since 

pyranone ring cyclisation involves this methoxyl group (Scheme 1).   
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COOH COOH
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Enzymes:  A - phenylalanine ammonia lyase  B - cinnamate 4-hydroxylase 
C - 4-coumarate CoA ligase   D - chalcone synthase 
E - methyl transferase 
 

Scheme 1: The biosynthetic formation of the chalcone precursor (Hahlbrock and Grisebach, 

1975) 

 

The biosynthesis of homoisoflavonoids from chalcones was proposed by Dewick (1975).  

The 2'-methoxy group is pivotal in this biosynthesis, which is oxidized by the loss of a 

proton.  Subsequent cyclisation resulting from a flow of electrons from the lone pair on the 

4'-hydroxy oxygen atom to the oxidized methoxy oxygen at the 2-position leads to the 
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formation of the three basic types of homoisoflavonoids, the methoxy carbon ending up as C-

2 on the homoisoflavonoid skeleton.  Addition of a hydride ion or loss of a proton results in 

either the 3-benzyl-4-chromanone or the 3-benzylidene-4-chromanones.  Water added across 

the double bond of the 3-benzylidene-4-chromanones leads to the third type, the 3-benzyl-3-

hydroxy-4-chromanones.  The 3-benzyl-3-hydroxy-4-chromanone can also be formed by 

oxidation of 3-benzyl-4-chromanone at the 3-position.  The mechanism for the formation of 

the homoisoflavonoids is illustrated in Scheme 2. 
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H
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3-benzylidene-4-chromanone

3-benzyl-4-chromanone3-benzyl-3-hydroxy-4-chromanone

 

Scheme 2: The biosynthetic pathway from 2,4,4'-trihydroxy-2'-methoxychalcone to its 

corresponding homoisoflavonoids (Dewick, 1975) 
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The fourth type of homoisoflavonoid, the scillascillin type, is formed by the cyclisation of the 

3-benzyl-3-hydroxy-4-chromanone, forming a strained but stable four-membered ring 

(Scheme 3) (Dewick, 1975).   

 

O

O

OH

OH
OH

O

O

OH

OH

H

O

O

OH

OH

scillascillin  

Scheme 3: The proposed biosynthesis of scillascillin (Dewick, 1975) 

 

Due to the presence of the double bond at the 3-postion, 3-benzylidene-4-chromanones may 

undergo chemical conversion and exist as either the trans (E) or cis (Z) isomer (Kirkiacharian 

et al., 1984) (Figure 5).  In natural products, the E isomer is prevalent but can be converted to 

the Z isomer by light (Siddaiah et al., 2006).   

O

O

O

O

3

93

9

H

(E)-conf iguration (Z)-conf iguration

H

 

Figure 5: The E and Z-isomers of 3-benzylidene-4-chromanone 
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1.2 A review of the methods used to synthesise the 3-benzylidene-4 

chromanones 

Homoisoflavonoids have been synthesised since the mid twentieth century (Farkas et al., 

1968).  The first synthesis of homoisoflavonoids was completed just a year after these 

compounds were first isolated (Farkas et al., 1968).  A retrosynthetic analysis of these 

compounds results in aromatic aldehydes, phenols and carboxylic acid synthons.  The 

carboxylic acid synthon has a halide functionality at the other end (Scheme 4). 

 

HO X

O

O

O

O

O

H

O

OH

O

X

X = Br, Cl

OH

 

Scheme 4: A retrosynthetic approach to 3-benzylidene-4-chromanone 

 

The synthesis of 3-benzylidene-4-chromanones involves formation of the 4-chromanone (2), 

which is then condensed with aromatic aldehydes in the presence of an acid or base catalyst 

via the mechanisms in Scheme 6 and Scheme 7.  However, various chromanones are 

commercially available and need not be synthesised as a first step.  A survey on the Aldrich 

website indicates the availability of nine derivatives (Table 1) (www.sigmaaldrich.com/4-

chromanone). 
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Table 1: Comparative prices of commercially available 4-chromanones 

O

O

R1

R2

R3

R4

R5

R6

2

3

5
6

7

8

4

 

Compound Name R1 R2 R3 R4 R5 R6 Price (ZAR) 

4-chromanone H H H H H H 
545.61/  

10 g 

6-bromo- 

4-chromanone 
H H H Br H H 

1377.61/ 

0.25 g 

6-chloro- 

4-chromanone 
H H H Cl H H 

324.80/  

1 g 

6-methyl- 

4-chromanone 
H H H CH3 H H 

1177.61/ 

 5 g 

6-fluoro- 

4-chromanone 
H H H F H H 

476.80/  

1 g 

7-fluoro- 

4-chromanone 
H H H H F H 

1264.01/  

1 g 

6,7-dimethoxy-2,2-

dimethyl- 

4-chromanone 

diCH3 H H OCH3 OCH3 H 
1072.01/  

1g 

2,2-dimethyl-5,7,8-

trimethoxy- 

4-chromanone 

diCH3 H OCH3 H OCH3 OCH3 
708.80/  

0.05 g 

2,2-dimethyl-7-

ethoxy-6-methoxy-

4-chromanone 

diCH3 H H OCH3 OCH3CH2 H 
708.80/  

0.1 g 

7-acetoxy-3-acetyl-

2-methyl- 

4-chromanone 

CH3 CH3CO H H CH3CO2 H 
708.80/  

0.05 g 
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Several of the chromanone derivatives that are commercially available are relatively 

expensive, compared to the unsubstituted chromanone therefore derivatisation of the 

chromanone may be a better alternative to purchasing the derivatives.  

 

1.2.1  Synthesis of the 4-chromanone (2) intermediate 

Even though the 4-chromanone intermediates are available, researchers in the field still 

synthesise the intermediate en route to the homoisoflavonoids.  Different methods were 

employed for their synthesis (Scheme 5) (Siddaiah et al., 2006; Foroumadi et al., 2007; 

Siddaiah et al., 2007; Shaikh et al., 2011a). 

They can be formed from the reaction of: 

(a) 3-bromo- or 3-chloropropanoic acids and phenols under basic conditions, producing a 

phenoxypropanoic acid which can be cyclised with polyphosphoric acid (Siddaiah et 

al., 2006; Shaikh et al., 2011a); 

(b) 3-bromo- or 3-chloropropanoic acids and phenols under acidic conditions, producing 

a benzophenone alkyl chloride which can be cyclised with sodium hydroxide 

(Foroumadi et al., 2007); 

(c) acrylonitrile and phenols under basic conditions forming a phenoxynitrile which is 

followed by the cyclisation with sulfuric acid (Siddaiah et al., 2007). 

 

In all cases, an activated carbon is produced in the intermediate.  In the case of the acid and 

nitrile intermediates, an acid is used as a catalyst for the cyclisation by activitating the 

carboxyl or nitrile groups toward nucleophilic substitution and for the alkyl chloride, a base is 

needed for the abstraction of the proton of the hydroxyl group, which is then followed by 

nucleophilic substitution. 
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Scheme 5: (a) The synthesis of 3-phenoxypropanoic acid (1) and 4-chromanone (2) 

(Siddaiah et al., 2006); (b) The synthesis of 7-hydroxy-4-chromanone (Foroumadi et al., 

2007); (c) The synthesis of 7,8-dihydroxy-4-chromanone (Siddaiah et al., 2007) 

 

The method employed for the synthesis of chromanone depends on the functionalities on the 

A-ring of the molecule. Strong bases may not be used with more than one hydroxyl group on 

the A-ring, due to the unwanted complete deprotonation of the hydroxyl groups. 

 

Methods a, b and c above has reasonable yields of 46%, 54% and 61% respectively (Siddaiah 

et al., 2006; Foroumadi et al., 2007; Siddaiah et al., 2007).  

 

1.2.2 Synthesis of the 3-benzylidene-4-chromanones from the 4-chromanone 

intermediate 

Benzaldehydes are condensed onto the 3-position of the 4-chromanone intermediate using 

either acids or bases as a catalyst.  Acid-catalysed condensation requires protic acids, such as 

phosphoric (Desideri et al., 2011; Shaikh et al., 2011a) and hydrochloric acid (Evans and 
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Lockhart, 1966; Foroumadi et al., 2007; Cheng et al., 2011; Desideri et al., 2011), which 

protonate the carbonyl group of the 4-chromanone intermediate, promoting enol formation 

and also protonate the carbonyl group of the aldehyde, activating the carbonyl group, making 

it more electrophilic and more susceptible to nucleophilic attack (Scheme 6). 

 

O
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O
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H

H

O

O H OH

H+

O

O H OH2

H

O

O

(2)

(3)

-H+

H O

-H +
-H

2 O

H+H+

 

Scheme 6: The proposed reaction mechanism for the acid-catalysed preparation of 3-

benzylidene-4-chromanone 

 

Base-catalysed condensation involves the abstraction of the alpha proton by weak bases such 

as piperidine (Lévai and Schág, 1979; Perjési et al., 2008; Shaikh et al., 2011a; Jacquot et al., 

2012), which result in the enolate anion, a better nucleophile than the enol, thereby promoting 

the addition of the nucleophille to the aldehyde. 
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In the base-catalysed mechanism, the driving force for the elimination of water is the highly 

conjugated product that forms as a result of the elimination (Scheme 7).  Other bases such as 

pyrollidine have also been used (Shankar et al., 2012).   

 

O

O

O

O

H

O

O

O H O

O

O H O

O

O

(3)
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H

H

H
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H

B

 

Scheme 7: The proposed reaction mechanism for the base-catalysed preparation of 3-

benzylidene-4-chromanone 

 

1.2.3  Other methods used for the synthesis of 3-benzylidene-4-chromanones 

Rather than synthesising the chromanone and then condensing it with an aldehyde to prepare 

the homoisoflavonoid, Basavaiah and Bakthadoss (1998) applied the Baylis-Hillman reaction 

and started with the construction of the benzylidene moiety and then the chromanone ring 

system (Scheme 8).  This method is better at synthesising homoisoflavonoids with different 

substituents on the chromanone A-ring as different phenols can be used in the first step.   
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Scheme 8: The reaction scheme for the preparation of 3-benzylidene-4-chromanone by the 

Baylis-Hillman reaction (Basavaiah and Bakthadoss, 1998) 

 

The synthesis of several types of homoisoflavonoids has been reported in the literature 

(Farkas et al., 1968; Lévai and Schág, 1979; Basavaiah and Bakthadoss, 1998; Siddaiah et 

al., 2006; Foroumadi et al., 2007; Siddaiah et al., 2007; Perjési et al., 2008; Rao et al., 2008; 

Zhang et al., 2008; Das et al., 2009; Cheng et al., 2011; Desideri et al., 2011; Shaikh et al., 

2011a; Jacquot et al., 2012; Shankar et al., 2012). 

 

5,7-diacetoxy-3(4-methoxybenzal)-4-chromanone was synthesised by refluxing 5,7-

dihydroxy-4-chromanone in acetic anhydride.  Deacylation of 5,7-diacetoxy-3(4-

methoxybenzal)-4-chromanone yielded eucomin (Farkas et al., 1968).  Other natural 

homoisoflavonoids, such as punctatin, were also synthesised by refluxing chromanone and an 

aldehyde in hot acetic anhydride (Farkas et al., 1971), however this method was inefficient 

due to the long reaction times (Lévai, 2004). 
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1.3 Bioactivity of homoisoflavonoids 

Homoisoflavonoids have been reported to have a wide range of biological activities (du Toit 

et al., 2010).  They have been found to exhibit antibacterial (Das et al., 2009; Shankar et al., 

2012), antioxidant (Farkas et al., 1968; Siddaiah et al., 2006; Siddaiah et al., 2007; Lin et al., 

2010), anti-inflammatory (Hung et al., 2010; Shaikh et al., 2011b), antifungal (Rao et al., 

2008), antiviral (Tait et al., 2006), antimutagenic (Miadoková et al., 2002), anticancer (Yan 

et al., 2012) and antirhinovirus (Conti and Desideri, 2009) activity.  Naturally occurring 

homoisoflavonoids serve as potent protein tyrosine kinase inhibitors (Lin et al., 2008). 

 

Since the homoisoflavonoids synthesised in this work were tested for their antioxidant and 

antibacterial activity, these activities are reviewed below. 

 

1.3.1  Antioxidant activities of substituted 3-benzylidene-4-chromanones 

Polyphenolic homoisoflavonoids such as 7-hydroxy-3-(3,4-dihydroxybenzylidene)chroman-

4-one (sappanone A) and 7-hydroxy-3-(3,4,5-trihydroxybenzylidene)chroman-4-one (Figure 

6) showed potent antioxidant activity, stronger than that of ascorbic acid, a commonly 

consumed antioxidant (Siddaiah et al., 2006).  This was attributed to the catechol like system 

within these molecules.  This finding was also confirmed by Foroumadi et al. (2007) who 

studied a range of C1-C4 (methoxy through to n-butoxy).  The 7-substituted alkyloxy 

benzylidene-4-chromanones showed the best antioxidant activity (Foroumadi et al., 2007). 
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sappanone A 3,4,5-trihydroxybenzylidene-7-hydroxychroman-4-one
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3,4-dihydroxybenzylidene-7-ethoxychroman-4-one  

Figure 6: Homoisoflavonoids showing good antioxidant activity 

 

1.3.2 Antibacterial activities of substituted 3-benzylidene-4-chromanones 

Flavonoids have been shown to be active against many species of bacteria, both gram 

positive and gram negative strains (du Toit et al., 2010).  Das et al. (2009) tested a range of 

naturally occuring homoisoflavonoids and their derivatives against three gram positve 

(Staphylococcus aureus, Bacillus subtilis, Bacillus sphaericus) and three gram negative 

(Klebsiella aerogenes, Chromobacterium violaceum, Pseudomonas aeruginosa) bacterial 

strians.  Of the compounds tested, the benzylidene-4-chromanone with a hydroxy group at C-

7 and a 3',4'-methylenedioxy group showed good antibacterial activity against 

Staphylococcus aureus (gram positive), Klebsiella aerogenes and Chromobacterium 

violaceum (gram negative) (Figure 7) (Das et al., 2009). 

 

O

O

HO

O

O

 

Figure 7: 3-(Benzo[1,3]dioxol-5-ylmethylene)-7-hydroxychroman-4-one, a 3-benzylidene-4-

chromanone with good antibacterial activity 
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A series of thirteen naturally occurring homoisoflavonoids, of all structural types, was 

screened against Staphylococcus aureus (ATCC 12600) (du Toit et al., 2007), where two 

homoisoflavonoids of the 3-benzylidene-4-chromanone type (Figure 8) oxygenated at the 

5,7,4' and 5,7,8,4'-positions showed good antibacterial activity with minimum inhibitory 

concentrations (MIC) of 0.52 and 0.24 mM respectively. 

 

OHO

OH O

O

O

O

HO

OH O

OH

MIC: 0.52 mM MIC: 0.24 mM  

Figure 8: The substituted 3-benzylidene-4-chromanones with good antibacterial activity 

against Staphylococcus aureus (ATCC 12600)   

 

1.4  Methodology used for the bioassays 

Antioxidant assays are carried out using several different types of assays, a few of them being 

ABTS, DPPH, FRAP, and ORAC assays.  The antibacterial assays include the Kirby-Bauer 

disk-diffusion method and the bioautographic method.  Minimum inhibitory concentration 

may be determined using a microdilution method on a 96 well microtitre plate.   

 

1.4.1 Methodology for the antioxidant assays 

Several methods have been established to determine the antioxidant potential of compounds, 

each providing unique information on the way the compounds exhibit this antioxidant 

activity.  The main methods included the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical 
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scavenging, ferric reducing antioxidant power (FRAP) and the 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) ABTS method (Thaipong et al., 2006).   

 

1.4.1.1  DPPH radical scavenging assay 

The DPPH radical scavenging method is the simplest of all those mentioned above and the 

most commonly used.  DPPH is a stable free radical containing compound, which absorbs 

light at 517 nm.  In the presence of a compound with antioxidant potential, the DPPH radical 

is reduced, by accepting an electron or a hydrogen radical, to form a stable diamagnetic 

molecule, resulting in a decrease in absorbance.  Upon reduction, a colour change from 

purple to yellow is observed.  The amount by which the absorbance decreases is a measure of 

the strength of the antioxidant.  The structure of DPPH and the reaction that occurs between it 

and the antioxidant compound is illustrated below (Scheme 9) (Shyam et al., 2012).   

 

N

N

O2N NO2

NO2

+ H

N

NH

O2N NO2

NO2

DPPH  

Scheme 9: The reaction of DPPH with a hydrogen radical (Shyam et al., 2012) 

 

1.4.1.2  Ferric reducing antioxidant power assay 

The ferric reducing antioxidant power (FRAP) measures the ability of a compound to reduce 

Fe3+ to Fe2+.  Ferric chloride (Fe3+Cl3
-) (dark green in colour) is reduced in the presence of an 

antioxidant at a low pH, resulting in ferrous chloride (Fe2+Cl2
-), which is deep blue in 
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solution.  The absorbance of the resulting solution, measured at 700 nm, is an indication of 

the strength of the antioxidant i.e. the more Fe3+ is reduced, the more blue the solution is and 

the higher the absorbance, indicating a higher activity of the antioxidant (Figure 9).  

Fe3+ Fe2+

dark green deep blue

700 nm

antioxidant

 

Figure 9: The reduction of Fe3+ to Fe2+ in the presence of an antioxidant 
 

1.4.1.3 ABTS assay 

The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay is a colorimetric 

assay which involves the conversion of the coloured ABTS radical to the colourless ABTS.  

Colourless neutral ABTS is oxidised creating the blue-green ABTS radical cation.  In the 

presence of a compound with antioxidant potential, the ABTS radical cation reacts with the 

antioxidant and is neutralized.  The measure of antioxidant capacity is measured 

spectrophotometrically at a wavelength of 734 nm.  The decrease in the absorbance is an 

indication of how much the ABTS radical cation has been neutralised and hence the 

compounds’ antioxidant potential (Scheme 10) (Erel, 2004; Osman et al., 2006). 
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Scheme 10: The reaction between ABTS and the antioxidant (Osman et al., 2006) 

(Note the radical formation on the nitrogen in the top half of the molecule) 



19 
 

1.4.2 Methodology for the antibacterial assays 

Antimicrobial activities may be determined in one of three general ways i.e. by dilution, 

diffusion or bioautographic methods.  Diffusion and bioautographic methods are qualitative 

methods whereas dilution is a quantitative method.  Compounds are screened initially using 

either the diffusion or bioautographic method to determine if the compound has antibacterial 

activity.  Once this has been established, the minimum inhibitory concentration may be 

determined using the method of dilution.  

 

1.4.2.1 Kirby-Bauer disk-diffusion method 

The Kirby-Bauer disk-diffusion method, also known as the agar disc diffusion method, 

involves the inhibition of the growth of bacteria on a Müller-Hinton agar surface in the 

presence of an antibacterial agent.  Petri dishes are filled with Müller-Hinton agar, onto 

which a bacterial strain is swobbed.  Test compounds are impregnated onto filter discs and 

placed onto the agar surface. The plates are then incubated for bacterial growth.  The test 

compound diffuses from the filter paper onto the agar.  Depending on the activity of the 

compound, the bacterial growth surrounding the disc is inhibited.  After incubation is 

complete, the zones of inhibition are measured, i.e. the area around the filter disc on which 

the bacterial growth was inhibited.  The zones of inhibition are a clear indication whether a 

specific test compound shows antibacterial activity against bacterial strains.  

 

1.4.2.2 Bioautographic methods 

This method involves the inhibition of growth of bacterial strains on a silica based surface in 

the presence of an antibacterial agent.  Test compounds are spotted onto thin layer 

chromatography (TLC) plates at various concentrations.  The plates are then coated with a 

bacterial strain and incubated for bacterial growth.  Test compounds diffuse inhibiting 
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bacterial growth.  After incubation the plates are sprayed with an indicator solution of p-

iodonitrotetrazolium (INT) violet.  This indicator solution colours the plate where the bacteria 

is present, thereby clearly showing areas in which the bacterial growth was inhibited.  Zones 

of inhibition are measured as an indication of the compounds antibacterial activity (Valgas et 

al., 2007). 

 

1.4.2.3 Method of dilution 

The method of dilution is employed to determine the minimum inhibitory concentration of 

test compounds.  A range of concentrations of the test compound are prepared.  A 96-

microwell plate is prepared by adding a standard amount of test compound, Müller-Hinton 

broth and bacterial standard into each well.  The plate is then incubated for bacterial growth.  

A small volume of INT violet is then added to each well.  In the wells which have a negative 

result, i.e. where the bacterial growth was not inhibited, the INT changes from yellow to 

purple.  The results may be read spectrophotometically or visually.  The lowest concentration 

at which the INT remained yellow is the minimum inhibitory concentration (Valgas et al., 

2007).  

 

1.5 Hypothesis, aims and objectives 

Since naturally occurring homoisoflavonoids of the 3-benzylidene type have shown 

antibacterial and antioxidant activities (Siddaiah et al., 2007; Das et al., 2009), it was 

hypothesised that various derivatives with chemical modifications to the phenyl ring could 

produce enhanced activity in antibacterial and antioxidant assays.  Investigations into various 

constituents on the phenyl ring of the homoisoflavonoids were explored to see which of the 

groups are essential for good biological activity.   
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The aim of the study was to synthesise and characterise a series of homoisoflavonoids with 

modified phenyl rings and to test them for their antibacterial and antioxidant activity.  To this 

end, substitution on the B-ring of the homoisoflavonoids were varied with fluoro, chloro, 

nitro, hydroxy and methoxy groups in order to determine which substituents as well as their 

position on the phenyl ring will be the most biologically active.  Mono- and di-substituted 

derivatives were prepared to see whether or not substitution at more than one position could 

also lead to enhanced activity.   

 

The objective of the study is to find new target molecules for the development of more potent 

antibacterial and antioxidant drugs.   
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CHAPTER 2 RESULTS AND DISCUSSION 

 

This chapter includes a discussion of the synthesis and characterisation of 3-benzylidene-4-

chromanones as well as the antioxidant and antibacterial activities of the synthesised 

compounds.  The methods used to synthesise the compounds are discussed together with 

mechanisms for the reactions.  The characterisations of the compounds include a discussion 

of the NMR data along with other data such as mass spectrometry, IR and UV to validate the 

structures assigned to the synthesised products.  The data for the antioxidant and antibacterial 

assays as well as the interpretation of it are also included in this chapter. 

 

2.1 Synthesis and Characterisation 

Thirteen 3-benzylidene-4-chromanones and two 3-benzyl-4-chromanones with different 

substitution patterns on the phenyl ring (B-ring) (Scheme 11) were synthesised in good yields 

of between 50 and 90% according to the modified procedure by Shaikh et al. (2011a).  The 

target molecules were chosen to examine the effect that the fluorine, chlorine, methoxy, 

hydroxy and nitro groups have on different positions of the phenyl ring with regard to 

reactivity and biological activity.  This would enable us to study the structure-activity 

relationship of the substituted benzylidene-4-chromanones with regard to antioxidant and 

antibacterial activity. 

 

The synthesis of the homoisoflavonoids from phenol is a three step reaction process; the 

synthesis of 3-phenoxypropanoic acid (1) from phenol, the cyclisation of 3-

phenoxypropanoic acid to 4-chromanone (2), and the condensation of 4-chromanone with the 

aromatic aldehyde to the homoisoflavonoid (3-17) (Scheme 11). 
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Scheme 11: The synthetic scheme for the synthesis of 3-phenoxy propanoic acid (1), 4-

chromanone (2) and homoisoflavonoids (3-17) 

 

2.1.1 Synthesis and characterisation of the 4-chromanone (2) intermediate 

The 4-chromanone intermediate was synthesised in two steps (Scheme 11).  The first step 

involves the reaction of phenol with bromopropanoic acid and a strong base (NaOH) to 

abstract the proton of the hydroxyl group on phenol.  The resultant phenolate anion is 

stabilised by resonance structures.  It then attacks the electrophilic carbon alpha to the 

bromine in probably a SN2 type mechanism forming 3-phenoxpropanoic acid (1), which 



24 
 

cyclises upon addition of polyphosphoric acid (PPA).  PPA forms a phosphate ester with the 

3-phenoxypropanoic acid, which is followed by electrophilic substitution of the ester on the 

aromatic ring forming a pyran ring.  Polyphosphoric acid is an oligomer of phosphoric acid 

and commonly used to activate the carboxyl group, making nucleophilic substitution possible 

(Clayden et al., 2001).  A proposed mechanism is given below (Scheme 12). 
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Scheme 12: The proposed reaction mechanism for the synthesis of 3-phenoxypropanoic acid 

(1) and 4-chromanone (2) 

 

The reaction was carried out at ambient conditions for 30 min and then heated under reflux 

for 2 hrs.  A yield of 52% was obtained from the reaction of 3-phenoxypropanoic acid with 

polyphosphoric acid to 4-chromanone, which compares well to the yields reported in the 

literature (Siddaiah et al., 2006).  On heating for longer durations, no improvement in the 

yield was observed.  Purification of the target compound was necessary after the reaction 

occurred.  This was carried out on silica gel using column chromatography. 

 

The infrared spectrum of the first intermediate, 3-phenoxypropanoic acid (1), showed a sharp 

band at 1688 cm-1 and a broad band at 2931cm-1, indicating the presence of a carbonyl and 
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hydroxy group respectively.  This serves as an indication for the formation of the acid.  After 

the cyclisation of 3-phenoxypropanoic acid to 4-chromanone (2), the carbonyl band shifted 

from 1688 cm-1 to 1682 cm-1.  Other characteristic absorption bands observed in 2 were that 

of the aromatic ring, C=C stretching vibrations (1599, 1476, 1453 cm-1) and the C-O 

stretching vibration at 1258 cm-1.   

 

The mass spectrum confirmed the presence of 4-chromanone (2) by displaying the molecular 

ion peak [M+] of 148 mass units.  The base peak was observed at 120 mass units as a result of 

a retro Diels-Alder cleavage.  Other intense peaks were seen at 92 and 64 mass units.  The 

proposed fragmentation scheme of 4-chromanone is illustrated below (Scheme 13). 
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Scheme 13: The proposed fragmentation pattern of 4-chromanone (2) 
 

The 1H NMR spectrum of 3-phenoxypropanoic acid (1) is characterised by two methylene 

triplets (t) at δH 2.83 and δH 4.23 with coupling constants of J = 6.24 Hz, with the methylene 

proton resonance adjacent to the oxygen being more deshielded than that next to the acid 

group.  The aromatic protons of H-6/10 appear at δH 6.89 and that of H-7/9 appear at δH 7.26.  

The H-6/10 resonance appears more upfield due to the electron donation by resonance from 

the oxygenated group.  The H-8 proton resonance appears as a triplet, due to the coalescing of 

doublets with similar coupling constants, at δH 6.94 with J = 7.42 Hz.  The 13C NMR 

spectrum shows the two methylene carbon resonances at δC 34.49 and 63.05 and the aromatic 

carbon resonances between δC 114.65 to δC 129.50 with the aromatic C-O resonance at δC 
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158.39 and an additional carbonyl resonance at δC 176.93 for the carboxylic acid carbonyl 

group. 

 

The 1H NMR spectrum of the 4-chromamone (2) intermediate differs from the 

phenoxypropanoic acid intermediate in that the two H-2 and two H-3 resonances are now not 

equivalent.  Due to chemical shift overlap of H-2a and H-2b and also H-3a and H-3b, the 

coupling pattern is no longer first order, but is now second order (Figure 10).  H-2 and H-3 

splitting patterns are therefore difficult to interpret and are reported as multiplets. 

 

 

Figure 10: The chromanone ring (2) showing protons H-2a, H-2b, H-3a and H-3b 

 

The aromatic resonances for H-5 and H-7 are seen to occur distinctly from the H-6/8 

resonances.  The H-6/8 resonances overlap, but can be distinguished with H-8 occurring as a 

doublet at δH 6.93 (J = 8.44 Hz) and H-6 as a triplet of doublets showing both ortho and meta 

coupling at δH 6.97 (J = 7.84, 0.76 Hz).  The H-7 and H-5 protons are both meta to the 

oxygenated group at C-8a and are therefore more deshielded due to the electronic effects 

discussed below (Scheme 15).  The H-7 resonance appears as a double double doublet (ddd) 

at δH 7.42 with J = 8.64, 7.16 and 1.64 Hz, showing ortho coupling with H-8 and H-6 and 

meta coupling with H-5.  The H-5 resonance is the most deshielded due to the magnetic 
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anisotropic effect. The H-5 proton is in the deshielded part of the cone formed by the π-

electrons of the carbonyl group and appears as a double doublet (dd) at δH 7.85 (J = 7.84, 

1.72 Hz) (Figure 11).  The 13C NMR resonance of the carbonyl group appears at δC 191.80, 

indicating the conversion from the acid to the cyclised chromanone in that electron donation 

from the hydroxy group no longer occurs in the chromanone resulting in the carbonyl 

resonance being more deshielded and closer to that of a pure ketone resonance.  The 

oxygenated aromatic C-O resonance occurs at δC 161.86 and the other aromatic carbon 

resonances occur between δC 117.88 and δC 135.96 (C-4a, C-5-8).  The methylene group 

closest to the oxygen, C-2 occurs at δC 67.00 and that close to the carbonyl group appears at 

δC 37.78. 

 

2.1.2 Synthesis of the 3-benzylidene-4-chromanones 

The condensation of 4-chromanone with the aromatic aldehyde is achieved with piperidine as 

a base, which abstracts the most acidic proton at the alpha carbon (C-3) resulting in the 

formation of an anion, followed by an aldol addition to the aldehyde forming a β-hydroxy 

carbonyl compound.  The extensive conjugation in the molecule drives the elimination of 

water from this intermediate without the addition of acid to form a highly conjugated 

molecule, the 3-benzylidene-4-chromanone (Scheme 7). 

 

The reaction of 4-chromanone with various substituted benzaldehydes to give the 

homoisoflavonoids were carried out under reflux at 80-90 °C.  Reaction temperatures were 

monitored and kept below 90 °C, due to exocyclic to endocyclic bond migration which may 

occur at ~ 150 °C (Jacquot et al., 2012).  Exocyclic to endocyclic bond migration, however 
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did occur at 80-90 °C with the electron withdrawing nitro groups resulting in the 3-benzyl 

homoisoflavonoid rather than the 3-benzylidene homoisoflavonoid (Valkonen et al., 2012).   

 

All homoisoflavonoids synthesised were obtained in good yields of between 50-80%.  For the 

deactivating groups, chloro and fluoro substituents, higher yields were obtained for the meta 

substituted than the para substituted compounds.  For the activating groups, the hydroxy and 

methoxy group, a higher yield was obtained for the para substituted product.  In the case of 

all disubstituted benzaldehydes, the product yields were lower than that of the mono-

substituted benzaldehydes.  For the hydroxy substituents, separation of these compounds 

from the reaction mixture was problematic.  In the extraction process with ethyl acetate, a 

clear distinction could not be made between the phases and although careful care was taken 

to recover the amount of ethyl acetate used, some of the product could have been sacrificed in 

this procedure.  This may account for the lower yields with the hydroxy groups as opposed to 

the other substituents. 

 

2.1.3 Structural elucidation of homoisoflavonoids (3-17) 

Infrared spectroscopy was used to confirm the presence of functional groups within the 

homoisoflavonoids synthesised.   The infrared spectrum of 3 showed a sharp peak at 1665 

cm-1 which is attributed to the carbonyl group (C=O, C-4).  The low frequency of the 

absorption is indicative of the conjugation in the molecules resulting in greater single bond 

character and lower wavenumbers.  The peaks at 1466 and 1450 cm-1 are as a result 

symmetrical stretching of the aromatic alkene (C=C) groups.  The asymmetrical stretching 

peaks for the aromatic C=C bonds are observed at 1308 and 1267 cm-1.  The ether group (C-

O-C) stretching frequency is observed at 1209 cm-1.   
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The infrared spectrum of compounds 13, 14 and 15 showed broad bands at 3093, 3255, 3117 

cm-1 respectively, confirming the presence of a hydroxyl group.  The compounds containing a 

nitro group, 16 and 17, showed two strong bands for the stretching of the N-O bond at 1462 

cm-1 (asymmetrical) and 1341cm-1 (symmetrical) for 17, and 1464 cm-1 (asymmetrical) and 

1339 cm-1 (symmetrical) for 16.  For the mono-fluorinated compounds, a single band is 

observed at 1145 cm-1for 10, and at 1144 cm-1 for 11 which is characteristic of the C-F bond.  

The di-fluorinated compounds shows two strong bands at 1116 and 1145 cm-1 as a result of 

symmetric and asymmetric stretching.  

 

Flavonoids are commonly identified by the existence of two characteristic bands in the UV 

spectrum.  These two bands occur in the region of 300 to 550 nm, attributed to B-ring and 

240 to 285 nm attributed to the A-ring (Heller and Tamm, 1981).  For the homoisoflavonoids 

(3-17) synthesised, the same trend was observed with two bands occurring in the region of 

280-300 nm and 340-360 nm indicating that this skeletal structure was also present in the 

synthesised compounds. 

 

The mass spectra for the homoisoflavonoids are all similar in that they display the same type 

of fragmentation pattern.  The differences in the mass spectra are associated with that of the 

phenyl ring, due to there being different substituents on the ring and hence fragment with 

different masses.  The fragmentation pattern of the chromanone moiety of the 

homoisoflavonoid is illustrated in Scheme 13.  The mass spectra of the chloro containing 

homoisoflavonoids (7, 8 and 9) show peaks for both the chlorine isotopes (35Cl and 37Cl) with 

a peak height ratio of 3:1. 
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For 4, the para methoxy derivative, the molecular ion peak [M+] is observed at 266 mass 

units which confirm the formation of the homoisoflavonoid.  The proposed fragmentation 

pattern of the B-ring of the homoisoflavonoid is illustrated below (Scheme 14).  Thereafter 

the chromanone moiety is fragmented as described above (Scheme 13).   
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Scheme 14: The fragmentation pattern of (E)-3-(4'-methoxybenzylidene)chroman-4-one (4) 

 

The proton NMR spectrum of compound 3 showed the characteristic resonances for the 

benzylidene proton (H-9) as a singlet (s) at δH 7.86 and the H-2 proton resonance, a two 

proton resonance occurring as a doublet (d) at δH 5.33 with a small coupling constant of J = 

1.32 Hz due to the germinal coupling between the two H-2 protons.  The oxygenated moiety 

and the carbonyl moiety attached to C-8a and C-4a respectively play a significant role in the 

chemical shift of the proton resonances on the chromanone ring.  For example, in 3, the H-6 

and H-8 resonances are more upfield at δH 7.05 and δH 6.95 due to the electronic effects of 

the oxygenated moiety, similar to that occurring in a phenol substituted structure (Scheme 

15). 
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Scheme 15: Resonance structures of phenol showing electronic effects of the hydroxyl group 

and the build-up of electron density at the ortho and para positions, resulting in protons 

occurring more upfield. 

 

In the same manner, the H-5 and H-7 proton resonances are more downfield similar to that 

which occurs in an acetophenone substituted structure (Scheme 16).   

 

O O O O  

Scheme 16: Resonance structures of acetophenone showing electronic effects of the acyl 

group and the withdrawal of electron density from the ortho and para positions resulting in 

protons occurring more downfield. 

 

The H-5 resonance however is noticeably more downfield than H-7 due to an anisotropic 

effect (Figure 11), and occurs at δH 8.00 away from the other aromatic resonances.  The H-7 

resonance occurs at δH 7.47.  The phenyl proton resonances in the absence of substituents on 

this ring occur typically in the aromatic region between δH 7.29 to 7.42. 
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OH

 

Figure 11: Anisotropic effect causing H-5 occurring more downfield than H-7 

 

The splitting pattern of the protons on the chromanone ring in the absence of substituents 

shows a doublet of doublets for H-5 with J = 7.86 Hz, typical of ortho coupling and 1.10 Hz 

attributed to meta coupling with H-7.  Para coupling was not observed in the 1H NMR 

spectra.  In the case of the H-8 proton resonance, only ortho coupling with J = 8.32 Hz was 

present and meta and para coupling could not be detected, but in the COSY spectrum H-8 

was seen coupled to H-6.  The H-6 proton resonance appeared as a triplet due to the 

coalescing of the double doublets that occurs because of similar coupling constants between 

H-6 and H-5 and H-6 and H-7 with J = 7.50 Hz.  Although this should also be observed for 

H-7, this cannot be distinguished because of overlapping with the aromatic protons of the 

phenyl ring.  In the case of the phenyl ring protons, the H-3'/5' resonance and the H-2'/6' 

resonances can both be distinguished as doublets with similar J values of 7.36 and 6.96 Hz 

respectively.  There is a small difference between the coupling constants of coupled proton 

resonances, for example, the H-5 proton resonance has J = 7.86 Hz, but the triplet of H-6 has 

a J value of 7.50 Hz.  We attribute this to the coalescing of resonances, where peaks overlap 

and also to the broadened resonances for some of the proton peaks.  However, we confirmed 

the coupling of all the resonances with the aid of the COSY spectrum. 

 

The 13C NMR spectrum of compound 3 showed the presence of fourteen carbon resonances 

with two of the resonances being equivalent and therefore amounting to sixteen carbon 
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resonances, which confirms the presence of a homoisoflavonoid skeleton.  The oxygenated 

aliphatic carbon resonance of C-2 occurs at δC 67.61 typical for C-2, with that of C-4, the 

carbonyl resonance occurring at δC 182.27 and the oxygenated aromatic carbon of C-8a 

occurring at δC 161.14 typical for these resonances in benzylidene homoisoflavonoids 

(Jacquot et al., 2012).  This was confirmed by the presence of HMBC correlations between 

C-4 and H-5, C-2 and H-9 and C-8a with H-2, H-5 and H-8. 

 

The C-6, C-8 and C-4a are the most shielded of all the aromatic resonances due to the 

electronic effects explained above (Scheme 15 and Scheme 16).  The remaining two aromatic 

carbon resonances on the chromanone ring, C-5 and C-7 occur at δC 127.96 and 135.89 

respectively.  The resonances of C-5 to C-8 were determined by their corresponding proton 

resonances in the HSQC spectrum.  The equivalent phenyl carbon resonances of C-2'/6' 

occurs slightly more downfield at δC 129.99 compared to the C-3'/5' resonance of δC 128.74.  

This was confirmed by a HMBC correlation between C-2'/6' and H-9.  The C-4' carbon 

resonance lies in between these two resonances at δC 129.48.  The C-1' carbon resonance was 

assigned at δC 134.39 due to a HMBC correlation with H-3'/5'.  The remaining olefinic 

carbon resonance of C-3 was assigned to δC 130.92 because of a HMBC correlation to H-2.  

The 1H and 13C NMR resonances compare well with that in the literature (Jacquot et al., 

2012).   

 

2.1.4 Structural elucidation of the para substituted derivatives (except 4'-fluoro) 

For the para substituted B-ring benzylidene homoisoflavonoids (4, 7 and 13), excluding the 

para fluoro substituted compound (10), the 1H NMR spectrum showed the ortho coupled 

proton resonances of H-2'/6' and H-3'/5' as doublets with coupling constants between 8.4 and 
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8.8 Hz for the three compounds.  These are located at δH 7.26 and 6.96 for the methoxy 

derivative (4), δH 7.32 and 6.89 for the hydroxy derivative (13) and δH 7.22 and 7.40 for the 

chloro derivative (7) for the H-2'/6' and H-3'/5' resonances respectively.  For compounds 4 

and 13, with an activating electron donating methoxy or hydroxy group at the para position, 

the H-3'/5' resonance is more shielded due to electron donation and build-up of electron 

density at these carbon atoms.  In contrast, the para chloro derivative had the H-3'/5' proton 

resonances more deshielded.  Even though the chloro group has lone pairs and is capable of 

electron donation toward the ring, the inductive effects of the deactivating chloro group is 

responsible for this effect.  In the unsubstituted benzylidene homoisoflavonoid (3), the H-7 

and H-3'/5' resonances overlapped at δH 7.47 but when a substituent was placed at the para 

position of this ring, causing the H-3'/5' resonance to be shifted, the H-7 resonance can now 

be clearly seen as a triplet of doublets (td) in the chloro (7) and hydroxy derivatives (13) with 

J7,8 and J6,7 being the same at approximately 7.7 Hz.  In 4, a double double doublet (ddd) was 

seen with J7,8 being slightly larger than J6,7.  Both coupling constants were in the region of 

8.0 Hz.  The J5,7 coupling constant was seen to be approximately 1.70 Hz.  A singlet 

resonance for the methoxy group was seen at δH 3.83 in 4. 

 

For 4 and 13, the C-4' resonance shifted more downfield in the region of C-8a at 

approximately δC 160 because of the oxygenated substituent at this position.  In 7, the para 

chloro derivative, C-4' occurred more in the region of C-7 and C-9 at δC 135.59 due to the 

chloro group being less electronegative than the oxygenated groups.  The 1H and 13C NMR 

data of 4, 7 and 13 compare well with that in the literature (Jacquot et al., 2012; Valkonen et 

al., 2012). 
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2.1.5 Structural elucidation of the meta substituted derivatives (except 3'-fluoro) 

For the meta substituted compounds (5, 8 and 14, excluding the fluorinated compound 11), 

all the NMR spectra were similar with some subtle changes brought about by the different 

substituted groups.  For 5, the 3-(3'-methoxybenzylidene)chroman-4-one, the proton 

resonances for the aromatic ring and the chromanone ring are well resolved.  The H-5 

resonance appears as a double doublet at δH 8.00 (J = 7.82, 1.46 Hz), deshielded due to 

hydrogen bonding as described above (Figure 11), the H-9 resonance appears as a singlet at 

δH 7.82 and the H-7 and H-6 resonances occurred at δH 7.47 (td, J = 7.72, 1.60 Hz) and δH 

7.05 (t, J = 7.52 Hz) respectively.  The H-8 and H-4' resonances overlap at δH 6.94, however 

the doublet resonance of H-8 could be distinguished and its coupling constant was 

determined to be J = 8.12 Hz.  The multiplicity of the H-4' resonance could not be determined 

due to overlap with H-8.  Due to the meta substitution on the phenyl ring, the H-2' resonance 

should show meta coupling with either H-6' or H-4', but this was not observed.  Rather, a 

broad singlet for this resonance was observed at δH 6.82, however coupling in the COSY 

spectrum was observed between this resonance and that of H-4' and the H-6' resonance which 

appears as a doublet at δH 6.87 (J = 7.60 Hz).  The H-5' resonance appears as a triplet at δH 

7.34 (J = 7.92 Hz).  HMBC correlations between H-5 and the carbonyl resonance, C-4 at δC 

182.23 and H-8 and C-4 confirm these assignments.  The H-2 resonance appears at δH 5.33, 

which was confirmed by a HMBC correlation to C-4.  The methoxy resonance was seen at δH 

3.82 as an intense singlet resonance in the 1H NMR spectrum. 

 

All the protonated carbon resonances were identified from their corresponding proton 

resonances using the HSQC spectrum.  There were five carbon resonances beside the 

carbonyl resonance, which were non-protonated.  These occurred at δC 122.02, 131.15, 

135.69, 159.69, and 161.18 and were identified using HMBC correlations.  The C-8a 
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resonance was identified at δC 161.18 by a HMBC correlation to H-2 and the other 

oxygenated carbon resonance at δC 159.60 was then attributed to C-3'.  This was corroborated 

by HMBC correlations between C-3' and both H-4' and H-5'.  The resonance at δC 131.15 

shows a correlation to H-2 and was therefore attributed to C-3, and the resonance at δC 

135.69 shows a correlation to H-5' and was attributed to C-1'.  The remaining resonance at δC 

122.02 showed a correlation to H-6 and was therefore assigned to C-4a. 

 

The 1H NMR spectrum of 14, the 3'-hydroxy derivative was very similar to 5, but had the 

notable difference in that the H-4' resonance which overlapped with H-8 in 5, was now seen 

overlapping with the H-6' resonance and could be seen as a two proton doublet resonance for 

H-4'/6' at δH 6.86 with J = 8.08 Hz.  This allowed the H-8 resonance to be clearly seen as a 

doublet at δH 7.06 with J = 8.28 Hz.  The rest of the resonances have similar splitting patterns 

and chemical shifts to 5.  There was an added hydroxyl proton resonance at δH 9.71 for 14.  

The carbon resonances in both 5 and 14 were similar.  In 14, the resonances for C-4' and C-6' 

could not be unequivocally assigned from their HMBC correlations and we have based their 

assignments on those made for 5. 

 

In the meta chloro derivative 8, all the proton resonances for the chromanone ring, H-2 and 

H-5 to H-9 were all similar to 5.  Changes were observed for the H-2', and H-4' to H-6' 

resonances due to a now weakly deactivating group.  The H-2' resonance shifted more 

downfield from δH 6.82 in 5 to δH 7.27 in 8, probably by the electron withdrawal inductive 

effects of the chloro group.  The same can be seen for the H-4' and H-6' resonances which 

now shifted more downfield to δH 7.37 and occur as overlapping resonances.  It is observed 

that the H-5' resonance for the chloro compound is shifted slightly more upfield from 7.34 in 
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5 to 7.17 in 8, probably due to a greater resonance effect by the chloro group, donating more 

electron density to the meta position. 

 

In the 13C NMR spectrum of 8, there was a noticeable shift of the C-2', C-3', C-4' and C-6' 

resonances.  The C-2', C-4' and C-6' resonances were all shifted more downfield to δC 130.00, 

129.42 and 129.62 in 8, from 115.42, 115.06 and 122.28 in 5.  The C-3' resonance shifted 

more upfield to δC 134.76 in 8, from 159.69 in 5, due to the weaker electronegativity of the 

chloro group as opposed to oxygen, resulting in less electron withdrawal by induction from 

the chloro group. 

 

2.1.6 Structural elucidation of the 3',4'-disubstituted derivatives (except 3',4'-difluoro) 

The proton NMR resonances for the chromanone ring (including that of H-9) of compounds 

6, 9 and 15 were similar to that described for 5, 8 and 14 above with regard to chemical shift 

and splitting patterns.  The carbon resonances of C-2 to C-9 including C-4a and C-8a of the 

chromanone moiety were also similar to 5, 8 and 14. 

 

With regard to the phenyl group, the 3',4'-substitution in 15 resulted in H-2', H-5' and H-6' 

having the expected splitting patterns of doublets for H-2' and H-5' and a double doublet for 

H-6' at δH 6.81 (J = 2.04 Hz), δH 6.79 (J = 9.16 Hz) and 6.73 (J = 9.14, 1.88 Hz) respectively.  

Their corresponding carbon resonances occurred at δC 117.76 (C-2'), 115.85 (C-5') and 

123.47 (C-6').  These assignments were confirmed by HMBC correlations between H-9 and 

C-2' and C-6'.  The two resonances at δC 145.38 and 147.87 were attributed to C-3' and C-4' 

respectively.  They were assigned as such because of a HMBC correlation between C-4' and 

all the protons on the phenyl ring, H-2', H-5' and H-6', whereas C-3' showed a HMBC 

correlation to H-2' and H-5' only.  The extra HMBC correlation between C-4' and H-6' 
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allowed the unambiguous assignment of these two carbon resonances (C-3' and C-4').  The C-

1' carbon resonance was identified at δC 125.18 due to a HMBC correlation between this 

carbon resonance and H-2', H-6' and H-5'. 

 

For the dimethoxy compound 6, the resonances in the 1H NMR spectrum are slightly 

different to that of 15 due to solvent effects, 15 being acquired in deuterated DMSO and 6 

being acquired in deuterated CDCl3.  This resulted in H-5' and H-6' overlapping at δH 6.88-

6.90 and H-2' being a doublet at δH 6.83 (J = 1.72 Hz).  The C-5' and C-6' resonances were 

difficult to identify using the HSQC spectrum because of the overlap of H-5' and H-6', but in 

comparison to 15 they were made at δC 123.64 (C-6') and δC 111.06 (C-5').  This was 

confirmed by a HMBC correlation between H-9 and C-6'.  The H-2' resonance occurred as a 

doublet at δH 6.83 (J = 1.72 Hz) with a corresponding carbon resonance at δC 113.31.  Two 

methoxy proton resonances can be seen in the 1H NMR spectrum at δH 3.89 and 3.91 as two 

intense singlets, both corresponding to the overlapping carbon resonance at δC 55.99.  The 

aromatic C-O resonances occurred at δC 148.99 and 150.41 as for 15 above. 

 

In the disubstituted chloro compound 9, the proton resonances for H-2', H-5' and H-6' all kept 

their splitting patterns as that for above, but all these resonances shifted more downfield in 

comparison to 6 and 15.  The H-5' resonance now occurred as a doublet at δH 7.50 (J = 8.40 

Hz), H-2' as a doublet at δH 7.38 (J = 1.92 Hz) and H-6' as a double doublet at δH 7.12 (J = 

8.28, 1.96 Hz).  This shift downfield was probably due to the greater inductive effect of 

chlorine versus its electron donating effect.  In 6 and 15, the oxygenated groups probably had 

a greater electron donating effect than an inductive effect.  This is consistent with the chloro 

group being deactivating and the hydroxy and methoxy groups being activating.  Due to the 

chloro substitution at C-3' and C-4', these resonances shifted more upfield to δC 133.70 and 
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134.28.  Similar to the proton resonances, the corresponding carbon resonances, C-2', C-5' 

and C-6' shifted more downfield to δC 131.41, 130.79 and 128.94 respectively. 

 

2.1.7 Structural elucidation of the fluorine containing compounds (10, 11 and 12) 

As above, the proton and carbon resonances for the chromanone ring did not change and 

therefore a discussion for this part of the molecule will not be repeated.  The only changes 

that occurred were in that of the phenyl ring.  In compound 10, the para-fluorinated 

compound, the H-2'/6' and H-3'/5' proton resonances, which appeared as a pair of doublets in 

7 (the para-chlorinated compound) at δH 7.22 and 7.40 now appeared as a doublet of doublets 

with J = 8.60 and 5.40 Hz at δH 7.28 (H-2'/6'), and a triplet with J= 8.62 Hz at δH 7.13 (H-

3'/5').  The H-3'/5' resonance was most affected by the substitution with fluorine in terms of 

chemical shift, resulting in the resonance being shifted from δH 7.40 in 7 to δH 7.13 in 10.  

The H-2'/6' resonance did not shift notably from δH 7.22 to δH 7.28.  However, the splitting 

patterns of the two resonances in the fluoro compound were markedly different to that of the 

chloro compound.  The H-2'/6' resonance was split into a double doublet by the fluorine with 

JHF = 5.40 Hz and the proton ortho to it with J = 8.60 Hz.  The H-3'/5' resonance being closer 

to the fluorine substituent experienced the same coupling constant for both JHF and the ortho 

coupled protons JH-2'/6', H-3'/5' with J = 8.62 Hz.  These resonances were distinguished by the H-

2'/6' resonance showing a HMBC correlation with C-9 at δC 136.27 and the C-3'/5' resonance 

a HMBC correlation to C-1' at δC 130.52.   

 

In the 13C NMR spectrum, all the carbon resonances of the phenyl ring were seen coupled to 

fluorine and appeared as doublets.  The ipso carbon (C-4') directly bonded to the fluorine 

atom appeared at δC 163.21 and had a coupling constant of J = 250.87 Hz.  Care must be 
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taken when making these assignments so as not to confuse this resonance for two separate 

carbon resonances.  This resonance was confirmed by correlations to both the H-2'/6' and H-

3'/5'.  Also present in the 13C NMR spectrum were resonances at δC 115.98 as a doublet with 

J = 21.59 Hz, typical of ortho coupled carbon resonances and δC 131.97 (J = 8.55 Hz) typical 

for meta coupling and were assigned to C-3'/5' and C-2'/6' respectively.  The C-2'/6' carbon 

resonance was coupled to H-9 in the HMBC spectrum as expected.  The remaining doublet at 

δC 130.52 (J = 2.97 Hz) was assigned to C-1' and the fact that this was a doublet was used to 

distinguish between the C-1' and C-3 carbon resonances which were located in the same 

region of the 13C NMR spectrum. 

 

In compound 11, the 3'-fluoro derivative, the fluorine couples to the H-2', H-4' and H-5' 

protons.  Both the H-4' and H-5' proton resonances appear as triplets of doublets, however 

they can be distinguished by their coupling constants.  The H-4' resonance at δH 7.09 

experiences JHF and JHH coupling with similar coupling constants, hence the triplet with J = 

8.44 Hz and the meta coupling (J = 2.40 Hz) results in the triplet being further split into a 

triplet of doublets.  The H-5' resonance at δH 7.39 shows a larger second coupling (J = 5.96 

Hz) since this is due to the H-F coupling, the triplet (J = 8.00 Hz) being due to the coupling 

between the two protons ortho to it, H-4' and H-6'.  The H-2' proton resonance, ortho to the 

fluorine atom, appears as a doublet with J = 9.52 Hz at δH 6.98.  Similar to 10, all the carbon 

resonances of the phenyl ring were doublets displaying ipso (δC 162.70, J = 245.90 Hz, C-3'), 

ortho (δC 116.35, J = 15.56 Hz, C-4'; δC 116.57, J = 16.28 Hz, C-2'), meta (δC 130.31, J = 

8.24 Hz, C-5', δC 136.40, J = 7.80, C-1'), and para (δC 125.66, J = 2.92 Hz, C-6') coupling.  

Since the C-9 carbon atom is now only four bonds away from fluorine, this carbon resonance 

is also coupled by fluorine with a coupling constant of J = 2.27 Hz.  HMBC correlations 
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between C-9 and H-2' and H-6' as well as between C-1' and H-5' are also present confirming 

the assignments of these carbon resonances. 

 

In the 1H NMR spectrum of 12, the 3',4'-difluoro derivative, the H-5' ortho coupled proton 

appears as a triplet of doublets at δH 7.22 (J= 9.88 and 8.28 Hz), the triplet being due to the 

same coupling constant between H-5' and the ortho fluorine and H-5' and H-6', which was 

split further into a triplet of doublets by the other meta fluorine atom.  The H-2' resonance 

was split into a ddd because of coupling to both the ortho (J = 10.08 Hz) and meta (J =7.52 

Hz) fluorine atoms as well as the meta proton (J = 2.04 Hz, H-6').  The H-6' proton resonance 

overlaps with the multiplet of resonances at δH 7.04.  HMBC correlations between H-2', H-6' 

and C-9 as well as C-1' and H-5' confirm the assignments of these resonances.   

 

The carbon resonances of the phenyl moiety are once again all split by the fluorine atoms.  

However in this instance, double doublets are experienced by all but the ortho coupled C-2' 

and C-5' resonances which appear as doublets at δC 118.74 (J = 17.66 Hz) and δC 117.85 (J = 

17.69 Hz).  This is due to there being two fluorine atoms present on the phenyl ring.  The 

other four resonances are present at δC 150.25 (J = 248.55 and 12.80 Hz, C-3'), δC 150.78 (J 

= 261.53 and 12.86 Hz, C-4'), δC 131.40 (J = 5.98 and 3.80 Hz, C-1') and δC 126.48 (J = 6.25 

and 3.47 Hz, C-6').  HMBC correlations are also seen for H-9 with C-2' and C-6' confirming 

the assignment of these carbon resonances. 

 

2.1.8 Structural elucidation of the nitro containing compounds (16 and 17) 

In comparison to the other compounds previously described, there were changes to the 

chromanone ring proton resonances in the nitro derivatives 16 and 17 indicating that some 

kind of conversion must have taken place.  Of particular importance was the HMBC 
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correlation between the proton resonance at δH 7.45 (J = 8.48 Hz), attributed to the H-2'/6' 

resonance and the methylene carbon resonance at δC 31.89 in 16.  This was not encountered 

for the other molecules.  This now meant that the methylene group, which occurred at C-2 in 

the other molecules, was now present at C-9 in 16.  This change was accompanied by a 

change in chemical shift of the methylene carbon resonance from approximately δC 67 to δC 

31.89 in 16, which also indicated that the methylene carbon was no longer situated next to the 

oxygen atom.  There was however no change in the olefinic methine resonance at δH 7.79 

when compared to the other compounds, but the C-2 resonance was now more deshielded at 

δC 153.14 in comparison to the C-9 resonance in the other compounds.  This was due to being 

situated close to the oxygen atom on the chromanone ring.  This meant that an exo-endo bond 

migration had occurred in 16 and 17 due to the highly electron withdrawing nitro group.  This 

was reported to occur previously (Valkonen et al., 2012). 

 

For the H-5 to H-8 proton resonances in 16, all the resonances were shifted downfield in 

comparison to the 4-chloro derivative 7, between 0.15 to 0.50 Hz.  However, these 

resonances retained their splitting patterns, being present as a doublet of doublets at δH 8.18 

(J = 7.98, 0.66 Hz, H-5), δH 7.65, a triplet of doublets (J = 8.32, 1.10 Hz, H-7), δH 7.41, a 

doublet (J = 8.60 Hz, H-8) and δH 7.38 as a triplet (J = 7.54 Hz, H-6).  For the carbon 

resonances in 16 there is not much difference in chemical shift of the carbon resonances C-4a 

through to C-8a with the largest shift being experienced by C-8a, which is only a 5 ppm shift 

upfield from δC 161 in 7 to δC 156 in 16.  A 5 ppm shift was also experienced by the carbonyl 

carbon resonance from δC 182 in 7 to δC 177 in 16. 

 

In the phenyl ring of 16, due to the electron withdrawing nitro group, a downfield shift was 

experienced by both the H-3'/5' and H-2'/6' resonances by 0.72 Hz and 0.23 Hz respectively, 
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H-3'/5' now occurring at δH 8.12 (J = 8.56 Hz) and H-2'/6' at δH 7.45 (J = 8.48 Hz) in 

comparison to the para-chloro compound 7.  In comparison to 7, the carbon resonances of the 

phenyl ring C-1' through to C-6' were all shifted upfield by approximately 2 to 11 ppm in 16 

at δC 123.06 (C-1'), 129.65 (C-2'/6'), 123.79 (C-3'/5') and 146.76 (C-4').  In 7, there was 

conjugation between the phenyl ring with the C-3 (9) double bond, delocalising the electrons 

amongst more carbon atoms, hence the more downfield chemical shift.  In 16, due to the 

double bond migrating to the ∆2 position, this delocalisation does not occur and the electrons 

are localised to the phenyl group, hence more upfield chemical shifts are experienced. 

 

In 17, there are now four separate resonances for the phenyl group protons as opposed to only 

two in 16.  This was due to the nitro group now being at the 3' position.  The H-2' resonance 

occurred as a broad singlet at δH 8.13, the H-4' and H-6' proton resonances occurred as 

doublets at δH 8.06 (J = 8.16 Hz) and δH 7.69 (J = 7.68 Hz) and the H-5' resonance occurred 

at δH 7.45 as a triplet with J being 8.16 Hz.  The other proton resonances of 17, the 

chromanone proton resonances as well as H-2 and H-9 were the same as that for 16 as were 

the carbon resonances of C-2 to C-9.  There were however changes in chemical shifts for the 

carbon resonances on the phenyl ring.  The C-3' carbon to which the nitro group was attached 

had a resonance of δC 148.41 and the carbon resonances meta to the nitro group, C-1' and C-5' 

resonated at δC 141.02 and δC 129.42 respectively, while the ortho positioned carbon atoms 

(C-2' and C-4') resonated at δC 123.52 and δC 121.71.  This is consistent with the ortho and 

para carbon resonances being more shielded and the meta resonances being more deshielded 

due to electron withdrawal by resonance by the nitro group. 
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2.2 Bioactivity of the synthesised homoisoflavonoids 

The synthesised homoisoflavonoids were subjected to antibacterial tests using the disc 

diffusion assay, and antioxidant testing by the DPPH radical scavenging and the ferric 

reducing antioxidant power assay.  The results are reported and discussed in relation to the 

chemical structures of the homoisoflavonoids. 

 

2.2.1 Antioxidant activity of the synthesised homoisoflavonoids 

The three hydroxylated homoisoflavonoids (13-15) were tested for their antioxidant activity 

by the DPPH radical scavenging assay and the FRAP assay as hydroxylated flavonoids are 

commonly known to be antioxidants.  Ascorbic acid, a common antioxidant, served as the 

positive control for these experiments.  A sample, containing all required reagents except for 

the antioxidant was used as a blank. 

 

2.2.1.1 DPPH radical scavenging assay 

The principles for this assay are discussed in chapter 1 (1.4.1.1), and the methodology 

described in chapter 3 (3.2.1.1).  

 

Polyhydroxylated compounds are known to have good antioxidant activity.  Compounds 13, 

14 and 15 are hydroxylated compounds and were therefore tested for their antioxidant 

activity.  As expected, compound 15, which has two hydroxy groups at the 3' and 4' positions, 

showed strong antioxidant activity, comparable to that of ascorbic acid, and compounds 13 

(the 4'-hydroxy) and 14 (the 3'-hydroxy) which have one hydroxy group showed weak 

antioxidant activity.   
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Graph 1: The scavenging ability of compounds 13, 14 and 15 in comparison to ascorbic acid 

at various concentrations 

 

Graph 1 shows the percentage scavenging activity (donation of hydrogen to the DPPH 

radical) of the tested compounds at different concentrations in comparison to ascorbic acid.  

At 30-50 µg/mL, the scavenging ability of compound 15 is much higher than that of ascorbic 

acid, indicating its ability to act as a scavenger at low concentrations.  At 500 µg/mL, 

compound 15 shows 99% scavenging activity, higher than that of ascorbic acid which 

showed 96% scavenging activity at the same concentration.   

 

Compound 13 shows a higher scavenging ability than compound 14 indicating that it is 

preferable for antioxidants to have a hydroxy group on the 4'-position than the 3'-position.  

This may be as a result of the stability of the quinone resonance structures that form for the 

para substituted product (13) when a hydrogen atom is transferred to a radical, making it 
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more stable than the radical that results when the meta product (14) transfers its hydrogen 

atom.   

 

When comparing the chemical structure of ascorbic acid to that of compound 15, it can be 

seen that ascorbic acid is polyhydroxylated and that a catechol moiety is present in 15.  The 

similarity in the two structures is having two hydroxy groups adjacent to each other as in 

catechol (Figure 12).   

 

O

HO OH

O OH

H OH
O

O

OH

OH

Ascorbic acid (E)-3-(3',4'-dihydroxybenzylidene)chroman-4-one  

Figure 12: The chemical structures of ascorbic acid and compound 15 
 

Ascorbic acid is a known antioxidant which is a polyhydroxylated compound.  The weak O–

H bond present in phenolic compounds is responsible for their radical scavenging activity as 

this bond can easily be cleaved homolytically and the hydrogen atom transferred to a radical 

species.  Other hydrogen atoms, such as those bonded to the aromatic ring and a methyl 

group are bonded to a carbon atom and are not easily scavengable since the C-H bond is 

much stronger and hence compounds containing these groups only are not good antioxidants.  

Compound 15, which has two hydroxy groups, shows results comparable to that of ascorbic 

acid.  By further derivatising compound 15, for example substituting hydroxy groups on the 

A-ring in a catechol like manner may enhance its antioxidant activity.  A proposed 

mechanism by which compound 15 is thought to scavenge radicals is illustrated below 

(Scheme 17).  From this mechanism, it can be seen that the many resonance structures 

stabilise the resultant radical homoisoflavonoid that results when a hydrogen atom is 
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transferred to a radical species and that the diketone structure is also a stable structure 

resulting in the excellent antioxidant activity shown by this compound. 
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Scheme 17: The proposed mechanism for the antioxidant activity of (E)-3-(3',4'-

dihydroxybenzylidene)chroman-4-one 

 

2.2.1.2 Ferric reducing antioxidant power assay 

The results of the FRAP assay confirm the conclusions made from the DPPH radical 

scavenging assay in that compound 15 compares well to ascorbic acid and that compound 13 

and 14 are weak antioxidants.  The methodology and experimental data are reported in 

chapter 3 (3.2.1.2). 
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Graph 2: The reducing power of compound 15 and ascorbic acid 

 

Graph 2 shows the concentration against absorbance curves for compound 15 in comparison 

to ascorbic acid in the FRAP assay.  The results of this assay differs from that of the DPPH 

assay in that it shows that compound 15 is a slightly weaker antioxidant than ascorbic acid at 

all concentrations.  The trend observed is that as the concentration increases, the reducing 

power (transformation of Fe3+ to Fe2+) increases. 

 

 

Graph 3: The reducing power of compound 13 and compound 14 
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Graph 3 shows, by the low absorbance values as compared to those in graph 2 for ascorbic 

acid and 15 that compounds 13 and 14 are weak antioxidants at low concentrations.  At 

concentrations higher than 200 µg/mL, a sharp increase in its antioxidant activity is observed 

but its activity is still nowhere near that of 15 and ascorbic acid.  The para hydroxy derivative 

(13) shows slightly better antioxidant activity than the meta hydroxy derivative (14), which is 

consistent with the results from the DPPH assay.  The reducing power of the tested 

compounds in decreasing order was found to be: ascorbic acid > compound 15 > compound 

13 > compound 14. 

 

2.2.2 Antibacterial activity of the synthesised homoisoflavonoids 

The antibacterial activities of the homoisoflavonoids synthesised were tested against ten gram 

positive and six gram negative bacterial strains using the Kirby-Bauer disk-diffusion method.   

 

In general, the homoisoflavonoids tested were more active against the gram positive than the 

gram negative bacteria.  No antibacterial activity was shown against the following gram 

negative strains of bacteria: Salmonella arizonae (ATCC 13314), Escherichia coli (ATCC 

35219), Pseudomonas aeruginosa (ATCC 27853 and ATCC 35037), and Klebsiella 

pneumoniae (ATCC 70063).  This is because gram negative bacteria have an extra 

membrane, known as the outer membrane which is made up of lipopolysaccharides and 

protein, which is difficult to diffuse or penetrate through.  Therefore gram negative bacteria 

are more difficult to destroy.  Since the homoisoflavonoids show good antibacterial activity 

against gram positive bacteria, they may be tested for antituberculosis activity and against 

nosocomial pathogens. 
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These homoisoflavonoids show the best inhibitory activity against the bacterial strain, 

Staphylococcus aureus, therefore two strains of Staphylococcus aureus were used in the 

antibacterial tests, Staphylococcus aureus (ATCC 29212) and Staphylococcus aureus (ATCC 

43300). 

 

The para substituted derivatives showed weaker activity than the meta substituted derivatives 

except for the para fluoro derivative against Staphylococcus saprophyticus (ATCC 35552). 

The para methoxy (4), chloro (7) and nitro (16) derivatives showed no activity against the 

bacterial strains tested.  

 

Compound 14, the meta substituted hydroxylated homoisoflavonoid, showed the broadest 

range of antibacterial activity.  It was the only homoisoflavonoid to show mild activity 

against the gram negative strain, Escherichia coli (ATCC 29522).  Compound 14 was 

strongly active against Staphylococcus aureus (ATCC 29212 and ATCC 43300) and was 

moderately active against Staphylococcus saprophyticus (ATCC 35552), Staphylococcus 

scuiri (ATCC 29062), Staphylococcus xylosus (ATCC 35033) and Streptococcus pyogenes 

(ATCC 19615).  
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Graph 4: The zone of inhibition of compounds 3 (unsubstituted), 11 (3'-F), 12 (3',4'-diF), 13 

(4'-OH), 14 (3'-OH) and 15 (3',4'-diOH) against Staphylococcus aureus (ATCC 43300) 

 

With respect to Staphylococcus aureus (ATCC 43300), compounds 3, 11 and 14, the 

unsubstituted, the 3'-fluoro and the 3'-hydroxy homoisoflavonoids respectively showed better 

activity than the common antibiotic ampicillin, with activity indexes of 1.31, 1.23 and 1.46 

respectively (Graph 4).  Compound 3, the unsubstituted homoisoflavonoid, has an activity 

index of 1.31, which is decreased when substituents are introduced onto the B-ring of the 

homoisoflavonoid, except for when a hydroxyl group is introduced at the 3'-position of the B-

ring.  The meta hydroxy substituent enhances its antibacterial activity, increasing the activity 

index from 1.31 to 1.46 for ampicillin and 0.52 to 0.58 for tetracycline.  The activity of the 3'-

fluoro derivative 11, is only slightly decreased by the introduction of fluorine at the 3'-

position and therefore the positive effects of having a fluorine atom in the molecule for the 

development of an antibacterial agent such as increased lipophilicity makes it an interesting 

subject for further research. 
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By comparing the activity indices of the fluorinated compounds 10, 11 and 12 against 

Staphylococcus aureus (ATCC 43300), it can be seen that the most favourable substitution 

pattern for antibacterial activity is the meta substitution with activity indices of 1.23 (AMP) 

and 0.48 (TET).  The para substituted fluoro derivative showed no activity.  The 

disubstituted fluorinated derivative, 12, showed a decrease in activity when compared to the 

meta fluoro derivative.  By introducing an additional fluorine atom on the 4'-position of the 

meta substituted derivative, the activity is decreased from 1.23 to 0.85.  This may be due to 

the mechanism by which the antibacterial agent works.  Substitution at the 4'-position may 

inhibit binding to the active site of enzymes required for normal functional of the bacterial 

species.  This explains why the activity decreases when the homoisoflavonoid is 

disubstituted.  In contrast, substitution at the 3'-position with a molecule or group capable of 

hydrogen bonding, such as fluorine (11) or the hydroxy group (14) may be perfect for binding 

to enzymes responsible for the functioning of bacterial cells.  Once bound to these enzymes, 

they may alter their function and hence lead either to cell death of the bacterial species or 

inhibit replication of the bacterial species. 

 

Staphylococcus aureus (ATCC 43300) is resistant to both methicillin and oxacillin 

(http://www.straininfo.net/strains/54914/).  Such strains of bacteria are referred to as 

methicillin resistant Staphylococcus aureus (MRSA).  Compound 14 may therefore serve as a 

useful antibacterial agent against Staphylococcus aureus (ATCC 43300).  MRSA is one of 

the most dangerous bacterial infections that occur in the commercial health care sector 

(hospitals), as these bacterial infections cannot be easily destroyed.  As compound 14, shows 

good antibacterial activity against Staphylococcus aureus (ATCC 43300), it may be applied 

to combat such infections.  Derivatisation of compound 14, by varying the substitution on the 

A-ring can be conducted in order to develop better antibacterial agents.   
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CHAPTER 3 EXPERIMENTAL 

 

This chapter includes the experimental techniques employed to synthesise and characterise 

the thirteen benzylidene and two benzyl homoisoflavonoids.  Characteristic data, such as the 

1H and 13C NMR, UV, IR and MS data are reported in the chapter.  New crystal structures for 

seven of the homoisoflavonoids were obtained.  The methodology used to determine the 

antioxidant and antibacterial activities of the test compounds are also included here. 

 

3.1 Chemistry  

The experimental procedure for the synthesis of the intermediates 3-phenoxypropanoic acid 

(1) and 4-chromanone (2) as well as the homoisoflavonoids (3-17) are included here.  The 

instrument details and parameters used for the characterisation techniques employed are also 

reported. 

 

3.1.1 General experimental procedures 

The reagents and chemicals used in this study were purchased from Sigma Aldrich via 

Capital Lab, South Africa and were reagent grade.  All organic solvents were redistilled and 

dried according to standard procedures.  The melting points were recorded on an Ernst Leitz 

Wetziar micro-hot stage melting point apparatus.  IR spectra were recorded on a Perkin 

Elmer Spectrum 100 FTIR spectrometer with universal ATR sampling accessory.  UV 

spectra were obtained on a Varian Cary UV-VIS Spectrophotometer in dichloromethane (1-

12, 16-17) and methanol (13-15).  For GC-MS analyses, the samples were analysed on an 

Agilent GC–MSD apparatus equipped with DB-5SIL MS (30 m x 0.25 mm i.d., 0.25 µm film 

thickness) fused-silica capillary column.  Helium (at 2 mL/min) was used as a carrier gas.  

The MS was operated in the EI mode at 70 eV.  The NMR spectra were recorded using a 
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Bruker Avance III (400 MHz) spectrometer at room temperature (25 °C).  The chemical shifts 

(δ) were referenced against an internal standard, tetramethylsilane (TMS) for 1H and 13C and 

trifluorotoluene for 19F NMR.  Solution NMR was performed in deuterated solvents, CDCl3 

(1-12, 16-17) and DMSO (13-15).   

 

3.1.2 The synthesis of 3-phenoxypropanoic acid (1) 

To a 100 mL round bottom flask, a solution of phenol (5.27 g, 56 mmol) in EtOH (30.00 mL) 

and a solution of NaOH (3.401 g, 85 mmol) in deionized water was added under cool 

conditions (10-15 °C) and stirred for 45 min for the deprotonation of phenol.  A solution of 3-

bromopropionic acid (10.57 g, 69 mmol) in EtOH (30.00 mL) was then added using a 

dropping funnel at 0 °C and the reaction mixture stirred for 12 hrs at 50 °C under reflux.  The 

reaction mixture was cooled and acidified with 10% HCl and extracted with ethyl acetate (3 × 

50 mL).  The ethyl acetate layers were combined, washed with brine (1 × 20 mL), water (2 × 

10 mL) and dried over anhydrous magnesium sulfate.  The residue obtained after evaporation 

of the solvent was purified by column chromatography using silica gel with 10% ethyl acetate 

in hexane as the mobile phase.  Compound 1 has an Rf of 0.36 in an ethyl acetate: hexane 

(20:80) solvent system (Scheme 18) (3.35g, 36%). 

 

OH O OH

O

(1)

NaOH, EtOH

50 °C, 36 %

Br
COOH

 

Scheme 18: The preparation of 3-phenoxypropanoic acid (1) 
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3.1.3 The synthesis of 4-chromanone (2) 

In a 250 mL round bottom flask, a mixture of 3-phenoxypropanoic acid (4.51 g, 27 mmol) 

and polyphosphoric acid (13.52 g, 40 mmol) was stirred at 85-90 °C under reflux for 2 hrs 

(solvent free reaction).  The viscous reaction mixture was poured onto crushed ice and 

extracted with diethyl ether (3 × 30 mL).  The extract was washed with NaOH (30 mL), water 

(50 mL) and dried over magnesium sulfate.  The residue obtained after evaporation of the 

solvent was purified by column chromatography using silica gel with 5% ethyl acetate in 

hexane as the mobile phase.  Compound 2 has an Rf of 0.53 in an ethyl acetate: hexane 

(20:80) solvent system (Scheme 19) (2.08 g, 52%). 

 

O OH

O

O

O

PPA

85-90 °C, 52 %

(1) (2)  

Scheme 19: The preparation of 4-chromanone (2) 

3.1.4 The base catalysed preparation of homoisoflavonoids (3-17) 

In a 50 mL round bottom flask, a mixture of 4-chromanone (68 mmol), the desired 

substituted benzaldehyde (81 mmol) and 10–15 drops of piperidine was stirred at 80-90 °C 

under reflux for 12-36 hrs (Scheme 20).  Typically masses between 1.01 g and 1.21 g of 4-

chromanone were used.  The reaction mixture was monitored for completion by thin layer 

chromatography.  Upon completion, the reaction mixture was cooled, diluted with water and 

neutralized using 10% HCl.  For compounds 16 and 17, 10 mL of ethyl acetate was added to 

the viscous solution and the homoisoflavonoids precipitated out upon addition of hexane.  

The powdered product was filtered, washed with hexane and dried under vacuum.   
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For the other compounds, the reaction mixture was extracted with ethyl acetate (3 × 30 mL).  

The ethyl acetate layers were combined, washed with brine (20 mL), water (2 × 10 mL), 

dried over anhydrous magnesium sulfate and the solvent evaporated.  On slow evaporation, 

crystals of compound 6 were obtained.  In this case, the supernatant liquid was decanted.  The 

crystals were then filtered and dried under vacuum.  The remaining compounds were 

subjected to column chromatography on silica gel using various ethyl acetate: hexane 

mixtures as the mobile phase depending on the polarity of the compound.  A 2 cm diameter 

column was used and 50 mL fractions were collected until the compound was eluted from the 

column.  Upon slow evaporation of the solvent, crystals of the homoisoflavonoids were 

obtained.  The crystals were then filtered and dried under vacuum.  

 

O

O

O

O

R4

R3

H

R4

R3

O

piperidine, 80-90 °C

 

Scheme 20: The preparation of homoisoflavonoids (3-17) 
 

 

3.1.5 The physical and spectroscopic data of synthesised compounds (1-17) 

The chemical formula, molecular mass, physical description, melting points and yields of the 

synthesised compounds are listed below.  Spectroscopic data including the UV, IR, MS and 

NMR data are listed.  The 1H and 13C NMR data of 3-17 are contained in Table 2, 3, 4 and 5.  
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3-phenoxypropanoic acid (1)  

C9H10O3 (166.17 g mol-1); 

Cream powder,  

m.p.: 98-100 °C, yield: 36% 

Rf: 0.36 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 270 (2.68), 277 (2.60) 

IR νmax (cm-1): 2931 (O-H), 1688 (C=O), 1596, 1493 (C=C), 1231 (C-O) 

EI MS m/z (%): 166 (38) [M+], 94 (100), 77 (15), 66 (15), 65 (15), 55 (8), 51 (9) 

1H NMR (400 MHz, CDCl3) δ:2.83 (2H, t, J = 6.24 Hz, H-2), 4.23 (2H, t, J = 6.24 Hz, H-3), 

6.89 (2H, d, J = 8.04 Hz, H-6/10), 6.94 (1H, t, J = 7.42 Hz, H-8), 7.26 (2H, dd, J = 8.44, 7.48 

Hz, H-7/9) 

13C NMR (100 MHz, CDCl3) δ: 34.49 (C-2), 63.05 (C-3), 114.65 (C-6/10), 121.17 (C-8), 

129.50 (C-7/9), 158.39 (C-5), 176.93 (C-1) 

 

4-chromanone (2)  

C9H8O2 (148.16 g mol-1); 

White solid,  

m.p.: 39-40 °C, yield: 52% 

Rf: 0.53 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 249 (3.91), 318 (3.53) 

IR νmax (cm-1): 1682 (C=O), 1599, 1476, 1453 (C=C), 1258 (C-O)  

EI MS m/z (%): 148 (89) [M+], 120 (100), 92 (77), 64 (18), 63 (17) 

1H NMR (400 MHz, CDCl3) δ: 2.76 (1H, m, H-3a), 2.78 (1H, m, H-3b), 4.49 (1H, m, H-2b), 

4.50 (1H, m, H-2a), 6.93 (1H, d, J = 8.44 Hz, H-8), 6.97 (1H, td, J = 7.84, 0.76 Hz, H-6), 

7.42 (1H, ddd, J = 8.64, 7.16, 1.64 Hz, H-7), 7.85 (1H, dd, J = 7.84, 1.72 Hz, H-5). 
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13C NMR (100 MHz, CDCl3) δ: 37.78 (C-3), 67.00 (C-2), 117.89 (C-6/4a), 121.36 (C-8), 

127.12 (C-5), 135.96 (C-7), 161.86 (C-8a), 191.79 (C-4) 

 

(E)-3-benzylidene-chroman-4-one (3)  

C16H12O2 (236.27 g mol-1); 

Colourless crystalline solid,  

m.p.: 108-110 °C, yield: 77% 

Rf: 0.69 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 299 (4.13), 344 (3.91) 

IR νmax (cm-1): 1665 (C=O), 1601, 1466, 1450 (C=C), 1209 (C-O) 

EI MS m/z (%): 236 (100) [M+], 235 (99), 207 (20), 178 (8), 131 (13), 121 (65), 115 (88), 92 

(22), 79 (8), 63 (16)  

 

(E)-3-(4'-methoxybenzylidene)chroman-4-one (4)  

C17H14O3 (266.29 g mol-1); 

Pale yellow crystalline solid, 

m.p.: 135-137 °C, yield: 75% 

 

Rf: 0.56 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 247 (4.34), 351 (4.33) 

IR νmax (cm-1): 1663 (C=O), 1595, 1509, 1463 (C=C), 1210 (C-O) 

EI MS m/z (%): 266 (100) [M+], 265 (51), 251 (20), 237 (14), 235 (14), 223 (8), 207 (14), 

165 (5), 146 (32), 145 (19), 131 (26), 121 (64), 103 (29), 92 (12), 77 (18), 63 (9)  
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Crystal structure:  

 

Figure 13: ORTEP diagram of compound 4 drawn at the 50% probability level 
 

(E)-3-(3'-methoxybenzylidene)chroman-4-one (5)  

C17H14O3 (266.29 g mol-1); 

Pale yellow crystalline solid,  

m.p.: 85-86 °C, yield: 72% 

 

Rf: 0.63 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 267 (4.06), 298 (4.04), 342 (3.99) 

IR νmax (cm-1): 1667 (C=O), 1598, 1460 (C=C), 1264 (C-O) 

EI MS m/z (%): 266 (95) [M+], 265 (42), 251 (11), 235 (30), 146 (17), 145 (13), 131 (14), 

121 (100), 115 (17), 103 (23), 92 (12), 77 (17), 63 (10) 

Crystal structure: 

 

Figure 14: ORTEP diagram of compound 5 drawn at the 50% probability level 
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(E)-3-(3',4'-dimethoxybenzylidene)chroman-4-one (6)  

C18H16O4 (296.32 g mol-1); 

Pale yellow crystalline solid,  

m.p.: 128-129 °C, yield: 61% 

Rf: 0.34 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 266 (4.22), 366 (4.28) 

IR νmax (cm-1): 1661 (C=O), 1585, 1510, 1480 (C=C), 1241 (C-O) 

EI MS m/z (%): 296 (100) [M+], 295 (24), 281 (23), 265 (29), 221 (10), 176 (22), 161 (20), 

131 (10), 121 (99), 92 (14), 77 (12), 63 (11) 

Crystal structure: 

 

Figure 15: ORTEP diagram of compound 6 drawn at the 50% probability level 
 

(E)-3-(4'-chlorobenzylidene)chroman-4-one (7)  

C16H11ClO2 (270.71 g mol-1); 

White needle-like crystals,  

m.p.: 173 °C, yield: 67% 

Rf: 0.69 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 302 (4.20), 345 (3.88) 

IR νmax (cm-1): 1670 (C=O), 1603, 1475 (C=C), 1217 (C-O), 748 (C-Cl) 
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EI MS m/z (%): 270 (100) [M+], 269 (55), 241 (14), 235 (29), 207 (13), 179 (11), 178 (15), 

150 (19), 149 (21), 134 (14), 131 (14), 121 (71), 120 (17), 117 (20), 115 (77), 92 (29), 89 

(14), 76 (11), 63 (19) 

 

(E)-3-(3'-chlorobenzylidene)chroman-4-one(8)  

C16H11ClO2 (270.71 g mol-1); 

White needle-like crystals,  

m.p.: 123-124 °C, yield: 71% 

 

Rf: 0.56 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 291 (4.17), 345 (3.71) 

IR νmax (cm-1): 1671 (C=O), 1604, 1464 (C=C), 1218 (C-O), 750 (C-Cl) 

EI MS m/z (%): 270 (100) [M+], 269 (54), 241 (11), 235 (41), 207 (10), 178 (15), 149 (20), 

131 (17), 121 (81), 120 (25), 117 (28), 115 (59), 92 (36), 76 (11), 63 (19) 

 

(E)-3-(3',4'-dichlorobenzylidene)chroman-4-one (9)   

C16H10Cl2O2 (305.16 g mol-1); 

White needle-like crystals,  

m.p.: 165-167 °C, yield: 59% 

 

Rf: 0.66 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 297 (3.96), 346 (3.53) 

IR νmax (cm-1): 1668 (C=O), 1604, 1464 (C=C), 1218 (C-O), 832, 746 (C-Cl) 
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EI MS m/z (%): 306 (57), 304 (90) [M+], 275 (12), 269 (23), 234 (11), 205 (8), 183 (15), 178 

(13), 151 (23), 149 (65), 134 (41), 121 (100), 120 (38), 114 (15), 113 (15), 93 (11), 92 (51), 

76 (14), 64 (20), 63 (24) 

Crystal structure: 

 

Figure 16: ORTEP diagram of compound 9 drawn at the 50% probability level 
 

(E)-3-(4'-fluorobenzylidene)chroman-4-one (10)  

C16H11FO2 (254.26 g mol-1); 

Pale yellow needle-like crystals, 

m.p.: 152-153 °C, yield: 59% 

Rf: 0.63 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 301 (3.97), 344 (3.63) 

IR νmax (cm-1): 1671 (C=O), 1597, 1477 (C=C), 1217 (C-O), 1145 (C-F) 

EI MS m/z (%): 254 (100) [M+], 253 (53), 237 (5), 225 (22), 207 (6), 196 (5), 134 (41), 133 

(87), 131 (14), 121 (55), 120 (17), 107 (8), 92 (25), 63 (11) 

19F NMR (376.5 MHz, CDCl3) δ: -110.16 

 

(E)-3-(3'-fluorobenzylidene)chroman-4-one(11)  

C16H11FO2 (254.26 g mol-1); 

Pale yellow needle-like crystals,  

m.p.: 95-96 °C, yield: 61% 
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Rf: 0.66 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 291 (3.99), 346 (3.55) 

IR νmax (cm-1): 1666 (C=O), 1598, 1477 (C=C), 1213 (C-O), 1144 (C-F) 

EI MS m/z (%): 254 (100) [M+], 253 (55), 237 (5), 225 (17), 134 (23), 133 (62), 121 (55), 

120 (20), 92 (26), 63 (14) 

19F NMR (376.5 MHz, CDCl3) δ: 112.15 

 

(E)-3-(3',4'-difluorobenzylidene)chroman-4-one (12)  

C16H10F2O2 (272.25 g mol-1); 

Pale yellow needle-like crystals, 

m.p.: 138-139 °C, yield: 50% 

Rf: 0.69 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 267 (3.96), 387 (4.05) 

IR νmax (cm-1): 1672 (C=O), 1603, 1477 (C=C), 1217 (C-O), 1116, 1145 (C-F) 

EI MS m/z (%): 272 (100) [M+], 271 (29), 243 (19), 152 (19), 151 (62), 134 (10), 131 (16), 

121 (46), 120 (27), 92 (34), 63 (11) 

19F NMR (376.5 MHz, CDCl3) δ: -136.2 (d, J = 21.65 Hz), -134.83 (d, J = 21.46 Hz) 

 

(E)-3-(4'-hydroxybenzylidene)chroman-4-one (13) 

C16H12O3 (252.26 g mol-1); 

Yellow powder,  

m.p.: 222-224 °C, yield: 54% 

Rf: 0.22 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 331 (3.98), 359 (3.97) 
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IR νmax (cm-1): 3093 (O-H), 1651 (C=O), 1608, 1557, 1509 (C=C), 1291, 1209 (C-O) 

EI MS m/z (%): 252 (100) [M+], 251 (28), 235 (13), 223 (9), 207 (13), 132 (11), 131 (23), 

121 (82), 77 (15), 63 (6) 

 

(E)-3-(3'-hydroxybenzylidene)chroman-4-one (14) 

C16H12O3 (252.26 g mol-1); 

Pale yellow powder, 

m.p.: 199-200 °C, yield: 51% 

 

Rf: 0.31 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 267 (4.20), 340 (4.04) 

IR νmax (cm-1): 3255 (O-H), 1668 (C=O), 1593, 1461 (C=C), 1220 (C-O) 

EI MS m/z (%): 252 (100) [M+], 251 (23), 235 (14), 234 (17), 223 (8), 206 (22), 205 (12), 

131 (18), 121 (83), 92 (8), 77 (16) 

Crystal structure: 

 

Figure 17: ORTEP diagram of compound 14 drawn at the 50% probability level 
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 (E)-3-(3',4'-dihydroxybenzylidene)chroman-4-one (15)   

C16H12O4 (268.26 g mol-1); 

Yellow powder,  

m.p.: 230-231 °C, yield: 45% 

Rf: 0.16 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 268 (3.62), 374 (3.68) 

IR νmax (cm-1): 3453, 3117 (O-H), 1649 (C=O), 1601, 1558, 1531 (C=C), 1286, 1187 (C-O) 

 

3-(4-nitrobenzyl)-4H-chromen-4-one (16) 

C16H11NO4 (281.26 g mol-1); 

White powder,  

m.p.: 179-180 °C, yield: 80% 

Rf: 0.34 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 265 (4.07), 295 (4.15) 

IR νmax (cm-1): 1624 (C=O), 1603, 1464 (C=C), 1145 (C-O), 1505, 1339 (N-O) 

EI MS m/z (%): 281 (100) [M+], 264 (24), 235 (14), 234 (35), 205 (14), 178 (26), 121 (65), 

120 (19), 117 (19), 115 (31), 92 (22), 77 (18), 63 (18) 

Crystal structure: 

 

Figure 18: ORTEP diagram of compound 16 drawn at the 50% probability level 
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3-(3-nitrobenzyl)-4H-chromen-4-one (17) 

C16H11NO4 (281.26 g mol-1); 

Cream powder,  

m.p.: 129-130 °C, yield: 72% 

 

Rf: 0.38 (hexane: ethyl acetate, 80:20) 

UV λmax (nm) (log ε): 296 (3.96) 

IR νmax (cm-1): 1623 (C=O), 1605, 1464 (C=C), 1142 (C-O), 1523, 1341 (N-O) 

EI MS m/z (%): 281 (100) [M+], 264 (83), 234 (89), 205 (26), 178 (18), 117 (17), 115 (18), 

92 (11), 89 (9), 77 (8), 76 (10), 63 (10) 

Crystal structure:  

 

Figure 19: ORTEP diagram of compound 17 drawn at the 50% probability level 
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Table 2: 
1H NMR data of compounds 3-10 

 Homoisoflavonoids 

Pos. 3 4 5 6 7 8 9 10 

2 
5.33 (d,  

J = 1.32 Hz) 
5.35 (d,  

J = 1.72 Hz) 
5.33 (d,  

J = 1.68 Hz) 
5.37 (d,  

J = 1.84 Hz) 
5.29 (d,  

J = 1.84 Hz) 
5.29 (d,  

J = 1.80 Hz) 
5.27 (d,  

J = 1.88 Hz) 
5.31 (d,  

J = 1.84 Hz) 

5 
8.00 (dd,  

J = 7.86, 1.10 Hz) 
8.00 (dd,   

J = 7.84, 1.70 Hz) 
8.00 (dd,  

J = 7.82, 1.46 Hz) 
8.00 (dd,  

J = 7.86, 1.71 Hz) 
8.00 (dd,  

J = 7.90, 1.58 Hz) 
8.00 (dd,  

J = 7.88, 1.68 Hz) 
8.00 (dd,  

J =7.88, 1.64 Hz) 
8.00 (dd,  

J =7.86, 1.70 Hz) 

6 
7.05 (t,  

J = 7.50 Hz) 
7.05 (td,  

J = 7.51, 0.78 Hz) 
7.05 (t,  

J = 7.52 Hz) 
7.04 (td,  

J = 7.52, 0.84 Hz) 
7.06 (t,  

J = 7.38 Hz) 
7.07 (td,  

J = 7.51, 0.82 Hz) 
7.07 (td,  

J =7.52, 0.68 Hz) 
7.06 (td,  

J =7.52, 0.76 Hz) 

7 7.47 (m) 
7.45 (ddd, J =  

8.56, 7.29, 1.66  
Hz) 

7.47 (td, J = 7.72, 
1.60 Hz) 

7.44 (ddd, J = 
8.58, 7.18, 1.64 

Hz) 

7.47 (td, J = 7.76, 
1.60 Hz) 

7.48 (ddd, J = 
8.68, 7.50, 1.84 

Hz) 

7.49 (ddd, J = 
8.72, 7.48, 1.72 

Hz) 

7.48 (ddd, J = 
7.76, 6.52, 1.78 

Hz) 

8 
6.95 (d,  

J = 8.32 Hz 

6.93 (d,  
J = 8.04 Hz) 

6.94 (d,  
J = 8.12 Hz) 

6.93 (d, 
J = 7.88 Hz) 

6.95 (d,  
J = 8.20 Hz) 

6.95 (d,  
J = 8.56 Hz) 

6.96 (d,  
J = 8.28 Hz) 

6.96 (d, 
J = 8.04 Hz) 

9 7.86 (s) 7.81 (s) 7.82 (s) 7.80 (s) 7.78 (s) 7.77 (s) 7.72 (s) 7.81 (s) 

2' 
7.29 (d, J = 6.96 

Hz) 
7.26 (d,  J = 8.68 

Hz) 
6.82 (s) 

6.83 (d, J = 1.72 
Hz) 

7.22 (d, J = 8.44 
Hz) 

7.27 (s) 
7.38 (d, J = 1.92 

Hz) 
7.28 (dd, J = 8.60, 

5.40 Hz) 

3' 
7.42 (d,  

J = 7.36 Hz) 
6.96 (d, 

J = 8.76 Hz) 
- - 

7.40 (d,  
J = 8.40 Hz) 

- - 
7.13 (t,  

J = 8.62 Hz) 

4' 7.40 (m) - 6.93 (m) - - 
7.37 (d,  

J = 5.20 Hz) 
- - 

5' 
7.42 (d,  

J = 7.36 Hz) 
6.96 (d,   

J = 8.76 Hz) 
7.34 (t,  

J = 7.92 Hz) 
6.90 (d,  

J = 8.36 Hz) 
7.40 (d,  

J = 8.40 Hz) 
7.17 (ddd, J =  
5.20, 4.64 Hz) 

7.50 (d, 
J = 8.40 Hz) 

7.13 (t,  
J = 8.62 Hz) 

6' 
7.29 (d,  

J = 6.96 Hz) 

7.26 (d,   

J = 8.68 Hz) 

6.87 (d, 

J = 7.60 Hz) 

6.88 (dd, 

J = 8.62, 1.80 Hz) 

7.22 (d,  

J = 8.44 Hz) 

7.37 (d,  

J = 5.20 Hz) 

7.12 (dd,  

J = 8.28, 1.96 Hz) 

7.28 (dd,  

J = 8.60, 5.40 Hz) 

OCH3 - 3.83 (s) 3.82 (s) 3.89 (s) - - - - 

OCH3 - - - 3.91 (s) - - - - 
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Table 3: 
1H NMR data of compounds 11-17 

 Homoisoflavonoids 

Pos. 11 12 13 14 15 16 17 

2 5.29 (d, J = 1.88 Hz) 5.28 (d, J = 1.84 Hz) 5.41 (s)  5.40 (d, J = 1.36 Hz) 5.35 (d, J = 1.68 Hz) 7.79 (s) 7.82 (s) 

5 
7.99 (dd,  

J = 7.90, 1.66 Hz) 

7.99 (dd,  

J = 7.86, 1.70 Hz) 

7.86 (d,  

J = 7.80 Hz) 

7.88 (dd, 

J = 7.88, 1.32 Hz) 

7.79 (dd,  

J = 7.84, 1.60 Hz) 

8.18 (dd,  

J = 7.98, 0.66 Hz) 

8.18 (dd,  

J = 8.00, 1.36 Hz) 

6 
7.04 (t,  

J = 7.80 Hz) 

7.06 (t,  

J = 7.44 Hz) 

7.08 (t,  

J = 7.50 Hz) 

7.13 (td,  

J=7.50, 0.68 Hz) 

7.05 (t,  

J = 7.50 Hz) 

7.38 (t,  

J = 7.54 Hz) 

7.38 (t,  

J = 7.52 Hz) 

7 
7.48 (ddd,  

J = 7.75, 6.41, 1.66 Hz) 

7.48 (ddd,  

J = 7.78, 6.58, 1.80 Hz) 

7.54 (td,  

J = 7.65, 1.18 Hz) 

7.60 (td,  

J = 7.73, 1.50 Hz) 

7.49 (ddd,  

J = 7.78, 6.46, 1.64 Hz) 

7.65 (td,  

J = 8.32, 1.10 Hz) 

7.60 (ddd,  

J = 7.80, 6.68, 1.52Hz) 

8 
6.95 (d, 

J = 8.44 Hz) 

6.96 (d, 

 J = 8.44 Hz) 

7.00 (d,  

J = 8.28 Hz) 

7.06 (d,  

J = 8.28 Hz) 

6.98 (d,  

J = 8.00 Hz) 

7.41 (d,  

J = 8.60 Hz) 

7.43 (d,  

J = 8.32 Hz) 

9 7.78 (s) 7.73 (s) 7.68 (s) 7.66 (s) 7.54 (s) 3.87 (s) 3.88 (s)  

2' 
6.98 (d, 

J= 9.52 Hz) 

7.12 (ddd, J = 10.08, 

7.52, 2.04 Hz) 

7.32 (d,  

J = 8.48 Hz) 
6.82 (s) 

6.81 (d, 

J = 2.04 Hz) 

7.45 (d,  

J = 8.48 Hz) 
8.13 (s) 

3' - - 6.89 (d, J = 8.48 Hz) - - 8.12 (d, J = 8.56Hz) - 

4' 
7.09 (td,  

J = 8.44, 2.40 Hz) 
- - 

6.86 (d,  

J = 8.08 Hz) 
- - 

8.06 (d,  

J = 8.16 Hz) 

5' 
7.39 (td,  

J = 8.00, 5.96 Hz) 

7.22 (td,  

J = 9.88, 8.28 Hz) 

6.89 (d,  

J = 8.48 Hz) 

7.30 (t,  

J = 7.86 Hz) 

6.79 (d,  

J = 9.16 Hz) 

8.12 (d,  

J = 8.56 Hz) 

7.45 (t,  

J = 8.16 Hz) 

6' 
7.06 (d,  

J = 7.12 Hz) 
7.04 (m) 

7.32 (d,  

J = 8.48 Hz) 

6.86 (d,  

J = 8.08 Hz) 

6.73 (dd, 

J = 9.14, 1.88 Hz) 

7.45 (d, 

J = 8.48 Hz) 

7.69 (d,  

J = 7.68 Hz) 

OH - - - 9.71 (s) - - - 
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 Table 4: 
13C NMR data of compounds 3-10 

 Homoisoflavonoids 

Pos. 3 4 5 6 7 8 9 10 

2 67.61 67.79 67.66 67.79 67.44 67.39 67.27 67.48 

3 130.92 128.90 131.15 129.19 131.40 132.10 132.44 130.77 

4 182.27 182.21 182.23 182.07 181.97 181.94 181.71 182.10 

4a 122.03 122.13 122.02 122.10 121.91 121.87 121.79 121.95 

5 127.96 127.89 127.96 127.89 127.97 127.94 128.00 127.96 

6 121.93 121.84 121.93 121.88 122.04 122.07 122.16 122.00 

7 135.89 135.67 135.89 135.71 136.02 136.09 136.19 135.96 

8 117.92 117.82 117.93 117.82 117.94 117.99 118.00 117.92 

8a 161.14 160.98 161.18 160.95 161.09 161.17 161.13 161.08 

9 137.52 137.34 137.40 137.49 136.02 135.72 134.55 136.27 

1' 134.39 127.03 135.69 127.28 132.79 136.11 133.15 130.52 

2' 129.99 132.06 115.42 113.31 131.19 130.00 131.41 
131.97 

(d, J = 8.55 Hz) 

3' 128.74 114.28 159.69 148.99 129.06 134.76 133.70 
115.98              

(d, J = 21.59 Hz) 

4' 129.48 160.73 115.06 150.41 135.59 129.42 134.28 
163.21 

(d, J = 250.87 Hz) 

5' 128.74 114.28 129.76 123.64 129.06 127.99 130.79 
115.98 

(d, J = 21.59 Hz) 

6' 129.99 132.06 122.28 111.06 131.19 129.62 128.94 
131.97 

(d, J = 8.55 Hz) 
OCH3 - 55.42 55.36 55.99 - - - 67.48 
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Table 5: 
13C NMR data of compounds 11-17 

 Homoisoflavonoids 

Pos. 11 12 13 14 15 16 17 

2 67.42 67.27 67.53 67.34 67.53 153.14 153.09 

3 131.96 131.80 127.53 130.57 127.38 123.06 123.16 

4 181.93 181.79 180.95 181.17 180.99 177.18 177.21 

4a 121.88 121.81 121.61 121.45 121.62 123.83 123.86 

5 127.97 127.98 127.14 127.23 127.12 125.92 125.93 

6 122.04 122.12 121.76 121.95 121.82 125.32 125.28 

7 136.06 136.13 135.79 136.20 135.86 133.84 133.80 

8 117.97 117.98 117.73 117.90 117.73 118.15 118.15 

8a 161.16 161.09 160.39 160.61 160.37 156.52 156.55 

9 
135.88  

(d, J = 2.27 Hz) 
134.94 136.90 136.73 137.27 31.89 31.73 

1' 
136.40 

(d, J = 7.80 Hz) 
131.40 (dd,  

J = 5.98, 3.80 Hz) 
124.78 134.94 125.18 123.06 141.02 

2' 
116.57  

(d, J = 16.28 Hz) 
118.74 

(d, J = 17.66 Hz) 
132.74 116.68 117.76 129.65 123.52 

3' 
162.70  

(d, J = 245.90 Hz) 
150.25 (dd,  

J = 248.55, 12.80Hz) 
115.78 157.49 147.87 123.79 148.41 

4' 
116.35  

(d, J = 15.56 Hz) 
150.78 (dd,  

J = 261.53, 12.86Hz) 
159.30 116.87 145.38 146.76 121.71 

5' 
130.31 

(d, J = 8.24 Hz) 
117.85 

(d, J = 17.69 Hz) 
115.78 129.84 115.85 123.79 129.42 

6' 
125.66  

(d, J = 2.92 Hz) 
126.48 (dd,  

J = 6.25, 3.47 Hz) 
132.74 121.08 123.47 129.65 135.29 
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3.2 Biochemistry 

The experimental techniques employed to determine the antioxidant and antibacterial 

activities of the homoisoflavonoids are stated below as well as the experimental data. 

 

3.2.1  Antioxidant activity of the homoisoflavonoids synthesised 

The antioxidant activities of the homoisoflavonoids were determined using two common 

simple methods, i.e. the DPPH radical scavenging assay and the ferric reducing antioxidant 

power assay.  

 

3.2.1.1  DPPH radical scavenging assay 

The DPPH scavenging activity of homoisoflavonoids was determined according to the 

modified method by (Murthy et al., 2012).  The free radical scavenging activity was 

determined spectrophotometrically using a stable free radical, 1,1-diphenyl-2-picrylhydrazyl 

(DPPH).  Stock solutions of each compound were prepared by dissolving 10 mg of the 

compound in 10 mL of methanol (1000 µg/mL).  The stock solutions were used to prepare a 

series of eight concentrations (500, 200, 100, 50, 40, 30, 20, 10 µg/mL).  A solution of DPPH 

was prepared by dissolving 1.97 mg of DPPH in 50 mL of methanol (0.1 mM) and protected 

from light by covering the volumetric flask with aluminum foil.  An aliquot of each dilution 

of the compound (150 µl) was mixed with methanolic solution of DPPH (2850 µl) in glass 

test tubes.  The mixtures were shaken vigorously and set in a dark cupboard at ambient 

temperature for 30 min.  The absorbance was measured at 517 nm against methanol as a 

blank. All measurements were done in triplicate and the average absorbance was used.  The 

percent scavenging activity of the compounds were calculated using the following formula:  
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Scavenging activity (%) = 
control

compoundcontrol

Abs

AbsAbs

.

..
100

−
×

 

 

The calculated scavenging activities are displayed below in Table 6. 

 

Table 6: The DPPH free radical scavenging activity of the homoisoflavonoids (13, 14, 15) 

and ascorbic acid 

 Scavenging activity (%) 

 Compound 13 Compound 14 Compound 15 Ascorbic acid 

10 µg/mL 10.57 3.38 1.01 5.88 

20 µg/mL 10.37 5.90 7.60 7.22 

30 µg/mL 9.93 5.32 13.25 7.36 

40 µg/mL 9.83 5.22 15.89 8.13 

45 µg/mL 11.03 6.14 20.13 10.56 

50 µg/mL 9.70 5.85 19.60 12.76 

100 µg/mL 8.83 3.28 55.52 51.77 

200 µg/mL 11.43 4.68 91.29 96.12 

500 µg/mL 10.40 6.42 99.00 96.46 

 

3.2.1.2  Ferric reducing antioxidant power assay 

A series of methanolic standard solutions of varying concentrations (500, 200, 150, 100, 50, 

40, 30, 20, 10 µg/mL) were prepared from a 1000 µg/mL stock solution.  A 2.5 mL volume of 

the different concentrations were mixed with 2.5 mL phosphate buffer solution (0.1 M, pH = 

6.6) and 2.5 mL of aqueous potassium hexacyanoferrate [K3Fe(CN)6] solution (1%) in test 

tubes.  After 20 min of incubation at 50 °C in a water bath, a volume of 2.5 mL of 10% 

trichloroacetic acid (TCA) was added to the mixture and mixed thoroughly.  A volume of 2.5 
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mL from the mixture was added to 2.5 mL of distilled water and 0.5 mL of FeCl3 (0.1% 

solution).  The resulting mixture was mixed thoroughly and allowed to stand for 10 min after 

which the absorbance was taken at 700 nm using a UV-Vis spectrophotometer.  Ascorbic 

acid was used as a positive control.  All measurements were taken in triplicate and the 

average absorbance is displayed below (Table 7).   

 

Table 7: The ferric reducing antioxidant power of the homoisoflavonoids (13-15) and 

ascorbic acid 

 Absorbance 

 Compound 13 Compound 14 Compound 15 Ascorbic acid 

10 µg/mL 0.015 0.044 0.045 0.062 

20 µg/mL 0.033 0.023 0.085 0.323 

30 µg/mL 0.034 0.024 0.193 0.867 

35 µg/mL 0.029 0.024 0.157 0.957 

40 µg/mL 0.014 0.024 0.544 1.071 

45 µg/mL 0.016 0.020 0.617 1.566 

50 µg/mL 0.017 0.019 0.735 1.932 

100 µg/mL 0.021 0.025 1.741 2.799 

200 µg/mL 0.033 0.042 3.000 3.000 

500 µg/mL 0.163 0.146 - - 

 

 

3.2.2  Antibacterial activity of the homoisoflavonoids synthesised 

The fifteen synthesised homoisoflavonoids were screened for their antibacterial activity using 

the disc diffusion method.  The principles of the technique are explained in Chapter 1 

(1.4.2.1). 
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3.2.2.1  Disc diffusion antimicrobial susceptibility testing 

The antibacterial activities of the synthesised homoisoflavonoids were determined using the 

Kirby-Bauer disk-diffusion method.  The homoisoflavonoids synthesised were tested against 

ten gram positive and six gram negative bacteria (Table 8).  Stock solutions (5 mg/mL) of 

each homoisoflavonoid were prepared by dissolving compounds in 1 mL of DMSO.  Blank 

discs (5 mm; MAST, UK) were impregnated with 50, 100 and 200 µg/mL of each 

homoisoflavonoid and allowed to dry.  Bacterial isolates were grown overnight on TSA agar 

plates and the turbidity of cell suspensions were adjusted equivalent to that of a 0.5 

McFarland standard.  These were used to inoculate Mueller-Hinton (MH) agar plates by 

streaking swabs over the entire agar surface followed by the application of the respective 

homoisoflavonoid discs.  Plates were then incubated for 21 hrs at 30 °C.  Testing was done in 

duplicate and tetracycline (TET) and ampicillin (AMP) discs were used as standard 

antimicrobial agent controls.  The negative control was 5 µl of DMSO (100%).  Zone 

diameters were measured physically and averaged.  Activity indices of each compound were 

calculated by comparing zones of inhibition obtained with each of the compounds with those 

obtained with the standard antimicrobial agents, tetracycline and ampicillin.  The following 

equation was used:  

 

Activity index (AI) = 
agent ialantimicrob standard with (mm)diameter  Inhibition

compound  with test(mm)diameter  Inhibition
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Table 8: The strains of bacterial cultures tested against in the disc diffusion assay 

Gram positive bacteria Gram negative bacteria 

Bacillus subtilis (ATCC 6633) Escherichia coli (ATCC 29522) 

Enterobacter aerogenes (ATCC 13048) Escherichia coli (ATCC 35219) 

Enterococcus faecalis (ATCC 5129) Klebsiella pneumoniae (ATCC 70063) 

Staphylococcus aureus (ATCC 29212) Pseudomonas aeruginosa (ATCC 27853) 

Staphylococcus aureus (ATCC 43300) Pseudomonas aeruginosa (ATCC 35037) 

Staphylococcus saprophyticus (ATCC 35552) Salmonella arizonae (ATCC 13314) 

Staphylococcus scuiri (ATCC 29062)  

Staphylococcus xylosus (ATCC 35033)  

Streptococcus agalactiae (ATCC 13813)  

Streptococcus pyogenes (ATCC 19615)  

 

The zone diameters obtained for the three concentrations of each homoisoflavonoid are 

displayed below (Table 9 and Table 10).  The activity indexes were calculated for each 

compound at the highest concentration (200 µg/mL) and are displayed in Table 9 and Table 

10.  Compounds 4, 7, 16 and 17 showed no antibacterial activity and are therefore omitted 

from the tables.  The homoisoflavonoids were tested but showed no activity against the 

following bacterial strains, which are also omitted from the data tables: Salmonella arizonae 

(ATCC 13314), Escherichia coli (ATCC 35219), Pseudomonas aeruginosa (ATCC 27853 

and ATCC 35037), and Klebsiella pneumoniae (ATCC 70063). 
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Table 9: The zone diameters and activity indices of compounds 3-6 and 8-15 against bacterial strains: Staphylococcus aureus, Staphylococcus 

saprophyticus and Staphylococcus scuiri 

 Bacteria Cultures 

 
Staphylococcus aureus 

(ATCC 29212) 

Staphylococcus aureus 

(ATCC 43300) 

Staphylococcus saprophyticus 

(ATCC 35552) 

Staphylococcus scuiri 

(ATCC 29062) 

 Concentration/ µg/mL and Activity index at 200 µg/mL 

 50 100 200 

Activity  

index 50 100 200 

Activity  

index 50 100 200 
Activity  index 

50 100 200 

Activity  

index 

TET AMP TET AMP TET  AMP TET AMP 

3 12 12 21 0.67 0.84 11 15 17 0.52 1.31 - - 9 0.30 0.24 - - 8 0.32 0.23 

4 - - - - - - - - - - - - - - - - - - - - 

5 9 10 12 0.39 0.48 7 10 11 0.33 0.85 - - 7 0.23 0.19 - - 7 0.28 0.20 

6 - 8 10 0.32 0.40 - - 9 0.27 0.69 - - - - - - - - - - 

8 - - 8 0.26  - - 9 10 0.30 0.77 - - - - - - - 7 0.28 0.20 

9 9 10 12 0.39 0.32 - - - - - - - - - - - - - - - 

10 - - - - - - - - - - - 7 10 0.33 0.27 - - - - - 

11 9 12 15 0.48 0.60 10 14 16 0.48 1.23 - - 9 0.30 0.24 - - 8 0.32 0.23 

12 - 7 7.5 0.23 0.30 - 7 11 0.33 0.85 - - 7 0.23 0.19 - - - - - 

13 9 10 12 0.39 0.48 - 8 10 0.30 0.77 - - 9 0.30 0.24 - - - - - 

14 17 19 22 0.71 0.88 14 16 19 0.58 1.46 10 12 14 0.47 0.38 10 12 13 0.52 0.37 

15 10 12 13 0.42 0.52 7 8 11 0.33 0.85 7 8 10 0.33 0.27 - - 8 0.32 0.23 

Tetracycline (TET)                         31 33 30 25 
Ampicillin (AMP)                          25 13 37 35 
DMSO                                              - - - - 
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Table 10: The zone diameters and activity indices of compounds 3-6 and 8-15 against bacterial strains: Staphylococcus xylosus, Streptococcus 

agalactiae, Streptococcus pyogenes and Escherichia coli 

 
Bacteria Cultures 

 
Staphylococcus xylosus 

(ATCC 35033) 

Streptococcus agalactiae 

(ATCC 13813) 

Streptococcus pyogenes 

(ATCC 19615) 

Escherichia coli 

(ATCC 29522) 

 Concentration/ µg/mL and Activity index at 200/ µg/mL 

 50 100 200 

Activity  

index 50 100 200 

Activity  

index 50 100 200 
Activity  index 

50 100 200 

Activity  

index 

TET AMP TET AMP TET  AMP TET AMP 

3 - 8 10 0.36 0.31 - - - - - - - - - - - - - - - 

4 - - - - - - - - - - - - - - - - - - - - 

5 - 7 9 0.32 0.28 - - - - - - - 9 0.27 0.24 - - - - - 

6 - - 8 0.29 0.25 - - - - - - - - - - - - - - - 

8 - - 7 0.25 0.22 - - - - - - - 7 0.21 0.19 - - - - - 

9 - - 8 0.29 0.25 - - - - - - - 9 0.27 0.24 - - - - - 

10 - - - - - - - - - - - - - - - - - - - - 

11 8 9 10 0.36 0.31 - - - - - - 9 10 0.30 0.27 - - - - - 

12 - - - - - - - - - - - - - - - - - - - - 

13 - - 8 0.29 0.25 - - - - - 9 10 14 0.42 0.38 - - - - - 

14 13 15 16 0.57 0.50 - - 7 0.29 - 11 15 16 0.48 0.43 - - 7 0.29 0.33 

15 - - 8 0.29 0.25 - - - - - - 7 10 0.30 0.27 - - - - - 

Tetracycline (TET)                  28  24 33 24 
Ampicillin (AMP)                   32 - 37 21 
DMSO                                       - - - - 
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CHAPTER 4 CONCLUSION 

A series of fifteen homoisoflavonoids, three of the 3-benzylidene and two of the 3-benzyl 

type, were synthesised in a three step reaction.  The solvent free base-cataylsed aldol 

condensation of 4-chromanone and substituted benzaldehydes in the presence of piperidine 

resulted in the formation of the homoisoflavonoids in good yields of between 50 and 90%.  

Substitution of the phenyl ring was varied at the 3'-position, 4'-position and 3',4'-positions 

with methoxy, hydroxy, chloro, fluoro and nitro groups.  Compounds containing the electron 

withdrawing nitro groups resulted in the formation of the 3-benzyl-4-chromanone rather than 

the desired 3-benzylidene-4-chromanone.  The synthesised compounds were fully 

characterised by 1H, 13C and 19F NMR, IR and UV spectroscopy and EI-MS.  Crystal 

structures of seven homoisoflavonoids were also obtained and reported for the first time in 

this work.   

 

The antioxidant testing of the homoisoflavonoids, using the DPPH radical scavenging assay 

and the ferric reducing antioxidant power assay, showed that the polyhydroxylated 

compounds have good antioxidant activity due to the fact that the hydrogen on an O-H group 

is scavengable.  Compound 15, a disubstituted hydroxyl compound, showed good antioxidant 

activity comparable to that of ascorbic acid.  This was attributed to the fact compound 15 has 

a catechol moiety.  Mono-substituted hydroxy containing homoisoflavonoids (13 and 14) 

showed weak antioxidant activity compared to compound 15.  Further derivatisation of 

compound 15, by substituting a catechol moiety on the A-ring of the homoisoflavonoid, may 

result in increased antioxidant activity.  Compound 15 is therefore an interesting target 

molecule to derivatise in the pursuit of good antioxidants.  
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The synthesised homoisoflavonoids were also subjected to antibacterial testing which showed 

that homoisoflavonoids are more active against gram positive than gram negative bacteria.  

The synthesised homoisoflavonoids showed good antibacterial activity against a methicillin 

resistant strain of bacteria, Staphylococcus aureus (ATCC 43300).  Compounds 3, 11 and 14 

showed better antibacterial activity than the common antibiotic ampicillin.  Compound 14, 

the meta hydroxy homoisoflavonoid, showed the highest activity index of 1.46.  

Derivatisation of compound 14 with respect to the A-ring can be conducted and a structure- 

activity relationship determined.   
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