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Abstract

Simulation of quantum dynamics for many-body systems is an open area of re-

search. For interacting many-body quantum systems, the computer memory neces-

sary to perform calculations has an astronomical value, so that approximated models

are needed to reduce the required computational resources. A useful approximation

that can often be made is that of quantum-classical dynamics, where the majority of

the degrees are treated classically, while a few of them must be treated quantum me-

chanically. When energy is exchanged very quickly between the quantum subsystem

and classical environment, the dynamics is nonadiabatic. Most theories for nonadi-

abatic dynamics are unsatisfactory, as they fail to properly describe the quantum

backreaction of the subsystem on the environment. However, an approach based on

the quantum-classical Liouville equation solves this problem. Even so, nonadiabatic

dynamics is difficult to implement on a computer, and longer simulation times are

often inaccessible due to statistical error. There is thus a need for improved algo-

rithms for nonadiabatic dynamics. In this thesis, two algorithms that utilise the

quantum-classical Liouville equation will be qualitatively and quantitatively com-

pared. In addition, stochastic sampling schemes for nonadiabatic transitions will

be studied, and a new sampling scheme is introduced [D. A. Uken et al., Phys.

Rev. E. 88, 033301 (2013)] which proves to have a dramatic advantage over existing

techniques, allowing far longer simulation times to be calculated reliably.
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Chapter 1

Introduction - Simulation of

Quantum Dynamics

Despite the huge advances made since the advent of the computer, both in compu-

tational technology and in the development of algorithms, simulation of many-body

quantum systems remains a great challenge, and is an open area of research today [1].

While almost all classical systems can be solved using a similar technique, due to the

complexity of quantum mechanics, there is no overarching method for studying the

dynamics of quantum systems. In general, numerical methods for solving quantum

dynamics have to be decided on a system by system basis.

Soon after the computer was invented in the mid 20th century, the idea of Molec-

ular Dynamics (MD) simulation was introduced by Alder and Wainwright [2][3] to

study the dynamics of molecules or atoms from a classical perspective. Although, as

the name implies, MD is the simulation of small particles such as molecules or atoms,

it can be applied in essentially the same way to interacting many-body systems for

macroscopic bodies, such as planets in the solar system, as it based simply on the

numerical solution of Newton’s equations of motion for some interaction potential.

Molecular dynamics simulation essentially solved the problem of being unable to an-

alytically solve many-body interacting systems, being very successful at simulating

1
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dynamics of systems with very large numbers of particles. Indeed the only limitation

on system particle number is computational resources. Unfortunately, however, the

incredible success of conventional MD applies only to dynamics of systems that can

be treated classically.

Due to the intrinsic classical treatment of particles by MD simulation, it is unable

to successfully simulate systems where quantum effects, such as energy-quantisation

and tunnelling are important. In systems containing heavier atoms and molecules,

the classical treatment is often sufficient, but when considering smaller particles,

especially in the case of Hydrogen, a proper quantum mechanical description is

required [4].

In principle, this is resolved by performing a full quantum mechanical treatment

of the system of study. However, this is unfeasible, and in many cases impossible for

any but the simplest of quantum systems. Indeed, even solving three-body quan-

tum systems can be a formidable task. The problems are two fold. Firstly, quantum

mechanics itself is difficult to implement on a computer due to its complex mathe-

matical nature. It is formulated not in terms of functions, as in the case of classical

mechanics, but in terms of operators which do not necessarily commute. Secondly,

the computational expense rises extremely rapidly with increasing number of parti-

cles. While in the case of classical mechanics, the computational resources needed

to simulate a system can increase as slowly as linearly with number of particles, in

the case of quantum systems, the resources required generally increases exponen-

tially due to the increase in the size of the Hilbert space of the system. Indeed it

has been estimated [1] that to simulate only 64 electrons in a lattice would require

approximately 1028Gb of memory to store a single eigenvector. Even the fastest

supercomputers today have of the order of 106Gb of memory available to them, a

far cry from what is required. This stands in contrast to classical simulations, where

systems of up to the order of thousands of particles can be simulated on a modern

day home computer.

Because of this severe limitation on the simulation of quantum dynamics, one
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is forced to resort to approximations to simplify the system of study in some way.

One of the first approximations developed was the Born-Oppenheimer approxima-

tion, where electronic and nuclear motions are decoupled. This decoupling means

that nuclear dynamics occurs on only a single potential energy surface, and the elec-

tronic dynamics is for a single quantum state. Techniques such as the Hartree-Fock

method [5][6] and Density Functional Theory [7][8] both utilise this approximation

and have enjoyed much success.

In many cases, however, this treatment of the quantum dynamics is not sufficient.

This occurs especially when nonadiabatic effects in the system are important. When

this is the case, dynamics no longer occurs on a single potential energy surface, but

on many. There are many examples of such systems, such as photochemical processes

and proton transfer, which are inherently nonadiabatic due to avoided crossings in

the energy level structure.

In response to this failure of the Born-Oppenheimer approximation to describe

nonadiabatic processes, quantum-classical methods such as the Ehrenfest mean-field

approach [9] and surface-hopping techniques [10]-[13] were developed. Quantum-

classical methods [14] are based on a partitioning of a system of study into two

parts. The first part contains the most essential aspects of the system that one is

interested, and requires a full quantum treatment. The remainder is then treated

in a classical way, and generally comprises heavier, slower moving particles. This

approximation thus reduces the many-body quantum problem to just a few essential

degrees of freedom that need to be treated quantum mechanically. This makes

numerical simulation feasible, as opposed to impossible, since it is a simple matter

to simulate a large number of degrees of freedom classically.

Quantum-classical methods have proven highly successful, as a wide range of

systems in condensed matter can be reduced to a quantum subsystem interacting

with a classical-like environment. Examples of such systems are found in a variety

of research areas such as quantum information processing [15][16], quantum op-

tics [17][18], and condensed matter physics [19]. It has also been demonstrated that
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rate constants and transport coefficients for chemical processes can be determined

using quantum-classical techniques [20][21].

More recently, evidence of coherent quantum effects for energy transfer in photo-

synthetic systems [22] has resulted in a resurgence of interest in quantum biology [23].

It is naturally not possible to study the large scale, noisy, dissipative environments

found in photosynthetic systems in a fully quantum way, and one can therefore

think of numerically simulating such systems in a quantum-classical manner, where

excited electrons are treated quantum mechanically in an environment of classically

treated proteins.

Quantum-classical methods do have their drawbacks, however. Mean-field meth-

ods have the problem of being unable to accurately simulate dynamics when the

potential energy surfaces of the system are too dissimilar. Surface-hopping schemes

solve this problem, but in most cases implement the quantum backreaction - the

effect of the subsystem on the environment when a nonadiabatic transition occurs -

in an ad hoc fashion [24]. In addition to this, they suffer from large statistical error

at longer simulation times. This large error is result of implementation of stochastic

sampling schemes for nonadiabatic transitions, and is the biggest limiting factor of

current surface-hopping methods.

More recently, a surface-hopping scheme was developed, based on the quantum-

classical Liouville equation [25]-[33]. This equation results in a formulation which

realises the statistical mechanics of the quantum-classical dynamics in terms of a

density matrix, not a wavefunction. It is also able to describe the quantum backre-

action in a more rigorous way than previous surface-hopping algorithms. Currently,

two separate algorithms have been developed within this formalism, the Sequential

Short-time Propagation algorithm [34], and the Trotter Based Quantum-Classical

algorithm [35].

These algorithms, however, still suffer from large statistical error at longer times.

Recently, it has been shown that, with use of intelligent stochastic sampling schemes

for nonadiabatic transitions, it is possible to reduce the statistical error at longer
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times [36][37].

In this thesis, a detailed study is performed, analysing the two algorithms within

the quantum-classical Liouville equation approach. The two algorithms are com-

pared from both a qualitative and quantitative perspective. In addition to this, a

study of current sampling schemes for nonadiabatic transitions is presented, and

current methods are compared to a newly devised hybrid scheme [38]. It will be

shown that the new scheme greatly outperforms previous techniques, allowing far

longer simulation times to be reliably calculated than was previously possible.

The layout of the thesis is as follows. In Chapter 2, the two basic types of

quantum-classical methods are discussed - mean-field approaches and surface-hopping

methods. In particular, the Ehrenfest mean-field method, and surface-hopping with

the fewest switches algorithm proposed by Tully will be considered. Chapter 3

presents a method of representing quantum dynamics in phase space, by means of

the Wigner representation. The partial Wigner representation is then discussed, as

well as a comparison between Hamiltonian and non-Hamiltonian bracket structures.

The quantum-classical Liouville equation is then introduced in Chapter 4, and the

non-Hamiltonian quantum-classical bracket is defined. In this chapter, the adiabatic

basis is also defined, and the form of the quantum-classical Liouville equation in this

basis is given. Chapter 5 outlines the two algorithms within the quantum-classical

Liouville approach that are being compared, namely the Sequential Short-time Prop-

agation algorithm and the Trotter Based Quantum-Classical algorithm. In Chapter

6, the original sampling schemes for nonadiabatic transition used by each algorithm

are discussed, as well as the newer improved sampling schemes. Chapter 7 presents

the spin-boson system. This is the model that was used in the simulations to com-

pare the different algorithms and sampling schemes. In Chapter 8, the results of

the numerical calculations are given. Finally in Chapter 9, the results are discussed,

and perspectives on future work are given.



Chapter 2

Molecular Dynamics and

Methods for Quantum-Classical

Systems

2.1 Molecular Dynamics

Developed in the late 1950s by Alder and Wainwright [2][3], Molecular Dynamics

is a method for simulating the dynamics of systems comprising many interacting

atoms by means of numerical integration of classical equations of motion. It is

a powerful method that has been applied to a wide range of systems with much

success, including modelling of liquids, biological systems such as proteins, and

performing simulations at constant pressure or temperature. It is also used in X-ray

crystallography and NMR for determining molecular and crystal structures.

To simulate exactly the dynamics of a many body atomic system, one would need

to solve the time-dependent Schrödinger equation for both the nuclear and electronic

degrees of freedom. Currently, this is impossible to do for a system comprising more

than three atoms and more than one electronic state. It is, however, possible to

simulate the approximate dynamics of such systems using MD methods. Molecular

6
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Dynamics techniques are based on two fundamental approximations. The first is the

assumption that the motion of the atoms is governed by classical mechanics, and

the second is the Born-Oppenheimer approximation.

Despite its success, it is indeed these two approximations that limit the applica-

bility of conventional MD to a wider range of systems and processes. The classical

treatment of the nuclei means that intrinsically quantum effects such as tunnelling

and zero-point motion are neglected. Molecular Dynamics is thus insufficient if

these effects have a large influence in dynamics, such as determining rate constants

in proton transfer, as well as low temperature processes.

Due to the Born-Oppenheimer approximation, MD also fails for any system

whose dynamics is inherently nonadiabatic, in other words, a system where the nu-

clear dynamics occurs on multiple potential energy surfaces. Examples of such sys-

tems are nonradiative relaxation in large molecules, any system involving electron or

charge transfer processes, as well as photochemical systems. The Born-Oppenheimer

approximation is explained in more detail below.

2.1.1 Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is based on the assumption that the mo-

tions of the slower nuclei and the faster electrons are separable. In other words,

the electrons are taken to respond instantaneously to any changes in the nuclear

configuration. As a consequence of this, the dynamics of the atomic nuclei occur

on only one potential energy surface corresponding to a single electronic state, as

opposed to many potential energy surfaces. In general, this potential energy surface

is the ground state, and is calculated by solving the time-independent Schrödinger

equation for fixed nuclear configurations.

Consider a non-relativistic system comprising N nuclei and n electrons. The

positions of the nuclei are given by the vector R, and have masses given by M .

The electronic positions are given by r. Note that a notation where N , n and M

are multidimensional has been used for simplicity. The total Hamiltonian of such a
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system is

Ĥ(r,R) = T̂n(R) + T̂e(r) + V (R) + V (r) + V (r,R) , (2.1)

where T̂n(R) and T̂e(r) are the kinetic energy operators for the nuclei and electrons

respectively, and V (R), V (r) and V (r,R) are the potential energy of internuclear

repulsion, interelectronic repulsion and electronic-nuclear attraction respectively. To

exactly simulate the dynamics of this system, the time-dependent Schrödinger equa-

tion would need to be solved for this Hamiltonian:

ĤΨ(r,R, t) = ih̄
∂

∂t
Ψ(r,R, t) . (2.2)

Since this is not possible, instead the fixed-nuclei approximation is made, and

the electronic Hamiltonian is defined as

Ĥe(r,R) = T̂e(r) + V (R) + V (r) + V (r,R) . (2.3)

Assume that ψi(r,R), the eigenfunction solutions to the time-independent Schrödinger

equation for the electronic Hamiltonian, are known, and

∫ ∞
−∞

ψ∗i (r,R)ψj(r,R) dr = δij , (2.4)

in other words, the eigenfunctions are orthonormal. Because the eigenfunctions

form a complete set, the wavefunction for the total system can be written in terms

of them:
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Ψ(r,R, t) =
∑
i

φi(R, t)ψi(r,R) . (2.5)

The eigenfunctions ψ(r,R) are dependent on the electronic position coordinates, but

also depend parametrically on the nuclear positions R. Substitution of Eq. (2.5)

into Eq. (2.2) gives:

Ĥ
∑
i

φi(R, t)ψi(r,R) = ih̄
∂

∂t

∑
i

φi(R, t)ψi(r,R) . (2.6)

The next step is to multiply both sides on the left by ψ∗j (r,R) and integrating

over the electronic coordinates:

∑
i

∫ ∞
−∞

ψ∗j Ĥψiφi dr = ih̄
∑
i

∫ ∞
−∞

ψ∗jψi
∂

∂t
φi dr

= ih̄
∂

∂t
φj . (2.7)

In the final line above, the orthonormality of the eigenfunctions ψi has been used.

Now consider the left hand side of Eq. (2.7). Using Ĥ = T̂n + Ĥe, and the fact that

ψi are the eigenfunctions of Ĥe, one can write

∑
i

∫ ∞
−∞

ψ∗j Ĥψiφi dr =
∑
i

∫ ∞
−∞

ψ∗j T̂nψiφi dr +
∑
i

∫ ∞
−∞

ψ∗j Ĥeψiφi dr

=
∑
i

∫ ∞
−∞

ψ∗j T̂nψiφi dr + Ejφj , (2.8)

where orthonormality has again been used. Focus now on the first term on the right

hand side above, containing T̂n. The nuclear kinetic energy operator T̂n contains a

double derivative with respect to the R coordinate. Since both ψi and φi depend on
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R, the product rule of differentiation must be used to obtain

∑
i

∫ ∞
−∞

ψ∗j T̂nψiφi dr =
∑
i

∫ ∞
−∞

ψ∗jψi dr T̂nφi

−2
∑
i

h̄2

2M

∫ ∞
−∞

ψ∗j
∂

∂R
ψi dr

∂

∂R
φi

+
∑
i

∫ ∞
−∞

ψ∗j T̂nψi dr φi

= T̂nφj

+
∑
i

[∫ ∞
−∞

ψ∗j T̂nψi dr −
h̄2

M

∫ ∞
−∞

ψ∗j
∂

∂R
ψi dr

∂

∂R

]
φi

= T̂nφj +
∑
j

Cjiφi . (2.9)

The term Cji, defined in the final line above, is known as the coupling operator.

Substitution of Eq. (2.9) into Eq. (2.8) and subsequent substitution of Eq. (2.8)

into Eq. (2.7) yields

ih̄
∂

∂t
φj = T̂nφj + Ejφj +

∑
i

Cjiφi , (2.10)

which is a set of coupled differential equations. However, if the coupling operator

Cji is negligible for all j, the coupling term can be dropped, giving

ih̄
∂

∂t
φj(R, t) = T̂n(R)φj(R, t) + Ej(R)φj(R, t) . (2.11)

The differential equations are now uncoupled, and nuclear dynamics occurs on a

single potential energy surface.

Although there are a wide range of systems and situations where the Born-

Oppenheimer approximation is applicable, it completely breaks down when nona-

diabatic effects are important, in other words, when the coupling between different
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adiabatic energy surfaces is no longer negligible. This is most notably the case when

there is an avoided crossing (see Fig. 2.1) in the energy level profile. Avoided cross-

ings occur when diabatic energy curves cross, and in this region, adiabatic energy

curves come close together with non-negligible coupling. Because of this inability

to describe nonadiabatic effects, the Born-Oppenheimer approximation completely

fails to describe any system or process containing electronic excitations.

R

E B

BA

A

Figure 2.1: Energy profile as a function of nuclear coordinates R for an arbitrary two-state
system with two configurations, A and B, corresponding to the diabatic states. The thick
solid lines denote the adiabatic potential energy surfaces. The thin dashed lines denote where
the diabatic states cross. At this point, an avoided crossing occurs. The adiabatic surfaces
come close to each other and are strongly coupled.

Naturally the problems mentioned above are resolved by a full quantum mechan-

ical treatment of all degrees of freedom, but, as mentioned before, this is generally

impossible. One of the solutions to this problem is to employ a mixed quantum-

classical description of the dynamics. In this description, a small part of the total

system of study is treated in a full quantum-mechanical way, with the remainder of

the system treated in the conventional MD classical manner.
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There are a number of techniques that utilise a quantum-classical description,

where the dynamics of the classically treated particles cause transitions in the quan-

tum subsystem. Many of these, however, fail to incorporate the back-reaction of the

quantum subsystem onto the classical part of the system [39]-[42]. In cases where

the energies of the classical particles is far greater than that of the subsystem, this

is acceptable, since the quantum back-reaction has little effect on the classical par-

ticles. Nevertheless, for many processes, this is not the case, and the quantum

back-reaction must be included in the description of the dynamics.

Two of the main methods which are able to incorporate the quantum back-

reaction are the Ehrenfest mean-field method, and the surface-hopping approach.

Both techniques have regimes where they are highly successful, and it is perhaps

not possible to say if one is superior to the other. A discussion of both is presented

below.

2.2 The Ehrenfest Mean-Field Method

It was first Paul Ehrenfest who, in 1927, showed that averages of certain quantum

observables follow the same equations of motion as their classical counterparts [43].

This discovery was what lead to the idea of mean-field dynamics, where classical

particles evolve in the field of the average of the energy for a quantum system [44, 45].

Possibly the most widely used and successful of these methods is the Ehrenfest

mean-field approach [9],[46]-[48]. The derivation presented below follows the method

outlined in [4].

It begins by making the standard approximation for mean-field methods that the

wavefunction of the total system can be split into a product of two wavefunctions

- one for the faster, lighter particles, and another for the (to be classical) slower,

heavier particles:

Ψ(r,R, t) = ψ(r, t)φ(R, t)e
i
h̄

∫ t
Ee(t′) dt′ . (2.12)
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Again, the convention has been used where r and R denote the fast and slow

particles respectively, and a multidimensional notation has been used. Both the fast

and slow wavefunctions are assumed to be normalised at all times t. The phase

term, containing the term Ee(t) is arbitrary, but it is convenient to define it as the

expectation value of the total Hamiltonian excluding the kinetic energy of the slow

particles. Thus

Ee(t) =

∫
R

∫
r
ψ∗(r, t)φ∗(R, t)He(r,R)ψ(r, t)φ(R, t) dr dR , (2.13)

where He is, as before, the Hamiltonian that describes the motion of the fast particles

in the static field of the slow particles, and is given by Eq. (2.3). The next step is

to substitute the approximation for the total wavefunction into the time-dependent

Schrödinger equation:

ih̄
∂

∂t

(
ψ(r, t)φ(R, t)e

i
h̄

∫ t
Ee(t′) dt′

)
=

(
T̂e(R) + T̂n(r) + V (r,R)

)
×

ψ(r, t)φ(R, t)e
i
h̄

∫ t
Ee(t′) dt′ . (2.14)

The term V (r,R) comprises the potential energy of the slow particles, the fast

particles as well as the potential energy of interaction between the two.

Consider the left-hand side of Eq. (2.14). By the product rule

∂

∂t

(
ψ(r, t)φ(R, t)e

i
h̄

∫ t
Ee(t′) dt′

)
= ψ(r, t)e

i
h̄

∫ t
Ee(t′) dt′ ∂φ(R, t)

∂t

+ φ(R, t)e
i
h̄

∫ t
Ee(t′) dt′ ∂ψ(r, t)

∂t

+
i

h̄
ψ(r, t)φ(R, t)Ee(t)e

i
h̄

∫ t
Ee(t′) dt′ .

(2.15)
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Substituting this back into (2.14), and dividing both sides by the phase term gives

ih̄φ(R, t)
∂ψ(r, t)

∂t
= φ(R, t)T̂e(r)ψ(r, t) + ψ(r, t)

(
T̂n(R) + V (r,R)

)
φ(R, t)

− ih̄ψ(r, t)
∂φ(R, t)

∂t
+ Ee(t)ψ(r, t)φ(R, t) . (2.16)

Next, multiply both sides by φ∗(R, t) on the left, and integrate over the slow

particle coordinates R, using the fact that φ(R, t) is normalised with the respect

to R. From this, one obtains an effective Schrödinger equation for the fast-particle

wavefunction ψ(r, t):

ih̄
∂ψ(r, t)

∂t
= T̂e(r)ψ(r, t) +

[∫
R
φ∗(R, t)

(
T̂n(R) + V (r,R)

)
φ(R, t) dR

]
ψ(r, t)

− ih̄

[∫
R
φ∗(R, t)

∂φ(R, t)

∂t
dR

]
ψ(r, t) + Ee(t)ψ(r, t) . (2.17)

A similar, effective Schrödinger equation for the slow particle wavefunction φ(R, t)

can also be derived by multiplying both sides of Eq. (2.16) by ψ∗(r, t) on the left,

and integrating over r:

ih̄
∂φ(R, t)

∂t
= T̂n(R)φ(R, t) +

[∫
R
ψ∗(r, t)

(
T̂e(r) + V (r,R)

)
ψ(r, t) dR

]
φ(R, t)

− ih̄

[∫
R
ψ∗(R, t)

∂ψ(r, t)

∂t
dR

]
φ(r, t) + Ee(t)φ(r, t) . (2.18)

Equations (2.17) and (2.18) resemble mean-field equations, except for the deriva-

tive integral terms. These terms can be eliminated by considering the following.

Because the individual wavefunctions are assumed to be normalised, the derivative

integral terms in the square brackets are pure imaginary. Thus, when they are mul-

tiplied by the factor ih̄, they become pure real. Now multiplying Eq. (2.17) by

ψ(r, t) on the left, and integrating over r:



15

ih̄

∫
r
ψ∗(r, t)

∂ψ(r, t)

∂t
dr + ih̄

∫
r
ψ∗(r, t)ψ(r, t) dr

∫
R
φ∗(R, t)

∂φ(R, t)

∂t
dR

=

∫
r

∫
R
ψ∗(r, t)φ(R, t)

(
T̂n + T̂e + V (r,R)

)
φ(R, t)ψi(r, t) dRdr

+ Ee(t)

∫
r
ψ∗(r, t)ψ(r, t) dr . (2.19)

Again, the fact that the wavefunctions are normalised can be used, as well as the

definition of the total Hamiltonian Ĥ(r,R) = T̂n(R) + T̂e(r) + V (r,R), to give

ih̄

∫
r
ψ∗(r, t)

∂ψ(r, t)

∂t
dr + ih̄

∫
R
φ∗(R, t)

∂φ(R, t)

∂t
dR− Ee(t)

=

∫
r

∫
R
ψ∗(r, t)φ(R, t)Ĥ(r,R)φ(R, t)ψ(r, t) dRdr

= E , (2.20)

where E is the total energy of the system, including fast and slow particles. This

equation is the only constraint on the derivative integral terms, and can be chosen

arbitrarily. For reasons that will become apparent, it is convenient to define these

terms in following way:

ih̄

∫
r
ψ∗(r, t)

∂ψ(r, t)

∂t
dr = Ee(t) , (2.21)

and

ih̄

∫
R
φ∗(R, t)

∂φ(R, t)

∂t
dR = E . (2.22)

Substituting these definitions back into Eqs. (2.17) and (2.18) yields
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ih̄
∂ψ(r, t)

∂t
= T̂e(r)ψ(r, t) +

[∫
R
φ∗(R, t)V (r,R)φ(R, t) dR

]
ψ(r, t) , (2.23)

and

ih̄
∂φ(R, t)

∂t
= T̂n(R)φ(R, t) +

[∫
r
ψ∗(r, t)Ĥe(r,R)ψ(r, t) dr

]
φ(R, t) . (2.24)

These equations are of a general form for a mean-field theory. They are effective

Schrödinger equations, where the wavefunction for the fast particles is calculated

using the mean-field of the slow particles, and the slow particle wavefunction is

determined using the mean-field of the fast particles. In this manner, there is a

feedback in both directions between the slow and fast particles. This is, however,

still not a quantum-classical description, as both slow and fast degrees of freedom

are still being treated quantum-mechanically. To obtain the Ehrenfest mean-field

equations, the classical limit needs to be taken for the effective Schrödinger equation

for the slow particles, Eq. (2.24).

To this end, the wavefunction for the slow particles is factored into its amplitude

and phase:

φ(R, t) = A(R, t)e
i
h̄
S(R,t) (2.25)

Equation (2.24) then becomes

ih̄
∂

∂t

(
Ae

i
h̄
S
)

= − h̄2

2M

∂2

∂R2

(
Ae

i
h̄
S
)

+

[∫
r
ψ∗(r, t)Ĥeψ(r, t) dr

]
Ae

i
h̄
S . (2.26)

Note that A and S still depend on R and t, even though the dependence is no longer
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shown. It is easier to deal with each term separately, so first consider the left-hand

side of Eq. (2.26):

ih̄
∂

∂t

(
Ae

i
h̄
S
)

= ih̄e
i
h̄
S ∂A

∂t
−Ae

i
h̄
S ∂S

∂t
. (2.27)

The first term on the right-hand side of Eq. (2.26) can also be expanded using

the product rule:

− h̄2

2M

∂2

∂R2

(
Ae

i
h̄
S
)

= − h̄2

2M
e
i
h̄
S ∂

2A

∂R2
− ih̄

M
e
i
h̄
S ∂A

∂t

∂S

∂t

− ih̄

2M
Ae

i
h̄
S ∂

2S

∂R2
+

1

2M
Ae

i
h̄
S
(
∂S

∂R

)2

(2.28)

Substituting Eqs. (2.27) and (2.28) into Eq. (2.26) and dividing both sides by

e
i
h̄
S gives

ih̄
∂A

∂t
−A∂S

∂t
= − h̄2

2M

∂2A

∂R2
− ih̄

M

∂A

∂R

∂S

∂R
− ih̄

A

∂2S

∂R2
+

1

2M
A

(
∂S

∂R

)2

+ A

∫
r
ψ∗(r, t)He(r,R)ψ(r, t) dr. (2.29)

This equation can be split into two equations, one for the real components, and

another for the imaginary terms. Equating the real terms, and dividing through by

A yields

∂S

∂t
+

1

2M

(
∂S

∂R

)2

+

∫
r
ψ∗(r, t)He(r,R)ψ(r, t) dr =

h̄2

2M

1

A

∂2A

∂R2
. (2.30)

Secondly, equating the imaginary terms and dividing through by h̄ gives
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∂A

∂t
+

1

M

∂A

∂t

∂S

∂t
+

1

2M
A
∂2S

∂R2
= 0 . (2.31)

The two equations above still describe the evolution of a wavefunction, and are

interchangeable with the effective Schrödinger equation for the slow particles, Eq.

(2.24). The particles are thus still treated quantum mechanically at this point. In

order to ensure classical treatment of the slow particles, the classical limit is taken

in the usual way, by setting h̄→ 0. Equation (2.30) then becomes

∂S

∂t
+

1

2M

(
∂S

∂R

)2

+

∫
r
ψ∗(r, t)He(r,R)ψ(r, t) dr = 0 . (2.32)

This is simply a Hamilton-Jacobi Equation, and is completely equivalent to New-

ton’s equations of motion, where the potential is given by the average value (mean-

field) of the energy of the fast particles:

dP

dt
= − ∂

∂R

(∫
r
ψ∗(r, t)He(r,R)ψ(r, t) dr

)
. (2.33)

Note however, that the description is not yet complete, as the effective Schrödinger

equation for the fast particles still contains the wavefunction for the slow particles.

The customary solution to this is to assume that the wavefunction φ(R, t) can be

replaced by δ(R). The effective Schrödinger equation for the fast particles is thus

ih̄
∂ψ(r,R, t)

∂t
= He(r,R)ψ(r,R, t) . (2.34)

Since the equation includes the classical positions of the slow particles, the de-

pendence on R has been included here.
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The Ehrenfest mean-field method is defined by Eqs. (2.33) and (2.34). The slow

particle dynamics are given by classical trajectories that move in the mean-field of

the fast particles, (see Fig. 2.2) and the wavefunctions for the fast particles are

calculated in the static field of the slow particles. Although the slow particles are

treated completely classically, the fast particles, which are generally the subsystem

that one is most interested in studying are still treated in a full quantum way.

From the equations it can be seen that energy can flow in both directions, from the

classical part to the quantum subsystem, and vice versa. The Ehrenfest approach

thus includes the quantum back-reaction which is neglected by many other quantum-

classical techniques.

R

E

t = 0

t = t1

t = t2

A

B

C

E2

E1

Figure 2.2: Example of a classical trajectory in the Ehrenfest method for a two-state system.
In this example, the trajectory begins at configuration A in a pure ground state at time
zero. Because the initial state is pure ground state, the mean-field, given by the dashed line,
resembles the ground state. At time t1 in the trajectory, it encounters an avoided crossing
at B, and the coupling results in some amplitude for the excited state. The mean-field now
has contributions from both the ground state and excited state, and at time t2, the classical
trajectory is in configuration C, and is evolving on a completely mixed mean-field surface.

Note further that although certain techniques include representing the equations
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in the adiabatic basis, this is not necessary. The equations can be implemented

numerically as is, by propagating a wave packet.

The Ehrenfest approach has shown success for a number of systems and processes,

most notably the dynamics involved in energy transfer at metal surfaces. The most

common example is that of a carbon monoxide (CO) molecule adsorbed to the face

of a copper crystal [49][50][51]. In this case, conventional MD calculates a lifetime

for the CO stretching mode that is many orders of magnitude too large, because it

fails to include the inherent nonadiabatic effects involved. The Ehrenfest method

however, has proved to be quite accurate [4]. This is due to the fact that the

individual adiabatic potential energy surfaces are close to being parallel. In fact,

whenever the adiabatic potential energy surfaces are very similar, the Ehrenfest

approach tends to perform well. This is due to the fact that the classical particle

dynamics governed by the mean-field is close to the dynamics on any particular

adiabatic potential energy surface.

This is, however, one of two serious limitations of the Ehrenfest mean-field

method. Despite its success, it is only accurate when the potential energy sur-

faces which determine the classical particle dynamics are not too dissimilar. When

the surfaces are significantly different, the classical dynamics on individual potential

surfaces diverge, and the dynamics according to the mean-field fails to describe the

classical dynamics correctly. This problem becomes particularly apparent when one

wishes to study a pathway which has a low probability. Because the mean-field

is weighted by the populations of the different states, the dynamics will always be

similar to the dynamics on the high probability pathways, and thus fail to describe

channels of low probability.

The second problem of the Ehrenfest method is that it fails to satisfy the con-

dition of microscopic reversibility. To illustrate this, consider a two state system

where the adiabatic potential energy surfaces are weakly coupled. Dynamics of the

system when it is initially in state 1 and then develops amplitude in state 2 is gov-

erned by a mean-field potential that is very different to the reverse path where the
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system is initially in state 2. Since the dynamics for the forward and reverse path

are governed by different mean-field surfaces, their dynamics will diverge, and mi-

croscopic reversibility will not be satisfied. In an effort to resolve these problems

encountered by the Ehrenfest method, a new quantum-classical approach for dealing

with nonadiabatic dynamics was developed, namely surface-hopping.

2.3 Surface-hopping Approach

The surface-hopping approach to nonadiabatic dynamics was first proposed by Tully

and Preston in 1971, and applied to the reaction of protons with D2 molecules [10].

It can be viewed as an extension of conventional MD, as dynamics is calculated

similarly to MD, except it occurs on multiple potential energy surfaces, as opposed

to one.

The derivation of the surface hopping approach begins similarly to that of the

Born-Oppenheimer approximation above, by expressing the total wavefunction of

the system by a sum over states. Although it is not required, it is convenient to

use the adiabatic basis, as it helps facilitate interpretation of the surface-hopping

method. The total wavefunction can thus be written as

Ψ(r,R, t) =
∑
i

ψi(r,R)φi(R, t) , (2.35)

where all the symbols have the same meaning as used previously. The terms φi(R, t)

are the wavefunctions of the slow particles, but note that they are not orthonormal,

as integrating the modulus square of φi(R, t) gives the population of fast particle

quantum state ψi(r,R) at time t.

The next step is to substitute Eq. (2.35) into the time-dependent Schrödinger

equation and, as before, premultiply both sides by ψ∗j (r,R) and integrate over fast

particle coordinate r. This yields Eq. (2.10), however, in the surface-hopping case

it is more convenient to right it in the form
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ih̄
∂φj(R, t)

∂t
= − h̄2

2M

∂2

∂R2
φj(R, t) + Ejφj(R, t)

+
h̄2

2M

∑
i

Dji(R)φi(R, t)−
h̄2

M

∑
i 6=j

dji(R)
∂

∂R
φi(R, t) ,

(2.36)

where Dji(R) and dji(R) are defined as

Dji(R) = −
∫
r
ψ∗j (r,R)

∂2

∂R2
ψi(r,R) dr , (2.37)

and

dji(R) =

∫
r
ψ∗j (r,R)

∂

∂R
ψi(r,R) dr . (2.38)

The term dji(R) is known as the nonadiabatic coupling vector, and it indicates

coupling strength between states i and j. The first two terms on the right-hand

side of Eq. (2.36) describe adiabatic dynamics of the slow particles on potential

energy surface j. The final two terms govern the change in population of state j

due to coupling with other states. These are the terms that are dropped in the

Born-Oppenheimer approximation.

The next step is to take the classical limit for the slow particles, as in the

case of the Ehrenfest method. This is performed in a similar way as before, that

is, to write the wavefunction for the slow particles as a product of amplitude and

phase (Eq. (2.25)). Substitution into Eq. (2.36) and subsequent splitting of real and

imaginary terms yields
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∂Sj
∂t

+
1

2M

(
∂Sj
∂R

)2

+ Ej =
h̄2

2M

1

A

∂2Aj
∂R2

− h̄2

2M

∑
i

Ai
Aj
Djie

i
h̄

(Si−Sj)

+
h̄2

M

1

Aj
dji
∂Ai
∂R

e
i
h̄

(Si−Sj) , (2.39)

and

∂Aj
∂t

+
1

M

∂Aj
∂R

∂Sj
∂R

+
1

2M
Aj
∂2Sj
∂R2

+
1

M

∑
i

Aidji
∂Si
∂R

e
i
h̄

(Si−Sj) = 0 . (2.40)

The classical limit is achieved by setting the reduced Planck constant to zero in

Eq. (2.39). All the terms on the right hand side then disappear, giving a Hamilton-

Jacobi equation,

∂Sj
∂t

+
1

2M

(
∂Sj
∂R

)2

+ Ej = 0 , (2.41)

similar to the case of the Ehrenfest method. This equation is thus equivalent to

Newton’s equations for the slow particles. In the Ehrenfest method, however, the

dynamics occurred on the mean of the adiabatic potential energy surfaces, where as

in the surface-hopping case, this Hamilton-Jacobi equation is for a single surface.

Equation (2.40), containing the nonadiabatic coupling vector dji(R), governs the

values of the coefficients Aj , the modulus square of which are the populations of the

adiabatic states.

Equation (2.41), representing the classical dynamics on a single adiabatic surface

is easy to perform on a computer as it is simply dynamics in the Born-Oppenheimer

approximation. However, implementation of Eq. (2.40) is, in general, far more dif-

ficult. Surface-hopping algorithms attempt to solve this by using a swarm of in-

dependent trajectories, which evolve on a single adiabatic state, with a hopping
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algorithm which determines when nonadiabatic transitions or ‘hops’ occur between

states (see Fig 2.3). This is done in a way which approximately preserves the correct

populations of the swarm in each adiabatic state.

R

E

t = 0

A

B

t = t1

C

t = t2

E2

E1

Figure 2.3: Example of a classical trajectory in the surface-hopping approach for a two-state
system. In this example, the trajectory, given by the dashed line, begins at configuration
A in the ground state at time zero. At time t1 in the trajectory, at configuration B, a
nonadiabatic transition occurs from the ground state to the excited. Between times t1 and
t2, the trajectory evolves on the excited state energy surface. At time t2 at configuration C,
another transition occurs down to the ground state. After this the trajectory evolves on the
ground state surface. Although transitions can occur at any point in configuration space, they
are most likely to occur around the avoided crossing, where coupling between the surfaces is
strong.

It is the way these nonadiabatic transitions are implemented that is the most

defining characteristic of a specific surface-hopping scheme. They are generally per-

formed using a stochastic algorithm, which uses some probability which determines

whether or not a transition will occur. In the original surface-hopping scheme by

Tully and Preston [10], hops between states could only occur at predetermined lo-

cations. These were, in general at the location of an avoided crossing where there is

strong coupling, and thus large probability of transition between states.
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This limitation was later removed by the introduction of the so-called “fewest

switches” algorithm. This algorithm provides a way of obtaining the correct popu-

lations at each time t in the simulation using only the fewest number of transitions

needed to obtain them. The populations are calculated using numerical integration,

and the algorithm is derived by imposing the fewest switches rule. To derive this,

consider a case where N trajectories are being propagated. At some time t, there

will be some fraction Ni/N of the trajectories that are in state i. Since |Ai|2 is the

fractional population of each state,

Ni(t) = |Ai(t)|2N . (2.42)

If, after a time step δt, the population |Ai(t+ δt)|2 is greater than |Ai(t)|2, then

the probability of transition from state i to any other state is set to zero. If, however,

the population is smaller, then the probability of a trajectory in state i moving to

another state is given by

Pi(t+ δt) =
δN

Ni(t)
, (2.43)

where δN = Ni(t) − Ni(t + δt). This can be rewritten in terms of the population

coefficients:

Pi(t+ δt) =
|Ai(t)|2 − |Ai(t+ δt)|2

|Ai(t)|2

≈ − δt

|Ai(t)|2
d|Ai(t)|2

dt
, (2.44)

where, in the last line, a first order approximation for the time derivative has been

made. The probability of a trajectory undergoing a transition from state i to a spe-

cific other state j is then determined by the nonadiabatic coupling element for states
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i and j. The probability given in Eq. (2.44) ensures that the correct population is

kept at each time t. The algorithm fails to achieve the correct populations, however,

when transitions would occur in regions where it is energetically forbidden. When

these so-called classical forbidden transitions would occur, the usual way of dealing

with them is to stay on the initial energy surface. This leads to discrepancies in the

calculated and analytical populations, although the error caused by this problem is

generally small.

A point of contention for surface-hopping schemes is the backreaction of the

fast, quantum particles on the slow, classical particles. Although surface-hopping

algorithms do include the backreaction, as opposed to some other quantum-classical

methods, it is generally implemented in an ad hoc way. In most surface-hopping

algorithms, when a transition occurs, the velocity is instantaneously adjusted in such

a way that energy of the total system is conserved. Most commonly, the velocity

is rescaled in the direction of the nonadiabatic coupling vector dji(R). This non-

rigorous way of describing the quantum backreaction is generally considered a flaw

in the surface-hopping method.

A further point worthy of note is that the surface-hopping approach is more com-

putationally expensive than the Ehrenfest method. Since dynamics in the Ehrenfest

method occurs on only a single mean surface, only one trajectory is required for each

classical degree of freedom. In the case of surface-hopping, however, depending on

the number of adiabatic states accessible, there may be many different trajectories.

Despite these problems, surface-hopping algorithms remain a valuable tool for

simulation of quantum-classical dynamics, especially in cases where the Ehrenfest

method fails. Due to the nature of the surface-hopping approach, all potential

pathways are investigated, and not just the mean-field pathway. Surface-hopping

schemes have been used very effectively for describing proton transfer [21][52] for

example, a process where the Ehrenfest method is known to be unsuccessful.

More recently, methods have been proposed based on partial Wigner transforms.

This has led to the so-called quantum-classical Liouville approach, which, while
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mainly surface-hopping in nature, also exhibits some mean-field properties. It has

been shown to be quite successful, and has removed some of the problems with the

classic surface-hopping algorithms.



Chapter 3

Quantum Mechanics in Phase

Space

3.1 Phase Space Representation of Quantum Mechanics

It has long been known that, in certain conditions (generally when the limit h̄→ 0

is taken), probability distributions for many dynamical quantum variables approach

their classical counterparts [53]. This can be performed using either a configuration

space representation or a momentum space representation, but it still does not pro-

vide a full classical description of quantum mechanics. In classical mechanics, one

can see from the equations of motion that the position and momentum are inherently

linked:

dp

dt
=

∂

∂q
H(q, p, t) ,

dq

dt
=

∂

∂p
H(q, p, t) , (3.1)

and probability distributions do not have to be functions of only position or mo-

mentum, but indeed of both and are known as phase space distribution functions.

28
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In order to represent quantum mechanics in a more classical fashion, it would thus

be desirable to obtain a phase space like distribution for a quantum system. One

of the most successful attempts to achieve this is provided by the work of Hermann

Weyl and Eugene Wigner [54][55].

3.1.1 The Wigner Representation

In Schrödinger’s formulation of quantum mechanics, wavefunctions and probability

densities are, in general, given as functions of position space [56]:

ψ(x) = 〈x|ψ〉, P (x) = |ψ(x)|2 . (3.2)

To obtain the wavefunction, and thus probability density, in momentum space, one

simply has to perform a Fourier transform for the position space wavefunction:

ψ(p) =
1√
h̄

∫
e−ixp/h̄ψ(x)dx . (3.3)

As mentioned above, however, it would be desirable to represent the probability

densities as functions of both position and momentum at the same time. To be

interpreted as a probability distribution, this phase space function would need to

be both normalised over phase space, as well as be pointwise positive. In addition

to this, it must be possible to use the function to calculate expectation values,

since all the information of a quantum system is given by quantum averages of

physical observables. The Wigner function satisfies all these properties, except for

the pointwise positivity condition. Despite this, it has some very useful properties.

In order to define the Wigner function, the Weyl transform first needs to be

introduced. For an arbitrary operator χ̂, the Weyl transform [55] is given by

χ̃(x, p) =

∫
e−ipy/h̄〈x+ y/2|χ̂|x− y/2〉dy , (3.4)

where a tilde is used to denote the Weyl transform of an operator. Here the operator
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being transformed was represented in the position basis, but exactly the same result

is achieved for an operator in the momentum basis:

χ̃(x, p) =

∫
eixy/h̄〈p+ y/2|χ̂|p− y/2〉dy . (3.5)

The Weyl transform therefore provides a method of representing a quantum oper-

ator as a function of phase space, which was a historical step in the field of quantum

mechanics. Prior to this representation, quantum mechanics was described only

using operators acting on wave functions in configurational space (Schrödinger), or

operators given by matrices (Heisenberg). When Weyl first introduced this trans-

form in 1931 and later Wigner the Wigner function in 1932, it was the first time

that it was proven that quantum mechanics could be described by functions, and

not only as operators.

An important property of the Weyl transform is the fact that integration of the

product of the Weyl transforms of two operators over phase space yields the trace

of the product of two operators untransformed [56]:

Tr
(
ÂB̂

)
=

1

h

∫ ∫
Ã(x, p)B̃(x, p)dx dp . (3.6)

This is a highly important identity since, as will be shown later, it allows for the

determination of expectation values using the Wigner function.

The Wigner function for a pure state is defined as the Weyl transform of the

density matrix divided by Planck’s constant [54]:

W (x, p, t) =
ρ̃(x, p, t)

h
=

1

h

∫
e−ipy/h̄〈x+ y/2|ρ̂(t)|x− y/2〉 dy

=
1

h

∫
e−ipy/h̄〈x+ y/2|ψ〉〈ψ|x− y/2〉 dy

=
1

h

∫
e−ipy/h̄ψ(x+ y/2)ψ∗(x− y/2) dy ,
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(3.7)

and has some interesting properties. Firstly, it is a simple matter to recover either

the position space or momentum space probability distribution through a simple

integration [57]:

∫
W (x, p, t) dp = |ψ(x, t)|2 ,

∫
W (x, p, t) dx = |ψ(p, t)|2 , (3.8)

and secondly, using Eq. (3.6), it is possible to show that integrating the product

of the Wigner transform and the Weyl transform of an operator over phase space

yields its expectation value.

〈χ〉 = Tr (ρ̂χ̂) =
1

h

∫ ∫
ρ̃(x, p)χ̃(x, p)dx dp

=

∫ ∫
W (x, p)χ̃(x, p)dx dp , (3.9)

Equation (3.9) shows that the Wigner function satisfies the third condition for

it to be interpreted as a phase space probability density. It is quite simple to show

that the Wigner function is also normalised over phase space, the first condition

given above.

Taking the Weyl transform of the identity matrix, it can be shown that it is

unity:

1̃ =

∫
e−ipy/h̄〈x+ y/2|1̂|x− y/2〉

=

∫
e−ipy/h̄δ(y) dy = 1 . (3.10)

Using this fact, in conjunction with the identity for the trace of operator products

in Eq. (3.6), one obtains
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∫ ∫
W (x, p)dx dp =

1

h

∫ ∫
ρ̃(x, p)1̃dx dp

= Tr
(
ρ̂1̂
)

= 1 (3.11)

Using the Wigner function, it is also possible to determine whether or not the

system is in a pure state, analogous to the Tr (ρ̂2) = 1 condition for pure states.

If the integral over phase space of the square of the Wigner function multiplied by

Planck’s constant is equal to one, then the state is pure. This is shown by the

following:

h

∫ ∫
W (x, p)2dx dp =

(
1

h

∫ ∫
ρ̃(x, p)ρ̃(x, p)dx dp

)

= Tr (ρ̂2)

 = 1 if pure state

< 1 if mixed state
. (3.12)

Unlike the Schrödinger wavefunction representation, mixed states are easy to

represent with the Wigner formulation. Consider a mixed state with density matrix

ρ̂ =
∑
j

Pj |ψj〉〈ψj | , (3.13)

where Pj is the probability that the system is in state |ψj〉. The Wigner function

for this mixed state is given by

W (x, p) =
ρ̃

h

=
1

h

∑
j

Pj ρ̃j

=
∑
j

PjWj(x, p) , (3.14)
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where ρ̃j and Wj(x, p) are the Weyl transformed density matrix and Wigner function

respectively for state |ψj〉.

Since the Wigner function is normalised, and the fact that one can use it to

determine expectation values, it would be tempting to interpret the Wigner function

as a phase space probability density. It is, however, not possible to do so, due to one

particular characteristic - the fact that it is not guaranteed to be pointwise positive.

Consider two orthogonal states of a system ψ1 and ψ2 with corresponding density

operators given by ρ̂1 and ρ̂2. Using Eq. (3.6), one obtains

Tr (ρ̂1ρ̂2) =
1

h

∫ ∫
hW1(x, p)hW2(x, p)dx dp . (3.15)

But Tr (ρ̂1ρ̂2) = |〈ψ1|ψ2〉|2, which is zero for orthogonal states. Therefore,

h

∫ ∫
W1(x, p)W2(x, p)dx dp = 0 . (3.16)

Since Wigner functions cannot be zero for all of phase space, this implies that

W1(x, p) or W2(x, p), or even both, must be negative for some regions of phase

space. Indeed, for any orthogonal set of states, for Eq (3.16) to hold, at most only

one state in the set may have an associated Wigner function that is positive for

all phase space. This is the case for the quantum harmonic oscillator, where the

ground state Wigner function is pointwise positive, but all other states have Wigner

functions with negative values for some regions of phase space.

Since probabilities are only meaningful if they are positive, naturally the fact

that the Wigner function may be negative denies its interpretation as a probability

density. The Wigner function is thus generally labelled as a quasidistribution.

Because equations of motion in quantum mechanics are given in terms of prod-

ucts of operators, it must be possible to represent this in the Wigner representation

as well. If one considers two operators Â and B̂, the Weyl transform of their product

is [20]
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˜
(ÂB̂) = A(R,P )e

h̄Λ
2i B(R,P )

= B(R,P )e−
h̄Λ
2i A(R,P ) , (3.17)

where the symbol Λ is the negative of the Poisson bracket.

One final important characteristic of the Weyl transform is the manner in which

operators that depend on either x̂ or p̂, but not both, are transformed. Consider

an operator Â which only depends on the operator x̂. The Weyl transform of this

operator is [56]

˜̂
A(x̂) =

∫
e−ipy/h̄〈x+ y/2|Â(x̂)|x− y/2〉 dy

=

∫
e−ipy/h̄A(x− y/2)δ(y) dy = A(x) . (3.18)

Similarly, for operators that depend only on the momentum operator,

˜̂
B(p̂) = B(p) (3.19)

Therefore, one can perform the Weyl transform on any operator that depends only

on x̂ by simply replacing the operator x̂ with x, and similarly for purely momentum

based operators, by replacing p̂ with p. This also applies to sums of operators

where all the individual operators depend on either x̂ or p̂. This makes it easy

to represent any Hamiltonian of the form Ĥ(x̂, p̂) = T̂ (p̂) + Û(x̂) in the Wigner

representation, as one replaces the operators x̂ and p̂ with phase space variables

to obtain H(x, p) = T (p) + U(x). This is useful when using the partial Wigner

representation.
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3.1.2 The Partial Wigner Representation

The partial Wigner representation is highly useful when attempting to study quantum-

classical dynamics [34][58] and is derived from the more general Wigner representa-

tion of quantum mechanics. One can think of general open quantum systems, where

the system being studied can be divided into a quantum subsystem of interest, and

an environment with which the quantum subsystem interacts. Much of the time, the

environment contains far too many degrees of freedom for it to be possible to solve

the dynamics in a full quantum way. When the particles that constitute the envi-

ronment are significantly more massive than those of the subsystem, it is far more

practical to treat the environmental degrees of freedom classically, or in classical-like

fashion. The partial Wigner transform is perfectly suited to this situation. A par-

tial Wigner representation is obtained by taking the Weyl function over only certain

degrees of freedom of the system (in this case the environmental degrees of free-

dom). In this way, a hybrid representation is achieved, where the subsystem is still

described in terms of operators, but the remainder is given in terms of phase space

functions. The Hamiltonian of the system is thus converted from a full operator to

an operator of the Hilbert space of the subsystem, as well as a function of phase

space variables for the bath:

Ĥ(R̂, P̂ , q̂, p̂)→ HW (R,P, q̂, p̂) , (3.20)

where the W subscript denotes the partial Wigner representation. The (R,P ) are

the bath coordinates, and (r̂, p̂) are the position and momentum operators for the

subsystem. The operators of the quantum subsystem remain unchanged, and the

subsystem is still treated in a full quantum way, as desired. In fact, at this point,

the environment is still being treated quantum-mechanically, but the partial Wigner

representation allows for treatment of the bath in a more classical-like way.

For a system comprising a quantum subsystem coupled to an environment of N

particles, the partial Wigner transform for the density matrix is given by
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ρ̂W (R,P ) = h−3N
∫
dzeiP ·z/h̄〈R− z

2
|ρ̂|R+

z

2
〉 . (3.21)

Note that ρ̂W (R,P ) ≡W (R,P ), but henceforth the notation ρ̂W (R,P ) will be used

for the Wigner function. The factor in front of the integral in the above equation

has changed from h−1 to h−3N due to the fact that density matrix is for N particles,

and all variables must be interpreted as vectors of dimension 3N [53].

For an arbitrary operator of the system χ̂, its partial Wigner transform is

χ̂(R,P ) =

∫
dzeiP ·z/h̄〈R− z

2
|χ̂|R+

z

2
〉 . (3.22)

As in the case of the density matrix, the operator χ̂ is both an operator on the

Hilbert space of the subsystem and a function of phase space. This hybrid form

for the density matrix and operators is ideal for treating a system in a quantum-

classical fashion, due to its ability to treat the environmental degrees of freedom in

a classical-like way. A point to note, however, is that since the forms of the operator

and density matrix have been altered, their respective equations of motion change as

well. Indeed, their time evolution is no longer governed by the quantum commutator

in the Heisenberg and von Neumann equations. Instead, a mixed quantum-classical

formulation is required to describe the time evolution of these hybrid objects. This

formulation will be introduced in the next chapter. It will be shown that in deriv-

ing this quantum-classical representation, one obtains a quantum-classical bracket

that is non-Hamiltonian (or approximately Hamiltonian) in nature. The difference

between Hamiltonian and non-Hamiltonian algebras will be discussed below.
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3.2 Hamiltonian Theory and Non-Hamiltonian

Theory

3.2.1 Hamiltonian Theory

The purpose of describing any system mathematically, whether in the realm of clas-

sical mechanics or quantum mechanics, is to be able to predict values for system

properties that are experimentally measurable. In general, a system of study is sub-

ject to some external influence, and the theory must be able to describe how this

system evolves in time, and thus predict observable quantities. These measurable

properties are given by ensemble averages. In either quantum or classical mechan-

ics, linear response theory can be used to obtain ensemble averages in terms of time

correlation functions [59]. Linear response theory, however, requires that the math-

ematical theory used to describe the dynamics of the system has the property of

being invariant under time translation. Any structure that is a Lie, or Hamiltonian,

algebra possesses this time translation invariance property [60][61].

For a theory to be Hamiltonian, the algebra of its bracket must constitute a Lie

algebra. To define a Lie algebra, consider a mathematical space, to which objects

{A,B,C} belong. An algebra of this space is a Lie algebra if it possesses the following

properties [61]:

(A,B) = −(B,A) , (3.23)

λ(A,B) = (λA,B) = (A, λB) , (3.24)

(A+B,C) = (A,C) + (B,C) , (3.25)

where (.., ..) is the bracket that defines this algebra and the symbol λ is a c-number.

In addition to these 3 properties, for the algebra to be Hamiltonian, and specifically
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for time translation invariance to hold, the brackets must satisfy

J = ((A,B), C) + ((C,A), B) + ((B,C), A) = 0 , (3.26)

which is the Jacobi relation.

An algebra may thus satisfy the first three properties given in Eqs. (3.23-3.25),

and still not be Hamiltonian. It is only a Lie algebra (and consequently a Hamil-

tonian theory) if it also satisfies the Jacobi relation. Equations. (3.24) and (3.25)

imply that the bracket is a linear operator of its space, as well as of complex num-

bers. The antisymmetric property of the bracket, given by Eq. (3.23) is important

for time evolution [61]. When the elements of the space of the bracket are not ex-

plicitly dependent on time, time evolution can be given choosing an element H, and

defining the equations of motion by [61]:

dA

dt
= (A,H) , (3.27)

where H is typically the Hamiltonian.

It can be shown that if the Jacobi relation is satisfied, then the algebra is time

translation invariant. Consider the two elements A and B, which are in the space of

the algebra defined by the bracket (.., ..). They are constants of motion if and only

if

Ȧ = (A,H) = 0 Ḃ = (B,H) = 0 , (3.28)

where the dot accent is used to denote derivation with respect to time. If the theory

is time translation invariant, then Eq. (3.28) implies that (A,B) is also a constant

of motion, which would be expressed in the following way:

((A,B), H) = 0 . (3.29)

It can be seen, however, that Eq. (3.29) follows directly from the Jacobi relation:
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((A,B), H) = −((H,A), B)− ((B,H), A)

= ((A,H), B)− ((B,H), A)

= (Ȧ, B)− (Ḃ, A) = 0 , (3.30)

thus proving that any theory that is Hamiltonian is consequently time translation

invariant as well.

Both the quantum commutator and the classical Poisson bracket which govern

their respective algebras are Hamiltonian, and thus time translation invariant. It is

this property which allows for the success of linear response theory.

3.2.2 Non-Hamiltonian Theory

With the requirements for a Hamiltonian theory defined, it is now possible to define

a non-Hamiltonian theory. A non-Hamiltonian algebra is one whose bracket satisfies

the antisymmetric and linear properties outlined in Eqs. (3.23), (3.24) and (3.25),

but does not satisfy the Jacobi relation:

J = ((A,B), C) + ((C,A), B) + ((B,C), A) = λ , (3.31)

where λ is some non-zero c-number. Defining C to be the Hamiltonian, and A and

B as constants of motion, one obtains

((A,B), H) = −((H,A), B)− ((B,H), A) + λ

= (Ȧ, B)− (Ḃ, A) + λ

= λ 6= 0 . (3.32)

The fact that A and B are constants of motion thus no longer implies that (A,B)

is also a constant of motion, and time translation invariance is violated. This shows
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that the Jacobi relation is indeed the requirement for time translation invariance.

This drawback to non-Hamiltonian theories might make it counter intuitive to

ever choose to use a non-Hamiltonian theory over a Hamiltonian one. To see the

advantages a non-Hamiltonian theory might have, consider dynamics in a thermal

bath. In real life experiments, systems are generally studied at constant tempera-

ture, not constant energy [61]. This implies that numerical calculations should be

performed in the canonical ensemble. Molecular dynamics performs simulations us-

ing the microcanonical ensemble, which only converges with the canonical ensemble

in the thermodynamic limit. However, it is not possible, due to lack of computa-

tional resources, to perform calculations, even classically, for that large a number

of degrees of freedom. Consequently, the calculations that are performed at con-

stant energy for Hamiltonian dynamics deviate from those conducted at constant

temperature [62].

In the case of classical mechanics, it was shown that, using a non-Hamiltonian

formalism it is possible to simulate an infinite thermal bath using only a small

number of degrees of freedom [63]. More recently, this formalism was extended to

the quantum case [60][64]. In quantum dynamics, it can be a highly computationally

expensive task to simulate even a relatively small number of degrees of freedom

by classical standards, and larger numbers are essentially impossible to currently

simulate. In particular cases, this problem has been solved by formulating non-

Hamiltonian quantum-classical methods.

3.2.3 The Quantum and Classical Brackets

Due to the fact that a quantum-classical formalism must be able to describe dy-

namics that comprises both a classical and a quantum element, it would not be

unreasonable to assume that it possesses a bracket structure that is similar to that

of the classical Poisson bracket or quantum commutator, or some hybrid thereof.

It would thus be of interest to consider the structures of the quantum and classical

brackets.



41

The classical Poisson bracket has a symplectic nature, which lends itself to being

cast into matrix form [65][66]. For any two arbitrary functions of phase space f and

g, one has

{f, g} =

[
∂f
∂R

∂g
∂P

]
· Bc ·

 ∂f
∂P

∂g
∂R

 , (3.33)

where Bc is known as the symplectic matrix

Bc =

 0 1

−1 0

 . (3.34)

There are indeed great similarities between the quantum and classical bracket

structure, as the quantum commutator also has this symplectic form [60], and can

be written in the following form:

[A,B] =

[
A B

]
· Bc ·

 A

B

 . (3.35)

It is worth noting that while the symplectic form for the bracket is a requirement

for its equations of motion to be canonical, it is not a requirement for it to be a Lie

bracket. Conversely, however, if a bracket is symplectic, then it constitutes a Lie

algebra.

As shall be shown in the next chapter, the quantum-classical bracket can indeed

be written in similar matrix form, however, because it loses its Hamiltonian nature,

it can no longer be written in terms of the symplectic matrix.



Chapter 4

The Quantum-Classical

Liouville Approach

4.1 The Quantum-Classical Liouville Equation

The quantum-classical Liouville approach is a method of obtaining a mixed quantum-

classical representation of dynamics through use of a partial Wigner transform. The

resulting quantum-classical Liouville equation defines the quantum-classical bracket,

which is non-Hamiltonian in nature, and thus not symplectic. The equation is ob-

tained by making a quantum-classical approximation, however, as shall be shown

below, it is exact for a certain subset of Hamiltonians.

This approach is highly useful when considering systems that can be split into a

small subsystem which one wishes to treat quantum mechanically, and an environ-

ment which comprises slower, heavier particles, the dynamics of which one is less

interested. This is due to the natural way that the bath degrees of freedom are rep-

resented in terms of phase space variables, while still maintaining the mathematical

operator structure for the subsystem.

Consider a system defined by the total Hamiltonian operator

42
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Ĥ(R̂, P̂ ) = ĤS + ĤB(R̂, P̂ ) + ĤSB(R̂) , (4.1)

where the subscripts S, B and SB stand for the subsystem, bath and coupling po-

tential respectively. It is assumed that the Hamiltonian depends upon a pair of

canonically conjugate operators (R̂, P̂ ) through the bath Hamiltonian, and the in-

teraction Hamiltonian with form ĤSB(R̂). The Hamiltonian also depends on some

quantum operators for the system, but these are not shown here, since the partial

Wigner transform will only be taken over the environmental degrees of freedom.

Using the symplectic matrix form for the quantum commutator, the equation of

motion for the density matrix ρ̂, the von Neumann equation, is given by

∂ρ̂

∂t
= − i

h̄

[
Ĥ ρ̂

]
· Bc ·

 Ĥ

ρ̂

 . (4.2)

At this point, in order to obtain a mixed quantum-classical representation of the

dynamics, the partial Wigner transform is taken over the bath coordinates R̂ and

P̂ . Using the fact that each term in the Hamiltonian is an operator of either R̂ or

P̂ , but not both, the partial Wigner transformed Hamiltonian of the system is given

by

ĤW (X) = ĤS +HW,B(X) + ĤW,SB(R) , (4.3)

where the symbol X has been used to denote the canonically conjugate classical

phase space variables (R,P ). Making use of the identity given in Eq. (3.17) for the

Weyl transform of a product of operators, the evolution equation for the density

matrix becomes:

∂

∂t
ρ̂W (X, t) = − i

h̄

[
ĤW (X) ρ̂W (X, t)

]
· D ·

 ĤW (X)

ρ̂W (X, t)

 ,



44

(4.4)

where the matrix D is given by

D =

 0 e
ih̄
2

←
∂ kBckj

→
∂ j

−e
ih̄
2

←
∂ kBckj

→
∂ j 0

 . (4.5)

The symbols
←
∂ k=

←
∂ /∂Xk and

→
∂ j=

→
∂ /∂Xj denote the operators of derivation with

respect to the phase space point coordinates, acting to left and right respectively,

and the repeated indices imply summation. Note that although the matrix D has an

off-diagonal form, it is not the symplectic matrix, and hence the associated equations

of motion are not canonical. However, the bracket defined by Eq. (4.4) satisfies the

Jacobi relation, and is thus still Hamiltonian in nature.

The evolution given in Eq. (4.4) is still not a mixed quantum-classical representa-

tion of dynamics. It would be more accurate to describe it as quantum-classical-like.

Although the bath degrees of freedom are represented in a classical-like phase space

way, this mixed Wigner-Heisenberg representation is completely equivalent to that

of Heisenberg. In other words it is still a fully quantum evolution. However, cal-

culations using Eq. (4.4) are usually very difficult to perform, so at this point the

quantum-classical approximation is made. This amounts to taking a linear order

approximation for the exponential terms in the matrix D:

Dlin =

 0 1 + ih̄
2

←
∂ k Bckj

→
∂ j

−1− ih̄
2

←
∂ k Bckj

→
∂ j 0

 . (4.6)

In this approximation, the evolution equation for the density matrix becomes

∂

∂t
ρ̂W (X, t) = − i

h̄

[
ĤW (X) ρ̂W (X, t)

]
· Dlin ·

 ĤW (X)

ρ̂W (X, t)

 .

(4.7)
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This form for the evolution equation is far easier to simulate on a computer than

Eq. (4.4). The approximation essentially neglects higher order quantum correction

terms to the evolution of the bath degrees of freedom. In certain cases, however,

Eq (4.7) is exact. If the Hamiltonian for the bath is at most quadratic in R and P ,

and the interaction Hamiltonian is of the form

ĤW,SB = VB(R)⊗ Ĥ ′S , (4.8)

where VB depends only on the positions of the environmental degrees of freedom,

and Ĥ ′S acts only in the Hilbert space of the subsystem, then the linear expansion of

the exponential terms in the matrix D is exact. Therefore, Eq (4.7) is exact for this

class of Hamiltonians. The higher order terms of the expansion for the exponentials

go to zero when operated on ĤW (X).

Equation (4.7) is known as the quantum-classical Liouville equation, and it can

also be expressed in terms of the quantum commutator bracket and the classical

Poisson bracket. Performing the matrix multiplication in Eq. (4.7) yields

∂

∂t
ρ̂W (X, t) = − i

h̄
[ĤW , ρ̂W ] +

1

2

(
{ĤW , ρ̂W } − {ρ̂W , ĤW }

)
= −

(
ĤW , ρ̂W

)
QC

= −iLρ̂W (X, t) , (4.9)

where the quantum-classical bracket has been defined in the second line. The last line

defines the quantum-classical Liouville operator L. As was surmised previously, the

quantum-classical bracket is indeed a combination of both the quantum commutator,

and the Poisson bracket. The commutator acts on the quantum subsystem, while

the Poisson bracket acts on the classical phase space functions of the bath.

However, the quantum-classical bracket does not obey the Jacobi relation [60],

and is therefore non-Hamiltonian. The violation is due to the quantum-classical

approximation that is made. The bracket obeys the Jacobi relation to first order in
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h̄ though, and a more accurate description for the bracket would perhaps be approx-

imately Hamiltonian. This accounts for the fact that certain dynamical properties

of systems that require linear response theory can still be computed within this

formalism [20][21].

Note that if either the bath or the subsystem is removed, then the Hamiltonian

structure is recovered. Removing the quantum degrees of freedom, leaves only the

bath, and the commutator becomes zero. All that then remains is the Hamiltonian

Poisson bracket of classical mechanics. Similarly, by removing the classical degrees

of freedom results in the Poisson bracket becoming zero, leaving only the quantum

commutator, which is also Hamiltonian.

The Heisenberg equation is converted into the partial Wigner representation in

exactly the same way as that of the von Neumann equation, since the two equations

are exactly the same apart from the change in sign. The evolution equation for an

arbitrary operator χ̂ in the partial Wigner representation is therefore given by

∂

∂t
χ̂W (X, t) =

(
ĤW , χ̂W

)
QC

= iLχ̂W (X, t) . (4.10)

It has been assumed thus far that the total Hamiltonian for the system of study

is time-independent. If this is indeed the case, then the quantum-classical Liouville

operator is also time-independent. When the quantum-classical Liouville operator

is time-independent, Eqs. (4.9) and (4.10) have the following formal solutions:

ρ̂W (R,P, t) = e−iL̂tρ̂W (R,P, 0) , (4.11)

χ̂W (R,P, t) = eiL̂tχ̂W (R,P, 0) . (4.12)

In the case of time-dependent Hamiltonians, solutions are not as simple, since
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the quantum-classical Liouville operator also becomes explicitly dependent on time.

In the current form, Eqs. (4.11) and (4.12) are not expressed in any basis. In

order to to obtain a form that is suitable for numerical simulations, it is useful to

first rotate them into a convenient basis.

4.2 The Adiabatic Basis

Consider an arbitrary set of linearly independent basis vectors |α〉, spanning the

Hilbert space of the quantum subsystem of interest - in other words, a complete

basis set. Equations (4.11) and (4.12) rotated into this basis become:

ρ̂αα
′

W (R,P, t) =
∑
ββ′

(
e−iL̂t

)
αα′,ββ′

ρ̂ββ
′

W (R,P, 0) , (4.13)

and

χ̂αα
′

W (R,P, t) =
∑
ββ′

(
eiL̂t

)
αα′,ββ′

χ̂ββ
′

W (R,P, 0) . (4.14)

In general, the basis chosen to represent the equations depends on both the

system being studied, and the algorithm that is being used to perform the numerical

calculations. When the algorithm being used is a surface-hopping, and especially

in the case of the quantum-classical Liouville approach, the adiabatic basis is most

convenient. This is due to the fact that, when represented in the adiabatic basis,

the quantum-classical Liouville operator splits naturally into two parts. The first

part is responsible for purely adiabatic dynamics, in other words, dynamics that

occurs on a single adiabatic potential energy surface. The second part is responsible

for nonadiabatic transitions in the subsystem and accompanying changes in the

energy of the environment. This splitting of terms allows for easy implementation

in surface-hopping algorithms.
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Recall from Chapter 2 that the adiabatic Hamiltonian ĥW is defined as all the

terms of the total system Hamiltonian except for the kinetic energy of the bath:

ĥW (R) = ĤW (R,P )− P 2

2M
. (4.15)

Therefore, for an arbitrary quantum subsystem coupled to an environment, the

adiabatic Hamiltonian is given by

ĥW (R) = ĥs + Vb(R) + V̂c(R) , (4.16)

where ĥs is the Hamiltonian of the subsystem and Vb(R) is the potential energy of

the bath and a function of the bath coordinates. The term V̂c(R) is the potential

energy due to the coupling between the subsystem and the bath, and is both an

operator of the subsystem and function of the bath coordinates.

The adiabatic basis is defined as the solution to the eigenvalue equation for the

adiabatic Hamiltonian:

ĥW (R)|α;R〉 = Eα(R)|α;R〉 . (4.17)

Note that the both the adiabatic basis vectors |α;R〉 and the adiabatic energy sur-

faces Eα(R) are dependent only on the position coordinate of the bath, and not the

momentum. This is because the adiabatic Hamiltonian only depends on R.

4.3 Representation of the Quantum-Classical Liouville

Equation in the Adiabatic Basis

Now that the adiabatic basis has been defined, the next step is to represent the

quantum-classical Liouville equation into this basis. The derivation is quite long,

and so only the most relevant equations are given in this section. The full derivation
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can be found in Appendix A.

Representing the quantum-classical Liouville equation into the adiabatic basis

essentially amounts to representing the quantum-classical Liouville operator in the

adiabatic basis. In this basis, the operator takes the form

−iLαα′,ββ′ = − (iωαα′ + iLαα′) δαβδα′β′ + Jαα′,ββ′

= −iL0
αα′δαβδα′β′ + Jαα′,ββ′ , (4.18)

where L0 is the adiabatic quantum-classical Liouville operator. The quantum-

classical Liouville operator thus comprises two terms. The first term is responsible

for adiabatic evolution of the system. It comprises two terms - the Bohr frequency,

which depends on the differences in energies of adiabatic states α and α′:

ωαα′ =
Eα(R)− Eα′(R)

h̄
, (4.19)

and the classical-like Liouville operator Lαα′ . This operator evolves the dynamics

of the bath according the average of the Hellmann-Feynman forces for states α and

α′, and is given by

iLαα′ =
P

M
· ∂
∂R

+
1

2

(
FαW + Fα

′
W

)
· ∂
∂P

. (4.20)

This term is relatively easy to implement in numerical simulation.

The final term of the quantum-classical Liouville operator is the J operator:
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Jαα′,ββ′ = − P
M
· dαβ(R)

(
1 +

1

2

∆Eαβ(R)d̂αβ(R)
P
M · d̂αβ(R)

· ∂
∂P

)
δα′β′

− P
M
· d∗α′β′(R)

1 +
1

2

∆Eα′β′(R)d̂∗α′β′(R)

P
M · d̂

∗
α′β′(R)

· ∂
∂P

 δαβ ,
(4.21)

where ∆Eαβ(R) = Eα(R) − Eβ(R), and dαβ is the nonadiabatic coupling matrix

element, given by

〈α;R| ∂
∂R
|β;R〉 . (4.22)

The symbol d̂αβ denotes the normalised nonadiabatic coupling matrix element.

The J , or transition, operator is responsible for nonadiabatic transitions between

energy levels in the quantum subsystem, and concomitant changes in the momenta

of the bath degrees of freedom. Implementation of the J operator is the most

challenging aspect of numerically simulating dynamics using the quantum-classical

Liouville equation. It will be discussed in greater detail in the following chapters.



Chapter 5

Quantum-Classical Propagators

5.1 Dyson Integral Equation Method

As it stands, the evolution equation for the density matrix is

ραα
′

W (R,P, t) = e[(−iωαα′−iLαα′ )δαβδα′β′+Jαα′,ββ′ ]tρββ
′

W (R,P, 0) . (5.1)

This equation is difficult to implement in numerical calculations in this form, specif-

ically because dealing with the exponentiated form of the J operator numerically

is challenging. One method of solving this problem, developed by Kapral and Cic-

cotti [31], was a surface-hopping description arising from use of the Dyson operator

identity, given by

e(Â+B̂)t = eÂt +

∫ t

0
dt′eÂ(t−t′)B̂e(Â+B̂)t′ . (5.2)

Applying the identity to e−iLt yields

(e−iLt)αα′,ββ′ = e−iL
0
αα′ tδαβδα′β′

+
∑
νν′

∫ t

0
dt′e−iL

0
αα′ (t−t

′)Jαα′,νν′
(
e−iLt

′)
νν′,ββ′

, (5.3)

51
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where

eiL
0
αα′ (t2−t1) = eiωαα′+iLαα′

= e
i
∫ t2
t1
ωαα′ dteiLαα′ (t2−t1)

≡ Wαα′(t1, t2)eiLαα′ (t2−t1) . (5.4)

The termWαα′(t1, t2) is a phase factor associated with a trajectory segment between

t1 and t2. Equation (5.3) provides a form that is far easier to deal with, because

the J operator only occurs linearly, not exponentially. Substitution of Eq. (5.3) into

Eq. (5.1) gives

ραα
′

W (R,P, t) = e−iL
0
αα′ tραα

′
W (R,P, 0)

+
∑
νν′

∫ t

0
dt′e−iL

0
αα′ (t−t

′)Jαα′,ββ′ρ
ββ′

W (R,P, t′) (5.5)

The Dyson integral form for the evolution operator thus provides a way of solving

the evolution equation in an iterative way. The full solution at some time t becomes

ρ
α0α′0
W (R,P, t) = e

−iL0
α0α
′
0

t
ρ
α0α′0
W (R,P ) +

∞∑
n=1

×
∑

(α1α′1)...(αnα′n)

∫ t0

0
dt1

∫ t1

0
dt2...

∫ tn−1

0
dtn

×
n∏
k=1

[
e
−iL0

αk−1α
′
k−1

(tk−1−tk)
Jαk−1α

′
k−1

,αkα
′
k

]

× e
−iL0

αnα
′
n
tn
ρ
αnα′n
W (R,P ) , (5.6)

where ραα
′

W (R,P ) is the value of the density matrix element at time t = 0. For

an operator, the solution to the evolution equation looks identical, apart from an

additional term due to the difference in sign between the von Neumann equation
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and the Heisenberg equation. For an arbitrary operator χ̂ at time t, the solution is

χ
α0α′0
W (R,P, t) = e

iL0
α0α
′
0

t
χ
α0α′0
W (R,P ) +

∞∑
n=1

(−1)n

×
∑

(α1α′1)...(αnα′n)

∫ t0

0
dt1

∫ t1

0
dt2...

∫ tn−1

0
dtn

×
n∏
k=1

[
e
iL0
αk−1α

′
k−1

(tk−1−tk)
Jαk−1α

′
k−1

,αkα
′
k

]

× e
iL0
αnα

′
n
tn
χ
αnα′n
W (R,P ) . (5.7)

Equations (5.6) and (5.7) provide a series solution where the dynamics can be

calculated in a perturbative way, using a hybrid Monte Carlo-Molecular Dynamics

surface-hopping algorithm. The first term on the right hand side describes trajecto-

ries that undergo pure Born-Oppenheimer dynamics on a single adiabatic potential

energy surface - in other words, that do not contain any nonadiabatic transitions.

The integral terms on the right hand side of Eqs. (5.6) and (5.7) are then pertur-

bative terms describing trajectories which have undergone an increasing number of

nonadiabatic transitions. In between nonadiabatic transitions, the evolution of the

trajectories is governed by the mean Hellmann-Feynman forces of adiabatic states

α and α′. A phase factor is associated with each trajectory segment, determined by

the frequency ωαα′ . If α = α′, then the phase factor is zero, and dynamics for that

specific trajectory segment is on a single adiabatic energy surface. If the J operator

is set to zero (adiabatic approximation), then the integral terms all fall away, leaving

only the first term on the right-hand side, and the dynamics is purely adiabatic.

A point to note is that, in the above equations, the sum over all nonadiabatic

contributions goes up to infinity. Naturally this is impossible to simulate, so gen-

erally a cut-off is defined, above which higher order nonadiabatic contributions are

neglected. This is justified by the fact that higher order terms in the sequence

contribute diminishingly to the value of the density matrix/observable.
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While this method has garnered some success, it has some serious limitations.

Firstly, the full series solution has to be calculated for each time t in the simulation,

which naturally means this algorithm is very computationally expensive. It would

be far more desirable to devise an algorithm that calculates the trajectory in a more

continuous fashion. The second issue with this approach is that it is only accurate for

cases where there are few nonadiabatic transitions. The algorithm becomes unstable

when higher order terms are included in the calculation. This limits the length of

time the algorithm can reliably simulate, as higher order contributions become more

important at later times, when more nonadiabatic transitions have occurred. These

terms can therefore no longer be neglected from the calculation.

In an effort to resolve the issues encountered by the Dyson integral equation

approach, a new algorithm was developed to solve Eq. (5.1), known as the Sequential

Short-Time-Propagation, or SSTP algorithm [34].

5.2 The SSTP Algorithm

Proposed in 2002 by MacKernan et al. [34], the SSTP algorithm is a large improve-

ment over the Dyson integral equation approach to the quantum-classical Liouville

equation. While it does still utilise the Dyson operator identity in its derivation, it

is based on the decomposition of the evolution operator into sequential short-time

propagators. This is possible due to the fact that the quantum-classical Liouville

operator is time-independent. The evolution operator can be split into propagators

of arbitrary time-length which are not necessarily equal.

Consider some finite simulation time t, which is divided into N time-steps of

length τj = tj − tj−1. The evolution operator can be rewritten as

(
e−iLt

)
α0α′0,αNα

′
N

=
∑

(α1α′1)···(αNα′N )

N∏
j=1

(
e−iLτj

)
αj−1α′j−1,αjα

′
j

. (5.8)

The density matrix (or observable) can thus be calculated not by application of

a single evolution operator, but by application of sequential operators e−iLτj which
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propagate the dynamics from time tj−1 to tj . In this way, the dynamics from time

zero to time t is calculated in a single simulation - there is no need to perform a

separate simulation for each time step. Already, this is a huge improvement over

the Dyson integral equation method.

However, the short-time propagators in Eq. (5.8) are still difficult to implement

in this form. The Dyson operator identity is thus invoked again, but this time for a

short-time propagator, and not the entire evolution operator, giving

e−iL(tj−tj−1) = e−iL
0(tj−tj−1)

+

∫ tj

tj−1

dt′e−iL
0(tj−tj−1−t′)Je−iLt

′
. (5.9)

Note that the subscripts denoting the states should be included in the equation

above, but they have been momentarily dropped to make the equations clearer.

At this point, the short-time propagator in Eq. (5.9) is treated in no way dif-

ferently to the way the total evolution operator is treated in the Dyson integral

equation method, as it still requires an iterative solution. However, because the

time-steps τj are of arbitrary length, they can be chosen to be sufficiently small

such that the Dyson series can be truncated at first order, and the integrand on the

right-hand side of Eq. (5.9) can be approximated as constant. Letting t′ = tj , one

obtains

e−iLτj = e−iL
0τj

+

∫ tj

tj−1

dt′e−iL
0(−tj−1)Je−iLtj

≈ e−iL
0τj

+

∫ tj

tj−1

dt′e−iL
0(−tj−1)Je−iL

0tj , (5.10)

where in the last line above, the series has been truncated. The one point ap-
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proximation for t′ means that the integrand is a constant that can be taken out of

the integral. Generally the J operator and the L0 operator do not commute, but

since the series is being truncated at first order, and the term arising from their

non-commutability is higher than first order, the terms can be rearranged, giving

e−iLτj = e−iL
0τj + e−iL

0tje−iL
0(−tj−1)J

∫ tj

tj−1

dt′

= e−iL
0τj (1 + τj J) . (5.11)

Now the subscripts denoting the adiabatic states can be brought back, and the

short-time propagator for the density matrix is

(
e−iLτj

)
αj−1α′j−1,αjα

′
j

≈ e
−iL0

αj−1α
′
j−1

τj (
δαj−1αjδα′j−1α

′
j

+ τjJαj−1α′j−1,αjα
′
j

)
. (5.12)

As in the case of the Dyson series expansion for the full evolution operator,

the expression for the short-term propagators comprises two terms. The first term

governs the dynamics of the classical degrees of freedom. This dynamics can occur

either on a single adiabatic surface (when α = α′), or on the mean of two surfaces

(when α 6= α′). There is a phase factor associated with each step in the dynamics,

which becomes unity when α = α′. In this way, the quantum-classical Liouville

approach is a semi-hybrid of surface-hopping and mean-field methods. The second

term, containing the J operator is responsible for nonadiabatic transitions in the

dynamics, as well accompanying changes in the momenta of the bath degrees of

freedom.

In the SSTP algorithm, at each time step, a short term propagator is imple-

mented, which first propagates the dynamics in a classical way from time tj−1 to

time tj using Molecular Dynamics, and associates a phase factor with this evolution,



57

based on the indices α and α′. After this is done, the action of the J operator is

applied in a stochastic way, with certain probabilities and pseudo-random numbers

used to determine whether or not a transition occurs. This will be discussed in more

detail later on.

Naturally for the algorithm to be of any use, it must be able to calculate observ-

ables of the system. For an arbitrary observable 〈χ〉, its time evolution will be given

by

〈χ〉(t) = Tr

∫ ∫
dRdP χ

α0α′0
W (R,P )ρ

α0α′0
W (R,P, t) , (5.13)

where the trace is taken over the adiabatic states of the quantum degrees of freedom,

and the double integral is over the phase space of the classical degrees of freedom in

the system. The cyclic invariance property of the trace can be exploited, to give

〈χ〉(t) = Tr

∫
dRdP χ

α0α′0
W (R,P )e−iHt/h̄ρ

α0α′0
W (R,P, 0)eiHt/h̄

= Tr

∫
dRdP eiHt/h̄χ

α0α′0
W (R,P )e−iHt/h̄ρ

α0α′0
W (R,P, 0)

= Tr

∫
dRdP χ

α0α′0
W (R,P, t)ρ

α0α′0
W (R,P ) . (5.14)

Equations (5.13) and (5.14) provide two different pictures of the dynamics. The

first representation is a Schrödinger picture, where the density matrix is propagated

in time, and the operator remains constant. In Eq. (5.14), however, a Heisenberg

picture is used, where the time-dependence is in the operator. It is, in fact, more

convenient to utilise the latter picture for computational simulation in this case [58],

because the initial density matrix can be used as a distribution function from which

the initial phase space points for the trajectories can be sampled.

Thus the SSTP algorithm propagates the operator according to the evolution

equation, using the time-discretised evolution operator given in Eq. (5.8):
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χ
α0α′0
W (R,P, t) =

∑
(α1α′1)···(αNα′N )

N∏
j=1

(
eiLτj

)
αj−1α′j−1,αjα

′
j

χ
αNα

′
N

W (R,P, 0) .

(5.15)

It then calculates the observable at each time step according to Eq. (5.14). The

integration over phase space is performed using a Monte Carlo scheme, where, as

mentioned previously, the initial conditions of the classical bath are sampled using

the hybrid density matrix-function.

However, to implement this equation numerically, the action of the J operator

needs to be performed. Currently, even though it only appears linearly in Eq. (5.12),

it is still a formidable task to implement computationally. A solution that the SSTP

algorithm employs is the momentum-jump approximation [34][67].

5.2.1 Momentum-Jump Approximation

The J operator is responsible for nonadiabatic transitions in the quantum subsystem

being simulated. It also causes variations in the momenta of the classical degrees of

freedom which accompany the transitions. In equation form, it is

Jαα′,ββ′ = − P

M
· dαβ

(
1 +

1

2

∆Eαβ d̂αβ
P
M · d̂αβ

· ∂
∂P

)
δα′β′

− P

M
· d∗α′β′

1 +
1

2

∆Eα′β′ d̂
∗
α′β′

P
M · d̂

∗
α′β′

· ∂
∂P

 δαβ . (5.16)

It comprises two terms - the first term governs changes of the first index (α→ β

transitions), and the second term the second index (α′ → β′ transitions). The

variations in the momentum of the environment are governed by the momentum

derivative terms in the round brackets. As mentioned before, it is challenging to

implement the J operator in this form. Firstly, a method must be devised which
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determines which transitions occur, and when they occur. This will be discussed

in the next chapter on sampling schemes. Suffice to say that a stochastic scheme

is implemented based on a suitable transition probability. The second problem is

the quantum backreaction - the way the environmental momenta change when a

quantum transition occurs. The momentum derivatives in the J operator are not

easy to implement numerically. In Chapter 2, the backreaction was discussed, and

it was noted that most surface-hopping schemes adjust the classical momenta in a

very ad hoc manner.

One might intuitively think of determining these derivatives using a finite differ-

ence method, so that

dαβ · ∇P f(P ) ≈ (∆P )−1 [f(P + dαβ∆P )− f(P )] . (5.17)

However, this results in a branching of the trajectory at each nonadiabatic tran-

sition. Each branch must then be calculated until a further transition branches the

trajectory again. This is prohibitively expensive computationally, as the number of

branches in each trajectory grows exponentially with the number of transitions.

A more practical approach was found by making the so-called momentum-jump

approximation, which resolves the issue of branching trajectories. This approxima-

tion amounts to changing the J operator from a continuous momentum derivative

operator in a momentum shift operator. In this way, the momentum is changed

instantaneously when a nonadiabatic transition occurs. While the SSTP algorithm

shares this flaw (of unphysical instantaneous changes in momenta) with the tradi-

tional surface-hopping schemes, the momentum shifts are, at least, derived in a more

rigorous fashion, and not merely by enforcing energy conservation.

There are two forms of the momentum-jump approximation; the first, given by

Kapral and Ciccotti in Ref. [31] is an approximate form which does not exactly

conserve the total energy of the system. A second realisation of the momentum-

jump was later introduced which exactly conserves the energy. The derivations of
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both are given below.

Approximate Momentum-Jump Rule

To perform the conversion of the J operator, consider just the first term:

J1st
αα′,ββ′ =

P

M
· dαβ

(
1 +

1

2

∆Eαβ(R)d̂αβ
P
M · d̂αβ

· ∂
∂P

)
δα′β′ . (5.18)

In general, the energy change of a nonadiabatic transition ∆Eαβ is very small

compared to the kinetic energy of the environmental particles, and thus the term

∆Eαβ d̂αβ
(
P
M · d̂αβ

)−1
is much smaller than one. Using a first order approximation,

the term in brackets can thus be written instead as an exponential:

(
1 +

1

2

∆Eαβ d̂αβ
P
M · d̂αβ

· ∂
∂P

)
≈ e

1
2

∆Eαβd̂αβ
P
M
·d̂αβ

· ∂
∂P

. (5.19)

Then, using the following identity for exponentiated derivatives,

ec
∂
∂x g(x) = g(x+ c) , (5.20)

where c is a constant, one obtains

e
1
2

∆Eαβd̂αβ
P
M
·d̂αβ

· ∂
∂P
f(P ) ≈ f

(
P +

1

2

∆Eαβ d̂αβ
P
M · d̂αβ

)
. (5.21)

Equation (5.21) provides a way of shifting the momenta of the classical degrees of

freedom when a nonadiabatic transition occurs. In this way, the J operator has

been converted from a momentum derivative operator to a momentum translation

operator. The approximate momentum-jump rule is therefore

P → P + ∆AMJP , (5.22)

where ∆AMJP , the amount the momentum is shifted, is given by
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∆AMJP =
1

2

∆Eαβ d̂αβ
P
M · d̂αβ

. (5.23)

Note that Eq. (5.21) is only approximate, since the term multiplying the mo-

mentum derivative in the exponential contains the momentum P , and is thus not

constant. This approximation is what causes the approximate momentum-jump

rule to violate energy conservation. The AMJ superscript in Eqs. (5.22) and (5.23)

denotes the approximate (and thus energy non-conserving) momentum-jump rule.

While the derivation above was only shown for the first term of the J operator, it

applies similarly to the second term. Thus, when the approximate momentum-jump

rule is applied, the J operator becomes

JAMJ
αα′,ββ′ = − P

M
· dαβ exp

[
1

2

∆Eαβ d̂αβ
P
M · d̂αβ

· ∂
∂P

]
δα′β′

− P

M
· d∗α′β′ exp

1

2

∆Eα′β′ d̂
∗
α′β′

P
M · d̂

∗
α′β′

· ∂
∂P

 δαβ . (5.24)

Exact Momentum-Jump Rule

As in the approximate momentum-jump rule derivation, to derive the exact rule,

one begins by considering the first term of the J operator (Eq. 5.18). However, this

time, the term in the brackets can be rewritten using a change of variables. Using

the chain rule, the term becomes:

1 +
∆Eαβ d̂αβ

2 P
M · d̂αβ

· ∂
∂P

= 1 + ∆EαβM
∂

∂(P · d̂αβ)2
. (5.25)

Once this has been done, the momentum-jump approximation can be used, where

the term is written as an exponential, using a first order approximation:

1 + ∆EαβM
∂

∂(P · d̂αβ)2
≈ e

∆EαβM
∂

∂(P ·d̂αβ)2 (5.26)
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The term multiplying the derivative no longer depends on P , and is now a

constant. The identity given in Eq. (5.20) now applies exactly, giving

e
∆EαβM

∂

∂(P ·d̂αβ)2 f
(
(P · d̂αβ)2

)
= f

(
(P · d̂αβ)2 + ∆EαβM

)
(5.27)

Again, the J operator has been converted from a derivative operator to a trans-

lation operator. This time, however, instead of shifting the momentum, it shifts the

variable (P · d̂αβ)2 by an amount ∆EαβM . The rule needs to be able to describe how

P changes, though, and not how (P · d̂αβ)2 changes, and to this end, the momentum

P can be rewritten in terms of its components parallel and perpendicular to d̂αβ:

P = d̂⊥αβ

(
P · d̂⊥αβ

)
+ d̂αβ

(
P · d̂αβ

)
= d̂⊥αβ

(
P · d̂⊥αβ

)
+ d̂αβ sign

(
P · d̂αβ

)√(
P · d̂αβ

)2
(5.28)

Thus, applying the translation operator in Eq. (5.27) to a function of momentum

P , gives

e∆EαβM∂/∂(P ·d̂αβ)2
f(P )

= e
∆EαβM

∂

∂(P ·d̂αβ)2 f

(
d̂⊥αβ

(
P · d̂⊥αβ

)
+ d̂αβ sign

(
P · d̂αβ

)√(
P · d̂αβ

)2
)

= f

(
d̂⊥αβ

(
P · d̂⊥αβ

)
+ d̂αβ sign

(
P · d̂αβ

)√(
P · d̂αβ

)2
+ ∆EαβM

)

= f

(
P − d̂αβ(P · d̂αβ) + d̂αβ sign(P · d̂αβ)

√
(P · d̂αβ)2 + ∆EαβM

)
.

(5.29)

The exact momentum-shift rule is then given by
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P → P + ∆EMJP , (5.30)

with

∆EMJPj = −d̂αβ(P · d̂αβ) + d̂αβ sign(P · d̂αβ)
√

(P · d̂αβ)2 + ∆EαβM , (5.31)

where the EMJ superscript denotes the exact momentum-jump rule. This rule

exactly conserves the total energy of the system at each nonadiabatic transition.

Just as previously, the above derivation can be applied to the second term of the J

operator to give

Jαα′,ββ′ = − P

M
· dαβ exp

∆EαβM
∂

∂
(
P · d̂αβ

)2

 δα′β′

− P

M
· d∗α′β′ exp

∆Eα′β′M
∂

∂
(
P · d̂∗α′β′

)2

 δαβ . (5.32)

The SSTP thus calculates Eq. (5.14) in the following way. Swarms of trajectories

are propagated (see Fig. 5.1), each with initial conditions sampled from the phase

space distribution for the bath, obtained from the partial Wigner transform of the

density matrix for the bath degrees of freedom. At each time step, a trajectory

is propagated adiabatically with a phase-factor associated with this propagation

which depends on the states α and α′. At the end of each time step, pseudo-

random numbers are used to sample whether or not a transition occurs, according

to a suitable transition probability P. If a transition occurs, the running value of

the observable for the trajectory is multiplied by a weight of 1/P. If a transition

is rejected, the observable is multiplied by a factor of 1/ (1− P). In the two level
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subsystem case, transitions occur simply between the ground state and excited state.

When the subsystem comprises more than two distinct states, however, weights are

associated with each state which determine the probabilities that govern the final

state of the transition. When transitions occur, the bath momentum is adjusted

according to the momentum-jump rule (approximated rule or exact rule). Finally,

taking the trace over the product with the density matrix of the quantum subsystem,

and averaging over all trajectories results in the statistical average for the observable.

R0,P0 Rt,Pt

R

P

R0, P0 Rt, Pt

α

αβ

β

Figure 5.1: At the top of the figure is a diagrammatic representation of how the SSTP
algorithm works. Swarms of trajectories are propagated from sampled initial phase space
points, and may undergo nonadiabatic transitions. The observable is obtained by averaging
over all the trajectories. At the bottom of the figure is an example of a single trajectory.
The trajectory begins at phase space point (R0, P0) on adiabatic surface α. It then undergoes
a transition, and begins propagating coherently on the mean of surfaces α and β. After it
undergoes another transition, it propagates adiabatically again potential energy surface B,
before reaching phase space point (Rt, Pt).

While each trajectory can undergo any number of nonadiabatic transitions, in

practice, trajectories that undergo a large number cause significant error. Both

the SSTP and TBQC algorithm from the next section thus employ a limit on the

number of transitions that may occur in a single trajectory. When at a time ti in
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the calculation a transition would occur in a trajectory that has already undergone

the maximum number of transitions, the trajectory is truncated, and is not included

in the calculation of the observable beyond ti. In general accounting for a maximum

of two nonadiabatic transitions per trajectory is sufficient to obtain good agreement

with numerically exact methods. At much longer times, however, more transitions

may need to be included, especially in cases where coupling between the quantum

subsystem and bath is strong.

The SSTP algorithm suffers from a similar problem as the Dyson integral equa-

tion method in that it becomes unstable at longer times, especially when there is

a high level of nonadiabaticity in the dynamics being simulated. This instability

is caused by the growth of weights in the observable as a result of the action of

the J operator. This growth stems from the factors of 1/P and 1/ (1− P) that

enter the calculation of the observable, and causes some trajectories to be weighted

more heavily in the Monte Carlo integration than they should be. This problem is

exacerbated by the oscillating sign of phase factors, and results in significant statis-

tical error at longer simulation times. It is possible to dramatically reduce this error

through use of intelligent transition sampling schemes, which will be discussed in the

next chapter. It is also possible that treating the short-time propagators in a differ-

ent way will reduce the error somewhat, and the Trotter Based Quantum-Classical

Algorithm was developed to be an improvement over the SSTP algorithm.

5.3 Trotter Based Quantum-Classical Algorithm

An alternative to the SSTP method for quantum-classical dynamics within the

quantum-classical Liouville approach is found in the Trotter Based Quantum-Classical,

or TBQC, algorithm [35]. The TBQC algorithm is similar to the SSTP algorithm

in that it is also based on segmenting the quantum-classical propagator into many

short-time propagators, according to Eq. (5.8). However, it differs in the way the

short-time propagators are treated.
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In the SSTP, a truncated Dyson series expansion was used to split the L0 and J

operators, however, in the TBQC case, as the name implies, Trotter factorisation is

used. The short-time propagator is approximated as

(
eiLτj

)
αj−1α′j−1,αjα

′
j

≈ e
iL0
αj−1α

′
j−1

τ/2 (
e−Jτ

)
αj−1α′j−1,αjα

′
j

e
iL0
αjα
′
j

τ/2

. (5.33)

The dynamics of each time step thus occurs in a different order to the SSTP

method. Each time step is propagated for half a time step (τ/2) on the mean of adia-

batic energy surfaces αj−1 and α′j−1 with associated phase factorWαj−1α′j−1
(tj−1, tj−1+

τ
2 ). As before, if αj−1 = α′j−1, the system propagates adiabatically on state αj−1,

and the phase factor is unity. After this initial half step, the J operator acts, and

potential nonadiabatic transitions may occur, along with bath momentum changes.

Once this has been performed, the system is again propagated for half a time-step,

but this time on the mean of states αj and α′j , with phase-factorWαjα′j
(tj−1 + τ

2 , tj).

associated with the evolution. Note that the main difference between the truncated

Dyson method and the Trotter factorisation is that the J operator still appears in

an exponential when the Trotter factorisation is used. As was mentioned previously,

it is difficult to deal with the J operator numerically in this form, and thus some

modifications are required before it can be implemented. To this end, it is convenient

to split the J operator into two terms, J = J1 + J2, with

J1αα′,ββ′ = −
(
dαβδα′β′ + d∗α′βδαβ

)
· P
M

, (5.34)

and

J2αα′,ββ′ = −1

2

[
∆Eαβdαβδα′β′ + ∆Eα′β′d

∗
α′β′δαβ

]
· ∂
∂P

. (5.35)

Although the TBQC can be extended to be able to simulate subsystems of more

than two states, it is convenient to just consider two-state subsystems for the fol-
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lowing derivation.

Defining the initial state of the system (αα′) and the final state of the system

(ββ′) as matrix indices, the operators J1 and J2 can be written as matrices, with

elements J1(αα′),(ββ′) and J2(αα′),(ββ′). Each index, corresponding to a pair of states

can take on four values: (11), (12), (21) and (22). The matrices J1 and J2 are thus

4× 4.

First, consider the matrix J1:

J1(αα′),(ββ′) =



J111,11 J111,12 J111,21 J111,22

J112,11 J112,12 J112,21 J112,22

J121,11 J121,12 J121,21 J121,22

J122,11 J122,12 J122,21 J122,22



=



− P
M · (d11 + d∗11) − P

M · d
∗
12 − P

M · d12 0

− P
M · d

∗
21 − P

M · (d11 + d∗22) 0 − P
M · d12

− P
M · d21 0 − P

M · (d22 + d∗11) − P
M · d

∗
12

0 − P
M · d21 − P

M · d
∗
21 − P

M (d22 + d∗22)


.

(5.36)

Assuming that the adiabatic basis is real, the following rules apply for the nonadi-

abatic coupling matrix:

d∗αβ = dαβ ,

d00 = d11 = 0 ,

dαβ = −dβα . (5.37)
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Using these rules, the matrix in Eq. (5.36) can be simplified to

J1(αα′),(ββ′) =



0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0


P

M
· d21(R)

≡ A
P

M
· d21(R) . (5.38)

The matrix J2 can be evaluated in a similar way:

J2(αα′),(ββ′) =



J211,11 J211,12 J211,21 J211,22

J212,11 J212,12 J212,21 J212,22

J221,11 J221,12 J221,21 J221,22

J222,11 J222,12 J222,21 J222,22



= −1

2



0 ∆E12d12 · ∂
∂P ∆E12d12 · ∂

∂P 0

∆E21d21 · ∂
∂P 0 0 ∆E12d12 · ∂

∂P

∆E21d21 · ∂
∂P 0 0 ∆E12d12 · ∂

∂P

0 ∆E21d21 · ∂
∂P ∆E21d21 · ∂

∂P 0


.

(5.39)

Using ∆E12 = −∆E21 and d12 = −d21, this becomes
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J2(αα′),(ββ′) = −



0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0


1

2
∆E21d21(R) · ∂

∂P

≡ −1

2
B∆E21d21(R) · ∂

∂P
(5.40)

Simply substituting these terms for J1 and J2 is not useful, as it would still result in

an exponentiated form for J . Instead, the term e−Jτ can be approximated to first

order in τ as the product of exponentials for J1 and J2:

e−Jτ ≈ e−J1τe−J2τ (5.41)

This is convenient because it allows the exponentials of J1 and J2 to be evaluated

separately and obtain e−Jτ by simple multiplication at the end. First, consider the

term e−J1τ . With the thought of expanding the exponential as a Taylor series, it

would be useful to know how the powers of the matrix A progress. The matrix A

is given by

A =



0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0


. (5.42)

The square and cube of A are then given by
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0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0





0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0


=



−2 0 0 2

0 −2 −2 0

0 −2 −2 0

2 0 0 −2


, (5.43)

and



−2 0 0 2

0 −2 −2 0

0 −2 −2 0

2 0 0 −2





0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0


=



0 −4 −4 0

4 0 0 −4

4 0 0 −4

0 4 4 0


= −4A ,

(5.44)

respectively. Therefore, every odd power of A is a multiple of A, and every even

power of A is a multiple of A2. Using this, a Taylor series expansion for e−J1τ

can now be performed. To obtain a more compact notation, the definition a =

P
M · d21(R)τ is made.

e−J1τ = 1−Aa+
A2a2

2!
− A3a3

3!
+

A4a4

4!
− A5a5

5!
+

A6a6

6!
+ . . .

= 1−Aa+ A2a
2

2!
+ A

4a3

3!
−A2 4a4

4!
−A

16a5

5!
+ A2 16a6

6!
+ . . .

= 1−A

(
a− 4a3

3!
+

16a5

5!
− . . .

)
+

1

2
A2

(
a2 − 8a4

4!
+

32a6

6!
− . . .

)
.

(5.45)

By inspection, the series in the two sets of brackets are the Taylor series for cos a sin a

and sin2 a. Equation (5.45) becomes
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e−J1τ = 1 + A (cos a sin a) + A2
(

1

2
sin2 a

)

=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



+



0 − cos a sin a − cos a sin a 0

cos a sin a 0 0 − cos a sin a

cos a sin a 0 0 − cos a sin a

0 cos a sin a cos a sin a 0



+



− sin2 a 0 0 sin2 a

0 − sin2 a − sin2 a 0

0 − sin2 a − sin2 a 0

sin2 a 0 0 − sin2 a



=



cos2 a − cos a sin a − cos a sin a sin2 a

cos a sin a cos2 a − sin2 a − cos a sin a

cos a sin a − sin2 a cos2 a − cos a sin a

sin2 a cos a sin a cos a sin a cos2 a


.

(5.46)

While it is possible to treat the term e−J2τ in a similar way, it is not ideal to do

so, because the resulting matrix causes shifts in the momentum in such a way that

results in a branching of trajectories [35] similar to that discussed in the previous

section. Instead a first order approximation in τ can be made:

e−J2τ ≈ 1− J2τ . (5.47)

Substitution of Eq. (5.47) into Eq. (5.41) yields
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e−Jτ = e−J1τ − e−J1τJ2τ

= e−J1τ + e−J1τB
∆E21d21(R)τ

2
· ∂
∂P

. (5.48)

This form is not yet convenient for numerical implementation for the same reason as

was discussed in the previous section on the SSTP algorithm - it results in branching

of trajectories which is prohibitively expensive. Instead, the matrix elements of e−Jτ

can be written explicitly:

(
e−Jτ

)
αα′,ββ′

=
(
e−J1τ

)
αα′,ββ′

+
(
e−J1τB

)
αα′,ββ′

∆E21d21(R)τ

2
· ∂
∂P

,

(5.49)

and, since all the elements of the matrix (e−J1τ ) are non-zero, each element can be

treated separately, and a factor of (e−J1τ )αα′,ββ′ can be taken out to give:

(
e−Jτ

)
αα′,ββ′

=
(
e−J1τ

)
αα′,ββ′

1 +

(
e−J1τB

)
αα′,ββ′

(e−J1τ )αα′,ββ′

∆E21d21τ

2
· ∂
∂P


(5.50)

A matrix Cαα′,ββ′ is now defined to be the term
(e−J1τB)

αα′,ββ′

(e−J1τ)
αα′,ββ′

∆E21d21τ
2 . This gives

(
e−Jτ

)
αα′,ββ′

=
(
e−J1τ

)
αα′,ββ′

(
1 + Cαα′,ββ′ ·

∂

∂P

)
+O(τ2) (5.51)

Notice that the term in brackets in Eq. (5.51) is now a linear expansion for an

exponential, a fact that was exploited in the SSTP case to obtain the momentum-

jump approximation. To obtain the matrix Cαα′,ββ′ , consider first eJ1τB:
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eJ1τB =



−2 cos a sin a cos2 a+ sin2 a cos2 a+ sin2 a −2 cos a sin a

cos2 a− sin2 a 0 0 cos2 a− sin2 a

cos2 a− sin2 a 0 0 cos2 a− sin2 a

2 cos a sin a cos2 a+ sin2 a cos2 a+ sin2 a 2 cos a sin a


.

(5.52)

The matrix Cαα′,ββ′ then becomes

C(αα′),(ββ′) =



−2 sin a
cos a

−1
cos a sin a

−1
cos a sin a −2 cos a

sin a

cos2 a−sin2 a
cos a sin a 0 0 sin2 a−cos2 a

cos a sin a

cos2 a−sin2 a
cos a sin a 0 0 sin2 a−cos2 a

cos a sin a

2 cos a
sin a

1
cos a sin a

1
cos a sin a 2 sin a

cos a


∆E21d21τ

2
.

(5.53)

A first order Taylor series approximation in τ for the sine and cosine terms can be

made:

sin a = a+O(τ3)

cos a = 1 +O(τ2) , (5.54)

which then approximates the Cαα′,ββ′ matrix as

C(αα′),(ββ′) ≈



−a −1
2a

−1
2a

−1
a

1
2a 0 0 −1

2a

1
2a 0 0 −1

2a

1
a

1
2a

1
2a a


∆E21d21τ
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≈



0 ∆E12d12

2 P
M
·d12

∆E12d12

2 P
M
·d12

∆E12d12
P
M
·d12

∆E21d21

2 P
M
·d21

0 0 ∆E12d12

2 P
M
·d12

∆E21d21

2 P
M
·d21

0 0 ∆E12d12

2 P
M
·d12

∆E21d21
P
M
·d21

∆E21d21

2 P
M
·d21

∆E21d21

2 P
M
·d21

0


(5.55)

where the fact that −∆E21d21

2 P
M
·d21

= ∆E12d12

2 P
M
·d12

has been used. The matrix elements C11,11

and C22,22 were dropped because they are of the order τ2. Now that the form of

Cαα′,ββ′ is known, the momentum-jump approximation can be made in a similar

way to the SSTP, by approximating the term
(
1 + Cαα′,ββ′ · ∂

∂P

)
as an exponential,

to give

(
e−Jτ

)
αα′,ββ′

≈
(
e−J1τ

)
αα′,ββ′

eCαα′,ββ′ ·
∂
∂P

≡ Mαα′,ββ′ +O(τ2) (5.56)

The matrix M is given by

M(αα′),(ββ′) =
cos2 a −(cos a sin a)eS12· ∂

∂P −(cos a sin a)eS12· ∂
∂P (sin2 a)e2S12· ∂

∂P

(cos a sin a)eS21· ∂
∂P cos2 a − sin2 a −(cos a sin a)eS12· ∂

∂P

(cos a sin a)eS21· ∂
∂P − sin2 a cos2 a −(cos a sin a)eS12· ∂

∂P

(sin2 a)e2S21· ∂
∂P (cos a sin a)eS21· ∂

∂P (cos a sin a)eS21· ∂
∂P cos2 a


(5.57)

where Sαβ ≡
h̄ωαβMd̂αβ

2P ·d̂αβ
. Note that the term Sαβ is exactly the same as the term in

brackets in the two terms of the J operator. Apart from matrix elementsM11,22 and

M22,11, the exponentials in the matrixM thus lead to exactly the same momentum-

jump rules outlined in the section on the SSTP algorithm. The exponentials con-

taining the term S12 correspond to upward transitions, and the terms containing

S21 to downward transitions. The matrix elements M11,22 and M22,11 contain an
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extra factor of two because they correspond to a double jump, where both indices

change, either from 11 → 22, or 22 → 11. Because they are double jumps, the

momentum-jump rule is slightly different to the single jump rule. It is given by

e2Sαβ · ∂∂P f(P ) = f (P + ∆Pα→β) , (5.58)

where

∆Pα→β = d̂αβ sign
(
P · d̂αβ

)√(
P · d̂αβ

)2
+ 2∆EαβM − d̂αβ

(
P · d̂αβ

)
.

(5.59)

The difference between the momentum shifts for single and double jumps is that

for the double jump, a factor of 2 arises as a coefficient of the ∆EαβM term in the

square root. Energy of the total system is also exactly conserved for this rule.

The exponential terms in the matrixM are therefore responsible for the change

in bath momentum accompanying a transition. The sine and cosine terms are re-

sponsible for the sampling of whether a transition occurs and which transition occurs.

This sampling scheme will be explained in detail in the next chapter.

Now that the short-time nonadiabatic propagator e−Jτ has been derived, an

expression for the short-time quantum-classical propagator can be written down:

eiL(tj−tj−1) ≈ Wαj−1α′j−1
(tj−1, tj−1 +

τ

2
)e
iLαj−1α

′
j−1

τ/2
Mαj−1α′j−1,αjα

′
j

× Wαjα′j
(tj−1 +

τ

2
, tj)e

iLαjα′j
τ/2

(5.60)

This expression for the short-time quantum-classical propagator is then used to solve

Eq. (5.14). It is performed in the same way as the SSTP algorithm, in that a swarm

of trajectories are propagated, with initial conditions sampled from the initial phase

space distribution function using a Monte Carlo scheme. These trajectories evolve
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either on adiabatic potential energy surfaces or on the mean of two surfaces, and are

interspersed with nonadiabatic transitions, which are governed by the matrix M.

The two algorithms therefore work in very similar ways, with the only two differ-

ences being the Trotter factorisation of the short-time propagator, and the way the

J operator is treated. It must be noted, however, that although the Trotter factori-

sation for the propagator is correct to second order in τ , due to the linear approxi-

mations used in obtaining a form for the nonadiabatic propagator e−Jτ , Eq (5.60) is

correct to the same order as Eq. (5.12). The SSTP and TBQC algorithms are thus

of the same order.



Chapter 6

Sampling Schemes for

Nonadiabatic Transitions

6.1 Original Sampling Schemes

6.1.1 SSTP Sampling Scheme

In the SSTP algorithm, each time step involves adiabatic propagation, followed by

the action of the J operator. As mentioned before, the J operator is implemented

stochastically, with transition probabilities determining whether or not a transition

will occur at each time step. If the probability of a transition occurring is P, then

the probability of no transition occurring is Q = 1− P. The form of the transition

probability is not rigorously specified, and for the SSTP algorithm is chosen as [34]

Pαβ(R,P, τ) =

∣∣∣ PM · dαβ(R)
∣∣∣ τ

1 +
∣∣∣ PM · dαβ(R)

∣∣∣ τ , (6.1)

which then dictates the probability that a transition will not occur as

Qαβ(R,P, τ) = 1− Pαβ

77



78

=
1

1 +
∣∣∣ PM · dαβ(R)

∣∣∣ τ . (6.2)

Note that the probability of a transition occurring is directly proportional to P
M ·d.

The term dαβ is the nonadiabatic coupling matrix element giving the strength of

coupling between adiabatic states α and β. If the momentum of the bath lies along

dαβ, the chance of a nonadiabatic transition occurring is increased. The probability

is also naturally proportional to the time step τ , since the longer the time that

elapses, the greater the chance a transition will occur in this time.

Because the J operator is implemented in a stochastic fashion, and not a deter-

ministic way, when a transition is accepted, the observable must be multiplied by a

factor of 1/P. Likewise when a transition is rejected, the observable is multiplied

by 1/Q. There is therefore a weight associated with the observable for each trajec-

tory in the ensemble, which is the concatenation of these weights at each time step.

In addition to these weights, whenever a transition occurs, the observable must be

multiplied by P
M · dαβτ due to the Jτ term in the calculation of the observable (see

Eq. (5.12) for the short-time quantum-classical propagator).

Now consider the J operator:

Jαα′,ββ′ = − P

M
· dαβ

(
1 +

1

2

∆Eαβdαβ
P
M · dαβ

∂

∂P

)
δα′β′

− P

M
d∗α′β′

(
1 +

1

2

∆Eαβd
∗
α′β

P
M · d

∗
α′β′

∂

∂P

)
δαβ , (6.3)

which contains two terms. For some state (αα′), the first term changes the first

index α and the second term changes the second index α′. In the SSTP algorithm,

if a transition has been accepted according to the probability above, each of the two

terms is sampled using a probability of 1
2 . Each term thus has an equal chance of

acting. Because of this, there are no so-called double jumps that occur in the SSTP

algorithm, where both indices change in one transition. This is a contrast to the
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TBQC sampling described in the next section. In addition, the observable must be

multiplied by a factor of 2 each time a transition occurs, since only one of the two

terms in the J operator acts. The weight that enters the observable when an α→ β

transition is accepted is thus:

Wαβ = 2

(
P

M
· dαβτ

)
1

Pαβ

= 2

(
P

M
· dαβτ

) 1 +
∣∣∣ PM · dαβ∣∣∣ τ∣∣∣ PM · dαβ∣∣∣ τ

= 2 sign

(
P

M
· dαβ

)(
1 +

∣∣∣∣ PM · dαβ
∣∣∣∣ τ) , (6.4)

and the weight when no transition occurs is

WNT = 1 +

∣∣∣∣ PM · dαβ
∣∣∣∣ τ . (6.5)

While the original SSTP sampling scheme yields good results at short times, it

is known to completely fails at longer times. This failure is due to the concatenation

of weights in the observable, and results in large statistical error [58]. This error can

be reduced by devising intelligent improved sampling schemes.

6.1.2 TBQC Sampling Scheme

In the TBQC algorithm, the J operator takes the form of the matrixM (Eq. (5.57)).

As explained in the TBQC section in Chapter 5, the exponentials in the matrix M

are responsible for the momentum changes accompanying a transition. The sampling

scheme itself is derived from the sine and cosine terms in the matrix M, in other

words, by the elements of the matrix e−J1τ :
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e−J1τ =



cos2 a − cos a sin a − cos a sin a sin2 a

cos a sin a cos2 a − sin2 a − cos a sin a

cos a sin a − sin2 a cos2 a − cos a sin a

sin2 a cos a sin a cos a sin a cos2 a


. (6.6)

Each row of the matrix corresponds to an initial pair of states (αα′), and each column

corresponds to a final pair of states (ββ′). The absolute value of the terms in each

row of this matrix are interpreted as the unnormalised probabilities for each possible

transition corresponding to each set of initial states. For example, consider an initial

state (αα′) = (11). The first row of the matrix corresponds to this initial state, so

only this row needs to be considered when the matrix M acts. The absolute values

of the second and third terms in the row are then the unnormalised probabilities for

single jump transitions (11)→ (12) and (11)→ (21), and the absolute value of the

fourth term is the unnormalised probability for a double jump transition (11)→ (22).

The first term then corresponds to no transition occurring. The normalisation factor

for the probabilities is just the sum of the absolute values of all the terms in the

row. This gives the general formula for the transition probabilities as:

Pαα′,ββ′ =

∣∣∣∣ (e−J1τ
)
αα′,ββ′

∣∣∣∣∑
ββ′

∣∣∣∣ (e−J1τ )αα′,ββ′

∣∣∣∣
=

∣∣∣∣ (e−J1τ
)
αα′,ββ′

∣∣∣∣
1 + 2| cos a sin a|

, (6.7)

with αα′ 6= ββ′. The chance of no transition occurring is given by

Pαα′,αα′ =
| cos2 a|

1 + 2| cos a sin a|
. (6.8)
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Similar to the case of the SSTP sampling, each time the algorithm samples to

determine whether a transition occurs, the observable is multiplied by a factor of

1/Pαα′,ββ′ , as well as by the corresponding matrix element
(
e−J1τ

)
αα′,ββ′

. Again,

the weight comprising these factors becomes large at later simulation times, resulting

in significant statistical error. The weight entering the observable at each time step

is given by

Wαα′,ββ′ =
(
e−J1τ

)
αα′,ββ′

1

Pαα′,ββ′

=
(
e−J1τ

)
αα′,ββ′

1 + 2| cos a sin a|∣∣∣∣ (e−J1τ )αα′,ββ′

∣∣∣∣
= sign

((
e−J1τ

)
αα′,ββ′

)
(1 + 2| cos a sin a|) . (6.9)

This weight applies for when transitions are accepted or rejected.

A benefit of the TBQC sampling scheme over the SSTP sampling scheme is that

the term P
M ·dαβτ only appears in sine and cosine functions in the weights that enter

the observable, as opposed to linearly. This would result in the TBQC weight grow-

ing more slowly than the SSTP weight in cases where this term is large. The TBQC

sampling scheme also includes double jump transitions, which the SSTP sampling

scheme does not. This difference will most likely not effect results significantly, since

the probability of a double transition is approximately the square of the probability

of single jump transition.

6.2 Improved Sampling Schemes

6.2.1 Observable Cutting Scheme

The observable cutting scheme was the first improvement upon the original sampling

schemes [34]. It was noted that the prime source of error in the SSTP and TBQC

algorithms was the growth of the numerical weight in the observable as a result of the
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sampling scheme. This growth of numerical weights resulted in certain trajectories

being weighted in the calculation of the observable far more heavily than they should

be, resulting in large statistical error. A simple and direct approach to this problem

is to set an upper bound on the weight in the observable, so that it cannot be larger

than the bound.

A numerical threshold parameter, κt is thus defined which sets an upper bound

to the magnitude of the weight. If, at time step j in the calculation of a trajectory,

the magnitude of the weight W becomes larger than κt, it is instead set to the value

of κt. Mathematically, this can write this as:

W =

 W if |W | < κt

sign(W )κt if |W | > κt
(6.10)

Note that this cutting only affects the magnitude of the weight, the sign remains

the same. This cutting ensures that the weight can never grow to values where

a single trajectory is having an overly large effect on the value of the observable.

Consequently, statistical error in the result is greatly reduced at longer times. While

effective, however, this scheme does not have any physical basis, unlike the energy-

conserving filtering scheme in the next section.

6.2.2 Transition Filtering Scheme

The more recently developed transition filtering scheme [36][37] attempts to solve

the long time statistical error from a different angle. Essentially, it is based of filter-

ing out nonadiabatic transitions that would result in large changes in the momentum,

where the approximate momentum-shift rule (Eq. (5.23)) fails.

Consider the energy variation caused in the system when a nonadiabatic transi-

tion α→ β is calculated using the approximated momentum-jump rule:
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Eαβ =
∑
j

P ′2j
2M

+ Eβ(R)−

∑
j

P 2
j

2M
+ Eα(R)

 , (6.11)

where P ′j = Pj + ∆AMJPj is the shifted momentum. Upon introduction of a numer-

ical parameter κE , and weight ω(κE , Eαβ), a generalised transition probability [36]

for the SSTP algorithm can be defined:

PECαβ (R,P, τ) =
τ
∣∣∣ PM · dαβ(R)

∣∣∣ω (κE , Eαβ)

1 + τ
∣∣∣ PM · dαβ(R)

∣∣∣ω (κE , Eαβ)
, (6.12)

which then defines the probability of a transition not occurring to be

QECαβ (R,P, τ) = 1− Pαβ

=
1

1 + τ
∣∣∣ PM · dαβ(R)

∣∣∣ω (κE , Eαβ)
, (6.13)

The numerical weight is defined as

ω (κE , Eαβ) =

{
1 if Eαβ ≤ κE

0 otherwise
. (6.14)

These generalised transition probabilities essentially allow control of the ampli-

tude of energy fluctuations that would be caused by the approximate momentum-

jump rule, through use of the numerical parameter κE . Whenever a nonadiabatic

transition occurring would result in an energy jump larger than the control param-

eter κE , the transition probability becomes zero, and the transition cannot occur.

If the virtual energy fluctuation is less than the control parameter, the transition

probabilities simply reduce to those of the original SSTP algorithm. This gener-

alisation of the original sampling scheme thus allows transitions to occur only in

regions where use of the approximate momentum-shift rule would produce small

energy variations. This essentially amounts to disregarding transitions which would
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cause large momentum changes in the bath, since the approximate momentum-shift

rule numerically coincides with the exact momentum-shift rule as the changes in the

momentum approach zero. The system is thus not led to unstable regions of phase

space.

The transition filtering scheme has been shown to be quite successful at reduc-

ing statistical error at longer simulations, while still maintaining the integrity of the

result [36][37]. It must be noted, however, that there is a trade-off. While reduc-

ing the value of the numerical control parameter κE reduces the statistical error,

values of the parameter that are too small, result in too many transitions being fil-

tered, essentially removing the nonadiabaticity of the dynamics. This is particularly

important when the coupling between the subsystem and environment is strong.

Because of this, the transition filtering scheme tends to be more successful at weak

and intermediate coupling strengths.

Finally, although the transition filtering scheme was originally designed for im-

plementation in the SSTP algorithm, it is easily extended to the TBQC algorithm.

Applying the weight ω(κE , Eαα′,ββ′) in a similar way to the TBQC sampling scheme,

one obtains generalised transition probabilities as:

Pαα′,ββ′ =

∣∣∣∣ (e−J1τ
)
αα′,ββ′

∣∣∣∣ω(κE , Eαα′,ββ′)

| cos2 a|+ | sin2 a|ω(κE , Eαα′,ββ′) + 2| cos a sin a|ω(κE , Eαα′,ββ′)
,

(6.15)

and

Pαα′,αα′ =
| cos2 a|

| cos2 a|+ | sin2 a|ω(κE , Eαα′,ββ′) + 2| cos a sin a|ω(κE , Eαα′,ββ′)
.

(6.16)
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6.2.3 Combination Filtering

Although both the observable cutting and transition filtering schemes have been

shown to reduce statistical error at long times, they approach the problem in two

different ways. It would thus be of interest to introduce a so-called combination

filtering scheme which utilises both schemes in a single algorithm. This combination

scheme would then have the benefits of both techniques, and perform better than

either the observable cutting or transition filtering. This would then allow even

further simulation times to be reliably calculated.

According to such an idea, in each simulation, nonadiabatic transitions are fil-

tered according to the transition filtering scheme by use of the numerical control

parameter κE , in addition to the weight in the observable being cut when it grows

too large, according to the threshold parameter κt.

In the results displayed in Chapter 8, a study of the three improved sampling

schemes is presented, with the aim of determining which technique is superior.



Chapter 7

The Spin-Boson Model

The theory presented in the previous chapters is not system specific, and applies

to general systems that comprise a quantum subsystem coupled to a classical, or

classical-like, environment. However, in order to perform numerical simulations on a

computer, the theory needs to be applied to some model system. A convenient model

of choice is the spin-boson model, as it has the essential components of a quantum-

classical system. It comprises a quantum spin, or two-level system, coupled to an

environment of bosons, or harmonic oscillators. There is thus a ground state and an

excited state in the subsystem. The harmonic oscillator environment can be either

classical or quantum. In the quantum-classical Liouville approach, the bosonic bath

is treated in a classical-like manner through use of the partial Wigner transform.

A further reason the spin-boson model is a convenient model for numerical studies

is that it is an extremely well studied system [68], and it is utilised in much of the past

literature on the quantum-classical Liouville model [34]-[37],[58]. This means that

not only are there many simulation results with which one can compare calculations,

but indeed there are also numerically ‘exact’ results obtained from quantum path

integral calculations.

The Hamiltonian for this model in the case of a quantum environment is given

by

86
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Ĥ = −h̄Ωσ̂x +
N∑
j=1

(
P̂ 2
j

2Mj
+

1

2
Mjω

2
j R̂

2
j − cjR̂j σ̂z

)
, (7.1)

where σ̂z and σ̂x are the usual Pauli matrices [69]. The summation is over

the harmonic oscillators of the environment, and Mj and ωj denote the mass and

frequency of the the jth oscillator. The constants cj give the strength of coupling

between the jth oscillator and the quantum subsystem. The symbol Ω gives the

energy gap of the two levels in the subsystem by ∆E = 2h̄Ω.

Taking a partial Wigner transform over the environmental degrees of freedom

gives the partial Wigner transformed Hamiltonian:

ĤW (R,P ) = −h̄Ωσ̂x +
N∑
j=1

(
P 2
j

2Mj
+

1

2
Mjω

2
jR

2
j − cjRj σ̂z

)
. (7.2)

In this representation, the Hamiltonian now not only depends on the quantum spin

degrees of freedom, but also on phase space coordinates R and P . It is thus both an

operator and a function of phase space. It can be split into the isolated subsystem

Hamiltonian, ĥs,

ĥs = −h̄Ωσ̂x , (7.3)

the Hamiltonian for the harmonic environment

Hb(R,P ) =
N∑
j=1

(
P 2
j

2Mj
+

1

2
Mjω

2
jR

2
j

)
, (7.4)

as well as the potential arising from coupling between the subsystem and the bath:

V̂c(R) = −
N∑
j=1

cjRj σ̂z

≡ γ(R)σ̂z . (7.5)

At this point, it is worthwhile noting that although the theory allows for the
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masses of the oscillators to be different, for the sake of convenience, they are taken

to be the same.

In the simulations that are presented, the bath was taken to have an Ohmic spec-

tral density. An efficient way to represent an infinite bath with an Ohmic spectral

density using a finite number of oscillators is provided by the work of Makri and

Thompson [70]. This is done by employing the following forms for the frequencies

ωj = −ωc ln

(
1− j ω0

ωc

)
, (7.6)

and coupling constants

cj = ωj
√
ξh̄ω0M , (7.7)

where

ω0 =
ωc
N

(
1− e−ωmax/ωc

)
, (7.8)

and ωmax is a cutoff frequency which limits the range of frequencies the oscillators

may have. The symbol ξ is known as the Kondo parameter. From Eq. (7.7) it can

be seen that the Kondo parameter dictates the magnitude of the coupling constants,

and is thus a measure of the strength between the subsystem and environment.

7.1 Scaled Units

In general, the numbers involved in the calculations for systems on the quantum

level, when using SI units, are of a magnitude ill-suited for use in simulations. For

convenience, as well as accuracy, it is desirable instead to use scaled dimensionless

units that are more suited to simulation of quantum-sized systems.

In the system of dimensionless units used in the simulations, the phase space

coordinates are scaled according to



89

R′j =

(
Mωc
h̄

) 1
2

Rj , P ′j = (h̄Mωc)
− 1

2 Pj . (7.9)

When represented using the dimensionless units, the partial Wigner transformed

Hamiltonian becomes

Ĥ ′W (R′, P ′) = −Ω′σ̂x +
∑
j

(
P ′j

2

2
+

1

2
ω′j

2
R′j

2 − c′j σ̂zR′j

)
, (7.10)

with

Ω′ =
Ω

ωc
, ω′j =

ωj
ωc
, c′j = ω′j

√
ξ
ωj
ωc

. (7.11)

This system of units is essentially equivalent to setting both the reduced Planck

constant, and the masses of the harmonic oscillators in the bath, to unity. The

inverse temperature β, as well as the time coordinate are also scaled, in the following

way:

t′ = tωc, β′ =
ωc
kBT

. (7.12)

The scaling of units ensures that in the computational calculation, accuracy is

not lost due to rounding errors. Henceforth only dimensionless units will be used,

but, for convenience, the primes denoting them will be dropped.

7.2 Solving for the Adiabatic Basis

Once the Hamiltonian of the system of study has been defined, it is possible to

determine the adiabatic basis, which is required for the calculations. For the spin-

boson system, the adiabatic Hamiltonian within the partial Wigner representation

is given by
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ĥW (R,P ) = −Ωσ̂x + Vb + γ(R)σ̂z , (7.13)

where γ is defined by Eq. (7.5), and Vb is the potential energy of the bath. To

obtain the adiabatic eigenvectors, the characteristic equation needs to be solved for

the adiabatic Hamiltonian:

det(ĥW − λI) = 0 . (7.14)

To do this, the adiabatic Hamiltonian needs to be expressed in matrix form:

ĥW =

 0 −Ω

−Ω 0

+

 Vb 0

0 Vb

+

 γ 0

0 −γ


=

 Vb + γ −Ω

−Ω Vb − γ

 . (7.15)

Substitution of Eq. (7.15) into Eq. (7.14) yields

det(ĥW − λI) = det

 Vb + γ − λ −Ω

−Ω Vb − γ − λ


= 0 . (7.16)

This simplifies to the following quadratic equation:

V 2
b − 2λVb − γ2 + λ2 − Ω2 = 0 , (7.17)
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the solutions of which are the energy eigenvalues for the adiabatic basis:

E1,2(R) =
−2Vb ±

√
4V 2

b − 4(V 2
b − γ2 − Ω2)

2

= Vb ±
√
γ2 + Ω2 . (7.18)

To obtain the adiabatic eigenvectors, one then substitutes these eigenenergies

back into the characteristic equation. In the case of E1(R) = Vb +
√
γ2 + Ω2, this

gives

 Vb + γ − Vb −
√
γ2 + Ω2 −Ω

−Ω Vb − γ − Vb −
√
γ2 + Ω2


 x1

x2

 =

 0

0

 .

(7.19)

The above vector equation can then be written as two simultaneous equations,

(γ −
√
γ2 + Ω2)x1 + (−Ω)x2 = 0 , (7.20)

and

(−Ω)x1 + (−γ −
√
γ2 + Ω2)x2 = 0 . (7.21)

Subtracting Eq. (7.21) from Eq. (7.20) gives

(γ + Ω−
√
γ2 + Ω2)x1 + (γ − Ω +

√
γ2 + Ω2)x2 = 0 . (7.22)

By dividing through by γ, and defining G = 1
γ

[
−Ω +

√
γ2 + Ω2

]
, the above
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equation can be rewritten in a more compact form:

(1−G)x1 + (1 +G)x2 = 0 . (7.23)

The first eigenvector is thus given by

|E′1(R)〉 =

 1 +G

−(1−G)

 , (7.24)

where the prime on the E denotes the fact that the eigenvector is not yet normalised.

Now to calculate the second eigenvector, the second eigenenergy E2(R) = Vb −√
γ2 + Ω2 must be substituted into the characteristic equation:

 Vb + γ − Vb +
√
γ2 + Ω2 −Ω

−Ω Vb − γ − Vb +
√
γ2 + Ω2


 x1

x2

 =

 0

0

 ,

(7.25)

which yields the following simultaneous equations:

(γ +
√
γ2 + Ω2)x1 + (−Ω)x2 = 0 , (7.26)

and

(−Ω)x1 + (−γ +
√
γ2 + Ω2)x2 = 0 . (7.27)

Adding (7.26) and (7.27), one obtains
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(γ − Ω +
√
γ2 + Ω2)x1 + (−γ − Ω +

√
γ2 + Ω2)x2 = 0 . (7.28)

Dividing through by γ as before gives

(1 +G)x1 − (1−G)x2 = 0 . (7.29)

The second (unnormalised) eigenvector is thus

|E′2(R)〉 =

 1−G

1 +G

 . (7.30)

Now the eigenvectors need to be normalised. The normalised eigenvectors are

given by

|E′1(R)〉√
〈E′1(R)|E′1(R)〉

, (7.31)

and

|E′2(R)〉√
〈E′2(R)|E′2(R)〉

. (7.32)

The inner products of the unnormalised eigenvectors need to be calculated:

〈E′1(R)|E′1(R)〉 = (1 +G)2 + (1−G)2

= 2(1 +G2)
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= 〈E′2(R)|E′2(R)〉 . (7.33)

The normalised eigenvectors for the adiabatic basis are thus given by

|E1(R)〉 =
1√

2(1 +G2)

 1 +G

−(1−G)

 , (7.34)

and

|E2(R)〉 =
1√

2(1 +G2)

 1−G

1 +G

 . (7.35)

7.2.1 Nonadiabatic Coupling Matrix

Now that the eigenvectors and eigenenergies have been obtained for the adiabatic ba-

sis, the nonadiabatic coupling matrix element dαβ, as well as the Hellmann-Feynman

forces for the excited state and ground state, can be derived.

Consider first the nonadiabatic matrix coupling element. By definition

d12 = 〈E1(R)| ∂
∂R
|E2(R)〉 .

=
1√

2(1 +G2)

 1 +G

−(1−G)

 · ∂
∂R

 1√
2(1 +G2)

 1−G

1 +G




=
1√

2(1 +G2)

 1 +G

−(1−G)

 ·

 1−G

1 +G

 ∂

∂R

1√
2(1 +G2)

+
1√

2(1 +G2)

∂

∂R

 1−G

1 +G


 .

(7.36)
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Since the eigenvectors are orthogonal to each other, the first term in the square

brackets disappears, and one obtains

d12 =
1

2(1 +G2)

 1 +G

−(1−G)

 · ∂
∂R

 1−G

1 +G


=

1

2(1 +G2)

 1 +G

−(1−G)

 ·
 −∂G

∂R

∂G
∂R


= − 1

1 +G2

∂G

∂R
. (7.37)

Similarly for d21,

d21 =
1

1 +G2

∂G

∂R
. (7.38)

Note that d12 = −d21, as is expected, since the nonadiabatic coupling matrix is

anti-hermitian, and the adiabatic basis is real.

7.2.2 Hellmann-Feynman Force

The Hellmann-Feynman force for a state α is defined as

FαW = −〈α|∂V̂W (R)

∂R
|α〉 . (7.39)

The potential energy operator for the spin-boson system comprises the potential

energy of the bath and the potential energy operator for the coupling between the

subsystem and bath:

V̂W (R) =
1

2
ω2R2 − cRσ̂z , (7.40)
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remembering that scaled units are being used, and thus M = 1. Substituting this

into the definition of the Hellmann-Feynman force, the force for the adiabatic energy

surface corresponding to the excited state is

F 1
W = −〈E1(R)| ∂

∂R

(
1

2
ω2R2 − cRσ̂z

)
|E1(R)〉

= −〈E1(R)|ωR|E1(R)〉+ 〈E1(R)|cσ̂z|E1(R)〉 . (7.41)

Because R is a function and not an operator, and ω and c are constants, they

can be taken out of the inner products, which gives

F 1
W = −ωR〈E1(R)|E1(R)〉+ c〈E1(R)|σ̂z|E1(R)〉

= −ωR+ c〈E1(R)|σ̂z|E1(R)〉 , (7.42)

since |E1(R)〉 is normalised and its inner product is therefore unity. The matrix σ̂z

naturally cannot be removed from the inner product, as it acts upon the ket:

F 1
W = −ωR+ c

1

2(1 +G2)

 1 +G

−(1−G)

 ·
 1 0

0 −1


 1 +G

−(1−G)


= −ωR+ c

1

2(1 +G2)

 1 +G

−(1−G)

 ·
 1 +G

1−G


= −ωR+ c

2G

1 +G2
. (7.43)

Now the expression for G can be substituted, to give the Hellmann-Feynman force

in terms of Ω and γ(R):



97

F 1
W = −ωR+ c

2
γ

[
−Ω +

(
γ2 + Ω2

) 1
2

]
1 + 1

γ2

[
Ω2 − 2Ω (γ2 + Ω2)

1
2 + γ2 + Ω2

]

= −ωR+ c

[
−Ω +

(
γ2 + Ω2

) 1
2

]
1
γ

[
−Ω (γ2 + Ω2)

1
2 + γ2 + Ω2

]
= −ωR+ c

γ

(γ2 + Ω2)
1
2

. (7.44)

Similarly, the Hellmann-Feynman force for the adiabatic energy surface corre-

sponding to the ground state is

F 2
W = −ωR− c γ

(γ2 + Ω2)
1
2

. (7.45)

The first term of F 1
W and F 2

W is simply the force for an undriven, undamped

oscillator. The second term is the contribution to the force on each oscillator due to

the effect of the subsystem.

7.2.3 Rotation Matrices

In order to be able to represent the density matrix or operators in the adiabatic

basis, one requires the associated rotation matrix. The rotation matrix is a matrix

with a determinant of one, the columns of which are simply the eigenvectors of the

adiabatic basis. It is thus given by:

Rad =
1√

2(1 +G2)

 1 +G 1−G

−(1−G) 1 +G

 , (7.46)

and its inverse is:
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R−1
ad =

1√
2(1 +G2)

 1 +G −(1−G)

1−G 1 +G

 . (7.47)

The density matrix or arbitrary operator is then rotated into the adiabatic basis

according to

χad = R−1
ad χRad . (7.48)



Chapter 8

Numerical Studies

8.1 Simulation Details

8.1.1 Propagation of Trajectories

The trajectories in the simulation are calculated using an Eulerian description, where

the phase space point associated with each trajectory is propagated in time, and the

observable is updated at each time step by calculating it using the updated phase

space point. Due to the hybrid quantum-classical description of the dynamics, there

is no single Hilbert space corresponding to the quantum subsystem, but rather,

there is a two-dimensional Hilbert space associated with each phase space point.

The adiabatic eigenenergies and states are thus also updated at each time step

using the new calculated phase space point for the trajectory.

At time zero for each trajectory, the bath and the subsystem are initially de-

coupled and the interaction begins after this time. The hybrid density matrix is a

simple product of the density matrix for the quantum subsystem and the distribution

function for the environment:

ρ̂(0) = ρ̂s(0)ρb(R,P ) , (8.1)

where the initial density matrix for the subsystem is given by

99
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ρ̂s =

 1 0

0 0

 , (8.2)

and the distribution function for the environment is [71]

ρbW (R,P ) =
N∏
j=1

tanh (βωj/2)

π
exp

[
−2 tanh (βωj/2)

ωj
Hb(R,P )

]
. (8.3)

This distribution function is obtained by Wigner transforming the Bloch equation

for an ensemble of quantum harmonic oscillators. The full derivation is given in

Appendix B.

From the density matrix for the subsystem given in Eq. (8.2) it can be seen

that the two level quantum subsystem is taken to be initially in the pure energy

eigenstate corresponding to the excited state.

As was mentioned before, the initial phase space point for each trajectory is

sampled from the bath distribution function using an importance sampling Monte

Carlo scheme. The importance sampling function is given by

ρ0 = exp
[
−β

(
P 2/2 + Eα

)]
. (8.4)

8.1.2 The Observable

Much of the literature for simulations based on the quantum-classical Liouville ap-

proach involve calculation of the observable 〈σ̂z〉 [34][35] [36][37]. For reasons of

consistency and ease of comparison with previous work, all the simulations per-

formed for the following studies thus involved the calculation of this observable. In

addition, numerically ‘exact’ results for this observable for the spin-boson system are

readily available in the literature, providing a way to determine when an algorithm

is performing well, or poorly.

The observable 〈σz〉 is also known as the population observable for a two-level

system. This can be understood by considering the following:
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〈σz〉 = Tr (ρσz)

= Tr


 ρ11 ρ12

ρ21 ρ22


 1 0

0 −1




= Tr

 ρ11 −ρ12

ρ21 −ρ22


= ρ11 − ρ22 . (8.5)

The observable 〈σz〉 is therefore simply the difference between the populations

of the two energy levels in the system.

In order for this observable to be calculated using the quantum-classical Liouville

approach, the operator σ̂z needs to be represented in the adiabatic basis. This is

performed using Eq. (7.48), where the rotation matrix and its inverse are given by

Eqs. (7.46) and (7.47) respectively.

Performing this rotation to the operator σ̂z and the density matrix for the sub-

system yields

σ̂adz =
1

1 +G2

 2G 1−G2

1−G2 −2G

 , (8.6)

and

ρ̂ads =
1

2(1 +G2)

 (1 +G)2 1−G2

1−G2 (1−G)2

 . (8.7)

The observable 〈σz〉 is then calculated according to:

〈σz(t)〉 =

∫
dRdPρ0(R,P )

[
ρ−1

0 ρbW (R,P )Tr
(
ρ̂ads σ̂

ad
z (t)

)]
∫
dRdPρbW (R,P )

. (8.8)



102

Each simulation utilised a Monte Carlo sampling size of 105. This is the number

of phase space trajectories that were propagated in order to calculate the phase

space integral in Eq. (8.8). A molecular dynamics time-step of τ = 0.1 was used

for all calculations. In order to determine the statistical error of each result, the

simulations were run ten times with random seeds for the initial conditions. The

results presented are the average of these ten calculations.

8.2 Study of the Trotter Factorisation of the Short-

Time Quantum-Classical Propagator

The first study that was performed was a comparison of the two techniques the SSTP

and TBQC algorithms use to factorise the short-time quantum-classical propagator.

The SSTP algorithm employs the truncated Dyson series, where the J operator

appears in linear form, while the TBQC algorithm utilises Trotter factorisation,

where the J operator is still in an exponential. It is naturally of interest to determine

which method is superior.

The first step was to apply the two algorithms to cases where the adiabatic ap-

proximation applies; in other words the J operator is set to zero. In each case, the

simulations were run for a wide range of parameters, but shown here for each algo-

rithm are three sets - one set of parameters corresponds to weak coupling, another

to intermediate coupling, and the final one to strong coupling.

Figures 8.1, 8.2 and 8.3 display comparisons of the adiabatic results for the SSTP

and TBQC algorithms for weak, intermediate and strong coupling respectively. The

result shown in Fig. 8.1 was calculated using system parameters β = 0.3, ξ = 0.007,

and Ω = 1/3. This set of system parameters corresponds to weak coupling between

the quantum subsystem and the bath. Figure 8.2 displays the result for intermediate

coupling strength, with system parameters β = 12.5, ξ = 0.09 and Ω = 0.4. The

Fig. 8.3 result was simulated using β = 0.25, ξ = 2.0 and Ω = 1.2, which is strong

coupling.
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Figure 8.1: Comparison of adiabatic results for the SSTP (•) and TBQC (4) algorithms.
This calculation was performed for β = 0.3, ξ = 0.007 and Ω = 1/3, which corresponds
to weak coupling. The results of the two simulations are identical, with the points for the
TBQC result almost impossible to see, as they are underneath the points of the SSTP result.
The error bars for both results are not seen as they are smaller than the points for the entire
simulation time.

From Figs. 8.1, 8.2 and 8.3 it can be seen that, for adiabatic results at least,

neither the SSTP or TBQC is superior to the other. Both algorithms can reliably

simulate adiabatic calculations for long times with negligible statistical error. How-

ever, this is not the true test, as the statistical error problems encountered by the

SSTP and TBQC algorithms occur when nonadiabatic transitions are included to

the calculations as a result of growth of the statistical weights associated with each

trajectory.

The next step was to include the nonadiabatic transitions, but in a consistent

way. The J operator is implemented using two different techniques in the SSTP

and TBQC algorithms, so it would not be possible to gauge which factorisation is

superior, (Truncated Dyson or Trotter) simply by comparing the the nonadiabatic

results of the SSTP algorithm with those of the TBQC algorithm. The truncated
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Figure 8.2: Comparison of adiabatic results for the SSTP (•) and TBQC (4) algorithms.
This calculation was performed for β = 12.5, ξ = 0.09 and Ω = 0.4, which corresponds
to intermediate coupling strength. Again, the results of the two calculations are almost
impossible to tell apart, and the error bars are smaller than the points.

Dyson expansion essentially amounts to a linear approximation of the exponentiated

form of the J operator, since

eiLτ = e(iL0−J)τ

≈ eiL0τe−Jτ

≈ eiL0τ (1− Jτ) . (8.9)

In order to compare this to the Trotter factorisation, it is of interest to ap-

ply the Trotter factorisation to the short-time propagator, but still use the linear

approximation for the J operator:

eiLτ ≈ eiL0τ/2e−JτeiL0τ/2

≈ eiL0τ/2 (1− Jτ) eiL0τ/2 . (8.10)



105

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10

<
σ z

>

t

Figure 8.3: Comparison of adiabatic results for the SSTP (•) and TBQC (4) algorithms.
This plot displays the results for system parameters β = 0.25, ξ = 2.0 and Ω = 1.2, corre-
sponding to strong coupling. As in the case of weak coupling, the two results are indistin-
guishable, and the error bars are smaller than the points for the entire simulation time. The
result is only shown up to t = 10 in this case, as it does not deviate from zero.

In this way, it is possible to use the Trotter factorisation, but treat the J operator

in the SSTP way. To distinguish this algorithm from the SSTP and full TBQC

algorithms, this shall be named the Trotter-factorised SSTP algorithm. In the cal-

culations of the following results, the only difference in the algorithm was thus the

Trotter factorisation, and not the implementation of the J operator.

Figures 8.4 through 8.6 show the results of nonadiabatic calculations for the

same sets of parameters used above. Unfortunately it is not possible to show the

results for the two algorithms on the same set of axes, as it is difficult to distinguish

the error bars of the two results. They are thus shown in separate plots. The results

shown in Fig. 8.4 are for weak coupling calculations. Figure 8.5 displays intermediate

coupling results, and finally, Fig. 8.6 gives the results for strong coupling.
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Figure 8.4: Comparison of nonadiabatic results for the SSTP (top) and Trotter-factorised
SSTP algorithms (bottom), in the weak coupling regime. System parameters were β = 0.3,
ξ = 0.007 and Ω = 1/3. Two nonadiabatic transitions were included for each trajectory.
The calculation cannot produce reliable results for as long as in the adiabatic case. After
approximately t = 22, the simulation becomes unstable, and the statistical error becomes
large.
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Figure 8.5: Comparison of nonadiabatic results for the SSTP (top) and Trotter-factorised
SSTP algorithms (bottom), in the case of intermediate coupling. Parameters used were
β = 12.5, ξ = 0.09 and Ω = 0.4. Two nonadiabatic transitions were included per trajectory.
The dynamics cannot be simulated reliably for nearly as long as the adiabatic dynamics.
After approximately t = 15, the simulation becomes unstable.



108

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10

<
σ z

>

t

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10

<
σ z

>

t

Figure 8.6: Comparison of nonadiabatic results for the SSTP (top) and Trotter-factorised
SSTP algorithms (bottom), for strong coupling. System parameters of β = 0.25, ξ = 2.0 and
Ω = 1.2 were used. Two nonadiabatic transitions were included for each trajectory. The
results are only reliable for very short times, as the statistical error grows quickly when the
coupling is strong.
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From these results, the effect of the inclusion of nonadiabatic transitions on

statistical error is clear. For all three coupling regimes, the results could not be

reliably simulated nearly as long as in the adiabatic case. After certain times, the

simulation becomes unstable, and the statistical error grows quickly. As mentioned

before, this is due to the concatenation of weights associated with the sampling of

the transitions. It can be seen that the stronger the coupling strength, the shorter

the time the simulation is stable. In the case of weak coupling, the statistical error

begins to grow rapidly after approximately t = 22, but in the case of strong coupling,

the calculation incurs large error before t = 10.

With regards to the comparison of the SSTP and Trotter-factorised SSTP algo-

rithms, it is not apparent simply from looking at the results which is superior, as

they both begin to fail at similar times for each coupling regime. In order to make

a quantitative comparison of the two, it is desirable to compare the values of the

statistical error for each algorithm at each time step and take an average. To this

end, the following quantity can be defined:

〈ε〉 =
1

N

∑
i

σSi − σTi
max

(
σSi , σ

T
i

) , (8.11)

where σSi and σTi are the standard deviations for the ith time step for the SSTP and

Trotter-factorised SSTP algorithms respectively and N is the number of time steps

of the simulation. This quantity gives an indication of which algorithm is superior

(on average) with regards to statistical error. It has a maximum value of 1 and a

minimum value of -1. If it is negative, then the SSTP algorithm is superior, and if

it is positive, then the Trotter-factorised algorithm is superior. The values of 〈ε〉 for

the three sets of calculations are given in Table 8.1.

Weak coupling Intermediate coupling Strong coupling

−2.52× 10−2 5.13× 10−2 1.36× 10−1

Table 8.1: Values of 〈ε〉 for different coupling strength regimes.
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The values given in Table 8.1 indicate that neither algorithm is significantly

superior to the other for weak and intermediate coupling strengths. In the case

of strong coupling, the Trotter-factorised algorithm does in fact have a noticeable

advantage over the plain SSTP algorithm, and thus the Trotter-factorisation of the

short-time propagator is superior to the truncated Dyson series.

Note, however, that although the Trotter-factorisation does indeed result in

smaller statistical error than the truncated Dyson series, this difference is not great

enough that the Trotter-factorisation allows longer simulation times to be accessed

reliably (see Figs. 8.4, 8.5, 8.6). Because implementation of the Trotter-factorisation

is more computationally expensive than the truncated Dyson series, it is perhaps

worth using the Dyson method over the Trotter method, as the benefits of the

Trotter are not great enough to warrant the additional computational resources.

8.3 Comparison of the SSTP and TBQC Algorithms

Once this was determined, the next step was to compare results of the SSTP al-

gorithm with those of the full TBQC algorithm, each with their original sampling

scheme for the J operator, without using any of the improved techniques presented

in Chapter 6.

Again, the simulations were run for a range of system parameters, but the same

three sets used above are shown here to give an indication of the efficacy of the

algorithms within each coupling strength regime. The comparisons between the two

algorithms are given in Figs. 8.7, 8.8 and 8.9. The two results for each case are

plotted on the same set of axes, however, only the error bars for the TBQC results

are shown in the plots, since inclusion of the SSTP error bars would cause confusion,

as the plot would become too cluttered. The error bars for the SSTP results can be

seen in Figs. 8.4, 8.5 and 8.6.

In Fig. 8.7 the results for weak coupling are presented. For shorter times, the

two algorithms agree very well, with their points almost indistinguishable. After
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Figure 8.7: Plot illustrating a comparison of results for the SSTP (•) and TBQC (4) al-
gorithms, in the weak coupling regime. System parameters were β = 0.3, ξ = 0.007 and
Ω = 1/3. Two nonadiabatic transitions were considered per trajectory. Although the two
algorithms agree very well up until approximately t = 17, the TBQC result becomes unstable
far more rapidly than that of the SSTP algorithm.

approximately t = 17, the two results deviate from each other, with increasing

statistical error. The statistical error for the TBQC result actually grows faster than

that of the SSTP algorithm, as the error is already large before t = 20. Figure 8.8,

showing the result for intermediate coupling, paints a similar picture. The two

results are in good agreement with one another at short times, and differ after

t = 10. Again, the TBQC result becomes unstable significantly faster than the

SSTP result. Finally, Fig. 8.9 compares the two algorithms in the strong coupling

regime. This time the results agree up to t = 5. After this point, the algorithms

deviate as the statistical error grows. As before, the TBQC algorithm is seen to

incur larger statistical error than the SSTP.

The TBQC algorithm seems to be inferior to the SSTP algorithm for all three

coupling strength regimes, which is surprising, since the Trotter factorisation of
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Figure 8.8: Comparison of simulation results for the SSTP (•) and TBQC (4) algorithms,
for intermediate coupling strength. The system parameters were β = 12.5, ξ = 0.09 and
Ω = 0.4. Two nonadiabatic transitions were included in each trajectory. Again, the two
results agree excellently at short times, but after t = 10 they diverge. The statistical error
for the TBQC algorithm grows faster than that of the SSTP algorithm.

the short-time quantum-classical propagator was shown to perform better than the

truncated Dyson series. The only difference between the Trotter-factorised SSTP

algorithm shown in Figs. 8.4, 8.5 and 8.6, and the full TBQC algorithm is the

implementation of the J operator, and therefore, this must be the source of the

error.

This can be understood by considering the weights that enter the observable

each time a transition is rejected. For the SSTP algorithm, this weight is

WNT
SSTP = 1 +

∣∣∣∣ PM · dαβ
∣∣∣∣τ

= 1 + a , (8.12)
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Figure 8.9: Comparison of calculations for the SSTP (•) and TBQC (4) algorithms, in
the case of strong coupling. System parameters β = 0.25, ξ = 2.0 and Ω = 1.2 were used.
Two nonadiabatic transitions were considered per trajectory. The results agree strongly up
until approximately t = 5, after which they diverge. As in the case of weak and intermediate
coupling, the TBQC result has larger statistical error than the SSTP.

and for the TBQC algorithm it is

WNT
TBQC = 1 + 2| cos a sin a| . (8.13)

In cases of weak coupling, a << 1, and the cos a sin a term is approximately

given by a. The weight that enters the observable in the TBQC algorithm when a

transition is rejected is then given by

WNT
TBQC = 1 + 2a . (8.14)

The observable is thus multiplied by a larger weight at each time step in the TBQC
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algorithm than the SSTP algorithm, leading to greater statistical error. In fact,

even in the case of the strong coupling parameters being used in the presented cal-

culations, when cos a sin a ≈ a no longer holds, the weight for the TBQC algorithm

is still larger than the SSTP. This is what causes the original SSTP algorithm to

perform better than the TBQC algorithm in the results shown above.

It must be noted at this point, however, that it is still possible to achieve good

results with the TBQC algorithm, when implemented with the observable cutting

scheme [35]. Nevertheless, for the sake of consistency, the study presented in the

next section on the three improved sampling schemes outlined in Chapter 6 was

performed using only the SSTP algorithm.

8.4 Study of Improved Transition Sampling Schemes

Both improved sampling schemes, observable cutting and transition filtering have

been shown to dramatically reduce statistical error in the quantum-classical Liouville

approach [34][35] [36][37]. It would be of interest, however, to compare the efficacy

of each technique, as well as test the newly introduced combination filtering scheme,

in order to determine if any of the three are universally superior to the other two.

To this end, calculations were run, again for a range of system parameters, util-

ising the SSTP algorithm in conjunction with each of the three improved sampling

schemes. Because it is possible that an improved scheme might reduce statistical

error at the cost of result integrity, all the results were compared with known nu-

merically exact results. The superior scheme is thus one that can eliminate the most

statistical error, while still being able to agree with the numerically exact results.

Figures 8.10 and 8.11 give the results for weak coupling, with system parameters

β = 0.3, ξ = 0.007 and Ω = 1/3. From Fig. 8.10, it can be seen that both the observ-

able cutting and transition filtering scheme produce results that agree well with the

influence functional path integral calculations [70][72][73], however, at longer times
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Figure 8.10: Comparison of results using the SSTP algorithm with the observable cutting (a,
top) and transition filtering (b, bottom) schemes. The open triangles denote the path integral
quantum results from Refs. [70][72][73]. System parameters were β = 0.3, ξ = 0.007 and
Ω = 1/3 and two nonadiabatic transitions were included for each trajectory. Both techniques
agree very well with the numerically exact results and are able to reduce statistical error
effectively, but the error does begin to grow at later times.
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(t ≈ 30), the two results deviate from each other. In both cases, the statistical error

is greatly reduced when compared with the result using the original SSTP sampling

scheme, but there is still a slight growth of error at longer times. Figure 8.11

displays the weak coupling result for the combined filtering scheme. As in the case

of the other two improved sampling techniques, there is excellent agreement with

the influence functional results, but this time, the error bars remain smaller than

the points for the entire simulation time.

In fact, the combined filtering scheme proves so effective at reducing the statisti-

cal error, the simulation remains stable for significantly longer times than previously

published results [34][36][37].
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Figure 8.11: Comparison of result using the SSTP algorithm with the combined filtering
scheme (•) with the path integral quantum results (open triangles) from Refs. [70][72] [73].
The system parameters were β = 0.3, ξ = 0.007 and Ω = 1/3. Two nonadiabatic transitions
were considered per trajectory. The combined filtering scheme produces results which are
stable far longer than the observable cutting and transition filtering techniques.

Figures 8.12 and 8.13 show the results for intermediate coupling strength. System

parameters were β = 12.5, ξ = 0.09 and Ω = 0.4. In Fig 8.12, the observable
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Figure 8.12: Comparison of results using the SSTP algorithm with the observable cutting (a,
top) and transition filtering (b, bottom) schemes with the path integral result (open triangle)
from Ref. [74]. The system parameters were β = 12.5, ξ = 0.09 and Ω = 0.4, corresponding
to intermediate coupling strength. Two nonadiabatic transitions were considered in each
trajectory. Both calculations agree well with the path integral result at short times, but then
deviate at longer times.
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cutting and transition filtering schemes are compared with the path integral quantum

result from Ref. [74]. They both agree very well with the path integral result at

short times (t < 20), but after this time, the results deviate somewhat. In the

case of the transition filtering scheme, the damping in the path integral result is

not reproduced; the oscillations remain large. For the observable cutting scheme,

however, the opposite is seen. The observable cutting technique damps the result

too much at longer times, causing it to become zero. In Fig. 8.13, the result for the

combined filtering scheme is presented. A dramatic improvement over the other two

schemes can be seen, as the combined filtering result does not exhibit either of the

problems encountered by the observable cutting and transition filtering techniques.
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Figure 8.13: Comparison of result using the SSTP algorithm with the combined filtering
scheme (•) with the path integral quantum result (open triangles) from Ref. [74]. The system
parameters were β = 12.5, ξ = 0.09 and Ω = 0.4. Two nonadiabatic transitions were
included in each trajectory. The combined filtering scheme produces results which agree far
better with the path integral quantum result, and is stable far longer than the observable
cutting and transition filtering techniques.

The combined filtering scheme agrees far better with the path integral quantum

result at longer times, and the error bars are smaller than the points for the entire

simulation time.
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In Figs. 8.14 and 8.15, the results for strong coupling are shown, with system

parameters β = 0.25, ξ = 2.0 and Ω = 1.2. Figure 8.14 illustrates that the observable

cutting and transition filtering schemes are incapable of reproducing the quantum

results of Ref. [75] even at short times. Although the two techniques are successful

at reducing statistical error, it can be seen that the error bars become larger than

the points at approximately t = 2. In Fig. 8.15, the result obtained using the

combination filtering scheme for strong coupling is shown. Again, the improvement

over the other two schemes is significant. In the main figure, the calculation is shown

to agree excellently with the path integral result, while the inset illustrates that the

simulation can be extended to long times with negligible statistical error.

The combination filtering scheme is thus not only more successful at reducing

statistical error than either of the individual schemes, but agrees better with the

numerically exact results as well. This is because the observable cutting scheme and

transition filtering technique approach the problem of growing statistical error in

different ways. The observable cutting directly cuts the weight in the calculation of

the observable when it grows too large, while the transition filtering scheme disallows

nonadiabatic transitions that would cause momentum changes in the environment

that are too large. The combination filtering method benefits from both these im-

provements, thus outperforming either of the individual schemes. This results in a

far more stable algorithm.
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Figure 8.14: Comparison of results using the SSTP algorithm with the observable cutting (a,
top) and transition filtering (b, bottom) schemes with the path integral result (open triangle)
from Ref. [75]. The system parameters were β = 0.25, ξ = 2.0 and Ω = 1.2, corresponding
to the regime of strong coupling. Two nonadiabatic transitions were considered in each
trajectory. Despite being able to reduce the statistical error, both sampling schemes are
unable to reproduce the path integral result even at short times.
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Figure 8.15: Comparison of result using the SSTP algorithm with the combined filtering
scheme (•) with the path integral quantum result (open triangles) from Ref. [75]. The sys-
tem parameters were β = 0.25, ξ = 2.0 and Ω = 1.2. Two nonadiabatic transitions were
included in each trajectory. Unlike the observable cutting and transition filtering schemes,
the combined filtering scheme produces results which agree excellently with the path integral
quantum result, while still being stable at long simulation times.



Chapter 9

Conclusions and Perspectives

The biggest problem encountered in the simulation of quantum systems is the in-

ability to numerically calculate the dynamics of many-body interacting systems.

Generally, brute force methods are impossible to perform, as the requirement on

computational resources is many orders of magnitude greater than what is currently

available today. Because of this, the only solution is to resort to intelligent approx-

imations that reduce the system being studied in some way, thus making numerical

calculations more feasible.

The quantum-classical approximation does just that, by partitioning the system

into a quantum subsystem and a classical environment. The environment can then

be simulated using well-known Monte Carlo and molecular dynamics methods, while

still maintaining the quantum nature of the subsystem of interest. Naturally, due to

the majority of the degrees of freedom being treated in a classical way, this greatly

reduces the computational requirements for simulations.

Even within this approximation, calculations are difficult to perform when nona-

diabatic effects are taken into account. This type of dynamics occurs when energy

is exchanged quickly between the subsystem and environmental degrees of freedom.

Many processes, such as charge transfer and photochemical reactions are inherently

nonadiabatic, and thus algorithms are required that can reliably simulate this type

of dynamics. More recently, there has been much interest in nonadiabatic dynamics
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in biological systems, specifically in the coherent energy transfer in photosynthesis.

These types of systems possibly lend themselves to a quantum-classical description,

since one can think of quantum charge carriers interacting with large scale protein

environments which can be treated classically.

In this thesis, two of the main quantum-classical techniques were reviewed -

specifically the Ehrenfest mean-field method and surface-hopping approach by Tully.

While the Ehrenfest method has its strengths, it fails to describe dynamics when the

potential energy surfaces are too dissimilar. The surface-hopping approach does not

have this problem, but, in general, surface-hopping schemes fail to properly describe

the quantum backreaction of the subsystem on the environment.

A more recent formalism, based on the quantum-classical Liouville equation

resolves this, by providing a rigorous description of the backreaction. It involves

a realisation of the statistical mechanics in terms of the density matrix, not the

wavefunction, and thus the ability to describe mixed states is naturally part of the

formulation. This formalism was studied in detail, in addition to the Weyl transforms

and partial Wigner representation required to obtain the quantum-classical Liouville

equation.

Representing the quantum-classical Liouville equation in the adiabatic basis leads

to a form where the terms responsible for adiabatic evolution and nonadiabatic tran-

sitions naturally separate. This separation lends itself to the development of surface-

hopping algorithms. There have been two surface-hopping algorithms devised that

are based on the quantum-classical Liouville equation, the sequential short-time

propagation algorithm, and the Trotter based quantum-classical algorithm, which

were derived and discussed in the thesis.

Both of these algorithms encounter the problem of large statistical error at long

times due to the implementation of their stochastic sampling schemes for nonadia-

batic transitions. This statistical error results in longer simulation times becoming

inaccessible. The original sampling schemes were outlined in the thesis, and the im-

proved sampling schemes based on observable cutting and transition filtering were
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discussed. In addition to this, a new sampling scheme based on the combination of

the two improved schemes was introduced.

Numerical calculations presented as part of this thesis were performed using the

spin-boson model. This system is a very well studied model and can be used to study

the dynamics of a generic quantum-classical system. In this thesis, the spin-boson

model was outlined, and the adiabatic energies and states were derived.

The numerical studies presented comprise two primary parts. The first study

was a comparison of the SSTP and TBQC algorithms. The two algorithms differ

in two ways, although both are based on a segmentation of the quantum-classical

propagator into many short-time propagators. The first difference is that the SSTP

algorithm utilises a truncated Dyson expansion for the short-time quantum-classical

propagator, while the TBQC algorithm approximates the short-time propagator

using a Trotter factorisation. The second difference is in the implementation of the

transition operator J .

In order to compare the effectiveness of the different factorisations of the short-

time propagator, calculations were performed comparing the SSTP algorithm with

an algorithm that uses the Trotter factorisation of the propagator with the SSTP

implementation of the J operator. Calculations were performed for a range of sys-

tem parameters, corresponding to different coupling strength regimes between the

subsystem and environment. It was found that in the case of adiabatic dynam-

ics, where J = 0, the two algorithms produced results that were indistinguishable.

Indeed, both were able to simulate dynamics up to long times with negligible sta-

tistical error. The comparison was then extended to nonadiabatic dynamics, and it

was found that overall, the Trotter factorisation performed slightly better than the

truncated Dyson method. The improvement is not easily noticeable, however, and

the increase in computational resources (and thus run-time) required by the Trotter

factorisation is most likely not worth the small improvement.

Having found this, the SSTP algorithm was then compared to the full TBQC

algorithm, including the TBQC implementation of the J operator. In each case,
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no improved sampling schemes were used. Results were presented for nonadiabatic

calculations, and it was illustrated that in fact, the TBQC algorithm performs more

poorly than the SSTP algorithm. This was shown to be due to the weight that

enters the calculation of the observable at each time step. The numerical weight for

each time step is bigger for the TBQC algorithm than the SSTP algorithm, and this

results in a faster growth of the statistical error.

The second study performed was a comparison of improved sampling schemes.

The previous methods based on observable cutting and transition filtering have been

shown to significantly improve the performance of the SSTP and TBQC algorithms

by reducing the statistical error at long times. The newly devised combination filter-

ing scheme attempts to improve upon these techniques by combining the advantages

of each.

Nonadiabatic calculations were performed using each of the improved sampling

techniques for the SSTP algorithm, and compared to path integral results found in

the literature. The results demonstrated a clear superiority of the combined filtering

technique over the observable cutting and transition filtering methods. In the case of

weak coupling, all three sampling schemes were able to reproduce the path integral

result. Although the observable cutting and transition filtering methods were able

to reduce statistical error, the error still began to grow at longer simulation times.

The combination filtering scheme, however, was able to produce results for over

twice as long as the other two schemes with error bars remaining smaller than

the points used in the plot of the result. For intermediate coupling strength, the

transition filtering and observable cutting methods only agreed with the quantum

path integral result for short simulation times. At longer simulation times, both

results deviated - the observable cutting result became too damped, and went to

zero, while the transition filtering result was too undamped. The combined filtering

scheme did not demonstrate either of these issues, and was able to follow the path

integral result very well. Finally, for strong coupling between the subsystem and

the bath, the observable cutting and transition filtering techniques were not able to
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reproduce the quantum path integral result even at short simulation times, although

they did reduce the statistical error. Again, the combined filtering scheme was shown

to be superior - it agreed excellently with the path integral result, while negligible

statistical error is observed even at long simulation times.

The combined filtering technique thus proves itself as a valuable tool for improv-

ing the effectiveness of the surface-hopping algorithms within the quantum-classical

Liouville approach, in the case of nonadiabatic dynamics. It allows far longer sim-

ulation times to be accessed reliably than have previously been published, and thus

allows for study of more complicated systems, at longer times.

One of the current issues with the quantum-classical Liouville equation approach

is that the theory for explicitly time-dependent Hamiltonians is not well formulated.

The inclusion of explicit time-dependence proves to be a challenge, as the quantum-

classical Liouville operator becomes time-dependent as well, complicating the theory,

as well as making it far more difficult to devise algorithms. In future work, it is hoped

that the approach based on the quantum-classical Liouville equation can be extended

to systems with explicitly time-dependent Hamiltonians, and algorithms developed

to simulate the dynamics of such systems. The ability to simulate nonadiabatic

dynamics of systems with time-dependent Hamiltonians is of great interest to areas

of research such as quantum control, where the dynamics of quantum systems are

influenced by external fields. Naturally, the new sampling technique outlined in this

thesis will aid in making such simulations a possibility.



Appendix A

Representation of the

Quantum-Classical Liouville

Equation in the Adiabatic Basis

In this appendix, the full derivation is presented for rotating the quantum-classical

Liouville equation into the adiabatic basis.

The first step is to take the matrix elements of both sides of Eq. (4.9):

〈α|∂ρW
∂t
|α′〉 = − i

h̄
〈α|

[
ĤW , ρ̂W

]
|α′〉+

1

2
〈α|{ĤW , ρ̂W }|α′〉

− 1

2
〈α|{ρ̂W , ĤW }|α′〉 , (A.1)

For sake of clarity, it is easier to deal with each term individually. Expanding

the first term on the right hand side of Eq. (A.1) gives

〈α|
[
ĤW , ρ̂W

]
|α′〉 = − i

h̄

[
〈α|ĤW ρ̂W |α′〉 − 〈α|ρ̂W ĤW |α′〉

]
. (A.2)

Now using the fact that ĤW = P 2/2M + ĥW , and ĥW |α〉 = Eα|α〉, this becomes
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i

h̄

[
〈α|ĤW ρ̂W |α′〉 − 〈α|ρ̂W ĤW |α′〉

]
= − i

h̄

[
Eα〈α|ρ̂W |α′〉 − Eα′〈α|ρ̂W |α′〉

]
= −iωαα′ραα

′
W , (A.3)

where 〈α|ρ̂W |α′〉 = ραα
′

W . The second term of Eq. (A.1) can now be expanded as

well:

〈α|{ĤW , ρ̂W }|α′〉 = 〈α|∂ĤW

∂R

∂ρ̂W
∂P
|α′〉 − 〈α|∂ĤW

∂P

∂ρ̂W
∂R
|α′〉 . (A.4)

Using the completeness relation, this becomes

〈α|{ĤW , ρ̂W }|α′〉 = 〈α|∂ĤW

∂R

∑
β

|β〉〈β|∂ρ̂W
∂P
|α′〉

− 〈α|∂ĤW

∂P

∑
β

|β〉〈β|∂ρ̂W
∂R
|α′〉

= −
∑
β

FαβW
∂ρβα

′

W

∂P
−
∑
β

P

M
δαβ〈β|

∂ρ̂W
∂R
|α′〉 ,

(A.5)

where the fact that 〈α|β〉 = δαβ has been used, as well as ∂ĤW /∂R = ∂V̂W /∂R and

∂ĤW /∂P = P/M . The Hellmann-Feynman matrix elements in the partial Wigner

representation are given by

FαβW = −〈α|∂V̂W
∂R
|β〉 . (A.6)

The third term in Eq. (A.1) can be similarly expanded to yield

〈α|{ρ̂W , ĤW }|α′〉 =
∑
β

〈α|∂ρ̂W
∂R
|β〉 P

M
δα′β +

∑
β

∂ραβW
∂P

F βα
′

W . (A.7)

Adding equations (A.3), (A.5) and (A.7) gives
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∂ραα
′

W

∂t
= −iωαα′ραα

′
W − 1

2

∑
β

(
FαβW

∂ρβα
′

W

∂P
+
∂ραβW
∂P

F βα
′

W

)

− 1

2

∑
β

(
P

M
〈α|∂ρ̂W

∂R
|β〉δαβ +

P

M
〈β|∂ρ̂W

∂R
|α′〉

)

= −iωαα′ραα
′

W − 1

2

∑
β

(
FαβW

∂ρβα
′

W

∂P
+
∂ραβW
∂P

F βα
′

W

)

− P

M
〈α|∂ρ̂W

∂R
|α′〉 . (A.8)

The term on the last line of the above equation can not be written simply as P
M

∂ραα
′

W
∂R ,

since the adiabatic basis states are dependent on the bath position coordinate R.

Consider therefore

∂

∂R
〈α|ρ̂W |α′〉 = 〈 ∂α

∂R
|ρ̂W |α′〉+ 〈α|∂ρ̂W

∂R
|α′〉+ 〈α|ρ̂W |

∂α′

∂R
〉

= 〈 ∂α
∂R
|
∑
β

|β〉〈β|ρ̂W |α′〉+ 〈α|∂ρ̂W
∂R
|α′〉

+ 〈α|ρ̂W
∑
β

|β〉〈β|∂α
′

∂R
〉

= 〈α|∂ρ̂W
∂R
|α′〉+

∑
β

(
〈 ∂α
∂R
|β〉ρβα

′

W + ραβW 〈β|
∂α′

∂R
〉
)
,

(A.9)

where the completeness relation has again been used. By definition, 〈β|∂α′∂R 〉 =

〈β| ∂∂R |α
′〉 = dβα′ , but to simplify the term 〈 ∂α∂R |β〉, one must consider that

∂

∂R
〈α|β〉 = 0 , (A.10)

since 〈α|β〉 = δαβ. But

∂

∂R
〈α|β〉 = 〈 ∂α

∂R
|β〉+ 〈α| ∂β

∂R
〉 . (A.11)
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This yields the following identity:

〈 ∂α
∂R
|β〉 = −〈α| ∂β

∂R
〉

= −dαβ . (A.12)

Using this identity for Eq. (A.9), and rearranging to make 〈α|∂ρ̂W∂R |α
′〉 the subject

of the formula now gives

〈α|∂ρ̂W
∂R
|α′〉 =

∂ραα
′

W

∂R
−
∑
β

(
ραβW dβα′ − dαβρβα

′

W

)
. (A.13)

Substituting this expression for 〈α|∂ρ̂W∂R |α
′〉 back into Eq. (A.8), one arrives at the

following equation for the time derivative of the density matrix elements -

∂ραα
′

W (R,P, t)

∂t
= −iωαα′ραα

′
W − 1

2

∑
β

(
FαβW

∂ρβα
′

W

∂P
+
∂ραβW
∂P

F βα
′

W

)

− P

M

∂ραα
′

W

∂R
+
P

M

∑
β

(
ραβW dβα′ − dαβρβα

′

W

)
=

∑
ββ′

[
−iωαα′δαβδα′β −

1

2

(
FαβW δα′β′ ·

∂

∂P
+ F β

′α′

W δαβ ·
∂

∂P

)

− P

M
· ∂
∂R

δαβδα′β′ +
P

M
·
(
dβ′α′δαβ − dαβδα′β′

)]
ρββ

′

W (R,P, t)

=
∑
ββ′

−iLαα′,ββ′ρββ
′

W (R,P, t) . (A.14)

In the last line of the above equation, the quantum-classical Liouville operator

has been defined. Now to cast it in the form given in Eq. (4.18). To do this, one

first defines the classical-like Liouville operator [31]:

iLαα′ =
P

M
· ∂
∂R

+
1

2

(
FαW + Fα

′
W

)
· ∂
∂P

, (A.15)

which describes the classical evolution of the bath coordinates, and is given in terms
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of the Hellmann-Feynman forces for the adiabatic states α and α′ [58]. The quantum-

classical Liouville operator can now be written in the form

−iLαα′,ββ′ = −(iωαα′ + iLαα′)δαβδα′β′ +

[
P

M
·
(
dβ′α′δαβ − dαβδα′β′

)
− 1

2

(
FαβW δα′β′ + F β

′α′

W δαβ − (FαW + Fα
′

W )δαβδα′β′
)
· ∂
∂P

]
.

(A.16)

The terms in the square brackets now constitute the operator Jαα′,ββ′ . The next

step is to to obtain from these terms, the form for the J operator given by Eq. (4.21).

To do this, all the terms with a δα′β′ coefficient are grouped together, and all the

terms with a δαβ coefficient are grouped together, to give

Jαα′,ββ′ =

[
− P
M
· dαβ −

1

2

(
FαβW − FαW δαβ

)
· ∂
∂P

]
δα′β′

+

[
P

M
· dβ′α′ −

1

2

(
F β
′α′

W − Fα′W δα′β′
)
· ∂
∂P

]
δαβ . (A.17)

Now consider the derivative with respect to the bath position coordinate R, of

the matrix elements of the Hamiltonian -

− ∂

∂R
〈α|ĤW |β〉 = −〈 ∂α

∂R
|ĤW |β〉 − 〈α|

∂ĤW

∂R
|β〉 − 〈α|ĤW |

∂β

∂R
〉

= −〈 ∂α
∂R
|
(
P 2

2M
+ ĥW

)
|β〉 − 〈α|

(
∂

∂R

(
P 2

2M
+ ĥW

))
|β〉

− 〈α|
(
P 2

2M
+ ĥW

)
| ∂β
∂R
〉

= 〈α| ∂
∂R

ĥW |β〉 − 〈α|
(
∂ĥW
∂R

)
|β〉 − 〈α|ĥW

∂

∂R
|β〉 ,

(A.18)
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where the fact that the bath momentum commutes with the adiabatic states (which

only depend on R) and dαβ = −dβα has been used. Using 〈α|ĥW = Eα, ĥW |β〉 = Eβ,

and −〈α|
(
∂ĥW
∂R

)
|β〉 = FαβW , the above equation becomes

− ∂

∂R
〈α|ĤW |β〉 = Eβ〈α|

∂

∂R
|β〉+ FαβW − Eα〈α|

∂

∂R
|β〉

= FαβW − (Eα − Eβ) dαβ . (A.19)

But

− ∂

∂R
〈α|ĤW |β〉 = − ∂

∂R

[
〈α| P

2

2M
|β〉+ 〈α|ĥW |β〉

]

= − ∂

∂R
Eβδαβ

= F βW δαβ = FαW δαβ . (A.20)

Substituting this expression for − ∂
∂R〈α|ĤW |β〉 back into Eq. (A.19) yields the iden-

tity

FαβW − FαW δαβ = (Eα − Eβ)dαβ . (A.21)

Upon use of this identity, Eq (A.17) becomes

Jαα′,ββ′ =

[
− P
M
· dαβ −

1

2
(Eα − Eβ) dαβ ·

∂

∂P

]
δα′β′

+

[
P

M
· dβ′α′ +

1

2

(
Eα − Eβ′

)
dβ′α′ ·

∂

∂P

]
δαβ . (A.22)

Note that dβ′α′ = −d∗α′β′ , since the matrix for the nonadiabatic coupling vector is

anti-hermitian. Making this substitution for dβ′α′ , and taking out common factors of

− P
M ·dαβ and − P

M ·d
∗
α′β′ from the first and second pair of square brackets respectively,



133

gives

Jαα′,ββ′ = − P

M
· dαβ

(
1 +

1

2

∆Eαβdαβ
P
M · dαβ

∂

∂P

)
δα′β′

− P

M
· d∗α′β′

(
1 +

1

2

∆Eαβd
∗
α′β

P
M · d

∗
α′β′

· ∂
∂P

)
δαβ , (A.23)

which is the form for the J operator defined by Eq. (4.21).



Appendix B

Derivation of the Phase Space

Distribution Function

In this appendix, the full derivation for the distribution function of a canonical

ensemble of quantum harmonic oscillators [71] is performed. It is this distribution

function that is used to sampled the initial conditions for the harmonic bath in the

spin-boson system simulations.

First consider the canonical ensemble. The density matrix is given by

ρ̂ =
1

Z(β)
e−βĤ ≡ 1

Z(β)
Ω̂ , (B.1)

where β = 1/kT , k is the Boltzmann constant, and Z(β) is the canonical partition

function Z(β) = Tr
(
e−βĤ

)
. The right hand of Eq. (B.1) defines the unnormalised

density matrix Ω̂. If the initial condition Ω̂ (β = 0) = Î is satisfied, where Î is the

identity matrix, the unnormalised density matrix then satisfies the Bloch equation -

∂Ω̂

∂β
= −ĤΩ̂ = −Ω̂Ĥ . (B.2)
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Applying the Wigner transform, and using the identity given in Eq. (3.17), this

equation becomes -

∂ΩW (q, p)

∂β
= −HW (q, p)e

h̄Λ
2i ΩW (q, p)

= −ΩW (q, p)e
h̄Λ
2i HW (q, p) , (B.3)

where Λ is the negative of the Poisson bracket and (q, p) are phase space coordinates.

Using Eq. (B.3), in conjunction with Eq. (3.17), yields

HW (q, p)e
h̄Λ
2i ΩW (q, p) = HW (q, p)e−

h̄Λ
2i ΩW (q, p) . (B.4)

The Wigner transformed Bloch equation can thus be rewritten as

∂ΩW (q, p)

∂β
=

1

2

[
−HW (q, p)e

h̄Λ
2i ΩW (q, p)−HW (q, p)e−

h̄Λ
2i ΩW (q, p)

]
. (B.5)

The complex exponentials above can be expanded using the Euler formula, giving

∂ΩW (q, p)

∂β
=

1

2

[
−HW

(
cos

(
h̄Λ

2

)
− i sin

(
h̄Λ

2

))
ΩW

− HW

(
cos

(
h̄Λ

2

)
+ i sin

(
h̄Λ

2

))
ΩW

]
= −HW (q, p) cos

(
h̄Λ

2

)
ΩW (q, p) . (B.6)

Equation (B.6) applies for a general Hamiltonian, but consider now the Wigner-

transformed Hamiltonian for an ensemble of harmonic oscillators:

HW =
p2

2m
+

1

2
mω2q2 . (B.7)

where a multidimensional notation (q, p) = (q1, q2, ..., p1, p2, ...) is being used. Sub-
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stitution of this Hamiltonian into the Wigner transformed Bloch equations gives

∂ΩW

∂β
= −

(
p2

2m
+

1

2
mω2q2

)
cos

 h̄
2

 ←∂
∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q

ΩW . (B.8)

The next step is to approximate the cosine term using a series expansion to

second order in h̄:

cos

 h̄
2

 ←∂
∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q

 ≈ 1− 1

2

(
h̄

2

)2
 ←∂
∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q

2

. (B.9)

Expanding the square of the derivative terms in the round brackets gives

 ←∂
∂q

→
∂

∂p
−
←
∂

∂p

→
∂

∂q

2

=

←
∂

∂q

→
∂

∂p

←
∂

∂q

→
∂

∂p
−
←
∂

∂q

→
∂

∂p

←
∂

∂p

→
∂

∂q

−
←
∂

∂p

→
∂

∂q

←
∂

∂q

→
∂

∂p
+

←
∂

∂p

→
∂

∂q

←
∂

∂p

→
∂

∂q

=

←
∂2

∂q2

→
∂2

∂p2
−

←
∂2

∂q∂p

→
∂2

∂q∂p
−

←
∂2

∂p∂q

→
∂2

∂q∂p

+

←
∂2

∂p2

→
∂2

∂q2

=

←
∂2

∂q2

→
∂2

∂p2
−2

←
∂2

∂q∂p

→
∂2

∂q∂p
+

←
∂2

∂p2

→
∂2

∂q2
. (B.10)

Subsequent substitution of this second order expression for the cosine term into Eq.

(B.8) yields

∂ΩW

∂β
= − p2

2m

1− h̄2

8

 ←
∂2

∂q2

→
∂2

∂p2
−2

←
∂2

∂q∂p

→
∂2

∂q∂p
+

←
∂2

∂p2

→
∂2

∂q2

ΩW

− mω2q2

2

1− h̄2

8

 ←
∂2

∂q2

→
∂2

∂p2
−2

←
∂2

∂q∂p

→
∂2

∂q∂p
+

←
∂2

∂p2

→
∂2

∂q2

ΩW
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= −
(
p2

2m
− 1

2
mω2q2

)
ΩW +

h̄2

8m

∂2ΩW

∂q2
+
h̄2

8
mω2∂

2ΩW

∂p2
.

(B.11)

This is the Wigner transformed Bloch equation for the harmonic oscillator. Note

that because the harmonic Hamiltonian only contains terms that are second order in

q and p, the Wigner transformed Bloch equation using the second order approxima-

tion for the cosine term (Eq. (B.11) is exact. The higher order terms of the cosine

expansion only contain derivatives of order higher than two, which when acted upon

the Hamiltonian give zero.

However, despite the approximation made for the cosine term, Eq. (B.11) is still

difficult to solve in its current form. To resolve this, an ansatz can be made for the

form of ΩW :

ΩW (q, p) = e−A(β)HW (q,p)+B(β) , (B.12)

where the functions A and B are subject to initial conditions A(0) = B(0) = 0.

To obtain the unnormalised density matrix, the functions A(β) and B(β) thus need

to be determined. To this end, the derivatives of ΩW with respect to the spatial

coordinate are calculated:

∂ΩW

∂q
= ΩW

(
−A∂HW

∂q

)
,

⇒ ∂2ΩW

∂q2
=

∂ΩW

∂q

(
−A∂HW

∂q

)
−AΩW

∂2HW

∂q2

=

(
−A∂HW

∂q

)2

ΩW −AΩW
∂2HW

∂q2

=
(
A2m2ω4q2 −Amω2

)
ΩW , (B.13)

as well as the derivatives with respect to the momentum coordinate:
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∂ΩW

∂p
= −A∂HW

∂p
ΩW ,

⇒ ∂2ΩW

∂p2
= −A∂

2HW

∂p2
ΩW −A

∂HW

∂p

∂ΩW

∂p

= −A∂
2HW

∂p2
ΩW +

(
A
∂HW

∂p

)2

= −A
m

ΩW +

(
A
p

m

)2

ΩW

= −A
m

Ω +A2 p
2

m2
ΩW , (B.14)

and finally with respect to β:

∂ΩW

∂β
=

(
−∂A
∂β

HW +
∂B

∂β

)
ΩW . (B.15)

Substituting Eqs. (B.13), (B.14) and (B.15) back into the the Wigner trans-

formed Bloch equation, and dividing through by ΩW , the equation becomes

−∂A
∂β

HW +
∂B

∂β
= −

(
p2

2m
+

1

2
mω2q2

)
+
h̄2

8
A2mω4q2 − h̄

8
Aω2

− h̄2

8
ω2A+

h̄2

8
ω2A2 p

2

m

= −HW +
h̄2

8

[
A2mω4q2 −Aω2 − ω2A+ ω2A2 p

2

m

]

= −HW +
h̄2

4

[
−Aω2 + ω2A2

(
1

2
mω2q2 +

p2

2m

)]

= −HW +

(
h̄ω

2

)2 [
−A+A2HW

]
. (B.16)

Performing some rearranging, one obtains
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⇒ −∂A
∂β

HW +HW = −∂B
∂β

+

(
h̄ω

2

)2 [
−A+A2HW

]
,

⇒
[
−∂A
∂β

+ 1−
(
h̄ωA

2

)2
]
HW +

[
∂B

∂β
+

(
h̄ω

2

)2

A

]
= 0 . (B.17)

The terms in both pairs of square brackets are dependent on β only, and not

on the phase space coordinates q and p. Because of this, the equation must hold

for all values of (q, p), and each set of square brackets must vanish independently.

Therefore

dA

dβ
− 1 +

(h̄ω)2

4
A2 = 0 , (B.18)

and

dB

dβ
+

(h̄ω)2

4
A = 0 . (B.19)

Consider Eq. (B.18), which only contains the function A(β). It can be rewritten

as

dA

1− (h̄ω)2

4 A2
= dβ . (B.20)

To solve this equation, it is convenient to perform a change of variables. Letting

x = h̄ω
2 A, then dA = 2

h̄ωdx, and the above equation becomes
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2

h̄ω

∫
dx

1− x2
=

∫
dβ . (B.21)

Using the identity

1

1− x2
=

1

2

d

dx
ln

(
1 + x

1− x

)
, (B.22)

one obtains

β =
1

h̄ω

∫
dx

d

dx
ln

(
1 + x

1− x

)
=

1

h̄ω
ln

(
1 + x

1− x

)
=

1

h̄ω
ln

(
1 + h̄ω

2 A

1− h̄ω
2 A

)
, (B.23)

or, rewriting it in exponential form:

eh̄ωβ =
1 + h̄ω

2 A

1− h̄ω
2 A

.

It is then a simple case of performing some rearrangement to obtain A(β) as the

subject of the formula:

A(β) =
2

h̄ω

eh̄ωβ − 1

eh̄ωβ + 1

=
2

h̄ω

e
h̄ω
2
β − e−

h̄ω
2
β

e
h̄ω
2
β + e−

h̄ω
2
β

=
2

h̄ω
tanh

(
h̄ω

2
β

)
. (B.24)

To obtain the functionB(β), Eq. (B.24) must now be substituted into Eq. (B.19):
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∂B

∂β
+

(
h̄ω

2

)
2

h̄ω
tanh

(
h̄ω

2
β

)
= 0 . (B.25)

Rearranging to make B the subject of the formula gives

B = − h̄ω
2

∫
dβ tanh

(
h̄ωβ

2

)
. (B.26)

In order to solve this integral, one can consider

tanhx =
sinhx

coshx

=
d

dx
ln(coshx) . (B.27)

Identifying x = h̄ωβ
2 , and thus dβ = 2

h̄ωdx, yields

⇒ B = − h̄ω
2

2

h̄ω

∫
dx tanhx

= −
∫
dx

d

dx
ln (coshx)

= − ln (coshx)

= − ln

[
cosh

(
h̄ωβ

2

)]
. (B.28)

Now that A(β) and B(β) have been determined, they can be substituted back

into the original ansatz for the unnormalised distribution function ΩW :

ΩW = e−A(β)HW (q,p)+B(β)

= e− ln cosh( h̄ωβ2 )e−
2
h̄ω

tanh( h̄ωβ2 )HW (q,p)
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=
1

cosh
(
h̄ωβ

2

)e− 2
h̄ω

tanh( h̄ωβ2 )HW (q,p) . (B.29)

In order to obtain the full distribution function for the canonical ensemble of

harmonic oscillators, all that remains is to determine the partition Z(β). It is

defined as

Z(β) =

∫ ∫
dqdpΩW (q, p, β)

=
1

cosh
(
h̄ωβ

2

) ∫ ∫ dqdp e
− 2
h̄ω

tanh( h̄ωβ2 )
(
p2

2m
+ 1

2
mω2q2

)
, (B.30)

where the integrals are performed over all of phase space. The integrand in the

equation above can be factorised into q-dependent terms and p-dependent terms, to

give

Z(β) =
1

cosh
(
h̄ωβ

2

) ∫ dpe−
2
h̄ω

tanh( h̄ωβ2 ) p
2

2m

∫
dqe−

2
h̄ω

tanh( h̄ωβ2 )mω
2

2
q2
.

(B.31)

Both the integrands are simple Gaussian functions, so

Z(β) =
1

cosh
(
h̄ωβ

2

)
 π(

1
h̄ωm

)
tanh (h̄ωβ)

 1
2 (

π(
mω
h̄

)
tanh (h̄ωβ)

) 1
2

=
1

cosh
(
h̄ωβ

2

) π

tanh
(
h̄ωβ

2

) 1√
1

h̄ωm
mω
h̄

=
πh̄

cosh
(
h̄ωβ

2

) cosh
(
h̄ωβ

2

)
sinh

(
h̄ωβ

2

)
=

πh̄

sinh
(
h̄ωβ

2

) . (B.32)



143

The normalised Wigner transformed distribution function is given by

ρW (q, p, β) =
1

Z(β)
ΩW (q, p, β) .

Substituting the expressions for ΩW and Z(β), given by Eqs. (B.29) and (B.32)

respectively, produces the final result:

ρW (q, p, β) =
sinh

(
h̄ωβ

2

)
πh̄

e−
2
h̄ω

tanh( h̄ωβ2 )H

cosh
(
h̄ωβ

2

)
=

1

πh̄
tanh

(
h̄ωβ

2

)
e−

2
h̄ω

tanh( h̄ωβ2 )H . (B.33)
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