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ABSTRACT 

Bacterial brown spot (BBS) disease is a major disease in dry beans in South Africa causing 

yield losses of up to 55%. The overall goal of the research was to improve dry bean production 

through identifying high yielding and stable cultivars, with resistance to the BBS disease, 

classifying or detecting mega environments for dry bean production and to conduct pre-

breeding trials that will provide information that will contribute to BBS disease breeding in 

South Africa.  

Four hundred and twenty three Andean Diversity Panel (ADP) dry bean genotypes were 

screened for grain yield and BBS disease resistance in three regions. The plants were 

inoculated with three isolates of BBS strains or inoculum at 21, 28 and 36 days after planting.  

Disease severity was rated at 7, 14 and 21 days after the first infection and the relative area 

under disease progress curve (RAUDPC) was calculated. The analysis of variance revealed 

significant differences (P<0.001) in grain yield and BBS severity for genotype, environment 

and genotype by environment interaction (GEI). Genotypes were classified as resistant, 

moderate resistant and susceptible based on BBS severity and RAUPDC. The study identified 

21.0% of the genotypes as resistant and 41.6% as moderately resistant to BBS disease. The 

RAUDPC was significantly (P<0.001) negatively associated with grain yield (r= -0.55). The 

small seeded genotypes showed lower RAUDPC than the medium and the large seeded, and 

genotypes with an indeterminate growth habit showed lower RAUDPC than those with a 

determinate growth habit. Genotypes ADP-0592, ADP-0790, ADP-0120 and ADP-0008 were 

selected for both resistance to BBS disease resistance and high seed yield across three 

environments. The best genotypes had grain yield above 1.45 t ha-1 across sites, and 

above1.85 t ha-1 at individual sites, and had grain yield above the grand mean (0.87 t ha-1) and 

the best performing cultivar (1.13 t ha-1), and mean BBS severity below the grand mean 

(39.85) and the best performing cultivar (31.67). These genotypes can be useful sources of 

genetic resistance for future dry bean improvement. 

Fourteen dark red kidney (DRK) bean genotypes were evaluated for grain yield, stability and 

BBS severity across six environments. The additive main effect and multiplicative interaction 

(AMMI) and genotype plus genotypes by environment interaction were analysed. The analysis 

of variance showed significant (P<0.001) effects for grain yield and BBS severity for genotype, 

environment and genotype by environment interaction (GEI). The interaction principal 

components (IPCA1 - 4) for grain yield and IPCA1 for BBS severity were significant (P<0.001, 

P<0.01). Genotypes G12 (1.46 t ha-1) was broadly adapted for both high yield and low BBS 

severity across six environments, while genotypes G08 (1.77), G06 (1.70), G03 (1.62), G02 
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(1.56), G05 (1.48) and G04 (1.45 t ha-1) had specific adaption for high grain yield and low BBS 

severity. These genotypes recorded mean yields above the grand mean and the best check 

both two genotypes with 1.43 t ha-1, and mean BBS severity below grand mean (31.90) and 

the best check (48.89). The GGE biplot identified three mega-environments for grain yield and 

BBS severity across six tested environments. 

Heritability and gene effects controlling BBS disease resistance were estimated in a cross 

between a susceptible commercial cultivar RS7 and a resistant genotype A55. The parents 

(P1 and P2), F1, F2, BCP1 and BCP2 were used in the generation mean analysis. The 

generations were inoculated with BBS disease and rated for BBS severity using CIAT scale.  

The analysis of variance for BBS severity showed a significant difference (P<0.001) between 

generations. The data for reaction to BBS severity did not fit a simple additive-dominance 

model. The digenic interaction model was significant different (P<0.001) for mean [m], additive 

[d], dominance [h], additive x additive [i], and dominance x dominance [l]). The dominance [h] 

and dominance x dominance[l] gene effects had the inverse signal, showing the existence of 

duplicate epistasis. The positive signal of dominance x dominance [l] interaction showed 

unidirectional dominance gene effects. The broad and narrow sense heritability were both 

moderate. The existence of gene dispersion suggest that the selection for BBS resistance, 

especially in initial generations, would be complex using conventional breeding methods. The 

dispersed gene should be brought together and the resistance can be fixed and exploited in 

progressive or later generation stages for the development of genotypes with high grain yield, 

stable and BBS disease resistant. 
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CHAPTER 1  

GENERAL INTRODUCTION 

1.1 Background     

Common bean or dry bean (Phaseolus vulgaris L.) , (2n = 2x = 22, belonging to subtribe 

Phaseolinae, tribe Phaseoleae, family Fabaceae) is the third most important grain legume 

worldwide, surpassed only by soybean and groundnut  and the main source of protein and 

natural fibre (FAO, 2014; Cichy et al., 2015). It is grown on all continents in tropical, semi-

tropical and Mediterranean climates, notable between 52 o N and 32 o S up to the altitude of 

3000 m (Kimani et al., 2005). Among the 70 occurring Phaseoulus genus species, only five 

has been domesticated, namely, dry bean (P. vulgaris L.), yardlong bean (P. dumosus 

Macfad.), runner bean (P. coccineus L.), tepary bean (P. acutifolius A Gray) and lima bean 

(P. lunatus L.) (Singh and Singh, 2015). Brazil is the biggest dry bean producer worldwide, 

followed by Europe and Africa (Katungi et al., 2009). The average grain yield in South Africa 

is 1.40 t ha-1 (Dlamini et al., 2017). This average grain yield is low when compared with North 

America (~ 3.00 t ha-1) (Kimani et al., 2005; FAO, 2014). The production in Africa is 

concentrated in East and Southern Africa and Kenya is Africa’s  leading producer with  412 

382 tons from 910 478 ha (Katungi et al., 2009). In South Africa, the dry bean is a main food 

crop for small and commercial farmers with the greatest production in the Free State (43%), 

Mpumalanga (24%), Limpopo (10%) provinces (Muedi, 2015). The mean annual dry bean 

production in South Africa is about 56 thousand tons from  48 thousand ha (Muedi, 2015). 

The dry bean annual demand for South Africa is about 100,000 tons and the country needs 

to import in order to to eliminate the deficit  (Cichy et al., 2015). The red specked sugar bean 

is the main seed type with a 75% market share, while the small white canning bean accounts 

for 20% of the (Muedi, 2015). 

 

1.2 Importance of dry bean  

In Sub-Saharan Africa, dry bean is an important source of protein , containing between 10-

25% protein (Muedi, 2015). Due to its high protein content it is often called  “the meat for the 

poor” as it can replace meat protein (Kimani et al., 2005). The leaves, immature fresh pods, 

fresh seeds and dry grains are also eaten (Singh and Miklas, 2015). The dry bean is a major 

source of income for emerging and commercial farmers in South Africa (Dlamini et al., 2017). 

Dry bean can increase the soil fertility through fixing atmospheric nitrogen in the soil, and so 

reduces the amount of inorganic fertilizers to be applied (Farid and Navabi, 2015). Dry bean 
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contributes to the treatment and prevention of diabetes, low blood, heart, and obesity (Singh 

and Miklas, 2015). 

 

1.3 Production constraints  

The average dry bean yield in South Africa is  1.40 t ha-1 (Dlamini et al., 2017).  The low yields 

have been attributed to several biotic and abiotic factors such as unreliable rainfall, high 

temperatures, poor soil fertility, and pest and diseases (Jung et al., 2003; Navarro et al., 2007; 

Fao, 2012). Among the diseases, bacterial brown spot (BBS), caused by a bacterium 

Pseudomonas syringae pv.syringae (Pss)  is a common disease of dry bean in both 

smallholder and commercial fields (Muedi et al., 2015). The disease infection is favoured by 

wet environments and the disease attacks both leaves and pods, causing necrotic spots, 

thereby reducing the photo-synthetically active area and loss in seed quality. Management 

strategies to control BBS disease have been identified as crop rotation (cultural control 

method), the use of preventive copper-based bactericides and antibiotics (chemical control), 

and resistant cultivars.  The use of resistant cultivars, however, reduces the need for either 

rotation and or high priced bactericides, the latter often beyond the reach of smallholder 

farmers.  Therefore,  the most reliable, cost-effective and sustainable method to manage the 

disease is the use of resistant cultivars (Singh and Miklas, 2015). The BBS symptoms emerge 

as water-soaked spots, which enlarge and dry up, and are surrounded by a narrow yellow or 

light green zone. Figure 1.1 shows the symptoms of BBS in greenhouse at Potchefstroom. 

 

 

 

Figure 1.1 Symptoms of bacterial brown spots (BBS) on dry bean leaves 
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1.4 Problem and justification  

The BBS disease is a major disease in South Africa resulting in yield losses and poor and 

seed quality.  The local commercial cultivars have no resistance to BBS disease.  Therefore, 

there is a need to identify sources of resistance to BBS, study the inheritance of BBS 

resistance and to develop locally adapted, high yielding and BBS resistant cultivars.   

 

1.5 Research objectives 

The general objective of the research aimed to breed dry bean for resistance to bacterial 

brown spot disease in South Africa, through identifying high yielding and stable cultivars 

with resistance to the BBS disease. The specific objectives for the research or study are 

as follows:  

 To screen 423 Andean Diversity Panel (ADP) dry bean lines for resistance to BBS 

disease, under field conditions in South Africa. 

 To evaluate the grain yield, stability and BBS disease of fourteen Dark Red Kidney 

(DRK) dry bean lines across six environments. 

 To estimate the heritability and gene effects controlling BBS disease resistance in dry 

bean. 

 

1.6 Research hypothesis  

i. There are BBS disease resistant dry bean lines among 423 Andean genotypes screened 

under field condition in South Africa 

ii. The grain yield performance, stability and BBS disease of the dry bean line are affected by 

genotype x environment interaction  

iii. The gene effects controlling BBS disease resistance and heritability in dry bean can be 

estimated.  

 

1.7 Dissertation outline  

The University of KwaZulu-Natal dissertation has adopted the format of Crop Science 

Journal. Each chapter is follows the layout of a standard research paper. The system of 
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referencing is based on “Crop Science Journal”. The framework of the research study is as 

follows. 

 

Chapter 1: General introduction 

Chapter 2: Literature review 

Chapter 3: Screening Andean Diversity Panel (ADP) dry bean lines for resistance to bacterial 

brown spot disease, under field conditions in South Africa. 

Chapter 4: Grain yield, stability and bacterial brown spot disease resistance of Dark Red 

Kidney (DRK) dry bean lines across six environments in South Africa 

Chapter 5: Heritability and gene effects controlling the bacterial brown spot disease 

resistance in a dry bean cross. 

Chapter 6: General overview of the study (research results, findings and ways forwards). 
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CHAPTER 2   

LITERATURE REVIEW 

2.1 Introduction 

The literature review discusses the origin and domestication, taxonomy, botany and genetic 

diversity of dry bean (Phaseolus vulgaris .L). The epidemiology, mechanism of inheritance, 

sources of resistance and methods for resistance screening for bacterial brown spot (BBS) 

are also reported. The SNP KASP marker platform for dry bean genetic genotyping and for 

identification of the genes of resistance to BBS is discussed. Furthermore, the path analysis, 

correlation analysis, genetic effects (additive, dominant and no-allelic interactions) and 

different methods used to estimate heritability are reviewed. The effect of GEI for broad and 

specific adaptation, and the methods for identification of cultivars with high mean performance 

and relatively stable yields, has been described. 

  

2.2 Origin and domestication of dry bean  

Dry bean (Phaseolus vulgaris .L) originated from Central and Southern America (Bellucci et 

al., 2014). The wild dry bean had diverged into the following two main gene pools, the 

Mesoamerican (Central of America) and the Andean (South America) (Singh and Miklas, 

2015). Furthermore, within these gene pools there are six races, namely three Mesoamerican 

(Mesoamerica, Durango, and Jalisco) and three Andean races (Peru, Nueva Granada, and 

Chile), which can be distinguished by morphological and biochemical characteristics (Blair et 

al., 2006). The dry bean has been domesticated over time from a wild relative of dry bean 

through continuous selection, hybridization, backcrossing, natural or artificial mutation and 

migration (Bellucci et al., 2014). The features such as growth habit, seed size, seed retention 

and maturity  distinguish the modern cultivated dry bean from their ancestral wild form (Bellucci 

et al., 2014). The Andean beans are commonly grown in Africa, Europe and North Eastern 

United States, while Mesoamerican beans are mainly grown in South America (Bellucci et al., 

2014). The domestication history of the dry bean is well known and its wild progenitor has 

been identified (Bellucci et al., 2014). However, the wild relative and cultivated descendants  

display contrasting differences for many traits and generally give viable and fertile progeny  

(Broughton et al., 2003). There are several important attributes that are lost in the 

domestication in dry bean, such as the loss of seed dispersal ability and seed dormancy, which 

is  crucial for adaptation to a cultivated environment (Broughton et al., 2003). The ancestral 

relatives are conditioned by the presence of fibres in the pods, both in the sutures (‘string’) 
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and the walls, however, loss of these fibres leads to indehiscence of the pods and lack of seed 

dispersal at maturity (Broughton et al., 2003; Bellucci et al., 2014). Each domesticated species 

constitutes a primary gene pool with its wild ancestral forms, and secondary and tertiary gene 

pools that may exist, depending on the phylogenetic events that lead to the formation of the 

biological species (Singh and Miklas, 2015). Different species of Phaseolus have been 

maintained in more than 245 gene banks of various countries (Cichy et al., 2015). CIAT 

Colombia has the mandate for global germplasm collection and conservation of Phaseolus 

species and hosts the world's largest and most diverse collections (Singh and Miklas, 2015). 

 

2.3 Taxonomy of dry bean 

Dry beans belong to the family Fabaceae (Leguminosae), order Fabales, sub-family 

Papilionoideae and genus Phaseolus (Singh and Singh, 2015; Rodriguez et al., 2016). The 

genus Phaseolus comprises of about 70 species including five domesticated species (Table 

2.1), namely: dry bean (P. vulgaris L.), yearlong bean (P. dumosus Macfad.), runner bean (P. 

coccineus L.), tepary bean (P. acutifolius A Gray) and lima bean (P. lunatus L.) (Bellucci et al., 

2014; Singh and Singh, 2015). Amongst the five domesticated species, Phaseolus vulgaris is 

the most important economically and accounts for more than 90% of the cultivated Phaseolus 

worldwide (Singh and Singh, 2015). Dry bean is a true autogamous diploid species with 22 

chromosomes (2n=2x=22) and with a haploid genome (Singh and Singh, 2015). (Singh and 

Singh, 2015). Dry bean is self-pollinating crop with stigma and anthers in the same flower 

(Cichy et al., 2015).  
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Table 2.1 Cultivated species of genus Phaseolus and their preferred agro-

ecological conditions 

Phaseolus 
species 

Common name  
Altitude 
(m) 

Temp 
(oC) 

Rainfall 
Cycle 
(days) 

P. vulgaris L 
Common bean, dry 
bean, shell bean, snap 
bean, French bean  

50-3000 14-26 400-1600 70-330 

P. polyanthus  
Gre Enman 

Yearlong bean 800-2600 14-24 1000-2600 110-365 

P. coccineus L 
Runner or scarlet 
runner bean 

1400-2800 13-22 400-2600 90-365 

P. acutifolius  
A. Gray 

Tepary bean  50-1900 20-32 200-400 60-110 

P. lunatus L Lima bean 50-2800 16-26 0-2800 90-365 

Source: Singh and Singh (2015). 

 

 

2.4 Morphology of dry bean 

Dry beans have a shallow primary root system, which does not go beyond 20 cm (Debouck, 

1991). The roots can form nodules, which are distributed on the lateral roots of the upper and 

middle parts of the root system (Graham and Ranalli, 1997). The nodules are usually 2 to 5 

mm in diameter and are colonized by Rhizobium bacteria, which fix atmospheric nitrogen 

(Graham and Ranalli, 1997). The plant can be either erect, semi-prostrate or prostrate, but 

tends to grow vertically, either when the bean is growing alone or with support (Graham and 

Ranalli, 1997). The primary leaves of dry bean are unifoliate and secondary leaves are 

trifoliate, and these are inserted at the nodes of the stem and branches (Debouck, 1991). 

Flower initiation is within 28-42 days from the day of planting, even though it may take longer 

than this in the case of climbing beans grown at higher altitude, which flower after 55 days 

(Debouck, 1991). The dry bean is a self-pollinated crop, and each flower have ten stamen and 

a single stigma, and flowers have different colours, such as white, pink and purple (Graham 

and Ranalli, 1997). Each pod can have 3 to 10 seeds with various shapes and colours, with 

seed size ranging from 50 mg per seed in wild related species to 200 mg per seed in large 

seeded cultivars (Graham and Ranalli, 1997).  

 



 

9 

2.4.1 Dry bean growth habit  

Most of dry bean cultivars and landraces grown in the highlands of Mexico, Central America 

and the Andes have indeterminate growth habits and are photoperiod sensitive (Singh and 

Singh, 2015). However, photoperiod insensitive genotypes with bush growth habit have 

evolved during the course of domestication and dissemination that allowed its spread into non-

traditional areas (Singh and Singh, 2015). Broadly, dry bean stems can be bush type or pole 

types, depending on the growth and twining habits (Kwak et al., 2012). Three genes govern 

the stem growth habit. Long stems is dominant over short stem, an indeterminate growth habit 

is dominant over the determinate growth habit, and the twining tendency is  dominant over the 

non-twining tendency (Singh and Singh, 2015). In the bush cultivars, the stem growth ceases 

when an inflorescence emerges and these dry bean plants have few nodes and short 

internodes, whereas in the indeterminate type, the stem remains vegetative and continues to 

develop, forming more nodes and internodes even during the reproductive phase (Kwak et al., 

2012; Singh and Miklas, 2015). Dry bean genotypes are classified into four growth habits, 

namely, I, II, III and IV (Singh and Miklas, 2015). The type I has a determinate growth habit 

whereby the growth of the stem stops once the inflorescence has developed. The plants are 

usually short with few branches (Kwak et al., 2012). The type II is indeterminate and has an 

erect growth habit has an erect stem with more nodes and internodes than type I, and 

continues to grow during flowering. The type III plants have an indeterminate growing habit 

with branches relatively weak and open, semi-prostrate and a pod load largely concentrated 

in the basal part of the plant and they posses a weak climbing ability. The type IV beans have 

an indeterminate growth habit with stem and branches very well and excessively long, 

possessing strong climbing ability and plants have a climbing growth habit and need to be 

supported (Singh and Miklas, 2015). 

 

2.5 Genetic diversity of dry bean  

Genetic resources of Phaseolus species exist as a complex order of major and minor gene 

pools, races and intermediate types, with occasional crossing between wild relatives and 

domesticated species (Singh and Singh, 2015).  During the domestication of the two dry bean 

gene pools, intensive selection and dispersal have resulted in a large genetic diversity of the 

crop species (Cabral et al., 2011; Singh and Singh, 2015). There is greater genetic diversity 

in the Mesoamerican gene pool as compared to the  Andean gene pool (Cichy et al., 2015). 

Furthermore, in Africa, approximately half of the beans produced are from the Andean gene 

pool (Cichy et al., 2015). In East and Southern Africa, Andean beans are preferred and an 

estimated 73 and 83% of beans are of Andean origin, respectively (Cichy et al., 2015). The 
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higher diversity found in the Mesoamerican compared with the Andean gene pool has been 

confirmed in studies using molecular markers (Cabral et al., 2011; Bellucci et al., 2014). Blair 

et al. (2006) used SSR markers to detect genetic diversity within a representative set of 43 

dry bean cultivars and wild accession (both gene pools), and it was observed that the 

microsatellites were useful for distinguishing genotypes from the two gene pools, for 

distinguishing between  the races within each gene pool, and for separating wild accessions 

from cultivars. SSR molecular markers were also used to evaluate 604 accessions from the 

CIAT germplasm collection (primary and secondary centres of diversity), and it was shown 

that dry beans have a very significant population structure (Blair et al., 2009). Random 

amplified polymorphic DNA marker (RAPD) has been used to analyse a collection of landraces 

of dry bean and to determine the genetic structure of the Middle American gene pool of 

cultivated beans, and it was demonstrated that the Mesoamerican germplasm of dry bean  has 

more genetic diversity than the Andean gene pool (Beebe et al., 2000). Mavromatis et al. 

(2010) also used RAPD markers to study genetic diversity of the morphological, agronomical 

and physicochemical traits along with molecular data analysis, and it was registered that 

genetic similarity estimated from molecular analysis with RAPDs seemed not to be related 

with the seed morphological characteristics and agronomic performance. Rosales-Serna et al. 

(2005) used an amplified fragment length polymorphism (AFLP) marker to examine the 

genetic relationships between Andean races based on the genotyping of 112 cultivars 

developed in Mexico. They observed that utilization of contrasting parents for specific crosses 

contributes to a broadening of the genetic bases of dry bean. Furthermore, 4935 SNP markers 

were used by Cichy et al. (2015) to analyse genetic diversity of 396 ADP dry bean lines and 

the average diversity estimates were determined for germplasm subsets of interest. Genetic 

diversity studies were also used to identify genetic variation of 347 accessions of dry bean on 

the basis of 100 seed mass in three categories; large (>40 g per 100 seeds), medium (25-40 

g per 100 seeds), and small (<25 g per 100 seeds) (Cichy et al., 2015). The large dry bean 

seeded accessions belonged to the Andean gene pool, while the medium and the small dry 

bean seeded accessions belonged to the Mesoamerican gene pool (Cichy et al., 2015).  

 

2.6 Dry bean production and consumption 

Dry bean is an important source of protein, vitamins, minerals, fibre and calories in tropical 

and subtropical countries (Latin America, East and Southern Africa) (Singh and Miklas, 2015). 

This crop provides a cheap source of protein and higher prices compared to cereals and is a 

cash crop for many farmers (FAO, 2014). The dry bean is grown on all continents between 52 

o N and 32 o S, from sea level to as high as 3000 m above sea level. It is cultivated in 
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monoculture, intercropping and rotations (Broughton et al., 2003). The production is largely 

concentrated in Latin America, Eastern and Southern Africa (Broughton et al., 2003). The total 

area under production worldwide is about 28 million ha, producing about 20 million ton with 

average yield among 0.49  to 0.73 t ha-1 (Muedi, 2015). Brazil is the world’s largest dry bean 

producer and Kenya is leading the production in Africa (412 381 tons from 910 478 ha) (Muedi, 

2015). The average dry bean yields in Africa are below half a ton per hectare compared to 

those obtained in South Africa with 1.40 t ha-1 mean yield and ranges  between 0.9 to 2.90 t 

ha-1 for small scale farmers (Dlamini et al., 2017). The red speckled sugar beans are  produced 

by emerging and commercial farmers in Mpumalanga, Free State, KwaZulu-Natal, Limpopo 

and Gauteng  provinces (Muedi, 2015). The average production between 2011 to 2014 was 

about 50 000 ton and the consumption was 100 000 ton, which implies that South Africa is a 

net dry bean importer (Muedi, 2015). Dry bean is considered a ‘poor man’s meat’ and plays a 

particularly important role in the diet of the poor (Singh and Miklas, 2015). In Eastern and 

Southern Africa, the dry bean consumption is higher than in Latin America reaching up to 66 

kg per person in some rural areas of Kenya, whereas, in Rwanda and Burundi, the average of 

consumption  exceeds 40 kg per person per year (Singh and Singh, 2015). 

 

2.6.1 Dry bean yield constraints 

The high yields losses in dry bean have been attributed to several biotic (diseases and pests) 

and abiotic factors (drought, heat and low soil fertility)  (FAO, 2014). The main production 

constraints are diseases (fungal and bacterial) and pests (Broughton et al., 2003).  (Bellucci 

et al., 2014). Important diseases include angular leaf spot (ALS), anthracnose, ashy stem 

blight, bean golden yellow mosaic virus (BGYMV), bacterial brown spot (BBS), common 

bacterial blight (CBB), fusarium root rot (FRR), halo blight (HB), root rots, rust, web blight and 

white mold (Miklas et al., 2006; Singh and Schwartz, 2010). Pests of economic importance 

include bean pod weevil, bruchids, thrips, stem maggot and aphid (Miklas et al., 2006). The 

agronomic constraints are late planting, poor weed management, continuous cropping and 

use of unimproved seed (Broughton et al., 2003). (Muedi et al., 2015). The climatic factors such 

as rainfall amount and distribution, temperature, and incident radiation have significant 

influence on dry bean yields (Cichy et al., 2015). 

 

2.6.2 Agronomic and cultural practices  

Each dry bean row was 5 m long and is planted with a 76 cm and 7.5 cm of inter-row and 

intra-row, respectively (Bellucci et al., 2014). The cultural practices varied somewhat across 
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production locations, and each bean trial is produced under normal farming practices for a 

given region (Dlamini et al., 2017). The nitrogen, phosphorus, and potassium fertilizers are 

applied to the fields at an average with rate of 42.30 kg ha-1, 22.30 kg ha-1 and 18.40 kg ha-1, 

respectively (Dlamini et al., 2017). The experiment were weeded and harvested mechanically 

or manually (Muedi, 2015).. 

2.7 Bacterial brown spot disease  

Bacterial brown spot (BBS) disease, caused by Pseudomonas syringae pv syringae (Pss) is 

an important disease of dry bean (Phaseolus vulgaris L.) worldwide (Harveson et al., 2015). 

Pseudomonas syringae pv syringae is a common epiphytic bacterium that colonizes many 

species (Hirano and Upper, 2002). This disease is of economic importance due to its 

epidemiology and yield losses (Bastas and Sahin, 2017). The disease has been widely 

reported in the USA, Brazil and Canada. Presently, BBS is prevalent in regions such as 

Algeria, Asia, Australia, Egypt, Europe, Ethiopia, Kenya, Lesotho, Malawi, Mauritius, Morocco, 

New Zealand, Tanzania, Tunisia, Uganda and Zimbabwe and South Africa (Singh and 

Schwartz, 2010). Bacterial brown spot has been reported to cause yield and economic losses 

of more than 20 % in dry bean production worldwide (Bastas and Sahin, 2017).  

 

2.7.1 Epidemiology of bacterial brown spot  

Humid conditions and temperatures between 28 to 32°C favour bacterial brown spot disease 

epidemics. Seed transmission is a significant primary source of inoculum to start an epidemic 

(Navarro et al., 2007; Harveson et al., 2015). Sources of inoculum include infected seed, crop 

debris, infected soils and infected weed hosts (Muedi et al., 2015). The wind and rain are the 

most important modes of dissemination of Pss (Kimani et al., 2005).  The BBS pathogen can 

enter bean plants through openings such as stomata in leaves, leaf margins, and wounds of 

plants that are created by wind-blown soil particles, leaf insects or humans (Muedi et al., 

2015). The pathogen is readily transmitted mechanically, especially when the plants are wet 

(Navarro et al., 2007). Symptoms caused by BBS emerge as water-soaked spots, which 

enlarge and dry up, and are surrounded by a narrow yellow or light green zone (Koutsika-

Sotiriou and Traka-Mavrona, 2008). When the lesion matures, it typically develops brown 

spots  and dead tissue in the centre may fall out, producing a shot-hole appearance (Bastas 

and Sahin, 2017). On infected pods water-soaked spots can also develop as round and initially 

water-soaked spots, later becoming darker green, depressed, brown and necrotic (Muedi et 

al., 2015). Infected seeds initially have water-soaked spots which later become brown and 

corrugated (Koutsika-Sotiriou and Traka-Mavrona, 2008). Stem lesions emerge when the 
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disease becomes systemic (Muedi et al., 2015).  Methods for controlling BBS include 

pathogen-free seed (produced in arid environments and tested free of Pss), crop rotation (a 

minimum rotation of two years),  deep ploughing, removal of crop debris, the use of disease 

resistant cultivars and control of weed hosts, especially hairy vetch (Duncan et al., 2014; 

Muedi et al., 2015; Bastas and Sahin, 2017). Chemical seed treatments and foliar sprays have 

provided erratic control of the disease (Bastas and Sahin, 2017). Therefore, the use of 

resistance cultivars and disease free certified seed are important interventions in reducing the 

spread of disease (Navarro et al., 2007). 

 

2.7.2 Genetic variability of the bacterial brown spot pathogen 

Little research on the genetic variability of the BBS pathogen has been conducted in different 

dry bean growing regions for the development of BBS resistance (Navarro et al., 2007). 

Fifteen  isolates of the BBS pathogen have so far been used, and the pathogen is capable of 

causing disease on more than 200 different plants species (Scortichini et al., 2003). Different 

techniques have been used to study diversity of the Pseudomonas syringae pv. syringae 

(Pss) strains (Young, 2010), including biochemical, physiological, and pathogenicity 

methods. Recently, several studies on the genetic diversity of pathogens have utilized 

molecular markers such as random amplified polymorphic DNA (RAPD), amplified fragment 

length polymorphism (AFLP), rep-PCR and restriction fragment length polymorphism (RFLP) 

(Scortichini et al., 2003). The rep- PCR technique is useful in studying genetic diversity of 

bacterial pathogens due to its ability in fingerprinting gram-negative bacteria (Young, 2010).  

 

2.7.3 The influence of the host on pathogen 

There are two main outcomes expected when a pathogen infects a host plant; the host plant 

can be susceptible or resistant (Urrea and Harveson, 2014). A susceptible host plant is 

unable to recognize the pathogen or to offer a desired protection mechanism that could 

restrict the development and spread of the pathogen, whereas a resistant host plant has the 

ability to hinder the growth, development and spread of the pathogen (Parlevliet, 2002; Urrea 

and Harveson, 2014). There are two types of mechanisms to restrict disease development in 

a plant, namely physical barriers and chemical barriers (Agrios, 2005b). The host plant with 

physical barriers does not allow the pathogen to penetrate the plant through the thick cuticle 

layer, the size and location of stomata and through others organelles (Vanderplank, 2012; 

Urrea and Harveson, 2014). A host plant with chemical barriers releases chemical 

compounds  that can inhibit pathogen development, such as phenols and tannins, which offer 
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a good chemical protection mechanism in plants (Agrios, 2005a). There are two types of host 

plant resistances, namely non-host resistance and host resistance (Parlevliet, 2002). The 

non-host resistance is a form of resistance where plants are not considered host of the 

pathogen (Agrios, 2005a; Urrea and Harveson, 2014). The host plant resistance has been 

called true resistance, which is genetically controlled through incompatibility between host 

plant and the pathogen (Agrios, 2005a). True resistance can be horizontal resistance or 

vertical resistance (Parlevliet, 2002). Horizontal resistance is the form of resistance that is 

non-race specific, quantitative and controlled by many genes, and is also called polygenic 

resistance (Jung et al., 2003; Vanderplank, 2012). Resistance to  BBS is an example of a 

polygenic resistance since it is controlled by more than one gene (Jung et al., 2003). In 

horizontal resistance, a single gene cannot play a role in resistance alone, but in combination 

with other genes (Vanderplank, 2012). Horizontal resistance does not protect plants from 

being infected, but slows the development of the disease and slows the spread of the disease 

in the field (Vanderplank, 2012). Horizontal resistance is generally more durable and difficult 

to overcome (Agrios, 2005b; Vanderplank, 2012). The vertical resistance or monogenic 

resistance is a race-specific form of resistance usually controlled very few genes, between 

one to three genes (Vanderplank, 2012). In monogenic resistance, the host plant can be 

resistant to some races of the pathogen and susceptible to other races of the same pathogen 

(Parlevliet, 2002; Urrea and Harveson, 2014). The vertical resistance is characterized by 

incompatibility between the host plant and a pathogen race (Vanderplank, 2012). When the 

host plant has been attacked, it responds with a hypersensitive reaction (Parlevliet, 2002). 

This reaction results in a rapid localized death of host plant cells and tissue as response to 

infection (Parlevliet, 2002). The vertical resistance is easy to overcome due to mutations of 

the pathogen or the arrival of a new strain from elsewhere (Agrios, 2005b; Vanderplank, 

2012). 

 

2.7.4 Sources of resistance to bacterial brown spot  

The availability of good sources of resistance is the essential requirement for a successful 

resistance breeding programme (Singh and Schwartz, 2010). The sources of resistance can 

include genotypes from primary, secondary and tertiary gene pools (Singh and Miklas, 2015). 

The primary gene pool often possesses a low level of resistance, while genotypes from the 

secondary and tertiary gene pools possess an intermediate or high level of resistance, 

respectively. Several BBS resistant dry and green bean breeding lines have been developed 

more than 30 years ago, however, there are no recent reports of active public breeding efforts 

for resistance to BBS in dry bean (Singh and Schwartz, 2010). The green bean ‘Hystyle’ was 
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the first cultivar with useful field resistance; hence, resistance from Hystyle was transferred 

to cultivars such as ‘Hercules’ and ‘Titan’ (Singh and Schwartz, 2010). Resistance from small-

seeded dry beans such as A 55 and Puebla 152, and green beans such as Hystyle, and P. 

coccineus are important sources of resistance that can be used to develop BBS resistant 

locally adapted dry bean cultivars (Navarro et al., 2007).  

 

2.7.5 Mode of inheritance of BBS resistance 

Several genetic studies have established that the inheritance to BBS resistance is 

quantitatively inherited and the mode of gene action is mainly through additive, often 

dominant and epistasis effect (Miklas et al., 2006). Singh and Schwartz (2010) reported that 

multiple recessive genes control resistance to BBS in dry bean and the heritability estimate 

for field reaction was lower than that for the greenhouse evaluation, using the stem 

inoculation method.  The most relevant inheritance study of BBS resistance was done in a 

field experiment using the Pseudomonas siringae pv siringae (Pss) seedling stem inoculation 

method in a Belneb RR-1 × A55 RIL segregating dry bean population (Navarro et al., 2007). 

The authors identified genomic regions located in several linkage groups associated with 

BBS resistance. 

 

2.7.6 Marker assisted selection   

Genotypic screening using marker-assisted breeding (MAS) has advantages over classical 

breeding (Cichy et al., 2015). MAS has the ability to screen for resistance at the seedling 

stage, identify resistance genes even when there are disease escapes. It has a high efficiency 

in screening for environment dependent traits with a few plants, and several generation per 

year can be tested (He et al., 2014). MAS also saves time, resources,  space and money, 

and makes the breeding effort more efficient, effective, reliable and cost-effective compared 

to the more conventional plant breeding (He et al., 2014). Selection can also be done in the 

absence of a reliable inoculation and scoring methods for a disease (Jung et al., 2003). Jung 

et al. (2003) studied quantitative trait loci (QTLs) related to BBS resistance through stem 

inoculation of a recombinant inbred line population derived from the cross between 

susceptible line (Belneb RR-1) and resistant line (A 55) and found the QTL RAPD marker 

O10.650 significantly associated with variation in Pss severity. Confirming the efficacy of 

markers prior to their use in a breeding programme is of importance (Fourie, 2002). 
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2.7.7 Screening for resistance to bacterial spot in the field 

In order to achieve an optimum inoculation a highly concentrated inoculum of between 10 

million to 100 million cells per millimetre from an aggressive isolate is required. Isolates from 

infected leaves can be cultured on a yeast-extra-dextrose-calcium-carbonate nutrient agar at 

27oC for two to three days (Muedi, 2015). The BBS field screening consists of inoculation 

with isolates of Pss (1x108 cfu/ml) using a mistblower at 21, 28 and 36 days after planting,  

whereby the plants are rated seven days after the first inoculation and repeated weekly for 

three consecutive weeks. A  one (immune) to nine (susceptible) CIAT scale is generally used 

(Muedi, 2015). The field screening with or without inoculation is required to identify  resistance 

reactions that may have been missed in greenhouse studies (Singh and Schwartz, 2010). 

 

2.8 Path and correlation analysis  

Path analysis measures the direct and indirect effects of one variable upon another and 

permits the separation of the correlation coefficient into components of direct and indirect 

effect (Ramteke et al., 2010). The correlation analysis provides information about the degree 

of relationship between important plant traits and is a good index to predict the yield response 

in relation to the change of a particular character (Ramteke et al., 2010). To determine the 

inter-relationships among grain yield components, a better understanding of both the direct 

and indirect effects of the specific components needs to be attained (Chaudhary and Joshi, 

2005). The correlation, although very useful in quantifying the size and direction of trait 

associations, can be misleading if the high correlation between two traits is a consequence of 

the indirect effect of other traits (Ramteke et al., 2010). Each correlation coefficient between 

a predictor variable and the response variable can be partitioned into direct and indirect 

effects, which involves the product of a correlation coefficient between two predictor variables 

with the appropriate path coefficient in the path diagram (Dawo et al., 2007). Path analysis 

and correlations have been estimated for different yield characters in dry bean which revealed 

what  selection method was effective for a population with broad genetic variability and those 

with a high narrow sense heritability (Dawo et al., 2007). 

 

2.9 Generation mean analysis 

The reliable choice of the mating design and good parent selections are important factors in a 

successful breeding (Dabholkar, 1999). Mating designs are used in generating genetic 

information on the mode of gene action. These included general combining ability (additive on 
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top of good level of dominance and epistasis effects) and specific combining ability 

(dominance on top of good level of additive and epistasis effects), associated with the trait and 

determines the genetic gain in breeding. The bi-parental mating design, which simply involves 

mating of two parents selected from large population, is the simplest design (Akhshi et al., 

2014). The generation mean analysis (GMA) is used to estimate the type of gene action 

associated with the inheritance of the trait by establishing the relationship between 

generations (Hayman and Mather, 1955). The GMA is used to explain the additive and 

dominance model and  digenic or non-allelic interaction (epistasis) (Kearsey and Pooni, 1998). 

The GMA is a useful technique in plant breeding for estimating gene interaction effects such 

as mean [m], additive [d] and dominance [h] and the digenic or non-allelic interactions additive 

x additive [i], additive x dominance [j] and dominance x dominance [l], responsible for 

inheritance of quantitative traits (Dabholkar, 1999). If the variation within families of linear 

regression ANOVA is significant, hence there are parameters apart from mean and additive 

effects, then these parameters have to be included in the analysis through multiple linear 

regression (Kearsey and Pooni, 1998). However, the ratio of 20:50:30 are recommended for 

non-segregating (P1, P2 and F1),  F2 and BCF1s, respectively (Mather and Jinks, 2013). 

Thus, the means are adjusted in the regression analysis by weight according the sample size 

(Kearsey and Pooni, 1998). The scaling test has been developed that establishes generation 

relationships between means and variances (Akhshi et al., 2014). The scale was limited to six 

generations only and used for the six basic generation (Kearsey and Pooni, 1998). Though 

the scaling test is limited to six generations, it accounts for additive, dominance and epistasis 

gene actions (Hayman, 1958). The joint scaling test was developed to address the weakness 

and is not limited to a specified number of generations (Kearsey and Pooni, 1998). The digenic 

non-allelic interaction (epistasis) broadly classified in complementary (the same sign of [h] and 

[l]) and duplicate (the opposite sign of [h] and [l]), while, the positive [d] indicates gene 

association and negative [d] reveals gene dispersion (Hayman and Mather, 1955). 

 

2.9.1 Variance components in the generation mean analysis and heritability 

The breeder is interested in the amount of heritable variation, and the magnitude and 

importance of variation (Kearsey and Pooni, 1998). The environment variation is the main 

source of variation for non-segregating generations (P1, P2 and F1). The variation in the 

segregating generation (BCP1, BCP2 and F2) is affected not only by environment factors, but 

also by the genetic effects (additive, dominance), maternal effects and gene interaction 

(epistasis or non-allelic interaction) (Jatothu et al., 2013). This variation originates from 

segregation, random assortment and recombination of alleles (Hayman and Mather, 1955). 
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The heritability can be estimated through the broad and narrow sense heritability. The broad 

sense heritability is the proportion of phenotypic variation due to genetic factors, while the 

narrow sense  measures the proportion of the variation which is due to the additive effects of 

genes (Akhshi et al., 2014). Heritability estimates provide an indication of the expected 

response to selection in a segregating population (Ramteke et al., 2010). The narrow sense 

heritability is estimated through the ANOVA, regression of covariance between offspring family 

mean and the mean of their parents (Akhshi et al., 2014). The covariance is used to estimate 

all the three components of variance (additive variance, dominance variance and 

environmental variance) (Akhshi et al., 2014). The relationship between offspring family mean 

and their mid-parental value obtained from the regression involving a full-sibs family gives a 

slope that is equivalent to narrow sense heritability (Akhshi et al., 2014). The heritability  less 

than 30% is considered low, 30- 60% is moderate and more than 60% is considered high 

(Robinson et al., 1949). 

 

2.10 Stability of genotype performance 

The changes in the relative performance of genotypes across different environments are 

referred to as genotype by environment interaction (GEI) and are due to changes in the 

genotype, the environment or both (Mortazavian et al., 2014). There are crossover GEI 

(genotype rank change) and non-crossover GEI (genotype non rank change) ) (Agyeman et 

al., 2015). The GEI is useful to identify the stability of performance and the crossover GEI 

suggests that the target environments may be divided into different mega-environments 

(Maqbool et al., 2015). The methods for evaluating stability have been proposed, reflecting 

different aspects of GEI are univariate and multivariate methods (Oladosu et al., 2017). 

 

2.11 Genetic stability estimates  

The stability parameters are useful in characterizing genotypes by showing their relative 

performance in various environments (Mortazavian et al., 2014). Univariate models for stability 

evaluation are; cultivar superiority, static stability, mean ranks, Wricke’s ecovalence, 

difference of pairs ranks and variances of ranks. These are considered stable when the 

stability coefficient is not significantly different from zero (Oladosu et al., 2017). The others 

stability methods are regression slope, deviation from the regression, Shukla’s stability 

variance,  and Kang’s stability statistic (Chipeta et al., 2017); The genotype is considered 

stable if the regression coefficient (slope) is approximating unity  (Yan et al., 2007). Genotypes 
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with a slope greater than unity, have higher sensitivity to environmental change and have 

specific adaptation  (Yan et al., 2007). However, there is no consensus among breeders as to 

which methodology is the best for stability analysis (Abuali et al., 2014). 

 

2.12 Multivariate measure of stability 

The multivariate approaches are genotype main effect plus the genotype by environment 

interaction  biplot (GGE biplot) and additive main effects and multiplicative interaction (AMMI) 

ANOVA or biplot (Gauch and Zobel, 1996).  The GGE biplot and AMMI are multivariate 

approaches used to analyse the GEI and these techniques are powerful tools for extracting 

patterns of interactions (Gauch and Zobel, 1996).  

 

2.12.1 Additive main effect and multiplicative interaction analysis 

The AMMI analysis is a very powerful multivariate technique for quantifying GEI and 

combines the analysis of variance of the genotype and environment main effects with the 

interaction of principal component analysis (IPCA) of the GEI (Abuali et al., 2014; Oladosu et 

al., 2017). The AMMI analysis has been shown to be effective because it captures a large 

portion of the GEI sum of squares, clearly separating main and interaction effects (Abuali et 

al., 2014). The larger IPCA scores, regardless of signage, indicates specific adaptation, while 

the lower IPCA scores, regardless of signage, indicates broad adaptation (Dia et al., 2016). 

The different signage of IPCA scores indicates crossover GEI , and a similar positive and 

negative signal of two IPCAs indicate positive and negative interactions, respectively 

(Mortazavian et al., 2014). However, stability is meaningful only when associated with high 

trait means, whereby an ideal genotype has both high trait mean and relatively stable 

performance (Abuali et al., 2014). The interaction principal components analysis (IPCAs) and 

AMMI stability value (ASV) are used for stability evaluation in the AMMI ANOVA (Purchase 

et al., 2000).  The failure of the AMMI model to measure stability, which is essential in 

quantifying and ranking yield stability of genotypes across environment, resulted in the 

development of ASV (Purchase et al., 2000). The lower ASV indicates that the genotype has 

a wide adaptation and a high ASV indicates specific adaptation (Dia et al., 2016). The AMMI 

biplot analysis is used to show the performance of genotypes across environment for broad 

and specific adaptation (Oladosu et al., 2017). All genotypes close to the centre of the AMMI 

biplot have revealed general adaptation across the testing environments and genotypes far 

apart have specific adaptation over the environment (Abuali et al., 2014). 
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2.12.1 Genotype main effect plus genotype by environment interaction biplot 

This model is used when the environments are the main source of variation in relation the 

genotypes and the GEI (Oladosu et al., 2017). This technique allows the detection of GEI in 

terms of the crossover effect resulting from great changes in the ranking of the genotypes 

across the environments (Yan et al., 2007). The first interaction principal component analysis 

(IPCA1) represents responses of the genotypes that are proportional to the environments, 

which are associated with the GEI without change of the range (Dia et al., 2016). The second 

interaction of principal component analysis (IPCA2) provides information about cultivation 

locations that are not proportional to the environments, indicating that those are responsible 

for the GEI crossover interaction (Yan et al., 2007). There is non-crossover when there is  no 

change in the rank of performance in all environments, while the crossover shows a shift in 

yield ranking of genotypes across the environments (Abuali et al., 2014). The GGE biplot has 

specifically been used for mega-environment to show the which-won-where pattern based on 

genotype mean performance and stability across a range of environments (Oladosu et al., 

2017). The ideal genotype has a high mean performance and stability and is located almost 

on the average environment at first coordinate abscissa and has a near-zero projection on to 

the AEC ordinate and the closest of the direction of array (Maqbool et al., 2015). 
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CHAPTER 3  

SCREENING ANDEAN DIVERSITY PANEL DRY BEAN LINES FOR 

RESISTANCE TO BACTERIAL BROWN SPOT DISEASE UNDER 

FIELD CONDITIONS IN SOUTH AFRICA 

Abstract  

Bacterial brown spot (BBS) disease caused by Pseudomonas syringae pv. syringae (Pss) is 

an important disease of dry bean (Phaseolus vulgaris L.) with grain yield losses more than 

55%. This study aimed to identify BBS disease resistant genotypes from 423 Andean Diversity 

Panel (ADP) dry bean lines under field conditions across three sites viz. Warden and 

Middelburg under natural infestation, and Potchefstroom under artificial inoculation. Plants 

were inoculated with BBS disease using three isolates at 21, 28 and 36 days after planting 

and disease scoring was done at 7, 14 and 21 days after inoculation following a modified 1-9 

CIAT scale. The BBS severity percentage and relative area under disease progress curve 

(RAUDPC) were applied to quantify the reaction of bean genotypes to BBS disease. The study 

identified 21.03% of evaluated germplasm as resistant and 41.63% as moderately resistant to 

BBS disease. Genotypes ADP-0592, ADP-0790, ADP-0120 and ADP-0008 were selected for 

both resistance to BBS disease and higher seed yield across three environments. Genotypes 

ADP-0546, ADP-0630, ADP-0183 and ADP-0279 were selected for both yield and BBS 

resistance at Warden, whereas ADP-0038, ADP-0721, ADP-0790 were selected for both traits 

at Middelburg and lastly ADP-0120 and ADP-0079 were selected for both traits at 

Potchefstroom. The best genotypes selected for both yielding and BBS resistance had grain 

yield above 1.45 t ha-1 across sites, and above1.85 t ha-1 at individual sites,  and out-yielded 

the best performing cultivar (1.13 t ha-1) and the grand mean (0.87 t ha-1). The RAUDPC was 

highly significantly (P<0.001) negatively strong correlated with grain yield (r= -0.55) at 

Potchefstroom. Medium seeded genotypes showed low RAUDPC than the large seeded, and 

indeterminate growing habit genotypes showed low RAUDPC than determinate growth habit. 

These genotypes can be useful sources of genetic resistance for future dry bean improvement 

for South African bean market. 

Keys words: Screening Andean Diversity Panel (ADP) Dry bean lines, reaction to BBS disease 

and correlation among related traits. 
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3.1 Introduction 

Sub-Saharan Africa (SSA) is a nutritionally unstable region with reported malnutrition-related 

challenges (Dlamini et al., 2017), where millions of people in the region depend on cereal 

based foods that are deficient in proteins, vitamins and several other micronutrients. Most 

people in the region face household food shortages leading to hunger and starvation (Singh 

and Miklas, 2015). The adoption of legumes with increased levels of proteins can boost 

nutritional security in the region (Singh and Miklas, 2015).  Dry bean (Phaseolus vulgaris L.) 

provides between 10 and 25% of protein and 71% of starch (Broughton et al., 2003) to the 

daily diet (Broughton et al., 2003). The average mean yield in South Africa is about 1.40 t ha-

1 (Dlamini et al., 2017), which is low when compared with North America (~3.00 t ha-1) (Kimani 

et al., 2005; FAO, 2014). 

 

Dry bean cultivation is affected by several biotic constraints including bacterial brown spot 

(BBS), a bacterial disease, that occurs worldwide and is particularly serious in South Africa, 

being present in all the dry bean growing regions (Singh and Miklas, 2015). The BBS disease 

has been extensively described in the USA, Brazil and Canada (Harveson and Schwartz, 

2007; Singh and Schwartz, 2010). The disease, caused by Pseudomonas syringae 

pv.syringae (Pss), is seed-borne and largely affects the foliage and to a smaller extend the 

pods (Singh and Miklas, 2015), and is especially severe when  beans are grown in a mono-

cropping systems (Muedi et al., 2015). It has been reported that BBS disease can cause up 

to 55% of yield losses where  conditions are conducive to the disease (Serfontein, 1994; Muedi 

et al., 2015). Symptoms may initially appear as small water saturated wounds on leaves and 

pods and subsequently develop into elliptical, necrotic brown wounds encircled by a thin 

yellow-green part (Kimani et al., 2005; Muedi et al., 2015). Sources of infection include infected 

seed, wind, contaminated farm implements and soil (Harveson et al., 2015). Infected seed is 

an important  way of dissemination of Pss (Kimani et al., 2005), however, wind, rain and 

overhead irrigation have similarly been recognized as effective dispersion methods of Pss 

(Navarro et al., 2007). Humidity over 95% and temperatures between 28 and 32°C are 

favourable conditions for BBS disease, and these conditions are common in the central and 

eastern regions of South Africa, where dry beans are widely gown on a commercial scale 

(Harveson and Schwartz, 2007).  

 

The BBS disease control includes planting of certified disease free seed, crop rotation,  

resistant cultivars and control of host plants (Navarro et al., 2007). Resistant cultivars have 

been recognized as the best  way to control the disease in a sustainable way (Harveson et al., 

2015). An important  study of the inheritance of BBS resistance was undertaken  by Navarro 
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et al. (2007). This research used the Pss seedling stem inoculation in dry bean segregating 

population of the cross Belneb RR-1 × A55 RIL and found a number of genomic regions 

situated in several linkage groups that were related to BBS resistance (Navarro et al., 2007). 

The large-seeded dry and green bean cultivars originating from  Andean gene pool are highly 

susceptible to BBS disease, while, the small and medium seeded cultivars of Mesoamerican 

gene pool origin are more tolerant to BBS disease (Singh and Schwartz, 2010). The 

identification of genetic resources resistant to BSS disease will assist in the development of 

cultivars with improved resistance to BBS to the benefit of South African farmers. This study 

aimed to screen 423 Andean Diversity Panel (ADP) dry bean lines for resistance to bacterial 

brown spot (BBS) disease, under field conditions in South Africa. 

 

3.2 Methodology 

3.2.1 Genetic materials and experimental sites 

Four hundred and twenty three Andean Diversity Panel (ADP) dry bean lines maintained by 

the Agricultural Research Council Grain Crops Institute Program (ARC-GCIP) were included 

in the study. The ADP consisted of genotypes from both the  Andean gene pool, local 

commercial cultivars, breeding lines, and landraces from Africa, the Caribbean and America 

(Cichy et al., 2015). These materials were screened for resistance to BBS disease under 

artificial infection at Potchefstroom and under natural infection at Warden and Middelburg 

during the 2017/2018 growing season. Potchefstroom is located in the North West province of 

South Africa at an altitude about 1349 m, latitude 26.74o S and longitude 27.08o E.  Warden 

is situated in the Free State province and is at an altitude of about 1720 m, latitude 28. 31o S 

and longitude 29.12o E and Middelburg is located in Mpumalanga province at an altitude about 

1277 m, latitude 31.47o S and longitude 25.03o E (Muedi et al., 2015). The genetic materials 

are presented in Appendix 1.1. 

 

3.2.2 Weather data 

The weather data across three experimental sites is indicated in Table 3.1. The mean 

temperatures ranged from 25.0oC (Warden) to 28.2oC (Middelburg), whereas the Middelburg 

had the lowest rainfall (346.34 mm) and Warden the highest (687.7 mm).  
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Table 3.1 The weather data of three experimental sites  

Month 

Potchefstroom Warden Middelburg 

Temp 
(oC) 

Rainfall 
(mm) 

Temp 
(oC) 

Rainfall 
(mm) 

Temp 
(oC) 

Rainfall 
(mm) 

October-2017 26.39 56.13 24.89 49.53 24.90 28.45 

November-2017 29.12 69.34 27.05 82.04 29.30 19.56 

December-2017 29.29 62.48 26.06 208.79 32.01 10.03 

January-2018 31.04 47.24 28.39 110.49 32.74 111.51 

February-2018 27.68 68.33 26.75 66.80 30.68 77.47 

March-2018 27.54 58.93 23.63 131.52 29.21 22.10 

April-2018 25.33 35.56 22.90 12.95 24.75 62.74 

May-2018 22.78 11.28 20.32 25.65 21.61 14.48 

Average 27.40 - 25.00 - 28.15 - 

Total - 409.29 - 687.77  346.34 

Source: Agricultural Research Council (2018). 

 

 

3.2.3 Experimental design 

The experiment was established in an alpha lattice design with three replicates with 35 

incomplete blocks (33 with ADP lines and 2 with border rows) and each with 46 plots (42 with 

ADP and 4 with border rows) at all the three locations. Each replicate contained 11 incompletes 

blocks (IBLK). The last IBLK contained one plot with 3 rows of ADP lines, 10 rows of A 55 

(resistant to BBS) as control and 33 rows of RR-1 as BBS spreader. Each plot had one row 

with 5 m length and 2 m of pathway. Each row had 75 plants with a 76 cm and 7.5 cm of inter-

row and intra-row, respectively (Bellucci et al., 2014). Two borders rows (RR-1 as spreader or 

source of inoculum) were planted around the four sides of the experiment, and the trial was 

weeded mechanically. Irrigation was applied  when required. The nitrogen, phosphorus, and 

potassium fertilizers were applied to the fields at an average with rate of 42.30 kg ha-1, 22.30 

kg ha-1 and 18.40 kg ha-1, respectively. 

 

3.2.4 Bacterial brown spot disease inoculation 

Middleburg and Warden are hotspots of the BBS disease and the experiments relied on natural 

infestation, while in Potchefstroom artificial inoculation of BBS disease was applied. The 

inoculum was made from 48 to 72 hours old cultures grown on King’s B medium (Muedi, 2015). 

Three isolates (BV 6.3, BV 3.3.2 and BV 27.1) with the highest level of aggression based on 

bean pod assays were mixed and suspended in water for inoculation. The suspension was 
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adjusted to 1 x 108 CFU/ml and was used immediately for the  field inoculation (Muedi, 2015). 

To increase the development of BBS the experiment was irrigated before the inoculum 

application on the leaves, and plants were sprayed at 21, 28 and 36 days after planting through 

a mechanical inoculum sprayer (Stihl mistblower SR 430) during the morning hours.  

 

3.2.5 Data collection 

The BBS severity was evaluated seven days after the initial infestation and the rating was 

done weekly for three consecutive weeks (Muedi et al., 2015). The BBS severity was 

evaluated based on the percentage diseased leaf area for the total plot using a standardised 

CIAT scale of 1 (resistant or immune) to 9 (susceptible or disease) (Petersen et al., 2015). 

The BBS severity were converted in percentages 1 = 5%, 2 =15%, 3 = 25%, 4 = 35%, 5 = 

45%, 6 = 55%, 7 = 65%, 8 = 75% and 9 = 85%. The BBS severity percentages were used to 

calculate the relative area under disease progress curve (RAUDPC) (Muedi et al., 2015).  

Several other traits were measured, namely, days to flowering, days to maturity, growth habit, 

seed size and grain yield. The days to flowering, days to maturity and grain yield data were 

collected from the experiments across three evaluated sites, while the seed size and the 

growth habit data were obtained through the secondary data. The relationship between 

secondary data and RAUDPC were visually presented. 

 

3.2.6 Data analysis 

The data were analysed using unbalanced analysis of variance in in Genstat 18th edition 

(Gilmour et al., 2015). Means were separated by the least significant difference (LSD) at P = 

0.05. The relationship between BBS reaction, growth habit and seed size was performed using 

the phenotypic secondary and the primary data of the relative area under disease progress 

curve (RAUDPC). The model for the combined ANOVA of multi-environment trials included 

additive terms for main effects of genotype and environment, as well as the genotype by 

environment interaction term (Equation 3.1). 

 

Yij= 𝜇 +  𝛼𝑖 +  𝛽𝑗 + (𝛼𝛽)𝑖𝑗 +⋲𝑖𝑗                                                                                Equation 3.1 

 

Where 𝑌𝑖𝑗 is the yield of the genotype 𝑖 in environment 𝑗 and kth replication;, 𝜇 is overall yield 

mean, α𝑖 and β𝑗 are genotypic and environmental effect, (αβ)𝑖𝑗 is the effect of interaction 

between the 𝑖𝑡ℎ genotype and 𝑗𝑡ℎ environment, ∈𝑖𝑗 is the mean random error of the 𝑖𝑡ℎ 

genotype and 𝑒𝑗 environment. 
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3.2.7 Disease reaction and relative area under the disease progress curve 

The relative area under the disease progress curve (RAUDPC) for each genotype was 

calculated using the percentage severity scores as a dependant variable (Campbell and 

Madden, 1990) and was calculated as follows. 

  

RAUDPC=∑ [(𝑋𝑖+1 + 𝑋𝑖)/2]𝑛
𝑖=1  𝑥 [𝑡𝑖+1 − 𝑡𝑖]                                                             Equation 3.2 

 

Where: Xi is the percentage of disease severity rating at data i; Xi+1 is the percentage of 

disease severity rating at data i+1; ti is the time in days of each rating after the inoculation day 

i;  ti+1 is the time in days of each rating after the inoculation day i+1; and n is total number of 

observations.  

 

The RAUDPC data were subjected to analysis of variance and means were separated using 

Fischer’s LSD (P≤ 0.05). Furthermore, the correlation between reaction to BBS, DF, DM, 

RAUDPC and grain yield was performed for the Potchefstroom evaluation trial. 

 

3.3 Results 

3.3.1 Combined analysis of variance across three sites 

The combined analysis of variance for BBS severity and grain yield (t ha-1) is exposed in Table 

3.2. The mean squares for genotype, environment, genotype and environment interaction 

(GEI) showed significant differences (P < 0.001) for both BBS severity and grain yield (t ha-1). 

The source of variation for BBS severity  were partitioned for environment, genotype and GEI  

were 4.32%, 28.08% and 49.29%, of the total sum of squares, respectively, whereas for grain 

yield (t ha-1) as 20.92%, 24.93% and 44.95%, respectively. The mean BBS severity and yield 

were 38.85 and 0.87 t ha-1, respectively. There were significant GEI effects for BBS disease 

(P < 0.001) and grain yield (P < 0.001). Significant differences observed indicated the rank 

changes per environment and thus further analysis was done to establish which genotypes 

performed better or worse in particular environments. 
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Table 3.2 Combined analysis of variance showing mean squares for BBS severity 

and grain yield across three experimental sites 

Source DF 
BBS severity  Yield (t ha-1) 

MS MS 

Environment 2 18624.09*** 89.52*** 

Rep 2 571.62*** 0.11** 

Block 10 3722.37*** 1.93*** 

Rep. Block 20 71.36 0.22*** 

Genotypes 412 587.34*** 0.52*** 

Genotype*Environment (GEI) 844 503.31*** 0.46*** 

Residual 2516 46.93 0.02 

Total 3806 226.45 0.23 

LSD  10.97 0.24 

CV   17.19 17.61 

Mean   39.85 0.87 

* P < 0.05, ** P < 0.01, *** P < 0.001; LSD= Least significant difference, Mean=The mean, CV=Percentage  
coefficient of variation, MS=Mean of square, BBS=Bacterial brown spot, Yield=Grain yield (t ha-1). 

 

 

3.3.2 Analysis of variance for individual sites 

The analysis of variance for BBS severity and grain yield (t ha-1) for the individual sites is 

presented in Table 3.3. There were significant differences (P<0.05) among genotypes for BBS 

severity, RAUDPC and grain yield (t ha-1) at three sites (Table 3.3). The source of variation for 

BBS severity, RAUDPC were partitioned for genotype, block, replication and interaction 

between replication and block. Genotypes was the main source of variation with 73.23, 69.86 

and 72.80% of BBS severity and 86.68, 84.66 and 84.47 of grain yield of the  total sum square 

in Warden, Middelburg and Potchefstroom, respectively. The genotype variation for RAUDPC 

was 72.80% at Potchefstroom (Table 3.3). The variation for the blocks were 4.39, 20.61, 

10.54% for BBS severity and 1.94, 10.71 and 7.12% for grain yield of total sum square in 

Warden, Middelburg and Potchefstroom, respectively. The variation for the replication were 

0.63, 0.06, 0.18 for BBS severity and 0.09, 0.02 and 0.04% for grain yield in Warden, 

Middelburg and Potchefstroom, respectively. The RAUDPC variation were 10.54 for block and 

0.18 for replication of total sum square. 
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Table 3.3 Analysis of variance showing mean for bacterial brown spot disease 

severity, RAUDPC and grain yield for individual sites 

Source DF 

Warden Middelburg Potchefstroom   
BBS 

severity 
Grain 
yield 

BBS 
severity 

Grain 
yield 

BBS 
severity 

RAUDPC 
Grain 
yield 

MS MS MS MS MS MS MS 

Rep 2 650.59*** 0.09* 123.01 0.02 198.96** 87741.0 ** 0.06 

Block 10 908.30*** 0.38** 8260.34*** 2.32*** 2288.68*** 1009309.0*** 1.89*** 

Rep. 
Block 

20 54.15 0.02 136.59*** 0.02 52.4 23107.0 0.03 

Gen 412 367.43*** 0.42*** 679.57*** 0.45*** 383.65*** 169192.0*** 0.52*** 

Residual 824 53.26 0.02 42.75 0.01 42.14 18584.0 0.04 

Total 1268 163.04 0.15 316.08 0.17 171.23 75514.0 0.21 

LSD  11.7 0.22 10.48 0.18 10.40 218.5 0.32 

CV   16.54 17.32 17.8 17.00 16.78 16.78 17.03 

Mean   44.13 0.80 36.73 0.64 38.68 812.34 1.16 

* P<0.05, ** P<0.01, *** P<0.001; LSD=Least significant difference, Mean=The mean, SE=Standard error 
between predicted means, CV=Percentage coefficient of variation, MS = Mean of squares, BBS= Bacterial 
brown spot, RAUDPC = Relative area under disease progress curve and Grain yield=Grain yield in t ha-1. 

 

3.3.3 Mean of BBS severity and grain yield across three sites  

The mean BBS severity and the grain yield of the best 15 performing genotypes and five the 

worst performing genotypes across three environments are indicated in Table 3.4. The mean 

BBS severity ranged from 15 (ADP-0592) to 63.15 (ADP-0310). While, the grain yield of 

genotypes ranged from 1.66 (ADP-00097) to 0.32 t h-1 (ADP-0577). Four genotypes of the 

best 15 performing, namely ADP-0592, ADP-0790, ADP-0120 and ADP-0008 had both a low 

BBS severity and a high grain yield across three environments (Table 3.4). Genotypes 

selected across three sites had the mean grain yield above the grand mean (0.87 t ha-1), and 

the best performing cultivar (1.13 t ha-1)  and mean BBS severity below the grand mean (39.85) 

and the best performing cultivar (31.67) (Table 3.4).  
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Table 3.4 The mean of BBS severity and grain yield of the best 10 performing 

genotypes and the worst five performing genotypes across three sites 

Item ADP BBS severity ADP Yield (t ha-1) 

The best 10 
performing 
genotypes 

ADP-0592 15.00 ADP-0097 1.66 

ADP-0790 16.11 ADP-0522 1.62 

ADP-0432 19.44 ADP-0079 1.59 

ADP-0454 21.30 ADP-0122 1.58 

ADP-0796 21.30 ADP-0592 1.56 

ADP-0126 22.78 ADP-0545 1.55 

ADP-0008 23.15 ADP-0790 1.55 

ADP-0125 23.15 ADP-0120 1.53 

ADP-0079 23.52 ADP-0630 1.51 

ADP-0120 24.63 ADP-0008 1.46 

The worst 5  
performing  
genotypes 

ADP-0391 57.22 ADP-0587 0.39 

ADP-0609 57.22 ADP-0639 0.38 

ADP-0203 58.33 ADP-0310 0.38 

ADP-0652 61.30 ADP-0417 0.34 

ADP-0310 63.15 ADP-0577 0.32 

 LSD 10.97 LSD 0.25 

 Mean 39.85 Mean 0.87 

 SE 5.59 SE 0.15 

  CV 17.19 CV 17.61 

LSD= Least significant difference, Mean=The mean, SE=Standard error between predicted means, 
CV=Percentage of coefficient of variation, ADP=Andean Diversity Panel lines, BBS= Bacterial brown spot and 
Grain yield=Grain yield in t ha-1. 

 

3.3.4 Mean of BBS disease severity and grain yield for each sites 

The 10 best performing genotypes for mean BBS severity, RAUDPC and grain yield and 10 

the worst performing genotypes at the three sites are indicated in Table 3.5. Genotypes with 

BBS severity  less than 35 in three sites were regarded as resistant to BBS disease, between 

35.0 and 48.3 as moderate, and greater than 48.3 as susceptible to the BBS disease. As a 

result, 17.5%, 50.6% and 49.4% genotypes were selected as resistant, moderate and 

susceptible reaction to BBS disease, respectively, in Warden. In Middelburg 24.6% of 

genotypes showed a resistant reaction, while 49.2 and 26.2% showed a moderate and 

susceptible reaction to BBS disease, respectively. At Potchefstroom, 21.0% were  resistant to 

BBS disease, and 25.1 and 53.9% as moderate and susceptible, respectively. The RAUDPC 

ranged from 1948.30 for ADP-0733 to 105.00 for ADP- 0798. The mean BBS severity were 

44.1, 36.7% and 38.68, while the mean grain yield were 0.8, 0.64 and 1.16 t ha-1 for Warden, 

Middelburg and Potchefstroom, respectively.  
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3.3.5 Relation between BBS disease reaction and grain yield 

The grain yield ranged from 2.47 (ADP-0546) to 0.18 t h-1 (ADP-0746) in Warden, from 2.13 

(ADP-0239) to 0.17 t ha-1 (ADP-0644) in Middelburg and from 2.31 (ADP-0517) to 0.16 t ha-1 

(ADP-0242) in Potchefstroom (Table 3.5). The genotypes ADP-0546, ADP-0630, ADP-0183 

and ADP-0279 had both low mean BBS severity and high grain yield of the best 10 performing 

genotypes in Warden. The genotypes ADP-0038, ADP-0721, ADP-0790 had both low mean 

BBS severity and high grain yield of the best 10 performing genotypes in Middelburg. 

Genotypes ADP-0120 and ADP-0079 had low mean BBS severity, low RAUDPC and high 

grain of the best 10 performing genotypes in Potchefstroom (Table 3.5). Genotypes with 

RAUDPC smaller than 665.0 were regarded resistant to BBS, genotypes with RAUDPC 

between 668.0 and 875.00 were regarded as moderate resistance, and genotypes with 

RAUDPC higher than 898.3 were regarded susceptible to BBS disease. Therefore, 16.50% of 

the genotypes exhibited resistance to BBS disease, while 41.60% and 41.80% of the 

genotypes showed a moderate and susceptible reaction, respectively. The best local 

commercial cultivar had a mean BBS severity of 45.0, 45.0 and 5.0, with grain yield of 1.28, 

0.55 and 1.56 t ha-1 in Warden, Middelburg and Potchefstroom, respectively. The genotypes 

selected for both traits had mean BBS severity below and a grain yield above the best local 

commercial cultivar, with the exception of Potchefstroom where the genotype selected for both 

(ADP-0120 and ADP-0079) had approximately the same mean BBS severity and RAUDPC 

as the best local commercial cultivar (ADP-0798). 
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Table 3.5 Mean of BBS severity, RAUDPC and grain yield of the best 10 performing genotypes and the worst 10 performing genotypes across individual sites 

Warden Middelburg Potchefstroom 

ADP 
BBS 

Severity 
ADP 

Grain 
yield 

ADP 
BBS 

Severity 
ADP 

Grain 
yield 

ADP 
BBS 

severity 
ADP RAUDPC ADP 

Grain 
yield 

546 5.00 546 2.47 038 8.33 239 2.13 120 5.00 798 105.00 517 2.31 

478 15.00 063 2.31 551 8.33 057 2.07 126 5.00 797 105.00 554 2.23 

376 18.33 183 2.01 125 8.33 621 2.05 432 5.00 716 105.00 522 2.19 

279 18.33 473 2.00 721 8.33 038 2.03 716 5.00 120 105.00 060 2.17 

611 18.33 658 1.99 592 8.33 522 2.03 790 5.00 790 105.00 008 2.17 

355 18.33 101 1.97 790 8.33 192 2.03 797 5.00 126 105.00 120 2.16 

585 18.33 673 1.93 510 8.33 790 2.03 798 5.00 432 105.00 097 2.15 

767 18.33 279 1.91 093 11.67 737 1.98 125 6.11 125 128.30 532 2.13 

183 18.33 337 1.90 740 11.67 721 1.98 455 6.11 455 128.30 527 2.13 

630 18.33 630 1.89 035 11.67 684 1.94 079 7.22 079 151.70 079 2.12 

074 65.00 730 0.27 207 68.33 581 0.19 587 58.33 587 1225.00 672 0.29 

203 65.00 640 0.26 759 71.67 481 0.18 609 58.33 609 1225.00 479 0.29 

095 68.33 531 0.24 770 71.67 640 0.18 623 58.33 623 1225.00 598 0.29 

049 68.33 078 0.24 644 71.67 207 0.18 598 59.44 598 1248.30 459 0.28 

640 68.33 639 0.24 788 71.67 595 0.18 610 59.44 610 1248.30 376 0.28 

549 71.67 654 0.24 659 71.67 379 0.18 777 59.44 777 1248.30 280 0.26 

105 71.67 681 0.21 379 71.67 604 0.18 220 61.67 220 1295.00 587 0.25 

797 71.67 721 0.20 581 71.97 765 0.18 672 61.67 672 1295.00 190 0.23 

078 71.67 549 0.20 652 75.00 279 0.17 310 66.11 310 1388.30 279 0.17 

721 75.00 746 0.18 595 75.00 644 0.17 733 92.78 733 1948.30 242 0.16 

LSD    11.70 0.22 LSD    10.48 0.18 LSD 10.40 219.00 
 

0.32 

Mean    44.13 0.80 Mean    36.73 0.64 Mean 38.68 812.00 
 

1.16 

SE    5.96 0.11 SE      5.34 0.09 SE 5.30 111.00 
 

0.16 

CV    16.50 17.30 CV    17.80 17.0 CV 16.80 16.80   17.00 

LSD= Least significant difference, Mean=The mean, SE=Standard error between predicted means, CV=Percentage of coefficient of variation, ADP=Andean Diversity Panel 
lines, BBS = Bacterial brown spot, RAUDPC = Relative area under disease progress curve and Grain yield=Grain yield in t ha-1. 
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3.3.6 Correlation among traits  

The correlations among traits at Potchefstroom, namely the relative area under disease 

progress curve (RAUDPC), grain yield (t ha-1), DF and DM of the 423 ADP dry bean 

genotypes is presented in Table 3.6.  The RAUDPC was highly significant and negatively 

correlated with grain yield (r= -0.55***), DF (r=-0.27***) and DM (r=-0.47***). Grain yield 

was highly significant and positively correlated with DF (r=0.09***) and DM (r=0.33***). 

Days to flowering-DF was highly significant and positively correlated with DM (r=0.31***) 

and grain yield (r=0.09***).  

 

Table 3.6 Correlation between days to flowering, days to maturity, RAUDPC and 

grain yield at Potchefstroom 

Traits DF DM RAUDPC Grain yield (t ha-1) 

DF 1    

DM 0.31*** 1   

RAUDPC -0.27*** -0.47*** 1  

Grain yield (t ha-1) 0.09*** 0.33*** -0.55*** 1 

* P<0.05; ** P<0.01; *** P<0.001.  DF = Days to flowering, DM = Days to maturity, RAUDPC = 

Relative area under disease progress curve, Grain yield = Grain yield in t ha-1.  

 

3.3.7 Relationship between morphological traits and reaction to BBS disease 

The relationship between seed size, growing habit and reaction to bacterial brown spot in 

Potchefstroom is displayed in Figure 3.1. The medium seeded genotypes showed the 

lowest RAUDPC mean compared with the large seeded. In addition, the genotypes with 

an indeterminate growth habit showed a lower RAUDPC mean than those with a 

determinate growth habit. 
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3.4 Discussion and conclusion 

Bacterial brown spot is an economically important disease to dry bean production globally. 

This study aimed to identify BBS disease resistance and high grain yield performance amongst 

423 Andean Diversity Panel (ADP) dry bean lines. The analysis of variance indicated high 

variability among selected genotypes for BBS disease resistance, and grain yield performance 

both across and at individual environments.  

 

The study revealed that 21.0% of genotypes were resistant, while 41.6% were moderately 

resistant to BBS disease. These genotypes can be useful sources of genetic resistance for 

future dry bean improvement for the South African bean market. The high variability among 

genotypes implies better selection criteria based on resistance and yield performance. The 

GEI was also significant which implies rank changes on genotypic performances across 

different sites. Significant GEI can imply that selection of genotypes is environment specific, 

hence, genotypes can be selected for a particular environment.   

 

Genotypes ADP-0592, ADP-0790, ADP-0120 and ADP-0008 were selected for both high 

disease resistance and high grain yield across three environments. Genotypes ADP-0546, 

ADP-0630, ADP-0183 and ADP-0279 were selected for both high BBS disease resistance as 

well as high yield in Warden. Genotypes ADP-0038, ADP-0721, ADP-0790 were best 
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Figure 3.1 Relationship between seed size, growth habit and reaction to BBS 

disease (RAUDPC) at Potchefstroom 
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performing at Middelburg while, genotypes ADP-0120 and ADP-0079 were better performing 

at Potchefstroom. Genotypes selected had the mean grain yield above the grand mean (0.87 

t ha-1) and the best performing cultivar (1.13 t ha-1), and mean BBS severity below the grand 

mean (39.85) and the best performing cultivar (31.67). These genotypes had either broad or 

specific adaption with lower mean BBS severity and higher grain yield, than the best local 

commercial cultivar (ADP-0798).  

 

The results indicated that RAUDPC was significantly and negatively correlated with grain yield 

(r= -0.55***), days to flowering (r = -0.27*** and days to maturity (r = -0.47***). This implies 

that disease occurrence and severity is affected by maturity period and that grain yield is 

negatively correlate with BBS severity of the ADP genotypes. The results from the study 

corroborates with findings by  Muedi et al. (2015) who indicated that the higher RAUDPC the 

lower the grain yield will be.  The small seeded genotypes had the lower RAUDPC mean than 

the medium and the large seeded dry bean genotypes. Research by Navarro et al. (2007) also 

reported that the seed size had an effect on resistance to the BBS disease The genotypes 

with an indeterminate growth habit had lower RAUDPC means than those with a  determinate 

growth habit.  Singh et al. (1991) also suggested that genotypes with indeterminate genotypes 

had higher disease resistance than determinate genotypes because longer vegetative growth 

of indeterminate genotypes increases plant resistance. 

 

 

The study identified 21.03% and 41.63% genotypes with resistance to moderate resistance to 

BBS disease, respectively. Several genotypes were adapted to specific environments. 

Genotypes ADP-0592, ADP-0790, ADP-0120 and ADP-0008 were selected across the three 

environments. Genotypes ADP-0546, ADP-0630, ADP-0183 and ADP-0279 were selected for 

both high BBS disease resistance and high yield at Warden. Genotypes ADP-0038, ADP-

0721, ADP-0790 were the best performing at Middelburg, while genotypes ADP-0120 and 

ADP-0079 were the best performers at Potchefstroom. Genotypes selected had mean grain 

yield above the grand and the best performing cultivar, and mean BBS severity below the 

grand mean and the best performing cultivar. These materials can be used as sources of 

resistance to BBS future breeding programmes.  
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3.6 Appendices 

Appendix 3.1: The genetic material screened for resistance to bacterial brown spot (BBS) 

across three sites in South Africa 

Entry ADP 
Seed 
size 

Growth 
Habit 

Entry ADP 
Seed 
size 

Growth 
habit 

Entry ADP 
Seed 
size 

Growth 
habit 

1 3 medium Vine 142 279 Large Bush 283 609 large Bush 

2 4 Large Bush 143 280 Large Bush 284 610 large Bush 

3 5 medium Vine 144 288 medium Vine 285 611 large Bush 

4 6 Large Bush 145 303 Large Bush 286 612 medium Vine 

5 7 medium Vine 146 310 medium Vine 287 613 medium Bush 

6 8 medium Vine 147 324 medium Vine 288 615 medium Vine 

7 9 medium Vine 148 337 medium Vine 289 616 medium Vine 

8 11 medium Vine 149 345 medium Vine 290 617 medium Vine 

9 12 medium Vine 150 354 medium Vine 291 618 medium Vine 

10 13 Large Bush 151 355 Large Bush 292 619 medium Vine 

11 14 medium Vine 152 367 medium Vine 293 620 medium Vine 

12 15 medium Bush 153 368 medium Vine 294 621 medium Vine 

13 16 medium Vine 154 376 medium Vine 295 622 large Bush 

14 17 medium Vine 155 379 medium Vine 296 623 large Bush 

15 18 medium Vine 156 383 medium Vine 297 624 medium Vine 

16 19 Large Vine 157 391 medium Vine 298 625 large Bush 

17 21 medium Vine 158 392 medium Vine 299 626 medium Vine 

18 22 medium Vine 159 413 medium Vine 300 629 medium Vine 

19 23 medium Bush 160 417 medium Vine 301 630 medium Bush 

20 24 medium Vine 161 428 medium Vine 302 631 medium Vine 

21 25 medium Vine 162 429 medium Vine 303 633 medium Bush 

22 26 medium Vine 163 430 medium Bush 304 634 large Bush 

23 27 medium Bush 164 431 medium Vine 305 635 medium Vine 

24 28 medium Vine 165 432 medium Vine 306 636 medium Vine 

25 29 medium Bush 166 435 medium Vine 307 637 medium Vine 

26 30 medium Bush 167 438 medium Vine 308 638 large Bush 

27 31 Large Bush 168 439 Large Bush 309 639 medium Bush 

28 32 medium Vine 169 440 medium Vine 310 640 medium Vine 

29 33 medium Vine 170 441 medium Vine 311 641 medium Vine 

30 34 medium Vine 171 442 medium Vine 312 642 large Bush 

31 35 medium Vine 172 443 medium Vine 313 644 medium Vine 

32 36 medium Vine 173 445 medium Vine 314 645 medium Bush 

33 37 medium Vine 174 446 medium Vine 315 646 medium Vine 

34 38 medium Vine 175 447 medium Vine 316 647 medium Vine 

35 40 Large Vine 176 449 medium Vine 317 648 large Bush 

36 41 Large Vine 177 450 medium Vine 318 649 medium Vine 

37 42 medium Vine 178 452 Large Bush 319 650 medium Vine 

38 43 medium Vine 179 453 medium Vine 320 652 large Vine 

39 44 medium Vine 180 454 medium Vine 321 653 medium Vine 
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Entry ADP 
Seed 
size 

Growth 
Habit 

Entry ADP 
Seed 
size 

Growth 
habit 

Entry ADP 
Seed 
size 

Growth 
habit 

40 45 medium Bush 181 455 medium Vine 322 654 medium Vine 

41 46 medium Vine 182 456 medium Vine 323 655 medium Bush 

42 48 medium Vine 183 457 medium Vine 324 656 medium Bush 

43 49 Large Bush 184 458 medium Vine 325 657 large Vine 

44 50 medium Vine 185 459 Large Bush 326 658 medium Vine 

45 51 medium Vine 186 460 Large Bush 327 659 large Vine 

46 52 medium Vine 187 461 medium Vine 328 660 medium Vine 

47 53 Large Bush 188 462 medium Vine 329 661 medium Vine 

48 54 medium Bush 189 464 medium Vine 330 662 large Vine 

49 55 medium Vine 190 465 medium Vine 331 663 medium Vine 

50 56 medium Vine 191 466 medium Vine 332 664 large Vine 

51 57 medium Vine 192 467 medium Vine 333 665 medium Vine 

52 85 medium Vine 193 468 medium Vine 334 666 medium Vine 

53 59 medium Bush 194 469 Large Bush 335 668 medium Vine 

54 60 medium Bush 195 470 medium Vine 336 670 medium Vine 

55 61 medium Bush 196 471 medium Vine 337 672 large Bush 

56 62 medium Bush 197 472 medium Vine 338 673 medium Bush 

57 63 medium Bush 198 473 medium Vine 339 674 medium Vine 

58 64 medium Bush 199 474 medium Vine 340 675 medium Vine 

59 65 Large Bush 200 475 Large Bush 341 677 medium Vine 

60 66 medium Bush 201 476 medium Vine 342 678 medium Vine 

61 67 Large Bush 202 478 medium Vine 343 679 large Vine 

62 69 medium Bush 203 479 medium Vine 344 680 medium Vine 

63 70 medium Bush 204 481 medium Vine 345 681 medium Vine 

64 71 medium Bush 205 482 medium Vine 346 682 medium Vine 

65 72 Large Bush 206 483 medium Vine 347 683 medium Vine 

66 74 Large Bush 207 508 medium Vine 348 684 medium Vine 

67 75 medium Bush 208 510 medium Vine 349 685 medium Vine 

68 76 medium Bush 209 512 medium Vine 350 686 medium Vine 

69 77 medium Bush 210 513 medium Vine 351 716 large Vine 

70 78 medium Bush 211 514 Large Bush 352 717 large Vine 

71 79 medium Vine 212 515 medium Vine 353 718 large Vine 

72 81 medium Vine 213 516 medium Vine 354 719 medium Vine 

73 82 Large Bush 214 517 medium Vine 355 720 medium Vine 

74 83 medium Vine 215 518 medium Vine 356 721 medium Vine 

75 84 Large Bush 216 520 medium Vine 357 722 medium Vine 

76 85 medium Bush 217 521 medium Vine 358 723 medium Vine 

77 86 medium Bush 218 522 medium Vine 359 724 medium Vine 

78 87 medium Bush 219 523 medium Vine 360 725 medium Vine 

79 88 medium Vine 220 524 Large Bush 361 726 medium Vine 

80 89 medium Vine 221 525 Large Bush 362 727 medium Vine 

81 90 medium Bush 222 527 medium Vine 363 728 medium Vine 

82 92 medium Bush 223 528 medium Vine 364 729 medium Vine 

83 93 Large Bush 224 529 medium Vine 365 730 medium Vine 
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Entry ADP 
Seed 
size 

Growth 
Habit 

Entry ADP 
Seed 
size 

Growth 
habit 

Entry ADP 
Seed 
size 

Growth 
habit 

84 94 Large Bush 225 530 medium Bush 366 731 medium Vine 

85 95 Large Bush 226 531 medium Vine 367 732 medium Vine 

86 96 medium Vine 227 532 medium Vine 368 733 large Bush 

87 97 medium Vine 228 534 Large Bush 369 734 medium Vine 

88 98 medium Vine 229 535 medium Vine 370 735 medium Vine 

89 99 medium Bush 230 536 medium Vine 371 736 medium Vine 

90 100 medium Vine 231 537 medium Vine 372 737 medium Vine 

91 101 medium Bush 232 538 medium Vine 373 739 large Vine 

92 102 medium Vine 233 540 medium Vine 374 740 medium Vine 

93 103 medium Vine 234 543 medium Vine 375 741 medium Vine 

94 105 medium Vine 235 544 medium Vine 376 742 medium Vine 

95 10.6 medium Bush 236 545 medium Vine 377 743 medium Vine 

96 107 medium Bush 237 546 Large Vine 378 744 medium Vine 

97 108 medium Bush 238 549 medium Vine 379 745 medium Vine 

98 109 medium Bush 239 550 Large Bush 380 746 large Vine 

99 110 medium Vine 240 551 medium Vine 381 747 medium Vine 

100 111 Large Bush 241 554 medium Vine 382 748 medium Vine 

101 113 medium Vine 242 555 medium Vine 383 750 medium Bush 

102 117 medium Vine 243 556 medium Vine 384 751 medium Vine 

103 118 medium Vine 244 557 medium Vine 385 752 medium Vine 

104 119 medium Vine 245 559 medium Vine 386 753 medium Vine 

105 120 medium Vine 246 560 medium Vine 387 757 medium Vine 

106 121 medium Vine 247 561 medium Vine 388 758 large Vine 

107 122 medium Vine 248 562 medium Vine 389 759 medium Vine 

108 123 medium Vine 249 564 medium Vine 390 760 large Vine 

109 125 medium Vine 250 566 medium Vine 391 761 medium Vine 

110 126 medium Vine 251 567 medium Vine 392 762 medium Vine 

111 127 medium Vine 252 570 medium Vine 393 765 medium Vine 

112 166 medium Vine 253 571 medium Vine 394 767 medium Vine 

113 180 Large Bush 254 572 medium Vine 395 768 large Vine 

114 183 medium Vine 255 574 medium Vine 396 769 medium Vine 

115 186 medium Vine 256 575 medium Bush 397 770 large Vine 

116 188 Large Bush 257 576 medium Vine 398 771 medium Vine 

117 190 medium Vine 258 577 medium Vine 399 772 medium Vine 

118 192 Large Bush 259 578 medium Vine 400 773 medium Vine 

119 199 medium Vine 260 579 Large Bush 401 774 medium Vine 

120 203 Large Vine 261 580 Large Bush 402 775 medium Vine 

121 205 medium Vine 262 581 medium Vine 403 776 medium Vine 

122 206 medium Vine 263 583 medium Vine 404 777 large Bush 

123 207 Large Vine 264 585 Large Bush 405 778 large Vine 

124 208 medium Vine 265 586 Large Vine 406 779 medium Vine 

125 211 medium Vine 266 587 Large Bush 407 780 medium Vine 

126 212 medium Vine 267 589 medium Vine 408 781 medium Vine 

127 213 medium Vine 268 590 Large Bush 409 783 medium Vine 
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Entry ADP 
Seed 
size 

Growth 
Habit 

Entry ADP 
Seed 
size 

Growth 
habit 

Entry ADP 
Seed 
size 

Growth 
habit 

128 214 medium Vine 269 591 medium Vine 410 784 medium Vine 

129 220 Large Bush 270 592 Large Bush 411 785 medium Vine 

130 224 Large Vine 271 595 medium Bush 412 786 medium Vine 

131 225 medium Vine 272 596 medium Vine 413 788 medium Vine 

132 232 medium Vine 273 597 medium Vine 414 789 medium Vine 

133 239 medium Vine 274 598 Large Bush 415 790 medium Vine 

134 242 Large Bush 275 599 Large Bush 416 791 medium Vine 

135 247 medium Vine 276 601 medium Vine 417 792 medium Vine 

136 225 medium Vine 277 602 Large Bush 418 793 medium Vine 

137 267 medium Vine 278 603 medium Vine 419 794 medium Vine 

138 269 medium Vine 279 604 Large Bush 420 795 medium Vine 

139 271 medium Vine 280 605 Large Bush 421 796 medium Vine 

140 272 medium Vine 281 606 Large Bush 422 797 medium Vine 

141 277 Large Vine 282 608 medium Vine 423 798 medium Vine 

 

The source of origin of Andean Diversity Panel lines (ADP lines): 3-185=Africa, 186-368=CIAT core, 
369-433=US core, 434-442=Carribean, 443-481=East Africa, 482-591=CIAT Africa, 592-724=North 
America, 725-751=East Africa, 752-798=Southern Africa  
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CHAPTER 4  

GRAIN YIELD, STABILITY AND BACTERIAL BROWN SPOT 

DISEASE OF DARK RED KIDNEY DRY BEAN GENOTYPES ACROSS 

SIX ENVIRONMENTS IN SOUTH AFRICA  

Abstract 

Dry bean (Phaseolus vulgaris L.)  is grown under an extensive range of agro-climatic 

conditions and is an important source of protein and income globally. This study aimed to 

identify and evaluate yield performance, stability and bacterial brown spot (BBS) disease 

resistance of fourteen Dark Red Kidney genotypes across environments Carolina, Clarens, 

Cedara, Middelburg, Potchefstroom and Warden in South Africa. The univariate and 

multivariate models, additive main effect multiplicative interaction (AMMI) and genotype plus 

genotypes by environment interaction-GGE biplot analysis were used to evaluate the grain 

yield performance, stability and BBS disease resistance. The AMMI analysis of  variance 

revealed that mean squares for grain yield and BBS severity for  environment, genotype and 

genotype by environment interaction were highly significant (P<0.001). The interaction 

principal components (IPCA1 - 4) for grain yield and IPCA1 for BBS severity were highly 

significant (P<0.001, P<0.01). Genotype G12 (1.46 t ha-1) showed a broad adaptation for both 

high grain yield, low BBS severity and was stable across six environments, while genotypes 

G08 (1.77), G06 (1.70), G03 (1.62), G02 (1.56), G05 (1.48) and G04 (1.45 t ha-1) had specific 

adaption for high grain yield, low BBS severity and were unstable. These genotypes recorded 

mean grain yield above the grand mean and the best performing cultivar both with (1.43 t ha-

1), and BBS severity below the grand mean (31.90) and the best performing cultivar (48.89). 

The GGE biplot identified three mega-environments for grain yield and BBS severity across 

the six environments. The AMMI analysis and GGE biplot found similar mean performance 

and stability of the genotypes over six sites. These genotypes can be released for broad and 

specific adaptation across tested environments and similar environments or can be used as 

parents in a breeding programme to improve the grain yield and BBS disease resistance of 

dry bean for farmers in South Africa. 

 

Keys: AMMI stability value (ASV), Grain yield and BBS severity and broad and specific 

adapted  
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4.1 Introduction 

Dry bean (Phaseolus vulgaris L.) (2n=2x=22), is the third important source of protein and 

income crops worldwide and is produced under an extensive series of agro-climatic conditions, 

surpassed only by  soybean (Glycine max (L.) Merr.) and peanut (Arachis hypogea L.) 

(González et al., 2006; Dia et al., 2016). The crop is grown between 52 o N and 32 o S up to 

an altitude of 3000 m (Kimani et al., 2005). Southern and Eastern Africa are main production 

regions  with approximately 3.7 million ha of arable land per year under dry beans (Kimani et 

al., 2005). In South Africa this crop is largely grown in the Free State (43%), Mpumalanga 

(23%), Limpopo (10%) provinces with the remaining produced in the KwaZulu-Natal, Gauteng, 

North West and Eastern Cape provinces (Muedi et al., 2015). These agro-ecological  regions 

are different in terms of temperature, rainfall and soil fertility (Muedi et al., 2015). The mean 

grain yield in South Africa is 1.40 t ha-1  (Dlamini et al., 2017). This mean grain yield is low 

compared with North America (~ 3.00 t ha-1) (Kimani et al., 2005; FAO, 2014). The grain yield 

losses caused by Pseudomonas syringae pv.syringae (Pss) can be up to 55% (Serfontein, 

1994; Muedi et al., 2015). The most popular grain types grown in South Africa are red speckled 

sugar ( 75% of the local market share)  and small white canning beans (20% of the local 

market share), with the large white kidney beans, alubia, painted lady and cariocas making up 

the niche markets (Muedi, 2015). The genotype by environment interaction (GEI) reveals the 

changes of comparative performance of genotypes over sites because of genotype, the 

environment, or both (Mortazavian et al., 2014). The GEI complicates the identification and 

selection of suitable genotypes for specific environment or across environments. The GEI 

analysis is used to identify lines that perform consistently well over a range of sites for broad 

and specific adaption (Dia et al., 2016). The statistical methods for stability evaluation include 

univariate and multivariate analysis (Chipeta et al., 2017). The AMMI analysis is used for 

quantifying GEI which has  the capacity to extract genotype and environment effect, and uses 

the interaction of principal component analysis (Abuali et al., 2014; Oladosu et al., 2017). The 

failure of the AMMI analysis to generate expectation for stability measure (ranking genotypes) 

guided or directed to the development of the  AMMI stability value (ASV) (Purchase et al., 

2000). A lower ASV reveals that a genotype has a wide adaptation and higher ASV reveals 

that a genotype has specific adaptation (Agyeman et al., 2015). The genotype main effect plus 

genotype by environment interaction biplot is multivariate analysis tool, which is  based on the 

genotype mean performance and stability over a range of sites (Dia et al., 2016; Oladosu et 

al., 2017). Broad and specific adapted dry bean cultivars with bacterial brown spot (BBS) 

disease resistance would offer South African farmers a sustainable way of improving yields. 

This study aimed to evaluate the grain yield performance, stability parameters and resistance 
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to bacterial brown spot (BBS) disease of Dark Red Kidney (DRK) dry bean lines across six 

environments in South Africa. 

 

4.2  Methodology 

4.2.1 Genetic material 

Twelve Dark Red Kidney (DRK) dry bean lines, coded G01-G12 from the Agricultural 

Research Council-Grain Crops Institute Breeding Program (ARC-GCI-BP) were included 

(Table 4.1). All genetic materials had red seed and a Type II growth habit as described in the 

field book evaluation (Agricultural Research Council-GCIP, 2018). The type II is indeterminate 

and has an erect growth habit with an erect stem with more nodes and internodes than type I, 

and continues to grow during flowering (Kwak et al., 2012).  The main selection criteria were 

yield, resistance to shattering, lodging, disease resistance and seed quality. Genotypes G13 

and G14, well known dark red kidney beans in the USA known as Montcalm and AC Calmont, 

respectively, were included as checks (Table 4.1). 

 

Table 4.1 Genetic material used in this study 

No Line ID 
Seed 

colour 
100 seed 

weight (g) 
Growth  habit Origin 

1 G01 Red 56.40 Type II ARC-GCI-BP 

2 G02 Red 61.13 Type II ARC-GCI-BP 

3 G03 Red 55.83 Type II ARC-GCI-BP 

4 G04 Red 63.37 Type II ARC-GCI-BP 

5 G05 Red 50.83 Type II ARC-GCI-BP 

6 G06 Red 62.70 Type II ARC-GCI-BP 

7 G07 Red 53.63 Type II ARC-GCI-BP 

8 G08 Red 52.67 Type II ARC-GCI-BP 

9 G09 Red 51.57 Type II ARC-GCI-BP 

10 G10 Red 55.27 Type II ARC-GCI-BP 

11 G11 Red 68.57 Type II ARC-GCI-BP 

12 G12 Red 72.30 Type II ARC-GCIP-BP 

13 G13 (Montcalm) Red 69.60 Type II ARC-GCIP 

14 G14 (AC Calmont) Red 55.40 Type II ARC-GCIP 
Source: Agricultural Research Council-GCIP (2018), ARC-GCI-BP= Agricultural Research Council-Grain Crops 
Institute Breeding Program and ARC-GCIP= Agricultural Research Council-Grain Crops Institute Program. 
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4.2.2 Experimental sites and the weather data 

The experimental sites, weather data, altitude, latitude and longitude are indicated in Table 

4.2. The localities were Warden and Clarens (Eastern Free State), Middelburg and Carolina 

(Mpumalanga), Cedara (KwaZulu-Natal) and Potchefstroom (North West). The mean 

temperature was lowest at Carolina (24.4o) and highest at Middelburg (28.2oC), whereas 

Middelburg had the lowest rainfall (349 mm) and Cedara had the highest rainfall (931 mm). 
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Table 4.2 Experimentals sites and the weather data across six environments 

Month 

North West Free-State KwaZulu-Natal Mpumalanga 

Potchefstroom Warden Clarens Cedara Middelburg Carolina 

Temp Rain Temp Rain Temp Rain Temp Rain Temp Rain Temp Rain 

Oct-17 26.39 56.13 24.89 49.53 23.40 59.00 22.70 145.00 24.90 28.45 24.10 4.00 

Nov-17 29.12 69.34 27.05 82.04 25.30 46.00 24.10 136.00 29.30 19.56 25.50 54.00 

Dec-17 29.29 62.48 26.06 208.79 25.70 117.00 23.50 98.00 32.01 10.03 25.10 155.00 

Jan-18 31.04 47.24 28.39 111.49 27.40 114.00 27.10 65.00 32.74 111.51 26.50 89.00 

Feb-18 27.68 68.33 26.75 69.80 25.40 53.00 26.50 228.00 30.68 77.47 25.80 79.00 

Mar-18 27.54 58.93 23.63 131.52 23.30 146.00 25.70 156.00 29.21 22.10 24.80 119.00 

Apr-18 25.33 35.56 22.90 12.95 22.10 18.00 25.30 65.00 24.75 62.74 23.60 9.00 

May-18 22.78 11.18 20.32 25.65 29.10 26.00 21.50 38.00 21.61 14.48 20.10 23.00 

Average 27.40  - 25.00 -  25.20  - 24.60  - 28.15  - 24.40 -  

Total -  409.29  - 687.77  - 579.00  - 931.00  - 346.34 -  532.00 

Latitude  26.74  28.31  28.5  29.54  31.47  27.95 

Longitude  27.08  29.11  28.58  30.26  25.03  29.43 

Altitude  1349  1720  1849  1068  1277  1782 
Source: Agricultural Research Council (2018). Temp =Temperature (oC); Rain = The rainfall (mm); Latitude=Latitude (o); Longitude =Longitude (o) and Altitude= meters above 
the sea level(m). 
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4.2.3 Experimental design 

The experimental design was an alpha-lattice design with three replicates. Each incomplete 

block (IBLK) had seven plots of DRK dry bean lines. Each row had 75 plants with a 76 cm 

and 7.5 cm of inter-row and intra-row spacing, respectively. Two border rows were planted 

around the four sides of the experiment and the weeds were controlled manually. Irrigation 

was applied whenever required. The fertilizer was applied at a rate of 42.3 kg ha-1 N, 22.3 kg 

ha-1 P, and 18.4 kg ha-1 K. 

 

4.2.4 Data collection and analysis 

The grain yield per plot was weighed and converted to tons per hectare (t ha-1), while the BBS 

severity was rated and converted to the percentage of leaf area diseased for the total plot 

using a standardised CIAT scale of 1 (resistant or immune) to 9 (susceptible or disease) 

(Petersen et al., 2015). The scores transformed into percentages 1 = 5%, 2 =15%, 3 = 25%, 

4 = 35%, 5 = 45%, 6 = 55%, 7 = 65%, 8 = 75% and 9 = 85%. Data were analysed using the 

unbalanced analysis of variance in Genstat 18th edition (Payne et al., 2014), whereas grain 

yield performance and stability were analysed using univariate and multivariate stability 

parameters. The means were separated by the least significant difference (LSD) at P = 0.05. 

The genotypes, environments, replications and blocks were analysed as random effects and 

the mean performance as fixed effect. The univariate stability parameters such as the cultivar 

superiority measure, and the Wricke’s ecovalence and multivariate parameters such as AMMI 

analysis and GGE biplot were used for stability analysis. 

  

4.2.5 Analysis of variance 

Data analysis were performed using analysis of variance (ANOVA) across locations and at 

each location (Payne, 2014). The model contains additive terms for main effects of genotype 

and environment, as well as the genotype by environment interaction term (Equation 4.1). 

 

Yij= 𝜇 +  𝛼𝑖 +  𝛽𝑗 + (𝛼𝛽)
𝑖𝑗

+⋲𝑖𝑗                                                                             Equation 4.1 

 

Where 𝑌𝑖𝑗 is the yield of the genotype 𝑖 in environment 𝑗, 𝜇 is overall yield mean, α𝑖 is the 

genotype effects, β𝑗 is the environmental effects, (αβ) 𝑖𝑗 is the effect of interaction between 𝑖 

and 𝑗, ∈𝑖𝑗 is the mean random error of 𝑖 and 𝑗. 
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4.2.6 Additive main effect and multiplicative interactions 

The additive main effect and interaction (AMMI) analysis partitioned the covariance 

components into additive (ANOVA) and multiplicative (biplot) effects (Gauch Jr, 1988). The 

biplot allows the visualized relationship between IPCA and the means of genotypes and 

environment (Gauch and Zobel, 1996). The large IPCA scores, regardless of the signal, 

revealed the specific adapted genotype and the low IPCA scores (positive/negative) revealed 

a broad adapted genotype (Gauch, 2006). The opposite signage of IPCA scores shows 

crossover GEI (Gauch and Zobel, 1996). The model bellow contains additive terms for main 

effects of genotype and environment together, as well as extra additive terms that accounts 

for interaction (Payne et al., 2014).   

 

Yij= 𝜇 +  𝑔𝑖 +  𝑒𝑗 + ∑ 𝛼𝑛
𝑁
𝑛=1 𝛾𝑖𝑛 𝛿𝑗𝑛 +⋲𝑖𝑗𝑘                                                                 Equation 4.2 

 

Where Yij is the yield of the genotype (i=1,..,I) in the j environment (j=1,..,J); µ is the grand 

mean; gi and ej are the genotype and environment deviations from the grand mean, 

respectively; 𝜶n is the eigenvalue of the IPCA analysis axis n; 𝜸in and 𝛿jn are the genotype and 

environment principal components scores for axis n; N is the number of principal components 

retained in the model and ⋲ijk is the error term.  

 

4.2.7 AMMI stability value 

AMMI stability values (ASV) (Equation 4.3)  were used  to identify cultivars that showed 

specific or general adaptation across environments  (Purchase, 1997). 

 

ASV=√[(
𝑆𝑆𝐼𝑃𝐶𝐴1

𝑆𝑆𝐼𝑃𝐶𝐴2
) (𝐼𝑃𝐶𝐴1 𝑠𝑐𝑜𝑟𝑒)]2 + (𝐼𝑃𝐶𝐴2 𝑠𝑐𝑜𝑟𝑒)2                                               Equation 4.3 

 

Where: ASV = AMMI’s stability value, SS = sum of squares, IPCA1 = interaction of principal 

component analysis one and IPCA2 = interaction of principal component analysis two. 
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4.2.8 Genotype main effect plus genotype by environment interaction 

The GGE biplot identifies mega environment (which-won-where), yield performance, stability 

and BBS disease severity percentage (Yan et al., 2000). The GGE biplot was calculated using 

the equation 4.4 (Yan et al., 2000).  

 

Yij = 𝜇 +  𝑒𝑗 + ∑ 𝛼𝑛
𝑁
𝑛=1 𝛾𝑖𝑛 𝛿𝑗𝑛 +⋲𝑖𝑗𝑘                                                                        Equation 4.4 

 

Where Yij is the yield of the i genotype (i=1,..,I) in the j environment (j=1,..,J); µ is then grand 

mean; ej are the environment deviations from the grand mean; 𝜶n is the eigenvalue of the 

IPCA analysis axis n; 𝜸in and 𝛿jn are the genotype and environment principal components 

scores for axis n, respectively; N is the number of principal components retained in the model 

and ⋲ijk is the error term. 

 

4.3 Results 

4.3.1 Analysis of variance 

The analysis of variance across sites indicated that the mean squares for genotypes, 

environments and genotype by environment interaction (GEI) were significant (P<0.001) for 

grain yield and BBS severity (Table 4.3). The environmental mean squares had the highest 

total sum of squares (68.29) followed by GEI (15.81) and lastly genotype (5.62%), while the 

BBS severity was partitioned as 4.26%, 65.84 and 9.13 for environment, genotype and GEI, 

respectively (Table 4.3).  
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Table 4.3 Analysis of variance for grain yield and BBS severity of dark red kidney 

dry bean across six environments 

Source 
  Grain yield (t ha-1) BBS severity 

DF SS MS SS MS 

Environments 5 102.38 20.48*** 2082.94 416.59*** 

Env. Rep 12 2.20 0.18** 691.67 57.64 

Env. Rep. Block 18 2.90 0.16** 3660.71 203.37** 

Genotype 13 8.43 0.65*** 32164.91 2474.22*** 

GEI 65 23.70 0.37*** 4462.06 68.65** 

Residual 138 10.32 0.08 5794.46 41.99 

Total 251 149.93 0.6 48856.75 194.65 

LSD 5%    0.44  10.45 

 CV    19.11  19.32 

Mean    1.43  33.53 

SE     0.22   5.29 
* P < 0.05, ** P < 0.01, *** P < 0.001, DF = Degrees of freedom, CV = Coefficient of variation, SS = Sum of 
squares, MS = Mean of squares, BBS=Bacterial brown spot, GEI=Genotype by environment interaction, 
LSD=Least significance difference, Grain yield=Grain yield (t ha-1) and SE=Standard error of difference between 
predicted means, Env=Environment, Rep=Replication. 

 

4.3.2 Mean grain yield and BBS severity across six environments 

The grain mean and BBS severity across six environments are exposed in Table 4.4. The 

mean grain yield of genotypes and BBS severity were 1.43 t ha-1 and 33.53, respectively. The 

least significance difference (LSD) for grain yield and BBS severity were 0.44 and 10.45, 

respectively. The dry bean genotypes performed differently across the locations. 

Potchefstroom had the highest mean yield and the lowest BBS severity and Middelburg had 

the lowest mean yield and the highest BBS severity. Genotypes G08 (1.77), G06 (1.70), G03 

(1.62), G02 (1.56), G05 (1.48), G12 (1.46), and G04 (1.45 t ha-1) had a grain above the grand 

mean and the best performing cultivar (both 1.43 t ha-1) and a BBS severity less the grand 

mean (31.90) and the best performing cultivar (48.89) across six environments. 
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Table 4.4 Mean grain yield and BBS severity  across six environments 

Genotypes 

North West   Free-State KwaZulu-Natal Mpumalanga                        
Mean 
grain 
yield 

Mean 
BBS 

severity 

Potchefstroom Warden Clarens Cedara Middelburg Carolina 

Yield 
BBS 

Severity 
Yield 

BBS 
Severity 

Yield 
BBS 

severity 
Yield 

BBS 
severity 

Yield 
BBS 

severity 
Yield 

BBS 
severity 

G01 2.79 48.33 1.50 60.00 1.31 48.33 1.13 45.00 0.87 60.00 0.64 40.00 1.37 46.39 

G02 2.83 21.67 1.05 20.00 1.12 21.67 1.28 28.33 1.79 18.33 1.27 23.33 1.56 22.22 

G03 3.02 18.33 1.25 33.33 1.24 25.00 1.00 23.33 2.02 25.00 1.21 23.33 1.62 24.72 

G04 2.67 21.67 1.26 28.33 1.69 25.00 1.15 21.67 1.05 25.00 0.88 26.67 1.45 24.72 

G05 2.81 28.33 1.20 20.00 1.09 28.33 1.16 20.00 1.53 21.67 1.11 25.00 1.48 23.89 

G06 2.74 21.67 1.57 25.00 1.23 18.33 1.30 23.33 2.01 21.67 1.34 30.00 1.70 23.33 

G07 3.41 25.00 1.44 28.33 1.06 31.67 0.10 33.33 0.68 35.00 0.53 26.67 1.35 30.00 

G08 3.02 21.67 1.34 20.00 1.42 18.33 1.20 25.00 1.20 25.00 2.42 20.00 1.77 21.67 

G09 2.40 25.00 1.02 28.33 0.84 26.67 0.94 28.33 0.51 31.67 1.10 25.00 1.13 27.50 

G10 3.24 35.00 1.42 51.67 0.55 33.33 0.38 41.67 0.47 53.33 0.43 26.67 1.08 35.56 

G11 2.91 41.67 1.05 60.00 1.18 40.00 1.23 43.33 0.53 56.67 0.76 38.33 1.28 39.44 

G12 2.48 25.00 1.30 36.67 1.26 20.00 1.25 25.00 1.30 31.67 1.15 35.00 1.46 28.89 

G13 2.96 51.67 1.07 53.33 0.94 51.67 1.41 48.33 0.70 58.33 1.04 50.00 1.35 48.89 

G14 2.53 45.00 1.68 60.00 2.09 46.67 0.94 55.00 0.67 61.67 0.67 53.33 1.43 49.44 

Mean 2.84 30.72 1.30 37.50 1.22 31.07 1.03 32.98 1.10 37.50 1.04 31.67 1.43 31.90 

Yield=Grain yield (t ha-1), BBS=Bacterial brown spot, G01-G14=Genotypes 
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4.3.3 AMMI analysis for grain yield and bacterial brown spot severity 

The AMMI analysis of variance with four principal components analysis (IPCAs) for grain yield 

and one for BBS severity are shown in Table 4.5. The IPCA 1-4 axes were  significant 

(P<0.001, P<0.01) and explained 43.56%, 23.47%, 21.72% and 8.19% for grain yield of the 

total GEI sum of squares, respectively. The four IPCAs accounted for 96.94% of GEI and the 

residual 3.06% the GEI sum of squares was not significant. The mean squares for IPCA 1 and 

IPCA 2 cumulatively contributed 67.03% of the total GEI. The IPCA1 explained 61.13% for 

BBS severity of the total GEI sum of squares and the residual 38.38% was not significant. 

 

 

Table 4.5 AMMI analysis of variance for grain yield and bacterial brown spot 

severity of DRK dry bean lines across six environments 

Source 

Grain yield BBS severity 

DF MS 
Treat 
exp 
(%) 

GEI 
explained 

(%) 
DF MS 

Treat 
exp 
(%) 

GEI 
exp 
(%) 

Total 251  0.60 - - 251 194.60 -  

Treatment 83 1.64*** - - 83 501.10*** -  

Genotype 13 0.68*** 6.46 - 13 2658.90*** 83.11  

Environment 5 20.48*** 75.10 - 5 416.60*** 5.01  

Replication  12 0.18** 1.61 - 12 57.60 0.17  

GEI 65 0.39*** 18.44 - 65 76.00** 11.88  

IPCA 1 17 0.64*** - 43.56 17 177.70*** - 61.13 

IPCA 2 15 0.39*** - 23.47 - - -  

IPCA 3 13 0.42*** - 21.72 - - -  

IPCA 4 11  0.19** - 8.19 - - -  

Residual 9  0.09 - 3.06 48 40.00 - 38.88 

Error 156  0.07 7.61  156 42.10 15.90  

* P < 0.05, ** P < 0.01, *** P < 0.001, DF = Degrees of freedom, CV = Coefficient of variation, SS = Sum of 
squares, MS = Mean of squares, Threat exp (%) =Treatment explained in %, GEI exp=GEI explained in %, 
IPCA= Interaction principal component axis scores and BBS=Bacterial brown spot. 

 

 

4.3.4 Mean yield, BBS severity and AMMI stability value 

The mean, IPCAs scores and AMMI stability value (ASV) of grain yield and BBS severity 

are presented in Table 4.6. The ASV for grain yield ranged between 0.14 (G09) to 1.19 
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(G14). The grain yield ranged from 1.08 t ha-1 (G10) to 1.77 t ha-1 (G08), while the BBS 

severity ranged from G08 (21.67 to G14 (53.06). Genotypes G09 (0.14), G13 (0.23), G04 

(0.44), G12 0.46), G05 (0.54), G11 (0.55) and G01 (0.57) revealed broad adaptation, while 

genotypes G10 (1.09), G07 (1.05), G02 (0.91), G06 (0.88), G03 (0.86) and G08 (0.74) 

revealed specific adaptation. Furthermore, the genotypes G12 (1.46 t ha-1) had both low 

ASV for grain yield and BBS severity, while genotype G08 (1.77), G06 (1.70), G03 (1.62), 

G02 (1.56), G05 (1.48) and G04 (1.45 t ha-1) had high ASV and high grain yield, and 

revealed specific adaptation. 

 

Table 4.6 The mean, IPCA scores and ASV of grain yield and BBS severity of each 

DRK dry bean lines evaluated across six environments 

Genotype 
Grain yield BBS severity 

Mean IPCAg[1] IPCAg[2] IPCAg[3] IPCAg[4] ASV Mean IPCAg[1] 

G01 1.37 0.30 -0.09 0.18 0.07 0.57 50.28 -1.92 

G02 1.56 -0.49 0.11 0.16 0.18 0.91 22.22 1.96 

G03 1.62 -0.45 0.22 0.37 -0.18 0.86 24.72 0.10 

G04 1.45 0.12 -0.37 0.16 0.06 0.44 24.72 0.81 

G05 1.48 -0.29 0.11 0.15 0.07 0.55 23.89 2.18 

G06 1.70 -0.47 0.03 0.33 -0.07 0.88 23.33 1.50 

G07 1.35 0.52 0.42 0.05 0.05 1.05 30.00 0.51 

G08 1.77 -0.39 -0.13 -0.80 -0.39 0.74 21.67 0.80 

G09 1.13 -0.03 -0.13 -0.39 0.03 0.14 27.50 0.35 

G10 1.08 0.47 0.64 -0.01 -0.42 1.09 40.28 -2.94 

G11 1.28 0.30 -0.02 -0.19 0.36 0.55 46.67 -2.43 

G12 1.46 -0.22 -0.23 0.07 0.09 0.46 28.89 0.07 

G13 1.35 0.10 0.14 -0.32 0.45 0.23 52.22 0.16 

G14 1.43 0.52 -0.7 0.24 -0.29 1.19 53.06 -0.94 
IPCA= Interaction principal component axis scores, ASV = AMMI stability value, Mean =Mean grain yield 
(t ha-1) and BBS=Bacterial brown spot. 

 

4.3.5 Mean yield and AMMI stability value score for environment 

The mean yield of genotypes over environments ranged from 1.04 t ha-1 at Carolina to 2.84 

t ha-1 at Potchefstroom (Table 4.7). The grain yield ranking over environments indicated 

that Potchefstroom had the highest yield (2.84), followed by Warden and Clarens, while 

Carolina(1.04 t ha-1) had the lowest grain yield. Potchefstroom had the lowest BBS severity 

(30.71) and Middelburg and Warden had the highest BBS severity (37.50). The AMMI 

stability value (ASV) for grain yield ranged between 0.15 (Cedara) to 1.66 (Middelburg), 
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while for BBS severity ranged between 0.64 (Cedara) to -3.17 (Warden) (Table 4.7). 

Cedara had the lowest ASV for grain yield and BBS severity and was the most stable 

environment, while Warden, Middelburg and Carolina had the highest ASV and were the 

least stable environments. 

 

Table 4.7 The mean, IPCAs scores and ASV for grain yield and BBS severity of 

DRK dry bean lines evaluated in each environment 

Environment 
Grain yield BBS severity 

Mean IPCAe[1] IPCAe[2] IPCAe[3] IPCAe[4] ASV Mean IPCAe[1] 

Carolina 1.04 -0.63 -0.12 -0.85 -0.27 1.17 31.67 2.91 

Cedara 1.10 0.04 -0.13 -0.13 0.79 0.15 32.74 0.64 

Clarens 1.22 0.41 -0.81 0.20 -0.11 1.11 31.07 1.41 

Middelburg 1.10 -0.89 0.21 0.72 -0.05 1.66 37.50 -3.04 

Potchefstroom 2.84 0.53 0.82 -0.14 -0.01 1.28 30.71 1.24 

Warden 1.30 0.53 0.03 0.19 -0.36 0.99 37.50 -3.17 

IPCA= Interaction principal component axis scores, ASV = AMMI stability value, Mean=Mean grain yield (t 
ha-1) and BBS=Bacterial brown spot. 

 

4.3.6 Rank of genotypes per environment  

The best four performing genotypes for grain yield and BBS severity for each environment are 

exhibited in Table 4.8. The rank of genotypes performance changed across the environments 

and indicated the crossover GEI for grain yield and BBS severity. 
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Table 4.8 Ranking of the best four dark red kidney (DRK) dry bean lines for grain 

yield and BBS disease severity over six environments 

Env 

Ranking based on grain yield Ranking based on BBS severity 

Mean 
grain 
yield 

 
IPCA 
score 

1st 2nd 3rd 4th 
Mean 
BBS 

severity 

 
IPCA 
score 

1st 2nd 3rd 4th 

Carolina 1.04 -0.63 G08 G06 G02 G03 31.67 2.91 G13 G14 G01 G11 

Cedara 1.10 0.04 G13 G02 G11 G06 32.74 0.64 G14 G13 G01 G11 

Clarens 1.22 0.41 G04 G04 G01 G08 31.07 1.41 G13 G14 G01 G11 

Middel 1.10 -0.89 G06 G03 G02 G05 37.50 -3.04 G01 G14 G11 G13 

Potch 2.84 0.53 G07 G10 G13 G08 30.71 1.24 G13 G14 G01 G11 

Warden 1.30 0.53 G14 G07 G08 G01 37.50 -3.17 G01 G14 G11 G13 

Env=Environment, Potch=Potchefstroom, Middel=Middelburg, Mean =Mean grain yield (t ha-1) and 
BBS=Bacterial brown spot. 

 

4.3.7 Mean grain yield vs IPCA1  

AMMI 1 with IPCA 1 and grain yield over six environments are presented in Figure 4.1.  The 

genotypes with no or little interactions have low IPCA 1 scores, while larger IPCA scores 

indicates that they were highly interactive. Environments close to zero have less discriminating 

ability. High potential environments and high-yielding genotypes are observed in quadrants 2 

and 3. Genotypes with IPCA 1 scores close to zero had low interaction over sites, whereas 

the genotypes with great IPCA 1 scores, either positive or negative signal were greatly 

interactive. The lower potential environments and the lower yielding genotypes were observed 

to the left of the vertical line, and in contrast, high yielding genotypes are to the right of the 

vertical lines. Genotypes  G04 and G12 were both high yielding and stable, while genotypes 

G08, G6, G02, G03 and G05 were high yielding and unstable. Potchefstroom, Middleburg and 

Clarens were further away from the origin and were therefore unstable environments, though 

most discriminating. 
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4.3.8 Mean bacterial brown spot severity vs IPCA1 

AMMI 1 with IPCA 1 and BBS severity across six environments are exposed in Figure 4.2  .  

The genotypes with no or little interactions have low IPCA 1 scores, while larger IPCA scores 

indicates that they were highly interactive. Environments close to zero have less discriminating 

ability. High potential environments and BBS resistant genotypes are observed in quadrants 

1 and 4. Genotypes with IPCA 1 scores nearby zero had low interaction over locations, 

whereas the genotypes with large IPCA 1 scores, either positive or negative signal were highly 

interactive. The lower potential environments and the genotypes with low BBS severity were 

observed to the left of the vertical line, and in contrast, genotypes with high BBS severity are 

to the right of the vertical lines. Several genotypes scattered on the left of the quadrant and 

were BBS disease resistant. Genotypes G13, G014, G11 and G10 had high BBS severity and 

were unstable, while G08, G06, G02, G5, G07 and G12 had low BBS severity and were stable. 

Warden, Middleburg and Carolina were further away from the origin and were therefore very 

unstable, though most discriminating.  

Figure 4.1 AMMI biplot showing the genotype adaptation based on grain yield and IPCAs 

scores across six environments 
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4.3.9 Mean grain yield of IPCA1 vs IPCA2 

The AMMI biplot analysis indicates that the initial two IPCAs scores components explained 

67.01% of the total variation (Figure 4.3). Potchefstroom and Clarens had long vectors in the 

biplot. Cedara had a short vector and was therefore the most stable environment. Genotype 

G4 had specific adaptation for Clarens. Genotypes G10 and G07 had specific adaptation for 

Potchefstroom. Genotypes G02, G03, G05 and G06 performed better at Middelburg. 

Genotypes G11 and G01 performed well at Warden. Genotypes G09, G12, G04 and G05 were 

close to centre of the biplot and showed broad adaptation (Figure 4.3). 

 

 

 

 

 

 

Figure 4.2 AMMI biplot showing the genotype adaptation based on BBS severity across 

six environments 
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4.4 GGE biplot for grain yield and BBS severity 

4.4.1 Mega-environments for grain yield 

The winning genotypes and mega-environments for grain yield are shown in Figure 4.4. The 

polygon view was constructed by genotypes G10, G14, G6 and G3, which were furthest from 

the centre. The IPCA 1 and 2 explained 67.13% of the total variation. The GGE biplot indicated 

the presence of three mega-environments. Potchefstroom formed its own mega-environment, 

while Middleburg, Carolina and Cedara formed another one. The last mega-environment 

comprised Warden and Clarens. The first mega-environment combined environment 

Potchefstroom with genotypes G07, G10, G13, G11 and G09. The second mega-environment 

handled environments Cedara, Carolina and Middelburg with genotypes such as G06, G08, 

G12, G02, G03 and G05 performing well, while G14, G04 and G01 were adapted to the third 

mega-environment. Genotypes G10 and G14 performed poorly across all environments.  

 

 

 

Figure 4.3 Mean IPCA1 and IPCA2 for yield across six environments 

 



 

62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2 Mega-environments for BBS disease severity 

The winning genotypes and mega-environments for BBS severity are presented in Figure 4.5. 

The polygon view was constructed by genotypes G10, G11, G01, G14, G13, G05, G02, G06 

and G03, which were furthest from the centre. The IPCA 1 and 2 explained 67.13% of the total 

variation. The GGE biplot indicated the presence of three mega-environments for BBS 

severity. Warden formed its own mega-environment, while Carolina, Clarens and 

Potchefstroom formed another one. The last mega-environment comprised Cedara and 

Middelburg. The first mega-environment combined environment Warden with genotype G10.  

 

 

 

 

Figure 4.4 Mega-environment for grain yield 
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4.4.3 Mean grain yield performance vs stability  

The GGE biplot shows the average environment coordinate (AEC) abscissa for the genotypes 

and interaction with the six environments for grain yield (Figure 4.6).  The further away the 

genotype is from the AEC ordinate, the more unstable and vice versa. The ideal genotype had 

higher mean yield performance and higher stability over environments. Genotypes were 

observed above and below the AEC ordinate line.  Genotypes G04 to G08 were above AEC 

and had high mean performance, whereas G14 to G10 were below AEC had low mean 

performance (Figure 4.6). Genotypes such as G09, G12, G07, G13 and G11 had short vectors 

running from the AEC indicating that they were relatively stable while genotypes G14, G06, 

G08, G03 and G02 had the longest vectors and highly interactive with the environment.  

 

Figure 4.5 Mega-environments for bacterial brown spot severity 
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4.4.4 Mean bacterial brown spot severity vs stability 

The GGE biplot shows the average environment coordinate (AEC) abscissa for the genotypes 

and interaction with the six environments for BBS severity (Figure 4.7).  The further away the 

genotype is from the AEC ordinate, the more unstable and vice versa. The ideal genotype had 

low mean BBS severity and high stability over environments. Genotypes were observed above 

and below the AEC ordinate line.  Genotypes G07 to G08 were below AEC and had low mean 

BBS severity, while G10 to G14 were above AEC as had high mean BBS severity (Figure 4.7). 

Genotypes such as G08, G03, G04, G09, G12, G07 and G13 had short vectors running from 

the AEC indicating that they were relatively stable while genotypes G02, G05, G06, G10, G11, 

G01 and G14 had the longest vectors and highly interactive with the environment.  

 
 

Figure 4.6 Mean grain yield performance and stability across six tested environments 
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4.5 Stability coefficients  

The yield stability coefficients and ranking of genotypes over six locations are given in Table 

4.9 . A genotype was considered stable when the univariate stability coefficient of grain yield 

did not differ significantly from zero. Large stability coefficients indicated genotypes with 

specific adaptation to high yielding environments, while low stability coefficient indicated 

genotypes with broad adaptation over environments. Genotype, G12, had the lowest static 

stability (0.26)  and Wricke’s ecovalence stability coefficient (0.20) of grain yield (t ha-1), while 

genotype G08 had the lowest cultivar superiority, difference of pair of ranks and variances of 

ranks stability coefficient of grain yield of 0.12, 2.43 and 4.38, respectively (Table 4.9). 

Genotype G06 had the lowest mean ranks stability coefficient of grain yield of 4.17 (Table 4.9). 

 

 

 

Figure 4.7 Mean bacterial brown spot disease severity and stability over six 

environments 
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Table 4.9 Yield stability coefficients and genotypes ranking over six environments 

Gen EC1 R1 EC2 R2 EC3 R3 EC4 R4 EC5 R5 EC6 R6 

G01 0.47 9 0.58 7 0.25 3 7.50 7 4.07 8 11.50 7 

G10 0.82 14 12.67 14 11.56 12 3.00 13 5.80 13 30.30 14 

G11 0.54 11 0.71 12 0.34 6 9.00 12 4.00 7 10.40 5 

G12 0.32 6 0.26 1 0.20 1 6.50 5 3.40 4.5 11.10 6 

G13 0.46 8 0.67 11 0.36 7 7.67 9 4.93 11 16.67 11 

G14 0.49 10 0.62 10 13.53 14 8.00 10 5.87 14 29.60 13 

G02 0.26 4 0.46 6 0.54 8 6.17 4 4.47 10 14.57 10 

G03 0.22 3 0.59 9 0.71 10 5.58 3 4.23 9 11.84 8 

G04 0.35 7 0.43 4 0.29 5 7.50 7 3.40 4.5 9.10 4 

G05 0.30 5 0.45 5 0.21 2 7.50 7 2.87 3 5.50 2 

G06 0.20 2 0.34 2 0.63 9 4.17 1 3.67 6 12.17 9 

G07 0.55 12 11.18 13 0.77 11 8.33 11 5.47 12 22.27 12 

G08 0.12 1 0.59 8 13.22 13 4.25 2 2.43 1 4.38 1 

G09 0.61 13 0.43 3 0.26 4 12.33 14 2.53 2 7.07 3 

Gen=Genotypes, R1-R6=Ranking one to six, EC1=Cultivar superiority, EC2=Static stability, EC3=Wricke’s 

Ecovalence, EC4=Mean Ranks, EC5=Differences of pairs ranks and EC6=Variances of ranks. 

 

4.6 Discussion and conclusion 

This study evaluated fourteen Dark Red Kidney dry bean genotypes for grain yield and BBS 

disease resistance across six environments. The significance of main effects of genotypes 

and environments indicated broad adaptation of some genotypes across tested sites, while 

GEI significance indicated that some genotypes were specifically adapted to certain 

environments. 

The two DRK cultivars used as checks viz. G13 and G14, both had low grain yield of 1.35 and 

1.43 t ha-1, respectively, and high BBS severity of 48.89 and 49.44, respectively. Genotypes 

G12 (1.46 t ha-1) had  a high yield, low BBS severity and was stable, and revealed broad 

adaptation across six environments, while, G08 (1.77), G06 (1.70), G03 (1.63), G02 (1.56), 

G05 (1.48) and C04 (1.45 t ha-1) had a high grain yield, low BBS severity and was unstable, 

and therefore revealed specific adaptation. These genotypes had grain yields above the grand 

mean and the best check both with 1.43 t ha-1 and with BBS severity below the grand mean 

(31.90) and the best performing cultivar (48.89). These genotypes selected for broad and 

specific adaptation had both high grain yield and low BBS severity than the grand mean and 

the best local check. Mortazavian et al. (2014) indicated that the genotypes with a high mean 
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performance and low ASV revealed specific adaptation and those that had both high mean 

performance and high stability, revealed broad adaptation.  

 

The AMMI analysis of variance revealed that the IPCA 1- 4 axes were greatly significant 

(P<0.001, P<0.01). Four IPCAs explained 43.56%, 23.47%, 21.72% and 8.19% of the total 

sum square GEI of DRK dry bean genotypes, respectively. Four IPCAs accounted for 96.94% 

of GEI and 3.06% of the remained pooled GEI. Mortazavian et al. (2014) found that IPCA1 

(28.62%), IPCA2 (24.79%), IPCA3 (13.85%) and IPCA4 (10.17%) accounted 77.43 % of the 

variation of GEI in their analysis of grain and stability in barley tested within sites in Iran. 

Furthermore, Mohammadi et al. (2015) in study of yield stability  of durum wheat genotypes, 

found that IPCA1 (33.74%), IPCA2 (19.00%), IPCA3 (15.48%) and IPCA4 (10.10%) account 

for 78.32% of the variation of GEI for grain yield in wheat.  

The genotype G07 had a positive signal IPCA1 score of 0.52, and had specific adaptation to 

Potchefstroom with a positive signal IPCA1 score of 0.53 and Warden with a positive signal 

IPCA1 score of 0.53. Similarly, G02, with a negative signal IPCA1 score of -0.49, had 

adaptation to Carolina with a negative signal IPCA1 score of -0.63. However, many genotypes 

showed this relationship between the signal of IPCA1 of genotype and IPCA1 of environment. 

Karimizadeh et al. (2016) reported that genotype with high IPCA1 scores were adapted to 

specific site with IPCA1 scores of the similar or identical sign. 

 

This study grouped the six environments in three mega-environments. The first mega-

environment for grain yield was Potchefstroom with genotypes G07, G10, G13, G11 and G09. 

The second included Cedara, Carolina and Middelburg with genotypes such as G06, G08, 

G12, G02, G03 and G05, while genotypes G14, G04 and G01 were adapted to the third mega-

environment, which included Clarens and Warden. However, for BBS severity Warden formed 

its own mega-environment, while Carolina, Clarens and Potchefstroom formed another one, 

and the last mega-environment included Cedara and Middelburg. Kendal (2016) indicated that 

sites with identical reactions to genotype performance were assembled together (mega-

environments) and substituted the representative environment of the region, in which the 

genotype was grown. 

 

 

Genotype G12 (1.46 t ha-1) had both high yield, low BBS severity and stable, and revealed 

broad adaptation across six environments, while G08 (1.77), G06 (1.70), G03 (1.63), G02 

(1.56), G05 (1.48) and C04 (1.45 t ha-1) had high grain yield, low BBS severity and unstable, 
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and revealed specific adaptation. These genotypes had grain yield above the grand mean and 

the best performing cultivar both with 1.43 t ha-1 and with BBS severity below the grand mean 

(31.90) and the best performing cultivar (48.89). These genotypes can be recommended as 

cultivars for release or used as parents in a breeding programme to improve the grain yield 

and BBS resistance of the dark red kidney beans. 
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CHAPTER 5  

HERITABILITY AND GENE EFFECTS CONTROLLING BACTERIAL 

BROWN SPOT DISEASE RESISTANCE IN DRY BEAN   

 

Abstract 

Dry bean (Phaseolus vulgaris L.)  is grown over a wide range of agro-climatic conditions and 

is an important source of protein and income worldwide. This study aimed to evaluate the 

heritability and the gene effects influencing BBS disease resistance in a dry bean cross 

between a resistance donor parent A55 (P1) and a susceptible commercial cultivar RS7 (P2). 

A generation mean analysis experiment involving the two parents, their F1, F2, and two 

backcross generations was conducted at Potchefstroom, South Africa. The six generations 

were grown in a randomized complete block design with two replications, and inoculated with 

BBS isolates at two weeks after planting. BBS disease scoring was done two weeks after 

inoculation using a 1-9 CIAT scale, with 1 representing highly resistant and 9 representing 

highly susceptible. Data were recorded for BBS severity on individual plants, namely 20 plants 

for each of non-segregating generations, 50 plants for each backcross generation and 100 

plants for the F2 generation.  The analysis of variance showed significant differences among 

generations (P<0.001). The joint scaling test parameters A and C were significant (P<0.001), 

revealing that data did not fit a simple additive-dominance model, and indicating that the 

digenic interactions model was involved. The digenic interaction model showed  five highly 

significant (P<0.001) parameters viz. mean [m], additive [d], dominance [h], additive x additive 

[i], and dominance x dominance [l]). The dominance [h] and dominance x dominance [l] gene 

effects had inverse signal, showing the existence of duplicate epistasis. The negative and 

significant additive x additive [i] showed alleles dispersion in parents. The positive signal of 

dominance x dominance [l] interaction showed unidirectional leading (dominance). The 

existence of significant non-additive gene effects, joined with moderate broad and narrow-

sense heritability, suggest that the selection for BBS resistance, especially in initial 

generations, would be complex using conventional breeding methods. 

Keys words: Generation mean, BBS severity and epistasis or digenic interaction model 
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5.1 Introduction 

Dry bean (Phaseolus vulgaris L.) is an important source of protein, natural fibre and calories 

in tropical and subtropical countries (FAO, 2014). This crop provides a cheap source of vegetal 

protein and fetches higher prices compared to cereals, resulting in increased incomes for 

farmers (Wortmann, 1998; FAO, 2014). Red speckled sugar  beans (RSS) is the most widely 

produced grain type in South Africa with 75% of the local market share (Muedi, 2015). The 

average grain yield in South Africa is about 1.40 t ha-1 (Dlamini et al., 2017). The mean grain 

yield is low compared with North America (~ 3.00 t ha-1) (Kimani et al., 2005; FAO, 2014). The 

low grain yield is attributed to several biotic and abiotic factors (Navarro et al., 2007). The 

bacterial brown spot (BBS), caused by Pseodomonas syringae pv. syringae is an important 

disease of dry bean,  and can cause  grain yield losses up to 55% in South Africa field farmers 

(Serfontein, 1994; Muedi et al., 2015). Resistant cultivars offer the best way to reduce grain 

yield losses by the BBS disease (Singh and Miklas, 2015).  

 

The generation mean analysis (GMA) is a simple procedure for evaluating the main gene 

effects such as mean [m], additive [d] and dominance [h] and the digenic or non-allelic 

interactions such as additive x additive [i], additive x dominance [j] and dominance x 

dominance [l], key factors of genetic inheritance for quantitative traits (Dabholkar, 1999; 

Mather and Jinks, 2013). The digenic non-allelic interaction (epistasis) is broadly classified as 

complementary (the same sign of [h] and [l]) and duplicate (the inverse sign of [h] and [l]), 

while the positive [d] indicates gene association and negative [d] reveals gene dispersion 

(Hayman and Mather, 1955). A key inheritance study of BBS resistance was done in a field 

experiment using the dry bean plant stem inoculation method at seedling stage in a Belneb 

RR-1 × A55 RIL segregating dry bean population (Navarro et al., 2007). The authors identified 

genomic regions situated in various linkage clusters involved with BBS resistance. However, 

stem inoculation may not be the best inoculation method, and leaf inoculation, which was done 

in this experiment, may be more appropriate since the disease mostly enters the leaves.  

 

The selection accuracy is mainly influenced by the additive genetic or heritable variance, effect 

of the environment and the genotype by environment interaction (Akhshi et al., 2014). The 

selection based on phenotype is effective with large genetic variability and higher narrow 

sense heritability (Malik et al., 2007). Heritability provision gives an idea of the expected 

response to selection in a segregating generations (Ramteke et al., 2010). The narrow sense 

heritability is the most important because it provides the breeding value (additive gene effects) 

(Ramteke et al., 2010). The heritability is estimated through variance components and the 

regression of the offspring mean on parental mean values (Jatothu et al., 2013). The main 
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sources of resistance to BBS are from the primary gene pool, including known donors such 

as Puebla 152, Hystyle, A 55, BBSR 17 and BBSR 28 (Muedi et al., 2015). This study aimed 

to estimate heritability and gene effects controlling bacterial brown spot (BBS) disease 

resistance in dry bean.  

 

5.2 Methodology 

5.2.1 Genetic materials 

The experiment was conducted as a preliminary genetic study in the greenhouse with 

controlled conditions (27oC /19oC day/night cycle of 12 hour each). Crosses were 

performed between A55 (P1) and RS7 (P2) in a greenhouse at the Agricultural Research 

Council - Grain Crops Institute (ARC-GCI) at Potchefstroom, South Africa (S 26. 74o and 

E 27.08o at an altitude of 1349 m) during the 2017/18 growing season. The donor parent 

(A55) is a small seeded line from the CIAT core collection and RS7  is a medium seeded 

commercial cultivar. Both parents have an indeterminate growing habit. The donor, A55 is 

black seeded with pink flowers, while RS7 is red speckled seeded with white flowers. The 

A55 had higher plant height than the RS7 plants. The RS7 flowered later than A55, hence 

both parents were planted three times (four days of difference) in order to synchronise 

days to flowering. The F1 plants had pink flowers (similar with A55) and red speckled seed 

(similar with RS7) and the F1 plants were taller than both parents.  

 

 

The development of planting materials for evaluation was done in the period spanning from 

February to August 2018. The crosses were  performed between RS7, a commercial 

cultivar susceptible to BBS, and A55, a donor parent resistant to BBS using the 

emasculation and pollination method to obtain F1 generation. The F1 was backcrossed to 

both parents (P1 and P2) in order to obtain BCP1 and BCP2 generations, respectively. 

The F1 was selfed to obtain F2 seed (Figure 5.1).     
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5.2.2 Bacterial brown spot disease inoculation 

Three aggressive  Pss isolates (BV 6.3, BV 3.3.2 and BV 27.1) from the ARC-GC collection 

were used in the study. Inoculum was prepared by suspending a 24- to 48-hr-old isolates in 

sterile distilled water and adjusting it with a spectrophotometer to contain approximately 108 

CFU/ml.   

 

5.2.3 Evaluation of plant materials 

The evaluation for the GMA was conducted in a randomised complete block design (RCBD) 

with two replications, in a greenhouse during September 2018. Seeds of the respective 

progenies were planted in 8 cm ofdiameter plastic pots in sterile commercial potting soil and 

maintained in a greenhouse at  a 27oC /19oC day/night cycle of 12 hr each. Vermiculite was 

added on top of the soil medium to reduce evaporation. The experiment consisted of six  

generations namely P1, P2, F1, F2, BCP1 and BCP2. The number of plants in segregating 

generations (F2, BCP1 and BCP2) were higher than the non-segregating generations (P1, 

P2 and F1). The data were recorded from 20 plants for each parent (P1, P2) and F1, 50 

plants for each backcross (BCP1 and BCP2) and 100 plants of F2 in each replicate. The 

Figure 5.1 Development of planting material for generation mean analysis (GMA) 
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generations (P1, P2, F1, BCP1, BCP2, and F2) were planted at the same time in the 

greenhouse using planting trays. Seedlings were inoculated with Pss using an airbrush by 

spraying the bacterial suspension over the entire leaf area until completely wet.  Inoculated 

plants were kept in a humidity chamber (19oC±1oC, RH=100%) for 48 hr before being 

transferred to a greenhouse (18oC night/25oC day, RH=70%). Irrigation was applied when 

required and no fertilisers were applied. 

 

5.2.4 Data collection and analysis 

Figure 5.2 shows the six basic generation means evaluated for BBS disease reaction at 

Potchefstroom. Data were collected for bacterial brown spot (BBS) severity 14 days after 

inoculation using a standardized CIAT disease severity scale of 1 (resistant or immune) to 9 

(highly susceptible) (Petersen et al., 2015). The BBS severity were transformed in 

percentages as follows 1 = 5%, 2 =15%, 3 = 25%, 4 = 35%, 5 = 45%, 6 = 55%, 7 = 65%, 8 = 

75% and 9 = 85% (Petersen et al., 2015). The data were analysed using unbalanced analysis 

of variance in Genstat 18th edition (Payne, 2014). The variance components were analysed 

using SAS version 9.4 (Hayman and Mather, 1955). The means were compared using the 

least significant difference (LSD) test with a level of significance of 5%.  
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P1=Parent one, P2=Parent two, F1=F1 generation, F2= F2 generation, BCP1=backcross with parent one and 

BCP2=backcross with parent two 

 

 

 

  

5.2.5 Analysis of genetic effects 

The six parameters model proposed by Hayman (1958) was used for evaluation of genetic 

parameters from the means of generations (Equation 5.1). The type of digenic interaction 

(epistasis) was calculated when the leading or governing gene effect [d] was significant 

(P<0.05). When the gene effects had the equal sign, it was regarded complementary epistasis, 

while an opposite sign indicated a duplicate epistasis (Dvojković et al., 2010). The means of 

several generations were not equal because the difference of family sizes were large and the 

means were corrected through weighting such as defined by Kearsey and Pooni (1998). 

 

µ1=m + [d]𝑥𝑖1 + [h]𝑥𝑖2 + [𝑖]𝑥𝑖1
2 + [𝑗]𝑥𝑖2

2 + [𝑙]𝑥𝑖1𝑥𝑖2                                                 Equation 5.1 

 

Where: μ = mean of the generation; m = phenotypic mean of parents; [d] = additive or stabilizer 

gene effect; [h] = dominance or leading gene effect; [i] = additive x additive gene effects; [j] = 

additive x dominance gene effects; [l] = dominance x dominance gene effects; xi1 and xi2 = 

coefficients assigned for each generation. 

P2P1 F1 

F2 BCP2 BCP1 

Figure 5.2 The bacterial brown spot severity scoring of the generations 
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The unbalanced analysis of variance was performed to calculate the mean of the generation, 

genetic variances, standards errors and  to test homogeneity of genetic effects parameters 

([m], [d], [h], [i], [j] and [l]) (Piepho and Möhring, 2010). The lack of fit test was performed to 

observe the adequacy of the generation mean model for assessing genetic effects. The joint 

scaling test suggested by Mather and Jinks (1982) was performed to ensure the fitted 

generation mean model. Table 5.1 shows the coefficients that estimate the degree of 

relationship of several generations used to determine gene effects for the generation means.  

 

Table 5.1 Generalized expectations of the six generation mean 

Generation [m] 

Genetics effects coefficients 

[d] [h] [i] [j] [l] 

P1  1 1 0 1 0 0 

P2  1 -1 0 1 0 0 

F1  1 0 1 0 0 1 

F2  1 0 0.5 0 0 0.25 

BCP1  1 0.5 0.5 0.25 0.25 0.25 

BCP2  1 -0.5 0.5 0.25 -0.25 0.25 

Source; Kearsey and Pooni (1998). [m]=Generation mean; [d] =Additive effect; [h] =Dominance 
effect; [i] =Pooled additive x additive effects; [j] = Interaction effect of [d] and [h]; and [l] = Pooled 
dominance x dominance effects.  

 

5.2.7 Genetic variance components 

The analysis of variance of an unbalanced model was used to calculate the mean of the 

generations and genetic variances (Mather and Jinks, 2013).  The variance components were 

analysed using formulas  described by Kearsey and Pooni (1998). The phenotypic variance 

was regarded equal to the variance of the F2 generation. The variance components were 

determined according to the following five formulas: 

  

i) VE= [VP1 + VP2 + 2VF1]/4, where VE=environment variance, VP1=variance of 

parent one, VP2=variance of parent two and VF1=variance of F1 generation.  

ii) ii)VG= VP − VE, where VG=genetic variance,  VP=phenotypic variance and 

VE=environmental variance.  

iii) iii) VA=2VF2 − (VBCP1 + VBCP2), where VF2=variance of F2 generation, 

VBCP1=variance of backcross with parent one, VBCP2=variance of backcross 

with parent two.  

iv) iv) VD=VBCP1 + VBCP2 − VF2 − VE. and  

v) v) VAD=1/2(VBCP2 − VBCP1), where VAD=additive and dominance variance.                               
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5.2.8 Broad and narrow sense heritability  

The broad-sense heritability (Hb
2) was estimated as the ratio of genotypic variance (VG) to 

phenotypic variance (VP) in the F2 population, while the narrow-sense heritability (hn
2) was 

estimated as the ratio of additive variance (VA) to phenotypic variance (VP) (Akhshi et al., 

2014). The heritability estimates less than 30% considered low, 31- 60% considered moderate 

and more than 60% considered high (Robinson et al., 1949). 

Broad-sense heritability Hb
2 =

(𝑉𝐴+𝑉𝐷)

(𝑉𝐴+𝑉𝐷+𝑉𝐸)
                                                         Equation 5.2              

The narrow sense heritability (hn
2) was estimated using the formula below. 

Narrow-sense heritability hn
2=

(𝑉𝐴)

(𝑉𝐴+𝑉𝐷+𝑉𝐸)
                                                             Equation 5.3 

The dominance (governing) ratio used to evaluate the importance of dominance and additive 

gene effects as used for inbred line selection was calculate according Kearsey and Pooni 

(1998). 

Dominance ratio DR=√
4𝑉𝐷

2𝑉𝐴
                                                                                    Equation 5.4 

Where: DR=dominance ratio, VD=dominance variance and VA=additive variance. 

 

5.3 Results 

5.3.1 Analysis of variances for reaction to bacterial brown spot 

The analysis of variance for the bacterial brown spot (BBS) severity among generations from 

the cross between RS7 and A55 is exposed in Table 5.2. The source of variation for BBS 

severity  were partitioned for the generations and plants in 71.30% and 11.96% of total sum 

of squares, respectively. The analysis indicated highly significant differences for generations 

(P<0.001). The significant variability observed for generations indicate that some performed 

better than others and early generation selection can be useful on identifying potential 

families to advance further in breeding. 
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Table 5.2 Analysis of variance of BBS severity for the cross between RS7 and A55 

Source DF SS MS Vr F pr 

Replication 1 8.68 8.68 0.12 0.725 

Generations 5 38280.91 7656.18 109.96 <.001 

Plants 124 6422.19 51.79 0.74 0.951 

Residual 129 8981.85 69.63   

Total 259 53693.73 207.31   

Mean  37.51 CV  22.25 

LSD  16.51 SE  8.34 
DF=degree of freedom, SS=sum square, MS= Generation mean of squares, Vr=variance components, 
Fpr=Probability, CV = Coefficient of variation, LSD = Least significant difference and SE = Standard error. 

 

5.3.2 Generation mean analysis 

The means and variances of the generation means of the cross between RS7 and A55 is 

presented in Table 5.3. Parent P1 had the lowest mean BBS severity followed by BCP1 with 

mean BBS severity of 12.62±1.29 and 20.95±1.03, respectively. Parent P2 and BCP2 had 

the highest mean BBS severity of 54.87± 1.30 and 45.05 ±1.13, respectively. Generations F1 

and F2 had a medium mean BBS severity of 39.00±1.31 and 43.23±0.89, respectively, and 

both F1 and F2 generations had BBS average greater than the mid parent BBS mean.  

Generation F2 had a higher genetic variance than BCP1 and BCP2. The segregating 

generation F2, BCP1 and BCP2 had a high genetic variance of 78.57, 52.78 and 63.65, 

respectively, while the non-segregating generations P1, P2 and F1 had a low genetic variance 

of 33.21, 33.87 and 34.47, respectively. 

 

Table 5.3 The mean BBS severity and variance of the generation from the cross 

between RS7 and A55  

Generation N Mean Variance SD SE 

P1 20 12.62 33.21 5.76 1.29 

P2 20 54.87 33.87 5.82 1.30 

F1 20 39.00 34.47 5.87 1.31 

F2 100 43.23 78.57 8.86 0.89 

BCP1 50 20.95 52.78 7.27 1.03 

BCP2 50 45.05 63.65 7.98 1.13 

N=sample size of each of six generation mean, SD=Standard deviation and SE = Standard error.  
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5.3.3 Distribution of BBS severity in the generation 

The bacterial brown spot (BBS) severity over the generations is shown in Figure 5.3. Parent 

P1 had a low BBS severity mean, while P2 had a high mean BBS severity. Generation F1 had 

a lower mean BBS severity than F2. Finally, BCP1 had a lower mean BBS severity than BCP2 

(Figure 5.3). 

 

 

 

 

5.3.4 The joint scaling test 

The joint scaling test for the six generations is displayed in Table 5.4. The scaling test 

parameter A and C were highly significant (P<0.001). The scaling test revealed the 

complicating effects such as maternal effects and gene interaction that were involved in the 

genetic control the BBS severity in this cross, and that the simple additive-dominance model 

did not adequately explain the genetic control for the cross between RS7 and A55. 

 

Figure 5.3 The bacterial brown spot (BBS) severity across the six generation mean 
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Table 5.4 The joint scaling test with three parameters comparing chi-square and t 

test 

Parameters Scaling test  Chi-square t calculated DF t critic 

A -9.72  7.61*** -3.52 87 2.62 

B -3.77  8.51 -1.29 87 2.62 

C 27.43  22.82*** 5.74 156 2.58 
* P < 0.05, ** P < 0.01, *** P < 0.001; and DF=Degree of freedom 

 

5.3.5 Generation variance components 

The variance components of non-segregating and segregating generations is indicated in 

Table 5.5. The environmental variance was not significant (mean of non-segregation 

generation), while the variances for the segregating generation (F2, BCP1 and BCP2) were 

highly significant (P<0.001).  The VE (environmental average of P1, P2 and F1), F2, BCP1 

and BCP2 were 33.84, 78.57, 52.78 and 63.95, respectively. The F2 generation genetic 

variance component was higher than BCP1 and BCP2 genetic variance, while the BCP2 

generation genetic variance component was higher than the BCP1 genetic variance. The 

significant variance components of the segregating generation (F2, BCP1 and BCP2) revealed 

the hereditary variation that exists in the generations derived from the cross between RS7 and 

A55 controlling BBS disease resistance. 

 

Table 5.5 Generation variance components of non-segregating (P1, P2 and F1) 

and segregating (F2, BCP1 and BCP2) generations 

Generation variance 
Components 

Variance F calculate DF t critic 

VE 33.85 1.04   (06, 57) 3.87 

F2  78.57*** 2.32 (99, 297) 1.38 

BCP1  52.78* 1.56 (49, 147) 1.44 

BCP2  63.95*** 1.88 (49, 147) 1.68 
* P < 0.05, ** P < 0.01, *** P < 0.001, VE=Environmental variance [VE= (P1+P2+F1)/3], F2=F2 Generation, 
BCP1=Backcross with parent one, BCP2=Backcross with parent two and DF=Degree of freedom. 

 

5.3.6 Analysis of variance of the genetic effects 

The analysis of variance of the genetics effects of the generation mean is indicated inTable 

5.6. The digenic interaction model and genetics parameters were highly significant (P<0.001). 

The genetics parameters [d], [h], [i], [l] and generation mean model were 27.04, 5.99, 9.74, 
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5.01 and 71.31% of total sum square, respectively. The significant genetic parameters 

indicated the existence of gene interaction in the cross between RS7 and A55 in controlling 

BBS disease. The generation mean had 37.51% of the bacterial brown spot (BBS) severity 

and 71.31% of the coefficient of determination (R2) (Table 5.6). The higher the R2, the greater 

the precision and accuracy the disease severity estimates. 

 

Table 5.6 Analysis of variance of the genetic effect of the generation mean 

Source DF SS MS F value Pr>F 

Replication 1 8.68 8.68 0.14 0.706 

[d] 1 14520.25 14520.25 238.48 <0.001 

[h] 1 3217.52 3217.52 52.85 <0.001 

[i] 1 5227.53 5227.53 85.86 <0.001 

[j] 1 136.16 136.16 2.24 0.136 

[l] 1 2690.33 2690.33 44.19 <0.001 

Model 6 38289.59 6381.60 104.81 <0.001 

Error 25 15404.13 60.89  
 

Total 259 53693.73   
 

R2   71.31  CV 20.80 

Mean  37.51  R-MSE 7.80 

[d] = Additive gene action, [h] = Dominance gene action, [i] =Additive x additive gene action, [j] = Additive x 

dominant gene action, [l] = Dominant x dominant gene action, R2=R-square, Mean=Generation mean, 

CV=Coefficient of variation, R-MSE=Root mean square standard error, SS=Sum square and MS=Mean square 

 

5.3.7 Gene effects  

The estimates of gene effects of the reaction to bacterial brown spot (BBS) disease for the 

cross between RS7 and A55 is exposed in Table 5.7. The data for reaction to BBS disease 

did not indicate a simple additive and dominance model, however it was fitted for the non-

allelic or digenic interaction model viz additive [d], dominance [h], additive x additive [i], and 

dominance x dominance [l]) gene effects. The highly significant differences (P<0.001) for the 

variables of the six generation mean parameter model, revealed that data were adequate 

and suited the non-allelic or epistasis model well. The [d] and [l] gene effects had opposite 

signs (both were significant) showing the existence of duplicate epistasis. The negative and 

significant values of additive x additive [i] gene effects in the cross between RS7 and A55 

revealed alleles dispersion in parents for BBS disease. The negative sign of dominance [h] 

gene effect revealed that reductive alleles including dominant alleles involve governing the 
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phenotype. The positive sign of dominance x dominance [l] gene effects revealed 

unidirectional dominance. 

 

Table 5.7 Estimations of gene effects of the reaction to bacterial brown spot 

severity for the cross between RS7 and A55 

Gene action 
RS7 x A 55 

Estimate SE 

[m] 43.41*** 0.92 

[d] -24.10*** 1.56 

[h] -35.65*** 4.90 

[i] -40.90*** 4.41 

[j] -2.96 1.99 

[l] 54.40*** 8.18 

Epistasis type Duplicate - 
* P<0.05; ** P<0.01; *** P<0.001. SE = Standard error, [m] = Mean parent, [d] = Additive gene effects, [h] = 
Dominance gene effects, [i] = Additive x additive gene effects, [j] = Additive x dominant gene effects, [l] = 
Dominant x dominant gene effects and SE=Standard error.  

 

5.3.8 Variance components and heritability  

The broad and narrow sense heritability were moderate with 56.72% and 51.81%, respectively 

(Table 5.8). The real number of genes governing the BBS disease resistance was not 

estimated due to significant epistasis interaction. The BBS resistance for this cross  revealed 

a measurable hereditary trait. The genes controlling the BBS disease (dominance ratio below 

unity) showed on average partial dominance. The dominance ratio determined the importance 

of dominance effects in relation to the additive effects deviation of genes. 
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Table 5.8 Variance components, heritability (wide and narrow sense) and 

dominance ratio for reaction to bacterial brown spot (BBS) disease 

Item 
Genetic parameters 

Parents 

RS7 x A 55 

Variance components 

VE 34.00 

VA 40.71 

VD 3.86 

VAD 58.22 

Heritability 
H2b (%) 56.72 

h2n(%) 51.81 

Dominance ratio DR 0.44 

VA = Additive variance, VE = Environment variance, VAD = Additive x Dominance variance, H2
b = Broad 

sense heritability, h2
n = Narrow sense heritability and VD = Dominance variance. 

 

5.4 Discussion and conclusion 

This study estimated the heritability and gene effects controlling the BBS disease resistance 

in a cross between RS7 and A55 using the generation mean analysis. The genetic effects 

revealed the existence of the duplicate epistasis and gene dispersion with broad and moderate 

narrow sense heritability. The selection can be postponed and the gene could be fixed and 

exploited in later generation. 

 

The large difference in BBS severity between the parents P1 and P2  indicates that the P1 

and P2 used inthe cross were divergent for the studied character, which is a requirement for 

the success a generation mean analysis (Jinks and Mather, 1982). The average BBS severity 

reaction was lower in the F1 than the F2 generation. The backcross generations had a disease 

severity mean close to their respective recurrent parent. 

  

The joint scaling test parameters A, B and C showed that the simple additive-dominance 

model did not adequately explain the genetic effect of the resistance to BBS disease. The 

digenic interaction model was highly significant (P<0.001). The additive [d], dominance [h], 

additive x additive [i] and dominance x dominance [l] gene effects had highly significant 

(P<0.001) influences in controlling the BBS disease.  

 

The positive or negative additive x additive gene effects [i] indicate association and dispersion 

of alleles in parents (Kearsey and Pooni, 1998). The negative and significant additive x 
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additive gene effects [i] in this cross revealed alleles dispersion in parents for BBS disease 

resistance. The significance of additive x additive [i] gene effects indicated the potential that 

the resistance can be fixed and exploited in later generations.  

 

The interaction is regarded to be complementary when the [h] and [l] have the equal signal 

and to be duplicating when the signal is opposite (Mather and Jinks, 1982). The dominance 

[h] and dominance x dominance [l] gene effects had inverse signal, showing the existence of 

duplicate epistasis. The existence of duplicate epistasis suggested that variability in 

segregating generations would be reduced until the homozygous generation (Kumar and 

Patra, 2010).  

 

The signal of dominance gene effects [h] and dominance x dominance gene effects [l] revealed 

a dominance direct and unidirectional dominance gene effects, respectively (Kearsey and 

Pooni, 1998). The negative signal of dominance [h] gene effect shows that the reductive alleles 

are including dominant alleles, while the positive sign of dominance x dominance gene effects 

[l] shows unidirectional dominance. 

 

The broad and narrow sense heritability were both moderate for BBS disease resistance. The 

selection for a trait with a high narrow sense heritability is easy, while the selection of a 

moderate heritable character is more difficult and with a  low probability of successes, as 

breeders would rely on transgressive segregates to register the progress (Ajay et al., 2012).  

 

The existence of gene dispersion combined with moderate narrow-sense heritability suggest 

that the selection for BBS disease resistance, mainly in early generation, would be complex 

or difficult using conventional breeding methods. The significance of additive x additive gene 

effects revealed the opportunity that the resistance can be fixed and exploited in later 

generations for the advance of genotypes with high grain yield and BBS disease resistance. 
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CHAPTER 6  

OVERVIEW OF THE STUDY 

6.1 Introduction 

Dry bean (Phaseolus vulgaris L.)  is grown under a wide range of agro-climatic conditions and 

is an essential source of protein and income worldwide. In South Africa the crop is mostly, 

grown at altitude between 1000 to 1800 m. The mean grain yield is around 1.40 t ha-1 (Dlamini 

et al., 2017). The average grain yield is low when compared with North America (~3.00 t ha-1) 

(Kimani et al., 2005; FAO, 2014). The demand is higher than the local production (Dlamini et 

al., 2017). Red speckled sugar beans have 75% of local market share, followed by small white 

canning (20%). The low grain yield potential of the local varieties, their instability and 

susceptibility to diseases such as bacterial brown spot (BBS) are  factors that contribute to the 

low productivity (Muedi et al., 2015). The grain yield losses caused by Pseudomonas syringae 

pv. Syringae (BBS disease) can be up to 55% (Serfontein, 1994; Muedi et al., 2015). 

Therefore, the development of high and stable yielding varieties with resistance to BBS is 

important. The study aimed to improve dry bean production in South Africa through finding 

high yielding and stable cultivars with resistance to BBS disease. This chapter summarizes 

the results presents suggestions for dry bean breeding in South Africa.  

 

6.2 Summary of results 

6.2.1  Screening of Andean Diversity Panel dry bean lines for grain yield and bacterial 

brown spot (BBS) disease, under field conditions. 

The reaction to BBS and grain yield were evaluated under field conditions using 423 Andean 

Diversity Panel (ADP) dry bean lines over three sites (Middelburg, Potchefstroom and 

Warden). These genetic materials were sourced from the Agricultural Research Council- Grain 

Crop Improvement, Breeding Program (ARC-GCI-BP). The keys finding were as follows: 

 

 The study identified genotypes with resistance (21.0%) and moderate resistance 

(41.6%) to the BBS disease. 

 

 Genotypes ADP-0592, ADP-0790, ADP-0120 and ADP-0008 were selected as both 

high yielding and BBS disease resistant across three environments. These genotypes 

had grain yield above 1.45 t ha-1 and a BBS severity below 25.5. 
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 Genotypes ADP-0546, ADP-0630, ADP-0183 and ADP-0279 were selected for both 

high BBS disease resistance as well as high grain yield at Warden. Genotypes ADP-

0038, ADP-0721, ADP-0790 were the best performing genotypes at Middelburg, while 

genotypes ADP-0120 and ADP-0079 were the best performing genotypes at 

Potchefstroom. These genotypes had grain yield above 1.85 t ha-1 and BBS severity 

below 18.50. 

 

 The above genotypes had  higher grain yield and low BBS severity across three tested 

sites than the grand mean (0.87 t ha-1) and the best performing cultivar (1.13 t ha-1), 

and mean BBS severity below the grand mean (39.85) and the best performing cultivar 

(31.67). 

 

 The mediuml seeded dry bean genotypes had lower relative area under disease 

progress curve (RAUDPC) than the medium and the large seeded, and the 

indeterminate genotypes had lower RAUDPC mean than determinate genotypes. 

 

6.2.2 Grain yield performance, stability and bacterial brown spot (BBS) disease 

resistance of fourteen Dark Red Kidney (DRK) dry bean lines across six 

environments  

Fourteen Dark Red Kidney (DRK) dry bean lines were evaluated for grain yield, stability and 

BBS disease resistance across six environments (Carolina, Clarens, Cedara, Middelburg, 

Potchefstroom and Warden). These DRK dry bean lines were sourced from the Agricultural 

Research Council-Grain Crops Institute Breeding Program (ARC-GCI-BP). The AMMI 

analysis and GGE biplot were performed using Genstat 18th. The main findings were as 

follows:  

 

 The crossover genotype by environment interaction (GEI) was present among fourteen 

dark red kidney dry bean over six environments. 

 

 Genotypes G12 (1.46 t ha-1) had both high yield, low BBS severity and was stable, 

revealing broad adaptation across six environments, while, genotypes G08 (1.77), G06 

(1.70), G03 (1.63), G02 (1.56), G05 (1.48) and C04 (1.45 t ha-1) had high grain yield, 

low BBS severity and unstable, revealing specific adaptation.  
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 The above genotypes had grain yields above the grand mean and the best performing 

cultivar both with 1.43 t ha-1 and with BBS severity grand mean (31.90) and the best 

performing cultivar (48.89). 

 

 This study clustered six environments in three mega-environments for grain yield and 

three for BBS severity. The first mega-environment for grain yield was Potchefstroom 

with genotypes G07, G10, G13, G11 and G09. The second handled Cedara, Carolina 

and Middelburg with genotypes such as G06, G08, G12, G02, G03 and G05, while 

genotypes G14, G04 and G01 were adapted to the third mega-environment that 

included Clarens and Middelburg environments. 

 

6.2.3 Heritability and gene effects controlling the bacterial brown spot (BBS) disease 

resistance in a dry bean cross. 

This study aimed to estimate heritability and mode of gene effects controlling the bacterial 

brown spot (BBS) disease resistance in a dry bean cross between a susceptible commercial 

cultivar RS7 and resistant donor parent A55 (Navarro et al., 2007). These materials were 

sourced from the Agricultural Research Council-Grain Crops Institute Breeding Program 

(ARC-GCI-BP). These parents were crossed, backcrossed and selfed and six generations 

(P1. P2, F1, F2, BCP1 and BCP2) were generated. The generations were inoculated with BBS 

and rated using the  CIAT scale 1-9 (Petersen et al., 2015). The main results were as follows: 

 

 The dominance [h] and dominance x dominance [l] gene effects had opposite signal, 

showing the existence of duplicate epistasis. The duplicate epistasis indicates that 

variability will be highly in segregating generations. 

 

 The positive signal of dominance x dominance [l] interaction showed unidirectional 

dominance.  

 

 The negative significant additive x additive [i] gene effects showed alleles dispersion 

in parents. The gene dispersion showed that selection could not be effective in initial 

generation stages and the dispersed genes should be brought together and the 

resistance can be fixed and exploited in the later generation stages. 
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 The broad and narrow sense heritability were both moderate with 56.72 and 51.82%, 

respectively, which indicated several genes conditioned the BBS disease resistance. 

 

6.3 Research findings and ways forward 

 Screening Andean Diversity Panel (ADP) dry bean lines for grain yield and BBS 

disease 

Several ADP dry bean lines with broad adaptation had both high grain yield and low BBS 

severity were identified, and these genotypes can be considered as potential sources for both 

traits. These genotypes could be used as donor parents in a breeding programme for high 

yield and resistance to BBS. Four, three and two genotypes were selected for specific 

adaptation for Warden, Middelburg and Potchefstroom, respectively. These genotypes can be 

recommended for each specific environment. The above genotypes should be evaluated for 

two season and across sites, before possible release commercial farmers. 

 

 Grain yield performance, stability and bacterial brown spot (BBS) disease of 

DRK lines 

The presence of crossover GEI suggested that breeding for broad and specific adaptation is 

crucial. Several genotypes were high yielding with good resistance to BBS and can be 

considered for potential release of can be used as parents in a breeding programme. The six 

environments were clustered into three-mega environment, which can be considered in future 

trial programmes 

 

 Heritability and gene effects controlling bacterial brown spot (BBS) disease 

The existence of significant gene dispersion combined with narrow sense heritability suggest 

that the selection for BBS resistance, especially in initial generations, would be complex using 

conventional breeding methods. The dispersed gene should be brought together and the 

resistance can be fixed and utilized or exploited at progressive or later generations for the 

development of genotypes with high grain yield, stable and BBS disease resistant..  
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