# PREVALANCE OF IMPACTED THIRD MOLAR TEETH IN THE GREATER DURBAN METROPOLITAN POPULATION 

by<br>SUNDIKA ISHWARKUMAR

Student Number: 209510848

A Masters Thesis Presented to
Department of Clinical Anatomy
School of Laboratory Medicine and Medical Science
University of KwaZulu-Natal

Submitted in fulfilment of the requirements for the degree of

MASTERS IN MEDICIAL SCIENCE
CLINICAL ANATOMY

Supervisors: Prof. M.R. Haffajee
Ms. P. Pillay
Prof. K.S. Satyapal

To my parents, Roopanand and Lenisha Ishwarkumar, sister, Yashmika and best friend, Prenesen


#### Abstract

Tooth impaction is a pathological condition in which a tooth is completely or partially unerupted and positioned against another tooth, bone or soft tissue, thus preventing further eruption. Many theories have been proposed to explain the prevalence of impacted third molars. These theories discuss relationship of jaw size to tooth size which is suggested to result from difference in genetics and dietary habits, as the latter differs from one region to another. The aim of this study is to investigate the prevalence of an impacted third molar tooth on a mixed population in the Greater Durban Metropolitan area.

The third molar was classified using Winter's and Pell and Gregory's classification schemes. Various morphometric parameters of the mandible were measured and assessed in 320 digital panoramic radiographs ( $\mathrm{n}=640$ ). Each parameter recorded was statistically analyzed, using SPSS, to determine if a relationship existed between the aforementioned parameters and sex and age of each individual. $77.9 \%$ of cases presented with at least one impacted third molar, with the most prevalent type of impaction being mesio-angulation in the mandible and vertical angulation in the maxilla. In respect to the level of impaction, class IIB and class A was most frequent in the mandible and maxilla, respectively. For correlation with sex, only the length of the mandibular ramus was statistically significant ( $p$-value $=0.000$ ). No statistically significant relationship was found between each morphometric parameter and age. However, these results correlated with previous studies indicating that impacted third molars are most prevalent in individuals between 20-25 years. In addition, all morphometric parameters in this study differed from that recorded in previous studies conducted in the Northern Hemisphere.

The findings of this study may assist maxillofacial surgeons, dentists, anatomists, anthropologist and forensic investigators.


KEYWORDS: Third molar, impaction, prevalence, radiology, mandibular, maxillary

## SUPPORTING SERVICES

In this study, the digital panoramic radiographs was obtained from Public (King Dinuzulu Hospital Complex) and Private (Dr. Nankoo; Dr. Haffejee; Dr. Padayachee; Dr. Maistry) Dental Health Care Facilities in the Greater Durban Metropolitan region.

## PREFACE

This study presents original work by the author and has not been submitted in any other form to another university. Where use was made of the work published by others, it has been duly acknowledged in the text.

The research described in this dissertation was supervised by Prof. M.R. Haffajee, Ms. P. Pillay and Prof. K.S. Satyapal of the Department of Clinical Anatomy, School of Laboratory Medicine and Medical Science, Westville Campus, University of Kwa-Zulu Natal. This study was conducted in the Public (King Dinuzulu Hospital Complex) and Private (Dr. Nankoo; Dr. Haffejee; Dr. Padayachee; Dr. Maistry) Dental Facilities in the Greater Durban Metropolitan region.

S.Ishwarkumar

Date

## ACKNOWLEDGEMENTS

The author wish to express my sincere gratitude to the following individuals for their assistance in the preparation of this dissertation:

- God, who makes all things possible and for showering his richest blessing on me
- Prof. M.R. Haffajee, Ms. P. Pillayand Prof K.S. Satyapal for their supervision, support, assistance, guidance, patience, encouragement, constructive criticism and suggestions during the planning and development of this research dissertation
- My parents, Roopanand and Lenisha Ishwarkumar for being my support system and giving me so much of love, guidance, moral values and encouragement
- Dr. Nankoo, Dr. Haffejee, Dr. Maistry,Dr. Padayachee and Dr. Ramdhin for opening up their practices to me, for their support, encouragement, kindness and advice
- The staff of King Dinuzulu Hospital Complex and King Edward VIII Hospital for their support and kind assistance
- Mr. X. Xaba of the Department of Health for all his assistance
- Dr. S. Singh (Department of Dentistry, University of KwaZulu-Natal: Westville Campus)for her assistance and guidance
- Dr. Nkwanyana and Dr. Tlou (School of Public Health, University of KwaZulu-Natal (Howard College Campus) for their time and assistance with the statistics
- The staff of the Department of Clinical Anatomy, University of KwaZulu-Natal, for their support, motivation and contribution to my dissertation
- University of KwaZulu-Natal for the College of Health Science Scholarship
- Ms. L.Lazarus, (Department of Clinical Anatomy, University of KwaZulu-Natal: Westville Campus) for her encouragement and guidance
- Ms Nerissa Naidoo for her friendship, kind assistance, encouragement, generosity, advice and support in all aspects of this dissertation
- My friends, Ms. Thashni Pillay, Ms. Arishka Kalicharan and Ms. Shivani Govender, for their friendship, support and encouragement
- My sister, Yashmika, for love, support, kind assistance, encouragement and faith in me
- And my best friend, Prenesen Nesh Govender, for his love, support, assistance, understanding, encouragement, thoughtfulness, patience, and for being my pillar of strength


## ABBREVIATIONS

A - Anterior
I - Inferior
L - Lateral
M - Medial
P-Posterior
S - Superior

## TABLE OF CONTENTS

DEDICATION .....  .i
ABSTRACT ..... ii
SUPPORTING SERVICES ..... iii
PREFACE ..... iv
ACKNOWLEDGEMENTS ..... v
ABBREVIATIONS ..... vi
LIST OF FIGURES ..... xiii
LIST OF PLATES ..... xv
LIST OF TABLES ..... xvii

1. INTRODUCTION ..... 1
2. LITERATURE REVIEW ..... 5
2.1. HISTORICAL BACKGROUND ..... 6
2.1. Evolution of teeth ..... 6
2.2 GROSS ANATOMY ..... 8
2.2.1. Oral Cavity ..... 8
2.3. DEVELOPMENT ..... 12
2.4. PARTS AND STRUCTURES OF TEETH ..... 16
2.5. TOOTH ERUPTION ..... 16
2.6. DEFINITION OF IMPACTED MOLAR TEETH ..... 18
2.7. ETIOLOGY ..... 18
2.8. CLASSIFICATION OF IMPACTED THIRD MOLARS ..... 21
2.8.1. Angulation of impacted third molar - Winter's Classification Scheme ..... 21
2.8.2. Angulation of third molar impaction - Quek's Classification Scheme ..... 23
2.8.3. Level of impaction ..... 24
2.8.4. Relationship with the anterior border of the ramus of the mandible ..... 25
2.9. IMAGING TECHNIQUES ..... 26
2.9.1. Intraoral ..... 26
2.9.1.1. Paralleling Technique ..... 26
2.9.2. Extraoral Technique ..... 27
2.9.2.1. Panoramic Imaging ..... 27
2.9.2.2. Cone Beam Computer Tomography ..... 27
2.10. PREVALENCE OF IMPACTED THIRD MOLAR ..... 28
2.10.1. Gross prevalence of impacted third molars ..... 28
2.10.2. Prevalence of maxillary and mandibular impaction. ..... 29
2.10.2.1. Gross prevalence of impacted third molars in the mandible and maxilla ..... 29
2.10.2.2. Prevalence of mandibular and maxillary third molar impaction in relation to sex ..... 31
2.10.2.3. Prevalence of impacted mandibular and maxillary third molars in relation to laterality ..... 31
2.10.2.4. Etiology of the prevalence of mandibular and maxillary third molar impaction ..... 32
2.10.3. Prevalence of impaction in correlation with age ..... 32
2.11. PREVALENCE OF IMPACTED THIRD MOLAR ANGULATIONS ..... 33
2.11.1. Prevalence of impacted mandibular third molar angulation ..... 33
2.11.2. Prevalence of impacted maxillary third molar angulation ..... 34
2.13. PREVALENCE OF LEVEL OF IMPACTION ..... 35
2.13.1. Level of mandibular third molar impaction and its relation to mandible ..... 35
2.13.2. Level of maxillary third molar impaction ..... 36
2.14. SEX DISTRIBUTION ..... 36
2.15. MORPHOMETRIC EVALUATION OF THE MANDIBLE AND ITS RELATION TO IMPACTED THIRD MOLARS ..... 39
2.15.1. Methodology of morphometric analysis of the mandible ..... 40
2.15.2. Length of the mandibular ramus ..... 42
2.15.3. Width of the mandibular ramus ..... 43
2.15.4. Length of the mandibular body ..... 43
2.16. CLINICAL SIGNIFICANCE ..... 44
3. MATERIALS AND METHODS ..... 45
3.1. RESEARCH DESIGN ..... 46
3.2. SAMPLE SIZE ..... 46
3.3. DEMOGRAPHIC REPRESENTATION OF THE SAMPLE ..... 47
3.3.1. Sex Distribution: ..... 47
3.3.2. Age Distribution: ..... 47
3.3.3. Ethnic Distribution: ..... 48
3.4. SELECTION CRITERIA ..... 48
3.4.1. Inclusion criteria: ..... 48
3.4.2. Exclusion criteria: ..... 49
3.5. DATA COLLECTION AND ANALYSIS ..... 49
3.5.1. Morphological Analysis: ..... 49
3.5.2. Morphometric Analysis: ..... 50
3.6. STATISTICAL ANALYSIS ..... 51
4. RESULTS ..... 52
4.1. SAMPLE DEMOGRAPHICS ..... 53
4.2. PREVALENCE OF IMPACTED THIRD MOLAR ..... 53
4.3. DISTRIBUTION OF IMPACTED TEETH IN THE MANDIBLE AND MAXILLA ..... 59
4.4. PREVALENCE OF ANGULATION ..... 61
4.4.1. Prevalence of mandibular third molar angulation ..... 61
4.4.2. Prevalence of maxillary third molar angulation ..... 65
4.5. PREVALENCE OF THE LEVEL OF IMPACTION IN THE MANDIBLE AND MAXILLA ..... 69
4.5.1. Depth of the mandibular third molar impaction and its relations to mandible ..... 69
4.5.2. Depth of maxillary third molar impaction ..... 74
4.6. SEX DETERMINATION ..... 77
4.7. AGE DISTRIBUTION ..... 78
4.8. ETHNIC DISTRIBUTION ..... 78
4.8.1. Prevalence of impaction ..... 78
4.8.2. Prevalence of impaction in the mandible and maxilla ..... 80
4.8.2.1. Prevalence of impaction in the mandible and maxilla in relation to sex ..... 81
5. DISCUSSION ..... 85
5.1. BRIEF OVERVIEW ..... 86
5.2. SAMPLE ..... 86
5.3. PREVALENCE OF IMPACTED THIRD MOLARS ..... 87
5.3.1. Gross Prevalence. ..... 87
5.3.2. Prevalence of third molar impaction in relation to age range sampled ..... 88
5.4. DISTRIBUTION OF IMPACTED TEETH IN THE MANDIBLE AND MAXILLA ..... 90
5.4.1. Gross Prevalence ..... 90
5.4.2. Aetiology of the prevalence of mandibular and maxillary third molar impaction ..... 91
5.4.3. Impacted third molars in the mandible and maxilla in relation to sex ..... 92
5.5. PREVALENCE OF ANGULATION ..... 94
5.5.1.1. Gross prevalence of mandibular third molar angulation ..... 94
5.5.1.2. Prevalence of mandibular third molar angulation in relation to sex ..... 97
5.5.2.1. Gross prevalence of maxillary third molar angulation ..... 99
5.5.2.2. Prevalence of maxillary third molar angulation in relation to sex ..... 100
5.6. PREVALENCE OF THE LEVEL OF IMPACTION IN THE MANDIBLE AND MAXILLA. 100
5.6.1. Level of mandibular third molar impaction and its relations to the mandible ..... 100
5.6.2. Level of maxillary third molar impaction ..... 102
5.7. SEX DETERMINATION ..... 104
5.7.1. The relationship between third molar impaction and sex ..... 104
5.8. AGE DISTRIBUTION ..... 105
5.9. ETHNIC DISTRIBUTION ..... 107
5.9.1. Gross prevalence of impacted third molars ..... 108
5.9.2. Gross prevalence of impacted third molars in the mandible and maxilla ..... 109
5.10. MORPHOMETRIC ANALYSIS OF THE MANDIBLE ..... 110
5.10.1. Length of the mandibular ramus ..... 110
5.10.2. Width of the mandibular ramus ..... 112
5.10.3. Length of the mandibular body ..... 113
5.11. LIMITATION OF THIS STUDY ..... 114
6. CONCLUSION ..... 116
7. REFERENCES ..... 119
8. APPENDICES ..... 131
Appendix 1 ..... 132
Ethical Clearance ..... 133
Provisional Acceptance ..... 134
Brec Admendant ..... 137
Full Ethical Acceptance ..... 140
Certificates ..... 142
Gatekeepers ..... 146
Public Sector ..... 147
Private Sector ..... 151
Appendix 2 ..... 156
Data Sheet ..... 157
Raw Data ..... 158
Mean Data ..... 213
Appendix 3 ..... 228
Scientific Research to Date ..... 229

## LIST OF FIGURES

Figure 1: Odontodes, the ancestors of teeth ..... 6
Figure 2: Evolution to erect homo-sapiens ..... 7
Figure 3: Different parts of the oral cavity ..... 9
Figure 4: Sagittal section of the oral cavity ..... 10
Figure 5: Right antero-lateral view of the jaw ..... 10
Figure 6: Lateral radiograph showing the different parts of teeth ..... 11
Figure 7:Budding stage at 8 weeks ..... 12
Figure 8: Cap Stage at 10 weeks ..... 13
Figure 9: Bell stage at 3 months (A) and 6 months (B) ..... 14
Figure 10: A. Before birth and B. After birth ..... 15
Figure 11: Longitudinal section of the incisor and molar tooth ..... 16
Figure 12: Replacement of deciduous teeth by permanent teeth in a child of 8 or 9 years ..... 17
Figure 13: Angulated impacted third molar ..... 19
Figure 14: Decrease in jaw size ..... 20
Figure 15: Evolution of the brain ..... 21
Figure 16: Winter's classification system ..... 22
Figure 17: Quek's classification system ..... 24
Figure 18: Pell and Gregory's classification system for level of impaction ..... 25
Figure 19: The relationship between the impacted third molar and anterior border of the ramus ..... 26
Figure 20 : Sex difference in tooth eruption ..... 38
Figure 21: Morphometric measurements on a dry bone specimen ..... 40
Figure 22: Morphometric measurements on a digital panoramic x-ray ..... 41
Figure 23: Pericoronitisof an impacted third molar ..... 45
Figure 24: The sexual distribution of the sample (in \%) ..... 47
Figure 25: Age distribution of patients according to age categories (in years) ..... 47
Figure 26: Ethnic distribution of the patients sampled ..... 48
Figure 27: Measurement of the mandible on a panoramic x-ray of the jaw ..... 50
Figure 28: Prevalence of the number of impacted third molar teeth in relation to sex ..... 58
Figure 29: Prevalence of the number of impacted third molar teeth in relation to side ..... 58
Figure 30: Prevalence of impacted third molars in different regions of the jaw for both sexes ..... 60
Figure 31: Prevalence of impacted third molars angulation in the mandible ..... 62
Figure 32: Prevalence of impacted third molars angulation in the maxilla ..... 66
Figure 33: Prevalence of the level of impacted mandibular third molars and its relations to the
mandible in both sexes and side ..... 70
Figure 34: Prevalence of the level of impacted maxillary third molars in both sexes and side

$\qquad$ ..... 75
Figure 35: Prevalence of impacted third molars in both sexes ..... 77
Figure 36: Ethnic distribution of the patients with impacted third molars ..... 79
Figure 37: Distribution of impacted mandibular and maxillary third molars in each ethnic group ..... 82
Figure 38: Mesial curve of the distal root ..... 96

## LIST OF PLATES

Plate 1: One left third mandible third molar impaction in a male patient ..... 54
Plate 2: One left third mandible third molar impaction in a female patient ..... 54
Plate 3: Two third mandible third molar impaction in a male patient ..... 55
Plate 4: Two mandible third molar impaction in a female patient ..... 55
Plate 5: Three third molar impaction in a male patient ..... 56
Plate 6: Three third molar impaction in a female patient. ..... 56
Plate 7: Four third molar impaction in a male patient ..... 57
Plate 8: Four third molar impaction in a female patient ..... 57
Plate 9: Mesio-angulation impaction of the mandibular third molars ..... 62
Plate 10: Vertical impaction of the mandibular third molars ..... 63
Plate 11: Horizontal impaction of the mandibular third molars ..... 63
Plate 12: Buccal impaction of the mandibular third molars ..... 64
Plate 13: Disto-angulation impaction of the mandibular third molars ..... 64
Plate 14: Vertical angulation impaction of the maxillary third molars ..... 66
Plate 15: Disto-angulation impaction of the maxillary third molars ..... 67
Plate 16: Mesio-angulation impaction of the maxillary third molars ..... 67
Plate 17: Buccal impaction of the maxillary third molars ..... 68
Plate 18: Horizontal angulation impaction of the maxillary third molars ..... 68
Plate 19: Class A - Mandibular third molar impaction ..... 71
Plate 20: Class B - Mandibular third molar impaction ..... 71
Plate 21: Class C - Mandibular third molar impaction ..... 72
Plate 22: Class I- Mandibular third molar impaction ..... 72
Plate 23: Class II- Mandibular third molar impaction ..... 73
Plate 24: Class III- Mandibular third molar impaction ..... 73
Plate 25: Class A: Maxillary third molar impaction ..... 75
Plate 26: Class B: Maxillary third molar impaction ..... 76
Plate 27: Class C: Maxillary third molar impaction ..... 76

## LIST OF TABLES

Table 1: Standard times of tooth eruption ..... 17
Table 2: Prevalence of impacted third molars in different population groups ..... 29
Table 3: Distribution of impacted third molars in the mandible and maxilla ..... 30
Table 4: The prevalence of an impacted third molar correlated with age ..... 33
Table 5: Absence of a relationship between the prevalence of the impacted molar and sex ..... 36
Table 6: Higher prevalence of the impacted molar in females ..... 37
Table 7: Higher prevalence of the impacted molar in males ..... 38
Table 8: Length of the mandibular ramus in males and female ..... 42
Table 9: Width of the mandibular ramus in males and female ..... 43
Table 10: Length of the mandibular body in males and female ..... 44
Table 11: Prevalence of the number of impacted third molars ..... 53
Table 12: Distribution of impaction in the mandible and maxilla in relation to sex ..... 59
Table 13: Distribution of impaction in the mandible and maxilla in relation to side ..... 60
Table 14: Prevalence of mandibular third molar angulation according to Winter's classification ..... 61
Table 15: Prevalence of maxillary third molar angulation according to Winter's classificatio65
Table 16: Prevalence of mandibular third molar impaction according to Pell and Gregory's classification ..... 69
Table 17: Prevalence of maxillary third molar impaction according to Pell and Gregory's classification ..... 74
Table 18: Prevalence of impacted third molars in males and females ..... 77
Table 19: Prevalence of impacted third molars in different age categories ..... 78
Table 20: Ethnic distribution of patients with impacted third molars ..... 79
Table 21: Ethnic distribution of impacted third molars in the mandible \& maxilla ..... 80
Table 22: Ethnic distribution of impacted third molars in the mandible \& maxilla with sex.. 81
Table 23: Morphometric analysis of the mandible with gender distribution ..... 83
Table 24: Morphometric analysis of the mandible for various age groups ..... 84
Table 25: Prevalence of impacted third molars in different population groups ..... 88
Table 26: Prevalence of impacted third molars in different population groups ..... 89
Table 27: Distribution of impacted third molars in the mandible and maxilla ..... 91
Table 28: Distribution of impacted mandibular \& maxillary third molars in males and females94
Table 29: Prevalence of mandibular third molar angulation according to Winter's
classification ..... 97
Table 30: Prevalence of impacted mandibular third molar angulation in males and females ..... 98
Table 31: Prevalence of mandibular third molar impaction according to Pell and Gregory's classification ..... 101
Table 32: Prevalence of maxillary third molar impaction according to Pell and Gregory's classification ..... 103
Table 33: Prevalence of impacted third molars in males and females ..... 105
Table 34: Highest prevalent age group for impacted third molar ..... 106
Table 35: Highest prevalent age group for impacted third molar in males and females ..... 107
Table 36: Comparison between the prevalence of impacted third molars in two populations ..... 109
Table 37: Comparison between the prevalence of impacted mandibular \& maxillary third molars ..... 109
Table 38: Length of the mandibular ramus in males and female ..... 111
Table 39 : Width of the mandibular ramus in males and female ..... 112Table 40: Length of the mandibular body in males and female114

## CHAPTER ONE INTRODUCTION

Tooth impaction is a pathological condition in which a tooth is completely or partially unerupted and positioned against another tooth, bone or soft tissue, thus preventing further eruption (Ramamurthy et al., 2012; Hashemipour et al., 2013). Consequently, the tooth cannot or will not erupt into its normal functioning position (Ramamurthy et al., 2012; Hashemipour et al., 2013). The third molars, which are commonly called wisdom teeth, are the only teeth to erupt during adolescence or even adulthood, which is often, referred to by some as the age of "wisdom", hence the name wisdom teeth. (Ramamurthy et al.,2012). However, there is variation that exists in the age of eruption, with a general eruption between the ages of $18-24$ years (Esposito and Coulthard, 2006). Several methods have been used to classify the impaction which is based on factors such as i) level of impaction, ii) angulations of the third molar and iii) the relationship to the anterior border of the ramus of the mandible (Hashemipour et al., 2013).

The mandibular third molars are the most frequently impacted teeth in humans followed by the maxillary third molars, maxillary canines and mandibular canines (Omar, 2008). The factors causing the third molar impaction include crowding, ectopic position of the tooth germs, supernumerary teeth, genetic factors and soft tissue or bony lesions (Omar, 2008; Syed et al., 2013). Upon comparison with the primitive races, modern man appears to present with a higher prevalence of third molar impaction (Tsabedze, 2012). Many theories have been proposed to explain the prevalence of the impacted mandibular third molar, and the majority discuss the relationship of jaw size to the tooth size which is suggested to result from the regional differences in dietary habits (Syed et al., 2013). Standring et al. (2009) stated that there is disproportion between the size of the teeth and the size of the jaw resulting in insufficient space for all the teeth to erupt. Since the third mandibular molar teeth are the last to erupt, they are often impeded in their eruption and either become impacted or remain unerupted within the jaw bone. The findings of the study conducted by Ramamurthy et al.
(2012) concurred with that of Standring et al. (2009) and confirmed the frequency of an impacted third molar tooth.

According to Hashemipour et al. (2013), the prevalence of the third molar impaction ranges from $16.7 \%$ to $68.6 \%$ and with no sexual predilection being recorded (Brown et al., 1982 and Kaya et al., 2010). However, the studies conducted by Hugoson et al. (1988) and Quek et al. (2003) recorded a higher frequency of third molar impaction in females. Hellman (1988) stated that there are differences in the growth rate of males and females with an average age of eruption in males of approximately 3 to 6 months ahead of females, hence the higher frequency of impaction noted in females.

In a study carried out in Kenya in 1992, Mwaniki and Guthua recorded the prevalence of the impacted mandibular third molar teeth to be very low at $\frac{15.8}{1000}$ (1.6\%). A similar study conducted in a Nigerian population recorded the prevalence of the impacted mandibular third molar teeth as $1.9 \%$ and $15.1 \%$ in the rural and urban populations respectively (Obiechina et al., 2001). Tsabedze (2012), conducted a study in a South African population in Limpopo, in which he recorded the prevalence of impacted mandibular third molars to be $\frac{206}{1215}(17.0 \%)$.

Impacted teeth are often associated with pericoronitis, incisor crowding, resorption of the adjacent tooth roots and temporo-mandibular joint dysfunction (Ramamurthy et al., 2012; Hashemipour et al., 2013). This study may assist orthodontists and maxillofacial surgeons in treatment planning of surgical procedures, viz. the early prediction, evaluation and possible treatment of impacted third molar teeth, as well as in future prevention of impaction with the use of gene therapy (Ramamurthy et al., 2012). Furthermore, the development of the third molar is used as a tool by many forensic dentists to assign age to young adults who have been victims of violent crimes, fires, motor vehicle and airplane accidents (Pretty and Sweet, 2001).

There is only a single study available on the prevalence of impacted third molar teeth in South Africa (Tsabedze, 2012). It is important to determine the prevalence of the impacted third molar teeth in other regions of South Africa to verify whether the previously determined prevalence can be generalised or whether it varies by region or population.

Therefore, this study will investigate the prevalence of an impacted third molar tooth for the population served by the Public and Private Health Dental Facilities that serves the greater Durban Metropolitan area.

## This study aims to:

1. Investigate the prevalence of impacted third molar teeth from the population served by the Public and Private Health Dental Facilities in the Greater Durban Metropolitan region

## The objectives are to:

1. Evaluate the level at which the impaction occurs using Pell and Gregory's Classification scheme
2. Radiographically evaluate the angulation of impaction
3. Determine the sex and age distribution of the impacted third molar
4. Use Winter's classification scheme to describe the impacted third molar
5. Determine the most common type of third molar impaction among the different sex groups
6. Determine if a relationship exists between the prevalence of impacted wisdom teeth and jaw morphometry.

## CHAPTER TWO

## LITERATURE REVIEW

### 2.1. HISTORICAL BACKGROUND

### 2.1. Evolution of teeth

A number of evolutionary theories regarding the evolution of teeth are being re-examined due to emerging genetic discoveries (Anthony et al., 2003). The most commonly and accepted explanation of tooth evolution contends that the molars evolved when humanity's ancestors roamed the earth on four legs approximately 100 million ago (Anthony et al., 2003). Some jawless fish developed superficial, dermal structures called odontodes (Koussoulakou et al., 2009) (Figure 1). These small tooth-like structures were found outside the mouth and were utilized for protection, sensation and hydrodynamic advantages (Koussoulakou et al., 2009). In several cases, the teeth evolved from scale-like epidermal structures, the odontodes, which "migrated" into the mouth after sufficient maturation. This can be seen in modern sharks, which have placoid scales on the skin that grade into the teeth on the jaws. Natural selection favoured teeth-bearing organisms that have major advantages in their ability to catch and process food (Koussoulakou et al., 2009).


Figure 1: Odontodes, the ancestors of teeth (Adapted from Koussoulakou et al., 2009)

Quadruped ancestors faced their environment with their heads and had limited use of their fore limbs other than for movement. The position of the heads and spinal column rotated
backwards, hence placing the jaw and teeth in the front of the body, which is in the optimal position for use (Anthony et al., 2003). Teeth served many purposes including, protection, catching and killing, and mastication. Therefore, the evolution favoured the development of larger third molars with pronounced chewing surfaces, which served as an advantage in their survival (Anthony et al., 2003).

A few million years ago when Hominids adopted the bipedal stance, the dependency of teeth for survival reduced drastically (Figure 2). The upper limbs greatly assisted in survival as they were utilized for hunting, defence and harvesting of food which was previously performed by teeth (Anthony et al., 2003). As the central nervous system developed over the last million years or so, it lead to the creation of defensive hand held tools, which further reduced the use of teeth as survival tools (Koussoulakou et al., 2009). The discovery of fire and cooking lead to food becoming softer thus ensuring the survival of humanity, even if they possessed no teeth at all (Anthony et al., 2003).


Figure 2: Evolution to erect homo-sapiens (Adapted from http://thesocietypages.org/ socimages/files/2012/08/26.jpg)

Due to these dramatic biological and cultural evolutionary changes over time, mankind has slowly reduced its dependency on all tooth types, particularly that of the third molar (Anthony et al., 2003). Hence, the increase in the frequency of the impacted third molar in modern man may be related to the decreasing size of the jaw that has occurred in man over time (Anthony et al., 2003).

### 2.2 GROSS ANATOMY

### 2.2.1. Oral Cavity

The oral region includes the oral cavity, teeth, gingivae, tongue, palate and a region of the palatine tonsils (Figure 3). The oral cavity is the region in which food is ingested and prepared for digestion (Moore et al., 2010).


Figure 3: Different parts of the oral cavity (Adapted from Scheunke et al., 2007)

The oral cavity consists of a vestibule, external to the teeth and the oral cavity proper, internal to the teeth. The oral cavity is limited by a roof and floor, the roof is formed by the palate, while the floor is formed by the mylohyoid muscles and is occupied mainly by the tongue (Standring et al., 2009) (Figure 4).

The oral vestibule is the slit-like space between the teeth, gingivae, lips and cheeks, while the oral cavity proper is the space between the upper and the lower dental arches (Figure 4). The vestibule communicates with the exterior through the oral fissure. The oral cavity proper appears to be limited by the dental arches antero-laterally (Moore et al., 2010)


Figure 4: Sagittal section of the oral cavity (Adapted from Schuenke et al., 2007)

The lower part of the face is formed by the alveolar arch of the maxillae and the upper dentition, and the body of the mandible, the alveolar process of the mandible and the lower dentition (Standring et al., 2009) (Figure 5).


Figure 5: Right antero-lateral view of the jaw (Adapted from Moore et al., 2010)

The teeth are set in the tooth sockets and are used in mastication, and in assisting in articulation. The tooth sockets are in the alveolar processes of the maxillae and mandible and the skeletal features of the tooth sockets display the greatest change during a lifetime (Moore et al., 2010). The adjacent sockets are separated by inter-alveolar septa within the socket and the roots of teeth are separated by inter-radicular septa (Moore et al., 2010) (Figure 6).

The bone of the socket has a thin cortex separated from the adjacent labial and lingual cortices by a variable amount of trabeculated bone. The labial wall of the socket is particularly thin over the incisor teeth and the reverse is true for the molars, where the lingual wall is thinner (Moore et al., 2010). The roots of the teeth are connected to the bone of the alveolus by a springy suspension forming a special type of fibrous joint called a dentoalveolar syndesmosis (Moore et al., 2010). The periodontal membrane is composed of collagenous fibres that extend between the cement of the root and the periosteum of the alveolus (Moore et al., 2010).


Figure 6: Lateral radiograph showing the different parts of teeth (Adapted from Moore et al., 2010)

### 2.3. DEVELOPMENT

Teeth are derived by the budding of the epithelium lining in the mouth. The buds of ectoderm produce only the enamel and they evoke a reaction in the surrounding ectomesenchyme which differentiates to produce the dentine, tooth pulp, cementum and periodontal ligaments (Figure 7). This occurs under the influence of the neural crest cells (Sinnatamby, 2006).


Figure 7:Budding stage at 8 weeks (Adapted from Sadler, 2010)

The pharyngeal arches are heavily infiltrated with neural crest cells. In the first arch (maxillary and mandibular), the neural crest cells have profound influence on the development of the dental lamina and other dental structures (Allan and Kramer, 2002). At a very early stage (approximately 4 weeks) in the development of the face, it is possible to identify the adjacent surfaces of the maxilla and mandibular prominences, as a thickening of stomodeal ectoderm, which covers these prominences. This is known as the primary epithelial bands (Allan and Kramer, 2002). On the lateral side of the primary epithelial band a further thickening in the epithelium develops. This deepens and gives rise to the labiogingival sulcus. The cheeks eventually separate from the outer gingival surface to form the vestibule of the mouth (Allan and Kramer, 2002). The maxillary and mandibular prominences extend to the ventral mid-line and fuse there, forming the arches (Allan and Kramer, 2002).

At 5 weeks, a curved sheet of ectoderm grows downwards into the adjacent mesoderm, tilting medially to form the primary dental lamina (Sinnatamby, 2006). In the $6^{\text {th }}$ week of embryonic development, the solid ectodermal dental buds arise from the deep surface of each dental lamina and project into the underlying mesoderm. These form the rudimentary enamel organs of the deciduous teeth. Later on, the deep surfaces of these buds invaginate resulting in the cap stage of tooth development (Figure 8). The cap stage consists of an outer layer, the outer dental epithelium, an inner layer, the inner dental epithelium (Figure 8) and a central core of loosely woven tissue, called the stellate reticulum. The mesenchyme, which originates in the neural crest cells in the indentation, forms the dental papilla (Sadler, 2010).


Figure 8: Cap Stage at 10 weeks (Adapted from Sadler, 2010)

As the dental cap grows and the indentation deepens, the tooth takes on the appearance of a bell (bell stage) (Figure 9) (Allan and Kramer, 2002 and Sadler, 2010). The mesenchyme cells of the papilla, adjacent to the inner dental layer, differentiate into odontoblasts which, later produces dentine. The dentine layer thickens and the odontoblasts retreat into the dental papilla leaving behind a thin cytoplasmic process in the dentine. The odontoblast layer persists throughout the life of the tooth and continuously provides pre-dentine. The remaining cells of the dental papilla form the pulp of the tooth (Sadler, 2010). Simultaneously, the epithelial cells of the inner dental epithelium differentiate into ameloblasts which deposits
organic matrix and mineral crystals of enamel into the underlying dentine (Dixit, 2004). A cluster of these cells within the inner dental epithelium forms the enamel knot that is responsible for the regulation of early tooth development (Sadler, 2010).


Figure 9: Bell stage at 3 months (A) and 6 months (B) (Adapted from Sadler, 2010)

The enamel is first laid down at the apex of the tooth and from there spreads towards the neck. As the enamel thickens, the ameloblasts retreat towards the stellate reticulum. The cells regress and the dental cuticle gradually sloughs off following the eruption of the tooth (Sadler, 2010).

The formation of the root of the tooth begins when the dental epithelial layer penetrates in the underlying mesenchyme. Consequently, the epithelial root sheath cells of the dental papilla are formed by continuously lying down a layer of dentine with the crown (Dixit, 2004; Sadler, 2010). As more and more dentine is deposited, the pulp chambers narrow and finally form a canal containing neurovascular structures of the tooth (Sadler, 2010). The mesenchymal cells on the outside of the tooth and those in contact with the dentine at the root differentiate into cementoblasts. (Allan and Kramer, 2002; Sadler, 2010). The cementoblasts are cells secreting cementum, which produce a thin layer of specialised bone (Allan and Kramer, 2002; Sadler, 2010) (Figure 10). Outside the cementum layer the mesenchyme gives
rise to a periodontal ligament which functions as a shock absorber and holds the tooth firmly in position (Figure 10).


Figure 10: A. Before birth and B. After birth (Adapted from Sadler, 2010)

The developed tooth erupts by a combination of root elongation and absorption of the overlying bone. The elongating root remains ensheathed within an upgrowth of alveolar bone (Sinnatamby, 2006). The crown is gradually pushed through the overlying tissue layers in the oral cavity (Sadler, 2010). The eruption of the deciduous teeth occurs 6 - 24 months after birth. The buds for the permanent teeth lie on the lingual aspect of the deciduous teeth and are formed during the third month of fetal development (Sadler, 2010). These buds will remain dormant until approximately the sixth year of postnatal life. The buds then begin to grow, pushing against the underside of the deciduous teeth and aiding in the shedding of them (Sadler, 2010). As the permanent teeth grow, the root of the overlying deciduous tooth is resorbed by osteoclast (Sadler, 2010).

### 2.4. PARTS AND STRUCTURES OF TEETH

A tooth has a crown, neck and root (Figure 11). The crown projects from the gingiva, while the neck is the junction between the crown and the root, and the root is fixed in the tooth socket by periodontium. The bulk of the tooth is composed of dentine, which is covered by enamel over the crown and cementum over the root (Moore et al., 2010) (Figure 11). Inside the dentine is a pulp cavity, this cavity is filled by dental pulp, which is composed of loose connective tissue, with neurovascular structure and lymphatics, all of which is transmitted through the apical foramen (Sinnatamby, 2006). The tooth is suspended in its bony socket by the periodontal ligament, which consist of collagen fibres that pass obliquely from the alveolar bone towards the apex of the tooth (Sinnatamby, 2006).


Figure 11: Longitudinal section of the incisor and molar tooth (Adapted from Moore et al., 2010)

### 2.5. TOOTH ERUPTION

The mechanism of tooth eruption (Figure 12) involves dental growth pressure, vascular pressures in the papillae and molecular kinetics of the periodontal collagen fibres (Brookes and Zietman, 1998).


Figure 12: Replacement of deciduous teeth by permanent teeth in a child of 8 or 9 years (Adapted from Sadler, 2010)

According to Sinnatamby (2006) the standard times of tooth eruption are (Table 1):

Table 1: Standard times of tooth eruption

| Deciduous Teeth | Permanent Teeth |
| :---: | :---: |
| - 6 months - Lower central incisors | - 6 years - First permanent molars |
| - 7 months - Upper central incisors | - 7 years - Central incisors |
| - 8-9 months - Lateral incisors | - 8 years - Lateral incisors |
| - 1 year - First molars | - 9 year - First premolars |
| - 18 months-Canines | - 10 years -Second premolars |
| - 2 years - Second molars | - 11 years - Canines |
|  | - 12 years - Second permanent molars |
|  | - 17-21 years -Third permanent molars (Wisdom teeth) |

### 2.6. DEFINITION OF IMPACTED MOLAR TEETH

The definition of impacted teeth has varied over time as more details on its causation became more evident over time. In 1954, Mead defined an impacted tooth as a tooth that is prevented from erupting into position due to malposition, lack of space, or other impediments. In 1998, Peterson characterized impacted teeth as those that fail to erupt within the expected time into the dental arch, whereas Farman (2004) characterized impacted teeth as those teeth that did not erupt due to a physical barrier within the path of eruption.

According to Syed et al. (2013), an impacted tooth is one that is erupted, partially erupted or unerupted and will not assume a normal arch relationship with the other teeth and tissue. Impaction also refers to the prevention of tooth eruption on its scheduled date, or the tooth is impacted if the time of its eruption has passed (Sabra and Soliman, 2013). However, Chu et al. (2003) defined an impacted tooth as one tooth that is obstructed along its path of eruption by an adjacent tooth, bone or soft tissue. In addition, a tooth was defined as embedded only if it was covered by bone with no obstruction from an adjacent tooth.

The third molar tooth generally erupts between the ages of $18-24$ years. However, there is a high variation in the age of eruption (Esposito and Coulthard, 2006; Ramamurthy et al., 2012).

### 2.7. ETIOLOGY

There have been a number of theories proposed to describe the etiology of tooth impaction, viz. Omar (2008), stated that the prevalence of impaction has increased in recent years due to the decrease in functional activity of the jaws. He reported that the prevalence of impaction may differ from one race group to another as the growth of the jaw may be influenced by genetically inherited factors, lack of proper dental care, type of food and dietary habit
(change from a coarse abrasive diet to a soft western diet) (Omar, 2008). Furthermore, he recorded a significant effect between chewing gum and singing on impaction as he recorded that individuals who chewed gum and sang often are less likely to have impacted third molars than individuals who do not. The normal development of the mandible is believed to be in response to the growth of the tongue and mastication muscles. In addition, by the continuous movement of the jaw the development of the mandible is enhanced by appositional growth (Omar, 2008).

However, Yamaoka et al. (1997) recorded that a relationship between root angulation (the angulated roots) and impaction were commonly found in impacted mandibular third molars as compared to erupted mandibular third molars (Figure 13). In 2006, Esposito and Coulthard stated that in some people the teeth become partially or completely impacted below the gum line due to a lack of space, abnormal position or obstruction, while Ramamurthy et al. (2012) reported the lack of space to be the major cause for abortive eruption.


Figure 13: Angulated impacted third molar (Adapted from http://dc224.4shared.com doc/WLV06QxM/preview_html_m2d015e71.gif)

Evolution suggests two possible theories as to why the prevalence of impacted third molar teeth increased over time. The first theory states that evolution of the third molars in the
longer jaws of the human ancestors reveals the benefit these teeth may have added to dentition millions of years a. However, in the modern human the third molar teeth add little to the chewing efficiency of the dentition. Therefore, this lack in functionality has resulted in a decrease in the length of the jaw, thus providing insufficient space for the inclusion of third molar in the dentition (Anthony et al., 2003) (Figure 14). Biswari et al. (2010) further stated that our ancestors had larger jaws; therefore there was sufficient room in the human mouth to accommodate 32 permanent teeth (including the third molars). However, because the modern jaw is smaller thus resulting in insufficient room to house 32 teeth. Since the third molars are the last teeth to develop, they are often impacted and unable to erupt. The process of evolution may explain another etiology of impaction; viz. the size of the human jaw has gradually reduced from the larger ape size to the smaller modern human size.


Figure 14: Decrease in jaw size (Adapted from http://chsweb.lr.k12.nj.us/mstanley/outlines /evolution/human/hevolutionin.html)

The second theory of evolution explains that there is an increased brain size at the expense of the jaw size (MacGregor, 1985) (Figure 15). Hence, the jaw has become too small for the third molar to erupt normally (Biswari et al., 2010).


Figure 15: Evolution of the brain (Adapted from http://www.heritageinstitute.com/zoro astrianism/images/cave/human Evolution.jpg)

### 2.8. CLASSIFICATION OF IMPACTED THIRD MOLARS

Several methods have been used to classify the impaction of the third molar. These classifications are based on the level of impaction, the angulation of the third molar or the relationship to the anterior border of the ramus of the mandible (Hashemipour et al., 2013).

### 2.8.1. Angulation of impacted third molar - Winter's Classification Scheme

The classifications of the impacted third molar teeth may be related to the angulation of the impacted third molar. This is generally determined using the Winter's Classification Scheme, which is based on the angle formed between the intersected longitudinal axis of the second molar and third molars (Tsabedze, 2012; Hashemipour et al., 2013). This classification defines impaction as follows (Figure 16):


Figure 16: Winter's classification system (Adapted from Hahemipour et al., 2013)

- Vertical impaction - The long axis of the third molar is parallel to that of the second molar but tilted vertical towards the occlusal plane.
- Mesio-angular impaction - The impacted tooth is tilted forward towards the front of the oral cavity in a mesial or anterior direction of the adjacent second molar.
- Horizontal impaction - The long axis of the third molar is perpendicular to that of the second molar. As a result the crown of the third molar is directed towards the root of the adjacent second molar.
- Disto-angular (Distal) impaction - The long axis of the third molar is angled distally or posteriorly away from the second molar but towards the posterior end of the oral cavity.
- Buccolingual impaction - The crown of the impacted tooth is directed buccally (tilted towards the cheeks) or lingually (tilted towards the tongue).
- Inverted impaction - The impacted tooth is in a vertical position with the crown of it rotated in the direction opposite to that of the second molar.


### 2.8.2. Angulation of third molar impaction - Quek's Classification Scheme

Quek et al. (2003) proposed an alternative classification method based on the angle of impaction. This method measures the angle of impaction using an orthodontic protractor. The angulation of the impacted molar can be determined by the angle formed between the intersected long axis of the second and third molars (Figure 17). Quek et al, (2003) classified the third molar impaction as follows (Syed et al., 2013):

- Vertical : $10^{\circ}$ to $-10^{\circ}$
- Mesio-angular : $11^{\circ}$ to $79^{\circ}$
- Horizontal : $80^{\circ}$ to $100^{\circ}$
- Disto-angular : $-11^{\circ}$ to $-79^{\circ}$
- Other : $-111^{\circ}$ to $-80^{\circ}$


Figure 17: Quek's classification system (Adapted from Quek et al., 2003)

### 2.8.3. Level of impaction

The impacted third molar can also be classified according to Pell and Gregory's (1933) classification system by determining their depth in relation to the occlusal plane along the distance from the ramus of the mandible to the posterior surface of the adjacent second molar (Figure 18) (Tsabedze, 2012; Hashemipour et al., 2013).

- Class A - Not buried by bone or the occlusal plane of the impacted tooth is at the same level of the adjacent tooth.
- Class B - Partially buried in bone or the occlusal plane of the impacted tooth is between the occlusal plane and the cervical line of the adjacent tooth (if part of the cement-enamel junction is lower than the level of the bone).
- Class C - Completely buried by bone or the occlusal plane of the impacted tooth is apical to the cervical line of the adjacent tooth.


Figure 18: Pell and Gregory's classification system for level of impaction (Adapted from Hashemipour et al., 2013)

### 2.8.4. Relationship with the anterior border of the ramus of the mandible

The Pell and Gregory classification system also relates the position of the third molar to the ascending mandibular ramus and the second molar (Figure 19):

- Class I - The third molar is situated anterior to the anterior border of the ramus. Also when there is sufficient space between the ramus of the mandible and the posterior surface of the second molar for the accommodation of the crown of the third molar.
- Class II - The crown is half covered by the anterior border of the ramus. The space between the ramus of the mandible and the posterior surface of the second molar is less than the mesio-distal size of the crown of the third molar.
- Class III - The crown of the third molar is completely or almost completely covered by the anterior border of the ramus.


Figure 19: The relationship between the impacted third molar and anterior border of the ramus (Adapted from Hashemipour et al., 2013)

### 2.9. IMAGING TECHNIQUES

The location and organization of impacted third molars, surrounding bone, mandibular canal and adjacent teeth are vital in imaging diagnosis for surgical procedures (Juodzbalys and Daugela, 2013).

### 2.9.1. Intraoral

### 2.9.1.1. Paralleling Technique

Periapical radiographs have been used for many years to assess the jaw during impacted tooth surgery (Juodzbalys and Daugela, 2013). The long cone paralleling technique for taking periapical $x$-rays is the technique of choice, since there is reduction of radiation dose, less magnification and the relationship between the mandible height and the adjacent teeth can be demonstrated (Juodzbalys and Daugela, 2013). The use of film that is highly flexible results in processing that may be suboptimal and it often lead to poor imaging is seen as a disadvantage of periapical radiographs (van der Stelt, 2013). In addition, the mandibular canal is not clearly identified in the third molar region, as the angulation of the periapical film can affect the supposed position of the canal with respect to the bone crest (Juodzbalys and

Daugela, 2013). This technique also provides discomfort to the patient (Iannucci and Howerton, 2012).

### 2.9.2. Extraoral Technique

### 2.9.2.1. Panoramic Imaging

Panoramic radiographs are the preferred choice when a region is too large to be seen on the periapical view (Juodzbalys and Daugela, 2013). Furthermore, panoramic images display a wide view of the maxilla and mandible in a single projection (Iannucci and Howerton, 2012). In panoramic imaging, the tubehead and receptor rotates around the patient to produce a sequence of images that combine to create the overall view of the mandible and maxilla (Iannucci and Howerton, 2012). Panoramic radiographs are commonly used for, viz. i) the evaluation of impacted teeth; ii) the assessment of eruption patterns, growth and development; iii) the detection of lesions and diseases and iv) the examination of trauma (Iannucci and Howerton, 2012). The advantages of panoramic radiographs are: minimal radiation exposure, low cost of using the panoramic radiograph equipment (Juodzbalys and Daugela, 2013), it has a large field size that covers the entire maxilla and mandible, and patients cooperate as there is no discomfort involved (Iannucci and Howerton, 2012). The disadvantages are lower imaging resolution and high distortion (Juodzbalys and Daugela, 2013). Sarawati et al. (2010) stated that panoramic imaging remains the radiograph of choice for impacted molar teeth and is frequently used in practices today.

### 2.9.2.2. Cone Beam Computer Tomography

Cone Beam Computed Tomography (CBCT) has been the method of choice when a three dimensional view of the mandibular third molar and adjacent anatomical structures are required, as it contributes to optimal risk assessment and subsequently to more adequate
surgical planning (Juodzbalys and Daugela, 2013). The advantages of CBCT include: lower radiation dose, brief scanning time ( $8-10$ seconds) and anatomically accurate images (Iannucci and Howerton, 2012). The disadvantages are: the small field view, the cost of equipment and the lack of training in the interpretations of image data on areas outside the maxilla and mandible, as most dental professionals have not been trained to interpret data on anatomical areas beyond the maxilla and mandible (Iannucci and Howerton, 2012).

### 2.10. PREVALENCE OF IMPACTED THIRD MOLAR

### 2.10.1. Gross prevalence of impacted third molars

There is considerable variation in the prevalence and distribution of impacted teeth in the different regions of the jaw (Chu et al., 2003). A review of the literature depicts variability in the prevalence of impacted third molar teeth from one population to another and several authors have reported that the prevalence of the impacted third molar ranges from $17.0 \%$ to $73.0 \%$ (Table 2). Chu et al. (2003) stated that there are many factors affecting the prevalence of impacted teeth, viz. selected age group, timing of dental eruption and radiographic methodology for dental development and eruption. The disparity in the prevalence of impaction may also be due to genetic and racial differences (Hashemipour et al., 2013).

Table 2: Prevalence of impacted third molars in different population groups

| Authors | Year | Population | Prevalence of impacted third molars (\%) | Region of the jaw |
| :---: | :---: | :---: | :---: | :---: |
| Morris and Jerman | 1971 | American | 65.9 | Mandibular and Maxillary |
| Sandhu and Kapila | 1982 | Indian | 26.0 | Mandibular and Maxillary |
| Hattab et al | 1995 | Jordanaian | 33.0 | Mandibular and Maxillary |
| Elsey and Rock | 2000 | European | 73.0 | Mandibular and Maxillary |
| Chu et al | 2003 | Hong Kong Chinese | 27.8 | Mandibular and Maxillary |
| Quek et al | 2003 | Singaporean | 68.6 | Mandibular and Maxillary |
| Omar | 2008 | Hawler | 43.8 | Mandibular and Maxillary |
| Ramamurthyet al | 2012 | Indian | 41.3 | Mandibular |
| Tsabedze | 2012 | South African | 17.0 | Mandibular |
| Hashemipouret al | 2013 | Iranian | 44.3 | Mandibular and Maxillary |
| Sabra and Soliman | 2013 | Saudi Arabian | 67.9 | Mandibular |
| Syed et al | 2013 | Saudi Arabian | 18.7 | Mandibular and Maxillary |

### 2.10.2. Prevalence of maxillary and mandibular impaction

### 2.10.2.1. Gross prevalence of impacted third molars in the mandible and maxilla

Previous studies depict that tooth impaction is a frequent phenomenon. However, there is substantial variation in the prevalence and distribution of impacted teeth in different regions of the jaw (Chu et al., 2003). In an early study conducted by Kramer and William (1970), the authors recorded that the maxillary third molar was more frequently impacted (58.87\%) than mandibular third molar (33.49\%) (Table 3) (Chu et al.,2003). In a later study in 1984, the findings of Kruger, confirmed that of Kramer and William (1970) as $62.57 \%$ of patients had a
maxillary impacted molar, while $37.44 \%$ were found to have a mandibular impacted molar (Table 3). According to Othman et al. (2009), however, the mandibular third molar is the most frequently impacted tooth in humans. In 2013, Syed et al. (2013), recorded similar findings to Othman et al. (2009), as they found that the mandibular and maxillary third molars were the most frequently impacted teeth, with slight propensity of the former. They recorded that $49.3 \%$ of patients had a mandibular third molar impaction and $18.4 \%$ had a maxillary third molar impaction only (Table 3). Sandhu and Kapila (1982), Omar (2008) and Hashemipour et al. (2013) concurred with the aforementioned author and reported that mandibular third molars are the most frequently impacted teeth (Table 3).

Table 3: Distribution of impacted third molars in the mandible and maxilla

| Authors | Year | Population | Sample <br> size | Prevalence of impacted third <br> molar (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Kramer and <br> William |  |  |  | 33.47 | 58.87 |
| Sandhu and Kapila | 1982 | Indian | 1015 | 63.21 | 36.79 |
| Kruger | 1984 | - | - | 37.44 | 62.57 |
| Chu et al. | 2003 | Hong Kong <br> Chinese | 7486 | 82.50 | 15.60 |
| Omar | 2008 | Hawler | 1150 | 59.04 | 39.42 |
| Hashemipour et al. | 2013 | Iranian | 1215 | 54.90 | 28.80 |
| Syed et al. | 2013 | Saudi Arabian | 3800 | 49.40 | 18.40 |

### 2.10.2.2. Prevalence of mandibular and maxillary third molar impaction in relation to sex

Quek et al. (2003) and Syed et al. (2013) recorded that the prevalence of impacted mandibular third molars was higher in males than females, with prevalence of $82.2 \%$ and $49.5 \%$ in males and $74.8 \%$ and $48.6 \%$ in females, respectively. However, the aforementioned authors reported that maxillary third molar impaction is more common in females than males; as Quek et al. (2003) recorded prevalence of $17.8 \%$ and $25.2 \%$ in males and females, respectively while Syed et al. (2013) recorded a $17.9 \%$ prevalence in males and a $21.1 \%$ prevalence in females. Literature suggests that mandibular third molar impaction is more prevalent in males than in females, while maxillary third molar impaction is more prevalent in females rather than in males.

### 2.10.2.3. Prevalence of impacted mandibular and maxillary third molars in relation to laterality

Ramamurthy et al. (2009) found that the bilateral impaction of the mandibular third molar presented in $29.6 \%$ of patients, while the unilateral impaction of the third mandibular molar was found in $6.3 \%$ and $5.4 \%$ on the left and right sides respectively. However, in a Kenyan study conducted by Mwaniki and Guthua, (1992), a frequency of $68.2 \%$ was recorded for bilateral impaction. In a similar study conducted by Sobra and Soliman, 2013, they found that the prevalence of unilateral and bilateral impaction was $67.9 \%$ and $32.1 \%$ respectively. Variation in literature concerning the laterality of impacted third molars exist, as Ramamurthy et al. (2009) and Mwaniki and Guthua, (1992) who suggest that bilateral impaction is more prevalent than unilateral impaction, to the contrary Sobra and Soliman (2013) reported that unilateral impaction is most prevalent.

### 2.10.2.4. Etiology of the prevalence of mandibular and maxillary third molar impaction

There are a number of proposed theories to explain why impaction is more prevalent in the mandible than maxilla. Broadbent (1943) suggested that mandibular third molar impaction occurs when the mandible fails to achieve its full growth potential. However, Ricketts (1979) claimed that impacted third molar teeth is related to the arcial growth of the mandible as he explained that third molars usually develop by a mesial direction of tooth eruption rather than the resorption at the anterior border of the ramus. Popescu and Popoviou (2008) reported that growth in the mandible influences the frequency of impacted mandibular third molar teeth, as slow skeletal growth and maturation results in a small retromolar space hence insufficient area for the mandibular third molars to erupt. The authors further stated that maxillary third molar are less frequently impacted than mandibular third molars, as the obstacle of impaction is musculo-ligament (gum tissue). While, Lakhani et al. (2011) recorded that if resorption at the anterior surface of the ramus is restricted then the mandibular third molars do not have enough space to erupt. In addition, Miloro et al. (2012) stated that individuals with impacted teeth have larger-sized teeth than those without impaction and mandibular third molars that are positioned laterally usually do not erupt due to the dense bone present in the external oblique ridge.

### 2.10.3. Prevalence of impaction in correlation with age

Several authors recorded similar findings and the highest prevalence of impaction was reported in the 20-25 year age group (Table 4). Chu et al. (2003) and Syed et al. (2013) stated that an increase in age (greater than 29 years) results in a decrease in third molar impaction.

Table 4: The prevalence of an impacted third molar correlated with age

| Authors | Year | Prevalence (\%) |  |  |  | Age group for the highest prevalence of impaction (Years) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Patients with an impacted molar | Patients with impacted mandibular $3^{\text {rd }}$ molar | Patients with impacted maxillary $3^{\text {rd }}$ molar | Patients with both molars impacted |  |
| Sandhu \& Kapila | 1982 | 26.0 | 63.2 | 36.8 | - | 21-25 |
| Chu et al. | 2003 | 27.8 | 82.5 | 15.6 | - | $20-29$ |
| Omar et al. | 2008 | 43.8 | 59.0 | 39.4 | - | $21-25$ |
| Hashemipour et al. | 2013 | 44.3 | 54.9 | 28.8 | 16.3 | - |
| Syed et al. | 2013 | 18.8 | 49.3 | 18.4 | 32.3 | 20-25 |

### 2.11. PREVALENCE OF IMPACTED THIRD MOLAR ANGULATIONS

### 2.11.1. Prevalence of impacted mandibular third molar angulation

The common pattern of angulation documented in previous studies is mesio-angulation, which is defined as the tilting forward of the third molar, towards the adjacent second molar tooth (Syed et al., 2013). Chu et al. (2003) recorded that more than $80 \%$ of impacted mandibular third molars were either horizontally (47.5\%) or mesially (36.6\%) angulated against the second molar. In these cases, this pattern appeared to be bilaterally symmetrical (Chu et al., 2003). Syed et al. (2013) reported that $50.8 \%$ of patients presented with mesioangular impaction. Khan et al. (2010) and Hashemipour et al. (2013) confirmed similar rates of $48.0 \%$ and $48.3 \%$, respectively. Quek et al. (2003) recorded that mesio-angulation was the most prevalent type of impaction in both males and females, with prevalence of $60.6 \%$ and $58.6 \%$, respectively. Ramamurthy et al. (2013) concurred with Quek et al. (2003), as they reported that mesio-angulation was prevalent in $16.3 \%$ males and $12.3 \%$ females. However,

Bataineh et al. (2002), Sasano et al. (2003) and Almendros-Marque et al. (2006) recorded vertical impaction to be the most common type of mandibular third molar impaction with a prevalence rate of $61.4 \%, 46.0 \%$ and $47.9 \%$, respectively. Mesio-angular impaction appears to be the most frequent type, which may be due to the path of eruption, delayed development and maturation, and lack of space in the mandible at a late stage (Hashemipour et al., 2013). According to the Belfast Study Group (study group at Queen's University), the development of the type of impaction among the mandibular third molars was explained as follows: there may be differentiated root growth between the mesial and distal roots, which causes the root to either remain mesially inclined or rotate to a vertical position depending on the amount of root development. Consequently, this under development of the mesial root results in mesioangular impaction (Miloro et al., 2012; Syed et al., 2013).

### 2.11.2. Prevalence of impacted maxillary third molar angulation

A number of authors suggest that vertical angulation is more common in maxillary impaction (Quek et al., 2003; Hashemipour et al., 2013; Syed et al., 2013). Syed et al, (2013) and Hashemipour et al, (2013) recorded vertical impaction of the maxillary third molar in $52 \%$ and $45.3 \%$ of patients respectively. However, Kruger et al, (2001) differed and recorded that mesio-angular impaction was the most common pattern of impaction observed in the maxilla. On the other hand, Fonseca (1956) and Leite (1986) recorded disto-angular impaction to be the most prevalent type of maxillary third molar impaction as it was present in $75.5 \%$ and $58.5 \%$ of cases, respectively. Artun et al. (2005) stated that maxillary third molars generally attain various positions of distal angulation during the initial development therefore during root development a vertical position is essential for normal eruption to occur. Additionally, Popescu and Popovioiu (2008) stated that mal-position is frequently favoured by insufficient
alveolar room necessary for the third molar to develop or erupt into its normal functional position.

### 2.13. PREVALENCE OF LEVEL OF IMPACTION

### 2.13.1. Level of mandibular third molar impaction and its relation to mandible

 According to the Pell and Gregory classification scheme, Obiechina et al. (2001) recorded the most prevalent class of mandibular third molar impaction to be IIA (31\%). This finding was confirmed by Monaco et al. (2004), Jaffar and Tin (2009), Khan et al. (2010); Hashemipour et al. (2013). However, Almendros-Marques et al. (2008) and Blondeau and Daniel (2007) reported class IIB as the most common class of mandibular third molar impaction.The variation may be a result of dietary differences between the population groups, as fibrous diets promote jaw growth while circumferential attrition of teeth provides space for the third molars to erupt (Khan et al., 2010). Mendelian theory further elaborated on this by stating that the abrasive nature of the Stone Age diet had the effect of producing extensive wearing a way of teeth thus creating enough space to accommodate the third molars (Tsabedze, 2012). Furthermore, the author theorized that the activity of chewing could have stimulated a greater jaw size during development, subsequently providing more space (retromolar space) for the third molars to erupt (Kaifu et al. 2003; Tsabedze, 2012). In addition, racial and genetics differences may also account for the variation in the level of impaction from one population to another (Khan et al., 2010).

### 2.13.2 Level of maxillary third molar impaction

Quek et al. (2003) reported class B to be the most common type of maxillary third molar impaction according to Pell and Gregory classification scheme in both sexes with a prevalence of $57 \%$ and $63 \%$ in males and females, respectively. However, Hashemipour et al. (2013) recorded the most frequent class of maxillary third molar impaction to be class A. Therefore, variations exist in the depth of impaction in different population groups, and this may be influenced by genetically inherited factors, lack of proper dental care, lack of functional activity of the jaw and dietary habits (Omar, 2008). In addition, Radhika et al. (2013) stated that since the maxillary third molar is the last tooth to erupt it had to adapt to the existing space, and this space limited by the adjacent second molar, maxillary sinus and pterygoid fossae.

### 2.14. SEX DISTRIBUTION

Previous research has shown no sexual predilection in third molar impaction (Brown et al., 1982; Hattab et al., 1995; Omar, 2008; Kaya et al., 2010) (Table 5).

Table 5: Absence of a relationship between the prevalence of the impacted molar and sex

| Author | Year | Prevalence of impacted third molar (\%) |  |
| :---: | :---: | :---: | :---: |
|  |  | Male | Female |
| Omar | 2008 | 49.1 | 51.0 |

However, some studies have shown a higher frequency in females rather than in males (Sandhu and Kapila, 1982; Hellman et al., 1988; Quek et al., 2003; Marzola et al., 2006;

Hashemipour et al., 2013) (Table 6). A possible explanation for this could be that the average age of eruption for mandibular third molars in males are approximately 3 to 6 months ahead of females (Juodzbalys and Daugela, 2013). Therefore, Juodzbalys and Daugela (2013) stated that females have a higher prevalence of impacted mandibular third molars than males (Figure 20). The higher frequency reported in females is due to the difference in growth between males and females (Hashemipour et al., 2013). Furthermore, a number of authors attributed these findings to the fact that the jaws of females discontinues to grow when the third molars are beginning to erupt, however the growth of the jaws in males continues beyond the time of eruption of the third molars (Kramer and Williams, 1970; Hellman, 1988; Silling, 1993; Hashemipour et al., 2013).

Table 6: Higher prevalence of the impacted molar in females

| Author | Year | Prevalence of impacted third molar (\%) |  |
| :---: | :---: | :---: | :---: |
|  |  | Male | Female |
| Sandhu \& Kapila | 1982 | 44.3 | 55.7 |
| Hellman | 1988 | 45.2 | 56.8 |
| Marzola et al. | 2006 | 35.9 | 64.1 |
| Hashemipour | 2013 | 35.1 | 64.9 |



Figure 20 : Sex difference in tooth eruption (Adapted http://www.gaba.com/data/do cs/cache/1/1/7/2/_rgb_72_370_266_fitAndCrop.jpg)

On the other hand, Haidar \& Shalhoub (1986) and Tsabedze (2012) reported that males had a higher prevalence of an impacted third molar (Table 7). Males have a smaller gonial angle in comparison to females, therefore this may increases the occurrence of third molar impaction in males (Chloe et al., 2013; Behbehani and Artun. 2006).

Table 7: Higher prevalence of the impacted molar in males

| Author | Year | Prevalence of impacted third molar (\%) |  |
| :---: | :---: | :---: | :---: |
|  |  | Male | Female |
| Haidar \& Shalhoub | 1986 | 34.0 | 29.0 |
| Tsabedze | 2003 | 61.8 | 38.2 |

### 2.15. MORPHOMETRIC EVALUATION OF THE MANDIBLE AND ITS RELATION TO IMPACTED THIRD MOLARS

Indira et al. (2012) stated that the identification of an individual from skeletal remains plays a critical role in forensic investigations and is essential for further analysis and the identification of age, sex, and race. Sex determination is the primary step in the identification of skeletal remains, as age, race and stature are dependent on the sex of an individual. Hence, gender determination is the first priority, followed by age, race and specific identification in the determination of unidentified human skeletal remains.

Forensic investigators often receive dismembered, partial and decomposing remains to determine identity, sex and age. Therefore, in cases of accidents, plane crashes, natural disasters and explosions, when only some skeletal remains and body parts are available, forensic medical experts should be able to determine identity, age and from these remains (Akhlaghi et al., 2012). Currently, unidentified skeletal remains in South Africa are being classified (age, sex and race) according to the Northern Hemisphere standards. However, a study conducted on a South African (white and black) population revealed that there are differences that exist in the craniometric dimensions when compared to the North American standards (Iscan and Steyn, 1999). Iscan and Steyn (1999) further stated that majority of the unidentified South African skulls used in their study were misclassified when using the North American standards, thus indicating that the craniometric measurements in a South African are different to those of the Northern Hemisphere. Therefore, a standard for a South African population needs to be developed.

The mandible is the largest, strongest and most durable compact facial bone and therefore remains the best preserved after death (Indira et al., 2012; Pillai et al., 2014), even in recovered paleoanthropological hominid specimens. While the sexual dimorphism of the
mandible is indicated by its shape and size, morphometric analysis is the more accurate in the determination of sex from the skull (Indira et al., 2012).

### 2.15.1. Methodology of morphometric analysis of the mandible

According to literature the morphometric parameters of the mandible is recorded using panoramic radiographs, dry bone specimens and lateral cephalometric radiographs (Figure 21 and 22) (Indira et al., 2012; Vinay and Gowri, 2013 and Yassir, 2013). The digital radiographs is analyzed using either the AutoCAD, Kodak or Master View Computer programmes, the aforementioned programmes were used calculate the linear measurements and angles of the mandible (Figure 22) (Indira et al., 2012 and Yassir, 2013). The linear measurements were carried out using a mouse driven method, which involves moving the mouse and drawing linear lines between two chosen points on the digital radiograph (Figure 22) (Indira et al., 2012). On the other hand, a mandibulometer; goniometer or sliding calliper was used to record the morphometric parameters on the dry bone mandibles (Vinay and Gowri, 2013).


Figure 21: Morphometric measurements on a dry bone specimen (Adapted from Saini et al., 2011)


Figure 22: Morphometric measurements on a digital panoramic x-ray (Adapted from Indira et al., 2012)

Key for Figure 21 and 22 (Adapted from Saini et al., 2011 \& Indira et al., 2012):
A) Maximum ramus breadth: the distance between the most anterior point on the mandibular ramus and a line connecting the most posterior point of the condyle and the angle of the mandible
B) Minimum ramus breadth: smallest antero-posterior diameter of the ramus
C) Maximum height of the ramus: is from the most superior point on the mandibular condyle to the tubercle or the most protruding portion of the interior border of the ramus
D) Projective height of the ramus: is between the highest point of the mandibular condyle and lower margin of the bone
E) Coronoid height: projective distance between the coronion (tip of the coronoid process) and lower border of the mandible
F) Mandibular length: distance between the gonion (mandibular angle) to the menton (mental protuberance)

### 2.15.2. Length of the mandibular ramus

A high sexual dimorphism is indicated by the morphometric analysis of the ramus of the mandible as compared to the body of the mandible (Indira et al., 2012). The authors below in Table 8 recorded that the length of the mandibular ramus was longer in males than females. The longest length of the mandibular ramus was recorded in the Zimbabwean (Mbajorgu et al., 1996) and Kenyan population (Kenyanya, 2011), while the shortest length was recorded by Fabian and Mpembeni (2002) in the Tanzanian population.

Table 8: Length of the mandibular ramus in males and female (in mm)

| Author | Year | Population | Length of mandibular ramus (in mm) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Male | Female |
| Burstone et al. | 1978 | American | 52.0 | 46.8 |
| Mbajorgu et al. | 1996 | Zimbabwean | 61.3 | 59.8 |
| Fabian \& Mpembeni | 2002 | Tanzanian | 49.9 | 44.2 |
| Rai et al. | 2007 | Indian | 53.9 | 51.8 |
| Kenyanya | 2011 | Kenyan | 57.7 | 52.0 |
| Shamout et al. | 2012 | Jordanian | 53.2 | 49.1 |
| Yassir | 2013 | Iraqi | 51.4 | 45.1 |

### 2.15.3. Width of the mandibular ramus

In an earlier study conducted by Suzuki and Takahshni in 1975, the authors recorded that the width of the male mandibular ramus was greater than females (Table 9). Vinay and Gowri (2013) concurred with the aforementioned authors as they recorded the width of the mandibular ramus is greater in males than females, with a width of 41.7 mm and 38.9 mm , respectively. However, Ranganath et al. (2008) found that the width of mandibular ramus is greater in females as compared to males (Table 9).

Table 9: Width of the mandibular ramus in males and female (in mm)

| Author | Year | Population | Width of mandibular ramus (mm) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Male | Female |
| Suzuki \& Takahashni | 1975 | Japanese | 32.9 | 31.9 |
| Ranganath et al. | 2008 | Indian | 38.8 | 40.7 |
| Vinay et al. | 2013 | Indian | 41.7 | 38.9 |

### 2.15.4. Length of the mandibular body

The authors in Table 10 revealed that the male mandibular body is greater in males than females. The mean length of the mandibular body in both males and females was greatest in the Kenyan population, as Kenyanya (2011) reported a mean length of 99.8 mm and 93.4 mm , in males and females respectively. While the smallest length was recorded by Yassir (2013) in the Iraqi population, as he reported that the mean mandibular length was 79.9 mm in males and 69.9 mm in females.

Table 10: Length of the mandibular body in males and female (in mm)

| Author | Year | Population | Length of mandibular body (in mm) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Male | Female |
| Mbajorgu et al. | 1996 | Zimbabwean | 77.8 | 72.3 |
| Jayakaran et al. | 2000 | Indian | 74.4 | 70.6 |
| Ongkana et al. | 2009 | Thai | 89.4 | 85.3 |
| Kenyanya | 2011 | Kenyan | 99.8 | 93.4 |
| Vinay et al. | 2013 | Indian | 75.4 | 72.5 |
| Yassir | 2013 | Iraqi | 74.9 | 69.9 |

### 2.16. CLINICAL SIGNIFICANCE

The classification of the third molar impaction and degree of difficulty related to extraction may enable the clinician to re-evaluate the removal of the impacted tooth, and to select an appropriate treatment, as well as to avoid possible complications (Juodzbalys and Daugela, 2013). The classification scheme of impacted third molars describes the relation of the impacted third molar to adjacent anatomical structures, viz. mandibular ramus, adjacent second molar, alveolar crest, mandibular canal and spatial position of the tooth, therefore this will assist clinician in the extraction of impacted teeth (Juodzbalys and Daugela, 2013). Standring et al. (2009) stated that surgery is not immediately advised as it may cause a degree of morbidity since the lingual and inferior alveolar nerves, which are often in close proximity to the tooth, may be damaged during impacted tooth removal.

Hashemipour et al. (2013) stated that in addition to pericoronitis (Figure 23), the impacted teeth are often associated with periodontitis, cystic lesions, neoplasm, root resorption and may cause severe effects on the adjacent tooth. Other studies showed that the impacted third molar weakens the angle of the mandible therefore making it susceptible to fracture (Krimmel and Reinert, 2000 and Meisami et al., 2002). Tooth impaction also causes temporo-mandibular joint disorders, vague orofacial pain and neuralgias (Beeman, 1999; Almendros-Marques et al., 2008 and Omar, 2008).


Figure 23: Pericoronitisof an impacted third molar (Adapted from http:// www.juniordentist.com/wp-content/uploads/2012/09/ pericoronitis-pericoronal-pouch-oroperculum1.gif)

## CHAPTER THREE

MATERIALS\&METHODS

### 3.1. RESEARCH DESIGN

The third molar teeth were studied in individuals who presented within an age range from 16 to 30 years. The methodology was devised to determine the prevalence of impaction among the greater Durban Metropolitan population and to determine if impaction is related to age, sex, side and mandible size using digital panoramic radiographs (orthopantomographs). Ethical Clearance was obtained from the Biomedical Research Ethics Committee (BREC). Ethical Clearance No: BE: 410/13 (Appendix 1).

### 3.2. SAMPLE SIZE

Four hundred digital panoramic radiographs of patients aged between 16 and 30 years were studied, however only three hundred and forty of those radiographs met the inclusion criteria below (pg. 48). The required information (sex, age and ethnic group) of the patients presenting with an impacted third molar was recorded. This information was kept anonymous and confidential and was saved in a password coded document. The radiographs were obtained from the Radiology Departments of Provincial Hospitals (10\%) and Private Practices $(90 \%)$. The gate-keepers approval for the collection of radiographs was obtained from the CEO of the relevant provincial hospitals, the KwaZulu-Natal Department of Health and the Manager of the Private Practice (Appendix 1). The x-rays were grouped according to sex and age. The ages were categorized in three intervals, viz. 16-19; 20-25 and 26-30 years. A statistician was consulted to confirm the sample size and for statistical analysis methodology.

### 3.3. DEMOGRAPHIC REPRESENTATION OF THE SAMPLE

### 3.3.1. Sex Distribution:

In this study 164 male and 176 female patients met the inclusion criteria (Figure 24)


Figure 24: The sexual distribution of the sample (in \%)

### 3.3.2. Age Distribution:



Figure 25: Age distribution of patients according to age categories (in years)

### 3.3.3. Ethnic Distribution:

All radiographs were obtained by random sampling, this sample included Black (56);
Coloured (8); Indian (274) and White (2) ethnic groups (Figure 26).


Figure 26: Ethnic distribution of the patients sampled

### 3.4. SELECTION CRITERIA

### 3.4.1. Inclusion criteria:

The inclusion criteria of this study were:

- Panoramic radiographs of patients between 16 and 30 years of age
- No history of trauma (No pathology of third molar besides impaction)
- Panoramic radiographs with complete patient records


### 3.4.2. Exclusion criteria:

The exclusion criteria of this study were:

- Panoramic radiographs of patients of below 16 and above 30 years
- Any fracture of the jaws that may affect the normal growth of permanent dentition
- Panoramic radiographs that showed absence of adjacent second molar
- Poor quality of radiographs (Poor techniques or positioning)


### 3.5. DATA COLLECTION AND ANALYSIS

### 3.5.1. Morphological Analysis:

The panoramic radiographs were examined by a single examiner, using a Kodak digital x-ray viewer, to determine the prevalence and characteristics of the impacted third molars in the sample. This also included the angulations and directions of the impacted third molars.

The classifications of the impacted mandibular and maxillary third molar teeth were as follows:

### 3.5.1.1. Angulation of impacted third molars

The angulations of the impacted third molar was recorded using Winter's classification scheme as previously detailed on pages 21-22 (Tsabedze, 2012; Hashemipour et al., 2013)

### 3.5.1.2. Level of impaction and relation to the ramus of the mandible

The level of impaction was recorded using Pell and Gregory's Classification Scheme as previously detailed on pages 23-25.

### 3.5.2. Morphometric Analysis:

3.5.2.1. The mandibular size was measured three times as follows:

- The length of the ramus of the mandible was recorded from the angle of the mandible to the head of the mandible (B to C) (Figure 27: 1)
- The width of the ramus was measured from the posterior point of the head of the mandible to the anterior point on the coronoid process (C to D) (Figure 27: 2)
- The length of the body of the mandible was recorded from the mental protuberance to the angle of the mandible (A to E) (Figure 27: 3)


Figure 27: Measurement of the mandible on a panoramic $x$-ray of the jaw (Adapted http://www.head-face-med.com)

## KEY:

A: Mental Protuberance
B: Angle of the mandible (Right side)
C: Head of the mandible
D: Coronoid process of the mandible
E: Angle of the mandible (Left side)
F: Body of the mandible

### 3.6. STATISTICAL ANALYSIS

The collected data was captured and analyze. A comparison between the different ages, sex and mandiblar size was made using the Statistical Package for Social Sciences (SPSS version 21.0) with the assistance of a biostatistician. The statistics used included the mean, range and standard derivation for each age interval. The Pearson Chi-Square test, Anova and Independent sample T-test was used to analyse the relationship between age, sex and the prevalence of impaction. A 95\% confidence level was adhered to for all statistical tests. A pvalue of less than 0.05 was considered to be statistically significant. The reliability and validity of this study was maintained by measuring each morphometric parameter three times and an average was calculated and recorded (Appendix 2).

## CHAPTER FOUR

RESULTS

### 4.1. SAMPLE DEMOGRAPHICS

In this study, a total of 340 ( 164 males; 174 females) digital panoramic radiographs of patients, aged between 16 to 30 years were reviewed and analyzed using the Kodak Digital X-ray Software.

### 4.2. PREVALENCE OF IMPACTED THIRD MOLAR

Of the 340 panoramic radiographs, 265 ( $77.9 \%$ ) were found to have at least one impacted third molar with a male: female ratio of 124:141 (i.e. 1:1.1) (Figure 28). A total of 851 impacted third molar teeth were identified among the 265 patients. The number of impacted third molars varied from 1 to 4 impactions. A majority of patients ( $60.0 \%$ ) presented with impaction of viz. i) all four third molars ( $60.0 \%$ ), ii) by impaction of two ( $21.5 \%$ ), iii) three ( $9.8 \%$ ) and iv) one molar tooth ( $8.7 \%$ ). The prevalence of these is indicated in Table 11 and Figure 28 and 29 on page 58. In addition, third molar impaction was slightly more prevalent on the left side of the mandible in comparison to the right (Figure $29-\mathrm{Pg} .58$ ).

Table 11: Prevalence of the number of impacted third molars

| No. of <br> Impactions | Males |  |  | Females |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Right | Left | Both | Right | Left | Both |
| One <br> (Plate 1 and 2) | 1 | 7 | 8 | 3 | 12 | 15 |
| Two <br> (Plate 3 and 4) | 30 | 30 | 30 | 28 | 26 | 27 |
| Three <br> (Plate 5 and 6) | 21 | 24 | 15 | 15 | 18 | 11 |
| Four <br> (Plate 7 and 8) | 144 | 144 | 72 | 174 | 174 | 87 |



Plate 1: One left third mandible third molar impaction in a male patient


Plate 2: One left third mandible third molar impaction in a female patient


Plate 3: Two third mandible third molar impaction in a male patient


Plate 4: Two mandible third molar impaction in a female patient


Plate 5: Three third molar impaction in a male patient


Plate 6: Three third molar impaction in a female patient


Plate 7: Four third molar impaction in a male patient


Plate 8: Four third molar impaction in a female patient


Figure 28: Prevalence of the number of impacted third molar teeth in relation to sex


Figure 29: Prevalence of the number of impacted third molar teeth in relation to side

### 4.3. DISTRIBUTION OF IMPACTED TEETH IN THE MANDIBLE AND MAXILLA

The proportion of impacted mandibular third molars was significantly higher than the impacted maxillary third molar in both sexes $(\mathrm{P}$-value $=0.000)($ Table 12). Impacted third molar were 0.3 times more prevalent in the mandible than in the maxilla, with a ratio of 1.3: 1.0, [481:370] respectively (Figure 30). Despite the absence of statistically significant correlations between sex and mandibular and maxillary third molar impaction ( P -value $=$ 0.379 and 0.433 , respectively), both mandibular and maxillary third molar impaction was recorded to be more prevalent in females than males. The prevalence of these were: a) Mandible: [Females : $\frac{253}{481} ;(52.6 \%)$ and Males: $\frac{228}{481} ;(47.4 \%)$ ]and b) Maxilla:[Females: $\frac{201}{370}$; $(54.3 \%)$ and Males: $\frac{169}{370}$; $(45.7 \%)$ ] (Table $12 \&$ Figure 30). Third molar impaction was most prevalent of the left side of the mandible and maxilla in both sexes (Table 13). However, no statistically significant correlation between side and impacted mandibular and maxillary third molars in both sexes was recorded (Table 13).

Table 12: Distribution of impaction in the mandible and maxilla in relation to sex (in \%)

| Area of jaw | Prevalence (in \%) |  |  | P-value |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Males | Females | Total | Sex | Mandible v/s <br> Maxilla |
| Mandible | 47.4 | 52.6 | 56.5 | $\mathbf{0 . 3 7 9}$ |  |
| Maxilla | 45.7 | 54.3 | 43.5 | $\mathbf{0 . 4 3 3}$ | 0.000 |



Figure 30: Prevalence of impacted third molars in different regions of the jaw for both sexes

Table 13: Distribution of impaction in the mandible and maxilla in relation to side

| Area of jaw | Prevalence |  |  |  |  |  | $\mathbf{P}$-value |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Male |  | Female |  | Both |  | Sex |  |
|  | Right | Left | Right | Left | Right | Left | Right | Left |
| Mandible | $\begin{gathered} 112 \\ (57.7 \%) \end{gathered}$ | $\begin{gathered} 116 \\ (57.1 \%) \end{gathered}$ | $\begin{gathered} 126 \\ (56.8 \%) \end{gathered}$ | $\begin{gathered} 127 \\ (54.7 \%) \end{gathered}$ | $\begin{gathered} 238 \\ (57.2 \%) \end{gathered}$ | $\begin{gathered} 243 \\ (55.9 \%) \end{gathered}$ | 0.990 | 0.124 |
| Maxilla | $\begin{gathered} 82 \\ (42.3 \%) \end{gathered}$ | $\begin{gathered} 87 \\ (42.9 \%) \end{gathered}$ | $\begin{gathered} 96 \\ (43.2 \%) \end{gathered}$ | $\begin{gathered} 105 \\ (45.3 \%) \end{gathered}$ | $\begin{gathered} 178 \\ (42.8 \%) \end{gathered}$ | $\begin{gathered} 192 \\ (44.1 \%) \end{gathered}$ | 0.195 | 0.640 |
| Total | $\begin{gathered} 194 \\ (48.9 \%) \end{gathered}$ | $\begin{gathered} 203 \\ (51.1 \%) \end{gathered}$ | $\begin{gathered} 222 \\ (48.9 \%) \end{gathered}$ | $\begin{gathered} 232 \\ (51.1 \%) \end{gathered}$ | $\begin{gathered} 416 \\ (48.9 \%) \end{gathered}$ | $\begin{gathered} 435 \\ (51.1 \%) \end{gathered}$ | 0.889 | 0.901 |

### 4.4. PREVALENCE OF ANGULATION

The type of angulation for the impacted third molars was classified according to Winter's Classification Scheme (1926).

### 4.4.1. Prevalence of mandibular third molar angulation

The most common type of angulation for impacted mandibular third molars in both sexes was mesio-angulation (tilted towards the front of the mouth), followed by vertical angulation (parallel to the adjacent second molar), with the least prevalent being disto angulation (tilted towards the posterior end of the mouth) (Table 14 and Figure 31). The prevalence for the aforementioned was: a) $\frac{253}{481}[52.6 \%]$; b) $\frac{118}{481}$ [24.5\%] and c) $\frac{2}{481}$ [0.4\%], respectively (Table 14 and Figure 31). For the correlation with age, only the type of angulation for the left side of the mandible was statistically significant $(\mathrm{P}$-value $=0.006)($ Table 14 $)$.

Table 14: Prevalence of mandibular third molar angulation according to Winter's classification (in \%)

| Type of Impaction | Prevalence (in \%) |  |  |  |  |  |  | P-Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Males |  |  | Females |  |  | Both <br> Total | Sex |  | Age |  |
|  | Right | Left | Total | Right | Left | Total |  | Right | Left | Right | Left |
| Mesio-angulation <br> (Plate 9) | 21.1 | 26.3 | 47.4 | 26.5 | 30.8 | 57.3 | 52.6 | 0.099 | 0.124 | 0.077 | 0.006 |
| Vertical angulation (Plate 10) | 11.8 | 11.0 | 22.8 | 15.0 | 11.1 | 26.1 | 24.5 |  |  |  |  |
| Horizontal angulation (Plate 11) | 14.5 | 12.3 | 26.8 | 7.5 | 6.3 | 13.8 | 20.0 |  |  |  |  |
| Buccal angulation (Plate 12) | 1.3 | 0.9 | 2.2 | 0.8 | 2.0 | 2.8 | 2.5 |  |  |  |  |
| Disto angulation (Plate 13) | 0.4 | 0.4 | 0.8 | 0.0 | 0.0 | 0.0 | 0.4 |  |  |  |  |



Figure 31: Prevalence of impacted third molars angulation in the mandible


Plate 9: Mesio-angulation impaction of the mandibular third molars


Plate 10: Vertical impaction of the mandibular third molars


Plate 11: Horizontal impaction of the mandibular third molars


Plate 12: Buccal impaction of the mandibular third molars


Plate 13: Disto-angulation impaction of the mandibular third molars

### 4.4.2. Prevalence of maxillary third molar angulation

The most prevalent type of angulation for impacted maxillary third molars in both males and females was vertical angulation, followed by disto angulation, with the least prevalent being horizontal angulation (Table 1). The prevalence for the aforementioned was: a) $\frac{250}{370}$ [67.6\%]; b) $\frac{92}{370}[24.9 \%]$ and c) $\frac{2}{370}$ [0.5\%], respectively (Table 1). A statistically significant relationship between the type of impaction the maxilla and age was recorded ( P -value $=$ $0.000)($ Table 1).

Table 15: Prevalence of maxillary third molar angulation according to Winter's classification (in \%)

| Type of Impaction | Prevalence (in \%) |  |  |  |  |  |  | P-Values |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Males |  |  | Females |  |  | Both | Sex |  | Age |  |
|  | Right | Left | Total | Right | Left | Total | Total | Right | Left | Right | Left |
| Vertical angulation (Plate 14) | 36.1 | 33.7 | 69.8 | 30.8 | 34.8 | 65.6 | 67.6 |  |  |  |  |
| Disto angulation (Plate 15) | 9.5 | 14.8 | 24.3 | 10.4 | 14.9 | 25.3 | 24.9 |  |  |  |  |
| Mesio-angulation (Plate 16) | 3.0 | 1.2 | 4.2 | 3.5 | 2.0 | 5.5 | 4.9 |  |  |  |  |
| Buccal angulation (Plate 17) | 0.0 | 0.6 | 0.6 | 3.0 | 0.5 | 3.5 | 2.2 |  |  |  |  |
| Horizontal angulation (Plate 18) | 0.0 | 1.2 | 1.2 | 0.0 | 0.0 | 0.0 | 0.5 |  |  |  |  |



Figure 32: Prevalence of impacted third molars angulation in the maxilla


Plate 14: Vertical angulation impaction of the maxillary third molars


Plate 15: Disto-angulation impaction of the maxillary third molars


Plate 16: Mesio-angulation impaction of the maxillary third molars


Plate 17: Buccal impaction of the maxillary third molars


Plate 18: Horizontal angulation impaction of the maxillary third molars

### 4.5. PREVALENCE OF THE LEVEL OF IMPACTION IN THE

## MANDIBLE AND MAXILLA

The level of impaction is determined by the depth of the impacted third molar in relation to the occlusal plane along the distance from mandibular ramus to the posterior surface of the adjacent second molar.

### 4.5.1. Depth of the mandibular third molar impaction and its relations to mandible

According to the Pell and Gregory classification scheme (1933), this study recorded class IIB to be the most prevalent type of mandibular third molar impaction, followed by class IIIC, with the least prevalent class being IA, with a prevalence of a) $\frac{264}{481}$ [67.6\%]; b) $\frac{134}{481}$ [24.9\%] and c) $\frac{86}{481}$ [17.7\%], respectively (Table 16 and Figure 33). A statistically significant relationship was recorded between each parameter and age $(P-$ value $=0.000)($ Table 16 $)$.

Table 16: Prevalence of mandibular third molar impaction according to Pell and Gregory's classification (in \%)

| Classification | Class | Prevalence (in \%) |  |  |  |  |  |  | P-Value |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Males |  |  | Females |  |  | Both | Sex |  | Age |  |
|  |  | Right | Left | Total | Right | Left | Total |  | Right | Left | Right | Left |
| Level of Impaction (Plate 19-21) | A | 3.3 | 4.4 | 8.7 | 5.4 | 4.6 | 9.0 | 17.7 | 0.545 | 0.782 | 0.000 | 0.000 |
|  | B | 13.9 | 12.9 | 27.8 | 13.9 | 14.1 | 27.0 | 54.8 |  |  |  |  |
|  | C | 6.0 | 6.9 | 12.9 | 6.9 | 7.7 | 14.6 | 27.5 |  |  |  |  |
| Relation to mandible (Plate 22 - 24) | I | 3.3 | 4.4 | 8.7 | 5.4 | 4.6 | 9.0 | 17.7 | 0.596 | 0.790 | 0.000 | 0.000 |
|  | II | 13.9 | 12.9 | 27.8 | 13.9 | 14.1 | 27.0 | 54.8 |  |  |  |  |
|  | III | 6.0 | 6.9 | 12.9 | 6.9 | 7.7 | 14.6 | 27.5 |  |  |  |  |



Figure 33: Prevalence of the level of impacted mandibular third molars and its relations to the mandible in both sexes and side


Plate 19: Class A-Mandibular third molar impaction


Plate 20: Class $\boldsymbol{B}$-Mandibular third molar impaction


Plate 21: Class $C$-Mandibular third molar impaction


Plate 22: Class I-Mandibular third molar impaction


Plate 23: Class II-Mandibular third molar impaction


Plate 24: Class III-Mandibular third molar impaction

### 4.5.2. Depth of maxillary third molar impaction

Class A $\left[\frac{288}{370} ;(77.8 \%)\right]$ was recorded to be the most common type of maxillary third molar impaction, followed by class C $\left[\frac{51}{370} ;(13.8 \%)\right]$ and class B $\left[\frac{31}{370} ;(8.4 \%)\right]$, respectively (Table 17 and Figure 34). No statistically significant relationship was recorded between the class of impaction and sex. However, for the correlation with age, the level of impaction was statistically significant $(\mathrm{P}-$ value $=0.000)$

Table 17: Prevalence of maxillary third molar impaction according to Pell and Gregory's classification (in \%)

| Classification | Class | Prevalence (in \%) |  |  |  |  |  |  | P-Value |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Males |  |  | Females |  |  | Both | Sex |  | Age |  |
|  |  | Right | Left | Total | Right | Left | Total |  | Right | Left | Right | Left |
| Level of Impaction (Plate 25-27) | A | 17.0 | 20.0 | 37.0 | 18.4 | 22.4 | 40.8 | 77.8 | 0.968 | 0.797 | 0.000 | 0.000 |
|  | B | 2.2 | 2.2 | 4.4 | 1.6 | 2.4 | 4.0 | 8.4 |  |  |  |  |
|  | C | 3.0 | 3.8 | 6.8 | 3.5 | 3.5 | 7.0 | 13.8 |  |  |  |  |



Figure 34: Prevalence of the level of impacted maxillary third molars in both sexes and side


Plate 25: Class A: Maxillary third molar impaction


Plate 26: Class B: Maxillary third molar impaction


Plate 27: Class C: Maxillary third molar impaction

### 4.6. SEX DETERMINATION

A higher prevalence of impacted third molars was recorded in females, with an prevalence of $53.2 \%\left[\frac{141}{265}\right]$, in comparison to males who had an prevalence of $46.8 \%\left[\frac{124}{265}\right]$ (Table 18 and Figure 35). A male to female ratio of 1:1.3 [124:141] was recorded in this study.

Table 18: Prevalence of impacted third molars in males and females (in \%)

|  | Prevalence of impacted third molars (in \%) |  |  |
| :---: | :---: | :---: | :---: |
|  | Males | Females | Total |
| Impaction | 46.8 | 53.2 | 77.9 |



Figure 35: Prevalence of impacted third molars in both sexes

### 4.7. AGE DISTRIBUTION

Majority of the third molar impactions was found in the 20-25 year age interval, as a prevalence of $36.6 \%\left[\frac{97}{265}\right]$ was recorded. Females had a greater prevalence than males in both the 16-19 $\left[\frac{50}{94}\right]$ and 20-25 $\left[\frac{54}{97}\right]$ year age intervals; however for the $26-30\left[\frac{37}{74}\right]$ year age interval the prevalence of the impacted third molar was equivalent in both sexes (Table 19).

Table 19: Prevalence of impacted third molars in different age categories

| Age Group <br> (Years) | Prevalence of impacted third molars |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Males | Females | Total | Total (in \%) |
| $\mathbf{1 6 - 1 9}$ | 44 | 50 | 94 | 35.5 |
| $\mathbf{2 0 - 2 5}$ | 43 | 54 | 97 | 36.6 |
| $\mathbf{2 6}-\mathbf{3 0}$ | 37 | 37 | 74 | 27.9 |

### 4.8. ETHNIC DISTRIBUTION

### 4.8.1. Prevalence of impaction

In this study, $83.7 \%\left[\frac{222}{265}\right]$ of impacted third molars belonged to the Indian ethnic group, followed by the Black $\left[\frac{35}{265} ;(13.2 \%)\right]$; Coloured $\left[\frac{6}{265} ;(2.3 \%)\right]$ and White $\left[\frac{2}{265} ;(0.8 \%)\right]$, respectively (Table 20 and Figure 36).

Table 20: Ethnic distribution of patients with impacted third molars (in \%)

| Ethnic Group | Prevalence of impaction (in \%) |  |  |
| :---: | :---: | :---: | :---: |
|  | Male | Female | Total |
| Black | 7.5 | 5.7 | 13.2 |
| Coloured | 1.1 | 1.1 | 2.3 |
| Indian | 38.1 | 45.7 | 83.7 |
| White | 0.0 | 0.8 | 0.8 |

Ethnic distribution of individual presenting with third molar impaction


Figure 36: Ethnic distribution of the patients with impacted third molars

### 4.8.2. Prevalence of impaction in the mandible and maxilla

The prevalence of impacted third molars was higher in the mandible than maxilla for all ethnic groups (Black; Indian; Coloured), excluding the White group who presented with equal prevalence of impacted third molars in the mandible and maxilla. The prevalence of these were: (Table 21)
a) Black : Mandible: $\left[\frac{66}{851} ;(7.8 \%)\right]$ and Maxilla $\left[\frac{48}{851} ;(5.6 \%)\right]$
b) Coloured : Mandible: $\left[\frac{11}{851} ;(1.3 \%)\right]$ and Maxilla $\left[\frac{9}{851} ;(1.0 \%)\right]$
c) Indian : Mandible: $\left[\frac{400}{851} ;(47.0 \%)\right]$ and Maxilla $\left[\frac{309}{851} ;(36.3 \%)\right]$
d) White : Mandible: $\left[\frac{4}{851} ;(0.5 \%)\right]$ and Maxilla $\left[\frac{4}{851} ;(0.5 \%)\right]$

Table 21: Ethnic distribution of impacted third molars in the mandible \& maxilla

| Ethnic Group | Prevalence of impaction |  |  |
| :---: | :---: | :---: | :---: |
|  | Mandible | Maxilla | Total |
| Black | 66 <br> $(7.8 \%)$ | 48 <br> $(5.6 \%)$ | 114 <br> $(13.4 \%)$ |
|  | 11 <br> $(1.3 \%)$ | 9 <br> $(1.0 \%)$ | 20 <br> $(2.4 \%)$ |
| Indian | 400 <br> $(47.0 \%)$ | 309 <br> $(36.3 \%)$ | 709 <br> $(83.3 \%)$ |
| White | 4 <br> $(0.5 \%)$ | 4 | 381 <br> $(56.5 \%)$ |
| Total |  | 370 <br> $(43.5 \%)$ | 851 |
|  |  |  | $(100 \%)$ |

### 4.8.2.1. Prevalence of impaction in the mandible and maxilla in relation to sex

There was wide variation in the prevalence of impacted mandibular and maxillary third molars when correlated to sex. For the Black population, males presented with a higher prevalence of impacted third molars than females in both the mandible and maxilla, whereas in the Indian population, impacted third molars was more prevalent in females than males (Table 22). For the Coloured group, females $\left[\frac{6}{851} ;(0.7 \%)\right]$ had a slightly higher prevalence of impacted third molars in the mandible than males $\left[\frac{5}{851} ;(0.6 \%)\right]$ however, in the maxilla males $\left[\frac{5}{851} ;(0.6 \%)\right]$ exhibited a slightly higher prevalence of impaction than females $\left[\frac{4}{851} ;(0.5 \%)\right]$. In the White group, no correlation with sex could be made as no White males were sampled in this study.

Table 22: Ethnic distribution of impacted third molars in the mandible \& maxilla with sex

| Ethnic Group | Prevalence of impaction |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Mandible |  | Maxilla |  |
|  | Male | Female | Male | Female |
| Black | $\begin{gathered} 38 \\ (4.5 \%) \end{gathered}$ | $\begin{gathered} 28 \\ (3.3 \%) \end{gathered}$ | $\begin{gathered} 29 \\ (3.4 \%) \end{gathered}$ | $\begin{gathered} 19 \\ (2.2 \%) \end{gathered}$ |
| Coloured | $\begin{gathered} 5 \\ (0.6 \%) \end{gathered}$ | $\begin{gathered} 6 \\ (0.7 \%) \end{gathered}$ | $\begin{gathered} 5 \\ (0.6 \%) \end{gathered}$ | $\begin{gathered} 4 \\ (0.5 \%) \end{gathered}$ |
| Indian | $\begin{gathered} 185 \\ (21.7 \%) \end{gathered}$ | $\begin{gathered} 215 \\ (25.2 \%) \end{gathered}$ | $\begin{gathered} 135 \\ (15.9 \%) \end{gathered}$ | $\begin{gathered} 174 \\ (20.4 \%) \end{gathered}$ |
| White | $\begin{gathered} 0 \\ (0.0 \%) \end{gathered}$ | $\begin{gathered} 4 \\ (0.5 \%) \end{gathered}$ | $\begin{gathered} 0 \\ (0.0 \%) \end{gathered}$ | $\begin{gathered} 4 \\ (0.5 \%) \end{gathered}$ |

The relationship between impacted mandibular and maxillary third molars in each ethnic group can be seen in Figure 37. The prevalence in each ethnic group were:
a) Black : Mandible [Males: $\frac{38}{66} ;(57.6 \%)$ and Females: $\frac{28}{66} ;(42.4 \%)$ ]
: Maxilla [Males: $\frac{29}{48}$; (60.4\%) and Females: $\frac{19}{48} ;(39.6 \%)$ ]
b) Coloured : Mandible [Males: $\frac{5}{11}$; ( $45.5 \%$ ) and Females: $\frac{6}{11}$; (54.5\%)]
: Maxilla [Males: $\frac{5}{9} ;(55.6 \%)$ and Females: $\left.\frac{4}{9} ;(44.4 \%)\right]$
c) Indian : Mandible [Males: $\frac{185}{400}$; ( $\left.46.3 \%\right)$ and Females: $\frac{215}{400}$; (53.7\%)]
: Maxilla [Males: $\frac{135}{309} ;(43.7 \%)$ and Females: $\frac{174}{309} ;(56.3 \%)$ ]
d) White : Mandible [Males: $\frac{0}{4} ;(0.0 \%)$ and Females: $\frac{4}{4} ;(100 \%)$ ]
: Maxilla [Males: $\frac{0}{4} ;(0.0 \%)$ and Females: $\left.\frac{4}{4} ;(100 \%)\right]$


Figure 37: Distribution of impacted mandibular and maxillary third molars in each ethnic group

### 4.9. MORPHOMETRIC ANALYSIS OF THE MANDIBLE

The results depicted in Table 23 shows significant differences in all linear measurements between males than females. The length of the male mandibular ramus was significantly longer than the female, on both sides of the mandible $(\mathrm{P}$-value $=0.000)$. However, there was no significant difference in the width of the mandibular ramus between the two sexes (Table 23). On the other hand, only the relationship between the length of the right mandibular body and sex displayed a statistically significant difference $(\mathrm{P}$-value $=0.040)$ (Table 23). The correlation between all morphometric parameters and race showed a statistically significant relationship (Table 23).

Table 23: Morphometric analysis of the mandible with gender distribution (mm)

| Parameters | Side | Measurements (in mm) |  | P-value |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Females | Both | Sex | Age | Race |  |
| Length of ramus | Right | 59.6 | 53.9 | $\mathbf{5 6 . 5}$ | 0.000 | 0.111 | $\mathbf{0 . 0 1 5}$ |
| Length of ramus | Left | 60.1 | 54.3 | $\mathbf{5 7 . 0}$ | 0.000 | 0.153 | $\mathbf{0 . 0 3 4}$ |
| Width of ramus | Right | 36.0 | 35.5 | $\mathbf{3 5 . 8}$ | 0.625 | 0.537 | $\mathbf{0 . 0 0 1}$ |
| Width of ramus | Left | 35.1 | 34.2 | $\mathbf{3 4 . 6}$ | 0.414 | 0.479 | $\mathbf{0 . 0 0 2}$ |
| Length of body | Right | 86.5 | 83.0 | $\mathbf{8 4 . 6}$ | $\mathbf{0 . 0 4 0}$ | 0.799 | $\mathbf{0 . 0 0 0}$ |
| Length of body | Left | 83.3 | 81.0 | $\mathbf{8 2 . 0}$ | 0.147 | 0.0735 | $\mathbf{0 . 0 0 0}$ |

For all age intervals the morphometric parameters of the mandible were greater in males than females with the exception of the $16-19$ year group that displayed a wider mandibular ramus in females. The general trend observed in this study for both males and females was that as the age of the individual increased, the size of the mandible also increased, however a slight decrease was noted for the width of the ramus in females and the length of the body in males (Table 24).

Table 24: Morphometric analysis of the mandible for various age groups (mm)

| Parameter | Side | Measurements (in mm) |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Males |  |  | Females |  |  |
|  |  | $\mathbf{1 6 - 1 9}$ | $\mathbf{2 0}-\mathbf{2 5}$ | $\mathbf{2 6}-\mathbf{3 0}$ | $\mathbf{1 6}-\mathbf{1 9}$ | $\mathbf{2 0} \mathbf{- 2 5}$ | $\mathbf{2 6}-\mathbf{3 0}$ |
| Length of ramus | Right | 57.5 | 60.4 | 61.1 | 54.1 | 52.7 | 55.3 |
| Length of ramus | Left | 57.4 | 61.7 | 61.4 | 54.4 | 53.8 | 54.8 |
| Length of ramus | Both | $\mathbf{5 7 . 5}$ | $\mathbf{6 1 . 1}$ | $\mathbf{6 1 . 3}$ | $\mathbf{5 4 . 3}$ | $\mathbf{5 3 . 3}$ | $\mathbf{5 5 . 1}$ |
| Width of ramus | Right | 35.6 | 35.5 | 37.1 | 36.1 | 35.1 | 35.4 |
| Width of ramus | Left | 34.3 | 35.1 | 36.0 | 36.6 | 34.1 | 33.9 |
| Width of ramus | Both | $\mathbf{3 5 . 0}$ | $\mathbf{3 5 . 3}$ | $\mathbf{3 6 . 6}$ | $\mathbf{3 6 . 4}$ | $\mathbf{3 4 . 6}$ | $\mathbf{3 4 . 7}$ |
| Length of body | Right | 87.1 | 86.1 | 86.3 | 82.3 | 82.9 | 84.0 |
| Length of body | Left | 83.8 | 82.7 | 83.4 | 80.1 | 80.7 | 82.4 |
| Length of body | Both | $\mathbf{8 5 . 5}$ | $\mathbf{8 4 . 4}$ | $\mathbf{8 4 . 9}$ | $\mathbf{8 1 . 2}$ | $\mathbf{8 1 . 8}$ | $\mathbf{8 3 . 2}$ |

## CHAPTER FIVE

 DISCUSSION
### 5.1. BRIEF OVERVIEW

Tooth impaction is a pathological condition in which a tooth is completely or partially unerupted and positioned against another tooth, bone or soft tissue, so that further eruption is unlikely to occur (Ramamurthy et al., 2012). There is considerable variability with regard to the prevalence and distribution of impacted teeth in different regions of the jaw (Chu et al., 2003). There are many factors affecting the prevalence, which include the selected age group, the time of eruption, genetics, dietary habits and the radiographic criteria for development and eruption (Chu et al., 2003 and Omar, 2008).

### 5.2. SAMPLE

340 digital panoramic radiographs of patients that met the inclusion criteria were utilized in this study. Of this 340,265 patients ( 124 males; 141 females) presented with at least one impacted third molar tooth. In this study, only $10 \%$ of digital panoramic radiographs were obtained from the Public Sector as the instrumentation (Panoramic X-ray Machine) was inoperational and a high number of digital radiographs lacked the demographic data (sex, age and ethnic group) required for this study. In addition, at the time of this write up, King Edward Hospital was still awaiting the Digital Kodak Software. This researcher had no alternative but to amend the protocol and seek digital panoramic radiographs from Private Practices within the Durban Region due to time constraints.

### 5.3. PREVALENCE OF IMPACTED THIRD MOLARS

### 5.3.1. Gross Prevalence

Third molar impaction is a common problem affecting a large proportion of the world's population. In this study, the prevalence of impacted third molar in the Greater Durban Metropolitan area of KwaZulu-Natal in South Africa was estimated at $77.9 \%\left[\frac{265}{340}\right]$, which differs significantly when compared to the calculated weighted mean of $31.3 \%$ in a comparable series of studies (Table 25). When compared to individual studies however similarities where noted in that Elsey and Rock. (2000) reported a $73.0 \%$ prevalence of impacted third molars among the young European population (Juodzbalys and Daugela, 2013). On the other hand, the prevalence recorded in this study was higher than that reported by Sandhu and Kapila (1982); Chu et al. (2003); Quek et al., (2003) and Hashemipour et al. (2013) (Table 25). Majority of the panoramic radiographs in this study was obtained from Private Practices, therefore this may be a contributing factor for the high prevalence of impacted third molars recorded, as most commonly only patients who present with a dental problem consults a Dental Practitioner. Additionally, literature states that the discrepancy in the prevalence of the impacted third molars may be due to genetic or racial differences, which are two of the most important factors contributing to tooth impaction (Hashemipour et al., 2013). In addition, Syed et al (2013) stated that another contributing factor to impacted third molars is the relative jaw size in relation to the cumulative teeth size, this may result from the difference in dietary habits as this varies from one region to another (Omar, 2009 and Syed et al., 2013).

Table 25: Prevalence of impacted third molars in different population groups

| Authors | Year | Population | Sample <br> Size | Prevalence of impacted third <br> molars (\%) |
| :---: | :---: | :---: | :---: | :---: |
| Sandhu and Kapila | 1982 | Indian | 1015 | 26.0 |
| Hattab et al. | 1995 | Jordanaian | 232 | 33.0 |
| Elsey and Rock | 2000 | European | - | 73.0 |
| Chu et al. | 2003 | Hong Kong Chinese | 7486 | 27.8 |
| Quek et al. | 2003 | Singaporean | 1000 | 68.6 |
| Omar | 2008 | Hawler | 1150 | 43.8 |
| Ramamurthy et al. | 2012 | Indian | 1005 | 41.3 |
| Tsabedze | 2012 | South African | 1215 | 17.0 |
| Hashemipour et al. | 2013 | Irani | 2300 | 44.3 |
| Sabra and Soliman | 2013 | Saudi Arabian | 113 | 67.9 |
| Syed et al. | 2013 | Saudi Arabian | 3800 | 18.7 |
| Present Study | 2014 | South African | 340 | 31.3 |

### 5.3.2. Prevalence of third molar impaction in relation to age range sampled

This study analysed radiographs of patients aged between 16-30 years, which compares with previous studies conducted by Omar, (2008) and Sabra and Solimon, (2013), who recorded the prevalence of the impacted third molars to be $43.8 \%$ and $67.9 \%$, respectively in a similar age group (Table 26). In contrast to this study, previous authors analyzed radiographs of patients older than 30 years (Chu et al., 2003; Tsabedze, 2012; Hashemipour et al., 2013 and

Syed et al., 2013) (Table 26). These authors found a lower prevalence of impacted third molar teeth, with a prevalence of $27.8 \% ; 17.0 \% ; 44.3 \%$ and $18.9 \%$, respectively. In general, because the third molar teeth erupts between 17-21 years (Juodzbalys and Daugela, 2013), there is a higher prevalence in the under 30 year population group, as in this study. Age is thus an apparently important factor in determining prevalence as the prevalence of impaction decreases in frequency with an increase in age (Chu et al., 2003 and Syed et al., 2013).

Table 26: Prevalence of impacted third molars in different population groups

| Authors | Year | Population | Prevalence of impacted third <br> molars (\%) | Age range |
| :---: | :---: | :---: | :---: | :---: |
| Chu et al. | 2003 | Hong KongChinese | 27.8 | $17-89$ |
| Quek et al. | 2003 | Singaporean | 68.6 | $20-40$ |
| Omar | 2008 | Hawler | 43.8 | $17-30$ |
| Tsabedze | 2012 | South African | 17.0 | $17-51$ |
| Hashemipour et al. | 2013 | Iranian | 44.3 | $19-55$ |
| Sabra and Soliman | 2013 | Saudi Arabian | 67.9 | $18-26$ |
| Syed et al. | 2013 | Saudi Arabian | 18.7 | $18-45$ |
| Present Study | $\mathbf{2 0 1 4}$ | South African | 77.9 | $\mathbf{1 6}-\mathbf{3 0}$ |

From Table 26, it is noted that the prevalence of impacted third molars is influenced by the age of the population sampled. Sabra and Soliman (2013), for example, reported a $67.9 \%$ prevalence among the 18-26 year old Saudi Arabian population, whereas Syed et al. (2013) recorded a $18.7 \%$ prevalence of impacted third molars in the $18-45$ year old in the same population. Similarly, the present study recorded a prevalence of $77.9 \%$ of impacted third
molars among the 16-30 year age group, whereas Tsabedze reported a $17.0 \%$ prevalence among a $17-51$ year age group. Another possible explanation from literature for the wide variation in prevalence could be that the dietary habits of individuals differ in different regions that have the same ancestral population group (Syed et al., 2013).

### 5.4. DISTRIBUTION OF IMPACTED TEETH IN THE MANDIBLE AND MAXILLA

### 5.4.1. Gross Prevalence

The prevalence of the impacted third molar teeth in this study is higher in the mandible as compared to the maxilla, with a prevalence of $56.5 \%$ and $43.5 \%$, respectively (Table 27). This result concurs with some previous studies (Sandhu and Kapila, 1982; Chu et al., 2003 and Omar, 2008). The prevalence of impacted third molar in the maxilla in the current study compared positively with a statistically significant calculated weighted mean of $20.8 \%$ (Table 27). However, in other studies, Kramer and William (1970) and Kruger, (1984) recorded the prevalence of the impacted maxillary third molars to be more frequently impacted than mandibular third molar teeth (Table 27). The ratio of the mandibular to maxillary third molar impaction is 1.3: 1. In contrast, Syed et al. (2013) recorded a higher ratio of 2.68: 1 in a Saudi Arabian population. There is a paucity of literature regarding this occurrence, and most studies attribute the population-specific difference in the prevalence of impaction to genetic and dietary differences (Omar, 2009; Syed et al., 2013 and Ramamurthy et al., 2013)

Table 27: Distribution of impacted third molars in the mandible and maxilla

| Authors | Year | Population | Sample size | Prevalence of impacted third molar (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Mandible | Maxilla |
| Kramer | 1970 | American | - | 33.47 | 58.87 |
| Sandhu and Kapila | 1982 | Indian | 1015 | 63.21 | 36.79 |
| Kruger | 1984 | - | - | 37.44 | 62.57 |
| Chu etal. | 2003 | Hong Kong Chinese | 7486 | 82.50 | 15.60 |
| Omar | 2008 | Hawler | 1150 | 59.04 | 39.42 |
| Hashemipour et al. | 2013 | Iranian | 1215 | 54.90 | 28.80 |
| Syed et al. | 2013 | Saudi Arabian | 3800 | 49.40 | 18.40 |
| Weighted mean |  |  |  | 68.50 | 20.80 |
| Present Study | 2014 | South African | 340 | 56.50 | 43.40 |

### 5.4.2. Aetiology of the prevalence of mandibular and maxillary third molar impaction

A number of theories have been purposed to explain the higher prevalence of impacted third molar teeth in the mandible than the maxilla. Broadbent (1943) proposed that mandibular third molar impaction occurs when the mandible fails to achieve its full growth potential. Ricketts (1979), on the other hand believed that impacted third molar teeth is related to the arcial growth of the mandible as he explained that the retromolar space (a space between the second molar and the anterior border of the ramus) was created for normal development of
third molars by a mesial (forward) direction of tooth eruption instead of the resorption at the anterior border of the ramus. Popescu and Popoviou (2008) offered the view that growth in the mandible is said to be one of the causes of impacted mandibular third molars, that is, as the third molars develop within the retromolar space, reduced skeletal growth leads to small retromolar space hence insufficient room for normal eruption of the mandibular third molars. Furthermore, the authors stated that maxillary third molar are less frequently impacted in comparison to mandibular third molars, as the obstacle of impaction is not a bone but rather a soft tissue blockage (gum tissue). Lakhani et al. (2011) concur with Popescu and Popoviou (2008), as they recorded that the ramus of the mandible increased in size by resorption at the anterior surface and deposition at the posterior surface, therefore if resorption at the anterior surface is restricted, the mandibular third molars have insufficient space to erupt. Another theory by Miloro et al. (2012) states that the failure of the third molar to rotate (from the horizontal original growth angle to a mesio-angular, then to a vertical position) and erupt into a vertical position involves the relation of the bony mandibular arch length to the total of the mesiodistal widths of the teeth in the arch, as there is insufficient spaces between the alveolar process and the anterior border of the mandibular ramus to allow the third molar to erupt in its normal position. In addition, Miloro et al. (2012) noted that patients with impacted teeth have larger-sized teeth than those without impaction.

### 5.4.3. Impacted third molars in the mandible and maxilla in relation to sex

The prevalence of the impacted mandibular third molars has a higher frequency in both males ( $57.4 \%$ ) and females ( $55.7 \%$ ), as compared to the impacted maxillary third molars, which has a prevalence of $42.6 \%$ and $44.3 \%$ in males and females in this study. These findings concur with Quek et al. (2003) and Syed et al. (2013), who concluded that mandibular third molar impaction is more prevalent in both males and females (Table 28). In this study, the
impacted maxillary third molar teeth showed a higher prevalence in females (44.3\%) as compared to males $(42.6 \%)$. Contrary to this expectation, the impacted mandibular third molar showed a higher frequency in males ( $57.4 \%$ ) than females ( $55.7 \%$ ). These results of this study collaborated with Quek et al. (2003) and Syed et al. (2013) (Table 28). There is paucity in the literature regarding these findings. Indira et al. (2012) stated that male bones are usually larger and stronger than females. Therefore, the present study postulates that the size of the maxilla plays an essential role in the prevalence of impaction as females generally have a smaller maxilla than males, consequently resulting in insufficient room for the eruption of third molars. In addition, Behbehani and Artun (2006) found that a small mandibular plane [a line parallel to the lower border of the mandible (Jamieson. 1940)] and gonial angle [formed by a tangent to the lower border of the mandible to a tangent touching the posterior border of the ramus at the two points (Jensen and Palling. 1954)] increases the frequency of mandibular third molar impaction. Chloe et al. (2013) recorded a significantly larger gonial (mandibular) angle in females than males, therefore the current study proposes that mandibular third molar impaction is more prevalent in males than females due to a smaller gonial angle.

Table 28: Distribution of impacted mandibular \& maxillary third molars in males and females

| Authors | Year | Population | Prevalence of impacted third molar (\%) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mandible |  | Maxilla |  |
|  |  |  | Males | Females | Males | Females |
| Quek et al. | 2003 | Singapore Chinese | 472.0 | 607.0 | 102.0 | 204.0 |
|  |  |  | 82.2\% | 74.8\% | 17.8\% | 25.2\% |
| Syed etal. | 2013 | Saudi Arabian | 299.0 | 53.0 | 108.0 | 23.0 |
|  |  |  | 49.5\% | 48.6\% | 17.9\% | 21.1\% |
| Present Study | 2014 | South <br> African | 228.0 | 253.0 | 169.0 | 201.0 |
|  |  |  | 57.4\% | 55.7\% | 42.6\% | 44.3\% |

### 5.5. PREVALENCE OF ANGULATION

### 5.5.1.1. Gross prevalence of mandibular third molar angulation

In the present study, the most prevalent pattern of impacted mandibular third molars is mesioangulation (52.4\%), followed by vertical angulation impaction (24.5\%), with the least prevalent being disto-angulation impaction $(0.8 \%)$. This study concurs with the findings of Tsabedze, (2012), who reported mesio-angulation being the most prevalent type of impaction in the Limpopo Province (South Africa), with a prevalence of $51.9 \%$. The current study postulates that this result could be due to a reduced jaw size among South Africans due to a common South African diet.

Likewise, the results of this study confirms previous studies conducted by ChaparroAvendano et al. (2005); Biswari et al. (2010); Khan et al. (2010); Sabra and Soliman, (2013) and Syed et al. (2013), all of who reported that mesio-angulation is the most pervasive type of impaction in the Spanish; Indian; Pakistan and Saudi Arabian population, respectively (Table 29 - Pg 97). Consequently, these findings may correlate with the present study due to the high frequency of the Indian ethnic group.

However, the current study differed from Bataineh et al. (2002); Sasano et al. (2003) and Almendros-Marques et al. (2008). They had recorded vertical impaction as the most frequent pattern of the mandibular third molar impaction (Table 29 - Pg 97 ).

Numerous theories have been postulated in the previous literature to explain the development of impacted mandibular third molars (Judzbalys and Daugela, 2013). Miloro et al. (2012) for instance, stated that the change in orientation of the occlusal surface from a straight mesial direction (towards the front of the mouth) to a straight vertical direction (parallel to the adjacent second molar) occurs primarily during root formation, and that it maybe during this time, that the tooth rotates from a horizontal to mesioangular to a vertical position.

In addition, a study group at Queen's University, known as the Belfast group, proposed that the differential root growth between the mesial and distal roots causes the root to either stay mesial or move to a vertical position depending on the amount of root development (Syed et al., 2013). The aforementioned under development of the mesial root causes mesioangulation impaction, while the overdevelopment of the same root results in over-rotation of the third molar into a distoangular impaction (Miloro et al., 2012 and Syed et al., 2013). However, overdevelopment of the distal root, frequently with a mesial curve, is responsible for horizontal impaction (Figure 38) (Miloro et al., 2012).


Figure 38: Mesial curve of the distal root (Adapted from Bansal and Ajwani)

Hashemipour et al. (2013) also stated that mesio-angulation is the most common type of impaction due to late development, maturation, path of eruption and lack of space in the mandible at the later ages. In addition, the type and prevalence of angulation differs from one population group to another and this could be due to genetic, racial and dietary differences (Omar, 2009).

Contrary to the results of this study, the majority of the Hong Kong Chinese population presented with horizontal impaction (47.5\%), followed by mesio-angulation impaction (36.4\%) (Chu et al.,2003). Quek et al. (2003) recorded similar results to the current study (Table 29). Thus, population specific variations exist; in addition, the findings may also be explained by authors using different methods of classification to identify the type of angulation, as well as difference inherent in population groups (Hashemipour et al., 2013).

Table 29: Prevalence of mandibular third molar angulation according to Winter's classification

| Author | Year | Population | Highest Prevalence of angulation |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Type | Percentage |
| Bataineh et al. | 2002 | Jordanian | Vertical angulation | 61.4 |
| Sasano et al. | 2003 |  | Vertical angulation | 46.0 |
| Chu et al. | 2003 | Hong Kong Chinese | Horizontal angulation | 47.5 |
| Quek et al. | 2003 | Singapore Chinese | Mesio-angulation | 59.5 |
| Almendros- Marques et al. | 2006 | Spanish | Vertical angulation | 47.9 |
| Biswari et al. | 2010 | Indian | Mesio-angulation | 44.4 |
| Khan et al. | 2010 | Pakistani | Mesio-angulation | 48.0 |
| Tsabedze | 2012 | South African | Mesio-angulation | 51.9 |
| Sabra and Soliman | 2013 | Saudi Arabian | Mesio-angulation | 64.3 |
| Syed et al. | 2013 | Saudi Arabian | Mesio-angulation | 50.8 |
| Present Study | 2014 | South African | Mesio-angulation | 52.4 |

### 5.5.1.2. Prevalence of mandibular third molar angulation in relation to sex

The mesio-angulation pattern of impaction is most prevalent in both males ( $47.3 \%$ ) and females (57.3\%), with a higher prevalence seen in the latter, followed by vertical angulation in females ( $26.1 \%$ ) and horizontal angulation in males ( $26.8 \%$ ) (Table 30). These results are consistent with Ramamurthy et al. (2013) (Table 30). Similarly, Quek et al. (2003) reported that mesio-angulation is the most prevalent type of impaction with a prevalence of $60.6 \%$
and $58.6 \%$ in males and females, respectively. However, in constrast, they recorded that horizontal angulation is the second most prevalent in both males and females (Table 30). Ramamurthy et al. (2013) confirmed these findings in an Indian population. This may result when the dental development of the tooth lags behind the skeletal growth and maturation of the jaw, resulting in an increased prevalence of impaction, which results in a decreased influence of the tooth on the growth pattern and resorption of the mandible (Miloro et al,.2012). In addition, previous authors stated that this may be due to differential root growth among different population groups which is due to dietary, genetic and racial difference (Omar, 2009 and Miloro et al., 2012).

Table 30: Prevalence of impacted mandibular third molar angulation in males and females

| Angulation | Quek et al. (2003) |  | Ramamurthy et al. (2013) |  | Present Study (2014) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Singapore Chinese | Indian |  | South African |  |  |
|  | Males | Females | Males | Females | Males | Females |
| Mesio-angulation | $60.6 \%$ | $58.6 \%$ | $16.3 \%$ | $12.3 \%$ | $47.4 \%$ | $57.3 \%$ |
| Horizontal | $21.8 \%$ | $14.3 \%$ | $7.3 \%$ | $1.9 \%$ | $26.8 \%$ | $\mathbf{1 3 . 8 \%}$ |
| Vertical | $6.4 \%$ | $12.0 \%$ | $2.3 \%$ | $4.9 \%$ | $22.8 \%$ | $26.1 \%$ |
| Disto-angulation | $6.1 \%$ | $12.7 \%$ | 0.0 | $0.9 \%$ | $\mathbf{0 . 8 \%}$ | $\mathbf{0 . 0 \%}$ |
| Other | $1.7 \%$ | $0.7 \%$ | - | - | $2.2 \%$ | $2.8 \%$ |

### 5.5.2.1. Gross prevalence of maxillary third molar angulation

Vertical impaction $(67.7 \%)$ is recorded to be the most prevalent type of impaction in the maxilla according to Winter's (1926) Classification Scheme. This is in keeping with Hashemipour et al. (2013) and Syed et al. (2013), who recorded prevalence of $45.3 \%$ and $52.0 \%$, respectively.

However, Kruger et al. (2001) recorded that mesio-angulation was the most prevalent pattern of maxillary third molar impaction (Hashemipour et al., 2013). On the other hand, earlier studies conducted by Fonseca (1956) and Leita (1986) recorded that disto-angulation was the most frequent type of maxillary third molar impaction, viz. in $75.5 \%$ and $58.5 \%$ of cases respectively (Clovis et al., 2006). The discrepancy in findings reported by the aforementioned authors may be due to the methods of classification used to identify the type of angulation as some authors adapt the Winter's classification scheme, viz. Quek et al. (2003) (Hashemipour et al., 2013). In addition, Popescu and Popovioiu (2008) stated that malposition is commonly favoured by insufficient alveolar space necessary for the third molar to develop or erupt. Artun et al. (2005) stated that maxillary third molars generally assume different degrees of distal angulation during the primary phases of development and mesial inclination is rarely observed. As the third molar tooth germs, which have predecessors, develop from backward extension of dental lamina, at first there is insufficient space in the jaw to accommodate these germs, so in the upper jaw the molar tooth germ first develops with their occlusional surface distally and then swings into position only when the maxilla has developed sufficiently to provide room for the movement (Ragini et al. 2003). During the period of root development a vertical position is therefore essential for normal eruption to occur. Therefore, the current study also proposes that differential root growth plays a role in the angulation of the impacted maxillary third molar as there is insufficient room for the root and tooth to rotate to the vertical position.

### 5.5.2.2. Prevalence of maxillary third molar angulation in relation to sex

The current study found vertical angulation the most prevalent type of impaction in both males and females with a prevalence of $69.8 \%$ and $65.7 \%$, respectively, with the least prevalent pattern in both sexes being horizontal angulation, viz. $1.2 \%$ in males and $0.0 \%$ in females. Vertical impaction results when late eruption and maturation occurs therefore there is a lack of eruptive force, as the unerupted tooth is usually covered by soft tissue or very slightly by bone. Literature reports are insufficient to correlate the sex difference in the pattern of maxillary third molar impaction (Ramamurthy et al., 2012).

### 5.6. PREVALENCE OF THE LEVEL OF IMPACTION IN THE MANDIBLE AND MAXILLA

### 5.6.1. Level of mandibular third molar impaction and its relations to the mandible

According to the Pell and Gregory classification scheme, this study recorded class IIB (partially erupted) to be the most prevalent type of mandibular third molar impaction, followed by class IIIC (completely covered by bone) and the least prevalent class is IA (not buried by bone), with a prevalence of $54.8 \%, 27.5 \%$ and $17.7 \%$, respectively (Table 31). This concurs with Quek et al. (2003), as they reported class B to be most prevalent in $85 \%$ of the cases and, class A (5\%) as the least prevalent in the Singaporean Chinese population (Table 31). Similarly, Almendros-Marques et al. (2008) and Blondeau and Daniel (2007) reported that the highest prevalence of impacted third molars belonged to class IIB in the Spanish and Canadian population, respectively (Khan et al., 2010).

On the other hand, the result in this study were different to that of Obiechina et al. (2001) who recorded the most prevalent class of mandibular third molar impaction to be IIA (31\%),
which is similar to Monaco et al. (2004), who also classified class A (56.2\%) and class II (63\%) to be the most common type of mandibular third molar impaction in the Italian population. The findings of Jaffar and Tin (2009); Khan et al. (2010) and Hashemipour et al. (2013) were in accordance with Obiechina et al. (2001) and Monaco et al. (2004), as they reported class IIA most prevalent, which was different from the present findings (Table 31).

Table 31: Prevalence of mandibular third molar impaction according to Pell and Gregory's classification

| Author | Year | Population | Highest prevalence of impaction |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Percentage |  |
| Obiechina et al. | 2001 | Nigerian | II A | 31.0 |
| Quek et al. | 2003 | Singapore Chinese | B | 85.0 |
| Manaco et al. | 2004 | Italian | II A | $56.2 / 63.0$ |
| Jaffar and Tin | 2003 | Malaysian | II A | 45.7 |
| Khan et al. | 2006 | Pakistani | II A | 32.3 |
| Present Study | 2014 | South African | II B | 54.8 |

It is postulated that a reduced retromolar space leads to insufficient room for the third molar to erupt into its normal anatomical position, due to a blockages by the adjacent second molar and the anterior border of the ramus of the mandible. However, there are no theories in literature explaining this occurrence except for Mendelian theory, which states that the abrasive nature of the Stone Age diet had the effect of producing extensive wear creating enough room to accommodate the third molars (Tsabedze, 2012). In addition, it is theorized
here that the activity of chewing could have stimulated greater jaw size and development therefore providing more space for the third molars to erupt (Kaifu et al. 2003 and Tsabedze, 2012). Literature further states that dietary differences between the population groups, such as fibrous diets promote jaw growth as circumferential abrasion of teeth provides space for the third molars to erupt (Khan et al., 2010). Khan et al. (2010) further suggested that racial and genetics differences may also account for the variation in the level of impaction from one population to another. Syed et al. (2013) also stated that disparity of the jaw size to the tooth size further relates to dietary habits, which varies from one region to another.

### 5.6.2. Level of maxillary third molar impaction

This study found class A (77.8\%) to be the most common type of maxillary third molar impaction, followed by class C (13.8\%) and the least prevalent being class B (8.4\%) (Table 32). These findings confirmed that of Hugoson and Kugelberg. (1988), recording class A as the most frequent class of maxillary third molar impaction using the Pell and Gregory's classification scheme. Hashemipour et al. (2013) reported similar results to the present study, with the highest prevalence being class A ( $80.9 \%$ ). However, they recorded class B ( $10.9 \%$ ) as the second most prevalent, with class $\mathrm{C}(8.2 \%)$ being the least frequent type of third molar impaction (Table 32). Whereas, Quek et al. (2003) reported class B to be the most common type of maxillary third molar impaction, with a prevalence of $59.0 \%$, followed by class C (39.0\%) and class A (3.0\%) with was contrary to this study (Table 32).

Table 32: Prevalence of maxillary third molar impaction according to Pell and Gregory's classification

| Author | Year | Population | Prevalence of impaction (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Class A | Class B | Class C |
| Quek et al. | 2003 | Singapore Chinese | 3.0 | 59.0 | 39.0 |
| Hashemipour et al. | 2013 | Iranian | 80.9 | 10.9 | 8.2 |
| Present Study | 2014 | South African | 77.8 | 8.4 | $\mathbf{1 3 . 8}$ |

Regarding the discrepancy in the findings for the level of impaction of the mandible, Omar (2008) stated that the prevalence of impaction has increased in recent years due to the decrease in the functional activity of the jaws, which lead to a reduced jaw size and subsequently insufficiently space for the third molars to erupt to its normal functioning position. This was similar to the explanation provided by Khan et al. (2010) and Syed et al. (2013). The consumption of a soft food diet may be a contributing factor to the high prevalence recorded in this study, as it requires less functional activity of the jaw, which results in a reduced jaw size. In addition, a lack of compensatory periosteal apposition at the posterior outline of the maxillary tuberosities could prevent eruption of the maxillary third molars and since it is the last tooth to erupt it has to adapt to the existing space which is limited by the adjacent second molar, maxillary sinus and pterygoid fossae (Radhika et al., 2013). Omar (2009) further stated that the prevalence of impaction may differ from one population group to another as the growth of the jaw may be influenced by genetically inherited factors, lack of proper dental care, and dietary habits (Omar, 2008).

### 5.7. SEX DETERMINATION

### 5.7.1. The relationship between third molar impaction and sex

This study recorded a higher prevalence of impacted third molar teeth in females (53.2\%) in comparison to males (46.8\%), which is in agreement with Sandhu and Kapila (1982) [44.3\% males; 55.7\% females]; Omar (2008) [49.0\% males; $51.0 \%$ females] and Hashemipour et al. (2013) [35.1\% males; $64.9 \%$ females] (Table 33). The prevalence of the impacted third molars in females compare favourably with a weighted mean of $52.0 \%$ extracted from the literature (Table 33).

Hellman (1988) suggested that the jaws of females stop growing as soon as the third molars begin to erupt, whereas in males the growth of the jaws continues beyond the eruption of the third molars. Therefore the prevalence of third molar impaction is more frequent in females than males (Omar, 2008 and Ramamurthy et al., 2012). Juodzbalys and Daugela (2013) agreed with Hellman (1988) stating that the mandibular third molar teeth in males erupts approximately 3 to 6 months before females, consequently resulting in a higher prevalence of impacted mandibular third molar in females.

However, Tsabedze (2012) recorded a higher prevalence in males than females, with a male to female ratio of $1.6: 1$, whereas the ratio in the current study is $1: 1.1$. Ramamurthy et al. (2012) also recorded a higher prevalence of impacted third molars in males (51.3\%) as compared to females (48.7\%), which disagreed with the finding of this study.

Table 33: Prevalence of impacted third molars in males and females

| Authors | Year | Sample size | Population | Prevalence of impacted third molars (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Males | Females |
| Sandhu and Kapila | 1982 | 1015 | Indian | 44.3 | 55.7 |
| Omar | 2008 | 1150 | Hawler | 49.1 | 51.0 |
| Ramamurthy et al. | 2012 | 1005 | Indian | 51.3 | 48.7 |
| Tsabedze | 2012 | 1215 | South African | 64.1 | 35.9 |
| Hashemipour et al. | 2013 | 3800 | Iranian | 35.1 | 64.9 |
| Syed et al. | 2013 | 2300 | Saudi Arabian | 48.6 | 49.5 |
| WEIGTHED MEAN |  |  |  | 47.3 | 52.0 |
| Present Study | 2014 | 340 | South African | 46.8 | 53.2 |

### 5.8. AGE DISTRIBUTION

A higher prevalence of impacted third molars was recorded amongst young adults. In the present study, majority of the third molars impactions belonged to the age interval of 20-25 years, which is similar to the findings of Syed et al. (2013). A prevalence of $36.6 \%$ was reported for the 20-25 age intervals. These findings were in agreement with studies conducted by Sandhu and Kapila (1982); Omar (2008) and Tzabedze (2012), who found individuals between 21-25 years as having the highest prevalence of impacted third molars (Table 34). Similarly, Syed et al. (2013) recorded the highest prevalence of third molar impaction in the 20-25 year interval, with a prevalence of $64.5 \%$. However, Chu et al.
(2003) and Khan et al. (2010) recorded the highest prevalence of impacted third molar in individuals between 20-29 years old (Table 34).

Table 34: Highest prevalent age group for impacted third molar

| Author | Year | Population | Prevalence (\%) | Age intervals |
| :---: | :---: | :---: | :---: | :---: |
| Sandhu and Kapila | 1982 | Indian | 51.2 | $21-25$ |
| Chu et al. | 2003 | Hong Kong Chinese | 55.1 | $20-29$ |
| Omar | 2008 | Hawler | 48.9 | $21-25$ |
| Khan et al. | 2010 | Pakistani | 57.4 | $21-30$ |
| Tsabadze | 2012 | South African | 33.1 | $21-25$ |
| Sabra and Soliman | 2013 | Saudi Arabian | 57.4 | $21-23$ |
| Syed et al. | 2013 | Saudi Arabian | 64.5 | $20-25$ |
| Present Study | 2014 | South African | 36.6 | $20-25$ |

It has been shown that as the age increases there is a decrease in the prevalence of third molar impaction (Chu et al., 2003) and Syed et al., 2013). Furthermore, Biswari et al. (2010) stated that impacted mandibular third molars are most prevalent in young adults, with an estimation that one in every eleven mandibular third molar teeth, aged between $15-35$ years are impacted. However, in older adults one out of every forty six mandibular third molars are impacted (Biswari et al., 2010).

Furthermore, this study found that females between $20-25$ years presented with a higher prevalence of impacted third molars than in males (Table 35). In contrast, Tsabedze (2012)
recorded that males between $21-25$ years presented more frequently with impacted mandibular third molars than females (Table 35). This may be due to population-specific differences which vary from one region to another within the same country. In addition, these results may be influenced by the number of individuals sampled among the different gender groups.

Table 35: Highest prevalent age group for impacted third molar in males and females

| Author | Year | Population | Sample size |  | Prevalence (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Female | Males | Females | Age <br> group |  |
| Tsabedze | 2012 | South <br> African | 132 | 74 | 61.8 | 38.2 | $21-25$ |
| Present Study | $\mathbf{2 0 1 4}$ | South <br> African | $\mathbf{1 2 4}$ | $\mathbf{1 4 1}$ | $\mathbf{4 4 . 3}$ | $\mathbf{5 5 . 7}$ | $\mathbf{2 0} \mathbf{- 2 5}$ |

### 5.9. ETHNIC DISTRIBUTION

This study comprises of 56 Black, 8 Coloured, 274 Indian and 2 White patients, of this 35 Black, Coloured, 222 Indian and both White patients presented with at least one impacted third molar. This may raise the question as to why there is an uneven distribution of ethnic groups sampled. This is due to the availability of digital panoramic radiograph in the Durban region. As previous mentioned, a majority of the digital panoramic radiographs in this was obtained from the Private Sector (90\%) due to the inability to access the radiographs from the Public Sector (Pg. 86). As a result, socio-economic factors come into play as only patients that can afford dental treatment would visit a Dental Practitioner. Therefore, the access to oral health care facilities was a significant limitation of this study consequently the ethnic
distribution of this study was affected. Due to this uneven ethnic group distribution a statistically comparison cannot be made between ethnic groups. In addition, only the Indian population can be compared to previous studies as the sample size for the other ethnic groups (Black, Coloured and White) is too small to make a comparison with literature. Additionally, Tsabedze (2012) did not report of the ethnic distribution of his sample in the Limpopo Province of South Africa therefore no comparison on ethnic distribution could be made between these two studies.

### 5.9.1. Gross prevalence of impacted third molars

This study compared the Indian population from Durban to the Indian population of India. The present study recorded an $83.7 \%$ prevalence of impacted third molar in the Indian population of Durban, which was significantly higher than the prevalence recorded among the Indian population of India as Sandhu and Kapila (1982) and Ramamurthy et al. (2012) reported prevalence of $26.0 \%$ and $41.3 \%$ respectively (Table 36). This discrepancy may be due to the type of food consumed and dietary habits which differ from one population group to another (Omar, 2009). In addition the sample size of the current study was smaller than the studies conducted in India, thus may be a contributing factor to the high prevalence recorded in this study (Table 36).

Table 36: Comparison between the prevalence of impacted third molars in two populations

| Authors | Year | Population | Sample <br> Size | Prevalence of impacted third <br> molars (\%) |
| :---: | :---: | :---: | :---: | :---: |
| Sandhu and Kapila | 1982 | Indian | 1015 | 26.0 |
| Ramamurthy et al. | 2012 | Indian | 1005 | 41.3 |
| Present Study | 2014 | South African <br> (Indian) | 274 | $\mathbf{8 3 . 7}$ |

### 5.9.2. Gross prevalence of impacted third molars in the mandible and maxilla

In this study recorded a higher prevalence of impacted mandibular third molars (56.40\%) than impacted maxillary third molars $(43.60 \%)$ in the Indian population of Durban (Table 37). The findings of the current study concur with Sandhu and Kapila (1982), who reported a $63.21 \%$ and $36.79 \%$ prevalence of impacted mandibular and maxillary third molar teeth, respectively (Table 37). These findings suggest a similarity between the Indian population of Durban and that of India, consequently genetically inherited factors may influence the prevalence of impacted third molar (Omar, 2008) .

Table 37: Comparison between the prevalence of impacted mandibular \& maxillary third molars

| Authors | Year | Population | Sample <br> size | Prevalence of impacted third <br> molar (in \%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mandible |  |  |  |
| Sandhu and Kapila | 1982 | Indian | 1015 | 63.21 | 36.79 |
| Present Study | 2014 | South African <br> (Indian) | 274 | 56.40 | 43.60 |

### 5.10. MORPHOMETRIC ANALYSIS OF THE MANDIBLE

The identification of human remains is essential in forensic medicine and anthropology, especially during criminal investigations and in the identification of accidental or natural disaster victims as well as in an effort to reconstruct the lives of ancient populations (Akhlaghi et al., 2012 and Indira et al., 2012). One of the indispensable aspects of forensic medicine and anthropology is to determine sex from fragmented jaws and dentition (Indira et al., 2012). There is paucity of literature with regards to the measurements of the mandible using digital panoramic radiographs (Indira et al., 2012). In this study, the morphometric parameters of the male mandibles were greater than that in the female, which concurs with the finding of Indira et al. (2012), who stated that male bones are generally bigger and more robust than females. Duthie et al. (2007) recorded that the morphometric parameters of the mandible was longer in males than females. Consequently, third molar impaction is more prevalent in females than males, due the smaller jaw size in females. Yassir (2013) stated that this finding may be ascribed to the fact that maturation is achieved earlier in females than males, as males have a longer growth period.

### 5.10.1. Length of the mandibular ramus

In the current study, a statistically significant relationship between the length of the mandibular ramus and sex is recorded on both the right and left sides of the mandible ( P value $=0.000)($ Table 38$)$. The results of the current study confirmed that of previous studies as the authors in Table 38 recorded the length of the mandibular ramus to be longer in males than females. In addition, Rai et al. (2007) and Indira et al. (2012) stated that the mandibular ramus tends to show a higher sexual dimorphism than any of the other parameters of the mandible. Humphrey et al. (1999) stated that almost any site of mandibular bone deposition,
or resorption, or remodelling has the potential for becoming sexually dimorphic therefore, the mandibular condyle and ramus specifically are the sites associated with the greatest morphological changes in size and remodelling during growth thus showing the highest sexual dimorphism. In addition, Indira et al. (2012) stated that the development of the muscles of mastication is also known to influence the sexual dimorphism of the mandibular ramus as the masticatory forces exerted differ between the sexes. In addition, from Table 38 it is evident that morphometric differences in the mandible exist between the Northern and Southern hemispheres. Since majority of the African countries (South Africa; Kenya and Zimbabwe) recorded a longer mandibular ramus than countries of the Northern hemisphere (America; Iraq and India) (Table 38). The results of this study concur with Iscan and Steyn (1999) who documented a difference in the craniometric dimensions between South African and North American populations.

Table 38: Length of the mandibular ramus in males and female (in mm)

| Author | Year | Population | Length of mandibular ramus <br> (in mm) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Female |  |
| Burstone et al. | 1978 | American | 52.0 | 46.8 |
| Mbajorgu et al. | 1996 | Zimbabwean | 61.3 | 59.8 |
| Fabian \& Mpembeni | 2002 | Tanzanian | 49.9 | 44.2 |
| Rai et al. | 2007 | Indian | 53.9 | 51.8 |
| Kenyanya | 2011 | Kenyan | 57.7 | 52.0 |
| Shamout et al. | 2012 | Jordanian | 53.2 | 49.1 |
| Yassir | 2013 | Iraqi | 51.4 | 45.1 |
| Present Study | $\mathbf{2 0 1 4}$ | South African | $\mathbf{5 9 . 9}$ | 54.1 |

### 5.10.2. Width of the mandibular ramus

In this study, the width of the mandibular ramus is longer in males than females, which concur with the results recorded by Vinay and Gowri. (2013). However, Ranganath et al. (2008) found that the mandibular ramus is longer in females as compared to males (Table 39). Although no statistically significant relationship with age or sex was reported in this study ( P -value > 0.05), the result compared favourably with the findings of Rai et al. (2007), who reported no significant relationship between sex and breadth of the mandibular ramus. The aforementioned authors did not provide an explanation for their findings. In addition, the mean width of the mandibular ramus in this study was smaller than that recorded by Rai et al. (2007) and Vinay and Gowri (2013) in an Indian population (Table 39). However, the mean width in the current study was greater than the Japanese population (Suzuki and Takahashni, 1975), thus once again suggesting morphometric difference between the two hemispheres (Table 39).

Table 39 : Width of the mandibular ramus in males and female (in mm)

| Author | Year | Width of mandibular ramus (in mm) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Male | Female |
| Suzuki and Takahashni | 1975 | Japanese | 32.9 | 31.9 |
| Ranganath et al. | 2008 | Indian | 38.8 | 40.7 |
| Vinay and Gowri | 2013 | Indian | 41.7 | 38.9 |
| Present Study | $\mathbf{2 0 1 4}$ | South African | $\mathbf{3 5 . 6}$ | $\mathbf{3 4 . 9}$ |

### 5.10.3. Length of the mandibular body

The length of the male mandibular body in this study was longer than the female, with a mean length of 84.9 mm and 81.0 mm in males and females, respectively (Table 40), which concur with previous studies in Table 39. The mean length of the mandibular body in the current study was longer than the Indian (Jayakaran et al., 2000 and Vinay et al., 2013); Zimbabwean (Mbajorgu et al., 1996) and Iraqi population however the length was smaller than the Kenyan (Kenyanya, 2011) and Thailand (Ongkana et al., 2009) population (Table 40).

Racial, genetic and regionally differences in functional activity of the mandible during the early stages of growth development may affect its shape and size (Rai et al., 2007). Indira et al. (2012) stated that socio-environmental factors, viz. nutrition, climate, dietary habits, pathologies and a lack of proper dental care influence the growth and development, and consequently the appearance of bones. In addition, various studies confirmed that skeletal characteristics differ in each population as there are population specific osteometric standards for sex determination (Vodanovic et al., 2006; Saini et al., 2011 and Indira et al., 2012).

However, only the relationship between the length of the right mandibular body and sex displayed a statistically significant difference in this study ( P -value $=0.040$ ). There is a paucity of literature regarding this particular relationship. Luca et al. (2003) stated that mastication and dietary habits influences the growth of the mandible. They recorded that individuals who consumed an abrasive diet had larger jaws in comparison to those that had a soft diet. In addition, Weiner (2001) reported that individuals tend to favour either their right or left side, therefore this study suggests that individuals tend to favour chewing on their right side in comparison to the left.

Table 40: Length of the mandibular body in males and female (in mm)

| Author | Year | Population | Length of mandibular body (in mm) |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Male | Female |
| Mbajorgu et al. | 1996 | Zimbabwean | 77.8 | 72.3 |
| Jayakaran et al. | 2000 | Indian | 74.4 | 70.6 |
| Ongkana et al. | 2009 | Thai | 89.4 | 85.3 |
| Kenyanya | 2011 | Kenyan | 99.8 | 93.4 |
| Vinay et al. | 2013 | Indian | 75.4 | 72.5 |
| Yassir | 2013 | Iraqi | 74.9 | 69.9 |
| Present Study | 2014 | South African | $\mathbf{8 4 . 9}$ | $\mathbf{8 2 . 0}$ |

### 5.11. LIMITATION OF THIS STUDY

One of the major limitations of this study was access to oral health care facilities and lack patient demographic records (viz. age, sex and ethnic group) available at these facilities. In addition, the instrumentation in the Public Sector was inoperational during the time of data collection. Due to this, the ethnic distribution of this study appears skewed as the sample was dependent on individuals that visited a Private Dental Practitioner.

Further studies are required on a broader spectrum (larger sample size) to investigate the correlation between age and sex, and the morphometric and morphological parameters of the mandible to obtain specific standard for a homogenous South African population. The
following studies are required for a South African population: a) to establish if a relationship exists between tooth-size and the size of the mandible; b) to investigate the retromolar space in relation to third molar eruption; c) to examine the gonial angle in relation to sex and age; d) to compare the prevalence of impacted third molars between individuals of Urban and Rural areas; e) to compare the prevalence of impacted third molars between ethnic groups.

In addition, studies on root canal morphology are required to determine the accuracy of the proposed theories by the Belfast Group about the angulation of third molars in relation to the differential root growth and to determine if a relationship exists between root angulation and the angle of impaction. It is also essential to evaluate the aetiology (viz. diet) behind the high prevalence of impacted third molar teeth in the Greater Durban Metropolitan population.

## CHAPTER SIX

CONCLUSION

The highest prevalence of impacted third molars was recorded in the Greater Durban Metropolitan population, as $77.9 \%$ of the population presented with at least one impacted third molar, with third molar impaction being more prevalent in females than males (1.1:1). A greater prevalence of impacted third molar teeth was recorded in the mandible than the maxilla, with a ratio of 1.3:1, respectively. In addition, the third molar impaction was most prevalent of the left side of the mandible and maxilla in both sexes however, no statistically significant correlation between side and impacted mandibular and maxillary third molars in both males and females were recorded. In this study, the most prevalent pattern of impacted third molar was found to be mesio-angulation in the mandible and vertical angulation in the maxilla. With regard to the level of impaction, class IIB and class A were most common in the mandible and maxilla, respectively. The highest frequency of impacted third molars was recorded in the 20-25 year age group. Therefore, maxillofacial surgeons, dentists, orthodontists and anatomists may use these results to predict if the patient is a possible candidate for third molar impaction, and they are able to evaluate and provide treatment to the patient more efficiently. These results may also encourage young adults to be screened for impacted third molars before the impaction becomes severe. In addition, the inclusion of these results in the dental and medical science curricula, may enable young dental practitioners and scientists to easily identify the type of impaction, which may assist them in research and clinical procedures, such as extraction of the impacted third molars.

All the morphometric parameters (length and width of the mandibular ramus and length of the mandibular body) of the male mandibles were greater than that of the female. This study also recorded that difference exists in the aforementioned morphometric parameters of the mandible between the Northern and Southern Hemispheres. The length of the mandibular ramus may be considered as an indispensible tool in sex determination for anthropologist and forensic investigators since a statistical significant difference was recorded between males
and females $(\mathrm{P}$-value $=0.000)$. In addition, the ramus of the mandible is said to be highly resistant to damage and the disintegration process, which may be useful in providing anthropological data that can be used in dental or medico-legal procedures. There was no statistically significant relationship found between the width of the mandibular ramus with age or sex. However, the right mandibular body showed a statistically significant correlation with sex (P-value 0.040), which may suggest that individuals tend to favour chewing on their right side in comparison to their left.

REFERENCES

1. Afify AR and Zawawi KH. 2012. The prevalence of dental anomalies in the Western Region of Saudi Arabian. ISRN Dentistry. 1:5.
2. Akhlaghi M, Moradi B, Hajibeygi M. 2012. Sex determination using anthropometric dimensions of the clavicle in Iranian population. Journal of Forensic and Legal Medicine. 1-5.
3. Allan J and Kramer B. 2002. The fundamentals of Human Embryology. Student manual.63-67.
4. Almendros-Marques N, Alaejos-Algatrrae, Qunteros-Bargarello M, Berini-Aytes L, Gay-Escoda C. 2008. Factors influencing prophylactic removal of asymptomic impacted lower third molars. International Journal of Maxillofacial Surgery. 37: 2935.
5. Anthony R, Silvestri JR, Singh I. 2003. The unresolved problem of third molar Would people be better off without it?. Journal of American Dental Association.134: 450-455.
6. Artun J, Behbehani F, Thalib L. 2005. Prediction of maxillary third molar impaction in adolescent orthodontic patients. Angle Orthodontist. 75(6): 904-911.
7. Bansal R and Ajwani P. 2010. Prevalence and morphological study of three rooted mandibular first molar in Indian population. Internet Journal of Human Anatomy. 2(1).
8. Bataineh AB, Albashairen ZS, Hazza AM. 2002. The surgical removal of mandibular third molars: a study in decision making. Quintessence International. 33: 613-617.
9. Beeman CS. 1999. Third molar management a case for routine removal in adolescents and young adult orthodontic patients. Journal of Oral Maxillofacial surgery. 57:824-830.
10. Begg PR. 1954. Stone Age mans dentition. American Journal Orthodo. 40: 298-312; 373-383; 517-531.
11. Behbehani F and Artun J. 2006. Prediction of mandibular third molar impaction in adolescent orthodontic patients. American Journal Orthod Dentofacial Ortho.130(1): 47-55.
12. Biswari G, Gupta P, Das D. 2010. Wisdom teeth - A major problems in the young generation study on the basis of types and associated complications. Journal of College of Medical Science - Nepal. 6(3): 24-28.
13. Blondeau F, Daniel NG. 2007. Extraction of impacted mandibular third molars: postoperative complications and their risk factors. Journal of Canadian Dental Association. 73(4):325.
14. Broadbent B. 1943. The influence of the third molars on the alignment of teeth. American Journal of Orthod. 29:312-330.
15. Brookes M and Zietman A. 1998. Clinical Embryology - A Color Atlas and Text. 266-268.
16. Brown LH, Berkman S, Cohen D, Kaplan AL, Rosenberg M. 1982. A radiological study of frequency and distribution of impacted teeth. Journal of Dental Assoc $S$ Afr.37: 627-630.
17. Burstone CJ, James RB, Legan H, Murphy GA, Norton LA. 1978. Cephalometrics for orthodontic surgery. Journal of Oral Surgery. 36(4): 267-277.
18. Chaparro-Avendario AV, Perez-Garcia S, Valmaseda-Castellon E, Berini-Aytes L, Gay-Escoda C. 2005. Morbidity of third molar extraction in patients between 1218 years of age. Medical Oral Pathology and Oral Ar Bucal. 10: 422-431.
19. Chole RH, Patil RN, Gondivkar S, Gadbail AR, Yuwanati MB. 2013. Association of mandible anatomy with age, gender and dental status. ISRN Radiology.
20. Chu FSC, Li TKH, Lui VKB, Newsome PRH, Chow RLK, Cheung LK. 2003. Prevalence of impacted teeth and associated pathologies - a radiographic study of the Hong Chinese population. Hong Kong Medical Journal. 9: 158-163.
21. Clovis M, Eliston C, Filho T, Lopes J. 2006. Third molars classification prevalence in the cities of Cunha Pora, Maravilna and Palmitos in the Northwest of Santa Catarina State in Brazil. FAC. Odonto/PUCRS. 21(51): 55-66.
22. Dixit D. 2004. Human Embryology.1:230-232
23. Duthie J, Bharwani D, Tallents RH, Bellohusen R, Fishman L. 2007. A longitudinal study of normal asymmetric mandibular growth and its relationship to skeletal maturation. American Journal orthod dentofacial orthop. 132(2): 179-184.
24. Elsey MJ, Rock WP. 2000. Influence of orthodontic treatment on development of third molars. British Journal of Oral Maxillofacial Surgery. 38(4): 350-353.
25. Esposito and Caulthard. 2006. Impacted wisdom teeth. BMJ. 05: 1-10.
26. Fabian FM and Mpembeni R. 2002. Sexual Dimorphism in the mandible of a homogenous black population of Tanzania. Tanzania Journal of Science. 28(2): 4754.
27. Farman AG. 2004. Tooth Eruption and dental impactions. Panoramic Imaging News. 4(2): 1-9.
28. Fonseca JB. 1956. Incidencia da inclusao dentaria em 1000 patientes com exame radiografico complete. Sel odont. 11(2): 1-8.
29. Friel JP. 1974. Dorlands illustrated Medical Dictionary. WB Saunders Company. $25^{\text {th }}$ Edition. 661.
30. Haidar Z, Shalhoub SY. 1986. The incidence of impacted wisdom teeth in a Saudi community. International Journal of Oral Maxillofacial Surgery.15:569-71.
31. Hashemipour MA, Tahmasbi-Arashlow M, Fahimi-Hanzaei F. 2013. Incidence of impacted mandibular and maxillary third molars: A radiographic study in a Southern Iran population. Med Oral Patho Oral Cir Buccal. 18(1): e140-145.
32. Hattab FN, Rawashedeh MA, Fahmy MS. 1995. Impacted status of third molars in Jordanian students. Oral Surgery, Oral Medicine, Medical Oral Pathology and Oral Radiology Endo. 79:24-29
33. Hellman M. 1988. Some aspects of wisdom teeth and their impaction. Journal of Clinical and Oral pathology. 26-45.
34. http://www.juniordentist.com/wp-content/uploads/2012/09/pericoronitis-pericoronal-pouch-or-operculum1.gif, accessed on 2014/03/02.
35. http://25.media.tumblr.com/tumblr_lmi5jn4GLz1qap6d9o1_500.jpg, accessed on 2014/03/02.
36. http://dc224.4shared.com/doc/WLV06QxM/preview_html m2d015e71.gif, accessed on 2014/03/02.
37. http://www.head-face-med.com accessed on 2014/03/02.
38. http://www.thesocietypages.org/socimages/files/2012/08/26.jpg, accessed on 2014/03/02.
39. http://www.gaba.com/data/docs/cache/1/1/7/2/_rgb_72_370_266_fitAndCrop.jpg, accessed on 2014/03/02.
40. http://www.heritageinstitute.com/zoroastrianism/images/cave/human Evolution.jpg, accessed on 2014/03/02.
41. Hugoson A and Kugelberg CF. 1988. The prevalence of third molars in a Swedish population. An epidemiological Study. Community of Dental Health. 5(1): 121-138.
42. Humphrey LT, Dean MC, Stringer CB. 1999. Morphological variations in great apes and modern human mandibles. Journal of Anatomy. 195: 491-513.
43. Iannucci JM and Howerton LJ. 2012. Dental Radiology - Principles and Techniques. Elsevier Saunders Company. Fourth Edition. 155-179; 256-273; 312-324.
44. Indira AP, Markunde A, David MP. 2012. An indicator for sex determination-A digital radiographic study. Journal of Forensic Dental Science. 4(2): 58-62.
45. Iscan MY and Steyn M. 1999. Craniometeric determination of population affinity in South Africa. International Journal of Legal Medicine. 112(2): 91-97.
46. Jaffar RO and Tin OO. 2009. Impacted mandibular third molars among patients attending hospital universities. Malaysia Achieves of orofacial sciences.4: 7-12.
47. Jamieson. 1940. Orthodontic instrument for measuring the frankfort-mandibular plane angles.
48. Jayakaran F, Rajangam S, Janakiram S, Thomas IM. 2000. Sexing of the mandible. Anatomica Karnataka. 1(1): 11-16.
49. Jensen F and Palling M. 1954. The gonial angle. American Journal of Orthodontics. 40(2): 120-133. (Abstract).
50. Juodzbalys G and Daugela P. 2013. Review of literature and a proposal of a classification. Journal of oral and maxillofacial research. 4(2): 1-12.
51. Kaifu Y, Kasai K, Townsend GC, Lindsay C, Richards LC. 2003. Tooth wear and the "design"of human dentition : A perspective from evolutionary medicine. Yearbook of Physical Anthropology. 46: 47-61.
52. Kaya GS, Aslan M, Omezli MM, Dayi E. 2010. Some morphological features related to mandibular third molar impaction. Journal of Clin Exp Dent.2:12-17.
53. Keyayan AO, Chinclia ML, Hassan A, Pokhariyal GP. 2011. Morphometric parameters of Keyan adult mandibles. East Africa Medical Journal. 88: 349-355.
54. Khan A, Khitab U, Khan MT. 2010. Impacted mandibular third molars: Pattern of presentation and postoperative complication. Pakistan Oral and Dental Journal. 30(2): 307-312.
55. Koussoulakou DS, Margaritis LH, Koussoulakou SL. 2009. A curriculum vitae of teeth: Evoultion, Generation, Regression. International Journal of Biological Science. 5(3): 226-243.
56. Kramer RM, Williams AC. 1970. The incidence of impacted teeth. A survey at Harlem hospital. Oral Surgery, Oral Medicine and Medical Oral Pathology. 29(2):237-241.
57. Krimmel M and Reinert S. 2000. Mandibular fracture after molar removal. Journal of Oral and Maxillofacial Surgery. 58: 1110-1112.
58. Kruger E, Thomson WM, Konthasingle P. 2001. Third molar outcomes from age 18 to 26: findings from a population - based New Zealand longitudinal study. Oral surgery Oral Medicine Oral Pathology Oral Radiology Endod.92:150-155.
59. Kruger GO. 1984. Impacted teeth. Textbook of oral and maxillofacial surgery, CV Mosby Co. 84-98.
60. Lakhani MJ, Kadri W, Mehdi H, Houshang S, Bano A, Yaqoobs. 2011. Anterior arch crowding - A possible predictor for mandibular third molar impaction. J Ayub Med Coll Abbottabad. 23(1): 63-65.
61. Leita MC. 1986. Estudo radiografico da incidencia de terceiros molare incluses. Rev odont Alferas. 87(9): 57-62.
62. MacGregor AJ. 1985. The impacted lower wisdom tooth. Oxford University Press New York. 3
63. Marzola C, Comparin E, Filho T, Lopes J. 2006. Third molars classifications prevalence in the cities of Cunhu Pora, Maravilha and Palmitos in the Northwest of

Santa Catarina State in Brazil. Revista Odonto Clencia - Fac. Odonto/PUCRS. 21 (55):55-66.
64. Mbajiorgu EF, Zivanovion S, Asala SA, Mavera GA. 1996. A pilot study of mandibular angles in black Zimbabweans. Central Africa Journal of Medicine. 42(10): 285-287.
65. Mead SV. 1954. Oral Surgery. The C. V. Mosby Company, St. Louis. $4^{\text {th }}$ Edition. 507-510.
66. Meisami T, Sojat A, Sandor GK, Lawrence HP, Clokie CM. 2002. Impacted third molars and risk of angle fracture. 31: 140-144.
67. Miloro M, Ghali GE, Larsen P, Waite P. 2012. Peterson's Principles of Oral and Maxillofacial Surgery. People's Medical Publishing House - USA, Shelton, Connecticut. Third Edition (Volume 1). 97-103.
68. Monaco G, Nontevecchi M, Bonetti GA, Gatto MR, Checchi L. 2004. Reliability of panoramic radiography in evaluating the topographic relationship between the mandibular canal and impacted third molars. Journal of American Dental Association. 135: 312-318.
69. Moore L, Dalley. 2010. Clinically Oriented Anatomy. Fifth Edition: 928-934.
70. Morris CR, Jerman AC. 1971. Panoramic radiographic survey: a study of embedded third molars. Journal Oral Surgery. 29: 122-125.
71. Mwaniki DL, Guthwa SW. 1992. A retrospective study of impacted wisdom teeth in 110 patients in Nairobi Kenya. African Dental Journal. 6:30-33
72. Obiechina AE, Arotiba JT, Fasola AO. 2001. Third molar impaction: evaluation of the symptoms and pattern of impaction of mandibular third molar teeth in Nigerians. Odontostomatol Trop. 24: 22-25.
73. Omar LF. 2008. Prevalence of impacted wisdom teeth among Hawler young people. MDJ. 5(1): 97-103.
74. Ongkana N and Paivan S. 2009. Gender differences in Thai mandibles using metric analysis. Chiang Mai Medical Journal. 48(2): 43-48.
75. Othman R. 2009. Impacted mandibular third molars among patients attending Hospital Univerity Sains Malaysia. Archives of Orofacial Sciences. 4:7-12.
76. Pillai TJ, Devi TS, Devi CKL. 2014. Studies on Human Mandible. IOSR Journal of dental and Medical Science. 13(1): 8-15.
77. Pell GT and Gregory BT. 1933. Impacted mandibular third molars: Classification and modified techniques for removal. Dental Digest. 39: 330-338.
78. Peterson LJ. 1998. Principles of management of Impacted teeth. Contemporary Oral and Maxillofacial Surgery. St Louis:Mosby. 3 ${ }^{\text {rd }}$ edition: 215-248.
79. Popsecu MA and Popovioiu O. 2008. The third molar and a dentistry topic requiring an interdisciplinary approach. Proc Rom Acad Series B. 175-178.
80. Pretty IA, Sweet D. 2001. A look at forensic dentistry - Part 1: The role of teeth in the determination of human identity. British Dental Journal. 190(7):359-365.
81. Quek SL, Tay CK, Toh SL, Lim KC. 2003. Pattern of third molar impaction in a Singapore Chinese population: a retrospective radiographic survey. International Journal of Oral Maxillofacial Surgery. 32: 548-552.
82. Radhika NB, Nayak K, Cariappa KU. 2013. Maxillary third molar eruption and its relationship to inclination of maxillary first molar - a computer tomography study. International Journal of Scientific Research. 2(12): 18-20.
83. Ragini, Singh N, Goyal S, Padmanabhan P, Munjal P. 2003. Prediction of third molar eruption. Journal of Indian Orthod Soc. 36: 103-112.
84. Rai R, Ranada AV, Prabhu LV, Pai MM, Madhyastra S, Kumaran M. 2007. A pilot study of the mandibular angle and ramus in Indian population. International Journal of Morphology. 25(2): 353-356.
85. Ramamurthy A, Pradha J, Jeeve S, Jeddy N, Sunitha J, Kumar S. 2012. Prevalence of mandibular third molar impaction and agenesis: A radiographic South Indian Study. Journal of Indian Academy of Oral Medicine and Radiology. 24(3):173176.
86. Ranganath V, Ravindranath Y, Ravindranath R. 2008. Sexual dimorphism in mandibular morphology: a study on South Indian sample. South Asian Anthropologist. 8(1): 9-11.
87. Ricketts RM. 1972. A principle of archival growth of the mandible. Angle Orthod. 42(4): 368-386.
88. Sabra SM and Soliman MM. 2014. The prevalence of impacted mandibular wisdom with associated physical signs and microbial infections among under Graduate girls at Taif University.KSA. World Applied Science Journal. 21(1): 21-29.
89. Sadler TW. (2010). Langman's Medical Embryology, $11^{\text {th }}$ edition: 287-291.
90. Saini V, Srivastava R, Rai RK, Shamal SN, Singh TB, Tripathi SK. 2011. Mandibular ramus: An indicator for sex in fragmentary mandible. Journal of Forensic Science. 56(11): 13-16.
91. Sandhu SS, Kapila BK. 1982. Incidence of impacted third molars. Journal of Indian Dental Assoc. 54:441-444
92. Sarawati FK, Balaljiro B, Mamamtha GP. 2010. Clinical and orthopantomograph evaluation of third mandibular molars. Contemporary Clinical Dentistry. 1(1): 27-30.
93. Sasano T, Kuribard N, Iikubo M, Yashida A, Saton-Kuiriwa S, Shaji M, Sakamoto M. 2003. Influence of an angular position and degree of impaction of third
molars on development of symptoms: Long term follow-up under good oral hygiene conditions. Tohoku Journal of Experimental Medicine. 200: 75-83.
94. Schuenke M, Schulte E, Schumacher U. 2007. Thieme's Atlas of Anatomy - Head and Neck. Greorg Thieme Verlang. 102.
95. Shamout AR, Ammoush M, Alrbato R, Habahbah AA. 2012. Age and gender differences in gonial angle, ramus height and bigonial width in dentate subjects. Pakistan Oral and Dental Journal. 32(1): 81-87.
96. Siling G. 1993. Development and eruption of mandibular third molar and its response to orthodontic therapy. Angle - Ortho.5: 271-278.
97. Sinnatamby CS. 2006. Last's Anatomy: Regional and Applied. $11^{\text {th }}$ Edition:392-394.
98. Sobra SM and Soliman MM. 2013. The prevalence of impacted mandinular wisdoms with associated physical signs and microbial infections among undergraduate girls at Taif University, KSA. World applied Science Journal. 21(1):21-29
99. Standring S. 2009. Gray's Anatomy. $40^{\text {th }}$ edition: 499-524.
100. Suzuki M and Takahashi Y. 1975. Anthropological studies on the mandible of the recent Chubu Japanese. Journal of Anthrop. Soc.Nippon. 85(4): 320-329.
101. Syed KB, Kota Z, Ibrahim M, Bagi MA, Assiri MA. 2013. Prevalence of impacted molar teeth among Saudi population in Asir Region, Saudi Arabia - A retrospective study of 3 years. Journal of International Oral Health. 5(1): 43-47.
102. Tsabedze VN. 2012. Prevalence of impacted mandibular third molar teeth at Medunsa Oral health centre. Thesis
103. Van der Stelt PF. 2005. Filmless imaging: the uses of digital radiography in dental practices. Journal of American Dental Association. 136(10): 1379-1387.
104. Vinay G and Mangala Gowri SR. 2013. Determination of gender by the anthropometric measurements of human mandible using ramus breadth and mandibular angle: A cross sectional study from South India. Journal of Medical Science. 1(2): 28-32.
105. Vinay G, Mangala Gowri SR, Anbalagan J. 2013. Sex determination of human mandible using metrical parameters. Journal of Clinical and Diagnostic Research. 7(12): 2671-2673.
106. Vondanovic M, Dumancic J, Demo Z, Mihelic D. 2006. Determination of sex by discriminate function analysis of mandibles from two Croatian archaeological sites. Acta Stomatol Croat. 40: 263-277.
107. Weiner R. 2001. Chew on this: is there a dominant side for chewing. Journal of Mass Dent Soc. 50(2): 36-38.
108. Winter GB. 1926. Impacted mandibular third molars. St Louis - American Medical Book Company.
109. Yamaoka M, Tambo A, Funsawa K. 1997. Incidence of inflammation in completely impacted lower third molars. Aust Dental Journal. 42(3): 153-155.
110. Yassir A. 2013. Ramus height and its relationship with skeletal and dental measurements. Journal of Oral Research. 1(1): 2-5.

APPENDICES

## APPENDIX

ONE

# ETHICAL CLEARANCE 

## PROVISIONAL ACCEPTANCE

## 20 February 2014

Miss Sundiat IVwarkumes
274 鳃unt hoad
Ottewa
Verdam
4339
SontaKThamail.con
Dese his lsheswumar
PROTOCOL Prevalence of impacted third molar teeth in the sreater Durben Metropolitan popalation. REF: BE410/13

## PROVISIONAL APPROVAL

A sub-cammittee of the Biomedical Besearch Ethica Comenittee kas comidered your application received on 22 Hovember 2013.

The study is tiven PAOVISIONAL APPROVAL pending a reponse to the following

1. Gatekseper permistion is required.
2. What is the sienificance of this stuaty
3. How would blis study add value to a patient's dental hastory?
4. The data collection sheet: Does the raticiogical report or dentist/ orthodontist not already document these findiny?
5. What is the difference and significance of describing Pell, Gregarys and Winter's chassification?
6. The itatistical analyuls does not include the prevalence of impacted whdom and jaw morphametry.
7. Comment: the real prevalence of impacted mird molars in the greater Durben Metropolitas area caenot be detemined by this study an data will be crann only from those members of the population of 16 to 30 y who have presented to public health dental facillies and have had a panorankic dental $x$-ray. The titie of the study should reflect thes, and due dicusvion of thin limitation made in the paper. A titie "Prevalence of impacted third indar teeth among youss adjlts presesting to pubilc health dertal fecilities in the sreater Durbin Metropolitan area" aould be more approprlate.

Only when full ethical approwal in given, mat the study begin. Fuil ethics approval has not been given att thls itage.

PLLASE MOTE: Provisional approvel is velid for 4 monthe only - thould we not hear from you dring the time - the study will be closed and rexpplication will need to be mele.
four ecceptance of this prowisional approwal derotes your compliance with South African National Ronearch Ethics Culdelinen (2004), South Afrlcin Watlonal Good Cilincal Prictice Guldelines (2006) if applicable) and ath LNEN EwC ethicy requrements sicontaind in the UKZ4 BREC Terms of Beference and Standard Operating Procedures, all wailable at


BREC is restured with the South Alrich Nutional Health Research Ethic Councl (REC-
 Assurance (iviw brit.

Yours sincerely


Mr A Marimuthu
Seltar Admintarater: Mornedical Merearch Ethici

## ADMENDMENT

## UNIVERSITY OF <br> KWAZULU-NATAL

## BIOMEDICAL RESEARCH ETHICS COMMITTEE

## APPLICATION FOR ETHICS APPROVAL OF AMENDMENTS

NAME OF RESEARCHER: SUNDIKA ISHWARKUMAR
DEPARTMENT: CLINICAL ANATOMY
TITLE OF STUDY: PREVALENCE OF IMPACTED THIRD MOLAR TEETH IN THE GREATER DURBAN METROPOLITAN POPULATION

ETHICS REFERENCE NO: BE410/13
DATE OF ETHICAL APPROVAL OF STUDY: 20/02/14 (Provisional Ethics)
DATE OF AMENDMENTS: 10/04/14

## AMENDMENTS REQUESTED:

1. Itemise required amendments in following format:
(i) original protocol states amendment requested etc.
2. Reason for amendment and the impact this will have on the participant or patient.
3. If additional investigators are added: Outline role and submit 2-page CV and proof of current HPCSA registration and GCP certification with the application.
4. If a new site is added, submit permission letter from the manager of the hospital/clinic/institution, if applicable.

## AMENDMENT:

1. Original Protocol states:
(i) The original protocol states that the radiographs will be obtained from the Radiology Departments of Provisional Hospitals. The approval for collection of the radiographs will be obtained from the Hospital's Superintendent. In addition to the amendment request, I would also like to include the Private sector. I consulted with Dr Shenuka Singh from the Dentistry Department of UKZN and she recommended that I include the Private sector as they deal with impaction on a regular basis.
(ii) The original protocol states that the angle of impaction will be measured by adopting the method proposed by Quek et al. (2003). The amendment request is to remove this method from my Materials and Methods as I am unable to access a digital programme that measures the angle.
(iii) The original protocol states that 400 panoramic radiographs will be analysed. The amendment request is to decrease the sample size to 250 panoramic radiographs.
2. Reasons:
(i) The addition of the Private sector will broaden this study and it will be a more accurate representation of the Durban population.
(ii) I am unable to access a digital programme to measure the angulation of impaction.
Both amendments, (i) and (ii), will have no impact on any patients. The patient's names are not required for this study. Biometric data required include the date of birth, date of radiographs, race and gender only. The patients will not be able to be traced from the information required for this study. All data obtained will be secured in password protected files by the researcher.
(iii) There is a shortage of panoramic radiographs that can be reviewed as not all patient files has the age, sex and ethnic group of the patient.
3. $\mathrm{N} / \mathrm{A}$
4. Addition of the Private Sector:

- Please find attached permission letter from the Doctors of the Private Practices.

Thank you for your time and consideration.

SIGNATURE OF PRINCIPAL RESEARCHER:
DATE:

## FULL ETHICAL CLEARANCE


Miss Sundika litwortumar
774 Munn Road
Gtimea
Werulam
413
Surithanioterail.cem

## 

PAOTOCOL: Prevelence of impacted thind molar teeth In the peater Durbon wetropalitan


## EXPEDITED APPLICATION

 application rechloed an 22 A armber NDIS.








By




 thicurp.




 "then tudy.


# Prothesar D Wingmas Chair 

Bismadical Ranameh Ethico Cormerten
Wnivile Compui Cmon wodl Eiling





## Ingrinc cientnes



## CERTIFICATES

## GATE KEEPERS LETTERS

## PUBLIC SECTOR

MRG กpiuzulu Fospral zowparx

ar, aNLEY CUILEF Dr®ve SVDCNHAM
215

```
14 Mam%h 2014
```



```
Mise Sund ka labweg*umel
27A M-urn Noaco
Oltane
VERURAM
```


## RE: LETTER OF SUPPORT TO CONDUCT RESEARCH AT ODTC: PREVALENCE OF IMPACTED THIRA MOI AR TEETH IN THE GREATER DVIRAAN METROPOLITAN POPLILATION

Kindi'r note finst at the Ont anc Dotive Iraning Cente we sucpont yeur request in aspoluch resealch it cur e-ray deqnatmor:

Hknse nota the followiry.

1. Piegace ensura that you athere to al zes palizes, procodures, protocola anes

2. This masarch wil only cormente once thie ofice has rocomon:
 the KZll Deparment of Hisallh
3. Flease ensure this oflive is informent hrfom yru, commence four research
4. The facilty wel hel piovide any resmumess far fhia naskanch


Tanking you.

Sinearaty

Ch b b
OR N DAKI
CINICAL M\&NAGER ODTC



hearkin
DAF－a minel
Fsiath


［nq7：陪5．R．Sitrys
Research Programming
25 かล＂た1 2714
Pies Sirctes shmerkamar：

O．，ma
vEALILKA
$43 \%$

Livar Lr． E Lrwarkumar

Probocol：Frevalence of lmpacted thind meler tapth in grester Durtasi Mubropoltan popuition．BE4Taida


Kinsif gotc tre followion：


 milt prate sitity．
＊Krg Ldead vall Hacptal roociosal 0．l i．snambigmer，in the stucy on all
 re＂ort cn compition．



Fiverathtals
SUPFOHTED／RNF－GAPPORTED

DR．OSB BA 0 O 1


## ACTING CHIEF EXECLTIVE OFFICER





## health


Hesilt

Heald Fesearch 8 Knowledge Neragamant selt-comperem.
 $x$ ven $\log$ sus: = everma tzburp

TA. 5 ,
-3.5.18
-x

wavertheat onci3s

| Reference | 14 |
| :---: | :---: |
| Enquiries | : $\mathrm{MrXX} \times \mathrm{Cas}$ |
| Tel | - |

over is 'S. Ishma'k.mar

## Subjedt: Approval of a Reseanch Proncesal

1. The reser:h propseal tried Prevalence of impacted third molar teeth in the grastar Durban Matrapalitan Populatian was nennanel by the Kasㄱuli-hatal D-gailmert of HesilJ.

Hoaplal Comprax and King Edaard Vill Hazpial
2. You are rocucssed ta zka rote of the falsuing:
3. Piske the revesery amangemsth w th the idertifed favily sefore commenung with your razeanth projacl.
b. Previly minisia sogress rasor. and firal repul iedsctraic and hard cap esi when your caseamh is nomplome.
a. Your final racol wist be pastad io HEALTH RESEARCH AND KNOWLEDCE TAANAGEMENT, 10-102, PRIVATE BAG X9051, PETERMARUTZBURG, 3200 and c


Yours Sinzerely


Dr E Lutge
Charperanan, Hesth Rescarch Sorrmber:
Dale: 5ic $6 / 2.014$.

## PRIVATE SECTOR



# Dr. HASSAN G.M.HAFFEJEE 

SaS (lathy M Dent (Fin)


Miss Sundika Ishwarkumar
27 A Munn Roud
Ottawa
Vcrulam
4339

LETTER OF SUPPORT TO CONDUCT RESEARCH AT HY PRACTICE PREYALE VCE OE IMPACTED THIRD MOLAR TEETII DV THE GREATER DLRHAV METRGPOHITIAN POPL.A.ATION: BE4IOI3

Kindly wote that at the 6200850 Practice, we support your requext to conduct resenrels in onr practice.

Thanking you.

$\qquad$

DATE

Maxillo-facial surgeon

## DER PMSNOMHERS-MEDUNSA

PRACTICE PDO 54520n7
DEMTAI \&LHEBCN

## PRSCTICE:

## 25 Snnade Drize

Stanmire
Phicínin

## COHPKSPOMDEWCE


Phumaix
4068

Fin Mose 11.3151126524


Wi Teruary 2114

Ansa Sumbiks Letazamar
27 A Mrum Fuax
Ollaned
Yricul:m
435
LETTER OF SilPMAHI TUCONDUCT RESEAFCH WT B' PRACTICE PREVALEAC:E CHF IMPACTED TIIIRO HOLAR IFETH IN THE GREATER





다T/1 mumben
Г.

## Dr．W．Maistry <br> 

27 IRELAND STREET，VERULASA－NORTH CDAST MEDICAL A DENTAL CENTRE
For Appointments Phone Dr，Maistry
Tel／Fax：032－5335579
BUSINESS HOURE：
Mondey－Fridary：8：00－5．30pm．－Saturrany ：8：00－1：00pen．－Sunday Public Holldeys ：8：00－11am．

1010 m .20 L

Slass Sundibu himarionmer
27．A sune koad
万人⿻丷木：
veulan
13）

T．FTTER GIF SUHMOKT TO CONTPTC I RESEAKRCH AT MY PRACTICL
 MILIRUPULATAN POPITATIGIN： $122410: 13$


thank suat
Years aithfully．




$$
\frac{10: \times \infty \cdot 1}{D \times T R}
$$



HC6．


## APPENDIX

TWO

## DATA SHEET

## RAW RESULTS

## Results_Raw Data_Impacted third molars

| $\begin{aligned} & \text { No. of } \\ & \text { x-ray } \end{aligned}$ | Age | Sex | Race | Type of angulation of the third molar |  |  |  | Depth of the third molar |  |  |  | Relation to mandible |  | Length of ramus |  | Width of ramus |  | Length of body |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { Mandible } \\ \text { Right } \end{gathered}$ | $\begin{gathered} \text { Mandible } \\ \text { Left } \end{gathered}$ | $\begin{array}{\|c} \hline \text { Maxilla } \\ \text { Right } \end{array}$ | Maxilla Left | $\begin{array}{\|c\|} \hline \text { Mandible } \\ \text { Right } \end{array}$ | $\begin{array}{c\|} \hline \text { Mandible } \\ \text { Left } \end{array}$ | Maxilla Right | Maxilla Left | Right | Left | Right | Left | Right | Left | Right | Left |
| P1 | 23 | F | I | Mesio | mesio | vertical | vertical | A | A | A | A | i | i | 55.9 | 50.5 | 31.6 | 28.9 | 79.5 | 76.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.6 | 50.4 | 31.8 | 28.8 | 79.1 | 76.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.8 | 50.8 | 31.4 | 28.8 | 79.3 | 76.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.7667 | 50.5667 | 31.6 | 28.8333 | 79.3 | 76.767 |
| P3 | 20 | F | I | Mesio | mesio | vertical | vertical | C | C | B | B | iii | iii | 46.8 | 47.1 | 30.5 | 28.1 | 84.2 | 85.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 46.2 | 47.2 | 30.5 | 28 | 84.1 | 85.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 46 | 47.5 | 29.9 | 28.5 | 84.2 | 85.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 46.3333 | 47.2667 | 30.3 | 28.2 | 84.1667 | 85.4 |
| P7 | 20 | F | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 57.1 | 56.4 | 33.4 | 34.1 | 84.7 | 82 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.6 | 56.8 | 33.6 | 34.3 | 84.6 | 82.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.1 | 56.9 | 33.2 | 34.5 | 84.5 | 82.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.2667 | 56.7 | 33.4 | 34.3 | 84.6 | 82.333 |
| P8 | 21 | F | I | mesio | vertical | vertical | vertical | B | B | A | A | ii | ii | 53 | 51.6 | 30 | 27.9 | 86.9 | 86.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.9 | 51.3 | 30.2 | 27.5 | 86.2 | 86.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.1 | 51.4 | 30.4 | 27.3 | 86.8 | 86.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53 | 51.4333 | 30.2 | 27.5667 | 86.6333 | 86.6 |


| P9 | 16 | F | C | mesio | mesio | disto | disto | C | C | A | A | iii | iii | 49.5 | 50.3 | 31 | 31.5 | 79.6 | 80.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.4 | 50.2 | 31.3 | 31.6 | 79.7 | 80.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.7 | 49.9 | 31.3 | 31.4 | 79.1 | 80 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.5333 | 50.1333 | 31.2 | 31.5 | 79.4667 | 80.333 |
| P10 | 26 | F | I |  | horizontal |  |  |  | B |  |  |  | ii | 52.8 | 54.4 | 28.8 | 27.5 | 81.2 | 83.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.7 | 54.6 | 28.3 | 27.7 | 81.3 | 83.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.1 | 54.1 | 28.9 | 27 | 81.8 | 83.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.5333 | 54.3667 | 28.667 | 27.4 | 81.4333 | 83.367 |
| P13 | 23 | M | I | horizontal | mesio | vertical | vertical | B | B | A | A | ii | ii | 62.5 | 71.2 | 31.9 | 34.6 | 77.5 | 78.55 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.6 | 71.8 | 32.1 | 34.4 | 77.1 | 78.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.7 | 71.6 | 31.9 | 34.9 | 77.4 | 78.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.6 | 71.5333 | 31.967 | 34.6333 | 77.3333 | 78.517 |
| P14 | 16 | M | C | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 53.5 | 54.4 | 37.2 | 36.1 | 91.9 | 89.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.8 | 54.9 | 37.9 | 36.5 | 92.1 | 89.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54 | 54.7 | 37.6 | 36.2 | 92.2 | 89.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.7667 | 54.6667 | 37.567 | 36.2667 | 92.0667 | 89.4 |
| P15 | 21 | F | I | mesio | mesio | disto | disto | C | C | B | B | iii | iii | 47.2 | 51.5 | 35.8 | 35.6 | 88.1 | 89.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 47.9 | 51.9 | 35.6 | 35.5 | 88.4 | 89.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 47.4 | 51.4 | 35.9 | 35.8 | 88.6 | 89.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 47.5 | 51.6 | 35.767 | 35.6333 | 88.3667 | 89.4 |


| P16 | 22 | F | I | vertical | vertical | vertical | vertical | B | B | A | A | ii | ii | 33.6 | 32.2 | 55.9 | 55.4 | 82 | 85.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 33.7 | 32.1 | 55 | 55.5 | 82.3 | 84 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 33.4 | 32.4 | 55.8 | 55.8 | 82.5 | 84.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 33.5667 | 32.2333 | 55.567 | 55.5667 | 82.2667 | 84.7 |
| P17 | 21 | M | I | mesio | mesio | mesio | mesio | A | B | A | A | i | ii | 30.4 | 30.2 | 60.6 | 63.9 | 73.4 | 71.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 30.1 | 30 | 60.8 | 63.4 | 73.8 | 71.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 30.7 | 30.5 | 60.4 | 63 | 73 | 71.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 30.4 | 30.2333 | 60.6 | 63.4333 | 73.4 | 71.567 |
| P18 | 16 | F | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 30.4 | 27.7 | 54.2 | 56.4 | 64.3 | 62.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 30.7 | 27.5 | 54 | 56.7 | 64.1 | 62.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 30.4 | 27.9 | 54.3 | 56.9 | 64.7 | 62.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 30.5 | 27.7 | 54.167 | 56.6667 | 64.3667 | 62.433 |
| P19 | 18 | F | C | mesio | mesio | vertical | vertical | A | A | A | A | i | i | 29.2 | 29.3 | 47.5 | 47.5 | 71.8 | 73 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 29.3 | 29 | 47.7 | 47.8 | 71.6 | 73.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 29.8 | 29.1 | 47.9 | 47.9 | 71.3 | 73.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 29.4333 | 29.1333 | 47.7 | 47.7333 | 71.5667 | 73.233 |
| P21 | 17 | F | W | mesio | mesio | vertical | disto | B | B | A | A | ii | ii | 34.6 | 36.8 | 56.9 | 58.1 | 83.9 | 82 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 34.6 | 36.1 | 57.2 | 58.2 | 83.7 | 82.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 34.9 | 36.2 | 57.3 | 58.5 | 84.2 | 82.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 34.7 | 36.3667 | 57.1333 | 58.2667 | 83.9333 | 82.3667 |





| P43 | 27 | F | I | vertical | vertical |  |  | B | B |  |  | ii | ii | 31.5 | 28 | 52.5 | 57.1 | 72.1 | 73.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 31.6 | 28.5 | 52.6 | 57.3 | 72.5 | 73.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 31.8 | 28.6 | 52.8 | 57.1 | 72.8 | 73.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 31.6333 | 28.3667 | 52.633 | 57.1667 | 72.4667 | 73.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.1 | 65.4 | 38.9 | 35.9 | 79.1 | 80.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.3 | 65.3 | 38.6 | 35.5 | 79.3 | 80.8 |
| P45 | 29 | M | I | vertical | horizontal | disto | horizontal | B | B | B | A | ii | ii | 66.4 | 65.7 | 38.4 | 35.7 | 79.4 | 81 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.2667 | 65.4667 | 38.633 | 35.7 | 79.2667 | 80.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.9 | 52.8 | 35.1 | 34.3 | 83.7 | 85.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.2 | 52.6 | 35.7 | 34.5 | 83.5 | 85.9 |
| P46 | 25 | F | I | vertical | vertical |  |  | A | A |  |  | i | i | 51.3 | 52.1 | 35.4 | 34.7 | 83.2 | 85.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.1333 | 52.5 | 35.4 | 34.5 | 83.4667 | 85.533 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61 | 58.6 | 35.6 | 34.7 | 83.8 | 86 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.8 | 58.5 | 35.7 | 34.2 | 83.6 | 86.9 |
| P47 | 27 | M | I | horizontal | horizontal |  |  | B | A |  |  | ii | i | 59.7 | 58.2 | 35.4 | 34.9 | 83.2 | 86.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.1667 | 58.4333 | 35.567 | 34.6 | 83.5333 | 86.367 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.6 | 66.8 | 41.9 | 32.9 | 88.2 | 84.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.9 | 66.1 | 41.6 | 32.6 | 88 | 84.3 |
| P48 | 30 | M | C | horizontal | mesio | vertical | disto | B | C | A | A | ii | iii | 63.8 | 66.3 | 41.5 | 32.4 | 87.9 | 84.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.7667 | 66.4 | 41.667 | 32.6333 | 88.0333 | 84.3 |


| P49 | 20 | M | I |  | mesio | vertical | vertical |  | C | B | B |  | iii | 58.5 | 60.1 | 40.9 | 38.6 | 92.2 | 90.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.7 | 60.9 | 40.3 | 38.4 | 92.4 | 90.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.9 | 60.4 | 40.6 | 38.5 | 92.5 | 90.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.7 | 60.4667 | 40.6 | 38.5 | 92.3667 | 90.467 |
| P50 | 21 | M | B |  | mesio |  |  |  | B |  |  |  | ii | 66 | 62.8 | 39 | 42.9 | 89.4 | 93.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.1 | 62.9 | 37.7 | 42.7 | 89.9 | 93.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.5 | 63.1 | 37.9 | 42.5 | 89.7 | 93.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.2 | 62.9333 | 38.2 | 42.7 | 89.6667 | 93.4 |
| P52 | 18 | F | I | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 49 | 50.6 | 34.9 | 31.2 | 79 | 83.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.6 | 50.8 | 34.7 | 31.9 | 79.4 | 83 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.2 | 50.2 | 34.5 | 31.4 | 79.9 | 83.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.2667 | 50.5333 | 34.7 | 31.5 | 79.4333 | 83.367 |
| P53 | 27 | M | I |  | mesio |  |  |  | B |  |  |  | ii | 65.8 | 64.7 | 31 | 30.2 | 76.3 | 78.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.5 | 64.5 | 31.3 | 30.7 | 76.8 | 78.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.3 | 64.3 | 31.7 | 30.5 | 76.7 | 78.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.5333 | 64.5 | 31.333 | 30.4667 | 76.6 | 78.4 |
| P54 | 29 | M | B | horizontal | horizontal | vertical | vertical | C | B | A | A | iii | ii | 64 | 65.3 | 34.4 | 35.7 | 79.9 | 77 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.2 | 64.9 | 34.8 | 35.3 | 79.5 | 76.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.9 | 65.4 | 34.9 | 36.4 | 79.2 | 76.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.0333 | 65.2 | 34.7 | 35.8 | 79.5333 | 76.8 |





| P72 | 21 | F | I | vertical | vertical |  | vertical | A | B |  | A | i | ii | 59.4 | 62.2 | 30.4 | 26.6 | 85.6 | 83.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.7 | 62.5 | 30.6 | 26.8 | 85.4 | 83.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.9 | 62.1 | 30.1 | 26.9 | 85.2 | 83.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.6667 | 62.2667 | 30.367 | 26.7667 | 85.4 | 83.467 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.5 | 55.3 | 37.2 | 33 | 92.1 | 88.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.4 | 55.6 | 37.6 | 33.4 | 92.5 | 88.4 |
| P75 | 21 | M | B | horizontal | horizontal | vertical | vertical | B | B | A | A | ii | ii | 55.8 | 55.1 | 37.5 | 33.8 | 92.2 | 88.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.5667 | 55.3333 | 37.433 | 33.4 | 92.2667 | 88.333 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.5 | 60.1 | 38.3 | 37 | 98.8 | 95 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.8 | 60.7 | 38.8 | 37.9 | 98.5 | 95.3 |
| P76 | 17 | F | B | mesio | mesio | disto | disto | C | C | A | A | iii | iii | 59.2 | 60.5 | 38.5 | 37.7 | 98.9 | 95.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.5 | 60.4333 | 38.533 | 37.5333 | 98.7333 | 95.233 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.2 | 54.1 | 28.8 | 26.6 | 59.1 | 63.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.5 | 54.9 | 28.2 | 26.7 | 59.6 | 63.5 |
| P77 | 16 | F | I | mesio | mesio | vertical | vertical | B | C | C | C | ii | iii | 55.9 | 54.5 | 28.5 | 26.5 | 59.4 | 63.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.5333 | 54.5 | 28.5 | 26.6 | 59.3667 | 63.333 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61 | 66.4 | 33.2 | 30 | 83 | 87.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.5 | 66.7 | 33.2 | 30.4 | 83.5 | 87 |
| P79 | 29 | M | I | vertical | vertical |  | disto | B | B |  | A | ii | ii | 61.7 | 66.2 | 33.4 | 30.2 | 83.7 | 87.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.4 | 66.4333 | 33.267 | 30.2 | 83.4 | 87.3 |


| P80 | 23 | M | I | vertical | vertical | vertical | vertical | B | A | A | A | ii | 1 | 60.4 | 59.9 | 33.2 | 33.7 | 78.2 | 71.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.1 | 60.2 | 33.7 | 33.4 | 78 | 71.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.7 | 60 | 33.5 | 33.8 | 78.5 | 71.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.4 | 60.0333 | 33.467 | 33.6333 | 78.2333 | 71.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 43.9 | 52.3 | 33 | 33.1 | 74 | 71.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 44.1 | 52.5 | 32.8 | 33 | 73.9 | 71.8 |
| P81 | 24 | F | I | mesio | mesio |  |  | B | B |  |  | ii | ii | 44.3 | 52.1 | 33.1 | 33.5 | 74.2 | 71 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 44.1 | 52.3 | 32.967 | 33.2 | 74.0333 | 71.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 47.6 | 58.1 | 29.2 | 31.4 | 77.6 | 75.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 47.2 | 58.8 | 29.5 | 31.2 | 77.2 | 75.1 |
| P82 | 21 | F | I | mesio | mesio | mesio | mesio | B | B | A | A | ii | ii | 47.1 | 58.3 | 29.9 | 31.5 | 77.3 | 75 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 47.3 | 58.4 | 29.533 | 31.3667 | 77.3667 | 75.167 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.4 | 66 | 30.6 | 31.4 | 77.6 | 75.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.1 | 66.2 | 30.2 | 31.2 | 77.2 | 75.1 |
| P83 | 21 | M | I | vertical | mesio | vertical | vertical | B | B | A | A | ii | ii | 64.2 | 65.9 | 30.4 | 31.7 | 77.3 | 75 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.2333 | 66.0333 | 30.4 | 31.4333 | 77.3667 | 75.167 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.7 | 55.8 | 31.8 | 31.7 | 82.5 | 79.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.2 | 55.1 | 31.4 | 31.4 | 82.1 | 79.8 |
| P84 | 17 | F | I | vertical | mesio | vertical | vertical | A | B | A | A | i | ii | 49.5 | 55.3 | 31.3 | 31.2 | 82.7 | 79.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.4667 | 55.4 | 31.5 | 31.4333 | 82.4333 | 79.4 |


| P85 | 22 | M | I | horizontal | horizontal |  |  | B | B |  |  | ii | ii | 58.7 | 62.7 | 26.3 | 24.2 | 76.6 | 71.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.9 | 62.1 | 26.5 | 24.5 | 76.1 | 71.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59 | 61.9 | 26.1 | 24.1 | 76.2 | 71.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.8667 | 62.2333 | 26.3 | 24.2667 | 76.3 | 71.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.9 | 60 | 31 | 28.7 | 78 | 75.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.7 | 59.8 | 31.4 | 28.2 | 78.1 | 75.1 |
| P86 | 22 | F | I | horizontal | mesio |  |  | B | B |  |  | ii | ii | 54.1 | 59.6 | 31.2 | 29.5 | 78.4 | 75.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.5667 | 59.8 | 31.2 | 28.8 | 78.1667 | 75.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.4 | 54.1 | 30.8 | 30.1 | 78.1 | 79.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.8 | 54.3 | 30.4 | 30.4 | 78.4 | 79.2 |
| P87 | 16 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 54.7 | 54.7 | 30.5 | 30.2 | 78.2 | 79.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.6333 | 54.3667 | 30.567 | 30.2333 | 78.2333 | 79.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.3 | 67.4 | 33.5 | 31.4 | 77.4 | 73.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.8 | 67.2 | 33.9 | 31.2 | 77.2 | 73.4 |
| P88 | 29 | M | I | horizontal | horizontal | vertical | vertical | B | B | A | A | ii | ii | 66.1 | 67.5 | 33.1 | 31.5 | 77.8 | 73.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.4 | 67.3667 | 33.5 | 31.3667 | 77.4667 | 73.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 56.6 | 58.4 | 28.4 | 28.4 | 77.8 | 74.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 56.8 | 58.1 | 28.1 | 28.1 | 77.2 | 74.4 |
| P89 | 25 | F | I | mesio |  | vertical |  | B |  | A |  | ii |  | 56.1 | 58.7 | 28.2 | 28.5 | 77.1 | 74.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 56.5 | 58.4 | 28.233 | 28.3333 | 77.3667 | 74.533 |


| P92 | 18 | F | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 61.2 | 63.4 | 33.2 | 29.7 | 70.5 | 65.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.4 | 63.1 | 33.4 | 29.1 | 70.1 | 65.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.7 | 63.7 | 33.7 | 29.4 | 70.7 | 65.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.4333 | 63.4 | 33.433 | 29.4 | 70.4333 | 65.633 |
| P93 | 26 | F | I | mesio | mesio | buccal | disto | C | C | B | B | iii | iii | 54.9 | 48.2 | 29.4 | 28.4 | 71.1 | 74.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.2 | 48.9 | 29.1 | 28.1 | 71.5 | 74.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.1 | 48.3 | 29.7 | 28.5 | 71.9 | 74.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.4 | 48.4667 | 29.4 | 28.3333 | 71.5 | 74.433 |
| P94 | 30 | M | I | horizontal | vertical |  |  | B | A |  |  | ii | ii | 62.7 | 58.9 | 33.4 | 31.7 | 82.2 | 78.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.1 | 58.1 | 33.1 | 31.2 | 82.1 | 78.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.5 | 58.7 | 33 | 31.4 | 82.5 | 78.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.4333 | 58.5667 | 33.167 | 31.4333 | 82.2667 | 78.633 |
| P96 | 22 | M | I | horizontal | vertical | vertical | vertical | B | A | A | A | ii | i | 51 | 51.7 | 34.4 | 30 | 98.8 | 93.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.7 | 51.2 | 34.2 | 30.2 | 98.1 | 93.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.2 | 51.5 | 34.1 | 30.4 | 98.4 | 93.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.3 | 51.4667 | 34.233 | 30.2 | 98.4333 | 93.467 |
| P98 | 22 | M | I | horizontal | horizontal | vertical | vertical | B | C | A | A | ii | iii | 59.4 | 61.5 | 35.7 | 35.8 | 86.7 | 83.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.5 | 61.6 | 35.1 | 35.4 | 86.4 | 83.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.4 | 61.2 | 35.4 | 35.1 | 86.2 | 83.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.4333 | 61.4333 | 35.4 | 35.4333 | 86.4333 | 83.267 |



| P105 | 17 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 64.1 | 64.6 | 36.7 | 32.3 | 76.7 | 72.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.4 | 64.1 | 36.4 | 32.5 | 76.1 | 72.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.2 | 64.2 | 36.2 | 32.1 | 76.2 | 72.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.2333 | 64.3 | 36.433 | 32.3 | 76.3333 | 72.467 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.7 | 69 | 27.1 | 29.4 | 81.3 | 71.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.2 | 69.2 | 27.4 | 29.2 | 81.1 | 71.5 |
| P106 | 25 | M | I | horizontal | horizontal |  |  | B | B |  |  | ii | ii | 67.5 | 69.4 | 27.8 | 29.8 | 81.5 | 71.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.4667 | 69.2 | 27.433 | 29.4667 | 81.3 | 71.467 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.4 | 50.7 | 25 | 27.2 | 64.2 | 66 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.1 | 50.9 | 25.4 | 27.4 | 64.3 | 66.1 |
| P107 | 29 | F | I | horizontal | mesio | disto | disto | B | B | C | C | ii | ii | 52.7 | 50.2 | 25.1 | 27.1 | 64.5 | 66.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.4 | 50.6 | 25.167 | 27.2333 | 64.3333 | 66.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.2 | 56.3 | 35.8 | 29.8 | 64.5 | 66.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.4 | 56.2 | 35.4 | 29.9 | 64.1 | 66.5 |
| P108 | 18 | M | I | mesio | mesio | vertical | vertical | C | C | B | B | iii | iii | 55.8 | 56.5 | 35.1 | 30.2 | 64.2 | 66.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.4667 | 56.3333 | 35.433 | 29.9667 | 64.2667 | 66.467 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.7 | 60 | 29.8 | 29.7 | 71.8 | 73.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.1 | 60.5 | 29.4 | 29.1 | 71.6 | 73.5 |
| P109 | 29 | F | I |  | horizontal |  |  |  | B |  |  |  | i | 54.3 | 60.9 | 29.1 | 29.5 | 71.4 | 73.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.3667 | 60.4667 | 29.433 | 29.4333 | 71.6 | 73.533 |




| P123 | 18 | F | I | mesio | mesio | disto | disto | C | C | A | A | iii | iii | 46.5 | 55.8 | 32.9 | 25.8 | 73.3 | 71.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 46.7 | 55 | 32.7 | 25.9 | 73.1 | 71.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 46.4 | 55.1 | 32.4 | 25.1 | 73.2 | 71.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 46.5333 | 55.3 | 32.667 | 25.6 | 73.2 | 71.467 |
| P124 | 20 | F | I | vertical | vertical | vertical | vertical | A | B | A | A | i | ii | 50.2 | 49.7 | 28.2 | 28.7 | 71.5 | 64.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.1 | 49.1 | 28.4 | 28.9 | 71.4 | 64.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.9 | 49.2 | 28.1 | 28.1 | 71.1 | 64.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.4 | 49.3333 | 28.233 | 28.5667 | 71.3333 | 64.433 |
| P125 | 27 | F | I | mesio | mesio | vertical | disto | B | C | A | A | ii | iii | 52.4 | 53.6 | 28.8 | 32.1 | 74.2 | 80.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.1 | 53.4 | 28.9 | 32.4 | 74.1 | 80.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.7 | 53.1 | 28.8 | 32.6 | 74.9 | 80.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.4 | 53.3667 | 28.833 | 32.3667 | 74.4 | 80.467 |
| P126 | 30 | M | I | vertical | mesio | vertical | disto | A | B | A | A | i | ii | 72.8 | 73.2 | 33.6 | 32.5 | 90.4 | 84.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 72.1 | 73.5 | 33.1 | 32.4 | 90.1 | 84.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 72.4 | 73.1 | 33.4 | 32.1 | 90.2 | 84.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 72.4333 | 73.2667 | 33.367 | 32.3333 | 90.2333 | 84.633 |
| P127 | 17 | F | I | mesio | mesio | disto | disto | C | C | A | A | iii | iii | 61.7 | 60.3 | 32.7 | 31.2 | 72.4 | 65.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.4 | 60.5 | 32.1 | 31.4 | 72.1 | 65.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.2 | 60.1 | 32.4 | 31.5 | 72 | 65.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.4333 | 60.3 | 32.4 | 31.3667 | 72.1667 | 65.233 |


| P128 | 21 | F | I | horizontal | mesio | vertical | vertical | C | B | A | A | iii | ii | 51.4 | 52 | 30 | 26.3 | 68.4 | 66.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.2 | 52.4 | 30.4 | 26.9 | 68.1 | 66.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.7 | 52.9 | 30.1 | 26.1 | 68.7 | 66.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.4333 | 52.4333 | 30.167 | 26.4333 | 68.4 | 66.467 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.8 | 67.5 | 35 | 31.2 | 56.9 | 57 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.1 | 67.7 | 35.4 | 31.4 | 56.1 | 57.4 |
| P129 | 17 | F | I | buccal | buccal | disto | disto | B | B | A | A | ii | ii | 68.4 | 67.1 | 35.1 | 31.1 | 56.1 | 57.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.4333 | 67.4333 | 35.167 | 31.2333 | 56.3667 | 57.167 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.4 | 64.4 | 39.8 | 32.8 | 94.7 | 93.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.7 | 64.7 | 39.4 | 32.4 | 94.1 | 93.1 |
| P130 | 25 | M | I | horizontal | horizontal |  |  | B | B |  |  | ii | ii | 62.1 | 64.1 | 39.1 | 32.1 | 94.2 | 93.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.4 | 64.4 | 39.433 | 32.4333 | 94.3333 | 93.333 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.6 | 54.6 | 26.9 | 26.5 | 67.7 | 64.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.1 | 54.1 | 26.1 | 26.1 | 67.1 | 64.1 |
| P131 | 18 | F | I | vertical | mesio | vertical | vertical | C | C | A | A | iii | iii | 52.7 | 54.2 | 26.5 | 26.1 | 67.4 | 64.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.4667 | 54.3 | 26.5 | 26.2333 | 67.4 | 64.367 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.1 | 49.2 | 35 | 32.9 | 74.6 | 61.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.4 | 49.4 | 35.4 | 32.1 | 74.1 | 61.4 |
| P132 | 25 | F | I | mesio | mesio | buccal | vertical | B | C | A | A | ii | iii | 57.9 | 49.6 | 35.1 | 32.4 | 74.2 | 61.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.4667 | 49.4 | 35.167 | 32.4667 | 74.3 | 61.667 |



| P139 | 16 | M | I | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 54.5 | 52.7 | 33.4 | 27 | 84.9 | 78.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.1 | 52.1 | 33.9 | 27.9 | 84.1 | 78.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.9 | 52.4 | 33.1 | 27.4 | 84.5 | 78.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.5 | 52.4 | 33.467 | 27.4333 | 84.5 | 78.333 |
| P140 | 26 | M | I | horizontal | horizontal | vertical | vertical | B | A | A | A | ii | i | 61.6 | 57.8 | 30.5 | 29.5 | 78.9 | 69.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.1 | 57.9 | 30.4 | 29.1 | 78.1 | 69.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.4 | 57.4 | 30.8 | 29.3 | 78.2 | 69.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.3667 | 57.7 | 30.567 | 29.3 | 78.4 | 69.433 |
| P141 | 18 | M | I | mesio | mesio | vertical | vertical | A | A | A | A | 1 | i | 68.4 | 65.6 | 32.8 | 30.6 | 77.1 | 76.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.1 | 65.4 | 32.4 | 30.4 | 77.3 | 76.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.9 | 65.1 | 32.8 | 30.9 | 77.4 | 76.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.4667 | 65.3667 | 32.667 | 30.6333 | 77.2667 | 76.333 |
| P142 | 22 | M | I | mesio | mesio |  |  | B | B |  |  | ii | ii | 63.9 | 62.5 | 35.6 | 33.5 | 72.8 | 68.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.4 | 62.9 | 35.1 | 33.2 | 72.1 | 68.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.9 | 62.4 | 35.4 | 32.9 | 72.4 | 68.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.7333 | 62.6 | 35.367 | 33.2 | 72.4333 | 68.267 |
| P144 | 19 | F | I | vertical | vertical | vertical | vertical | B | A | A | A | ii | i | 58.3 | 55.1 | 33.7 | 29.1 | 81.5 | 76.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.1 | 55.4 | 33.1 | 29.7 | 81.1 | 76.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.9 | 55.1 | 33.4 | 29.4 | 81.4 | 76.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.4333 | 55.2 | 33.4 | 29.4 | 81.3333 | 76.3 |



| P150 | 22 | M | I | horizontal | horizontal | disto | disto | B | B | C | C | ii | ii | 62 | 61.9 | 28.7 | 31 | 75.6 | 72.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.4 | 61.4 | 28.9 | 31.4 | 75.1 | 72.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.1 | 61.1 | 28.4 | 31.2 | 75.4 | 72.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.1667 | 61.4667 | 28.667 | 31.2 | 75.3667 | 72.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.1 | 63.9 | 37.1 | 37.6 | 86 | 88.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.4 | 63.4 | 37.4 | 37.4 | 86.4 | 88.4 |
| P151 | 27 | M | I | mesio | mesio | vertical |  | A | B | A |  | i | i | 62.3 | 63.1 | 37.1 | 37.1 | 86.2 | 88.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.2667 | 63.4667 | 37.2 | 37.3667 | 86.2 | 88.267 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59 | 58.7 | 28.9 | 28.6 | 76.9 | 75.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.4 | 58.4 | 28.4 | 28.4 | 76.4 | 75.4 |
| P152 | 23 | F | I | mesio | mesio | mesio | mesio | C | C | C | C | iii | iii | 59.1 | 58.3 | 28.5 | 28.1 | 76.5 | 75.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.1667 | 58.4667 | 28.6 | 28.3667 | 76.6 | 75.367 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.4 | 52.8 | 26.2 | 25.3 | 74.3 | 68.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.1 | 52.1 | 26.4 | 25.4 | 74.5 | 68.1 |
| P153 | 17 | M | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 53.5 | 52.6 | 26.1 | 25.1 | 74.6 | 68.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.3333 | 52.5 | 26.233 | 25.2667 | 74.4667 | 68.267 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.1 | 60.9 | 35.9 | 37.5 | 65.7 | 63.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.5 | 60.4 | 35.4 | 37.9 | 65.3 | 63.2 |
| P155 | 30 | M | I | horizontal |  |  |  | B |  |  |  | ii |  | 60.4 | 60.2 | 35.5 | 37.1 | 65.2 | 63.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.3333 | 60.5 | 35.6 | 37.5 | 65.4 | 63.367 |


| P156 | 16 | F | I | mesio | mesio | disto | disto | C | C | C | C | iii | iii | 51.6 | 51.3 | 29 | 22.1 | 84.2 | 86.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51 | 51.4 | 29.4 | 22.9 | 84.1 | 86.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.2 | 51.8 | 29.1 | 22.4 | 84.1 | 86.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.2667 | 51.5 | 29.167 | 22.4667 | 84.1333 | 86.467 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 69.2 | 69.5 | 27.8 | 28.6 | 83.9 | 83.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 69.1 | 69.1 | 27.1 | 28.1 | 83.4 | 83.1 |
| P157 | 22 | M | I |  | horizontal |  |  |  | A |  |  |  | i | 69.9 | 69.5 | 27.2 | 28.4 | 83.8 | 83.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 69.4 | 69.3667 | 27.367 | 28.3667 | 83.7 | 83.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.3 | 62.8 | 31.4 | 32 | 82.4 | 76.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.1 | 62.1 | 31.2 | 32.3 | 82.1 | 76.1 |
| P158 | 29 | M | I | vertical | vertical |  |  | A | B |  |  | i | ii | 65.2 | 62.4 | 31.1 | 31.8 | 82.3 | 76.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.2 | 62.4333 | 31.233 | 32.0333 | 82.2667 | 76.367 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.3 | 59.2 | 34.5 | 29.7 | 76.7 | 70.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.1 | 59.1 | 34.1 | 29.1 | 76.1 | 70.4 |
| P162 | 23 | M | I |  | horizontal | mesio |  |  | B | A |  |  | ii | 59.8 | 58.9 | 34 | 29.4 | 76.5 | 70.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.4 | 59.0667 | 34.2 | 29.4 | 76.4333 | 70.367 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.1 | 55.7 | 35.6 | 36.3 | 84.8 | 82.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.3 | 55.3 | 35.1 | 36.1 | 84.2 | 82.4 |
| P163 | 18 | F | I | mesio | mesio | disto | disto | B | B | A | A | ii | ii | 54.9 | 55.1 | 35.4 | 36.5 | 84.5 | 82.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.4333 | 55.3667 | 35.367 | 36.3 | 84.5 | 82.633 |


| P165 | 19 | M | I |  |  | vertical | vertical |  |  | A | A |  |  | 65.6 | 64 | 35.2 | 34.5 | 81.6 | 79.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.1 | 64.9 | 35.1 | 34.1 | 81.2 | 79.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.2 | 64.7 | 35.4 | 34.7 | 81.1 | 79.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.3 | 64.5333 | 35.233 | 34.4333 | 81.3 | 79.4 |
| P166 | 22 | F | I | mesio | buccal |  | vertical | B | A |  | A | ii | i | 55.6 | 53 | 31.3 | 27.3 | 77.5 | 76.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.1 | 53.1 | 31 | 27.5 | 77.1 | 76.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.8 | 52.8 | 31.5 | 27.9 | 77.2 | 76.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.5 | 52.9667 | 31.267 | 27.5667 | 77.2667 | 76.5 |
| P167 | 16 | F | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 52.2 | 54.7 | 43.3 | 40.7 | 91.6 | 86.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.4 | 54.1 | 43.8 | 40.2 | 91.2 | 86.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.9 | 54.3 | 43.1 | 40.9 | 91.9 | 86.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.5 | 54.3667 | 43.4 | 40.6 | 91.5667 | 86.533 |
| P168 | 19 | M | I | mesio | mesio | mesio | vertical | C | C | C | C | iii | iii | 63.3 | 62.5 | 37 | 35 | 79 | 73.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.9 | 62.1 | 37.4 | 35.9 | 79.5 | 73.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.1 | 62.9 | 37.7 | 35.5 | 79.1 | 73.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.4333 | 62.5 | 37.367 | 35.4667 | 79.2 | 73.433 |
| P169 | 21 | M | I | vertical | vertical | vertical | disto | B | B | A | A | ii | ii | 60.3 | 61.2 | 36.3 | 37.5 | 80.7 | 79.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.1 | 61.5 | 36.1 | 37.1 | 80.1 | 79.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.5 | 61.9 | 36.5 | 37.9 | 80.5 | 79.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.3 | 61.5333 | 36.3 | 37.5 | 80.4333 | 79.267 |




| P180 | 17 | F | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 55.3 | 52.7 | 30.1 | 29.5 | 66.3 | 68.8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.9 | 52.1 | 30.4 | 29.4 | 66.9 | 68.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55 | 52.3 | 30.5 | 29.1 | 66.1 | 68.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.0667 | 52.3667 | 30.333 | 29.3333 | 66.4333 | 68.467 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.9 | 58.5 | 29.1 | 28.5 | 99.1 | 98.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.1 | 58.1 | 29.4 | 28.1 | 99.4 | 98.2 |
| P182 | 30 | F | I |  | horizontal |  |  |  | C |  |  | i | iii | 54.3 | 58.7 | 29.7 | 28.7 | 99 | 98 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.4333 | 58.4333 | 29.4 | 28.4333 | 99.1667 | 98.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.2 | 63.1 | 31.1 | 30.7 | 79.4 | 73.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.4 | 63.4 | 30.8 | 30.4 | 78.9 | 73.1 |
| P184 | 22 | M | I | horizontal | horizontal | vertical | disto | B | B | A | A | ii | ii | 62.1 | 63.9 | 31.4 | 30.1 | 79 | 73.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.2333 | 63.4667 | 31.1 | 30.4 | 79.1 | 73.433 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.8 | 61.3 | 34.4 | 37.4 | 75.9 | 72.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.4 | 61.9 | 34 | 37 | 75.4 | 72.1 |
| P185 | 29 | M | I |  |  | vertical | disto |  |  | B | A |  |  | 63.1 | 61.4 | 34.9 | 37.1 | 75.3 | 72.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.4333 | 61.5333 | 34.433 | 37.1667 | 75.5333 | 72.567 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.8 | 60 | 31.4 | 36.1 | 76.1 | 82.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.4 | 60.4 | 31.9 | 36.4 | 76.9 | 82.7 |
| P186 | 22 | M | I |  | horizontal |  |  |  | B |  |  |  | ii | 63.2 | 60.2 | 31.2 | 35.5 | 76.4 | 82.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.4667 | 60.2 | 31.5 | 36 | 76.4667 | 82.667 |


| P188 | 20 | F | I | mesio | mesio | mesio | vertical | B | B | A | A | ii | ii | 62.5 | 59.3 | 29.9 | 34.8 | 79.2 | 82.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.4 | 59.5 | 29.4 | 34.7 | 79 | 82.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.1 | 59.7 | 29.1 | 34.4 | 79.5 | 82 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.3333 | 59.5 | 29.467 | 34.6333 | 79.2333 | 82.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.6 | 60.8 | 35.6 | 30.7 | 86.4 | 82.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.2 | 60.4 | 35 | 30.1 | 86.2 | 82.1 |
| P189 | 21 | M | I | horizontal | horizontal | disto | disto | B | B | A | A | ii | ii | 61 | 60.1 | 35.4 | 30.4 | 86.1 | 82.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.2667 | 60.4333 | 35.333 | 30.4 | 86.2333 | 82.367 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 56.8 | 58.2 | 31.8 | 31.1 | 70.4 | 72.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 56.1 | 58.4 | 31.4 | 31.6 | 70.1 | 72.1 |
| P190 | 23 | F | I | mesio | mesio |  |  | B | B |  |  | ii | ii | 56.4 | 58.1 | 31.5 | 31.7 | 70.9 | 72.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 56.4333 | 58.2333 | 31.567 | 31.4667 | 70.4667 | 72.367 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.6 | 51.5 | 35.2 | 29.6 | 59.9 | 65.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.1 | 51.8 | 35.1 | 29.7 | 60.4 | 65.1 |
| P191 | 17 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 58.4 | 51.4 | 35.4 | 29.1 | 59.7 | 65 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.3667 | 51.5667 | 35.233 | 29.4667 | 60 | 65.167 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.7 | 68.4 | 31.3 | 29.2 | 72.2 | 74.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.9 | 68 | 31.9 | 29.4 | 72.9 | 74.1 |
| P192 | 22 | F | I | mesio | mesio | vertical | vertical | B | B | B | B | ii | ii | 57.4 | 68.1 | 31.5 | 29.9 | 72.4 | 74.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.6667 | 68.1667 | 31.567 | 29.5 | 72.5 | 74.5 |


| P194 | 28 | F | I | horizontal | horizontal | vertical | disto | B | B | A | A | ii | ii | 55.9 | 55 | 31.4 | 26.9 | 86.3 | 82.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.1 | 55.1 | 31.6 | 26.4 | 86 | 82.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.7 | 55.4 | 31.1 | 26.1 | 86.5 | 82.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.5667 | 55.1667 | 31.367 | 26.4667 | 86.2667 | 82.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.7 | 51 | 30.4 | 31.5 | 72.1 | 73.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.4 | 51.6 | 30.1 | 31.4 | 72.4 | 73.4 |
| P196 | 18 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 51.2 | 51.4 | 30.6 | 31.2 | 72.8 | 73.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.4333 | 51.3333 | 30.367 | 31.3667 | 72.4333 | 73.433 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.7 | 58.8 | 38.1 | 34 | 86.3 | 78.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.4 | 58.4 | 38.4 | 34.8 | 86.1 | 78.4 |
| P198 | 19 | F | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 64.3 | 58.4 | 38.5 | 34.4 | 86.4 | 78.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.4667 | 58.5333 | 38.333 | 34.4 | 86.2667 | 78.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.9 | 45.8 | 27.2 | 26.8 | 76.5 | 70.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.4 | 45.6 | 27.1 | 26.4 | 76.4 | 70.4 |
| P199 | 17 | M | I | vertical | vertical | vertical | vertical | C | C | B | B | iii | iii | 50.1 | 45.2 | 26.9 | 26.2 | 76.1 | 70.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.4667 | 45.5333 | 27.067 | 26.4667 | 76.3333 | 70.367 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.4 | 54.2 | 33 | 31.2 | 67 | 65.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.9 | 54.9 | 33.4 | 31.4 | 67.4 | 65.4 |
| P200 | 19 | F | I | vertical | vertical | vertical | vertical | B | B | A | A | ii | ii | 52.6 | 54.3 | 33.2 | 31.1 | 67.3 | 65.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.6333 | 54.4667 | 33.2 | 31.2333 | 67.2333 | 65.533 |


| P201 | 22 | M | I |  |  |  | horizontal |  |  |  | C |  | 67.4 |  | 67.4 | 41.5 | 36.8 | 79 | 75.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.2 | 67.1 | 41 | 36.4 | 79.4 | 75.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.6 | 67.9 | 41.2 | 36.2 | 79.1 | 75.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.4 | 67.4667 | 41.233 | 36.4667 | 79.1667 | 75.467 |
| P202 | 19 | M | I |  | horizontal |  |  |  | B |  |  |  | ii | 68.7 | 65 | 36.1 | 34.3 | 78.3 | 75.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.2 | 65.4 | 36.4 | 34 | 78.1 | 75 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.4 | 65.1 | 36.2 | 34.5 | 78.4 | 75.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.4333 | 65.1667 | 36.233 | 34.2667 | 78.2667 | 75.433 |
| P204 | 30 | F | I |  | horizontal |  | vertical | B |  |  |  |  | ii | 60.1 | 58.9 | 33.9 | 33.3 | 79.3 | 75.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.4 | 58.4 | 33.7 | 33.8 | 79.4 | 75.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.4 | 58.2 | 33.4 | 33.5 | 79.1 | 75.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.3 | 58.5 | 33.667 | 33.5333 | 79.2667 | 75.667 |
| P205 | 21 | F | I | vertical | horizontal | vertical | vertical | A | B | A | A | i | ii | 57.7 | 60.7 | 27.1 | 28.9 | 66.2 | 70.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.2 | 60.4 | 27.4 | 28.4 | 66.5 | 70.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.4 | 60.2 | 27.4 | 28.5 | 66.1 | 70.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.4333 | 60.4333 | 27.3 | 28.6 | 66.2667 | 70.4 |
| P206 | 30 | M | I | horizontal | horizontal |  | buccal | B | B |  | A | ii | ii | 66.1 | 66.1 | 27.9 | 31.5 | 72.6 | 75.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.5 | 66.4 | 27.1 | 31.4 | 72.1 | 75.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.8 | 66.2 | 27.4 | 31.1 | 72.9 | 75.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.4667 | 66.2333 | 27.467 | 31.3333 | 72.5333 | 75.233 |



| P216 | 30 | M | I | mesio | mesio | disto | disto | C | B | B | B | iii | ii | 63.4 | 59.6 | 38.7 | 33.9 | 79.1 | 72.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.1 | 59.4 | 38.1 | 33.4 | 79.4 | 72.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63 | 59.1 | 38.4 | 33.1 | 79.5 | 72.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.1667 | 59.3667 | 38.4 | 33.4667 | 79.3333 | 72.333 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.1 | 50.6 | 53.6 | 31.3 | 81.5 | 75.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.4 | 50.1 | 53.4 | 31.6 | 81.9 | 75.4 |
| P217 | 16 | F | I | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 55.9 | 50.4 | 53 | 31.4 | 81.4 | 75.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.4667 | 50.3667 | 53.333 | 31.4333 | 81.6 | 75.433 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 48.2 | 49.6 | 32 | 28.7 | 78.7 | 73.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 48.6 | 49.2 | 32.4 | 28.5 | 78.1 | 73.1 |
| P218 | 16 | M | I | vertical | vertical | vertical | vertical | B | A | A | A | ii | i | 48.5 | 49.3 | 32.1 | 28.4 | 78.4 | 73.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 48.4333 | 49.3667 | 32.167 | 28.5333 | 78.4 | 73.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.4 | 51.4 | 32.1 | 30.5 | 80.7 | 71.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.1 | 51.2 | 32.4 | 30.1 | 80.2 | 71.4 |
| P220 | 18 | F | I | mesio | mesio | vertical | vertical | B | A | A | A | ii | i | 58.2 | 51.4 | 32.9 | 30 | 80.5 | 71.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.2333 | 51.3333 | 32.467 | 30.2 | 80.4667 | 71.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.7 | 59.1 | 33.5 | 30.2 | 80.1 | 76.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.2 | 59 | 33.1 | 30.9 | 80.4 | 76.2 |
| P221 | 30 | F | I | vertical | horizontal | disto | vertical | B | B | A | A | ii | ii | 58.4 | 59.4 | 33 | 30.4 | 80.2 | 76.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.4333 | 59.1667 | 33.2 | 30.5 | 80.2333 | 76.6 |




| P233 | 16 | M | I | mesio | mesio | disto | disto | C | C | B | C | iii | iii | 61 | 59.5 | 32.8 | 32.7 | 79.8 | 83 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.4 | 59.4 | 32.1 | 32.1 | 79.2 | 83.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.5 | 59.2 | 32.4 | 32.4 | 79.5 | 83.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.3 | 59.3667 | 32.433 | 32.4 | 79.5 | 83.167 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.5 | 60.1 | 31.7 | 32.1 | 81.6 | 82.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.4 | 60.4 | 31.2 | 32.4 | 81.2 | 82.5 |
| P234 | 30 | F | I | horizontal | mesio |  | vertical | B | A |  | B | ii | i | 59.8 | 60.9 | 31.4 | 32.9 | 81.9 | 82.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.5667 | 60.4667 | 31.433 | 32.4667 | 81.5667 | 82.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 56.6 | 58.4 | 32.1 | 29.9 | 71.2 | 78.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 56.2 | 58.1 | 32.9 | 29.4 | 71.9 | 78.9 |
| P235 | 30 | F | I |  | horizontal |  |  |  | B |  |  |  | ii | 56.1 | 58.2 | 32.4 | 29.2 | 71.4 | 78.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 56.3 | 58.2333 | 32.467 | 29.5 | 71.5 | 78.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60 | 54.3 | 26.7 | 26.5 | 59.4 | 57.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.4 | 54.9 | 26.1 | 26.1 | 59.1 | 57.9 |
| P236 | 22 | F | I | horizontal | horizontal |  |  | B | B |  |  | ii | ii | 60.2 | 54.7 | 26.4 | 26.9 | 59.2 | 57.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.2 | 54.6333 | 26.4 | 26.5 | 59.2333 | 57.533 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.7 | 60.4 | 32.3 | 30.8 | 85.7 | 79.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.9 | 60.2 | 32.1 | 30.6 | 85.4 | 79.2 |
| P237 | 28 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 61.4 | 60.9 | 32.9 | 30.3 | 85.1 | 79.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.6667 | 60.5 | 32.433 | 30.5667 | 85.4 | 79.433 |



| P246 | 20 | M | I | vertical | vertical |  | vertical | A | A |  | A | i | i | 61.5 | 64 | 35.8 | 35.9 | 72.2 | 80.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.2 | 64.9 | 35.4 | 35.4 | 72.1 | 80.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.4 | 64.4 | 35.9 | 35.1 | 72.4 | 80.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.3667 | 64.4333 | 35.7 | 35.4667 | 72.2333 | 80.267 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.8 | 59.8 | 34.7 | 29.8 | 81.2 | 75.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.4 | 59.4 | 34.1 | 29.1 | 81.4 | 75.4 |
| P247 | 29 | M | I |  | horizontal | vertical | vertical |  | B | A | A |  | ii | 59.1 | 59.1 | 34.2 | 29.4 | 81.4 | 75.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.4333 | 59.4333 | 34.333 | 29.4333 | 81.3333 | 75.433 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53 | 51 | 30.1 | 31.1 | 64.7 | 61.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.4 | 51.4 | 30.4 | 31.4 | 64.5 | 61.4 |
| P248 | 21 | F | I | vertical |  |  | vertical | A |  |  | A | i |  | 53.1 | 51.2 | 30.9 | 31.2 | 64.1 | 61.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.1667 | 51.2 | 30.467 | 31.2333 | 64.4333 | 61.467 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.4 | 49.2 | 30.3 | 29.7 | 65.2 | 60.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.2 | 49.5 | 30.4 | 29.4 | 65.9 | 60.9 |
| P249 | 27 | F | I |  | vertical | buccal |  |  | B | A |  |  | ii | 51.8 | 49.8 | 30.9 | 29.2 | 65.4 | 60.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 51.4667 | 49.5 | 30.533 | 29.4333 | 65.5 | 60.467 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.1 | 54.6 | 35 | 36.1 | 79.3 | 80.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.9 | 54.5 | 35.4 | 36.9 | 79.4 | 80.4 |
| P250 | 25 | F | I | vertical | mesio | buccal | vertical | B | B | A | A | ii | ii | 50.4 | 54.2 | 35.2 | 36.4 | 79.8 | 80.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.4667 | 54.4333 | 35.2 | 36.4667 | 79.5 | 80.233 |


| P252 | 23 | M | I | horizontal | horizontal | vertical |  | B | B | A |  | ii | ii | 61.4 | 63.3 | 34.9 | 32 | 81.7 | 70.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.9 | 63.9 | 34.5 | 32.4 | 81.2 | 70.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.5 | 63.4 | 34.9 | 32.9 | 81.9 | 70.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.6 | 63.5333 | 34.767 | 32.4333 | 81.6 | 70.233 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.7 | 56 | 32.9 | 28.5 | 62.7 | 60.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.2 | 56.4 | 32.4 | 28.4 | 62.4 | 60.4 |
| P253 | 16 | F | I | vertical | mesio | vertical | vertical | B | B | B | B | ii | ii | 55.4 | 56.2 | 32.1 | 28.2 | 62.1 | 60.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 55.4333 | 56.2 | 32.467 | 28.3667 | 62.4 | 60.333 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.4 | 59.9 | 27.4 | 28.3 | 75.9 | 78 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.1 | 59.4 | 27.1 | 28.1 | 75.1 | 78.4 |
| P254 | 27 | F | I | vertical | horizontal | mesio | mesio | A | B | A | A | i | ii | 58.5 | 59.4 | 27.2 | 28.4 | 75.4 | 78.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 58.3333 | 59.5667 | 27.233 | 28.2667 | 75.4667 | 78.167 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54 | 50.4 | 34.3 | 37.1 | 89.8 | 89 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.9 | 50.9 | 34.1 | 37.4 | 89.4 | 89.4 |
| P256 | 18 | F | I | mesio | mesio | disto | disto | C | C | B | B | iii | iii | 53.7 | 50.4 | 34.1 | 37.2 | 89.1 | 89.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.8667 | 50.5667 | 34.167 | 37.2333 | 89.4333 | 89.167 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.2 | 57.5 | 35.7 | 38.9 | 75.1 | 82.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.4 | 57.2 | 35.1 | 38.4 | 75.4 | 82.1 |
| P258 | 16 | F | I | vertical | mesio | vertical | vertical | C | C | A | A | iii | iii | 57.4 | 57.3 | 35.4 | 38.1 | 75.4 | 82 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.3333 | 57.3333 | 35.4 | 38.4667 | 75.3 | 82.2 |


| P261 | 23 | F | I | vertical | buccal | disto | vertical | A | C | A | A | i | i | 49.2 | 48.9 | 32.3 | 32.4 | 77.2 | 84.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.1 | 48.4 | 32.6 | 32.9 | 77.4 | 84.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.6 | 48.2 | 32.5 | 32.6 | 77.6 | 84.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 49.3 | 48.5 | 32.467 | 32.6333 | 77.4 | 84.467 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.9 | 55.1 | 30.9 | 35.4 | 77.5 | 74 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.6 | 55.3 | 30.4 | 35.2 | 77.4 | 74.3 |
| P262 | 22 | F | I | mesio |  |  | vertical | A |  |  | A | i |  | 54.3 | 55.7 | 30.2 | 35.9 | 77.9 | 74.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54.6 | 55.3667 | 30.5 | 35.5 | 77.6 | 74.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.3 | 55.5 | 34 | 35.5 | 72 | 68.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.4 | 55.4 | 34.2 | 35.4 | 72.4 | 68.4 |
| P263 | 24 | F | I | mesio | mesio | disto |  | B | B | A |  | ii | ii | 50.6 | 55.3 | 34.6 | 35.2 | 72.9 | 68.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 50.4333 | 55.4 | 34.267 | 35.3667 | 72.4333 | 68.433 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 41.2 | 43 | 26.9 | 31 | 76.8 | 78.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 41.3 | 43.8 | 27 | 31.4 | 76.5 | 78.4 |
| P264 | 17 | F | B | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 41 | 43.2 | 26.4 | 31.9 | 76.4 | 78.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 41.1667 | 43.3333 | 26.767 | 31.4333 | 76.5667 | 78.567 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 48.2 | 50.5 | 28.2 | 35.2 | 69.2 | 72.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 48.1 | 50.2 | 28.5 | 35.4 | 69.4 | 72.4 |
| P266 | 21 | M | I | horizontal | vertical | vertical |  | B | B | A |  | ii | ii | 48.4 | 50.9 | 28.3 | 35.9 | 69.5 | 72.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 48.2333 | 50.5333 | 28.333 | 35.5 | 69.3667 | 72.467 |



| P274 | 18 | F | I | mesio | mesio | disto | disto | C | C | C | C | iii | iii | 61.1 | 66.8 | 37.7 | 33.9 | 111.6 | 106 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.2 | 66.4 | 37.2 | 33.7 | 111.4 | 106.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.4 | 66.2 | 37.4 | 34 | 111.2 | 106.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.2333 | 66.4667 | 37.433 | 33.8667 | 111.4 | 106.37 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.4 | 64.9 | 37.6 | 35.9 | 111.5 | 109.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.2 | 64.7 | 37.4 | 35.4 | 111.4 | 109.2 |
| P275 | 16 | M | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 65.1 | 64.2 | 37.5 | 35.2 | 111.2 | 109 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.2333 | 64.6 | 37.5 | 35.5 | 111.367 | 109.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 81.3 | 82.1 | 30 | 40.4 | 110.2 | 95.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 81 | 82 | 29.8 | 40.2 | 110.3 | 95.2 |
| P276 | 18 | M | I | vertical | vertical | disto |  | B | B | A |  | ii | ii | 80.9 | 81.8 | 29.9 | 40.1 | 110.4 | 95.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 81.0667 | 81.9667 | 29.9 | 40.2333 | 110.3 | 95.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.4 | 57 | 42.3 | 42.1 | 111.4 | 108.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.2 | 56.8 | 42.1 | 42.9 | 111.5 | 108.2 |
| P277 | 30 | F | B | mesio | vertical |  |  | B | A |  |  | ii | i | 66.5 | 57.2 | 42.4 | 42.8 | 111.8 | 108.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.3667 | 57 | 42.267 | 42.6 | 111.567 | 108.37 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 46.3 | 37.4 | 67 | 63.1 | 98.3 | 99.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 46.1 | 37.2 | 66.8 | 63.4 | 98.2 | 99 |
| P279 | 28 | F | I |  | horizontal |  |  |  | B |  |  |  | ii | 46.4 | 37.5 | 67.2 | 63.2 | 98 | 99.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 46.2667 | 37.3667 | 67 | 63.2333 | 98.1667 | 99.2 |



| P286 | 22 | M | I | vertical | vertical | disto | disto | B | B | A | A | ii | ii | 71.6 | 72.5 | 32.7 | 33.5 | 103.8 | 101.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 71.4 | 72.4 | 32.4 | 33.8 | 103.4 | 101.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 71.3 | 72.9 | 32.5 | 33.4 | 103.7 | 101.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 71.4333 | 72.6 | 32.533 | 33.5667 | 103.633 | 101.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.9 | 50.4 | 35.8 | 33.9 | 106 | 101 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 54 | 50 | 35.4 | 33.7 | 106.5 | 101.4 |
| P287 | 21 | F | I | horizontal | mesio | vertical | vertical | B | C | A | A | ii | iii | 53.8 | 50.7 | 35.4 | 34 | 106.2 | 101.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 53.9 | 50.3667 | 35.533 | 33.8667 | 106.233 | 101.37 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 72.9 | 72.2 | 38.2 | 35.2 | 104.6 | 102.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 72.8 | 72.9 | 38.4 | 35.4 | 104.2 | 102.6 |
| P289 | 25 | M | I | vertical | vertical |  |  | A | A |  |  | i | i | 72.5 | 72.8 | 38.1 | 35.9 | 104.3 | 102.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 72.7333 | 72.6333 | 38.233 | 35.5 | 104.367 | 102.57 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 75.1 | 71 | 33.4 | 32.3 | 114.4 | 122 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 75.4 | 71.5 | 33.1 | 32.4 | 114.3 | 121.9 |
| P290 | 29 | M | B | mesio | horizontal |  |  | A | B |  |  | i | ii | 75.7 | 71.3 | 33.5 | 32.9 | 114.2 | 122.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 75.4 | 71.2667 | 33.333 | 32.5333 | 114.3 | 122 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.2 | 67.2 | 43.4 | 29.8 | 115.9 | 111.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.4 | 67.3 | 43.1 | 29.5 | 115.4 | 111.4 |
| P291 | 26 | F | B | vertical | vertical | vertical | vertical | A | A | A | A | i | 1 | 63.5 | 67.5 | 43.3 | 29.7 | 115.3 | 111.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.3667 | 67.3333 | 43.267 | 29.6667 | 115.533 | 111.6 |



| P297 | 27 | M | B | mesio | mesio | vertical | vertical | B | A | A | A | ii | i | 74 | 78.1 | 40.2 | 38.4 | 106.9 | 103.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 74.3 | 78.3 | 40.4 | 38.1 | 106.4 | 103.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 74.6 | 78.5 | 40.3 | 38.2 | 106.5 | 103.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 74.3 | 78.3 | 40.3 | 38.2333 | 106.6 | 103.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.1 | 71.8 | 38.2 | 34.9 | 128.1 | 109.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.4 | 71.4 | 38.4 | 34.8 | 128.4 | 109.5 |
| P298 | 22 | M | B | mesio | vertical |  |  | A | B |  |  | i | ii | 60.5 | 71.9 | 38.9 | 34.2 | 128.3 | 109.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.3333 | 71.7 | 38.5 | 34.6333 | 128.267 | 109.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.5 | 65.8 | 36.4 | 34 | 123.4 | 109.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.4 | 65.7 | 36.3 | 34.2 | 123.5 | 109.3 |
| P299 | 30 | M | B | vertical | vertical |  |  | A | A |  |  | i | i | 67.7 | 65.4 | 36.9 | 34.9 | 123.9 | 109.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.5333 | 65.6333 | 36.533 | 34.3667 | 123.6 | 109.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 71 | 70.2 | 42.5 | 39.5 | 111 | 109 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 71.3 | 70.4 | 42.4 | 39.4 | 110.8 | 109.5 |
| P301 | 17 | M | B | mesio | mesio | disto | disto | C | C | A | A | iii | iii | 71.5 | 70.5 | 42.1 | 39.3 | 111.3 | 109.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 71.2667 | 70.3667 | 42.333 | 39.4 | 111.033 | 109.27 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.2 | 63.3 | 39.6 | 34.2 | 109.4 | 103.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.5 | 63.5 | 39.2 | 34.5 | 109.2 | 103.4 |
| P302 | 19 | F | B | mesio | mesio |  |  | B | A |  |  | ii | i | 60.9 | 63.8 | 39.4 | 34.7 | 109.7 | 103.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 60.5333 | 63.5333 | 39.4 | 34.4667 | 109.433 | 103.57 |


| P305 | 23 | F | I | mesio | mesio | mesio | vertical | B | A | A | A | ii | i | 65.2 | 72.3 | 38.8 | 32.4 | 100.2 | 87.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.4 | 72.1 | 38.1 | 32.1 | 100.4 | 87.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.1 | 72.4 | 38.4 | 32.5 | 100.5 | 87.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.2333 | 72.2667 | 38.433 | 32.3333 | 100.367 | 87.433 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63 | 65.4 | 33.9 | 34.9 | 102 | 100.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.4 | 65.5 | 33.4 | 34.5 | 101.8 | 100.4 |
| P306 | 22 | F | I | mesio | mesio |  | vertical | B | B |  | A | ii | ii | 63.5 | 65.1 | 33.5 | 34.2 | 101.7 | 100.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.3 | 65.3333 | 33.6 | 34.5333 | 101.833 | 100.33 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.4 | 67.9 | 34.9 | 31.2 | 106.8 | 100.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.1 | 67.5 | 34.5 | 31.4 | 106.4 | 100.4 |
| P309 | 20 | F | I | vertical | vertical | vertical | vertical | A | A | A | A | i | i | 66.3 | 67.4 | 34.1 | 31.9 | 106.5 | 100.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.2667 | 67.6 | 34.5 | 31.5 | 106.567 | 100.43 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.6 | 65.6 | 35.4 | 38.1 | 108.5 | 108.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.1 | 65.4 | 35.1 | 38.4 | 108.4 | 108.4 |
| P310 | 26 | M | I | vertical | vertical |  |  | A | A |  |  | i | i | 64.3 | 65.1 | 35.4 | 38.2 | 108.2 | 108.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 64.3333 | 65.3667 | 35.3 | 38.2333 | 108.367 | 108.53 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 77.6 | 90.3 | 31.2 | 34.5 | 98.3 | 103.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 77.4 | 90.5 | 31.4 | 34.9 | 98.5 | 103.6 |
| P312 | 30 | M | I | horizontal | mesio | mesio | mesio | C | C | C | C | iii | iii | 77.5 | 90.6 | 31.5 | 34.7 | 98.4 | 103.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 77.5 | 90.4667 | 31.367 | 34.7 | 98.4 | 103.63 |


| P313 | 17 | M | I | vertical |  | mesio | vertical | A |  | A | A | i | 57 <br> 57.4 |  | 61.3 | 29.7 | 30.9 | 88.8 | 90.3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 61.4 | 29.5 | 30.1 | 88.4 | 90.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.4 | 61.5 | 29.2 | 30.5 | 88.3 | 90.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 57.2667 | 61.4 | 29.467 | 30.5 | 88.5 | 90.267 |
| P314 | 30 | F | B | vertical | vertical |  |  | A | A |  |  | i | i | 59.5 | 57.2 | 35.9 | 35.5 | 116.7 | 114.6 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.1 | 57.4 | 35.4 | 35.4 | 116.3 | 114.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.4 | 57.5 | 35.1 | 35.2 | 116.2 | 114.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.3333 | 57.3667 | 35.467 | 35.3667 | 116.4 | 114.37 |
| P317 | 21 | F | B | horizontal | vertical | disto | disto | B | B | A | A | ii | ii | 66.7 | 68 | 39.4 | 39.9 | 119.2 | 106.9 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.4 | 68.4 | 39.2 | 39.4 | 119.4 | 106.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.1 | 68.1 | 39.1 | 39.1 | 119.5 | 106.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.4 | 68.1667 | 39.233 | 39.4667 | 119.367 | 106.5 |
| P318 | 16 | M | B | buccal | buccal | disto | disto | C | C | C | C | iii | iii | 52.1 | 54.6 | 35.6 | 35.1 | 121 | 117.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.4 | 54.2 | 35.5 | 35.4 | 120.8 | 117.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.5 | 54.3 | 35.1 | 35.6 | 120.9 | 117.3 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 52.3333 | 54.3667 | 35.4 | 35.3667 | 120.9 | 117.4 |
| P320 | 19 | M | I | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 65.3 | 69.4 | 36.7 | 35.9 | 101.5 | 92.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.4 | 69.2 | 36.4 | 35.4 | 101 | 92.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.1 | 69.5 | 36.1 | 35.7 | 101.4 | 92.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 65.2667 | 69.3667 | 36.4 | 35.6667 | 101.3 | 92.433 |



| P326 | 19 | F | I | mesio | vertical | vertical | vertical | A | A | A | A | i | i | 62.9 | 63 | 38.2 | 31 | 95.8 | 92 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.4 | 63.1 | 38.4 | 31.4 | 95.4 | 92.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.1 | 63.4 | 38.4 | 31.4 | 95.1 | 92.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 62.4667 | 63.1667 | 38.333 | 31.2667 | 95.4333 | 92.167 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 73.3 | 72.5 | 33.7 | 26.8 | 96.6 | 94.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 73.4 | 72.5 | 34.1 | 26.4 | 96.4 | 94.3 |
| P327 | 25 | F | I | horizontal | mesio | buccal |  | C | B | A |  | iii | ii | 73.6 | 72.9 | 34.9 | 26.5 | 96.2 | 94.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 73.4333 | 72.6333 | 34.233 | 26.5667 | 96.4 | 94.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59 | 57.5 | 34.3 | 26.8 | 96.6 | 94.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.4 | 57.4 | 34.1 | 26.4 | 96.4 | 94.3 |
| P328 | 16 | F | B | vertical | vertical | vertical | disto | B | B | A | A | ii | ii | 59.9 | 57.9 | 34.9 | 26.5 | 96.2 | 94.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 59.4333 | 57.6 | 34.433 | 26.5667 | 96.4 | 94.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 74.6 | 74.9 | 36.3 | 37.9 | 112.8 | 109.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 74.5 | 74.1 | 36.4 | 37.4 | 112.3 | 109.5 |
| P329 | 16 | F | B | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 74.1 | 74.8 | 36.7 | 37.5 | 112.5 | 109.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 74.4 | 74.6 | 36.467 | 37.6 | 112.533 | 109.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.7 | 75.4 | 30 | 25.5 | 99.3 | 96.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.4 | 75.3 | 30.4 | 25.7 | 99.4 | 96.4 |
| P330 | 18 | M | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 67.3 | 75.2 | 30.2 | 25.4 | 99.8 | 96.7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 67.4667 | 75.3 | 30.2 | 25.5333 | 99.5 | 96.433 |


| P334 | 16 | M | B | mesio | mesio | disto | disto | B | B | A | A | ii | ii | 66.2 | 76.9 | 39 | 38.4 | 112.6 | 100.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.1 | 76.4 | 39.4 | 38.2 | 112.4 | 100.4 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.4 | 76.2 | 39.2 | 38.1 | 112.1 | 100.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 66.2333 | 76.5 | 39.2 | 38.2333 | 112.367 | 100.47 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68 | 62.5 | 37.4 | 37.1 | 108.9 | 88.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.1 | 62.4 | 37.2 | 37.4 | 108.3 | 88.4 |
| P335 | 16 | M | I | mesio | mesio | disto | disto | B | B | A | A | ii | ii | 68.4 | 62.5 | 37.4 | 37.3 | 108.4 | 88.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 68.1667 | 62.4667 | 37.333 | 37.2667 | 108.533 | 88.433 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 71.9 | 63.4 | 35.9 | 33.4 | 102 | 101.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 71.4 | 63.1 | 35.4 | 33.1 | 102.3 | 101.5 |
| P336 | 16 | M | I | vertical | vertical | disto | disto | C | C | A | A | iii | iii | 71.8 | 63.5 | 35.1 | 33.4 | 102.1 | 101.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 71.7 | 63.3333 | 35.467 | 33.3 | 102.133 | 101.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.6 | 69.4 | 37.3 | 30.5 | 124.3 | 107.8 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.1 | 69.1 | 37.4 | 30.4 | 124.9 | 107.6 |
| P337 | 16 | F | B | vertical | mesio | vertical | vertical | A | A | A | A | i | i | 63.4 | 69.3 | 37.9 | 30.2 | 124.5 | 107.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 63.3667 | 69.2667 | 37.533 | 30.3667 | 124.567 | 107.5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 72 | 75.3 | 33 | 32.6 | 91.6 | 97.2 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 72.4 | 75.4 | 33.4 | 32.1 | 91.4 | 97.5 |
| P338 | 30 | F | I |  |  |  | disto |  |  |  | A |  |  | 72.1 | 75.1 | 33.6 | 32.4 | 91.3 | 97.1 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | 72.1667 | 75.2667 | 33.333 | 32.3667 | 91.4333 | 97.267 |


| P339 |  | F | I | Vertical | vertical | B | B | ii | ii | 73.2 | 70.3 | 42.4 | 38.2 | 106.4 | 91.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  | 73.4 | 70.4 | 42.1 | 38.4 | 106.1 | 91.3 |
|  |  |  |  |  |  |  |  |  |  | 73.1 | 70.9 | 42.6 | 38.1 | 106.3 | 91.5 |
|  | 30 |  |  |  |  |  |  |  |  | 73.2333 | 70.5333 | 42.367 | 38.2333 | 106.267 | 91.4 |

## MEAN RESULTS

## Results_Mean Data_Impacted third molars

| No. ofx-ray | Age | Sex | Race | Type of angulation of the third molar |  |  |  | Depth of the third molar |  |  |  | Relation to mandible |  | Length of ramus |  | Width of ramus |  | Length of body |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { Mandible } \\ \text { Right } \end{gathered}$ | $\begin{array}{c\|} \hline \text { Mandible } \\ \text { left } \end{array}$ | Maxilla Right | $\begin{gathered} \hline \text { Maxilla } \\ \text { Left } \end{gathered}$ | $\begin{gathered} \text { Mandible } \\ \text { Right } \end{gathered}$ | $\begin{gathered} \text { Mandible } \\ \text { Left } \end{gathered}$ | Maxilla Right | $\begin{gathered} \hline \text { Maxilla } \\ \text { Left } \end{gathered}$ | Right | Left | Right | Left | Right | Left | Right | Left |
| P1 | 23 | F | I | mesio | mesio | vertical | vertical | A | A | A | A | i | i | 55.7667 | 50.5667 | 31.6 | 28.8333 | 79.3 | 76.7667 |
| P3 | 20 | F | I | mesio | mesio | vertical | vertical | C | C | B | B | iii | iii | 46.3333 | 47.2667 | 30.3 | 28.2 | 84.1667 | 85.4 |
| P7 | 20 | F | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 53 | 51.4333 | 30.2 | 27.5667 | 86.6333 | 86.6 |
| P8 | 21 | F | I | mesio | vertical | vertical | vertical | B | B | A | A | ii | ii | 53 | 51.4333 | 30.2 | 27.5667 | 86.6333 | 86.6 |
| P9 | 16 | F | C | mesio | mesio | disto | disto | C | C | A | A | iii | iii | 49.5333 | 50.1333 | 31.2 | 31.5 | 79.4667 | 80.3333 |
| P10 | 26 | F | I |  | horizontal |  |  |  | B |  |  |  | ii | 52.5333 | 54.3667 | 28.6667 | 27.4 | 81.4333 | 83.3667 |
| P13 | 23 | M | I | horizontal | mesio | vertical | vertical | B | B | A | A | ii | ii | 62.6 | 71.5333 | 31.9667 | 34.6333 | 77.3333 | 78.5167 |
| P14 | 16 | M | C | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 53.7667 | 54.6667 | 37.5667 | 36.2667 | 92.0667 | 89.4 |
| P15 | 21 | F | I | mesio | mesio | disto | disto | C | C | B | B | iii | iii | 47.5 | 51.6 | 35.7667 | 35.6333 | 88.3667 | 89.4 |
| P16 | 22 | F | I | vertical | vertical | vertical | vertical | B | B | A | A | ii | ii | 33.5667 | 32.2333 | 55.5667 | 55.5667 | 82.2667 | 84.7 |
| P17 | 21 | M | I | mesio | mesio | mesio | mesio | A | B | A | A | i | ii | 30.4 | 30.2333 | 60.6 | 63.4333 | 73.4 | 71.5667 |
| P18 | 16 | F | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 30.5 | 27.7 | 54.1667 | 56.6667 | 64.3667 | 62.4333 |
| P19 | 18 | F | C | mesio | mesio | vertical | vertical | A | A | A | A | i | i | 29.4333 | 29.1333 | 47.7 | 47.7333 | 71.5667 | 73.2333 |
| P21 | 17 | F | W | mesio | mesio | vertical | disto | B | B | A | A | ii | ii | 34.7 | 36.3667 | 57.1333 | 58.2667 | 83.9333 | 82.3667 |
| P24 | 19 | M | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 30 | 27.4667 | 60 | 60.6667 | 78.4333 | 74.6 |
| P25 | 19 | F | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 25.6 | 23.5 | 53.9 | 53.5333 | 86.5333 | 84.7667 |


| P26 | 25 | F | I | vertical | vertical |  |  | B | B |  |  | ii | ii | 32.8333 | 30.0667 | 56.7333 | 58.1333 | 77.1333 | 76.2333 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P27 | 25 | F | I | horizontal |  |  |  | B |  |  |  | ii |  | 30.8667 | 30 | 45.6 | 45.5667 | 66.1 | 67.6667 |
| P28 | 23 | F | I |  |  |  | vertical |  |  |  | A |  |  | 29.4667 | 28.6667 | 59.5333 | 59.4667 | 75.6667 | 73.6333 |
| P29 | 29 | M | C | horizontal |  |  | vertical | B |  |  | A | ii |  | 32.2333 | 39.6667 | 65.4667 | 66.2667 | 85.6667 | 90.4 |
| P30 | 24 | F | C | mesio | mesio |  |  | B | B |  |  | ii | ii | 31.3333 | 30.5333 | 44.9 | 51.7333 | 74.6 | 75.5333 |
| P32 | 19 | F | I | mesio | mesio | vertical | disto | B | B | A | A | ii | ii | 28.5333 | 32.2333 | 52.8667 | 59.2 | 89.3 | 90.4333 |
| P33 | 23 | F | I | vertical | vertical |  |  | B | B |  |  | ii | ii | 30.1667 | 31.0667 | 55.15 | 58.7833 | 85 | 85.8 |
| P34 | 22 | M | I | mesio | mesio | vertical | vertical | B | C | A | A | ii | iii | 30.6333 | 28.3667 | 60.0667 | 56.5333 | 72.5 | 65.6 |
| P35 | 25 | F | I | mesio | mesio | vertical | buccal | C | C | A | A | iii | iii | 34.6333 | 31.5333 | 53.6 | 53.2667 | 81.5333 | 81.5 |
| P38 | 29 | M | I | mesio | horizontal |  |  | B | C |  |  | ii | iii | 39.2333 | 32.5333 | 59.4667 | 59.3667 | 77.4667 | 74.6 |
| P39 | 27 | F | I | vertical | vertical |  |  | A | A |  |  | ii | ii | 33.2333 | 32.9667 | 64.3 | 60.8333 | 75.3 | 78.3 |
| P40 | 18 | M | I | mesio | mesio | vertical | disto | C | C | A | A | iii | iii | 30.7 | 32.4333 | 48.5333 | 49.5333 | 87.5333 | 84.4333 |
| P41 | 16 | M | B | buccal | buccal | vertical | vertical | B | B | A | A | ii | ii | 28.5667 | 25.5 | 49.6 | 49.4667 | 67.6 | 67.4667 |
| P43 | 27 | F | I | vertical | vertical |  |  | B | B |  |  | ii | ii | 31.6333 | 28.3667 | 52.6333 | 57.1667 | 72.4667 | 73.4 |
| P45 | 29 | M | I | vertical | horizontal | disto | horizontal | B | B | B | A | ii | ii | 66.2667 | 65.4667 | 38.6333 | 35.7 | 79.2667 | 80.8 |
| P46 | 25 | F | I | vertical | vertical |  |  | A | A |  |  | i | i | 51.1333 | 52.5 | 35.4 | 34.5 | 83.4667 | 85.5333 |
| P47 | 27 | M | I | horizontal | horizontal |  |  | B | A |  |  | ii | 1 | 60.1667 | 58.4333 | 35.5667 | 34.6 | 83.5333 | 86.3667 |
| P48 | 30 | M | C | horizontal | mesio | vertical | disto | B | C | A | A | ii | iii | 63.7667 | 66.4 | 41.6667 | 32.6333 | 88.0333 | 84.3 |
| P49 | 20 | M | I |  | mesio | vertical | vertical |  | C | B | B |  | iii | 58.7 | 60.4667 | 40.6 | 38.5 | 92.3667 | 90.4667 |
| P50 | 21 | M | B |  | mesio |  |  |  | B |  |  |  | ii | 66.2 | 62.9333 | 38.2 | 42.7 | 89.6667 | 93.4 |


| P52 | 18 | F | I | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 49.2667 | 50.5333 | 34.7 | 31.5 | 79.4333 | 83.3667 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P53 | 27 | M | I |  | mesio |  |  |  | B |  |  |  | ii | 65.5333 | 64.5 | 31.3333 | 30.4667 | 76.6 | 78.4 |
| P54 | 29 | M | B | horizontal | horizontal | vertical | vertical | C | B | A | A | iii | ii | 64.0333 | 65.2 | 34.7 | 35.8 | 79.5333 | 76.8 |
| P55 | 25 | F | I | vertical | vertical |  |  | B | B |  |  | ii | ii | 50.5 | 53.4333 | 28.5333 | 26.2333 | 82.5667 | 81.3333 |
| P56 | 17 | F | B | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 52.6333 | 54.5667 | 37.2667 | 33.5333 | 74.7 | 75.6333 |
| P58 | 30 | F | I | vertical | mesio |  |  | A | B |  |  | i | ii | 62.4667 | 64.4333 | 33.8667 | 30.8667 | 81.3667 | 75.4667 |
| P59 | 17 | M | I | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 53.5 | 56.5667 | 32.3667 | 33.6 | 78.1 | 84.3333 |
| P61 | 28 | M | B | vertical | vertical | vertical | vertical | B | B | A | A | ii | ii | 53.4333 | 58.4667 | 30.6667 | 30.4667 | 79.5333 | 78.3667 |
| P62 | 23 | M | B | vertical | vertical |  |  | B | B |  |  | ii | ii | 74.5333 | 71.3 | 29.5333 | 31.4667 | 103.9 | 102.2 |
| P63 | 17 | M | B | buccal |  | disto | disto | B |  | A | A | ii |  | 54.3667 | 53.3667 | 30.4333 | 29.5 | 96.4333 | 95.3667 |
| P64 | 16 | M | B | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 47.2667 | 47.3333 | 39.2333 | 37.4333 | 74.5 | 69.3667 |
| P65 | 16 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 56.3667 | 59.4333 | 33.4 | 34.3667 | 84.5 | 81.3333 |
| P66 | 21 | M | I | mesio | mesio |  |  | B | B |  |  | ii | ii | 69.4333 | 74.2333 | 35.6 | 34.4667 | 85.3 | 82.3333 |
| P67 | 25 | M | I | horizontal | mesio |  |  | B | A |  |  | ii | i | 68.5 | 70.3 | 30.4333 | 33.3333 | 82.2 | 74.4667 |
| P68 | 20 | M | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 57.5667 | 56.0667 | 32.2 | 34.3667 | 82.5 | 79.4667 |
| P69 | 23 | M | I | vertical | mesio | vertical | vertical | B | B | A | A | ii | ii | 70.5667 | 76.2 | 34.3 | 34.4333 | 92.4 | 91.2333 |
| P70 | 27 | F | I | vertical | vertical | vertical | vertical | B | B | A | A | ii | ii | 54.5333 | 50.5333 | 29.3333 | 29.7 | 67.5 | 68.4667 |
| P71 | 27 | M | I | vertical | mesio |  | vertical | B | B |  | A | ii | ii | 61.5 | 62.4 | 31.3333 | 33.4333 | 73.4333 | 75.2 |
| P72 | 21 | F | I | vertical | vertical |  | vertical | A | B |  | A | i | ii | 59.6667 | 62.2667 | 30.3667 | 26.7667 | 85.4 | 83.4667 |
| P75 | 21 | M | B | horizontal | horizontal | vertical | vertical | B | B | A | A | ii | ii | 55.5667 | 55.3333 | 37.4333 | 33.4 | 92.2667 | 88.3333 |


| P76 | 17 | F | B | mesio | mesio | disto | disto | C | C | A | A | iii | iii | 59.5 | 60.4333 | 38.5333 | 37.5333 | 98.7333 | 95.2333 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P77 | 16 | F | I | mesio | mesio | vertical | vertical | B | C | C | C | 11 | iii | 55.5333 | 54.5 | 28.5 | 26.6 | 59.3667 | 63.3333 |
| P79 | 29 | M | I | vertical | vertical |  | disto | B | B |  | A | ii | ii | 61.4 | 66.4333 | 33.2667 | 30.2 | 83.4 | 87.3 |
| P80 | 23 | M | I | vertical | vertical | vertical | vertical | B | A | A | A | ii | i | 60.4 | 60.0333 | 33.4667 | 33.6333 | 78.2333 | 71.3 |
| P81 | 24 | F | I | mesio | mesio |  |  | B | B |  |  | ii | ii | 44.1 | 52.3 | 32.9667 | 33.2 | 74.0333 | 71.3 |
| P82 | 21 | F | I | mesio | mesio | mesio | mesio | B | B | A | A | ii | ii | 47.3 | 58.4 | 29.5333 | 31.3667 | 77.3667 | 75.1667 |
| P83 | 21 | M | I | vertical | mesio | vertical | vertical | B | B | A | A | ii | ii | 64.2333 | 66.0333 | 30.4 | 31.4333 | 77.3667 | 75.1667 |
| P84 | 17 | F | I | vertical | mesio | vertical | vertical | A | B | A | A | i | ii | 49.4667 | 55.4 | 31.5 | 31.4333 | 82.4333 | 79.4 |
| P85 | 22 | M | I | horizontal | horizontal |  |  | B | B |  |  | ii | ii | 58.8667 | 62.2333 | 26.3 | 24.2667 | 76.3 | 71.5 |
| P86 | 22 | F | I | horizontal | mesio |  |  | B | B |  |  | ii | ii | 54.5667 | 59.8 | 31.2 | 28.8 | 78.1667 | 75.3 |
| P87 | 16 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 54.6333 | 54.3667 | 30.5667 | 30.2333 | 78.2333 | 79.3 |
| P88 | 29 | M | I | horizontal | horizontal | vertical | vertical | B | B | A | A | ii | ii | 66.4 | 67.3667 | 33.5 | 31.3667 | 77.4667 | 73.7 |
| P89 | 25 | F | I | mesio |  | vertical |  | B |  | A |  | ii |  | 56.5 | 58.4 | 28.2333 | 28.3333 | 77.3667 | 74.5333 |
| P92 | 18 | F | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 61.4333 | 63.4 | 33.4333 | 29.4 | 70.4333 | 65.6333 |
| P93 | 26 | F | I | mesio | mesio | buccal | disto | C | C | B | B | iii | iii | 54.4 | 48.4667 | 29.4 | 28.3333 | 71.5 | 74.4333 |
| P94 | 30 | M | I | horizontal | vertical |  |  | B | A |  |  | 11 | ii | 62.4333 | 58.5667 | 33.1667 | 31.4333 | 82.2667 | 78.6333 |
| P96 | 22 | M | I | horizontal | vertical | vertical | vertical | B | A | A | A | ii | 1 | 51.3 | 51.4667 | 34.2333 | 30.2 | 98.4333 | 93.4667 |
| P98 | 22 | M | I | horizontal | horizontal | vertical | vertical | B | C | A | A | ii | iii | 59.4333 | 61.4333 | 35.4 | 35.4333 | 86.4333 | 83.2667 |
| P99 | 18 | F | I | buccal | horizontal | disto | disto | C | C | C | C | iii | iii | 48.4 | 52.1667 | 31.2333 | 27.3333 | 88 | 78.2 |
| P100 | 23 | F | I | vertical | vertical | vertical | vertical | A | B | A | A | i | ii | 58.3333 | 58.2667 | 31.3333 | 27.3 | 79.2333 | 73.4 |


| P101 | 17 | F | I | mesio | mesio |  |  | B | B |  |  | ii | ii | 54.3 | 52.2333 | 30.4667 | 35.2333 | 68.9667 | 68.2333 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P103 | 19 | M | I | vertical | mesio | disto | vertical | A | B | A | A | i | 11 | 62.4333 | 64.2333 | 36.2333 | 35.4333 | 83.3333 | 77.6 |
| P104 | 19 | F | I | horizontal | mesio |  |  | B | A |  |  | ii | i | 51.2333 | 48.3667 | 32.3 | 32.4333 | 88.4333 | 88.5667 |
| P105 | 17 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 64.2333 | 64.3 | 36.4333 | 32.3 | 76.3333 | 72.4667 |
| P106 | 25 | M | I | horizontal | horizontal |  |  | B | B |  |  | ii | ii | 67.4667 | 69.2 | 27.4333 | 29.4667 | 81.3 | 71.4667 |
| P107 | 29 | F | I | horizontal | mesio | disto | disto | B | B | C | C | ii | ii | 52.4 | 50.6 | 25.1667 | 27.2333 | 64.3333 | 66.2 |
| P108 | 18 | M | I | mesio | mesio | vertical | vertical | C | C | B | B | iii | iii | 55.4667 | 56.3333 | 35.4333 | 29.9667 | 64.2667 | 66.4667 |
| P109 | 29 | F | I |  | horizontal |  |  |  | B |  |  |  | ii | 54.3667 | 60.4667 | 29.4333 | 29.4333 | 71.6 | 73.5333 |
| P110 | 29 | M | I | horizontal | mesio |  | vertical | B | A |  | B | ii | ii | 55.5 | 58.3 | 32.8 | 29.6667 | 86.1667 | 83.6 |
| P111 | 29 | M | I | horizontal | vertical |  |  | C | A |  |  | iii | i | 55.3667 | 55.6667 | 30.1667 | 24.3333 | 79.1667 | 82.3 |
| P112 | 22 | F | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 52.5 | 55.2667 | 25.4333 | 24.3333 | 79.1667 | 82.3 |
| P113 | 20 | M | B | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 56.3 | 51.2 | 32.1667 | 28.2667 | 101.467 | 96.5667 |
| P114 | 26 | F | W | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 60.5333 | 59.3333 | 36.5333 | 36.0667 | 83.4333 | 78.3 |
| P115 | 29 | M | I | horizontal | horizontal |  |  | B | B |  |  | ii | ii | 61.4333 | 61.6 | 39.3333 | 36.4667 | 79.4 | 72.5333 |
| P116 | 20 | M | B | vertical | vertical |  | vertical | A | A |  | A | i | i | 54.4667 | 54.5 | 36.3 | 34.8333 | 86.2333 | 80.3333 |
| P118 | 29 | F | I |  |  | buccal | vertical |  |  | A | A |  |  | 55.5 | 54.5 | 34.4 | 33.4333 | 72.4 | 69.4333 |
| P121 | 16 | M | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 52.3667 | 58.3 | 34.2333 | 32.5667 | 78.3 | 80.4333 |
| P122 | 17 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 62.3333 | 60.3667 | 34.2667 | 33.2 | 75.3 | 67.3 |
| P123 | 18 | F | I | mesio | mesio | disto | disto | C | C | A | A | iii | iii | 46.5333 | 55.3 | 32.6667 | 25.6 | 73.2 | 71.4667 |
| P124 | 20 | F | I | vertical | vertical | vertical | vertical | A | B | A | A | i | 11 | 50.4 | 49.3333 | 28.2333 | 28.5667 | 71.3333 | 64.4333 |


| P125 | 27 | F | I | mesio | mesio | vertical | disto | B | C | A | A | ii | iii | 52.4 | 53.3667 | 28.8333 | 32.3667 | 74.4 | 80.4667 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P126 | 30 | M | 1 | vertical | horizontal | vertical | disto | A | B | A | A | i | ii | 72.4333 | 73.2667 | 33.3667 | 32.3333 | 90.2333 | 84.6333 |
| P127 | 17 | F | I | mesio | mesio | disto | disto | C | C | A | A | iii | iii | 61.4333 | 60.3 | 32.4 | 31.3667 | 72.1667 | 65.2333 |
| P128 | 21 | F | 1 | horizontal | mesio | vertical | vertical | C | B | A | A | iii | ii | 51.4333 | 52.4333 | 30.1667 | 26.4333 | 68.4 | 66.4667 |
| P129 | 17 | F | I | Buccal | Buccal | disto | disto | B | B | A | A | ii | ii | 68.4333 | 67.4333 | 35.1667 | 31.2333 | 56.3667 | 57.1667 |
| P130 | 25 | M | I | horizontal | horizontal |  |  | B | B |  |  | ii | ii | 62.4 | 64.4 | 39.4333 | 32.4333 | 94.3333 | 93.3333 |
| P131 | 18 | F | I | vertical | mesio | vertical | vertical | C | C | A | A | iii | iii | 52.4667 | 54.3 | 26.5 | 26.2333 | 67.4 | 64.3667 |
| P132 | 25 | F | I | mesio | mesio | buccal | vertical | B | C | A | A | ii | iii | 57.4667 | 49.4 | 35.1667 | 32.4667 | 74.3 | 61.6667 |
| P133 | 17 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 58.3333 | 63.5 | 33.5667 | 31.6333 | 85.3667 | 72.4 |
| P134 | 19 | F | I | horizontal | horizontal | vertical | vertical | B | B | A | A | ii | ii | 57.2 | 56.4333 | 26.2667 | 27.3333 | 88.2667 | 82.4667 |
| P135 | 24 | M | I | horizontal | horizontal |  | vertical | C | C |  | A | iii | iii | 57.3667 | 59.9 | 30.4667 | 31.4333 | 86.2 | 77.5667 |
| P136 | 16 | M | I | mesio | mesio | disto | disto | C | C | C | C | iii | iii | 54.4 | 59.9 | 30.4667 | 31.4333 | 86.2 | 77.5667 |
| P138 | 24 | M | I | horizontal | horizontal |  |  | B | B |  |  | ii | ii | 63.3 | 65.3333 | 34.7333 | 32.6 | 88.4 | 82.5333 |
| P139 | 16 | M | I | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 54.5 | 52.4 | 33.4667 | 27.4333 | 84.5 | 78.3333 |
| P140 | 26 | M | I | horizontal | horizontal | vertical | vertical | B | A | A | A | ii | i | 61.3667 | 57.7 | 30.5667 | 29.3 | 78.4 | 69.4333 |
| P141 | 18 | M | I | mesio | mesio | vertical | vertical | A | A | A | A | i | 1 | 68.4667 | 65.3667 | 32.6667 | 30.6333 | 77.2667 | 76.3333 |
| P142 | 22 | M | I | mesio | mesio |  |  | B | B |  |  | ii | ii | 63.7333 | 62.6 | 35.3667 | 33.2 | 72.4333 | 68.2667 |
| P144 | 19 | F | 1 | vertical | vertical | vertical | vertical | B | A | A | A | ii | i | 58.4333 | 55.2 | 33.4 | 29.4 | 81.3333 | 76.3 |
| P145 | 23 | M | I |  |  |  | disto |  |  |  | A |  |  | 50.4333 | 54.4 | 30.4 | 28.3333 | 80.4333 | 75.3 |
| P146 | 22 | F | I | horizontal | horizontal | mesio | disto | C | C | C | C | iii | iii | 52.4333 | 52.3333 | 30.4333 | 28.4667 | 73.3 | 69.4667 |


| P147 | 21 | F | I | mesio | mesio | vertical | vertical | B | B | A | A | i | ii | 52.4667 | 55.4333 | 29.3 | 25.6333 | 74.0333 | 69.4333 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P148 | 17 | F | I | mesio | mesio | vertical | disto | B | B | A | A | ii | ii | 55.1667 | 49.2667 | 30.4333 | 32.4 | 73.4667 | 69.4333 |
| P149 | 23 | F | i | vertical | mesio | disto | vertical | A | B | C | A | 1 | ii | 53.2333 | 52.3667 | 35.1667 | 31.5 | 100.1 | 91.1667 |
| P150 | 22 | M | I | horizontal | horizontal | disto | disto | B | B | C | C | ii | ii | 62.1667 | 61.4667 | 28.6667 | 31.2 | 75.3667 | 72.5 |
| P151 | 27 | M | I | mesio | mesio | vertical |  | A | B | A |  | i | i | 62.2667 | 63.4667 | 37.2 | 37.3667 | 86.2 | 88.2667 |
| P152 | 23 | F | I | mesio | mesio | mesio | mesio | C | C | C | C | iii | iii | 59.1667 | 58.4667 | 28.6 | 28.3667 | 76.6 | 75.3667 |
| P153 | 17 | M | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 53.3333 | 52.5 | 26.2333 | 25.2667 | 74.4667 | 68.2667 |
| P155 | 30 | M | I | horizontal |  |  |  | B |  |  |  | ii |  | 60.3333 | 60.5 | 35.6 | 37.5 | 65.4 | 63.3667 |
| P156 | 16 | F | I | mesio | mesio | disto | disto | C | C | C | C | iii | iii | 51.2667 | 51.5 | 29.1667 | 22.4667 | 84.1333 | 86.4667 |
| P157 | 22 | M | I |  | horizontal |  |  |  | A |  |  |  | 1 | 69.4 | 69.3667 | 27.3667 | 28.3667 | 83.7 | 83.4 |
| P158 | 29 | M | I | vertical | vertical |  |  | A | B |  |  | i | ii | 65.2 | 62.4333 | 31.2333 | 32.0333 | 82.2667 | 76.3667 |
| P162 | 23 | M | I |  | horizontal | mesio |  |  | B | A |  |  | ii | 59.4 | 59.0667 | 34.2 | 29.4 | 76.4333 | 70.3667 |
| P163 | 18 | F | I | mesio | mesio | disto | disto | B | B | A | A | ii | ii | 54.4333 | 55.3667 | 35.3667 | 36.3 | 84.5 | 82.6333 |
| P165 | 19 | M | I |  |  | vertical | vertical |  |  | A | A |  |  | 65.3 | 64.5333 | 35.2333 | 34.4333 | 81.3 | 79.4 |
| P166 | 22 | F | I | mesio | buccal |  | vertical | B | A |  | A | ii | i | 55.5 | 52.9667 | 31.2667 | 27.5667 | 77.2667 | 76.5 |
| P167 | 16 | F | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 52.5 | 54.3667 | 43.4 | 40.6 | 91.5667 | 86.5333 |
| P168 | 19 | M | I | mesio | mesio | mesio | vertical | C | C | C | C | iii | iii | 63.4333 | 62.5 | 37.3667 | 35.4667 | 79.2 | 73.4333 |
| P169 | 21 | M | I | vertical | vertical | vertical | disto | B | B | A | A | ii | ii | 60.3 | 61.5333 | 36.3 | 37.5 | 80.4333 | 79.2667 |
| P170 | 17 | F | I | mesio | mesio | vertical | vertical | A | A | A | A | 1 | i | 55.6333 | 53.5 | 34.6 | 32.4667 | 83.4 | 82.4667 |
| P171 | 17 | M | I | mesio | mesio | vertical | vertical | C | C | B | B | iii | iii | 48.5 | 51.6667 | 32.4333 | 32.4333 | 73.2333 | 74.4667 |


| P172 | 24 | M | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 56.6333 | 59.5 | 29.3667 | 31.4667 | 88.4 | 86.1667 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P173 | 21 | F | I |  |  |  | vertical |  |  |  | A |  |  | 56.1667 | 56.4 | 37.4667 | 36.4667 | 84.5333 | 83.3333 |
| P174 | 19 | F | I | horizontal | mesio | vertical | vertical | C | B | A | A | iii | ii | 58.5 | 59.2 | 32.6667 | 33.4 | 75.4333 | 71.6333 |
| P175 | 30 | F | I | mesio |  | vertical |  | B |  | A |  | ii |  | 56.4 | 53.4667 | 29.6 | 29.6667 | 83.4 | 63.4 |
| P176 | 20 | F | I | horizontal | horizontal | mesio | vertical | C | C | A | A | iii | iii | 61.4667 | 59.3667 | 33.2 | 29.6667 | 70.2667 | 69.7 |
| P177 | 26 | F | 1 |  |  |  | vertical |  |  |  | A |  |  | 55.6667 | 57.1 | 27.1333 | 26.4333 | 80.7333 | 78.5 |
| P178 | 30 | F | I | vertical | vertical |  | vertical | B | B |  | B | ii | ii | 53.4 | 49.3333 | 31.4667 | 31.6333 | 75.3667 | 73.5 |
| P179 | 17 | F | I | mesio | mesio | vertical | vertical | B | B | B | A | ii | ii | 52.4 | 52.3 | 28.4333 | 29.1 | 71.5333 | 68.3 |
| P180 | 17 | F | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 55.0667 | 52.3667 | 30.3333 | 29.3333 | 66.4333 | 68.4667 |
| P182 | 30 | F | I |  | horizontal |  |  |  | C |  |  |  | iii | 54.4333 | 58.4333 | 29.4 | 28.4333 | 99.1667 | 98.2 |
| P184 | 22 | M | I | horizontal | horizontal | vertical | disto | B | B | A | A | ii | ii | 62.2333 | 63.4667 | 31.1 | 30.4 | 79.1 | 73.4333 |
| P185 | 29 | M | I |  |  | vertical | disto |  |  | B | A |  |  | 63.4333 | 61.5333 | 34.4333 | 37.1667 | 75.5333 | 72.5667 |
| P186 | 22 | M | I |  | horizontal |  |  |  | B |  |  |  | ii | 63.4667 | 60.2 | 31.5 | 36 | 76.4667 | 82.6667 |
| P188 | 20 | F | I | mesio | mesio | mesio | vertical | B | B | A | A | ii | ii | 62.3333 | 59.5 | 29.4667 | 34.6333 | 79.2333 | 82.2 |
| P189 | 21 | M | I | horizontal | horizontal | disto | disto | B | B | A | A | ii | ii | 61.2667 | 60.4333 | 35.3333 | 30.4 | 86.2333 | 82.3667 |
| P190 | 23 | F | I | mesio | mesio |  |  | B | B |  |  | ii | ii | 56.4333 | 58.2333 | 31.5667 | 31.4667 | 70.4667 | 72.3667 |
| P191 | 17 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 58.3667 | 51.5667 | 35.2333 | 29.4667 | 60 | 65.1667 |
| P192 | 22 | F | I | mesio | mesio | vertical | vertical | B | B | B | B | ii | ii | 57.6667 | 68.1667 | 31.5667 | 29.5 | 72.5 | 74.5 |
| P194 | 28 | F | I | horizontal | horizontal | vertical | disto | B | B | A | A | ii | ii | 55.5667 | 55.1667 | 31.3667 | 26.4667 | 86.2667 | 82.5 |
| P196 | 18 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 51.4333 | 51.3333 | 30.3667 | 31.3667 | 72.4333 | 73.4333 |


| P198 | 19 | F | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 64.4667 | 58.5333 | 38.3333 | 34.4 | 86.2667 | 78.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P199 | 17 | M | I | vertical | vertical | vertical | vertical | C | C | B | B | iii | iii | 50.4667 | 45.5333 | 27.0667 | 26.4667 | 76.3333 | 70.3667 |
| P200 | 19 | F | I | vertical | vertical | vertical | vertical | B | B | A | A | ii | ii | 52.6333 | 54.4667 | 33.2 | 31.2333 | 67.2333 | 65.5333 |
| P201 | 22 | M | I |  |  |  | horizontal |  |  |  | C |  |  | 67.4 | 67.4667 | 41.2333 | 36.4667 | 79.1667 | 75.4667 |
| P202 | 19 | M | I |  | horizontal |  |  |  | B |  |  |  | ii | 68.4333 | 65.1667 | 36.2333 | 34.2667 | 78.2667 | 75.4333 |
| P204 | 30 | F | I |  | horizontal |  |  |  | B |  |  |  | ii | 60.3 | 58.5 | 33.6667 | 33.5333 | 79.2667 | 75.6667 |
| P205 | 21 | F | I | vertical | horizontal | vertical | vertical | A | B | A | A | i | ii | 57.4333 | 60.4333 | 27.3 | 28.6 | 66.2667 | 70.4 |
| P206 | 30 | M | 1 | horizontal | horizontal |  | buccal | B | B |  | A | ii | ii | 66.4667 | 66.2333 | 27.4667 | 31.3333 | 72.5333 | 75.2333 |
| P207 | 29 | F | 1 | mesio | mesio |  |  | A | A |  |  | i | i | 54.3333 | 53.4667 | 31.5 | 27.2333 | 83.5333 | 76.3667 |
| P211 | 24 | M | I | horizontal | horizontal |  |  | B | B |  |  | ii | ii | 68.4 | 68.4333 | 37.4333 | 33.1667 | 83.5 | 82.3333 |
| P212 | 28 | F | I |  |  |  | vertical |  |  |  | A |  |  | 58.3333 | 55.4333 | 29.4667 | 29.1667 | 77.6 | 85.4667 |
| P214 | 21 | M | I | mesio | mesio | vertical | disto | B | B | A | A | ii | ii | 48.5 | 53.5333 | 27.1333 | 25.4333 | 75.1667 | 73.3667 |
| P215 | 16 | F | I | mesio | mesio | disto | disto | C | C | C | C | iii | iii | 42.4333 | 43.1333 | 27.4 | 28.3333 | 80.4667 | 74.2667 |
| P216 | 30 | M | I | mesio | mesio | disto | disto | C | B | B | B | iii | ii | 63.1667 | 59.3667 | 38.4 | 33.4667 | 79.3333 | 72.3333 |
| P217 | 16 | F | 1 | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 55.4667 | 50.3667 | 53.3333 | 31.4333 | 81.6 | 75.4333 |
| P218 | 16 | M | I | vertical | vertical | vertical | vertical | B | A | A | A | ii | i | 48.4333 | 49.3667 | 32.1667 | 28.5333 | 78.4 | 73.4 |
| P220 | 18 | F | I | mesio | mesio | vertical | vertical | B | A | A | A | ii | i | 58.2333 | 51.3333 | 32.4667 | 30.2 | 80.4667 | 71.3 |
| P221 | 30 | F | I | vertical | horizontal | disto | vertical | B | B | A | A | ii | ii | 58.4333 | 59.1667 | 33.2 | 30.5 | 80.2333 | 76.6 |
| P222 | 30 | F | I | mesio |  | vertical | vertical | B |  | A | A | ii |  | 45.4667 | 50.4333 | 35.4333 | 29.7667 | 75.7667 | 78.4667 |
| P224 | 26 | M | 1 | horizontal | mesio |  |  | B | A |  |  | ii | i | 67.5667 | 64.6 | 26.6333 | 25.7 | 80.4333 | 77.2667 |


| P225 | 27 | F | I | horizontal |  |  |  | B |  |  |  | ii |  | 52.4667 | 52.4667 | 32.1667 | 30.6 | 75.7 | 72.4667 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P226 | 16 | M | I | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 47.5 | 46.5667 | 37.4667 | 31.4667 | 74.4333 | 73.5 |
| P227 | 16 | M | I | vertical | mesio | vertical | disto | B | C | A | A | ii | iii | 61.4667 | 62.5333 | 41.7 | 36.6333 | 89.2667 | 85.3333 |
| P228 | 30 | M | I | vertical | vertical |  |  | A | A |  |  | i | i | 62.6333 | 59.4 | 32.5667 | 33.4667 | 86.8667 | 80.5333 |
| P229 | 30 | M | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 69.4333 | 65.2667 | 33.5 | 33.1667 | 79.9 | 83.1667 |
| P230 | 16 | M | B | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 48.2333 | 46.4 | 31.5 | 32.5667 | 90.4333 | 93.4667 |
| P231 | 16 | M | I | mesio | mesio | disto | disto | C | C | C | C | iii | iii | 38.3667 | 32.2667 | 37.4667 | 34.5 | 87.2333 | 90.5333 |
| P232 | 30 | F | I | mesio | mesio | disto | disto | C | C | B | B | iii | iii | 57.2667 | 54.3667 | 30.2667 | 30.1667 | 72.4333 | 66.0333 |
| P233 | 16 | M | I | mesio | mesio | disto | disto | C | C | B | C | iii | iii | 61.3 | 59.3667 | 32.4333 | 32.4 | 79.5 | 83.1667 |
| P234 | 30 | F | I | horizontal | mesio |  | vertical | B | A |  | B | ii | 1 | 59.5667 | 60.4667 | 31.4333 | 32.4667 | 81.5667 | 82.3 |
| P235 | 30 | F | I |  | horizontal |  |  |  | B |  |  |  | ii | 56.3 | 58.2333 | 32.4667 | 29.5 | 71.5 | 78.5 |
| P236 | 22 | F | I | horizontal | horizontal |  |  | B | B |  |  | 11 | ii | 60.2 | 54.6333 | 26.4 | 26.5 | 59.2333 | 57.5333 |
| P237 | 28 | M | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 61.6667 | 60.5 | 32.4333 | 30.5667 | 85.4 | 79.4333 |
| P238 | 25 | F | I |  | vertical |  | vertical |  | A |  | A |  | i | 51.6 | 52.4 | 34.5667 | 32.7 | 74.0333 | 76.1667 |
| P241 | 17 | F | I | mesio | mesio | vertical | disto | C | C | C | C | iii | iii | 80.6 | 85.8333 | 31.4333 | 33.2 | 52.2333 | 51.5333 |
| P242 | 18 | F | I | horizontal | mesio | vertical | disto | B | B | A | A | ii | ii | 60.1667 | 53.6667 | 31.4333 | 28.4667 | 68.4667 | 64.5333 |
| P243 | 29 | M | I | horizontal | mesio | vertical | disto | B | C | A | A | ii | iii | 62.4 | 68 | 41.3 | 36.5 | 89.2667 | 80.5 |
| P245 | 25 | F | I | mesio | vertical | vertical | disto | B | A | A | A | ii | i | 50.3667 | 52.2667 | 34.2333 | 33.5 | 73.3 | 60.3333 |
| P246 | 20 | M | I | vertical | vertical |  | vertical | A | A |  | A | 1 | 1 | 61.3667 | 64.4333 | 35.7 | 35.4667 | 72.2333 | 80.2667 |
| P247 | 29 | M | I |  | horizontal | vertical | vertical |  | B | A | A |  | ii | 59.4333 | 59.4333 | 34.3333 | 29.4333 | 81.3333 | 75.4333 |


| P248 | 21 | F | I | vertical |  |  | vertical | A |  |  | A | i |  | 53.1667 | 51.2 | 30.4667 | 31.2333 | 64.4333 | 61.4667 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P249 | 27 | F | I |  | vertical | buccal |  |  | B | A |  |  | ii | 51.4667 | 49.5 | 30.5333 | 29.4333 | 65.5 | 60.4667 |
| P250 | 25 | F | I | vertical | mesio | buccal | vertical | B | B | A | A | ii | ii | 50.4667 | 54.4333 | 35.2 | 36.4667 | 79.5 | 80.2333 |
| P252 | 23 | M | I | horizontal | horizontal | vertical |  | B | B | A |  | ii | ii | 61.6 | 63.5333 | 34.7667 | 32.4333 | 81.6 | 70.2333 |
| P253 | 16 | F | I | vertical | mesio | vertical | vertical | B | B | B | B | ii | ii | 55.4333 | 56.2 | 32.4667 | 28.3667 | 62.4 | 60.3333 |
| P254 | 27 | F | I | vertical | horizontal | mesio | mesio | A | B | A | A | i | ii | 58.3333 | 59.5667 | 27.2333 | 28.2667 | 75.4667 | 78.1667 |
| P256 | 18 | F | I | mesio | mesio | disto | disto | C | C | B | B | iii | iii | 53.8667 | 50.5667 | 34.1667 | 37.2333 | 89.4333 | 89.1667 |
| P258 | 16 | F | I | vertical | mesio | vertical | vertical | C | C | A | A | iii | iii | 57.3333 | 57.3333 | 35.4 | 38.4667 | 75.3 | 82.2 |
| P261 | 23 | F | I | vertical | buccal | disto | vertical | A | C | A | A | i | i | 49.3 | 48.5 | 32.4667 | 32.6333 | 77.4 | 84.4667 |
| P262 | 22 | F | I | mesio |  |  | vertical | A |  |  | A | i |  | 54.6 | 55.3667 | 30.5 | 35.5 | 77.6 | 74.4 |
| P263 | 24 | F | I | mesio | mesio | disto |  | B | B | A |  | ii | ii | 50.4333 | 55.4 | 34.2667 | 35.3667 | 72.4333 | 68.4333 |
| P264 | 17 | F | B | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 41.1667 | 43.3333 | 26.7667 | 31.4333 | 76.5667 | 78.5667 |
| P266 | 21 | M | I | horizontal | vertical | vertical |  | B | B | A |  | ii | ii | 48.2333 | 50.5333 | 28.3333 | 35.5 | 69.3667 | 72.4667 |
| P267 | 24 | M | I | mesio | mesio |  |  | B | B |  |  | ii | ii | 32.4333 | 34.1667 | 57.6 | 62.2333 | 91 | 82.3667 |
| P268 | 26 | M | I | vertical | vertical |  |  | B | B |  |  | ii | ii | 37.2333 | 33.4667 | 63.2333 | 70.3 | 92.4667 | 83.2 |
| P270 | 29 | M | B | vertical | vertical | vertical | vertical | B | B | A | A | ii | ii | 21.3667 | 26.2667 | 56.2333 | 54.4 | 102.467 | 82.4 |
| P272 | 26 | F | I | mesio | mesio | vertical | vertical | C | C | A | A | iii | iii | 26.2667 | 26.5 | 46.4333 | 48.3 | 71.4667 | 71.5333 |
| P273 | 19 | F | B | vertical | vertical | vertical |  | A | B | A |  | i | ii | 30.2667 | 33.2333 | 56.2667 | 54.3333 | 100.433 | 100.167 |
| P274 | 18 | F | I | mesio | mesio | disto | disto | C | C | C | C | iii | iii | 61.2333 | 66.4667 | 37.4333 | 33.8667 | 111.4 | 106.367 |
| P275 | 16 | M | I | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 65.2333 | 64.6 | 37.5 | 35.5 | 111.367 | 109.2 |


| P276 | 18 | M | I | vertical | vertical | disto |  | B | B | A |  | ii | ii | 81.0667 | 81.9667 | 29.9 | 40.2333 | 110.3 | 95.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P277 | 30 | F | B | mesio | vertical |  |  | B | A |  |  | ii | i | 66.3667 | 57 | 42.2667 | 42.6 | 111.567 | 108.367 |
| P279 | 28 | F | I |  | horizontal |  |  |  | B |  |  |  | ii | 46.2667 | 37.3667 | 67 | 63.2333 | 98.1667 | 99.2 |
| P280 | 21 | F | B |  | mesio |  |  |  | B |  |  |  | ii | 58.3333 | 67.3667 | 35.4 | 39.3667 | 111.433 | 95.3 |
| P282 | 28 | F | I | vertical | mesio |  |  | A | A |  |  | i | i | 65.3333 | 65.2333 | 36.2667 | 35.4 | 103.233 | 110.367 |
| P283 | 18 | F | I | mesio | mesio | vertical | vertical | B | B | A | A | 11 | ii | 70.5333 | 71.3 | 38.4667 | 40.4667 | 90.6 | 108.433 |
| P284 | 20 | F | I | mesio | mesio | vertical | disto | B | B | A | A | ii | ii | 56.3333 | 56.3667 | 40.4667 | 36.3333 | 96.6 | 93.5333 |
| P285 | 23 | M | I | vertical | vertical |  |  | A | A |  |  | i | i | 94.4333 | 97.2333 | 42.5667 | 45.4333 | 115.333 | 119.533 |
| P286 | 22 | M | I | vertical | vertical | disto | disto | B | B | A | A | ii | ii | 71.4333 | 72.6 | 32.5333 | 33.5667 | 103.633 | 101.6 |
| P287 | 21 | F | I | horizontal | mesio | vertical | vertical | B | C | A | A | ii | iii | 53.9 | 50.3667 | 35.5333 | 33.8667 | 106.233 | 101.367 |
| P289 | 25 | M | I | vertical | vertical |  |  | A | A |  |  | i | i | 72.7333 | 72.6333 | 38.2333 | 35.5 | 104.367 | 102.567 |
| P290 | 29 | M | B | mesio | horizontal |  |  | A | B |  |  | i | ii | 75.4 | 71.2667 | 33.3333 | 32.5333 | 114.3 | 122 |
| P291 | 26 | F | B | vertical | vertical | vertical | vertical | A | A | A | A | i | i | 63.3667 | 67.3333 | 43.2667 | 29.6667 | 115.533 | 111.6 |
| P292 | 23 | F | B | vertical |  |  |  | A |  |  |  | i |  | 65.4667 | 67.1667 | 38.2333 | 29.6 | 115.4 | 112.3 |
| P293 | 28 | F | B | vertical | buccal | vertical | vertical | A | C | A | A | i | iii | 61.2 | 66.2667 | 38.3667 | 30.4333 | 115.467 | 102.5 |
| P294 | 19 | M | B | mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 75.2 | 72.3333 | 34.2333 | 36.2 | 118.5 | 116.4 |
| P295 | 27 | F | I | horizontal | mesio |  | vertical | B | B |  | A | ii | ii | 61.3667 | 62.3667 | 35.4333 | 31.3333 | 98.4 | 95.5 |
| P296 | 19 | M | I | horizontal | horizontal | vertical | disto | B | B | A | A | ii | ii | 80.4333 | 78.5 | 38.3333 | 32.4333 | 104 | 94.5667 |
| P297 | 27 | M | B | mesio | mesio | vertical | vertical | B | A | A | A | ii | i | 74.3 | 78.3 | 40.3 | 38.2333 | 106.6 | 103.3 |
| P298 | 22 | M | B | mesio | vertical |  |  | A | B |  |  | i | ii | 60.3333 | 71.7 | 38.5 | 34.6333 | 128.267 | 109.6 |


| P299 | 30 | M | B | disto | disto |  |  | A | A |  |  | i | i | 67.5333 | 65.6333 | 36.5333 | 34.3667 | 123.6 | 109.4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P301 | 17 | M | B | mesio | mesio | disto | disto | C | C | A | A | iii | iii | 71.2667 | 70.3667 | 42.3333 | 39.4 | 111.033 | 109.267 |
| P302 | 19 | F | B | mesio | mesio |  |  | B | A |  |  | ii | i | 60.5333 | 63.5333 | 39.4 | 34.4667 | 109.433 | 103.567 |
| P305 | 23 | F | I | mesio | mesio | mesio | vertical | B | A | A | A | ii | i | 65.2333 | 72.2667 | 38.4333 | 32.3333 | 100.367 | 87.4333 |
| P306 | 22 | F | I | mesio | mesio |  | vertical | B | B |  | A | ii | ii | 63.3 | 65.3333 | 33.6 | 34.5333 | 101.833 | 100.333 |
| P309 | 20 | F | I | vertical | vertical | vertical | vertical | A | A | A | A | i | i | 66.2667 | 67.6 | 34.5 | 31.5 | 106.567 | 100.433 |
| P310 | 26 | M | I | vertical | vertical |  |  | A | A |  |  | i | i | 64.3333 | 65.3667 | 35.3 | 38.2333 | 108.367 | 108.533 |
| P312 | 30 | M | I | horizontal | mesio | mesio | mesio | C | C | C | C | iii | iii | 77.5 | 90.4667 | 31.3667 | 34.7 | 98.4 | 103.633 |
| P313 | 17 | M | I | vertical |  | mesio | vertical | A |  | A | A | i |  | 57.2667 | 61.4 | 29.4667 | 30.5 | 88.5 | 90.2667 |
| P314 | 30 | F | B | vertical | vertical |  |  | A | A |  |  | i | i | 59.3333 | 57.3667 | 35.4667 | 35.3667 | 116.4 | 114.367 |
| P317 | 21 | F | B | horizontal | vertical | disto | disto | B | B | A | A | ii | ii | 66.4 | 68.1667 | 39.2333 | 39.4667 | 119.367 | 106.5 |
| P318 | 16 | M | B | buccal | buccal | disto | disto | C | C | C | C | iii | iii | 52.3333 | 54.3667 | 35.4 | 35.3667 | 120.9 | 117.4 |
| P320 | 19 | M | I | mesio | mesio | vertical | vertical | C | C | C | C | iii | iii | 65.2667 | 69.3667 | 36.4 | 35.6667 | 101.3 | 92.4333 |
| P321 | 20 | F | I | vertical | vertical |  | disto | B | B |  | A | ii | ii | 58.3667 | 60.3667 | 31.4667 | 29.4667 | 106.2 | 103.367 |
| P322 | 17 | F | I | Mesio | buccal | vertical | vertical | C | C | A | A | iii | iii | 68.3667 | 71.4667 | 35.2667 | 35.2333 | 99.3667 | 93.6667 |
| P323 | 17 | F | I | Vertical | mesio | disto | disto | C | C | C | C | iii | iii | 72.5333 | 76.2333 | 31.6 | 34.3333 | 101.5 | 94.4 |
| P324 | 24 | F | I | Horizontal | horizontal | disto | mesio | C | C | C | C | iii | iii | 59.4667 | 69.5 | 33.4333 | 36.4333 | 96.8667 | 102.267 |
| P325 | 28 | M | I | Horizontal | vertical |  |  | B | A |  |  | ii | i | 76.3667 | 78.2667 | 37.3667 | 29.2667 | 103.233 | 90.3333 |
| P326 | 19 | F | I | Mesio | vertical | vertical | vertical | A | A | A | A | i | i | 62.4667 | 63.1667 | 38.3333 | 31.2667 | 95.4333 | 92.1667 |
| P327 | 25 | F | I | Horizontal | mesio | buccal |  | C | B | A |  | iii | ii | 73.4333 | 72.6333 | 34.2333 | 26.5667 | 96.4 | 94.5 |


| P328 | 16 | F | B | Vertical | vertical | vertical | disto | B | B | A | A | ii | ii | 59.4333 | 57.6 | 34.4333 | 26.5667 | 96.4 | 94.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P329 | 16 | F | B | Mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 74.4 | 74.6 | 36.4667 | 37.6 | 112.533 | 109.4 |
| P330 | 18 | M | I | Mesio | mesio | vertical | vertical | B | B | A | A | ii | ii | 67.4667 | 75.3 | 30.2 | 25.5333 | 99.5 | 96.4333 |
| P334 | 16 | M | B | Mesio | mesio | disto | disto | B | B | A | A | ii | ii | 66.2333 | 76.5 | 39.2 | 38.2333 | 112.367 | 100.467 |
| P335 | 16 | M | 1 | Mesio | mesio | disto | disto | B | B | A | A | ii | ii | 68.1667 | 62.4667 | 37.3333 | 37.2667 | 108.533 | 88.4333 |
| P336 | 16 | M | 1 | Vertical | vertical | disto | disto | C | C | A | A | iii | iii | 71.7 | 63.3333 | 35.4667 | 33.3 | 102.133 | 101.5 |
| P337 | 16 | F | B | Vertical | mesio | vertical | vertical | A | A | A | A | i | i | 63.3667 | 69.2667 | 37.5333 | 30.3667 | 124.567 | 107.5 |
| P338 | 30 | F | I |  |  |  | disto |  |  |  | A |  |  | 72.1667 | 75.2667 | 33.3333 | 32.3667 | 91.4333 | 97.2667 |
| P339 | 30 | F | I | Vertical | vertical |  |  | B | B |  |  | ii | ii | 73.2333 | 70.5333 | 42.3667 | 38.2333 | 106.267 | 91.4 |

## APPENDIX

## THREE

## SCIENIFIC RESEARCH

## SCIENTIFIC RESEARCH BASED ON THIS REASEARCH TO DATE

## A. Paper delivered at scientific conference

Prevalence of the impacted third molar in the Greater Durban Metropolitan population S. Ishwarkumar, P. Pillay, M.R. Haffajee and K.S. Satyapal

College of Health Science Research Symposium, Nelson Mandela School of Medicine, University of KwaZulu-Natal, 11-12 September 2014.

## B. Manuscripts in preparation

Prevalence of the impacted mandibular third molar: Greater Durban Metropolitan population S. Ishwarkumar, P. Pillay, M.R. Haffajee and K.S. Satyapal

Prevalence of the impacted maxillary third molar: Greater Durban Metropolitan population S. Ishwarkumar, P. Pillay, M.R. Haffajee and K.S. Satyapal

Morphometry analysis of the mandible in the Greater Durban Metropolitan population
S. Ishwarkumar, P. Pillay, M.R. Haffajee and K.S. Satyapal

