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ABSTRACT 

Background: In South Africa (SA), HIV infection and preeclampsia (PE) are the leading causes of 

maternal mortality and morbidity. In PE, immunologic maladaptation alters fetal tolerance. Our first 

line of defence against pathogens is controlled by the complement system, a central part of our innate 

immunity. In the complement cascade, complement component 5a (C5a) is a potent pro-

inflammatory anaphylatoxin, whilst complement component 2 (C2) defends the onset of infections 

and immune complex removal. There is a dearth of information on these proteins in the synergy of 

HIV infection and PE development. In light of the high prevalence of HIV infection and PE in SA, 

the aim of this study was to determine the concentrations of C2 and C5a in HIV associated 

normotensive versus preeclamptic pregnancies.  

Method: Post ethics approval, stored serum samples were obtained from 76 pregnant women and 

grouped according to pregnancy type, preeclamptic patients (n=38) and normotensive patients 

(n=38), this was further stratified by HIV status, normotensive HIV-positive (n=19), normotensive 

HIV-negative (n=19), preeclamptic HIV-positive (n=19), and preeclamptic HIV-negative (n=19). 

All HIV-infected patients received (Highly Active Antiretroviral Therapy) HAART. The expression 

of C5a and C2 was quantified using Bio-Plex multiplex immunoassay.  

Results: Based on pregnancy type, a significant downregulation of C5a concentration was 

demonstrated in the preeclamptic vs normotensive pregnancies regardless of HIV status (p = 0.0486). 

There was no statistical significance in C5a concentration between the HIV-positive and HIV-

negative groups, irrespective of pregnancy type (p = 0.8002). Furthermore, there was no significant 

difference in C2 levels between preeclamptic vs normotensive group, regardless of HIV status. 

Similarly, based on HIV status, no statistical significance regardless of pregnancy type was found (p 

= 0.7469). 

Conclusion: This novel study demonstrates a significant decrease in the concentration of C5a in PE 

compared to normotensive pregnant women. This unexpected expression may be due to the rapid 

consumption of C5a in circulation, an altered affinity of C5a to its receptors or genetic polymorphisms. 

We also report similar C5a and C2 concentrations between HIV positive and HIV negative groups 

possibly reflecting the immune reconstitution effect of HAART. Complement dysregulation affects 

host innate defence in PE by exaggerating placental and fetal injury hence requires a large-scale study 

to evaluate individual proteins of the complement cascade in the synergy of HIV associated 

preeclampsia.  
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I-ABSTRACT

Umsuka: ENingizimu Afrika (SA), ukutheleleka ngesandulela ngculazi (HIV) kanye ne-

preeclampsia (PE) yizimbangela ezihamba phambili zokushona kwabazithweleyo kanye nokugula 

kwabo. Kwi-PE ukungasebenzi kahle kwama sosha omzinba phecelezi i-immunoligical 

maladaptation kuguqula ukubekezelelana kwengane. Isiqalo sethu sokuvikela kwi-pathogen 

kulawulwe uhla olunconekayo, ingxenye yokuvikela ngaphakathi. Kukho lokuzivikela 

okuncomekayo, i-C5a yi-proinflammatory anaphylatoxin enamandla kakhulu, kanti iC2 ivikela 

ukutheleleka kokuqala Kanye nokususa okuyinkimbinkimbi yomzimba.  Kukhona ukusweleka 

kwemininingwane yalawama-protheni yokuthi asebenza kanjan ekuthelelaneni kweHIV kanye 

nokuqala kwe PE. Ngokubeka sobala ukudlanga kokuthelelana nge HIV ne PE la NIngizimu Africa, 

injongo yaloluchungechunge lwaluwukuhlaziya ngokucophelela i-complment 2 (C2) kanye ne 

complement 5a (C5a) ukukhulelwa ngokujwayelekile kwabathelelene ngeHIV naba-preeclamptic. 

Iziyathelo: Sekuphasisiwe, amasampula e-serum agciniwe athathwe kwabesifazane abakhulelwe 

abangamashumi ayisikhombisa nesithupha (76) futhi aqoqwa ngohlobo lokukhulelwa, iziguli ezi-

preeclamptic (n = 38) kanye neziguli ezine gazi elishaya kahle (n = 38), loku kwaphinda kwabhekwa 

nange simo se-HIV, ezinegazi elishaya kahle zi HIV-positive (n = 19), ezinegazi elishaya kahle zi 

HIV-negative (n = 19), i-preeclamptic HIV-negative (n = 19) ne-preeclamptic HIV-positive (n=19 

). Zonke iziguli ezine-HIV zithole i-HAART. Ukuziveza kwe C5a ne C2 kwakulinganiswa 

ngokusetshenziswa kwe Bio-Plex multiplex immunoassay. 

Imiphumela: Ngokuya ngohlobo lokukhulelwa, umehluko omkhulu ekuvezweni kokugxila kwe-

C5a ukhonjisiwe phakathi kokukhulelwa kwe-preeclamptic vs kwa-negazi elishaya kahle ngale 

kwesimo se-HIV (p = 0.0486). Ngale kokubaluleka, ukugxila kwe-C5a kuphakanyisiwe ezigulini 

ezine gazi elishaya kahle uma kuqhathaniswa neqembu le-preeclamptic. Kwakungekho ukubaluleka 

okwatholakele phakathi kwamaqembu ane-HIV kanye nangenayo i-HIV, kungakhathalekile uhlobo 

lokukhulelwa (p = 0.8002). Masiqhubeka, bekungekho mehluko ophawulekayo obonwe emazingeni 

e-C2 phakathi kweqembu le-preeclamptic nelaba negazi elishaya kahle, nangale kokutholakala kwe-

HIV. Masibheka mayelana nokwesimo seHIV, abukho ubufakazi obubalulekile phakathi kwalo 

lolubile uhlobo lokukhulelwa olwatholakala (p=0.7469). 

Ukusonga: Lolu cwaningo lwenoveli lukhombisa ukwehla okukhulu ekugxileni kwe-C5a ku-PE 

uma kuqhathaniswa nabesifazane abakhulelwe abanegazi elishaya kahle. Le nkulumo 

engalindelekile ingabangelwa ukusetshenziswa okusheshayo kwe-C5a ekujikelezeni kwegazi, 

ukuhlangana okushintshiwe kwe-C5a kwi-zamukeli zayo noma ama-polymorphisms ezakhi zofuzo. 

Siphinde sibike ukugxila okufanayo kwe-C5a no-C2 phakathi kwamaqembu ane-HIV kanye 
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nangenayo i-HIV okungenzeka kukhombisa umphumela wokwakhiwa kabusha kwamasosha 

omzimba kwenziwa yimphumela yokusebenzisa i-HAART. Ukuhlukunyezwa kwama-complimenti 

kuthinta ukuzivikela okungokwemvelo kwe-PE ngokwandisa ukulimala kwe-placenta kanye 

nokukhulelwa kwengane ngakho-ke kudinga ucwaningo olukhulu lokuhlola amaprotheni ngamanye 

we-complement Cascade ekuhlanganisweni kwe-preeclampsia ehambisana ne-HIV.  
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CHAPTER 1 
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BACKGROUND AND LITERATURE 

1.1 Maternal Mortality and Hypertension: A Global Crisis 

Maternal mortality is a crucial public health issue in low- and middle-income countries (Girum and 

Wasie, 2017). According to the World Health Organization (WHO), approximately 810 maternal 

deaths/day occur globally, emanating from complicated pregnancies and childbirth (WHO, 2019). 

The adoption of the Millennium Development Goals (MDG) has led to a decline in maternal 

mortality by 44% (United Nations, 2019); however, many countries were unsuccessful in attaining 

the desired 75% reduction of their maternal mortality ratio (MMR) between 1990 and 2015 

(Wijesinghe et al., 2019; United Nations, 2019). Subsequently, the Sustainable Development Goals 

(SDG) 2016-2030 was developed to reduce the MMR to less than 70 maternal deaths per 100 000 

live births (UNAIDS, 2019). Sub-Saharan Africa alone accounts for roughly two-thirds (196 000), 

whilst Southern Asia accounts for nearly one-fifth (58 000) of maternal deaths (Osungbade and Ige, 

2011; WHO, 2019).  

The prevalence of hypertensive disorders of pregnancy (HDP) such as preeclampsia (PE) in 

developing countries ranges from 1.8% to 16.7% (Osungbade and Ige, 2011). Globally, HDP 

disorders such as the HELLP (hemolysis, elevated liver enzymes, low platelet count) syndrome, 

eclampsia, and PE contribute to an estimated 30 000 deaths per year (Collier and Martin, 2018). In 

South Africa (SA), Human Immunodeficiency Virus (HIV) infection and HDP are the main causes 

of maternal deaths (Saving Mothers Report, 2017). 

1.2 Preeclampsia: A Hypertensive Pregnancy Disorder 

1.2.1 Clinical Features of Preeclampsia 

Preeclampsia is a pregnancy-specific disorder occurring after 20 weeks of gestation. It is 

characterized by a new-onset high blood pressure of ≥140/90 mmHg (Brown et al., 2018), 

accompanied by one or more of the following conditions, during or after 20 weeks’ gestation: 

proteinuria and/or evidence of multi-organ dysfunction (hematological complications, acute kidney 

injury and neurological complications) (Brown et al., 2018). Fetal complications include intrauterine 

growth restriction, placental abruption, and perinatal death (Silasi et al., 2010). 
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1.2.2 Epidemiology of Preeclampsia 

Globally, PE is one of the leading causes of maternal mortality, accounting for 3-8% of maternal 

deaths (Nathan et al., 2018). The WHO reports the incidence of PE to be seven-fold greater in low- 

and middle-income countries compared to high-income countries (WHO, 2019). In low-income 

countries such as SA, the incidence of maternal deaths due to PE development is 14.8% (Saving 

Mothers Report, 2017). In SA, the prevalence of PE is 17% (NCCEMD, 2018). 

1.2.3 Aetiology of Preeclampsia 

The exact aetiology of PE is unknown; however, immunological, genetic, and environmental factors 

contribute to the pathogenesis of PE (Thakoordeen et al., 2018). Preeclampsia is considered a two-

stage disorder. Stage 1 of PE (preclinical) occurs due to placental dysfunction as a result of shallow 

trophoblast invasion and limited physiological transformation of spiral arteries early in pregnancy 

(16-20 weeks) (Young et al., 2010). The consequential outcome is reduced blood supply with 

resultant placental ischaemia, which pre-empts the release of placental factors into the maternal 

circulation thereby causing maternal inflammatory and oxidative stress (Redman, 1991). When stage 

2 of PE (clinical) occurs, anti-angiogenic factors and other mediators that initiate systemic 

inflammation, oxidative stress, and endothelial cell (EC) dysfunction are released into circulation 

(Figure 1.1). This results in the induction of the classic clinical manifestation of hypertension, 

proteinuria, and other associated complications (Regal et al., 2017). 

The two main subtypes of PE are early-onset preeclampsia (EOPE) and late-onset preeclampsia 

(LOPE), the classification is based on the time of onset of the disease (Staff et al., 2013). A vital 

comparable difference between the two subtypes is the fetal growth restriction. During EOPE there 

is an elevated fetal growth restriction compared to LOPE (Huppertz, 2008). Moreover, the clinical 

signs of EOPE appear at <33 weeks, whereas in LOPE it appears in ≥34 weeks of gestation (Staff et 

al., 2013). According to Kovo et al., (2012) more than 80% of preeclamptic pregnancies are of the 

LOPE subtype (Kovo et al., 2012). 
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Figure 1.1. Development and progression of Preeclampsia: a two-stage placental disorder. (Adapted from 

Staff, 2019).   

1.3 Human Immunodeficiency Virus Infection (HIV): A Global Pandemic 

HIV infection is an immune invasive retrovirus infection that is responsible for the deterioration of 

cellular immunity. It leads to intensified susceptibility to foreign pathogens and opportunistic 

infections (Okoye and Picker, 2013; Maartens et al., 2014). Globally, 37.9 million people are HIV 

infected (UNAIDS, 2019). SA is considered the epicentre of the pandemic with 7.9 million of its 

population (13%) living with HIV infection (Stats SA, 2020). In 2017, the prevalence of HIV 

infection in the province of KwaZulu-Natal (KZN, SA) was 27%. In SA, One-fifth of young females 

of childbearing age are HIV infected (Stats SA, 2020). The overall HIV antenatal prevalence is 

30.7% with the highest prevalence (41.1%) occurring in KZN (National Antenatal Sentinel HIV 

Survey, South Africa, 2019). In light of the high prevalence of PE (12%) and HIV infection (41%) 

in KwaZulu-Natal, the duality of HIV infection superimposed on a preeclamptic pregnancy is high, 

hence warrants urgent investigation. 
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1.3.1 HIV Infection and Pregnancy 

There is compelling evidence that demonstrates that HIV-1 exploits and destabilizes angiogenesis 

and lymphangiogenesis via its envelope glycoprotein (gp120), trans-activator of transcription (Tat), 

and its matrix protein (p17) (Zhang et al., 2012; Caccuri et al., 2014; Basta et al., 2015). The 

accessory protein Tat evades host response due to its similar arginine- and lysine-rich sequence to 

vascular endothelial growth factor (VEGF), a strong angiogenic growth factor (Zhou et al., 2013). 

Tat promotes endothelial adhesion via an elevated αvβ3 and α5β1 integrin expression (Zhou et al., 

2013). Tat also utilizes p17, the matrix protein to activate the protein kinase Akt and extracellular 

signal-regulated kinase (ERK) transduction pathways (Zhang et al., 2012; Caccuri et al., 2014). 

Therefore, Tat promotes a high inflammatory reaction in HIV-infected preeclamptic women (Abbas 

and Herbein, 2013). Notably, HIV-1 infection enhances PE prevalence via key immunomodulating 

circulating cytokines that are interlinked with HIV-associated immune activation (Pillay et al., 

2020).  

A study was done by Paladugu et al., (2003), noted that Tat protein weakened endothelium-

dependent vasorelaxation and endothelial nitric oxide synthase expression and regulation in 

endothelial cells of porcine coronary arteries (Paladugu et al., 2003). Furthermore, the study 

associated the long-term effect of Tat in PE patients with coronary artery disease. Additionally, Tat 

protein was shown to induce the expression of ICAM-1 and VCAM-1, indicating that HIV-1 

infection mechanisms contribute to accelerates atherosclerosis and endothelial injury (Dhawan et al., 

1997; Liu et al., 2005). These findings suggest that the defective angiogenesis in PE may emanate 

from the effect of d Tat homology with VEGF. 

Nonetheless, in contrast to the heightened immune state observed in PE, there is substantial 

downregulation of immune response in HIV infection (Stoner et al., 2016; Sebitloane and Moodley, 

2017). The risk of PE development is lower in the presence of HIV infection; however, many studies 

show that highly active antiretroviral therapy (HAART), affects the prevalence of PE development 

receiving. The elevation of PE development emanates from the restoration of the immune response 

in patients receiving antiretroviral therapy (ARTs) (Sebitloane and Moodley, 2017; Naicker et al., 

2019; Saums et al., 2019). A more recent study, however, reports no alteration in the risk of PE 

development between treated and untreated HIV-infected pregnant women (Saums et al., 2019).  Of 

note, some studies oppose the concept that HIV infection has protective characteristics against HDP 

development (Frank et al., 2004). 
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1.4 Immunologic Maladaptation of Preeclamptic Pregnancies and HIV Infected Pregnant 

Women Receiving HAART 

Currently, data on the synergy of HIV infection and PE development are contradictory. Immunologic 

maladaptation is one of the pathogenic developments of preeclamptic pregnancies (Khan et al., 

2016). Notably, the fetus is an allograft that carries paternal antigens, foreign to the mother’s immune 

system (Alrahmani and Willrich, 2018). During normal pregnancy, the innate and adaptive immune 

system undergoes specific adaptations to enable the survival of the fetal allograft and to protect the 

mother and fetus from pathogens (Silasi et al., 2010). In PE, these maternal immune specific 

responses are altered and the mother develops inadequate tolerance to the fetus (Hsu and Nanan, 

2014).  

As mentioned earlier, HIV infection suppresses the immune response. The development of PE has 

halted the neutralization of immune hyperactivity during HIV infection (Govender et al., 2013; Hall 

et al., 2014). However, the introduction of Highly Active Antiretroviral Therapy (HAART), a 

standard of care for all South African HIV patients, results in an increased incidence of PE 

development in HIV-infected women (Phoswa et al., 2019). HAART exacerbates the exaggerated 

immune response of PE, therefore re-establishing immunocompetence (Kalumba et al., 2013).  

HAART administration downregulates pro-inflammatory cytokines and improves endothelial 

function thereby decreasing PE development. However, ART drugs such as protease inhibitors are 

potent anti-angiogenic factors that alter HIV-1 aspartyl protease, thereby promoting immune 

restoration. Anti-retroviral therapy promotes oxidative stress (Chai et al., 2005), hence causes 

endothelial dysfunction (Zhong et al., 2002; Fiala et al., 2004).  Moreover, a down-regulation of 

nitric oxide exacerbates oxidative stress and endothelial dysfunction during ART. A similar 

microenvironment occurs during PE development (Aouache et al., 2018). 
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Figure 1.2. Schematic diagram showing the regulation of pro-inflammatory cytokine (Th1) and anti-

inflammatory cytokine (Th2) in A non-pregnant or HIV-uninfected, B normotensive or infected untreated, and 

C preeclamptic or HIV-infected on HAART. A Shows a Th1 and Th2 distribution balance. B Shows more Th2 

released as opposed to Th1, therefore, causing an imbalance, increasing HIV infection in untreated women. C 

Shows Th2 levels are lower than Th1. Th1 response is induced by HAART, following PE development. 

(Adapted from Machado et al., 2014 and Naicker et al., 2019).     

In a normal pregnancy, a shift of the maternal response from the Th1 to Th2 immune response is 

caused by the presence of the placenta (Figure 1.2), this is crucial for the semi-allogenic fetus to be 

tolerated by the mother (Machado et al., 2014; Naicker et al., 2019). Once accomplished, an 

immune-tolerant environment is favoured (Laresgoiti-Servitje et al., 2010; Alrahmani and Willrich, 

2018). In preeclamptic pregnancies, however, maternal immune regulation is further altered and the 

Th2 shift does not occur, therefore elevated Th1 immune response prevails (Hu et al., 2007). This is 

usually attributed to an ischemic placenta that is unable to cause the Th1 to Th2 shift (Olusi et al., 

2000; Naicker et al., 2019). In HIV-infected pregnant women treated with HAART, there is a high 

expression of Th1 cytokines compared to HIV-uninfected pregnant or non-pregnant women (Alonso 

et al., 2000). Th1 immune response is induced in infected pregnancies treated with HAART and 

reduced in HIV-uninfected pregnant and non-pregnant individuals (Alonso et al., 2000). HAART 

treatment, reconstitutes the immune response, predisposing HIV-infected women to PE development 

by inducing the Th1 immune response in HIV-infected pregnant women (Maharaj et al., 2017). 
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1.5 The Complement System 

In humans, the first line of defence against pathogens is controlled by the complement system, a 

central part of our innate immunity (Merle et al., 2015). Surface complement regulatory (Creg) 

proteins are expressed on normal cells, this prevents self-damage caused by an activated complement 

by regulating the complement activation (Lillegard et al., 2013). 

There are 3 pathways (Figure 1.3), the alternative pathway (AP), the lectin pathway (LP), and the 

classical pathway (CP) which contribute to the activation of the complement system (Khan et al., 

2016). Each of these pathways leads to a common terminal path that causes lysis of pathogens, elicits 

inflammation, and clears immune complexes (Merle et al., 2015).  

a) The CP (Figure 1.3) is activated by antibody binding to cell surfaces which exposes a C1q

binding site (Regal et al., 2017). Once C1q is bound to the antibody’s Immunoglobulin G

(IgG) and Immunoglobulin M (IgM)] Fc portion, C1r and C1s are activated. Upon

activation, C4 and complement component 2 (C2) are cleaved from C1s, and as a result,

C4bC2a is formed which is commonly known as C3 convertase (Sarma and Ward, 2011).

b) The LP (Figure 1.3) is activated when ficolin or mannose-binding lectin (MBL) binds to

carbohydrate moieties located on the surface of pathogens (Noris and Remuzzi, 2013;

Killick et al., 2018). This binding activates serine proteases viz., mannan-binding lectin

serine protease 1 (MASP-1) and mannan-binding lectin serine protease 2 (MASP-2), which

cleave C4 and C2 to also form the C3 convertase, C4bC2a (Wallis, 2007).

c) As opposed to the CP and LP, the AP is constantly stimulated at low levels. In healthy

individuals, this activation serves as a surveillance system (Merle et al., 2015).

Carbohydrates, proteins, and lipids on pathogens trigger activation of the AP (Figure 1.3)

(Qu et al., 2009). C3 is spontaneously hydrolyzed at low levels to form C3(H2O), resulting

in the binding of Factor B, and is thereafter cleaved by Factor D to form C3 convertase,

C3bBb (Kemper et al., 2009). In the presence of plasma protein properdin, C3 is stabilized.

This protein can activate the AP through association with AP C3 convertase or pathogenic

antigens (Sarma and Ward, 2011).
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Figure 1.3. Schematic diagram showing the activation and regulation of the complement cascade. Complement 

activation occurs via 3 pathways, CP, AP, and LP. The CP is activated by antibody binding to cell surfaces 

which exposes a C1q binding site, the LP is activated when ficolin or MBL binds to carbohydrate moieties 

found on pathogen surfaces and the AP is activated when C3 spontaneously hydrolyzed at low levels to form 

C3(H2O). All 3 pathways form a C3 convertase, cleaving C3a and C3b, resulting in membrane attack complex 

(MAC) (cell lysis), inflammation, and opsonization. (Adapted from Sarma and Ward, 2011). 

C3 convertase (Figure 1.3) is cleaved upon catalyzation of the 3 pathways into functional fragments 

C3a and C3b. The enzyme C3 convertase is the central component during pathogen infection in the 

complement system (Sarma and Ward, 2011). C3a is known to be an inflammation mediator whereas 

C3b is an opsonin that attaches to immune complexes, pathogens, and apoptotic cells which initiate 

phagocytosis (Merle et al., 2015).  
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Thereafter, C5 convertase is formed by the interaction of C3 convertase and C3b. C5 convertase is 

further cleaved into complement component 5a (C5a) and C5b. C3a and C5a are powerful 

anaphylatoxins that attract and activate leukocytes (Regal et al., 2017). Vasodilation, as well as an 

acceleration in vascular permeability, are controlled by C3a and C5a (Noris and Remuzzi, 2013; 

Regal et al., 2017). The membrane attack complex (MAC) is formed when C5b interacts with 

complement components C6, C7, C8, and C9, and to form a membrane pore (Figure 1.3). This 

initiates membrane rupture and as a result cell lysis is implemented by the activity of C5b-9 (Wills-

Karp, 2007; McDonald et al., 2015; Alrahmani and Willrich, 2018). 

1.6 The Complement System in Normal Pregnancy 

During pregnancy, the fetus is protected from harm due to complement activation by Creg proteins 

that halts activation (Richani et al., 2005). Excessive complement activation is inhibited in a 

successful pregnancy. Within maternal tissue, invasion of extravillous trophoblast cells into maternal 

tissues are faced with complement activating antibodies hence they are protected from the maternal 

complement system (Regal et al., 2017). A site that requires protection from complement activation 

is the syncytiotrophoblast, as this is the placental surface that is exposed to maternal blood 

(Rampersad et al., 2008; Ito et al., 2015; Pillay et al., 2019). 

Complement activation is controlled by 3 regulatory proteins, CD59 a glycophosphatidylinositol 

(GPI)-anchored protein, membrane cofactor protein (MCP), and decay-accelerating factor (DAF) 

which are found on the trophoblast cell membrane (Liszewski et al., 1996). DAF halts C3 convertase 

formation and increases decaying of preformed C3 convertase (Figure 1.4). MCP cleaves C3b and 

C4b into their active forms whilst CD59 functions downstream to inhibit the formation of MAC 

(Francis et al., 2006; Pacheco et al., 2011; Denny et al., 2013). Nonetheless, it is important to note 

that whilst complement activation is crucial for host defence, there is a delicate balance between 

complement regulation versus activation. Pregnancy disorders such as PE occurs when there is a 

dysregulation in complement regulation (Khan et al., 2016).  
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Figure 1.4. Schematic diagram showing the overview of the main effectors and regulators of the complement 

system. Complement is activated by the classical pathway, the lectin pathway, and the alternative pathway.  

DAF, MCP and CD59 are key complement regulators found on human placental tissue responsible for 

preventing inappropriate activation of complement. (Adapted from Denny et al., 2013). 

A study by Johnson and Gustavii, (1987), showed an increase of specific complement proteins viz., 

C2, C4, C3, C5, C6, and Factors B and H concentrations whereas C1q and C1r remained unaltered 

during normal pregnancy in a cohort of 72 women, (Johnson and Gustavii, 1987). Furthermore, a 

study by Derzsy et al., (2010) reported that serum C1 esterase inhibitor (C1INH) concentration that 

controls the activation of the initial component of the CP was reported to be low (Ogston et al., 1981; 

Halbmayer et al., 1991; Cohen et al., 1992; Derzsy et al., 2010) or unaltered (Mellembakken et al., 

2001) during normal pregnancy [0.21 (0.19–0.23) g/l ] and in preeclamptic pregnancies [(0.19 (0.17–

0.22) g/l); p <0.05] (Derzsy et al., 2010).  

The activation of the complement cascade is a compensatory mechanism for the decline in adaptive 

immunity that occurs in normal pregnancy hence it serves to protect the host (and fetus) from 

microorganisms and other potential pathogens (Richani et al., 2005). This effect is mediated by C1 

esterase inhibitor (C1INH) regulates activation which may activate the complement cascade and 

therefore serve to elevate components C3a, C4a, and C5a in maternal plasma (Ogston et al., 1981; 

Halbmayer et al., 1991; Cohen et al., 1992). Richani et al., (2005), reported an upregulation of 
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plasma C3a, C4a, and C5a concentrations in normal pregnant (n=134) versus non-pregnant (n=40) 

women. 

Moreover, C2 polymorphisms and its deficiency are associated with chronic inflammatory 

conditions such as systemic lupus erythematosus (SLE) (Agnello, 1978; Macedo and Isaac, 2016). 

The clinical manifestations of PE mimic that of SLE. In contrast to previous studies, a review by 

Lintner et al., (2016), stated that SLE patients commonly show evidence of complement 

consumption leading to low serum levels of C4 and C3. The distinctive pattern of inactive SLE 

patients is that both C4 and C3 are reduced concurrently. C2 is split into two by-products, C2a and 

C2b. C2a (larger fragment) joins to C4b to produce C3-cleaving enzyme, C4b2a. Similar to C4, C2 

plays an important role in producing the biological activity of C3 and thereafter the terminal 

components C5 through C9 (Lintner et al., 2016). Furthermore a review by Pickering and Walport, 

2000 stated that homozygous hereditary deficiency of each of the classical pathway components 

(C1q, C1r, C1s, C4, and C2) is related to a heightened susceptibility to SLE (Pickering and Walport, 

2000). 

1.7 Pathogenesis of Preeclampsia 

1.7.1 Angiogenic Imbalance in the Pathogenesis of Preeclampsia 

During normal pregnancy, physiological alteration of maternal spiral arteries facilitates adequate 

blood supply to the fetus (Silasi et al., 2010). In PE, however, deficient cytotrophoblast invasion and 

a lack of remodeling of the spiral arteries occur within the myometrium.  This leads to a reduction 

in the luminal diameter of blood vessels (Figure. 1.5) which causes an insufficient blood supply to 

meet the oxygen and nutritional demands of the fetus (Young et al., 2010; Naicker et al., 2019). 
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Figure 1.5. Diagram showing placentation in non-pregnant women, during normal pregnancy and abnormal 

placentation in problematic pregnancies. (Adapted from The Eunice Kennedy Shriver National Institute of 

Child Health and Human Development, 2017). 

An imbalance of innate angiogenic factors plays a key role in the pathogenesis of PE (Maynard et 

al., 2003). In normal pregnancies, vascular endothelial growth factor (VEGF), a pro-angiogenic 

factor maintains endothelial stability (Figure 1.6). On the other hand, placental growth factor (PIGF) 

stimulates angiogenesis under conditions of ischemia and inflammation (Carmeliet et al., 2001; 

Autiero et al., 2003). PIGF and VEGF inhibition in pregnant rats mediate a PE-like syndrome 

(Maynard et al., 2003). This shows that PIGF and VEGF blockade would be crucial in the 

pathogenesis of soluble fms-like tyrosine kinase 1 (sFlt-1) induced endothelial dysfunction (Lam et 

al., 2005). 

In PE excess amounts of anti-angiogenic factors such as sFlt-1, soluble endoglin (sEng), and other 

inflammatory mediators are released by the ischaemic placenta. This causes a widespread endothelial 

dysfunction that results in hypertension, proteinuria, and other systemic manifestations of PE 

(Maynard et al., 2003; Venkatesha et al., 2006). This escalation of sFlt-1 levels is associated with a 

concurrent decline in pro-angiogenic factors i.e., VEGF, and PIGF (Figure 1.6) (Maynard et al., 

2003; Ahmad and Ahmed, 2004; Lam et al., 2005; Venkatesha et al., 2006). 
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Figure 1.6. During normal pregnancies, sFlt-1 and PIGF establish physiological angiogenic balance. 

Numerous factors and mediators impact trophoblast invasion and placentation. Excessive production and 

release of sFlt-1 occur during preeclampsia and as a result, there is an upregulation of sFlt-1/PIGF ratio 

(angiogenic imbalance). (Adapted from Sitepu and Rachmadsyah, 2019). 

Furthermore, sEng is a cell surface receptor for transforming growth factor-beta (TGF-β) that is 

found to be increased in PE (Figure 1.7 & 1.8) (Levine et al., 2006). In pregnant rats, sEng escalates 

vascular damage carried out by sFlt-1, which induces a severe preeclamptic-like syndrome with 

features of the HELLP syndrome (Venkatesha et al., 2006). 
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Figure 1.7. Angiogenic factors in the pathogenesis of Preeclampsia (Adapted from Rudic et al., 2019) 

sFlt-1 antagonises VEGF and PIGF by binding to them in circulation and preventing the interaction 

with their endogenous receptors (Kendall and Thomas, 1993). Maynard et al., (2003) demonstrated 

that exogenous sFlt-1 given to pregnant or non-pregnant rats produces a syndrome similar to that of 

PE (Figure 1.7). sFlt-1 is secreted by syncytiotrophoblasts into the maternal circulation as 

syncytiotrophoblast microvesicles (STBM) (Nagamatsu et al., 2004). The expression of STBM’s is 

elevated in PE (Knight et al., 1998). In fact, in normal pregnancy STBM’s are anti-angiogenic 

(Sunderland et al., 1981), proinflammatory (Khalfoun et al., 1986; Chua et al., 1991), and 

procoagulant (Mukkala et al., 1989), however, its function is dysregulated in PE (Sunderland et al., 

1981; Mukkala et al., 1989). 

Systemic inflammation together with hypoxia stimulates the release of excessive amounts of sFlt-1 

in PE (Redman and Sargent, 2009). Endothelial injury observed in PE is caused by oxidative stress 

and nitrosative stress. This is derived from the imbalance between pro-oxidants and anti-oxidants 

(Paladugu et al., 2003). Due to this stress, and upregulation in reactive oxygen species, possible 

weakened accessibility of anti-oxidant mechanisms and reactive nitrogen species production is 

triggered (Aouache et al., 2018). STMB recruitment of monocytes and neutrophils to injured 

endothelial sites prompts the release of proinflammatory cytokines, namely tumour necrosis factor-

alpha (TNF-α), interleukin (IL)-1, IL-6 and IL-8 from the ischemic placenta (Sani et al., 2019). Apart 

from the downregulation of the bioavailability of nitric oxide and prostaglandin I2 (PGI2), an 

increase of endothelin-1, a potent vasoconstrictor is also produced by inflammatory cytokines. 
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Imbalance of endothelial vasodilators (NO and PGI2) and vasoconstrictors [Angiotensin II (Ang II), 

ET-1, and thromboxane A2 (TXA2)] during endothelial cell injury causes vascular smooth muscle 

contraction (Figure 1.8). Sustained vascular resistance and the hypertensive hallmark of endothelial 

injury observed in PE is the result of a decline in calcium ion efflux from smooth muscle cells 

through protein kinase C and Rho-kinase activation, due to vasoconstrictors (Maynard et al., 2003; 

Touyz et al., 2018). 

Figure 1.8. Abnormal placentation in Preeclampsia. (Adapted from Sani et al., 2019 and Naidoo et 

al., 2021). 
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1.7.2 HIV Therapy in Endothelial Dysfunction 

Regardless of an HIV-infected patient’s CD4+ count or progressive stage, the WHO has 

recommended that all HIV-infected individuals receive ART (WHO, 2020). However, HAART 

administration has been associated with the activation of severe PE development (WHO, 2020). 

In fact, Lopinavir/Ritonavir-based (LPV) preferred and Alternative Second-Line Regimens in HIV-

infected patients are believed to affect uterine decidualization and spiral artery remodeling in both 

in vitro and in vivo models (Kala et al., 2020). Upon LPV exposure of primary decidual cell cultures, 

an observed decreased expression VEGF, PlGF, angiopoietin-2, granulocyte-macrophage colony-

stimulating factor, interferon-gamma and matrix metalloproteinase (MMP) 9 was shown (Kala et al., 

2020). Additionally, a downregulated expression of the transcription factor, signal transducer, and 

activator of transcription 3 (STAT3) occurs due to uterine natural kill cell reduction and deficient 

trophoblast invasion (Fitzgerald et al., 2008). These findings result in endothelial dysfunction in PE 

and related adverse neonatal outcome. Nuclear factor-kappa (NF-κB) transcription factors that 

downregulate matrix metalloproteinase and VEGF expression thereby promoting angiogenesis 

dysregulation and PE development are impaired by HAART (Sgadari et al., 2002). During PE, 

amplified expression of Flt-1 and sFlt-1 was detected within trophoblast cells, regardless of HIV 

status, suggesting the occurrence of autocrine signaling in trophoblast invasion and differentiation. 

This initiates abnormal placentation with endothelial cell dysfunction in PE (Govender et al., 2014). 

Furthermore, a decline in PIGF and elevated sFlt-1 concentrations, in preeclamptic women compared 

to normal pregnant women occur prior to HAART exposure (Powis et al., 2013). 

PlGF and viral load were significantly associated to PE development in a multivariate analysis 

(Powis et al., 2013). Elevated sFlt-1 and sEng concentrations correlated with preeclamptic women 

regardless of HIV infection (Govender et al., 2013). In this study, a decrease in PIGF concentration 

was observed in HIV-negative women with PE in comparison to normotensive women. 

Nevertheless, HIV infection decreased PIGF concentration in normotensive pregnant women 

opposed to their HIV-negative counterparts (p = 0.02), thus prompting preeclamptic development in 

women (Govender et al., 2013). 

In contrast, a study done by Maharaj et al., (2017) which demonstrated  HIV-associated PE women 

revealed that HIV/HAART is related to significant decline of IL-2, TNF-α and IL-6, with substantial 

downregulation in IL-2 and TNF-α in preeclamptic women (Maharaj et al., 2017).  
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1.7.3 Aberrant Complement Regulation in Preeclamptic Pregnancy 

Impairment to the surface of intact host cells may be caused by complement dysregulation (Cho, 

2015). Additionally, complement regulator deficiency can unsuccessfully tag modified self-cells, 

therefore causing interference with the removal of injured or modified self-cells, and hence is 

associated with the pathophysiology of numerous autoimmune diseases (Cho, 2015). Notably, co-

opting host regulators found on some pathogens, allows them to evade the complement system, 

therefore resulting in infection (Cho, 2015). It is important that the complement system preserves 

the most appropriate balance between activation on pathogens and modified self-cells, and inhibition 

on intact host cells. 

Notably, in PE the increase in maternal systematic inflammatory response involves both innate and 

adaptive immune systems (Redman et al., 1999; Saito et al., 2007). According to animal models, 

this activation results in complement deposition and fetoplacental unit destruction, with 

consequential fetal loss (Derzsy et al., 2010). The incompatible relationship between placental cells 

and the maternal immune system may also participate in the dysregulation of complement activation. 

This can contribute to the pathogenesis of PE (Huppertz, 2018). 

It is proposed that the dysregulation of the complement activation is the central component of PE 

pathogenesis (Fakhouri, 2016; Sabau et al., 2016; Alrahmani and Willrich, 2018). Lynch et al., 

(2010) observed that during early pregnancy (10 - 20 weeks) there is a dysregulation of the AP 

activation fragment Bb in those women who develop PE. The presence of complement fragment Bb 

in early pregnancy predisposes one to the risk of PE development. Fragment Bb is a marker that is 

necessary for the activation of the alternative complement pathway, and functions as a protease to 

cleave additional C3 molecules that are crucial for the complement cascade (Soto et al., 2010). 

Furthermore, the highest levels of Bb occur during early gestation before the onset of preeclamptic 

development, thus implying that there is an early activation of complement activity (Lynch et al., 

2008; Lynch et al., 2011). The AP plays an essential role in protecting the developing fetus and 

placenta (Soto et al., 2010). 

 In contrast, in the second half of pregnancy (>24 weeks), an elevation of maternal blood Bb level 

occurs in PE compared to normotensive women of African–American ethnicity (Velickovic et al., 

2015). Moreover, an increase in Bb levels from both maternal and umbilical venous blood in severe 

PE compared to a normotensive pregnancy has been noted (Soto et al., 2010; Hoffman et al., 2014; 
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Sones et al., 2018). These results thus implicate racial/ethnic 19 differences as well as disease type, 

and maternal/ fetal blood as confounding factors in the dysregulation of the complement cascade. 

Also, an up-regulation of the AP occurs in women with PE and the HELLP syndrome (Alrahmani 

and Willrich, 2018). Both C5a and C5b-9 proteins have been reported to be elevated in severe 

preeclamptic compared to healthy pregnant women, suggesting that activation of the terminal 

pathway is a critical feature for this severe disease (Burwick et al., 2013). The activation of the 

terminal pathway in PE is supported by a human case in which Eculizumab, an inhibitory monoclonal 

antibody against C5 is used successfully as a temporizing treatment for severe PE and HELLP 

syndrome (Burwick and Feinberg, 2013; Lokki et al., 2017). 

In a study by Qing et al., (2011), the DBA/2-mated CBA/J mouse model was used to demonstrate 

the link between excessive complement activation and PE development (Qing et al., 2011). The 

DBA/2-mated CBA/J mouse shares many pathological features with human PE including oxidative 

stress, elevated anti-angiogenic factors, placental dysfunction, and activation of coagulation 

pathways (Qing et al., 2011). On day 5 of pregnancy, C3 inhibitor was administrated to DBA/2-

mated CBA/J mice, it prevented oxidative stress, placental dysfunction, proteinuria, and renal 

pathology, features consistent with preeclamptic development. An upstream component of the 

complement cascade, C1q, is associated with the prevention of abnormal placentation and PE 

development. C1q is spread in the human decidual stroma and is vital in trophoblast migration and 

spiral artery remodeling, contributing to placental development (Bulla et al., 2008; Agostinis et al., 

2010). Singh et al., (2011) reported that C1q deficiency in mice exhibits proteinuria and hypertension 

i.e., characteristics of PE; emphasizing the significance of C1q in normal pregnancy (Singh et al.,

2011). These findings are constant with the high incidence of pregnancy complications such as 

systemic lupus erythematosus (SLE), malaria, or antiphospholipid antibody syndrome (APLAS) in 

women with acquired or genetic deficiency of classical pathway components (Salmon et al., 2011). 

1.7.4 The Complement System and Angiogenic Imbalance in the Pathogenesis of Preeclampsia 

The complement cascade mediates the release of anti-angiogenic factors which cause excessive 

complement activation in pregnancy (Denny et al., 2013). In animal studies, VEGF decreases 

complement deposition, therefore, leading to poor placentation (Sones et al., 2018). Moreover, 

trophoblast cells are known to produce complement components C3, C4, and C1q (Bulla et al., 

2012). 

The increase in sFlt-1 levels in PE (Levine et al., 2004), is induced by complement activation at sub-

lethal levels on syncytialized human trophoblast cells (Banadakoppa et al., 2018). sFlt-1 is released 
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upon the trigger of local generation C5a from infiltrating inflammatory cells. sFlt-1 weakens 

trophoblast proliferation, decreases placental blood flow, and prompts ischemia which initiates the 

increased production of placental sFlt-1 (Girardi et al., 2006). 

1.8 Complement System in HIV Infection 

1.8.1 Activation 

The complement system aids in the protection of the host against HIV infection, whilst on the other 

hand, it may also enhance HIV infectivity (Yu et al., 2010). There are two mechanisms of 

complement activation in HIV infection viz., antibody-independent and antibody-dependent 

activation. During antibody-independent activation, studies have shown that the CP is directly 

activated by HIV, without the presence of virus-specific antibodies (Sölder et al., 1989; Boyer et al., 

1991; Ebenbichler et al., 1991; Spear et al., 1991). 

Also, HIV-1 viral envelope protein gp160 induces complement activation (Sölder et al., 1989). The 

activation site is localized to the transmembrane protein gp41, which binds C1q, thereafter activating 

the reconstituted C1 complex (Ebenbichler et al., 1991). C1q binds to gp41 reaction site localized 

on the globular head (Thielens et al., 1993), resulting in the activation of the C1 complex (Figure. 

1.9). Activation of subsequent components triggers C3 activation (Sölder et al., 1989) and 

opsonization of the virus with surface-bound C3 fragments (Marschang et al., 1993). 

Figure 1.9. Complement activation by HIV, adhesion of C1q, and transmembrane protein gp41 leading to the 

CP being activated. (Adapted from Marschang et al., 1994). 
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Furthermore, the binding of carbohydrate side chains of HIV envelope protein gp120 with MBL 

triggers the activation of the LP (Thielens et al., 2002), increasing phagocytic uptake and inhibits 

viral entry into susceptible cells (Eisen et al., 2008; Liu et al., 2014). Studies have shown that MBL 

deficiencies are associated with enhanced susceptibility to HIV infection and disease progression 

(Tan et al., 2009; Sheng et al., 2010; Li et al., 2013). 

In antibody-dependent activation, the CP is further activated by HIV-specific antibodies (Stoiber et 

al., 2001). Irrespective of a strong antibody response, only a fraction of antibodies produces 

neutralizing activity, which is insufficient to prevent the initiation of HIV infection (Huber and 

Trkola, 2007). 

1.8.2 Complement Enhances HIV-1 Infectivity 

Despite complement system activation during HIV-1 infection, HIV-1 in circulation is able to evade 

complement-mediated lysis. Hence the role of the complement system and antibody immunity is 

vital during HIV-1 virion clearance, and to prevent the spread and maintenance of the virus in the 

infected host. The deposition of complement activation products, C3 fragment and C5a into HIV-1 

virions facilitates its interaction with monocytes/macrophages and dendritic cells (DC) that express 

complement receptors CR3 and CR4 (Bajtay et al., 2004; Pruenster et al., 2005; Stoiber et al., 2008). 

Furthermore, the binding of C3 fragments to the gp160 complex and enhanced infection of C3 

receptor-bearing target cells is a result of HIV complement activation. CR1 and CR2 independently 

contribute to the penetration of the opsonized virus into complement receptor-expressing T-cells 

(Delibrias et al., 1993). According to recent studies by Lund et al., (1995), the interactions of CD4-

gp120 and C3d-CR2 also enhance viral adhesion to target cells, a step important for viral entry (Lund 

et al., 1995).  

Additionally, host cell Creg proteins such as; CD59 and CD55 (Figure 1.10) may also be 

incorporated into the HIV-1 viral envelope (Yu et al., 2010). These regulatory proteins are acquired 

by the virus from the host cell in the budding process (Hu et al., 2010). Moreover, Hu et al., (2010), 

demonstrated that the inhibition of human CD59 activity enhances complement-mediated virolysis 

of HIV-1 (Hu et al., 2010). However, the complement regulator factor H binds to HIV-1 providing 

additional protection against complement attack (Yu et al., 2010; Liu et al., 2014). 

Serum Factor H is also an important cofactor for the generation of C3d-opsonized infectious HIV-1 

reservoirs on follicular DC’s and B cells in HIV-infected individuals (Bánki et al., 2006). Dendritic 

cells (DCs) are the first cell type to come into contact with HIV-1; they enhance viral dissemination 

to activated CD4 T cells and spread to lymph nodes (Granelli-Piperno et al., 1999). B-cells are not 
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readily infected by HIV, however similar to follicular DC’s, they may serve as extracellular 

reservoirs for HIV-1. B cells can circulate in peripheral blood and migrates through tissues where 

they may interact with and transfer the virus to T cells (Moir et al., 2000). The direct interaction 

between B and T lymphocytes and direct binding of the opsonized virus to receptors on B cells is 

critical for HIV-1 amplification (Jakubik et al., 1999; Jakubik et al., 2000; Döpper et al., 2003) 

The deposition of complement fragments (eg: C3 and C5a) present on the surface of HIV-1 virions 

mediates the interaction between HIV-1 and cells expressing complement receptors namely, 

macrophages, dendritic cells and non-immune cells (erythrocytes) (Tjomsland et al., 2013). As a 

consequence, trans-infection of CD4+ T cells is heightened (Hu et al., 2010). Apart from DC’s being 

the first type of cell to interact with HIV-1, they also intensify the viral spread to newly triggered 

CD4+ T cells. MHC class-1 exhibition of HIV-derived antigens by DCs is stimulated by complement 

opsonization of HIV-1 particles (Tjomsland et al., 2013). 

Furthermore, the adhesion of anti-HIV antibodies to complement-opsonized HIV-1 virions facilitates 

HIV-1 interaction with erythrocytes. HIV-1 attaches to erythrocytes in a complement/CR1-

dependent manner and this interaction plays an important role in the progression of the primary 

infection (Horakova et al., 2004).  
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Figure 1.10. Schematic diagram showing the activation and enhancement of the complement system in HIV 

infection. The CP and LP activation are the results of direct activation of the complement system by HIV 

infection via gp41 and gp120 binding. HIV-specific antibodies can further activate the complement system. 

CD59 and CD55 proteins incorporation on viral envelope cause HIV-1 to escape complement-mediated lysis. 

Complement deposition present on the HIV-1 surface facilitates the virus and cells expressing complement 

receptor interaction. (Adapted from Pillay et al., 2019). 

1.9 Complement System in HIV Infected and Preeclampsia 

Due to the high prevalence of HIV infection and PE in SA, it is important to understand the 

association between both conditions (Frank et al., 2004). Previous studies have reported that 

pregnant women with HIV infection have a lower risk of developing PE (Wimalasundera et al., 

2002; Conde-Agudelo et al., 2008; Kalumba et al., 2013; Landi et al., 2014; Machado et al., 2014; 

Sansone et al., 2016). HIV-1 infection neutralises the exaggerated immune response in PE thereby 

preventing preeclamptic development (Frank et al., 2004). However, the use of HAART 

reconstitutes immune status thereby increasing the risk of PE development. 
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These complement regulatory (Creg) proteins are inhibitors of the complement cascade. Khan et al., 

(2016), reported an increase in Creg proteins namely, CD35 and CD55 levels on neutrophils using 

flow cytometry in PE (n=50) compared to normotensive pregnant (n=50) women, irrespective of 

their HIV status (Khan et al., 2016). CD55 upregulation is seen as a protective mechanism against 

excessive complement activation in PE (Khan et al., 2016). 

The role of the complement system in HIV infection is multifaceted. It can aid in the protection of 

the host against HIV infection, on the other hand, it can also enhance HIV infectivity (Yu et al., 

2010). However, an upregulation of CD55 may lead to enhanced HIV-1 infection (Yu et al., 2010). 

The upregulation of these regulatory proteins has been implicated as an adaptive phenomenon in 

response to elevated complement-mediated cell lysis which occurs in HIV infection which is further 

aggravated by preeclamptic complement activation (Khan et al., 2016). 

In contrast, an in-vitro transcriptome profiling, ELISA and flow cytometry study by Ellegard et al., 

(2018) observed complement-opsonized HIV-1-modulated DC response and their cross-talk with 

natural killer (NK) cells. This inhibits killing and promotes the increase of factors associated with 

immune suppression (PD-1, TIM3, LAG-3) and susceptibility to infection (TCM, CD38, CXCR3, 

CCR4) on CD4 T cells (Ellegård et al., 2018). Therefore, it is plausible to assume HIV infection in 

combination with the complement system may also weaken the heightened inflammatory state in 

PE. 

1.10 Complement Component 5a 

1.10.1 Structure and Function 

Human C5a is an 11 kDa, 74 amino acid glycoproteins released from the alpha-chain of C5 by the 

C5 convertase enzyme (Manthey et al., 2009). This powerful anaphylatoxin prompts oxidative burst 

in neutrophils, stimulates the production of oxygen radical species, chemo-attracts granulocytes, 

reduces apoptosis, and enhances phagocytosis in normal pregnancies (Mollnes et al., 2002). 

Cleavage of C5 into C5a and C5b fragments are brought about by activated phagocytic cells. 

Polymorphonuclear neutrophils (PMN) myeloperoxidase generated oxidant and kallikrein activity is 

responsible for C5 cleavage and thereafter the production of C5a (Vogt, 1996). 

Anaphylatoxins may also be produced by neutrophil elastase enzymatic activity and macrophage 

serine protease (Huber-Lang et al., 2002). C5a is an important part of the innate immune response 

and evidence suggests that it may also play a role in adaptive immunity (Köhl, 2006). C5a is not 
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necessarily an initiating factor, however excessive and uncontrolled production occurs in many 

inflammatory diseases (Guo and Ward, 2005). 

1.10.2 C5a Receptors 

The transduction of C5a occurs via its attachment to two receptors, C5aR1 (CD88) and C5aR2 

(C5L2) with a seven-transmembrane (7TM) helical structure (Klos et al., 2013). In humans, C5aR1 

and R2 share about 35% homology at the primary sequence level (Ohno et l., 2000). C5aR1 occurs 

on cell surfaces whilst C5aR2 occurs intracellularly (Klos et al., 2013). Both receptors also bind to 

C5a-des-Arg, a naturally occurring cleavage product of C5a (Klos et al., 2013). Unlike C5aR2, 

C5aR1 is a G-protein coupled receptor (GPCR) both receptors efficiently recruit β arrestins (βarrs) 

(Figure 1.11; Pandey et al., 2020). In contrast to C5aR1, C5a activation does not result in ERK1/2 

phosphorylation and MAPK activation downstream of C5aR2 (Pandey et al., 2020). 

Figure 1.11. Schematic representation of C5aR1 and C5aR2. C5a convertase cleaves C5 into C5a 

and C5b. C5a activates C5aR1 and C5aR2. C5aR1 is a G-protein-coupled receptor and binds to β 

arrestins (βarrs) whilst C5aR2 does not have any G-protein coupling. (Adapted from Pandey et al., 

2020). 

1.10.3 C5a Levels in Preeclampsia and HIV Infection 

C5aR1 forms a heterodimer with a chemokine receptor CCR5, the major receptor for viral entry. A 

reduction of C5aR1 reduces HIV infection (Moreno-Fernandez et al., 2016). Low CCR5 and high 

chemokine levels correlate with slow HIV-1 progression (Reynes et al., 2000).   
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The potent pro-inflammatory anaphylatoxin C5a has been demonstrated in both normal and 

complicated pregnancies (Denny et al., 2013). Richani et al., (2005) demonstrated an elevation of 

C3a, C4a, and C5a in maternal plasma during normal pregnancy with C5a levels being [12.4 ng/ml 

(1.2 – 87.1); p < 0.0001] compared to non-pregnant women [4.1ng/ml (0.9 – 13.1); p < 0.0001] 

(Richani et al., 2005). Also, both C3a and C5a concentrations are higher in preeclamptic patients 

compared to normal pregnant women (Haeger et al., 1992; Soto et al., 2010), where it induces 

inflammation, recruits DC’s and macrophages for amplifying of HIV-1 spread (Liu et al., 2014). In 

a normal pregnancy, there is a low or unchanged concentration of C1INH which regulates initiation 

of the CP (Mellembakken et al., 2001). This decrease may elevate C3a, C4a, and C5a levels in 

maternal plasma (Richani et al., 2005). The increase of C5a concentration is associated with the 

elevation of white blood cell count, monocytes, and initiation of granulocytes during pregnancy 

(Richani et al., 2005). 

C5a correlate significantly with Abdominal Aortic Aneurysm’s, where values greater than 101 ng/ml 

had an odds ratio of 11 (95% CI 1.1-114.1) compared with values below 70ng/ml (Zagrapan et al., 

2020). Moreover, in patients chronically infected with hepatitis B virus, complement C5a is an 

indicator of fibrosis (95% CI; 0.976, 0.999) (Deng et al., 2017). 

One mechanism by which C5a may exert its harmful effects is by inducing the release of the potent 

anti-angiogenic factor, soluble vascular endothelial growth factor receptor-1 (sVEGFR-1), also 

known as sFlt-1 (Girardi et al., 2011). sFlt-1 antagonises pro-angiogenic VEGF and PlGF, which 

ensures successful pregnancy. Circulating levels of sFlt-1 are elevated both in women with recurrent 

miscarriage and in murine models of pregnancy loss (Girardi et al., 2006). Numerous studies show 

strong evidence of elevations in circulating levels of sFlt-1, with correspondingly reduced levels of 

PIGF and VEGF in women who develop PE or fetal injury in recurrent pregnancy loss (Figure 1.12) 

(Levine et al., 2004; Rana et al., 2012; Denny et al., 2013). 
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Figure 1.12. Schematic diagram showing the role of C5a in complicated pregnancies. Excessive activation of 

complement with an elevation of C5a during pregnancy results in poor pregnancy outcomes. C5a promotes 

induction of the release of soluble VEGF receptor-1 (sVEGFR-1)/ sFlt-1. Decreased availability of VEGF and 

PlGF leads to placental insufficiency, which in early pregnancy may lead to recurrent miscarriage and in late 

pregnancy, to PE development. (Adapted from Denny et al., 2013). 

C5a is produced during acute and chronic infection with bacteria or intracellular pathogens and in 

autoimmune disorders (Hugli, 1990). Bacterial lipopolysaccharides (LPS) and C5a act 

interdependently in the induction of pro-inflammatory cytokine release Tumour Necrosis Factor-

alpha (TNF-a), IL-1, and Interleukin 6 (IL-6) by monocytes and macrophages (Cavaillon et al., 1990; 

Montz et al., 1991). Therefore, the generation of complement-derived anaphylatoxins during local 

inflammation at mucosal surfaces of the genital tract may increase the efficiency of sexual 

transmission during the earliest phases of HIV infection (Bentwich et al., 1995). 

The increase of pro-inflammatory cytokines TNF-α and IL-6 have been reported in the presence of 

C5a, both liable for promoting HIV-1 infection and regulation (Kacani et al., 2001; Popko et al., 

2010). The augmentation of HIV infection induced by C5a is reversed by the inhibition of 

complement component 5a receptor (C5aR) (Kacani et al., 2001). Therefore, the chronic 
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inflammatory state in HIV infection and PE could be further aggravated by excessive complement 

activation.  

C5a was also demonstrated to be a potent stimulatory factory in vitro studies where it increased the 

susceptibility of monocyte-derived macrophages (MDM) to HIV infection (Kacani et al., 2001). The 

stimulatory effect of C5a correlated with secretion of endogenous TNF-α and IL-6, cytokines that 

are known to up-regulate HIV replication in an autocrine/paracrine manner (Poli et al., 1990; 

Tadmori et al., 1991; Weissman et al., 1994). A 2-day treatment of MDM with C5a before viral 

pulse, 40-produced a 40-fold enhancement of HIV infectivity (Kacani et al., 2001). 

1.11 Complement Component 2 

1.11.1 Structure and Function 

Complement component gene, C2 is found on HLA class III, a part of the short arm of chromosome 

6. Serum C2 is a precursor protein, formed as a result of the activation of C1 into C2b and C2a

fragments. C2 shares sequence homology with serine proteinases, but has a catalytic chain with an 

extended N-terminus that has a 60-amino-acid-residue repeat structure (Reid and Porter, 1981; 

Bentley, 1986). C2 is similar to the primary structure of Factor B. 

C2a forms C3 convertase (C4b2a) along with C4b (Walport, 2001). C2 is a key component of the 

CP and LP, defending the onset of microbial infections and immune complex removal (Lintner et 

al., 2016). MBL or ficolin’s together with MASP-1 adhere to carbohydrate molecules. This activates 

MASP-2, cleaving C2, and C4, resulting in a C3 convertase that is similar to that of the CP (Wallis 

et al., 2007). 

1.11.2 C2 Signal Transduction 

Human complement receptor type 2 (CR2; CD21) is a surface-associated glycoprotein that binds to 

a variety of endogenous ligands, including the complement component C3 fragments iC3b, C3dg 

and C3d, the IgE receptor CD23, and the type I cytokine, interferon-alpha. CR2 links the innate 

complement-mediated immune response to pathogens and foreign antigens with the adaptive 

immune response by binding to C3d that is covalently attached to targets, and which results in a cell 

signaling phenomenon that lowers the threshold for B cell activation (Paul Hannan, 2016). 

A 28-bp deletion, located on exon 6 at the 3’ terminal end is observed in more than 95% of C2 

deficient patients. This identical molecular genetic defect results in premature termination of 

transcription (Johnson et al., 1992). A conserved MHC haplotype comprising HLA-B18, C2*Q0, 
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Bf*S, C4A*4, C4B*2, and Dr*2 is linked with the deletion (Winkelstein and Sullivan, 2010). 

Amongst Caucasians, C2 deficiencies are furthermost predominant amongst the genetically 

determined complete complement deficiencies. Those of European descent who are C2 deficient 

have a gene frequency of between 0.05 and 0.007. Resulting in a 1:10 000 prevalence of 

homozygotes (Rohrer et al., 2019). 

1.11.3 C2 Levels in Preeclampsia and HIV Infection 

There is a lack of data on the exact role of C2 in pregnancy, however, a study by Johnson and 

Gustavii, (1987) showed an increase in the concentration of complement proteins (C2, C4, C3, C5, 

C6, and Factors B and H) in maternal blood of normal pregnant women compared to non-pregnant 

women (Johnson and Gustavii, 1987). In contrast, C2 polymorphisms and deficiencies have also 

been linked to many chronic inflammatory conditions: age-related macular degeneration (Gold et 

al., 2006; Richardson et al., 2009) and systemic lupus erythematosus (SLE) (Agnello, 1978). In PE, 

advanced maternal age is a risk factor (Whitelaw et al., 2014). It is possible that functional 

differences of C2 variants each differentially influence the level of complement activation (Morris 

Jr et al., 2009). In C2 deficiency, activation of the LP and CP is impaired. In these patients, there are 

increased levels of circulating immune complexes predisposing them to autoimmune diseases. SLE 

has a similar exacerbated immune microenvironment like PE, where a 10% penetrance of C2 

deficiency occurs (Lintner et al., 2016). Moreover, in pregnant women with SLE, there is 

complement-mediated injury, predisposing them to a higher risk of PE development, placental 

insufficiency, fetal growth restriction, and miscarriage (Teirilä et al., 2019). 

Nonetheless, there is a paucity of information regarding C2 in HIV infection. HIV may be inactivated 

through the combination of complement activation and antibody activation (Spear et al., 1990). The 

requirement for antibody response, together with the observation that C2-deficient serum plus 

antibody does not release reverse transcriptase, indicates that HIV neutralization occurs by the CP. 

This mechanism of neutralization is similar to that shown for many other enveloped viruses (Hirsch, 

1982). 

Huson et al., (2015) reported increased C3 and C1q-C4 levels in asymptomatic patients with HIV 

infection compared to healthy controls. However, MBL deficiency does not influence complement 

activation, suggesting HIV infection activates the complement system primarily via the CP (Huson 

et al., 2015). 

There is a paucity of data on the role of the complement system in HIV associated PE. Urgent 

research evidence on complement activation will aid in unraveling the aetiology of PE thereby 

enabling better clinical management strategies for PE. Therefore, the aim of this study is to compare 
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the immune-expression of complement components C2 and C5a, in the duality of HIV associated 

PE. 
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1.12 Hypothesis of study 

• Complement components C2 and C5a levels will remain dysregulated between normotensive and

preeclamptic pregnant women, regardless of their HIV status

• Complement components C2 and C5a levels will remain dysregulated between HIV infected and

uninfected pregnant women, regardless of pregnancy type (normotensive and preeclamptic)

1.13 Aim of study 

• To assess whether HIV infection affects the expression of complement components C2 and C5a

levels in preeclamptic pregnancy.

1.14 Specific objectives 

• To assess whether pregnancy type (normotensive versus preeclamptic pregnant women) regardless

of their HIV status affect complement components C2 and C5a levels using Bio-Plex Multiplex

Immunoassay

• To assess whether HIV status (HIV infected versus HIV uninfected) regardless of their pregnancy

type affect complement components C2 and C5a levels using Bio-Plex Multiplex Immunoassay

• To assess whether complement components C2 and C5a levels are dysregulated across the study

groups using Bio-Plex Multiplex Immunoassay

• To assess whether demographic features of the study groups affect complement components C2 and

C5a expression in HIV-infected preeclamptic pregnancies.
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Abstract 

Objective: To evaluate the expression of complement components C2 and C5a in HIV associated 

preeclampsia.  

Materials and Methods: The sample population (n=76) was divided by pregnancy type into 

preeclamptic (n=38) and normotensive pregnant (n=38) groups; these were further stratified by 

patient’s HIV status (HIV-positive and HIV-negative). Bio-Plex multiplex immunoassay method 

was used to quantify serum concentration of complement components C5a and C2. 

Results: The concentration of C2 was not statistically different between preeclamptic and 

normotensive pregnant women, irrespective of HIV status as well as by HIV status regardless of 

pregnancy type. However, based on pregnancy type (preeclamptic vs normotensive), the expression 

of C5a was statistically different (p = 0.05); been down-regulated in preeclampsia compared to 

normotensive women, irrespective of HIV status. Both C2 and C5a concentrations did not differ 

across all study groups.  

Conclusion: This novel study reports a loss of regulation of complement activation as shown by the 

down-regulation of C5a in preeclamptic compared to normotensive pregnant women, regardless of 

HIV status. Complement dysregulation affects the host innate defence, and as a consequence, 

intensifies placental and fetal injury. Moreover, HIV status did not influence the expression of both 

C5a and C2, irrespective of pregnancy type, this may be attributed to Highly Active Antiretroviral 

Therapy (HAART).  

Keywords: C2, C5a, HIV, Preeclampsia 
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Introduction 

Despite intensive research, maternal mortality remains a global health concern particularly in low-

and middle-income countries [1]. Human Immunodeficiency Virus (HIV) infection, haemorrhage, 

and hypertensive disorders in pregnancy (HDP) are the main factors contributing to maternal 

mortality in South Africa (SA) [2]. Preeclampsia (PE) is a common and potentially fatal HDP, 

affecting 3-8% of all pregnancies worldwide [3]. It is diagnosed by a new-onset high blood pressure 

of ≥140/90 mmHg with/without proteinuria (> 300 mg/d) and/or evidence of maternal organ 

dysfunction at or after 20 weeks of gestation [4]. PE is a two-stage disorder. During stage 1, abnormal 

placentation involves inadequate trophoblast invasion with resultant deficient myometrial spiral 

artery remodeling that leads to an ischemia/ hypoxic micro-environment [5]. The maternal syndrome 

of PE is a consequence of ischaemia which leads to widespread endothelial damage, multi-organ 

involvement, and the clinical signs and symptoms of PE or stage 2 of this pregnancy disorder [6].  

During normal pregnancy, the adaptations of the innate and adaptive immune system ensure the 

survival of the fetus [7]. However, during PE, immune hyper-reactivity results in maternal 

intolerance of the fetus [8]. In contrast, in HIV-infected individuals, the immune response is 

suppressed.  Thus, in HIV associated PE, a neutralisation of immune response may occur [9, 10]. 

The use of Highly Active Antiretroviral Therapy (HAART) causes reconstitution of the immune 

system [11], thereby predisposing HIV-infected women to the development of PE [12].  

The complement cascade is a fundamental part of the innate immune system (Figure 2.1). Extensive 

simulation of the complement system contributes to the pathogenesis of PE [13-15], hence its 

inhibition facilitates a successful pregnancy [16]. The complement system is activated via one of 

three pathways viz., classical, lectin, or alternative [17]. 
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Figure 2.1. Schematic diagram showing an overview of the normal complement cascade and its main 

components. The complement cascade can be initiated via three pathways, classical, alternative, and lectin. 

The classical pathway (CP) is initiated by immune complexes interacting with C1q, the lectin pathway is 

triggered when mannose-binding lectin (MBL) fixes to carbohydrate moieties located on pathogen surfaces. 

The CP and lectin pathway (LP) generate the same C3 convertase, C4bC2a, and the alternative pathway (AP) 

is activated when C3 spontaneously hydrolyzed at low levels to form C3(H2O) later on forming C3 convertase, 

C3bBb. All 3 pathways form a C3 convertase, cleaving C3a and C3b, resulting in membrane attack complex 

(cell lysis), inflammation, and opsonization. Adapted from Sarma and Ward, Janeway Jr et al. and De Vriese 

et al. [18-20].  

All 3 pathways merge at a central point, the production of C3 convertase [21].  The cleavage of C3 

convertase leads to a central terminal path that mediates host defence via the opsonization of 

pathogens, eliciting inflammation, lysis of pathogen cells, and/or clearing of immune complexes [15, 

17, 22-24]. However, the role of the complement system in HIV infection is complex, as it may 

protect the host from HIV infection and/or enhance the infectivity of HIV [25].  

Anaphylatoxins are potent inflammatory mediators targeting a vast spectrum of immune and non-

immune cells [26]. Complement component 5a (C5a) is a powerful anaphylatoxin [15, 18, 27]. C5a 

mediates the release of potent anti-angiogenic factors, soluble vascular endothelial growth factor 

receptor-1 (sFlt-1) and soluble endoglin (sEng) [28]. The concomitant decline in pro-angiogenic 

growth factors including placental growth factor (PIGF) and vascular endothelial growth factor 

(VEGF) is crucial for placental development [28, 29]. Additionally, increased C5a elevates pro-
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inflammatory cytokines such as Tumour Necrosis Factor-alpha (TNF-α) and Interleukin 6 (IL-6) both 

known to promote HIV infection [27, 30].  

Figure 2.2. Schematic diagram showing the role of complement component C5a in the complement pathway 

of HIV associated preeclamptic women in A: Enhancement of C3 and C5 on the surface of HIV-1 enables the 

interaction of cells expressing complement receptors such as macrophages and dendritic cells (DC) with HIV-

1 thereafter facilitating in HIV infection, B: Increased levels of C5a is associated with an increased number of 

monocytes. The escalation of C5a releases sFlt-1 resulting in the decrease of PIGF and VEGF, therefore, 

leading to preeclamptic development. C: C5a in excessive amounts is liable for the elevated production of pro-

inflammatory cytokines, IL-6, and TNF-α and as a result, the promotion of HIV-1 infection and regulation. 

Adapted from Conroy et al., Soederholm et al., and Teirilä et al. [29, 31, 32].  

Complement component 2 (C2) is a precursor protein and is a critical factor in both the CP and LP 

[33, 34]. C2 is cleaved to form C3 convertase, C4bC2a [6, 18]. The exact role of C2 in pregnancy 

and during HIV infection is sparse. Nonetheless, existing research shows that C2 concentrations are 

high in pregnancy [16]. Moreover, complement components C1q – C4 are increased in asymptomatic 

HIV-infected patients compared to healthy controls [35]. In light of the paucity of information 
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available on the regulation of complement components in HIV associated PE, this study aimed to 

evaluate the concentration of serum C5a and C2 using the Bio-plex multiplex immunoassay.  

Methods and Materials: 

Ethical Approval 

This prospective study utilized retrospectively collected serum samples for which institutional ethics 

class approval (BCA 338/17) was obtained.  Informed patient consent, hospital manager’s approval 

and the regulatory authority consent were obtained in the primary study for use of the samples in 

subsequent studies. All patient identities were replaced with codes. Reports on the study protected 

confidentiality and all participants remained anonymous.  

Sample Size 

Post consultation with an institutional biostatistician, sample size was calculated. To detect a 

moderate effect size of 0.66 between two groups normotensive and preeclamptic women or HIV 

positive and HIV negative assuming equal groups (n=38 per group), a sample size of 76 pregnant 

women was required. To compare four groups, normotensive (HIV+ vs HIV-) and preeclamptic 

(HIV+ vs HIV-), a sample size of 19 in each group was needed to detect a large effect size of 

0.95.  All calculations are with 80% power and 95% probability and were done using G*Power 

statistical software. 

Study population 

A study population (n=76) was recruited from a large regional hospital, consisting of 38 

normotensive and 38 preeclamptic women. Both groups are further stratified by HIV status into HIV-

positive preeclamptic (n=19), HIV-negative preeclamptic (n=19), HIV-positive normotensive 

pregnancy (n=19) and HIV-negative normotensive pregnant women (n=19).  

Inclusion Criteria: this study group consisted of primigravid and multigravida participants, 

diagnosed with PE (≥ 140/90 mmHg and/or the presence of a single incidence of proteinuria) [4], 

and participants with a normotensive pregnancy serving as the control group. All HIV-positive 

women received antiretroviral therapy (ART). 

Exclusion Criteria: women with polycystic ovarian syndrome, intrauterine death, cardiac disease, 

chorioamnionitis, unknown HIV status, eclampsia, sickle cell disease, active asthma that requires 

medication during the gestational period, abruption placentae, chronic renal disease, patients who 
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have been declined from participation, systematic lupus erythematosus, pre-existing seizure 

disorders, and thyroid disease were not included in the study group.  

Sample type 

Maternal blood samples were collected and centrifuged at 3000 g for 10 minutes at 20°C. Serum was 

aliquoted and stored at -80°C until required.  

Bio-Plex Multiplex (Bio-Rad) Immunoassay 

A cytometric mechanism with a bead-based flow constructed the assay, where multiplex analyses 

are permitted. Using the manufacturer’s instructions, Human Complement Magnetic Bead Panel 

(Millipore by Sigma – Aldrich, catalogue number: HCMP1MAG-19K), Bio-Plex®MAGPIXTM (Bio 

Rad Laboratories, Inc., USA) was utilized, using serum samples. Blank captured antibody with 

magnetic beads, C5a and C2 samples, antigen samples (1:4 dilution), and standards (serial dilution) 

were incubated. A triple wash eliminated any unbound substances. Prior to the incubation of the 

assay plate, a biotinylated detection antibody was added. Once the incubation period was over. A 

triple wash using wash buffer was once again performed to ensure the removal of unbound 

biotinylated detection antibodies. Thereafter, into each well, 1x streptavidin-phycoerythrin (SA-PE) 

was added. The plate was thereafter incubated for 10 min at 850 ± 50rmp in a dark room. The assay 

plate was washed 3 times with wash buffer and re-suspended in assay buffer for 30 seconds at 850 

± 50rmp. Lastly, a Bio-Plex®MAGPIXTM Multiplex Reader (Bio Rad Laboratories, Inc., USA) was 

used to read the assay plate 

Statistical Analysis 

Data were statistically analysed utilizing GraphPad Prism 5.00 for Windows (GraphPad Software, 

San Diego California USA). The Kolmogorov Smirnov normality test was used to check for 

parametric or non-parametric distribution. Non-parametric data are represented as median and 

interquartile range. Statistical significance according to pregnancy type (preeclamptic vs 

normotensive) and HIV status (negative vs positive) was determined using a Mann-Whitney’s U test. 

The Dunn’s Multiple Comparison post hoc test and the Kruskal-Wallis test determined statistical 

significance across all groups. A p-value of <0.05 was considered to be statistically significant. 

Spearman’s Rank Correlation Coefficient (r) was calculated to determine the relation between 

clinical/ demographic data versus C2 and C5a concentrations across the study population (-1 and 1). 

The outcome results were elucidated based on the degree of association as strong (0.7–1), moderate 

(0.5– 0.7), or low (< 0.5) after taking significant correlation values into consideration. 
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Results 

Patient Demographics and Clinical Characteristics 

Patient demographics and clinical characteristics (Table 1) were non-parametrically distributed 

hence, are represented as median and interquartile range (IQR). Statistically significant differences 

were reported for maternal age (p = 0.03), parity (p = 0.01), gravidity (p = 0.04), gestational age (p 

= 0.001), systolic (p < 0.0001) and diastolic blood pressures (p < 0.0001) across the study groups. 

However, there was no significant difference reported for maternal weight (p = 0.11), across all study 

groups. 
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Table 1. Patient demographics across study groups 

Total Sample Population 

(N=76) 

Normotensive HIV 

Negative 

(n=19) 

Normotensive HIV 

Positive 

(n=19) 

Preeclamptic HIV 

Negative 

(n=19) 

Preeclamptic HIV 

Positive 

(n=19) 

p-value

Weight (kg) 74.00(22) 81.00(28) 90.00(46) 79.50(35) 0.1063 (ns) 

Gestational Age (weeks) 27.00 (9) 25.00(14) 24.00(10) 23.00(10) 0.0008*** 

Parity 1.00(1) 2.00(1) 1.00(2) 2.00(1) 0.0085 * 

Systolic BP (mmHg) 109.00(20) 112.00(16) 146.00(14) 147.00(20) <0.0001 *** 

Diastolic BP (mmHg) 65.00(13) 72.00(14) 92.00(9) 97.00(13) <0.0001 *** 

Maternal Age (years) 25.00(9) 31.00(11) 29.00(16) 34.00(14.50) 0.0304* 

Gravidity 2.00(2) 3.00(2) 2.00(2) 3.00(2) 0.0425 * 

Results are represented as the median (IQR) 

 ns = non-significant, 

* p < 0.05

 *** p < 0.001 
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Serum concentrations of complement component C2 

Pregnancy type - C2 concentration was non-significantly different between the normotensive 

pregnant (median = 24285 pg/ml, IQR = 21319 pg/ml) vs the preeclamptic (median = 22287 pg/ml, 

IQR = 21701 pg/ml) groups, regardless of HIV status (Mann-Whitney U = 654; p = 0.4837; Figure 

2.3A). 

HIV status – The concentration of C2 level between the HIV-positive (median = 23180 pg/ml, IQR 

= 29300 pg/ml) vs HIV-negative (median = 23118 pg/ml, IQR = 20373 pg/ml) groups showed no 

statistical significance, irrespective of pregnancy type, (Mann-Whitney U = 690.5; p = 0.7469; 

Figure 2.3B). 

Across all groups – The concentration of C2 was similar across all groups (Kruskal-Wallis H =1.098; 

p = 0.7776; Figure 2.3C; Table 2).  
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Figure 2.3 (A-C). C2 concentration are depicted in: (A) Normotensive vs Preeclamptic groups, (B) HIV 

infected vs HIV uninfected groups and, (C) across all groups.  
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Serum concentrations of complement component C5a 

Pregnancy type - The serum concentration in the normotensive (median = 6562 pg/ml, IQR = 5302 

pg/ml) was significantly higher than that of the preeclamptic (median = 4745 pg/ml, IQR = 3279 

pg/ml) groups, regardless of HIV status (Mann-Whitney U = 532; p = 0.0486; Figure 2.4A). 

HIV status - Serum C5a level was similar between the HIV-positive (median = 5383 pg/ml, IQR = 

4202 pg/ml) vs HIV-negative (median = 5548 pg/ml, IQR = 4726 pg/ml) groups, irrespective of 

pregnancy type, (Mann-Whitney U = 697; p = 0.8002; Figure 2.4B). 

Across all groups – The concentration of C5a did not differ across all groups (Kruskal-Wallis H 

=4.352; p = 0.2259; Figure 2.4C; Table 2). 

Normotensive HIV status – No statistical significance was shown between the normotensive HIV-

negative group (median = 5965 pg/ml, IQR = 6010 pg/ml) vs normotensive HIV-positive group 

(median = 7160 pg/ml, IQR = 4958 pg/ml). (Mann-Whitney U = 162; p = 0.6032; Figure 2.4D). 

Preeclamptic HIV status – C5a expression was non-significantly different between the preeclamptic 

HIV-negative group (median = 5044 pg/ml, IQR = 3093 pg/ml) vs preeclamptic HIV-positive group 

(median = 4447 pg/ml, IQR = 3642 pg/ml); (Mann-Whitney U = 159; p = 0.5441; Figure 2.4E). 
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Figure 2.4 (A-E). C5a concentration are depicted in: (A) Preeclamptic vs Normotensive groups, (B) HIV 

infected vs HIV uninfected groups, (C) across all groups. Serum concentration of C5a are significantly different 

between preeclamptic and normotensive groups, p = 0.0486. Serum concentration of C5a have no significant 

difference between HIV-positive and HIV-negative groups p = 0.8002, as well as across all groups p = 0.2259 

(D) Normotensive HIV-negative vs Normotensive HIV-positive group and, (E) Preeclamptic HIV-negative vs

Preeclamptic HIV-positive group. 
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Table 2. Serum concentration (pg/ml) of complement analytes across all study groups 

Total Sample 

Population 

(N=76) 

Normotensive Preeclamptic p-value

HIV Negative 

(n=19) 

HIV Positive 

(n=19) 

HIV Negative 

(n=19) 

HIV Positive 

(n=19) 

C2 

(pg/ml) 

24185 (19167) 24386 (35236) 22929 (21506) 22047 (20535) 0.7776 (ns) 

C5a 

(pg/ml) 

5965 (6010) 7160 (4958) 5044 (3093) 4447 (3642) 0.2259 (ns) 

Results are represented as median (interquartile range) 

ns = non-significant   
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Table 3. Spearman Rank Correlation Co-Efficient (r) and its level of significance (p) for Serum 

concentration (pg/ml) of C2 and C5a.  

C2 

(pg/ml) 

C5a 

(pg/ml) 

r – value p – value 

Normotensive 24285 (21319) 6562 (5302) 0.08856 0.5970 (ns) 

Preeclampsia 22287 (21701) 4745 (3279) 0.1534 0.3578 (ns) 

HIV Negative 22929 (20473) 5548 (4726) 0.2274 0.1759 (ns) 

HIV Positive 23180 (29300) 5383 (4202) 0.1089 0.5151 (ns) 

Results are represented as median (interquartile range) 

ns = non-significant   

* p < 0.05

*** p < 0.001 



53 

Spearman’s Rank Correlation Co-Efficient Analysis 

Correlation between maternal demographics and serum C2 concentration: 

Diastolic blood pressure correlates with C2 concentration in normotensive HIV-negative participants 

[r = - 0.463 (p < 0.05)] and in preeclamptic HIV-negative participants [r = - 0.483 (p < 0.05)]. A 

negative correlation co-efficient demonstrated a relationship between maternal age and C2 [r = - 

0.482 (p < 0.05)] in preeclamptic HIV-positive patients. Table 4 displays the Spearman Rank 

Correlation Co-efficient for all other statistical non-significant maternal clinical/demographic data 

and C2 concentrations.  

Correlation between maternal demographics and serum C5a concentration: 

There was a significant correlation between gestational age and C5a concentration [r = -0.523 (p < 

0.05)] in normotensive HIV-positive patients. Additionally, a positive correlation co-efficient r= 

0.615 (p < 0.001) was noted between diastolic BP and C5a concentration preeclamptic HIV positive group, 

likewise a positive correlation was observed between systolic blood pressure and C5a concentration 

r = 0.483 (p < 0.05) in preeclamptic HIV-negative patients.  

Effect of C2 and C5a on each other: 

There was no statistically significant correlation of C2 on C5a concentration and vice versa (Table 

3).   
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Table 4. Spearman’s correlation coefficient (r) and its level of significance (p) for Serum concentration (pg/ml) of C2. 

Weight (kg) Gestational Age 

(weeks) 

Parity Systolic BP 

(mmHg) 

Diastolic BP 

(mmHg) 

Maternal Age 

(years) 

Gravidity 

r p r p r p r p r p r p r p 

Normotensive 

HIV-Positive  

0.133 0.644 -0.057 0.816 0.320 0.182 0.021 0.932 0.002 0.994 0.440 0.059 0.384 0.104 

Normotensive 

HIV-Negative 

0.090 0.715 0.209 0.390 0.001 0.997 -0.342 0.152 -0.463 0.046 * 0.314 0.191 -0.065 0.791 

Preeclamptic 

HIV-Positive 

0.049 0.842 -0.122 0.619 -0.011 0.965 -0.125 0.611 -0.051 0.836 -0.482 0.045 * -0.011 0.964 

Preeclamptic  

HIV-Negative 

0.187 0.444 0.150 0.541 0.400 0.090 -0.054 0.827 -0.483 0.036 * 0.157 0.522 0.440 0.060 

* p < 0.05

*** p < 0.001 
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Table 5. Spearman’s correlation coefficient (r) and its level of significance (p) for Serum concentration (pg/ml) of C5a. 

Weight (kg) Gestational 

Age (weeks) 

Parity Systolic BP 

(mmHg) 

Diastolic BP 

(mmHg) 

Maternal Age 

(years) 

Gravidity 

r p r p r p r p r p r p r p 

Normotensive 

HIV-Positive  

0.442 0.058 -0.523 0.022 * 0.163 0.505 -0.182 0.455 0.023 0.926 0.165 0.498 0.125 0.610 

Normotensive 

HIV-Negative 

0.206 0.397 0.318 0.185 0.341 0.154 -0.104 0.670 -0.447 0.055 0.362 0.127 -0.346 0.147 

Preeclamptic 

HIV-Positive 

-0.016 0.949 -0.027 0.912 -0.050 0.839 0.276 0.253 0.615 0.005 *** -0.260 0.297 0.047 0.849 

Preeclamptic 

HIV-Negative 

-0.159 0.516 0.291 0.227 -0.134 0.584 0.483 0.036 * -0.344 0.149 -0.155 0.526 -0.048 0.847 

* p < 0.05

*** p < 0.001 
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Discussion 

Our study demonstrates that a statistically significant down-regulation of serum C5a concentration 

in preeclamptic compared to normotensive pregnancies, irrespective of HIV status. This unexpected 

down-regulation of C5a in PE may be attributed to C5a being consumed faster than production, 

resulting in its rapid removal from circulation [36]. Alternatively, there may be a dysregulation of 

its receptor (C5aR) mediated affinity that facilitates signal transduction. Moreover, the knockdown 

of C5aR with small interfering RNA (siRNA) salvages endothelial cell migration and vessel 

formation [37].  

Normal pregnant women show mild systemic inflammation in response to the semi-allogenic fetus 

whilst PE there is excessive maternal inflammation [38]. Notably, the anaphylatoxin C5a represents 

fragments of activated complement proteins that are the main mediators of an inflammatory 

response. In contrast to our finding, previous studies have reported that both the mother and fetus 

are exposed to significantly higher levels of this pro-inflammatory anaphylatoxin in PE [39,40].  

A study conducted by Burwick et al. (2013) demonstrated that plasma concentrations of C5a and 

C5b-9 are exaggerated in PE, this results in the excretion of excess C3a, C5a, and C5b-9 in urine 

[36]. Richani et al. (2005) showed that plasma C5a concentration is elevated in normotensive 

pregnancies compared to non-pregnant women [12400 pg/ml (1200 – 87100 pg/ml) versus 4100 

pg/ml (900 – 13100 pg/ml) respectively] [16]. In contrast, plasma C5a levels are elevated in PE 

compared to normotensive pregnancies [(8200 pg/ml ± 1300 pg/ml) versus (4500 pg/ml ± 500] [40]. 

These results differ from our study in that C5a concentration in PE was significantly lower compared 

to normotensive pregnancies [4746 (3368) pg/ml versus 6563 (5484) pg/ml; p= 0.2259].  The 

downregulation of C5a in our study may be due to sample type, as we utilized serum; the small 

sample size, or due to the synergy of HIV infection and PE. Furthermore, renal clearance of these 

circulating complement proteins occurs, due to normal plasma clearance mechanisms being 

overwhelmed [41]. This suggests that complement dysregulation in ongoing disease arises mainly at 

the level of C5 [36] and maybe a possible explanation for the downregulation of C5a during gestation 

as observed in PE in our study. 

Notably, C5a may exert its damaging effect by inducing the release of the potent anti-angiogenic 

factor, soluble vascular endothelial growth factor receptor-1 (sVEGFR-1), also known as sFlt-1 [28]. 

It is widely accepted that PE is associated with a rise of this scavenger receptor, sFlt-1. This elevation 

together with a concurrent decline in VEGF and PlGF inhibits their beneficial effects on endothelial 

cell migration, tube formation and integrity [28]. Moreover, Govender et al. (2013) demonstrated 



57 

elevated serum sFlt1 and sEng in PE, regardless of HIV infection supporting an offset of the immune 

hyperactivity in PE [9]. sEng weakens TGF-β1 receptor transduction and prevents activation of the 

endothelial nitric oxide synthase 3 (eNOS) action, thereby promoting the development of 

hypertension.  However, our study found downregulation of C5a hence a decline of sFlt-1 in PE. 

This confounding result may be attributed to the small sample size in our study. Additionally, our 

contradictory results likely emanate from drug usage in PE. In a study by Burwick and Feinberg 

(2013), Eculizumab a monoclonal antibody inhibitor of C5 decreases the production of complement 

components C5a and C5b-9 and their downstream effects [42,43].  

Worldwide, C5 deficiency has been correlated with genetic defects. It is possible that a 

polymorphism of the C5 gene may be involved in C5a dysregulation, in fact, a complement C5 gene, 

c.754G>A:p.A252T mutation has been demonstrated in the Western Cape, South Africa in Black

African patients infected with meningococcal disease [44-46]. A single nucleotide polymorphism in 

maternal C5, C5a and fetal CD55 and CD59 may constitute independent risk factors for PE 

development.  It would be interesting to examine the C5a gene in Black African women of isiZulu 

origin in South Africa.

Based on HIV status, our study reports statistically similar C5a levels between HIV-negative 

compared to HIV-positive women, regardless of pregnancy type. It is widely accepted that this 

pattern recognition component is activated during HIV infection because C5a serves to attract 

dendritic cells and macrophages to sites of HIV entry [31]. Of note, C5aR1 is critical for viral entry 

[47]. In fact, the targeted reduction of C5aR1 expression reduces HIV infection by 50% because 

C5aR1 acts as an enhancer of CCR5-mediated HIV entry into macrophages. It is therefore plausible 

that a dysregulation of C5, C5aR1 concentration, or ART usage may have contributed to the similar 

C5a concentrations in both groups. 

Nonetheless, C5a has a small amphipathic configuration with an antiviral action [48,49] that has 

been shown to block herpes simplex virus 1 (HSV-1), HSV-2, hepatitis C, and HIV-1 by disrupting 

the integrity of viral membranes [50-52]. Also, HIV induces the cleavage of C5 to generate the 

anaphylatoxin C5a, which attracts immature dendritic cells (DC) to promote viral amplification and 

dissemination [31]. A plausible explanation for the similarity between HIV-negative and HIV-

positive groups in our study may be the inadequate binding of C5a to complement component 5a 

receptor (C5aR), mediated by antiretroviral therapy [31].  
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More specifically, the removal of C-terminal arginyl residues from C5a by the enzyme 

carboxypeptidase N converts it into a proinflammatory form called desArg C5a [53]. 

Desarginated C5a (C5adesArg) is a potent stimulatory factor that primes monocyte-derived 

macrophages for HIV entry. Furthermore, kinetic analyses of HIV replication have shown that 

exposure to C5a leads to the acceleration of HIV infection in macrophages [27].  

Moreover, C5a acts interdependently in the induction of pro-inflammatory cytokine release of 

Tumour Necrosis Factor-alpha (TNF-α), IL-1, and Interleukin 6 (IL-6) by monocytes and 

macrophages [54,55]. The increase of pro-inflammatory cytokines TNF-α and IL-6 have been 

reported in the presence of C5a, both liable for promoting HIV-1 infection and regulation [27,30]. 

Maharaj et al. (2017) reported a decrease of IL-2 and TNF-α concentrations in PE and a lower IFN-

γ and IL-6 concentrations in HIV-infected preeclamptics receiving HAART relative to uninfected 

preeclamptic women. HIV infection together with HAART lowers the production of inflammatory 

cytokines during pregnancy in both successful and preeclamptic pregnancies [56]. It is plausible to 

hypothesize that C5a production has a directly proportional effect on the release of cytokine TNF-α 

and IL-6. Also, since these cytokines are reduced in HIV-infected patients, one may deduce that this 

may be attributed to a lower C5a level. 

In addition, we demonstrate a down-regulatory trend (non-statistical significance) of C2 

concentration in PE compared to normotensive pregnant women, irrespective of HIV status. This 

observation in PE is consistent with previous reports where C2 polymorphisms and its deficiency is 

linked to chronic inflammatory conditions such as SLE [57,58]. The clinical manifestations of PE 

mimic that of SLE. Systemic lupus erymatosus has a similar exacerbated immune microenvironment 

like PE, where a 10% penetrance of C2 deficiency occurs [34]. Moreover, in pregnant women with 

SLE, there is complement-mediated injury, predisposing them to a greater risk of PE development, 

placental insufficiency, miscarriage and fetal growth restriction [32].  

It is widely accepted that the complement cascade is activated in PE via the LP and/or the CP [59]. 

Activation of these pathways are impaired in C2 deficient patient where during periods of active 

disease, serum complement activity is reduced emanating from a low expression of CP components 

(C1q, C2, C4) [60].  Also, C2 deficiency predominates in females [61]. Of note, hepatocytes 

synthesize 90% of plasma complement components [62]. Since liver enzyme abnormalities occur in 

approximately 10% of pregnant women with PE [63], it is plausible that the C2 and C5a 

downregulation in our study may be attributed to liver dysfunction in the PE cohort. In fact, in C5 

deficient mice, the administration of murine C5 or C5a restores hepatocyte regeneration while 

obstruction of C5aR prevents hepatocyte proliferation [64]. 
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Also, it is plausible to hypothesize that a domino effect takes place at the initiator part of the 

complement pathway prior to the generation of C3 convertase coupled with a progressively increased 

terminal complex formation [59]. In PE, activation of complement pathway by autoantibodies results 

in the production of C3b which sets in motion the powerful amplification loop of the AP [65]. C3b 

deposition, the release of C3a and downstream mediators, C5b-9 and C5a generate effector activity 

of complement function [65]. Moreover, complement component C1q plays a crucial role in 

trophoblast migration and spiral artery remodeling, contributing to placental development [66,67]. 

Notably, mice deficient in C1q are predisposed to PE development [28]. C1q deficient mice develop 

the characteristic features of human PE: hypertension, proteinuria, and glomerular damage [68]. 

From existing research, we know that the frequency of C1q, C4 deficiencies occur twice as often in 

preeclamptic patients compared with normal controls [69]. This may have a direct relation to C2 

deficiencies observed as C2 is the split product of C1 and C4 [70]. 

Furthermore, a novel human complement regulatory receptor called C2 receptor inhibitor tri-

spanning (CRIT), occurs on hemopoietic cells and on other tissues in the body.  C2 binds to the N-

terminal extracellular domain 1 of CRIT, it blocks C2 cleavage and prevents C3 convertase 

formation and the resultant complement-mediated inflammation [71].  It is possible that the non-

statistically significant down-regulatory trend in our study may be due to the regulator CRIT and the 

subsequent inhibition of C3 convertase formation. 

Based on HIV status regardless of pregnancy type, our study demonstrated an upregulated non-

significant trend of serum C2. These results are similar to that of Mahajan et al. (2017) who reported 

in vitro studies of HIV-1 infected astrocytic cell lines and primary astrocytes showed significant 

upregulation of the complement factors C2 and C3 [72]. Huson et al. (2015) reported increased C3 

and C1q-C4 levels in asymptomatic patients with HIV infection compared to healthy controls [35]. 

Even though an upregulated trend was observed in our study, the non-statistical significance found 

may be attributed to HAART therapy, which the standard treatment for all HIV-positive patients in 

South Africa (SA). We can deduce that there is a possibility that HAART lowers C2 levels to re-

instate immune response [73] and therefore suggest further investigations on the effects of HAART 

on C2 expression. 

Besides, HIV-1 increases mRNA levels of C2 in an astrocytic cell line U373 [74]. This regulation of 

C2 production may be attributed to HIV viral proteins Nef, Rev, and Tat on the complement promoter 

protein synthesis in the host cell. Furthermore, structural proteins such as gp120 and gp41 may also 

regulate HIV expression [75]. Also, the modulation of C2 production may be a secondary result of 

HIV-induced transcription factor NFκB, the main controlling factor in viral transcription.  
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In our study, we report a moderate correlation co-efficient between gestational age (r=-0.523), 

diastolic (r=0.615) and systolic blood pressure (r=0.483) with C5a concentration in normotensive 

HIV positive, preeclamptic HIV positive and preeclamptic HIV negative respectively. High blood 

pressure has been previously correlated with elevated C5a in humans [76]. Notably, the development 

of high blood pressure is also associated with the development of vascular damage [77,78]. In our 

study, gestational age was negatively correlated with C5a concentration [r = -0.523 (p < 0.05)] in 

normotensive HIV-positive group. Whilst normal pregnancy is associated with a generalized 

complement stimulation, gestational age does not correlate with the anaphylatoxin C5a [16].  

We also report a moderate negative correlation between diastolic blood pressure and C2 

concentration in the normotensive HIV-negative [r = - 0.463 (p < 0.05)] and preeclamptic HIV-

negative [r = - 0.483 (p < 0.05)] participants. In hypertension, C3, C4 and C5 levels, all by-products 

of C2 correlate with development of hypertension [77]. C2 downregulation has been previously 

linked with Age-related Macular Degeneration and genetic polymorphisms in people of Indian 

ethnicity [79]. Maternal age is a predisposing factor to PE development [80]. In our study, there was 

no statistically significant correlation of the effect of C2 concentration on C5a and vice versa.  

Limitations 

Limitations of this study may have influenced analyte expression include the small sample size, all 

women who received ART such as HAART, and the duration of HAART.  

Conclusion 

This novel study reports a significant downregulation of C5a in PE. This observation suggests a loss 

of regulation of complement activation, dysregulation of signal transduction and/ or polymorphisms 

of C5a in women of African descent. We also demonstrate a non-significant distribution of C5a and 

C2 expression by HIV status, which may be attributed to HAART therapy. Notably, the 

dysregulation of complement activation will impact the host innate defence, enhancing placental and 

fetal injury.  

Further studies should include a large cohort that investigates C2, C5a, C5a-desArg, C5aR1 and 

C5aR2 together with pro-inflammatory polypeptides in the development of PE. Single nucleotide 

polymorphisms investigations of these components are required to prevent premature delivery and 

enable better clinical management. 
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3.0 SYNTHESIS 

Preeclampsia (PE) and Human Immunodeficiency Virus (HIV) infection are the leading causes of 

maternal morbidity and mortality in South Africa (SA). In the province of Kwa-Zulu-Natal, the 

prevalence of PE is 12% (Saving Mothers Report, 2017). Moreover, SA is considered the epicentre 

of the HIV epidemic with 13.0% of its population living with HIV infection (Stats SA, 2020). One-

fifth of young females of childbearing age are HIV infected (Stats SA, 2019) hence the incidence of 

HIV infection comorbid with PE is high. 

The opposing neutralised immune responses of HIV infection and PE are, however, are affected by 

antiretroviral therapy (ART) that serves to reconstitute the immune response (Pillay et al., 2019). 

The exact pathophysiology of PE requires clarity (Thakoordeen et al., 2018) however, immunologic 

maladaptation particularly of the complement system is one of the pathogenic developments of PE 

(Khan et al., 2016). In light of the high prevalence of HIV infection and PE in SA; and the paucity 

of evidence on the immunological dysregulation of the complement system, the complement 

component 5a (C5a) and complement component 2 (C2) was evaluated in the synergy of HIV 

infection and PE using the Bio-Plex multiplex immunoassay procedure.  

3.1 Pregnancy Type 

C2: The main finding of our study demonstrated a statistical non-significant down-regulatory trend 

of C2 concentration in PE compared to normotensive pregnant women, regardless of HIV status. C2 

is cleaved by C1 into C2a and C2b. C2a is an important component of C4b2a, the C3 cleaving 

enzyme of the classical pathway. Thus, C2 plays a vital role in generating the biological activity of 

C3 and C5 via C9 (Walport, 2001).  

It is important to note that C2 deficient individuals have a genetic defect at 28-bp deletion at the 3’ 

end of exon 6, this deletion causes a termination of transcription (Johnson et al., 1992; Sullivan et 

al., 1994).  and commonly occurs in Caucasian’s of European descent at a frequency of 0.05-0.007 

(1:10000 homozygosity) This deficiency is the most common of the genetically determined 

complement deficiencies in Caucasians and the gene frequency of this deletion is between 0.05 and 

0.007 in individuals of European descent, which translates into a prevalence of homozygotes of 

approximately 1 : 10 000.47,48 (Rohrer et al., 2019). Moreover, this deletion is associated with a 

conserved MHC haplotype consisting of HLA-B18, C2*Q0, Bf*S, C4A*4, C4B*2, and Dr*2.45–47 

(Winkelstein and Sullivan, 2010) 
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However, the non-significant C2 deficiency (down regulatory trend) observed in our study is novel 

as it occurred in isiZulu women of African descent. Further genetic studies are required to elucidate 

if this genetic defect occurs in an African population.  

Also, hepatocytes are responsible for the biosynthesis of 90% of plasma complement components 

(Morgan and Gasque, 1997). Since liver enzyme abnormalities occur in approximately 10% of 

pregnant women with PE (Hammoud and Ibdah, 2014), it is plausible that the C2 deficiency in our 

study may be attributed to liver dysfunction in the PE cohort.  Unfortunately, we do not have clinical 

data confirming the number of PE patients with liver dysfunction in our study. 

The results of our study are also corroborated by other studies who reported that C2 deficiency is 

associated with an increased risk of developing immune disorders such as systemic lupus 

erythematosus (SLE)  (Jönsson et al., 2007; Truedsson et al., 2007). Between 10 and 20% of 

individuals with C2 deficiency develop an upregulation of their immune response; notably PE 

represents an exaggerated inflammatory response (Buyon et al., 1986). In addition, females with C2 

deficiency are more likely to have an elevated immune response than their male counterparts 

(Jönsson et al., 2007; Truedsson et al., 2007). Notably, up to 30% of all lupus pregnancies are 

complicated by PE development (Erkan and Sammaritano, 2003; Bramham et al., 2011; Schramm 

and Clowse, 2014).  

During pregnancy, T-cells play an important role in modulating the maternal immune system as it 

adapts to a semi-allogeneic fetus (Santner-Nanan et al., 2009). Fewer regulatory T-cells (Treg) and 

increased T helper-17 cell (Th17) activity have been found in women with PE (Wong et al., 2008; 

Becker-Merok et al., 2010; Tower et al., 2013).  Also, C2 deficient patients have a low titre of 

antinuclear antibody and antibodies to double-stranded DNA, whereas the presence of anti-Ro 

antibodies in C2 deficient SLE patients is greater than in non-C2 deficient patients (Provost et al., 

1983; Hauptmann et al., 1988). 

C5a: Our study also reports a significant downregulation of C5a concentration in PE compared to 

normotensive pregnant women, regardless of HIV status. This unexpected decrease of C5a observed 

in PE may be attributed to the strong affinity of C5a to its receptors; therefore, being cleared from 

circulation faster than production (Burwick et al., 2013). Notably, both C3a and C5a bind to their 

respective receptors on placental trophoblast cells and as a result of cell damage, release vasoactive 

substances into circulation (Parrish et al., 2010; LaMarca et al., 2011; Wang et al., 2012). This in 

turn induces excessive local placental inflammatory responses and promotes the onset of PE 

development.  
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C5 deficiency has been correlated with genetic defects worldwide. It is possible that a polymorphism 

of the C5 gene may be involved in C5a dysregulation, in fact, a complement C5 gene, 

c.754G>A:p.A252T mutation has been demonstrated in the Western Cape, South Africa in Black

African patients infected with meningococcal disease (Aguilar-Ramirez et al., 2009; López-Lera et 

al., 2009; Schejbel et al., 2013). A single nucleotide polymorphism in maternal C5, C5a and fetal 

CD55 and CD59 may constitute independent risk factors for PE development.  

It is important to note that plasma C5a levels are elevated during normal pregnancies compared to 

non-pregnant women respectively [12400 (1200 – 87100) versus 4100 (900 – 13100) pg/ml] 

(Richani et al., 2005).  Also, maternal plasma C5a levels are elevated in the pathological state of 

preeclampsia compared to normotensive pregnancies [(8200 pg/ml ± 1300) versus (4500 pg/ml ± 

500] (Denny et al., 2013). C5a in our study was downregulated in preeclampsia compared to

normotensive pregnancies [4746 (3368) pg/ml] versus [6563 (5484) pg/ml; p= 0.2259]; albeit non 

statistically non-significant in serum samples. Notably, the anaphylatoxin C5a represents fragments 

of activated complement proteins that are the main mediators of inflammatory response. Normal 

pregnant women show mild systemic inflammation in response to the semi-allogenic fetus whilst in 

PE there is excessive maternal inflammation (Chaouat et al., 2013). The downregulation of C5a in 

our study may represent variation in the sample, as we utilized serum.  

In contrast to our findings, Wang et al., (2012), also demonstrated that the levels of C3a and C5a 

were significantly increased after the onset of PE. After the onset of PE, the complement system is 

activated due to local placental ischaemia and hypoxia, that produce large amounts of C3a and C5a, 

and the natural resultant cascade of the complement pathway accelerates the progression of PE 

development (Wang et al., 2012). Ye et al., (2016) also reported increased concentration of C3a in 

early-onset PE suggesting that complement activation does not progress beyond C3 activation, 

possibly because of step-specific regulators in the activation sequence. Complement activation in 

pregnancy is regulated by regulatory proteins such as CD46, CD55, and CD59 (Tedesco et al., 1993; 

Ye et al., 2016). In PE, expression of these regulators is reduced, leading to complement activation 

with resultant anaphylatoxin generation and a resulting exacerbation of the proinflammatory 

maternal-fetal milieu (Denny et al., 2013). 

It is also plausible to hypothesize that the down-regulation of C5a in our study may be caused by 

preeclamptic treatment. With evidence of complement activation, complement-targeted therapy is 

an intriguing prospect. Eculizumab is a medication approved by the US Federal Drug Administration 

for the treatment of PE (Krysiak et al., 2015). It is a recombinant humanized IgG2/IgG4 kappa 

monoclonal antibody that selectively targets and inhibits the terminal portion of the complement 
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cascade, by binding to C5 thereafter inhibiting the downstream effects of C5a and C5b (Alrahmani 

and Willrich, 2018). 

3.2 HIV status 

C2: In our study, we report an up-regulated trend of C2 concentration (albeit non-significantly) in 

HIV-positive compared to HIV-negative women, irrespective of pregnancy type. These results are 

corroborated by the findings of Dierich et al., (1993), who using size exclusion chromatography 

showed that the complement system is activated via the alternate pathway when HIV-1 infected H9 

cells are incubated in fresh human serum (Dierich et al., 1993). They reported that C1q, rather than 

C1s directly binds to HIV-1. This suggests that HIV-1 binds to C1 via C1q, thereby inducing 

activation of C1, which will catalyse the activation of C4 and C2, and eventuating in the activation 

of C3 in the cascade  (Dierich et al., 1993).  

In our study, the level of C2 was similar between the HIV-infected and HIV uninfected groups. This 

non-significant down-regulatory trend may be attributed to our small sample size and/or to the effect 

of ART specifically Highly Active Antiretroviral Therapy (HAART). HAART down-regulates C2 

concentrations to re-establish immune response (Pillay et al., 2019). Furthermore, C2 deficiency has 

been associated with increased susceptibility to blood-borne infections albeit pyogenic organisms 

(Jönsson et al., 2005; Jönsson et al., 2007).  

C5a: In our study, we also report a statistically non-significant down-regulatory trend of C5a 

concentration between HIV infected compared to HIV uninfected women. Similar to C2, the 

statistical non-significance of C5a may also be attributed to ARV’s, a standard of care practice for 

HIV infection in SA. Notably, C5a via its receptor (C5aR1) facilitates CCR5-mediated HIV entry 

into macrophages (Moreno-Fernandez et al., 2016). Studies have also shown that complement 

opsonization facilitates viral infection of T and B cells, thymocytes and macrophage cultures (Bajtay 

et al., 1998; Thielens et al., 2002; Bánki et al., 2005). 

More specifically, the removal of C-terminal arginyl residues from C5a by the enzyme 

carboxypeptidase N converts it into desArg, a pro-inflammatory form (Zwirner et al., 1998). 

Desarginated C5a (C5adesArg) is a potent stimulatory factor that primes monocyte-derived 

macrophages for HIV entry. Furthermore, kinetic analyses of HIV replication have shown that 

exposure to C5a leads to the acceleration of HIV infection in macrophages (Kacani et al., 2001). 

Furthermore, the increased secretion of pro-inflammatory cytokines correlates with higher 

susceptibility of macrophages to HIV infection after treatment with C5a and C5adesArg (Kacani et al., 

2001). PE is also associated with a heightened inflammatory response (Whitelaw et al., 2014). Also, 

pro-inflammatory cytokines such as tumour necrosis factor-alpha (TNF- α) and interleukin 6 (IL-6) 
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have been shown to act in a positive feedback loop on HIV replication. TNF-α and IL-6 increase 

HIV replication and HIV infection of monocytic cells which in turn further increases the secretion 

of these cytokines, thereby promoting a chemotactic and proinflammatory microenvironment 

(Griffin et al., 1989; Merrill et al., 1990).  

Moreover, a study by Maharaj et al., (2017) reported a decline in cytokine IL-2 and TNF-α levels 

with a concurrent decline of cytokines IFN-γ and IL-6 in HIV-positive compared to HIV-negative 

pre-eclamptic patients on receipt of HAART. It is plausible to assume that HIV infection combined 

with HAART downregulates the concentration of inflammatory cytokines in both uncomplicated 

and preeclamptic pregnancies (Maharaj et al., 2017). We can assume that the release of cytokine 

TNF-α and IL-6 is dependent on the production of C5a, hence the low concentration of this 

complement component in our study. 

In our study, there was no statistically significant correlation of C2 on C5a concentration and vice 

versa. 

3.3 Across all groups 

In the synergy of HIV infection and pregnancy, no statistical significance was noted for both C2 and 

C5a.  

3.4 Correlation 

The strength and the direction of the linear relationship between maternal demographics versus C2 

levels were absent except for a moderate negative correlation between diastolic blood pressure and 

C2 in the normotensive HIV-negative [r = - 0.463 (p < 0.05)] and preeclamptic HIV-negative [r = - 

0.483 (p < 0.05)] participants. This implies that C2 downregulation/deficiency correlates with an 

increase in blood pressure, supportive studies show that non-pregnancy-related hypertension is 

associated with high circulating levels of C3, C4 and C5 (Ruan and Gao, 2019).  

In our study we also observed a negative correlation of C2 concentration [r = - 0.482 (p < 0.05)] with 

maternal age in preeclamptic HIV-positive patients. Whilst not in pregnancy a previous study 

investigated the association of C2 with age-related Macular Degeneration in an Indian cohort (Kaur 

et al., 2010). The latter study illustrates that 3 single nucleotide polymorphisms in the C2 gene were 

associated with a reduced risk of Age-related Macular Degeneration (Kaur et al., 2010). Age is a 

risk factor for PE development (Whitelaw et al., 2014). 
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Moreover, our study reports a relationship between diastolic blood pressure and C5a [r= 0.615 (p < 

0.001)] in preeclamptic HIV positive women, likewise between systolic blood pressure and C5a in 

preeclamptic HIV-negative patients [r = 0.483 (p < 0.05)]. Our findings are corroborated by Zhang 

et al. who reported a correlation between C5a and high blood pressure in humans (Zhang et al., 

2014). This activation of this anaphylatoxin promotes the progression of vascular injury and the 

development of hypertension (Ruan and Gao, 2019; Wenzel et al., 2020). In our study, gestational 

age was negatively correlated with C5a concentration [r = -0.523 (p < 0.05)] in normotensive HIV-

positive group. In contrast despite the generalized complement activation in normal pregnancy, the 

concentration of C5a was not affected by gestational age (Richani et al., 2005).  

3.5 Limitations 

Limitations of this study is the small sample size and the fact that all HIV participants were treated 

with ART’s, the duration of which was not known.  

3.6 Conclusion 

This novel study demonstrates a statistically significant downregulation of the anaphylatoxin C5a 

within the serum of preeclamptic compared to normotensive pregnant women, regardless of HIV 

status. C5a is a pro-inflammatory polypeptide generated in response to complement activation. The 

down-regulation in our study suggests a loss of regulation of complement activation in the hypoxic 

oxidative stressed microenvironment of PE.  It may also reflect signal transduction inhibition. In this 

study, we also report no statistical significance of both C5a and C2 concentration between HIV-

infected versus uninfected women, regardless of pregnancy type. This similarity may be attributed 

to HAART, duration of ARV usage and/or PE drug management. It is also plausible that mutation 

in genes and encoding C2 and C5a may be directly associated with PE development. Notably, host 

innate defence is impacted by the dysregulation of complement activation, this is further responsible 

for the augmentation of placental and fetal injury. 

3.7 Future Direction 

Further studies should include a large cohort that investigates C5a, C5a-desArg, C5aR1 and C5aR2 

together with pro-inflammatory polypeptides in the development of PE. Large-scale prospective 

studies are required to establish the role of C5a and C2 in the synergy of HIV and PE, thereby 

preventing premature delivery and enabling better clinical management of the mother and neonate. 
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Sample Size 

Post consultation with an institutional biostatistician (Ms. Fikile Nkwanyana), sample size was 

calculated. To detect a moderate effect size of 0.66 between two groups normotensive and 

preeclamptic women or HIV positive and HIV negative assuming equal groups (n=38 per group), a 

sample size of 76 pregnant women was required. To compare four groups, normotensive (HIV+ vs 

HIV-) and preeclamptic (HIV+ vs HIV-), a sample size of 19 in each group was needed to detect a 

large effect size of 0.95.  All calculations are with 80% power and 95% probability and were done 

using G*Power statistical software.  

Study population 

A study population (n=76; Figure 4.1) was recruited from a large regional hospital, consisting of 38 

normotensive and 38 preeclamptic women. Both groups are further stratified by HIV status into HIV-

positive preeclamptic (n=19), HIV-negative preeclamptic (n=19), HIV-positive normotensive 

pregnancy (n=19) and HIV-negative normotensive pregnant women (n=19).  

Inclusion Criteria: this study group consisted of primigravid and multigravida participants, 

diagnosed with PE (≥ 140/90 mmHg and/or the presence of a single incidence of proteinuria) [4], 

and participants with a normotensive pregnancy serving as the control group. All HIV-positive 

women received antiretroviral therapy (ART). 

Exclusion Criteria: women with polycystic ovarian syndrome, intrauterine death, cardiac disease, 

chorioamnionitis, unknown HIV status, eclampsia, sickle cell disease, active asthma that requires 

medication during the gestational period, abruption placentae, chronic renal disease, patients who 

have been declined from participation, systematic lupus erythematosus, pre-existing seizure 

disorders, and thyroid disease were not included in the study group.  
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Figure 4.1:  Schematic illustration of the study population 

Data and Sample Collection Methods and Tools 

Patient demographic data were obtained in the labour ward and antenatal clinic.  Data was entered 

into data forms and transposed onto an excel spreadsheet. This data comprised of maternal age, 

gestational age, HIV status, CD4 count, HIV treatment, gravidity, parity, weight, height, blood 

pressure, proteinuria, obstetric and neonatal outcomes as well as neonatal and maternal 

complications. All patient identities were replaced with codes. Reports on the study protected 

confidentiality and all participants remained anonymous.  

Sample type 

Blood samples were previously collected in EDTA-coated vacutainer tubes by the research nurse 

during gestation and centrifuged at 3000 g for 10 minutes at 20°C. Serum was aliquoted and stored 

at -80°C until required.  

Principles of the Multiplex Immunoassay 

The Bio-Plex® multiplex immunoassay system enables the multiplexing of different analytes (C2 

and C5a) within a single sample. This technique involves coloured bead sets created by the use of 

two fluorescent dyes at specific ratios. These beads are then conjugated with a reagent particular to 

a specific bioassay. The technology enables multiplex immunoassays in which one antibody to a 

specific analyte is attached to a set of beads with the same colour, and the second antibody to the 

Study Population
(n=76)

Normotensive
(n=38)

HIV-

(n=19)

HIV+
(n=19)

Preeclamptic
(n=38)

HIV-

(n=19)

HIV+
(n=19)

https://www.bio-rad.com/en-us/category/bio-plex-multiplex-immunoassay-system?ID=85824182-db2a-4c6e-ac82-4e07dd9ab904
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analyte is attached to a fluorescent reporter dye label. The use of different coloured beads enables 

the simultaneous multiplex detection of many other analytes in the same sample. (Figure 1). 

d

Figure 4.2. Multiplex immunoassay technology. Beads are coloured internally with two different fluorescent 

dyes (red and infrared). Different concentrations of red and infrared dyes are used to generate up to 100 distinct 

bead regions. Each bead region is conjugated to a specific target analyte (a) followed by binding with a 

biotinylated detection antibody (b), a reporter dye, streptavidin-conjugated phycoerythrin (c) and an analysis 

(d).  

During data acquisition, the contents of each microplate well are drawn into the array reader, 

depending on the light-emitting diode (LED)/image-based analysis in the Bio-Plex® MAGPIX™ 

multiplex reader and magnetically immobilized. The software recorded the fluorescent signals 

simultaneously for each bead, translating the signals into data for each bead-based assay (Figure 4.2 

d). 
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Bio-Plex Multiplex (Bio-Rad) Immunoassay 

A MILLIPLEX MAP Human Complement Panel 1 - Immunology Multiplex Assay was performed 

according to the manufacturer’s instructions (Millipore by Sigma-Aldrich, catalog no: 

HCMP1MAG-19K). Blank captured antibody with magnetic beads, C5a and C2 samples, antigen 

samples (1:4 dilution), and standards (serial dilution) were incubated. A triple wash eliminated any 

unbound substances. Prior to the incubation of the assay plate, a biotinylated detection antibody was 

added. Once the incubation period was over. A triple wash using wash buffer was once again 

performed to ensure the removal of unbound biotinylated detection antibodies. Thereafter, into each 

well, 1x streptavidin-phycoerythrin (SA-PE) was added. The plate was thereafter incubated for 10 

min at 850 ± 50rmp in a dark room. The assay plate was washed 3 times with wash buffer and 

resuspended in assay buffer for 30 seconds at 850 ± 50rmp. Lastly, a Bio-Plex®MAGPIXTM 

Multiplex Reader (Bio Rad Laboratories, Inc., USA) was used to read the assay plate. 

Figure 4.3. Bio-Plex Multiplex immunoassay procedure. 

Statistical Analysis 

Data were statistically analysed utilizing GraphPad Prism 5.00 for Windows (GraphPad Software, 

San Diego California USA). The Kolmogorov Smirnov normality test was used to check for 

parametric or non-parametric distribution. Non-parametric data are represented as median and 

interquartile range. Statistical significance according to pregnancy type (preeclamptic vs 
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Assay Buffer

per well

Add 25 μL Standard to appropriate 
wells

Add 25 μL Assay Buffer to 
background and sample wells

Add 25 μL matrix solution to 
background, standards, and control 

wells

Add 25 μL 1:200 diluted serum or 
plasma to sample wells

Add 25 μL Beads to each well

Incubate (16-18 hrs at 2-8'C), 
Wash 3x with 200μL wash 

buffer

Add 50 μL 
Detection 

Antibodies per 
well

Incubate

( 1hr at room 
temperature) 

Add 50 μL 
Streptavidin-

Phycoerythrin per 
well

Incubate (1 hr at room 
temperature), Wash 3x 
with 200μL wash buffer

Add 150 μL 
Sheath Fluid per 

well

https://www.selectscience.net/suppliers/the-life-science-business-of-merck-kgaa,-darmstadt,-germany,-operates-as-milliporesigma-in-the-us-and-canada?compID=9259


118 

normotensive) and HIV status (negative vs positive) was determined using a Mann-Whitney’s U test. 

The Dunn’s Multiple Comparison post hoc test and the Kruskal-Wallis test determined statistical 

significance across all groups. A p-value of <0.05 was considered to be statistically significant. 

Spearman’s Rank Correlation Coefficient (r) was calculated to determine the relation between 

clinical/ demographic data versus C2 and C5a concentrations across the study population ( -1 and 

1).  
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Appendix 3 – Standard curve C2 
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Appendix 4 – Standard curve C5a 
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