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Thesis Abstract 

 

The enrichment of β-carotene, a precursor to vitamin A, in the local sweetpotato 

(Ipomoea batatas L.) cultivars is an attractive option in order to improve vitamin A intake 

in Zambia. The study was conducted to: 1) identify sweetpotato genotypes high in 

β-carotene content and high root dry mass (RDM) and to determine their combining 

ability, as measured through their progeny performance; and 2) screen progeny for root 

characteristics, yield, β-carotene content, and RDM. Firstly, a participatory rural 

appraisal (PRA) was conducted to determine the consumer preferences for sweetpotato. 

These preferences would form the basis for selecting desirable genotypes. Secondly, 

five selected parents were crossed in a full diallel for genetic variance studies. A 

selected subset of the diallel progeny were evaluated in three environments. Thirdly, 15 

polycross progeny were evaluated for stability in five environments using additive main 

effect and multiplicative interaction (AMMI). The PRA revealed that consumers preferred 

high RDM combined with high fresh root yield. The diallel crosses recorded significant 

general combining ability (GCA) and specific combining ability (SCA) effects for β-

carotene, RDM, harvest index (HI) and root fresh yield (RFY). The ratios of GCA to SCA 

variances were large (0.68-0.92). Two high β-carotene parents exhibited positive high 

GCA effects, indicating that additive gene effects were predominant in the inheritance of 

β-carotene. Reciprocal mean squares were not significant for RDM but they were 

significant (p=0.01) for β-carotene content. The estimate of narrow sense heritability of 

RDM (76.3%) was high; but heritability of β-carotene (20.9%), HI (29.1%) and RFY 

(34.9%) were much lower. These results suggest that rapid genetic gains should be 

possible with mass selection breeding techniques based on the phenotype of the parent 

for RDM but progress will be slow for β-carotene content HI, and RFY. The AMMI 

analysis identified progeny G2 (β-carotene content = 5.0 mg 100 g-1 and RDM = 37%), 

G6 (β-carotene content = 4.7 mg 100 g-1 and RDM = 37%), and G8 (β-carotene 

content = 4.7 mg 100 g-1, RDM = 35%) from the polycross as stable across 

environments for both β-carotene content and RDM. Genotype G3 was best suited to 

one of the test environments and had the highest β-carotene content (9.421 mg 100 g-1) 

and a high RDM (35.47%).  
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General introduction 

 

Vitamin A deficiency (VAD) is one of the major public health problems in the world, 

affecting over 70 countries. In 1976, the World Health Organization (WHO) indicated that 

about 228 million children had severe or moderate levels of VAD (WHO, 1976). In 1995, 

WHO further estimated that over 78 million children less than five years of age are 

vitamin A deficient, putting their health and survival at risk (WHO, 1995). The current 

estimates indicate that 45 and 122 countries have a VAD of public health significance 

based on the prevalence of night blindness and biochemical VAD (serum retinol 

concentration <0.70 µmol/l), respectively, in preschool-age children (WHO, 2009). 

Humphrey et al. (1992) reported that between 1.3 and 2.5 million deaths could be 

averted each year by improving vitamin A status. 

 

The problem of VAD is rampant in most developing countries where the poor live mainly 

on starchy staples to which they add small quantities of nutritious foods as money and 

availability allow. The quantities of nutritious foods consumed are often not sufficient to 

affect the limited nutritional value of the staple. The staple crop, whether wheat (Triticum 

aestivum L.), rice (Oryza sativa L.), maize (Zea mays L.), millet (Eleucine coracana L.) or 

almost any other grain, does not on its own provide adequate vitamins and minerals. In 

addition, the staple is likely to contain phytates that inhibit the absorption of iron, 

compounding the problem (Layrisse et al., 1997).  

 

Vitamin A deficiency is a serious public health problem in Zambia and the existing 

means for addressing the problem are inadequate.  The problem is manifested 

especially in young children and lactating mothers (FAO, 1993; Luo and Mwela, 1997). A 

1985 survey of VAD in 4 275 children 6 to 72 months old in the Luapula Valley estimated 

that the prevalence of xerophthalmia (clinical eye lesions leading to nutritional blindness) 

was 1.9%, almost twice the WHO cut-off point (GRZ, 1985). Corneal scarring, which is 

responsible for about 70% of blindness among children in Africa, occurred in 0.7% of the 

children. In Ndola, in the Copperbelt Province, night blindness rates were even higher: 

5% in rural areas, with subclinical deficiency in 13.6% of 6 to12 year olds (WHO, 1995). 

 

Efforts to combat VAD in Zambia began in 1990, with a commitment to provide vitamin A 

supplements to vulnerable population groups. By 1992, the government of Zambia 
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began distributing vitamin A capsules to children 6 to 72 months old and lactating 

mothers in drought-affected areas; then it extended the distribution to health centres 

throughout the country, targeting these same groups (NFNC, 1996). 

 

The 1996 Zambia Demographic Health Survey indicated that deficiency levels in vitamin 

A might still be high (Luo and Mwela, 1997). The survey found that Zambia had an infant 

mortality rate of 107.5 and under-five mortality rate of 192.3 per thousand live births 

despite good immunisation coverage. It was suggested that some of this mortality was 

related to VAD as a result of impaired immune status. As a result, a National Survey on 

VAD in Zambia was conducted in 1997. The survey confirmed that VAD levels were 

severe and that the supplementation programme was not reaching enough of the 

population to address the problem. The report stated that 66% of Zambian children were 

deficient in vitamin A. In addition, the survey found that vitamin A supplementation had 

reached only 28.4% of the under-five children and 13.5% of postpartum mothers. 

 

At the inception of the supplementation programme, food fortification was considered as 

a complementary effort. In 1996, the food fortification programme was not well 

developed though it had started about 10 years earlier. Margarine had been fortified in 

Zambia since 1978, but the fortification contributed little to vitamin A levels in the 

population due to low margarine consumption levels, especially among the poor (MOH, 

2000). The country has, since 1998, fortified sugar; however, rural consumption levels 

have not risen as expected. Though the commodity is available, very few rural people 

have the purchasing power (WHO, 1976; Van den Wijngaart, 1999).  

 

As explained above, a number of solutions to alleviate VAD have been proposed and 

tried but have been inadequate owing to a number of limitations. The means for 

distributing vitamin A supplements have been inadequate to reach all the intended 

beneficiaries. Food fortification has also had its own limitations. Each potential solution 

has made a necessary but insufficient contribution. However, satisfactory results in 

reducing VAD could be achieved by an equivalent consumption of β-carotene-vitamin A-

rich foodstuffs as the safest and most appropriate long-term approach to controlling VAD 

(Rahmathullah et al., 1990). Therefore, the bio-fortification of commonly consumed foods 

such as maize, millet, sorghum (Sorghum bicolor L.), yam (Dioscorea spp.), bean 

(Phaseolus vulgaris L.), cassava (Manihot esculenta L.), sweetpotato (Ipomoea batatas 
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L.), banana (Musa spp.), cowpea (Vigna unguiculata L.), groundnut (Arachis hypogaea 

L.), and lentil (Lens culinaris L.) could potentially make a significant contribution in 

alleviating VAD. 

 

Research on bio-fortification by both conventional plant breeding methods and molecular 

techniques is already in progress in some CGIAR centres such as IRRI in the 

Philippines, CIMMYT in Mexico, CIP in Peru, and CIAT in Colombia. As a result, bio-

fortified foods could be on the market in the next few years. The prime beneficiaries of 

this research would be populations with limited access to supplements or commercially 

marketed foods (Graham et. al. 2004).  

 

Sweetpotato is an important candidate for bio-fortification to address low levels of 

Vitamin A in Africa.  It is a herbaceous dicot, belonging to the family Convolvulaceae, 

that is widely grown throughout the tropics and warm temperate regions of the world 

between latitudes 40°N and 40°S of the equator and between sea level and 2300 m 

altitude (Hahn, 1977; Bourke, 1985). It is ranked among the seven most produced food 

crops in the world (FAOSTAT, 2004). The FAO statistics (FAOSTAT, 2004) indicate that 

95% of production is in developing countries. It is grown in more than 100 countries and 

in more than half it ranks among the five most important crops. Scott and Maldonado 

(1999) have reported that sweetpotato is grown in more countries than any other root 

and tuber crop. In developing countries, sweetpotato is a major staple crop that mitigates 

against hunger during times of famine (Horton, 1988). It has various uses such as 

cooking fresh roots and leaves for human consumption, the manufacture of candy and 

food colour. Sweetpotato is also used for processing into animal feed (Posas, 1989; 

Backer et al., 1980), for starch extraction and for the production of alcohol (Collins, 

1984). It can substitute wheat in bread and cereals and can be used in many tasty, 

nutritious recipes. Its tremendous yield potential has resulted in the use of the crop to 

produce novel plant products and/or nutriceuticals in different parts of the world (Kays 

and Kays, 1998; Yoshimoto, 1998). Scott et al. (2000) predicted that, by 2020 more than 

two billion people in Asia, Africa, and Latin America will depend on root and tuber crops, 

among which is sweetpotato, for food, feed, and income. In addition, they projected the 

annual growth of world sweetpotato production at 1.45%. 
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Sweetpotato has been receiving attention in part because it grows on soils with limited 

fertility, is relatively drought tolerant, provides good ground cover, and is often cultivated 

without fertilizer or pesticides (Ewell, 1990). These qualities are attractive to 

agriculturalists and ecologists interested in developing sustainable food production 

systems in the tropics where most resource poor farmers are found.  

 

Sweetpotato is an important staple in Africa for its supply of carbohydrates, vitamin A 

and C, fibre, iron, potassium and protein (Woolfe, 1992). It produces more edible energy 

per ha per day than wheat, rice or cassava. It can provide carotene, a precursor for 

vitamin A, to adults and children, hence can ward off VAD in children and lactating 

mothers. Children, the group most at risk of VAD, particularly like the crop (Low et al., 

1997). The orange-fleshed sweetpotato (OFSP) contains high counts of β-carotene 

which is largely responsible for the orange colour of the flesh (Simonne et al., 1993; 

Takahata et al., 1993). Tsou and Hong (1992) reported that the ratio of 4:1 to 8:1 is used 

to estimate the conversion of β-carotene into retinol as not all β-carotene can be 

converted to vitamin A in the body. They also indicated that 100-120 g of yellow flesh 

sweetpotato containing 2500 µg 100 g-1 fresh mass of β-carotene was adequate to meet 

the daily requirement of vitamin A. Mukherjee and Ilangantileke (2002) reported that a 

regular intake of about 100 g of OFSP roots per day provides the recommended daily 

amount of vitamin A for children, and it protects them from blindness.  

 

Of the 129 million t sweetpotato produced annually in the world, Africa produces about 9 

million t, most of which is consumed by humans (FAOSTAT, 2004). Cultivars that are 

widely consumed, however, have white or pale yellow flesh and contain very little β-

carotene (Ameny and Wilson, 1997). OFSP storage roots, high in carotenoids and 

vitamin A-active β-carotene are eaten less because they are watery (have less dry 

mass) (Hagenimana et al., 1999).  Hence, the challenge is to develop cultivars that are 

both high in β-carotene and dry mass. 

 

Though sweetpotato has all these advantages, it is not without problems. Among the 

sweetpotato constraints in Zambia are low yields resulting from lack of planting materials 

and improved cultivars. The roots store poorly and most of the roots are not marketable 

due to the weevil problem and bad root shape. Available genotypes take long to mature 

and most do not do well under drought stress (Chiona, 1998).  
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However, the disadvantages notwithstanding, sweetpotato, a cheap source of 

carbohydrates, is readily available and with all the advantages mentioned earlier offers a 

good alternative means of addressing the VAD if it can contain high levels of Vitamin A.  

 

Not all sweetpotato have high levels of β-carotene but wide genetic variability for vitamin 

A occurs naturally in sweetpotato (Woolfe, 1992). This means that conventional breeding 

techniques can be employed to incorporate β-carotene into sweetpotato by crossing 

local cultivars with introductions that have high β-carotene. Therefore, the purpose of 

this research was to enhance β-carotene content in high dry mass sweetpotato, which 

are preferred by the farmers. This was done to contribute to reducing the prevalent VAD 

in Zambia. 

 

The objectives of this research were to: 

a) identify high β-carotene and high dry mass germplasm and determine their 

heritability estimates in 2006; 

b) cross at least five high β-carotene parents with at least five high dry mass 

parents to produce a segregated progeny population to be screened by end of 

2007; 

c) screen for root traits, yield, β-carotene, dry mass, pests and diseases by 2008; 

d) carry out organoleptic tests to determine the acceptability of the cultivars by 

2008. 

 

The assumptions made for this research thesis were that: 

a) Sweetpotato landraces found in Zambia and CIP materials were cross 

compatible and had high heritability values for dry mass and β-carotene. 

b) β-carotene could be increased in high dry mass sweetpotato without 

compromising the quality of the end product. 

 

The thesis is structured as follows:  

1. A review of the literature relevant to the research process (Chapter 1); 

2. Identifying grower and consumer preferences for orange-fleshed sweetpotato 

genotypes in three districts in Zambia (Chapter 2); 
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3. Evaluation of sweetpotato germplasm for yield, yield components and β-carotene 

(Chapter 3). 

4. Diallel analysis of sweetpotato for β-carotene content, root dry mass, and yield 

(Chapter 4); 

5. Evaluation of G x E interaction of sweetpotato genotypes for high β-carotene 

content, high RDM and high yield (Chapter 5) 

6. A general, summary discussion of the research. 

 

Chapters 2 – 5 are written as discrete research papers.  Therefore, there is some 

overlapping of content and references. 
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CHAPTER 1: Literature Review 

 

1.1 Introduction 

 

Sweetpotato (Ipomoea batatas (L) Lam.) is a member of the morning glory family, 

Convolvulacea, characterised by its succulent, edible, storage roots (Purseglove, 1972). 

It is accepted that cultivated sweetpotato originated in Central America or tropical South 

America. Nishiyama (1971) and Martin and Jones (1972) suggested Mexico as the 

centre of diversity of the batatas section of Ipomoea.  

 

Approximately 900 different species of Convolvulacea in 400 genera have been 

identified around the world. Yen (1974) and Austin (1978, 1988) recognised 11 species 

in the section batatas, which includes sweetpotato. The closest relative of the 

sweetpotato appears to be Ipomoea trifida that is found in the wild in Mexico, and 

Ipomoea tabascan also found in Mexico in a single site in the state of Tabasco (Austin et 

al., 1991). Sweetpotato has a chromosome number of 2n = 6x = 90. Since the basic 

chromosome number of the genus Ipomoea is 15, sweetpotato is considered to be 

hexaploid. Most sweetpotato cultivars are self-incompatible, which means that when self 

pollinated, they cannot produce viable seeds. Some cultivars are cross-incompatible 

(Martin, 1967; Naskar and Varma, 1985).   

 

This literature review examines areas of knowledge relevant to the implementation of the 

research objectives: environmental conditions for growing sweetpotato; sweetpotato 

flowering and pollination; breeding methods of sweetpotato; heritability of characters in 

sweetpotato; inheritance of root flesh colour in sweetpotato; increase of β-carotene and 

other traits in sweetpotato and consumer acceptability tests.    

 

1.2 Environmental conditions for growing sweetpotat o 

 

Sweetpotato is widely grown between latitudes 40°N to 40°S and at altitudes as high as 

2500 masl (Hahn and Hozyo, 1984). These geographical limits relate to the optimal 

temperatures for growing sweetpotato. They grow well where the average temperature is 

24°C (Kay, 1973). Cool weather, including cool nigh ts, significantly retards growth and 

storage root production. At temperatures below 10°C , growth is severely retarded. The 
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crop is damaged by frost, and this restricts the cultivation of sweetpotato in the 

temperate regions to areas with minimum frost-free period of 4 to 6 months. Even where 

the frost-free period is sufficiently long, it is still essential that temperatures are relatively 

high during much of the growing period. In the tropics, yield declines with increased 

altitude, as do the number of roots and the proportion of roots that are marketable. 

Increasing altitude also delays maturity (Ngeve et al., 1992). 

 

Sekioka (1964) reported yields to be five to six times higher at 25/20°C than at 15/13°C 

(day/night), and higher at a soil temperature of 30°C than 15°C. In contrast, Young 

(1961) found that high night temperatures, by increasing carbon loss through respiration, 

are deleterious with yields substantially lower at 29/29°C than at 29/20°C. Seasonal 

plantings in north-western Argentina suggest that flower and seed production are best 

with daily maximum temperatures between 23 to 24°C and minimum temperatures 

between 13 to 19°C (Folquer, 1974). In Puerto Rico,  flowering in a greenhouse did not 

occur above 27°C (Campbell et al., 1963). From these arguments, it is clear that there is 

an optimum day and night temperature for sweetpotato development and flowering that 

still needs to be established. However, it appears from the evidence given that the 

optimum may be around 20°C for night and around 25° C for day temperatures. 

  

Growth of sweetpotato is closely related to the availability of sufficient moisture. 

Sweetpotato performs best in regions with 750 - 1000 mm rainfall per annum, with about 

500 mm falling during the growing season. Water and adequate aeration are particularly 

important during the establishment of the cutting. The crop does not tolerate water deficit 

during root initiation that occurs in the first few weeks of growth. The roots become 

lignified and will not enlarge (Hahn, 1975). Hahn and Hozyo (1984) suggested that at 

other times it may have tolerance to drought. 

 

Sweetpotato is intolerant of water logging, particularly during root initiation (Wilson, 

1982; Hahn and Hozyo, 1984) so good drainage is essential. Where the water table is 

high, the crop is planted on mounds or ridges. Sweetpotato grows best on sandy-loam 

soils and does poorly on clay soils.  Soil with high bulk density or poor aeration tends to 

retard root formation and results in reduced yields (Watanabe et al., 1968). Wet soil 

conditions at harvest lead to an increase in root rot and adversely affect yield, storage 

life, nutritional and baking quality (Ton and Hernandez, 1978). 
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1.3 Sweetpotato flowering and pollination 

 

The flowers of sweetpotato are born solitarily or on cymose inflorescences that grow 

vertically upward from the leaf axis (Purseglove, 1972; Onwueme, 1978). Each flower 

has five united sepals and five petals joined together to form a funnel-shaped corolla 

tube. The tube is usually lavender coloured and is the most conspicuous part of the 

flower. Five stamens, varying in height, are attached to the base of the corolla tube. In 

most cultivars the two longest stamens are about the same length as the style. The 

filament is white and hairy; the anther is also white and contains numerous rounded 

pollen grains on the surface. The ovary consists of two carpels, each of which contains 

one locule. Each locule contains two ovules, so that there is a maximum of four ovules in 

each ovary (Onwueme, 1978). 

 

Most sweetpotato cultivars are daylength sensitive. Short days promote flowering and 

storage root growth (Lam et al., 1959; Porter, 1979; Martin, 1988). Cultivars differ in this 

respect. Some flower readily at any season. Others only when days are short. Still 

others do not flower under any normal conditions. Those that do not flower readily can 

often be induced to flower by grafting on other Ipomoea species. A simpler technique is 

to train the vines to trellises during the season of short days (Dai et al., 1994). Lack of 

flowering may be a severe impediment to use of a particular sweetpotato as a parent in 

controlled crosses. Hence, it may be advisable to do a check for incompatibility at the 

start of the hybridisation programme. 

 

The flower opens before dawn on a particular day and closes in the afternoon the same 

day. The length of time the flower remains open is slightly longer if the weather is cool 

and cloudy. It is easy to emasculate and cross-pollinate by hand. Pollination is by 

insects, particularly bees. The physiology of the sweetpotato flower is complex: Firstly, 

the formation of the flower is subject to environmental control, especially photoperiodic 

control; secondly, the flower is open and receptive only for several hours; thirdly, 

incompatibility complexes exist; fourthly, the existence of variation in stamen length with 

respect to the style introduces a further morphological hindrance into the pollination 

mechanism. All these features make seed production difficult (Onwueme, 1978).  
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The sweetpotato fruit is a capsule 5 to 8 mm in diameter. A false septum, formed during 

fruit development, may divide each of the two locules into two, thereby creating four 

chambers in the mature fruit. Each chamber may contain a seed, but usually one or two 

chambers in each fruit contain any seed. The seed is black and about 3 mm long. It is 

flat on one side and convex on the other. The micropyle is located in a hollow on the 

flattened side. Endosperm is present in the seed in addition to cotyledons. The testa is 

very hard and almost impermeable to water or oxygen. For this reason, the seed 

germinates with difficulty. Germination can be improved by scarifying the seed either by 

mechanically clipping the testa, or by treating it with concentrated sulphuric acid for 

about 45 minutes. Freshly harvested seeds will germinate if scarified, since the only 

dormancy mechanism present is the impermeable testa (Purseglove, 1972; Onwueme, 

1978). Scarification of sweetpotato seed by sulphuric acid is a standard practice 

(Steinbauer, 1937; Wang, 1982). Germination of scarified seed occurs in 1 to 2 days.  

 

1.4 Difficulties in breeding sweetpotato 

 

The sweetpotato is almost always self-incompatible (Martin, 1967); however, it is 

possible to observe self-compatibility (Tumana and Kesavan, 1987). The self-

incompatibility and other sterility causing processes have adversely limited the 

understanding of the breeding system of sweetpotato. Nevertheless, a clear 

interpretation has been achieved.  

 

The system of self-incompatibility in Ipomoea is that of the sporophytic multiple allelic 

type. A series of alleles at one locus controls the genotype of the parent. The 

incompatibility reaction of each plant is determined by the interaction of the alleles at a 

locus and all pollen grains exhibit the same incompatibility phenotype (Martin, 1968). 

Based on the knowledge of the incompatibility system in a diploid, it is possible to 

interpret the incompatibility of the sweetpotato on the assumption that the incompatibility 

locus has been doubled or tripled (Martin, 1968).  

 

Even when a cross is compatible, serious physiological problems, which occur mainly as 

post-pollen germination barriers to fertility, often impede seed production.  Martin and 

Cabanillas (1966) have demonstrated how pollen tube growth and embryo development 

fail at various times after pollination. Thirteen detectable failures in sweetpotato 
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reproductive process were outlined by Martin (1982). Problems of incompatibility and 

sterility impede controlled pollination in sweetpotato. Some crosses are not possible, and 

practically all crosses produce much less than the potential four seeds per capsule. 

 

Methodologies developed for cross-pollinated crops are of limited application to 

sweetpotato breeding because of factors affecting sweetpotato such as: heterozygosity 

of the crop which is compounded by shy flowering habits and low fertility of blossoms; 

hexaploidy with 90 chromosomes; cytological abnormality (Warmke and Cruzado, 1949); 

and self- and cross-incompatibility. Hybridization between desirable parents is difficult 

due to cross-incompatibility. To overcome crossing barriers, desired genotypes can be 

given an equal opportunity in a nursery to cross with each other by means of natural 

pollinators. This type of breeding is called polycross breeding and has been used 

extensively by different workers (Jones, 1965; Jones et al., 1969; Martin, 1984; Tumana 

and Kesavan, 1987; Yoon et al., 1987; Freyre et al., 1991; McLaurin and Kays, 1992; 

Kamlam, 1994; Naskar and Ghosh, 2002). It is also practised with forage grasses to 

develop high yielding genotypes as well as obtain genetic information (Nguyen and 

Sleper, 1983; Kölliker et al., 2005). However, controlled pollinations are still employed in 

sweetpotato breeding (Hernandez et al., 1967; Nishiyama et al., 1975; Dai et al., 1994; 

Mwanga et al., 2002;).  

 

1.5 Breeding methods for sweetpotato 

 

The breeding methodologies of sweetpotato have had to be adapted to the constraining 

traits of the crop. 

 

1.5.1 Polycross method of breeding sweetpotato 

 

Jones (1965) was the first to use the polycross method for genetic studies and 

improvement of sweetpotato. Stuber (1980) defined the term polycross as a mating 

arrangement for interpollinating a group of cultivars or genotypes using natural 

hybridisation in an isolated crossing block. He noted that the polycross was used 

frequently for forage grasses, legumes, sweetpotato, and sugarcane (Saccharum spp.). 

Further, he termed it as a mating design. 
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The main purpose of a mating design in genetic studies is to generate progeny of known 

relationships so that the phenotypic components of variances can be equated with the 

covariances (Becker, 1967). Therefore, progeny from each entry have a common parent 

in the polycross design and result in half-sib families that are frequently used for 

evaluating general combining abilities. The polycross method was developed in order to 

produce progeny that are cross-compatible in outbreeding crops.  

 

A relatively large number of parents of diverse genetic backgrounds are placed together 

in an isolated nursery to cross with one another in order to determine their combining 

ability. In sweetpotato polycrosses, the number of parents is usually less than, or about, 

30, and insect pollinators are used. The seeds from the polycross nursery may be used 

in a further general combining ability test of the female parents or may enter a clonal 

evaluation procedure from where the new cultivars may be selected (Tysdal and 

Crandall, 1948). 

 

The variance component procedure, as described by Becker (1967), may be used in 

polycrossing to derive various phenotypic and genotypic components of variance. The 

procedure is based on the fact that the mean performance of the progeny of any one 

female parent in a polycross gives a basis for measuring the general combining ability of 

that female parent. Plant breeders use variance components to select the breeding 

strategy, given the predominant genetic mechanism controlling the trait to be improved. 

Since the polycross mating design generates half-sibs, the phenotypic variance 

component due to differences among half-sibs is equal to the covariance within half-sibs. 

Based on expected mean squares, the covariance between half-sibs from a polycross 

mating design is a quarter of the additive genetic variance, assuming no epistasis 

among additive genes. General combining ability reflects the additive genetic component 

of variance (Falconer and MacKay, 1996). 

 

Various researchers have further developed the polycross methodology.  Wellensiek 

(1952) explained the genetic basis of the polycross as a means of recognising the 

desirable genotypes of the female parents by studying their individual progeny following 

open intercrossing. Shaepman (1952) proposed two ways of designing the polycross 

test. As used in genetic studies, one of the assumptions of the polycross test is that all 
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other genotypes grown in the same polycross seed production nursery randomly 

pollinate each genotype. Several suggestions have been made to ensure randomisation 

in pollination. Hittle (1954) suggested that polycross seeds must be produced from a 

relatively large number of replications (10 or more) of single randomised plants to 

minimise differential pollen effects. 

 

It is necessary that flowering of all the parents be synchronised if crossing is to occur 

freely within the polycross nursery. There are various ways of achieving this, including 

short day treatment, grafting, wounding, girdling and phyto-hormone treatment (Miller, 

1937; Ahn et al., 2004). Cleft grafting has been used with some success at Asian 

Vegetable Research Development Centre (AVRDC). The parents are arranged in the 

field according to a pre-established statistical design that ensures a maximum amount of 

random mating. Plants are staked and trained and about 40 days after anthesis, the 

fruits are harvested and the seeds removed (Yoon et al., 1987). 

 

Wit (1952), while working with perennial ryegrass, concluded that polycross progeny 

provided a more reliable test of the genotype than open-pollinated progeny. Another 

study with sweetclover found that polycross progeny yields were highly correlated at 

approximately equal magnitudes with open-pollination and first generation inbreds 

(Johnson and Hoover, 1953). 

 

1.5.2 Polycross mating designs 

 

Olesen and Olesen (1973) proposed the polycross pattern formula. From the formula, 

they deduced the following properties of the pattern: the pattern is a latin square, and 

every genotype has any other genotype as its nearest neighbour and has only one 

nearest neighbour in each of the four directions, namely: North, South, East and West. 

The formula holds true for n genotypes where n+1 is a prime number. Olesen (1976) 

indicated that the polycross pattern formula of Olesen and Olesen (1973) was balanced 

with respect to nearest neighbours in any of the four main directions (i.e. in the North, 

South, East, or West position). However, with respect to nearest neighbours in the 

intermediate directions, the pattern was not balanced.  
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Therefore, Olesen (1976) presented a completely balanced polycross design. This 

design requires n polycross designs, each of size n x n, and balanced in both main and 

intermediate directions. He indicated the properties with respect to nearest neighbour as 

follows: “In anyone of the four main directions, namely: North, South, East, and West, 

every genotype has any other genotype as nearest neighbour. In any of the intermediate 

directions, namely: Northeast, Southeast, Southwest, and Northwest, every genotype 

has any other genotype as a nearest neighbour exactly n-2 times, and itself as a nearest 

neighbour exactly n-1 times”. He also cited the work of Wright (1965) who had given 

ready-to-use field plans for a systematically designed polycross of any possible size 

from 6 x 6 to 46 x 46. 

 

Later, Morgan (1988) extended the result of Olesen (1976) in two ways: 

a) He demonstrated that a completely balanced polycross design in n Latin squares 

of side n may be obtained for any even n (dropping the restriction that n+1 be 

prime); and 

b) That the same neighbour balance properties may be obtained for odd n in n x n 

squares which are not Latin.  

Other workers have used a randomised complete blocks design with four or more 

replications for their polycross nurseries (Tumana and Kesavan, 1987; Saladaga, 1989). 

Although the use of the randomised block design may not be as efficient as the Latin 

square proposed above it can be used to achieve the specified objectives where 

resources are limiting. 

 

1.5.3 Other mating designs for sweetpotato 

 

Various designs have been used in sweetpotato breeding programmes for different 

purposes. Ahn et al. (2004) used a full diallel cross for examination of cross-

incompatibility in Korean cultivars. Similar studies using full diallels have been reported 

by other workers (Hernandez and Miller, 1963; Martin, 1968). 

 

Kriegner et al. (2003) have used what was termed a pseudo-testcross, after Grattapaglia 

and Sederoff (1994), which they have used to generate a linkage map of sweetpotato 

based on amplified fragment length polymorphism. On the other hand, Komaki et al. 
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(1998) in Japan and Ma et al. (1999) in China, have used the pedigree method with 

inbreeding and backcrossing for breeding high starch content and high dry mass in 

sweetpotato.   

 

1.5.4 Recurrent selection of sweetpotato 

 

Pedigree methods of plant breeding have been useful but are labour intensive. Apart 

from the complex inheritance of sweetpotato, it is propagated vegetatively and pedigree 

records are much less useful than in crops where there is a need to reproduce a 

particular genotype.  

 

Sweetpotato is hence best suited to mass recurrent selection procedures (Jones, 1965). 

Mass recurrent selection consists of selecting 20 or more individuals with the best 

expressions of the trait required, stimulating them to flower in a polycross block and 

crossing by honey bees. Seeds produced are germinated for the next round of selection, 

and the process is repeated. This results in rapid accumulation of major dominant 

genes, and slower accumulation of minor and recessive genes (Martin, 1988).  Jones et 

al. (1969) suggested that simultaneous mass selection of several characters should 

prove effective. 

 

Saladaga (1989) indicated that breeders are faced with situations of selecting alternative 

strategies for selecting progeny after making crosses. He gave an example of a breeder 

with 60 000 to over 100 000 seeds who must choose between two alternatives as 

follows: 

a) He could grow all these seeds into seedlings and clonally propagate each until 

sufficient materials are available for replicated tests before selection is done; or 

b) He could apply either slight or immediately intense selection pressure directly on 

the seedlings grown from sexual seeds. 

 

Saladaga (1989) reasoned that these alternatives exist because the sweetpotato is 

highly heterozygous and highly cross-pollinated. As a result, sweetpotato produces 

seeds that can be grown into plants distinctly different from each other because of the 

genetic recombination that has taken place in the sexual reproduction process. Natural 
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vegetative propagation, which is possible in sweetpotato, enables the breeder to 

maintain each of the 60 000 – 100 000 recombinants for vegetative multiplication without 

any segregation until replicated tests are possible. If a certain level of selection is 

attained at an early stage, however, the selection should be done right then to reduce 

the bulk of material to be handled.  

 

This view is in opposition to Jones (1965) who had suggested that selection for simply 

inherited characters should be avoided until after four to five generations of intermating. 

This would avoid chromosome segment fixation that reduces the frequency of effective 

recombination. The period allowed before selection would allow for the break-up of the 

relatively long linkage blocks. Indeed, a decade later, Jones et al. (1976) demonstrated 

that the sixth generation had high frequencies of flowering and seed set, attractive root 

shape, orange flesh, thin cortex, root specific gravities of about 1.02, acceptable yield, 

and resistance to fusarium wilt (Fusarium oxysporum f. sp. batatas (Wr.) Snyd. and 

Hans.) and other pests and diseases. Such could be the choice that the breeder has to 

make. A breeder’s intuition coupled with his best interpretation of data on the mode of 

inheritance, heritability values of particular characters in his germplasm materials, and 

other quantitative genetic data are his resources for making the best choice.  

 

At Louisiana State University the practice of imposing selection or screening on 

greenhouse grown, 4 - 5 month old seedlings from sexual seeds, was adopted. The 

procedure was later modified. Thus seeds are sown in seed boxes in the greenhouse 

and vine tips are planted in the field (after 2 - 3 months) following the standard practice, 

except that the plants are spaced 60 cm between hills. This reduces interplant 

competition and allows each genotype to express itself. At harvest, roots are dug and 

piled by hill. Selection is then made based on traits of high heritability values and those 

of importance to the specific breeding objectives. Subsequent clonal tests progressively 

use characters having lesser heritability values applied only in replicated traits as 

selection criteria (Saladaga, 1989). 

 



11 
 

1.6 Heritability of traits in sweetpotato 

 

Genetic improvement of plants for quantitative traits requires reliable estimates of 

heritability in order to plan an effective breeding programme (Dudley and Moll, 1969). 

Narrow-sense heritability estimates are useful for predicting the phenotypes of offspring 

during selection procedures; the closer h2 is to 1.0, the more accurate is the prediction of 

the phenotype of the offspring based on the knowledge of parental phenotypes (Klug 

and Cummings, 2005). 

 

1.6.1 Heritability estimates of traits from a polycross 

 

The theoretical basis for the quantitative genetics of the sweetpotato was developed by 

Jones et al. (1976) and he and others have calculated the heritability estimates of 

economic traits (Table 1.1), using several different methods. The formal heritability 

estimates suggest that progress is possible in the selection for any trait that is dominant 

and can be defined. However, sweetpotato heritability estimates are usually intermediate 

in magnitude, further suggesting that progress in selection will be slow. This is not 

surprising when the high number of chromosomes of the sweetpotato is considered.  

 

The higher heritability for yield and component characters in the first and second cycles 

is of particular interest to breeders as it increases response to selection (Nanda et al., 

1990). High narrow sense heritability estimates indicate that either the environment has 

less influence on the traits under consideration, or fewer genes are involved. High 

heritability estimates could also mean the characters are controlled by additive genes.  

 

Parent-offspring regressions are calculated using the replicate means of measurements 

of traits of interest. From these regression coefficients (b), heritability estimates (h2) are 

calculated as h2 = 2 x b = VA/VP where VA = additive variance and VP = total phenotypic 

variance applicable to the half-sibs of polycrosses (Simmonds, 1979). 
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Table 1.1 Narrow sense heritability estimates of important economic traits in sweetpotato 
(Martin, 1988) 
 
Character Heritability estimates % 

Root mass 

Growth cracking 

Flesh colour 

Flesh oxidation 

Dry mass 

Fibre 

Skin colour 

Sprouting 

Vine length 

Leaf type 

Flowers/inflorescence 

Fusarium wilt resistance 

Nematode egg mass index 

Insect complex resistance 

Flea beetle resistance 

Weevil resistance 

25, 41, 44 

37, 51 

53, 66 

64 

65 

47 

81 

37, 39 

60 

59 

50 

50, 86, 89 

57, 69, 75 

45 

40 

84 

 

As mentioned earlier, the variance component procedure of Becker (1967) may be used 

in estimating genetic variance and heritability in sweetpotato from a polycross design. 

The procedure involves conducting an analysis of variance (ANOVA) and deriving the 

phenotypic variance components from the expected mean squares (Table 1.2).  
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Table 1.2 Analysis of variance with expected mean squares (Falconer and Mackay, 
1996) 
 
Source of variation Degrees of 

freedom 

Mean square Expected mean 

squares 

Between parental groups 

Within parental groups 

Total 

g – 1 

Σni – g 

Σni – 1 

MSg 

MSw 

σω
2 + σg

2 

σω
2 

Note: Σni = number of all I; g = number of parent groups; σg
2 = component of variance due to 

differences among parent groups; and σω
2 = component of variance due to differences within 

groups or error.  
 

The statistical model for the ANOVA of the polycross mating design is: 

Yij = µ + αi + εij  

Where:  Yij = jth observation within the ith group; 

µ = overall mean; 

αi = effect of ith group; and 

εij = residual error. 

 

The component of variance resulting from differences between parental groups, σg
2, is 

estimated as: 

σg
2 = (MSg – MSw) / k;  

where MSg and MSw are the mean squares between and within parental groups, 

respectively; and k = approximate average number of progeny per parent group.   

 

For sweetpotato where selfing is negligible, the relationship between progeny within a 

female parent is mostly half-sib. Therefore, the genetic meaning of the phenotypic 

variance component is as follows: 

σg
2 = covariance of half-sibs; and 

σg
2 = ¼ VA (assuming negligible additive epistasis) where VA = additive genetic variance 

component. 

 

The heritability (h2) in the narrow sense is therefore calculated as follows: 

h2 = 4 σg
2 / (σω

2 + σg
2). 
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A study of the inheritance of 10 root traits in sweetpotato by Jones et al. (1969) 

demonstrated that the additive component of genetic variance was relatively more 

important than the non-additive for all traits except veining and number of edible roots. 

The results of these workers illustrated that the development of a randomly intermating 

population with improved flowering and seed production makes it possible to undertake 

a quantitative genetic study of a crop species such as sweetpotato. 

 

General combining ability analysis is used to understand the relative importance of 

additive (general combining ability) and non-additive (specific combining ability) gene 

action in the inheritance of the characters. In a polycross, the emphasis of the estimation 

of combining ability is on GCA only since only the maternal parent is known and the 

paternal parent could be any of the other genotypes in the polycross. Progeny with high 

GCA may be exploited to isolate desirable segregates in sweetpotato. 

 

1.6.2 Heritability estimates generated from a diallel analysis 

 

Estimates of additive and dominance genetic variance components and the resulting 

estimate of h2 are obtained from a diallel analysis through equating specific mean 

squares in the ANOVA to cross covariances such as full-sib covariances (Kempthorne, 

1956). The method of Jinks and Hayman (1953) emphasises the analysis of the genetic 

variances from diallel crosses of homozygous parents. Dickson and Jinks (1956) have 

extended the method of Jinks and Hayman to diallel crosses involving heterozygous 

parents. Hence, diallel analysis can be applied to crosses of heterozygous sweetpotato 

parents enabling the derivation of genetic variance components from the expected mean 

squares which can then be used to calculate h2.  Hohls (1994) provides a 

comprehensive review of the various diallel cross analyses. 

 

1.7 Inheritance of root flesh colour in sweetpotato  

 

Carotenoids, especially β-carotene, are the determinant of the orange flesh colour in 

crops including sweetpotato storage roots (Purcell, 1962; Purcell and Walter, 1968; 

Takahata et al., 1993). The depth of the colour is mainly a function of all-trans-β-

carotene (Simonne et al., 1993; Hagenimana et al., 1999a). 
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Carotenoids represent the most widespread group of naturally occurring pigments in 

nature. They are primarily of plant origin and β-carotene predominates. β-carotene 

serves as an important nutritional component in foods. As a major precursor of vitamin 

A, it provides pleasant yellow-orange colours to foods (Simon, 1997). The colour 

intensity of the flesh differs from one cultivar to another, and is correlated with carotenoid 

content (Lauber et al., 1967). 

 

Sweetpotato exhibits a diverse range in flesh colour of the storage roots. The genepool 

contains a wide range of colour types that can be selected relatively easily (Kays, 1985). 

Typical cultivars exhibit white, yellow and orange pigmentation (Kays and Horvat, 1984). 

While all the pigments found in the sweetpotato genepool have not been fully identified, 

the prevalent pigments in the yellow and orange types are the carotenoids, 

predominantly β-carotene (Ezell and Wilcox, 1946; Yen, 1974; Hernandez et al., 1967; 

Kays, 1985). Interest in increasing the concentration of β-carotene, the precursor of 

vitamin A, has resulted in a high selection pressure being placed on the trait.  

 

Work done by Jones et al. (1976) indicated high heritability estimates for sweetpotato 

root flesh colour when the selection pressure for acceptable orange flesh decreased 

from 26% to 50%. These results confirmed work done earlier (Jones et al., 1969) as 

expected. In the paper of Jones (1977), he also associated light orange root flesh colour 

with high dry mass. Similar results were obtained earlier by Hernandez et al. (1967). 

 

Hernandez et al. (1967) indicated that orange root flesh colour (total carotenoid 

pigments) was controlled by several genes, most likely six, that are probably additive in 

effect. They concluded that inheritance of root flesh colour was a quantitative character. 

In addition, they found that certain parents transmitted high carotenoid content to a 

greater degree than others and crosses between certain parents produced transgressive 

segregants. 

 

1.8 Increasing β-carotene content and other traits in sweetpotato 

 

Success in developing orange-fleshed breeding lines and cultivars with multiple 

resistance to insects and diseases was recorded by the sweetpotato breeding 

programme at the U.S. Vegetable Laboratory (Jones et al., 1986; Collins et al., 1991; 
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Schalk et al., 1991). In addition, several dry-fleshed cultivars with excellent resistance to 

wireworms and moderate resistance to sweetpotato weevil have been developed at the 

same laboratory (Jackson et al., 1999; Bohac et al., 2001). Consequently, similar 

conventional breeding techniques could be applied to develop new sweetpotato 

breeding lines that are high in β-carotene and dry mass and are resistant to major pests 

and diseases. 

 

Sakai (1964) reported that additive gene effects controlled root dry mass (RDM) content 

and dominant gene effects controlled total storage root yield. He also concluded that the 

best method to develop new cultivars with high RDM content and high storage root yield 

was the development of high RDM inbred lines accompanied by crosses among them or 

with leading cultivars. Beta-carotene content appears to be controlled by several genes 

that are additive, as the pigment is readily transferred to the progeny (Hernandez et al., 

1967). A similar method to that suggested by Sakai (1964) can be employed to make 

progress in the incorporation of β-carotene in sweetpotato genotypes in addition to the 

polycross. 

 

1.9 Consumer acceptability tests on new sweetpotato  genotypes 

 

For consumers to accept a cultivar, it needs to have good flavour. The flavour of 

sweetpotato is formed mainly during cooking and comprises both taste and aroma (Kays 

et al., 1999). Taste is a sensation assessed through the contact of water-soluble 

compounds with oral chemoreceptors. Of the four primary taste sensations (sweet, sour, 

salty and bitter), sweetness is the dominant sensation in cooked sweetpotato. 

Sweetness is derived from endogenous sugars present in the raw root (principally 

sucrose, glucose and fructose), and maltose that is formed via starch hydrolysis during 

the cooking process (Sun et al., 1994). 

 

The characteristic aroma of sweetpotato is formed via thermal reactions during the 

cooking process and a cross-section of volatile compounds has been identified (Purcell 

et al., 1980; Kays and Horvat, 1984; Tiu et al., 1985; Horvat et al., 1991; Sun et al., 

1993; 1994; 1995). Hence, screening for flavour must form part of the research targeted 

toward improving the amount of β-carotene in cultivars. 
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Cultivars that are widely consumed in parts of West, Central, and East Africa are high in 

RDM, have white or pale yellow flesh, and contain very little β-carotene (Ameny and 

Wilson, 1997). OFSP storage roots, high in carotenoids and vitamin A-active β-carotene 

are eaten less because they are watery (have less dry mass) (Hagenimana et al., 

1999b). Therefore, screening for RDM and consumer acceptability of newly developed 

OFSP is integral to the success of the breeding project. 

 

1.10 Conclusion 

 

Since sweetpotato genotypes are released as highly heterozygous F1 progeny which are 

vegetatively propagated, a breeder must take advantage of the occurrence of 

transgressive segregation and additive gene action by utilizing mass recurrent selection 

as a breeding strategy. The variance component procedure is based on the fact that the 

mean performance of the progeny of a female parent in a polycross gives a basis for 

measuring the general combining ability of each female parent. Classical quantitative 

genetics interprets the genetic component of general combining ability as mostly due to 

additive effects. Hence, derived heritability estimates would be very useful in determining 

the intensity of selection to be imposed in a breeding programme. This information would 

be important in guiding selection strategies for simultaneously informing β-carotene 

content and RDM in sweetpotato. 
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Chapter 2: Identifying grower and consumer preferen ces for 

orange-fleshed sweetpotato genotypes in three distr icts in 

Zambia 

 

Abstract 

 

Sweetpotato is the second most important root crop grown in Zambia. It is used for food 

security especially during periods of drought and famine. It has been recognised as a 

potential crop for alleviating vitamin A deficiency as some of the genotypes contain high 

levels of β-carotene as recognised by the orange colour of the root flesh. However, most 

of the genotypes grown in the country are white fleshed roots and are hence low in β-

carotene. A breeding programme to incorporate β-carotene into high dry mass local 

genotypes has been initiated at Mansa Research Station in Zambia. It was deemed 

appropriate to involve farmers in developing the selection criteria for the programme. 

Consequently, a survey was conducted to better understand farmer and consumer 

preferences for orange fleshed sweetpotato in three districts of Zambia. An 

interdisciplinary team used participatory rural appraisal tools to collect data from 10 

households in each of three agricultural camps in each district. Pairwise comparisons 

were employed for ranking preferred products or attributes. The respondents provided a 

number of preference related attributes. The most common preference among farmers 

was the sweetness of the roots which accounted for about 35 % of the respondents 

followed by yield at 23%. The joint third common reasons for preference were early 

maturity and good storability at 9%. The other attributes that were prominent still related 

to taste, and storage of both roots and vines. Some of the other selection criteria 

identified in the survey relate to good root storage, good taste, less fibrous, high dry 

mass, leaves that make a good vegetable and resistance to pests and diseases. All 

these criteria, that apply to sweetpotato in general, will have to be taken into account as 

new orange fleshed sweetpotato cultivars are developed for consumers. 
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2.1 Introduction 

 

Sweetpotato is an important staple crop in Africa because of its supply of carbohydrates, 

vitamin A and C, fibre, iron, potassium and protein (Woolfe, 1992). It produces more 

edible energy per ha per day than wheat, rice or cassava (Woolfe, 1992). It can provide 

carotene, a precursor for vitamin A, to adults and children, hence can ward off vitamin A 

deficiency (VAD) in children and lactating mothers. It has various uses such as cooking 

the fresh roots and leaves for human consumption, processing into animal feed, starch, 

flour, candy, alcohol and food colouring. It can substitute wheat in bread and cereals and 

can be used in many tasty, nutritious recipes.  

 

Sweetpotato is highly adaptable to various environments. It tolerates high temperatures, 

low fertility soils, and can grow in areas with low annual rainfall. It is easy to propagate 

and maintain, and yields well in adverse conditions. 

 

Though sweetpotato has all of these advantages, it is not without problems. Among the 

sweetpotato constraints in Zambia are low yields resulting from lack of improved planting 

materials and improved cultivars. The roots store poorly and are often not marketable 

due to weevil damage and bad root shape. Many of the cultivated genotypes take long to 

mature and most do not do well under drought stress (Chiona, 1998).  

 

However, the disadvantages notwithstanding, sweetpotato offers a good alternative 

means of addressing VAD if the roots can contain high levels of Vitamin A precursors. 

The orange-fleshed sweetpotato (OFSP) contains high amounts of β-carotene which is 

largely responsible for the orange colour of the flesh (Simonne et al., 1993; Takahata et 

al., 1993). Tsou and Hong (1992) reported a range of ratios (4:1 to 8:1) that are used to 

estimate the conversion of β-carotene into retinol as not all β-carotene can be converted 

to vitamin A in the body. These authors also indicated that 100-120 g of yellow flesh 

sweetpotato containing 2500 µg 100 g -1 fresh mass of β-carotene was adequate to meet 

the daily requirement of vitamin A. Mukherjee and Ilangantileke (2002) reported that a 

regular intake of about 100 g of OFSP roots per day provides the recommended daily 

amount of vitamin A for children, effectively protecting them from blindness.  
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Not all sweetpotato have high levels of β-carotene but there is wide genetic variability for 

vitamin A occurring naturally in sweetpotato (Woolfe, 1992). This means conventional 

breeding techniques can be employed to incorporate β-carotene into sweetpotato by 

crossing local cultivars with introductions that have high β-carotene levels. Efforts are 

underway in Zambia to cross local cultivars with introduced OFSP to improve the β-

carotene content of local cultivars. However, to help with the selection process of the 

progeny, there is a need to establish what consumers of the cultivars demand so their 

preferences could be used as selection criteria for new genotypes. Participatory Rural 

Appraisal (PRA) tools were employed to gather the required information. 

 

PRA is an active research tool that involves community members in defining and 

working to solve local concerns. Most PRAs stress local knowledge, empowerment, and 

sustainability in addressing natural resource, agricultural, health, social, or other issues 

(Chambers 1997), although many forms have emerged over the past several years 

(Pratt, 2001). PRA has been extremely popular among international NGOs and certain 

government agencies operating in developing countries over the past decade (Cornwall 

et al., 2001). 

 

PRA is often confused with Rapid Rural Appraisal (RRA). PRA is an “approach and 

method for learning about rural life and conditions from, with, and by rural people” 

(Chambers, 1992; Dunn, 1994). The key elements of RRA and PRA are quite similar, 

with the main difference being that RRA generates information for planners and PRA 

shifts the “presentation and analysis of information to community members”. Another key 

difference between RRA and PRA is that in PRA “rushing is replaced by relaxation” and 

there is a strong rapport with community members (Chambers, 1992).  

 

PRA methods continue to evolve. There exist many PRA methods to help the 

practitioner involve various sectors and groups of a community in expressing their views, 

engaging with other community members, and empowering themselves. Among PRA 

methods is the Participatory Plant Breeding (PPB) method. PPB can be a powerful tool 

to meet the needs of sweetpotato consumers appropriately. PPB is actually based on a 

set of methods that involve close farmer-researcher collaboration. The interaction 

between farmers and researchers/breeders can be various and depends on: 1) the stage 

of the breeding process at which farmers interact with breeders; 2) the location where 
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selection and testing of germplasm takes place; and 3) the design and management of 

the germplasm evaluation process (Morris and Bellon, 2004). PPB recognizes that, 

regardless of whether the breeder likes it or not, it is the farmers who ultimately decide 

whether or not to adopt a new cultivar. It reduces the chances of developing cultivars 

that, for reasons unknown or overlooked by the breeder, are not acceptable to farmers 

(Ceccarelli et al., 2003) 

 

Against this background, a study was conducted among sweetpotato farmers in three 

districts of Zambia to assess the importance of sweetpotato in the diets of the people in 

relation to other crops. Also, PRA tools were used to obtain from farmers input on the 

traits that determine their choices of sweetpotato genotypes to use for specific purposes. 

This activity was carried out to add value to the breeding programme as the data would 

provide benchmarks for genotype selection. 

 

2.2 Materials and Methods 

2.2.1 Description of study areas 

 

Due to limited resources, it was not possible to sufficiently cover all the representative 

areas in Zambia. However, an effort was made to select areas that would not impair the 

extrapolation of results to other areas of the country. Three representative districts were 

selected: Samfya is predominantly a cassava production and consumption area; Solwezi 

is a predominantly sweetpotato growing area; and Mazabuka is an area where cassava 

and sweetpotato are being introduced (Figure 2.1). 

 



30 
 

 

Figure 2.1: Map of Zambia depicting the districts where the survey was conducted 
 

2.2.2 Participants 

 

A multidisciplinary research team was constituted with participants representing the 

different disciplines as follows: communities – these are the major stakeholders whose 

participation was indispensable to the success of the development facilitation; an 

agronomist/breeder; three research technicians; and an extension or community worker. 

Each participant brought unique experiences to the team. This was essential for 

capturing as much information as possible that would ensure the successful data 

collection.  

 

The survey was conducted in September 2006 in Mazabuka and Solwezi when the 

communities were relatively free from the field work. The survey was done in May 2007 

in Samfya just before crop harvesting.  

 

2.2.3 Participatory rural appraisal method 

 

In addition to informal rapport building, more structured information about community 

resources and opinions was required. Toward this end, primary data was collected via 

face-to-face exploratory interviews with community members. Two types of exploratory 

Samfya 
Solwezi 

Samfya District  
Altitude: 1171 masl 
Latitude:  11° 21' 0" S
Longitude: 29° 33' 0" E
 
Mazabuka District 
Altitude: 1102 masl 
Latitude:  15° 52' 0" S 
Longitude: 27° 46' 24" E
  
Solwezi District 
Altitude: 1386 masl 
Latitude:  12° 11' 0" S
Longitude: 26° 24' 0" E
 

Mazabuka 
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interviews were carried out to collect information from community members. The surveys 

were conducted over the course of one week in each district by teams of two 

interviewers (Figures 2.2 and 2.3) and one or two community members depending on 

the day. The same agronomist/breeder and technicians conducted the research 

throughout the period. One or two different community members were selected each day 

to assist with the interviews. A conscious effort was made to minimize bias by choosing 

volunteers from different demographic backgrounds. Community volunteers who helped 

conduct the interviews varied in age from 14 to 65, and the group consisted of males 

and females, married and unmarried. Questions for the surveys consisted of open-ended 

and closed-ended questions, and limited probing and iteration were permitted.  

 

 

Figure 2.2: Interviewing a sweetpotato 
farmer and his family in Mazabuka district 

 

Figure 2.3: Some members of a focus 
group for an exploratory interview  

 

All interviews were conducted in the homes of community members or in fields or work 

sites close to their homes. The interviewees were randomly selected. Due to cultural 

norms, respondents were predominantly male heads of household; however, often the 

male head of the household was not at home or available and the female head of 

household or older children answered questions. Due to cultural norms, children under 

the age of 15 were permitted to answer questions only if their input was reiterated or 

affirmed by the primary respondent. The first interview consisted of questions posed to a 

representative of a household in the community. This approach was chosen to ensure 

100% community input and create a direct connection between the research team and 

every household. This interview was designed to collect socio-demographic information 

and to assess attitudes about sweetpotato and problems related to sweetpotato within 

the community.  
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The second exploratory interview was designed to gather information through both direct 

observations of the researchers and verbal responses of interviewees. Through this 

interview approach the research team gathered information regarding the quality and 

types of household resources for the construction of a community profile. 

 

Three agricultural camps from each district were randomly selected using a simple 

procedure (Kerlinger, 1985). For each agricultural camp 10 farm families were targeted. 

However, farmers in the surrounding villages were invited to confirm some of the 

information. At times, it was challenging to reach the sampled farmers (Figure 2.4). 

 

 

2.2.4 Data analysis 

 

The data obtained was entered and analysed in Statistical Package for Social Scientist 

(SPSS) version 15. Cross tabulations were used in the analysis, and the percentages of 

respondents were calculated and represented graphically where applicable.  

 

2.3 Results  

2.3.1 General information about the districts surve yed 

 

Samfya district  is situated in Luapula Province in the northern part of Zambia. People 

are heavily dependant on cassava and sweetpotato for food. Besides subsistence 

Figure 2.4: Interview team pondering how to cross the stream in Solwezi district 
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farming, fishing is the main occupation for the people. Sweetpotatoes are either sold for 

cash in the fishing camps or exchanged for fish, which is later sold to urban areas.  

 

Solwezi district  is situated in the North Western Province and produces significant 

quantities of sweetpotato roots and vines for home consumption and sale. The most 

widely grown sweetpotato variety in Zambia, Chingovwa, is named after one of the 

production sites. Meheba Refugee Camp which hosts refugees from the Democratic 

Republic of Congo, Angola, Rwanda and Burundi is located in Solwezi. The camp and 

the surrounding areas are known for sweetpotato production that is sold even beyond 

the borders of Zambia. 

 

Mazabuka district  is situated in the Southern Province of Zambia and is prone to 

droughts. The area is traditionally a maize production site, but with persistent droughts 

and removal of subsidies on agricultural inputs, farmers are turning to cassava and 

sweetpotato production for assured household food security. The potential for 

sweetpotato production is high as there is a ready market in the nearby urban centre, 

Lusaka.  

 

2.3.2 Number of farmers interviewed 

 

A total of 87 farmers were interviewed in three districts (31 in Mazabuka, 30 in Samfya 

and 26 in Solwezi), of which 45% were women and 55% men (Table 2.1). More females 

were interviewed in Mazabuka (65%) because the crop was considered to be a woman’s 

concern. In contrast, more males were interviewed in Solwezi (77%) because in this 

area males are not allowed to talk to a married woman without the husband’s consent. 

Overall the interviewees were predominantly male. 
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Table 2.1 Gender distribution among farmers in three districts of Zambia 
 

Percentage of Farmers District Total 

Female Male 

Mazabuka 31 65 35 

Samfya 30 43 57 

Solwezi 26 23 77 

Total 87 45 55 

 

2.3.3 Years of experience with sweetpotato 

 

To assess the years of experience with growing sweetpotato, the farmers were classified 

into 1 - 2 years, 3 - 5 years, 6 - 10 years, 11 - 20 years and above 20 years experience 

in growing sweetpotato: the range being from 1 to 37 years. Seven men and three 

women could not indicate the specific length of time they had been growing sweetpotato. 

Since they simply said they had been growing it for many years, they have not been 

included in the analysis. 

 

Almost half (47%) of the respondents had grown sweetpotato for five years at most. Very 

few farmers (six respondents) had grown sweetpotato for more than 20 years. The 

difference between males and females in each experience class was minimal (Table 

2.2).  
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Table 2.2 Distribution of farmers' experience by sex in three districts of Zambia 
 

Number of respondents* Experience Class 

Female Male Both 

1-2 years 3 4 7 

3-5 years 15 14 29 

6-10 years 10 16 26 

11-20 years 6 6 12 

Above 20 years 2 1 3 

Total 36 41 77 

*Three female and seven male farmers are excluded as they could not specify their period  
of experience. 
 

2.3.4 Source of income 

 

All the respondents interviewed have farming as their livelihood. Their income is 

generated mainly from the sale of crops. A pairwise comparison was performed for the 

most important crops for income generation in each district and six of their preferred 

crops are recorded (Table 2.3). Sweetpotato, though not regarded as a cash crop in the 

country, appears to be playing a significant role in generating income for farmers in 

Solwezi and Samfya. Also, it has appeared on the Mazabuka list indicating it is 

becoming a significant contributor to income generation there as well.  

 

Fishing is the other main source of income in the off-season in Mazabuka and Samfya. 

In Solwezi, farmers are involved in beekeeping which is being promoted by Keeper 

Zambia, an NGO promoting the sale of honey. Otherwise, farmers are involved in 

various kinds of trading to supplement their incomes. 
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Table 2.3 Crops for income generation in three districts, numbers generated from 
pairwise comparison 
 

Mazabuka Samfya Solwezi Rank 
Crop Number of 

respondents  
Crop Number of 

respondents  
Crop Number of 

respondents  
1 Cotton 27 Cassava 22 Maize 17 
2 Sunflower 16 Maize 20 Sweetpotato 12 
3 Maize 13 Groundnuts 19 Beans 11 
4 Groundnuts 11 Sweetpotato 15 Groundnuts 8 
5 Cowpeas 5 Beans 4 Sorghum 4 
6 Sweetpotato 3 Bambaranuts 3 Cassava 3 

 

2.3.5 Most important food crops 

 

Farmers were asked to indicate their most important staple crops. Maize emerged as the 

most important in Mazabuka (all respondents) and Solwezi (26 respondents). In both 

cases, sweetpotato was second with 10 and 9 of the respondents, respectively, 

indicative of its status as a complementary staple crop. In contrast, farmers in Samfya 

indicated that cassava was the most important staple crop with 29 respondents 

mentioning it whereas sweetpotato (with 9 respondents) was second (Table 2.4). 

 

Table 2.4 Importance of crops for food in three districts of Zambia 

 
Mazabuka Samfya Solwezi Rank 

Staple Crop Complementary 

crop 

Staple Crop Complementary 

crop 

Staple Crop Complementary 

crop 

1 Maize (31)* Sweetpotato (10) Cassava (29) Sweetpotato (25) Maize (22) Sweetpotato (9) 

2  Sorghum (6) Maize (4) Maize (17) Cassava (7) Cassava (7) 

3  Irish potatoes (2)  Fingermillet (3) Sweetpotato 

(1) 

Sorghum (4) 

4  Cassava (1)    Millet (2) 

5      Irish potato (1) 

Total ª 31 31 30 30 26 26 

*() = Number of respondents 
ªTotal = Number of respondents possible 
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2.3.6 Prevalence of cultivars in the surveyed distr icts 

 

Forty one names of cultivars were mentioned with Chingovwa being the dominant 

cultivar grown in Solwezi and Samfya. Mukakabbolo is dominant in Mazabuka. Further 

investigations revealed that the variety referred to as Kapiri, in Mazabuka is actually 

Chingovwa. This implies Chingovwa, a released cultivar in Zambia, is becoming a 

dominant cultivar even in Mazabuka. It was noted that in most cases a variety is named 

either after the person who brought it to the area or after a place where it came from. A 

considerable number of respondents (64) did not know the names of particular cultivars 

they were growing (Table 2.5). 

2.3.7 Source of planting vines 

 

Most of the sweetpotato planting material is obtained from within the districts. Only one 

farmer from each district mentioned having sourced planting vines from outside the 

district. Materials were sourced from Kapiri Mposhi, Chingola and Kitwe for Mazabuka, 

Solwezi and Samfya, respectively. As indicated earlier, the dominant cultivar in Kapiri 

Mposhi is Chingovwa hence its nickname of Kapiri by the people of Mazabuka. The 

majority of respondents kept their own planting material (26%) while others got it from 

Kaleya Agricultural Station (11%), friends (10%) and other local sources (17%). Only two 

people got the seed from research stations (Table 2.6). The remainder of the sources 

can all be referred to as local vine sources. Hence the local seed sources are very 

important for sweetpotato production with recycled seed playing a major role (Figure 

2.5). 
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Table 2.5 Names of cultivars grown by farmers and the number of times they were 
mentioned in each district 
 

No. Cultivar Meaning of Cultivar/Remark 
Number of 

respondents*  
1 Changachanga - 3 
2 Chapatala - 4 
3 Chingovwa Released variety 54 
4 Chishinde - 1 
5 Chiyinyela - 1 
6 Chumbu mukalamba The big sweetpotato 1 
7 Ifyumbu Name of sweetpotato in Bemba 1 
8 Imbata - 6 
9 Kabalenge - 1 
10 Kabolo - 3 
11 Kabompo Came from Kabompo 1 
12 Kakemba - 1 
13 Kakonko - 4 
14 Kalukuluku - 1 
15 Kalyabalumi Reserved for the husband 10 
16 Kambwalimbwali - 4 
17 Kapasaka - 1 
18 Kapataka - 1 
19 Kapiri Came from Kapiri 28 
20 Kapokola Brought by a policeman 4 
21 Kasimpabasilu Grown by mad people 1 
22 Kasompe - 4 
23 Katendeleka - 1 
24 Konto - 1 
25 Kyapatala - 4 
26 Matembele - 1 
27 Matuwa - 5 
28 Mukahali Brought by wife to Harry 1 
29 Mukakabbolo Brought by wife to Kabolo 27 
30 Mukamanda Brought by wife to Manda 1 
31 Mukamfwilwa Brought by a widow 1 
32 Muntubangezhi Grown by newcomers 1 
33 Munwe umo Has one finger (referring to leaves) 1 
34 Muswete Light skinned 1 
35 Namacushi Poverty striken 1 
36 Namambwe Mrs Mambwe 1 
38 Selumuna - 7 
39 Syanga umbone Plant and you will see 4 
40 Zambezi Released variety 2 
41 Zimbabwe From Zimbabwe 1 

*64 respondents did not know the names of the cultivars they were growing 
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Table 2.6 Sources of sweetpotato cultivars in three districts of Zambia 
 

Percent respondents within district 

Source  variety Mazabuka Solwezi Samfya Total 

Local 19.4 26.9 6.7 17.2 

Kaleya Agricultural Station 32.3 - - 11.5 

Neighbours 6.4 - - 2.3 

Nanga Research Station 3.2 - - 1.2 

Kapiri Mposhi 6.4 - - 2.3 

Friends 9.7 3.9 16.7 10.3 

Own seed 19.4 38.5 23.3 26.4 

Chibalala - - 3.3 1.2 

Samfya - - 16.7 5.8 

Katanshya - - 3.3 1.2 

Luapula river - - 3.3 1.2 

Lubwe  - 3.3 1.2 

Agriculture - - 3.3 1.2 

Kitwe - - 3.3 1.2 

Mwewa - - 3.3 1.2 

Chesembe - - 3.3 1.2 

Relatives - - 3.3 1.2 

Chingola - 3.9 3.3 2.3 

PAM - 3.9 3.3 2.3 

Mansa Research - 7.7 - 2.3 

Maheba - 11.5 - 3.5 

Mumena - 3.9 - 1.2 

N/a 3.2 - - 1.2 

Total 100 100 100 100 
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2.3.8 Source of orange-fleshed sweetpotato and trai ts preferred by consumers 

 

Respondents that had OFSP cultivars were asked where they got vines from. They 

indicated that they had bought (4 respondents), got from friends (19 respondents) or 

obtained the materials from Research Stations (3 respondents) (Figure 2.6). 

Furthermore, the same respondents were asked to comment on what they did not like 

about the OFSP. The majority indicated poor storage, followed by bad smell (6 

respondents) and not good as a vegetable (6 respondents). Wateriness and being 

fibrous came third and fourth, respectively (Figure 2.7). Poor storage was associated 

with weevil infestation whereas bad smell referred to the aroma after boiling. 

  

Figure 2.5: Plot of sweetpotato seed being maintained in a farmer's yard in Mazabuka
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Figure 2.6: Sources of orange-fleshed sweetpotato seed in three districts of Zambia 
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Figure 2.7: Undesirable traits of orange fleshed sweetpotato in three districts of Zambia 

 

2.3.9 Preferred cultivars 

 

Farmers were asked to indicate the variety they preferred most as well as the reason(s) 

for their preference. Chingovwa is the most favoured cultivar in all districts by 67% of the 

respondents, followed by Mukakabolo at 20% (Figure 2.8).  
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Figure 2.8: Farmers' preferred cultivars in three districts of Zambia 
 

According to the results of the survey, the reasons for variety preference by the farmers 

in all the three districts were as described below (Figure 2.9). The most common 

preference among farmers was the level of sweetness of the roots which accounted for 

about 35 % of the respondents followed by the yield of variety at 23%. The joint third 

common reasons for preference were early maturity and good storage at 9% each.  

 

 

Figure 2.9: Farmers' preferences for sweetpotato roots in three districts of Zambia 
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2.3.10 Preferences of children and reasons for pref erence as perceived by their 

parents 

 

The cultivar preference among children (age 5 and below) also confirms that Chingovwa 

is most favoured variety by 72% of respondents followed by Mukakabbolo at 16% 

(Figure 2.10). Varietal preferences are similar to that of adults (Figure 2.9).  

 

Figure 2.10: Cultivars preferred by children in three districts of Zambia 
 

However, unsprisingly children based their preferences mainly on attributes related to 

eating as opposed to agronomic traits. The most favoured trait by children was the good 

taste of the variety at 32% of the respondents and colour of the variety at 10% of the 

respondents. The other traits preferred by children included availability of a variety for 

8% of the respondents. The following attributes were at par with 6% of the respondents 

giving a preference for high yield, high dry mass composition and sweetness (Table 2.7).  
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Table 2.7 Reasons for preference of sweetpotato cultivars by children as perceived by 
adults 
 
 Reasons for preference Frequency Percent Rank 

Used to colour 9 10 2 

Readily available colour (Common) 7 8 3 

Good for marketing 2 2 6 

High yield 5 6 4 

Trying new colour 1 1 7 

High dry mater content 5 6 4 

Good storage 2 2 6 

No stomach problem 1 1 7 

Very soft 1 1 7 

Early maturity 5 6 4 

Easy to grow 1 1 7 

Good taste 28 32 1 

Sweet 5 6 4 

Contain Vitamins 3 3 5 

Learn about OFSP 1 1 7 

Good shape 1 1 7 

No response 5 6 4 

Need for food 1 1 7 

Looks good 1 1 7 

Good texture 2 2 6 

Attracts customers 1 1 7 

Total 87 99  

 

2.3.11 Farmers who changed cultivars 

 

Farmers were asked if they had recently changed cultivars, and the results indicate that 

a number of the farmers (39% in total) had actually changed cultivars. The percentages 

of respondents who changed cultivars within districts were 41.9% in Mazabuka, 42.3% in 

Solwezi and 33.3% in Samfya (Figure 2.11).  The survey results illustrate that the main 
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reason(s) some people had not changed variety especially in Samfya may be attributed 

to non availability of alternative cultivars as most of them were growing Chingovwa.  

 

 

Figure 2.11: Percentage of farmers who changed cultivars within three districts of 
Zambia 
 

The reasons for farmers changing cultivars were various (Figure 2.12). In Mazabuka, 

16% of the respondents indicated that they changed cultivar because the old ones were 

low yielding while others (10%) indicated that the cultivars they were growing were of 

late maturity. Twelve percent of the respondents gave various reasons which included 

lack of planting material (3%), cause heart diseases (3%), small root size (3%) and 

because new cultivars taste better (3%). 

 

Nineteen percent of respondents changed cultivars because the cultivars they were 

growing were low yielding while others (15%) indicated that the cultivars they were 

growing had small root size. Others (8% of the respondents) said they changed cultivars 

because the cultivars they were growing had no market.  
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Figure 2.12: Reasons for abandoning sweetpotato cultivars in three districts of Zambia 
 

2.3.12 Occurrence of malnutrition in families  

 

Respondents were asked to indicate whether they had had incidences of malnutrition in 

their families. Malnutrition incidences were low in Solwezi (7.7%) and Samfya (6.7%). 

More than half of the respondents (51.6%) in Mazabuka had experienced some form of 

malnutrition (Figure 2.13). Fifty nine percent of respondents indicated they had no 

access to supplementary feeding to mitigate against malnutrition. Mazabuka, which had 

the highest number of people who reported malnutrition in families (51.6%), had the 

highest percentage (77.4%) of people accessing supplementary feeding (Figure 2.14). 
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Figure 2.13: Malnutrition incidences in three districts of Zambia 
 

  

 

Figure 2.14: Farmers having access to supplementary feeding in three districts in 
Zambia 
 

Farmers were asked about their knowledge on the importance of vitamin A and 

consuming food which met vitamin A requirements. In Mazabuka and Solwezi districts, 

most farmers (58% and 77%, respectively) expressed ignorance on the benefits of 

vitamin A, whereas in Samfya a larger percentage of the farmers (66.7%) had some 

knowledge on the benefits of vitamin A (Figure 2.15).  
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Figure 2.15: Farmers with knowledge of the benefits of vitamin A in three districts of 
Zambia 
 

 

2.4 Discussion and conclusion 

 

A high incidence of malnutrition was recorded in Mazabuka with more than half of the 

respondents having experienced it in one form or another. This result was corroborated 

by the high percentage of respondents accessing supplementary feeding from health 

institutions to alleviate malnutrition. This result demonstrates that resources are 

channelled first to where the greater need is. Rarely has it been reported that Solwezi 

and Samfya received food relief whereas it is reported almost every year that Mazabuka 

district receives food relief. In addition, results from the survey (Figure 2.15) indicate 

more farmers in Solwezi and Samfya are aware of the benefits of vitamin A than 

Mazabuka. This lack of knowledge may explain Mazabuka respondents reporting a high 

incidence of malnutrition. Therefore, the introduction of high β-carotene cultivars to 

mitigate VAD will be particularly pertinent to the people in Mazabuka. 

 

Sweetpotato is one of the most important crops in large parts of Zambia. Its significance 

in the diets of people can be attested by the fact that sweetpotato has been grown for 

more than 20 years in all the districts surveyed. Its low profile in the food basket of the 

Zambian people is due to the fact that the crop is still considered insignificant to warrant 

gathering information on it. The Central Statistical Office in Zambia does not collect 

information on sweetpotato. However, this survey indicates that it contributes 

significantly to the diet and income generation in many of the households. Since 
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sweetpotato is already contributing significantly to income generation in the three 

districts, the endeavour to reduce VAD by improving the β-carotene content of 

sweetpotato will be successful. The genetic variation among local landraces indicates 

potential for selection of high β-carotene containing OFSP. However, with the 

predominance of popular cultivars like Chingovwa this genetic diversity may be lost. 

Hence, there will be need to release more diverse genotypes so as to conserve the 

remaining genetic diversity and conserve the genes still available with the farmers. 

 

The released variety, Chingovwa, has been used by more than 90% of the respondents 

and has a considerable share of the land under sweetpotato cultivation. At the moment, 

it is the most preferred variety in the districts surveyed. This indicates that when a variety 

is good, its diffusion will take place without much effort from the developers. About 40% 

of the respondents reported having changed cultivars. The change may have resulted 

due to the release of Chingovwa which is being grown by the majority of farmers in the 

surveyed areas. It appears that Chingovwa is generally being distributed without its 

name being changed as normally is the case. This trend would help in tracking the 

spread of the new genotypes in future. Chingovwa was selected as SPN/O in Tanzania, 

released in Malawi in 1986 and named Kenya. In Zambia, it was released in 1993. 

 

Sweetpotato vines are obtained from various sources within a district. Predominant 

among these sources are own, friends and relatives. It appears that whatever the source 

of planting material, once farmers have obtained a particular cultivar, they multiply it on-

farm. Hence, buying has not featured as a source of planting materials. However, in the 

case of OFSP, few farmers (four only) reported having bought the planting materials. 

Sharing of planting materials among friends and relatives may be an indication that 

farmers are particular about the sources of their planting materials and the traits they 

posses. They are more likely to believe a relative than an outsider concerning the 

attributes of the planting material. There is an opportunity for a multiplication system to 

be created in these districts to supply planting materials to the farmers at the beginning 

of the rainy season. Most farmers did not have adequate irrigation facilities to multiply 

enough seed to fully plant their fields at the beginning of the planting season. 

 

The majority of farmers chose sweetpotato cultivars based on the organoleptic 

properties of the variety, yield and storage. The organoleptic properties included root 
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fibre content, aroma, texture, wateriness and colour of the flesh. Traits related to yield 

included number of roots, root size, vegetable production and time of maturity. Storability 

referred to resistance to pests such as weevils, and diseases causing rots.  By 

implication, the disliked attributes will need to be selected against if new cultivars are to 

be accepted by farmers and consumers in these areas; though the small sample size of 

the survey must be borne in mind in terms of full representation of all farmers and 

consumers.  

 

In this PRA, an assessment of the importance of sweetpotato in the diets of the people 

in relation to other crops was done. Also, an attempt was made to obtain the 

respondents’ input on the traits that determine farmers’ choices of sweetpotato 

genotypes for specific end-uses. This study was carried out to add value to the breeding 

programme as the data has provided benchmarks for genotype selection. 

 

Some of the selection criteria identified in this study relate to root storability, taste, 

fibrousness, dry mass percentage, leaves that make a good vegetable and resistance to 

pests and diseases. All these attributes will be used as selection criteria in the breeding 

programme.  
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Chapter 3:  Evaluation of sweetpotato germplasm for  yield and β-

carotene based on farmer preferences 

 

Abstract 

 

Sweetpotato is cultivated across a wide range of agroecological conditions. The 

objective of this study was to collect and evaluate sweetpotato germplasm for yield traits 

i.e., storage root yield, biomass, and harvest index (HI) and nutritional traits (i.e., root dry 

mass (RDM) and β-carotene content) in order to select parents for a β-carotene 

breeding programme. Sixty four germplasm accessions collected in four districts of 

Luapula Province in Zambia were evaluated and compared at Mansa Research Station 

in an 8 x 8 triple lattice experimental design. Genetic variation was detected for the traits 

of interest indicating that improvement was possible.  Based on a selection index for HI, 

RDM, and good storability, 10 best performing accessions were selected for further 

evaluation and possible release and use as parents in a polycross. Mean root dry mass 

composition of the 10 selected parents was 32%, which was higher than the 28% of the 

popular cultivar Chingovwa.  The HI of the selected parents was more than 80% and 

their mean root fresh yield was 3 t above the grand mean 8.86 t ha-1.  The selected 

parents have since been incorporated in a polycross. 

 

3.1 Introduction 

 

With the importance of maize (Zea mays L.) declining both in area and productivity in 

Zambia, production of other crops such as sweetpotato has been increasing. For 

example, between 1989 and 1999, the total area planted to sweetpotato increased by 

54% (FAO/WFP, 2002). According to WHO (1995), vitamin A deficiency (VAD) is a 

problem of public health significance in Zambia. Subclinical VAD is significant, with a 

prevalence rate of 13.6% among 6 to 12 year olds. A survey reported in this thesis 

(Chapter 2) indicated a considerable number of respondents expressing ignorance on 

the benefits of vitamin A. Therefore, increasing the levels of vitamin A precursors in the 

human diet through increased consumption of orange-fleshed sweetpotato (OFSP) will 

make a significant contribution to improved health. It has been estimated that 
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consumption of bio-fortified OFSP in countries such as Uganda could reduce the burden 

of VAD by 40 to 66% as measured by the disability-adjusted life years1 (Yanggen, 2005).   

 

Sweetpotato is currently the second most important root crop in Zambia. Economic 

pressures that resulted from the Structural Adjustment Programme that was 

implemented by the government of Zambia in the late 90’s and the beginning of this 

century caused food deficits, especially in urban areas (Simatele, 2006). As a coping 

strategy, many urban households turned to sweetpotato as an alternative food, 

especially for breakfast. Small-scale farmers in rural areas and some urban households 

have taken advantage of the situation and are now growing sweetpotato as a cash crop 

for sale to urban dwellers. Sweetpotato is more widely grown in the country than 

cassava, albeit on smaller plots per producing household. It is traded widely in the 

country and demand is increasing. It is assumed that sweetpotato will also directly 

substitute for maize nation-wide, thus further reducing the national maize requirements 

(FAO/WFP, 1998). 

 

Though sweetpotato has all these advantages, it is not without problems. Among the 

constraints in Zambia are low yields resulting from lack of planting materials and 

improved cultivars. The roots generally have poor storability and most of the roots are 

not marketable due to weevil damage and unacceptable root shape. Available 

genotypes take long to mature and most do not do well under drought stress (Chiona, 

1998).  

 

The Zambian sweetpotato breeding programme is at a rudimentary stage. The 

genotypes under evaluation are mainly introductions or crosses of introductions from the 

International Potato Center through their Sub Saharan Africa Regional Office in Kenya. 

Among these introductions are OFSP genotypes with a low dry mass (Hagenimana et 

al., 1999) which are less desirable (Chapter 2). To widen the genetic base of the 

breeding lines and to facilitate selection of parents for a β-carotene breeding 

programme, a collection of germplasm was undertaken. The germplasm collected was 

evaluated in a preliminary trial and selections made based on the agronomic traits. 

 

                                                 
1 Daily-adjusted life years combines the years of life lost to death and the years of life spent with 
disability to give an overall estimate of the burden of disease. 
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3.2 Materials and Methods 

3.2.1 Sweetpotato germplasm collection 

 

Sweetpotato germplasm was collected in the Mwense, Kawambwa, Nchelenge, and 

Samfya districts of Luapula Province in Zambia in June and July 2006 (Figure 3.1). The 

collecting teams were organized to include two agricultural research workers and one 

extension worker. The extension workers interviewed the farmers to obtain indigenous 

knowledge and contextual data. Agricultural research workers collected germplasm and 

carried out the preliminary morphological characterisation.  

Figure 3.1: Sites of collecting sweetpotato germplasm in Luapula Province of Zambia  
 

 

To select target areas for germplasm collection, the production statistics from each 

agricultural district office were reviewed. Sweetpotato production is for both human 

(roots and leaves) and animal (leaves) consumption in the four districts. Therefore, 

 Samfya district sites 

 Nchelenge district sites 

 Mwense district sites 

 Kawambwa district sites 
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cultivars that produce high quantities of vines along with the good storage-root 

production are the preferred genotypes in these areas. Collections in Mwense and 

Kawambwa districts were concentrated on the plateau (S 10° 25’ 0”, E 29° 0’ 0”; Altitude 

1175 masl) as this is where most sweetpotato is grown in these districts of Zambia. For 

Nchelenge district, most samples were collected in the valley area (S 9° 0’ 0”, E 29° 0’ 

0”; Altitude 919 masl). In Samfya, collection was concentrated in the Katanshya, Tuta 

road and Lubwe (Mwewa) areas.  

 
At least three vine cuttings were obtained for each accession. The vines were easier to 

collect and less bulky to transport than roots. The cuttings were wrapped in a moist 

tissue paper and placed in transparent plastic bag that had aeration holes punched in 

them. Preliminary morphological characterization of leaf, vine and storage root was done 

at the collecting site, using Huaman’s (1991) "Descriptors for Sweetpotato". This 

characterization was useful for obtaining preliminary data and for separating accessions 

that had been accidentally mixed up. Each accession was carefully labelled and given a 

code identifying the district and the farmer providing the accession. Additional 

information about the accessions was collected using a simple passport data sheet, to 

help understand why the farmers keep the cultivars. Farmers’ knowledge helped to 

classify the accessions according to traits such as taste, sweetness, and quality after 

cooking. Information on special usage, such as weaning food was also obtained. 

 

3.2.2 Germplasm screening and evaluation 

 

Seventy accessions were collected and were multiplied at Mansa Research Station (11° 

14’S and 028° 57’E), Mansa, Zambia. Multiplication involved planting three to four node 

cuttings vertically at a spacing of 10 x 10 cm in nursery beds 1 m wide. Two-thirds of the 

cutting was inserted into the soil. However, six accessions did not produce sufficient 

planting material for evaluation. As a result, only 64 accessions were evaluated in an 

8 x 8 triple lattice design with three replications. Each plot comprised of two 5 m long 

ridges spaced 1 m apart and were approximately 20 cm in height. Two-thirds of tip-

cuttings about 20 to 30 cm in length were inserted into a ridge at 25 cm intra-row 

spacing. The trial was planted on 5 December 2006 when the rains stabilised. Soil 

analysis was conducted to determine the nutrient status of the trial site (Appendix 3.1). 

No fertilizers were applied to the trial. Weeding was done by hand hoes as required.  
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Morphological characterisation was carried out for all accessions maintained in the 

collection. Observations were made 80 to 100 days after planting. The shape of mature 

leaves, the pigmentation of the abaxial leaf, petiole pigmentation and length, vine 

internode diameter and length, vine pigmentation, plant type, leaf colour, and storage 

root skin and flesh colour were used as indicators as described by Huaman (1991). The 

colour chart developed at CIP was used to record storage root skin and flesh colour. 

 

Roots were harvested at 6 months after planting using hand hoes. The number of plants 

harvested, number of marketable and unmarketable roots and their yields were 

recorded. Root morphological characterization was done at harvest. Root samples were 

obtained for dry mass determination. Five hundred gram samples were dried in a forced 

draught oven for 72 h until they attained constant mass. Scores for root cracking, weevil 

damage and mole (Cryptomys amatus) damage were recorded (Table 3.1).  
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Table 3.1 Score definitions for sweetpotato root cracking, weevil damage and mole 
damage 
 

Definition   
Score  Cracking  Weevil damage  Mole damage  

 
Reaction  

1 No symptom No symptom No symptom Highly resistant 
2 1-5 roots with 

cracks in a plot of 
20 plants 

1-5 roots with 
weevil damage in 
a plot of 20 plants 

1-5 roots with mole 
damage in a plot of 
20 plants 

Resistant 

3 More than five 
roots affected 
slightly (5-10% of 
root area) 
 

More than five 
roots damaged 
slightly 
(5-10% of root 
area) 

More than five 
roots damaged 
slightly (5-10% of 
root area) 

Moderately 
resistant 

4 All roots affected 
moderately (11 - 
25% of root area) 
 

All roots damaged 
moderately 
(11 - 25% of root 
area) 

All roots damaged 
moderately 
(11 - 25% of root 
area) 

Susceptible 

5 All roots affected 
severely (>25% of 
root area) 

All roots damaged 
severely (>25% of 
root area) 

All roots damaged 
severely (>25% of 
root area) 

Highly 
susceptible 

 

3.2.3 Data Analysis 

 

The data for yield and yield traits and some biotic stresses were analysed using the 

REML (residual maximum likelihood) procedure in Genstat version 11.1 (Payne et al., 

2007). Raw data for root cracking, weevil damage, mole damage, sprouting, and root 

fresh colour exhibited skew distribution and were therefore transformed. Log 

transformation was performed on root cracking and sprouting data, exponential 

transformation (еx, where x is the observed value) on weevil damage data, and square 

root transformation on mole damage and root fresh colour data. All analyses were 

performed on transformed data. Mean squares (Table 3.3) and means (Appendix 3.3) of 

the traits are presented. 

 

3.3 Results  

3.3.1 Sweetpotato germplasm collection 

A total of 70 sweetpotato accessions were collected in four districts of Luapula Province, 

of which 13 were orange-fleshed genotypes and the rest white-fleshed. There was 
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considerable variation in the accessions collected. Detailed information about each 

collected accession and the attributes the farmers considered important for each 

accession were recorded (Appendix 3.1). High yield and high RDM ranked highly as the 

most preferred traits (Table 3.2).  

 

Table 3.2 Reasons provided by farmers for using a particular sweetpotato genotype in 
order of preference 
 
Ranks for preferences  Ranks for uses  

Rank  Reasons for preferring genotypes  Rank  Uses of the genotypes  

1 

2 

3 

4 

5 

6 

7 

8 

8 

High yield 

High root dry mass 

Big roots 

Good taste 

Not fibrous 

Good storage 

Good for leaves 

Planting materials readily available 

Source of Vitamin A 

1 

2 

3 

4 

5 

6 

7 

8 

Boil for breakfast or snack 

Leaves for vegetable 

Dried snack (Insemwa) 

Cooked with groundnuts as a meal 

Fried snack 

Source of income 

Roasted snack 

Control termites 

 

3.3.2 Germplasm screening and evaluation 

 

Only 64 of the 70 genotypes collected were ultimately analysed. Several variables were 

evaluated for each of the 64 accessions, namely cracked roots (CK), weevil damage 

(WD), mole damage (MD), sprouting (SP), harvest index (HI), number of roots (both 

marketable and total), yield of roots (both marketable and total), vine yield (above-

ground biomass) and colour of both flesh and skin. Morphological characterisation was 

done as well but the results have not been presented in this document. The REML 

analyses for the traits revealed significant differences among the accessions except for 

MD and SP (Table 3.3).  
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Table 3.3 REML analysis of selected traits of 64 sweetpotato accessions evaluated in an 
8 x 8 triple lattice design 
 
Traits ndf‡ Wald 

statistic ◊◊◊◊ 
ddf† 

statistic 
F probability  

Weevil damage (score)* 63 97.41 1.55 0.020 
Vine yield (t ha-1) 63 144.46 2.29 <0.001 
Total roots (ha-1) 63 213.08 3.38 <0.001 
Total plant yield (t ha-1) 63 337.98 5.36 <0.001 
Sprouting (score)* 63 73.08 1.18 0.219 
Total root yield (t ha-1) 63 365.68 11.03 <0.001 
Root flesh colour (score)* 63 695.15 11.03 <0.001 
Marketable root yield (t ha-1) 63 337.37 5.36 <0.001 
Marketable roots (number ha-1) 63 134.02 2.13 <0.001 
Mole damage (score)* 63 71.87 1.14 0.264 
Harvest index 63 205.80 3.27 <0.001 
Root dry mass (%) 63 261.13 4.14 <0.001 
Cracking (score) 63 110.31 1.75 0.004 
*REML analyses performed on transformed data; ‡ndf=numerator degree of freedom; †ddf=denominator 
degree of freedom; ◊Wald Stastic is equivalent to a Mean Square in ANOVA 
 
Table 3.4 Mean, standard error, and range of measured traits of 64 sweetpotato 
accessions at harvest 
 

Statistic   
Trait  

Mean S.E. Minimum  Maximum  CV (%) 

Cracking (score)* 0.10 0.04 0 0.36 37.4 
Root dry mass (%) 34.57 0.38 22.50 47.50 8.1 
Harvest index  0.73 0.02 0.1071 0.95 13.4 
Marketable root yield (t ha-1) 8.21 0.54 0.25 20.63 28.5 
Marketable root number ha-1 41 924 4527 2 500 103 750 39.1 
Root flesh colour (score)* 0.24 0.02 0 2 31.2 
Total root yield (t ha-1) 8.86 0.55 0.38 21.75 25.1 
Sprouting (score)* 0.06 0.01 0 0.3  
Total root number ha-1 65 186 7993 5 000 278 750 36.7 
Vine yield (t ha-1) 2.99 0.66 0.25 13.75 47.3 
Weevil damage (scores)* 15.35 4.90 2.72 43.09 38.5 
Mole damage (score)* 1.30 0.05 1.00 1.72 41.4 

*Statistics based on transformed data 
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Thirty two of the accessions had a WD score of less than two. The other 32 had scores 

between 2 and 4 (Figure 3.2). Root CK were predominant (score 2 to 3) in 8% of the 

accessions. The other genotypes had scores of less than 2 (Figure 3.3). 
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Figure 3.2: Frequency distribution of weevil damage scores for 64 sweetpotato 
accessions 
 
 
 

 
Figure 3.3: Frequency distribution of root cracking scores of 64 sweetpotato accessions 
 

The majority of the accessions (57) were cream or white with very few orange types. 

There were more white types (37) than cream types (20). In general, some variability 

was observed in root flesh colour though the data were skewed towards the white flesh 

colour (Figure 3.4). 

 



61 
 

 

Figure 3.4: Root orange flesh colour scores of 64 sweetpotato accessions 
 

The HI values for most of  the accessions were above 0.5. In fact, more than 50% of the 

accessions had a HI greater than 0.7. The HI of 0.5 and above is desirable as it means 

more photosynthates were allocated to the economic part of the plant. In this case, only 

two accessions had unacceptable HI (Figure 3.5). 

 

 

Figure 3.5: Harvest index of 64 sweetpotato accessions 
 

Root dry mass (RDM) was greater than 30% in 58 accessions. About half (31) of the 

accessions recorded RDM >35%. However, some of the orange fleshed genotypes were 

among the low RDM (<30%) accessions. In addition, it was observed that six accessions 

had very high RDM (>40%) (Figure 3.6). 
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Figure 3.6: Root dry mass of 64 sweetpotato accessions 
 

Thirty four of the accessions had vine yields of less than 3 t ha-1 (on a fresh mass basis). 

Conversely, there were three accessions with more than 6 t ha-1 (Figure 3.7). The 

number of marketable roots for 84% of the accessions was more than 30 000 ha-1 (at 

least one root per plant). Sixteen percent of the accessions had less than 30 000 

marketable roots ha-1 (Figure 3.8). The mean marketable root yield ranged from 1.2 to 

15.6 t ha-1 (Appendix 3.2). Thirty eight of the accessions yielded above 8 t ha-1 (above 

average) (Figure 3.9). 

 

 

 

Figure 3.7: Vine yield for 64 sweetpotato accessions 
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Figure 3.8: Distribution of marketable root numbers per hectare (‘000) of 64 sweetpotato 
accessions 
 

 

 

Figure 3.9: Marketable root yield for 64 sweetpotato accessions 
 

3.3.3 Selection of preferred genotypes from the ger mplasm accessions 

 

The following selection index (SI) based on farmer preferences was applied to the 

replicate means of the selected traits: 

 

SI = 5P1 + 4P2 + 3P3 – 2P4 + P5 

Where:  P1 = genotype root yield (t ha-1) 

 P2 = root dry mass % 

 P3 = marketable root number 

 P4 = Weevil damage (transformed scores) 

 P5 = vine yield (t ha-1) 
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The numbers (5, 4, 3, -2, 1) represent the weights in terms of importance accorded to 

each trait as determined by farmer preferences (Baker, 1986). For example, weevil 

damage had a negative value because weevil damage is obviously not desirable. The 10 

best performing accessions based on the selection index were selected as parents for 

the β-carotene breeding programme (Table 3.5). Among the 10 best accessions were 

three orange-fleshed genotypes (No name, Carrots, and Carrots Mwewa). These 10 

best accessions were also used as parents in a polycross (Chapter 5). 

 

3.4 Discussions and Conclusions  

 

The aim of this study was to identify superior genotypes that could be used as parents in 

a breeding programme to produce progeny that are high in β-carotene and dry mass 

while maintaining preferred consumer attributes. The fact that orange-fleshed 

sweetpotato are already grown by farmers should mean that orange fleshed, high dry 

mass genotypes arising from the breeding programme will be readily accepted, 

depending on combinations with other traits. 

 

Farmers provided their opinion on the preferred attributes for sweetpotato genotypes 

they utilize. Their responses related to the taste of the genotypes as well as to the 

survival of the plants in the field. Preferred taste attributes were: sweetness of the roots; 

high RDM; acceptability of the leaves; and low root fibre. Survival attributes were: ready 

availability of vines and leaf retention. The implications of these results are that in 

selecting new sexual recombinants, taste and survival are priority traits for their 

acceptance by farmers and consumers.  
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Table 3.5 Ten sweetpotato accessions selected for use as parents in a breeding programme ranked according to a selection index 
 

Accession 

Genotype Number ID Name 

Total root 

yield (t ha -1) 

Root dry 

mass (%) 

No of 

marketable 

roots ha -1 

Weevil damage 

score* Vine yield (t ha -1) 

Selection index 

score 

52 13K  No Name 6.29 27.32 80990 1.833 1.02 243069 

4 3K Matembele 11.78 34.70 68177 1.542 2.46 204720 

2 12N Munwe umo 11.93 25.90 68021 3.562 1.27 204150 

15 1M Matembele 12.48 31.67 66979 2.625 2.50 201082 

29 15S Kabalenge 13.61 30.91 65130 1.729 3.62 195574 

64 6S Kasompe 10.50 34.29 59310 3.062 3.70 178077 

34 14N No Name 13.94 30.83 57253 1.750 1.55 171939 

19 9S Carrots  14.99 33.46 56979 2.146 2.26 171108 

40 13S Carrots Mwewa 15.40 35.21 56693 3.188 2.91 170245 

56 3S Katansha   11.29 36.56 55898 3.625 2.54 167821 

  Mean 12.22 32.08 63543 2.510 2.38  

*Weevil damage score 1 = No symptom, 2 = 1-5 roots with weevil damage in a plot of 20 plants, 3 = Many roots slightly damaged  
(5-10% of root area), 4 = All roots moderately damaged (11-25% of root area), and 5 = All roots severely damaged (>25% of root area). 
Exponential transformed scores.  
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There was considerable variation in all the measured attributes, except for MD and SP 

which could be exploited for genetic gain in future breeding programmes. There were 31 

accessions that had relatively low levels of weevil damage (Figure 3.2). Ninety two 

percent of the accessions had relatively low cracking levels (Figure 3.3). Weevil damage 

and cracking make sweetpotato genotypes undesirable. The results indicate that there 

are genotypes that may serve as sources of resistance to weevils and cracking. 

Although moderate levels of resistance to the sweetpotato weevil have been recorded 

(Jones et al., 1983; Talekar, 1987), two critical problems have prevented meaningful 

levels of resistance being achieved. Firstly, the expression of several key genes 

controlling resistance appear to be environmentally modulated, thus the level of 

resistance can readily change over time and location (Son et al., 1991; Marti et al., 

1993a, b). Secondly, the minimal success achieved via years of breeding for weevil 

resistance suggests that it is doubtful that a single biochemical determines 

resistance to weevils. 

 

There was wide variation in root flesh colour though more accessions were white-fleshed 

than the other colours (Table 3.4; Figure 3.4). This finding confirms Kays’ (1985) 

assertion that the genepool of sweetpotato contains a wide range of root flesh colours 

that can be selected relatively easily. In addition, there are a number of studies related to 

sweetpotato nutritional traits that indicate a considerable variability in sweetpotato 

germplasm for food quality traits that include flesh colour (Colllins, 1990; Woolfe, 1992; 

Ravindran et al., 1995).  

 

The genotypes collected from farmers had very high dry mass composition clearly 

indicative of farmers’ preferences. However, one orange-fleshed accession had a very 

low dry mass of 18% confirming the negative association between these traits. This 

inverse relationship between orange flesh and high dry mass poses a considerable 

challenge to a sweetpotato breeding programme (Ameny and Wilson, 1997 and 

Hagenimana et al., 1999). However, with adequate genetic variability available, the 

chances of successfully selecting for an increase in both traits are considerably 

improved. The likelihood of success is supported by the fact that of the 10 selected 

accessions to be used as parents, two dark orange-fleshed accessions had high root dry 

masses of 33 and 35%. However, their relatively low RFY of 10.5 and 15 t ha-1 needs to 
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be improved. The significant, negative association between RDM and RFY has been 

reported by Tsegaye et al. (2006).   

 

Harvest index for the 64 accessions was generally high and was associated with vine 

yield, number and yield of marketable and total roots. This is expected as the statistic is 

derived from adding the yield of vines and roots. As the vine yield increases the HI 

declines as photosynthates that would have gone to develop the roots are utilized to 

develop aboveground vegetative mass. Hence, the root yield is reduced and 

consequently the HI. 

 

Nine of the 10 selected accessions had HI over 0.8, with the exception recording 0.7. 

Two unselected accessions had HI of less than 40%. The average for all the accessions 

was about 0.7. A balance between root yield and vine yield is required if a genotype is to 

be used both for roots and leaves. A very high HI may result in reduced availability of 

vines for planting. 

 

Average RDM percentage for the 10 selected parents was 32%, which was higher than 

28% of the popular cultivar Chingovwa. The average RDM percentage for the 64 

accessions was about 35% indicating that a number of accessions not selected by the SI 

had RDM above 35%, but these genotypes had other undesirable traits. The high mean 

RDM percentage for all the accessions relative to cultivar Chingovwa indicates that 

potentially the RDM of high β-carotene genotypes could be significantly improved. This 

argument stems from two genotypes that combined high RDM and high β-carotene that 

were identified in the collection. Therefore, the unselected accessions will also be 

maintained for use in the breeding programme. 

 

The selection index greatly simplified and speeded up the identification of genotypes that 

had desirable combinations of the important traits under consideration. It is expected 

that breeding for any one of these traits will necessitate co-selecting for the other traits. 

Although the objective of this study is to develop genotypes with high root dry mass 

combined with orange root flesh, the other important traits will not be compromised in 

the process as careful application of the selection index will ensure selection pressure is 

also applied to them. 
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Appendices 

Appendix 3.1 Soil nutrient analysis of the trial site at Mansa Research Station, Luapula Province, Zambia 
 
Analyte pH CaCl 2 Org. C % N% P mg kg -1 K me% Ca me% Mg me% Zn mg kg -1 Fe mg kg -1 Mn mg kg -1 Cu % 

Value 4.6 1.5 0.11 4 0.05 0.25 0.22 Trace 3.91 2.22 0.07 
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Appendix 3.2: General farmer profile for sweetpotato accessions collected in Luapula Province, Zambia 
        

Colour of 
genotype 

Date* District Name of 
farmer 

Gender Chief / 
Village 

Genotype Sample 
no. 

Source 
 of 
cultivar 

Skin Flesh 

Use for the 
genotype 

Farmers’ remarks on 
each genotype 

28/6/06 
 
 

Mwense Mubanga 
L. James 

M Mwenda  
 
Fisheries 
Camp 

Matembele 1 M From 
local 
farmer 

Cream White Mainly as a 
vegetable 
Roots are boiled  

It is not high yielding; 
produces more leaves 
for vegetable; farmer 
likes small leaves for 
vegetable 

28/6/06 
 
 

Mwense Chola 
Queen 
Chenga 

F Mwenda  
 
Rural 
Health 
Centre 

Chimpempe 2 M From 
friend 
locally 

Cream Cream 
& 
purple 

Mainly boiled to eat 
as snack and also 
processed into 
insemwa 

Does not rot; sweet; 
high dry mass and big 
roots 

28/6/06 
 
 

Mwense Eliza 
Mambwe 

F Mwenda 
 
Luminu 
farm centre 

Chilamba 3 M Parent 
 (mother) 

Red White Boiled, process 
insemwa, 
vegetable 

Sweet when cooked; 
stands the cold hence 
provides vegetable 
throughout the year and 
high dry mass 

28/6/06 
 
 

Mwense Milika 
Mwila 

F Mwenda 
 
Bwalya 

No name 4 M Nearby 
village 

Red Yellow Boiled, cooked with 
peanut 

Has big leaves; sweet; 
no rotting; high yielding; 
high dry mass 

28/6/06 
 
 

Mwense Milika 
Mwila 

F Mwenda 
 
Bwalya 

Kandolo 5 M Friend Red White Boiled, cooked with 
peanut, vegetable 

Good for vegetable;  
high dry mass; flat taste; 
high yielding; rots fast 

28/6/06 
 
 

Mwense Mwansa 
Jeffrey 

M Mwenda 
Mukanga 
Resettleme
nt scheme 

No name 6 M Friend 
within the 
village 

Red Light 
orange 

Boiled, cooked with 
peanut, vegetable 

Does not shed leaves 
fast; high yield 

3/7/06 
 
 

Mwense Chibanda 
Erica 

F Kanyembo 
Chibanda 

Kolwezi 7 M Friend in 
Mulundu  

Red Yellow Boiled, cooked with 
peanut 

High yielding 

28/6/06 
 
 

Mwense Johnson 
Mpashi 
(CEO) 

M Mwenda 
Mukonshi 
camp 

No name 8 M Valley – 
mulundu 
area 

Cream Cream 
 
 

Boiled, cooked with 
peanut, vegetable 

High yielding, high dry 
mass; flat taste; 
spreading type 

*Date of acquisition 
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Appendix 3.2 (Continued) 

 

Colour of 
genotype 

Date District Name of 
farmer 

Gender Chief / 
Village 

Genotype 
 

Sample 
no. 

Source 
 of 
cultivar Skin Flesh 

Use for the 
genotype 

Remarks on the 
genotype by farmer 

28/6/06 
 
 

Mwense Johnson 
Mpashi 
 
(CEO) 

M Mwenda 
Mukonshi 
camp 
 

Chilamba 9 M Friend 
within the 
area 

Red White Mainly for 
vegetable 

Spreading type with 
small leaves that are 
good for vegetable 

28/6/06 
 
 

Mwense Johnson 
Mpashi 
 
(CEO) 

M Mwenda 
Mukonshi 
camp 
 

Chilamba 10 M Friend 
within the 
area 

Red White Boiled, cooked 
with peanut, 
vegetable 

Prone to weevil 
damage; good for 
vegetable; high dry 
mass; big roots; gets 
established well and 
planting material 
preserves well in the 
soil 

28/6/06 
 
 

Mwense Johnson 
Mpashi 
 
(CEO) 

M Mwenda 
Mukonshi 
camp 
 

No name 11 M Found in 
the field 
as a weed 

Cream Cream Roots are boiled   Low yielding 

28/6/06 
 
 

Mwense Johnson 
Mpashi 
 
(CEO) 

M Mwenda 
Mukonshi 
camp 
 

No name 12 M Valley 
Mulundu 
area 

Red Light 
orange 

Roots are boiled  Tastes good – no fibre, 
high dry mass, high 
yielding, root is deep 
rooted- makes 
harvesting difficult as 
the roots get injured 

28/6/06 
 
 

Mwense Johnson 
Mpashi 
 
(CEO) 

M Mwenda 
Mukonshi 
camp 
 

No name 13 M Cannot 
trace 

Red Light 
orange 

Boiled together 
with other 
cultivars, process 
chips  

Low dry mass, small 
roots and high yielding 

29/6/06 
 
 

Kawamb
wa 

Elizabeth 
Muleba 

F Mushota 
 
ShiLemmy 

Kandolo 1 K Own seed Red White Boiled  
insemwa 

High yielding, good for 
insemwa – it dries well 
& does not get mouldy 
in store, not fibrous and 
vines do not dry easily 
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Appendix 3.2: (Continued) 

 

Colour of 
genotype 

Date District Name of 
farmer 

Gender Chief / 
Village 

Genotype 
 

Sample 
no. 

Source 
 of 
cultivar Skin Flesh 

Use for the 
genotype 

Remarks on the genotype 
by farmer 

29/6/06 
 
 

Kawambwa Simon  
Bwalya 

M Mushota 
 
Shilemmy 

Kandolo 2 K Own 
seed 

Purple White Boiled 
Vegetable 

Big roots, produces more 
planting material, high 
yielding, roots are fibrous, 
vines are used to control 
termites in a storage bins – 
vines are first placed at the 
base of the bin and the top 
part is plastered with mud. 
This makes the base termite 
proof. 

29/6/06 
 
 

Kawambwa Simon 
 Bwalya 

M Mushota 
 
Shilemmy 

Matembele 3 K Own 
seed 

Cream Cream Mainly grown 
for vegetable 

Depending on soil fertility, 
roots grow big, yield is 
medium 

29/6/06 
 
 

Kawambwa Danken 
Mulenga 

M Mushota 
Tea 
Estate- 
Luena 
block 

Kandolo 4 K Lengwe 
Area 
from 
friend 

Red White Insemwa 
Vegetable 
Boiling 

High yielding; takes long to 
mature; resistant to diseases; 
high dry mass; not fibrous & 
vines do not dry 

29/6/06 
 

Kawambwa Biswell  
Mpundu 

M Kabila 
Lengwe 
area  
Chiyeye 

No name 5 K Valley 
area  
from 
relative 

Cream White Boiled plain 
Boiled with 
peanut butter, 
fried 

High dry mass, vines do not 
dry, bid roots, vines break 
easily when folding 

30/6/06 Kawambwa Yolum  
Kasongo 

M Munkanta 
Lupili -  
town 
centre 

Kandolo 6 K Friend 
within 
the 
area 

Red White Leaves for 
roots 
Boiled as 
snack 

Low dry mass; a bit fibrous; 
takes long to mature; 
produces leaves for 
vegetable throughout the 
year, has been planted in the 
dambo, does not get very 
stressed in cold season. 

30/6/06 Kawambwa Lillian 
 
Ntalasha 

F Munkanta 
Fruit 
nursery 
Compound 

No name 7 K Own 
seed 

Red White Boiled snack, 
Vegetable, 
chips 

Does not rot, high yielding, 
big roots, high dry mass, not 
fibrous 

30/6/06 Kawambwa Lillian  
Ntalasha 

F Munkanta 
Fruit 
nursery 
Compound 

No name 8 K From 
farm 
institute 
in 
Mansa 

Cream Light 
orange 

Snack- fried & 
boiled 

Sweet 
high yielding 
Not fibrous 
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Appendix 3.2: (Continued) 

 

Colour of 
genotype 

Date District Name of 
farmer 

Gender Chief / 
Village 

Genotype 
 

Sample 
no. 

Source 
 of cultivar 

Skin Flesh 

Use for 
the 
genotype 

Remarks on the 
genotype by farmer 

30/6/06 Kawambwa Lillian 
 Ntalasha 

F Munkanta 
Fruit nursery 
Compound 

Kandolo 9 K Own seed Red White Boiled & 
eaten as 
snack 
Vegetable 
Insemwa 

High yielding; 
Does not rot 

30/6/06 Kawambwa Lillian  
Ntalasha 

F Munkanta 
Fruit nursery 
Compound 

Kandolo 10 K Own seed   Boiled & 
eaten as 
snack 
 

High yielding; 
Produces very big 
leaves 
 

30/6/06 Kawambwa Yolum  
Kasongo 

M Munkanta 
Lupili -  town 
centre 

Kandolo 11 K Own seed    Will be observed at the 
research station, has 
not followed the 
genotype closely to 
know it’s traits 

30/6/06 Kawambwa Elbilian 
Chongo 

F Mutondolo 
Totolo 

Kandolo 12 K Own seed  Red Cream Insemwa 
Boiled 

Low yield;  high dry 
mass & not fibrous 
 

30/6/06 Kawambwa Elbilian  
Chongo 

F Mutondolo 
Totolo 

No name 13 K From 
Agriculture 

Copper Orange Boiled Yields high, flat taste 

30/6/06 Kawambwa Margie  
Lyonze 

F Kala 
Refugee 
Camp 

Matembele 
banji 

14 K Congo DR Cream Cream Vegetable Like small leaves for 
vegetable 

30/6/06 Kawambwa Kamona  
Kazi 
 

F Kala 
Refugee 
Camp 

Kandolwa 15 K Congo DR Cream  White Boiled, 
fried & 
leaves for 
vegetable 

high yielding 

30/6/06 Kawambwa Mutono  
Kizyala 

F Kala 
Refugee 
Camp 

Matembele 
bangi 

16 K Congo DR Cream White Vegetable 
 
 

Low yielding of roots 

30/6/06 
 
 

Kawambwa Kibaya F Kala 
Refugee 
Camp 

Don’t know 17 K Nearby 
village- 
Chungu 

  Boiled 
Insemwa 

Big roots, high dry 
mass  
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Appendix 3.2: (Continued) 

 

Colour of 
genotype 

Date District Name of 
farmer 

Gender Chief / 
Village 

Genotype 
 

Sample 
no. 

Source 
 of 
cultivar Skin Flesh 

Use for 
the 
genotype 

Remarks on the genotype by 
farmer 

1/7/06 Nchelenge Florence  
Katebe 

F Kanyembo 
Chomba 

Chintobenge 1 N Parent, 
within  

Cream White Boiled 
Sold 

High yielding, does not rot, not 
fibrous, dry mass, sweet & big 
roots 

1/7/06 Nchelenge Stain 
Chilufya 

M Kanyembo 
Chabilikila 
sub-research 
station 

Don’t know 2 N Weed Cream Cream Boil, sell High dry mass, sweet, not 
fibrous, rots when harvesting is 
delayed 

1/7/06 Nchelenge Stain 
Chilufya 

M Kanyembo 
Chabilikila 
sub-research 
station 

Ndola 3 N Own 
seed 

Red White Vegetable, 
insemwa, 
boiled 

Sweet, stores well in the soil;  
planting vines available 

1/7/06 Nchelenge Mumpa  
Chipenya 

M Kanyembo 
 
Chabilikila 

Chimpempe 4 N From 
friend 
within 

Cream Yellow Insemwa, 
boiled, 
roasted, 
vegetable 

Depending on soil fertility, roots 
get big, high dry mass, very 
sweet, not fibrous, long roots – 
good shape 

1/7/06 Nchelenge Mumpa  
Chipenya 

M Kanyembo 
 
Chabilikila 

Kalukuluku 5 N Own 
seed 

Cream White 
& 
purple 

boiled Sweet;  few roots per plant; a bit 
fibrous, liked by rats & moles  

1/7/06 Nchelenge Mumpa  
Chipenya 

M Kanyembo 
Chabilikila 

No name 6 N Own 
seed 

Cream  White Boiled High yielding, spreading type 

1/7/06 Nchelenge Kayanda M Kanyembo 
Chabilikila 

Chintobenge 7 N Own 
seed 

Cream White boiled Sweet, big, high yield, high dry 
mass, does not rot easily 

1/7/06 
 
 

Nchelenge Rose 
Chansa 

F Kanyembo 
Chipulumushi 

Mutoba - 
mputa 
 
 

8 N Congo 
DR 

Red White  vegetable 
boiled 
roots 

High yielding, high dry mass, big 
roots, not fibrous. Tender leaves 
are used for vegetable 
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Appendix 3.2: (Continued) 

 

Colour of 
genotype 

Date District Name of 
farmer 

Gender Chief / 
Village 

Genotype 
 

Sam
ple 
no. 

Source 
 of 
cultivar 
 

Skin Flesh 

Use for 
the 
genotype 

Remarks on the genotype by 
farmer 

1/7/06 Nchelenge Rose 
Chansa 

F Kanyembo 
Chipulumushi 

No name 9 N Friend 
within 
village 

Cream White Vegetable Has big leaves, high yielding, 
not fibrous, high dry mass 

1/7/06 Nchelenge Eliza 
Mulenga 

F Kanyembo 
 
Chipulumushi 

Matembele 10 N Friend 
within 
village 

Red White & 
purple 

Boiled  High yielding, vegetable, 
small/mediun size, high dry 
mass, not fibrous 

1/7/06 Nchelenge Getrude 
Musonda 

F Kanyembo 
 
Chipulumushi 

Mwimbwan
amakuku 

11 N Chisenga 
Island 

Cream White Boiled Leaves not palatable for 
vegetable, high yielding, high 
dry mass 

2/7/06 Nchelenge Emmy 
Mulenga 

F Kambwali 
 
Shishibeti 

Munwe 
umo 

12 N Bought 
within 
village 

Red Cream Boiled 
Vegetable 

High dry mass, high yielding, 
still gives high yields when 
planted towards end of rainy 
seasons, does not rot in the 
soil, big and gives about five 
roots per station, not fibrous 

2/7/06 Nchelenge Emmy 
Mulenga 

F Kambwali 
 
Shishibeti 

No name 13 N Bought 
within 
village 

Red Cream Boiled Not good for vegetable, not 
fibrous, high yielding 

2/7/06 Nchelenge Eners Katele F Kambwali 
 
Shishibeti 

Don’t know 14 N Kabuta 
area 
Nchelenge 

Cream White Boiled,  High yielding, tastes well- not 
fibrous, high dry mass, bigger 
roots than Chingovwa, stores 
well, sweet after curing  

2/7/06 Nchelenge Eners Katele F Kambwali 
 
Shishibeti 

No name 15 N Kenani 
area in 
Nchelenge 

Red White 
and 
purple 

Boiled, 
dried chips 

Good for making dried chips, 
high yielding, very big roots, 
becomes fibrous when very big 

2/7/06 Nchelenge Eners Katele F Kambwali 
 
Shishibeti 

No name 16 N Lwenge 
area from 
farmers 

Red  Boiled 
 
 

Early maturing, planted twice in 
one rainy season, yields high, 
more roots per station 

2/7/06 Nchelenge Mambwe 
Agness 

F Kambwali 
Mubamba 

Pakamana 17 N Within 
village 
from 
farmer 

Red White Boiled, 
dried 
chips, 
Vegetable 

Very big leaves, good for 
vegetable – big leaves, sweet, 
high dry mass, big roots 
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Appendix 3.2: (Continued) 

 

Date District Name of 
farmer 

Gender Chief / 
Village 

Genotype 
 

Sample 
no. 

Source 
 of 
cultivar 
 

Colour of 
genotype 

Use for the 
genotype 

Remarks on the 
genotype by farmer 

2/7/06 Nchelenge Patrick 
Kaluba 

M Kambwali 
Rubber 
plantation 
area 
Mutepuka 

Chisenga 20 N 
 
 

Chisenga 
island 

Red White Boiled, 
insemwa 
 

Sweet, smells well, big 
roots in fertile soils, high 
dry mass, high yielding, 
not fibrous but leaves 
not good for vegetable- 
it easily over cooks 

3/7/06 Nchelenge Ronia 
Chibesa 

F Kambwali 
Rubber 
plantation 
area 
Mutepuka 

Spoon 21 N 
 
 

Friend 
within 

Red white Vegetable, 
roots boiled 

High yielding, yields 
twice a year , planted in 
Dec & Feb, not fibrous, 
high dry mass 

3/7/06 Nchelenge Florence 
Mumpa 

F Chabilikila 
Rural Health 
Centre 

Carrot 22 N Friend Cream Orange Boiled, fried, 
cooked with 
peanut 
butter 

Tastes nice, source of 
Vitamin A, high yielding, 
high dry mass, does not 
rot 

3/7/06 Nchelenge Monica 
Nkandu 

F Kanyembo 
 
Chabilikila 

Chilubi 23 N 
 
 

Chilubi 
Island in 
Northern 
province 

Cream White Boiled, fried, 
cooked with 
peanut 
butter 

Big roots, very high 
yielding 

3/7/06 Nchelenge Monica 
Nkandu 

F Kanyembo 
 
Chabilikila 

Chilubi 24 N 
 
 

From 
friend 
within 

Red White Boiled, fried, 
cooked with 
peanut 
butter 

High dry mass, sweet 

3/7/06 Nchelenge Monica 
Nkandu 

F Kanyembo 
 
Chabilikila 

Chilubi (2) 25 N 
 

Chilubi 
Island in 
Northern 
province 

  Boiled, fried, 
cooked with 
peanut 
butter 

Very high yielding, high 
dry mass, big roots, 
does not rot 
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Appendix 3.2: (Continued) 

Colour of 
genotype 

Date District Name of 
farmer 

Gender Chief / 
Village 

Genotype 
 

Sample 
no. 

Source 
 of cultivar 
 Skin Flesh 

Use for the 
genotype 

Remarks on the 
genotype by farmer 

28/6/06 Samfya Christine 
Kunda 

F Katanshya 
area 
Ponga 

Unknown 1 S Chipepa 
village in 
Mansa 

White Red Home 
consumption 

Very good 

28/6/06 Samfya Christine 
Kunda 

F Katanshya 
area 
 
Ponga 

Unknown 2 S Chipepa 
village in 
Mansa 

Red White Home 
consumption 

Very good 

28/6/06 Samfya Sepeti 
Chitalanda 

M Katanshya 
area 
 
Sepeti 

Katanshya 3 S Own seed White Cream Home 
consumption 

Liked 

29/6/06 Samfya Mary C. 
Kafuta 

F Katanshya 
area 
 
 
Kasompe 

Kalukuluk
u 

4 S Rural 
reconstructio
n centre in 
Samfya 

Pink White & 
pink 

Home 
consumption 

Low yield but tasty 

29/6/06 Samfya Lewis M Lubwe 
area 
 
Wakubula 

Zimbabwe 5 S Musaila area 
from parents 

Cream Orange Home 
consumption 

Good 

29/6/06 Samfya Lewis M Lubwe 
area 
 
Wakubula 

Kasompe 6 S Musaila area 
from parents 

Yellow White Home 
consumption 

Good 

29/6/06 Samfya Lewis M Lubwe 
area 
 
Wakubula 

Chansa 7 S Musaila area 
from parents 

Pink White Home 
consumption 

Fair 

29/6/06 Samfya Lewis M Lubwe 
area 
 
Wakubula 

Unknown 
(2) 

8 S Musaila area 
from parents 

White White Home 
consumption 

Fair 

29/6/06 Samfya Chishimba 
Kachula 

F Lubwe 
area 
Mashitolo 

Carrot 9 S Within the 
village 

White Orange Vegetable and 
home 
consumption 

Good 
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Appendix 3.2: (Continued) 

 

Date District Name of 
farmer 

Gend
er 

Chief / 
Village 

Genotype 
 

Sample 
no. 

Source 
 of cultivar 
 

Colour of 
genotype 

Use for the 
genotype 

Remarks on the 
genotype by farmer 

29/6/06 Samfya Chishimba 
Kachula 

F Lubwe area 
 
Mashitolo 

Mitanda-
nsoka 

10 S Within the 
village 

  Home 
consumption 

Good 

29/6/06 Samfya Chishimba 
Kachula 

F Lubwe area 
 
Mashitolo 
 

Matuwa 11 S Within the 
village 

White white Home 
consumption 

Good 

29/6/06 Samfya Chishimba 
Kachula 

F Lubwe area 
 

Unknown 
(3) 

12 S Within the 
village 

White white Home 
consumption 

Good 

29/6/06 Samfya Edwin 
Bwalya 

F Along Tuta 
road 
 
Mushiku – 
mutanda 

Carrot 13 S Chitembo- 
mbilima-
mwenge ’s 
area 

Red Orange Home 
consumption 

Very good, very much 
liked by children, 
older people do not 
like the smell (aroma) 

30/7/06 Samfya Beaty 
Mwape 

F Along Tuta 
rd 
 
Foloko 

Unknown 
(4) 

14 S Within the 
village 

Red Light 
orange 

Home 
consumption & 
for sale 

Very good 

30/7/06 Samfya Chushi 
Mulenga 

F Along Tuta 
rd 
 
Foloko 

Kabelenge 15 S Within the 
village 

Crea
m 

white Home 
consumption & 
for sale 

Good for vegetable 
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Appendix 3.3 Replicate means of agronomic data of 64 sweetpotato accessions collected in Luapula Province, Zambia and evaluated in 
an 8 x 8 triple lattice experimental design  

 

Accession 
Genotype 
Number ID Name 

Mole 
damage 
(score)* 

Weevil 
damage 
(score)* 

Cracking 
(score)* 

Flesh 
colour 
(score)* 

Harvest 
index 

RDM 
(%) 

Vine 
yield 
(t ha -1) 

No of 
marketable 
roots ha -1 

Yield of 
marketable 
roots (t ha -1) 

Total 
number of 
roots ha -1 

Total 
root 
mass 
(t ha -1) 

1 7M Kolwezi 1.138 5.83 0.00 0.67 0.78 35.99 2.98 48307 8.94 70885 9.62 

2 12N Munwe umo 1.276 38.86 0.20 0.33 0.93 25.9 1.27 68021 10.95 98698 11.93 

3 8N Mutobamputa 1.382 7.39 0.20 0.33 0.54 36.84 4.94 34427 4.70 48932 5.19 

4 3K Matembele 1.276 5.83 0.30 0.00 0.85 34.70 2.46 68177 10.67 100234 11.78 

5 S12 Unknown 3 1.471 21.57 0.10 0.00 0.86 30.86 1.14 20208 7.96 28359 8.34 

6 7K No Name 1.138 10.06 0.00 0.00 0.64 35.62 0.47 20990 0.39 33281 1.23 

7 9M Nankomesha 1.276 27.36 0.00 0.00 0.88 33.69 1.52 46484 10.96 57474 11.09 

8 S1 Katansha 1 1.520 11.62 0.10 0.00 0.56 36.44 2.79 30612 4.31 54674 4.99 

9 12M Kolwezi 1.382 4.28 0.10 0.33 0.90 37.12 1.73 44375 11.44 62891 12.08 

10 25N Chilubi 2 1.276 27.36 0.26 0.00 0.66 34.63 4.08 52943 7.57 70078 8.41 

11 18N Chisenga 1.276 10.06 0.00 0.00 0.92 32.08 1.40 55156 13.03 70495 13.60 

12 6K Kandolo 1.276 5.83 0.20 0.00 0.75 35.66 4.48 42604 12.43 62057 13.01 

13 10N Matembele 1.138 43.09 0.10 0.00 0.79 36.25 3.04 41302 10.56 54557 11.11 

14 11K Kandolo 1.138 21.57 0.00 0.00 0.73 40.10 1.66 34219 3.92 67135 5.15 

15 1M Matembele 1.520 23.13 0.00 0.00 0.84 31.67 2.50 66979 11.55 102318 12.48 

16 S11 Matuwa 1.138 21.57 0.10 0.00 0.39 36.78 3.36 11523 2.43 18633 2.35 

17 14M No Name 1.138 5.83 0.00 0.33 0.64 36.85 4.46 32682 6.48 59115 7.72 

18 6M No Name 1.244 5.83 0.00 0.91 0.62 34.20 3.04 32057 4.48 55651 5.17 

19 S9 Carrots  1.138 20.01 0.10 1.82 0.88 33.46 2.26 56979 13.68 100443 14.99 

20 5K Kabila 1.276 5.83 0.20 0.00 0.70 35.54 4.41 40234 8.71 56354 9.41 

21 5N Kalukuluku 1 1.609 27.36 0.10 0.00 0.60 32.9 6.12 28724 7.28 46172 7.68 

*Scores for mole damage, weevil damage, and cracking were as follows (Data shown was transformed) : 1 = No symptom, 2 = 1-5 roots affected in a 
plot of 20 plants, 3 = any roots affected slightly (5-10% of root area), 4 = All roots affected moderately (11 - 25% of root area), and 5 = All roots affected 
severely (>25% of root area). Flesh colour was scored as follows: 0 = white, 1 = cream, 2 = light orange, 3 = medium orange, 4 = orange, and 5 = dark 
orange. 
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Appendix 3.3 (Continued) 

Accession 
Genotype 
Number ID Name 

Mole 
damage 
(score)* 

Weevil 
damage 
(score)* 

Cracking 
(score)* 

Flesh 
colour 
(score)* 

Harvest 
index 

RDM 
(%) 

Vine 
yield 
(t ha -1) 

No of 
marketable 
roots ha -1 

Yield of 
marketable 
roots (t ha -

1) 

Total 
number 
of roots 
ha-1 

Total 
root 
mass 
(t ha -1) 

22 12K Kandolo 1.276 15.85 0.10 0.00 0.69 39.76 6.82 51823 11.32 90156 12.65 

23 4M Unknown 1.382 4.28 0.00 0.00 0.71 30.62 4.34 29896 12.25 32734 12.45 

24 S8 Unknown 2 1.414 20.01 0.10 0.00 0.65 39.95 4.07 36706 7.24 62539 7.67 

25 16M Matembele 1.138 4.28 0.00 0.33 0.54 32.10 3.43 36823 3.16 50182 3.56 

26 24N No Name 1.414 38.86 0.00 0.33 0.70 40.51 4.28 49479 10.06 96562 11.06 

27 17N Pakamana 1.276 4.28 0.16 0.00 0.63 32.44 6.19 41042 8.83 45703 8.82 

28 2K Kandolo 1.138 10.06 0.16 0.00 0.78 35.96 4.23 51068 15.19 72656 15.65 

29 S15 Kabalenge 1.138 5.83 0.10 0.00 0.80 30.91 3.62 65130 12.38 93021 13.61 

30 10K Kandolo 1.276 5.83 0.20 0.00 0.60 33.49 5.28 38646 9.63 59453 6.56 

31 3M Chilamba 1.276 11.62 0.10 0.00 0.69 32.7 4.17 47318 8.75 66771 9.14 

32 S2 Unknown Katansha 1.414 5.83 0.26 0.33 0.68 35.94 4.37 47096 8.20 71315 8.42 

33 8M No Name 1.276 2.72 0.36 0.00 0.87 36.33 2.06 54596 13.65 80195 14.74 

34 14N No Name 1.520 7.39 0.20 0.00 0.90 30.83 1.55 57253 13.08 86367 13.94 

35 11N Mwimbwanamakuku 1.276 27.36 0.00 0.00 0.80 39.36 0.82 36107 3.31 54076 3.48 

36 9K Kandolo 1.244 11.62 0.26 0.00 0.80 33.30 3.99 41289 14.62 60326 15.12 

37 2N No Name 1.138 5.83 0.00 0.00 0.82 41.56 2.39 42487 9.89 80169 10.67 

38 13M No Name 1.138 25.80 0.26 1.14 0.82 33.90 0.23 48659 1.97 67565 3.18 

39 10M Chilamba 1.138 38.86 0.00 0.00 0.68 42.04 4.02 24206 5.45 43867 6.28 

40 S13 Carrots Mwewa 1.715 27.36 0.00 1.63 0.82 35.21 2.91 56693 14.43 87161 15.40 

41 15N No Name 1.626 5.83 0.26 0.00 0.78 35.22 3.49 39714 12.02 54115 12.48 

42 19N No Name 1.520 38.86 0.00 0.33 0.81 33.64 2.11 37422 9.42 68776 10.24 
*Scores for mole damage, weevil damage, and cracking were as follows (Data shown was transformed): 1 = No symptom, 2 = 1-5 roots affected in a 
plot of 20 plants, 3 = Many roots affected slightly (5-10% of root area), 4 = All roots affected moderately (11 - 25% of root area), and 5 = All roots 
affected severely (>25% of root area). Flesh colour was scored as follows: 0 = white, 1 = cream, 2 = light orange, 3 = medium orange, 4 = orange, and 
5 = dark orange; ªRDM = Root dry mass 
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Appendix 3.3 (Continued) 

Accession 
Genotype 
Number ID Name 

Mole 
damage 
(score)* 

Weevil 
damage 
(score)* 

Cracking 
(score)* 

Flesh 
colour 
(score)* 

Harvest 
index 

RDM 
(%) 

Vine 
yield 
(t ha -1) 

No of 
marketable 
roots ha -1 

Yield of 
marketable 
roots (t ha -1) 

Total 
number 
of roots 
ha-1 

Total 
root 
mass 
(t ha -1) 

43 4N Chimpempe 1.276 11.62 0.10 0.00 0.80 37.51 1.83 42708 6.79 66224 7.62 

44 1K Kandolo 1.138 4.28 0.00 0.00 0.81 31.34 0.55 22474 2.56 47005 2.87 

45 1N Chitobenge 1.000 27.36 0.00 0.00 0.79 40.19 2.21 31745 8.29 42396 8.84 

46 15K Kandindolwa 1.138 25.8 0.00 0.00 0.67 36.96 1.40 28854 2.83 48750 4.18 

47 7N Chitobenge 1.276 20.01 0.10 0.00 0.71 32.44 4.75 36875 11.09 53151 11.81 

48 S4 Kalukuluku 1.471 5.83 0.16 0.67 0.69 32.00 3.93 53685 9.31 97747 10.32 

49 11M No Name 1.276 2.72 0.32 0.00 0.73 27.55 1.21 17135 3.40 26432 3.64 

50 23N Chilubi 1 1.626 10.06 0.10 0.00 0.82 36.15 2.36 55443 9.36 82917 10.38 

51 S5 Zimbabwe 1.382 14.3 0.10 1.82 0.89 27.15 1.51 46875 10.99 80260 11.99 

52 13K  No Name 1.000 21.57 0.00 2.00 0.85 27.32 1.02 80990 4.91 189948 6.29 

53 S10 Mutandansoka 1.382 5.83 0.10 0.00 0.82 35.44 2.33 51302 9.61 70156 10.31 

54 17K  No Name 1.414 7.39 0.20 0.00 0.61 31.71 2.79 34219 3.90 51276 5.03 

55 13N No Name 1.138 5.83 0.10 0.33 0.60 34.67 2.50 34115 4.24 49635 4.93 

56 S3 Katansha  1.382 38.86 0.20 0.00 0.80 36.56 2.54 55898 10.46 76914 11.29 

57 22N Carrots 1.276 4.28 0.00 1.73 0.82 32.03 2.16 34453 7.57 79505 8.72 

58 6N No Name 1.138 21.57 0.00 0.00 0.60 29.85 3.07 36094 5.58 48021 5.61 

59 3N Ndola 1.471 20.01 0.00 0.00 0.65 36.36 2.93 32292 5.27 54688 5.67 

60 4K No Name 1.520 5.83 0.00 0.00 0.68 43.62 2.61 35625 4.94 62865 5.79 
*Scores for mole damage, weevil damage, and cracking were as follows (Data shown was transformed): 1 = No symptom, 2 = 1-5 roots affected in a plot 
of 20 plants, 3 = Many roots affected slightly (5-10% of root area), 4 = All roots affected moderately (11 - 25% of root area), and 5 = All roots affected 
severely (>25% of root area). Flesh colour was scored as follows: 0 = white, 1 = cream, 2 = light orange, 3 = medium orange, 4 = orange, and 5 = dark 
orange. 
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Appendix 3.3 (Continued) 

Accession 
Genotype 
Number ID Name 

Mole 
damage 
(score)* 

Weevil 
damage 
(score)* 

Cracking 
(score)* 

Flesh 
colour 
(score)* 

Harvest 
index 

RDM 
(%) 

Vine 
yield 
(t ha -1) 

No of 
marketable 
roots ha -1 

Yield of 
marketable 
roots (t ha -1) 

Total 
number of 
roots ha -1 

Total 
root 
mass 
(t ha -1) 

61 5N Kalukuluku 2 1.138 21.57 0.00 0.00 0.68 36.33 4.59 34 688 8.45 44115 8.74 

62 14K Matembele Banji 1 1.276 10.06 0.00 0.00 0.39 31.17 3.99 16 302 1.83 36328 2.88 

63 5M Kandolo 1.138 5.83 0.00 0.00 0.69 38.13 3.22 31 589 6.88 42370 7.19 

64 S6 Kasompe 1.244 23.13 0.00 0.00 0.71 34.29 3.70 59 310 9.93 79023 10.50 

              

  Grand Mean 1.295 15.35 0.09 0.24 0.73 34.72 2.99 41 924 8.21 65 186 8.86 

  s.e.d. 0.210 12.78 0.11 0.22 0.09  2.51 1.26 14 600 2.08 21 257 1.98 

  s.e. 0.050 4.90 0.04 0.16 0.10  2.82 1.42 16 409 2.34 23 891 2.22 

  l.s.d. NS 25.28 0.22 0.43 0.17  4.98 2.50 28949 4.14 42 148 3.92 

*Scores for mole damage, weevil damage, and cracking were as follows (Data shown was transformed): 1 = No symptom, 2 = 1-5 roots affected in a 
plot of 20 plants, 3 = Many roots affected slightly (5-10% of root area), 4 = All roots affected moderately (11 - 25% of root area), and 5 = All roots 
affected severely (>25% of root area). Flesh colour was scored as follows: 0 = white, 1 = cream, 2 = light orange, 3 = medium orange, 4 = orange, and 
5 = dark orange. 

 



88 
 

Chapter 4: Diallel analysis of sweetpotato for beta -carotene 

content and yield components 

 

Abstract 

 

Five sweetpotato genotypes were crossed in a 5 x 5 full diallel mating design excluding 

selfs. Observations were recorded on four root traits viz., β-carotene content, root dry 

mass (RDM) composition, harvest index (HI) and root fresh yield (RFY). The 20 crosses 

with 20 F1 progeny per family and their five parents were evaluated in a 5 x 5 triple lattice 

design. The cross mean squares of the four traits were highly significant (p<0.001). The 

general combining ability (GCA) and specific combining ability (SCA) mean squares 

were significant for β-carotene content (p<0.001), RDM (p<0.001), HI (p<0.001), and 

RFY (p<0.001). The ratios of GCA to SCA variances were 0.76 for both β-carotene 

content and HI, 0.68 for RFY and 0.92 for RDM indicating that additive gene action was 

predominant in the inheritance of the traits. The two high β-carotene parents used in this 

study exhibited high, positive GCA effects, indicating that additive gene action was 

predominant in the inheritance of β-carotene. However, high β-carotene parents (1 and 

3) with positive high GCA effects did not necessarily result in desirable progeny in every 

cross as some of their progeny were low in β-carotene. Therefore, parents must also be 

selected on the basis of their SCA effects and the actual performance of the cross. 

Additionally, high RDM parents that exhibited positive and highly significant (p<0.001) 

GCA effects produced only one cross with positive and significant (p = 0.01) SCA 

effects. The best performing progeny for RDM were obtained from a reciprocal cross (5 x 

1; SCA effect = 0.6). Again, selection of parents for a hybrid programme needs to take 

into account the GCA and SCA effects in combination with the performance of progeny 

within a cross. The estimates of narrow sense heritability were low at 20.9% for β-

carotene content, 29.1% for HI, 34.9% for RFY and high at 76.3% for RDM suggesting 

that rapid genetic gains should be possible with mass selection breeding techniques 

based on the phenotype of the parent for RDM but progress will be slow for β-carotene 

content HI, and RFY. 
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4.1 Introduction 

 

One of the major nutritional problems worldwide is vitamin A deficiency (VAD), which is a 

leading cause of early childhood death and a major risk factor for pregnant women in 

Africa, Micronesia, and other parts of the world. Vitamin A is essential for the normal 

development of children, and deficiency can lead to night-blindness (estimated to afflict 3 

million sub-Saharan children under the age of five), as well as resulting in an increased 

susceptibility to a variety of other diseases due to a weakened immune system (Fraser 

and Bramley, 2004). In low-income, impoverished populations, it has been estimated 

that up to 82% of the dietary vitamin A is derived primarily from plant sources as so-

called provitamin A carotenoids (van den Berg et al., 2000). According to WHO (1995), 

VAD is a problem of public health significance in Zambia. Subclinical VAD is significant, 

with a prevalence rate of 13-17% among children ranging from 6 months to 12 years of 

age. Therefore, improved vitamin A intake through increased consumption of OFSP will 

make a significant contribution to improved health. The enrichment of β-carotene, a 

precursor to vitamin A, in the local sweetpotato genotypes, is an attractive alternative to 

improving vitamin A intake. There is wide, natural genetic variability in provitamin A 

content in sweetpotato (Woolfe, 1992). This means that conventional breeding 

techniques can be employed to incorporate β-carotene into sweetpotato by crossing 

local genotypes with genotypes that have high β-carotene content. 

 

Diallel mating designs have been widely used in genetic research to investigate the 

inheritance of important traits in a set of genotypes (Collins, 1977; Mwanga et al., 2002). 

Diallel mating designs were devised, specifically, to investigate the combining ability of 

the parental lines for the purpose of identification of superior parents for use in hybrid 

development programmes. A diallel cross is a set of p2 possible single crosses and selfs 

between p homozygous (Hayman, 1954a, b, '58, '60) or heterozygous (Dickinson and 

Jinks, 1956) parents; it provides a powerful method for investigating the relative genetic 

properties of these parents. It is possible to partition treatment variation into components 

due to general combining ability (GCA) and specific combining ability (SCA) (Griffing 

1956; Collins 1977; Bradshaw et al., 2000; Mihovilovich et al., 2000; Yan and Hunt, 

2002). The estimates of the relative magnitude of the variances of GCA and SCA 

indicate the type of gene action determining the traits. Variance due to GCA indicates 

the predominance of additive gene action while that of SCA indicates the predominance 
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of non-additive gene action arising largely from dominance and epistatic deviations 

(Rojas and Sprague, 1952). 

 

The present research examined the quantitative inheritance of important traits in 

sweetpotato by means of a diallel analysis with a view to estimating the GCA and SCA 

components of genetic variance, and to determine the associated type of gene action 

controlling β-carotene content, root dry mass (RDM), harvest index (HI) and root fresh 

yield (RFY). 

 

4.2 Materials and Methods 

 

Diallel crosses 

 

Hand crosses were carried out in a 5 x 5 full diallel, excluding selfs from 2006 to 2008 at 

Mansa Research Station (11° 14.396’ S and 028° 57.226’ E) , Mansa, Zambia. The 

parents consisted of two introductions from CIP and three advanced breeding lines 

developed in the local sweetpotato breeding programme at Mansa Research Station 

(Table 4.1). The advanced breeding lines were selected on the basis of being cross 

compatible with the CIP lines. 

 

Table 4.1 Parental genotypes and their traits used in a 5x5 full diallel excluding selfs  
 

No. Genotype  

Root flesh 

colour  Root dry mass (%)  

 

Source  

1 Excel deep orange 29 CIP 

2 L4-138/3 White 30 Zambia (bred clone) 

3 W-119 Orange 25 CIP 

4 Unknown 2/1 Cream 32 Zambia (bred clone) 

5 L3-199084/1 Orange 21 Zambia (bred clone) 

 
Botanical seed (Figure 4.1) obtained from the crosses were germinated in a sand and 

vermiculite mix contained in 20 x 12 cell polystyrene seedling trays which were placed in 

a screenhouse (Figure 4.2).  
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Figure 4.1: Sweetpotato botanical seeds Figure 4.2: Sweetpotato seedlings growing 
in a sand and vermiculite mix in 20 x 12 
polystyrene trays placed in a screenhouse 

 

Seedlings were transplanted to 1 L plastic pots (Figure 4.3). Once the plants were about 

50 mm tall, they were transplanted to raised ridges in the wetland (wetlands are called 

dambos in Zambia) to allow for further growth in a non-competitive environment (Figure 

4.4).  

 

  

Figure 4.3: Sweetpotato seedlings growing 
in 1 L plastic pots 

Figure 4.4: Sweetpotato plants growing in 
the dambo 

 

 

The F1 progeny in each cross were randomly selected from the wetland site on the basis 

of producing adequate good quality vegetative cuttings for the field trial. This was the 

only pre-trial selection criterion that was imposed on the progeny to be evaluated. On 

that basis for a given cross, 20 F1 progeny were chosen to represent each cross. The 

selected F1 progeny along with their parental lines were planted in the same field trial. 

The trial was laid out as a 5 x 5 triple lattice (Appendix 4.2). The experimental plot was a 
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single 6 m long row with an inter-row spacing of 1 m and an intra-row spacing of 30 cm. 

Each single row plot comprised the selected 20 progeny of a cross. Hills were planted 

for a final plant density of about 40 000 plants ha-1. The trial was planted in the rainy 

season in November and cultural practices and weed control were performed according 

to standard field practices. No external inputs such as fertilizers were applied. Soil 

analysis results for the site are presented in Appendix 4.1. 

 

All data were recorded on individual plant basis and then averaged across the 20 

progeny of each F1 cross. The quantitative traits were evaluated as follows: (a) β-

carotene content – expressed as mg 100 g-1; (b) RDM - root dry mass (g) expressed as 

a percentage of root fresh mass (g); c) HI – expressed as a ratio of RFY to total biomass 

(mass of roots and vines); and d) RFY – expressed as harvested fresh roots in tonnes 

per hectare (t ha-1). 

 

Statistical analysis of triple lattice 

 

General analyses of variance were conducted for all four traits using Genstat version 

11.1 (Payne et al., 2007). Pseudofactors for analysing the triple lattice design were 

generated in the Genstat procedure.  The block corrected means across the three 

replications for each full-sib family were used in the diallel analysis.  

 

Diallel analysis 

 

To test the null hypothesis of no genotypic differences among parents and crosses 

(collectively referred to as treatments) a one way analysis of variance was performed. 

Treatment sum of squares were partitioned into three components, parents (P), crosses 

(C), and P vs. C. The GCA and SCA variance components of the C mean square were 

computed according to Griffing’s (1956) fixed-effects model I, method 1 (parents, and 

F1s including reciprocals) using the DIALLEL-SAS05 program developed by Zhang et al. 

(2005). Reciprocals were defined as being below the diagonal. Adopting Griffing’s (1956) 

notation the following genetic statistical model for an analysis within one environment 

was considered:  
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where u  is the overall mean of the cross involving the thi and thj parents in block k and 

replication l ; ( )ji gg  is the general combining ability (GCA) effect for the thi ( )thj  

parents; ijs  is the specific combining ability (SCA) effect for the cross between the 

thi and thj parents such that ijs = jis ; ijr  is the reciprocal effect involving the reciprocal 

crosses between the thi and thj parents such that ijr = jir− , and ijkle is the environmental 

effect associated with the thijkl individual observation; p , b  and c  are the numbers of 

parents, blocks and replications, respectively. The mean squares and the F-tests for 

overall statistical differences among the various classes are provided (Table 4.2). In the 

analysis, ,' bcMM ee = where eM  is the error mean square for the randomised block 

design and its expectation, '
eM  is denoted as ( ) .2' σ== bcMME ee  
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Table 4.2 Analysis of variance for Griffing’s (1956b) Model I, Method I and the expected 
mean squares for a full diallel, excluding selfs  

 
Source df Sum of 

Squares

* 

Mean 

Square
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Expected Mean Squares F-ratios 
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and  

Xi. is the marginal mean for the ith parent;  

X.j is the marginal mean for the jth parent; 

..X is the grand mean; 

ijx  is the mean for an above diagonal cross of the thi and thj parents; and  

jix is the mean for a below diagonal reciprocal cross of the thj and thi parents.  

 

The relative importance of GCA and SCA for selected traits was assessed by expressing 

their variances in the ratio, 2σ2
g/(2σ

2
g + σ2

s), according to Baker (1978).  
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The narrow sense heritability estimates were obtained from the DIALLEL-SAS05 

program based on the cross heritability formula of van Buijtenen (1976): 

 

h2
c = σ2

GCA / (σ2
GCA + σ2

SCA + σ2
e/r) 

 

where:  

h2
c = cross narrow sense heritability estimate; 

σ2
GCA = genetic variance component for general combining ability obtained as: 

(p-1)/2p[Mg – Me’]; notation as in Table 4.1; 

σ2
SCA = genetic variance component for specific combining ability obtained 

as: p(p-1)/2p[Ms – Me’]; notation as in Table 4.1; and 

σ2
e/r = error variance divided by the number of replications = Me’ . 

 

4.3 Results 

4.3.1 Analysis of variance for β-carotene content, root dry mass, harvest index 

and root fresh yield  

 

The ANOVA of the 5x5 triple lattice provides the variances (mean squares) and block 

corrected means of the parents and their crosses (collectively referred to as treatments 

in Table 4.3) for the traits: β-carotene content, RDM, HI, and RFY. There was highly 

significant (p<0.001) variation among the parents and crosses for all four traits.  
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Table 4.3 ANOVA for four traits of five sweetpotato parents and their 20 F1 families 
evaluated in a triple lattice design 
 

Mean Squares  Source  df 

β-carotene 

content  

(mg 100 g -1) 

Root dry 

mass (%)  

Harvest 

index  

Root fresh 

yield (t ha -1) 

Rep 2  0.57NS*  6.99NS* 0.004NS* 000.28NS* 

Treatments 24 42.34*** 38.28*** 0.065*** 198.16*** 

Blocks within reps 12 11.20*** 22.64*** 0.032*** 079.68*** 

Intra-block error 36  0.12***  4.60*** 0.003*** 001.22*** 

Total 74     

*** Significant at P<0.001 (F-probability); NS=not significant  
 

The mean performance of some of the crosses exceeded that of both their parents for 

the four traits (Table 4.4). Cross 1 x 2 and the cross 3 x 2 were the best performers for 

β-carotene content with means of 13.69 and 13.72 mg 100 g-1, respectively. Cross 2 x 5 

and 2 x 1 were the lowest performers with means of 0.04 and 0.03 mg 100 g-1, 

respectively. The best performing individual progeny for β-carotene content overall came 

from the cross 3 x 2 with 17.57 mg 100 g-1 followed by a progeny from cross 1 x 2 with 

17.34 mg 100 g-1. The majority of the progeny with high β-carotene content came from 

the two crosses, 3 x 2 and 1 x 2 (Appendix 4.3.1).  

 

The cross 5 x 1 was the best performer for RDM with a mean of 37.9%, followed by 

crosses 2 x 5 and 4 x 3 with means of 34.0 and 33.7%, respectively. Both crosses 1 x 3 

and 5 x 3 had the lowest means of 24.7% (Table 4.4). The best performing progeny 

came from the reciprocal cross (5 x 1) with RDM of 44.3% followed by a progeny from a 

cross (1 x 4) with RDM of 43.8%. The lowest performing progeny overall was from cross 

(3 x 5) with a RDM of 15.5% (Appendix 4.3.2).  

 

Two crosses (1 x 3 and 1 x 4) with their reciprocals (3 x 1 and 4 x 1), together with 

crosses 5 x 1, 4 x 2, and 4 x 3 had higher HI than the 0.81 recorded for the best parent, 

namely parent 3. The HI means for crosses 1 x 3 and 1 x 4 were 0.84 and 0.92, 

respectively. The means for their reciprocals 3 x 1 and 4 x 1 were 0.87 and 0.86, 

respectively. The means for crosses 5 x 1, 4 x 2, and 4 x 3 were 0.88, 0.91 and 0.83, 
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respectively. The cross 2 x 5 had the lowest HI mean value of 0.25 (Table 4.4). The best 

four performing progeny were from the cross 1 x 4 with two recording HI of 0.97 and the 

other two, 0.96. The progeny with the lowest HI was from the cross 2 x 5 (Appendix 

4.3.4).  

 

The highest performers for RFY were crosses 4 x 5 and 4 x 3 with mean values of 26.5 

and 32.8 t ha-1, respectively. The lowest performers for RFY were crosses 1 x 5 and 

5 x 2, yielding a mean of 0.5 and 0.6 t ha-1, respectively (Table 4.4). The 13 best 

performing progeny came from the cross (4 x 3) with yields ranging from 35 to 38 t ha-1. 

The lowest yielding progeny was from the cross (1 x 5) with 0.12 t ha-1 (Appendix 4.3.3).  
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Table 4.4 Block corrected means for four traits of five sweetpotato parents and their 
5 x 5 diallel crosses (excluding selfs) evaluated in a 5 x 5 triple lattice experimental 
design 
 
Parents/Crossesª  β-carotene 

content  

(mg 100 g -1) 

Root dry mass 

(%) 

Harvest index Root fresh 

yield (t ha -1) 

1 x 2 13.69 28.27 0.55 1.12 

1 x 3 0.18 24.74 0.84 8.21 

1 x 4 0.06 31.49 0.92 14.95 

1 x 5 1.66 27.36 0.50 0.50 

2 x 3 5.75 31.85 0.56 2.77 

2 x 4 0.17 29.76 0.68 15.95 

2 x 5 0.04 34.03 0.25 2.31 

3 x 4 4.59 29.42 0.60 2.81 

3 x 5 4.70 24.27 0.59 0.99 

4 x 5 0.13 30.83 0.73 26.49 

Reciprocals (below the diagonal)   

2 x 1 0.03 28.77 0.79 13.65 

3 x 1 0.06 27.18 0.87 16.67 

4 x 1 0.07 28.75 0.86 15.53 

5 x 1 0.16 37.89 0.88 11.76 

3 x 2 13.72 29.41 0.74 7.59 

4 x 2 0.08 31.44 0.91 8.84 

5 x 2 1.79 26.20 0.50 0.58 

4 x 3 0.24 33.66 0.83 32.79 

5 x 3 0.26 24.07 0.55 0.90 

5 x 4 0.09 33.99 0.81 17.34 

Parent 4 0.07 32.51 0.78 10.92 

Parent 2 0.19 35.54 0.63 11.35 

Parent 3 4.89 24.43 0.81 25.44 

Parent 5 3.51 36.12 0.69 18.93 

Parent 1 6.65 25.78 0.76 4.84 

Mean 2.51 29.91 0.71 10.93 

s.e 0.34 2.14 0.05 1.11 

CV (%) 13.7 7.2 7.6 10.1 

LSD(0.05) 0.65 4.05 0.10 2.09 

ª1 = Excel, 2 = L4-138/3; 3 = W-119, 4 = Unknown 2/1, 5 = L4-199084/1 
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4.3.2 General and specific combining ability analys is for β-carotene content, root 

dry mass, harvest index and root fresh yield  

 

4.3.2.1 Combining ability mean squares 

 

The GCA and SCA mean squares for β-carotene content, RDM, HI and RFY were highly 

significant (p<0.001) (Table 4.5). The mean squares for reciprocals were also highly 

significant (p<0.001) except for RDM which was not significant (Table 4.4). The GCA to 

SCA variance ratios were 0.76 for β-carotene content, 0.92 for RDM, 0.76 for HI, and 

0.68 for RFY. 

 

Table 4.5 Combining ability ANOVA for four traits of five sweetpotato parents and their 
5 x 5 diallel crosses (excluding selfs) 
 

Mean Squares  Source  df 

β-carotene 

content  

(mg 100 g -1) 

Root dry 

mass (%)  

Harvest 

index  

Root fresh 

yield (t ha -1) 

Rep 2 0.57*** 7.00NS**  0.01NS* 000.11NS* 

Parent 4 25.62*** 101.24*** 0.25*** 269.38*** 

Parent x Cross 1 9.48*** 19.74NS*  0.01NS* 251.33*** 

Crosses 

  GCA 

  SCA 

9 

4 

5 

56.41*** 

71.36*** 

44.45*** 

22.96*** 

42.32*** 

7.47NS*  

0.21*** 

0.27*** 

0.17*** 

225.03*** 

235.77*** 

217.87*** 

Reciprocal 10 43.20*** 8.17NS*  0.23*** 225.03*** 

Error 48 00.104**   5.46 **  0.003** 1.50*** 

Total 74     

*** Significant at p<0.001 (by F-probability); NS=not significant; GCA=variation due to general 
combining ability, SCA=variation due to specific combining ability, reciprocal=variation between 
reciprocals 
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4.3.2.2 Combining ability effects  

 

Beta-carotene content  

 

The GCA effects for parent 1 and 3 were positive and highly significant (p<0.01) (Table 

4.6). The GCA effects for parent 4 and 5 were significant (p<0.01) but negative (Table 

4.6). The GCA effect for parent 2 was not significant (Table 4.6). The SCA effects of 

crosses 1 x 2, 2 x 5, and 3 x 4 were positive and highly significant (p<0.01) (Table 4.7). 

The rest of the crosses, apart from 4 x 5 which was not significant, had highly significant 

(p<0.01), negative SCA effects. Two reciprocals (2 x 1 and 5 x 2) were also positive and 

highly significant (p<0.01). Crosses 3 x 1 and 4 x 3 were negative though highly 

significant (p<0.01) (Table 4.7).   

 

Table 4.6 Estimates of GCA effects for four traits of five sweetpotato parents  
 
Parentª  β-carotene 

content (mg 100g -

1) 

Root dry 

mass (%)  

Harvest 

index  

Root fresh yield 

(t ha -1) 

1 1.650** -2.612** 0.0623** -5.082** 

2 -0.023NS 2.981** 0.0129NS 1.301** 

3 0.354** -2.807** -0.0848** 2.533** 

4 -1.044** 1.837** 0.0126NS -0.152NS 

5 -0.937** 0.602NS -0.0031NS 1.400** 

* and ** Significant at p<0.01 and 0.05, respectively (by F-probability); NS=not significant; 
ª1=Excel, 2=L4-138/3; 3=W-119, 4=Unknown 2/1, 5=L4-199084/1 
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Table 4.7 Estimates of SCA effects for the 5 x 5 diallel analysis of four traits 
 
Crossesª  β-carotene 

content 

(mg 100 g -1) 

Root dry mass 

(%) 

Harvest index  Root fresh 

yield (t ha -1) 

1 x 2 5.655** -0.745NS -0.141** -4.754** 

1 x 3 -2.105** 1.144NS 0.114** -3.320** 

1 x 4 -3.018** 1.257NS 0.194** 9.939** 

1 x 5 -2.416** -0.378NS -0.193** -10.399** 

2 x 3 -2.722** 0.563NS 0.153** 6.797** 

2 x 4 -1.373** 1.849** -0.070** -4.517** 

2 x 5 3.184** -1.343NS 0.097* 6.414** 

3 x 4 5.088** -0.690NS -0.084** -7.629** 

3 x 5 -3.364** -2.904NS 0.547** -14.979** 

4 x 5 -0.113NS 0.571NS -0.292** -4.111** 

Reciprocals (Below the diagonal)   

2 x 1 3.917** -1.437NS -0.0002NS -0.722NS 

3 x 1 -2.303** -0.112NS 0.127** 3.611** 

4 x 1 0.005NS 1.465NS 0.027NS -0.370NS 

5 x 1 0.003NS 0.653NS 0.000NS 0.000NS 

3 x 2 0.000NS 0.000NS -0.025NS -5.111** 

4 x 2 -0.040NS -1.763NS -0.316** -4.889** 

5 x 2 2.257** -1.972** -0.117** -15.042** 

4 x 3 -6.802** -0.317NS 0.332** -2.434** 

5 x 3 -0.005NS 0.728NS 0.160** 7.889** 

5 x 4 0.005NS -1.160NS -0.344** 0.780NS 

* and ** Significant at p<0.01 and 0.05, respectively (F-probability); NS=not significant; ª1=Excel, 
2=L4-138/3; 3=W-119, 4=Unknown 2/1, 5=L4-199084/1 
 

 

Root dry mass composition  

 

The GCA effects for parent 2 and 4 were positive and highly significant (p<0.01). The 

GCA effects for parent 1 and 3 were also highly significant (p<0.01) but negative. The 

GCA effect for parent 5 was not significant (Table 4.6). Only cross 2 x 4 had a positive 
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and highly significant (p<0.01) SCA effect whereas the rest of the crosses were not 

significant. Only one cross 5 x 2 had a highly significant (p<0.01) SCA effect though 

negative while the rest were not significant (Table 4.7). 

 

Harvest index  

 

The GCA effect was highly significant (p<0.01) and positive for parent 1. It was also 

highly significant (p<0.01) for parent 3 but negative. The GCA effects for the other 

parents were not significant (Table 4.6). The SCA effects were significant (p<0.05) for all 

the crosses except for four, namely: 2 x 1, 4 x 1, 5 x 1, and 3 x 2. However, half of the 

crosses with significant (p<0.05) SCA effects had negative effects, namely: 1 x 2, 1 x 5, 

2 x 4, 3 x 4, 4 x 5, 4 x 2, 5 x 2, and 5 x 4 (Table 4.7). 

 

Roor fresh yield  

 

The GCA effect for parent 1 was negative and significant (p<0.01). Parents 2, 3, and 5 

had GCA effects that were positive and significant (p<0.01). The GCA effect for parent 4 

was not significant (Table 4.6). Three crosses had positive and significant (p<0.01) SCA 

effects, namely: 1 x 4, 2 x 3, and 2 x 5. The other crosses were significant (p<0.01) but 

had negative SCA effects. Two reciprocals (3 x 1 and 5 x 3) had positive and significant 

(p<0.01) SCA effects. Some reciprocals had significant (p<0.01) negative effects (3 x 2, 

4 x 2, and 5 x 2). The SCAs of the other reciprocal crosses were not significant (Table 

4.7). 

 

4.3.2.3 Narrow and broad sense heritability estimates 
 
 

The narrow sense heritability estimates for RDM calculated from variance components 

was high at 76.3%. The estimates for the other three traits were, however, relatively low 

at 20.9% for β-carotene content, 29.1% for HI, and 34.9% for RFY. Broad sense 

heritability estimates were 89.6% for RDM, 99.4% for β-carotene content, 84.4% for HI, 

and 96.9% for RFY. 
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4.3.2.4 Estimates of heterosis  
 
 

Percent heterosis was calculated for 30 progeny selected on the basis of the selection 

index presented in Chapter 3. The most positive % heterosis for β-carotene content 

relative to both mid-parent and best parent mean value was observed in progeny 10 

(592% and 2595, respectively) and 18 (461% and 191, respectively) both from cross 

3 x 2. The most negative percentage hybrid vigour relative to mid parent and best parent 

mean value for β-carotene content were observed in progeny 7 (-98% and -99%, 

respectively) from cross 1 x 4 and progeny 9 (-98% and 99, respectively) from cross 

4 x 3 (Table 4.8). Progeny 15 and 10 from cross 4 x 3 had the highest positive mid-

parent heterosis of 42 and 29%, respectively for RDM. Again, progeny 15 from cross 

4 x 3 had the highest best parent heterosis of 24% followed by progeny 11 from cross 

1 x 3 with 21% (Table 4.8). The most positive mid-parent heterosis% for RFY was 

observed in progeny 7 (111%) from cross 1 x 4 and progeny 9 (111%) from cross 4 x 3, 

while the highest positive best parent heterosis % was observed in progeny 7 (52%) 

from cross 1 x 4 and progeny 1 (51%) from cross 2 x 4 among the top 30 genotypes 

(Table 4.8).  
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Table 4.8 Hybrid vigour of 30 progeny selected using a selection index for β-carotene, root dry mass and root fresh yield 
 

Hybrid vigour  (Heterosis) percentage 
β-carotene content (mg 100 g -1) Root dry mass (%) Root fresh yield (t ha -1) 

Crossª Progeny ID Mid parent† Best parent‡ Mid parent Best parent Mid  parent Best parent 
Selection 
Index 

4 x 3 9 -98.0 -99.0 10.0 -3.6 110.8 50.6 171.71 
4 x 3 10 -91.9 -95.9 29.3 13.3 103.6 45.5 186.17 
4 x 3 15 -79.4 -89.6 41.9 24.2 100.6 43.4 197.03 
4 x 5 20 -97.2 -98.6 6.5 1.2 70.8 34.6 161.75 
2 x 4 1 200.0 105.3 -18.9 -22.4 54.0 51.2 119.50 
1 x 4 7 -98.2 -99.1 16.4 4.3 111.1 52.3 136.24 
2 x 1 12 -83.9 -91.7 -9.3 -21.7 104.3 45.8 119.68 
3 x 1 8 -98.4 -98.6 15.8 12.8 5.7 -37.1 120.49 
3 x 1 4 -97.4 -97.7 13.9 10.9 3.6 -38.3 118.69 
1 x 3 11 -97.4 -97.7 24.4 21.1 -1.0 -41.1 124.87 
2 x 1 7 -76.3 -87.8 -4.6 -17.7 71.0 22.0 119.61 
5 x 4 7 -86.6 -93.2 2.3 -2.8 -15.1 -33.1 132.30 
5 x 4 6 -83.8 -91.7 -3.5 -8.3 -21.4 -38.0 124.89 
3 x 2 18 460.6 191.2 -11.2 -25.1 -47.7 -62.1 156.93 
3 x 2 10 591.7 259.3 -6.9 -21.5 -50.4 -64.1 173.14 
1 x 3 16 -97.4 -97.7 12.2 9.2 -46.4 -68.1 101.91 
3 x 4 19 329.4 117.8 -10.7 -21.8 -66.3 -75.9 131.80 
3 x 4 18 281.9 93.7 -1.3 -13.6 -69.7 -78.3 133.91 
2 x 3 20 226.4 69.5 -8.8 -23.1 -75.4 -82.2 124.86 
3 x 4 4 330.2 118.2 -12.1 -23.0 -76.8 -83.4 126.94 
2 x 3 8 178.3 44.6 5.1 -11.3 -78.5 -84.5 131.49 
1 x 2 19 331.9 122.1 -1.4 -14.9 -56.8 -69.2 157.36 
5 x 2 2 73.0 -8.8 -21.0 -21.7 -80.1 -84.0 104.21 
1 x 2 16 146.8 26.9 5.8 -8.7 -77.0 -83.6 135.47 
3 x 5 4 88.1 61.6 -0.3 -16.4 -91.5 -92.6 126.55 
1 x 5 17 -77.2 -82.6 2.2 -12.4 -84.8 -90.5 103.78 
1 x 2 1 310.5 111.1 -6.4 -19.2 -82.3 -87.4 145.92 
5 x 2 6 30.8 -31.1 -19.1 -19.7 -92.6 -94.1 99.42 
1 x 5 20 -66.9 -74.7 -4.8 -18.4 -91.4 -94.6 97.87 
1 x 5 14 -65.7 -73.8 -3.1 -17.0 -95.8 -97.4 98.61 

ª1=Excel, 2=L4-138/3; 3=W-119, 4=Unknown 2/1, 5=L4-199084/1; † (Hybrid vigour relative to the mid parent value); ‡ (Hybrid vigour relative to 
the best parent value) 
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4.4 Discussion and conclusion 

 

4.4.1 Analysis of variance for β-carotene content, root dry mass, harvest index 

and root fresh yield evaluated in a triple lattice experimental design 

 

The significant (p<0.001) mean square for treatments for β-carotene content, RDM, HI, 

and RFY is indicative of the genetic variation among the parents and their crosses. 

Crosses outperforming their parents can be attributed to transgressive segregation 

which is desirable for improving β-carotene content and RDM. Selection imposed on all 

of the progeny using a selection index and 30 progeny were selected across the 20 

crosses. Progeny 15 from cross 4 x 3 was the best overall. Several of the selected 

progeny had high percentage hybrid vigour for the traits measured. For example, 

progeny 10 from cross 3 x 2 had high mid-parent heterosis of 592% for β-carotene 

content; progeny 15 from cross 4 x 3 had mid-parent heterosis of 42% for RDM; and 

progeny 7 from cross 1 x 4 had high mid-parent heterosis of 111% for RFY.  

 

4.4.2 General and specific combining ability for β-carotene content, root dry 

mass, harvest index and root fresh yield 

The magnitudes of the GCA and SCA variances (Table 4.5) imply that both additive and 

non-additive gene action are important in controlling the expression of the four traits. The 

GCA and SCA mean squares for the four traits were significant (p<0.001). This implies 

that both additive and non-additive gene action were involved in the expression of β-

carotene content, RDM, HI, and RFY. The GCA to SCA variance ratios were 0.76 for β-

carotene content, 0.92 for RDM, 0.76 for HI, and 0.68 for RFY indicating that additive 

gene action was relatively more predominant than non-additive gene action in controlling 

the expression of the traits. Hence, predicting progeny performance based on GCA for 

the four traits will be largely successful. The highly significant (p<0.001) reciprocal mean 

squares for β-carotene content, HI, and RFY is an indication that maternal effects play a 

role in the inheritance of these traits and consequently the performance of a parent in a 

cross is dependant on whether it is used as a female or a male. 
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β-carotene content  

 

The GCA effects for parent 1 (1.65) and 3 (0.35) were significant (p<0.01) indicating that 

additive gene action contributed positively to the expression of the trait. However, their 

cross 1 x 3 had a negative (-2.1) and highly significant (p<0.01) SCA effect. This means 

that the non-additive gene action arising from the interaction between the parents 

resulted in the cross performing below the expectation based on additive effects.  The 

crosses that had positive and significant (p<0.01) SCA effects were 1 x 2, 2 x 5, and 3 x 

4 indicating that the non-additive gene action arising from the interaction of the parents 

contributed positively to the expression of the trait. Parent 1 and 3 were only able to 

produce a desirable (positive and significant SCA effect) cross with parents 2 and 4, 

respectively. Parents 2 and 5 that had negative GCA effects (-0.023 and -0.937, 

respectively) produced a cross with a positive (3.184) and highly significant (p<0.01) 

SCA effect (Table 4.6). Therefore, parents cannot be disqualified solely on the basis of 

negative GCA effects. Conversely, parents with high positive GCA effects did not 

necessarily produce crosses with the desired performance. In this study desirable 

crosses were obtained from crossing parents with high GCA effects with parents with 

low GCA effects viz. 1 x 2 and 3 x 4 and a parent with low GCA effect with a parent with 

a low GCA effect 2 x 5. The GCA to SCA ratio was 0.76 for β-carotene content indicating 

that additive gene action was relatively more important than non-additive gene action in 

conditioning this trait. Similar results have been reported in cucumber (Cucumis sativus 

L.) where additive gene effects conditioned carotenoid accumulation in mature fruits 

(Navazio and Simon, 2001).  

 

The crosses, 2 x 1 and 5 x 2, had highly significant (p<0.01), positive SCA effects (3.9 

and 2.2, respectively) for β-carotene content (Table 4.7). This implies that parent 2 

interacted positively as either the female or male parent when crossed with either parent 

1 or 5, respectively. Parents 2 and 5 had negative GCA effects whereas parent 1 had a 

high, positive GCA effect (Table 4.6). However, reciprocal cross 2 x 1 had the lowest 

mean β-carotene content (0.03 mg 100 g-1) of all the crosses. In contrast, cross 1 x 2 

had the highest mean β-carotene content (13.69 mg 100 g-1) suggesting that maternal 

effects influenced the performance of the crosses. Among the reciprocal crosses, the 

mean for reciprocal cross 5 x 2 was 1.79 mg 100 g-1 which was second after reciprocal 

cross 3 x 2, 13.72 mg 100 g-1.  
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The best cross overall with a mean β-carotene content of 13.69 mg 100 g-1 resulted from  

crossing a parent with a high positive GCA effect (1.6) with a parent with a low GCA 

effect (-0.023) viz. 1 x 2 (SCA effect = 5.6). The second best cross was between  a 

parent with a high positive GCA effect and a parent with a high negative GCA effect viz. 

3 x 4 (SCA effect = 5.1). The best reciprocal cross with a mean β-carotene content of 

13.72 mg 100 g-1 resulted from a parent with a positive and significant GCA effect 

combining with a parent with a negative and non-significant GCA effect, namely: 3 x 2 

(SCA effect = 0). The implication of the performances of these crosses in relation to their 

respective GCA (and SCA) effects is that predicting the performance of crosses cannot 

be based simply on the magnitude of the GCA effects of the parents. It is worth noting 

that all the parents were involved in a cross that produced at least one progeny worthy of 

further evaluation (Table 4.8 and Appendix 4.3.1) in terms of β-carotene content. 

 

Root dry mass composition  

 

The GCA and SCA mean squares for RDM were significant (p<0.01), but the reciprocal 

mean square was not significant. The ratio of GCA to SCA mean squares was 0.92. 

Accordingly, gene action controlling this trait was predominantly additive. The result 

concurs with that of Grϋneberg et al. (2005). Similar results were obtained in cassava 

(Jaramillo et al., 2005).  Parents 2 and 4 had positive and large GCA effects (3.0 and 

1.8) that were significant (p<0.01). Their cross 2 x 4 exhibited the highest significant 

(p<0.01) and positive SCA effects (1.85) (Table 4.7). Nevertheless, their cross mean 

(29.8%) was only fifth highest among crosses (Table 4.4). The reciprocal cross 5 x 1 

with a mean RDM of 38% was the best overall performer and the best performing 

progeny overall came from this reciprocal cross with a RDM of 44% (Appendix 4.3.2). 

This result emphasises the value of conducting reciprocal crosses in order to increase 

the likelihood of generating progeny with high RDM even though in this study the 

reciprocal mean square was not significant.  
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Harvest index  

 

The GCA and SCA mean squares were significant (p<0.001). The GCA and SCA mean 

square ratio was 0.76 which indicated that additive gene action was dominant over non-

additive. A number of crosses had positive and significant (p<0.05) SCA effects, namely: 

1 x 3, 1 x 4, 2 x 3, 3 x 5, and 2 x 5 (Table 4.7). This implies that the non-additive gene 

action arising from the interaction between these parents contributed positively to the 

expression of the trait. Cross 1 x 4 involving parents with negative GCA effects had the 

best cross mean of 0.92 and the highest performing individual progeny with a HI of  0.97 

(Appendix 4.3.4). 

  

The best performing progeny within a cross came from cross 4 x 2 (0.96). This was 

followed by progeny from four other crosses (2 x 1, 5 x 1, 4 x 3, and 5 x 4) each with a 

HI of 0.95 (Appendix 4.3.4). The within cross progeny performance is obviously 

important in selecting the best progeny as the mean of a cross does not provide an 

indication of how the individual progeny performed. This is exemplified by cross 3 x 1 

which had a high cross mean (0.87) but its best performing progeny (HI = 0.94) was 

outperformed by progeny from crosses with lower cross means e.g. cross 2 x 1 which 

had a mean HI = 0.79 but its best performing progeny had a HI = 0.95.  

 

Root fresh yield  

 

The ratio of GCA to SCA mean squares was 0.68 indicating that additive gene action 

contributed more to the expression of RFY than non-additive gene action. The GCA 

effects for RFY for parents 2, 3, and 5 were positive (1.3, 2.5 and 1.4, respectively) and 

significant (p<0.01) indicating the involvement of additive gene action in the expression 

of the trait (Table 4.6). The SCA effects were significant (p<0.01) and positive (9.9, 6.8, 

and 6.4, respectively) for crosses 1 x 4, 2 x 3, and 2 x 5, indicating that non-additive 

gene action contributed positively to the expression of RFY. Parents 2, 3, and 5 with 

high GCA effects (1.3, 2.5, and 1.4, respectively) resulted in crosses (2 x 3 and 2 x 5) 

with high positive SCA effects (6.8 and 6.4, respectively) (Table 4.7). Again, non-additive 

gene action contributed positively to the expression of the trait in the two crosses. Cross 

4 x 3 with a significant (p<0.01), negative (-2.43) SCA effect produced the majority of the 

outstanding progeny most of which had RFYs above 30 t ha-1. The mean for the cross 
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was 32.7 t ha-1 while the best performing individual progeny, coming from the same 

cross, yielded 38.3 t ha-1. Conversely, the cross 3 x 4 had a very low mean RFY of 0.26 t 

ha-1 with the best performing progeny within the cross yielding only 0.61 t ha-1 (Appendix 

4.3.3). This was an indication that maternal effects were involved in determining RFY in 

some of the crosses. 

 

Two reciprocal crosses, 3 x 1 and 5 x 3, had positive (3.6 and 7.9, respectively) and 

highly significant (p<0.01) SCA effects for RFY (Table 4.7). Thus, parent 3 combined 

well as a female with parent 1 and combined well as a male with parent 5. Parents 3 and 

5 were significant, positive GCA effect parents whereas parent 1 was a significant, 

negative GCA effect parent (Table 4.5). It was noted that the cross between the positive, 

high GCA effect parent 3 and the negative, high GCA effect parent 1, had an 

“unexpected” positive, high SCA effect while the cross 5 x 3 between two positive, high 

GCA effect parents had an “expected” positive, high SCA effect. Again this confirms that 

the positive contribution of non-additive gene action to the expression of RFY does not 

necessarily depend on the signage of the GCA effects of the parents involved.  

 

4.2.3 Heritability estimates 

 

The h2 for β-carotene, HI, and RFY were low suggesting that progress in selection will be 

slow. Hernandez et al. (1967) indicated that the character of orange root flesh colour 

was controlled by several genes, most likely six, that are probably additive in effect. 

They concluded that inheritance of flesh colour was a quantitative character. In addition, 

they found that certain parents transmitted high carotenoid content to a greater degree 

than others and crosses between certain parents produced transgressive segregants. 

Their findings concur with results of this study where hybrid vigour was recorded for a 

number of progeny. 

 

The h2 for RDM was high indicating that the environment had less influence on the trait. 

A negative association between of orange root flesh colour and RDM has been noted by 

others (Hernandez et al., 1967; Jones et al., 1969). To simultaneously improve both 

these traits their negative linkages will have to be broken. 
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The broad sense heritability estimates were much higher (>80%) for all the four traits, as 

expected. Rapid genetic gains should be expected, as H is high, through use of mass 

selection based on the phenotype of the parent. 

 

4.2.4 General conclusion 

 

The analysis of variance revealed significant (p<0.01) differences among the treatments 

for all the traits indicating the probability of selecting high performing progeny from the 

crosses (Table 4.4). The GCA and SCA mean squares were highly significant (p<0.001) 

for the four traits. The ratios of GCA to SCA variances were generally large (0.68 to 

0.92). Reciprocal effects were significant (p<0.01) for all traits studied except RDM. It is 

concluded that additive gene action was dominant over non-additive for the 

determination of β-carotene, HI, RDM, and RFY.  

 

The two high β-carotene parents (1 and 3) used in this study exhibited high GCA effects, 

indicating that additive gene effects were predominant in the inheritance of β-carotene. 

However, β-carotene parents with high GCA effects did not result in crosses with the 

highest SCA effects. The highest β-carotene progeny were obtained from crosses 

between a parent with positive, high GCA effects and a parent with negative, low GCA 

effects, namely: reciprocal cross 3 x 2 (SCA effect = 0) and cross 1 x 2 (SCA effect = 

5.6). 

 

Progeny with the highest RDM were obtained from a cross between a parent with a 

significantly (p<0.01) positive, high (2.9) GCA effect and a parent with a non-significant 

GCA effect (0.6), namely 2 x 5 (SCA effect = -1.3), and a cross between a parent with 

non-significant, positive GCA effect (0.6) and a parent with significant (p<0.01) negative, 

high (-2.6) GCA effect, namely 5 x 1 (SCA effect = 0.6). This implies that selection of 

parents for the hybrid programme needs to take into account the GCA and SCA effects 

in combination with the actual performance of progeny within a cross. As sweetpotato 

clones are released as highly heterozygous F1 progeny, the breeding programme will 

take advantage of the occurrence of heterosis concomitant with the utilisation of additive 

genes by mass recurrent selection. 
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Appendices  

 
Appendix 4.1 Soil analysis for field trial site at Mansa Research Station (11° 14.396’ S 
and 028° 57.226’ E) , Mansa, Zambia 
 
Analyte Result Critical value 

pH CaCl2 4.6 4.5 

Org. C% 0.86 1.58 

N% 0.06 0.1 

P ppm 8 15 

K me%* 0.14 0.15 

Ca me% 0.54 2.5 

Mg me% 0.21 1.56 

Na me% - >2.0 

Zn ppm Trace 0.2 

Fe ppm 5.82 - 

Mn ppm 1.63 - 

Cu % 0.06 0.2 

*me% = meq 100 g-1 soil
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Appendix 4.2 Field trial layout of a 5 x 5 triple lattice experimental design conducted at 
Mansa Research Station (11° 14.396’ S and 028° 57.2 26’ E), Mansa, Zambia 
 
Replication 1 

 Plots  

Blocks 1 2 3 4 5  

1 1 2 3 4 5  

2 6 7 8 9 10  

3 11 12 13 14 15  

4 16 17 18 19 20  

5 21 22 23 24 25  

 

Replication 2 

 Plots  

Blocks 1 2 3 4 5  

1 1 6 11 16 21  

2 2 7 12 17 22  

3 3 8 13 18 23  

4 4 9 14 19 24  

5 5 10 15 20 25  

 

Replication 3 

 Plots  

Blocks 1 2 3 4 5  

1 1 10 14 18 22  

2 2 6 15 19 23  

3 3 7 11 20 24  

4 4 8 12 16 25  

5 5 9 13 17 21 1 m 

      

6 m 

 

Gross plot size: 6.6 m x 1 m 
Net plot size: 6 m x 1 m 
Horizontal and vertical lines indicate 1 m wide paths 
The crosses corresponding to the treatments were as follows: 1 = 1 x 2, 2 = 1 x 3, 3 = 1 x 4, 4 = 1 x 5, 6 = 2 
x 3, 7 = 2 x 4, 8 = 2 x 5, 9 = 3 x 4, 10 = 4 x 5, 11 = 2 x 1, 12 = 3 x 1, 13 = 4 x 1, 14 = 5 x 1, 15 = 3 x 2, 16 = 4 
x 2, 17 = 5 x 2, 18 = 4 x 3, 19 = 5 x 3, 20 = 5 x 4, 21 = parent 4, 22 = parent 2, 23 = parent 3, 24 = parent 5, 
and 25 = parent 1. 
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Appendix 4.3.1 Within cross ranking of β-carotene content (mg 100 g-1) of sweetpotato progeny evaluated in a 5 x 5 triple lattice 
experiment conducted at Mansa Research Station, Zambia 
 

Crosses* (above diagonal) 
Progeny 
No 1 x 2 1 x 3 1 x 4 1 x 5 2 x 3 2 x 4 2 x 5 3 x 4 3 x  5 4 x 5 

 Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank 

1 14.04 11 0.02 13 0.00 9 1.54 10 8.39 6 0.39 3 0.33 1 0 17 0.83 20 0 11 

2 16.63 2 0.13 5 0.04 7 0.00 20 10.19 3 0.00 10 0 9 7.82 6 1.09 19 2.03 1 

3 13.76 12 0 20 0.00 9 4.44 2 6.74 11 0.07 4 0 9 1.28 15 1.43 16 0 11 

4 13.57 13 0.01 16 0.64 1 1.73 6 10.54 2 0 10 0 9 10.67 3 7.90 3 0 11 

5 15.30 7 0.05 9 0.05 6 1.29 14 7.37 9 0.03 6 0.02 5 8.96 5 1.19 18 0.04 6 

6 14.62 10 0.08 7 0.05 5 1.30 13 1.74 16 0.04 5 0.04 3 3.66 12 4.59 9 0.03 8 

7 11.94 15 0.11 6 0.06 4 1.72 7 6.42 12 0 10 0.01 7 7.02 7 3.82 12 0.07 2 

8 11.32 17 0.05 10 0.00 9 1.04 18 7.07 10 0 10 0 9 3.39 13 12.66 1 0.05 4 

9 10.59 18 0.04 11 0.00 9 2.03 4 7.90 8 0 10 0 9 5.41 8 7.13 4 0 11 

10 12.33 14 0.07 8 0.03 8 1.17 16 11.35 1 0.02 7 0 9 0.58 16 5.32 7 0 11 

11 15.05 8 0.15 3 0.00 9 3.02 3 0.00 19 1.17 1 0 9 0 19 5.76 6 0.02 9 

12 17.34 1 0.04 12 0.00 9 4.91 1 9.20 5 0.01 8 0 9 4.54 9 5.15 8 0.06 3 

13 10.23 19 0.01 17 0.06 3 1.32 12 0.00 20 0 10 0 9 11.20 1 10.23 2 0 11 

14 16.01 3 0.02 14 0.00 9 1.74 5 4.63 13 0 10 0.04 4 3.95 10 2.92 15 0 11 

15 15.42 6 0.61 1 0.47 2 1.67 9 0.62 18 0 10 0 9 0 20 3.51 14 0.02 10 

16 8.44 20 0.15 4 0.00 9 0.69 19 3.64 14 0.66 2 0 9 3.75 11 4.45 10 0 11 

17 15.73 4 0.61 2 0.00 9 1.16 17 9.57 4 0 10 0.17 2 0 18 6.87 5 0.03 7 

18 11.69 16 0.02 15 0.00 9 1.20 15 2.75 15 0 10 0 9 9.47 4 3.63 13 0 11 

19 14.77 9 0.01 18 0.00 9 1.45 11 1.14 17 0 10 0.01 8 10.65 2 1.40 17 0 11 

20 15.43 5 0.01 19 0.00 9 1.68 8 8.29 7 0.01 9 0.02 6 3.39 14 4.41 11 0.05 5 

Mean 13.71  0.11  0.07  1.75  5.88  0.12  0.03  4.77  4.71  0.12  
*1 = Excel, 2 = L4-138/3; 3 = W-119, 4 = Unknown 2/1, 5 = L4-199084/1; S.E. = 0.27; CV% = 10.5; LSD = 0.43; Grand mean = 2.53  
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Appendix 4.3.1 (Continued) 

Reciprocal crosses (below the diagonal)* 
Progeny 
No 

2 x 1 3 x 1 4 x 1 5 x 1 3 x 2 4 x 2 5 x 2 4 x 3 5 x  3 5 x 4 

 Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank 

1 0.00 10 0.00 9 0.00 7 0.00 8 15.57 5 0 9 0.03 15 0.56 1 0 7 0 12 

2 0.00 10 0.00 9 0.00 7 0.30 3 13.25 17 0.0567 8 3.20 5 0.31 2 0.69 2 0 12 

3 0.14 6 0.03 8 0.00 7 0.00 8 15.48 6 0.0633 7 0.76 11 0 10 1.25 1 0.12 6 

4 0.17 5 0.15 2 0.00 7 0.00 8 16.01 3 0 9 0.34 14 0 10 0 7 0.06 10 

5 0.03 9 0.04 7 0.03 4 0.05 6 4.34 19 0 9 0 16 0 10 0 7 0 12 

6 0.00 10 0.00 9 0.00 7 0.00 8 16.82 2 0 9 2.42 8 0 10 0 7 0.29 3 

7 0.81 1 0.00 9 0.03 6 0.00 8 15.59 4 0 9 0 16 0 10 0 7 0.24 4 

8 0.00 10 0.09 4 0.00 7 0.00 8 14.38 9 0.4 3 0 16 0.03 7 0 7 0.01 11 

9 0.04 7 0.00 9 0.00 7 0.00 8 3.67 20 0.28 4 3.03 6 0.05 6 0.18 3 0.09 8 

10 0.00 10 0.00 9 0.00 7 1.08 1 17.57 1 0.47 2 0 16 0.20 5 0 7 0 12 

11 0.00 10 0.00 9 0.00 7 0.00 8 14.78 7 0 9 0.42 13 0.46 3 0.05 6 0 12 

12 0.55 2 0.00 9 0.88 1 0.19 4 14.67 8 0 9 0.76 12 0.02 8 0 7 0.11 7 

13 0.00 10 0.07 5 0.00 7 0.03 7 14.32 11 0 9 4.60 2 0 10 0 7 0.17 5 

14 0.00 10 1.64 1 0.00 7 0.00 8 13.78 16 0 9 0 16 0 10 0.14 4 0 12 

15 0.35 3 0.00 9 0.00 7 0.00 8 14.12 14 1.0133 1 3.42 3 0.51 2 0 7 0.42 1 

16 0.04 8 0.00 9 0.03 5 0.00 8 13.05 18 0 9 6.48 1 0 9 0 7 0 12 

17 0.00 10 0.06 6 0.05 3 0.07 5 14.23 13 0 9 2.64 7 0 10 0 7 0.09 9 

18 0.00 10 0.13 3 0.00 7 0.48 2 14.24 12 0.1633 5 3.4 4 0 10 0.09 5 0 12 

19 0.00 10 0.00 9 0.00 7 0.00 8 14.05 15 0.1533 6 2.32 9 0 10 0 7 0 12 

20 0.00 10 0.00 9 0.85 2 0.00 8 14.38 10 0 9 1.10 10 0 10 0 7 0.41 2 

Mean 0.11  0.11  0.09  0.11  13.72  0.13  1.75  0.11  0.12  0.10  
*1 = Excel, 2 = L4-138/3; 3 = W-119, 4 = Unknown 2/1, 5 = L4-199084/1; S.E. = 0.27; CV% = 10.5; LSD = 0.43; Grand mean = 2.53  
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Appendix 4.3.2 Within cross ranking of root dry mass (%) of sweetpotato progeny evaluated in a 5 x 5 triple lattice experiment 
conducted at Mansa Research Station, Zambia 
 

Crosses* (above diagonal) 
Progeny 
No 1 x 2 1 x 3 1 x 4 1 x 5 2 x 3 2 x 4 2 x 5 3 x 4 3 x  5 4 x 5 

 Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank 

1 28.71 10 20.79 19 30.42 12 25.87 12 26.38 15 27.58 16 33.3 13 36.68 2 29.43 6 27.53 16 

2 22.45 20 17.51 20 27.06 18 27.15 9 20.96 19 33.58 6 37.48 6 32.73 11 16.58 18 28.43 14 

3 31.34 4 28.62 4 28.53 15 24.63 18 25.98 16 27.88 14 38.56 4 35.02 7 30.03 4 34.85 6 

4 29.78 7 24.51 11 28.73 14 26.04 11 19.83 20 39.6 1 35.4 9 25.02 19 30.2 3 27.69 15 

5 30.25 5 21.83 16 27.13 17 23.82 19 30.56 11 30.59 11 34.53 10 25.06 18 26.4 11 25.12 19 

6 27.44 12 28.62 5 39.4 2 31 4 38.9 1 34.65 3 32.37 16 30.75 14 28.53 7 30.37 10 

7 31.44 3 27.64 8 33.92 6 31.54 3 30.4 12 32.87 7 32.74 15 28.33 15 25.18 13 19.47 20 

8 22.79 19 24.47 12 43.75 1 22.56 20 31.52 10 31.88 9 36.94 7 32.24 12 23.16 15 36.65 1 

9 29.6 8 22.61 14 32.93 8 24.83 17 33.73 9 32.46 8 34.23 11 30.98 13 25.33 12 35.38 4 

10 26.86 15 23.38 13 23.95 20 25.54 14 25.42 17 27.76 15 36.38 8 33.02 10 21.92 16 27.24 17 

11 28.1 11 31.23 2 33.32 7 25.21 16 37.81 4 29.05 12 37.95 5 35.35 4 23.98 14 29.37 13 

12 27.25 13 27.27 9 35.66 4 25.39 15 22.99 18 34.5 4 38.78 3 40.02 1 28.08 8 33.15 7 

13 32.19 2 26.18 10 28.32 16 31 5 38.45 2 24.45 20 31.47 17 21.54 20 15.64 19 34.98 5 

14 27 14 29.26 3 26.75 19 29.98 6 35.08 8 25.28 18 30.84 18 33.67 8 20.71 17 29.9 12 

15 24.05 18 22.18 15 31.21 11 26.86 10 37.94 3 25.8 17 40.36 2 35.05 6 29.59 5 30.05 11 

16 32.44 1 28.15 6 31.76 10 34.78 1 35.82 6 30.78 10 26.97 20 36.27 3 26.93 10 26.07 18 

17 26.32 16 20.8 18 29.9 13 31.64 2 26.75 14 28.11 13 32.86 14 35.22 5 15.53 20 32.74 8 

18 24.72 17 31.44 1 35.36 5 27.83 8 35.81 7 37.71 2 42.11 1 28.1 16 34.87 2 35.72 3 

19 30.23 6 21.65 17 32.33 9 25.66 13 37.8 5 24.63 19 33.71 12 25.41 17 27.86 9 31.7 9 

20 28.98 9 27.66 7 38.2 3 29.47 7 27.33 13 33.78 5 29.68 19 33.2 9 34.88 1 36.55 2 

Mean 28.10  25.29  31.93  27.54  30.97  30.65  34.83  31.68  25.74  30.65  
*1 = Excel, 2 = L4-138/3; 3 = W-119, 4 = Unknown 2/1, 5 = L4-199084/1; S.E. = 1.72; CV% = 5.7; LSD = 4.74; Grand mean = 29.97 
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Appendix 4.3.2 (Continued) 

Reciprocal crosses* (below diagonal) 
Progeny 
No 

2 x 1 3 x 1 4 x 1 5 x 1 3 x 2 4 x 2 5 x 2 4 x 3 5 x  3 5 x 4 

 Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank 

1 25.61 15 29.68 2 31.28 5 37.89 14 30.62 6 33.92 4 24.06 15 27.08 19 27.95 4 31.47 15 

2 25.29 18 28.88 5 31.07 6 32.76 19 32.27 5 29.3 13 28.3 6 31.27 16 21.18 19 33.2 7 

3 19.3 20 22.88 19 32.6 2 38.07 12 27.75 9 24.72 17 26.77 11 39.01 5 18.16 20 33.22 6 

4 27.27 12 28.6 6 27.32 16 37.49 15 24.12 19 31.95 11 29.7 2 34.76 10 25.08 10 32.73 10 

5 24.48 19 24.6 16 24.21 20 34.39 17 36.61 2 31.13 12 27.9 8 31.66 12 23.65 13 36.53 3 

6 25.47 16 28.37 7 28.09 13 39.18 10 32.38 4 32.93 7 29 5 35.97 7 27.44 8 33.11 8 

7 29.25 7 27.02 8 29.35 8 40.83 5 34.77 3 35.29 2 33.42 1 40.25 2 28.51 2 35.11 4 

8 26.65 13 29.07 4 29.93 7 39.55 7 25.73 14 22.2 20 26.76 12 34.42 11 28.74 1 29.34 18 

9 28.78 8 31.3 1 28.61 11 40.93 4 39.71 1 25.56 16 17.17 20 31.33 13 22.78 16 30.72 16 

10 31 5 26.78 9 27.83 14 33.06 18 27.91 7 23.76 18 28.12 7 36.82 6 24.39 12 30.47 17 

11 32.05 3 29.23 3 28.25 12 42.72 3 23.78 20 32.46 10 29.07 4 31.32 14 21.41 18 32.87 9 

12 27.82 11 24.68 15 24.35 19 42.8 2 25.18 17 36.47 1 23.48 17 27.97 18 23.47 14 28.85 19 

13 28.33 9 20.08 20 32.42 3 38.6 11 24.23 18 34.92 3 23.67 16 39.97 3 25.29 9 27.44 20 

14 27.86 10 25.03 13 32.3 4 44.27 1 25.92 13 33.67 5 27.67 9 26.13 20 22.72 17 32.33 11 

15 25.37 17 26.57 11 34.4 1 40.4 6 27.75 8 22.41 19 19.72 19 40.39 1 24.9 11 36.74 2 

16 26.07 14 24.52 17 26.22 17 39.4 8 25.7 15 32.89 8 25.18 13 35.53 9 27.73 6 31.63 14 

17 32.02 4 23.9 18 27.48 15 29.9 20 25.4 16 32.8 9 27.15 10 37.02 5 27.7 7 33.52 5 

18 32.1 2 26.47 12 29.15 10 37.33 16 26.62 12 27.55 15 24.33 14 31.1 17 22.98 15 32.05 12 

19 30.7 6 26.73 10 29.24 9 38.02 13 27.69 10 28.19 14 23.4 18 31.32 15 28.43 3 38.33 1 

20 33.23 1 24.98 14 24.38 18 39.22 9 27.26 11 33.25 6 29.34 3 35.88 8 27.89 5 32.01 13 

Mean 27.93  26.47  28.92  38.34  28.57  30.27  26.21  33.96  25.02  32.58  
*1 = Excel, 2 = L4-138/3; 3 = W-119, 4 = Unknown 2/1, 5 = L4-199084/1; S.E. = 1.72; CV% = 5.7; LSD = 4.74; Grand mean = 29.97 
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Appendix 4.3.3 Within cross ranking of root fresh yield (t ha-1) of sweetpotato progeny evaluated in a 5 x 5 triple lattice experiment 
conducted at Mansa Research Station, Zambia 
 

Crosses* (above diagonal) 

Progeny No 1 x 2 1 x 3 1 x 4 1 x 5 2 x 3 2 x 4 2 x 5 3 x 4 3 x  5 4 x 5 

 Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank 

1 1.43 3 5.83 20 20.44 4 0.12 20 1.05 18 17.16 6 0.85 18 1.72 14 2.35 1 21.88 19 

2 0.40 17 7.82 9 8.41 17 0.76 7 1.78 15 16.71 8 0.65 20 3.61 5 0.33 20 25.45 12 

3 1.25 4 6.80 16 16.44 11 0.25 15 2.90 9 17.36 5 2.67 6 2.07 10 1.20 7 27.78 6 

4 0.40 18 8.32 7 8.06 18 0.35 14 0.72 19 18.56 2 1.72 11 4.22 4 1.88 3 33.72 1 

5 1.16 7 6.37 19 5.66 19 0.20 18 0.62 20 14.21 19 0.87 17 3.35 6 0.55 15 28.08 5 

6 0.91 12 7.02 13 4.65 20 0.74 8 2.48 11 14.16 20 4.19 3 1.22 19 0.72 13 22.25 18 

7 0.62 16 6.83 15 16.63 10 0.22 16 2.08 13 15.06 13 6.19 1 1.36 16 0.76 12 28.27 4 

8 0.85 14 9.99 3 14.68 13 0.38 13 3.95 3 18.19 3 2.90 5 1.76 12 0.89 10 25.91 9 

9 1.05 10 6.94 14 12.71 15 0.55 9 1.49 17 14.30 15 2.39 8 2.19 9 0.42 19 27.38 7 

10 1.23 6 6.58 18 18.86 5 0.50 10 3.58 5 14.21 17 4.70 2 1.37 15 0.56 14 25.26 14 

11 0.40 18 14.98 1 15.16 12 1.00 5 2.73 10 14.27 16 1.47 13 1.93 11 1.35 5 21.23 20 

12 0.86 13 9.98 4 13.61 14 0.15 19 1.53 16 19.56 1 1.16 16 1.25 18 1.03 8 23.96 17 

13 0.75 15 9.01 6 17.76 7 0.80 6 6.62 1 15.96 11 0.85 19 4.62 3 1.89 2 29.71 3 

14 0.40 19 7.17 11 8.60 16 0.50 11 2.98 8 16.71 7 2.46 7 0.80 20 0.45 17 25.27 13 

15 1.02 11 12.01 2 21.08 1 0.45 12 3.43 6 16.26 9 2.27 9 2.50 8 1.22 6 24.71 16 

16 1.87 2 8.12 8 18.04 6 0.20 17 2.18 12 15.17 12 1.38 14 3.10 7 0.93 9 25.16 15 

17 1.07 8 7.15 12 16.86 9 1.80 2 1.97 14 16.00 10 1.48 12 1.28 17 1.85 4 30.19 2 

18 1.25 5 6.63 17 20.56 3 2.21 1 3.75 4 14.21 18 1.82 10 5.52 2 0.78 11 25.83 10 

19 3.50 1 7.35 10 17.31 8 1.20 3 3.01 7 14.41 14 1.17 15 6.13 1 0.42 18 26.92 8 

20 0.32 20 9.55 5 20.86 2 1.03 4 4.52 2 17.51 4 3.28 4 1.75 13 0.47 16 25.48 11 

Mean 1.04  8.22  18.82  0.67  2.67  16.00  2.22  2.59  1.00  26.22  
*1 = Excel, 2 = L4-138/3; 3 = W-119, 4 = Unknown 2/1, 5 = L4-199084/1; s.e. = 80.67; CV% = 7.6; LSD = 129.26; Grand Mean = 1065 
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Appendix 4.3.3 (Continued) 

Reciprocal crosses* (below diagonal) 
 
Progeny 
No 2 x 1 3 x 1 4 x 1 5 x 1 3 x 2 4 x 2 5 x 2 4 x 3 5 x  3 5 x 4 

 Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank 

1 8.31 19 12.06 17 14.87 11 16.18 4 5.63 18 15.25 1 0.25 18 34.37 13 1.08 9 13.63 1 

2 7.88 20 15.66 12 14.78 12 8.93 13 5.93 16 7.97 14 3.02 1 35.92 9 0.67 18 11.20 15 

3 10.87 16 15.36 14 16.77 4 11.98 10 6.38 13 8.28 12 0.94 4 32.64 14 1.00 11 11.17 16 

4 14.80 10 15.69 11 15.97 6 14.90 6 5.98 15 12.38 2 0.90 5 38.22 2 0.95 13 12.03 4 

5 15.27 9 18.91 4 13.28 18 8.65 14 6.38 14 10.18 4 0.40 14 35.69 11 1.07 10 10.92 18 

6 16.20 6 17.93 6 15.84 7 12.93 8 5.48 19 10.32 3 1.12 2 35.77 10 0.78 17 11.73 7 

7 13.85 11 17.81 7 12.71 20 15.72 5 5.33 20 7.45 18 0.44 13 23.20 18 1.61 4 12.67 3 

8 15.60 8 16.01 8 13.10 19 6.68 16 7.78 11 8.21 13 0.18 20 36.70 7 1.73 2 11.74 6 

9 12.05 15 11.66 19 23.44 1 22.42 2 5.88 17 7.87 16 0.45 11 38.32 1 1.31 6 11.29 13 

10 9.62 17 15.71 10 13.36 17 10.85 12 9.13 5 9.68 7 0.53 7 37.02 4 1.08 8 11.42 11 

11 17.55 3 15.91 9 18.56 2 5.50 17 7.93 10 8.37 11 0.34 17 22.17 19 1.58 5 11.21 14 

12 16.55 5 18.26 5 18.07 3 4.95 19 8.93 8 9.70 6 0.50 8 36.84 5 0.85 15 10.68 20 

13 15.70 7 19.61 3 14.47 14 11.60 11 9.13 4 7.17 20 0.25 19 37.55 3 1.62 3 11.05 17 

14 13.81 12 11.66 18 15.84 8 23.30 1 9.03 6 9.91 5 0.40 15 23.95 17 0.95 12 11.70 8 

15 8.36 18 20.89 1 15.51 10 4.85 20 7.68 12 7.68 17 0.85 6 36.47 8 0.58 19 11.63 9 

16 22.60 1 14.66 15 15.99 5 7.25 15 8.78 9 7.31 19 0.45 12 14.15 20 0.82 16 10.90 19 

17 13.28 13 12.31 16 14.06 16 14.22 7 9.18 3 8.77 9 0.48 10 30.70 16 0.88 14 11.42 12 

18 12.72 14 9.74 20 14.24 15 12.37 9 9.63 2 9.10 8 0.40 16 32.01 15 1.15 7 11.45 10 

19 16.86 4 15.41 13 14.66 13 5.30 18 10.03 1 7.92 15 0.50 9 34.99 12 0.47 20 11.76 5 

20 18.11 2 20.36 2 15.61 9 21.42 3 8.98 7 8.74 10 1.00 3 36.71 6 2.02 1 13.06 2 

Mean 14.00  15.78  15.56  12.60  7.66  9.11  0.67  32.67  1.11  11.63  
*1 = Excel, 2 = L4-138/3; 3 = W-119, 4 = Unknown 2/1, 5 = L4-199084/1; s.e. = 80.67; CV% = 7.6; LSD = 129.26; Grand Mean = 1065 
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Appendix 4.3.4 Within cross ranking of harvest index of sweetpotato progeny evaluated in a 5 x 5 triple lattice experiment conducted 
at Mansa Research Station, Zambia 
 

Crosses* (above diagonal) 
Progeny 
No 1 x 2 1 x 3 1 x 4 1 x 5 2 x 3 2 x 4 2 x 5 3 x 4 3 x  5 4 x 5 

 Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank 

1 0.76 1 0.63 9 0.87 17 0.46 12 0.60 8 0.89 1 0.21 14 0.61 9 0.65 3 0.80 11 

2 0.59 10 0.69 4 0.93 11 0.69 3 0.51 14 0.32 20 0.24 8 0.51 17 0.54 18 0.88 7 

3 0.59 11 0.71 2 0.92 13 0.54 8 0.43 17 0.63 13 0.31 4 0.59 12 0.63 4 0.90 5 

4 0.54 12 0.70 3 0.77 20 0.48 11 0.63 7 0.61 15 0.29 7 0.76 2 0.59 8 0.82 10 

5 0.41 18 0.62 12 0.95 5 0.43 14 0.56 11 0.87 2 0.20 15 0.60 11 0.58 11 0.75 13 

6 0.66 3 0.62 13 0.93 12 0.27 19 0.68 3 0.42 19 0.24 9 0.18 20 0.61 7 0.31 19 

7 0.63 6 0.60 16 0.97 2 0.53 9 0.41 18 0.73 8 0.16 19 0.54 15 0.62 5 0.88 8 

8 0.63 7 0.62 14 0.95 7 0.43 15 0.75 1 0.68 10 0.23 11 0.68 7 0.58 9 0.42 17 

9 0.50 14 0.60 17 0.97 1 0.43 13 0.31 20 0.66 11 0.30 5 0.84 1 0.58 12 0.91 4 

10 0.37 19 0.67 5 0.91 15 0.23 20 0.46 16 0.65 12 0.19 16 0.69 6 0.57 13 0.92 2 

11 0.44 17 0.61 15 0.93 10 0.41 17 0.64 5 0.85 3 0.23 10 0.53 16 0.56 16 0.74 14 

12 0.33 20 0.66 7 0.96 3 0.38 18 0.64 6 0.73 7 0.17 18 0.40 19 0.54 19 0.38 18 

13 0.65 5 0.66 8 0.83 19 0.55 7 0.55 12 0.76 6 0.22 13 0.58 13 0.61 6 0.88 9 

14 0.47 16 0.59 19 0.92 14 0.71 1 0.72 2 0.61 16 0.16 20 0.49 18 0.56 15 0.47 16 

15 0.54 13 0.60 18 0.88 16 0.62 5 0.57 10 0.82 5 0.29 6 0.56 14 0.57 14 0.67 15 

16 0.66 4 0.63 10 0.95 8 0.43 16 0.52 13 0.72 9 0.33 3 0.60 10 0.38 20 0.77 12 

17 0.73 2 0.66 6 0.86 18 0.62 4 0.39 19 0.85 4 0.51 1 0.63 8 0.74 1 0.89 6 

18 0.53 13 0.62 11 0.94 9 0.50 10 0.48 15 0.55 18 0.17 17 0.70 5 0.58 10 0.29 20 

19 0.59 9 0.71 1 0.96 4 0.60 6 0.60 9 0.62 14 0.22 12 0.72 4 0.69 2 0.91 3 

20 0.48 15 0.57 20 0.95 6 0.69 2 0.67 4 0.58 17 0.35 2 0.74 3 0.54 17 0.94 1 

Mean 0.55  0.64  0.92  0.50  0.56  0.68  0.25  0.60  0.59  0.73  
*1 = Excel, 2 = L4-138/3; 3 = W-119, 4 = Unknown 2/1, 5 = L4-199084/1; S.E. = 0.04; CV% = 6.4; LSD = 0.07; Grand mean = 0.699 
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Appendix 4.3.4 (Continued) 

Reciprocal crosses* (below diagonal) 
Progeny 
No 

2 x 1 3 x 1 4 x 1 5 x 1 3 x 2 4 x 2 5 x 2 4 x 3 5 x  3 5 x 4 

 Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank Mean Rank 

1 0.69 18 0.91 8 0.88 9 0.80 19 0.82 6 0.92 10 0.64 1 0.88 6 0.61 7 0.87 11 

2 0.66 19 0.90 12 0.80 17 0.87 14 0.78 11 0.94 5 0.47 15 0.85 12 0.68 3 0.89 7 

3 0.79 11 0.86 19 0.78 18 0.87 15 0.75 12 0.88 17 0.53 6 0.64 20 0.34 20 0.92 3 

4 0.94 2 0.91 9 0.88 12 0.91 8 0.83 3 0.91 14 0.38 19 0.73 17 0.51 14 0.95 1 

5 0.79 10 0.91 10 0.91 4 0.92 7 0.79 9 0.86 19 0.52 8 0.87 10 0.53 13 0.88 8 

6 0.81 9 0.86 18 0.92 3 0.94 2 0.61 17 0.80 20 0.50 12 0.87 9 0.61 6 0.94 2 

7 0.92 4 0.88 15 0.76 19 0.94 4 0.64 16 0.91 12 0.52 9 0.77 16 0.50 16 0.67 17 

8 0.75 15 0.90 11 0.89 8 0.90 9 0.60 18 0.95 3 0.49 13 0.84 15 0.69 2 0.43 20 

9 0.74 17 0.89 14 0.85 15 0.81 18 0.82 4 0.95 2 0.40 18 0.88 5 0.41 19 0.91 5 

10 0.88 5 0.94 1 0.90 6 0.83 17 0.87 1 0.93 6 0.58 3 0.87 7 0.49 17 0.82 14 

11 0.95 1 0.93 2 0.85 16 0.89 12 0.79 8 0.92 11 0.48 14 0.86 11 0.65 4 0.83 13 

12 0.92 3 0.93 3 0.87 14 0.92 6 0.82 5 0.95 4 0.64 2 0.87 8 0.51 15 0.91 4 

13 0.87 6 0.92 7 0.88 11 0.88 13 0.71 15 0.91 13 0.51 10 0.68 19 0.54 12 0.90 6 

14 0.77 12 0.93 4 0.89 7 0.90 11 0.81 7 0.87 18 0.50 11 0.89 3 0.65 5 0.87 12 

15 0.55 20 0.87 16 0.92 2 0.71 20 0.78 10 0.89 15 0.44 17 0.88 4 0.55 9 0.60 19 

16 0.75 14 0.85 20 0.88 13 0.90 10 0.49 20 0.93 7 0.53 5 0.69 18 0.54 11 0.87 10 

17 0.76 13 0.92 6 0.88 10 0.85 16 0.73 14 0.93 9 0.53 7 0.90 2 0.75 1 0.60 18 

18 0.85 7 0.87 17 0.90 5 0.94 3 0.85 2 0.89 16 0.32 20 0.95 1 0.54 10 0.77 15 

19 0.81 8 0.93 5 0.74 20 0.95 1 0.57 19 0.93 8 0.57 4 0.84 14 0.44 18 0.88 9 

20 0.74 16 0.89 13 0.92 1 0.93 5 0.75 13 0.96 1 0.47 16 0.85 13 0.56 8 0.76 16 

Mean 0.80  0.90  0.86  0.88  0.74  0.91  0.50  0.83  0.56  0.81  
*1 = Excel, 2 = L4-138/3; 3 = W-119, 4 = Unknown 2/1, 5 = L4-199084/1; S.E. = 0.04; CV% = 6.4; LSD = 0.07; Grand mean = 0.699 
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Appendix 4.4.1 Combining ability estimates for β-carotene content of parents and 
crosses for the 5 x 5 diallel (excluding self) of sweetpotato output from the DIALLEL-
SAS05 program of Zhang et al., 2005. 
 
Observation Parameter* Estimate Standard error tVal ue Probability  
1 Intercept 2.790800000 0.09929849 28.11 <.0001 
2   REP -0.140000000 0.04596627 -3.05    0.0037 
3 G1 1.650200000      0.05307728 31.09    <.0001 
4 G2 -0.022800000      0.05307728 -0.43    0.6694 
5 G3 0.353866667 0.05307728 6.67 <.0001 
6 G4 -1.044466667 0.05307728     -19.68    <.0001 
7 G5 -0.936800000 0.05307728     -17.65    <.0001 
8 S11 0.942133333 0.15012521 6.28    <.0001 
9 S12 5.655133333      0.10942161      51.68    <.0001 
10 S13 -2.104866667      0.10942161     -19.24    <.0001 
11 S14 -3.018200000      0.10942161     -27.58    <.0001 
12 S15 -2.416333333      0.21396134     -11.29    <.0001 
13 S22 -2.371866667      0.15012521     -15.80    <.0001 
14 S23 -2.721866667      0.10942161     -24.88    <.0001 
15 S24 -1.373533333      0.10942161     -12.55    <.0001 
16 S25   3.184000000      0.21396134      14.88    <.0001 
17 S33 1.551466667      0.15012521      10.33    <.0001 
18 S34 5.088133333      0.10942161      46.50    <.0001 
19 S35 -3.36433333 3     0.21396134     -15.72   <.0001 
20 S44 -0.291866667      0.15012521      -1.94    0.0576 
21 S45 -0.112666667      0.21396134      -0.53 0.6009 
22 S55 2.709333333      0.37531302       7.22    <.0001 
23 R12 3.916666667      0.13269319      29.52    <.0001 
24 R13 -2.303333333      0.13269319     -17.36    <.0001 
25 R14 0.005000000      0.13269319       0.04    0.9701 
26 R15   0.003333333      0.13269319       0.03    0.9801 
27 R23 0.000000000      0.13269319       0.00    1.0000 
28 R24 -0.040000000      0.13269319 -0.30 0.7643 
29 R25 2.256666667      0.13269319      17.01    <.0001 
30 R34 -6.801666667   0.13269319 -51.26    <.0001 
31 R35 -0.005000000      0.13269319      -0.04    0.9701 
32 R45 0.005000000      0.13269319       0.04    0.9701 
*G refers to general combining ability for parents, S refers to specific combining ability for crosses, R refers 
to specific combining ability for reciprocals; Numbers 1 – 5 after each letter (G, S, and R) represent the 
parent (one digit) or parents (two digits) of a cross in the following order: 1 = Excel, 2 = L4-138/3; 3 = W-119, 
4 = Unknown 2/1, 5 = L4-199084/1. 
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Appendix 4.4.2 Within cross ranking of root dry mass (%) of sweetpotato progeny 
evaluated in a 5 x 5 triple lattice experiment conducted at Mansa Research Station, 
Zambia 
 
Observation Parameter* Estimate Standard error tVal ue Probability  
1 Intercept 30.96800000      0.70674635      43.82    <.0001 
2   REP -0.52880000      0.32715999      -1.62    0.1124 
3 G1 -2.61240000      0.37777181      -6.92    <.0001 
4 G2 2.98060000      0.37777181       7.89    <.0001 
5 G3 -2.80706667      0.37777181      -7.43    <.0001 
6 G4 1.83660000      0.37777181       4.86    <.0001 
7 G5 0.60226667      0.37777181       1.59    0.1173 
8 S11 -0.63893333      1.06850005      -0.60    0.5526 
9 S12 -0.74526667      0.77879655      -0.96    0.3433 
10 S13 1.14406667      0.77879655       1.47    0.1482 
11 S14 1.25706667      0.77879655       1.61    0.1129 
12 S15 -0.37800000      1.52284687      -0.25    0.8050 
13 S22 -0.16160000      1.06850005      -0.15    0.8804 
14 S23 0.56273333      0.77879655       0.72    0.4734 
15 S24 1.84906667      0.77879655       2.37    0.0215 
16 S25   -1.34333333      1.52284687      -0.88    0.3820 
17 S33 0.94373333      1.06850005       0.88    0.3814 
18 S34 -0.68993333      0.77879655      -0.89    0.3800 
19 S35 -2.90433333      1.52284687      -1.91    0.0624 
20 S44 -1.49360000      1.06850005      -1.40    0.1685 
21 S45 0.57100000      1.52284687       0.37    0.7093 
22 S55 4.05466667      2.67125012       1.52    0.1355 
23 R12 -1.43666667      0.94442954      -1.52    0.1346 
24 R13 -0.11166667      0.94442954      -0.12    0.9064 
25 R14 1.46500000      0.94442954       1.55    0.1273 
26 R15   0.65333333      0.94442954       0.69    0.4923 
27 R23 0.00000000      0.94442954       0.00    1.0000 
28 R24 -1.76333333      0.94442954      -1.87    0.0679 
29 R25 -1.97166667    0.94442954      -2.09    0.0420 
30 R34 -0.31666667      0.94442954      -0.34    0.7388 
31 R35 0.72833333      0.94442954       0.77    0.4443 
32 R45 -1.16000000      0.94442954      -1.23    0.2252 
*G refers to general combining ability for parents, S refers to specific combining ability for crosses, R refers 
to specific combining ability for reciprocals; Numbers 1 – 5 after each letter (G, S, and R) represent the 
parent (one digit) or parents (two digits) of a cross in the following order: 1 = Excel, 2 = L4-138/3; 3 = W-119, 
4 = Unknown 2/1, 5 = L4-199084/1. 
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Appendix 4.4.3 Within cross ranking of harvest index of sweetpotato progeny evaluated 
in a 5 x 5 triple lattice experiment conducted at Mansa Research Station, Zambia 
 
Observation Parameter*  Estimate Standard error tValue  Probability  
1 Intercept 0.597000000      0.59700000      34.10    <.0001 
2   REP 0.012180000 0.00810379 1.50    0.1393 
3 G1 0.062340000      0.00935745       6.66    <.0001 
4 G2 0.012906666      0.00935745       1.38    0.1741 
5 G3 -0.084760000      0.00935745      -9.06    <.0001 
6 G4 0.012640000      0.00935745       1.35    0.1830 
7 G5 -0.003126667      0.00935745      -0.33    0.7397 
8 S11 0.012960000      0.02646687       0.49    0.6266 
9 S12 -0.141106667      0.01929088      -7.31 <.0001 
10 S13 0.114393333      0.01929088    5.93    <.0001 
11 S14 0.194326667      0.01929088      10.07    <.0001 
12 S15 -0.193533333      0.03772110      -5.13    <.0001 
13 S22 -0.014173333      0.02646687      -0.54    0.5947 
14 S23 0.152660000      0.01929088       7.91    <.0001 
15 S24 -0.079906667      0.01929088      -4.14    0.0001 
16 S25   0.096700000      0.03772110       2.56    0.0135 
17 S33 -0.365173333      0.02646687     -13.80    <.0001 
18 S34 -0.083906667      0.01929088      -4.35    <.0001 
19 S35 0.547200000      0.03772110      14.51    <.0001 
20 S44 0.131026667      0.02646687       4.95    <.0001 
21 S45 -0.292566667      0.03772110   -7.76    <.0001 
22 S55 -0.157800000      0.06616719      -2.38    0.0210 
23 R12 0.030766667      0.00935745       3.29 0.0019 
24 R13 -0.091600000      0.00935745      -9.79    <.0001 
25 R14 0.078000000      0.00935745       8.34    <.0001 
26 R15   -0.077333333      0.00935745      -8.26    <.0001 
27 R23 -0.122533333      0.01812063      -6.76    <.0001 
28 R24 0.174233333      0.01812063       9.62    <.0001 
29 R25 -0.081100000      0.01812063      -4.48    <.0001 
30 R34 0.144433333      0.01812063       7.97    <.0001 
31 R35 -0.302066667      0.01812063     -16.67    <.0001 
32 R45 0.176666667      0.01812063       9.75    <.0001 
*G refers to general combining ability for parents, S refers to specific combining ability for crosses, R refers 
to specific combining ability for reciprocals; Numbers 1 – 5 after each letter (G, S, and R) represent the 
parent (one digit) or parents (two digits) of a cross in the following order: 1 = Excel, 2 = L4-138/3; 3 = W-119, 
4 = Unknown 2/1, 5 = L4-199084/1.
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Appendix 4.4.4 Within cross ranking of root fresh yield (t ha-1) of sweetpotato progeny 
evaluated in a 5 x 5 triple lattice experiment conducted at Mansa Research Station, 
Zambia 
 
Observation Parameter* Estimate Standard 

error 
tValue  Probability  

1 Intercept 10.60838667      0.37114840      28.58    <.0001 
2   REP -0.06408000      0.17180833      -0.37    0.7108 
3 G1 -5.08182667      0.19838717     -25.62    <.0001 
4 G2 1.30070667      0.19838717       6.56    <.0001 
5 G3 2.53287333      0.19838717      12.77    <.0001 
6 G4 -0.15226000      0.19838717      -0.77    0.4465 
7 G5 1.40050667      0.19838717       7.06    <.0001 
8 S11 4.26676000      0.56112365       7.60    <.0001 
9 S12 -4.75410667   0.40898562     -11.62    <.0001 
10 S13 -3.31994000      0.40898562      -8.12    <.0001 
11 S14 9.93919333      0.40898562      24.30    <.0001 
12 S15 -10.3986667      0.79972424 -13.00    <.0001 
13 S22 -1.97030667      0.56112365      -3.51    0.0010 
14 S23 6.79736000      0.40898562      16.62    <.0001 
15 S24 -4.51717333      0.40898562     -11.04    <.0001 
16 S25   6.41453333      0.79972424       8.02    <.0001 
17 S33 9.56536000      0.56112365      17.05    <.0001 
18 S34 -7.62900667      0.40898562     -18.65    <.0001 
19 S35 -14.97913333      0.79972424     -18.73    <.0001 
20 S44 0.71329333      0.56112365       1.27    0.2097 
21 S45 0.78040000      0.79972424       0.98    0.3339 
22 S55 18.18286667      1.40280911      12.96    <.0001 
23 R12 -0.72200000      0.49596792      -1.46    0.1518 
24 R13 3.61100000      0.49596792       7.28    <.0001 
25 R14 -0.37033333      0.49596792      -0.75    0.4588 
26 R15   0.00000000      0.49596792       0.00    1.0000 
27 R23 -5.11116667      0.49596792     -10.31    <.0001 
28 R24 -4.88883333      0.49596792      -9.86    <.0001 
29 R25 -15.04200000      0.49596792     -30.33    <.0001 
30 R34 -2.43450000      0.49596792      -4.91    <.0001 
31 R35 7.88883333      0.49596792      15.91   <.0001 
32 R45 -4.11116667      0.49596792      -8.29    <.0001 
*G refers to general combining ability for parents, S refers to specific combining ability for crosses, R refers 
to specific combining ability for reciprocals; Numbers 1 – 5 after each letter (G, S, and R) represent the 
parent (one digit) or parents (two digits) of a cross in the following order: 1 = Excel, 2 = L4-138/3; 3 = W-119, 
4 = Unknown 2/1, 5 = L4-199084/1. 
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Chapter 5: Evaluation of G x E interaction of sweet potato for 

beta-carotene content, root dry mass, harvest index , vine fresh 

yield, and root fresh yield 

 
Abstract 

 

The effect of genotype (G) by environment (E) interaction (G x E) on β-carotene content, 

root dry mass (RDM), harvest index (HI), vine fresh yield (VFY), and root fresh yield 

(RFY) of 15 selected progeny from a polycross were investigated at five diverse 

locations in Zambia. The locations represented the major sweetpotato growing 

agroecologies in the country. The objective was to identify stable and high performing 

genotypes. The G x E analysis was conducted with the additive main effects and 

multiplicative interaction model (AMMI). The performance of genotypes was dependant 

on location for all the traits considered.  

 

The magnitude of the G x E for β-carotene content, RDM, and HI was small and 

selection for these traits may be conducted in a few, well selected environments. 

Conversely, RFY and VFY yield may require early testing in varied environments to 

select genotypes with either wide or specific adaptation.  

 

The AMMI analysis identified progeny G2, G6, and G8 as stable with above average 

performance across environments for β-carotene content (5.0, 4.7, and 4.7 mg 100 g-1, 

respectively), RDM (37, 37, and 35%, respectively), HI (0.7, 0.6, and 0.7, respectively), 

and RFY (14.2, 13.0, 14.4 t ha-1, respectively). Genotype G3 was specifically adapted to 

environment E3, E4, and E5 for β-carotene content, RDM, and RFY. It had the highest 

mean β-carotene content (9.4 mg 100 g-1), high mean RDM (35%), and high RFY 

(14.7 t ha-1) across the environments. It was concluded that it is possible to breed for 

high β-carotene, high RDM and high yield sweetpotato genotypes with wide or specific 

adaptation in Zambia as the AMMI analysis identified genotypes G2, G6, and G8 as 

stable across environments for both β-carotene content and RDM. They performed 

above average for both traits. 
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5.1 Introduction 

Genetic adaptation entails the shaping of a population or a species gene pool in 

response to environmental challenges (Perez-de-la-Vega and Tigerstedt, 1996). A crop’s 

ability to exploit its environment depends on many adaptive features that are controlled 

by multiple genes, interacting among themselves and with the environment in intricate 

ways (Hawtin et al., 1997). The genotype by environment interaction (G x E) observed 

by plant breeders signifies differential responses of the cultivars being tested to different 

environmental conditions and is a major challenge in plant breeding (Ceccarelli and 

Hammer, 1996). In essence, G x E reduces the correlation between the phenotype and 

the genotype. 

Ceccarelli et al. (1994) suggested that if the G x E is of the crossover type, genotypes 

developed in favorable environments do not perform well under harsh environments and 

vice versa. This suggests that the genes for yield expressed in low and high input 

conditions are different. As a result, breeding procedures conducted under high input 

and uniform agronomic conditions might favour selection of cultivars adapted to 

intensive management and might eliminate genotypes adapted to low input conditions 

(Ceccarelli, 1997). Crossover interaction causes problems in crop breeding because it 

hinders selection progress due to changing composition of genotypes selected in 

different environments (Cooper and Delacy, 1994; Crossa et al., 1995). Other workers 

(Braun et al., 1997; Eberhart and Russell, 1966; Troyer, 1996), however, have 

suggested that it is possible to breed for wide adaptation provided that the genetic base 

is broad enough.  

It was against this background that this study was designed to determine the adaptability 

of sweetpotato genotypes across locations for β-carotene content, root dry mass (RDM) 

composition, harvest index (HI), vine fresh yield (VFY), and root fresh yield (RFY) to 

determine the magnitude of the effect of G x E on these traits, and to identify stable and 

high performing genotypes. 
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5.2 Materials and Methods 

 
5.2.1 Polycross mating design 
 

Sweetpotato genotypes with high β-carotene content and high RDM were open-

pollinated in two field grown polycrosses (Figure 5.1) established at Mansa Research 

Station (11° 14.4’ S and 028° 57.2’ E), Zambia in D ecember 2005. The high β-carotene 

germplasm was introduced from the Vegetable and Ornamental Plant Institute, 

Roodeplaat, South Africa and from the International Potato Centre (CIP) in Kenya. The 

high dry mass germplasm was obtained from the sweetpotato breeding programme in 

Zambia which included parents selected from chapter 3 (Appendix 5.1). The first of the 

two polycrosses had 12 parents planted in a randomised complete block design with 12 

replications (Appendix 5.2). The second polycross had 30 parents planted in a 

randomised complete block design with eight replications (Appendix 5.3). Both 

polycrosses were planted in areas sufficiently isolated from other sweetpotato plants. 

Data on plant establishment, vigour, flowering, seed set, and number of seeds produced 

per parent was collected.  

 
From May to July 2006, seed was collected from the parents. The seed was cleaned by 

hand and stored for two months in paper bags under room condition in readiness for 

germination. Prior to planting, the seed was first scarified by immersing in concentrated 

H2SO4 (98%) for 20 minutes (Rossel et al., 2008). The scarified seed was sown in 

wooden boxes filled with black top soil which were placed in a screen house. Once the 

seedlings had reached 50 mm in height, they were removed from the screen house and 

transplanted to the nearby wetland on 10 m long by 1 m wide ridges. The available water 

in the wetland enabled good seedling establishment. Macro nutrients (10N-20P5O2-

10K2O) at a rate of 100 kg ha-1 were added to the soil in the wetland to boost vegetative 

growth of the transplanted seedlings. 

 
5.2.2 Progeny screening 
 

In November 2006, the cuttings from the wetland were planted in the field for evaluation. 

Cuttings provided a source of potential cultivars and were screened in an observational 

single plant trial. Cuttings were planted in groups according to family. The plants were 

screened for pests and diseases and other defects. At maturity the surviving plants were 

evaluated for good root traits, namely: shape and size, root neck length and root flesh 
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colour. Flesh colour determinations were made using the 1995 edition of the Royal 

Horticultural Society (RHS) Colour Chart (Royal Horticultural Society, 1995). 

 
Progeny with desirable characters (orange-fleshed, high RDM, field resistance to major 

pests and diseases) were selected. The threshold values for selection were 

predetermined as follows: 

1. medium to dark orange root flesh colour (RHS:9 137 U or better) 

2. High RDM (above 30%) 

3. Marketable root yield (above 120 g root-1) 

Progeny that did not exceed the threshold in any one trait were discarded. In total, 1470 

progeny were evaluated and 35 progeny (Appendix 5.4) met the selection criteria. The 

selected progeny were maintained in the wetland (Figure 5.2), and at the same time 

multiplied to increase the vines for planting. 

 

 

Figure 5.1: Polycross conducted at Mansa 
Research Station, Zambia 

Figure 5.2: Genotypes from seedlings 
growing in the wetland area 

 
 

5.2.3 Field trial evaluation of selected progeny for G x E 

 

In November 2007, replicated trials were established in two different locations, namely: 

Mansa-Mufulira (11° 06’S and 28° 51’E) and Mutanda West (12° 24’S and 26° 15’E) 

(Appendix 5.5), using 15 of the 35 selected progeny from the previous season (Table 

5.1). The criterion on which the 15 progeny were selected was based on genotypes 

being able to provide at least 500 tip cuttings to ensure enough planting material for the 

two locations. The remaining progeny were multiplied and evaluated separately. The trial 

was repeated in 2008 at three locations, namely: Mansa-Main (11° 14.4’ S and 028° 
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57.2’ E), Mutanda East (12° 11’S and 26° 24’E), and  at Golden Valley Research Trust 

(GART) (10° 07’S and 30° 55’E) (Appendix 5.5). A ra ndomised complete block design 

with three replications was used for all the trials. The experimental plot comprised four 

6 m long ridges spaced at 1 m. Plants were spaced at 30 cm within each ridge. The two 

middle ridges were used for data collection and plants on outer ridges were not used. 

During plant growth, observations were made for any pests and diseases and other 

biotic stresses. At harvest number of roots, and RFY and RDM composition were 

determined. Five plants from the central two rows of every experimental plot were 

randomly selected at harvest time to generate subsamples for root dry mass and β-

carotene content determinations. The β-carotene content was determined by the South 

Africa Bureau of Standards, in Pretoria, South Africa in 2008 and by the Tanzania Food 

Nutrition Center, Dar-es-Salam, Tanzania in 2009 using the High Performance Liquid 

chromatography (HPLC) procedure described by Rodriguez-Amaya and Kimura (2004). 

The β-carotene content was recorded as mg 100 g-1 on a fresh mass basis. 

 

5.2.4 Data analysis 

 

Each location in a given season was considered as an individual environment and   

assigned a code as follows: 

 

Environmental code Location Season 

E1 Mansa-Mufulira 2007/2008 

E2 Mutanda West 2007/2008 

E3 Mansa-Main 2008/2009 

E4 Mutanda East 2008/2009 

E5 GART 2008/2009 

  

 

Data were initially analyzed by conducting a separate ANOVA for each of the five 

environments using Genstat version 11.1 (Payne et al., 2007). Bartlett’s (1937) and 

Levene’s (1960) tests indicated homogeneity of error variances across environments 

and therefore data were pooled for the combined ANOVA across environments. Data 

was not transformed since there were no extreme values to warrant transformation. 
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Table 5.1 Major traits of the sweetpotato progeny evaluated at five locations in Zambia, 2007/8 season. 
 

Traits* 

Genotype¤ IDª 
Root 
shape Colour Chart 

Predominant 
skin Colour 

Flowering 
Habit 

Root 
dry 
mass 
(%) 

Cracke
d roots 
(score)* 

Sproutin
g 
(score)* 

Weevil 
damage 
(score)* 

L7- Chingovwa/36 G1 obvate RHS:9/2 1355U brownish orange none 35.18 1 1 2 
L7-W-119/107 G2 elliptic RHS:9 137U purple none 36.98 1 1 2 
L7-W-119/13 G3 elliptic RHS 9/2 1355U copper moderate 39.34 1 1 2 
L7- Chingovwa/84 G3 long elliptic RHS:9/3 7507U cream sparse 36.73 1 1 2 
L7- Chingovwa/62 G5 elliptic RHS:9/2 1355U brownish orange profuse 34.98 1 1 1 
L7- Excel/118 G6 long elliptic RHS:9 137U orange none 37.66 1 1 2 
L7- W119-c/22 G7 obvate RHS:9/1 1233U pink profuse 36.10 1 1 2 
L7-199062.1/95 G8 elliptic RHS:9/2 1355U copper moderate 35.65 1 1 3 
L7-15/1/17 G9 obvate RHS:9 137U orange none 35.15 1 1 3 
L7- Chingovwa/55 G10 obvate RHS:9 137U copper profuse 41.46 1 1 2 
L7- Chingovwa-c/24 G11 elliptic RHS:9/3 750U cream moderate 36.25 1 1 2 
L7- Chingovwa/83 G12 obvate RHS:9/3 7507U brownish orange sparse 36.55 1 1 1 
L7-W-119/89 G13 round RHS 9/2 1355U copper profuse 35.95 1 1 2 
L7- Chingovwa-c/56 G14 round RHS:9/2 1355U copper moderate 37.95 2 1 3 
L7- W119-c/65 G15 elliptic RHS:9 137U copper moderate 35.60 1 1 2 

ªID = identification code for each genotype; **Scores for mole damage, weevil damage, and cracking were as follows: 1 = No symptom, 2 = 1-5 
roots affected in a plot of 20 plants, 3 = any roots affected slightly (5-10% of root area), 4 = All roots affected moderately (11 - 25% of root area), 
and 5 = All roots affected severely (>25% of root area). ¤L7 = Luapula 2007 - meaning a selection done in Luapula Province in 2007 
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Combined ANOVA across environments, basic rank and Spearman’s rank correlation 

analyses on non-standardized data were conducted using Genstat version 11.1 (Payne 

et al., 2007). Stability analysis was performed on standardized data using the Additive 

main effect and Multiplicative Interaction (AMMI) model as described by Gauch and 

Furnas (1991). This model is more efficient than other methods in determining the most 

stable and high yielding genotypes in multi-environment trials (Manrique and Hermann, 

2002). The model uses ANOVA to partition the Treatment sum of squares (SS) into the 

main effect SS for genotypes and environments, and the interaction SS for genotype x 

environment.  The model then applies an Interaction Principal Component Analysis 

(IPCA) to determine pattern in the genotype x environment interaction means (Egesi and 

Asiedu, 2002). By plotting the main effects on the abscissa and the scores of the IPCA 

axes on the ordinate of a graph, the AMMI analysis provides a graphical representation 

(biplot) of the patterns represented by the specific interaction between genotypes and 

environments while simultaneously accounting for mean performance. The AMMI 

procedure in Genstat version 11.1 also ranks the top four genotypes in each 

environment. 

5.3 Results  

5.3.1 Genotype by Environment analyses of five trai ts 

 

5.3.1.1 β-carotene content 

 

The mean β-carotene content of the 15 polycross progeny was >4 mg 100 g-1 across 

environments (Table 5.2). Genotype G3 had the highest mean β-carotene content of 

9.4 mg 100 g-1 across environments whereas G13 was the lowest. The highest mean 

β-carotene content across genotypes in an environment was recorded at E2 

(6.2 mg 100 g-1), followed by E3 (4.6 mg 100 g-1). The E5 environment had the lowest 

mean β-carotene content (4.3 mg 100 g-1) (Table 5.2). The highest β-carotene content 

was recorded at environment E2 for genotype G5 (11.3 mg 100 g-1). 

 

The main effect for G, and the G x E interaction were highly significant (p<0.001 and 

p<0.01, respectively) for β-carotene content (Table 5.3). The first interaction principal 
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component (IPCA1) and the second (IPCA2) axes accounted for 86.8 and 9.6%, 

respectively, of the G x E sum of squares (SS) (Table 5.3). 

 

Genotypes G1, G2, G4, G6, G8, G10, G11, and G12 exhibited IPCA1 values close to 

zero and above mean performance (>4.8 mg 100 g-1) (Figure 5.1). Genotypes G5, G11, 

G10, G4, G12, and G1 performed best in environments E3 , G4, G10, G1, G2, G5, and 

G12 in E4, and G4, G5, G10, G1, G11, and G10 in E5 (Table 5.4). Genotype G14 was 

stable across all five environments but had low β-carotene content. Genotype G3 had 

the highest β-carotene content and since it was specifically adapted to three 

environments (E3, E4, and E5) and had an IPCA1 score of -2.63 it could be classified as 

unstable. Genotype G5 was the second highest performer across environments and was 

the highest in environment E1 and E2 (Table 5.2 and 5.4; Figure 5.1). Genotype G13 

(0.08 mg 100 g-1) and G7 (0.16 mg 100 g-1) recorded the lowest β-carotene content 

across environments (Table 5.2) and ranked among the lowest performing genotypes in 

each environment (Table 5.4). Environments E2 and E1 were unstable with IPCA1 

scores of -4.61 and 1.78, respectively (Figure 5.1). 

 



 135 

Table 5.2 Mean β-carotene content (mg 100 g-1), root dry mass (%), harvest index, vine 
yield (t ha-1) and root fresh yield (t ha-1) of 15 genotypes of sweetpotato evaluated at five 
environments in Zambia 
 

Mean across five environments  Genotypes  
β-carotene 

content (mg 
100 g-1) 

Root dry 
mass (%)  

Harvest 
index  

Vine yield 
(t ha -1) 

Root fresh 
yield (t ha -

1) 
G1 6.508 33.94 0.744 3.097 8.62 
G2 4.957 36.63 0.714 6.418 14.24 
G3 9.421 35.47 0.781 5.428 14.72 
G4 6.429 28.31 0.802 2.968 10.99 
G5 8.428 25.15 0.800 3.032 10.79 
G6 4.721 37.04 0.658 7.554 12.96 
G7 0.165 33.45 0.725 4.764 11.27 
G8 4.707 34.97 0.698 6.867 14.37 
G9 1.116 42.07 0.785 4.240 13.97 
G10 6.461 25.96 0.865 2.589 15.02 
G11 6.537 33.41 0.812 4.081 14.05 
G12 5.189 33.35 0.707 4.111   7.94 
G13 0.086 37.90 0.787 5.472 17.47 
G14 2.819 39.01 0.642 5.782 9.66 
G15 4.701 30.50 0.819 3.084 11.29 
Mean 4.816 33.81 0.756 4.632 12.49 
SE(±) 0.722   1.95 0.041 1.382   2.39 
      

Environment* means     
E1 4.592 34.99 0.803 2.639 11.27 
E2 6.196 34.18 0.811 1.722   7.50 
E3 4.597 33.10 0.724 4.706 12.86 
E4 4.399 33.68 0.794 2.609 10.42 
E5 4.299 33.10 0.647 11.486 20.41 
Mean 4.816 33.81 0.756 4.632 12.49 
SE(±) 0.153   0.42 0.010 0.748   0.72 
*E1 = Mansa-Mufulira, E2 = Mutanda West, E3 = Mansa-Main, E4 = Mutanda East, E5 = GART 
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Table 5.3 AMMI mean squares for β-carotene content (mg 100 g-1) of 15 genotypes of 
sweetpotato evaluated at five environments in Zambia 
 

% SS of:  Source  df  SSª Mean 

squares  

F value  Probability  

Treatment  G x E 

Treatments 74 7579 102.42 102.33 0.00000 100.00  

Genotypes (G) 14 4932 352.27 351.97 0.00000 65.07  

Environment (E) 4 0 0.00 0.00 1.00000 0.00  

G x E 56 2647 47.27 47.23 0.00000 34.92  

IPCA 1 17 2298 135.20 135.08 0.00000  86.82 

IPCA 2 15 253 16.90 16.88 0.00000  9.56 

Residual 24 95 3.97 3.96 0.00008  3.59 

Error 138 138 1.00     

Total 224 7731 34.51     

ªSS = Sum of squares. 
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Figure 5.1: Biplot of mean β-carotene content (mg 100 g-1) versus IPCA1 scores for 15 
genotypes evaluated in five environments in Zambia. Grand mean = 4.82 mg 100 g-1. 
Data standardized. 
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Table 5.4 Genotypes ranked per environment on the basis of mean β-carotene content. 
Environments ranked by IPCA1 score for β-carotene content (mg 100 g-1) 
  

Environments* Genotype rank 
E1 E2 E3 E4 E5 

1 G5 G5 G3 G3 G3 
2 G3 G11 G5 G4 G4 
3 G8 G15 G11 G10 G5 
4 G10 G1 G1 G1 G10 
5 G11 G10 G10 G2 G1 
6 G6 G3 G4 G5 G11 
7 G4 G4 G12 G12 G2 
8 G2 G12 G15 G8 G12 
9 G12 G6 G2 G11 G8 
10 G1 G2 G6 G6 G6 
11 G14 G8 G8 G15 G15 
12 G9 G14 G14 G9 G14 
13 G7 G9 G9 G14 G9 
14 G15 G7 G7 G13 G13 
15 G13 G13 G13 G7 G7 
Meanª 0.005 -0.004 -0.003 -0.001 -0.001 
      
Environment 
rank and (IPCA 
1 score) 5 (-4.61) 1 (1.78) 2 (1.29) 3 (1.22) 4 (0.32) 
* E1 = Mansa-Mufulira, E2 = Mutanda West, E3 = Mansa-Main, E4 = Mutanda East, E5 = GART; 
ªMeans generated from standardized data 
 

 

5.3.1.2 Root dry mass 

 

The genotypes had a mean RDM of 33.1%. Genotype G14 had the highest RDM of 

42.1% across environments. The highest mean RDM for all genotypes was recorded at 

E1 (35.0%), followed by E2 (34.2%). The E5 and E3 environments had the lowest mean 

RDM for all genotypes (33.1%) (Table 5.2). 

 
The main effect for G, and the G x E interaction were highly significant (p<0.001) for 

RDM. The IPCA1 and IPCA2 axes explained 57.4% and 20.4%, respectively of the total 

G x E SS. Both IPCA1 and IPCA2 mean squares were highly significant (p<0.001 and 

p<0.01, respectively) (Table 5.5). The most stable genotypes for RDM with IPCA1 

scores close to zero were G2, G3, G6, G8, G13, G14, and G9 (Figure 5.2; Table 5.6). 

Genotype G9 had the highest mean RDM (42.1%) across environments. The genotypes 
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that performed below average across environments were also unstable (G15, G4, and 

G10). Genotype G5 recorded the lowest RDM (25.2%) across environments (Table 5.6) 

and was stable (IPCA = 0.11). All the environments performed similarly (range of 1.89%) 

but E2 (IPCA1 = -1.82) was the most unstable environment. Environments E4 (IPCA1 

= -0.25) and E5 (IPCA1 = 0.27) were stable for RDM (Figure 5.2).  

 
 
Table 5.5 AMMI mean squares for root dry mass (%) of 15 genotypes of sweetpotato 
evaluated at five environments in Zambia, 2008/2009. 
 

% SS of: Source  df SS Mean 

squares 

F value  Probabilit

y Treatmen

t 

G x E 

Treatments 74 1462.3 19.76 19.77 0.00000 100.00  

Genotypes (G) 14 1301.3 92.95 93.00 0.00000 88.99  

Environments (E) 4 0.0 0.00 0.00 1.00000 0.00  

G x E 56 161.0 2.88 2.88 0.00005 11.01  

IPCA 1 17 92.5 5.44 5.45 0.00000  57.45 

IPCA 2 15 32.8 2.19 2.19 0.00938  20.37 

Residual 24 35.7 1.49 1.49 0.08151  22.17 

Error 138 137.9 1.00     

Total 224 1608.1 7.18     

ªSS = Sum of squares 
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Figure 5.2: Biplot of mean root dry mass (%) and IPCA1 scores of 15 genotypes planted 
at five locations in Zambia. Grand mean = 33.8%. Data standardized. 
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Table 5.6 Genotypes ranked per environment on the basis of mean root dry mass. 
Environments ranked by IPCA1 score for root dry mass (%) 
 

Environments*  Genotype rank  
E1 E2 E3 E4 E5 

1  G9  G9  G9  G9  G9 
2  G14  G14  G14  G14  G14 
3  G6  G13  G13  G13  G13 
4  G13  G15  G6  G2  G2 
5  G2  G2  G2  G6  G6 
6  G3  G6  G3  G3  G3 
7  G8  G7  G8  G11  G11 
8  G1  G8  G1  G8  G8 
9  G12  G3  G12  G1  G1 
10  G7  G1  G11  G12  G12 
11  G4  G11  G7  G7  G7 
12  G11  G12  G4  G15  G15 
13  G15  G10  G15  G4  G4 
14  G5  G4  G5  G10  G10 
15  G10  G5  G10  G5  G5 
Meanª -0.0007 0.0006 -0.0012 0.0019 0.0027 
      
Environment rank 
and (IPCA 1 score) 1 (1.40) 5 (-1.82) 2 (0.40) 3 (-0.25) 4 (0.27) 
*E1 = Mansa-Mufulira, E2 = Mutanda West, E3 = Mansa-Main, E4 = Mutanda East, E5 = 
GART; ªMeans generated from standardized data 
 

 

5.3.1.3 Harvest index 

 

The genotypes had a mean HI of 0.756. Genotype G10 had the highest HI of 0.865 

across environments. The lowest mean HI was recorded for G14 (0.642) across 

environments. The highest mean HI was calculated at environment E2 (0.811), followed 

by E1 in the same year (0.803). The E5 environment had the lowest mean HI (0.647) 

(Table 5.2). 

 

The G and the G x E were highly significant (p<0.001). The IPCA1 and the IPCA2 mean 

squares were both highly significant (p<0.001) and their SSs accounted for 75.6% and 

15.1%, respectively, of the G x E SS (Table 5.7). The most stable (IPCA1 scores close 

to zero) genotypes for HI with above average performance (>0.75) were G10, G15, G11, 

G4, G5, G13, and G9 and ranked highly across environments. Another set of genotypes, 
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G2, G12, G7, G8, and G6 with IPCA1 scores close to zero, had below average HI and 

their ranks were low across the environments (Figure 5.3; Table 5.8). Genotype G10 

was stable across the five environments and had the highest mean HI (0.86) across 

environments. Genotype G14 and G6 had the lowest mean HI (0.66 and 0.64, 

respectively) across environments but G6 was stable (IPCA1 = 0.07) whereas G14 was 

unstable (IPCA1 = -2.4). Environment E1 was the most stable (IPCA1 = -0.52) for all the 

genotypes followed by E4 (IPCA1 = 0.9) (Table 5.8). 

 

Table 5.7 AMMI mean squares for harvest index of 15 genotypes of sweetpotato 
evaluated at five environments in Zambia, 2008/2009. 
 

% SS of: Source  df SSª Mean 

squares  

F value Probability 

Treatment  G x E 

Treatments 74 662.8 8.956 10.84 0.00000 100.00  

Genotypes (G) 14 380.1 27.153 32.85 0.00000 57.35  

Environments (E) 4 0.0 0.003 0.00 0.99997 0.00  

G x E 56 282.6 5.047 6.11 0.00000 42.64  

IPCA 1 17 213.6 12.567 15.21 0.00000  75.58 

IPCA 2 15 42.7 2.847 3.44 0.00003  15.11 

Residual 24 26.3 1.095 1.32 0.15903  9.31 

Error 138 114.1 0.826       

Total 224 783.3 3.497      

ªSS = Sum of squares 
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Figure 5.3: Biplot of mean harvest index and IPCA1 scores of 15 genotypes evaluated in 
five environments in Zambia. Grand mean = 0.76. Data standardized. 
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Table 5.8 Genotypes ranked per environment on the basis of mean harvest index. 
Environments ranked by IPCA1 score for harvest index 
 

Environments* Genotype rank 
E1 E2 E3 E4 E5 

1  G15  G15  G10  G10  G10 
2  G10  G10  G3  G15  G4 
3  G11  G11  G5  G5  G11 
4  G13  G9  G1  G11  G9 
5  G9  G4  G4  G13  G14 
6  G5  G13  G13  G3  G5 
7  G4  G5  G11  G4  G15 
8  G7  G7  G2  G9  G13 
9  G3  G14  G15  G1  G3 
10  G1  G3  G12  G7  G8 
11  G12  G8  G9  G2  G12 
12  G2  G12  G8  G12  G2 
13  G8  G1  G7  G8  G1 
14  G6  G2  G6  G6  G7 
15  G14  G6  G14  G14  G6 
Meanª 0.001 0.008 0.008 -0.010 0.006 
      
Environment rank 
and (IPCA 1 
score) 3 (-0.52) 4 (-1.15) 1 (2.07) 2 (0.91) 5 (-1.31) 
*E1 = Mansa-Mufulira, E2 = Mutanda West, E3 = Mansa-Main, E4 = Mutanda East, E5 = GART; 
ªMeans generated from standardized data 
 

5.3.1.4 Vine fresh yield 

 

The genotypes had a mean VFY of 4.6 t ha-1. Genotype G6 had the highest mean VFY 

of 7.5 t ha-1 across environments. The highest mean (11.49 t ha-1) vine fresh yield across 

genotypes, however, was recorded at environment E5, followed by environment E3 

(4.71 t ha-1). The mean (11.5 t ha-1) VFY for Environment E5 was more than double the 

mean (4.7 t ha-1) VFY of E3 and five times more than the other environments (Table 

5.2). 

 

The G x E was highly significant (p<0.001). The IPCA1 and the IPCA2 accounted for 

55% and 22.5%, respectively, of the G x E SS (Table 5.9). Genotype G7 was the most 

stable (IPCA1 = 0.13) combined with above average mean performance (4.76 t ha-1). 

Other stable genotypes with high mean VFY were G13 and G8 (5.47 and 6.87 t ha-1, 

respectively). Genotype G2 and G6 performed above average but were less stable. 

There were more stable genotypes combined with below average mean performance 
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(<4.6 t ha-1); for example: G7, G9, G4, G11, and G14 (Table 5.10). In terms of 

environments, E1 was most stable (IPCA1 = -0.16). Environment E2 was a high yielding 

environment but was most unstable (Figure 5.4; Table 5.10). Genotype G6 was the best 

performing in all environments except in E3 where it ranked third (Table 5.10). 

 

Table 5.9 AMMI mean squares for vine fresh yield (t ha-1) of 15 genotypes of 
sweetpotato evaluated in five environments in Zambia, 2008/2009. 

% SS of: Source  df SSª Mean 

squares 

F value Probability 

Treatment  G x E 

Treatments 74 849.1 11.47 14.33 0.00000 100.00  

Genotypes (G) 14 254.8 18.20 22.73 0.00000 30.01  

Environments (E) 4 403.3 100.82 38.17 0.00000 47.50  

G x E 56 191.1 3.41 4.26 0.00000 22.50  

IPCA 1 17 105.1 6.18 7.72 0.00000  55.00 

IPCA 2 15 43.0 2.86 3.58 0.00003  22.50 

Residual 24 43.0 1.79 2.24 0.00198  22.50 

Error 138 110.5 0.80     

Total 224 968.0 4.40 19.00    

ªSS = Sum of squares 
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Figure 5.4: Biplot of mean vine fresh yield (t ha-1) and IPCA1 scores of 15 genotypes 
planted at five locations in Zambia. Grand mean = 4.6 t ha-1. Data standardized. 
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Table 5.10 Genotypes ranked per environment on the basis of mean vine fresh yield 
(t ha-1). Environments ranked by IPCA1 score for vine fresh mass (t ha-1) 
 

Environments* Genotype rank 
E1 E2 E3 E4 E5 

1  G6  G6  G8  G6  G6 
2  G8  G2  G14  G8  G3 
3  G2  G8  G6  G2  G2 
4  G13  G3  G13  G7  G8 
5  G7  G13  G7  G13  G14 
6  G14  G7  G2  G14  G13 
7  G9  G11  G9  G9  G11 
8  G3  G9  G12  G4  G12 
9  G4  G1  G4  G1  G7 
10  G1  G4  G1  G3  G9 
11  G11  G10  G15  G5  G15 
12  G12  G5  G3  G11  G1 
13  G5  G14  G5  G10  G5 
14  G10  G12  G11  G12  G10 
15  G15  G15  G10  G15  G4 
Meanª -0.001 0.007 -3.346 -0.002 0.0001 
      
Environment rank 
and (IPCA 1 
score) 3 (-0.16) 5 (-1.75) 1 (1.56) 2 (0.59) 4 (-0.24) 
* E1 = Mansa-Mufulira, E2 = Mutanda West, E3 = Mansa-Main, E4 = Mutanda East, E5 
= GART; ªMeans generated from standardized data 
 

 

5.3.1.5 Root fresh yield 

 

The genotypes had a mean RFY of 12.5 t ha-1. Genotype G13 had the highest RFY with 

a mean of 17.5 t ha-1 across environments. The E5 environment had the highest mean 

RFY (20.4 t ha-1) across genotypes while environment E2 had the lowest mean RFY 

(7.5 t ha-1) (Table 5.2). 

 

The G main effect and the G x E were highly significant (p<0.001) (Table 5.11). The 

IPCA1 and the IPCA2 accounted for 47.3% and 37.8%, respectively, of the G x E SS 

and were highly significant (p<0.001) (Table 5.11). The most stable genotypes with 

IPCA1 scores close to zero combined with above average performance (>12.5 t ha-1) 

across environments were G6, G10, G9, G8, and G2 (Figure 5.5). Genotype G13 was 

the highest yielding but was less stable (IPCA1 = 0.95). It did not perform very well in 
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environment E5, though it was the best performing genotype in the rest of the 

environments. Among the low yielding genotypes, G12 and G15 with IPCA1 scores of 

0.1 and -0.39, respectively, were the most stable (Figure 5.5 and Table 5.12). 

Environment E2 was the most stable environment (IPCA1 = 0.27) but had the lowest 

mean (7.5 t ha-1) yield across genotypes. Conversely, environment E5 was very unstable 

(IPCA1 = -2.58) (Figure 5.5). 

 

Table 5.11 AMMI mean squares root fresh yield (t ha-1) of 15 genotypes of sweetpotato 
evaluated at five environments in Zambia  
Source  df SSª Mean 

squares 

F value Probability % SS of: 

      Treatment  G x E 

Treatments 74 884.7 11.956 11.97 0.00000 100.00  

Genotypes (G) 14 399.1 28.510 28.53 0.00000 45.11  

Environment (E) 4 0.0 0.000 0.00 1.00000 0.00  

G x E 56 485.6 8.671 8.68 0.00000 54.89  

IPCA 1 17 229.7 13.511 13.52 0.00000  47.30 

IPCA 2 15 183.3 12.221 12.23 0.00000  37.75 

Residual 24 72.6 3.025 3.03 0.00003  14.95 

Error 138 137.9 0.999     

Total 224 1051.7 4.695     

ªSS = Sum of squares 
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Figure 5.5: Biplot of mean root fresh yield (t ha-1) and IPCA1 scores of 15 genotypes 
planted at five locations in Zambia. Grand mean = 12.5 t ha-1. Data standardized. 
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Table 5.12 Genotypes ranked per environment on the basis of mean performance. 
Environments ranked by IPCA1 score for root fresh yield (t ha-1) 
 

Environments* Genotype rank 
E1 E2 E3 E4 E5 

1  G13  G13  G13  G13  G3 
2  G7  G9  G10  G10  G11 
3  G9  G11  G3  G3  G14 
4  G15  G10  G8  G8  G8 
5  G10  G7  G1  G2  G2 
6  G11  G2  G2  G6  G9 
7  G6  G8  G4  G9  G13 
8  G2  G15  G6  G4  G10 
9  G5  G6  G5  G7  G6 
10  G8  G3  G7  G5  G12 
11  G4  G5  G9  G11  G15 
12  G3  G4  G12  G1  G4 
13  G1  G14  G11  G15  G5 
14  G14  G1  G15  G12  G7 
15  G12  G12  G14  G14  G1 
Meanª 0.001 -0.003 0.0001 -0.001 -0.0001 
      
Environment rank 
and (IPCA 1 
score) 3 (0.40) 4 (0.27) 2 (0.90) 1 (1.01) 5 (-2.58) 
*E1 = Mansa-Mufulira, E2 = Mutanda West, E3 = Mansa-Main, E4 = Mutanda East, E5 = 
GART; ªMeans generated from standardized data  
 

5.3.2 Spearman’s rank correlations 

 
5.3.2.1 β-carotene content 

 

Rank correlation between environment E1 and E2 was significant (p<0.05). The rank 

correlations between E1 and E3, E1 and E4, E2 and E4, and E2 and E5 were highly 

significant at p<0.01. The correlations of the remaining pairs were highly significant 

(p<0.001) (Table 5.13).  
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Table 5.13 Spearman’s correlations between environments of the ranking of 15 
genotypes within each environment for β-carotene content (mg 100 g-1) 
 

Environmentª 

Environment  E1 E2 E3 E4 E5 

E1 1     

E2 0.529*** 1    

E3 0.700*** 0.900*** 1   

E4 0.686*** 0.586*** 0.804*** 1  

E5 0.775*** 0.729*** 0.914*** 0.95*** 1 

*,**,***Significant at p<0.05, 0.01, 0.001, respectively. ªE1 = Mansa-Mufulira, E2 = 
Mutanda West, E3 = Mansa-Main, E4 = Mutanda East, E5 = GART 
 
 
Rank correlation between the genotypes indicated that some genotypes were highly 

positively correlated and some highly negatively correlated. For example, genotype G1 

was highly, positively correlated with G10, G11, G12, and G15 but highly, negatively 

correlated with G3, G8, and G9 (Table 5.14). There were other genotypes with highly, 

positive correlations. For example, G5 was positively, highly correlated with G6, G11, 

G12, and G14.  

 

 

5.3.2.2 Root dry mass composition 
 
 

The rank correlations were highly significant (p<0.001) between all pairs of 

environments. Environment E4 with E5 were perfectly correlated (Table 5.15). Most of 

the genotypes were not significantly correlated with each other (Table 5.16). Among 

those that were significantly (p<0.05) correlated, only four were negatively correlated, 

namely: G10 with G4, G10 with G5, G10 with G6, and G12 with G10. Genotype G1 was 

positively, highly correlated with the most genotypes (six) followed by G12 (five). 
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Table 5.14 Spearman’s correlations between 15 genotypes of their ranks in each of five environments for β-carotene content 
(mg 100 g-1) 
 

Genotype  
Genotype  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 
G1 1               
G2  0.3 1              
G3 -0.9** -0.1 1             
G4  0.5  0.6 -0.3 1            
G5  0.3  0.3 -0.4 -0.4 1           
G6  0.3  0.8* -0.1  0.1  0.7* 1          
G7  0.1  0.9**  0.0  0.2  0.6 0.9** 1         
G8 -0.8*  0.3  0.9** -0.1 -0.2 0.2 0.4 1        
G9 -0.8*  0.3  0.9** -0.1 -0.2 0.2 0.4  1.0 1       
G10  1.0***  0.3 -0.9**  0.5  0.3 0.3 0.1 -0.8* -0.8* 1      
G11  0.7*  0.0 -0.9** -0.1  0.7* 0.2 0.1 -0.8* -0.8*  0.7* 1     
G12   0.7*  0.3 -0.6 -0.1  0.8* 0.7* 0.4 -0.5 -0.5  0.7*  0.7* 1    
G13 -0.3  0.7*  0.6   0.4 -0.2 0.5 0.6  0.8*  0.8* -0.3 -0.7* -0.2 1   
G14 -0.1  0.1  0.0 -0.7*  0.9** 0.6 0.5  0.1  0.1 -0.1  0.4  0.6 -0.1 1  
G15  1.0***  0.3 -0.9**  0.5  0.3 0.3 0.1 -0.8* -0.8*  1.0***  0.7*  0.7* -0.3 -0.1 1 

*,**Significant at p<0.05, 0.01, respectively.  
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Table 5.15 Spearman’s correlations between environments of the ranking of 15 
genotypes within each environment for root dry mass (%)  
 

Environment 

Environment  E1 E2 E3 E4 E5 

E1 1     

E2 0.754*** 1    

E3 0.986*** 0.761*** 1   

E4 0.925*** 0.796*** 0.968*** 1  

E5 0.925*** 0.796*** 0.968*** 1.000*** 1 

***Significant at p<0.001; ªE1 = Mansa-Mufulira, E2 = Mutanda West, E3 = Mansa-Main, 
E4 = Mutanda East, E5 = GART 
 
 
 
5.3.2.3 Harvest index 
 
 

Environments E2 and E3 were not correlated for HI (Table 5.17). Environments E1 with 

E3, and E3 with E5 were positively, highly correlated. The correlations between E5 and 

E1, and E5 and E4 were positive and significant at p<0.01. The correlations between the 

remaining pairs of environments were positive and highly significant (p<0.001).  

Genotypes G4 and G15 were each positively correlated with nine other genotypes 

(Table 5.18). The significant (p<0.05) positive correlation between G1 and G14 was the 

only one that was negative.  
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Table 5.16 Spearman’s correlations between 15 genotypes of their ranks in each of five environments for root dry mass (%) 
 

Genotype 
Genotype  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 
G1 1               
G2  0.6 1              
G3  0.7* 0.6 1             
G4  0.8* 0.1  0.7* 1            
G5  0.9** 0.5  0.9**  0.9** 1           
G6  0.9** 0.2  0.5  0.9**  0.8* 1          
G7  0.4 0.5 -0.1 -0.1  0.0  0.3 1         
G8  0.4 0.5 -0.1 -0.1  0.0  0.3 1 1        
G9  0.7* 0.6  0.3  0.3  0.4  0.6  0.9**  0.9** 1       
G10 -0.5 0.2 -0.6 -0.9** -0.7* -0.7*  0.3  0.3 -0.1 1      
G11 -0.2 0.6  0.2 -0.5 -0.1 -0.6 -0.1 -0.1 -0.2  0.6 1     
G12  0.9** 0.5  0.9**  0.9**  1.0***  0.8*  0.0  0.0  0.4 -0.7* -0.1 1    
G13  0.5 0.9**  0.8*  0.2  0.6  0.1  0.1  0.1  0.3  0.0  0.7*  0.6 1   
G14  0.7* 0.6  0.3  0.3  0.4  0.6  0.9**  0.9**  1.0*** -0.1 -0.2  0.4  0.3 1  

G15  0.3 0.1 -0.3  0.0 -0.1  0.4  0.9**  0.9**  0.8*  0.1 -0.5 -0.1 -0.3 0.8* 1 
*,**,***Significant at p<0.05, 0.01, 0.001, respectively. 
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Table 5.17 Spearman’s correlations between environments of the ranking of 15 
genotypes within each environment for harvest index 
 

Environmentª 

Environments E1 E2 E3 E4 E5 
E1 1     

E2 0.882*** 1    

E3 0.532*** 0.296NS*** 1   

E4 0.932*** 0.775*** 0.757*** 1  

E5 0.582*** 0.804*** 0.386*** 0.575** 1 

*,**,***Significant at p<0.05, 0.01, 0.001, respectively. ªE1 = Mansa-Mufulira, E2 = Mutanda West, 
E3 = Mansa-Main, E4 = Mutanda East, E5 = GART. 
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Table 5.18 Spearman’s correlations between 15 genotypes of their ranks in each of five environments for harvest index 
 

Genotype  
Genotype  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 
G1  1               
G2  0.7* 1              
G3  0.9**  0.9** 1             
G4  0.1  0.4  0.3 1            
G5  0.4  0.9**  0.7* 0.7* 1           
G6  0.1  0.5  0.2 0.7* 0.7* 1          
G7  0.1  0.5  0.2 0.7* 0.7* 1 1         
G8  0.0  0.3  0.1 0.9** 0.6 0.9** 0.9** 1        
G9 -0.4  0.1 -0.2 0.8* 0.5 0.8* 0.8* 0.9** 1       
G10  0.5  0.6  0.7* 0.8* 0.7* 0.3 0.3 0.5 0.3 1      
G11  0.0  0.3  0.1 0.9** 0.6 0.9** 0.9** 1 0.9** 0.5 1     
G12  0.1  0.4  0.3 1.0*** 0.7* 0.7* 0.7* 0.9** 0.8* 0.8* 0.9** 1    
G13  0.3  0.8*  0.5 0.6 0.9** 0.9** 0.9** 0.7* 0.6 0.4 0.7* 0.6 1   
G14 -0.7* -0.3 -0.6 0.5 0.1 0.6 0.6 0.7* 0.9** -0.1 0.7* 0.5 0.3 1  
G15  0.0  0.3  0.1 0.9** 0.6 0.9** 0.9** 1.0*** 0.9** 0.5 1.0*** 0.9** 0.7* 0.7* 1 

*,**,***Significant at p<0.05, 0.01, 0.001, respectively.
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5.3.2.4  Vine fresh yield 
 
 

All the correlations between environments were positive but the significance levels 

varied. Environment E2 and E3 were correlated at p<0.05. All the other environments 

were positively, significantly (p<0.01) correlated with E5. The remaining correlations 

between environments were highly significant (p<0.001) (Table 5.19). Also, all the 

correlations between the genotypes were positive with high correlations, the majority of 

which were highly significant (p<0.001) (Table 5.20). 

 
Table 5.19 Spearman’s correlations between environments of the ranking of 15 
genotypes within each environment for vine fresh yield (t ha-1) 
 

Environmentª  
Environment  E1 E2 E3 E4 E5 
E1 1     

E2 0.818*** 1    

E3 0.843*** 0.407*** 1   

E4 0.968*** 0.775*** 0.818*** 1  

E5 0.718*** 0.679*** 0.554*** 0.564** 1 

*,**,***Significant at p<0.05, 0.01, 0.001, respectively. ªE1 = Mansa-Mufulira, E2 = 
Mutanda West, E3 = Mansa-Main, E4 = Mutanda East, E5 = GART 
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Table 5.20 Spearman’s correlations between 15 genotypes of their ranks in each of five environments for vine fresh yield (t ha-1) 
 

Genotype 

Genotype  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 
G1 1               
G2 0.9** 1              
G3 0.9** 1.0*** 1             
G4 1.0*** 0.9** 0.9** 1            
G5 1.0*** 0.9** 0.9** 1 1           
G6 0.9** 1.0*** 1.0*** 0.9** 0.9** 1          
G7 0.9** 1.0*** 1.0*** 0.9** 0.9** 1.0*** 1         
G8 0.9** 1.0*** 1.0*** 0.9** 0.9** 1.0*** 1.0*** 1        
G9 1.0*** 0.9** 0.9** 1.0*** 1.0*** 0.9** 0.9** 0.9** 1       
G10 1.0*** 0.9** 0.9** 1.0*** 1.0*** 0.9** 0.9** 0.9** 1.0*** 1      
G11 1.0*** 0.9** 0.9** 1.0*** 1.0*** 0.9** 0.9** 0.9** 1.0*** 1.0*** 1     
G12 0.9** 1.0*** 1.0*** 0.9** 0.9** 1.0*** 1.0*** 1.0*** 0.9** 0.9** 0.9** 1    
G13 0.9** 1.0*** 1.0*** 0.9** 0.9** 1.0*** 1.0*** 1.0*** 0.9** 0.9** 0.9** 1.0*** 1   
G14 0.9** 1.0*** 1.0*** 0.9** 0.9** 1.0*** 1.0*** 1.0*** 0.9** 0.9** 0.9** 1.0*** 1.0*** 1  
G15 1.0*** 0.9** 0.9** 1.0*** 1.0*** 0.9** 0.9** 0.9** 1.0*** 1.0*** 1.0*** 0.9** 0.9** 0.9** 1 

**,***Significant at p<0.01, 0.001, respectively.
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5.3.2.5  Root fresh yield 
 

All the correlations involving environment E5 were not significant. Correlations where E3 

was involved were also not significant except with E4. Two pairs of environments, E2 

with E1, and E4 with E3 were positively and highly correlated (Table 5.21).  All the 

correlations between genotypes that were high were positive (Table 5.22). Rank 

correlations involving genotype G11 were all not significant. Similarly, most of the 

correlations that involved genotype G7 were not significant. Otherwise, most of the 

correlations between genotypes were positive and significant (p<0.05). 

 
Table 5.21 Spearman’s correlations between environments of the ranking of 15 
genotypes within each environment for root fresh yield (t ha-1) 
 

Environmentª  
Environment  E1 E2 E3 E4 E5 
E1 1     

E2 0.886*** 1    

E3 0.111NS* 0.236NS* 1   

E4 0.429*** 0.593***  0.854*** 1  

E5 -0.071NS* 0.321NS* 0.039NS* 0.304NS 1 

*,**,***Significant at p<0.05, 0.01, 0.001, respectively. NS = Not significant. ªE1 = 
Mansa-Mufulira, E2 = Mutanda West, E3 = Mansa-Main, E4 = Mutanda East, E5 = 
GART 
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Table 5.22 Spearman’s correlations between 15 genotypes of their ranks in each of five environments for root fresh yield (t ha-1) 
 

Genotype 

Genotype  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 
G1 1               
G2  0.9** 1              
G3  0.9** 1 1             
G4  0.8* 0.9** 0.9** 1            
G5  0.8* 0.9** 0.9** 1.0*** 1           
G6  0.8* 0.9** 0.9** 1.0*** 1.0*** 1          
G7  0.4 0.3 0.3 0.6 0.6 0.6 1         
G8  0.9** 1.0*** 1.0*** 0.9** 0.9** 0.9** 0.3 1        
G9  0.5 0.7* 0.7* 0.9** 0.9** 0.9** 0.7* 0.7* 1       
G10  0.9** 1.0*** 1.0*** 0.9** 0.9** 0.9** 0.3 1.0*** 0.7* 1      
G11 -0.3 0.1 0.1 0.3 0.3 0.3 0.1 0.1 0.6 0.1 1     
G12  0.9** 1.0*** 1.0*** 0.9** 0.9** 0.9** 0.3 1.0*** 0.7* 1.0***  0.1 1    
G13  1.0*** 0.9** 0.9** 0.8* 0.8* 0.8* 0.4 0.9** 0.5 0.9** -0.3 0.9** 1   
G14  0.5 0.7* 0.7* 0.9** 0.9** 0.9** 0.7* 0.7* 1.0*** 0.7*  0.6 0.7* 0.5 1  
G15  0.5 0.7* 0.7* 0.9** 0.9** 0.9** 0.7* 0.7* 1.0*** 0.7*  0.6 0.7* 0.5 1.0*** 1 

*,**,***Significant at p<0.05, 0.01, 0.001, respectively. 
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5.3.3 Correlations among five traits 

 
Root dry mass was negatively correlated with β-carotene content, VFY, and RFY 

whereas it was positively correlated with HI. Beta-carotene content was negatively 

correlated with HI and positively correlated with VFY. HI was negatively correlated with 

both VFY and RFY while VFY and RFY were positively correlated (Table 5.23) 

 

Table 5.23 Phenotypic correlations among five traits measured on 15 genotypes in five 

environments 

 
Traits  

Traits  
Root dry 
mass (%)  

β-carotene 
content 
(mg 100 g -

1) 
Harvest 
index  

Vine fresh 
yield (t ha -1) 

Root 
fresh 
yield 
(t ha -1) 

Root dry mass (%) -     
β-carotene content (mg 100 g-1) -0.404*** -    
Harvest index -0.223*** -0.234*** -   
Vine fresh yield (t ha-1) -0.172* -0.162* -0.687*** -  
Root fresh yield (t ha-1) -0.152* -0.033NS -0.136* 0.739*** - 

*,***Significant at p<0.05, 0.001, respectively. NS = Not significant.  
 
 
5.4 Discussions and conclusion 

 

The mean squares for the G x E were highly significant (p<0.001) for β-carotene content, 

RDM, HI, VFY, and RFY, indicating differential response of genotypes relative to each 

other across the five environments. The G x E interactions are revealed by the changes 

in the rank order of the genotypes across the environments for the five traits (Tables 5.4, 

5.6, 5.8, and 5.10). The AMMI analysis identified genotypes that were stable across 

environments and these are discussed for each trait. 

 

Spearman’s rank correlations between environments were positive and high for β-

carotene content, RDM, HI, and VFY (Tables 5.13, 5.15, 5.17, and 5.19; , respectively). 

These correlations can be attributed to a number of genotypes maintaining consistent 

rankings across environments. For example, for the trait RDM, genotypes G9, G14, and 
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G13 had consistently high values while others, G10, G4, and G5, had consistently low 

values (Table 5.6).  

 

Mean β-carotene content ranged from 0.09 to 9.4 mg 100 g-1 indicating that β-carotene 

content was highly variable among the genotypes. The mean RDM (33.8%) of the 15 

genotypes was high relative to the popular local, cultivar with genotype G9 recording the 

highest mean RDM of 42%. The mean HI was above 50% for all the genotypes 

indicating that most of the photosynthates were partitioned to the roots. Genotype G6 

and G8 had the highest VFY and may be considered either as a vegetable or livestock 

feed depending on their palatability. The mean RFY ranged from 7.9 to 17.5 t ha-1. The 

overall mean RFY of the 15 progeny selected from the polycross was 12.5 t ha-1 and 

was higher than the average of the germplasm collected (detailed in Chapter 3) which 

was 8.9 t ha-1. This is a remarkable increase in yield for this polycross derived set of 

genotypes.   

 

5.4.1 β-carotene content 

 

The subdivision of G x E for β-carotene content in roots indicated that the first two IPCA 

axes accounted for 96% of the total variability. However, the high G (65% of treatment 

SS) and the relatively low G x E (35% of treatment SS) for β-carotene content may 

indicate that the evaluation for high, stable performance can be done using well chosen 

environments.  This result concurs with that of Grϋneberg et al. (2005) and Manrique 

and Hermann (2002) who reported the SS for G x E for β-carotene smaller than that for 

the main effects of genotype. Similar results were obtained for cassava for total 

carotenoids (Ssemakula et al., 2007). The relatively high stability of the genotypes for β-

carotene content may indicate that this trait is less influenced by the environment than, 

for example, RFY. This suggests that prospects for improving β-carotene content in 

sweetpotato are favourable. Eight genotypes, namely G1, G2, G4, G6, G8, G10, G11, 

and G12 performed above average and were stable across environments. Genotypes 

with high β-carotene can be identified early in the breeding programme and a few, well 

chosen environments can be used. For example, genotype G3 was the best performer 

and was best adapted to three environments, E3 (8.9 mg 100 g-1), E4 (10.4 mg 100 g-1), 

and E5 (9.8 mg 100 g-1), but its performance was lower in E2 (7.5 mg 100 g-1).  
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5.4.2 Root dry mass composition 

 

Root dry mass is a very important trait for consumers in Zambia. The 15 selected 

polycross progeny recorded RDM above 30% which is the preferred level among 

consumers. This is an indication that the objective of breeding high β-carotene and high 

RDM genotypes is achievable. For example, genotypes G2, G6, and G8 were stable 

across all five environments with above average performance for both β-carotene 

content (5.0, 4.7, and 4.7 mg 100 g-1, respectively) and RDM (37, 37, and 35%, 

respectively). These three genotypes can consequently be recommended for all five 

environments (Figure 5.5). Genotype G3, which had the highest mean β-carotene level 

of 9.4 mg 100 g-1, was, however, more stable for RDM with above average performance 

(35%) (Figure 5.2). Genotype 3 had the third highest mean yield across environments 

(14.7 t ha-1). It was the top performer in environment E5 (30 t ha-1) and is therefore 

recommended for this specific environment. 

 

5.4.3 Harvest index 

 

Grϋneberg et al. (2005) found that genotypes with high yield and high yield stability tend 

to also have high HI and high HI stability. In this study, only two genotypes, G9 and G10, 

conformed to this finding (Figures 5.3 and 5.5). Therefore, an ideal genotype will need to 

balance the allocation of photosynthates between the development of harvestable roots 

and adequate vine production.  

 

Genotype G6 had the highest VFY (7.6 t ha-1) across environments and its mean HI 

(0.66) was low and stable but the RFY was average. The genotype can be considered 

for forage production for livestock or for vegetable production depending on the 

palatability. In addition, it provides sufficient quantities of vines for propagation. 

 

5.4.4 Root fresh yield 

 

The significant (p<0.001) G x E mean square and its high relative proportion of 

Treatment SS (55%) for RFY is expected because yield is a polygenic trait (Easwari and 

Sheela, 1998; Cach et al., 2006) and, therefore, influenced by the environment (Table 

5.11). Other G x E studies (Collins, et al., 1987; Bacusmo et al., 1998; Naskar and 
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Singh, 1992; Ngeve, 1993; Manrique and Hermann, 2002; Grϋneberg et al., 2005) have 

reported that in sweetpotato, RFY is sensitive to G x E. The strong influence of the 

environment on RFY makes the potential genetic gain in RFY unpredictable. Hence, 

early testing of genotypes in multi-locations to identify those with specific versus general 

stability is necessary. The G x E (55% of Treatment SS) for RFY was larger than the G 

(45% of Treatment SS) main effect. This implies that higher yields could be attained by 

improving crop management practices in environments suited to the crop besides 

emphasising the improvement of genotypes. 

 

5.4.5 Correlations among five traits 

 

Negative correlation between RDM and β-carotene content confirmed previous results 

(Hernandez et al., 1967; Jones, 1977). RDM was also negatively correlated with VFY 

and RFY indicating that selecting for higher RDM may compromise the yield of both the 

roots and the vines. There were positive associations among VFY and RFY suggesting 

that breeding for any of these traits would not reduce the desired level of the other. 

 

5.4.6 General conclusion 

 

The magnitude of the G x E for β-carotene content, RDM, and HI was small and 

selection for these traits may be conducted in a few, well selected environments. 

Conversely, RFY and VFY yield may require early testing in varied environments to 

select genotypes with either wide or specific adaptation. It can be concluded that it is 

possible to breed for high β-carotene, high RDM and high yield sweetpotato genotypes 

with wide or specific adaptation in Zambia as the AMMI analysis identified genotypes 

G2, G6, and G8 as stable across environments for both β-carotene content and RDM. 

They performed above average for both traits. Therefore, G2, G6, and G8 qualify as 

genotypes with above average yield that would do well in all the environments with 

acceptable β-carotene content and RDM. Genotype G3 was best suited for environment 

E3, E4, and E5 and had the highest mean β-carotene content (9.4 mg 100 g-1), and high 

mean RDM (35.5%), and high mean RFY of 14.7 t ha-1 across the environments. Also it 

had above average mean RFY (14.7 t ha-1) meeting the basic criteria for a genotype 

preferred by consumers (as determined in the PRA study detailed in Chapter 2). These 
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identified genotypes will undergo further evaluation that may culminate in their release 

for production by Zambian farmers. 
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Appendices 

 
Appendix 5.1 Number of seed produced from each parental genotype in two polycrosses 
(12 x 12, and 30 x 8) conducted at Mansa Research Station.  

 

ID Parent Source Number of seeds 

   
12 

parent 30 parent  
1 Excel CIP Kenya 2,395  
2 Kabalenge Local 292 544 
3 Matembele 3K Local 221 18 
4 W-119 CIP Kenya 3,095 888 
5 L2-4/20/5 Local 268 54 
6 15/1 Local 1,320 280 
7 Unknown 2/1 Local 1,670 32 
8 L3-199084/1 Local 2,822 1,500 
9 No name 13K Local  272 

10 Zambezi/1 Local  112 
11 Kakamega CIP Kenya  3,380 
12 L3-L0-4/10/6 Local  234 
13 Munwe umo Local  228 
14 Carrots Mwewa Local  3,696 
15 Kasompe Local  50 
16 No name 14N Local  76 
17 Katansha Local  1014 
18 Zambezi  Local  934 
19 L3-Mugamba 3/1 Local  104 
20 Lukusashi Local  56 
21 199047/4 Local  22 
22 Carrot-C Local  3,476 
23 Resisto CIP Kenya  1066 
24 1998-12-3 ARC - VOPI South Africa  2,715 
25 1999-1-7 ARC - VOPI South Africa  1,738 
26 1997-14-17 ARC - VOPI South Africa  334 
27 Mulungushi Local  686 
28 Chingovwa Local 3,190  
29 199062.1 CIP Kenya 1,350  
30 L4-138/3 Local 6,595  

 Total  23,218 23,509 
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Appendix 5.2 Field layout of  a 12 x 12 sweetpotato polycross arranged in a randomised complete block with eight replications
 DOP*: 16/12/2005 
 

1 2 12 3 11 4 10 5 9 6 8 7 

2 3 1 4 12 5 11 6 10 7 9 8 

12 1 11 2 10 3 9 4 8 5 7 6 

3 4 2 5 1 6 12 7 11 8 10 9 

11 12 10 1 9 2 8 3 7 4 6 5 

4 5 3 6 2 7 1 8 12 9 11 10 

10 11 9 12 8 1 7 2 6 3 5 4 

5 6 4 7 3 8 2 9 1 10 12 11 

9 10 8 11 7 12 6 1 5 2 4 3 

6 7 5 8 4 9 3 10 2 11 1 12 

8 9 7 10 6 11 5 12 4 1 3 2 

7 8 6 9 5 10 4 11 3 12 2 1 

1 = Zambezi/1/1, 2 = Excel, 3 = L4-138/3, 4 = 55/1, 5 = L0-103/2, 6 = W-119, 7 = 199062.1, 8 = L2-4/20/5, 9 = 15/1, 10 = Unknown 2/1, 11 = 
Chingovwa, 12 = L3-199084/1; *DOP = Date of planting 
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Appendix 5.3 Field layout of a 30 x 30 sweetpotato polycross arranged in a randomised complete block design with eight replications 
DOP*: 5/12/2005 
 

Plots 

Reps 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 15 25 22 14 17 2 6 28 16 12 30 4 27 13 10 18 5 20 8 11 7 3 9 21 23 26 19 29 24 1 

2 1 27 6 4 14 18 21 29 10 22 3 23 8 13 26 12 20 16 19 5 25 11 15 17 9 2 24 28 7 30 

3 18 22 4 30 16 8 21 23 3 7 1 28 24 29 15 10 25 9 12 27 13 26 20 19 5 2 6 17 14 11 

4 23 27 9 5 13 1 12 30 8 2 6 7 22 11 18 4 20 15 21 16 3 24 25 17 19 29 28 10 14 26 

5 29 9 16 14 21 8 12 7 10 1 2 19 20 4 24 17 3 26 22 11 23 27 13 25 5 18 30 15 28 6 

6 24 19 25 1 21 11 23 29 5 15 12 16 9 7 20 10 22 28 30 3 4 6 26 13 2 17 14 8 18 27 

7 8 17 5 18 16 9 12 28 15 29 22 26 7 1 19 20 10 21 2 3 25 4 6 30 14 11 24 13 27 23 

8 23 29 22 4 13 27 30 26 10 20 18 6 25 9 19 15 2 28 7 14 1 12 8 16 3 11 5 24 17 21 
*DOP = Date of planting 

Spacing between plants was 2 m x 2 m. Planting was done on ridges raised 30 cm off the ground. 
The genotypes are numbered as detailed in Appendix 5.1  



 171 

Appendix 5.4 Progeny selections from the 12 x 12 and 30 x 30 polycrosses 
 

No Genotype Root shape 

Root 
Surface 
defects Colour Chart PSC 

Flowering 
Habit 

RDM 
(%) UMRN 

UMRM 
(g) MRN 

MRM 
(g) 

VFM 
(g) CK SP WD 

1 L7-Chingovwa/36 obvate  RHS:9/2 1355U brownish orange none 35.18 3 50 1 120 25 1 1 2 

2 L7-Unknown 2/1/49 curved  RHS:9 137U orange sparse 35.95 3 85 1 120 50 1 2 3 

3 L7-W-119/107 elliptic  RHS:9 137U purple none 36.98 2 100 1 130 90 1 1 2 

4 L7- Chingovwa/103 curved contrictions RHS:9/3 7507U copper none 36.35 1 25 1 130 45 1 1 3 

5 L7-W-119/13 elliptic  RHS 9/2 1355U copper moderate 39.34 2 5 1 135 140 1 1 2 

6 L7-Chingovwa/50 obvate  RHS:9/2 1355U cream profuse 37.49 1 15 1 150 80 1 1 5 

7 L7-Chingovwa/86 elliptic  RHS:9/2 1355U cream none 35.64 1 15 1 170 20 1 1 3 

8 L7-Unknown 2/1/48 long elliptic  RHS:9/2 1355U brown sparse 39.11 4 140 1 190 115 1 1 3 

9 L7-Chingovwa/84 long elliptic  RHS:9/3 7507U cream sparse 36.73 2 95 1 195 30 1 1 2 

10 L7-Unknown 2/1/109 elliptic  RHS:9/3 1355U cream none 39.48 3 110 1 200 50 1 1 1 

11 L7-Chingovwa/62 elliptic  RHS:9/2 1355U brownish orange profuse 34.98 0 0 2 205 20 1 1 1 

12 L7-Chingovwa/64 long elliptic  RHS:9/3 750U cream none 40.64 1 25 1 205 25 2 1 4 

13 L7-W-119/61 curved  RHS 9 137U purple moderate 37.68 0 0 2 225 30 1 1 3 

14 L7-Chingovwa-c/58 round elliptic  RHS:9/2 1355U copper sparse 35.83 0 0 2 235 40 1 1 3 

15 L7-Unknown 2/1/110 round  RHS:9/1 123U copper none 38.79 2 15 2 240 70 1 1 1 

16 L7-Excel/118 long elliptic  RHS:9 137U orange none 37.66 1 30 1 265 35 1 1 2 

17 L7-Unknown 2/1/158 obvate  RHS:9 137U copper sparse 48.63 3 40 2 300 140 1 1 1 

18 L7-Chingovwa-c/66 obvate  RHS:9 137U pink moderate 38.99 0 0 1 300 55 1 1 3 

19 L7-Unknown 2/1/40 elliptic  RHS:9 137U orange sparse 37.25 1 5 1 305 40 1 1 2 

20 L7-199062.1/17 round  RHS:9 137U orange profuse 36.65 5 171.2 1 337.5 205.3 1 1 5 

21 L7-Chingovwa/16 ovate  RHS:9/2 1355U cream profuse 36.32 2 40 2 355 95 1 1 3 

22 L7-Unknown 2/1/5 long elliptic  RHS:9 137U pink sparse 44.28 6 200 1 370 140 1 1 4 

23 L7-W119-c/63 elliptic  RHS:9 137U orange profuse 53.21 2 65 2 375 120 1 1 3 

24 L7-Unknown 2/1/95 obvate grooves RHS:9/2 1355U copper none 39.35 3 100 2 495 85 1 1 1 

25 L7-W119-c/22 obvate contriction RHS:9/1 1233U pink profuse 36.10 8 300 3 540 135 1 1 2 

PSC = Predominant skin colour, RDM = Root dry mass, UMRN = Number of unmarketable roots. UMRM = mass of unmarketable roots, MRN = 
Number of maketable roots, MRM = mass of marketable roots, VFM = Vine fresh mass, CK = Cracking, SP = Sprouting, WD = Weevil damage 
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Appendix 5.4 (Continued) 
 

No Genotype Root shape 
Root Surface 
defects Colour Chart PSC 

Flowering 
Habit 

RDM 
(%) UMRN 

UMRM 
(g) MRN 

MRM 
(g) 

VFM 
(g) CK SP WD 

26 L7-199062.1/95 elliptic  RHS:9/2 1355U copper moderate 35.65 0 0 2 555 85 1 1 3 

27 L7-Unknown 2/1/66 obvate grooves RHS:9 137U copper none 40.00 4 265 2 610 180 1 2 2 

28 L7-15/1/17 obvate alligator skin RHS:9 137U orange none 35.15 0  3 635 220 1 1 3 

29 L7-Chingovwa/55 obvate  RHS:9 137U copper profuse 41.46 3 110 3 700 230 1 1 2 

30 L7-Chingovwa-c/24 elliptic constrictions RHS:9/3 750U cream moderate 36.25 1 10 2 725 120 1 1 2 

31 L7-Chingovwa/83 obvate  RHS:9/3 7507U brownish orange sparse 36.55 0 0 1 745 105 1 1 1 

32 L7-W-119/89 round  RHS 9/2 1355U copper profuse 35.95 2 95 1 810 275 1 1 2 

33 L7-Chingovwa-c/56 round grooves RHS:9/2 1355U copper moderate 37.95 6 15 3 890 130 2 1 3 

34 L7-W119-c/65 elliptic  RHS:9 137U copper moderate 35.60 11 315 4 940 330 1 1 2 

35 L7-Chingovwa-c/36 ovate alligator skin RHS:9 137U copper moderate 38.25 2 85 4 1210 325 4 1 4 

36 L7-Chingovwa/22 obvate  RHS:9/2 1355U cream none 36.30 2 40 5 1265 235 1 1 5 

PSC = Predominant skin colour, RDM = Root dry mass, UMRN = Number of unmarketable roots. UMRM = mass of unmarketable roots, MRN = 
Number of maketable roots, MRM = mass of marketable roots, VFM = Vine fresh mass, CK = Cracking, SP = Sprouting, WD = Weevil damage 
*Scores for mole damage, weevil damage, and cracking were as follows: 1 = No symptom, 2 = 1-5 roots affected in a plot of 20 plants, 3 = Many 
roots affected slightly (5-10% of root area), 4 = All roots affected moderately (11 - 25% of root area), and 5 = All roots affected severely (>25% of 
root area). Flesh colour was scored as follows: 0 = white, 1 = cream, 2 = light orange, 3 = medium orange, 4 = orange, and 5 = dark orange. 
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Appendix 5.5 Soil nutrient analysis of the five experimental sites for the G x E trial 
 

Soil nutrients*   Environment  Designation  pH 

P Ca Mg Na K Cu Zn Mn Fe %N %C CEC 

Mansa-Mufulira E1 4.6 4 25 22 - 5 7 trace 22.2 39.1 0.11 1.5 - 

Mutanda-West E2 4.3 11 32 10 - 17 - 1.8 - 16.7 - 0.88 - 

Mansa-Main E3 4.1 10 53 19 2.2 26.8 0.4 2.5 12 41.4 0.8 1.17 3.84 

Mutanda-East E4 4.3 7 85 19 2.1 24.6 1 1.3 23 42 0.8 1.08 2.44 

GART E5 4.1 2 30 14.7 - 6 -  14.7  0.7 1.02  

*Units are ppm where not indicated 
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Chapter 6: Overview of the research findings 

 
6.1 Introduction 

 

Sweetpotato is generally regarded as one of the crops with the potential to alleviate vitamin A 

deficiency in humans because of the moderate to high levels of β-carotene in orange to deep 

orange coloured root flesh. Presently, however, most of the genotypes grown in Zambia are 

white fleshed, hence low in β-carotene. A breeding programme with the overall objective of 

incorporating β-carotene expression in consumer-preferred local genotypes with high root dry 

mass (RDM) was initiated at Mansa Research Station, Zambia in 2005. The research outcomes 

of this breeding programme which have been presented in this thesis, effectively constitute the 

first step toward contributing to the alleviation of vitamin A deficiency in Zambia through the bio-

fortification of sweetpotato. These first steps were achieved by pursuing the following main 

objectives: 

 

• Understanding, through a participatory rural appraisal, consumer preferences for 

sweetpotato genotypes for specific purposes; 

• Collecting and analyzing sweetpotato germplasm for yield and nutritional traits, 

thereafter selecting parents for a β-carotene breeding programme;  

• Identifying the gene action that influences root yield and secondary traits for the 

development of efficient breeding strategies for generating sweetpotato genotypes with 

high β-carotene and RDM; and  

• Evaluating sweetpotato genotypes across locations to determine the magnitude of G x E 

interaction for β-carotene content, RDM, harvest index (HI), vine fresh yield (VFY), and 

root fresh yield (RFY), and to identify stable and high performing genotypes. 

 

6.2 Sweetpotato production constraints and end-user  preferences 

 

In order to ensure the products of the proposed breeding programme would be acceptable to 

farmers, farmers were involved in the formulation of the selection criteria to be employed in 

developing new genotypes with improved β-carotene expression. To this end a survey was 

conducted to understand consumer preferences for sweetpotato in three districts of Zambia. An 

interdisciplinary team used participatory rural appraisal (PRA) research tools to collect data from 
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three agricultural camps in each district. Ten households were targeted per agricultural camp. 

Pairwise comparisons were employed for ranking preferred products or attributes.  

 

The respondents identified a number of sweetpotato attributes they preferred. The most 

common preference was root sweetness (listed by about 35 % of respondents) followed by the 

root yield (listed by 23% of respondents). The third most common preference was a tie between 

early maturity and good storage ability (both listed by 9% of respondents). Other prominent 

preferences were for additional taste attributes and storability of both roots and vines. Many of 

the selection criteria used subsequently in the breeding programme (such as good root storage, 

good taste, low fibre, high dry mass, leaves that make a good vegetable and resistance to pest 

and diseases) were identified by means of a survey. These farmer and consumer preferences 

identified during the PRA will continue to guide breeding objectives in developing orange 

fleshed sweetpotato cultivars with further desirable traits. 

  

6.3 Evaluation of sweetpotato germplasm for yield a nd β-carotene based on 

farmer preferences 

 

Sixty four germplasm accessions collected in four districts of Luapula Province in Zambia were 

evaluated at Mansa Research Station in an 8 x 8 triple lattice field trial.  Considerable 

phenotypic variation was noted for the traits of interest: RDM, HI and β-carotene. Such sufficient 

phenotypic variation, preferably coupled with preferably high heritability, increases the likelihood 

of obtaining genetic gain for the traits under selection.  

 

A selection index for HI, RDM, and good storage traits was used to select 10 best performing 

accessions for further evaluation and possible release but also for use as parents in a 

polycross. The mean RDM composition of the 10 selected parents was 32%, higher than the 

28% of the popular cultivar, Chingovwa.  The HI of all 10 selected parents was greater than 

80% and their mean marketable root yield was 3 t above the grand mean (8.9 t ha-1). 

 

The selection index greatly facilitated the identification of genotypes that had desirable 

combinations of the important traits under consideration. Increasing the quantitative expression 

of any one of these traits without adversely affecting the expression of the other traits 

necessitated co-selecting all the traits. The 10 selected parents were subsequently used in a 
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polycross conducted at Mansa Research Station in 2006 and 2007. Some of the resultant 

progeny have expressed the desired high β-carotene content in combination with high RDM.  

 

 

6.4 Gene action controlling β-carotene content, root dry mass, and root fresh 

yield 

 

A study of the quantitative inheritance of important traits in sweetpotato was conducted by 

means of 5 x 5 full diallel (excluding selfs). Twenty crosses with 20 F1 progeny per cross and 

their five parents, were evaluated in a 5 x 5 triple lattice field trial. 

 

The cross mean squares of the four traits were highly significant (p<0.001). The general 

combining ability (GCA) and specific combining ability (SCA) mean squares were significant for 

β-carotene content (p<0.001), RDM (p<0.001), HI (p<0.001), and RFY (p<0.001). The ratios of 

GCA to SCA variances were 0.76 for both β-carotene content and HI, 0.68 for RFY and 0.92 for 

RDM indicating that additive gene action was predominant in the inheritance of the traits. The 

two high β-carotene parents used in this study exhibited high, positive GCA effects, indicating 

that additive gene action was predominant in the inheritance of β-carotene. However, high β-

carotene parents (1 and 3) with high, positive GCA effects did not necessarily result in desirable 

progeny in every cross as some of their progeny were low in β-carotene. Therefore, parents to 

be used in specific crosses should also be selected on the basis of their SCA effects and the 

actual performance of the cross. In support of this argument, high RDM parents that had 

positive and highly significant (p<0.001) GCA effects produced only one cross, 5x1, with 

positive (0.6) and significant (p = 0.01) SCA effects. The best performing progeny for RDM 

were, however, obtained from this cross. 

 

The estimates of narrow sense heritability were 20.9% for β-carotene content, 29.1% for HI, 

34.9% for RFY and 76.3% for RDM, suggesting that rapid genetic gains should be possible with 

mass selection breeding techniques based on the phenotype of the parent for RDM but 

progress will be slow for β-carotene content HI, and RFY. From the above results, it can be 

concluded that GCA or SCA effects alone or in combination cannot be used for selecting 

parents for a hybrid programme without considering the actual performance of the progeny 

within a cross. 
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6.5 Evaluation of G x E interaction for beta-carote ne content and root dry mass 

 

The effect of G x E interaction on β-carotene content, RDM, HI, and RFY of 15 sweetpotato 

progeny from selected two polycrosses was investigated in five diverse locations in Zambia. The 

locations represented the major sweetpotato growing agroecologies in the country. The two 

locations evaluated in the 2007/8 season and the three locations evaluated in the 2008/9 

season were collectively considered as five environments. A randomised complete block design 

with three replications was used to evaluate the 15 progeny at each location. 

 

The G x E analysis was conducted using the additive main effects and multiplicative interaction 

(AMMI) model. The performance of genotypes was dependant on the environment for all the 

traits considered. The high G effects and relatively low G x E for β-carotene content and high G 

effects for RDM, imply that evaluation and selection can be accomplished in fewer environments 

to identify genotypes with high and stable performance. From the AMMI analysis, progeny G2, 

G6, and G8 were identified as stable across environments for both β-carotene content and 

RDM. Genotype G3 was specifically adapted to environments E3, E4, and E5 for RFY, and had 

the highest mean β-carotene content (9.4 mg 100 g-1) and high mean RDM (35%) across the 

environments. The results suggest that it is possible to breed sweetpotato genotypes for 

cultivation in Zambia that have high and stable performance for β-carotene and RDM. This 

study has revealed how important it is to have a range of test environments that is broadly 

representative of the target environments. Information on the nature of the G x E is necessary to 

decide whether to breed for specific or general adaptation to environments 

 

6.6 Breeding progress achieved 

 

With the help of farmers, 10 genotypes were selected as being acceptable for use as parents for 

the sweetpotato breeding programme at Mansa Research Station in Mansa. Progeny from the 

5x5 diallel that were superior to their parents will be further evaluated in multilocational trials for 

their adaptability. From the AMMI analysis three progeny from the polycross were identified with 

stable and high performance for both β-carotene content and RDM. One other polycross 

progeny was best suited to three of the five test environments and had the highest β-carotene 

content and high RDM. The superior polycross progeny are currently being multiplied for further 

evaluation in on-farm trials during the 2009/10 season using different farming systems before 

they are recommended for release. 
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6.7 The way forward 

 

Once the performance of the selected genotypes has been verified through multilocational and, 

on-farm trials they will be recommended for release in the target environments. Meanwhile, 

conclusions drawn from the statistical analyses will be employed to provide guidance in the 

planning of future breeding trials.  More hand and open pollinated crosses will be made in the 

continued endeavour to develop new cultivars that are even more superior for the important 

traits, particularly β-carotene content and root dry mass. 

 
 


