
PLANT HORMONE HOMEOSTASIS AND THE
CONTROL OF 'HASS' AVOCADO FRUIT SIZE

by

Nicolette Jane Taylor

Submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

(Horticultural Science)

in the

School of Agricultural Sciences and Agribusiness

Faculty of Science and Agriculture

University of Natal

Pietermaritzburg

July 2002



OECLARATION

I hereby declare the research work reported in this dissertation is the result of my own

investigation, except where acknowledged.

Signed: 41~iilol;l.N: _
Nicolette Jane Taylor

We certify that this statement is correct.

Signed:

Professor A.L.P. Cairns

Supervisor

Signed:

Professor A.K. Cowan

Signed:

Pr fessor J. van Staden

Co-supervisor

(i)



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to the following people:

Prof. AK. Cowan for being an excellent supervisor and mentor. Thank you for teaching me so much

concerning good scientific method and the practice of science.

Prof. A L. P. Cairns for accepting the task of being my supervisor at a late stage in the project and then

proceeding to give so generously of his time and resources.

Prof. J. van Staden for always finding time to answer my questions and allowing me to complete some

work in the Research Centre.

The South African Avocado Growers' Association, The University of Natal and The National Research

Foundation for providing financial support for the research presented in this dissertation.

Mr Rusty Roodt and Everdon Estates for unlimited access to experimental orchards during the course

of the project and the very kind provision of fruit.

Or Wendy Burnett for much appreciated help with regards to the cytokinin bioassays and the members

of the Research Centre for Plant Growth and Development for making me feel so welcome.

Or Isa Bertling and the hort support staff over the years - Teri Dennison, Liz Branken, Frances Login

and Debbie Titlestad. Special thanks to Paul Hildyard for providing constant help, humour and insanity _

a rare rose amongst the thorns.

To all my fellow physiology lab rats over the years Eve Richings, Bob Kalala, Dudley Mitchell, Renate

Oberholster and especially Ryan Cripps who were always exbellent company and great fun. The rest of

the hort postgrads: Max Hildebrand, Warren van Niekerk, Simon Radloff, Viviane Deigna Mockey,

Andrew Dominy, Thabiso Lebese, Zelda van Rooyen and Molipa Mosoeunyane. Tracey Campbell for

help during the very long "harvesF days.

The 5fm DJ's for constant company and excellent music dUring the long hours in Lab 320 - they made

it all bearable.

My family. Thank you Colleen for proof reading this thesis. Thank you Kerry for always being there for

advice or just a chat. Thank you Mom and Dad for your understanding and patience during my pursuit

of the never-ending student career and for tolerating my presence at home for such a long time. Thank

you for always allowing me to select my own path in life.

(ii)



Down how many roads among the stars must

man propel himself in search of the final

secret? The journey is difficult, immense,

at times impossible, yet that will not

deter some of us from attempting it. .

We have joined the caravan, you might say,

at a certain point, we will 'travel as far

as we can, but we cannot in one lifetime

see all that we would like to see or to

learn all that we hunger to know.

Loren Eiseley

The Immense Journey

"Whatever I am now it is all because God poured out such kindness and grace upon

me"

1 Cor. 15:10
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ABSTRACT

The 'Hass' avocado produces two distinct phenotypically different populations of fruit, Le.

normal and small fruit. The small fruit variant is characterized by early seed coat senescence

that results in arrested growth, due to dramatically reduced cell cycle activity. This system has

been used to study the metabolic control of fruit growth for two reasons. Firstly, the 'Hass'

avocado is a major export crop in South Africa and unmarketable small fruit cost the industry

millions of rands per season. Secondly, in the absence of evergreen tree-crop mutants with

which to dissect controlling mechanisms contributing to the control of final fruit size, the 'Hass'

avocado and its small fruit variant provides an ideal system to investigate the physiology,

biochemistry and molecular biology of fruit growth in subtropical species. A detailed study was

conducted to probe the contribution of hormones in the control of final fruit size by comparing

and contrasting tissue distribution and content of hormones in developing 'Hass' avocado and

its small fruit variant. In addition the proposal that changes in hormone homeostasis occur as

a result of differences in the allocation of the molybdenum cofactor (MoCo) and changes in

the activity of xanthine dehydrogenase (XDH) and the aldehyde oxidases (AO) involved in

abscisic acid (ABA) and indole-3-acetic acid (IAA) metabolism was evaluated.

Activity of XDH, xanthoxal (XAN) oxidase, indole acetaldehyde (lA-aid) oxidase and cytokinin

oxidase (CKOX) was related to tissue content and composition of IAA and ABA. Comparisons

between normal and small fruit revealed that under conditions where CKOX is elevated, the

increased adenine produced inhibits XDH activity, which leads to elevated activity of the AOs

involved in ABA and possibly IAA biosynthesis as a result of increased MoCo allocation to

these enzymes. Further analyses revealed that both cytokinin (CK) and auxin elevates CKOX

activity and that adenine and CK do indeed inhibit XDH activity, which leads to increased AO

activity. In addition, application of CK to normal fruit increased IAA in mesocarp tissue but

reduced IAA content of seed tissue and reduced ABA in mesocarp tissue but had no effect on

ABA in seed tissue. Cytokinin oxidase therefore contributes to the regulation of ABA and IAA

metabolism during plant organ growth by modulating the activity of XDH.

Low XDH and lA-aid oxidase activity together with high XAN oxidase and CKOX activity early

in fruit development combine to reduce both elongation and radial growth, which results in the

appearance of the 'Hass' small fruit phenotype. This event was associated with high ABA and

low IAA in seed tissue of small fruit, but high ABA and IAA in seed coat and mesocarp tissue

of these fruit. Thus, whilst low IAA in seed tissue is associated with reduced growth the .
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reverse is true in seed coat and mesocarp tissue where high IAA retards tissue growth.

Calculation of CKlABA and CKlIAA ratios revealed that a decrease in these ratios was found

in mesocarp tissue of small fruit. However, in seed tissue of small fruit both IAA and ABA were

decreased relative to CK. The maintenance of the correct hormonal balance in avocado fruit

thus ensures the continuation of cell division cycle activity, with any changes responsible for

the high incidence of a small fruit variant in the 'Hass' avocado.
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1 JNTRODUCTION

1.1 THE AVOCADO

1.1.1 Fruit anatomy and growth

The avocado (Persea americana Mill.) fruit is a berry, consisting of two distinct tissues viz. the

seed and pericarp. The seed comprises three tissues, the embryo, endosperm and seed coat.

Most of the embryo consists of two large cotyledons, which surround a centrally attached

_ embryonic axis. The cotyledons are formed of undifferentiated parenchyma tissue interspersed

with idioblasts. Starch is the main storage material in the cotyledons and is present in great

quantities (Cummings and Schroeder 1942). A gelatinous endosperm surrounds the embryo in

the early stages of fruit development, but it disappears completely approximately three months

after fruit set (Blumenfeld and Gazit 1974). The seed coat surrounds the embryo and endosperm

and consists of two closely associated cell layers. The vascularized part of the seed coat

represents the pachychalaza and arises from basipetal, intercalary growth in the chalazal region,

near the site of attachment of the integuments (Boesewinkel and Bouman 1984). This portion of

the seed coat is vital to the fruit as it supplies sugars, mineral nutrients and water to the

developing seed (Steyn et al. 1993). It also allows for exchange between the developing embryo

and the rest of the fruit and tree (Blumenfeld and Gazit 1971). Later in the development of the
,

fruit, the drying of the seed coat reduces the supply of 'food' to the embryo. This accompanies the

cessation of embryo growth prior to germination, which subsequently heralds the accumulation of

Iipids in the mesocarp (Blumenfeld 1970). The pericarp comprises three layers: the exocarp,

which is the skin or rind; the fleshy mesocarp, which is the edible part of the fruit; and the

endocarp, which is the thin inner layer next to the outer seed coat (Cummings and Schroeder

1942). The mesocarp consists of large iso-diametric parenchyma cells that accumulate Iipids

during fruit maturation (Biale and Young 1971). It is permeated by vascular tissue that runs from

the pedicel and coalesces near the chalazal apex, where it enters the seed coat (Cummings and

Schroeder 1942).

Growth of the avocado fruit follows a sigmoid growth curve that consists of three distinct growth

stages, with cell division occurring throughout the life of the fruit, unlike most other fruit

(Schroeder 1953; 1958; Coombe 1976). Stage 1 is a slow lag phase lasting 10 weeks after full

bloom, where fruit size and mass increase as a result of cell division. Stage 2 is a linear phase of

rapid growth lasting 30 weeks, where cell expansion is the major process and cell division is
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reduced. Finally stage 3 is a mature phase of slow growth, where cell division and cell expansion

are both reduced (Schroeder 1953; Valmayor 1967; Zilkah and Klein 1987). The number and

volume of cells at ripeness, and therefore fruit size at maturity, are thus influenced by the number

and volume of cells at anthesis and the rate and duration of cell division and cell expansion

thereafter (Coombe 1976).

In the 'Hass' avocado cultivar two distinct, phenotypically different populations of fruit, Le. normal

and small fruit, are produced (Zilkah and Klein 1987). Every 'Hass' avocado tree produces these

small fruit variants and the proportion ranges between 5-20 % of the total crop (Kremer-Kohne

and Kohne 1995). The incidence of small fruit increases in trees bearing heavily (Lahav and

Kalmer 1977) and in stressed, older trees (Whiley et al. 1996; Cowan 1997) grown under warm

conditions (Cutting 1993). Small fruit are regarded as less than 200 g fresh mass, or "count-size"

of 20 or more fruits per standard 4 kg export carton (Kohne 1992). Up to 50 % of the crop in any

one year, can be undersized.

1.1.2 The small fruit phenotype

The small fruit phenotype is characterised by early seed coat senescence, which in many

instances is associated with 'pedicel ring neck'. Figure 1.1 illustrates the visible differences

between normal and small fruit. Seed coat senescence can occur at any time during development

and there is no pattern with respect to the distribution of the small fruit phenotype on the tree

(Cowan et al. 1997). The earlier the seed coat senesces the smaller the fruit is likely to be

(Blumenfeld and Gazit 1974; Steyn et al. 1993). As cell division occurs throughout the life of the

avocado fruit, from fruit set to maturity (Schroeder 1953), it is important that symplastic continuity

is maintained throughout this period in order to sustain the supply of sugars to the fruit and thus

ensure continued growth and development (Ehlers and Kollmann 1996). The bulk movement of

solutes into developing avocado fruit occurs along the following path: pedicel vasculature to

mesocarp vasculature to chalaza to seed and/or seed coat vasculature to the mesocarp (Moore­

Gordon et al. 1998). The maintenance of viability of the pachychalaza (Le. seed coat) is therefore

vital in order to assure a continued supply of sugars, mineral nutrients, water and possibly plant

hormones to the developing fruit. If seed coat viability is not maintained the supply of these_

important compounds will be severed and the maintenance of the current rate of cell division will

not be possible. The limiting factor for the growth of the phenotypically small fruit variant thus

appears to be cell number and not cell size (Cowan et al. 1997), as found in tomato (Ho and

Hewitt 1986; Bohner and Bangerth 1988a; Ho 1992), apricots (Jackson and Coombe 1966) and

2



Figure 1.1 Photograph illustrating the relationship between fruit size and seed coat viability.
The normal fruit has a yellow, fleshy, healthy and functional seed coat, whereas the
small fruit has a brown, senesced and non-functional seed coat.

grapes (Harris et al. 1968). Cell number and size have also been found to be important factors

influencing the capacity of fruit to import assimilates which emphasises the proposal that they are

the determinants of final fruit size (Bohner and Bangerth 1988b). Furthermore, biochemical

characterisation of the small fruit variant has revealed reduced 3-hydroxy-3-methylglutaryl

coenzyme A reductase (HMGR; EC 1.1.1.34) and sucrose synthase (SuSy; EC 2.4.1.13) activity,

and enhanced insoluple acid invertase (AI; EC 3.2.1.26) activity, which was associated with

increased respiration, sucrose depletion, an increase in glucose as a proportion of total soluble

sugars and increased abscisic acid (ABA) metabolism (Richings et al. 2000). In addition to this,

fruit size has been found to be neg~tively correlated with the ABA/cytokinin (CK) ratio (Moore­

Gordon et al. 1998). Cell division and sink strength therefore appear to be key elements in the

development of the small fruit phenotype and thus attempts to elucidate this phenomenon have

centred on factors controlling these two elements (Cowan et al. 1997; Moore-Gordon et al. 1998;

Richings et al. 2000; Cowan et al. 2001).

1.2 PLANT HORMONES AND FRUIT GROWTH

1.2.1 Hormones and general fruit growth

Developing fruits are terminal sinks and require carbohydrates, other metabolites, mineral

nutrients and water to sustain growth. One potential role of phytohormone signalling in fruit

3



growth could be to detect changes in sugar content and composition and as a consequence c0­

ordinate or re-direct growth. The corollary of this is that carbohydrates impact on hormone

metabolism. Implicit in this is cross-talk between sugar and hormone signalling pathways. In fact,

development is considered to be a result of intricate spatial and temporal interactions between

resources required for growth and hormonal mediation through regulation of gene expression

(Cowan et al. 2001).

Fruit development is governed by three genetic factors: (1) one which determines the number of

carpel cells; (2) one which determines the number of cell divisions during the cell proliferation

phase; and (3) one which determines the duration and enlargement rate of individual cells in the

cell enlargement phase (Higashi et al. 1999). It is currently unknown which genetic factor plays

the most important role in controlling final fruit size in higher plants (Higashi et al. 1999), but

environmental factors, such as temperature, light, water and nutrients, can modify the expression

of these genes. In addition to these environmental factors, phytohormones are also believed to be

involved at most stages of fruit development, directing development from fertilization to

senescence (Nitsch 1970; Coombe 1976; Gillaspy et al. 1993). No single growth regUlator can be

solely responsible for fruit morphogenesis, as phytohormones exert multiple control on organ

development by alterations in concentration and as a resutt of changes in sensitivity of the

affected tissues (Bradford and Trewavas 1994). Auxin, gibberellin (GA), CK, ABA and ethylene

are all produced by fruit, often in large amounts, and often in a sequence typical for a species.

Sometimes these compounds act synergistically in promoting growth, sometimes they substitute

for one another and sometimes they act antagonistically. The general picture therefore involves

control through interaction and balance of these hormones (Coombe 1976).

The important role that plant hormones play in fruit development is demonstrated by the fact that

they enhance cell division and enlargement during different stages of development (Mapelli et al.

1978; Mapelli 1981; Kinet et al. 1985; Bohner and Bangerth 1988b). Furthermore, it is

maintenance of the correct hormonal balance that ensures continuation of cell division (Nagl

1971; Nag11972; Barlow 1976; Nagl 1976). Both ABA and water stress are known to retard cell

division .cycle activity (Myers et al. 1990; Artlip et al. 1995), possibly through inhibition of nuclei~

acid and protein synthesis (Owen and Napier 1988). Cytokinin, on the other hand, promotes this

event (Jacobs 1995). Cytokinin seems to control cell division by regulating the G2 to M transition,

Le. the transition of cells from the stage following DNA replication to mitosis (M) and as such the

withdrawal of CK causes the cessation of the cell cycle and accumulation of cells in M, S (period
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of DNA replication) and G1 (Mader and Hanke 1996). An imbalance in the CKlABA ratio, through

reduced CK synthesis or increased ABA synthesis, will therefore impact on cell division cycle

activity and final fruit size, as seen in the 'Hass' avocado (Moore-Gordon et al. 1998). The highest

levels of auxin are also found in regions of active cell division including apical meristems,

cambium, developing fruit and in embryos and endosperm (Schneider and Wightman 1978).

Auxin is thought to act synergistically with CK in the control of cell division and is able to control

the rate of cell enlargement in fruit (Rayle and Cleland 1992; Ferreira et a/. 1994), presumably by

causing an increase in the extensibility of cell walls and by inducing uptake of water and solutes

(Hackett and Thimann 1952; Cosgrove 1997). Plant hormones must therefore regulate diverse

and even antagonistic signals. The decision of a cell to divide or not can therefore be perceived

as the digital output of analogous signals that stimulate and inhibit the cell cycle (Grill and

Himmelbach 1998).

There is good support for the hypothesis that developing seeds produce the hormones necessary

for the initial growth of fruits (Crane 1969; Nitsch 1970). This is emphasised by the fact that in

normal fruit development the developing embryo, or seed, controls the rate and sustenance of cell

division in the surrounding tissue (Gillaspy et al. 1993). Thus the seed(s) of the fruit and the

surrounding seed coat(s) must remain viable in order to ensure a continued and balanced supply

of hormones to the fruit and therefore the continuation of cell division cycle activity and fruit

growth. Implicit in this is the observation that there is a close correlation between seed size and

final fruit size. In order to assess how cell division is controlled in fruit, an understanding needs to

be gained of the hormones controlling this process. Since endogenous hormone concentration of

tissues is a balance between biosynthesis, catabolism, import and export (Hetherington and

Quatrano 1991), the determination of plant hormone levels alone is often of limited value. Such

data reveals little about the site of hormone metabolism within the tissue under investigation, and

very little can be inferred about the contribution of hormone metabolism to changes in net

hormone levels. One way to minimize this limitation is to measure the activity of key enzymes

involved in phytohormone metabolism, in addition to quantifying endogenous hormone levels.

1.2.2 Honnone content of avocado tissues

Information about the hormone content and composition of the major tissues of avocado fruit is

rudimentary and most available data is based on bioassay (Fig. 1.2). Gibberellin-like activity was

observed in extracts of endosperm and seed coat tissue but not in the mesocarp or embryo
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Figure 1.2 Simplified model of avocado fruit development and corresponding physiological
changes with respect to plant hormones. Trends in concentration are on a whole
fruit basis and thus it does not always reflect the status of all fruit tissues at any
particular time (adapted from Bower and Cutting 1988).
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(Blumenfeld and Gazit 1972). Cytokinin activity was high in the embryo, endospenn and seed

coat, with levels declining over the course of fruit growth (Blumenfeld and Gazit 1970). No CK

activity was detected in the mesocarp tissue (Gazit and Blumenfeld 1970). Auxin-like activity was

higher in seed tissue than in mesocarp (Gazit and Blumenfeld 1972) whilst ABA, which declines

as fruit approach maturity (Cowan et al. 1997), occurs in similar amounts in seed and mesocarp

tissue (Richings et al. 2000; Taylor and Cowan 2001). Together, these data suggest that the seed

is the primary source of honnones required for avocado fruit growth and development. This is

supported by the observation that seed-bearing fruits are considerably larger than seedless fruits

('cukes') which are frequently found in the cultivars of 'Fuerte' and 'Ettinger' (Blumenfeld and

Gazit 1974) and which appear to result from early seed degeneration rather than stimulative or

true vegetative parthenocarpy (Tomer et al. 1980).

1.3. HORMONE METABOLISM

1.3.1 Cytokinin metabolism

Cytokinin affects many plant developmental processes including cell division, cellular

differentiation, senescence and apical dominance (Mok 1994). They are defined by their ability to

promote cell division in tissue culture in the presence of auxin (Miller et al. 1955; Skoog et al.

1965). Naturally occurring CKs are adenine derivatives with at least one substituent at the N6
_

position. These substituents may be classed into three groups: (1) isoprenoid (zeatin, /If-!:!J.2­
isopentenyladenine and its derivatives); (2) isoprenoid-derived (dihydrozeatin and its derivatives);

and (3) aromatic CKs (Zazimalova et al. 1999). The level of active CK at a particular site of action

is the result of several factors which include: de novo synthesis; oxidative degradation; fonnation

and hydrolysis of inactive conjugates; transport into and out of particular cells; and subcellular

compartmentation to or away from sites of action (Brzobohaty et al. 1994).

1.3.1.1 Cytokinin biosynthesis

There are two proposed biosynthetic pathways of CKs, however, in the last year Astot and co­

workers (2000) proposed a third possible route for the synthesis of trans-zeatin riboside. Initially it

was speculated that tRNA degradation was a possible source of free, active CKs (Swaminathan

and Bock 1977), but this was disproved when calculations of tRNA turnover rates revealed that

this pathway contributed very little to the overall pool of CKs (McGaw and Burch 1995; Chen

1997) and that a tRNA independent de novo biosynthetic pathway must also be present in plants

(Klambt 1992).

7



A second pathway was proposed after a CK biosynthetic enzyme was found in the slime mold,

Dictyostelium discoideum (Taya et al. 1978), which was able to convert adenosine

monophosphate (AMP) and dimethylallyl-pyrophosphate (DMAPP) to the free CKs

isopentenyladenosine-5'-monophosphate (iPMP) and the corresponding nucleoside

(isopentenyladenosine; iPA) (Fig. 1.3). This finding together with studies on the metabolism of

isopentenyl CKs (Miura and Miller 1969; Miura and Hall 1973) led to the proposal that iPMP is

also the primary CK intermediate in plants, and that zeatin CKs are formed by hydroxylation of

iPMP and its derivatives (Chen 1982; Letham and Palni 1983). 5'-Nucleotidase (Chen and

Kristopeit 1981a), followed by adenosine nucleosidase (Chen and Kristopeit 1981b) are expected

- to be the enzymes responsible for the step-by-step conversion of iPMP to the base "'-112
­

isopentenyladenine (iP). Subsequently, the product of the T-DNA gene 4 (ipt) of Agrobacterium

tumefaciens was also described as a DMAPP:AMP isopentenyltransferase (ipt) (Akiyoshi et al.

1984; Barry et al. 1984; Morris et al. 1993). Activity of an ipt in plants has been found in crude

extracts from CK-autotrophic tobacco callus (Chen and Melitz 1979) and from immature maize

kernels (Blackwell and Horgan 1994), but until recently the corresponding enzyme has not been

purified to homogeneity. However, Kakimoto (2001) has recently found, through Arabidopsis

database searches, an AtlPT4 gene that has unique DMAPP:ATP/ADP isopentenyltransferase

activity in its purified form and is functional in plants (Fig. 1.3). Tests for substrate specificity

revealed that AtlPT4 was DMAPP:ATP/ADP isopentenyltransferase and had no activity of

DMAPP:AMP isopentenyltransferase, which indicates that the major function of AtlPT4 in plant

cells is the isopentenylation of ATP and ADP (Kakimoto 2001).

Recently, a third pathway has been demonstrated in Arabidopsis thaliana and, although the exact

reactions constituting this pathway have yet to be identified, it is proposed that trans-zeatin­

riboside monophosphate (ZMP) is synthesised independently of iPMP and that two different

precursors are used by the ipt to synthesise ZMP and iPMP (Astot et al. 2000) (Fig. 1.3). The

iPMP-independent pathway is thought to use a precursor that is derived from the

acetate/mevalonic acid (MVA) pathway of terpenoid biosynthesis, as there was a significant

reduction in deuterium incorporation into ZMP in the presence of metyrapone and mevastatin,

inhibitors of HMGR. This iPMP-independent pathway has been demonstrated to exist in both the

transgenic A. thaliana expressing the A. tumefaciens ipt gene and as part of normal wild-type

plant metabolism (Astot et al. 2000), suggesting that the relative contributions of the iPMP­

dependent and -independent pathways may vary in a tissue- and time-dependent manner. These

two recent discoveries concerning CK biosynthesis are not necessarily mutually exclusive and
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can be linked together to form an iPMP-independent pathway of CK biosynthesis in which one of

the methyl groups of isopentenyladenosine-5'-triphosphate (iPTP) and isopentenyladenosine-5'­

diphosphate (iPDP) are hydroxylated to produce trans-zeatin-riboside triphosphate (lTP) and

trans-zeatin-riboside diphosphate (lDP), respectively, followed by dephosphorylation to produce

lMP (Kakimoto2001).

P/NA

iPMP
1

APP¥EM;::MP
isopentenyl­
transferase

(IPT)

_....;2=--....;)~ iPA _....;3=--_)~ iP

1 1
ZTP? ) ZDP?

1

Figure 1.3 A model for CK biosynthesis in plants (adapted from Kakimoto 2001). The blue
highlighted block indicates the proposed model by Kakimoto (2001), where CK
biosynthesis is initiated by the addition of the isopentenyl side chain to ATP and
ADP. The pink highlighted block indicates the iPMP..independent pathway proposed
by Astot et al. (2000). Enzymes catalysing steps in CK biosynthesis are 1)
hydroxylase, 2) 5'-nucleotidase and 3) adenosine nucleosidase. ADP, adenosine
diphosphate; AMP, adenosine monophosphate; ATP, adenosine triphosphate;
DMAPP, dimethylallyl pyrophosphate; iP, isopentenyladenine; iPA,
isopentenyladenosine; iPDP, isopentenyladenosine-5'-diphosphate; iPMP,
isopentenyladenosine-5'-monophosphate; IPT, isopentenyltransferase; iPTP,
isopentenyladenosine-5'-triphosphate; MVA, mevalonic acid; ZDP, trans-zeatin­
riboside diphosphate, ZMP, trans-zeatin-riboside monophosphate; ZTP, tranS-zeatin­
riboside triphosphate.

Assuming that CKs are derived in situ in fruit by the isoprenylation of purines (Binns 1994), the

inhibition of isoprenoid biosynthesis will limit the availability of DMAPP, and other side chain

donors of terpenoid origin, needed for CK biosynthesis. These precursors are formed from MVA,

which is derived from acetate in the cytosol, as demonstrated by Astot et al. (2000), or from triose

phosphates (e.g. glyceraldehyde-3-phosphate) derived from the 1-deoxy-D-xylulose-5-phosphate
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(DOXP) pathway in plastids (Lichtenthaler 1999). In the acetatelMVA pathway the fonnation of

isopentenyl pyrophosphate (IPP; an interconvertible isomer of DMAPP) is catalysed by the

enzyme HMGR (Chappell 1995) and this implies that any factor affecting the activity of this

enzyme will impact on CK biosynthesis. In fact, Crowell and Salaz (1992) have suggested that CK

biosynthesis is more sensitive to HMGR inhibition than the biosynthesis of any other essential

isoprenoids. It will also impact on other plant honnones, including ABA, GA and brassinosteroids,

as IPP also serves as a precursor for these compounds. The same is true for the DOXP pathway,

in that any factor limiting flow through this pathway will limit IPP synthesis and thus CK and other

hormone biosynthesis. This common metabolic origin could serve as one possible explanation for

the known metabolic interaction between plant honnones, ego ABA inhibition of gennination and

CK-mediated release of seed dormancy (Salisbury 1994).

1.3.1.2 Cytokinin catabolism

Cytokinin catabolism includes mutual conversions among CK bases, ribosides and ribotides (Le.

riboside-5'-monophosphate), conjugation (N-glucosylation, N-alanyl conjugation, O-glucosylation

and Q-acetylation), conjugate-hydrolysing reactions and degradative (Le. oxidation) reactions

(Zazimalova et al. 1999). It is believed that the oxidative degradation of CKs is the principle point

of inactivation, as the dominant CKs accumulated in plants are substrates of the degradative

enzyme (Jones and Schreiber 1997).

Cytokinin degradation occurs via the cleavage of the N6 side chain, through the action of the

enzyme CK oxidase (CKOX; EC 1.4.3.6) (Kaminek et al. 1997), releasing adenine or its

derivatives and the corresponding side chain aldehyde, in the presence of molecular oxygen. It

will only degrade CKs bearing an unsaturated side chain (Hare and van Staden 1994), with the

preferred substrate for many CKOXs being iP (PaCes and Kaminek 1976; McGaw and Horgan

1983; Chatfield and Armstrong 1986; Armstrong and Firtel 1989; Laloue and Fox 1989; Auer et al.

1999; Bilyeu et al. 2001). It can, however, also degrade zeatin and its ribonucleosides (Kaminek

and Annstrong 1990). Ultimately, the result of this degradation is the irreversible loss of CK

structure and thus biological activity. In this way CKOX is thought to play an important part in

controlling the internal pool of CK in plants. A CKOX enzyme has been partially purified from

maize, beans, poplar, wheat and Vinca rosea crown gall tissues (Armstrong 1994; Hare and van

Staden 1994; Jones and Schreiber 1997). The wide occurrence of this oxidase is matched by its

diversity. They vary in mass from 25 kDa in Vinca rosea to 94 kDa for maize (McGaw and Horgan

1983; Annstrong 1994). Most, but not all, of the enzymes are glycoproteins, with pH optima
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ranging from 6.0 to 9.0 (Kaminek and Armstrong 1990; Armstrong 1994). Initially classified as a

copper-containing amine oxidase (Burch and Horgan 1989), there is new evidence to suggest

that this is incorrect (Galuszka et al. 1998) and that it is in fact a FAD-containing flavoprotein

(Houba-Herin et al. 1999; Morris et al. 1999) and thus it could belong to the large family of FAD

amine oxidases (Rinaldi and Comandini 1999). However, the diverse properties of CKOXs

indicate that there may be more than one class of CK degradative enzyme (Mok and Mok 2001).

Available evidence suggests that the activity of CKOX and the degradative metabolism of CKs

can be mediated by four principle mechanisms: (1) CK supply; (2) application of phenylurea

compounds; (3) auxin levels; and (4) glycosylation and/or isozyme variation (Jones and Schreiber

1997). Both substrate and non-substrate CKs (Kaminek et al. 1997) and auxin (Coenen and

Lomax 1997) appear to stimulate activity, whilst phenylurea-type CKs inhibit activity (Laloue and

Fox 1989). Glycosylation, on the other hand, is thought to play a role in the compartmentation and

activity of the enzyme (Jones and Schreiber 1997).

1.3.2 Abscisic acid metabolism

Abscisic acid is a small, lipophilic plant hormone that is involved in the control of a wide variety of

physiological and developmental processes in plants (Walton 1980; Addicott 1983; Zeevaart and

Creelman 1988). It is known to play a role in plant development, seed dormancy, germination, cell

division and in responses to stress such as drought, cold, salt, pathogen attack and UV radiation

(Addicott and Carns 1983; Zeevaart and Creelman 1988; Sanchez-Serrano et al. 1991; McCarty

1995; Rock and Quatrano 1995; Ueno 1998; Albinsky et al. 1999). Levels of ABA can rise and fall

dramatically in several types of tissue in response to environmental and developmental changes

and thus the manner in which its levels are controlled is particularly interesting.

1.3.2.1 Abscisic acid biosynthesis

Since ABA is a sesquiterpene (C1sH2004) it was initially believed that the molecule was

synthesised via the condensation of three molecules of IPP, with farnesyl pyrophosphate as an

intermediate, the so-called direct pathway. Subsequently Taylor and Smith (1967) and later

Taylor and Burden (1972) obtained supportive evidence that ABA can be synthesised via an

indirect route in which ABA was proposed as a cleavage product of certain C40 xanthophylls. In

both cases the ultimate precursor is the same molecule viz. IPP. The most probable pathway of

ABA biosynthesis in plants appears to be confined to the chloroplasts (Milborrow and Lee 1998),

where pyruvate and glyceraldehyde phosphate are combined and rearranged, via DOXP, to give
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IPP (Cutler and Krochko 1999; Lichtenthaler 1999). Eight IPP residues are combined to form the

C40 uncyclized carotenoid phytoene. This carotenoid is subsequently converted into 13-carotene,

which is hydroxylated to zeaxanthin followed by epoxidation to violaxanthin and rearranged to

give 9'-Z-neoxanthin (Milborrow 2001) (Fig. 1.4). 9'-Z-neoxanthin is then cleaved by the 9-Z­

epoxycarotenoid dioxygenase (NCED) cleavage enzyme to give the C15 xanthoxal (XAN)

(Schwartz et al. 1997b; Tan et al. 1997), which undergoes oxidation via a molybdenum cofactor

(MoCo) requiring aldehyde oxidase (AO) (Walker-Simmons et al. 1989), to yield xanthoxic acid

(XAN-acid) (Lee and Milborrow 1997). Xanthoxic acid undergoes further oxidation and

rearrangement to form ABA (Cowan and Richardson 1997; Milborrow et al. 1997; Cowan 2001;

Milborrow 2001).

CYTOPLASM
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4'-keto-xanthoxic acid~ (+)- ABA
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Xanthoxlc acid

/// ~
I
\ ...

....0\.
AB-alcohol-

Figure 1.4 Simplified scheme of ABA metabolism (adapted from Cutler and Krochko 1999;
Cowan 2001). The pink highlighted block indicates the hypothetical scheme of the
conversion of xanthoxal to ABA (Cowan 2001). Dotted arrows indicate a minor
pathway. Enzymes catalysing steps in ABA biosynthesis are 1) zeaxanthin
epoxidase, 2) NCED, 3) XAN oxidase and 4) ABA-8'-hydroxylase. The position of a
MoCo-requiring enzyme is indicated by (*)~ Glucose esters, glucosides and other
conjugates are all represented by G. AB-alcohol, abscisic alcohol· DPA
dihydrophaseic acid; S'-HOABA, S'-hydroxy abscisic acid; PA, phaseic acid. ' ,

This last step in ABA biosynthesis, i.e. the conversion of XAN to ABA, is highly debated and is

largely thought to occur via abscisic aldehyde (AB-aid). However, to date there has been no

conclusive evidence of the natural occurrence of AB-aid and its metabolism in plant tissues. This
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currently accepted view has been refuted in two studies which suggest that XAN, and not AB-aid,

is the substrate for the MoCo-requiring enzyme AD (Lee and Milborrow 1997; Cowan et al.

1999). Lee and Milborrow (1997) demonstrated tungstate-induced accumulation of XAN in

avocado and through the addition of cinchonine, which forms an insoluble complex with tungstate,

they were also able to show restoration of ABA production in the presence of this alkaloid.

Similarly, Cowan et al. (1999) showed a reduction in climacteric-induced accumulation of ABA

and a concomitant rise in XAN in mesocarp from ripening avocado fruit treated with tungstate.

These results strongly suggest that the pathway from XAN to ABA in avocado involves the

oxidation of the C-1 aldehyde group of XAN by an oxidase that is sensitive to tungstate, as it is

extremely unlikely that the inhibition of AD by tungstate, if its function is to convert AB-aid to ABA,

would cause the accumulation of previous intermediates in the pathway, via product inhibition, as

far back as xanthoxal (Milborrow 2001). If the C-1 aldehyde group of XAN is the first part of the

molecule to be oxidized then AB-aid cannot be an intermediate (Cowan 2001; Milborrow 2001).

The restoration of ABA biosynthesis in extracts of ABA deficient mutants through the addition of

Na2S plus dithionite (Schwartz et al. 1997a; Akaba et al. 1998) and stimulation in extracts from

wild type plants tissues in the presence of substrates for MoCo sulfuration (Sagi et al. 1999),

taken together with the finding of tungstate inhibition of XAN metabolism, makes it distinctly

possible that XAN oxidase is the MoCo-containing AD. As a consequence the next intermediate

en route to ABA must be XAN-acid. Xanthoxic acid is readily oxidized to ABA in vivo (Milborrow et

al. 1997) and has been identified as a product of XAN metabolism in vitro (Cowan and

Richardson 1997). The remaining steps to ABA must therefore involve oxidation at C-4' and

isomerisation of the 1',2'-epoxide to a 1'-hydroxyl and a 2'-ene (Milborrow 2001).

Recently, Cowan (2001) has suggested that XAN and ABA biosynthesis might represent

independent processes in plants. The author argues that ABA biosynthesis in planta is a

constitutive process and distinct from XAN metabolism, which is probably enhanced under stress.

This argument is partly based on the observation that ABA biosynthesis in planta appears to be

more complex than oxidative cleavage of a xanthophyll 'precursor' and sUbsequent oxidation of

XAN. In this proposed ABA biosynthetic pathway, two precursor pools are proposed for ABA, viz.

carotenoids (plastid-localised and stress-induced) and E-Z-famesol (cytosolic and stress and

developmentally regulated). In both cases ABA arises through metabolism of the intermediates 2~

cis-abscisic alcohol and 4'-keto-xanthoxic acid, via ABA-adduct (Cowan 2001).
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1.3.2.2 Abscisic acid catabolism

The main route of degradation of eis-ABA is through oxidative catabolism to 8'-hydroxy-ABA (8'­

HOABA) (Walton 1980; Loveys and Milborrow 1984), which subsequently cyclizes spontaneously

(or enzymatically) to form S-(-) phaseic acid (PA) (Fig. 1.4). (-)Phaseic acid is further reduced, in

some tissues, at the 4' position to form dihydrophaseic acid (DPA) (Zeevaart and Creelman 1988;

Parry 1993; Walton and Li 1995; Zeevaart 1999). As these latter metabolites are less biologically

active than ABA, the result of these conversions is a reduction in ABA effectiveness in the tissue

(Walton and Li 1995; Walker-Simmons et al. 1997). The conversion of ABA to PA is therefore an

important determinant of ABA levels and evidence is accumulating which suggests that this

conversion is an important control point.

The conversion of ABA to HOABA is catalysed by ABA-8'-hydroxylase (systematic name: (+)­

ABA, NADPH: oxygen oxidoreductase [8'-hydroxylase]) (Gillard and Walton 1976;Creelman and

Zeevaart 1984; Gergs et al. 1993; Babiano 1995), which is a membrane associated cytochrome

P450 monooxygenase (Krochko et al. 1998). The appearance of ABA-8'-hydroxylase activity, in

some tissues, is dependent on the presence of ABA and the level to which this enzyme is induced

is clearly dependent on ABA concentration (Cutler et al. 1997). The appearance of PA is also

blocked by the addition of cycloheximide, indicating de novo protein synthesis of ABA-8'­

hydroxylase in the presence of ABA (Cutler et al. 1997). The level of PA formation thus increases

with ABA treatment (Uknes and Ho 1984; Railton and Cowan 1987; Gergs et al. 1993; Babiano

1995) indicating that ABA stimulates its own catabolism. ABA-8'-hydroxylase is expressed at high

levels in plant tissues recovering from abiotic stresses such as water stress (Creelman and

Zeevaart 1984; Walton and Li 1995), in tubers and roots (Zhang and Davies 1987; Vreugdenhil et

al. 1994) and in leaves, developing seeds and seedlings (Gillard and Walton 1976; Babiano 1995;

Garello and Lepage-Degivry 1995; Jia et al. 1996; Zhang et al. 1997; Qi et al. 1998). Abscisic

acid may also be removed by sugar conjugates, which are stored in the vacuole (Lehmann and

Glund 1986). Of the sugar conjugates, ABA glucose ester (ABA-GE) appears to be the most

widespread. Conjugation of ABA to ABA-GE is irreversible (Zeevaart 1983; Zeevaart and Boyer

1984), with the conjugate being sequestered in the vacuole (Bray and Zeevaart 1985; Lehmann

and Glund 1986).

1.3.2.3 Regulation ofABA biosynthesis

It is believed that there may be two potential sites for the regulation of ABA biosynthesis

(Zeevaart and Creelman 1988; Koomneef et al. 1998; Cowan et al. 1999). Firstly, dioxygenase-
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mediated cleavage of the xanthophyll precursor for ABA has been postulated to regulate the

formation of XAN in an inducible manner (Parry 1993; Cowan and Richardson 1997).

Characterization of the Vp14 viviparous mutant from maize revealed that it exhibited a defect in

ABA biosynthesis (Tan et al. 1997) and it was found that recombinant VP14 protein catalysed the

cleavage of 9-Z-xanthophylls to form XAN (Schwartz et al. 1997b). Furthermore, mRNA of vp14

was induced by water stress and accompanied a rise in ABA levels (Tan et al. 1997).

Nomenclature has designated homologous Vp14 genes as 9-Z-epoxycarotenoid dioxygenase

genes or NCED and it is suggested that there are a family of differentially regulated NCED genes

that contribute to environmental and developmental control of ABA biosynthesis in plants (Qin

and Zeevaart 1999). Chemys and Zeevaart (2000) isolated two NCED genes in avocado fruit,

PaNCED1 and PaNCED3, that encode proteins that are capable of in vitro synthesis of XAN and

whose mRNA levels rise in concert with ABA levels. Carotenoid levels in fruit appear to be high

enough so as not to be limiting for ABA biosynthesis and therefore the cleavage of xanthophylls,

from a C40 to C15 molecule, appears to be the rate-limiting step in ABA biosynthesis.

The second potential site for regulation of ABA biosynthesis is the conversion of XAN to ABA,

which is catalysed by a MoCo-containing AO. Studies using the f1acca mutant of Lycopersicon

esculentum (Marin and Marion-PolI 1997), the aba1 mutant of Nicotiana plumbaginifolia

(Leydecker et al. 1995) and the aba3 mutant of Arabidopsis thaliana (Schwartz et al. 1997a) have

found that the reduced ability of these mutants to produce ABA is most probably due to impaired

sulfuration of the MoCo required for the activity of the enzyme catalysing the conversion of XAN

to ABA, viz. aldehyde oxidase. This second potential site of regulation is of particular interest in

hormone interaction studies, as the MoCo is apparently derived from guanosine triphosphate

(GTP) (Mendel 1997; Rajagopalan 1997) a precursor of purines, and thus changes in purine

metabolism, including changes in CK biosynthesis, might impact on AO activity and hence XAN

metabolism and ABA biosynthesis (Cowan et al. 1999).

1.3.3 Auxin metabolism

The role of auxin i~ plants is manifold and includes the stimulation of cell division and elongation,

stimulation of shoot growth, inhibition of root growth, control of vascular system differentiation,_

control of apical dominance, promotion of flowering and fruit setting and ripening. The major

natural auxin is indole-3-acetic acid (IAA) (Schneider and Wightman 1978). A number of related

compounds also exist in plants including indole-3-butyric acid (IBA) and indole-3-acetonitrile

(tAN), but these compounds are active primarily when converted to IAA (Schneider and
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Wightman 1978). A group of IAA conjugates with sugars and amino acids also exist (Cohen and

Bandurski 1982). The steady state of auxin in a particular tissue or cell is determined by inputs to

and outputs from the IAA pool (Cohen et al. 1986; Bandurski et al. 1995). Inputs to the pool

include: de novo synthesis; hydrolysis of IAA conjugates to release free IAA; and transport of the

hormone, or a conjugate thereof, from one part or organ of the plant to the site under

consideration. Known outputs include: transport of the hormone away from the site under

consideration; conjugation of the hormone into an inactive form; and irreversible oxidation of the

hormone or a conjugate thereof.

1.3.3.1 Auxin biosynthesis

Indole-3-acetic acid is derived either from tryptophan (Trp) or from a precursor of Trp (Bartel

1997) (Fig. 1.5). Tryptophan-dependent pathways are proposed to predominate during early

embryogenesis and seed germination, whereas Trp-independent pathways are proposed to

predominate during late embryogenesis and vegetative growth (Normanly 1997; Cohen and

Slovin 1999). However, little is known about which pathway a plant uses for a specific

physiological process or why one pathway is used and not the other (Slovin et al. 1999)

Several pathways have been proposed for the conversion of Trp to IAA (Fig. 1.5), with the

general scheme being successive deamination and oxidative decarboxylation (Slovin et al. 1999).

If indole-3-pyruvic (IPA) is the first intermediate, then Trp is thought to participate in

transamination (Forest and Wightman 1972) catalysed by Trp aminotransferase. Indole-3-pyruvic

acid is subsequently converted to the aldehyde indole-3-acetaldehyde (lA-aid) (Moore and

Shaner 1968; Gibson et al. 1972; Purves and Brown 1978), which is then converted to IAA via a

MoCo-requiring AO that has been identified in several plant species (Sekimoto et al. 1998).

For some plants the importance of Trp as an IAA precursor is minor (Baldi et al. 1991) and plants

incapable of making Trp are still able to synthesize IAA de novo (Wright et al. 1991; Normanly et

al. 1993). The exact pathway for this Trp-independent synthesis of IAA has yet to be elucidated.

However, through the use of Arabidopsis mutants, Normanly and co-workers (1993) suggest that

the branch point for Trp-independent IAA synthesis is at indole or its precursor, indole-3-gycerol

phosphate (Fig. 1.5).
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1.3.3.2 Auxin catabolism

Current understanding is that most of the IAA in plants is conjugated via ester-linkages to sugars

and myo-inositol or via amide-linkages to amino acids, peptides or proteins (Fig. 1.5). A

generalization is that all plants examined to date contain more conjugated than free IAA and that

all plants are capable of forming conjugates (Sztein et al. 1995). Conjugate formation and

hydrolysis is tissue-specific and developmentally regulated (Kleczkowski and Schell 1995), with

conjugates having several fates including: storage; transport; protection from peroxidation; and

catabolism (Sembdner et al. 1994; Kleczkowski and Schell 1995; Bartel 1997). Conjugation is

reversible and is regarded as a homeostatic system for storing IAA and regulating levels of free

IAA (Slovin et al. 1999). Multiple IAA conjugate-hydrolyzing enzymes exist that exhibit a

differential specificity, activity and localization (Normanly 1997).
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IAA-amino acid conjugates

t
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---~) OxlAA

Trp-independent
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IAA-glucose > lAA-myo-inositol

~ /7\\8/
Indole-3-methylglucosinolate .. \t
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deoxyribulose 5-P

~

~
Anthranilate

t
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Figure 1.5 Simplified diagram of IAA metabolism (Normanly and Bartel 1999). Indole-3-acetic
acid can be synthesized via several Trp-dependent (blue arrows) or Trp-independent
pathways (green arrow). Tryptophan synthesis is represented by black arrows and
IAA c~njugation a~d inactivation ~re represented by yellow' arrows. Enzymes
catalyzang steps an IAA metabolism are 1) Trp aminotransferase, 2) Trp
~o~ooxygenase, 3) IPA decarboxylase, 4) IA-ald OXidase, 5) lAM hydrolase, 6)
mtrllase, 7) IAA-glucose synthase, 8) IAA-glucose hydrolase, 9) IAA-inositol
hydrolase, and 10) IAA-amino acid hydrolases. The position of a MoCo-requiring
enzyme is indicated by (*). lA-aid, indole-3-acetaldehyde; lAM, indole-3-acetamide'
IAN, indole-3-acetonitrile; IPA, indole-3-pyruvic acid; OxIAA, oxindole-3-acetic acid. '
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Indole-3-acetic acid is also able to undergo irreversible oxidation of the side chain

(decarboxylation) or the indole ring (without decarboxylation of the side chain) (Bandurski et al.

1995; Ostin 1995). Ubiquitous peroxidase enzymes have been shown to decarboxylate IAA in

vitro. It is unknown whether this oxidation serves any physiological role other than destroying IAA

(Slovin et al. 1999). It may, however, be linked to the growth-promoting reaction, either as an

essential part of the growth-promoting mechanism, or as a means of preventing repetitive use of

the hormone (Cohen and Bandurski 1978; Bandurski et al. 1985). A more general role for IAA

oxidation may involve the scavenging of the aromatic ring (Slovin et al. 1999).

·1.4 THE MOLYBDENUM COFACTOR REQUIRING ENZYMES

1.4.1 Molybdenum cofactor biosynthesis

Molybdenum is an essential element for plants as it is involved in many vital metabolic functions

and thus soil deficiencies or a mutational block of cellular ability to use molybdenum can lead to

the death of the plant. Molybdenum is complexed by a novel pterin with a four-carbon alkyl side

chain containing a Mo-coordinating dithiolene group and a terminal phosphate ester (Johnson

and Rajagopalan 1982). This novel pterin is different to all other pterin compounds classified so

far and has been named molybdopterin (MPT). The term 'MoCo' is used for the complete cofactor

unit, Le. MPT plus molybdenum. Without molybdenum, the molybdo enzymes are inactive

(Coughlan 1980) and, conversely, molybdenum on its own is biologically inactive.

Most of the present knowledge concerning MoCo biosynthesis has been obtained from

Escherichia coli. Based on the finding of homology in amino acid sequence between E. coli and

Arabidopsis MoCo biosynthetic proteins and the suggested function of these encoded proteins in

E. coli (Rajagopalan 1996), the following MoCo biosynthetic pathway in plants has been proposed

(Mendel and Schwarz 1999). According to International convention, the seven cloned MoCo

genes from higher plants are designated cnx followed by a number (Caboche et al. 1994). As

found in E. coli the MoCo biosynthetic pathway in plants can be subdivided into 3 stages (Fig.

1.6). During the first stage a guanosine-X-phosphate (where X is mono-, di- or tri-) derivative is

transformed by an unknown mechanism into a sulfur-free pterin compound possessing the MoCe­

typical four-carbon side chain, which is referred to as precursor Z. This reaction is catalysed by.

the products of the cnx2 and cnx3 genes (Hoft et al. 1995), but little is known about the functions

of these proteins in this st:p. In the second stage, sulfur is incorporated into precursor Z to form a

dithiolene group and is converted to MPT. Molybdopterin synthase is proposed to catalyse this

reaction (Pitterle et al. 1993) and consists of two subunits. The large subunit is encoded by the
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gene cnx6 and the small subunit is proposed to be encoded by cnx7, although this gene has not

yet been cloned in plants (Mendel and Schwarz 1999). In E. coli it has been shown that the small

subunit of MPT synthase serves as the donor of dithiolene sulfur for MPT synthesis and has to be

resulfurated by the MoeB protein (MPT synthase sulfurase) (Pitterle et al. 1993; Pitterle and

Rajagopalan 1993). A homologous gene has been found in Arabidopsis and has been designated

cnx5 (Nieder et al. 1997). In order to form the MoCo, Mo is transferred to MPT in the third stage

(Rajagopalan 1996). This requires firstly, the uptake of Mo, about which little is known in plants

and secondly, the intracellular processing of molybdate. Cnx1 plays a role in this last stage of

MoCo biosynthesis. The Cnx1 protein consists of two domains, the E-domain and the G-domain

(Schwarz et al. 1997a). The E-domain is proposed to function in Mo insertionltransfer to MPT

(Schwarz et al. 1997b). The G-domain, on the other hand, appears to play a role in the

stabilization and transfer of the active MoCo (Mendel and MOller 1985; Schwarz 1997; Schwarz et

al. 1997b). Structural analyses have revealed that: (1) the cofactor is located deep within the

interior of the enzyme protein; and (2) the pterin-ring system could participate in the electron

transfer to or from the Mo-atom (Mendel 1997). Wray and Filner (1970) and Coughlan (1980) also

showed that elevated amounts of the Mo-antagonist, tungstate, inhibit Mo-enzymes by replacing

molybdenum as the ligand in MPT.

Three groups of MoCo-requiring enzymes have been described in plants, which are aldehyde

oxidase (AO; EC 1.2.3.1), xanthine dehydrogenase (XDH; EC 1.1.204, formerly EC 1.2.1.37) and

nitrate reductase (NR; EC 1.6.6.1-3). A fourth group, sulfite oxidase (SO; EC 1.8.3.1), also exists

in the completely sequenced Arabidopsis genome (Eilers et al. 2001). Pateman et al. (1964)

proposed that these three Mo-enzymes share a common cofactor based upon observations that

certain mutations had a pleiotropic effect on both NR and XDH in Aspergillus nidulans. Similar

MoCo mutants with pleiotropic deficiencies have been isolated in bacteria, fungi and higher plants

(Kleinhofs et al. 1986; Wray 1986). Subsequently, the aba1 mutant in tobacco and aba3 mutant in

Arabidopsis thaliana were isolated, which are impaired in AO and XDH activity, but

overexpresses NR (Leydecker et al. 1995; Schwartz et al. 1997a). This led to the conclusion that

an additional step is required in the synthesis of the MoCo for AO and XDH and it is at this step

that the genetic lesion of the aba1 and aba3 mutants occur. This was confirmed based on the

ability of Na2S plus dithionite to restore AO activity in extracts from this mutant by sulfurating the

dioxo form of the MoCo (Schwartz et al. 1997a; Akaba et al. 1998). Recently, the Arabidopsis

ABA3 gene has been cloned (Bittner et al. 2001; Xiong et al. 2001), with the recombinant ABA3

protein shown to have MoCo sulfurase activity (Bittner et al. 2001). It has been found that
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reductive dehydroxylases, such as NR and SO, utilize a dioxo form of the cofactor (Johnson and

Rajagopalan 1982), whereas AO and XDH use a desulfo form (Wahl and Rajagopalan 1982).

The formation of the desulfo form of the enzyme involves the replacement of the oxygen atoms

binding molybdenum, in the dioxo form, by a sulfur atom. This reaction is catalysed by the

enzyme Mo-hydroxylase sulfurase (MHS) (Sagi et al. 1999). This latter group of molybcfo­

enzymes also contain FAD and two types of iron-sulfur centres (Wootton et al. 1991). The relative

allocation of the MoCo to these three enzymes (Fig. 1.6) can determine their relative activities,

e.g. under stressful conditions it is proposed th~t there will be increased allocation of the MoCo to

AO and XDH, resulting in decreased allocation to NR (Lips 1997).

1.4.2 Nitrate reductase

Nitrate reductase is a homodimeric protein, with an apparent molecular weight of 200 kDa that is

cytoplasmically localised (Mendel and Schwarz 1999). The protein monomer binds heme-iron,

FAD and MoCo in a 1:1:1 ratio. Nitrate reductase catalyses the first step in the nitrate assimilation

-pathway, reducing nitrate to nitrite, which is then assimilated into amino acids and is the rate­

controlling step of nitrate assimilation into organic nitrogen compounds. It is an important enzyme

in plants as it can be a limiting factor for growth and development and protein synthesis

(Solomonson and Barber 1990), particularly under unfavourable environmental conditions, as the

enzyme is very sensitive to stress and is influenced by a number of environmental factors

(Huffaker et al. 1970; Hueur et al. 1979; Crawford 1995). Nitrate assimilation regulation is

therefore part of a complex regulatory network that responds to a diverse range of environmental

and internal signals, such" as nitrate, light, carbon dioxide, phytohormones and carbon and

nitrogen metabolites.

1.4.3 Aldehyde oxidase

Aldehyde oxidase contains redox-active iron, not as heme-iron, but in the form of Fe-S centres

localised on the N-terminal two domains (Mendel and Schwarz 1999). The protein monomer of

the homodimeric enzyme binds Fe-S, FAD and MoCo in a ratio of 4:1:1. The homodimer has an

apparent molecular weight of 360 kDa (Rothe 1975) and is localised in the cytoplasm. Aldehyde

oxidase in plants shows a broad substrate specificity, being responsible for the oxidation of a

considerable number of aldehydes and N-containing heterocyclic compounds in the presence of

O2 or certain redox dyes (Rajagopalan and Handler 1966; Hall and Krenitsky 1986; Yoshihara

and Tatsumi 1986). However, it is the action of AO at the final steps of the biosynthesis of two

plant hormones that is of great interest, Le. the conversion of XAN to ABA (Walker-Simmons et al.
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1989; Sindhu et al. 1990; Leydecker et al. 1995; Cowan 2001; Milborrow 2001) and lA-aid to IAA

(Koshiba et al. 1996; Lips et al. 1999). It is due to the action of AO at the final step in the

synthesis of these two plant hormones that it has been ascribed an important role in plant

development and adaptation to environmental stress (Sagi et al. 1998).

Different isoforms of the AO enzyme have been found in plants, which show tissue-specific

expression and different substrate preferences (Rothe 1974; Koshiba et al. 1996; Ori et al. 1997;

Sekimoto et al. 1998; Seo et al. 1998; Omarov et al. 1999; Seo et al. 2000a; b). It is possible that

these isoforms have different physiological functions, which could include ABA and IAA

biosynthesis (Sekimoto et al. 1998). Three organ- and substrata-specific AO activity bands were

detected in Arabidopsis seedlings, namely AOa, AOI3 and AOy (Seo et al. 1998). AOa was .

abundant in roots, whilst AOy was most abundant in cotyledons and leaves. In terms of substrate

specificity, AOa showed a strong preference for indole-3-aldehyde (I-aid) and lA-aid, while AOy

efficiently oxidised 1-naphthaldehyde. AOI3 exhibited properties intermediate between AOa and

AOy in terms of its mobility in native-PAGE and substrate preference. Thus, of the three isoforms,

AOa seems most likely to be involved in IAA biosynthesis due to its high affinity for lA-aid and its

high expression in the IAA overproducing sur1 mutant of Arabidopsis compared to the wild type

(Seo et al. 1998). Preliminary studies with Arabidopsis revealed that two AO genes, AA03 and

AA04 (formerly called atAO-3 and atAO-4), were rapidly induced after desiccation, suggesting

that these genes encoded an AB-aid oxidase (Seo et al. 1999). Subsequently, AA03 has been

found to encode the AO isoform AOo, which has high specificity for AB-aid and is expressed

mainly in rosette leaves of Arabidopsis (Seo et al. 2000a;b). High AO-type activity has also been

detected in tomato fruit, and its expression seems to be related to the biosynthetic capacity

required for typical plant metabolic "sink" tissues. Alternatively, it may however catalyse the final

step in IAA and ABA biosynthesis (Ori et al. 1997). In the latter case, the tissue-specific

expression of the TA01 (tomato ~Idehyde Qxidase 1) gene, detected by the TA01 antibody in

fruit, may reflect the role ABA plays in seed maturation and dormancy, whilst its expression in

apical meristems could reflect the role this tissue plays in auxin biosynthesis (Ori et al. 1997).

1.4.4 Xanthine dehydrogenase

Nguyen (1986) classified XDH, in plants, as a dehydrogenase which is NAD+ dependent and

catalyses the first oxidative step in purine catabolism. Like AO it is a homodimeric enzyme

binding Fe-S, FAD and MoCo in the ratio of 4:1:1 per monomer (Mendel and Schwarz 1999) and

is thought to be a microbody-associated enzyme (Nguyen 1986; Corpas et al. 1997). It is a
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ubiquitous enzyme and ensures that purine compounds, originating from CK and nucleic acid

degradation, are irreversibly committed into purine catabolism (Wastemack 1982; Nguyen 1986).

Xanthine dehydrogenase catalyses the formation of uric acid from xanthine and hypoxanthine and

is thus necessary for the synthesis of ureides in higher plants (Nguyen 1986). Although plant XOH

shows highest affinities for xanthine and hypoxanthine as substrates, it also accepts purines and

pterines, but at much lower rates (Nguyen 1986). Xanthine dehydrogenase is inhibited by excess

substrate (Bray 1963) and product (Nguyen 1979; Boland 1981). In addition to this, substrate and

product analogues are inhibitory (Nguyen 1986), for example adenine and guanine inhibit XOH in

cowpea (Woo et al. 1981) and P. vulgaris nodules (Boland 1981). A particularly potent inhibitor of

XOH is allopurinol (4-hydroxypyrazolo[3,4-d)pyrimidine) (Weir and Fischer 1970; Bray 1975) as

well as SH group inhibitors (like p-hydroxymercuribenzoate) and non-heme iron complexing

agents (like salicylhydroxamic acid) (Mendel and Schwarz 1999).

1.4.5 The potential role of MoCo enzymes in the control of hormone homeostasis

The XOH and AD enzymes are of particular importance in developing a model for the metabolic

control of fruit size as they are intimately related to the metabolism of CK, ABAand IAA. As such

these enzymes serve as potential control points for the regulation of hormone homeostasis and

the processes controlled thereby. Furthermore, it is the shared MoCo that is proposed to be the

site of regulation of these enzymes. It has been suggested that the MoCo pool size is not

consistent, but varies in response to nutritional and environmental factors (Sagi et al. 1997; Sagi

and Lips 1998). An increase in the activity of the Mo-hydroxylases (Le. AD and XOH), with salt

stress and ammonium treatment, was thus considered to be part of the mechanism for stress

adaptation in plants, which includes elevated ABA synthesis and increased ureide production

(Sagi et al. 1998). It is thus hypothesized that, under conditions where nitrate assimilation is

reduced and/or XOH inhibited, more MoCo might be expected to be available for AD required for

ABA and IAA biosynthesis. This "shift" in MoCo allocation and activity of the respective enzymes

is further demonstrated by the finding of reduced ABA and IAA levels in plants in which NR has

been induced by its substrate (Dmarov et al. 1999). The availability of MoCo for AD activity may

therefore represent. a potential site of interaction between the CK, ABA and IAA biosynthetic

pathways (Fig. 1.7) and therefore the control of the hormonal balance, which is often the deciding_

factor determining whether plants will tolerate or be susceptible to imposed stress (Fedina et al.

1994).
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In addition to the role of MoCo enzymes in the IAA, ABA and CK biosynthesis, it is possible that a

MoCo-requiring AD may be involveo either directly or indirectly in GA metabolism (Fig. 1.8).

Conversion of GA12-aldehyde in GA biosynthesis involves oxidation at C7 to yield a dicarboxylic

acid and this reaction is catalysed by either a dioxygenase or monooxygenase (Hedden and

Kamiya 1997). The gene for GA12-aldehyde 7-oxidase has been cloned from pumpkin by

functional screening and in this system it is a 2-oxoglutarate-dependent dioxygenase, whereas in

other systems the enzyme is believed to be a cytochrome P450 monooxygenase (Lange 1997;

Hedden and Phillips 2000). However, unequivocal evidence for this is still awaited. The further

oxidation of GA12, and its 13-hydroxylated analog GAS3, to bioactive GAs is catalysed by soluble

dioxygenases, one of which is GA 20-oxidase, whose expression is enhanced by the auxin 4­

chloroindole-3-acetic acid (4-CI-IAA) in pea fruit (van Huizen et al. 1997) (Fig. 1.8). 4-chlorindole­

3-acetic acid is proposed to originate in seed tissue from where it is transported to the pericarp,

where it in turn regulates the conversion of GA19 to GA20 by increasing the level and/or stability of
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GA 20-oxidase mRNA (van Huizen et al. 1997). The response is specific for 4-CI-IAA, as the

synthetic auxin 2,4-0 had little effect on GA 20-oxidase expression in unpollinated pea ovaries

(Garcia-Martinez et al. 1997). It has also recently been shown that normal levels of IAA are

required to maintain normal levels of bioactive GA (GA1) in pea stems (Ross et al. 2000). Key

evidence for this hypothesis was the observation that auxin transport inhibitors, applied just below

the apical bud of intact plants, markedly reduced GA1 biosynthesis in pea stems (Ross 1998).

Subsequently it was found that expression of the pea gene LE (GA20 to GA1) in stem internodes

requires IAA from the shoot apex and that the expression of PsGA2ox1 (deactivation of GA20 to

GA29 and GA1 to GAs) is reduced by IAA (Ross et al. 2000).

Two possibilities are therefore evident, either one or both of these enzymes has a MoCo

requirement or AO-induced IAA formation impacts GA biosynthesis directly to promote formation

of bioactive GAs and to reduce deactivation. Aldehyde oxidases in plants have been shown to

exhibit wide substrate specificities (Rajagopalan and Handler 1966; Hall and Krenitsky 1986;

Yoshihara and Tatsumi 1986) and different isoforms of the AO enzyme have been found, which

show tissue-specific expression and different substrate preferences (Rothe 1974; Koshiba et al.

1996; Ori et al. 1997; Sekimoto et al. 1998; Seo et al. 1998; Omarov et al. 1999; Seo et al. 2000a;

b). The possibility therefore exists that an AO isoform may be involved in GA metabolism.

1.5 THE SMALL FRUIT PROBLEM IN PERSPECTIVE

The CK to ABA ratio in 'Hass' avocado fruit appears to be crucial in the control of cell division and

fruit growth, as evidence has been found that an imbalance in this ratio is pivotal in seed coat

senescence and retardation of fruit growth (Moore-Gordon et al. 1998). These workers also

showed that the mesocarp ABA concentration of mature fruit was negatively correlated with fruit

size and that application of ABA during the linear phase of rapid fruit growth resulted in seed coat

senescence and the retardation of fruit growth. Consequently, it was found that ABA-induced

retardation of fruit growth could be negated by co-injection of iP. Thus there seems to be a

relationship between CK and ABA in the control of 'Hass' avocado fruit growth and this interaction

is thought to be mediated at the level of their biosynthetic pathways, considering they share a

common biosynthetic origin in the isoprenoid or OOXP pathway (Chappell 1995; Lichtenthaler.

1999).

A second possible site of interaction lies in the allocation of the molybdenum cofactor to the AO

enzyme required for ABA and IAA biosynthesis (Fig. 1.7). This was demonstrated in a study of
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the response of ABA to CK, allopurinol and adenine in ripening avocado tissue, which indicated

the involvement of a MoCo-containing AO (Cowan et al. 1999). These studies showed that

allopurinol and adenine, a product of CKOX activity and inhibitor of XOH, promoted ABA

metabolism. Since CKOX is a substrate-inducible enzyme it was suggested that CK-induced

CKOX activity contributed to the regulation of endogenous ABA during plant organ growth

MVA GAP+PYR

t /'
~ /~ ,

GGPP :> CPP ----...;:>~ ent-kaurene

3111
ent-kaurenoic

acid

I
GA 2p· t

hydroxylase

GA20

GAJjl- -i
hydroxylase

GA1

GAg

!
G~

!

Figure 1.8 Simplified model of GA biosynthesis (Hedden and Kamiya 1997; Hedden and
Proebsting 1999). The possible position of a MoCo-requiring AO is indicated by (*).
Enzymes catalysing steps in GA biosynthesis are 1) ent-copalyl diphosphate
synthase, 2) ent-kaurene synthase, 3) ent-kaurene oxidase, 4) ent-kaurenoic acid 71}­
hydroxylase, 5) GA12-ald synthase, 6) GA12-ald 7-oxidase, 7) GA 13-hydroxylase.
Auxin regulation of GA biosynthesis is indicated in blue, with large arrowheads
denoting enhanced gene expression and bars denoting suppressed expression.
CPP, copalyl diphosphate; GAP, glyceraldehyde phosphate; GGPP, geranylgeranyl
diphosphate; MVA, mevalonic acid; PYR, pyruvate.
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(Cowan et al. 1999). A change in CK metabolism is thus postulated to impact on ABA levels

through changes in XDH activity and altered MoCo allocation to AO. As accumulation of ABA in

the mesocarp is correlated with reduced fruit size, it is hypothesised that this accumulation would

be associated with elevated AO activity and a corresponding decrease in XDH activity, resulting

from CK-induced CKOX activity. As an isoform of AO is also thought to catalyse the last step of

IAA biosynthesis, changes in MoCo synthesis and allocation will therefore also impact on auxin

production. This lends further credence to the proposal that the MoCo enzymes are intimately

linked with hormone homeostasis and thus the control of avocado fruit size.

Although the exact role of GA in fruit growth is currently poorly understood, it is proposed that it

plays a role in the stimulation of cell division and maintenance of cell expansion (Gillaspy et al.

1993). As such, this hormone is likely to play a role in the appearance of the 'Hass' avocado small

fruit phenotype, acting in concert with CK, IAA and ABA. It is plausible that GA will interact with

CK, IAA and ABA through the sharing of a common biosynthetic precursor in the isoprenoid

pathway or through the availability of MoCo for the MoCo-requiring enzymes. As alluded to

above, the possibility exists that a step in GA biosynthesis might be catalysed by a MoCo­

requiring AO, which would further extend the hypothesis that MoCo enzymes play an important

role in controlling hormone homeostasis in plant tissues.

1.6 OBJECTIVES

.In the absence of evergreen tree-crop mutants with aberrant fruit growth, the 'Hass' avocado

small fruit phenotype provides an ideal system with which to probe more detailed aspects of the

control of final avocado fruit size. One such aspect of control centres on phytohormones, which

have been found to play an interactive role in controlling avocado fruit size. Following

observations which established that the CK to ABA ratio was negatively correlated with final

avocado fruit size (Moore-Gordon et al. 1998) and that CK impacted antagonistically on ABA

metabolism in avocado fruit by apparently influencing activity of MoCo enzymes (Cowan et al.

1999), this study was initiated:

1) to probe the contribution of hormones in the control of final fruit size by comparing tissue

distribution and content of CK, ABA and IAA in developing 'Hass' avocado and its small

fruit phenotype; and

2) to evaluate the hypothesis that alterations in hormone homeostasis occur as a result of

differences in the allocation of the MoCo, and changes in activity of XDH (or NR) and the

AO's involved in IAA and ABA metabolism.
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2 MATERIALS AND METHODS

2.1. CHEMICAL AND LABORATORY SUPPLIES

2.1.1 Radioactive and stable isotopes

NS-isopent-2-enyl[2-3H]adenine (sp. act. 1.25 TBq mmor1) and trans-[2-
3
H]zeatin (sp. act. 1.3

TBq mmor1) were purchased from The Institute of Experimental Botany, Academy of Sciences

of the Czech Republic Isotope Laboratory IEB, Prague, Czech Republic. cL-cis, trans-[G­

3H]ABA (sp. act. 1.11 TBq mmor1) and 3-[5(n)-3H]IAA (sp. act. 1.11 TBq mmor
1
) were both

obtained from Amersham International, Buckinghamshire, UK.

2.1.2 Fine chemicals and cofactors

Butylated hydroxytoluene (BHT; 2,6-Di-t-butyl-p-cresol, C1sH240), diethyldithio carbamic acid

(DDC; sodium salt, CSH10NS2Na), reduced glutathione (C1oH17N30SS), phenazine

methosulphate (PMS; N-methyldibenzopyrazine methyl sulphate salt, C13H11N2'CH3S04),

dichloroindophenol (DCIP; C12HsCbN02Na), indole-3-aldehyde (I-aid; C9H7NO), hypoxanthine

(6-hydroxypurine, CSH4N40), indole-3-acetaldehyde (lA-aid; sodium bisulfite addition,

C10HgNO'NaHS03), linoleic acid (cis-9,cis-12-octadecadienoic acid, C1eH3202), p-aminophenol

(4-hydroxyanilin, H2NCsH40H), Coomassie Brilliant Blue G (C47H4eN307S2Na), 3-[4,5­

dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTI; C1eH1SNsSBr), bovine serum

albumin (BSA), adenine (6-aminopurine, free base, CsHsNs), allopurinol (allo; 4­

hydroxypyrazolo[3,4-d]pyrimidine, CSH4N40), polyethylenimine (Polymin P; 50 % (w/v)

aqueous solution, a branched chain polymer), L-cysteine hydrochloride (C3H7N02S'HCI), N­

nitroso-N-methylurea (C2HsN30 2), lipoxidase (from Soybean, EC 1.13.11.12) and N,N­

dimethyloctylamine (CH3(CH2hN(CH3h) were all purchased from Sigma, St Louis, MO, USA.

Nicotinamide adenine dinucleotide (NAD; free acid, C21H27N7014P2), flavin adenine

dinucleotide (FAD; disodium salt, C27H31Ng01SP2Na2) and tris (2-amino-2-(hydroxymethyl)-1,3­

propandiol, C4H11N03) were purchased from Boehringer Mannheim GmbH, Mannheim,

Germany. Potassium molybdate (K2Mo04) was purchased from Aldrich Chemical Company

Inc., Milwaukee, WI, USA. Sodium molybdate (Na2Mo04.2H20), trichloroacetic acid

(CCI3COOH) and di-potassium hydrogen orthophosphate (K2HP04) were purchased from

Associated Chemical Enterprises, Glenvista, RSA. Magnesium sulphate (hepthydrate,

MgS04.7H20) was purchased from .Holpro Analytics (Pty) Ltd, Johannesburg, RSA.

Ammonium sulphate «NH4hS04) and sodium formate (HCOONa) were obtained from Merck

Laboratory Supplies (Pty) Ltd, Midrand, RSA. Ethylene diamine tetra-acetic acid (EDTA;

disodium salt, C10H140eN2Na2.2H20) and ammonium hydroxide (25 % (w/v) solution, NH40H)
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was purchased from Saarchem, Krugersdorp, RSA. Potassium dihydrogen phosphate

(KH2P04) was purchased from Riedel-de Haen GmbH, Seelze, Germany. Ammonium

dihydrogen phosphate «NH4)H2P04) was purchased from Merck KGaA, Darmstadt, Germany.

1,4-Dithiothreitol (DTI; C4H1002S2) and Complete~ protease inhibitor tablets were obtained

from Roche Diagnostics GmbH, Mannhein, Germany. Insoluble polyvinylpolypyrrolidone (PVP;

Polyclar AT) and calcium chloride (CaCI2) were obtained from BDH Laboratory Supplies,

Poole, England. Heptaldehyde (C7H140), citral (C1oH1aO) and 3-methyl-2-butenal (3,3­

dimethylacrolein, CsHaO) were purchased from Sigma-Aldrich Chemie GmbH, Steinheim,

Germany. Benzaldehyde (C7HaO) and acetaldehyde (C2H40) were purchased from Fluka

Chemie Ltd, Buchs, Switzerland. Pico-Fluor™ 40 (Universal LSC cocktail) was purchased

from Packard Bioscience Company, Groningen, The Netherlands.

2.1.3 Electrophoresis reagents

Acrylamide (C3HsNO), bromophenol blue (3', 3", 5', 5"-tetrabromophenol-sulfonephthalein,

C1gHgBr40SSNa) and glycine (C2HsN02) were purchased from BDH Laboratory Supplies,

Poole, England. Bis-acrylamide (N,N'-methylene-bis-acrylamide, C7H10N202) and sodium

thiosulphate (pentahydrate, Na2S203.5H20) were obtained from ICN Biomedicals Inc., Aurora,

Ohio. Ammonium persulphate «NH4hS20a) was obtained from Biosolve Ltd, Valkenswaard,

The Netherlands. N,N,N',N'-Tetramethylethylenediamine (TEMED; CeH1aN2), urease

molecular weight markers for native-PAGE (Jack Bean, approx. mol. wt 272 000 (trimer) and

545 000 (hexamer» and formaldehyde (37 % (w/v) solution, CH20) were purchased from

. Sigma, St Louis, MO, USA. Silver nitrate (AgN03) was purchased from Merck Laboratory

Supplies (pty) Ltd, Midrand, RSA. Sodium carbonate (anhydrous, Na2C03) was purchased

from Saarchem, Krugersdorp, RSA.

2.1.4 Tissue culture reagents

Agar Bacteriological (Agar No. 1) was purchased from Oxoid Ltd, Basingstoke, Hampshire,

England. Myo-inositol (CeH120 e) and nicotinic acid (niacin, pyridine-3-carboxylic acid,

CeHsN02) were purchased from Sigma, St Louis, MO, USA. Pyrodixine HCI (vitamin Ba,

CeH11N03·HCI) and thiamin HCI (vitamin B1, C12H17N40SCI·HCI) were purchased from BDH

Laboratory Supplies, Poole, England. All other chemicals for the basal medium were obtained

from Merck laboratory Supplies (Pty) Ltd, Midrand, RSA and BDH laboratory Supplies,

Poole, England.

2.1.5 Growth regulators

Isopentenyladenine (iP; 6-(y,y-dimethylallylamino)-purine, CloH13Ns), isopentenyladenosine

(iPA; 6-(y,y-dimethylallylamino)-purine riboside, C1sH21 HS0 4), DL-zeatin (Z; 6-[4-hydroxy-3-
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methylbut-2-enylamine]purine, C10H13NsO), trans-zeatin riboside (ZR; 9-[~o-ribofuranosyl]­

trans-zeatin, C1sH21 NsOs), DL-dihydrozeatin (DHZ; C10H1SNsO), kinetin (K; 6-furfurylamino

purine, C10HgNsO), indole-3-acetic acid (IAA; C10HgN02), indole butyric acid (IBA; C12H13N02),

a-naphthalene acetic acid (NAA; C12H1002), cis-trans abscisic acid (ABA; C1sH2004) and

authentic methylated abscisic acid (ABAMe) and indole-3-acetic acid (IAAMe) standards were

obtained from Sigma, St Loius, MO, USA. 6-chloropurine, 2,6-dichloropurine, 2-methylthio-6­

chloropurine and 2-methylthio-6-chloro-9-methylpurine were obtained from OIChemlm Ltd,

Olomouc, Czech Republic. Authentic phaseic acid (PA) and dihydrophaseic acid -(DPA)

standards were kindly supplied by Professor A.K. Cowan, Research Centre for Plant Growth

and Development, University of Natal, Pietermaritzburg.

2.1.6 Solvents

High performance liquid chromatography (HPLC) grade solvents were obtained from Burdick

and Jackson, AlliedSignal Inc., Muskegon, MI, USA. Analytical grade solvents and

polyoxyethylene (20) sorbitan monooleate (Tween 80®) were supplied by Merck Laboratory

Supplies (Pty) Ltd, Midrand, RSA and Associated Chemical Enterprises (Pty) Ltd, Southdale,

RSA. Dimethyl sulphoxide (DMSO) was purchased from Sigma, St Loius, MO, USA.

Polyoxyethylene (20) sorbitan monolaurate (Tween 20~ was purchased from Saarchem (Pty)

Ltd, Krugersdorp.

2.1.7 Purification of indole-3-acetaldehyde

Commercially purchased lA-aid comes as a bisulfite addition compound. The bisulfite was

removed prior to activity staining, as it is a strong reducing agent and will thus reduce MTT to

formazan. Free lA-aid was prepared according to a modified method of Bower et al. (1978). A

known amount of lA-aid bisulfite was dissolved in 1 mL water and the pH adjusted to 10 with

0.5 N NaOH, which resulted in the precipitation of free lA-aid. The free lA-aid was removed by

partitioning three times against an equal volume of hexane/ethyl acetate (9:1, v/v). The

hexane/ethyl acetate fraction was dried in vacuo at 35 cC, using a BOchi Rotavapor\1!) R110

(BOchi Laboratoriums-Technik AG, Flawil, Switzerland), resuspended in 0.5 mL acetone and

diluted to 20 mL with 0.1 M Tris-HCI buffer (pH 8). The final concentration of free lA-aid was

determined by measuring the absorbance at 280 nm in an Anthelie Advanced

Spectrophotometer (Secomam CE, Domont Cedex, France) and applying Beer's law with E/80

=5400 L mor1cm-1(Brown and Purves 1976).

2.1.8 Preparation of xanthoxal

Xanthoxal was produced enzymatically according to the method of Firn and Friend (1972), by

coupling violaxanthin oxidation to the enzymatic oxidation of linoleic acid.
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Violaxanthin was extracted from orange peel and purified chromatographically using a

modified method of Taylor and Burden (1970) and Davies (1976). The outer layer of the

flavedo of orange fruit was grated from the fruit and a total of 750 g macerated with 1.5 L

methanol in an Osterizer~ blender. This extract was filtered under vacuum and the residue re­

extracted twice with diethyl ether (total volume 4 L). The methanol and diethyl ether extracts

were combined and partitioned against water containing NaCl, to prevent an emulsion from

forming (Davies 1976). The organic fraction was dried in vacuo at 30°C, using a BOchi

Rotavapor® R110. Sufficient methanol was then added to dissolve the residue and 1 M KOH

added in a ratio of 2 mL KOH to 10 mL solvent. The extract was saponified for 12 h at room

temperature, in the dark. The methanol fraction was reduced to the aqueous phase in vacuo

at 35°C and a small volume of water was added. This fraction was subsequently partitioned

against diethyl ether, until the ether fraction was colourless. The diethyl ether fractions were

pooled, dried in vacuo at 30°C and resuspended in a small volume of hexane. This fraction

was then subjected to vacuum liquid chromatography (VLC) on a 6 cm x 13 cm silica gel (150

g; Type 60, particle size 0.063-0.2 mm) column. The sample was dissolved in 5-6 g silica gel,

placed on top of the column and covered with glass wool. The column was eluted (400 mL

solvent/fraction) with increasing concentrations of ethyl acetate in hexane. The fractions

eluted with 50:50 (v/v) hexane/ethyl acetate; 40:60 (v/v) hexane/ethyl acetate and 30:70 (v/v)

hexane/ethyl acetate were pooled and dried in vacuo at 35°C. The final concentration of

violaxanthin was determined by measuring the absorbance at 450 nm in an Anthelie

Advanced Spectrophotometer and applying Beer's law with EA450 = 2 500 L mor1 cm-1•

A solution of 10 mg violaxanthin and 10 mg Tween 80~ in 10 mL 0.2 M Tris-HCI buffer (pH

7.6) was mixed with a solution of 20 mg linoleic acid and 20 mg Tween 80~ in 10 mL 0.2 M

Tris-HCI buffer (pH 7.6). The mixed solution was divided into four equal aJiquots and 2 mL

soybean lipoxidase (60 IJg mL-1
) in 0.2 M Tris-HCI buffer (pH 7.6) was added to each aliquot.

These aliquots were then incubated at 30°C for 30 min, after which the reaction was

terminated by the addition of 1 g ammonium sulphate. This solution was then partitioned three

times against ethyl acetate. The ethyl acetate fractions were pooled and dried in vacuo at 35

cC. These fractions were loaded onto silica gel plates (GF254) and developed to 15 cm in

hexane/ethyl acetate (1:1, v/v). The zone corresponding to XAN (Rf = 0.21) was removed and

eluted with water-saturated ethyl acetate. This was subsequently filtered through glass wool,

dried in vacuo at 35°C and re-purified on silica gel (GF254) plates to a height of 15 cm in

petroleum ether/acetone (3: 1, vlv). The XAN zone was removed, eluted in water-saturated

ethyl acetate and dried in vacuo at 35°C. This fraction was resuspended in 20 % methanol,

filtered through a 0.2 IJm syringe filter (Lida ManufactUring Corp., Kenosha, WI, USA) and
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further purified by HPLC (see section 2.9.7 for HPLC method (System 8». Xanthoxal was

quantified following calibration with an authentic ABAMe standard.

2.2 CHROMATOGRAPHIC MEDIA

C18 solid phase extraction (SPE) columns and nitrile (SPE) cartridge columns were obtained

from Isolute, International Sorbent Technology Ltd, Glamorgan, UK. Waters Sep-Pak~ Plus

tC18 cartridges and Waters Oasis® MCX 6cc (150 mg) extraction cartridges were purchased

from Waters Corporation, Milford, MASS, USA. For thin layer chromatography (TLC) and VLC,

silica gel 60 F254 plates (layer thickness 0.2 mm) and Type 60 silica gel (particle size 0.063

mm-0.2 mm) were purchased from Merck KGaA, Darmstadt, Germany. Whatman~ No. 1

chromatography paper was purchased from Whatman International Ltd, Maidstone, England.

For HPLC, the analytical columns were as follows: 1) For ABA and IAA analysis a 5 ~m C'8

ODS1 Sphereclone column (250 mm x 10 mm Ld.) was purchased from Phenomenex,

Torrance, CA, USA; 2) for purine analysis a 5 ~m C18 Nucleosil 100-5 (250 mm x 4 mm Ld.)

column with a 100-5 guard column (8 mm x 4 mm Ld.) was purchased from Macherey-Nagel

GmbH and Co., DOren, Germany.

DEAE-Sephadex A-25 for anion exchange chromatography was purchased from Amersham

Pharmacia Biotech Inc., Piscataway, New Jersey, USA. Sephadex G-25 for size exclusion

chromatography and diatomaceous earth (acid washed) for reagent purification were obtained

from Sigma, St Loius, MO, USA. Dowex 50W-X8 cation exchange resin (H+ form: 200-400

mesh) was purchased from BDH Chemicals Ltd, Poole, England. Activated charcoal for

reagent purification was purchased from Merck Laboratory Supplies (Pty) Ltd, Midrand, RSA.

2.3 PREPARATION OF REAGENTS

2.3.1 Bradford reagent

The Bradford dye-binding reagent was prepared by dissolving Coomassie Brilliant Blue G-250

(500 mg) in 250 mL ethanol (99.9 %, w/v) and 500 mL concentrated phosphoric acid (85 %,

w/v). The solution was made up to 1 L with distilled water and stirred overnight at 4°C. The

resulting solution was filtered through Whatman~ No. 1 filter paper and stored in an amber­

coloured bottle at 4 °C for up to six months. Prior to use the reagent was diluted five times,

such that the final concentrations in the reagent were 0.01 % (w/v) Coomassie Brilliant Blue

G-250, 5 % (w/v) ethanol and 8.5 % (w/v) phosphoric acid.
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2.3.2 p-Aminophenol reagent

The p-aminophenol reagent is used to estimate CKOX activity as, under acidic conditions, it

reacts with 3-methyl-2-butenal, a product of irreversible CK degradation, to fonn a highly

coloured Schiff base with an absorbance maximum at 352 nm. This is based on the protocol

for detection of 2,3-unsaturated aldehydes (Pesez and Bartos 1974). The reagent is prepared

as a 3 % (w/v) p-aminophenol in 6 % (w/v) trichloroacetic acid solution. In order to decolourise

the reagent it was passed through a charcoal column (1 cm x 5 cm) overnight at 4 cC. The

reagent was prepared daily and protected from light at all times.

2.3.3 Ethereal diazomethane preparation

Ethereal diazomethane was generated, without co-distillation, on ice, by hydrolysis of N­

nitroso-N-methylurea with 5 N NaOH in a Wheaton Diazomethane Generator (Pierce

Chemical Co., Rockford, ILL, USA) using the small scale technique described by Fales et al.

(1973). N-nitroso-N-methylurea (133 mg) and 0.5 mL water (for dissipation of generated heat)

were placed in the inner tube, whilst 3 mL dry diethyl ether was placed in the outer tube.

Subsequently to the unit being cooled on ice for 15 min, 0.6 mL 5 N NaOH was injected

through the teflon rubber septum. The reaction was allowed to proceed for approximately 45

min or until the ether developed a deep yellow colour.

Dry diethyl ether was prepared by passing diethyl ether through a charcoal/diatomaceous

earth (50:50, v/v) column (1 cm x 5 cm), upon which the dry diethyl ether was stored in a

bottle containing iron filings, to remove peroxides. This is important as water and peroxides in

the diethyl ether can cause an explosion during ethereal diazomethane generation.

2.4 PLANT MATERIAL

Avocado (Persea americana Mill. cv Hass) fruit were harvested from 8-year-old trees

cultivated on clonal Duke 7 rootstocks in orchards in the KwaZulu-Natal Midlands, South

Africa (Philips Bioclimatic group 3 - cool subtropical, summer rainfall area). Fruit was

harvested in the early morning and transported to the laboratory where the seed, seed coat

and mesocarp tissue was dissected into liquid nitrogen and freeze-dried immediately using a

Xerotec Freeze Drier (University of Natal, Pietennartizburg, RSA) or extracted immediately for

selected enzymes or plant honnones.

2.5 APPLICATION OF CHEMICALS

2.5.1 Excised whole fruit

For studies on the effect of various compounds on hormone metabolism in whole fruit

harvested during the linear phase of growth, fruit pedicels were re-cut under water and the
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fruit supplied with solutions via the transpiration stream. A total volume of 0.5 mL was pulsed

into fruit via the pedicel, which was subsequently incubated at 25 °C, prior to extraction and

analysis for the time period specified in Results.

Whole fruit was treated with CK (iP, iPA, zeatin and adenine), auxin (IAA, NAA and IBA) and

allopurinol and molybdate, at the concentrations specified in Results. Cytokinin and allopurinol

and molybdate were dissolved in 2 % (v/v) DMSO and fonnulated in water. Auxin was

dissolved in 2 % (vlv) ethanol and formulated in water. Controls consisted of a fruit treated

with either 0.5 mL 2 % (v/v) DMSO or 0.5 mL 2 % (v/v) ethanol.

2.5.2 Mesocarp from ripe fruit

Alternatively, for studies on the effect of various compounds on honnone metabolism in ripe

fruit, mature fruit were allowed to ripen in darkness at 25 °C for 8-10 days and excised

mesocarp tissue was infiltrated with 0.5 mL of the various compounds, via a series of cuts in

the surface of the fruit. The fruit was then incubated in a water-saturated environment at 25 °C

prior to extraction and analysis. For each experiment mesocarp blocks (ca. 15 g FW) were

from the same fruit.

Ripe fruit were treated with cytokinin (iP, zeatin, adenine, 6-chloropurine, 2,6-dichloropurine,

2-methylthio-6-chloropurine and 2-methylthio-6-chloro-9-methylpurine) and allopurinol and

molybdate. at the concentrations specified in Results. These treatments were dissolved in 2 %

(v/v) DMSO and fonnulated in Tween 20~/acetone/water (1:1:8, v/v/v). Controls consisted of a

mesocarp block treated with 5 mL 2 % (v/v) DMSO in Tween 20~/acetonelwater (1:1:8. v/v/v).

An equivalent sized tissue sample from each fruit was extracted immediately for detennination

of basal metabolic concentration.

2.6 PREPARATION OF ENZYME EXTRACTS

Tissue was extracted in buffer in the presence of 10 % (w/w) insoluble PVP (Polyclar An,

unless otherwise stated, and removed prior to analysis by filtration or centrifugation.

Polyvinylpolypyrrolidone binds phenolic compounds by hydrogen bonding (Andersen and

Sowers 1968) and is very useful when extracting plant material that contains significant

quantities of phenols, such as avocado seed tissue, which is a rich source of polyphenolic

compounds (Biale and Young 1971).

All freeze dried avocado tissue was milled to a fine powder using a IKA Analytical mill A10

(Janke and Kunkel GmbH and Co., IKA-Laboratory Technology, Staufen, Gennany) and

stored at -20 °C. When extracting fresh tissue, the tissue was finely chopped and kept on ice,
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prior to being homogenised. Extracts were homogenised using an IKA Ultra-Turrax~ top-drive

tissue disperser (Janke and Kankel GmbH and Co., IKA-Laboratory Technology, Staufen,

Germany).

2.6.1 Aldehyde oxidase and xanthine dehydrogenase

2.6.1.1/n vitro assay extraction

Crude extracts for assays of AO and XOH in vitro were prepared according to the procedure

described by Triplett et al. (1982). Milled freeze-dried tissue (0.5 g), together with PVP

(Polyclar AT, 10 % w/w), was homogenised on ice, in 50 mM potassium phosphate buffer (pH

7.8) containing 1 mM on, using an Ultra-Turrax top-drive tissue disperser. Extracts were

allowed to stand on ice for 20 min prior to centrifugation at 30,000 g for 15 min at 2 cC, using a

Hitachi Himac automatic high speed refrigerated centrifuge (Model CR20B2) with a RPR 20-2

rotar (Hitachi Koki Co. Ltd, Tokyo, Japan). The resulting supematant was brought to 60 %

saturation with solid ammonium sulphate. After stirring for. 30 min the mixture was re­

centrifuged at 40,000 g for 20 min at 2 cC, The pellet was resuspended in 2 mL of 50 mM

- potassium phosphate buffer (pH 7.8) and desalted on a 1 cm x 3 cm Sephadex G-25 column,

equilibrated with 50 mM potassium phosphate buffer (pH 7.8). The column was centrifuged at

1,500 g for 2 min in a Hermle Z510 BHG (swinging bucket) centrifuge (Berthold Hermle GmbH
-~--- -_. --- - - ~- ---- --

and Co., Gosheim, Germany) to remove excess buffer used for equilibration. The enzyme

extract was then loaded onto the column and centrifuged at 1,500 g for 2 min. The resulting

eluant was used for subsequent assays.

2.6.1.2 Native-PAGE assay extraction

Crude avocado tissue extracts for assays of XOH and AO activity following native

polyacrylamide gel electrophoresis (PAGE) were prepared according to a modified method of

Sagi et al. (1999). Fresh tissue (Sg) together with PVP (Polyclar AT, 10 % w/w) was

homogenised on ice in 50 mM Tris-HCI buffer (pH 8.5) containing 1 mM OIT, 5 mM l­

cysteine, 80 IJM sodium molybdate, 0.03 mM FAD, 10 mM reduced glutathione, and

Complete~ protease inhibitor tablets (1 tablet 50 mL-1
). Extracts were allowed to stand on ice

for 20 min prior to centrifugation at 30,009 g for 15 min at 2 cC. The supematant was retained

for subsequent assays.

2.6.2 Cytokinin oxidase

2.6.2.1 Spectrophotometric assay extraction

Milled freeze-dried tissue (0.5 g) together with insoluble PVP (Polyclar AT, 10 % wlw) was

homogenised on ice)n 50 mM potassium phosphate buffer (pH 7.4), containing 2 mM CaCI2, 1

mM MgS04 , 0.5 mM on, Complete~protease inhibitor tablets (1 tablet50 mL-1) and 1 % (v/v)
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Polymin P (50 % (w/v) aqueous solution) and allowed to stand for 20 min on ice. The

suspension was centrifuged at 20,000 g for 20 min at 2 °C and the resulting supematant was

retained for subsequent analysis.

2.6.2.2 Radioactive assay extraction

Extracts for the radioactive assay of CKOX activity were prepared according to the method of

Motyka and Kaminek (1994). Fresh tissue (5 g) together with insoluble PVP (Polyclar AT, 10

% w/w) was homogenised on ice in 10 mL 0.1 M Tris-HCI buffer (pH 7.5) containing

Complete® protease inhibitor tablets (1 tablet 50 mL-1
) and allowed to stand for 20 min on ice.

The homogenate was filtered through two layers of Miracloth (Calbiochem, Biosciences Inc.,

La Jolla, CA, USA) and the retained solids washed with two 5 mL aliquots of 0.1 M Tris-HCI

buffer (pH 7.5). The resulting combined filtrate was centrifuged at 10,000 g for 10 min at 4°C.

The supematant was retained and 1 % (v/v) Polymin P (40 IJL mL-1
; adjusted to pH 7.5) was

added dropwise while stirring. After stirring for 10 min, the precipitates were removed by

centrifugation at 10,000 g for 10 min at 4°C. Solid ammonium sulphate was then added to the

supernatant to give 80 % saturation. After stirring for 30 min, the ammonium sulphate

precipitates were collected by centrifugation at 20,000 g for 20 min at 4°C. The resulting

pellet was resuspended in 0.05 M Tris-HCI buffer (pH 8.0) and desalted on a 1 cm x 3 cm

Sephadex G-25 column equilibrated with 0.05 M Tris-HCI buffer (pH 8.0) (see section 2.6.1.1

for procedure).

2.7 PROTEIN DETERMINATION

Protein in enzyme extracts was determined using Bradford's dye-binding assay (1976). This

method of protein determination is rapid, sensitive, relatively inexpensive and specific for

proteins, working in the range of 25 IJg mL-1 to 200 IJg mL-1 protein in solution (Bradford 1976;

Read and Northcote 1981). Protein extract (100 IJL) was added to 5 mL of the diluted Bradford

reagent (see section 2.3.1 for preparation), vortexed and allowed to stand for 5 min to allow

colour to develop. Absorbance was read at 595 nm in an Anthelie Advanced

Spectrophotometer. Samples were assayed in triplicate and interpolated from a standard

curve prepared using BSA as a protein standard. Assays for the standard curve were

performed using nine replicates at five concentrations of BSA (0.2 mg mL-1 to 1 mg mL-1).

Blanks for protein determination were prepared using the corresponding extraction buffer.

2.8 ASSAY PROCEDURES

2.8.1 Spectrophotometric enzyme assays

2.8.1.1 Aldehyde oxidase in vitro assay

Aldehyde oxidase activity was determined spectrophotometrically by monitoring the decrease

in absorbance of DCIP at 600 nm (Courtright 1967) in an Anthelie Advanced
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Spectrophotometer. The reaction mixture consisted of 0.2 mL enzyme extract and 1.8 mL 0.1

mM PMS and either 2 mM I-aid (for XAN oxidase activity) or lA-aid (for lA-aid oxidase activity)

in 50 mM potassium phosphate buffer (pH 7.4). The reaction was initiated by the addition of

0.002 % (w/v) DCIP in 50 mM potassium phosphate buffer (pH 7.4) and allowed to proceed for

a maximum of 10 min. The final concentration of reduced OCIP was detennined by applying

Beer's law EA
600 =2.2 x 104 L mor1 cm-1 and specific activity of AD is expressed as nmol OCIP

reduced mg-1 protein min-1 (Sagi et al. 1998).

2.8.1.2 Xanthine dehydrogenase in vitro assay

For the detennination of XOH activity, the reaction mixture included 1 mM hypoxanthine and 1

mM OTT in 50 mM Tris-HCI buffer (pH 6.5). The reaction was initiated by the addition of either

2.5 mM NAO+ or 0.002 % (w/v) OCIP in 50 mM Tris-HCI buffer (pH 6.5) followed by incubation

at 30°C (Sagi et al. 1998). Xanthine dehydrogenase activity was monitored

spectrophotometrically, in an Anthelie Advanced Spectrophotometer, by following the

production of NAOH at 340 nm (Triplett et al. 1982) or the decrease in absorbance of OCIP at

600 nm (Perez-Vicente et al. 1988), for a maximum of 10 min. The final concentration of

NAOH or OCIP wasdetennined by applying Beers law EA
340 =6.333 X 103 L mor1 cm-1 for

NAOH and EA
600 =2.2 X 104 L mor1 cm-1 for OCIP and is expressed as nmol OCIP reduced

(NAOH) mg-1 protein min-1
.

For the detennination of the kinetic properties of AD and XOH, assays were conducted with

1.0 to 5.0 mM substrate for 1 to 3 min, during which time the reaction rate remained constant,

according to the methods of Courtright (1967) for AD and Triplett et al. (1982) for XOH.

2.8.1.3 Cytokinin oxidase spectrophotometric assay

Cytokinin oxidase activity was assayed using the method of Liberos-Minotta ,and Tipton

(1995). The reaction mixture in 0.2 M imidazole-HCI buffer (pH 7.5), contained 80 ~M iP and 1

mM CuCI2, and was initiated by the addition of enzyme and incubated at 37°C for 30 min. The

reaction was tenninated using 40 % (w/v) trichloroacetic acid. Following the addition of p­

aminophenol reagent (see section 2.3.2 for preparation) and development of colour for 10 min

at room temperature, the absorbance at 352 nm was detennined in an Anthelie Advanced

Spectrophotometer. Cytokinin oxidase activity is expressed as ~mol 3-methyl-2-butenal

produced mg-1 protein, interpolated from a standard curve prepared by reacting 3-methyl-2­

butenal with p-aminophenol reagent.
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2.8.2 Radioactive enzyme assays

2.8.2.1 Cytokinin oxidase assay

Alternatively, CKOX activity was assayed by monitoring the conversion of [2-
3
H]iP to

[3H]adenine according to the method of Motyka and Kaminek (1994). The assay mixture (50

~L final volume) contained 50 mM Tris-HCI buffer (pH 8), 10 ~M substrate ([2-
3
H]iP, 1.25 TBq

mmor1) and 25 ~L of enzyme preparation. After incubating the reaction mixture for 4 h at 37

oC, the reaction was terminated by the addition of 10 ~L 200 mM Na2EDTA and 120 ~L of cold

95 % (v/v) ethanol, containing 0.75 mM unlabelled iP and adenine. Residual substrate and

labelled product were subsequently separated on thin layers of silica gel (GF2504), developed

once to 10 cm in chloroform/methanol/ammonium hydroxide (25 %, w/v) (9:2:0.1, v/v/v) (Redig

et al. 1997). Zones corresponding to authentic iP (R, 0.7-0.8) and Ade (R,O.3-0.4) standards

were eluted with 2 mL 80 % ethanol, to which was added 5 mL Pico-Fluor™ 40 (Universal

LSC cocktail). Radioactivity was determined by liquid scintillation spectrometry using a

Packard Tri-Carb~ 1500 Scintillation Counter (Packard, Downers Grove, ILL, USA)

programmed for automatic quench correction. Cytokinin oxidase activity is expressed as Jjmol

[3H]adenine produced mg-1 protein h-1
. For substrate specificity analysis trans-[2-3H]zeatin was

used as a substrate.

2.8.3 Native-PAGE assays

2.8.3.1 Polyacrylamide gel electrophoresis

Native-PAGE was performed with a 10 % acrylamide gel in a Laemmli buffer system (Laemmli

1970), in the absence of sodium dodecyl sulfate (SDS) at 4 °C. A CBS Scientific Vertical Mini­

Gel System (Model MGV-202; CBS Scientific Company Inc., Del Mar, CA, USA) was

assembled as described in the manufacturer's manual. Before use the glass plates, spacers,

combs and Gel WrapTM gaskets were washed with soap water and cleaned with alcohol. The

two glass plates (inner plate 8.5 cm x 11 cm, outer plate 9.5 cm x 11 cm) were positioned in

the clamp assembly and separated by 1.0 mm polyethylene spacers. Removable silicone Gel

WrapTM gaskets ensure that the acrylamide solution does not leak from the sandwich

assembly.

The separating gel solution (Table 2.1) was run into the space between the two glass plates,

to a depth of 2.0 cm from the top of the inner glass plate and was overJayered with distilled

H20, to exclude atmospheric oxygen, which inhibits polymerisation. Polymerisation involves

the production of an acrylamide monomer chain which is cross-linked by the bifunctional

compound N, N'-methylenebisacrylamide. N, N, N', N'-tetramethylethylenediamine catalyses

the formation of free radicals from ammonium persuIfate, which in turn initiates polymerisation

(Hames and Rickwood 1981). Once the gel had set (approximately 1 h, evidenced by the
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re-appearance of an interface between the gel solution and the over-layered distilled H20) the

water was removed. Stacking gel solution (Table 2.1) was poured into the sandwich to the top

of the inner glass plate and a 1o-well comb inserted to form the sample application wells.

Once the stacking gel had set, the comb was removed and the wells were washed with

distilled H
2
0. The gel sandwiches were then transferred and clamped onto the electrophoresis

unit.

Table 2~1 Reagents for two Laemmli gels (Laemmli 1970) for the CBS SCientific Vertical
Minl-Gel System. (For reagent preparation see appendix I)

Separating Gel Stacking Gel
Reagent

(10 %) (3.5 %)

3.75 2.25
Gel Buffer (mL)

5.0 1.05
Monomer (mL)

75 50
Ammonium persulfate (IJL)

15 7.5
TEMED (IJL)

6.25 5.7
Dist. H20 (mL)

Tank buffer was poured into the upper and lower chamber of the electrophoresis unit. The

voltage was set at 150 V for 30 min, to remove free radicals formed during the polymerisation

process. Sample was mixed with non-reducing treatment buffer and bromophenol blue marker

dye (10-12 IJL), which migrates with the buffer front and monitors the progress of

electrophoresis. The samples were centrifuged at 5,500 g for 5 min, in a Hitachi Himac

Miniature Centrifuge (model SCT15B; Hitachi Koki Co. Ltd, Tokyo, Japan), to remove any

insoluble material. The sample was loaded onto the gel and the voltage was set at 100 V

(maximum current) until the bromophenol blue front had migrated through the stacking gel.

The voltage was then increased to 150 V for the remainder of the electrophoretic run. Equal

amounts of protein were loaded per sample onto the gel, varying from 20 to 30 JJg for activity

staining and 10 to 15 JJg for silver staining of mesocarp samples and 2 "to 3 JJg for silver

staining of seed and seed coat samples. The temperature of the unit was maintained at 4 ac,
by attaching the unit to a Lauda Compact Low-Temperature Thermostat (Messgerate-Werk

Lauda, Lauda-Konigshofen, Germany). Electrophoresis was continued until the bromophenol
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blue marker dye was 0.5 cm from the bottom of the separating gel. The gels were removed

and prepared for activity staining or placed in the appropriate staining solution for

visualisation.

2.8.3.2 Activity staining for aldehyde oxidase andxanthine dehydrogenase

Enzyme activity staining is a technique used to locate the relative position of multiple forms of

enzymes with common catalytic activity, after they have been resolved by PAGE (Tanksley

and Orton 1983). This is usually achieved through the production of a non-diffusable

chromogenic precipitate at the site of enzyme activity, such as the conversion of a soluble

tetrazolium salt to a coloured insoluble formazan. The quantity of formazan formed is directly,

proportional to enzyme activity during a given incubation time and in the presence of excess

substrate and tetrazolium salt (Rothe 1974).

Following electrophoresis, gels were removed, washed with distilled H20 and immersed in 0.2

M potassium phosphate buffer (pH 8.0) for 5 min. Following this the gels were washed again

with distilled H20, placed in the reaction mixture containing 1 mM substrate, 0.2 mM PMS and

1 mM MD in 0.1 M Tris-HCI buffer (pH 8.0) and incubated for 45 min at 30 QC on an orbital

shaker, in the dark. Following staining the gels were fixed in 5 % (v/v) acetic acid to facilitate

diffusion of non-reacted substrate out of the gel, to remove background staining and to keep

the bands sharp. The gels were removed from the fixing solution, washed with distilled H20

and scanned immediately using a Hewlett-Packard Scanjet 5300C with HP PrecisionScan

Software, Version 3.01 at 300 dpi resolution.

For the assessment of AO activity the following substrates were used I-aid, lA-aid,

heptaldehyde, benzaldehyde, citral, acetaldehyde and 3-methyl-2-butenal at a concentration

of 1 mM. Aldehyde oxidase activity was also assessed using XAN as a substrate at a

concentration 0}17 IJM. For assessment of XDH activity hypoxanthine and xanthine were

used as substrates at a concentration of 1 mM.

2.8.3.3 Silver staining ofproteins in polyacrylamide gels

This method provides an attractive alternative to the traditionally used Coomassie Brilliant

Blue R-250 protein stain, in that proteins may be detected in the nanogram range. The

sensitivity of this technique, which is based on the reduction of silver ions to metallic silver, is

only surpassed by radioactive labelling. Blum et al. (1987) modified the original silver staining

procedure to avoid non-specific background staining without the loss of sensitivity or contrast.
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All steps were carried out on an orbital shaker at room temperature and in scrupulously clean

glass containers. Gloves were worn at all times to prevent contamination of the gels. After

electrophoresis, the gels were soaked in fixing solution overnight and washed in washing

solution 1 (3 x 20 min) to remove any acetic acid. Gels were placed in pretreatment solution (1

min), washed in deionised H20 (3 x 20 sec) and placed in the impregnation solution (25 min).

After washing (2 x 20 sec in deionised H20), the developer was added. As soon as bands

were visible, the gels were washed in deionised H20 until the bands were fully developed. The

stopping solution was added (> 20 min), the gels washed in washing solution 2 (10 min), and

scanned immediately as previously described (see section 2.8.3.2). For reagent preparation

see appendix I.

2.9 EXTRACTION AND ANALYSIS OF PURINES AND PLANT HORMONES

2.9.1 Cytokinin extraction

Freeze-dried tissue (0.5 g), together with PVP (Polyclar AT, 100 % w/w), was homogenised in

100 mL 80 % (v/v) ethanol and extracted overnight in darkness at 4 °C. The homogenates

were filtered under vacuum through Whatman~ No. 1 filter paper and the resulting residue

washed with 50 mL 80 % ethanol. The filtrate was reduced to dryness in vacuo at 35 °C and

the residue resuspended in 50 mL 80 % ethanol (Smith and van Staden 1978). The pH of the

extract was adjusted to 2.5 with 1N HCI and subsequently passed through a Dowex cation

exchange resin column (H+ form: 200-400 mesh, column 3 cm x 8 cm) at a flow rate of 15 mL

h-1. The column was washed with 100 mL 80 % ethanol and the adsorbed CK were eluted

from the column with 100 mL 5 N NH40H. The ammonia fraction was collected and reduced to

dryness in vacuo at 35 °C (van Staden 1976a). The residue was resuspended in 80 % ethanol

and applied as a 1 cm strip on Whatman~ No. 1 chromatography paper (23 cm x 57 cm). The

CKs were separated using descending paper chromatography and developed to 40 cm in iso­

propanol/ammonialwater (10: 1:1, v/v/v). The chromatograms were dried in a stream of air at

50 °C for 24 h, after which they were divided into ten equal R, strips and assayed using the

soybean callus bioassay (van Staden et al. 1972; Smith and van Staden 1978).

2.9.2 Purine extraction

Purines were extracted according to the method of Gilmore and Bjorkman (1994). Milled,

freeze-dried tissue (0.5 g) was extracted on ice, with 10 mL ice-cold 5 % (w/v) perchloric acid,

by homogenising for 60 sec. Extracts were chilled on ice for 5 min, homogenised for another

30 sec and the resulting homogenate centrifuged at 10,000 g for 5 min at 2 °C. The

supernatant was adjusted to pH 3-3.5 with 5 M KOH and chilled on ice for 5 min to allow the

precipitation of KCI04. The mixture was centrifuged at 10,000 g for 2 min at 2 °C, after which

PVP (Polyclar AT, 50 % w/w) was added to the supernatant. The PVP mixture was kept on ice
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and stirred intermittently for 20 min, followed by centrifugation at 10,000 g for 5 min at 2°C.

The supernatant was titrated to between pH 6.5 and 7 with 0.5 M and 0.05 M KOH and chilled

on ice for 5 min to allow KCI04 to precipitate. After centrifuging at 10,000 g for 2 min at 2°C,

the supernatant was dried in vacuo at 35°C and resuspended in HPLC starting buffer (0.02 M

(NH4)H2P04 in 2.5 mM N,N-dimethyloctylamine, adjusted to pH 3 with acetic acid) and filtered

through a 0.2 IJm syringe filter.

2.9.3 ABA and IAA extraction

Tissue (0.5 g DW or 5 g FW) together with PVP (Polyclar AT, 10 % w/w) was homogenised in

ice-cold 80 % (v/v) methanol containing BHT and DDC (both 100 mg L-1
) as antioxidants and

[G-3H]ABA and 3-[5(n)-3H]IAA (both 20 000 dpm/sample), added to correct for losses, and

extracted overnight in darkness at 2°C. All further extraction procedures were carried out in

dim light as both IAA and ABA are sensitive to light. Anti-oxidants were included in the

extraction solvent as IAA and ABA are oxidised when exposed to air (Yokota et al. 1980).

Homogenates were filtered under vacuum through Whatman® No. 1 filter paper and the filtrate

reduced to dryness in vacuo at 35°C. The residue was resuspended in water (adjusted to pH

3 with 0.1 N HCI) and partitioned three times against ethyl acetate (pKa for IAA is 4.54 and pKa

for ABA is 4.7). The pooled ethyl acetate fractions were reduced to dryness in vacuo at 35°C,

resuspended in water (adjusted to pH 8 with 0.05 N NaOH) and partitioned three times against

hexane. The aqueous fraction was loaded onto a DEAE-Sephadex A-25 anion exchange

column (5 mL bed volume), pre-equilibrated with 0.5 M sodium formate. The column was

washed with two 10 mL aliquots of water (pH 8) and the acids eluted onto a pre-wetted C18

(SPE) column with four 5 mL aliquots of 0.2 M formic acid. The C18 column was washed with

10 mL 90 % methanol and the eluate reduced to dryness in vacuo at 35°C. Samples were

resuspended in methanol and methylated by the addition of excess ethereal diazomethane

(see section 2.3.3 for preparation) over 20 min. After removal of the ether phase under a

stream of nitrogen, methylated samples were dried, partitioned three times into ethyl acetate

and passed through a nitrile (SPE) cartridge column. The ethyl acetate was removed under

nitrogen, the sample resuspended in 20 % methanol for analysis by reversed phase HPLC,

and filtered through a 0.2 IJm syringe filter.

2.9.4 ABA, IAA and CK extraction

The second protocol for ABA and IAA extraction involved using a novel dual mode Waters

Oasis® MCX column, containing a copolymer which allows separation of compounds by

reversed-phase and cation-exchange modes (Dobrev and Kaminek 2002). This method was

employed for two reasons, firstly it is a rapid method that allows easy manipulation of a large .
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number of samples and secondly, CK can be purified simultaneously. Through the step-wise

elution of solvents containing an increasing concentration of methanol and NH4QH separation

of IAA plus ABA, CK nucleotides and CK bases plus CK ribosides plus CK glucosides can be

achieved. Other advantages of this method of extraction include high recoveries, high loading

capacity (5-10 g FW plant material/column) with reasonably high recoveries and an

acceptable degree of purification (80-250 fold reduction in dry mass of the initial extract)

(Dobrev and Kaminek 2002).

Milled freeze-dried tissue (0.5 g) together with PVP (Polyclar AT, 10 % wlw) was

homogenised in ice-cold 80 % (v/v) methanol containing BHT and DDC (both 100 mg L-1
) as

antioxidants and [G-3H]ABA, 3-[5(n)-3H]IAA, [2-3H]iP and trans-[2-3H]zeatin (all 50 000

dpm/sample), added to correct for losses, and extracted overnight. in darkness, at 2°C.

Homogenates were filtered under vacuum through Whatman~ No. 1· filter paper and passed

through pre-wetted Sep-Pak~ Plus tC18 (SPE) cartridges. The eluent was reduced to dryness

in vacuo at 35°C and reconstituted in 5 mL 1 M formic acid. This was subsequently passed

through an Oasis~ MCX (150 mg/6 cc) cartridge, pre-conditioned with 5 mL methanol and 5

mL water. The cartridge was washed with 5 mL 1 M formic acid and 5 mL methanol. The

methanol fraction was collected and dried in vacuo at 35°C. as it contained the carboxylic

acids, ABA and IAA. It was then prepared for HPLC by resuspending it in 1 mL methanol and

filtering it through a 0.2 IJm syringe filter. The Oasis~ MCX cartridge was subsequently eluted

with 1) 5 mL 0.17 M NH40H; 2) 5 mL 0.17 M NH40H in 60% methanol; and 3) 5 mL 0.34 M

NH40H in methanol. Cytokinin nucleotides were located in eluate 1 and CK bases plus

ribosides plus glucosides were located in eluate 2.

2.9.5 Cytokinin bioassays

Callus from soybean cotyledons (Glycine max (L.) Merrill cv. Acme) is CK-dependent and is

capable of rapidly metabolising CK (Forsyth and van Staden 1986). The bioassay exhibits a

linear relationship between response and concentration over a wide range of CK

concentrations from 2 x 10-8 M to 5 x 10-5 M (Miller 1963; Manos and Goldthwaite 1976; van

Staden and Davey 1979). Callus was initiated according to the method described by Miller

(1963; 1965) and was maintained on Milller's medium (Miller 1965), supplemented with kinetin

(0.5 mg L0
1
) and NAA (2 mg L-1

), for numerous subcultures (see appendix I for media

preparation).

Each Rf zone, of the paper chromatogram, was cut into small pieces and placed in 50 mL

flasks, to which 1 % (w/v) agar was added. Miller's medium (30 mL) was then added to each

flask. The flasks were stoppered with non absorbent cotton wool bungs and covered with
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aluminium foil, prior to autoclaving at 121 QC and 1 Pa for 20 min, in a Tomy Autoclave Model

SO-30N (Tomy Seiko Co. Ltd, Tokyo, Japan). Transfer instruments were autoclaved at the

same time. The flasks were transferred to a sterile cabinet and the agar was allowed to set

under UV light. Three small pieces of callus (approximately 10 mg) were transferred to each

flask. The flasks were placed in a growth room at a constant temperature (26 QC ± 2 QC) and

continuous low light intensity (0.72 IJmol m-2 S-1), supplied by cool white fluorescent tubes, for

28 d. The combined mass of the three callus pieces was recorded as callus yield (van Staden

1976b). The bioassays were performed in triplicate and the mean values were determined.

2.9.6 HPLC quantification of purines

High performance liquid chromatography of purines was carried out using a 5 J.lm C18 column

(250 mm x 4 mm Ld., Nucleosil 100-5) with a 100-5 guard column (8 mm x 4 mm Ld.) and

eluted over 40 min with a linear gradient of 100 % - 80 % 0.02 M (NH4)H2P04 in 2.5 mM N,N­

dimethyloctylamine (adjusted to pH 3 with acetic acid) (Solvent A) in methanol (Solvent B), at

a flow rate of 1 mL min-1
. This was followed by a 3 min linear gradient to 100 % methanol to

facilitate cleaning of the column, a 2 min linear gradient to 100 % Solvent A and a 3 min re­

equilibration time. Compounds of interest were detected at 268 nm using a Spectra System

UVNIS 1000 detector (Thermo Separations Products, Freemont, CA, USA) and quantified

after calibration with authentic standards (see appendix I for standard chromatogram).

2.9.7 HPLC quantification of ABA and IAA

High performance liquid chromatography of IAA and ABA was carried out using a 5 J.lm C18

column (250 mm x 10 mm i.d., 00S1) eluted over 55 min with a linear gradient of 20 % - 100 .

% methanol in either 0.005 % aqueous acetic acid (System A) or water (System B), at a flow

rate of 2 mL min-1
. System A was used to analyse ABA, IAA, PA and OPA (see appendix I for

standard chromatogram), whilst System B was used to analyse methylated samples Le. ABA­

and IAA-methyl esters (see appendix I for standard chromatogram). Compounds of interest

were detected at 260 nm using a Spectra System UVNIS 1000 detector and quantified after

calibration with authentic standards of ABA, IAA, OPA, PA, ABA- and IAA-methyl esters.

For estimation of losses incurred during extraction, HPLC eluates were fractionated into 1 mL

aliquots, dried down in a Savant SC200 SpeedVac® concentrator, connected to a Refrigerated

Condensation Trap RT400 (Savant Instruments Inc., Farmingdale, NY, USA) and

resuspended in 0.5 mL methanol to which was added 2 mL Pico-Fluor™ 40 (Universal LSC

cocktail). Radioactivity was determined by liquid scintillation spectrometry using a Packard Tri­

Carb® 1500 Scintillation Counter, programmed for automatic quench correction.
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2.9.8 Gas chromatography-electron impact-mass spectrometric identity of ABA and

IAA

High performance liquid chromatography purified ABA and IAA co-eluting with authentic

standards were collected, methylated at room temperature with ice-cold ethereal

diazomethane, repurified on thin layers of silica gel GF254 in n-hexane:ethyl acetate (1:1, v/v)

and the methyl ester derivatives recovered into diethyl ether. Unequivocal identification was

achieved by GC-El-MS using a Hewlett-Packard 5890 gas chromatograph coupled to a

Hewlett-Packard quadrupole MS system. Samples were analysed using a fused-silica capillary

column (12 m x 0.32 mm Ld.) of QV-1 (Supelco Inc., Bellefonte, USA) programmed from 120

. QC at 5 QC min-1 with He as a carrier gas (1.5 - 2.0 mL min-1
) and El spectra recorded at 70 eV

and compared against authentic ABA (Walker-Simmons et al. 2000) and IAA (Prinsen et al.

2000) methylated standards.
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3 CHARACTERIZATION AND TISSUE DISTRIBUTION OF

AO, XDH, AND CKOX IN DEVELOPING AVOCADO FRUIT

3.1 INTRODUCTION

Biochemical characterization of the 'Hass' small fruit variant has shown that carbohydrate,

isoprenoid and ABA metabolism are all intimately linked to the appearance of this phenotype

(Cowan et al. 1997; Moore-Gordon et al. 1998; Richings et al. 2001). This conclusion is based

on reduced HMGR and SuSy activity and enhanced insoluble AI activity in small fruit, which

are associated with increased respiration, sucrose depletion, an increase in glucose as a

portion of the total soluble sugars and increased ABA metabolism (Richings et al. 2001). A

reduction in fruit size and the appearance of a small fruit phenotype was also correlated with a

decreased CKlABA ratio (Moore-Gordon et al. 1998). It is therefore evident that there exists

the possibility of cross-talk between sugar and hormone signalling pathways in fruit

development and that one of the potential roles of phytohormones in controlling avocado fruit

growth, is to detect or communicate changes in sugar content and composition and as a

consequence co-ordinate or re-direct growth (Cowan et al. 2001).

Although plant hormones have been detected in avocado fruit the information is rudimentary

and no attempt has been made to relate differences in hormone levels to the appearance of a

small fruit phenotype (Table 3.1). Furthermore, there is little or no information on hormone

metabolism in avocado fruit, aside from studies on ABA biosynthesis. This notwithstanding,

determination of plant hormone levels alone is often of limited value. Such data reveals little

about the site of hormone metabolism within the tissue under investigation, and very little can

be inferred about the contribution of hormone metabolism to changes in net hormone levels.

This limitation can be minimized by measuring the activity of key enzymes involved in

hormone metabolism, in addition to quantifying endogenous levels of the respective

hormones.

The involvement of MoCo-containing AOs in the conversion of XAN to ABA (Walker-Simmons

et al. 1989; Sindhu et al. 1990; Leydecker et al. 1995; Cowan 2001; Milborrow 2001) and IA­

aid to IAA (Koshiba et al. 1996; Tsurusaki et al. 1997; Lips et al. 1999) is of particular interest

as allocation of the MoCo to either NR or other MoCo-requiring enzymes such as XDH and

AO can potentially regulate sink strength and fruit growth in avocado (Campbell et al. 2000;

Cowan et al. 2001).
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Table 3.1 Previous findings of hormone content and composition in the tissues of developing avocado fruit. (RIA, Radioimmunoassay).

Hormone Method of
Seed Seed coat Mesocarp Referencedetermination

high initially initially very high moderate "bound" CK-like Blumenfeld and Gazit 1970;Bioassay levelsdeclines as fruit matures declines as fruit matures
declines as fruit matures

Gazit and Blumenfeld 1970

CK

RIA iP: >30 to 14 n~ g-1 FW iP: 30 to 0 ng g-1 FW iP: 20 to 5 ng p-' FW Cutting et al. 1986iPA: 5 ng g- FW . iPA: 20 to 0 ng g-1 FW iPA: 5 ng g- FW

moderate

Bioassay high initially high initially declines during fruit Gazit and Blumenfeld 1972
declines as fruit matures declines as fruit matures growth, small peak close

~ IAA to maturity
....,

RIA 70 to 15 ng g-1 FW at 70 to 0 ng g01 FW at steady decline from 30 to Cutting et al. 1986
maturity maturity 10 ng g-1 FW

varied between 35 and 65 varied between 35 and 40 to 100 ng g-1 FW fromRIA 65 ng g01 FW declined to Cutting et al. 1986ng g-1 FW oat maturity
mid growth to maturity

ABA

Reversed-phase 14 ~g g-1 DW during linear 29.3 to 10.9 ~g g-1 DW
Cowan et al. 1997

HPLC phase of growth - over course linear phase Richings et sI. 2000
of growth

GA Bioass'ay no measurable activity
initially very high

no measurable activity Blumenfeld and Gazit 1972
declines as fruit matures



Initial evidence for the involvement of a MoCo-AO in ABA biosynthesis came from studies

using MoCo-deficient mutants of barley (Walker-Simmons et al. 1989), tobacco (Leydecker et

al. 1995), tomato (Marin and Marion-PolI 1997) and Arabidopsis (Schwartz et al. 1997a).

These mutants lacked MoCo-containing AO and XDH activities and had impaired ABA

production. Lee and Milborrow (1997) presented further evidence of the involvement of a

MoCo-AO in ABA biosynthesis by demonstrating XAN accumulation in avocado fruit treated

with tungstate. Through the addition of cinchonine, which forms an insoluble complex with

tungstate, they were also able to show restoration of ABA production. These findings, taken

together, lead to the distinct possibility that XAN oxidase is a MoCo-containing AO. Recently

two AO genes have been identified in Arabidopsis leaves that are rapidly induced after

desiccation (Seo et al. 1999) and an AO isoform, designated AOo, has been found that has

high specificity for AB-aid and is expressed mainly in rosette leaves of Arabidopsis (Seo et al.

2000a;b).

Mutants impaired in MoCo biosynthesis would also be expected to exhibit impaired IAA

biosynthesis, if a MoCo-AO is indeed involved in the final step of its biosynthesis. However,

MoCo mutants exhibit no obvious IAA deficiency or auxotrophy phenotype (Seo et al. 1998).

One possible explanation is that the mutants are leaky and small quantities of IAA are

sufficient to promote normal growth. Another possibility is that several parallel pathways for

IAA biosynthesis exist in plants, operating at different stages of development and/or in

different organs or tissues (Normanly et al. 1995; Kawaguchi and Syono 1996; Normanly

1997). Some investigators have shown that an AO, tentatively designated lA-aid oxidase, may

be involved in IAA synthesis (RajagopaI1971; Bower et al. 1978; Miyata et al. 1981), but the

actual function of the enzyme in IAA biosynthesis has not been definitively confirmed. Maize

AO has exhibited a high affinity for lA-aid (Km 3-5 /JM), which indicates that even at low

concentrations of lA-aid, the aldehyde could still be converted to IAA (Koshiba et al. 1996).

Subsequently, Seo et al. (1998) demonstrated that an AO isoform, designated AOa, in

Arabidopsis plants had high affinity for I-aid and lA-aid and was overexpressed in the IAA

overproducing sur1 mutant, as compared to the wild type, suggesting the involvement of this

enzyme in the final step of IAA biosynthesis.

Xanthine dehydrogenase is another MoCo-requiring enzyme and catalyses the first oxidative

step in purine catabolism (Nguyen 1986). It is ubiquitous and ensures that purine compounds,

originating from CK and nucleic acid degradation, are irreversibly committed into pUrine

catabolism (Wastemack 1982; Nguyen 1986). Xanthine dehydrogenase catalyses the

formation of uric acid from xanthine and hypoxanthine and is thus necessary for the synthesis

of ureides in higher plants (Nguyen 1986). This enzyme is inhibited by excess substrate (Bray
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1963) and product (Nguyen 1979; Boland 1981), as well as substrate and product analogues

(Nguyen 1986), such as adenine and guanine (yVoo et al. 1981).

It has been suggested that the size of the MoCo pool is not consistent, but varies in response

to nutritional and environmental factors (Sagi et al. 1997; Sagi and Lips 1998). It is therefore

hypothesized that under conditions where nitrate assimilation is reduced and/or XOH inhibited,

more MoCo might be expected to be available for AO required for ABA and IAA biosynthesis.

One possible means by which XOH might be inhibited is through elevated adenine levels, one

source of which is the irreversible degradation of isoprenylated CK. The degradation of CK is

catalysed by the enzyme CKOX, which raises the possibility that changes in activity of this

enzyme might impact on the activity of XOH, through the production of adenine. The result of

CKOX activity is the irreversible loss of CK structure and thus biological activity and in this

way CKOX is thought to play an important role in controlling the internal pool of CK in plants.

Available evidence suggests that the activity of CKOX and the degradative metabolism of CKs

can be mediated by four principle mechanisms: (1) CK supply; (2) phenylurea compounds; (3)

auxin levels; and (4) glycosylation and/or isozyme variation (Jones and Schreiber 1997).

There have been very few investigations of the activity of AO, XOH and CKOX in fruit tissues

and certainly none considering all three simultaneously. The linkage of these enzymes to

hormone homeostasis has been alluded to before (Cowan et al. 1999; 2001), but a direct

relationship has yet to be established. The plants of choice used to investigate these enzymes

remain those with a rapid growth cycle, e.g. Arabidopsis thaliana, Nicotiana sp., Zea mays and

other cereal crops. The tissues extracted to evaluate activity of these enzymes are mainly

leaves or roots and in the case of CKOX, maize kernels. The use of the avocado fruit is thus a

first, with the 'Hass' small fruit phenotype providing an ideal system in which to probe more

detailed aspects of the control of final fruit size. To further characterize the 'Hass' avocado

small fruit phenotype, it was therefore necessary to compare and contrast the endogenous

hormone profile of seed, seed coat, and mesocarp tissue in normal and small fruit. In addition,

certain key enzymes involved either directly or indirectly in hormone metabolism were

assayed to determine activity and tissue distribution in normal and small fruit.

3.2 RESULTS

3.2.1 Characterization of AO, XOH, and CKOX in 'Hass' avocado fruit

3.2.1.1 Aldehyde oxidase

The substrate preference of AO, from mesocarp tissue of 'Hass' avocado frUit, for seven

aldehydes was studied by comparing the formazan band intensity after activity staining,

following native-PAGE (Fig. 3.1). Of the substrates tested I-aid (1) and citrai (2) were used
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efficiently by the enzyme. However, the enzyme was less active with benzaldehyde (3) and

heptaldehyde (4) and showed no activity in the presence of acetaldehyde (5), 3-methyl-2­

butenal (6) and lA-aid (7). Only 17 IJM of XAN could be produced after numerous preparations

and thus activity with XAN was determined relative to a substrate at a similar concentration.

For this purpose I-aid was chosen at a concentration of 20 IJM. Although activity was still

evident when using I-aid (A), the enzyme exhibited no affinity for XAN (B). This lack of activity

may not be attributable to a lack of substrate specificity, but could be due to the presence of

minor contaminating compounds in the XAN preparation and/or the concentration of 17 IJM

may be too low to detect activity when using this substrate.

--~,

(1) (2) (3) (4) (5) (6) (7) (A) (B)

(1) indole-3-aldehyde (5) acetaldehyde

(2) citral (6) 3-methyl-2-butenal

(3) benzaldehyde (7) indole-3-acetaldehyde

(4) heptaldehyde

(A) indole-3-aldehyde (20 IJM) (B) xanthoxal (17 IJM)

Figure 3.1 Zymogram showing AO activity in extracts from 'Hass' avocado mesocarp tissue
(harvested 112 days after full bloom (DAFB», following activity staining using
different substrates. Following native-PAGE, the activity bands were developed
separately, with strips from each lane, using seven aldehydes (1-7) at a
concentration of 1 mM and two aldehydes (A and B) at a concentration of 20 IJM
and 17 IJm respectively. The number at the bottom of each lane corresponds to
the aldehyde used. Each lane was loaded with an equal amount of protein (25
IJg/lane).

Through the use of spectrophotometric assays (Courtright 1967), Km and Vmax values were

calculated for AO in mesocarp and seed tissue of 'Hass' avocado fruit from Lineweaver-Burk

plots, using I-aid, Qitral, benzaldehyde and heptaldehyde as substrates (Table 3.2). All the

aldehydes were used efficiently by AO in both seed and mesocarp tissue, with Km values

ranging from 1.37 mM for heptaldehyde to 6.41 mM for benzaldehyde in mesocarp tissue and

0.46 mM for benzaldehyde to 1.17 mM for citral in seed tissue. Similar values have been

reported for AO in maize (Koshiba et al. 1996) and Nicotiana p/umbaginifolia (Akaba et al.

1998).



The effect of heat pre-treatment on AD activity in mesocarp tissue is illustrated in Figure 3.2,

where enzyme activity is directly proportional to the intensity of the formazan band formed

following activity staining. The enzyme lost all activity after being boiled for 2.5 min, but was

relatively stable between 50 QC and 60 QC, with some catalytic activity still detected at 70 QC.

The loss of formazan stain at high temperatures demonstrates that this is an enzyme

catalysed reaction.

Table 3.2 Kinetic properties of AO in mesocarp and seed tissue of 'Hass' avocado fruit
(harvested 112 OAFB) with various substrates. Enzyme activity was determined
by monitoring the decrease in absorbance of OCIP (Courtright 1967). The Km and
Vmax values were calculated based on Lineweaver-Burk plots of the data.

TissueSubstrate

Indole-3-aldehyde

Citral

Heptaldehyde

Benzaldehyde

mesocarp

seed

mesocarp

seed

mesocarp

seed

mesocarp

seed

Km Vmax

mM nmol DCIP mg-1 protein min-1

2.81 175.44

0.8 1000.00

1.68 322.58

1.17 1666.67

1.37 175.44

0.66 1111.11

6.41 43.86

0.46 909.09

Figure 3.2

Control 50 QC 55 QC 60 QC 65 QC 70 QC 80 QC 90 QC

Zymogram shOWing AOactivity in extracts from 'Hass' avocado mesocarp tissue
(harvested 84 OAFB), following heat pre-treatment prior to electrophoresis.
Extracts were· heated in a water bath for 2.5 min at different temperatures,
followed by immediate cooling in ice. Activity was determined using 1 mM l-ald
as the substrate. Each lane was loaded with 20 I-Ig protein.

3.2.1.2 Xanthine dehydrogenase

Xanthine dehydrogenase in 'Hass' avocado seed and mesocarp tissues has a pH optimum

between 6.0 and 7.0 (Fig. 3.3). The enzyme showed no affinity for xanthine, but exhibited

activity when hypoxanthine was used as the substrate (Fig. 3.4). The Km of XDH for
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hypoxanthine in 'Hass' avocado mesocarp tissue was 54 IJM and the Vmax was 270.27 nmol

OCIP reduced mg-1 protein min-1
, as calculated from a Lineweaver-Burk plot of the data. Km

values for hypoxanthine of a similar order have been calculated for XOH in Chlamydomonas

reinhardtii (160 IJM) (Perez-Vicente et al. 1988) and Nicotiana tabacum (29 IJM) (Nguyen and

Nato 1983).
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Figure 3.3 The effect of pH on XOH activity in seed (left axis) and mesocarp (right axis)
tissue of normal 'Hass' avocado fruit. Enzyme activity was determined according
to the method of Triplett et al. (1982).

(A) (B)

Figure 3.4 Zymogram showing XOH activity in extracts from 'Hass' avocado mesocarp
tissue (harvested 112 OAFB), following activity staining with 1 mM hypoxanthine
(A) and 1 mM xanthine (B). Following native-PAGE, the activity bands were
developed separately, with strips from each lane. Each lane was loaded with 25
IJg protein.

Nicotinamide adenine dinucleotide was a more effective electron acceptor in the enzymatic

oxidation of hypoxanthine than DCIP, in both seed and mesocarp tissue of normal 'Hass'
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avocado fruit (Table 3.3). This preference of XDH for NAD+ over DCIP has also been found in

Chlamydomonas reinhardtii (Perez-Vicente et al. 1988), Rhodopseudmonas capsulata (Aretz

et al. 1981) and Pisum sativum leaves (Nguyen and Feierabend 1978).

Table 3.3 Comparison of two electron acceptors for XDH in seed and m.~ocarp tissue of
normal 'Hass' avocado fruit, harvested 240 OAFB. Enzyme activity was assayed
according to the method of Triplett et al. (1982). Values are the mean of three
replicates ± SE.

Tissue Electron acceptor Concentration XOH

mM
IJmol cofactor reduced mg·1

protein min·1

Seed NAD+ 2.5 32.62 ± 3.0

DCIP 0.69 16.6 ± 4.6

Mesocarp NAD+ 2.5 2.0 ± 0.19

DCIP 0.69 0.72 ± 0.63

3.2.1.3 Cytokinin oxidase

Cytokinin oxidase in tissues of 'Hass' avocado fruit has a pH optimum between 8.0 and 9.0

(Fig. 3.5). The Km of CKOX in 'Hass' avocado mesocarp tissue for iP, determined using the

spectrophotometric assay of Liberos-Minotta and Tipton (1995), based on a Lineweaver-Burk

plot of the data, was 0.706 IJM and the Vmax was 20.24 IJmol 3-methyl-2-butenal mg·1 protein.

On the other hand, a Lineweaver-Burk plot of the data generated from the radioactive CKOX

assay (Motyka and Kaminek 1994) yielded a Km of 7.425 IJM and a Vmax of 1.928 IJmol

[3H]adenine mg·1 protein h-1 for iP. Cytokinin oxidase from plant tissues is known to exhibit

marked differences in pH optima (6.5 - 8.5) and kinetic constants, with Km values ranging from

3 IJM to 27 IJM for iP (McGaw and Horgan 1983; Laloue and Fox 1989; Kaminek and

Armstrong 1990; Motyka and Kaminek 1992; Bilyeu et al. 2001).

A test for substrate preference of the CKOX enzyme in 'Hass' avocado mesocarp tissue, using

the assay of Motyka and Kaminek (1994), revealed that the enzyme was marginally more

efficient in OXidizing iP than zeatin (Table 3.4). Similar results have been found in Zea mays

(Whitty and Hall 1974; McGaw and Horgan 1983; Bilyeu et al. 2001), Nicotiana tabacum

(PaCes and Kaminek 1976), Phaseolus vulgaris (Chatfield and Armstrong 1986), Triticum

aestivum (Laloue and Fox 1989) and Petunia hybrida (Auer et al. 1999).
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Figure 3.5 The effect of pH on CKOX activity in mesocarp tissue of normal 'Hass' avocado
mesocarp tissue. Enzyme activity was determined according to the method of
(Motyka and Kamfnek 1994).

Table 3.4 Substrate preference of CKOX from mesocarp tissue of normal 'Hass' avocado
fruit, harvested 112 DAFB. Enzyme activity was determined according to the
method of Motyka and Kamfnek (1994). Data are the mean of 4 replicates ± SE.

Substrate Concentration CKOX

IJmol [3H]adenine mg-1 protein h-1

Isopentenyl adenine 10 0.7325 ± 0.489

Zeatin 10 0.3789 ± 0.137

3.2.2 Tissue distribution and activity of XDH, lA-aid oxidase, XAN oxidase, and CKOX

in normal and small 'Hass' avocado fruit

The activity and distribution of lA-aid oxidase, XAN oxidase, XDH and CKOX in tissues of

normal and phenotypically small 'Hass' avocado fruit are presented in Table 3.5. Aldehyde

oxidase activity in avocado fruit was determined using two substrates. Activity, using I-aid as a

substrate (designated XAN oxidase), was present in all tissues of avocado fruit, where activity

was significantly greater in the seed and seed coat of the small fruit variant as compared to

seed and seed coat from normal fruit. There was no difference in XAN oxidase activity in
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Table 3.5 Tissue distribution and activity of lA-aid and XAN oxidase, XDH, and CKOX in normal and phenotypically small 'Hass' avocado fruit,
harvested 240 DAFB, during the linear phase of fruit growth. Data for lA-aid, XAN oxidase, and XDH are the mean of 3 replicates ±
SE, whilst data for CKOX are the mean of 5 replicates ± SE.

Tissue Phenotype lA-aid oxidase XAN oxidase XDH CKOX

nmol OCIP mg-1 protein min-1
IJmol 3-methyl-2- IJmOI [3H]adenine

butenal mg-1 protein mg-1 protein h-1
average

normal 29.78 ± 14.04 6.64 ± 0.30 9.93 ± 5.81 250.86 ± 52.86 48.68 ± 20.23 149.77 ± 36.55

Seed

small 2.51 ± 1.74 19.58 ± 4.44 16.19 ± 1.73 256.77 ± 57.29 276.74 ± 171.58 266.76 ± 114.44

0'1 normal NOt 16.76±1.90 NO . 32.01 ± 10.79 76.56 ± 11.25 54.29 ± 11.02
0'1

Seed coat

small NO 43.96 ± 9.22 NO 47.45± 18.40 NO 23.73 ± 9.20

normal NO 7.48 ± 2.84 3.29 ± 1.45 7.31 ± 3.16 1.02 ± 0.31 4.165± 1.74

Mesocarp

small NO 8.76 ± 2.90 23.44 ± 6.80 9.26 ± 3.81 6.48 ± 1.99 7.87 ± 2.90

TND = no activity detected



mesocarp tissue of normal and small fruit. In contrast, AO activity, using lA-aid as a substrate

(designated lA-aid oxidase), was only detected in seed tissue where it was found to be ten­

fold greater in normal fruit. Xanthine dehydrogenase activity was only detected in seed and

mesocarp tissue, where it was significantly greater in tissues from the small fruit variant.

Cytokinin oxidase activity in 'Hass' avocado fruit tissues was determined using two methods.

The first method is based on the formation of a highly coloured Schiff base, through the

reaction of the p-aminophenol reagent with 3-methyl-2-butenal, a product of CK degradation

(Liberos-Minotta and Tipton 1995). This reaction is measured spectrophotometrically and

involves the use of a crude enzyme extract. As such this is a simple and rapid method of

assaying for CKOX activity and a good starting point for establishing the existence of CKOX

activity in normal and small 'Hass' avocado fruit. The second method demands the use of a

radioactive cytokinin substrate, which is labelled on the adenine ring. Activity is determined by

monitoring the amount of radioactive adenine formed as a result of the incubation of the

radioactive substrate with a more highly purified enzyme extract (Motyka and Kaminek 1994).

This method serves to verify the results obtained with the first assay.

The results in Table 3.5 demonstrate that CKOX activity is present in the tissues of 'Hass'

avocado fruit. Although there were no significant differences in CKOX activity between normal

and small fruit tissues, when employing the method of Liberos-Minotta and Tipton (1995),

small fruit tissues did consistently possess marginally higher activity than normal fruit tissues.

In contrast, the method of Motyka and Kaminek (1994) revealed significant differences in

CKOX activity between normal and small fruit tissues. Activity was higher in seed and

mesocarp tissue of small fruit, but was greater in seed coat tissue of normal fruit, and no

activity was detected in the senesced seed coat tissue of small fruit. The difference in the

results of these two methods is most probably attributable to the increased sensitivity of the

radioactive CKOX assay and the use of a more highly purified extract in this procedure.

3.2.3 Tissue distribution of IAA, ABA, CK, and purines in nonnal and small 'Hass'

avocado fruit

Abscisic acid plays an important role in the determination of final fruit size in 'Hass' avocado,

as application of ABA during the linear phase of fruit growth results in seed coat senescence

and the development of the small fruit phenotype (Moore-Gordon et al. 1998). The

endogenous ABA levels in tissues of normal and small fruit, harvested during the linear period

of growth, were analysed by HPLC and the results are presented in Table 3.6. Abscisic acid
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levels were significantly higher in small fruit seed tissue compared to seed tissue of normal

fruit. Although not significant, ABA levels were also marginally higher in the mesocarp of small

fruit. These results agree with the findings of Moore-Gordon et al. (1998) and Richings et al.

(2000) and serve to highlight that differences in ABA levels are associated with differences in

final fruit size.

In light of the fact that an AO catalyses the final step in IAA biosynthesis (Koshiba et al. 1996;

Lips et al. 1999) and that differences in activity of this enzyme (lA-aid oxidase) were found

between normal and small fruit (Table 3.5), it could be expected that IAA levels may also differ

between these two phenotypes. Indole-3-acetic acid levels were therefore analysed by HPLC

in normal and small fruit tissues and the results are presented in Table 3.6. In contrast to IA­

aid oxidase activity, where greater activity was found in seed tissue of normal fruit (Table 3.5),

IAA levels were three-fold higher in seed tissue of small fruit as compared to seed tissue of

normal fruit. Indole-3-acetic acid was also marginally higher in the mesocarp of small fruit, but

this difference was not significant. One possible explanation for this apparent anomaly IS that

early seed coat senescence in small fruit (Moore-Gordon et al. 1998) prevents basipetal

movement of seed-derived IAA resulting in apparent accumulation, assuming that IAA is

derived from lA-aid in avocado fruit.

Cytokinin-like activity, determined by bioassay (Miller 1963), has been tentatively classed into

two groups, viz. glucosides (R, 1 to 5) and bases plus ribosides (R, 6 to 10), based on co­

chromatography with authentic standards (see appendix 11). There was very little difference in

the levels of CK glucosides in normal and small avocado fruit (Table 3.6). The highest levels

of these compounds were detected in seed tissue, suggesting a storage role for this tissue.

Although not significant, higher levels of CK bases and ribosides were found in mesocarp

tissue of small fruit, whilst in seed coat tissue higher levels were found in normal fruit. There

was no difference in the level of CK bases and ribosides in seed tissue of normal and small

fruit.

The differences in activity of CKOX and XDH between normal and small fruit (Table 3.5) were

expected to reflect altered purine levels, as both the product and substrate of these enzymes

are purines. Purine levels were therefore analysed by HPLC in normal and small 'Hass'

avocado fruit tissues and the results are presented in Table 3.6. Purine content and

composition was markedly affected by the expression of the small fruit phenotype. The

adenine content of seed and mesocarp tissue of small fruit was reduced by 90%, as compared

to seed and mesocarp tissue of normal fruit. Whilst hypoxanthine levels were substantially
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Table 3.6 Levels of IAA, ABA, CK-like activity, and purines in tissues of normal and small 'Hass' avocado fruit harvested 256 DAFB, during
the linear phase of fruit growth. Data are the mean of 3 replicates.

Tissue Phenotype IAA ABA CK-Iike activity Purines

glucosides
bases and

adenine hypoxanthine xanthine
ribosides

nmol 9-1 FW callus yield (9) IJmo19-10W

Seed normal 342.458t 0.858 O. 114b 0.311 b 241.20b 51.398 13.788

small 996.98b 14.29b 0.093b 0.322b 24.198 35.168 0.838

01
Seed coat normal NO* 0.0058 0.404b NO NO NO(Xl NO

small NO NO 0.0268 0.331 b NO NO NO

Mesocarp normal 44.168 0.678 0.011 8 0.0628 320.70b 215.538 79.94b

small 77.7468 1.11 8 0.0098 0.1478 19.668 576.33b nd*

tValues followed by different letters are significantly different (for ABA LSD(o.o5) =6.57; for IAA LSD(o.o5) =9.36; for CK-like glucosides LSD(o.o5) =
0.0383; for CK-like bases and ribosides LSDco.o5)=0.1038; for adenine LSO(O.05) =149.98; for hypoxanthine LSO(O.05) =246.35 and for xanthine LSO(O.05)
=37.30)
:I: NO =not determined
*nd =not detected



elevated in mesocarp tissue of small fruit, the reverse was true for seed tissue of small fruit,

where marginally higher levels were detected in seed tissue of normal fruit. Xanthine levels

were elevated in both seed and mesocarp tissue of normal fruit.

3.2.4 Cytokinin- and auxin-induced CKOX activity

The rapid stimulation of CKOX activity by external application of CKs was first demonstrated in

cultured tobacco cells (Terrine and Laloue 1980). Subsequently, increases in endogenous CK

levels were also shown to induce CKOX activity (Jones et al. 1992; Dietrich et al. 1995). This

increase in CKOX activity is relatively rapid, but transient and is stimulated in the presence of

both substrate and non-substrate CKs (Kaminek et al. 1997). Data to support the universality

of this phenomenon has not been forthcoming and it has been suggested that this effect may

be tissue-specific (Jones andSchreiber 1997). The determination of the impact of

exogenously applied CK on CKOX activity in 'Hass' avocado fruit is therefore essential in

cementing the hypothesis that CK-induced CKOX activity could result in increased adenine

levels.

Results of in vivo treatment with CK on CKOX activity in normal avocado mesocarp tissue are

presented in Figure 3.6. After incubation for 6 h, CKOX activity was higher in both iP- and

zeatin-treated tissue as compared to the control. After 12 h CKOX activity was greatly

elevated in iPA-treated tissue, but returned to a level similar to the control after 24 h, indicating

the previously reported transient nature of CKOX stimulation by CKs (Kaminek et al. 1997).

The elevated level of CKOX activity in iP-treated tissue, relative to the control, after 6 h was

maintained at this level until 24 h. Zeatin-treated tissue exhibited activity no different to the

control after 12 h but after 24 h activity was once again elevated. As expected adenine had no

effect on CKOX activity.

Cytokinin levels can also be modulated by other phytohormones. An example of this occurs in

maize kernels where auxin levels increase at the same time as CK levels decline (Lur and

Setter 1993), reSUlting in a sharp decline in the CK to auxin ratio. This increase in kernel auxin

level also roughly coincides with the period in which maize CKOX activity increases (Cames

and Wright 1988; Lur and Setter 1993). In tobacco pith explants auxin stimulates the oxidative

breakdown of CK in vitro by activating CKOX (Palni et al. 1988). As with CK stimulation of

CKOX activity, auxin-induced CKOX activity is possibly tissue-specific, with little known

regarding this phenomenon in tissues of developing seed and vegetative tissues. As the CK to

auxin ratio plays an important role in the control of cell division (Jacobs 1995; Coenen and

Lomax 1997) and as CKOX is thought to play an important role in the mediation of this ratio,

the impact of auxins on CKOX activity in 'Hass' avocado fruit tissues was established.
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Figure 3.6 The effect of in vivo treatment of CK on CKOX activity in normal 'Hass' avocado
mesocarp tissue. Fruit were harvested 171 OAFS and intact fruit supplied with
solutions of CKs (all 100 IIM), via the pedicel and then incubated for 6,12 or 24 h
at room temperature (see section 2.5.1). Data are the mean of 3 replicates, with
vertical bars representing the standard error. (0 represents a low leverage point
and was excluded)

Results of in vivo treatment with auxins on CKOX activity in normal 'Hass' avocadp mesocarp

tissue are presented in Figure 3.7. After 6 h IAA-treated tissue exhibited no CKOX activity and

was the only treatment that differed from the control. Activity in this tissue increased up until

24 h after treatment, but remained significantly lower than the control. After 12 h tissue treated

with indole-butyric acid (IBA) showed considerably higher activity than the control, with activity

continuing to increase up until 24 h after treatment. Tissue treated with a-naphthalene acetic

acid (NAA) did not exhibit any differences in CKOX activity from the control tissue over the

entire 24 h incubation period. The lack of effectiveness of IAA in inducing CKOX activity is

most likely attributable to metabolism in vivo, which will greatly reduce effectiveness. Indole-3­

acetic acid metabolism is most likely in the form of conjugation, as in most plant tissues

exogenously applied IAA is rapidly conjugated to form IAA-aspartate (Andreae and van

Ysselstein 1956; Sudi 1964; Venis 1964; Sudi 1966; Venis 1972; Slovin and Cohen 1992;

Sitbon et al. 1993; Sztein et al. 1995). Although NAA is resistant to conjugation (Ribnicky et al.

1996) its ineffectiveness could possibly be a result of inadequate transport within the avocado

fruit.
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Figure 3.7 The effect of in vivo treatment of auxins on CKOX activity in normal 'Hass'
avocado mesocarp tissue. Fruit were harvested 232 OAfS and intact fruit
supplied with solutions of auxins (all 100 tJM), via the pedicel and then incubated
for 6, 12 or 24 h at room temperature (see section 2.5.1). Data are the mean of 3
replicates, with vertical bars representing the standard error.

3.2.5 Effect of adenine and allopurinol on XDH activity

Xanthine dehydrogenase activity is very sensitive to excess substrate (Bray 1963) and product

(Nguyen 1979; Boland 1981). In addition, it is also inhibited by product and substrate

analogues (Nguyen 1986), such as adenine and guanine. A particularly potent inhibitor of

XDH is the hypoxanthine isomer allopurinol (4-hydroxypyrazolo[3,4-d]pyrimidine) (Weir and

Fischer 1970; Bray 1975), which is often used to specifically detect XDH activity in plants

(Leydecker et al. 1995). In humans allopurinol inhibits xanthine oxidase (XO) by binding tightly

to the reduced molybdenum component of the enzyme after having first being oxidized to

oxypurinol (Massey et al. 1970; Spector and Johns 1970; Dollery 1991). Oxypurinol and

ribonucleosides of both allopurinol and oxypurinol were identified as the major metabolic

conversion products in leaves of allopurinol treated tobacco plants (Montalbini and Della Torre

1995), suggesting a similar mechanism of inhibition in plants.
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Figure 3.8 The effect of allopurinol and adenine on in vitro activity of XOH in extracts
prepared from seed (A) and mesocarp (B) tissue of normal 'Hass' avocado fruit,
harvested 256 OAFB. Activity was assayed according to the procedure of Triplett
et al. (1982), using NAO+ as an electron acceptor. Treatments were formulated in
2 % (v/v) OMSO and 50 mM Tris-HCI buffer (pH 7.8) and added directly to crude
enzyme preparations before reaction initiation. Each data point is the mean of 3
replicates, with vertical bars representing the standard error.

Figure 3.8 confirms that XDH activity is found in both seed and mesocarp tissue of normal

lHass' avocado fruit and that in vitro activity was reduced by the addition of either adenine or

allopurinol. Activity of XDH was ten-fold higher in seed tissue and adenine- and allopurinol­

induced inhibition of XDH was more pronounced in these extracts (Fig. 3.8A), than in extracts

of mesocarp tissue (Fig. 3.88). Similar results were found when mesocarp extracts were

SUbjected to activity staining in the presence of adenine (Fig. 3.9A) and allopurinol (Fig. 3.98), ­

following native-PAGE. Xanthine dehydrogenase activity, indicated by the intensity of the

formazan stain, decreased with increasing adenine and allopurinol concentration. At 50 IJM

adenine a small quantity of formazan stain was still visible, whereas, at the same

concentration of allopurinol, there was no stain Visible, indicating that allopurinol is a more

potent inhibitor of XDH than adenine. This effect is also evident in Figure 3.8. The inhibition of
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XDH by allopurinol (Fig. 3.9B) confirms the specificity of the staining technique for XDH

(Leydecker et al. 1995).

A

B

Control 5J1M 10 JlM 20 JlM 50 JlM

Figure 3.9 Zymograms showing the effect of adenine (A) and allopurinol (B) on in vitro
activity of XDH in extracts prepared from mesocarp tissue of normal "Hass' fruit
(harvested 112 DAFB), following native-PAGE. Activity bands were developed
separately, with strips from each lane, in staining solution containing 1 mM
hypoxanthine, 0.2 mM PMS, 1 mM MTT and the various concentrations of
adenine or allopurinol in 0.1 M Tris-HCI buffer (pH 8.0). Lanes were loaded with
equal amounts of protein (25 JIg/lane).

3.3 CONCLUSION AND SUMMARY

Results presented in this chapter have demonstrated the presence of AO, XDH, and CKOX in

tissues from developing avocado fruit. Two AO activities could be distinguished in terms of

hormone metabolism. One showed a preference for lA-aid and the other for I-aid, which was

equated with XAN oxidase activity. As expected, iP was the preferred substrate for CKOX and

activity of this enzyme was enhanced by auxin and CKs. Adenine, the product of CKOX

activity, inhibited XDH activity. Tissue distribution and activity of these enzymes in normal and

small fruit was mirrored by a change in the content and composition of IAA, ABA, CK, and

purines across the fruit. Thus, high lA-aid oxidase activity was associated with low IAA levels

in seed tissue. Low XAN oxidase activity gave low ABA in seed, which occurred concomitantly

with low XDH activity and high levels of adenine, xanthine and hypoxanthine. Cytokinin

oxidase activity was not markedly changed across the fruit and this was reflected in CK levels

that were similar in seed and seed coat tissue but lower in mesocarp tissue. In terms of fruit

size, seed of the small fruit variant had low lA-aid oxidase activity but high XAN oxidase and

XDH, and contained substantially more IAA and ABA. In summary,

(1) Xanthoxal oxidase activity was detected in all tissues of avocado fruit, where activity

was significantly greater in seed and seed coat tissue of the small fruit variant. Indole­

3-acetaldehyde oxidase activity was only detected in seed tissue, where it was ten-fold
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higher in normal seed. Xanthine dehydrogenase activity was only detected in seed and

mesocarp tissues where it was significantly greater in these tissues from the small fruit

variant. Cytokinin oxidase activity was significantly higher in seed and mesocarp tissue

of small fruit, with no activity detected in senesced seed coat tissue of small fruit.

(2) Expression of the small fruit phenotype resulted in the accumulation of ABA and IAA

and the depletion of adenine and xanthine in seed and mesocarp tissues. Although

there were no differences between normal and small fruit with respect to CK

glucosides, the level of CK Qases and ribosides was slightly higher in mesocarp tissue

of small fruit and seed coat of normal fruit. Hypoxanthine levels were significantly

higher in seed tissue of small fruit and mesocarp tissue of normal fruit.

(3) Cytokinin oxidase activity was stimulated by the exogenous application of CKs (iPA, iP

and zeatin)· and auxin (IBA). Xanthine dehydrogenase activity was inhibited in the

presence of both adenine and allopurinol, in both seed and mesocarp tissue of normal

'Hass' avocado fruit. Allopurinol was a more effective inhibitor of XDH than adenine.
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4 EFFECT OF CHANGES IN CKOX, AO, AND XDH

ACTIVITY ON TISSUE ABA, CK, AND IAA CONTENT OF

DEVELOPING AVOCADO FRUIT

4.1 INTRODUCTION

Antagonism between CK and ABA in the mediation of plant physiological processes is well

documented, and includes organ senescence (Beevers 1976; Biswal and Biswal 1988;

Noodem 1988; Smart 1994), stomatal closure, leaf and fruit abscission, and seed germination

(Salisbury 1994). The importance of CK-ABA interaction in the metabolic control of avocado

fruit development has also been demonstrated. Evidence for this is based on the findings that:

1) final fruit size is linearly correlated with the endogenous CKlABA ratio; 2) mevastatin­

induced retardation of avocado fruit growth occurred concomitant with a decline in HMGR

activity and increased endogenous ABA concentration, responses that were negated in the

presence of iP; and 3) ABA-induced phenotypic variation (including a decline in fruit growth

and early seed coat senescence) was negated in the presence of iP (Cowan et al. 1997;

Moor:.e-Gordon et al. 1998). As iP did not fUlly restore HMGR activity of ABA-treated fruit, but

reversed ABA-induced retardation of fruit growth, it was suggested that the interaction

between CK and ABA is at a site some distance from HMGR in the ABA biosynthetic pathway.

A detailed study of the impact of CK on ABA metabolism revealed that CK stimulated the

oxidative catabolism of ABA (Cowan et al. 1999). Further chemical dissection of the response

of ABA metabolism to CK, allopurinol (an isomer of hypoxanthine and potent inhibitor of XDH)

and tungstate (an inhibitor of AO) indicated the involvement of a MoCo-containing AO. These

studies also showed that allopurinol and adenine, a product of CKOX activity and inhibitor of

XDH activity (Nguyen 1986), promoted ABA catabolism. Since CKOX is a substrate-inducible

enzyme (Kamrnek et a/.1997) it was suggested that CK-induced CKOX activity contributed to

the regulation of endogenous ABA during plant organ growth (Cowan et al. 1999). A change in

CK metabolism is thus postulated to impact on ABA levels through changes in XDH activity

and altered MoCo allocation to AO. As the conversion of lA-aid to IAA also requires a MoCo­

containing AO (Koshiba et al. 1996; Sekimoto et al. 1998; Lips et al. 1999), it is possible that

inhibition of XDH may also impact on auxin levels thereby mediating the balance between CK,

ABA and IAA (Taylor and Cowan 2001).

Results in Chapter 3 demonstrated differences in hormone levels between normal and small

fruit at a point in the linear phase of fruit growth. This was particularly evident in seed tissue of .
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small fruit, which contained elevated ABA and IAA. This change in hormone levels was

associated with higher CKOX, XDH, and XAN oxidase activity, but low lA-aid oxidase activity.

In an attempt to establish a link between the changes in activity of these enzymes and

changes in ABA, IAA, and CK, fruit were treated with compounds known to affect CKOX and

XDH activity, and the activity of AO assessed in relation to endogenous ABA and IAA.

Cytokinin oxidase activity in 'Hass' avocado fruit is enhanced by applied CK and auxins (see

section 3.2.4; Figs 3.6 and 3.7). Furthermore, XDH activity was inhibited by in vitro treatment

of fruit with adenine and allopurinol (see section 3.2.5; Figs 3.8 and 3.9). The following

questions thus require answering: 1) Does the induction of CKOX by CK result in sufficient

adenine to inhibit XDH activity? and, 2) Can in vivo treatment of fruit with adenine and

allopurinol inhibit XDH and alter endogenous ABA and IAA? In addition, the proposal that

MoCo is limiting in plants (Sagi et al. 1997; Sagi and Lips 1998) can be partially addressed by

determining the effect of exogenous molybdate on AO activity and ABA and IAA.

4.2 RESULTS

4.2.1 Cytokinin alteration of purine, ABA, and IAA metabolism

4.2.1.1 Impact of CK on XDH and AO activity in mesocarp tissue

The effect of applied CK on XDH and XAN oxidase activity in avocado mesocarp tissue is

shown in Figure 4.1. In general, XDH activity was inhibited by all of the CKs tested over the 24

h incubation period (Fig. 4.1A). In contrast, XAN oxidase activity displayed differential

responses to CK treatment (Fig. 4.1 B). Zeatin-treatment, and to a lesser extent iPA, caused a

rapid but transient increase in activity of XAN oxidase whereas iP and adenine treatment

sustained mesocarp XAN oxidase for 12 and 24 h respectively.

4.2.1.2 Impact ofCK on IAA levels and ABA metabolism

A previous report indicated that CK stimulates the conversion of XAN to ABA by enhancing

the activity of the MoC.~-requiring AO that catalyses this step (Cowan et al. 1999). In an

attempt to verify this and to reconcile changes in XDH and XAN oxidase activity with changes

in ABA levels, ripening fruit were treated with CK and the levels of IAA, ABA and DPA

quantified by HPLC and the results are presented in Table 4.1. Ripening avocado mesocarp

tissue was chosen because of its high metabolic activity with respect to ABA (Adato et al.

1976). Results from both experiments indicated that CK impacts on both IAA and ABA

metabolism (Table 4.1). Cytokinin treatment reduced IAA, but the rate of change was less

than that observed in non-CK-treated tissue. Peroxidases are ubiquitous enzymes that have

been shown to decarboxylate IAA in vitro (Normanly 1997). These enzymes are present at the
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Figure 4.1 Zymogram showing the effect of applied CK on mesocarp XOH (A) and AO (B)
activity. Fruit were harvested 171 OAFB and intact fruit supplied with solutions of
CK (all 100 JlM), via the pedicel. Fruits were incubated for 6,12 and 24 h at room
temperature (see section 2.5.1). Following native-PAGE, activity was determined
using 1 mM hypoxanthine (A) or 1 mM indole-3-aldehyde (B) as the substrate.
Each lane was loaded with an equal amount of protein (26 Jig/lane).

cut surfaces of plant tissues (Catals et al. 1994; Bandurski et al. 1995; Ostin 1995) and their

decarboxylase activity could account for the rapid loss of IAA in the control. The relatively

higher levels of IAA in CK-treated tissue could be indicative of inhibition of peroxidase activity

due to the senescence-delaying effects of CK or as a result of inhibition of IAA conjugation.

Cytokinin treatment has also been demonstrated to increase active IAA as a result of the

inhibition of IAA conjugation (Coenen and Lomax 1997).

In both experiments CK stimulated ABA metabolism which was manifested by increased

accumulation of OPA (Table 4.1). The accumulation of OPA was accompanied by a decline in

ABA. However, in the first experiment iP- and adenine-treated tissue exhibited elevated levels

of both ABA and OPA, which in the adenine-treated tissue was significantly different to the

control. As ABA is known to stimulate its own oxidative catabolism by enhancing the activity of

ABA 8'-hydroxylase (Uknes and Ho 1984; Railton and Cowan 1987; Gergs et al. 1993;

Babiano 1995; Cutler et al. 1997) it is likely that the depletion of ABA in CK-treated tissue was

a result of sustained catabolism. The linear nature of the early ABA catabolic pathway also
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implies that an increase in OPA reflects higher rates of metabolism and rapid flow of carbon

through this pathway.

Table 4.1 Effect of applied CK on IAA, ABA and DPA in mesocarp tissue of ripeni~g.'Hass'
avocado fruit. Solutions of Tween 20/acetonelwater (1:1 :8, vlvlv), contammg CK
(100 pM), were supplied to fruit via the cut surface and incubated in a water­
saturated environment at 25 DC for 24 h (see section 2.5.2). Data are expressed as
net change (i.e. t24 - to).

Treatment IAA ABA DPA
Exp.

nmol g.1 FW (% of control)

1

control -3095.44 (100) 66.22 (100) 96.53 (100)

iP -2543.09*t (122) 88.34 (133) 168.93 (175)

zeatin -1904.18* (162) 10.11 (15) 259.92 (269)

adenine -2730.81* (113) 542.20* (818) 1823.08* (1888)

2

control -785.10 (100) 128.70 (100) 575.57 (100)

iP -744.83 (105) 73.59* (57) 1244.41* (216)

zeatin -775.14 (101) 17.05* (13) 393.37 (68)

adenine -662.04* (119) 60.59* (47) 832.60 (145)

'Values followed by * are significantly different (PsO.05) from the control

If purines do indeed impact on MoCo allocation and utilization, then ABA levels in avocado

mesocarp tissue should change in response to application of CK analogues. Ripening

avocado mesocarp tissue was thus treated with CK analogues and ABA, PA and OPA levels

determined by HPLC. Results in Table 4.2 demonstrate that CK analogues increased ABA

metabolism, which is in agreement with the data in Table 4.1. This increase in ABA

metabolism was manifest as an increase in ABA and its breakdown products, PA and OPA, in

both experiments. In the first experiment 2,6-dichloropurine was the most effective CK

analogue in stimulating ABA metabolism, whereas in the second experiment both 6­

chloropurine and 2-methylthi0-6-chloro-9-methylpurine were highly effective.

Cytokinins were also supplied to whole fruit in an attempt to overcome the confounding

influence of seed coat senescence and to assess the impact of CKs on ABA and IAA
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metabolism in seed tissue. In this way, an attempt was made to simulate the situation in small

fruit (see section 3.2.3). Treatment with iP increased IAA levels in both seed and mesocarp

(Table 4.3). By comparison, zeatin, iPA and adenin'e increased lAA content of mesocarp

tissue, but decreased lAA in seed tissue. This is probably indicative of transport of IAA from

seed to mesocarp tissue. Application of iP, iPA and adenine decreased ABA in mesocarp

tissue, but had little impact on ABAin seed tissue. However, zeatin reduced ABA in seed

tissue but had little effect on ABA in mesocarp tissue. These results indicate that CKs differ in

their ability to alter ABA and lAA metabolism.

Table 4.2 Effect of CK analogues on ABA metabolism in mesocarp tissue of ripening
'Hass' avocado fruit. Solutions of Tween 20/acetonelwater (1:1 :8, vlvlv) ,
containing either 6-chloropurine (6.5 J.lmol), 2,6-dlchloropurine (5.3 J.lmol), 2­
methylthio-6-chloropurine (1.8 J.lmol) or 2-methylthio-6-chloro-9-methylpurine (1.9
J.lmol), were supplied to fruit via the cut surface and incubated in a water­
saturated environment at 25 QC for 48 h (see section 2.5.2).

Exp. Treatment ABA PA DPA Total

nmol 9-1 FW (% of control)

1

control 235.62 55.69 275.77 567.07
(100) (100) (100) (100)

6-chloropurine 241.37 52.89 387.893 682.16
(102) . (95) (141 ) (120)

2,6-dichloropurine
281.68*t 16.95* 766.53* 1065.16*

(120) (30) (278) (188)

2-methylthio-6- 208.903 26.52 536.70 772.11
chloropurine (89) (48) (195) (136)

2

control 274.98 75.542 175.41 525.94
(100) (100) (100) (100)

6-chloropurine 587.31* 341.05* 247.38 1175.74*
(213) (451) (191 ) (224)

2,6-dichloropurine 394.80 104.71 176.76 676.26
(144) (139) (101) (129)

2-methylthi0-6-chloro- 427.93 105.31 382.95* 916.19*
9-methylpurine (156) (139) (218) (174)

TValues followed by * are significantly different (Ps:O.05) from the control
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Table 4.3 Effect of applied CK on IAA and ABA in seed and mesocarp tissue of normal
'Hass' avocado fruit harvested In the linear phase of fruit growth, 171 DAF~.
Solutions of CK (100 IJM) were supplied to intact fruit via the pedicel and the fruIt
Incubated at 25°C for 24 h prior to extraction of ABA and IAA (see section 2.5.1).
Data are the mean of three replicates.

Treatment IAA ABA

nmol g-1 DW

seed mesocarp seed mesocarp

control 3301.78 (100) 371.34 (100) 95.96 (100) 33.33 (100)

iP 4961.93*t (150) 2362.83* (636) 85.16 (89) 31.18* (94)

iPA 1638.44* (50) 2540.16* (684) 108.03 (113) 29.18* (88)

zeatin 2642.25 (72) 698.26 (188) 162.34* (169) 32.14 (96)

adenine 2160.91* (65) 1085.82 (292) 107.47 (112) 29.30* (88)

TValues followed by * are significantly different (P~0.05) from the control

4.2.2 Molybdate and allopurinol effects on ABA, IAA, and purine metabolism

To further dissect the response of ABA and IAA metabolism to CK, fruit were treated with

molybdate (which is incorporated into the MoCo) and allopurinol (an isomer of hypoxanthine

and potent inhibitor of XDH) and the actiVity of XDH and AO assessed (Fig. 4.2). In addition

ABA, IAA, CK-Iike actiVity, and levels of selected purines were determined in similarly treated

tissue and the data is presented in Table 4.4. As allopurinol is a specific inhibitor of XDH (Weir

and Fischer 1970; Bray 1975), the hypothesis that the inhibition of this enzyme will result in

the more efficient utilization of the MoCo by AO can be tested. Furthermore, through the

provision of excess Mo the reported limiting nature of the MoCo can be assessed.

4.2.2.1 Molybdate effects

Activity of XDt1_ and XAN oxidase was stimulated in mesocarp tissue treated with molybdate

(Fig. 4.2). Molybdate increased the ABA content of the seed but had little or no effect on ABA

in mesocarp tissue when applied to whole fruit (Table 4.4). The reverse was true for IAA, and

in these fruit IAA was decreased by 56 % in mesocarp tissue but remained unchanged in the

seed. Furthermore, CK-Iike activity and xanthine increased in response to molybdate

treatment in mesocarp tissue. In ripening mesocarp tissue, ABA was reduced by molybdate

treatment, but IAA was elevated (Table 4.5). This indicates that overall ABA metabolism was

stimulated by exogenous molybdate, but that IAA turnover was presumably inhibited.
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Figure 4.2 Zymogram showing the effect of allopurinol and molybdate on XDH (A) and AO
(B) activity. Fruit were harvested 177 DAFB and intact fruit supplied with
solutions of allopurinol (100 pM), molybdate (100 pM) and allopurinol (50 pM) +
molybdate (50 pM) via the pedicel. Fruits were incubated for 6, 12 and 24 h at
room temperature (see section 2.5.1). Following native-PAGE, activity was
determined using 1 mM hypoxanthine (A) or 1 mM indole-3-aldehyde (B) as the
substrate. Each lane was loaded with an equal amount of protein (24 pgllane).

4.2.2.2 Allopurinol effects

Although XDH activity was not apparently affected by allopurinol treatment of mesocarp (Fig.

4.2A), activity of XAN oxidase was rapidly and transiently increased (Fig. 4.2B) similar to the

effect observed in zeatin- and iPA-treated tissue (cf. Fig. 4.1). Allopurinol increased the ABA

content of seed tissue but had little or no effect on ABA in mesocarp tissue (Table 4.4). In

contrast, IAA in seed tissue was reduced by allopurinol treatment and significantly increased

in mesocarp tissue. Whilst CK-like activity was reduced in allopurinol-treated mesocarp from

whole fruit, adenine and hypoxanthine increased, a result that supports inhibition of XDH by

allopurinol in avocado tissue. In ripening mesocarp tissue allopurinol increased ABA content,

but reduced IAA (Table 4.5).
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Table 4.4 Effect of allopurinol (100 IJM), molybdate (100 IJM) and allopurinol (50 IJM) + molybdate (50 IJM) on ABA, IAA and CK-Iike activity In
seed and mesocarp tissue and selected purlnes In mesocarp tissue of normal 'Hass' avocado fruit harvested In the linear phase of
fruit growth, 269 OAFB. Solutions of allopurinol and/or molybdate were supplied to Intact fruit via the pedicel and then Incubated at
25°C for 24 h prior to ABA, IAA, CK and purine extraction (see section 2.5.1). Total CK-lIke activity represents the sum of activity at
all 10 R, zones and Is expressed as total callus yield In grams.

Treatment ABA IAA CK-like Purines

nmol g-1 FW callus yield (g) IJmol g-1 DW
(% of control) (% control) (% control)

seed mesocarp seed mesocarp seed mesocarp adenine hypoxanthine xanthine

control 5.32 5.32 6.45 5.86 0.641 0.845 151.08 118.47 16.20
(100) (100) (100) (100) (100) (100) (100) (100) (100)

-....I
7.65*t 3.84 192.58 87.70 39.59*"-> molybdate 5.32 2.59* 0.671 1.322*
(144) (72) (82) (44) (104) (156) (127) (74) (244)

allopurinol
9.02* 5.13 3.42* 27.11* 0.824 0.425* 371.97* 363.33* 14.34
(170) (96) (53) (463) (129) (50) (246) (307) (88)

allopurlnol+ 3.71 8.42* 8.37* 28.02* 0.304* 0.783
ND*

219.35 21.52
molybdate (70) (158) (130) (478) (47) (93) (185) (133)

f Values followed by * are significantly different (P:s0.05) from the control
*NO = not detected



4.2.2.3 Allo+Mo effects

A combined treatment of allopurinol + molybdate (allo+Mo) reduced XDH activity (Fig. 4.2A)

but caused a transient increase in XAN oxidase (Fig. 4.2B). Application of allo+Mo to whole

fruit resulted in increased ABA and IM content of mesocarp tissue, but had no apparent effect

on seed ABA (Table 4.4). Indole-3-acetic acid levels were, however, increased in seed tissue

in response to allo+Mo treatment. Cytokinin-like activity was reduced in-seed tissue by

allo+Mo treatment, but in mesocarp tissue CK-like activity remained unchanged. Although

adenine was not detected in mesocarp tissue treated with allo+Mo, levels of hypoxanthine and

xanthine increased. Both ABA and IM were increased in mesocarp tissue from ripening fruits

in response to allo+Mo treatment (Table 4.5). As mentioned above, .the increase in IM was

presumably a result of inhibition of IM turnover.

Table 4.5 ABA and IAA in mesocarp tissue of ripening 'Hass' avocado fruit treated with
molybdate (100 IJM), allopurinol (100 IJM) or, allopurinol (50 IJM) + molybdate (50
IJM), applied in Tween 20Jacetonelwater (1:1:8, vlvlv). Solutions were supplied to
the cut surface of mesocarp tissue and incubated for 48 h in a water-saturated
environment at room temperature prior to extraction of ABA and IAA (see section
2.5.2).

Treatment ABA

nmol g-1 FW (% of control)

IAA

control

molybdate

allopUrinol

4.00 (100)

1.46*t (36)

8.89* (222)

77.77 (100)

242.84* (312)

44.60 (57)

allopurinol + molybdate 6.09* (152) 239.34* (307)

TValues followed by * are significantly different (P~0.05) from the control

The effect of allo+Mo on ABA and IM metabolism was further assessed by treating ripening

avocado fruit with varying ratios of allo+Mo. Results in Figure 4.3 show that allopurinol, at 100

JJM, increased the level of ABA, but reduced the level of IM. Molybdate had the opposite

effect in that ABA levels were reduced and IAA levels elevated. When allopurinol and

molybdate were applied in an equimolar ratio both ABA and IAA levels increased, but not to

the same extent as that observed in tissue treated with allopurinol or molybdate only. Unequal

molar ratios of allopurinol and molybdate had little effect on ABA levels relative to the control,
but resulted in changed IAA levels. When molybdate was applied in excess of allopurinol IAA

decreased, however, when the situation was reversed IM was increased. This indicates that
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differential regulation of XOH and, possibly AD, can operate to alter the ratio of ABA to IAA in

plant tiss,ues.
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Figure 4.3 Effect of varying ratios of molybdate and allopurinol on ABA (solid bars) and IAA
(open bars) in ripening mesocarp tissue. Solutions of allopurinol and/or
molybdate in Tween 20/acetonelwater (1:1 :8, vlv/v) were supplied to the fruit via
the cut surface and incubated at 25°C for 48 h in a water-saturated environment
prior to extraction of ABA and IAA (see section 2.5.1). Values in parentheses
represent the ratio of molybdate to allopurinol.

4.3 CONCLUSION AND SUMMARY

Results presented in this chapter demonstrate that treatment of avocado fruit tissues with CK,

molybdate and allopurinol resulted in changes in the activity of both XOH and XAN oxidase,

which in turn were associated with altered levels of ABA and IAA. In general, CK treatments

decreased XDH activity, enhanced XAN oxidase activity, increased levels of IAA, and

increased the overall metabolism of ABA. Manipulation of MoCo-containing enzyme activity

using allopurinol, molybdate, and CK changed the ABAlIAA ratio. In summary,

(1) Xanthine dehydrogenase activity was inhibited by adenine, iPA and zeatin,whilst XAN

oxidase activity was stimulated in iP-, iPA-, zeatin- and adenine-treated mesocarp

tissue. Cytokinin and CK analogues stimulated overall ABA metabolism in whole fruit

and in ripening mesocarp tissue. This was manifested in elevated PA and OPA, which

was accompanied by either elevated or reduced ABA, depending on the time of

incubation and the stage of ripening of the fruit. Treatment with CK generally increased
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IM in mesocarp tissue, but reduced seed IM content, possibly indicating transport of

IM from the seed to the mesocarp.

(2) Molybdate consistently increased both XDH and XAN oxidase activity in mesocarp

tissue throughout the experimental period. Mesocarp tissue treated with molybdate

displayed decreased ABA and IM, but increased CK-like activity and xanthine.

Abscisic acid increased in seed tissue treated with molybdate.

(3) Although allopurinol had no effect on XDH activity, elevated XAN oxidase activity was

observed in this tissue after 6 h. Allopurinol applied to ripening mesocarp tissue

increased ABA, but decreased IM. When applied to whole fruit, ABA increased in

seed tissue, whilst IM increased in mesocarp tissue and decreased in seed tissue.

Mesocarp tissue treated with allopurinol also displayed lower CK-Iike activity, but

increased adenine and hypoxanthine.

(4) Mesocarp tissue treated with allo+Mo displayed lower XDH activity than the control,

but higher XAN oxidase activity. This tissue had higher ABA and IM. Cytokinin-like

activity was lowered in seed tissue treated with allo+Mo, whereas hypoxanthine and

xanthine increased. When allo+Mo was applied in an equimolar ratio, ABA and IM

increased. However, when unequal molar ratios were applied the treatment had no

effect on ABA but altered IM.
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5 RELATIONSHIP BETWEEN ACTIVITY OF CKOX, AO AND

XDH AND CHANGES IN PLANT HORMONES DURING

THE LINEAR PHASE OF AVOCADO FRUIT GROWTH

5.1 INTRODUCTION

Cell number and cell size influence the capacity of developing fruits to import assimilate, and

therefore contribute directly to fruit growth (Bohner and Bangerth 1988a; 1988b). The control

of fruit size requires maximization of cell division and expansion during development

(Valmayor 1967; Coombe 1976) with any reduction in the availability of reqUired resources

impacting on fruit growth. The bulk of carbon needed by developing fruits is derived from

source tissue (Ho 1998), which in avocado include photosynthetically active leaves and

fruitlets (Coombe 1976; Thome 1985; Blanke and Lenz 1989; Blanke and Whiley 1995).

Development of these structures is additionally sustained by mobilization of stored tree

reserves that occur during times of organ growth (Kozlowski 1992). Phloem is the most likely

path of solute movement in dicotyledonous species, and in developing fruit phloem unloading

occurs in the testa (Thome 1985). In avocado fruit it is the developing pachychalaza (Le. seed

coat) that supplies photoassimilates, minerals and water to the growing fruit (Moore-Gordon et

al. 1998). The continuous rate of cell division in avocado fruit, from fruit set to maturity,

demands maintenance of symplastic continuity throughout fruit growth and development.

Termination of symplastic continuity in small fruit, through early senescence of the seed coat,

severs the supply of necessary nutrients to the developing fruit, thereby causing alterations in

the expression of genetic factors controlling fruit growth.

Fruit development is governed by three genetic factors which determine: (1) the number of

carpel cells; (2) the number of cell divisions during the cell proliferation phase; and (3) the

duration and enlargement rate of individual cells in the cell enlargement phase (Higashi et al.

1999). It is currently unknown which genetic factor plays the most important role in controlling

final fruit size in higher plants, but environmental factors and phytohormones are known to

modify the expression of these genes. Appreciation of the pleiotropic effects of plant

hormones suggests that no single growth regulator can be responsible for a complex process

such as fruit morphogenesis (Trewavas 1980; 1983) and it is generally accepted that

phytohormones exert multiple control on organ development by alterations in concentration

and as a result of changes in sensitivity of the affected tissues (Trewavas 1982; Fim 1986;

Trewavas 1991; Bradford and Trewavas 1994).
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Previous reports indicate that CK, IAA, GA, and ABA levels changed over the course of

avocado fruit growth (Blumenfeld and Gazit 1970; Gazit and Blumenfeld 1970; Blumenfeld

and Gazit 1972; Gazit and Blumenfeld 1972; Cowan et al. 1997). The highest levels of IAA,

GA and CK were found in endosperm tissue, where levels remained high provided the tissue

was still present in the fruit, i.e. until 3 months after fruit set (Blumenfeld and Gazit 1970;

Blumenfeld and Gazit 1972; Gazit and Blumenfeld 1972). Cytokinin and IAA levels were

higher in seed and seed coat than in the mesocarp (Blumenfeld and Gazit 1970; Gazit and

Blumenfeld 1970; Gazit and Blumenfeld 1972), whereas levels of ABA were similar in the

seed and mesocarp (Richings et al. 2000; Taylor and Cowan 2001). No GA activity was

detected in seed or mesocarp tissue (Blumenfeld and Gazit 1972).

The previous chapters established that differences in hormone levels exist between normal

and small fruit, which probably occur as a result of changes in the activity of enzymes

considered to play an important role in controlling hormone levels. To further evaluate the role

of these enzymes in the control of hormone homeostasis and final fruit size of the 'Hass'

avocado, enzyme activity and hormone levels were determined in the major tissues of

developing fruit during the linear phase of growth.

5.2 RESULTS

5.2.1 Fruit growth

The linear phase of fruit growth was established by determining the percentage increase in

fruit length, diameter, and fresh mass of both normal and small fruit and the results are

presented in Figures 5.1 and 5.2. At the first sampling interval, 84 OAFB, there was no

evidence of early seed coat senescence. However, 112 OAFB fruit with senesced seed coats

were readily distinguishable. As a consequence, growth of the two populations of fruit could

be monitored with relative ease, particularly as the expected difference in fruit size between

the normal and small fruit phenotypes was clearly discernible (Figs 5.1 and 5.2). As illustrated

in Figure 5.1, the increase in fruit length occurred more rapidly than increased growth in

diameter in normal fruit and terminated sooner. By comparison, expansion growth in small fruit

was greater than elongation growth, which also terminated earlier. Since the increase in fruit

size (measured as a change in fresh mass) was linear over the course of the experiment (Fig.

5.2), radial growth must compensate for elongation growth during the later stages of the linear

phase of avocado fruit growth. The data further suggests that longitudinal growth is more

sensitive than radial growth and that factors contributing to this process during early fruit

development might in fact be those that are limiting in the small fruit. In an effort to determine

whether these 'limiting factors' were tissue-specific, the change in proportion of the major .

tissues comprising the whole fruit was monitored. Results in Figure 5.3 show that growth

77



100

80

60
Q)
In
1\1e 40(,)

.5
~0

20

0

-20
75 100 125 150 175 200 225 250

Figure 5.1

Time (DAFB)

--0-- nonnal diameter __ nonnal length -"--small diameter --....-smalllength

Percentage increase in fruit length and diameter of normal (-) and small ("")
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small fruit is indicated by (t). (Growth curves were constructed from a total of
103 normal fruits and 79 small fruit).

of these tissues differed between normal and small 'Hass' avocado fruit. Seed tissue

displayed the greatest increase in growth (Fig. 5.3A), with seed coat and mesocarp displaying

similar growth rates (Fig. 5.38 and C), implying that changes in fruit size occur largely as a

result of seed growth.
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Figure 5.2 Percentage increase in fresh mass over the linear phase of growth for normal (-)
and small (""-) 'Hass' avocado fruit. The appearance of the first small fruit is
indicated by (t). (Growth curves were constructed from a total of 103 normal
fruits and 79 small fruit).
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Throughout the linear phase of growth, normal and small fruit were comprised chiefly of

mesocarp tissue. Even so, the proportion of mesocarp declined from 95 % (84 OAFB) to 84 %

and 89 % (245 OAFB) in normal and small fruit respectively. A decline in the relative amount

of mesocarp tissue was mirrored by an increase in the relative amount of seed tissue and, in

normal fruit, seed tissue increased from 3 % at 84 OAFB to 15 %, 245 OAFB. In small fruit,

however, seed tissue only increased to 10 % at 245 OAFB from the initial 3 %. The amount of

seed coat tissue was 2 % and 1.4 % of the whole in normal and small fruit respectively, and

remained constant throughout the linear phase of growth. At 245 OAFB these values had

decreased to 1.5 % and 1 % respectively presumably indicative of seed maturation and the

onset of seed coat senescence.

5.2.2 Endogenous CK-Iike activity and CKOX

Oespite the rapid improvement of techniques used in the isolation, purification and

identification of CK, bioassays remain an integral part of the identification process. Bioassays

assist in the establishment of the existence of active endogenous plant growth regulators and

provide primary qualitative information on the nature of endogenous hormones in an extract

(Horgan 1981). The simplicity of bioassays is an advantage and in most cases the detection

limits and linear range are adequate, but they are not always very selective. Thus, to be

strictly accurate, only compounds that have been chemically identified should be named CK.

Other compounds should be referred to as cell-division-inducing compounds, or CK-like

compounds and should be qualified by reference to the bioassay used (see appendix 11 for

standards) (van Staden and Oavey 1979).

Levels of CK-like activity shown in Figure 5.4A, Band C are presented as total callus yield

from all 10 Rf zones of the soybean callus bioassay described in section 2.9.5. This was done

for ease of presentation in order to show trends in CK-like activity between normal and small

fruit during the linear phase of growth. In all tissues of 'Hass' avocado fruit total CK-Iike activity

increased initially and then declined rapidly as the fruit approached maturity. There was no

significant difference between CK-like activity in seed, seed coat, and mesocarp tissue of

normal and small fruit at any time in the linear phase of fruit growth. The highest levels of CK­

like activity were detected in seed coat tissue, followed by seed and mesocarp tissue. In seed

coat and mesocarp tissue CK-like activity reached a maximum 112 OAFB in both normal and

small fruit (Figs 5.4B and C). In seed tissue CK-Iike activity reached a maximum 140 OAFB

and then declined (Fig. 5.4A).
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'Hass' avocado fruit CKOX is a substrate-inducible enzyme with a preference for either iP or

zeatin (see section 3.2.4). Thus, to evaluate the relationship between endogenous CK-like

activity and CKOX, only those zones from the chromatogram corresponding to iP and zeatin

(R
f

zones 6-9; see appendix 11 for CK standards) were evaluated in relation to changes in

CKOX activity. The results shown in Figure 5.5 indicate that over the linear phase of fruit

growth CKOX activity declined in seed and mesocarp tissue (Fig. 5.5A and C). By

comparison, CKOX activity increased transiently in seed coat tissue and reached a maximum

140 OAFB (Fig. 5.5B). The increase in iP- and zeatin-like activity in seed coat tissue preceded

maximum CKOX activity suggesting induction of the enzyme by its substrate. It is therefore

tempting to speculate that the decline in CK-Iike activity in seed and mesocarp tissue (Fig.

5.4A and C) which occurred after induction of seed coat CKOX was as a result of this activity,

and that induction of seed coat CKOX establishes a gradient for removal of CK from seed and

mesocarp tissue that coincides with the cessation or dramatic slowing of cell division cycle

activity in the fruit.

5.2.3 Changes in MoCo-containing enzyme activity during the linear phase of avocado

fruit growth

5.2.3.1 Activity ofXDH and XAN oxidase in mesocarp tissue

Xanthine dehydrogenase activity was lower in mesocarp tissue of small fruit throughout the

linear phase of fruit growth (Figs 5.6A and B). In mesocarp of normal fruit XOH increased and

reached a maximum 140 OAFB. The decline in activity after 140 OAFB coincided with

cessation of longitudinal growth of the fruit (cf. Fig. 5.1). Likewise, in small fruit, maximum

XOH activity was associated with maximum longitudinal growth, and arrest of elongation

growth in this phenotype was followed by a decline in XOH activity. Xanthoxal oxidase showed

two peaks of activity in mesocarp of normal fruit, one 84 OAFB and the other, 203 OAFB (Fig.

5.7A). In mesocarp from the small fruit phenotype, however, maximum XAN oxidase activity

was sustained until 140 OAFB and, thereafter, appeared to decline (Fig. 5.7B). This

observation seems to indicate that activity of mesocarp XAN oxidase is intimately related to

appearance of the small fruit phenotype in 'Hass' avocado.

5.2.3.2 Changes in activity of XDH, XAN oxidase and lA-aid oxidase In extracts of seed

and seed coat tissue

The activity of MoCo enzymes in seed and seed coat tissue was determined

spectrophotometrically as activity was too low to be detected by activity staining in

polyacrylamide gels. The nature of the extracts also prevented attempts at concentration as

the concentrated extract became gelatinous and failed to enter the gel uniformly, thereby

preventing the detection of specific bands of AO and XOH activity.
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Figure 5.6 Zymogram showing XDH activity in mesocarp tissue from normal (A) and small
(B) 'Hass' avocado fruit over the course of linear fruit growth. Num~ers ab?ve
the zymogram indicate the number of days after full bloom. FollOWing natlve­
PAGE, activity was determined using 1 mM hypoxanthine as the substrate. Each
lane was loaded with an equal amount of protein (25 ...gllane).
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Figure 5.7 Zymogram showing XAN oxidase activity in normal (A) and small (B) mesocarp
tissue from 'Hass' avocado fruit over the course of linear fruit growth. Numbers
above the zymogram indicate the number of days after full bloom. Following
native-PAGE, activity was determined using 1 mM indole-3-aldehyde as the
substrate. Each lane was loaded with an equal amount of protein (25 ...gllane).

Spectrophotometric analysis of changes in XDH and AO activity in extracts prepared from

seed tissue of normal and small fruit revealed the trends shown in Figure 5.8A and B. There

was no significant change in activity of seed XDH throughout the course of growth of the small

fruit phenotype whereas, in seed of normal fruit, activity of XDH tended to increase (Fig 5.8A)

and was coincident with the increase in seed size. Aldehyde oxidase was assayed in extracts

of seed tissue from both phenotypes using lA-aid (for estimation of lA-aid oxidase activity) and

I-aid (for estimation of XAN oxidase activity). The results in Figure 5.8B show that lA-aid

oxidase activity declined rapidly in seed of both normal and small fruit whereas XAN oxidase

activity displayed two peaks of activity. The first peak in activity, 112 DAFB, was similar for
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Figure 5.8 XDH (A) and AO (8) activity in extracts prepared from seed tissue of normal (-)
and phenotypically small (-) 'Hass' avocado fruit over the course of linear fruit
growth. The appearance of the first small fruit is indicated by (t). Data are the
mean of three replicates, with vertical bars representing the standard error. NS,
seed of normal fruit; SS, seed of small fruit.

seed from small and normal fruit whereas the second peak was significantly higher and

occurred earlier in seed of normal fruit. Together, these observations indicate that XDH activity

is high in actively growing avocado seeds. Furthermore, these results suggest that both lA-aid

oxidase and XAN oxidase are required early in avocado seed growth whereas only XAN

oxidase activity is required later in seed development. Thus, a reduction in activity of XAN

oxidase in the latter stage of seed growth and development appears to correlate with the

appearance of a small fruit phenotype in 'Hass' avocado. Caution should, however, be

exercised when interpreting these results as they are from a single growth season and may

therefore not be consistent across growth seasons.
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In extracts prepared from seed coat tissue derived from normal fruit, XOH activity increased to

a maximum 203 OAFB (Fig. 5.9). Thereafter, activity declined. Not surprisingly, the trend with

regard to the change in seed coat XOH activity corresponded to the increase in mass of this

tissue in normal fruit. In light of these findings, it was perhaps not unexpected that no XOH

activity was detected in seed coat tissue of small fruit. There was little difference in XAN

oxidase activity in extracts prepared from seed coat tissue of normal and small fruit, although

activity was not sustained in the small fruit (Fig. 5.9).
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Figure 5.9 Changes in activity of XDH and XAN oxidase in extracts prepared from seed coat
tissue of normal (-) and phenotypically small (-) 'Hass' avocado fruit over the
course of linear fruit growth. The appearance of the first small fruit is indicated
by (t). Data are the mean of three replicates, with vertical bars representing the
standard error. NSC, seed coat of normal fruit; SSC, seed coat of small fruit.

5.2.4 Changes in ABA and IAA during the linear phase of avocado fruit growth

Changes in endogenous ABA and IAA in the major tissues of developing normal and small

'Hass' avocado fruit during the linear phase of growth are illustrated in Figure 5.10. The IAA

content of seeds of normal fruit was initially high, reaching a maximum 112 OAFS, and then

declined gradually with approaching seed and fruit maturity (Fig. 5.10A). The decline in seed

IAA content was mirrored by a transient increase in IAA content of the seed coat (Fig. 5.10B)

but sustained accumulation of this hormone in mesocarp tissue (Fig. 5.10C). These results

seem to indicate that seed-derived IAA is preferentially partitioned to the mesocarp via a

functional seed coat in normal fruit. Support for this conclusion is evident from the situation for

IAA in the small fruit phenotype. In this variant the decline in seed IAA (Fig. 5.10A) was

followed by substantial IAA accumulation in seed coat tissue (Fig. 5.10B). An increase in IAA

in the mesocarp occurred early and was transient (Fig. 5.10C) probably reflecting the loss of
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structural integrity between seed coat and mesocarp in phenotypically small fruit due to early

senescence of the seed coat.

The situation as regards the change in endogenous ABA is somewhat more complex as each

of the major fruit tissues appears to be competent for ABA biosynthesis. However, some of the

seed-produced ABA may be localized to the seed coat because the decline in seed and

mesocarp ABA of normal fruit 112 OAFB (Fig. 5.10A and C) was mirrored by a protracted

accumulation of ABA in the seed coat (Fig. 5.10B). Also, seed coat tissue from the small fruit

accumulated substantial amounts of ABA (Fig. 5.10B) although this may be indicative of

senescence-induced ABA synthesis. Equally plausible is ABA-induced ABA catabolism in both

seed and mesocarp tissue of normal fruit. Nevertheless, the early increase in seed and seed

coat ABA occurred coincident with the first peak in XAN oxidase activity (cf. Fig. 5.8B)

indicative of a positive relationship between activity of this enzyme and changes in ABA during

avocado fruit growth and development.

5.3 CONCLUSION AND SUMMARY

The first small fruit, with readily distinguishable senesced seed coats, were observed 112

OAFB. These fruit differed from normal fruit in both longitudinal and radial growth, with the

former exhibiting a greater sensitivity to factors contributing to a decline in growth. Although

the growth of all three major tissues differed between normal and small fruit, the disparity in

seed growth between the two phenotypes is likely to have the greatest impact on final fruit

size. The slowing down of longitudinal growth and cell division cycle activity in normal fruit was

associated with an increase in CKOX activity in seed coat tissue and a general decline in CK­

like and XOH activity. In fact high XOH activity occurs in actively growing seeds and seed

coats when CK-like activity is high. Furthermore, whilst lA-aid oxidase and XAN oxidase

activity is required early in seed growth, only XAN oxidase is required in the latter stages of

growth where a decline in activity correlates with small fruit. In normal fruit IAA is preferentially

partitioned to the mesocarp from the seed via the seed coat. However, the senescence of the

seed coat in small fruit results in the loss of structural integrity and therefore a transient peak
•

of IAA in mesocarp tissue and accumulation in seed coat. Abscisic acid accumulation in seed

and seed coat tissue occurred concomitant with the early peak in XAN oxidase activity and

was more pronounced in tissues of the small fruit variant. In summary, .

(1) Small fruit were first distinguishable 112 OAFB. In contrast to normal fruit, the increase

in expansion growth was greater than the increase in elongation growth in small fruit.

There was a significant difference in the percentage increase in growth of all of the .

major tissues of normal and small 'Hass' avocado fruit over the course of linear fruit
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growth, which was manifest in a significant divergence of the percentage change in

fruit fresh mass between normal and small fruit.

(2) Cytokinin-like activity increased initially and then declined as fruit approached maturity.

The highest levels of CK-like activity were detected in seed coat tissue, followed by

seed and mesocarp and there was no significant difference between normal and small

fruit at any point in the linear phase of growth. Cytokinin oxidase activity in seed and

mesocarp tissue declined over the linear phase of fruit growth, whilst CKOX activity in

seed coat tissue increased transiently. This increase in CKOX activity followed the

peak in iP- and zeatin-like activity, thereby suggesting the induction of the enzyme by

its substrate.

(3) A decline in XDH activity in mesocarp tissue corresponded to a decline in longitudinal

growth of both normal and small fruit. A similar situation prevailed in seed tissue where

high XDH activity was correlated with actively growing avocado seeds. Similarly, XDH

activity was not detected in senesced seed coat tissue of small fruit. Both mesocarp

and seed tissue displayed two peaks in XAN oxidase activity, the second of which

occurred in the latter stages of fruit growth and was not evident in small fruit. However,

the sustained XAN oxidase activity early in development of the small fruit variant

suggests that activity of this enzyme is intimately related to the appearance of this

phenotype.

(4) The IAA content of seed was initially high, declining as fruit approached maturity.

Levels were consistently lower in seed tissue of small fruit. The decline in seed IAA

content in normal fruit was matched by a transient increase in IAA of the seed coat, but

sustained accumulation in the mesocarp. In small fruit, however, substantial IAA

accumulated in seed coat tissue which was significantly higher than that in normal fruit,

whilst IAA accumulation in mesocarp was only transient. Although all the major fruit

tissues appear to be competent for ABA biosynthesis, it is possible that some of the

seed-produced ABA may be localized to the seed coat. Seed coat tissue of small fruit

also accumulated substantial amounts of ABA. In general, larger amounts of ABA

accumulated in small fruit tissues at key physiological events in fruit growth.
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6 ~ENERAL DISCUSSION AND CONCLUSIONS

6.1 GENERAL DISCUSSION

There are two major reasons for using 'Hass' avocado as a model system to study the

metabolic control of fruit growth with emphasis on the regulation of final fruit size (Cowan et al.

2001). Firstly, 'Hass' avocado is a major export crop in South Africa and reducing the number

of "small fruit" produced in any season will ensure substantial economic benefit to the region.

Secondly, in the absence of evergreen tree-crop mutants with which to dissect the

mechanisms contributing to the control of final fruit size, 'Hass' avocado and its small fruit

variant present an ideal system to investigate the physiology, biochemistry and molecular

biology of fruit growth in a subtropical species. A recent review on the molecular biology of

fruit maturation and ripening has highlighted the dearth of information on the molecular

development of fleshy fruit (Giovannoni 2001). In fact, this author concludes the review by

stating, "insights into early regulation of fruit development ... represent avenues through which

future research activities will follow for the dissection of common regulatory control systems... "

Nonetheless, the early events in the development of fleshy fruits have been likened to those of

leaves (Gillaspy et al. 1993), and it is distinctly possible that the molecular mechanisms

responsible for governing leaf size apply equally to fleshy fruits. The size of plant cells, and

thus plant organs, is determined by genetic, structural, and physical factors that are influenced

by internal and external signals. While our knowledge of the molecular mechanisms involved

remains rudimentary, it is apparent that a major limitation to cell and organ growth is the entry

and subsequent metabolism of nutrients. In addition to genetic factors that determine pattern

formation (e.g. ROTUNDIFOLlA3), organ identity (e.g. UNUSUAL FLORAL ORGAN), and

meristematic competence (e.g. AINTEGUMENTATA) all of which contribute to plant organ

size, mutants defective in hormone synthesis and signalling demonstrate that a major

consequence of modified hormone signalling is an alteration in final organ size. For example,

the Arabidopsis ethylene-overproduction1 (et01) and constitutive triple response1 (ctr1)

mutations result in smaller than normal organs due to reductions in cell size and cell number.

Ethylene and CK increase organ expansion along the transverse axes whereas GA and auxin

regulate expansion along the longitudinal axes and influence stature and size (Shibaoka and

Nagai 1994). The role of auxin signalling in final cell size seems not to be in doubt as

overexpression of the AUXIN-BINDING PROTEIN1 (ABP1) in-tobacco increased the size of

leaf cells dramatically (Jones et al. 1998). But ABP1 does not appear to function in controlling

organ size as an increase in cell size was accompanied by a reduction in cell number resulting

in no major effect on leaf size. In contrast, studies using the REVOLUTA (REV)/
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INTERFASCICULAR FIBERLESS1 (lFL 1) gene· indicate that the polar flow of auxin may be

the cue for control of organ size. In rev/if/1 mutants, growth and cell proliferation persisted

longer than in the wild type leading to larger organ size (Talbert et al. 1995; Zhong and Ye

1999). REV/IFL1 function is required for the activity of auxin polar transport and for normal

development of interfascicular cells (Zhong and Ye 2001). Thus, REV/IFL 1 links polar auxin

transport to fiber cell differentiation, possibly to the regulation of secondary meristem

formation, and determination of the extent of organ growth.

Interfascicular cells form between vascular bundles and join up with the fascicles to form a

continuous ring of meristematic tissue. In avocado fruit, the vascular strands in the mesocarp

are numerous and arranged in two concentric rings. They are surrounded by oil-containing

parenchyma cells and these cells are in stages of active division as long as the. fruit is

attached to the tree. Thus cell division in the mesocarp parenchyma results in continuous

enlargement throughout the developmental life of the fruit from fruit set to maturity. It is

presumed that seed-derived hormones are translocated via the chalaza into the vasculature

from where they exert their effects on cell division in the mesocarp. In fact, non-development

of the pachychalaza in seedless fruit is believed to inhibit meristematic activity in the chalazal

region, reduce sink strength, and retard fruit growth (Steyn et al. 1993). Although ethylene

stimulates senescence of the pachychalaza, production of ethylene in senescing

pachychalazal tissue is considered a result rather than a cause of seed coat degeneration

(Davenport and Manners 1982). Thus other hormones and presumably developmental factors

would appear to trigger degeneration (or arrested development) of the pachychalaza and

chalazal tissue to cause appearance of the small fruit variant in 'Hass' avocado.

The present programme of research has shown that the increase in size of 'Hass' avocado

fruit occurs largely as a result of seed growth and that longitudinal growth in small fruit is a

more sensitive process, implying that either auxin or GA, or both, are limiting during the early

development of this variant. However, a three-fold increase in IAA content of seed of small

fruit was evident 256 OAFB and kinetic studies showed that accumulation of IAA in seed coat

tissue of this variant dUring the linear phase of growth probably occurred as a consequence of

the loss of structural integrity between seed coat (pachychalaza) and mesocarp tissue due to

early seed coat senescence. Once produced, IAA normally diffuses into surrounding tissues

and eventually away from the developing fruit. Thus, low extractable auxin correlates with the

rapid growth phase of avocado fruit (Gazit and Blumenfeld 1972). Since application of CK to

normal fruit increased IAA in mesocarp but reduced the IAA content of seed tissue, polar

transport of IAA during avocado fruit growth may be coupled to CK signalling and/or action.

Cytokinin treatment of normal fruit did not influence seed ABA but, and as expected, reduced
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the ABA content of mesocarp tissue. Together, this information indicates that changes in plant

hormone homeostasis may indeed be responsible for the high incidence of a small fruit variant

in 'Hass' avocado. Using a model to describe the control of plant organ size, Mizukami (2001)

assigns a major role to growth promoters that activate growth signal mediators such as

AINTEGUMENATA, which stimulate growth co-ordinators (e.g. D-type cyclins) to activate and

couple growth and cell division to maintain meristematic competence. In all probability the

growth. promoters are hormones (CK, IAA and GA) and control of hormonal balance likely

impacts on the signal mediators to either suppress or maintain meristematic competence in

affected organs. Whilst the importance of carbohydrates, other metabolites, mineral nutrients

and water in fruit growth is acknowledged, this investigation focused on the importance of

plant hormones to fruit growth, which act either directly or indirectly to alter gene expression.

The role of hormone homeostasis in the control of final fruit size of avocado was established

by comparing and contrasting hormone levels and activity of key enzymes involved in

hormone metabolism, between normal 'Hass' avocado fruit and its small fruit phenotype. In

addition this system was used to test the hypothesis that changes in hormone homeostasis

occur as a result of differences in the activity of the MoCo-containing enzymes XDH and AO.

Results from this study indicate that CKOX, XDH and AO activity are correlated with final fruit

size. Whilst high XDH and lA-aid oxidase activity was correlated with active tissue growth,

high CKOX and XAN oxidase activity during early fruit development coincided with a decline in

fruit growth. Furthermore, inhibition of XDH and a corresponding increase in AO activity in

response to CK occurred coincident with increased levels of IAA and increased overall ABA

metabolism. Cytokinin oxidase plays a crucial role in this process, as it is the induction of this

enzyme by CK that is likely to set in motion events leading to changes in IAA and ABA. Thus

these enzymes have an important role to play in the control of hormonal balance in fruit

tissues. The importance of hormone homeostasis in the determination of final fruit size is

demonstrated by the finding that fruit tissue growth was negatively correlated with an

imbalance in the CKlIAAlABA ratio in favour of IAA or ABA or both; an effect that is most likely

mediated through their impact on sink strength and cell division cycle activity.

6.1.1 The biochemical basis of plant hormone homeostasis in avocado fruit

Moore-Gordon (1997) suggested that a change in the CKlABA ratio was the trigger that

elicited reduced growth and the appearance of the small fruit phenotype in 'Hass' avocado.

This ratio is likely to be mediated via hormone interaction as Cowan et al. (1999)

demonstrated CK stimulation of the oxidative catabolism of ABA. These authors proposed that

a number of enzymes play a key role in mediating this interaction,including CKOX and the

Mo-hydroxylases, AO and XDH. An initial probe into the validity of this proposal confirmed that
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changes in the activity and tissue distribution of these enzymes between normal and small

avocado fruit were mirrored by a change in the content and composition of IAA, ABA, CK and

purines. At this time a low CKlABA and CKlIAA ratio in seed tissue of small fruit was

associated with low lA-aid oxidase activity, but high XAN oxidase, XDH and CKOX activity.

Due to these differences between normal and small fruit a role for CKOX and Mo-hydroxylase

activity in the control of hormone homeostasis and final fruit size was partly established.

No XDH mutants have been described for higher plants and in MoCo deficient mutants,

characterized by a pleiotropic loss of all MoCo-enzyme activities, there are no symptoms that

can be traced back specifically to a lack of XDH (Mendel and Schwarz 1999). It therefore

seems that XDH does not play a vital role in plant development. It is, however, involved in a

number of important physiological processes. These include purine catabolism, pathogen

responses and cell death and senescence (Mendel and Schwarz 1999). This study presents

another possible role for XDH, that involves mediation and interaction between the CK, ABA

and IAA biosynthetic pathways. The demonstration in this study of XDH inhibition by adenine

and allopurinol agrees with previous findings (Weir and Fischer 1970; Bray 1975; Boland

1981; Woo et al. 1981) and lends support to the theory that adenine-induced alterations in

XDH activity might indeed impact on plant hormone homeostasis by facilitating more efficient

utilization of the des'Jlfo-MoCo by the AOs involved in ABA and IAA biosynthesis.

Cowan et al. (1999) proposed that low XDH activity, typical of that observed in seed of normal

fruit 240 DAFB, might be associated with either increased CKOX activity or increased

adenine, or both. Results indicate that, whilst lower CKOX activity was present in seed and

mesocarp of normal fruit, elevated levels of adenine and xanthine were found in these tissues.

Together, these confirm the postulated relationship between adenine content of fruit tissues

and activity of XDH alluded to above. Cytokinin-induction of CKOX activity has been

demonstrated in this (see section 3.2.4) and previous studies (Whitty and Hall 1973; Terrine

and Laloue 1980; Jones et al. 1992; Dietrich et al. 1995), but it is unlikely to account for high

CKOX activity in small fruit as CK content did not differ significantly between the two

phenotypes. This disparity in CKOX activity is therefore most likely attributable to elevated IAA

in small fruit tissues as auxin has been demonstrated to stimulate CKOX activity in avocado

mesocarp tissue (see section 3.2.4), with similar observations reported using maize kernels

(Cames and Wright 1988; Lur and Setter 1993) and tobacco pith explants (Palni et al. 1988).

The stimulation of CKOX by auxin has important implications for final fruit size as it is likely to

lead to a decline in the CKlIAA ratio that is of importance in the control of cell division cycle

activity. In addition, auxin induction of CKOX activity might also impact on ABA metabolism as

Cowan et al. (1999) suggested that CKOX activity contributed to the regulation of ABA
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metabolism during plant organ growth by modulating the activity of XDH. Thus IAA may also

regulate ABA metabolism, thereby maintaining plant hormone homeostasis during organ

growth.

Although the physiological role of AD in plants remains unclear there is a growing body of

evidence to support a function for this enzyme in both ABA (Walker-Simmons et al. 1989;

Leydecker et al. 1995; Marin and Marion-PoIl1997; Schwartz et al. 1997a; Seo et al. 2000a;b)

and IAA biosynthesis (Rajagopal 1971; Bower et al. 1978; Miyata et al. 1981; Koshiba and

Matsuyama 1993; Tsurusaki et al. 1997; Seo et al. 1998). It is likely there exist several

isoforms of the AD enzyme in plants, each with a different physiological function, which are

expressed in a developmental- and/or tissue-dependent manner (Akaba et al. 1999). A single

activity band of AD was detected in mesocarp tissue of 'Hass' avocado fruit following native­

PAGE. which exhibited affinity for I-aid, citral, benzaldehyde and heptaldehyde (see section

3.2.1.1). This suggests that only one isoform of AD is present in avocado mesocarp tissue.

However, the existence of additional isoforms that have identical mobilities in native-PAGE

cannot be excluded. Although no activity was detected using XAN. it cannot be excluded as a

substrate as activity may have been too low to be detected by activity staining and/or the

presence of minor contaminating substances could have interfered with activity. The use of

XAN by some of the Arabidopsis AD isoforms in activity gel staining, following native-PAGE,

has been alluded to by Seo and Koshiba (2002), suggesting that an AD might indeed be

involved in the conversion of XAN to XAN-acid. The higher activity of AD in the presence of l­

aid, designated XAN oxidase in this study, in tissues of small fruit occurred co-incident with

elevated ABA supporting the involvement of this AD in ABA biosynthesis and the appearance

of the small fruit phenotype.

In contrast to mesocarp and seed coat tissue. AD in seed tissue exhibited activity in the

presence of lA-aid and I-aid, citral, benzaldehyde and heptaldehyde (see section 3.2.1.1 and

3.2.2). This leads to the possibility that two AD isoforms are present in seed tissue, or at least

that mesocarp and seed tissue possess different AD isoforms. This is supported by the finding

of an altered ABAlIAA ratio in response to allopurinol and molybdate treatments. Results

indicate that these isoforms have different affinity for molybdenum, catalyse AD-mediated

reactions in ABA and IAA biosynthesis respectively, and that activity is development- and/or

tissue-dependent. Similar findings have been reported for maize and Arabidopsis (Koshiba

and Matsuyama 1993; Koshiba et al. 1996; Sekimoto et al. 1998). However, without

conclusive native-PAGE evidence for seed tissue this possibility cannot be confirmed.

Although in the latter stages of linear fruit growth AD activity in the presence of lA-aid,

designated lA-aid oxidase in this study, was not correlated with IAA in normal and small seed
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tissues, it is possible that the early senescence of the seed coat in small fruit (Moore-Gordon

et al. 1998) prevents basipetal movement of seed-derived IAA resulting in an apparent

accumulation in this tissue. Indole-3-acetic acid biosynthesis is also complicated by the

presence of several possible parallel biosynthetic pathways in plants (Normanly et al. 1995;

Kawaguchi and Syono 1996; Normanly 1997), with three indole compounds known to be

direct precursors of IAA (Tsurusaki et al. 1997). As auxin metabolism has not been studied in

avocado fruit, the predominant pathway for IAA biosynthesis in this tissue is unknown and

thus a parallel pathway, not involving a MoCo-AO, could be responsible for the observed

increase in IAA in small fruit.

From this data it is evident that the presence of a small fruit phenotype in 'Hass' avocado is

related to alterations in the activity of CKOX and Mo-hydroxylases. which contribute to an

imbalance in the CKJABAJIAA ratio in favour of ABA and IAA. There thus seems to be

evidence to support the proposal that the impact of CK on ABA and IAA metabolism is

mediated through alterations in XDH activity that lead to the redistribution of MoCo to AO

isoforms involved in ABA and IAA biosynthesis.

6.1.2 Implications of the modulation of CKOX, AO, and XDH activity on hormone

homeostasis

6.1.2.1 Purine modulation ofhormone homeostasis

In agreement with the findings of Cowan et al. (1999), CK was found to stimulate the oxidative

catabolism of ABA to PA and DPA in both whole and ripe fruit, mesocarp and seed tissue.

Similar results were obtained using CK analogues, thereby confirming that purines do indeed

impact on ABA metabolism. The effect of CKs on ABA metabolism has been proposed to be

two-fold firstly, the oxidation of XAN is stimulated and, secondly, the conversion of ABA to PA

and DPA is enhanced (Cowan et al. 1999). This latter effect is due to the fact that ABA

enhances its own catabolism by inducing ABA 8'-hydroxylase activity (Uknes and Ho 1984;

Cutler et al. 1997). Since CKs were shown to enhance the oxidation of XAN, an overall

stimulation of ABA metabolism in response to CK treatment is projected (Cowan et al. 1999).

Support for this proposal that CK-ABA antagonism occurs at the level of MoCo biosynthesis is

derived from the aba1 mutant of Nicotiana plumbaginifolia, which is both CK resistant and

ABA deficient. This mutant lacks MHS activity, which catalyses the sulfuration of the desulfo

form of MoCo required by AO and XDH (Leydecker et al. 1995; Akaba et al. 1998), and is thus

both ABA deficient and wilty (Blonstein et al. 1991) due to impairment in the conversion of

XAN to ABA (Parry et al. 1991).
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The increase in oxidation of XAN to ABA in response to CK (Cowan et al. 1999) seems to

involve an increase in the activity of the AO, XAN oxidase. As an AO is also proposed to act at

the final step in IAA biosynthesis, the question was posed in this study as to whether CK

impacts on lA-aid oxidase activity in a similar manner to XAN oxidase. As predicted, treatment

of fruit with CK did indeed change IAA levels. Whilst IAA decreased in seed in response to

CK, levels in mesocarp tissue increased. Since no lA-aid oxidase activity was detected in

mesocarp tissue an increase in IAA content in this tissue implies transport of seed-derived IAA

into this tissue. Polar transport of IAA during avocado fruit development may therefore be

coupled to CK signalling and/or action. In addition, as the increase of IAA in mesocarp tissue

was greater than the reduction of IAA in seed tissue, IAA biosynthesis must have been

stimulated in the presence of CK, indicating that increased availability of MoCo will also impact

on AO isoforms involved in IAA biosynthesis.

The mediation of hormone homeostasis through alterations in XDH activity was investigated in

more detail using allopurinol and molybdate. In agreement with the studies of Montalbini and

Della Torre (1995) treatment of avocado fruit with allopurinol resulted in the accumulation of

hypoxanthine and adenine, confirming the inhibitory action of allopurinol on XDH activity in

avocado fruit tissues. Furthermore, allopurinol-treated seed tissue exhibited a decline in the

CKlABA ratio as a result of unchanged CK but elevated ABA. Hormone homeostasis was

further perturbed in this tissue due to reduced IAA, confirming the importance of XDH in

hormone homeostasis. Molybdate, on the other hand, stimulated overall hormone metabolism,

confirming that MoCo-requiring enzymes mediate hormone levels and that MoCo availability

can be limiting. Similar results have been reported in barley seeds where ABA increased in

response to application of exogenous molybdate (Omarov et al. 1999).

6.1.2.2 Purines and MoCo enzyme activity

Although Cowan et al. (1999) proposed that CK-induced ABA metabolism involved XDH

inhibition, these authors did not quantify XDH or AO activity. Their conclusions were based on

analysis of ABA metabolism and incorporation of [14C] from 3R-[2-14C]mevalonolactone (MVL)

. into XAN, ABA and DPA in response to CK, allopurinol and molybdate. The present study

showed that XDH and XAN oxidase activity was indeed altered in mesocarp tissue in

response to CK. Whilst XDH activity was inhibited by CK, XAN oxidase activity was elevated,

lending support to the proposal that inhibition of XDH results in more efficient utilization of

MoCo by AO. This effect was confirmed in allopurinol- and allo+Mo-treated tissue.

The supposition that supply of MoCo is limiting in plants was supported by evidence of the

induction of XDH and XAN oxidase activity in mesocarp tissue of avocado fruit treated with
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excess molybdate. Similar "superinduction" of AO and XOH was noted in wild type tomato

plants treated with Na2S (Sagi et al. 1999). Furthermore. recent studies have shown that

sulfuration of the dioxo-MoCo can be limiting for ABA biosynthesis (Bittner et al. 2001; Xiong

et al. 2001). This conclusion was based on increased expression of the Arabidopsis ABA3

gene in response to dehydration treatment. As ABA3 encodes a MoCo sulfurase it is likely that

MoCo sulfuration limits XAN oxidase activity. thereby regulating the last step in ABA

biosynthesis. It is also expected that if induction of sulfuration occurs under conditions where

XOH is inhibited, the increase in AO activity will be exacerbated. In contrast, IAA biosynthesis

appears to be differentially regulated by MoCo availability in response to stress, as MoCo

biosynthesis mutants exhibit no obvious IAA deficiency or auxotrophy phenotype (Seo et al.

1998). As previously mentioned the existence of multiple parallel pathways for IAA

biosynthesis in plants (Normanly et al. 1995; Kawaguchi and Syono 1996; Normanly 1997)

implies that a limitation in MoCo availabilitylbiosynthesis will not impact on IAA in the same

manner as it does on ABA.

6.1.3 Stress induction of Mo-hydroxylases

Moore-Gordon (1997) found that there is a physiological window 60-90 OAFS when 'Hass'

avocado fruit first become susceptible and express the small fruit phenotype. This period was

associated with a period of tree stress when there was a rapid rise in canopy temperatures

and increased incidence of fruit drop (Moore-Gordon 1997). The incidence of small fruit also

increased in trees bearing heavily (Lahav and Kalmer 1977) and in stressed. older trees

(Kohne 1992; Whiley et al. 1996; Cowan 1997) grown under warm conditions (Cutting 1993).

confirming that early seed coat senescence is exacerbated by tree stress. In agreement with

these findings. small fruit possessing senesced seed coats were first distinguishable 84-112

OAFS in this study.

An important mechanism whereby plants respond. and adapt. to stress is believed to be

through changes in the activity of MoCo-requiring enzymes. This is proposed to occur through

changes in the MoCo pool size. which varies in response to nutritional and environmental

factors (Sagi et al. 1997; Sagi and Lips 1998). An increase in the activity of the Mo­

hydroxylases (i.e. AO and XOH) in response to salt stress and ammonium treatment in barley

(Omarov et al. 1998)· and ryegrass (Sagi et al. 1998) is thus considered to be part of the

mechanism for stress adaptation in plants. which includes elevated ABA synthesis and

increased ureide production (Sagi et al. 1998). As these two enzymes require a desulfo-MoCo

.it is further postulated that MHS may play a regulatory role in plants, particularly considering

that expression of the ABA3 gene. encoding this enzyme in Arabidopsis. is induced by

dehydration treatment (Xiong et al. 2001). In addition. the sulfuration step has been shown to
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be reversible in vitro (Wahl and Rajagopalan 1982; Schwartz et al. 1997a) which leads to the

possibility that the size of the desulfo-MoCo pool is finely regulated in plants in response to

stress.

Elevated XAN oxidase activity in mesocarp and seed tissue of avocado at first appearance of

the small fruit could likely be associated with adaptation to imposed stress. However, in

contrast to findings in barley (Omarov et al. 1998) and ryegrass (Sagi et al. 1998), increased

AO activity in avocado small fruit tissues was not associated with increased XDH activity, but

rather a decline in the activity of this enzyme. This has three possible implications for the

ability of the fruit to adapt to stress. Firstly, it has been suggested that elevated XDH is

necessary for efficient use of available C to synthesise organic N compounds with a low C/N

ratio for transport from roots to shoots (Sagi et al. 1999). Secondly, the product of XDH

activity, uric acid, is an effective scavenger of active oxygen species (Becker et al. 1989; Radi

et al. 1990) and reduces free radicals produced in response to stress. Finally, as discussed

above, a decline in XDH activity might result in further MoCo allocation to XAN oxidase,

thereby increasing activity further. The first possibility has little relevance for fruit growth and is

likely to apply only in roots where nitrogen fixation occurs. However, the second and third

possibilities have severe implications for fruit growth in that reduced XDH activity is likely to

exacerbate the effect of stress leading to a dramatic reduction in growth. The decline in XDH

activity in small fruit is most probably attributable to adenine-induced inhibition of XDH which

occurs as a result of increased CKOX activity in these fruit. This increase in CKOX activity is

likely to be ascribed to two factors. Firstly, the slightly higher levels of CK-like activity and,

secondly, the significantly higher IAA levels found in small fruit tissues at this stage, both of

which have been demonstrated to stimulate CKOX activity in this study (see section 3.2.4).

As mentioned above it is possible that, under stress, activity of AO isoforms involved in ABA

biosynthesis are preferentially activated over those involved in IAA biosynthesis. This effect

may reside at the level of abundance of AO isoform apoproteins, whose expression may be

differentially regUlated in response to stress. In Arabidopsis leaves subjected to dehydration

the expression of the gene encoding the AO isoform involved in IAA biosynthesis remained

constant or was slightly reduced (Seo et al. 2000a). However, the expression of the gene

encoding the AO isoform involved in ABA biosynthesis was rapidly induced following

dehydration (Seo et al. 2000a). When coupled with increased MoCo sulfuration in response to

drought stress (Xiong et al. 2001) this suggests that ABA biosynthesis will increase relative to

IAA biosynthesis leading to an increase in the ABAJIAA ratio. Further experiments are,

however, required to elucidate the exact physiological role of protein regulation in ABA

biosynthesis. An increased ABAJIAA ratio in seed tissue of small fruit, which occurs co-
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incident with enhanced XAN oxidase activity, but significantly reduced lA-aid oxidase activity,

suggests that this may be an attempt to deal with imposed stress and thereby reduce growth.

This is in agreement with the proposal that changes in ABA and IAA interact to signal the

need for changes in plant functions required for adaptation to stress conditions (Ounlap and

Robacker 1990).

6.1.4 Hormone homeostasis in avocado fruit in relation to CKOX, AO, and XOH activity

In general, hormone levels in both normal and small fruit tissues declined as fruit approached

maturity, except for auxin levels in mesocarp tissue of normal fruit that peaked close to

maturity. This is in agreement with previous studies on hormone levels in avocado fruit

(Blumenfeld and Gazit 1970; Gazit and Blumenfeld 1970; Gazit and Blumenfeld 1972; Cutting

et al. 1986; Cowan et al. 1997). Most of the CK and IAA was found in the developing seed,

with ABA remaining constant across the fruit, which lends credence to the generally accepted

proposal that the developing seed regulates cell division and expansion in surrounding fruit

tissues (Gillaspy et al. 1993). Seed-derived hormones are partitioned to surrounding fruit

tissues via a functional seed coat and thus the loss of structural integrity between seed coat

and mesocarp tissue in small avocado fruit will sever the supply of these important growth­

promoting substances. In addition to seed coat abortion, small fruit also possess smaller

seeds, which make up a smaller percentage of the whole fruit. The aberrant seed growth and

seed coat senescence of small fruit therefore implies an inability to sustain cell division in

surrounding tissues.

Whilst there was very little difference in CK between normal and small fruit, ABA and IAA were

significantly different, resulting in a shift in the hormonal balance in small fruit tissues. In

keeping with the findings of Moore-Gordon et al. (1998) the CKlABA ratio of mesocarp tissue

was correlated with fruit size throughout the period of measurement in this study. However,

had these authors extended their study to seed and seed coat tissue, they would have found

that a similar correlation was not evident in these tissues. Although a slightly lower CKlABA

ratio was found in seed tissue of small fruit 112 OAFB, this situation did not persist and a

higher CK to ABA ratio was found in seed of small fruit at the next two harvest intervals. Seed

coat tissue from small fruit exhibited a similar trend, but there was no difference between the

two phenotypes 112 OAFB. Interestingly, the CKlIAA and ABAlIAA ratios were also altered in

small fruit tissues, with a decrease in IAA relative to CK and ABA evident in seed tissue of

small fruit. However, the reverse was true for both seed coat and mesocarp tissue. Once

produced, IAA diffuses into the surrounding tissue and eventually away from the developing

organ via the pedicel. Studies using the REVIIFL 1·gene in Arabidopsis led to the proposal that

polar auxin transport is a cue for the control of organ size (Zhong and Ye 2001). This is
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attributed to the finding that polar auxin transport is linked to fiOOr cell differentiation,

regulation of secondary meristem formation and the determination of the extent of organ

growth (Talbert et al. 1995; Zhong and Ye 1999; 2001). It is thus not surprising that low

extractable levels of auxin in mesocarp tissue were correlated with rapid growth of avocado

fruit (Gazit and Blumenfeld 1972). The high levels of IAA relative to CK and ABA in both seed

coat and mesocarp tissue of small fruit are thus expected to contribute to the decline in growth

observed in these tissues and more specifically to the early senescence of the seed coat in

these fruit. In small fruit longitudinal growth is a more sensitive process than radial growth and

as GA and auxin are proposed to regulate expansion along the longitudinal axis (Shibaoka

and Nagai 1994) it follows that one or both of these hormones are limiting in the early

development of this variant. As the increase in size of 'Hass' avocado fruit occurs largely as a

result of seed growth, the reduced IAA content in seed tissue during the early development of

small fruit is likely to account for the reduction in longitudinal growth in these fruit.

The high IAA in seed coat and mesocarp of small fruit during the early stages of linear fruit

growth is most probably attributable to a combination of factors. However, it is currently

unknown which factor plays the most important role in elevating IAA in these fruit. Firstly, the

early senescence of the seed coat in small fruit prevents partitioning of IAA to the mesocarp

from the seed, which could explain why IAA accumulation is only transient in mesocarp tissue

and why there is substantial accumulation in the seed coat. Secondly, alternate pathways for

IAA biosynthesis, not involving a MoCo-AO, may be operational in seed coat and mesocarp,

which are elevated in small fruit in response to stress. This second possibility is supported by

the belief that different pathways of IAA biosynthesis are operational at different

developmental stages, in different tissues or under different environmental conditions

(Michalczuk et al. 1992; Celenza et al. 1995; Koshiba et al. 1995; Normanly et al. 1995).

Finally, the elevated IAA in these tissues may be a consequence of impaired conjugation or

increased hydrolysis of conjugates. Most of the IAA in plants exists as conjugates (Cohen and

Bandurski 1982) and any factor impacting on conjugate formation or hydrolysis will result in

large changes in free IAA. Whatever the cause of substantially elevated IAA in seed coat and

mesocarp of small fruit, the consequences are likely to be deleterious for fruit growth.

6.1.5 Direct hormone interaction in avocado fruit

Hormone interaction may either reside at the level of hormone ratio, through changes in the

effective concentration or tissue sensitivity of one hormone by another, or by sequential action

of different hormones. Direct hormone-hormone interactions are likely to play an important role

in the control of avocado fruit size. Aside from the impact of CK on ABA metabolism (Cowan

et al. 1999) it is also likely that IAA and ABA interact, with high IAA stimulating ABA
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biosynthesis (Grossmann et al. 1996; Grossmann 2000). Auxin is reported to have a biphasic

effect on plant growth and development, with low concentrations of auxin reducing ethylene

formation and promoting growth by cell division and elongation, in contrast to high

concentrations, which induce phenomena such as epinasty, premature leaf abscission and

inhibition of root and shoot elongation, followed by plant senescence (Grossmann 2000). It is

clear from these plant responses that ethylene formation is stimulated in response to high IAA

and it is these effects that provide the basis for the use of synthetic auxin analogues as

herbicides in agriculture (Abeles et al. 1992; Cobb 1992; Sterling and Hall 1997; Grossmann

1998).

Auxin has been shown to induce de novo synthesis of 1-aminocyclopropane-1-carboxylic acid

(ACC), which is the result of increased expression of specific ACC synthase genes or post­

transcriptional regulation (Kende and Zeevaart 1997; Grossmann 1998; Taiz and Zeiger 1998;

Wei et al. 2000). As ACC synthase catalyses the rate-limiting step in ethylene biosynthesis

(Le. the conversion of S-adenosylmethione into ACC) (Abeles et al. 1992; Kende and

Zeevaart 1997), an increase in the activity of this enzyme will have a direct impact on ethylene

levels. Furthermore, the induction of ethylene synthesis by auxin is also thought to be related

to ABA accumulation and growth inhibition in sensitive dicot species (Grossmann et al. 1996;

Grossmann 2000). However, whether avocado is one of these sensitive species remains to be

demonstrated. Support for ethylene induction of ABA biosynthesis was obtained through the

use of the tomato never ripe mutant, which is impaired in its ability to bind ethylene efficiently

(Wilkinson et al. 1995). In contrast to wild type plants, XAN failed to accumulate in mutant

plants in response to auxin treatment (Hansen and Grossmann 2000). It was therefore

concluded that these plants were unable to increase production of XAN following auxin

treatment due to a block in response to ethylene. Further biochemical characterization of the

response of ABA biosynthesis to ethylene revealed that NCED is the likely target site of auxin­

induced ethylene (Hansen and Grossmann 2000). This is the key regulatory step in ABA

biosynthesis and has been shown to be upregulated during stress (Kende and Zeevaart 1997;

Neil! et al. 1998; Cutler and Krochko 1999; Qin and Zeevaart 1999). The inhibitory effect of

auxins at high concentrations is therefore mediated through hormonal interaction between

ethylene and ABA.

Corroborative evidence to suggest that such an event occurs in avocado fruit is found in seed

coat and mesocarp tissue of small fruit where the peak in IAA occurs co-incident with

increased ABA. Furthermore, although Davenport and Manners (1982) reported that ethylene

stimulates senescence of the pachychalaza, they concluded that ethylene produced in

senescing pachychalazal tissue is a result rather than a cause of seed coat degeneration. It is
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thus tempting to suggest that elevated IAA in seed coat tissue of small fruit is the cause of

ethylene production in this tissue, which possibly combines with increased XAN oxidase

activity to elevate ABA to non-physiological levels resulting. in the early degeneration of the

seed coat in these fruit.

6.1.6 Hormonal regulation of fruit size

Growth promoters have been assigned a major role in activating growth signals mediators,

such as AINTEGUMENATA, which stimulate growth co-ordinators (e.g. D-type cyclins) to

activate and couple growth and cell division to maintain merist,ematic competence. These

growth promoters are in all likelihood hormones and thus changes in hormonal balance during

fruit growth have important implications for control of fruit development, as they are likely to

affect cell division cycle activity and sink strength.

6.1.6.1/nteraction ofhormones with carbohydrates

Developing fruits are terminal sinks and require carbohydrates, other metabolites, mineral

nutrients and water to sustain cell division and cell expansion. In tomato, under conditions of

limited photoassimilate supply, the main limiting factor for fruit size is cell number (Bertin et al.

2002), indicating the importance of carbohydrates in the maintenance of cell division. The

importation of photoassimilates into fruit must be monitored continuously and it is predicted

that hormones may fulfil this role. Hormones are therefore proposed to co-ordinate fruit growth

through detection of changes in sugar content and composition (Cowan et al. 2001).

Alternatively, carbohydrate status of developing organs impacts hormone metabolism to alter

flux through metabolic pathways and signal changes in development. Implicit in this is cross­

talk between sugar and hormone signalling, which is supported by recent observations that

sugars and hormones interact in the control of plant growth. For example, sucrose overrides

auxin-induced vsp gene expression in soybean (De Wald et al. 1994) and regulates tuber

formation in potato by influencing GA (Xu et al. 1998), and sucrose negatively regulates the

signalling pathway in which transcriptional activation of wheat WPK4 gene (which encodes a

protein kinase capable of phosphorylating HMGR in vitro) is mediated by CK (Ikeda et al.

1999). In addition, the sugar insensitive (sis) mutants of Arabidopsis, sis4 and sis5, are allelic

to the ABA biosynthetic mutant aba2 and the ABA insensitive mutant abi4, respectively (Laby

et al. 2000).

In avocado the CKlABA ratio is regarded as being important with respect to post-phloem

solute transport, growth rate and final fruit size (Cowan et al. 1997; Moore-Gordon et al.

1998). In maize kernels ABA accumulation seems to serve as a biochemical signal to restore

source/sink balance when photosynthesis is reduced due to water stress (Ober et al. 1991). In
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this way, ABA is projected to play an important role in decreasing average kernel size or

causing kernel abortion in the apical region of the maize ear in response to stress.

Furthermore, Arenas-Huertero et al. (2000) showed that a relationship exists between ABA

synthesis and plant sugar responses by demonstrating that ABA increased in Arabidopsis

seedlings after sugar treatment and that treatment with ABA increased sugar sensitivity. While

the extent to which the connection between ABA and sugar response is direct or indirect is still

unresolved, results indicate that this connection exhibits a substantial degree of specificity as

mutations in only specific components, of the ABA response pathway(s) confer a sis

phenotype (Laby et al. 2000). Thus, whilst a certain level. of ABA is required in the early stages

of fruit development to establish sink strength (Dewdney and McWha 1978; Tietz et al. 1981),

it is evident that abnormally high levels of ABA, such as those found in small fruit, will have

deleterious effects on fruit growth. This is thought to occur through alterations in symplastic

continuity/solute transport and in particular the loss of plasmodesmata structurelfunction and

cell-to-cell chemical communication (Moore-Gordon et al. 1998). This study presents

corroborative evidence for a decreased CKlABA ratio in seed and mesocarp tissue of small

fruit, when small fruit were first distinguishable. In addition it reveals that IAA is reduced in

seed tissue of the small fruit phenotype. This could contribute to a decline in sink strength in

small fruit as auxin has been prescribed a role in directing sink strength through its impact on

cell division, elongation and differentiation (Gillaspy et al. 1993).

In addition to affecting changes in sugar transport in avocado fruit, hormones are also likely to

impact on sugar content and composition and the levels/or activities of sugar-metabolizing

enzymes and vice versa. The high ABA content of seed of the small fruit variant was coupled

with increased acid invertase activity, an effect that could be mimicked by ABA application to

normal fruit (Richings et al. 2000). This has been demonstrated previously where both auxin

and ABA were reported to increase invertase activity (Ackerson 1985; Poovaiah and

Veluthambi 1985; Schaffer et al. 1987). This has particular relevance for avocado fruit growth

as an over-expression of invertase has been shown to lead to morphological changes

(Tymowska-Lalanne and Kreis 1998), stunted growth (Dickinson et al. 1991) and arrested

development of secondary plasmodesmata (Ding et al. 1993), traits which are evident in ABA­

treated normal fruit (Moore-Gordon et al. 1998; Richings et al. 2000). The result of increased

invertase and reduced SuSy activity in seed tissue of small fruit, and in ABA treated normal

fruit, is sucrose depletion and an increase in glucose as a proportion of total soluble sugar

(Richings et al. 2000). The sucrose/hexose ratio is proposed to constitute a homeostat in

which the relative amount of each component serves to modulate §NF1-related protein ,!sinase

1 (SnRK1)/hexokinase (HXK) activity on one hand and plant hormone metabolism on the

other (Campbell et al. 2000; Cowan et al. 2001).
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§.ucrose non-fermenting 1 (SNF1) related kinases have the 'potential to regulate several

biosynthetic pathways including isoprenoid synthesis, sucrose synthesis and nitrogen

assimilation (Sugden et al. 1999) through the phosphorylation and inactivation of key enzymes

such as HMGR (Halford et al. 1999) and has therefore been implicated in the control of plant

cell cycling (Dickenson et al. 1999). In addition to HMGR, both SPS and NR are also SnRK1­

regulated enzymes. Nitrate reductase is a MoCo-requiring enzyme and is phosphorylated by

SnRK1 (Sugden et al. 1999) and inactivated following the binding of a 14-3-3 protein to the

phosphorylation site (Bachmann et al. 1996; Moorhead et al. 1996). This enzyme is of

particular interest as AD and ABA levels are reduced in plants in which NR has been induced

by its substrate (Dmarov et al. 1998). This implies that, under conditions where NR is under

the control of SnRK1, there will be a change in ABA and IAA metabolism and hence plant

hormone homeostasis via the differential utilization of MoCo by MoCo-requiring enzymes

(Campbell et al. 2001). If such conditions persist when sulfuration of the MoCo is increased,

AD activity is likely to be greatly enhanced leading to large perturbations in ABA and possibly

IAA, which will result in reduced fruit growth.

The cross-talk between sugars and hormones is further emphasised by the finding that plant

SNF1-kinase (or SnRK1) is apparently regulated by the pleiotropic regulatory locus 1 (PRL 1),

an evolutionary conserved a-importin-binding nuclear WD-protein (Salchert et al. 1998;

Bhalerao et al. 1999). The PRL1 appears to function in plant sugar-related gene expression

by acting as a negative regulator of SNF1 homologues (Gibson and Graham 1999). This is

demonstrated by the finding that the pr/1 mutation results in hypersensitivity to glucose and

sucrose. It augments sensitivity of plants to CK, ethylene, auxin and ABA and de-represses

genes that are positively or negatively regulated by glucose or CK, or both (Salchert et al.

1998; Bhalerao et al. 1999). Furthermore, the pr/1 mutation is exacerbated by amp1 (CK

overproducing), a mutation which regulates CK production and cell division (Deikman 1997).

SnRK1 is therefore likely to play an integral role in the control of fruit size by mediating

hormone levels in response to carbohydrate status and composition and vice versa, which in

turn will co-ordinate growth through the regulation of cell division.

6.1.6.2 Hormonal regulation of cell division

'Hass' avocado fruit size is dependent on cell number and not cell size (Cowan et al. 1997).

The regulation of cell division cycle activity is therefore an important determinant of final fruit

size. Cyclin-dependent protein kinases (CDKs) guard the checkpoints of the eukaryotic cell

cycle and regulate mitotic cell division. These enzymes are regulated primarily at the post­

translational level by phosphorylation and consist of a catalytic CDK subunit (member of the

CDC2-like family) and a regulatory cyclin subunit (Pines 1993). Levels of the plant kinase cdc2
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(also known as p34cdC2
) are positively correlated with physiological competence to divide

(Colasanti et al. 1991; Bergounioux et al. 1992; Hashimoto et al. 1992; Hemerly et al. 1992;

Miao et al. 1993; Ferreira et al. 1994; Devitt and Stafstrom 1995; Kvamheden et al. 1995),

with the spatial specificity of cdc2 expression contributing to spatial regulation of cell division

in plants (Hemerly et al. 1993). In intact Arabidopsis plants cdc2 can be induced or inhibited,

depending on the phytohormone applied, with auxin and CK assigned an important role in the

control of cell division in plants as they increase transcripts of cdc2 (Hemerly et al. 1993).

Mader and Hanke (1996) demonstrated that the withdrawal of CK in cultured soybean cells

acted as a switch from mitotic to amitotic cycles with fractions gathering in the G2/M transition.

Subsequently, Zhang et al. (1996) showed that CK acts specifically at late G2 through

stimulation of tyrosine dephosphorylation and sequential activation of p34cdc2_like H1 histone

kinase. Thus, while auxin alone can induce p34cdC2 synthesis, cell division requires the

activation by CK. Auxin has, however, also been implicated in the control of the duration of G1

and G2 (Bayliss 1985; John et al. 1993a;b).

In addition to positive regulation of the cell cycle by activation of CDK complexes, negative

regulators, termed cyclin-dependent kinase inhibitors (CKls), can block the activity of the

kinase (Nakayama and Nakayama 1998). Controlled proteolysis has recently been shown to

be important in the control of cell cycle transition and two genes implicated in auxin responses

have been found to be essential for the degradation of cell cycle proteins such as CKls

(Peters 1998). This leads to the attractive possibility that auxins may promote cell division by

triggering the degradation of CKls (Mironov et al. 1999), but this has yet to be proven

unequivocally. In addition a CKI designated ICK1 whose expression is induced by ABA, has

been found in plants, suggesting that ICK1 may mediate the cytostatic effect of ABA in plants

(Wang et al. 1998).

The potential role of ABA in blocking or slowing down the cell cycle has been indicated in

several studies (Nougarede et al. 1987; Myers et al. 1990; Robertson et al. 1990; MUlier et al.

1994; Bracale et al. 1997; Liu et al. 1997). It is proposed that ABA regulates cell division cycle

activity through the inhibition of nucleic acid and protein synthesis (Owen and Napier 1988;

Jacqmard et al. 1995). The inhibition of HMGR activity by ABA is another possible manner in

which ABA might impact on cell division cycle activity (Russell and Davidson 1982; Moore and

Oishi 1994). Inhibition of HMGR actiVity has been shown to reduce cell division cycle activity

in cultured tobacco cells (Crowell and Salaz 1992) which is proposed to be a consequence of

reduced CK biosynthesis. Chemical inhibition of HMGR has also been demonstrated to arrest

avocado fruit growth (Cowan et al. 1997; Richings et al. 2000) and HMGR activity and
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isoprenoid compounds are essential in the determination of final tomato fruit size (Narita and

Gruissem 1989; Gillaspy et al. 1993; Jelesko et al. 1999).

As CK, IAA and ABA have all been found to regulate cell division cycle activity either

synergistically or antago~istically, the balance between them is likely to be of the utmost

importance in the regulation of this process. Jacqmard et al. (1995) speculate that the balance

between ABA and CK levels are one of the major factors controlling DNA replication and

ultimately the duration of the cell cycle in shoot apices of Sinapsis. This ratio has also been

implicated in the control of cell division in root-nodule initiation in legumes (Phillips 1971). In

addition IAA may serve to degrade a CKI, designated ICK1, whose expression is induced by

ABA (Wang et al. 1998; Mironov et al. 1999). The change in the CKlIAAlABA ratio, in favour of

IAA or ABA or both, in small fruit could thus account for reduced cell division cycle activity in

these fruit, due to elevated levels of CKls, inhibition of DNA synthesis and loss of CDK activity.

6.1.7 An integrated model for the control of avocado fruit size through hormone

homeostasis

Fruit development is considered to be a result of intricate spatial and temporal interactions

between resources required for growth and hormonal mediation through the regulation of

gene expression. Based on the findings in this study a model presented in Figure 6.1 is

proposed to explain the manner in which hormone homeostasis is mediated in avocado fruit

and how this impacts on final fruit size. For this purpose the model links hormone homeostasis

with sugar/carbohydrate and adenylate status of the tissue in the control of cell cycle activity

and thus final fruit size.

The size of the MoCo pool is regulated by environmental conditions and nutritional status

(Sagi et al. 1997; Sagi and Lips 1998). Under stressful conditions sulfuration of the dioxo­

MoCo is stimulated (Xiong et al. 2001) leading to an increase in the activity of the Mo­

hydroxylases (AO and XDH) which require a desulfo-MoCo. Under conditions where CKOX is

elevated, the resulting rise in adenine will inhibit XDH, which is predicted to result in the more

efficient utilization of the MoCo by AO, thereby exacerbating the effect of stress. Two potential

avenues exist for regulation of CKOX activity in avocado fruit: firstly, CK levels (Kaminek et al.

1997) and, secondly, IAA levels (Coenen and Lomax 1997), both of which serve to increase

CKOX activity. The increased activity of AO in response to stress, and possibly decreased

XDH activity, will impact on ABA and IAA, as isoforms of AO catalyse the final steps in ABA

(Walker-Simmons et al. 1989; Sindhu et al. 1990; Leydecker et al. 1995; Cowan 2001;

Milborrow 2001) and IAA biosynthesis (Koshiba et al. 1996; Lips et al. 1999). Elevated ABA .

and IAA relative to endogenous CK content will combine to reduce cell division cycle activity

106



nutritional status
environmental conditions

GAP + PYR

~ desulfo

1C~ •..}~•••~
{ ~ .~

I: I
~ /'

f{M
CELL CYCLE

G1
..... FINAL

FRUIT SIZE

Figure 6.1 Model depicting the proposed manner in which hormone homeostasis Is
controlled in 'Hass' avocado fruit and how this impacts on cell cycle activity and
final fruit size. ABA, abscisic acid; ADP, adenosine diphosphate; AI, acid
invertase; AMP, adenosine monophosphate; AO, aldehyde oxidase; ATP,
adenosine triphosphate; CK, cytokinin; CKOX, cytokinin oxidase; IAA, indole-3­
acetic acid; GlI gap 1; G2, gap 2; GA, gibberellin; GAP, glyceraldehyde
phosphate; HMGR, 3-hydroxy-3-methylglutaryl coenzyme A reductase; M,
mitosis; NR, nitrate reductase; PYR, pyruvate; SnRK1, SNF1-related protein
kinase 1; S, DNA sYl1thesis; SPS, sucrose phosphate synthase; SuSy, sucrose
synthase; XDH, xanthine dehydrogenase.
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as it is maintenance of the correct hormonal balance in fruit that ensures continuation of cell

division cycle activity (NagI1971; Nag11972; Nag11976; Barlow 1976).

Free purines are in a large part salvaged and reused to synthesise nucleotides, and adenine

salvage is an important mechanism for rapid adenylate synthesis (Shimazaki et al. 1982).

Incubation of growing potato tuber discs with adenine resulted in increased levels of adenine

nucleotides, decreased levels of glycolytic intermediates and organic acids, increased starch

. synthesis, increased respiration, an increased ATP/ADP ratio and decreased sucrose

synthesis (Loef et al. 2001). This effect was, however, dependent on the hexose/sucrose ratio

and under conditions where glucose levels are elevated increased adenine has the gr:eatest

impact, as ATP levels are low. In fact, Halford et al. (1999) suggests that changes in ATP

levels might be the signal that indicates the availability of sugar and it therefore possibly links

respiration to carbohydrate availability and growth.

High IAA is also reported to stimulate ABA biosynthesis (Grossmann et al. 1996; Grossmann

2000). Auxin enhances de novo synthesis of ACC (Kende and Zeevaart 1997; Grossmann

1998; Taiz and Zeiger 1998; Wei et al. 2000) which leads to an increase in ethylene. Induction

of .ethylene synthesis by auxin is thought to be related to ABA accumulation and growth

inhibition in sensitive dicot species (Grossmann et al. 1996; Grossmann 2000). The target site

of auxin-induced ethylene in ABA biosynthesis is reported to be the NCED enzyme (Hansen

and Grossmann 2000) which catalyses the rate-limiting step in ABA biosynthesis Le. the

conversion of 9-Z-xanthophylls to XAN (Schwartz et al. 1997b; Tan et al. 1997; Cutler and

Krochko 1999). Elevated IAA will therefore impact negatively on cell division cycle activity and

fruit growth, partly through the stimulation of both ethylene and ABA biosynthesis.

On the other hand, low auxin is expected to have a positive impact on fruit growth. This effect

could be partly mediated through the induction of GA biosynthesis, which has been

demonstrated in pea fruit (van Huizen et al. 1997). 4-chlorindole-3-acetic acid is proposed to

originate in seed tissue from where it is transported to the pericarp where it in turn regulates

the conversion of GA19 to GA20 by increasing the level and/or stability of GA 2Q-oxidase mRNA

(van Huizen et al. 1997). Normal levels of IAA are also required to maintain normal levels of

bioactive GA (GA1) in pea stems (Ross et al. 2000). In addition, the expression of the pea

gene LE (GA20 to GA1) in stem internodes requires IAA from the shoot apex and expression of

PsGA2ox1 (deactivation of GA20 to GA29 and GA1 to GAs) is reduced by IAA (Ross et al.

2000). The existence of such a mechanism in avocado fruit is as· yet unproven, but it is

possible that seed derived IAA stimulates GA biosynthesis in the surrounding tissues,

especially the seed coat, which in turn contributes to the regulation of fruit growth. Although
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the role of GA in fruit development is not well understood, it is generally assumed that it is

necessary for the stimulation of cell division and the maintenance of cell expansion (Gillaspy

et al. 1993). These authors also propose that auxin-stimulated GA synthesis and

accumulation during maximal fruit growth is required for subsequent expansion and/or sink

activity of the fruit cells.

Sugar content and composition coupled with isoprenoid metabolism and hormone

homeostasis seem inextricably linked to the fruit developmental programme via sugar­

metabolizing enzymes, HMGR and AO. Activity of HMGR is central in fruit growth as it

determines the availability of regulatory isoprenoid compounds required for cell division cycle

activity, sink strength and fruit growth (Narita and Gruissem 1989; Gillaspy et al. 1993; Jelesko

et al. 1999; Richings et al. 2000). As CK and GA have their biosynthetic origins in the

isoprenoid pathway HMGR activity will also impact on hormone homeostasis. The activity of

this enzyme is apparently modulated by SnRK1 protein kinase in concert with changes in

sugar content and composition. A decrease in the sucroselhexose ratio coupled with changes

in adenylate status (Le. AMP/ATP ratio) impacts on activity. of either SnRK1 or HXK to redirect

the sugar-induced signalling cascade. In avocado, exogenous sucrose, glucose and ABA

effect changes in HMGR activity and fruit size (Cowan et al. 1997; Richings et al. 2000).

Nitrate reductase and SPS are also SnRK1 or sugar-regulated enzymes. Nitrate reductase is

phosphorylated by SnRK1 (Sugden et al. 1999) and inactivated following the binding of a 14­

3-3 protein to the phosphorylation site (Bachman et al. 1996; Moorhead et al. 1996). Nitrate

reductase is a MoCo-requiring enzyme and the endogenous MoCo pool varies in response to

nutritional status which. is in agreement with findings that NR is particularly sensitive to stress

and is influenced by a number of environmental factors (Huffaker et al. 1970; Hueur et al.

1979; Crawford 1995). According to the model proposed in Figure 6.1, the result of inactive

NR is the preferential allocation of MoCo to the remaining two MoCo-requiring enzymes, AO

and XDH, and as a consequence increased ABA and IAA biosynthesis. Hormone

homeostasis is thus finely controlled in avocado fruit, such that cell division and fruit growth

can be regulated in relation to available resources required.for growth and prevailing

environmental conditions.

6.2 CONCLUSIONS AND FUTURE PROSPECTS

This stUdy has demonstrated that final size of 'Hass' avocado fruit is intimately linked with

hormone homeostasis, with an imbalance in the CKlIAAlABA ratio occurring co-incident with

the appearance of the small fruit phenotype and with the associated reduction in fruit growth.

It is proposed that in response to a period of tree stress the activity of Mo-hydroxylase .

enzymes is adjusted. The result of this is an elevation in ABA, but a reduction in IAA relative to
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CK in seed tissue of small fruit. It is further proposed that, as the seed is purported to control

growth in the surrounding tissue, the change in ABA and IAA in this tissue signals the

surrounding tissues to abort development, and hence the elevated levels of both ABA and IAA

in these tissues which are associated with a reduction in growth and ultimately senescence

(Gazit and Blumenfeld 1972; Zeevaart and Creelman 1988; Grossmann 2000). Whether this

change in hormone homeostasis is a cause of seed coat senescence or a result thereof,

however, remains to be determined. This study has also demonstrated that, in seed tissue

from small fruit, elevated CKOX activity, as a result of CK and/or IAA stimulation, results in the

inhibition of XDH through the increased production of adenine. This reduction in XDH activity

in seed tissue of small fruit was in turn associated with elevated XAN oxidase, but reduced IA­

aid oxidase activity. Cytokinin oxidase activity thus contributes to the modulation of hormone

homeostasis by influencing the allocation of MoCo to the AO isoforms involved in ABA and

IAA biosynthesis through the inhibition of XDH.

Hormone-hormone interaction appears to play an important role in the determination of final

avocado fruit size. Whilst the interaction between CK and ABA has been demonstrated in this

and previous studies (Moore-Gordon et al. 1998; Cowan et al. 1999), other interaction awaits

verification. Firstly, there is a need to determine if avocado fruit are sensitive to high IAA,

which results in elevated ethylene and enhanced ABA biosynthesis (Grossmann et al. 1996;

Grossmann 2000), as this could be part of the mechanism leading to seed coat senescence

and overall reduction of growth in small fruit. Included in this is the need to determine the

predominant pathway of IAA biosynthesis in avocado fruit tissues. Secondly, the possibility

that seed-derived IAA impacts on GA biosynthesis in surrounding fruit tissues needs to be

examined, as this could represent an important part of the growth promoting mechanism of

auxin in fruit. The complete picture of hormones in avocado fruit also awaits determination.

The rudimentary bioassay data available needs to be confirmed, with particular reference to

the spectrum of CKs and GAs found in these fruit. As both these hormones have been

implicated in the control of cell division in fruit, their detailed analysis in normal and small

'Hass' avocado fruit could provide some understanding of their role in fruit growth. Finally, the

hypothesis that alterations in hormone homeostasis in fruit occur as a result of differences in

the allocation of MoCo to MoCo-requiring enzymes needs to be tested in another plant

system.
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ApPENDIX I

1 DETAILS OF PROCEDURES OMITTED FROM MATERIALS AND METHODS

Reagent preparation for polyacrylamide gels and silver staining and Miller's media preparation

for CK bioassays (see Table (i».

2 PURINE STANDARDS (HPLC)

The standards (adenine, hypoxanthine, xanthine, adenosine, adenosine monophosphate,

guanosine monophosphate and inosine monophosphate) were separated with a linear

gradient of 100 % - 80 % 0.02 M (NH4)H2P04 in 2.5 mM N,N-dimethyloctylamine (adjusted to

pH 3) in methanol over 40 minutes at 268 nm on a 5IJm C18 column (250 x 4 mm Ld.,

Nucleosil 100-5) with a 100-5 guard column (8 x 4 mm Ld.), at a flow rate of 1 mL min -1 (see

Figure (i».

3 ABA, IAA, PA AND DPA STANDARDS (HPLC)

,.he standards (ABA, IAA, PA and PA) were separated with a linear gradient of 20 % - 100 %

methanol, in 0.005 % acetic acid (System A) over 55 minutes at 260 nm on a 5 IJm C18 column

(250 x 10 mm i.d., ODS1) at a flow rate of 2 mL min -1 (see Figure (ii».

4 ABAMe AND IAAMe STANDARDS (HPLC)

The standards (ABA methyl ester and IAA methyl ester) were separated with a linear gradient

of 20 % - 100 % methanol in water (System B) over 55 minutes at 260 nm on a 5 IJm C18

column (250 x 10 mm Ld., ODS1) at a flow rate of 2 mL min -1 (see Figure (iii».
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1 DETAILS OF PROCEDURES OMITTED FROM MATERIALS AND METHODS

1.1 Polyacrylamide gel electrophoresis

1.1.1 Reagents for polyacrylamide gels

Monomer solution [30 % (w/v) acrvlamide, 0.8 % (w/v) N,N'-methylenebisacrylamide1.

Acrylamide (30 g) and N, N'-methylenebisacrylamide (0.8 g) were dissolved in 100 mL of

deionised H20. The solution was filtered through Whatman@ No. 1 filter paper and stored at

room temperature, in an amber-coloured bottle.

Tank buffer [25 mM Tris-HCI, 192 mM glycine, pH 8.81. Tris (6.057 g) and glycine (28.8 g)

were dissolved in 1.5 L deionised H20, the pH was adjusted to 8.8 with HCI and the buffer

made up to 2 L with deionised H20. The buffer was stored at 4° C.

Stacking gel buffer [500 mM Tris-HCI, pH 8.81. Tris (3.0285 g) was dissolved in 40 mL

deionised H20, the pH was adjusted to pH 8.8 with HCI and the buffer made up to 50 mL with

deionised H20. The buffer was filtered through Whatman~ No. 1 filter paper and stored at 4

°C.

Running gel buffer [1 M Tris-HCI. pH 8.81. Tris (12.114 g) was dissolved in 75 mL deionised

H20, the pH was adjusted to pH 8.8 with HCI and the buffer made up to 100 mL with

deionised H20. The buffer was filtered through Whatman~ No. 1 filter paper and stored at 4

°C.

10 % (w/v) Ammonium persulfate. Ammonium persulfate (0.1 g) was dissolved in deionised

H20 (1 mL) just before use.

Non-reducing treatment buffer [50 mM Tris-HCI. 20 % (v/v) glycerol. pH 8.81. Stacking buffer

(1 mL) and glycerol (2 mL) were made up to 10 mL with deionised H20.

Molecular mass markers. The standard used for molecular weight estimation was urease from

Jack bean (272 kDa (trimer) and 545 kDa (hexamer». The marker (1 mg) was reconstituted in

750 tJL non-reducing treatment buffer to give a final concentration of 1.3 mg mL-1.

1.1.2 Reagents for silver staining procedure

30 % (v/v) Nitric acid. Nitric acid [545 mL of a 55 % (v/v) solution) was diluted to 1 L with

deionised H20.
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Fixing solution [50 % (v/v) methanol: 12 % (v/v) acetic acid, 0.05 % (v/v) formaldehydel.

Methanol (100 mL). acetic acid (24 mL) and formaldehyde (100 IJL of a 37 % (v/v) solution)

were diluted to 200 mL with deionised H20.

Washing solution 1 [50 % (v/v) ethanol]. Ethanol (100 mL) was diluted to 200 mL with

deionised H20.

Pretreatment solution [0.02 % (w/v) sodium thiosulfatel. Na2S203.5H20 (40 mg) was dissolved

in deionised H20 (200 mL).

Impregnation solution [0.2 % (w/v) silver nitrate, 0.075 % (v/v) formaldehyde]. AgN03 (400

mg) was dissolved in deionised H20 (199.85 mL) and formaldehyde (150 IJL of a 37 % (v/v)

solution) was added just before use.

Developing solution [6 % (w/v) sodium carbonate, 0.0004 % (w/v) sodium thiosulfate, 0.05 %

(v/v) formaldehyde]. Na2C03 (12 g) and Na2S203.5H20 (4 mL of pretreatment solution above)

were thoroughly mixed in 195 mL of deionised H20. Formaldehyde (100 IJL of a 37 % (v/v)

solution) was added just before use.

Stopping solution [50 % (v/v) methanol. 12 % (v/v) acetic acid]. Methanol (100 mL) and acetic

acid (24 mL) were diluted to 200 mL with deionised H20.

Washing solution 2 [50 % (w/v) methanol]. Methanol (100 mL) was diluted to 200 mL with

deionised H20.
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1.2 Media preparation for cytokinin bioassays

Table (i) Basal mediu..... for soybean callus bloassay (Adapted from Miller 1963; 1965).

- MASS IN STOCK VOLUME STOCK
STOCK CHEMICALS

(g L-1). ADDED (mL L-1
)

KH2P04 3.0

KN03 10.0

NH4N03 10.0

1 Ca(N03h.4H2O 5.0 100

MgS04.7H2O 0.715

KCI 0.65

MnS04.4H2O 0.14

NaFeEDTA 1.32

ZnS04.7H2O 0.38

2
H3B03 0.16

10
KI 0.08

Cu(N03h.3H2O 0.035

(NH4)Mo7024.4H2O 0.01

MYO-INOSITOL 10.0

3
NICOTINIC ACID 0.2

PYRIDOXINE HCI 0.08
10

THIAMINE HCI 0.08

4 NAA 0.2 10
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2 PURINE STANDARDS
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Figure (i) Chromatogram of standard purine solution. The standards were separated with a
lineargradient of 100 % - 80 % 0.02 M (NH.)H2PO. in 2.5 mM N,N-dimethyloctylamine
(adjusted to pH 3) In methanol over 40 minutes at 268 nm on a 5J.tm CfI column (250
x 4 mm i.d., Nucleosil100-5) with a 100-5 guard column (8 x 4 mm i.d.), at a flow rate
of 1 mL min .1. ADE, adenine; HYP, hypoxanthine; XAN, xanthine; ADO, adenosine;
AMP, adenosine monophosphate; GMP, guanosine monophosphate; and IMP,
inosine monophosphate.
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3 ABA, IAA, PA and DPA STANDARDS
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Chromatogram of standard solution of OPA, PA, IAA, epi-OPA and ABA. The
standards were separated with a linear gradient of 20 % - 100 % methanol, In 0.005
% acetic acid (System A) over 55 minutes at 260 nm on a 5 J.lm C11 column (250 x 10
mm i.d., 00S1) at a flow rate of 2 mL mln-\
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4 ABAMe and lAAMe STANDARDS

350

300

250

200

o
=e 150

100

50

o 10 20 30 40

Retention time (mln)

50

Figure (iii) Chromatogram of standard solution of IAA-methyl ester (IAAMe) and ABA-methyl
ester (ABAMe). The standards were separated with a linear gradient of 20 % -100
% methanol in water (System B) over 55 minutes at 260 nm on a 5 J.lm C1• column
(250 x 10 mm i.d., 0051) at a flow rate. of 2 mL mln .1.
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ApPENDIX 11

CYTOKININ STANDARDS (paper chromatography)

Several CK standards (iP, iPA, Z, ZR and DHZ) were prepared (concentration 0.5 mg L-1 or

0.5 ~g CK per chromatogram) and loaded onto Whatman® No. 1 chromatography paper. The

chromatograms were developed once to a height of 40 cm using descending paper

chromatography in the solvent system described in section 2.9.1. The Rf fractions from these

chromatograms were used as indicators of the CK standards in the soybean callus bioassay,

to facilitate comparisons on the basis of co-chromatography (Figure (iv».
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Figure (iv) Soybean callus bioassays CK standards separated using paper chromatography.
(A) isopentenyladenine; (B) isopentenyladenosine; (C) zeatin; (0) zeatin riboside;
(E) dihydrozeatin.
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The plant SnRK1 sub-family

S~F I-related sequences have been isolated from several p!Jnt
species (for review see, Halford & Hardie 1998). The first pllnt
SNF] -related gene to be characterized was RK 1:'\.'1. isolated fr0m
a rye endosperm cD:\.". library (Alderson ""I 1991 ).TranSTJr­
mation of an snjl mutant strain of yeast v:ith a lo\\' copy RK!\'!
plasmid restored the ability of this organism to grow on non-f~r­

mentable carbon sources, showing that RI-.: l\i I is functional!; as
well as structurally related to SNFI. S:\FI-homologues h2ve
subsequently been isolated from ArabidlJpsis ,JlCI!iana (Ar..:.!\i
10). barley (BKIN2, BKI;-;I2), sugar beet ISBKI,,'lj4), toba"o
(~PK5). spinach (HRI') and potato (PKI:\I J.

In the early 1990s a homologue of .".\IP-acti\ated prOl,in
kinases was isolated from plant tissue extracts and sho\\"r. to
inactivate mammalian H0.IGR and rat aceryl-Co.-\ carbo.xylJse
(0.·TacKintosh el 01. 1992). However, when this kinase acti\it)
was challenged with target proteins purified from plant sour.;~s,

only HMGR was inaclivated, suggesting that the enzyme \-.,a5
related to HMGRkinase (EC 2.7.1.109). Further evidence for 'he
existence of plant H~fGRkinase activity, with similar proper.:es
to AMP kinase, included the purification and characterizatior. of
HMG-CoA reductase kinase-A (HRK-A) from cauliflower in:lo­
rescences (Ball er al 1994; Ball el af 199~! and the isolation' I' a
protein kinase from barley endosperm capable of phosphor: :3t­
ing Arabidopsis HMGR (Dale el al 1995: Hannapp.1 el al 1995;
Barker er al. 1996). The success of these endeavours was mIde
possible by the development of the SA\lS peptide. a synthetic
peptide based on the sequence required for .".'"IP-catalysed pr.os­
phorylation of rat acetyl·CoA carboxylase. which is suitable :or
use in the analysis of kinase activity in plant eXtracts (Hal for': &
Hardie 1998). Kinase activities that phcsphor;.lare the S.~\IS

peptide have since been detected in e.'\[rac~s of sC'\eral monC·':.Jt­
yledol1ous and dicoryledonolls spe.:ies..~lthollgh HRK-.-\ f;~m

c<luliflower was not activilted by A\'IP. in 01,10; other rcspec~ its
biochemical properties were very similar W .-\\IPK and S....·:=-I
protein kinase. suggesting HRK-.-\ to be J high~r plant h0:"::O­
logue of A.\IPK. Although this pl3.nt kin'l:3C' \\35 nc'! pur:fie: to
homogeneity. lhe catill~ lie sub unit \\.:15 ic::-nt:fied. U:.<lg
[·'CJFSB.-\ iabelling. as a polypeptide 0'- ~3 kDa. Ihe predio:ed
mass for higher plant S\'F I homologues that <2rC55-react ·.<rh
this polypeptide. These results suggesteJ that the caulitlc... er
HRK-.-\ \vas encoded by a homologue of ;-:,e R:,!'\,I and ~:::'::'5t

S"FI {Halford<lal 199~: Hardieerat. IS93!. Recentl,. Ba:·:er
-:1 af. (/9961. partially purified H\fGR kin~se from ba..·.-:')
endosperm and showed that it was re',:ognizej b~ amise~'jm

raised against RKI0il protein. Thus, there seems lin!e doubt ::'lat
the protein kinase purified as H.\!GR kinase corresponds !e :he
S\"F I gene product of plants. This is panicularl:. 50 gi\er. :he
recenl report of the isolation of four Ca:--independent kim..ses
frolll spinach lea\"es ISugden et al. 19991. The maJor acti\ .:ies
IH,\IGR kinase-A and kinase-C: HRK-.-\ and HRK-C i \\ere
e.\tensively purified and shown' to be member5 of the t:,Jnt
SnRK 1 tamil}' of protein kinases. H'"IGR is a ke, enz)'me in so­
prenoid biosynthesis and the regulation of isoprenoid synthe~,.: is
important in the control of plant gro\\lh I Dickinson t!/ al IY)9J
and f"lit development (l\arita & Gruissem 1989; Gillasp,' e: JI
1993: Cowan er at 1997; l.elesko el al. 1999). E\ en ;0. it is ·.er:

glutaryl-CoA reductase (HMGR, EC 1.1.1.34) and hormone­
;ensitive lipase (EC 3.1.1.3, 3.1. 1.13). Th. sequence of AivlPK
shows 46% homology to SNF 1 which has also been shown to
regulate acetyl-CoA carboxylase in vr'\·Q. Therefore, in yeast
and mammalian cells. SNFI/AivlPK seems to regulate funda­
mental metabolic pathways in respons.e to nutritional and
environmental stresses that deplete ATP (Hardie er a!. 1998).

the regulation of metabolism in cells of developing terminal
sinks. In addition, based on recent studies using normal and phe·
notypically small 'Hass' avocado, a model is developed to
describe the potenrial role of SnRK 1 in the metabolic control of
fruit gro\,..th.

The sucrose non-fermenting 1 (SNF1) family of protein
kinases
Protein kinases are believed to play an important role in the regu­
lation of plam development (Thul1lmler er at. 1995). Aiso
known as phosphotransferases, these enzymes catalyse the trans·
fer of phosphate groups from one molecule to another and physi­
ologica!l; it is extremely important that they transfer these
groups very specifically to the appropriate substrate. Members of
rh~ sucrose non-fermenting I (SNF I) family form a distinct sub­
group of the protein kinase superfamily. based on the sequence
of their kinas. domains (Halford & Hardie 1998). They appear to

have an \:-terminal protein kinase domain and a less conserved
C-terminal region that may be involved in the regulation ofactiv·
ity or. interaction with other proteins such as the SNF4 protein
(Stone & \\'alker 1995). Additionally. these enzymes form the
central components of highly conserved protein kinase cascades
that no\\" appear to be present in most, if not all, eukaryotic cells
IHardie er at. 1998). S;-;F I protein kinases. along with the cal­
modulin-like domain prorein kinases. fall under the group of cal­
cium,'calmoduin-independant protein kinases or CaMK group
(Stone & Walker 1995). Because the downstream targets of
action ofrhese enzymes are many and varied, they have been dis­
covered and rediscovered several times in recent years in differ­
ent biochemical assays and/or genetic screens. Only when DNA
and amino acid sequences became available was it realized that
all of the ascribed regulatory functions were carried out by mem­
bers of the same class of protein kinase. The SNFI protein kinase
family currently' comprises SNF I in the yeast Saccharomyces

cel'el';siae. the AivlP·activated protein Idnases (A~'IPK) in mam­
mals and the SnRK I complex in higher plnnts. The physiological
roles of [he S\:F I family are currently better defined in yeast and
animals and an enhanced level of understanding of their bio­
chemical function is possible. by a synthesis of these t\VD

appro::lch~s. in essence pooling knowledge about the animal and
yeJst s; stems. The insighrs obwined also provide guidance in
invesligaring {he cellular role of SnRKI in higher plams, where
studies ar;:, at a much eJrlier stage \Hardie et al. 1998 l.

S:'\F I protein kinase was originally identified in the yeast Se",'·
(flltl'uln) ..·t!s '--·t!l"i!\·isiol! as <l product of a gene related to th~ abi 1­
ity of this;. east to ferment sucros~. In yeas!. carbon catabolite
repressiC'n is an imponal1t regulatory mechanism thar comrols
the e.'\pre~sion of mallY g~nes ill response to glucose availability
(The\ ~Icin 199--!- l. The derepression of gluc0se·reprcssible genes
requires th.: function of (\ complex signal transduction path\Va~

Genes en.:oding several members of!he pathway have been iso­
lated. One of these genes is S:\F I. which encodes a protein ser­
int:o threonine kinase and h:\s been shown to b~ essential for
expressi0tl of the yeast im ertase gene. -. in response to glucose
depletiol1 Yeast sl~/llllutants are unable to utilize carbon Sources
le.g. SUCi"0St:. raffinose. galactose. maltose. gl;cerol and ethanoll
thn[ require expression of glucose' repressible genes. Recent
molecular and biochemical evidence has sho\\ n that S;-"':F I pro­
tein kinase is structurally and functionally related to a mamma­
lian .-\\IP-acti\ated protein kinase (A\lPK). X,IPK plays a
major role in the regulation of lipid metabolism in mammals.
\\'hen c.lIs are subject to stress ATP levels decline and AMPK is
activated. thus inhibiting several biosynthetic pathways in order
to maintain adenylate status. A.\IPK phosphorylates and inacti­
vates ace!") l-Co.-\ carboxylase (EC 6.4.1.2). 3-hydroxy·3-methyl-
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Figure I Scht:me illustrating tht: path of sucros~ mu\emcnt into
dt:veloping fruit and th~ transition from accumulation of starch to
accumulation ofsolubk sug.ars.

pointed out by Halford et al. (1999) the idea that HXK is
involved in sugar sensing in plants remains equivocal. For exam­
ple, transgenic tobacco expressing a yeast acid invertase in the
cytosol was unable to, sense the increased hexose content,
whereas expression in the apoplastlvacuote resulted in alterations
'in gene expression (Heineke el at. 1994: Herbers el al. 1996).
Furthermore, anrisense repression of HXK in transgenic potato
led to over accumulation of starch \\'ithoU[ significantly changing
carbohydrate metabolism (Veramendi et al. 1999). Since these
authors found no evidence to suggest that HXK is a key regula­
tory elemenr in sugar sensing they concluded that sucrose level
rather than HXK is central to the control of carboh, drate parti­
tioning. In fact, Halford er at. (1999) have argued th. impor­
tance of sucrose and provided convincing evidence [hat SUCrOse
affects sugar sensing in plants differently from hexose Iglucose).

In this paper we focus attention on the SnRK I complex in
plants and briefly review the role of this complex in sugar
sensing. We also examine the potential involvement of SnRKI in

The sucrose non-fermenting-1-related protein kinase (SnRK1) complex is considefed to play a central role in sugar

sensing and signalling in growth and development of plants/plant parts. This paper reviews the SnRK1 complex and its

role in the regulation of key metabolic pathways contributing to cell growth and development. Based on results frcm

studies aimed at elucidating the metabolic control of 'Hass' avocado fruit growth. using normal and phenotypically

small fruit, a central role for SnRK1 activity in the control of final fruit size is proposed. The model developed in this

paper links sugar sensing/signalling with plant hormone signalling pathways and suggests that alterations in these

processes lead to changes in isoprenoid metabolism, plant hormone homeostasis and diminished cell division cycle

activity reSUlting in the arrest of fruit growth
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~HortjculturalScience and 2Research Centre for Plant Growth and Development, School of Agricultural
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Introduction
For most plants, sucrose is the major transported sugar linking
source organs (e.g. mature leaves) with sink organs (e.g. devel·
oping leaves, roots. seeds and fruits) and the path of sucrose
movement into terminal sinks is illustrated in Figure I. This
scheme, adapted from reviev...s on phloem unloading in sink tis­
sues by Ho (1988) and Patrick (1997) proposes that during the
ear.ly stages of development solute flow is symplastic, and
im'ported sucrose is stored as starch, Towards the conclusion of
(fruit) development, transport becomes apoplastic and the switch
from symplastic to apoplastic transport is associated with
increased extracellular acid invertase (~-D-frllctofuranosidase.

EC 3.2.1.26) activity which is accompanied by an accumulation
of imported carbohydrate as soluble sugars. Symplastic transport
occurs via plasmodesmata and is driven by diffusion along gradi­
ents of changing osmotic/solute potential. By comparison. apo­
plastk transport is an energy-dependent process that relies on

activation of a plasma membrane-localized hexose H- sympOrlt.:r
(L,lllnde et al 1999). Clearly biochemical and physiological
events that occur \-vithin the major phloem unloading region of
terminal sinks can change carbohydrate status and thereby e:-.:ert
control over seed and fruit growth.

Control of plant growth and development by changes in carbo­
hydrate content and composition is believed to be the result of
induction/repression of sugar-sensitive genes (Jang & Sheen
199~. 199i; lang er al 199i; Sheen 1994; Smeekens 1993:
Smeekens &: Rook 1997). Thus. it has been suggested that sugnr­
responsive genes provide a means of adjusting resource alloca­
tion in plants/plant parts ~1l1d may contribute to adaptive changes
in form (Koch 1996). In terms of fruit growth, changes in form
might include a reduction in size and the appearance of pheno­
typically (e.g. 'Hass' avocado) or genotypically (e.g. melon'!
small fruit (Cowan et at. 199i; Higashi et at. 1999). To affect
long-term changes in metabolism. carbon allocation and plant
part form. mechanisms must exist to sense and transduce carbo­
hydrate signals to responsive genes. One contemporary hypothe­
sis favours hexokinase (HXK; EC 2.7.1.1) as the primary sugar
scnsor in plant cells (lang &. Sheen 1994; Smeekens 1998; Dai eI

at. 1999) wherein flux and phosphorylation of he.,oses in the
cytoplasm is thought to signal carbohydrate status. However. as
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figure 2 Sch~rn.: illustraling the propo5~d r.:lationship b.:t\\e.:n
acrivation of MoCo-containing enz}mes and the bioch~mi,al b'-.:is
ror CK antJ!.(onism or ABA metabolism in th~ cOnlro: of J\oc:;,:o
fruit growth~ For d~tails. sC'~ Co\\an et d. (1999" Aborc:\iatio:-,:i:
ABA,= abscisic nrid: Ack = ackninc:: CK = c; wk:nin: IAj" =
indok-3-act:tk acid: ~loCo =molybdtllum-c,)factor

and final fruit size (Richings et 01. 2000). Other studies demon­
strated that injection of fruit with ABA in the linear phase of
growth retarded development and caused the appearance of
symptoms typical of the small-fruit variant p,-Ioore-Gordon et 01
1998). In this study. the reduction in final fruit size was attrib­
uted to ABA·induced inhibition of symplastic solute transpC'rt
(plasmodesmatal structure/function and cell-to-cell communi,"J­
tion) further supporting a relationship between ele\·ated AB,--\
and alterations in carbohydrate metabolism, In all experimenrs.
the deleterious effects of ABA and mevaslatin were negah:d
when either compound was co-injected \\ ith the CK, isopenteny­
ladenine (iPJ. Since a previous study had shown CK inhibition of
ABA biosynthesis in avocado (Cowan & Railton 1987), a bio­
chemical interaction between ABA and CK in the metabolic con­
trol of fruit growth was proposed. Subsequent studies enabled us
to describe details of the proposed biochemical basis for CKI
ABA antagonism in avocado fruit (Cowan er at. 19991. Thus, CK
promoted the oxidative catabolism of ABA it1 a process consid­
ered to be associated with CK-induced CK oxidase (CKO'.:)
activity, The resulting rise in levels of adenine decreased activity
of [he molybdenum-requiring enzyme~ xanrhine dehydrogenase
(XDH; EC 1.2.1.37) thereby increasing the availability of
molybdenum (as the molybdenum-cofactor: .\loCo) for sulphur­
ylation and activatioll of the aldehyde oxidase (AO: EC 1.2.3.11
which converts xanthoxal (0 ABA. Confirmation of this inter3,;'
tion was obtained using tungstate (an inhibitor of AO acrivir:)
and allopurinol (an inhibitorofXDH activity) which caused inhi­
bition of xanthoxal oxidation and accumulation of ABA and its
acidic catabolites respectively (Cowan "at. 1999). The overall
scheme is illustrated in Figure 2, This scheme depicts the thr.:e
major proteins that incorporare molybdenum as the ~loCo in
relation to CKOX. The scheme proposes that elevated CKOX
activity increases the adenine content of tissue leading to inhibi­
tion ofXDH. As a consequence there is a build up ofpurines. By
feedback, the MoCo then becomes ayailable for incorporation
into the AD for ABA (and lA." 1biosynthesis. The conversion Jf
indole-J-acetaldehyde to IAA is also dependellt on a \loCJ­
containing AD (Sekil11oto et al. 1998),

While confirmation of the above scheme is srill a\~aited. v.hat
is particularly interesting about the proPOS3! is that :"R. \o,.hich is
lhe first enzyme in the ~loCo-apoprotein ·path\~a)' to incorp0­
rale i\loCo. is regulated by SnR!'\.1 ac(i\·i[~., Furthermore. b0{h
AO activity and :\BA levels art: reduced i:~ pl:lIHS in \\hich 'R
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to light and cytokinin (C!':.) as well as nutrient deprivation (Stone
& \Valker 1995). Thus. there is gro\ving evidence to support
crosstalk between environmental cues, plant hormone homeosta­
sis and sugar signals (Mason t!t ai, 1992: De\Vald et of. 1994;
Dijkwel er at. 1997; i\-lita er al. 1997: Perata er at. 1997; Wingler
er al. 1998: Xu er at. 1998: lhou er at. 1998). Furthermore, plant
SNF I kinase (or SnRK I) is apparently regulated by the pleio­
troph' regula/ory lOCHS I tPRL I ). an evolutionary conserved cc..
importin-binding nuclear lID-protein (Salchert er at. 1998),
These authors state that the pr/I mutation results in hypersensi­
tivity [0 glucose and sucrose. it augmems the sensitivity of plants
to CK. ethylene, indole-J-acetic acid ,I."A) and ABA, and dere­
presses. genes that are positi\'e!y or negatively regll1ated by glu·
cose, or CK, or both. Interestingly. the pr/! mutation is
exacerbmed by ampl (Cl\. o\erproducing), a mutation which
regulates CK production and cell division (Deikman 1997).

As the PRL I protein appears to interact with SIlRK I, it has
been postulated to function in plant sugar-regulated gene expres­
sion by acting as a negati\'e regulator ofS~FI homologues (Gib­
son & Graham 1999). On~ such e,\ample suggests that PRL 1 is a
potential subunit oj.-lrahidopsis SnRl-.:.1 homologues that bind to
conserved C-terminal sequences of rhese proteins (Bhalerao et
al. 19991. Another example e,ploited to identify a number of
protein factors that interact \\'ith yeast S).,:F I and used to identify
components of the signuling path\vay associated with the barley
endosperm SnRK I, includes SKI!\' 12. Several proteins which
interact with SKIN 12 ha\'e been identified and two of these
encode putative transcription factors, providing evidence of a
role for plant SnRK I in transcriptional regulation (Halford &
Hardie )998).

rt is becoming increasingly apparenr that protein kinases of the
SnRK I sub-family are ubiquitous and that they have an impor­
tant role to play in plant metabolism and growth via the regula­
tion of several fundamental metabolic pathways. This makes
them extremely interesting to study. hov.·ever, there is still a great
deal of research that needs to be conducted to determine their
exact targets and functions in plants . ..-\n important gap in our
knowledge at present is the identi ficarion of the signal which
activates SnRK I Howe\·er. it can generally be said that at
present it appe,1I"s that the 0\ erall fLlI1..:tion of the SnRK I cas~

cades in plants is to control metab(distTI. gene expression and
perhaps cell proliferation in response to the varying energy srares
of the cell and the extern:'!l signills stresses it receives, It appears
thilt SIlRf-.: I achieves thi~ regul~to0 role by directly phosphor­
) lating proteins in the tar:;et pat!1\\a;"3 alle! indirectly b)
regul~tillg gene expreSSiL)ll.

SnRK1 and Avocado fruit growth: An hypothesis

Plant horl11one homeostasis and conlrol of fruit size

·Hass' nvocado prcsenrs all ide::Ji system \\ith which to study the
ll1eti:lboli..: control of fruit gro\\th and hence elucidate biochemi·
cal processes contributing: to final fruit size. This cultivar rou·
rinely produces both normal :ll1d phenotypicall,Y small fruit. The
Inner is characterized by arrested de\·elopment and early senes­
cence und.or death (apoptosisl of the seed coat. \.\,.'e have shown
that gro\\th of the ·Hass· small-fruit vJriant is limited by cell
number and that in these fruit. llli.::r0somal H:\IGR activity is
reduced whereas .--\8.--\ coment is in\:reased tCo\'van et al. 1997),
Further biochemical characleriz:l.tioll l1f the ·Hass· small-fruit
phenotype indicated reduced SSyn acti\"ity. increased insoluble
acid invcl1ase activity. decreased sucrose content and an increase
in glucose as a proportion of the total soluble sugar fractioll,
Interestingly. AB,--\.. glucose and l1le\,astatin (a competitive inhib­
itor of H\IGR) treatment caused similar biochemical changes,
suggesting that sugar and ABA signnls act in concert to modulate
expression and or acti\'it) of H\IGR and so affect cell division

enzymes. H\IGR, SPS and i'R, conform to the AMPK/SNF I
recognition motif. HMGR catalyses the committed step in
cytosolic isoprenoid biosynthesis leading to the formation of
mevalonic acid which, following activation by phosphorylation,
is incorporared into terpen)"I pyrophosphares and later, srerols,
Both mevalonic acid and terpenyl pyroph05phates are required
for cell proliferation and growth (Jelesko €I at. 1999; Yalovsky
et a!. 1999). SPS catalyses l1et sucrose synthesis in plants and is
usually· high in source tissues but lo\v in sink organs. Neverthe­
less. recent information suggests that over·expression of SPS in
romato increases sink strength and fruit number (~guyen·Quoc

et cd 1999) illustrating lhc potential importance of this enzyme
in fruit development. NR, which also appears to be subject to
SnRl-.:.1 regulation, is involved in the initial reduction of nitrate to
nitrite in the cytoplasm. Nitrite is [hen taken up by the chloro­
plast and assimilated inw amino acids and other nitrogen con­
taining compounds. Clearly. these apparently SnRK I -regulated
plant enzymes are involved in major biosynthetic processes
contributing to plant/plant organ growth and development.

~Iultiple SPS and NR kinases are present in extracts of spin­
ach leaf and at least t\-\'o of these kinases appear to be members
of the SnRK I complex (Sugden er al 1999). The fact that
SnRK I is involved in the biosynthesis and metabolism of carbo­
hydrates and nitrogenous compounds underlines the potential
role that SnRK I plays in the control of sink strength, carbon par­
titioning and the interaction between nitrogen and carbon metab­
olisl11. Monger er al (1997), measured SnRKI activity using the
SA\IS peptide phosphorylation assay and found that the highest
activity occurred in young storage roots of sugar beet. [n potato,
highest SnRK J activity is in the stolons and developing tubers.
Takano er al ( 1998) found two forms (group I. ask I; and, group
2, osk2-5l of SnRK I in rice seed. Group I was expressed uni­
formly in growing tissues \vhereas group 2 was strongly
expressed in immature seeds. !nterestingly. expression of group
2 genes (osk2) was transiently increased during early seed matu­
ration suggesting that SnRK I plays an important role in
endosperm development of rice seeds. Taken together, these
observations strongly suggest that the SnRl-.:.1 complex plays an
important role in regulating metabolism in de\eloping sink
organs.

,-\s mentioned above. in yeast and mal11n13lian cells. S(..!F I1
A.\IPK seems to regulate fundamental metabolic parhways in
response to nutritionnl and environmental Slresses. Thus. SnRK I
protein kin<1.ses an~ likely to bl2 involved in the response of plant
cells to such stimuli ilnd/or stresses. The conc~rt is emerging that
the SnRl-.:.l sub-family of protein kinases protects cells against
nutritional and/or environmental stresses, pJni.:ularly those
which compromise cellubr energy status, b) regulating both
metabolism and g~ne expression IHalford & HJrdie 1998}. It has
been proposed thnt SnRI-.:.! plays a role in stress adaptation in
plants by responding to stress-induced alterations in A.\,IP/A TP
ratios. This response invoh'es post-translalional control, via
phosphorylation, of J number of proteins. The affected proreins
include key biosynthetic enzymes. thus alloning cellular metab­
olism to adapt to the imposed stress. This role of 51lRK I raises
the possibility thett some SnRK I~medi3ted responses to sugar
may result indirectly from Stress signaling 3S opposed to direct
signal-response coupling. For instance. som~ SnRK I-mediated
responses to high sugar concelltr<ltions could be the result of
osmotic shock-indllced stress and,or horm91Kd imbalance rather
than a specitlc response to sugar (Gibson & Gr3ham 1999).
Some plant SnRK 1 genes have been sho\\·n W be trnnscription­
ally regulated by environmental srimuli. for example. PKABA 1
transcript le\'els jl1cre~sc in response to low le\ els of abscisic
3('id (,-\B ..\ ) and water stress in wheat The mR:\.-\. levels of a
further \\·heat S\'F I homologue. wpk4. increase upon exposure

likely that, as in yeast and animal systems, plant SNF I homo­
logues have other important roles in the regulation of sink cell
metabolism. Therefore, it is not surprising that in addition to
HMGR kinase activity, plant SnRK I homologues rapidly phos­
phorylate and inactivate ?\ADH-dependent nitrate reductase
(NR, EC 1.6.6.1) and sucrose phosphate synthase ISPS, EC
2.4.1,14) in ritro

Both NR and SPS are important cytosolic enzymes in plants
and catalyse fundamental steps in nitrate assimilation and carbo­
hydrate metabolism respectively. l'R is phosphorylated by
SllRK I (Sugden et of. 1999) and inactivated following the bind­
ing ora 14-3-3 protein to the phosphorylation site (Bachmann et
al. 1996; Moorhead el al. 1996). Another imponant enzyme
involved in primary metabolic processes in plants is sucrose syn­
thase ISSyn, EC 2.4.1.13). SS~ n catalyses the reversible conver­
sion of sucrose and uDP to L:DP-glucose and fructose, and
represents an important sucrose cleavage enzyme in sink tissues.
Expression of antisellse SnRK I in potato tubers resulted in
decreased SSyn gene expression and loss of sucrose·inducible
SS)'n transcripts (Purcell er al 1998). This observation was the
first demonstration of a role for 5nRK I in the regulation of car­
bohydrate merabolisn1 in higher plants, Even so, the presence of
a kinase that co-purifies with spinach SPS had been reponed ear­
lier and identified as the activity responsible for phosphorylation
and inactivation of SPS (Toroser & Huber 1997). The major
SPS-inactivating kinases in spinach leaves and cauliflower flo­
rets were recently shown to be strictly Ca==--independent lToroser
& Huber 1998: Sugden er al 1999) confirming the earlier
classification of this kinase activity as SnRKI (Douglas et al.
1997).

To date. the physiological circumstances under which mem­
bers of the plant SnRK I subfamily are regulated and the intracel­
lular signals responsible, remain ullkno\vn (Halford & Hardie
19981. Like the yeast system, plant kinases are not allosterically
activated by A;\-IP. They are inactivated by protein phosphatases,
however. and can be reactivated by mammalian A\-IPKK and by
a putative upstream kinase in plant extracts that can be removed
from the downstream protein kinase on further purification.
Therefore, plant protein kinases are probably regulated in a
manll~r similar to that of their animal and yeast counterparts,

SnRK1 and the regulation of plant cell metabolism

The expression of a number of genes in plants is repressed by
high glucose or sucrose in the cell mediul11, There is evidence for
the regulation of gene expression by carbon metabol ites in plants
(Halford et al. 1994) and the recent and continual isolation of
S\iF I homologues. invites the intriguing question: Does a car­
bon cat<lbolite repression and de-repression system. similar to
th:1t of yeast. exist in plants: For example. rye RKIN I and
tobacco NPK5 complement 5/!fl mutants \vhich are unable to uti·
lize sucrose and other sllgnrs as a carbon source demonstrating
rhat these plant proteins are functionally similar to SNF I (Stone
& Walker 1995). Also. expression ofosU cD:\A from rice seed
in yeast SIl}/ mutants restored S0iF I function (Takano er "I
19(8), Further evidence fur the role of S~<FI homologues ill
plant sugar response comes from an experiment where ami sense
expression of a putative S~F I homologue in potato resulted in a
loss of the sugar inducible expression of SS)..-n (Purcell et aI,
19(8). SSyn is involved in the degradation of sucrose, the carbon
source supplied to sink tissues such as the potato tuber storage
organ, Therefore, SSyn occupies a position in plants that is anal·
OgOllS to the position of rhe classical glucose-repressed enzyme.
ill\'ertase. in yeast. The importance of SSyn in carbohydrate
metilbolisl11 in plants is enough in itself to suggest that SnRKI in
plants could be a significant regulatory cOl11ple., (Hardie et 01.
19(8). As outlined above. the phosphorylation sites 011 the plant
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has been induced by its substrate (Omarav el al 1998). Implicit
in this observation is that control of NR activity by SnRK I will
impact on the regulation of ABA (and fAA) metabolism and
hence plant hormone homeostasis, via the differential utilization
0[1\·10(0 by MoCo-requiring enzymes.
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hexose/H--symporter) assume the role as the major sugar

regulatory element. There is increasing evidence for the exist­

ence of multiple sugar·signalling transduction pathways in plants

and that these crosstalk \vith plant hormone signalling pathways
(i\-Ioore & Sheen 1999). Thus. in association with solute trans­

port pathv,·ay switching from symplastic to apoplastic, which has

been demonstrated to occur in tomato (Patrick & Offier 1996;

Ruan & Parrick 1995), the carbohydrate content and composition

in the phloem-unloading region of developing sinks is able to

exert control over seed and fruit grow·th.

1987; Crowell & Salaz 1992; Cowan el al. 1997i. HMGR is sub­
ject to regulation by phytochrome, reaction end product feedback

and post~translationalmodification (Bach 1987). The latter proc­

ess is a well documented regulatory system in mammalian cells

where enzyme activity is inactivated by a reversible phosphor~

ylation mechanism involving an AMP- or ADP-stimulated

kinase (Chappell 1995). As outlined above. there is now substan­
tial biochemical evidence for the existence of plant HMGR
kinase a..:tivity. \vith similar properties to A:'vlP kinases. Inhibi­

tion of H\'IGR activity is known to impact on mammalian cell

division cycle activity and similar findings have been obtained

for higher plants using cultured tobacco and tomato cells (Crow­
ell & Salaz 1992; Jelesko el af. 1999 I. In one instance, inhibition
of Hi\fGR activity and cell growth \\·as attributed to reduced CK
biosy'nthesis. Recent information suggests that in addition to CK,
pyrophosphorylated intermediates in isoprenoid s):nthesis are

equally important. Thus. isoprenylation of Rab and GTP-binding

proteins has been shown (i\'lorehead et al. 1995: Biennann et a!
1996: Yalovsk)-' et af. 1996) and farnes)-·l protein transferase

(FPTasel, biochemically characterized in tomato (Schmitt el af.
1996) and pea (Qian el af. 1996). "lore importantly, however,
inhibition of FPTase by manumycin completely blocked mitosis
when added at the S stage but not when added at G, (Qian el al
1996). This observation suggests that FPTase is required for cell

division cycle activity and that it modulates progression of the

cycle through S and in the transition from G I to S. A similar role

for FPTase in avocado fruit ontogeny seems likely in view of our

recent observation that farnesyl diphosphate. co-injected \vith

mevastatin. was able to negate me\'astatin-induced retardation of

'Hass' fruit grovrth (Richings el af. 2000). \loreover, this finding

supports a relationship between H\IGR activity, CK biosynthe­

sis and protein farnesylation in the metabolic control of avocado

fruit growth. Furthermore, it has been demonstrated that muta­

tions that confer enhanced response to ABA (era! mutants) arise

due to perturbed farnesylation ofa protein(s) that negatively reg­

ulates ABA signaling (Cutler el al. 1996). Thus, the appearance

of an AB,-\ supersensitive .-lrabidopsis phenotype. Vv'hether a

similar perturbation is responsible for the appearance of pheno~

typically small 'Hass' fruit is currently unknown. Nevertheless,

the accumulated information strongly suggests that the aforesaid

molecular responses could be manifestations of alrered Hl\.-·fGR

and SnRK 1 activity mediated by carbohydrate and adenylate

status.

Conclusion
The above review is concerned with the potential regulator} role

of SnRK 1 in fruit gro\vth and dev'elopment. \\'ith the emphasis on

avocado, It is not our intention to dismiss H:\:K as an additional

important regulator in this process. In fact. H\K activities have

been detccted in e.'\tracts of lllature 3\ocado rnesocarp and the

bulk of activity sho\\ed a strong preference for glucose as sub­

strate (Copeland & Tanner 1988). SnRK I acti\ity has also been
detected in extracts of avocado mesocarp tissue (\!acKintosh et

at. 1992l.lnterestingly.lIlonf/o-heptulose. which is a competitive

inhibitor of H\K (Pego i!f al. J 999,1 is present at high concentra­

tions in a\ocadu mesocarp (Ogat3 <!! al. ]972: Richtmyer 1970;

Sh3\\' f!t 01. 1980) \\'hich might suggest that in this tissue there

exists a 'division of labour" between activity of. and sugar sig­

nalling by. H\K and SnRK 1 during fruit growth. Based on the

information presented in this revie\\'. it is possible that SnRK 1 is

sensitive to sucrose a\ailability during the early stages of fruit

growth particularly during the phase of cell division and expan­

sion \vhe!l H\lGR Jnd SSyn. \\·hich are regulated by SnRKI. are

active. During the later stage of th is developmental programme.

when sucrose import is apoplasti..:. H\K may (via an active
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Figu re 3 Relationship bet\\'een sugar sensing and signalling b)
SnRK1. acti\ity of Hi\!GR and isoprenoid metabolism. and cell
division in 'Hass' 3HICado fruit. Alterations in the supply of sucrOSL
via post-phlOem solute transport path\\·ay switching frol11 symplJs~

tic to apoplastic. and changes in adenybtc stutu::, acti\ate th~

SnRKI comple.\:. SnRKl phosphoryL.Hes and inadh·atcs H\IGR
(and SS) r. anJ ~R). The resulting depktion of nle\ :llonic acid and
isoprcnyl p) rophosphaks limits substrate for fam,;:syl protein trans­
ferase and cell cycle activity to slo\\' or arrest fruit growth. Abbrc\·i­
ations: O\L-\PP = dirndb) !allyl p) rophosphate: FOP = tarnesyl
diphosphat.:: FPTase = farncsyl prntcin transkras(': H\l(j-Co.·\ = 3­
hydro.'\y-3-mcthylg1utaryl cocnzymc A: rop = isopentenyl diphos~

phate': \fV.--\. = mc\alonic acid
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SnRK1 activity, isoprenoid metabolism and fruit growth
In avocado. fruit size is a function of cet! number and not cell
volume (Cowan er af. 1997). Recent observations indicate that a
primary. although not exclusive, function of H\lGR is to supply
mevalonic acid required for cell division and growth (Jelesko er
al 1999). Thus. it is not surprising that activity of SnRK I has
also been associated with the cell division cycle (Dickinson er af.
1999), particularly as HMGR is an efficient substrate for the
SnRK I sub-family of protein kinases. In view of the results
obtained to date from the 'Hass' avocado fruit system, the mode!

iUustrated in Figure 3 is used to describe the potential role of

SnRK 1 activity in the metabolic control of fruit growth. This

model is consistent \vith recent reports that ABA retards cell

division cycle activiry (Meyers el af. 1990; MUlier el af. 1994)
whereas CK promotes this process and does so by regulating the

G:: to M transition, i.e. stimulating tyrosine dephosphorylation

and activation of p34,'c'-like HI histone kinase (Zhang el af.
1996). Similarly, withdrawal of CK causes cessation of the cell
cycle and cells accumulate in lvi, Sand G l Uvlander & Hanke

19961. An imbalance in the CK:ABA ratio, through reduced CK
levels or increased ABA, might, therefore, be expected to impact

on avocado fruit cell division cycle activity and sink strength.

Assuming CK is derived in situ by isoprenylation of purine,

inhibition of isopentenyl diphosphate (IDP) synthesis might limit
the amount of dimethylallyl pyrophosphate available for CK bio­
synthesis, lOP is formed from mevalonic acid, the product of the

reaction catalysed by H"IGR, and inhibition of HMGR by
mevastatin is reversed by both mevalonic acid and CK (Bach
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Final fruit size is the consequence of complex metabolic events
that occur between fruit set and maturation. Disruption of these
biochemical and molecular processes at any stage during fruit
growth will impact on final fruit size. Because fruit size is a
function of cell number rather than cell size, factors affecting
cell division cycle activity assume importance. In this paper, we
focus attention on the metabolic control of fruit growth using
avocado as a model system. Three areas of current interest are
highlighted, viz. the contribution by isoprenoid metabolism in
the control of cell proliferation, the role played by carbohydrate
content and composition in signalling changes in metab.olite
status and gene expression and maintenance of plant hormone
homeostasis. Central to the process of fruit growth and control

Introduction

The intrinsic size of plant organs is determined by internal
factors that affect cell cycle activity and cell proliferation.
Although the nature of the developmental regulators in­
volved remains obscure, a recent study suggests that regula~

wry genes like the Arabidopsi" AINTEGUMENATA gene
control cell proliferation and organ growth by maintaining
meristematic competence of cells during organogenesis
(Mitukami and Fischer 2000). Thus. control of organ size
seems to reside either wholly or in part at the level of gene
expression. and disparity in size in a given species must
consequently be the result of differences in cell number
Control of final fruit size is also dependent on maximization
of cell division (Bohner and Bangerth 1988, Higashi et aI.
1999).

Developing fruits are terminal sinks and require carbohy­
drate, other metabolites, mineral nutrients and adequate
water IQ sustain growth. In addition, development of these
organs is known to be affected by plant hormones, which act
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of final fruit size by cell division is 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGR) and activity of the sucrose
non-fermenting I-related protein kinase (SnRKI) complex. It
is argued that sugar content and composition of sink cells
impact on SnRKl (and hexokinase) to modulate expression of
sugar-metabolizing enzymes, HMGR and molybdenum cofac­
tor (l\'IoCo)-containing enzymes. These changes, in turn, im·
pact on hormone metabolism by affecting allocation of the
purine-deriYed MoCo to aldehyde oxidase and thus the endoge­
nous concentration of indole·3-acetic acid, abscisic acid and
cytokinin (CK) to alter plant hormone homeostasis. These
aspects are integrated into a model to explain the metabolic
control of avocado fruit growth and final fruit size.

either directly or indirectly to alter gene expression. Appreci­
ation of the pleiotropic effects of plant hormones, however,
suggests that no single growth regulator can account for a
complex process such as fruit morphogenesis. This is because
plant hormones exert multiple control on ofgan development
by alterations in concentration and as a result of changes in
sensitivity of the affected tissues (Bradford and Trewavas
1994). Therefore, development must be considered the result
of intricate spatial and temporal interactions between the
resources required for growth and hormonal mediation
through the regulation of gene expression. Even so. the fruit
developmental programme remains obscure. As stated by
Gillaspy et al. (1993): 'Despite centuries of intensive genetic
selection of agriculturally valuable fruit, \ve still lack most
information about how fruits develop, how this development
is coordinated with embryonic development and seed forma·
tion, and the molecular. cellular, and physiological events
that control fruit growth and differentiation.'
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In this review, we focus attention on studies initiated to
elucidate the metabolic control of fruit growth using av­
ocado as a model system in an effort to explain the appear­
ance of the 'Hass' small-fruit phenotype. Since there is no
pattern with respect to the distribution of the 'Hass' small­
fruit phenotype on the tree and because growth of this
phenotype is limited by cell number and not cell size
(Cowan et al. 1997), our studies have concentrated on
metabolic events that we believe are closely linked to fruit
cell division cycle activity. These are: plant hormone
homeostasis; carbohydrate content and composition; and
isoprenoid metabolism. Although other factors such as wa­
ter status and mineral nutrition of the developing fruit are
important, a detailed discussion of these aspects is beyond
the scope of the present article and the interested reader is
referred to Whiley and Schaffer (1994). Based on the results
of our studies and the literature, we propose an integrated
scheme to explain the metabolic control of avocado fruit
growth and suggest that similar biochemical events con­
tribute to the regulation of fruit size in planta.

A vocado fruit development

Fruit growth in most fruits can generally be divided into 3
phases. The first phase (phase I) includes ovary develop­
ment, fertilization and fruit set; the second (phase 11),
continued cell division, seed formation and early embryo
development; and the third (phase III), cell expansion and
embryo maturation (Gillaspy et al. 1993). Avocado fruit
development, based on fruit dimensions or mass, follows a
single sigmoid curve in which the lag phase persists for
approximately 10 weeks after full bloom (Valmayor 1967).
The exponential or growth phase lasts for about 30 weeks
after full bloom, depending on cultivar and environment,
and is followed by a mature phase during which growth
slows.

Nothing is known about the molecular signals that con­
trol ovary development in avocado. However, light quality
and quantity, temperature and plant water and nutrient
status seem to be important abiotic factors in determining
fioral function in avocado (Whiley and Schaffer 1994). Fruit
set follows successful completion of pollination and fertiliza­
tion. Anatomical studies have revealed that within 3 days of
pollination, initiation of endosperrn formation has occurred.
and by 9 days, the endosperm has formed a large cellular
body and a pre-embryo of 2~6 cells is evident (Tomer and
Gazit 1979).· Maintenance of cell division in these structures
is required to aid in the establishment of sink strength and
for continued growth. Furthermore, Tamer and Gazit
(1979) state that formation of the pre-embryo has as one of
its functions the supply of chemical triggers for extension
exp'-ll1sion growth of the developing fruit. However, the
identity of these endogenous chemicals in avocado remains
unknown.

In most fruits there exist two general centres of growth,
the ovule and pericarp. Growth of the pericarp usually
accounts for the early increase in size. Later enlargement is
generally associated \vith seed development. Unlike many
fruits in \vhich cell division is confined to the pre-pollination
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stage (or to a short period following pollination), cell prolif­
eration in avocado continues throughout fruit development,
particularly in the mesocarp (Schroeder 1953), albeit at a
slower rate as fruits approach maturity. Cell number is a
function of the number of mitotic divisions and is thought
to be regulated, at least in part, by cytokinin (CK). Mecha­
nisms by which CK promotes cell division are not fully
understood, although CK might regulate processes either in
G, or in the transition from G, to mitosis (M) in the cell
cycle (Jacobs 1995). In the absence of CK, cells may accu­
mulate in the G 1 to NI transition for a period of time and
then leave the cell cycle entirely. As pointed out by Ferreira
et al. (1994), the G, to M transition is crucial for entry into
M and if certain conditions are not met differentiation
ensues. One of the conditions seems to be the supply of
growth·promoting substances.

Avocado seed plays an important role in fruit develop·
ment (Bower and Cutting 1988). For example, seed-bearing
fruits are considerably larger than the seedless fruits
('cukes'), which are frequently found in the cu!tivars 'Fuerte'
and ·Ettinger' (Blumenfeld and Gazit 1974) and which ap­
pear to result from early seed degeneration (stenospermo­
carpy) rather than stimulative or true vegetative
parthenocarpy (Tomer et al. 1980). The prominent seed coat
in normal fruit is interpreted as a pachychalaza, and its
non·development in seedless fruits is suggested to inhibit
meristematic activity in the chalazal region and weaken sink
strength (Steyn et al. 1993). Thus, a close correlation be­
tween seed size and final fruit size is implied. In general,
high indole-3-acetic acid (lAA) and gibberellin (GA) levels
are associated with active seed gro\vth by cell expansion and
fruit growth (Khan 1982). These hormones arc at a maxi­
mum in mid-embryo growth when CK content is rapidly
declining and there is little or no abscisic acid (ABA). Even
so, CK is apparently required for most of the fruit develop­
mental programme (Gillaspy et al. 1993), and mitotic activ·
ity of meristematic cells requires the presence of both CK
and IAA (Ferreir" et al. 1994). Whether CK is produced in
situ or imported during fruit development is currently unre­
solved. GA-like activity has been detected in the endosperm
and the seed coat of developing fruits (Blumenfeld and
Gazit 1972). Since no measurable GA activity was associ­
ated with either the mesocarp or embryo. these authors
assumed the seed coat to be the site of GA biosynthesis in
avocado. Whether GAs are necessary" for avocado frJit
gro\vth is still unclear. Although GA content does no[
apparently correlate with total fruit growth in other speci~s.

the influence of GAs might be exerted via IAA. particula;'"J;.
as treatment of fruit with GA stimulates endogenous I.-\--\
levels and increases fruit length (Goodwin 1978)

The above discussion reflects the rudimentary knowled.it
of th~ role of plant hormones in early u\'ocado fruir growth.
and in particular. 'the dearth of information on the
metabolic control of avocado fruit growth. \Vhile the bal­
ance of evidence indicates that CK exerts its effect on fr~Jjt

set, whereas GAs affect fruit growth and IAA both fruit 30et
and grO\vth. it is still unknown how these plant hormones
interact and contribute to the regulation of fruit size.

Ph:silll. Plum. ;:1. 2')'J,



'Hass' avocado trees produce two distinct populations of
fruit, i.e., normal and small fruit (Zilkah and Klein 1987).
The small-fruit phenotype has been defined as a physiologi­
cal phenomenon occurring along the continuum: abortion of
embryo - seed coat senescence - cessation of mesocarp cell
division _ slowing of growth _ small fruit, a process that
can be initiated at any stage in the ~Hass' fruit development
programme, but \vhich typically characterises horticultural
maturity (Cowan et a!. 1997). In addition, seed coat and
mesocarp tissue of the small-fruit phenotype display aber·
rant plasmodesmatal structure-function and loss of cell-to­
cell chemical communication (Moore-Gordon et a!. 1998).
At the biochemical level, the small-fruit variant has reduced
seed 3.hydroxy-3-methylglutaryl coenzyme A reductase
(HMGR) and sucrose synthase (SuSy) activity, increased
seed insoluble acid invertase (AI), decreased seed sucrose
content and elevated levels of ABA and its catabolites in
seed and mesocarp tissue (Richings et a!. 2000). In the
absence of evergreen tree-crop mutants with aberrant fruit
growth, the 'Hass' small-fruit phenotype provides an ideal
system with which to probe more detailed aspects of the
control of final avocado fruit size.

Cell division cycle activity is dependent on HMGR and the
supply of isoprenoid compounds. In fact, chemical inhibi­
tion of HMGR arrests avocado fruit growth (Richings et a!.
2000), indicating that formation of mevalonic acid (MVA)
and high concentrations of isoprenoid compounds are a
requirement for continued cell division. Similar findings
have been reported for other species, callus tissue and cell
suspension cultures (Crowell and Salaz 1992, Bach 1995,
Hemmerlin and Bach 1998). More recently, lelesko et al.
(1999) demonstratcd that a primary function of HMG 1 (one
of the 4 tomato genes encoding HMGR activity) was to
supply the !'.ofYA demand associated with cell division and
growth.

HMGR catalyzes the irreversible reduction of 3·hydroxy·
3-methylglutaryl coenzyme A to MVA and represents the
first committed step in cytosolic isoprenoid biosynthesis.
Cowan et a!. (1997) observed th"t microsomal HMGR
activity in mesocarp of the small 'Hass' phenotype was 70lJ

/"

lower than in, normal fruit. Similarly. this variant has low
seed HMGR activity (Richings et al. 2000). In situ trcat­
ment of normal fruit in the linear phase of gro\....th with a
competitive inhibitor of HMGR reduced overall fruit
growth and caused the appearance of symptoms usually
associated with the small-fruit phenotype. These effects were
negated when either MVA lactone, isopentenyl adenine (iP),
farnesyl diphosphate (FPP) or geranylgeranyl diphosphate
(GG??) were used as co-treatments (Cov,.·an et al. 1997,
Richings et a!. 2000). These observations suggest that suffi·
cient HivrGR activity and isoprenoid metabolism are cnlcial
for cell division and the development of normal·sized 'Hass'
avocudo fruit.

rh~liol. P1;\nl. l.ll. ~tl(ll

Several products of the isoprenoid pathway are poten·
tially involved in the control of cell division, fruit growth
and fruit size. These include FPP and GGPP (Gillaspy et al.
1993) and end products such as phytosterols (Narita and
Gruissem 1989), CK (Zhang et al. 1996) and ABA (Himmel­
bach et al. 1998).

Narita and Gruissem (1989) were the first to argue the
importance of HMGR activity and expression in the early
development of tomato fruit and suggested this was due to
a requirement for phytosterol synthesis. Similarly, Ra·
driguez-Concepi6n and Gruissem (1999) demonstrated a
close correlation between H/\tfG I expression and tomato
fruit growth. suggesting that a major function of H;\tIG 1 is
to ensure adequate phytosterol production for cell division
and expansion. However, addition of stigmasterol to av­
ocado fruit during phase I reduced growth and accelerated
abscission (Cowan et al. 1997). In phases 11 and Ill, how­
ever, stigmasterol was observed to negate the growth-retard·
ing affect of HMGR inhibition. Stigmasterol supports plant
cell division (Haughan et al. 1987), but inhibits cytosolic
HMGR activity (Russell and Davidson 1982). Thus, it is
plausible that the excess stigmasterol during the early stage
of avocado fruit gro\lith may. via feedback, have inhibited
HMGR activity. This assumes that maximal HMGR activ­
ity coincides with maximum sterol synthesis during early
avocado fruit growth. In support of this assumption, addi­
tion of a constitutively expressing hamster HJ\ifGR gene to
tobacco resulted in increased total HMGR activity and
increased sterol production (Chappell et al. 1995). Con­
versely, inhibition of HMGR reduces endogenous sterol
content (Bach 1995). Thus, both HMGR activity and phy­
tosterol synthesis appear to be vital for normal fruit growth.

In addition to sterols, pyrophosphorylated intermediates
in isoprenoid synthesis are also required for cell division and
plant organ growth. For example, heterotrimeric G-proteins
and members of the RAS superfamily of proteins need to be
farnesylated to function correctly, and inhibition of protein
farnesylation prevents the correct localization of RAS
proteins to the plasma membrane. The modification of
regulatory proteins by the addition of isoprenoids (farnesol
and geranylgeraniol) is catalyzed by prcnyl:protein trans­
ferases. rn plants, isoprenylatioll of Rab and GTP-binding
proteins has been demonstr:.lted and farnesyl protein trans·
ferase (FTase), biochemically characterised in tomato, pea
and Arabic/upsis (Nambara and McCourt 1999). Plant Frase
uses MVA·derived FPP as a substrate. and inhibition of
either HMGR or prenyl transferase activity retards cell
growth (Morehead et al. 1995). Activity of FTase is highest
in early tomato fruit growth and declines as maturity is
approached (Schmitt et al. 1996). Furthermore, the presence
of both gerallylgcranyl protein transferase (GGTase) and
FTase in extracts of tomato tissue led to the suggestion that
these enzymes are iiHegralcd with sterol biosynthesis in the
control of plant cell and organ growth (Schmitt et al. 1996).
The ability of FPP and GGPP to override inhibitiou of
avocado fruit growth would scem to support. at least in
part. a role for FPTas~ and GGTase <.il.:tivity in plant organ
grO\vth (Richillgs et ill. 1000). Morelwcr, these observations
confirm a relationship b~t\Vt::Cll HMGR activity and a re­
quirement for isoprcnyl pyrophosphatcs in the metabolic
C011£rol of avo~ado fruit growth.
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Given the complexity of the process of plant organ devel·
opment, it is perhaps not surprising that FTase activity
seems inextricably linked to plant hormone action. Expres­
sion of the pea p-subunit gene of FTase appears to be
positively regulated by (AA and negatively influenced by
sugar and light (Zhou et al. 1997). The statement by Nam­
bara and McCourt (1999) that this indicates that auxin
action requires farnesylation is intriguing, as auxin plays a
role in plant cell division and inhibition of FTase inhibits
cell cycling. Similarly, there is evidence to suggest that ABA
action involves famesylatiol1 of a signalling protein. Selee·
tion for an inability to germinate in low concentrations of
ABA led to the isolation of enhanced response to ABA
(era I) mutants of Arabic/upsis, which are defective in the
p-subunit of FTase (Cutler et al. 1996). This mutation
displays an exaggerated response to ABA, and the era I
phenotype indicates that a negative regulator of ABA sig·
nailing must be farnesylated to function. Thus, a decrease in
FTase activity increases or amplifies the AEA signal leading
to ABA super·sensitivity. Whether a similar perturbation is
responsible for arresting growth of phenotypically small
'Hass' avocado fruit is currently unknown.

Studies on the effect of fruit size on ABA and CK content
revealed that mesocarp ABA level was negatively correlated
with avocado fruit size, whilst the iP ABA ratio was positive
(Moore·Gordon et aI. 1998). Furthermore, the characteristic
features of the small-fruit variant are phenocopied in fruit
treated with ABA, and these effects are negated in the
presence of equimolar exogenous iP. This observation is
consistent with reports that ABA retards cell division cycle
activity (Mambelli and Setter 1998), whereas CK promotes
this process (Zhang et al. 1996). Similarly, withdrawal of
CK causes cessation of the cell cycle (Mander and Hanke
1996). An imbalance in the CK ABA ratio, through reduced
CK synthesis or increased ABA, might, therefore, be ex­
peeted to impact on cell division activity and sink strength
of developing 'Hass' avocado fruit.

As noted above. inhibition of HivlGR activity is known
to impact on cell division cycle activity in higher plants. This
effect has also been attributed to reduced CK biosynthesis
(Crowell and Salaz t992). Assuming CK is derived in situ by
isoprenylation of adenosine monophosphate (AMP). inhibi­
tion of isopentcnyl diphosphate (lOP) synthesis will reduce
CK biosynthesis. lOP is formed from MVA, the product of
the reaction catalyzed by HMGR. Although HMGR is
subject to regulation by re<tction end product feedback,
post-translational modification has garnered much recent
attention. Post·translational modification is a well·docu·
mented regubtory system ill mammalian cells where enzyme
activity is inacti\'uted by 11 reversible phosphorylation 111ech·
anism involving an AMP- or adenosine diphosphate-stimu·
lated kinasc (Chappell 1995). Bioehemical evidence for the
existence of plant HMGR kinase activity. wi(h similar prop­
erties to AtvI? kinases, includes the purification and charac·
tcrization of HMGR kinases from cauliflower and avocado
(MacKintosh et al. 1991). Analysis of the partially purified
protein kinase revealed in vitro phosphorylation of HMGR,
confirming the activity to be HMGR kinase (Barker et al.
1996). The authors also presented convincing evidence to
support the hypo(hesis that HMGR kinase is a member of
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the sucrose non·fermcnting I-related protein kinase (SnRK·
I) family of protein kinases in plants. Thesc potentially
regulate several major biosynthetic pathways. including iso·
prenoid synthesis, Sucrose synthesis and nitrogen
metabolism (Sugden et al. 1999) and have been implicated in
the control of plant cell cycling (Dickinson et al. 1999).
SnRKI appears to regulate plant cell metabolism in aecor­
dance with availability of sucrose coupled with adenylate
status, indicating that HMGR is subject to control by sink
carbohydrate content and composition. Consequently, a
central role for SnRK 1 in the metabolic control of avocado
fruit growth has been proposed (Campbell et al. 2000)

It is generally accepted that sucrose is the major carbohy·
drate used in assimilate partitioning and that phloem un·
loading in terminal sinks, during the early stage of
development, is symplastic (Patrick 1997). Towards the end
of fruit growth, transport becomes apoplastic and is associ­
ated with increased extracellular AI activity. Symplastic
solute flow occurs through plasmodesmata along gradients
of changing osmotic potential and may be modulat~d by
plant hormones (Morris 1996). By comparison. apoplastic
transport requires activation of plasma membrane-localised
sugar transporter proteins (Lalonde et al. 1999). Studies on
solute transport in 'Hass' avocado and its small-fruit variant
indicate that sugar transport pathway switching may be
exacerbated by an altered CK ABA ratio and that elevated
ABA or reduced CK arrests both symplastie and apoplastic
transport (Moore-Gordon et al. 1998). Sugar transport
pathway switching has been observed during development
of tomato fruit (Pat rick 1997). Since the 'Hass' small-fruit
variant is essentially a horticulturally mature product, it
seems likely that the transition from syrnplastic to apoplastic
transport is also part of the normal course of avocado fruit
development.

The avocado seed coat is believed to function as the
major conduit of photoassimilate supply to the fruit. In
addition to sucrose, glucose and fructose. avm;ado also
translocates and accumulates substantial quantities of the
C7 sugar alcohol perseitol and its reduced form D-manno­
heptulose (Uu el al. 1999). Although the significance of the
C? sugars in avocado fruit growth remains to be deter·
mined, premature seed coat senescence. which characteri5cs
the smetl!·fruit phenotype. and mevastatin- and ABA·treated
fruit might be expected to induce a state of sugar star;ation.
\vhich triggers arrest of cell growth, a decline in respiration
rat': and reduced glycolytic enzyme activity (Yu 1999).
These events are typical of mature pre-c1imacteric fruit. a:-:d
it is assumed that they occur after expansion 1.l!1d matur:..t·
tion of the cells produced during the preceding pe:-iod or
meristematic growth.

Soluble sugar composition and availability strongly affect
cell cycle activity and cell differentiatoJ1. For example. C;:H·

bohydrate supply is critical for kernel set in mail' (Zln­
selmeicr et at. 1995), fruit development in TrilliwJ1 (lapoir:lc
1998) and fruit size in tomato (Klann et al. 19961. The
utilization of sugars during organ de ....elopmem is a function

Pt; .. 1iot PI.lnI 111. :.).;!



of sugar-metabolizing enzymes that are encoded by sugar­
responsive genes. Current infonnation suggests that regula­
tion of sugar-responsive gene expression involves either a
hexose sensor or SnRK I, or both. The hexose sensor (hex­
okinase, HXK), although ill-defined, seems to comprise
phosphorylated fructose and glucose and a putative plasma
membrane (plasmodesmatal?) signal and is dependent on
both hexose phosphorylation and metabolism (Koch 1996).
In contrast, the SnRK I complex comprises products of
several genes (SNFI, SNF4 and either SIP I, SIP2 or
GALJ8) and catalyzes the phosphorylation and inactivation
of regulatory enzymes such as HMGR (Halford et al. 1999).
It is believed that an increase in hexose content causes
repression of sugar-regulated genes. Support for this argu­
ment has relied upon photosynthetic gene expression as the
markers for glucose repression. However, this hypothesis
has recently been challenged. Halford et al. (1999) state that
alterations in hexose metabolism impact on adenosine
triphosphate (ATP) production and as such could influcnce
the metabolism of many compounds. Funhermore, since
sucrose is the principal transport form of sugar in most
plants, these authors argue that sucrose acts as the effector,
which generates a signal (via SnRKI) that is independent
from that induced by glucose. Thus, an active SnRK I
complex is required for sucrose-induced expression of the
gene encoding SuSy, which catalyzes the interconversion of
sucrose and uridine diphosphate (UDP)-glucose and fruc­
tose and plays a role in determining the rate of carbohydrate
flow iIHo the fruit and starch and dry matter accumulation.

Although it is difficult to rJtionalist: the relative contribu·
tion of HXK and SnRK I to organ growth and sink
strength, it is possible that there exists a 'division of labour'
between activity of and sugar signalling by these two corn·
ponents. For example, SnRKl might assume significance
during the early stage of fruit grO\vth (which involves maxi·
mum cell proliferation) when HMGR and SuSy are active.
During thc Imer stages of fruit growth when sucrose trans·
port is apoplastic, HXK could (via a hexose H -symporter)
be the major sugar regulatory element. This idea has been
mooted to account for the role of HXK and SnRK I during
avocado fruit growth (Campbell et al. 2000). Both activities
have been found in avocado tissue (Cope land and Tanner
1988, MacKintosh et al. 1992). During the course of av­
ocado fruit growth manno·heptulose (a specific inhibitor of
HXK) declines (Liu et al. 1999), indicating possible derc­
pression of HXK during the course of fruit growth. which
correlates with the proposed temporal switch frol11 sympl<'ls­
tic to apoplastic solute transport.

There exist at least 4 possible routes for sieve-element
unloading and post· phloem sugar transport in terminal
sinks (Herbers and Sonnewald 1998). First, sucrose unload­
ing may be exclusively symplastic (i.e., via plasmodesmata).
Elegant studies by Ehlers and Kollmann (1996) indicate that
continuous plasmodesmata originate from tht: fusion of
half-plasmodesmata. which persist in th~ outer walls adja.
cent to the division wall in cytokin~tically active cells.
Although spccific cells are symplastically isolated following
cell division (e.g., during embryogenesis plasmodesmata in
the walls separating the developing embryo from the embryo
sac cell disappear after first division of the zygote, Schulz
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and Jensen 1968), a contiguous symplast in the cell division
stage of organ development seems essential in the control of
organ size to maintain stem cells in an undifferentiated state.
Support for this view comes from the maize KNOTTED I
gene, which encodes a protein (KN I) that alters differentia­
tion within adjacent mesophyll and epidermal cells (Lucas et
al. 1995). KNOTTEDI mRNA is expressed only within the
inner cell layer of the meristem (L:!), whereas the protein
can be detected in all cells (Ll and LZ). Microinjection of
KNl revealed that this protein was not only trafficked from
cell to cell symplaslically, but that it increased the plasmod­
esmatal size exclusion limit. Since hydrolysis of symplasti­
cally imported sucrose by soluble invertase and SuSy
generates substrate for metabolism and growth, expression
of a Klv-OTTED I homologue in early fruit growth may
contribute to sink strength, via maintenance of cells in an
undifferentiated state and through increased supply of .
sugar. Intriguingly, in seed coat and mesocarp tissue of the
'Hass' avocado small-fruit variant and in ABA-treated fruit,
the plasmodesmata are occluded by electron·dense material
indicative of plasmodesmatal gating, loss of symplastic con·
tinuity and a reduction in sink demand (Moore·Gordon et
al. 1998),.

The remaining 3 pathways of post-phloem transport con­
tain an apoplastic step, which might involve endocytosis-me­
diated uptake of sucrose (Herbers and Sonnewald 1998), but
which is more frequently associated with a cell wall·localised
AI. This enzyme hydrolyzes sucrose to its corresponding
hexose sugars, which are taken up by an active hexose H ­
symporter. Interestingly, plasma membrane·localised trans­
porter proteins seem to be steroI·modulated and
ABA-sensitive.

Depending on the pathway of sucrose unloading, several
enzymatic routes exist for the breakdown of imported sugar.
These include invertase (cytosolic and vacuolar) and SuSy
and both contribute to sink strength. For example, expres­
sion of a constitutive antisensc AI gene in tomato fruit
resulted in an increased sucrose hexose ratio and a 30%
reduction in fruit size (Klann et al. 1996). By comparison,
over-expression of AI is associated with morphological
changes such as stunted growth (Dickinson et al. 1991) and
arrested development of secondary plasmodesmata (Ding et
al. 1993). Activity of SuSy has also been correlated with
final fruit size and antisense inhibition of tomato fruit SuSy
decreases fruit set, sucrose unlo::'lding and early fruit devel­
opnient (D'Aoust et al. 1999). Sucrose phosphate synthase
(SPS), which is g~l1eral1y more active in source tissue, is also
correlated with increased fruit set. SPS catalyzes the synthe­
sis of sucrose from UDP·glucose and frucrose-6·phosphate
and is responsible for maintenance of the sugar gradient
from outside to the inside of sink cells. compartmentaliza­
(ioll and sugar ::'Iccumulatioll. Over-expressioll of SPS in
transformed tomato plants enhanced activity of SuSy, in­
creased sucrose unloading and stimulated sucrose turnover
in the fruit (Nguyen-Quoc et al. 1999). Thus. sucrose-in­
duced sucrose metabolism is clearly linked to increased sink
strength.

In avocado fruit, activity of insoluble AI, SPS and SuSy is
greater in mesocarp than in seed tissue (Richings et a!.
2000). Expression of the small-fruit phenotype, however,
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occurs coinddent with a dramatic increase in seed insoluble
AI and a reduction in activity of SuSy in the mesocarp,
These changes are mirrored in normal fruit treated either
with an inhibitor of HMGR activity or ABA. The conse­
quence is sucrose depletion and an increase in glucose as a
proportion of total soluble sugar. Whether these changes are
the result (or cause) of differences in the content and
composition of available sugar is currently unknown. Never·
theless, when the endogenous content and composition of
soluble sugars is altered, by the pulsed application of either
hexose or sucrose, a rapid decline in avocado HMGR
activity and altered hormone metabolism are routinely ob­
served (Richings et al. 2000). Since the products of sucrose
metabolism, like plant hormones, have an ability to affect
gene expression to alter sink metabolism, the sucrose hexose
ratio may constitute a homeostat in which the relative
amount of each component serves to modulate SnRKI
HXK activity on the one hand and plant hormone
metabolism on the other.

The plant hormone concentration of tissues is a balance
between synthesis, catabolism, import and export. Phyto­
hormone action, however, is restricted to competent tissues
in which hormones function in signalling pathways that
involve perception and transduction of external stimuli. In
terms of fruit growth, one potential role of plant hormone
signalling could be to detect changes in sugar content and
composition, and as a consequence, co-ordinate or redirect
development. The corollary is that carbohydrate status of
the growing organ impacts homlOne metabolism to alter
flux through hormone metabolic pathways and signal
changes in development. Implicit in this argument is cross­
talk between sugar and hormone signalling pathways, which
is supported by recent observations that sugars and hor­
mones interact in the control of plant growth. For example,
sucrose regulates tuber formation in potato by influencing
GA levels (Xu et a!. 1998) and overrides auxin-induced vsp
gene expression in soybean (De Wald et al. 1994), and
sucrose negatively regulates the signalling pathway in which
transcriptional activation of wheat WPK4 (which encodes a
protein kinase capable of phosphorylation of HMGR in
vitro) gene is mediated by CK (lkeda et al. 1999). Hormones
may also interact with each other. Such interaction may
reside either at the level of hormone ratio, through changes
in the eff~ctive concelHratiol1 or tissue sensitivity of one
hormone by another, and by the sequential action of differ­
ent hormones. In avocado mesocarp tissue. the CK ABA
ratio seems critical with respect [Q post-phloem solute trans.
port, growth nHe and final fruit size (Cowan et 1:11. 1997,
Moore-Gordon et al. 1998), Moreover, ABA metabolism is
greater in tissues of the small-fruit phenotype, while ABA·
induced symptoms, which are typical -of the small-fruit
phenotype, are negated when A BA is applied in [he presence
of equimolar iP. These findings support the contention that
hormone balance contributes to control of plant organ
gro\vth.
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Antagonistic effects between CK and ABA are well estab­
lished for processes such a leaf senescence, stomatal closure,
leaf and fruit abscission and CK-induced release from seed
dormancy. A detailed biochemical study of the metabolic
interaction between CK and ABA in mesocarp of ripening
avocado fruit revealed that CK stimulated thc oxidative
catabolism of ABA (Cowan et al. 1999). Chemical dissection
of the respOllse of the ABA metabolic pathway to CK,
allopurinol (an inhibitor of xanthine dchydrogenase, XDH)
and tungstate (an inhibitor of aldehyde oxidase, AO) indi­
cated the involvement of a molybdenum cofactor (\loCo)­
containing AO. Plants contain at least 3 MoCo-requiring
enzymes. These are nitrate reductase (NR). XDH and AO,
and activation of the apoproteins is dependent on MoCo
biosynthesis. Thus, NR utilises the dioxo form of :VloCo,
whereas XDH AO requires the sulphurylated (or desulpho)
form. Under conditions where nitrate assimilation is re­
duced and or XDH inhibited, more MoCo might be ex­
pected to be available for the AO required for ABA
biosynthesis. In support of this supposition, both AO and
ABA levels arc reduced in plants in which NR ha; been
induced by its substrate (Omarov et al. 1999). Our studies
using avocado rnesocarp tissue showed that allopurinol and
adenine, a product of CK oxidase (CKOX) acti"ily and
inhibitor ofXDH activity, promoted ABA catabolism. Since
CKOX is -a substrate-inducible enzyme, we proposed that
CK-induced CKOX activity contributes to the regulation of
endogenous ABA during plant and organ grO\vth (Cowan et
al. 1999).

Plant tissues exhibit high but transient levels of CK
during specific periods of development, and the level of CK
is believed to be largely under the control CKOX (lones and
Schreider 1997). CKOX is the only enzyme known to cala­
Iyze the irreversible breakdown of CK. Thus, while CK
promotes ~eIl division cycle activity, it also appears to
stimulate its own degradation and, indirectly, the oxidative
catabolism of ABA.

[nterestingly, the conversion of indole-3-acetaldehyde in
lAA biosynthcsis also requires a MoCo-AO (Koshiba et al.
1996). Once produced, IAA diffuses into surrounding tissue
and eventually away from the dc\·eloping organ \·ia the
pcdicel. It is the transport of lAA out of the fruit that
correlates with a rapid increase in organ size. Thus. low
extractable auxin coincides with rapid growth rate of av·
ocado fruit (Gazit and Blumenfeld 1972). Coupled with CK­
and ABA·stimulatcd photoi.tssimila[~ unloading in sink tis·
sue (Brenner Bile! Chdkh 1995). the abo\'c strongly s~ggests

that phytohormone:> play a concerted (il1tcracri',e) ~ole in
mediating fruit grmnh.

ABA levels are high in (kveloj:'ing fruits ot' i.J:,'ocado
(Cowan ct al. 1997) and decline o·,;cr tht: course of fruil
growth, presumably du~ to oxidative cawbolism. Sir:1ilarly.
CK-like activity seems CO decline during avocado growth
(Blumenfeld and Gazit 1970). implying maintenance of thc
CK A BA ratio throughout fruit growth and development.
Auxin has been shown to stimulate th~ oxidative breakdown
of CK by activating CKOX (Palni ,t al. 1988). Thu,. IAA
may also mediate lhe oxidative calabolism of ABA, albeit
indirectly. to maintain plant hormone homeostasis during
organ growth. However, there is 110 evidence in the litera-
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ture to indicate auxin-mediated ABA metabolism during
fruit growth. Likewise, there is no information on the GA
content and composition of developing avocado fruit, al­
though indications arc that the endosperm is the site of both
GA and IAA biosynthesis. Even so, an increase in GA
content precedes the rise in auxin content prior to or at fruit
set in many species (Goodwin 1978). Thus, it is likely that
endosperm-derived GA impacts on IAA metabolism to fa­
cilitate fruit set and enhance early fruit growth.

In tomato. early seed growth correlates \\-'ith an increase
in bioactive Gas, but these seem to be necessary for only a
short period after fertilization. GA levels are again de­
tectable in immature fruits of 2-3 cm in diameter (Koorn­
neef et al. 1994). This later increase in GA content might
suggest that GA accumulation serves to de-repress a sig­
nalling pathway that otherwise represses growth. Thus, GA
is potentially an inhibitor of inhibitors. Recent implications
from work on the Arabidopsis GA-insensitive (gai) mutant
suggest that the GAl gene product (GAl) is a nucleus-lo­
calised transcription factor that represses elongation growth
(Harberd et al. 1998). This protein also shows homology
with a protein that regulates the pattern of cell division in
Arabidopsis roots. In response to accumulated GA and or
activation of the GA signalling pathway, activity of GAl is
inhibited and growth restored. Thus, the GA response of
developing fruits may not be direct, but rather initiated as a
result of the opposing action of a GAI·like protein.

Elaboration of the shoot apical meristem (SAM) into a
reproductive structure seems to depend 011 the timing and
import of carbohydrates and plant hormones and the ex­
pression of homeobox genes (Bemier et al. 1993). In partic­
ular, CK and GA have been implicated in the control of
floral evocation and morphogenesis, and at least one conse­
quence of clevated CK content of the SAM is a change in
gene exprcssion. For example, the kllolled I (kill) homeobox
family of genes is expressed exclusively in the SAM and is
involved in its development and maintenance. Transgenic
plants over-expressing the bacterial isopentenyl transferase
(ipt) gene show phenotypes similar to knl. indicative ofCK­
induced kn I expression. Likewise. expression of the kit I
homologues (KNAT I and STM) of ArabidopSl:' correlates
with CK cO,ntent implying that CK affects expression of
these homeobox genes (D'Agostino and Kieber 1999). Fur­
thermore, CK treatment or ipt gene expression causes af­
fected plants to increase the production of active IAA
apparently as a result of CK inhibition of IAA conjugation
(Coenen and Lomax 1997). As previously pointed out, polar
auxin transport (s largely responsible for conveyance of this
hormone from its site of synthesis in apical tissue to basal
target tissue. This movement of IAA m<lY serve to enhance
the sensitivity of tisSlles to other hormones (e.g. CK and
GAl to facilitate growth. Such synergism between hormones
is well documented, but may depend on a n:duction in the
endogenous concentration of an inhibitor (e.g., ABA) so
that growth ratt: of the organ is determined and maintained
by plant hormone homeostasis. As outlined above. this
might be n function of CK (and IAA). which appears to
stimulate the oxidative catabolism of AB.A.
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Development of the embryo is coordinated not only with
that of the endosperm, but with the fruit itself, which is
formed by the ovary and sometimes other associated tissues.
The signals that initiate fruit growth seem to do so by
impacting on phytohormone concentration and would ap­
pear to emanate from the developing embryo and en­
dosperm. Thus, it is the developing seed that regulates
division and expansion of fruit cells, and it is cell number
that determines final fruit size. For example, hexose was
suggested to promote cell division in ViciCl fabu seeds,
whereas sucrose caused a switch to a non-proliferating
storage stage (Weber et al. 1996). Thus, a seed coat associ­
ated invertase was correlated with embryo cell number, seed
storage capacity and seed size. In contrast, the maize minia­
ture 1 mutant is deficient in the extracellular invertase gene
(Cheng et al. 1996). In addition, sllgar content and composi­
tion coupled with isoprenoid biosynthesis seem inextricably
linked to the fruit developmental programme. The results of
our studies using avocado and those of others using tomato
have enabled us to propose an integrated scheme in an
attempt to explain the metabolic control of fruit growth
(Fig. I). This scheme illustrates the major physiological
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Fig. I. Hypoth~ti~al SCh~lll~ illu:;trating the temporal relationship
belween sugar sensing and signalling by SnRKI HXK. aClivity of
HMGR and phmt hormones in sink ~dls of developing avocado
fruit. Altenltions in sug~lr content Hnd composition coupled with
changes in adenylate status impact on ,H:tivity of HXK. SnRKI and
MaCo biosynthesis and alloc.\tion to maintain the supply iso­
prenoid compounds and optimise (he sucrose hexose r.Hio and plant
hormone homeosrasis for active cell proliferation. sustained sink
strength and fruit gro\\"th.
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processes in relation to porential regulatory molecules con­
sidered to. be important in the control of fruit growth and
final .fruit size, Thus, the sucrose hexose ratio (and AMP
ATP ratio) and phytohormone homeostasis are assigned
major signalling roles in this developmental programme and
are thought to be linked via the activity of sugar-metaboliz.
ing enzymes;' HMGR and AO.

Based on recent observations, HMGR is clearly central in
the metabolic control of fruit growth. Activity of HMGR
determines availability of regulatory isoprenoid products
(e.g., MVA, prenyl pyrophosphates such as FPP and GGPP,
phytosterols and phytohormones) required for cell division
cycle activity, sink strength and fruit growth. Hl'vfGR is
apparently modulated by SnRK I protein kinase in concert
with changes in sugar content and composition. A decrease
in the sucrose hexose ratio impacts on activity of either
SnRKI or HXK (possibly via alterations in the AMP ATP
ratio) to redirect the sugar·induced signalling cascade. In
avocado, exogenous sucrose and glucose effect ehanges in
HMGR activity (Richings et al. 2000). Two other SnRKI or
sugar-regulated enzymes are SPS and NR. This is perhaps
not surprising given that carbon and nitrogen metabolism
arc tightly linked in terms of the requirement for carbon
skeletons and competition for energy derived from either
photosynthesis or respiration. Both SPS and NR are sub­
strates for kinase activities. Addition of phosphate to SPS
reduces enzyme activity, whereas phosphorylation of NR
facilitates binding of an inhibitor protein. NR is a MoCo­
containing enzyme and the endogenous MaCo pool varies
in response to l1urritional status. The scheme illustrated in
Fig. I proposes that, as a result of inactive NR, available
MoCo is allocated preferentially to the remaining MoCo-re­
quiring enzymes, XDH and AO. As a consequence, IAA
and ABA biosynthesis are stimulated. The increase in IAA
in situ contributes to activation of CKOX, and together
with elevated ABA and reduced endogenous CK content,
these processes combine to reduce cell division cycle activity.
The effect is exacerbated by the product of CKOX activity.
adenine, which inhibits XDH further increasing allocation
of MoCo to the AO for ABA (and IAA) biosynthesis.
Sustained sucrose starvation triggers the arrest of cell
growth and the onset of characteristics typical of mature
(pre-c1imuctcric) fruit. Interestingly, elevated AO activity is
expected to increase the production of reactive oxygen spe­
cies. and oxidative damage is typically evident in seed coats
of horticulturally mature avocado fruit. irrespective of final
fruit silt:.

Knowledge of the metabolic control of fruit gro\vth has
been enhanced by detailed biochemical analyses of the pro­
cess and the use of molecular biology. The outcome has
clearly be(:n a greater understanding of the complex network
of cyents associated with this important developmental pro­
gramme. Armed with this information. it is now possible to
evaluate factors involved in the regulation of final fruit size.
Thus. it has emerged that isoprenoid and carbohydrate
metabolism arc critical components, The former supplies
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products that regulate, co-ordinate and direct cell division
and development, whereas the laller supplies substrate for
metabolism and affects the expression of sugar-regulated
genes. Of these, the sugar-metabolizing enzymes AI, SuSy
and SPS are clearly important, and activity is largdy re­
sponsible for determining sink strength and final fruit size.
Likewise, control of nitrogen metabolism via phosphoryla­
tion and inactivation of NR is integral and apparently
linkcd to phytohormone homeostasis via allocation of the
purine-derived ~'foCo. Activity of carbon- and nitrogen·
metabolizing enzymes is linked to either HXK or SnRKl or
both. These putative sugar sensors signal changes in carbo­
hydrate status to redirect metabolism and growth in accor­
dance with prevailing nutritional conditions. Surprisingly,
there is very little information on the biochemical and
molecular role of plant hormones in the control of fruit
growth and final fruit size. Nevertheless, it is assum~d that
they play an integral part, presumably by altering gene
expression. but also through direct hormone-hormone inter­
action and the maintenance of hormone homeostasis. Cross­
talk between sugar and phytohormone signalling is evident.
indicating that these two apparently paraHel signal transduc­
tion pathways interact at the level of gene expression. The
cross-talk hypothesis is supported by the identification of
sugar-insensitive mutants that display aberrant hormonal
responses.. However, indications are that homlones predom­
inate over sugars to initiate gene expression. Thus, the idea
of a two-component signalling system involving CK and
sugars in the control of cell proliferation and plant organ
size seems attractive (O'Agostino and Kieber 1999). In such
a system, CK might be expected to induce gene expression
and activate sugar metabolism, while changes in sugar con­
tent and composition modulate CK signalling and endoge­
nous IAA and ABA.
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reduced CK (Moore-Gordon et al. 1998). Further­
more. since low extractable levels of auxin correlate
with rapid growth of the mesocarp (Gazit and Blu­
menfeld 1972), it is assumed that basipetal movement
of auxin is associated with continued fruit growth. In
fact, when the growth rate is low, auxin levels are
high. Implicit in this assumption is movement of hor­
mone.' from the site of synthesis (seed) into the sur­
rounding tissues. We therefore hypothesized that ac­
tivity of key enzymes in hOffilOne metabolism would
reRect homlOne distribution and content of tissues in
developing avocado fruit. This was ba'iCd on results
from a detailed study of the metabolic interaction be­
tween CK and ABA in avocado fruit that revealed that
CK stimulated the oxidative catabolism of ABA
(Cowan et al. 1999). Chemical dissection of the re­
sponse of ABA metabolism to CK, allopurinol (an in­
hibitor of xanthine dehydrogenase, XDH; EC
1.1.1.204, formerly EC 1.2.1.37) and tungstate (an
inhibitor of aldehyde oxidase, AO; EC 1.2.3.1) indi­
cated the involvement of a molybdenum cofactor
(MoCo)-cootaining AO. These studies also showed
that allopurinol and adenine, a product of CK oxidase
(CKOX) activity and inhibitor of XDH activity, pro­
moted ABA catabolism. Since CKOX is a substrate­
inducible enzyme we suggested that CK-induced
CKOX activity contributed to the regulation of en­
dogenous ABA during plant organ growth (Cowan et
al. 1999). The requirement for a MoCo-AO in the fi­
nal step of IAA and ABA biosyntbesis (Koshiba et al.
1996; Scbwartz et al. 1997; Tsurusaki et al. 1997),
coupled with CK-ABA antagonism, suggested that
plant hormones play an interactive role in mediating
avocado fruit growth. In this paper we extend the ar­
gument by reporting on the tissue distribution of
XDH, AO and CKOX in relation to hormone levels
in normal and phenotypically small 'Hass' avocado
fruits.

Materials and methods

Plant matl'riai ami application of.chemicals

Avocado (Persea americl1/Ul i\ljll. cv I-Ia.'is) fruit were
harvested from trees cultivated Oil clonal Duke 7 roo[­
stocks in orchards in the Kwazulu-l\atal Midlands.
South Africa. Fruit was harvestc'd in the early morn­
ing and transported to the laboratory where the seed
and mesocarp tissue was dissected into liquid nitro­
gell and fret:zc·dried immediately. For studies on the

through reduced CK synthesis or accumulation of
ABA, might therefore be expected to impact on cell
division cycle activity and final fruit size, e.g. the
'Ha,. avocado small-fruit phenotype (Moore-Gordon
et al. 1998). Togeth<r with CK and ABA, (AA is also
known to play a role in cell division (Jacobs 1995)
and the highest level of auxin is found in regions of
active cell division (Schneider and Wightman 1978).
Since lAA is thought to act synergistically with CK
in the control of cell division, the decision by a cell
to divide might be mitigated by the digital output of
analogous phytohormone signals that stimulate and
inhibit cell cycle activity (Grill and Himmelbach
1998).

Developing seeds appear to produce the hormones
necessary for early fruit growth (Goodwin 1978).
This is emphasised by the observation that the devel­
oping embryo and seed control the rate of cell divi­
sion in the surrounding tissue (Gilla,py et al. 1993).
Since endogenous hormone concentration of tissues is
a balance between synthesis, degradation, transport,
and conjugation, determination of plant hormone lev­
els alone is often of limited value. Such data reveals
little about the site of hormone metabolism within the
tissue under investigation. and very little can be in­
ferred about the contribution of hormone metabolism
to changes in net hormone levels. One way to mini­
mize this limitation is lo measure the activity of key
enzymes involved in phytohormone metabolism. in
addition to quantifying endogenous hormone levels.
Information about the hormone content and composi­
tion of the major tissues of avocado fruit is however
rudimentary and most available data is based on bio­
assay. For example, GA-like activity was observed in
extracts of endosperm and seed cout tissue but not in
the mesocarp or embryo (Blumenfeld and Gazit
1972). CK activity was high in the embryo, en­
dosperm and seed coat and levels declined over the
course of fruit growth (Blumenfeld and Gazit 1970).
No CK activity was detected in mesocarp tissue
(Gazit and Blumenfeld 1970). Auxin-like activity was
higher In se~d tissue than in lh~ m~sOC'arp (Gazit and
Blumenfeld 1972) while ABA. which declines with
fmit growth (Cowan et a!. 1997). occurs in similar
amounts in seed and m~socarp tissue (Richings el al.
2000). Together. Lhesc dara suggest that t.he seed is the
primary source of hom1ones required for avocado
fruit growth and developmenl.

Final fruit size of avocado is dependent on sus­
tained cell division in the rn~so<:arp (Cowan et aL
1997) and is negatively affected by increased ABA or

compounds enhance cell division and promote cell
enlargement during different stages of development
(Bohner and Bangerth 1988; Mapelli et a!. 1978;
Mapelli 1981). Furthermore, cell division appears to
depend on the maintenance or hormone homeostasis
(Barlow 1976). Since final fruit size of avocados is
due more to cell division than cell enlargement
(Schroeder 1953), any factor that impacts on cell di­
vision will affect fruit growth and [roit size. For ex­
ample, both ABA and water stress are known to re­
tard cell division cycle activity (Anlip et al. 1995;
Meyers et al. 1990) whcrca' CK prolllotes this event
(Jacobs 1995). An imbalance in the CK/ABA ratio,

Phytohonnones are involved in most stages of fruit
growth~ directing development from fertilization to
senescence (Gillaspy et al. 1993; Goodwin 1978).
Auxin (LAA), gihberellin (GA), cytokinin (CK). ab­
scisic acid (AB A) and ethylene are produced by fmits
in large amounts~ and often in a sequence typical for
a species. Sometimes they act synergistically in pro­
moting growth~ sometimes they subst.itute for one an­
other alld sometimes they act antagonistically. Evi­
dence tha! plant honnoncs arc involved in the control
of fruit growth is demonstrated by the fact that these

Introduction

Abstract

Control of plant hormone homeostasis is crucial for normal organ development in plants. To elucidate the con­
Uibution of plant hormone homeostasis to fruit growth, tissue distribution and activity of xanthine dehydroge­
nase (XDH), abscisic aldehyde (AB-ald)- and indole acetaldehyde (lA-ald) oxidase, and cytokinin oxidase
(CKOX) were determined in seed, seed coat and mesocarp of normal 'Hass' avocado and its small-fruit pheno­
type during the linear phase of growth. Activity of these enzymes was related to the tissue content of indole-3­
acetic acid (IAA) and abscisic acid (ABA). IA-ald oxida'iC was present only in seed tissue whereas AB-aid oxi­
dase and XDH activity was found in seed and mesocarp tissue. Seed of the small 'Hass' fmit had increased XDH
and AB-ald oxidase activity and high endogenous ABA, but reduced IA-ald oxidase activity and adenine. There
wa' no difference in seed, seed coat and mesocarp CKOX activity between normal and small fruit. Inhibition of
XDH activity in whole fruit by treatment with allopurinol decreased !AA and increased ABA of seed tissue. In
mesocarp of ripening fruit allopurinol increased ABA and !AA but had no effect on levels of iP. Results indicate
that actiVilY of IA-ald and AB-aid oxidases in avocado fruit contribute to maintenance of the fANABA ratio in
seed and mesocarp tissue and that increased AB-ald oxidase, or reduced lA-ald oxida'e, may be pan of the syn­

drome a..ociated with the appearance of a small-fruit phenotype.



etlect of allopurinol and molybdate on ABA and lAA
metabolism, pedicels were re~cut under water and
fruit supplied, via the transpiration stream, with solu­
tions of allopurinol and molybdate dissolved in 2%
DMSO (v/v) and formulated in water. A total volume
of 0.5 ml was pulsed into the fruit via the pedicel and
the fruit incubated for 24 h at room temperature.
Where specified, mature fruit was allowed to ripen in
darkness at 25°C for 8-10 days and excised meso­
carp tissue supplied with allopurinol and/or potassium
molybdate prepared in 2% DMSO (v/v) and formu·
lated to a final volume of 0.5 ml in Tween 20:ace·
tone:water (1:1:8, v/v/v), which was infiltrated via a
series of cuts in the surface of the tissue. A total vol­
ume of 0.5 ml was administered in this way and the
tissue was incubated for 48 h in a wuter·sarurated en­
vironment at 25°C prior to extraction and analysis.

Ellz.ym~ as.mys

AO and XDH activity were assayed in vitro accord·
ing to ti,e procedure described by Triplett et al.
l (982). Freeze-dried tissue was milled to a fine pow·
der and 0.5 g aliquolS, together Witil insoluble pol)··
vinylpolypyrrolidone (Polyclar, 10% w/w), homoge­
nised on ice in 50 mM potassium phosphate buffer
(pH 7.8) containing I rrult/ dithiothreitol (DTT) using
an Ultra-Turrax top-drive tissue disperser. ExtrnclS
were allowed to sland on ice for 20 min prior to cen­
trifugation at 30,000 g for 15 min at 2°C. The result­
iog supematant was brought to 60% saturation with
solid ammonium sulfate. After stirring for 30 min the
mixture was re-centrifuged at 40,000 g for 20 min at
2°C. The pellet was resuspended in 2 ml of 50 mM
potassium phosphate buffer (pfl 7.8) anddesalted on
a I x 3 cm Sephadex G-25 (Sigma Chemical Co., St
Loius, MO, USA) column equilibrated with 50 mM
Tris-HCI buffer (pH 7.8). AO activity was determiDed
speclrophotomeuically by monitoring the decrease in
absorbance of 2,6-dichloroindophenol (DClP) at 600
nm (Courtright J967). The reaction mixture consisted
of 0.2 mJ enzyme extract and 1.8 ml phenazine meth­
osulfate (O.l mM) and either 2 mM indole-3-aldehyde
(for abscisic aldehyde; AB-aId oxidase activity) or
indole-3-acetaldehyde (for lA-aid oxidase activity) in
50 mM potassium phosphate buffer (pH 7.4) in a to­
tal volume of 2 ml. The reaction was initiated by the
addition of 0.0029c (w/v) DClP in 50 mM potassium
phospbate buffer (pH 7.4) and ollowed to proceed for
a maximum of 20 min. Specifi<: activity of either AB­
aId or IA~aIJ oxidase is expressed as pmol OCl? re·
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duced mg- I protein min- I (Sagi et a!. 1998). For
XDH, the reaction mixture included I mM hypoxan­
thine and I mM D11 in 50 mM Tris-HCI buffer (pH
6.5). The reaction was initiated by the addition of ei­
ther 0.002% (w/v) DClP or 2.5 mM NAD' in 50 tru~f

Tris-HCI buffer (pH 6.5) followed by incubation at
30°C (Sagi et al. 1998). XDH activity was monitored
spectrophotometrically at 340 nm and is expressed as
pmol DClP (l'ADH) mg- I protein min- I

, Where
specified, and to deternune the effect of allopurinol
and adenine on XOH activity iT! vitro~ these purines
were formulated in 2% DMSO (v/v) and 50 mM Tris­
HCI (pH 7.8), and added directly to crude enzyme
preparations before reaction initiation.

Extracts for measurement of CKOX activity were
prepared essentially as described above. Tissue was
homogeDised on ice in 50 mM potassium phosphate
buffer (pH 7.4), containing 2 mM CaCl" I mM Mg­
SO., 0.5 mM dithiothreitol, Complete'" protease in­
hibitor tablets (I tablet/50 mL, Roche Diagnostics
GmbH, Mannheim, Germany) and lo/c (v/v) polyeth­
ylenimine (Polymin P, 50% aqueous solution) and al­
lowed to stand for 20 min on ice. The suspension was
centrifuged at 20,000 g for 20 min at 2°C. CKOX
activity was assayed in the supematant using the
method of Liberos-l\llinotta and Ttpton (1995). The
reaction mixture in 0.2 M imidazole-flCI buffer (pH
7.5), contained 80~ iP and I mM CuCl" and was
initiated by the addition of enzyme and incubated at
37°C for 30 min. The reaction was terminated using
40% (w/v) trichloroacetic acid. Following the addi­
tion of p-aminophenol reagent (3% (w/v) p-ami­
nophenol in 6% (w/v) trichloroacetic acid) and devel­
opment of colour for 10 min at room temperature, the
aosorbance at 352 nm wa.' deternlined. CKOX activ­
ity is expressed as p,moI3-methyl-2-butenal produced
mg- I protein, interpolated from a standard curve pre­
pared by reacting 3-methyl-2-butenal with p-ami­
nophenol reagent. Results were confirm~d by moni­
toring the conversion of [2-'flJiP to ['H]adenine ac­
cording to the method of Motyka and Kaminek
(1994). The a-,say Duxturc (50 p,1 final volume) con­
tainL'd 50 mM Tris-HCI buffer (pH 8). 10 J.L1\1 sub­
strate ([2-'HliP. 1.25 TBq mmol- I purchased from
Academy of Sciences of the Czech Republic Isotope
Laboratory !EB, Czech Republic) and 25 p,1 of eD­
zyme preparation. After incuhating the reaction mix­
ttln~ for 4 11 at 37 QC, the reaction Wi.l"i temlinated by
the addition of 10 p,1 l'a.EDTA (200 mM) and 120
I.t! of cold 95% (v/v) ethanol containing unlabelled iP
and adenine (0.75 £flj\tf each). Residual substrnte and
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labelled product were subsequently separated on thin
layers of silica gel GF". (Merck, Darmstadt Germa­
ny), developed once to 10 cm in chloroform/metha­
noVammonium hydroxide (25%, w/v) (9:2:0.1, v/v/v)
(Redig et al. 1997). Radioactivity in the zones corre­
sponding to authentic iP (R r 0.7~.8) and Ade (R,.
0.3~.4) zones was determined by liquid scintillation
spectrometry using a Packard Tri-Carb'" 1500 Scin­
tillation Counter.

For all a<isays, protein concentration of the enzyme
preparations was determined using Bradford's dye·
binding assay (Bradford 1976).

Determination of AEA, J.4A, iP and adenine

Tissue together with Polyclar (10%, w/w) was ho­
mogenised in ice-cold methanol:ethyl acetate (50:50,
v/v) containing butylated hydroxytoluene and dieth­
yldithi<rcarbamate (both 100 mgl- I

) as antioxidanlS
and [G-'H]ABA and 3-[5(n)-'H]lAA (both 10 000
dpmlsample, obtained from Amersham International,
UK), added to correct for losses. and extracted over­
night in darkness at 2"C. Homogenates were filtered
under vacuum and the filtrate reduced to dryness in
l-'OCUO at 35 QC. The residue was resuspended in wa­
ter (adjusted to pH 8 with 0.05 N NaOH) and loaded
onto a Sephadex A-25 (Pbarmacia) anion exchange
column (5 ml bed volume) pre-equilibrated with wa­
ter (pH 8). The coluDUl was washed with 10 ml ali­
quots of water (pH 8) and the acids eluted onto a pre­
wetted C JR solid phase extraction (SPE) column (Iso­
lute, International SOrbeDt Technology Ltd, Glamor­
gan, UK) with four 5 ml aliquots of 0.2 M formic
acid. The C IR column was washed with 10 ml 80%
methanol and the eluate reduced to dryness. Samples
were resuspended in methanol and methylated by the
addition of excess ethereal diazomethant:::. After re­
moval of the ether phase under a stream of nitrogen,
methylated samples were dried. partitioned three
times into ethyl acetate and passed through a nitril~

(SPE) cartridge column (lsolute, International Sor·
bent Technology Ltd. Glamorgan. L:K). The ethyl ac­
etate was removed under nitrogen and the sample re­
suspended, for analysis by reversed phase HPLC ill
20'),' methanol. Chromatography was carried out us­
ing a 5 jJ.m C IK column (250 x 10 mm i.d., ODSI,
Sphereclone, Phenomenex. Torrancc, CA, USA)
eluted with a linear gradient of 20-100% methanol
over 55 min at a flow rate of 2 ml min- 1

, Compounds
of interest wen~ detected at 254 nm using a Spectra
System UVIVIS 1000 detector (Thermo Separations

Products, Freemont, CA, USA) and quantified after
calibration with authentic standards of ABA- and
[AA-methyl ester. Radioactivity remailung in the
HPLC-purified ABA- and lAA-methyl ester fractions
was determined by liquid scintillation spectromeuy.
Confirmation of the identity of ABA- and IAA-me­
thyl esters was established by combined ga., chroma­
tography-mass spectrometry using the procedure de­
scribed by Cowan et al. (1999).

The extraction and quantification of iP by radio­
immunoassay was as described by Moore-Gordon et
al. (1998). Adenine was extracted and quantified by
reversed-phase HPLC (Gilmore and Bjorkman 1994).

Results and discussion

An earlier study indicated a possible link between
ABA met.abolism and purine and/or CK-induced sup­
pression of the MaC<rcontaining enzyme, XDH, in
avocado (Cowan et al. 1999). The purine adenine, a
product of CKOX activity, is both a precursor and
analog to hypoxanthiDe and an inhibitor of XDH in
ureide metabolism (Nguyen 1986). Adenine also
stimulates ABA production in plant tissues and in
ABA-produciDg fungi (Cowan et al. 1999). XDH and
AB-aid oxidase require a sulfurylated MaCo for cata­
lytic activity. Thus, small changes in the adenine pool
for ureide formatioD might be expected to inhibit
XDH resulting in more efficient utilization of the sul­
furylated MaCo by the AO in ABA biosynthesis.
Since adenine does not a1Iect AO, the relative activ­
ity of this enzyme might be enhanced leading to in­
creased ABA and presumably lAA production. The
dala in Figure lA and B confinn that XD~I activity is
present in seed and mesocarp tissue of avocado fruit
and, as expected, that in vitro activity could be re­
duced by the addition of either allopurinol. a potent
inbibitor of XDI'I, or adenine (Nguyen 1986). Activ­
ity of XDH was ten..:fold greater in seed tissue and al­
lopurinol- and adenine-induced inhibition of XDH
\vas more pronounced in these extracL<i (Figure lA)
than in extracts of mesocarp tis.'me (Figure 1B). While
this observation may indicate differential expression
and/or activity of XDH in avocado fruit tissues, the
results nevertheless lend support to the hypothesis
that adenine·induced alterations in XDH activity
might indeed impact on plant hormol1e bomeostasis
and final fruit si7..e by influencing activity of other
MoC<rrequiriDg enzymes particularly ti,ose involved
in IAA and ABA biosynthesis.
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Tahle 2. CKOX activity and adenine content of the major tissues of ckveloping normal and phenotypically small 'Ha..s· aHx:ado fruit. har­
ve~ted 240 days after full bloom

Tahle 1. Tissue distribution and aeth'ity of lA-aM and AB-aid oxida."t. and XDH in normal and phenotypically small 'Hass' avocado fruit..
harvested 240 days after full bloom.

Tissue Phenotype CKOX Adenine

(JLffiol 3-melhyl-2-butenal mg- 1 protein) (/-Lmol 8- 1 D\\o")

Seed nonnal 250.86±52.86 241.2

StrullJ 256.77 ±57.29 24.59
Seed coat oormal 32.0 I ± 10.79 od'

small 47.45± 18.40 od

Mesocarp normal 7.31 ",3.16 320.7

small 9.26±3.8 t 19.66

aNOl detected.

9.93:t5.81

16.19± 1.73

NO
NO
3.26:t 1.45

23.44±6.80

XDH

6.64±O.30

19.58",4.44

J6.76± 1.90

43.96±.9.22

7A8±.2.84

8.76±2.90

terestingly, molybdate caused a decrease in ABA.
!AA and iP indicating that overall metabolism of
these hormones was stimulated iD the presence of
exogenous molybdate.

Results from this study indicate that the 'Hass'
small-fruit variant possesses elevated AO activity ca­
pable of utilising indole-3-aldehyde a, subslrate, but
reduced AO activity when indole-3-acetaldehyde was
used as subslrate (Table I). Although AO has low
substmte speclficity, the observation that two differ­
ent subslrates arc utilised by AO to a differing degree
in normal and small fruit, coupled with the finding of
an altered ABNLAA ratio in response to allopurinol
and molybdate treatment., suggests that different iso­
forms of the AO enzyme exist in avocado fruit, that
these have different affinily for molybdenum, catalyse
AO-mediated reactions in ABA and LAA biosynthesis
respectively, and that activity is development- and/or
tissue-dependenr. Similar findings have been reported
for maize and Arabidopsis tluJliana (Koshlba and
Matsuyama 1993; Koshiha et al. 1996; Sekimoto et
al. 1998). For example, three organ- and subslrate­
specific AO activity bands were detected in Arabidop­
sis seedlings, namely AOa, AO/3 and AOy (Seo et a1.
1998). AOa was abundant in roots, whilst AOy was
most abundant in the cotyledons and leaves. In terms

lA-aid ox.ida...;e AB-aid oxidase

(pmol DCIP mg~1 protein min-1)

29.78 ± 14J)4

2.51 ± 1.74

NO'
ND
NO
NO

Phenolype

normal

small

normal

small
nonnal

small

Me~ocarp

Tissue

aNOl dClecr.ed.

Seed

S.:-ed coat

Tissue PhellOlype ABA !AA

(nmol g_1 FW)

Seed nomul 0.850' 7.413

small t4.29b 2L56b
lYks.ocarp normal 0.67a 0.95a

small 1.lla 1.68a

Table 3. ABA and lAA content of seed aod mesocarp tissue from
normal and small 'Ha.'l"" avocado fruit harvested in the lineae phase
of gm....1h. 256 days after full bloom

aValues followed by different lc:tters are signifiC:llltly different (for
ABA LSD(o.n5,=6.57 and for lAA, LSD(o.II~Il=9.J6)

of seed-derived lAA into this tissue which explains
the increased levels of lAA detected in seed of the
small-fruit phenotype in which seed coat senescence
is a typical feature (Table 3). However, whether lAA
is derived from lA-aid in ripening avocado remains
to ~ determi ned.

To evaluate the effect of inh.ibition of XDH on
levels of ABA, lAA and iP we chose to use ripening
avocado mesocarp because of its high metabolic ac~

tivity with respect to ABA synthesis. The results in
Table 5 show that allopurinol increased the ABA and
LAA content of ripening mesocarp but had little or no
effect on levels of iP. Presumably, an increa'" in !AA
reflects inhibition of LAA ruroover in this tissue. In-

fruit. Furthermore, the model developed by Cowan et
al. (1999) proposed that low XDH acti vity, typical of
that observed In seed of normal fnllt, would be asso­
ciated with either increased CKOX activity or in­
creased adenine, or both. with CKOX being the key
enzyme for cytokinin degradation in phults. The data
in Table 2 show that there was no significant differ­
ence between small and normal fruit in terms of
CKOX activity. However, the level of adenine was
substantially greater in seed and mesocarp of normal
'Hass' avocado fruit, and this would seem to confirm
the postulated relationship between adenine content
of fruit tissues and activity of XDH alluded to above.

in view of these findings it wns envisaged that the
!AA content of seed of normal 'Hass' fruit would be
greater than that of the small-fruit pbenotype. Like­
wise, ABA content of seed of the small frui t variant
would be expected to be greater thall that of seed of
the normal fruit. The latter wa, confirmed following
analysis of ABA in seed and mesocarp of small and
normal fruit (Table 3). Surprisingly, the lAA content
of seed of the small-fruit phenotype w,,, two-fold that
of the seed of normal fruit. One possible explanation
Is that early senescence of the seed coat in small fruil
(Moore-Gordon et al. 1998) prevents basipetal move­
ment of seed-derived LAA resulting in apparent accu­
mulation, assuming that LAA is derived from lA-aid
in avocado tissue. To overcome the confounding in­
fluence of seed coat senescence, and to determine
whether alterations in XDH activity affect the tissue
distribution of lAA and ABA, normal fruit was sup­
plied solutions of allopurinol and allopurinol plus mo­
lybdate via the lranspir.ttion stream. Following incu­
bation, the seed and mcsocarp were dissected and ex­
lracted and analysed for ABA and lAA and the results
are shown In Table 4. Both molybdate and allopurinol
Increased the ABA content of the seed but had little
or no effect on ABA levels in mesocllrp tissue. When
applied together. molybdare plus allopurinol had no
apparent effect on seed ABA content hUl increased
mcsocarp content by 58%. Levels of I/\A were re­
duced in seed [issue by treatment of fruit with allopu­
rinol, but increased by molybdate plus allopurinol. By
comparison. LAA in mesocarp tissue increa.\ied signif­
icantly in fruit treated cilbt:r with allopurinol or mo­
lybdate plus allopurinol. These results suggest that
inhibition of XOH increases ABA biosynthesis in af­
fected tissues confirming an earlier n:port (Cowan et
al. 1999). Furthermore. since no IA·ald oxidase ac­
tivity \vas detected in the m~:o;(x~arp (Tahle 1) an in­
crease in IAi\ content of mesocarp implies tran.sport
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Figure J. Effect of allopurinol 3nd adenine on in vitro activity of
XDH in eXlr3Ct~ prepared from seed (A) and me~rp (B) ti.~sue

of nonnal 'Ibss' avocado fruit harvested in the linear pha.iloe of
growth. 256 days after full bloom.

The activity of XDH, LA-aid and AB-aid oxidase
in seed, seed coat and mesocarp of normal and phe­
notypically small 'Hass' fruit is shown in Table L No
lA-aid oxida".ic activity was detected in either meso­
carp or seed coat extracts. In contrast? extracts of seed
tissue contained substantial lA-aId oxida'ic activity
that was ten-fold greater in normal fruit. AB-ald oxi­
dase activity was present in all tissues of avocado
fruit. High activity in seed and seed coat tissue of the
small-fruit phenotype was not unexpected as appear­
ance of this phenotype occurs coincident with embryo
abortion and seed coat senescence, and elevated ABA
(Moore-Gordon et al. 1998; Richings cl al. 2(00).
XDH activity was present only in seed and mesocarp
tissue and was greater in these tissues from the small­
fruit phenotype. TI,e results in Table I therefore con­
firm that a reduction in avocado fruit size is related to

activity of MoCo-requiring enzymes insofar as high
seed LA-aId oxidase corresponds to low AB-aid oxi­
dase and XDH activity in tissues of normal sized

"
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"V31ues followed by .. are signifkantly (P ~ 0.05) different from the control.

TaMe 5. ABAlAA and iP levels inme~ tissue of ripening 'Hass' avocado fruit treated with either molybd:lt.e, allopurinol. or molybdate
plus allopurinol. Solutions of allopurinol and/or molybdate. at the concentrations specified in Table 4. were supplied to the cut surface of
mesocarp tissue which was incubated for 4~ h priOf" to extraction of ABA, IAA. and iP.

TaMe 4. Effect of aUopurinol (100 /-L}.{), molybdate (100 ph!) and allopurinol (50 plY!) plus molybdate (SO ,u\tf) on ABA and !AA levels in
~ed and mesocarp of nonnal 'Ha~s' a\-'ocado fruit harvested in the linear phase, of growth. 269 days after full bloom. Solutions of allopurinol
and/or molybdate were supplied to intact fruit via the pedicel (in the transpiration stream) and the fruit incubated for 24 h prior to extraction
of ABA and lA<\.

Treatment ABA !AA iP

(nmol g~l FW) (% of control) (pmol g_l DW) (% of control)

Control 4.00 (lOO) 2.03 (lOO) 59.8 (100)

Molybdate 1.46'0 (36) 1.46 (72) 42.9* (72)

Allopurinol 8.89"" (222) 3.93* (l93) 56.4 (94)

Molybdate + Allopurinol 6JI9" (151) 3.37* (166) 59.3 (99)
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Increased activity of the isoform that uses indole­
3-aldehyde as the preferred substrate seems to corre­
late with increased ABA and small sized avocado fruit
(i.e. reduced cell division cycle activity), whereas ac­
tivity of the isoform utilising indole-3~acetaldehyde

seems to correlate with sustained cell division cycle
activity and therefore normal sized fruit. Thus, .'1.0
activity and its substrate specificity seem to play a
central role in controlling plant hormone homeosta­
sis. cell division and avocado fruit growth. possibly
through the modulation of the IANABA ratio. ABA
levels decline over the course of avocado fruit growth
(Cowan et al. 1997), presumably duc to oxidative ca­
tabolism. Similarly, CK-like activity seems to decline
during avocado growth (Blumenfeld and Gazit 1970)
implying maintenance of the CKJABA ratio through­
out fruit growth and development. We previously
demonstrated CK modulation of ABA metabolism in
avocado (Cowan et al. 1999). Since auxin has been
shown to stimulate the oxidative breakdown of CK by
activating CKOX (Palni et al. 1988), it is distinctly
possible that lAA also mediates the metabolism of
ABA.

IAA

Mesocarp

5.32 (lOO)

3.84 (72)

5.13 (96)

8.42" (l58)

ABA

(runol g-l FW) (% of control)
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5.32 (lOO)

7.65*' (144)

9.02* (170)

3.71 (70)

Treatment

"Values foUowed by >1< an: significantly (P ~ 0.05) different from the control.

Control

Molybdate

AJlopuriool

Molybdate + Allopurinol

of substrate specificity, AOa showed a strong prefer­
ence for indole-3-aldehyde, while AOy efficiently ox­
idised 1-naphthaldehyde. .'1.0/3 exhibited properties
intermediate between AOa and AOy, in terms of its
mobility in native PAGE and substrate preference.
Thus, of the three isoforms, AOa seems most likely
to be involved in lAA biosynthesis, due to its high
affinity for IA-ald and its high expression in the lAA
overproducing surf mutant compared to the wild type
(Seo et al. 1998). Preliminary studies with Arabidop­
sis revealed that two .'1.0 genes, atAO-3 and atAO-4,
were rapidly induced after desiccation, suggesting
that these genes encoded an AB-aId oxidase (Seo et
al. 1999). High AO-type activity has also been de­
tected in tomato fruit, and its expression seems to be
related to the biosynthetic capacity required for typi­
cal plant metabolic "sink" tissues. Alternatively, it
may however catalyse the final step in 1.'1..'1. and ABA
biosynthesis (Ori et al. 1997). In the latter case, the
tissue specific expressiou of the 7i\O I (tomato alde­
hyde oxidase I) gene, detected by the TAO I antibody
in fruit, may reflect the role ABA plays in seed matu­
ration and dormancy, whilst its expression in apical
mcristerns could reflect the role this tissue plays in
auxin biosynu1esis (Ori et al. 1997).
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