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ABSTRACT

Oxidative stress, resulting from an antioxidant/free radical imbalance, is considered to

be an important etiologic factor in the patho-physiological changes associated with

salt sensitive hypertension. An important unresolved issue in hypertension research is

the mechanism for organ damage during the development of the syndrome. Reactive

oxygen species (ROS) such as the superoxide radical (02) , hydrogen peroxide

(H202), and the hydroxyl radical (OH), may playa critical role in the pathogenesis of

hypertension by targeting the very tissue that is responsible for regulating blood

pressure, during the hypertensive state.

Thus, this study was undertaken to evaluate the antioxidant and free radical status in

the DSS rat strain, which has been shown to be an excellent model of salt sensitive

hypertension. The antioxidant status was evaluated on the basis of the vascular

superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels, and the free

radical status was evaluated on the basis of the plasma H20 2 concentration. The levels

of malonyldialdehyde (MDA), which is a bio-marker for lipid peroxidation was used

to determine the level of oxidative stress in the kidney, liver and brain. The kidney

and liver were also subjected to an induced free radical mediated lipid peroxidation,

by exposing the tissue to increasing known concentrations of H202 (2.5mM - 15mM).

The level of lipid peroxidation was used to assess the tissues antioxidant buffering

capacity to an induced free radical "attack".

The results have shown that the DSS strain may have a compensatory increase in

vascular SOD levels, to counter an increase in 02-. SOD levels were significantly

lower during salt loading. The GPx levels were significantly lower in the DSS strain,
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and showed a slight increase during salt loading. The results demonstrate that the DSS

strain has a compromised antioxidant status compared to the DSR strain. The plasma

H202 concentration displayed non-significant changes in the DSS strain, however salt

loading did result in a non-significant increase in the plasma H202 concentration in

the DSS strain. The GPx : HZ02 ratio, demonstrated an inadequate increase in GPx

levels during salt loading to neutralise this non-significant increase in HzOz

concentration.

The kidney showed an increased level of in vivo lipid peroxidation, which could

implicate increased tissue damage, and thus confirm the kidney as being a target

organ during the hypertensive state. The liver and brain showed non-significant

differences in the level of in vivo lipid peroxidation and are therefore thought not to

be target tissue in the hypertensive state. The kidney displayed a decreased

antioxidant buffering capacity to the induced free radical "attack", thereby

demonstrating the tissue's decreased ability to neutralise an increased free radical

level. Although the liver displayed a "normal" level of in vivo lipid peroxidation, it

also displayed a decreased antioxidant buffering capacity to an induced free radical

"attack", showing that the liver is able to cope with in vivo free radical levels, but at

higher free radical levels, its loses its ability to quench a free radical "attack" and

thereby minimise lipid peroxidation. The in vivo lipid peroxidation levels of the

kidney, liver and brain have shown that tissues have varying abilities to cope with

tissue oxidative stress, and behave differently, in their free radical quenching abilities.

These results have shown that a compromised free radical and antioxidant status

results in oxidative damage to the tissue responsible for regulating blood pressure.

Xlll
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1. INTRODUCTION

Free radicals are constantly being generated in the body, as a result of normal

metabolic processes. Under physiological conditions, damage due to free radicals is

countered by antioxidants (Halliwell and Gutteridge., 1999). When excessive free

radical formation occurs in the body, and/or there are compromised levels of

antioxidants, the body cannot cope, i.e. the pro-oxidants overwhelm the antioxidants,

and the resulting situation is referred to as oxidative stress. Thus oxidative stress is a

general term used to describe a state of potential damage caused by free radicals

(Halliwell and Gutteridge., 1999).

Compelling experimental evidence indicates that reactive oxygen species (ROS) play

an important patho-physiological role in the development of hypertension. This is

due, in large part to a relative increase in superoxide (On and hydrogen peroxide

(H202) levels and the resultant decreased nitric oxide bioavailability in the vasculature

and kidneys (Touyz., 2004).

Oxidative damage to tissue has also been implicated in a wide variety of hwnan

diseases such as, atherosclerosis, diabetes and cancer. An important unresolved issue

in hypertension research is the mechanism of organ damage during the development

of the syndrome. Reactive oxygen species such as 02-, H20 2 and the hydroxyl radical

(OH-), may playa critical role in the pathogenesis of hypertension, and its associated

organ damage (Swei et al., 1997).

Another issue that remains unresolved is whether the increased oxidative stress is due

to an increase oxygen free radical concentration or due to a decrease in antioxidant

1



production. Although the deleterious effects of free radicals in biological systems

have been previously demonstrated, their role in kidney and liver damage in salt

sensitive hypertension has not been evaluated (Jacob., 1995, Yuan., 1998). Since

these organs play an important role in metabolism and blood pressure regulation,

attack by free radicals could well contribute to organ damage that is evident in

hypertension.

The Dahl rat has been established as an excellent model of salt sensitive hypertension.

Therefore this study determined the antioxidant status of this model by assessing the

levels of superoxide dismutase (SOD) in the red blood cell and the level of

glutathione peroxidase (GPx) in whole blood. The free radical status was determined

by using the plasma H202 concentration as an indicator of the relative free radical

concentration in vivo. This, being used because H202, is thought to be one of the few

ROS, that is intimately involved with the hypertensive state. The status of both these

parameters will be able to show whether a compromised antioxidant and/or free

radical status results in the increased level of oxidative stress associated with

hypertension.

The level of lipid peroxidation of the kidney, liver and brain would be used as an

indicator of tissue oxidative stress with potential organ damage. This would enable

the study to determine the role that tissue oxidative stress with resultant organ damage

plays during the hypertensive state. Thus, with these parameters it would be possible

to identify the role that free radicals and antioxidants play in either affecting or

contributing to the hypertensive state displayed by this model of salt sensitive

hypertension.
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Thus this study would provide a means of assessing the role that antioxidant therapy

may play in minimising the level of tissue damage associated with hypertension.

Along with this, the research undertaken in this study would provide further depth

into the putative role that increased free radicals and decreased antioxidant levels

have, with regard to the deleterious effects of hypertension related organ damage.

Thus the depth provided by this research would allow further preventative research to

be developed.

\
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2. LITERATURE REVIEW

2.1. Hypertension

Blood pressure is a normally distributed variable with no distinction between normal,

high and low levels. There is a positive correlation between high blood pressure and

the risk of associated organ damage. This risk increases with increasing levels of

blood pressure (Hickey and Graham.,1988). Shapiro et al., (1991) defined

hypertension as the level of blood pressure associated with an increased morbidity and

mortality. Although a more general clinical definition states that hypertension is that

level of blood pressure at which detection and treatment does more good than harm

and this offers a new challenge to define hypertension as a risk factor rather than a

pathological condition (Evans and Rose., 1971).

Hypertension, or a persistent high blood pressure, is defined by The World Health

Organisation (WHO Guidelines., 1999) as a systolic pressure of 140mm Hg or greater

and diastolic blood pressure of90mm Hg or greater (fable 1.).
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Table 1. Classification system to rank blood pressure values for adults - (WHO

Guidelines., 1999).

Systolic (mmHg) Diastolic (mmHg)

NORMAL Less than 130 mmHg Less than 85 mmHg

HIGH-NORMAL 130 -139 mmHg 85-89 mmHg

HYPERTENSION 140 mmHg or greater 90 mmHg or greater

Stage 1 (Mild) 140 - 159 mmHg 90-99mmHg

Stage 2 (Moderate) 160 - 179 mmHg 100 - 109 mmHg

Stage 3 (Severe) 180 - 209 rnrnHg 110 - 119 rnrnHg

Stage 4 (Very Severe) 210 mmHg or greater 140 mmHg or greater

2.1.1. Types and causes of Hypertension

A persistently elevated blood pressure that cannot be attributed to any identifiable

cause is termed primary (essential) hypertension (Tortora and Grabowski., 1996). In

the region of 90-95% of all hypertension cases fit this definition. It is suspected that

several factors combine to predispose a person to hypertension, including diet, lack of

exercise, metabolic effects, stress, and heredity, thereby manifesting itself as a multi­

factorial disease. The remaining 5-10% of cases is secondary hypertension which

results as a consequence of other disease states such as kidney disease, endocrine

disorders and complications to some drug treatments.
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2.1.2. Effect of Dietary Sodium in Hypertension

The evidence that salt has a definitive link with hypertension is not difficult to

marshal. The relationship between dietary salt intake and the development of

hypertension has been the subject of continuing debate for decades. There is abundant

epidemiological and experimental observations demonstrating a link between salt and

blood pressure (Weinberger., 1996). Although many controversies still exist regarding

the role of dietary sodium intake in the pathogenesis of hypertension, it is accepted

that there is a strong positive correlation between sodium intake and hypertension,

and even modest dietary sodium excess induces hypertension in salt-sensitive

individuals who are genetically susceptible (Laragh and Brenner., 1990).

2.2. Salt Sensitivity

Salt sensitivity is defined as the interindividual difference in the blood pressure

response to changes in dietary sodium chloride intake; it results in an alteration in the

slope of the pressure-natriuresis relationship (Strazzullo., 2003). Salt sensitivity is a

common trait in patients with essential hypertension and seems to have both an

inherited and an acquired component (e.g. is influenced by aging and renal

insufficiency). Studies show that for a given load of dietary salt, the blood pressure

response is variable amongst hypertensives and norrnatensives. Salt-Sensitive

hypertensives experience a significant rise in blood pressure when switching from a

low salt to a high-salt diet (Weinberger., 1996).

Salt-sensitive hypertension, which is due to alterations in dietary sodium, is apparent

from studies in both humans and certain animal models. The relevance of salt­

sensitive hypertension lies in demographical studies that have found people of African

6,



heritage to consistently have a greater frequency of salt sensitivity, when compared to

other demographic groups (Weinberger., 1996). The development of animal models

reinforced the concept that varying levels of salt intake result in varying levels of

blood pressure. Dahl et al., (1962) developed the Dahl Sensitive and Resistant rat

strains, these strains demonstrated a marked sensitivity and resistance, respectively,

with respect to the ability of a high-salt intake to raise blood pressure.

Although salt sensitivity and sodium sensitivity of blood pressure are often thought of

interchangeably, considerable evidence suggests that both sodium and chloride must

be provided to fully express salt sensitivity (Laragh and Brenner., 1990). Thus, in

animal models, feeding sodium without chloride or chloride without sodium does not

raise the blood pressure to the extent that NaCI feeding does (Boeghold and Kotchen.,

1991).
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Figure I. Analysis of arterial pressure regulation III salt-sensitive and non-salt-

sensitive essential hypertension
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In all forms of chronic hypertension, the renal pressure-natriuresis mechanism is

abnormal because sodium (chloride) excretion is the same as in the normotensive

individual, despite an increase in blood pressure. A resetting of the pressure

natriuresis relationship necessitates an increased blood pressure to maintain sodium

balance. By analysing the characteristics of the pressure natriuresis relationship in

hypertensive animals and by making comparisons with normotensive controls, it is

possible to gain insight into blood pressure-elevating mechanisms in experimental

animal models. The underlying abnormality in sodium excretion may involve the

kidneys or other hormonal factors. A parallel, rightward shift of the pressure­

natriuresis relationship (Fig. 1) is characteristic for a non-salt-sensitive (resistant)

form of hypertension. A decreased slope in the pressure-natriuresis relationship

indicates the presence of a salt-sensitive form ofhypertension (Gross et al., 1997).

2.2.1. Salt Sensitivity and Hypertension

The underlying etiology of salt-sensitive hypertension is multi-factorial and complex.

This is partly because it represents a syndrome rather than a specific disease entity

and also because of the difficulty in defining the characteristics of the disease

(Sanders., 1996). The importance of sodium as a determinant of blood pressure has

been substantiated by the numerous epidemiological, clinical and experimental

evidence, which supports a positive correlation between sodium and hypertension.

Thus the role for excess salt ingestion in the genesis and development of hypertension

is well established. It is the exact mechanism by which it engenders an increased

blood pressure that is under investigation by current studies.

8



It has been reported that for a given dietary salt load, the blood pressure response

varies amongst hypertensives and normotensives (Sullivan et al., 1988). It is this

variable response that gives rise to the concept of salt sensitivity and blood pressure

(Santello et al., 1997).

Ferri et al., (1998) characterized salt-sensitive hypertension as a cluster of renal,

hormonal, and metabolic derangements that might favour the development of

cardiovascular and renal complications. Although there is strong evidence that the

kidney is the final common pathway in the long-term control of blood pressure, the

initial elevation in blood pressure need not be attributed necessarily to the kidney.

This elevation could be attributed to other factors such as metabolic defects, genetic

defects, and diet (Cowley et al., 1995). A variety of factors can lead to a reduction of

renal excretory function and result in hypertension. These include circulating

hormones such as angiotensin II, aldosterone, atrial natriuretic peptide and renal

sympathetic nerve activity, which all have an important influence on the pressure­

natriuresis relation and lead to various forms ofhypertension.
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2.3. Free Radicals

Atoms are most stable in the ground state. An atom is considered to be "ground" when

every electron in the outermost shell has a complimentary electron that spins in the

opposite direction. By definition a free radical is any atom (e.g. oxygen, nitrogen)

with at least one unpaired electron in the outermost shell, and is capable of

independent existence. A free radical is easily formed when a covalent bond between

entities is broken and one electron remains with each newly formed atom. Free

radicals are highly reactive due to the presence of these unpaired electron(s)

(Karlsson., 1997). When free radicals donate an electron to, or accept an electron

from a surrounding compound or molecule, that compound or molecule becomes a

free radical itself. This process initiates a self-perpetuating chain reaction that

ultimately results in tissue damage.

2.3.1. Reactive Oxygen Species (ROS)

Any free radical derived from oxygen can be referred to as reactive oxygen species

(ROS) (Goldfarb, A. H., 1999). Molecular oxygen in the ground state is a bi-radical,

containing two unpaired electrons in the outer shell (also known as a triplet state).

Since the two single electrons have the same spin, oxygen can only react with one

electron at a time and therefore it is not very reactive with the two electrons in a

chemical bond. On the other hand, if one of the two unpaired electrons is excited and

changes its spin, the resulting species (known as singlet oxygen) becomes a powerful

oxidant as the two electrons with opposing spins can quickly react with other pairs of

electrons, especially double bonds. The reduction of oxygen by one electron at a time

produces relatively stable intermediates. The superoxide anion (02-. ) , which is a

product of one-electron reduction of oxygen, is the precursor of most ROS and a

10



mediator in oxidative chain reactions. Dismutation of 02-- (either spontaneously or

through a reaction catalysed by superoxide dismutase) produces hydrogen peroxide

(H202), which in tum may be fully reduced to water or partially reduced to hydroxyl

radical (OH-), one of the strongest oxidants in nature. (Reaction series shown below)

(Turrens., 2003).

- Superoxide Radical

- Hydroperoxyl radical

- Hydrogen Peroxide

(1)

(2)

(3)

Superoxide (02 -) and hydroxyl (OH a") are examples of reactive oxygen radicals.

However, the term reactive oxygen species can also refer to oxygen-derived non-

radicals such as hydrogen peroxide (H202), ozone (03) , hypochlorus acid (HOCI) and

singlet oxygen eOi). Nitric oxide (NO -) and nitrogen dioxide (N02 a") are nitrogen

radicals, but the term ROS also encompasses certain non-radicals such as nitrous acid

(HN02) and peroxynitrate (ONOO a") Table 2. (Halliwell et al., 1992).

Table 2. Reactive Oxygen Species

. ~ ,

Comm on Name
-: : ;. Half-Life (37uC) ~ , 'Species . - y . .

HO' Hydroxyl radical I nanosecond
H0 2' Hydroperoxyl radical unstable
Oi Superoxide anion radical enzymatic
102' Singlet oxygen 1 microsecond
RO' Alkoxyl radical 1 microsecond
ROO- Peroxlyl radical 7 seconds
NO' Nitric oxide radical 1-10 seconds
H202 Hydrogen peroxide stable
HOCI Hypochlorus acid stable
R = lipid

11



Reactive oxygen species are found in several cells including macrophages and

vascular smooth muscle cells. At low concentrations reactive oxygen species can act

as physiological mediators of cellular responses such as signal transduction, cell

growth and inflammation. At higher concentrations ROS may cause cell damage and

death (Irani., 2000). The major sources of reactive oxygen species are "leakages" from

the electron transport chains of mitochondria and endoplasmic reticulum. Only 1-2%

of these electrons are "leaked" to generate superoxide radicals in reactions mediated

by coenzyme Q and ubiquinone and its complexes. Neutrophils and macrophages

produce reactive oxygen species during phagocytosis ('oxygen burst') or stimulation

with several agents through the activation of nicotinamide adenine dinucleotide

phosphate reduced (NAD(P)H] oxidase that is assembled at the plasma membrane

from resident plasma membrane components and cytosolic protein components

(Forman and Torres., 2002). NAD(P)H oxidase is also, a major source of vascular

superoxide production. It should be noted that the activation of vascular NAD(P)H

oxidase by angiotensin II stimulates both 02- production and NO production (Pueyo et

al., 1998, Tepel., 2003).

It has become clear that the renin-angiotensin system plays a major role in

hypertension. The mechanism of renin-angiotensin system-induced hypertension has

generally been attributed to the vasoconstrictor effects of angiotensin II and the

mineralocorticoid effects of aldosterone. However, recent work has revealed an

additional potential mechanism in which Ang II increases blood pressure during the

hypertensive state. Angiotensin II has been shown to stimulate O2- generation by

increasing the activity of the enzyme NAD(P)H cytochrome P-450 oxidoreductase,

more commonly termed NAD(P)H oxidase (McIntyre et al., 1999).

12



The production of ROS by nonphagocytic NAD(P)H oxidase isoforms plays a role in

the regulation of intracellular signalling cascades in various types of nonphagocytic

cells including fibroblasts, endothelial cells, vascular smooth muscle cells, cardiac

myocytes, and thyroid tissue (Droge., 2002).

Problems occur when production of ROS exceeds their neutralisation by the natural

antioxidant defence system, or when the latter is compromised. This imbalance

between production of ROS and the diminished ability of cells to efficiently defend

against them, is called oxidative stress (Ebadi et al., 1996).

2.3.2. Implications of Free radicals in the Disease State

Pathological conditions may develop in cases of persistently elevated reactive oxygen

species (ROS) levels. These conditions result in a change in homeostatic balance.

Accordingly, pathological symptoms may result from both the damaging effects of

ROS in tissue and from ROS-mediated changes in gene expression (Droge., 2002).

Free radicals are very reactive species that damage biologically critical molecules

(Halliwell et ai., 1992). ROS react directly with cellular lipids, proteins, and DNA,

causing cell damage, leading to cell death. Damage to DNA can occur directly by free

radicals in close proximity to the DNA or indirectly, for example, by impairing

production of proteins needed to repair DNA (Dhalla et al., 2000). Alteration in DNA

is a major factor in the development of cancer. Free radicals can attack fatty acid side

chains of intracellular membranes and lipoproteins and a chain reaction known as

lipid peroxidation ensues. The products of lipid peroxidation can further damage

membrane proteins, making the cell membrane" leaky" and eventually leading to loss

13

~, -,\".' . :--.



of membrane integrity. The last structures damaged by oxidative stress are cellular

proteins. Oxidized proteins may trigger antibody formation, autoimmune processes

and can cause inactivation of critical enzymes that induce denaturation thereby

rendering proteins non-functional (Halliwell and Gutteridge., 1999).

" i'" ~..., .;
,_,_, .,., .. ;. ... 1.
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2.4. The Antioxidant System

All organisms that respire aerobically have evolved defence mechanisms against free

radicals, which are known collectively as antioxidants. An antioxidant is a substance

that prevents oxidation. In biological systems antioxidants can work in various ways,

including catalytic removal of free radicals, as scavengers of free radicals or in the

form of proteins that minimize the availability of pro-oxidants (molecules that

promote free radical formation) such as metal ions. However, there are circumstances

in which certain antioxidants can actually behave as pro-oxidants (Halliwell., 1996).

The major endogenous antioxidants are:

1) Superoxide dismutase (SOD) which neutralises 02 ...

2) Catalase (CAT) which converts H20 2to water (H20 ) and O2, and

3) Glutathione Peroxidase (GPx) which aids with H202 neutralisation and

thereby prevents hydroxyl radical (OH -') formation.

Many other substances such as uric acid, iron-binding proteins, selenium,

ceruloplasmin, bilirubin and estrogen can also function as antioxidants in specific

compartments. Lipoic acid and coenzyme Q10 are other antioxidants under

investigation. Lipoic acid has the unique ability to regenerate several other

antioxidants such as vitamin E, vitamin C, coenzyme Q10 and glutathione. Coenzyme

Q10 can also regenerate vitamin E from its radical form and is capable of scavenging

oxygen radicals and preventing disruption of lipid cell membranes (Table. 3)

(Halliwell., 1996, Packer and Coleman., 1999).
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Table 3. The major Primary and Secondary antioxidants in mammals.

Primary Antioxidants

Endogenous Antioxidants Dietary Antioxidants Metal Binding Proteins
NADPH and NADH Vitamin C (Ascorbic acid) Ceruloplasmin (Cu)
Glutathione and thiols (-SH) Vitamin E (Tocopherols) Metallothionein (Cu)
Ubiquinol (coenzyme Q) Carotenoids Albumin (Cu)
Uric acid Transferrin (Fe)
Bilirubin Ferritin (Fe)
Metalloenzymes Myoglobin (Fe)

Secondary / Free radical Scavenging Enzymes
Enzymes Reaction

Superoxide dismutase (SOD) 202-. + 2H+~ HZ02 + O2
Catalase (CAT) 2H202~ 2H20 + O2
Gluthione peroxidase (GPx) ROOH + 2GSH ~ ROH ~ H20 + GSSG

GSH = reduced glutathione
GSSG = oxidized glutathione

2.4.1. Superoxide Disrnutase (SOD)

The superoxide dismutases (SOD) are a major cellular defence system against

superoxide. These enzymes contain redox metals in the catalytic center and convert .

superoxide radicals to hydrogen peroxide and oxygen (Table. 3). Three different

isoforms of SOD have been identified: the mitochondrial manganese-containing SOD

(MnSOD, SOD-2), the cytosolic copper/zinc-containing SOD (CuZnSOD, SOD-I),

and the extracellular SOD (ecSOD, SOD-3), which is also a copper/zinc-containing

enzyme that is mainly produced and secreted by vascular smooth muscle cells

(VSMC) (Wassmann et al., 2004).

SOD-l is located in the cytosol and nucleus of all cell types. Whereas the SOD

isoenzymes are normally thought to be protective, it is postulated that increased

SOD-l activity produces increased amounts of H202, which become toxic in the

presence ofnormal glutathione and catalase activity (Yarom et al., 1988).

16



SOD-2 is synthesized in the cytoplasm and directed to the mitochondria by a signal

peptide, where it is involved in dismutating the O2- generated by the respiratory chain

of enzymes. The essential role ofSOD-2 is to maintain mitochondrial function

(Li et al., 1995).

SOD-3 is produced in fibroblasts and glial cells and secreted into the extracellular

fluid, where it is the principal SOD. SOD-3 exists in the vasculature mainly bound to

the surface of the endothelial cells and the extracellular matrix. Because of its

location, SOD-3 has been identified as the principal regulator of endothelium-derived

nitric oxide (NO) bioavailability, although this does not exclude cytosolic SOD-I

which is also thought to be important regulator (Marklund et al., 1982, Oury et al.,

1996, McIntyre et a/., 1999).

2.4.2. Glutathione Peroxidase (GPx)

Glutathione peroxidases are widely distributed in animal tissues. Reduced glutathione

(OSH) plays a major role in the regulation of the intracellular redox state of vascular

cells by providing reducing equivalents for many biochemical pathways. Glutathione

peroxidase (GPx) is a selenium-containing antioxidant enzyme that effectively

reduces hydrogen peroxide and lipid peroxides to water and lipid alcohols,

respectively, and gluthione is in turn is oxidized to glutathione disulfide (Table. 3)

(Wassmann et al., 2004).

Glutathione peroxiclases are a family of tetrameric enzymes that require selenium for

activity. Dietary selenium actively participates in the catalytic reaction, and this is

often the basis for antioxidant protection offered by supplemental selenium. Selenium­

containing peroxidases comprise a family of enzymes of at least four types. The
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"classic" gluthione peroxidase (cGPx) acts on H202 and hydroperoxides of fatty acids

and cholesterol, but not esterified lipids such as those present in lipoproteins.

Phospholipid hydroperoxide gluthione peroxidase (PHGPx) is the only enzyme known

to reduce complex lipid hydroperoxides in lipoproteins (Stocker and Keaney., 2004).

In the absence of GPX activity or inadequate glutathione levels, hydrogen peroxide

and lipid peroxides are not detoxified and may be converted to hydroxyl radicals and

lipid peroxyl radicals, respectively, by transition metals (e.g., Fe2+). The

GPxlgluthione system is thought to be a major defense in low-level oxidative stress

(Wassmann et al., 2004).

Reduced gluthione (GSH) is recognized as one of the most important non-enzymatic

oxidant defenses within the body. It exists in very large quantities (mM levels) within

cells where it acts to detoxify peroxides as well as maintain other physiologically

important antioxidants in their reduced form (Tarpey et ai., 2004). It has been

suggested by Jones., 2002 that, 'the balance of GSH and GSSG provides a dynamic

indicator of oxidative stress in vivo". Therefore gluthione levels in vivo, is an

important indicator of oxidative stress.
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2.4.3. The Antioxidant System as a Functional Unit

The antioxidant system which is responsible for cellular protection against oxidative

stress is as diversified as the free radicals themselves. These scavengers are

strategically compartmentalized in subcellular organelles within the cell to provide

maximum protection (Ji et al., 1988, Yu., 1994).

The complexity of the intracellular network of various antioxidants has impeded

understanding of the overall protective efficiency of the antioxidant defense system

(Wassmann et al., 2004). It has been proposed by Davies., 1988, that the following

scheme is a comprehensive classification of antioxidant defense systems. Primary

defenses include; 1) antioxidant compounds such as Vitamins E, A and C, gluthione,

and uric acid and 2) antioxidant scavenging enzymes such as superoxide dismutase,

catalase and peroxidases. For Secondary defenses, he suggested lipolytic enzymes,

phospholipases, proteolytic enzymes, proteases, peptidases, DNA repair enzymes,

endonuclease, exonuclease and ligase. This scheme offers the greatest versatility and

utility to compartmentalize the antioxidant system (Yu., 1994).

In addition to the integration of intracellular cytosolic defenses, the cooperative

interaction between the various antioxidants is crucial for maximum suppression of

free radical reactions in extracellular compartments (Yu., 1994).

Although antioxidants are specific to the respective free radicals, the antioxidants

display a "concert effect" pertaining to their actions. These actions are well

coordinated and provide a maximal protection against free radicals. An example to

demonstrate the cooperative actions of different antioxidants is in the breakdown of

the superoxide radical. As shown previously (Fable 3.), SOD neutralizes the
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superoxide radical by converting it to hydrogen peroxide. The resultant hydrogen

peroxide, which is in itself a free radical, is then broken down by GPx and catalase,

into H20 and 02, which are stable end products. If not for the coordinated actions of

these antioxidants, then the self-perpetuating actions of the superoxide radical and

hydrogen peroxide, would be deleterious to the organism. Thus, this one example

alone demonstrates the coordinated depth of the antioxidant system as a functional

unit.

/1',J.... i
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2.5. Oxidative Stress

2.5.1. The Concept of Oxidative Stress

Oxidative stress can be defined as the disruption ofthe equilibrium between the

factors that promote free-radical formation and antioxidant defense mechanisms

(Halliwell et al., 1992). According to Turrens., 2003, 'oxidative stress' is an

expression used to describe various deleterious processes resulting from an imbalance

between the excessive formation of reactive oxygen species (ROS) and/or reactive

nitrogen species (RNS) and limited antioxidant defences.

Whilst small fluctuations in the steady-state concentration of these oxidants may play

a role in intracellular signalling, uncontrolled increases in the steady-state

concentrations of these oxidants lead to free radical-mediated chain reactions which

indiscriminately target proteins, lipids, polysaccharides and DNA (Droge., 2002).

2.5.2 Implications of Oxidative Stress

Oxidative stress occurs in most human diseases. However this does not imply that

oxidative stress is the cause of most diseases. The increase in free radicals may be

secondary to the disease process (Halliwell and Gutteridge., 1999).

There is a growing awareness that oxidative stress plays a role in various clinical

conditions (Droge., 2002). Malignant diseases, diabetes, atherosclerosis,

hypertension, chronic inflammation, human immunodeficiency virus (HIV) infection,

neurodegenerative diseases and sleep apnea are important examples. These diseases

fall into two major categories. In the first category, diabetes mellitus and cancer show

commonly a pro-oxidative shift, suggesting that skeletal muscle mitochondria may be ' ,'.. '
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the major site of elevated ROS production. These conditions may be referred to as

"mitochondrial oxidative stress". The second category may be referred to as

"inflammatory oxidative conditions" because it is typically associated with an

excessive stimulation of NAD(P)H oxidase activity by cytokines or other agents. In

this case increased ROS levels or changes in intracellular glutathione levels are often

associated with pathological changes. These pathological changes are indicative of a

dysregulation of signal cascades and/or gene expression, exemplified by altered

expression of cell adhesion molecules (Cutolo et al., 1993, Dosquet et al., 1992).

In malignant diseases ROS are potential carcinogens because they facilitate

mutagenesis, tumour promotion, and progression. Certain types of cancer cells

produce substantial amounts of ROS. The growth-promoting effects of ROS are

related to redox-responsive signalling cascades. Even normal cells often show

increased proliferation and expression of growth-related genes if exposed to hydrogen

peroxide or superoxide. The apparent inconsistency between the uncontrolled cell

growth in ROS-producing malignant cells and the ROS·induced senescence in normal

cells suggests, however, that ROS production may be necessary but not sufficient to

t , induce malignant cell growth (Dreher et al., 1996, Ha et al., 2000, Droge., 2002).

Elevated ROS levels have also been implicated in diabetes mellitus. In this case

oxidative stress is associated with a pro-oxidative shift of the glutathione redox state

in the blood. Elevated glucose levels are associated with increased production of ROS

by several different mechanisms. In addition the process of glucose auto-oxidation

generates superoxide. Glucose auto-oxidation results in plasma glucose undergoing a

non-enzymatic chemical reaction with proteins, the products of which are able to '"
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reduce molecular 02 to ROS such as 02-, H202 and OH-. The increase in ROS

production contributes to the development of complications associated with diabetes

such as atherosclerosis and other vascular complications (Nishikawa et al., 2000,

Baynes., 1991, Droge., 2002).

Atherosclerosis is a multifactorial disease characterized by hardening and thickening

of the arterial wall. The vascular areas affected by this disease contain mononuclear

cells, proliferating smooth muscle cells, and extracellular matrix components.

Atherosclerosis is commonly viewed as a chronic inflammatory disease and is

associated with certain risk factors such as hyperlipidemia, diabetes, and hypertension.

Excessive ROS production has been implicated in the pathogenesis of atherosclerosis

and hypertension. Oxidative stress induces the expression of protein kinases such as

focal adhesion kinase and intercellular adhesion molecules (Alexander., 1999, Auch­

Schwelk et al., 1992, Droge., 2002).

Oxidative stress has also been implicated by numerous studies in neurodegenerative

diseases such as Downs Syndrome and Alzheimer's Disease (Droge., 2002). The

available literature on these topics is specific, vast and well investigated. This shows

that local uncontrolled production of ROSIRNS occurs in several diseases which

indicates how damaging these species can be (Evans and Halliwell., 2001).

t,"·,,· \..;",'
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2.5.3. Lipid peroxidation as an Indicator of Oxidative Stress

Lipid peroxidation is a well-established mechanism of cellular injury in both plants

and animals, and is used as an indicator of oxidative stress in cells and tissues. Lipid

peroxides are unstable and decompose to form a complex series of compounds

including reactive carbonyl compounds. Polyunsaturated fatty acid peroxides generate

malonyldialdehyde (MDA) and 4-hydroxyalkenals (HAE) upon decomposition.

Measurement of MDA and HAE has been used successfully as an indicator of lipid

peroxidation (Esterbauer et al., 1991).

Many of the methods used to detect lipid peroxidation in urine, blood plasma, or

tissue are non-specific, relying on the detection of thiobarbituric acid (TBA)- reactive

substances such as MDA or other reactive aldehydes generated in vivo or in vitro by

the decomposition of lipid peroxidation products (Tarpey et a/2004). The literature

shows that non-enzymatic, free radical-induced lipid peroxidation produces F2-like

prostanoid derivatives of arachidonic acid called F2-isoprotanes. These F2-isoprotanes

have proven to be a more reliable indicator of oxidative stress, because of their stable

nature, and that they can be measured in extra cellular fluids such as plasma and urine

thereby making it a relatively non-invasive approach in assessing oxidative stress

(Roberts and Morrow., 2000, Tarpeyet az', 2004).

Other analytical tests to assess lipid peroxidation include the following techniques:

fluorometry of lipofuscin-like substances in serum, spectrophotometry of conjugated

dienes in lipid extracts of plasma and microsomes, gas chromatography of ethane or

pentane in exhaled breath, hydroperoxide determination, fluorometry, high­

performance liquid or gas-liquid chromatography, measurements of other saturated ,.
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and unsaturated aldehydes and oxygen uptake during lipid peroxidation (Wilson et al.,

1997). The above-mentioned methods are used for the determination of generalised

oxidative stress in vivo and in vitro.

Lipid peroxidation has been linked to a variety of disorders, including atherogenesis,

diabetes and UV-induced carcinogenesis (Girotti., 1998). There are a variety of

methods available in the literature, with respect to the direct measurement of ROS,

this provides a specific measurement of the related ROS inducing the oxidative stress.

... ;:.'".··'1',.···., 1."-
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2.6. Free Radicals, Oxidative stress and the link to Hypertension

Reactive oxygen species such as the superoxide radical (02-), hydrogen peroxide

(H202), and hydroxyl radical (OH-), play a critical role in the pathogenesis of

hypertension, as well as in other conditions such as atherosclerosis, stroke, and

myocardial infarction (Gryglewski et al., 1986) Oxygen free radicals and the resulting

oxidative stress play a dual role in hypertension. On one hand, they affect vascular

resistance by inactivating NO, thereby causing arteriolar vasoconstriction and

elevation of peripheral hemodynamic resistance; on the other hand, they may serve as

trigger mechanisms for lesion formation and organ damage (Haliwell and Gutteridge.,

1999, Swei et al., 1997).

2.6.1. Nitric Oxide (NO)

Essential hypertension in several animal models of hypertension, including salt­

sensitive models are associated with increased peripheral vascular resistance. Due to

nitric oxide (NO) being an endogenous vasodilator, there are theoretical reasons to

why reduced NO production or bioavailability would lead to vasoconstriction and

hence, increased peripheral vascular resistance. NO has been found to regulate the

tone of normal vessels, including resistance vessels. In addition, NO causes renal

vasodilatation with consequent diuresis and natriuresis. These actions would tend to

lower blood pressure; therefore, an attenuation in this mechanism could theoretically

contribute to hypertension (McIntyre et al., 1999).

Several studies suggest the superoxide radical interacts with NO and thus limits its

bioavailability. The affinity of NO for superoxide is so high that its reaction rate is

limited only by diffusion. Because superoxide effectively degrades NO, the biological
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activity of NO may be determined by the availability of superoxide (Schnackenberg.,

2002).

During oxidative stress, NO depletion occurs by the reaction of NO with the

superoxide anion to form peroxynitrite (ONOO"). The presence of peroxynitrite can

lead to a number of adverse effects, including protein nitration, lipid peroxidation,

DNA degradation and enhanced tubuloglomerular feedback responses (Unlap et al.,

2003, Hemnani and Parihar., 1998).

Studies have shown that increased oxidative stress affects hypertension, in part by

reducing the levels of NO. Intravenous administration of SOD-Hb, an artificially

synthesised form of SOD, significantly decreases the blood pressure of SHR but not

of the Wistar controls, demonstrating the significant role played by the decreased

bioavailability of NO due to superoxide (Nakazono et al., 1991). Reduction in NO can

lead to augmented vasoconstrictive responses, increased blood viscosity, resistance to

blood flow, and hypertension (Unlap et al., 2003, Welch and Wilcox., 2001).

2.6.2. Vascular Changes

Reactive oxygen Species (ROS) production is intimately involved in many of the

processes leading to both hypertrophic and proliferative vascular smooth muscle cells

(VSMC) growth. It has been known for many years that the vasoactive peptide

Angiotensin II (Ang II) can induce VSMC hypertrophy. Ang II increases NAD(P)H­

driven superoxide production in cultured vascular smooth muscle cells and fibroblasts

(Taniyama and Griendling., 2003). ROS also mediate the full proliferative response to

agonists such as platelet-derived growth factor (PDGF) and thrombin. H20 2 has been
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shown to induce VSMC proliferation, although this effect is critically dependent on

the concentration of H202 to which cells are exposed. Furthermore, VSMC

proliferation by PDOF or thrombin requires H202 generation. (Brown et al., 1999).

Endogenously produced H202 may also be important in modulating survival and

proliferation of VSMCs. High physiological concentrations of H202 have been found

to induce apoptosis (programmed cell death) (Taniyama and Griendling., 2003).

Endothelial injury or exposure to O2'- and H202 induces apoptosis of endothelial cells

(EC), which leads to EC loss and results in atherogenesis and a procoagulative state

(Dimmeler and Zeiher., 2000). ROS regulate apoptotic mechanisms induced by a

variety of stimuli other that the ROS themselves. Another type of programmed cell

death, anoikis, results from detachment of ECs from the extracellular matrix. This

process is also associated with increased intracellular ROS, probably from

mitochondria (Li et al., 1999). EC migration, proliferation, and tube formation are

essential events that lead to apoptosis which results in angiogenesis. ROS may be

directly involved in all these mechanisms, as H202 has been shown to induce

proliferation and migration of ECs and to mediate lymphocyte-activated tubulogenesis

(Maulik and Das., 2002, Taniyama and Griendling., 2003).

Intracellular H202 may also act as a second messenger for a variety of growth factors.

For example, stimulation of VSMC's by platelet-derived growth factor, epidermal

growth factor, fibroblast growth factor and angiotensin II all lead to a rise in

intracellular H202 concentration. H202 does not function as a mitogen for VSMC,

instead it is a stimulus to trigger VSMC apoptosis (Li et al., 1997).
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Structural vascular changes are the hallmark of chronic hypertension, and increased

wall-to-lumen ratio (W/L), of resistance arteries is the prominent lesion. The increase

in relative "thickness" of resistance arteries is responsible for the "amplifier"

property of the arterial circulation in hypertension, which functionally manifests itself

as a pressor or vasoconstrictor hyper responsiveness (Simon et al., 1998).

2.6.3. Organ Damage due to Lipid Peroxidation

Peroxidation of membrane lipids plays an important role in cell physiology and

pathology (Roders et al., 1978). The peroxidative degradation of polyunsaturated fatty

acids has been found to produce changes in the fluidity of membranes as well as other

membrane parameters. The resultant disruption of the biological membranes result in

alterations in the activity of a number of membrane bound enzymes (Pradhan et al.,

1990). Decomposition of the polyunsaturated fatty acids of organelle membrane

phospholipids by peroxides, would result in specific abnormalities of organelle

function leading to cell injury or cell death (Popova and Popov., 2002).

Hypertension induces important functional and structural alterations in the kidney,

resulting in proteinuria, glomerular sclerosis, and other morphological changes,

eventually leading to end-stage renal disease. Reducing blood pressure in hypertensive

patients retards the progression of renal failure and reduces the morbidity and

mortality rates, but the mechanisms by which hypertension causes renal damage are

not clear. Recent experimental data have shown that renal damage in Dahl Sensitive

rats occurs concomitantly with the long-term increases in arterial pressure. Increased

oxidative stress resulting in lipid peroxidation contributes to this renal damage (Meng

et al., 2003).
, ",j ','
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The aldehydes released during lipid peroxidation have been implicated as causative

agents in cytotoxic processes, and it has been postulated that, when released from cell

membranes they may diffuse, interact, and induce oxidative modifications in other

cells (Redon et a/. 2003). Oxidative stress-induced cell signalling, may originate with

lipid peroxidation and culminate with apoptotic cell death, which results in cell

shrinkage, loss of plasma membrane asymmetry, protease and endonuclease

activation, and intemucleosomal fragmentation of nuclear DNA. The apoptosis

thereby damaging the integrity of the cells and tissue (Girotti., 1998).

Regulation of cell survival or death by oxidative stress is a complex process.

Depending on the severity and duration of stress, cells exhibit proliferative or

apoptotic responses that are mediated by a variety of different, complex and often­

interacting pathways.

An increased level of lipid peroxidation is the evidence most frequently cited In

support of the involvement of oxidative stress and damage in tissues (Liu et a/.,

2000). There is increasing evidence that oxidative stress contributes to organ damage

by apoptosis and necrosis, in a multitude of disease states. The resulting organ

damage is due to an increase in the peroxidation of membrane lipids in the presence

of increased oxidative stress. Oxidative stress is an important aetiological factor in

hypertension, which is accompanied by architectural changes in the kidney, heart and

vessels that are often deleterious and can eventually contribute to end-organ disease

such as renal failure, heart failure and coronary disease (Raij., 1998).
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2.7. Animal Models in Hypertension

Various animal models of hypertension have been developed over the past fifty years.

A number of animal strains, that include several strains of rats, at least one strain of

rabbit and one strain of dog readily display spontaneous hereditary hypertension.

Experimental hypertensive rats are widely employed in investigative studies, on the

pathogenesis of human hypertension. The most widely employed rat strain, is by far

the spontaneously hypertensive rat (SHR).

Characteristics ofan ideal Animal Model

For investigative purposes an ideal animal model should have five characteristics viz.

1. Mimic the Human disease.

2. Allow studies in chronic, stable disease.

3. Produce symptoms, which are predictable and controllable.

4. Satisfy economical, technical and animal welfare considerations.

5. Allow measurement of relevant cardiac, biochemical and hemodynamic

parameters (Doggrell et al., 1998).

Genetic susceptibility plays a definitive role with various genetic strains of rats, since

there is a marked difference in susceptibility to NaCl-induced hypertension (Laragh

and Brenner., 1990). The Dahl Salt-sensitive rat is a classic example of a strain of rat

with a strong genetic susceptibility to NaCI-induced hypertension.
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2.7.1. Dahl Salt-sensitive Rats

2.7.1.1. History

The effects of a high salt diet on the blood pressure response were studied, in the

1950's by Meneely and Bail. This study remarked, "there was a marked degree of

individual variation" in the blood pressure response to the given salt ingestion

(Meneely and Bail., 1958).

The Dahl Salt-sensitive rats were developed by Dahl et al., (1962), as a genetic model

for salt induced hypertension. Two strains of rats were developed by them, which

were either susceptible or resistant to the hypertensive effects of a high salt (8%NaCI)

intake, from the Sprague Dawley line. For the first few generations, inbreeding was

done to produce a sensitive and resistant strain of rat. An inbred strain is one for

which brother-sister mating have been made for 20 generations. These strains were

homozygous at almost 100% of genetic loci, thus fixing the characteristics of the

strain (Rapp, 1982).

The rats produced were termed the Dahl Salt-sensitive (DSS/Jr) and Dahl Salt

Resistant (DSR/Jr). Since receiving the above-mentioned strains from Dr John Rapp

in 1986, the Harlem Sprague Dawley, Inc (Indianapolis, Ind) has maintained the

Sensitive and Resistant rats with a strict program of inbreeding. The inbreeding of

both these strains for more that 50 generations has resulted in a very reliable

physiological response (Figure 1) with respect to salt-sensitive hypertension, due to a

very high level of genetic homogeneity within each strain.
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2.7.1.2. Characteristics of the Dahl Salt-sensitive strain.

When fed high salt diets, the Dahl Salt-sensitive (DSS) rats develop severe

hypertension with often fatal consequences, whereas the Dahl Salt Resistant rats do

not develop hypertension with salt loading. The DSS rats also become hypertensive

when fed normal salt diets, clearly demonstrating that this is a model of genetic

hypertension, with the added feature of salt sensitivity (Rapp, 1982).

The magnitude of the blood pressure response in Dahl Salt-sensitive rats is partly

determined by the age at which a high salt diet is initiated. When Dahl Salt-sensitive

rats were placed on a high salt diet (8% NaCl) at weaning (21-23 days of age), they

rapidly developed hypertension and all the rats died by the 16th week of salt loading.

If the high salt loading was delayed until 3 months of age, the hypertension developed

less rapidly and systolic blood pressure increased to about 185mmHg by 16-20 weeks

ofage (Dahl et al., 1962).

After 2-3 weeks of a high salt diet, renal injuries appear in Dahl Salt-sensitive rats; the

lesions are of a focal nature and comparable to malignant hypertensive renal disease

encountered in humans (Karlsen et al., 1997). The Dahl Salt-sensitive rats when

placed on a high salt diet early in life, they typically die after 4-8 weeks (Rapp and

Dene., 1985). The reason for the rapid development of end-stage renal disease in the

Dahl Salt-sensitive rat is unknown, however it has been suggested that the glomeruli

are exposed to the damaging effect of an elevated pressure caused by a decrease in

afferent arteriolar resistance (Azar et al., 1979).
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A widespread misconception that exists is that Dahl Salt-sensitive rats only become

hypertensive when placed on a high NaCl diet. The fact remains that, when fed a

normal diet that contains 1% NaCI the Dahl Salt-sensitive rats become markedly

hypertensive, but it does take a longer time for this to occur (months instead of

weeks). The salt merely accelerates and exacerbates the onset of hypertension in this

strain (Sustarsie et al., 1981).

.. ~
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3. MATERIALS AND METHODS

3.1. Animal Protocol

3.1.1. Housing and Standard Protocol

Forty-seven male Dahl rats were used for the purposes of this study. The animals

were acquired from the Biomedical Resource Centre (University of Kwa-Zulu Natal-

Westville Campus). The animals were of 2 strains viz. 24 Dahl Salt Sensitive (DSS)

rats and 23 control animals - Dahl Salt Resistant (DSR) rats. These two groups were

broken down further with no prejudice into the following groups:

Table 4. Animal Grouping

Strain
Normal High Salt

Salt (2%NaCI)
DSS n = 12 n= 12
DSR n= 12 n= 11

Animals were distinguished from each other by ear notching. All animals were

individually housed in the Biomedical Resource Centre (University of Kwa-Zulu

Natal - Westville Campus) in metabolic cages (Techniplast - Italy). These cages

allowed for the separation and collection of urine and faeces via a funnel collection

system, to prevent contamination of samples. Cages were also washed daily, in order

to prevent contamination of samples.

Animals were fed standard Epol rat chow and deionised water (Millipore). The high

salt groups had their water supplemented with 2% m/v NaCl. It should be noted food

and water consumption was monitored and recorded daily, and rounded off to the

closest gram and millilitre respectively for all groups.
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Body mass was monitored once a week for the adult groups on a weigh balance

(Mettler) and recorded to the closest gram. The room that the animals were housed in

was maintained on a 12hour light/dark cycle and maintained at a constant ambient

temperature and pressure for the duration ofthe study for all groups.

3.l.2.Duration

The experiment commenced with weanlings (-21 days old). All groups were

acclimatised for a period of 1 week, and thereafter, the necessary data (food

consumption, water intake, urine output, mass and blood pressure) was monitored and

recorded accordingly.

The study was done over a period of 8 weeks including the acclimatisation week. The

high salt groups were maintained on a normal salt diet, till the third week, at this point

salt loading commenced with supplementation of drinking water with 2% NaCl, and

lasted for a period of 4 weeks.
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3.1.3. Blood Pressure

Blood pressure was monitored using the non-invasive tail-cuff method. Blood

pressure was monitored weekly for the duration of the study on all groups. Blood

pressure was recorded using the II TC Model 31 NIBP, blood pressure recording

equipment in the Department ofPhysiology (Westville Campus).

3.1.3.1. Blood Pressure Training Protocol

All animals were trained during the acclimatisation week. Animals were first exposed

to the restrainers as a group, by allowing them to explore the restrainers in a

communal cage. When they gained confidence in moving in and out of the restrainers,

they were individually held and allowed to walk into the restrainers. This was done

over ~2days.

The animals were then exposed to the warming chamber and all animals were placed

a minimwn of 3 times in restrainers and placed into the warming chamber for periods

not exceeding 10 minutes. The animals were then exposed to the tail-cuff, with

repetitive inflation and deflation cycles. All animals were well trained for blood

pressure measurements within the acclimatisation week.

3.1.3.2. Blood Pressure Recording Protocol

Systolic blood pressure, diastolic blood pressure and heart rate measurements were

obtained by the use of a non-invasive computerized tail-cuff system. The system is

comprised of an automatic scanner and pump, a tail cuff with a photoelectric sensor

and amplifier to measure and count the pulse rate in the animals tail (II TC Model 31
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NIBP). The principle of operation is related to the Riva-Rocca method used III

humans.

Small, medium and large SIzes of restraining devices were used. This was to

compensate for the increase in mass, size and diameter of the tail, of the animals

during the 8-week duration of the study. The restrainers used were hollow Perspex

cylinders, which fitted the rats snugly so as to minimize voluntary movement of the

experimental animal, which could have an affect on the blood pressure values. The

restrainers allowed for the protrusion of the tail through the tail cuff at one end and

ventilation of the head at the other end. The tail cuff was attached to the restrainer by

a studded end plate.

Animals were allowed to pre-heat in the restrainer for -20minutes in a warming

chamber maintained at -31°C. This was found to be the optimum temperature at

which consistent pulses could be detected. The warming chamber consisted of a

circulating heated fan and a mounted, ventilated Perspex walls and cover. The

warming chamber allowed for 3 animals to be pre-heated and monitored

simultaneously. The optimum temperature in the warming chamber was maintained

by the heated circulating fan and a temperature control.

After preheating the animals, the tail cuff was automatically inflated by the pump,

which resulted in the arterial blood supply to the tail to be occluded. The tail cuff was

then slowly deflated and at the reappearance of a pulsation, which was detected by the

photoelectric sensor, this was taken as the systolic blood pressure. As the pressure

continued to fall, the computer automatically stored the detected high pulse point,
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which was accepted as the mean pressure if there was no subsequent higher pulse

pressure within the next two seconds. The diastolic pressure for recording was

computed using the equation Diastolic= (3mean - Systolic) / 2, this feature was part

of the software used (BPMON Version 2.1.).

The results were displayed as data plots and summary data of systolic, diastolic, mean

blood pressure and heart rate on the computer screen, this information being available

in printable form. The blood pressure measurement information was displayed in 2

forms viz. plots of analog waveforms and digital values. The same occluding tail cuff

was used for all animals, to minimise any variables in blood pressure monitoring. All .

results were done with the artefact filter switched on. The validation of the method

and equipment was previously carried out in the same laboratory (Somova et al.,

1998).
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3.1.4. Sacrifice

Animals were sacrificed at the end of the specified duration, viz. 8 weeks for both salt

loaded and non-salt loaded groups, in the Department of Physiology (Westville

Campus). Animals were starved overnight and animals were sacrificed the next

morning. Animals were anaesthetised using sodium thiopentane (40mglkg)

administered intraperitoneally.

The abdominal cavity was then exposed and blood was collected in heparinised

syringes via the bifurcation of the abdominal aorta. The heparinised blood was then

aliquoted and stored in heparinised vials for the following analysis:

1. Haematological parameters (Whole Blood)

2. Superoxide Dismutase (Whole Blood)

3. Gluthione Peroxidase (Whole Blood)

4. Hydrogen peroxide (Plasma)

Required tissue (kidney, liver, brain) was then harvested and weighed. These tissues

were then placed in separate plastic bags and quenched in liquid nitrogen and stored

for later analysis in a bio freezer (-700 C). It should be noted that all harvesting was

done immediately, with the time delay kept to a minimum, to maintain the integrity of

the tissue.
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3.2. Glutathione Peroxidase

Glutathione Peroxidase (GPx) was quantified using a commercially available kit from

Randox Chemicals (RANSEL - Cat No. RS 504). The method is based on that of

(Paglia and Valentine., 1967). GPx catalyses the oxidation of glutathione (GSH) by

cumene hydroperoxide. In the presence of glutathione reductase (GR) and NADPH

the oxidised glutathione (GSSG) is immediately converted to the reduced form with a

concomitant oxidation of NADPH to NADP+. The decrease in absorbance at 340nm

was measured.

GPx

2GSH + ROOH -+ ROH + GSSG + H20

OR

GSSG + NADPH + H+ -+ NADP++ 2GSH

The method allowed for GPx to be quantified in whole blood. The sample, had to be

diluted using the diluting agent supplied, until the absorbance change per minute was

below the threshold of 0.1000, set by the supplier, this is done to ensure that there was

linearity in the equation supplied. The dilution of all groups fell into the following

range: (80 - 100 x). GPx was quantified using the following equation that was

supplied by the agent:

Units of GPx / Litre of Haemolysate = 8412 x ~Absorbance (340nm) / Minute

The reaction was carried out in matched glass cuvettes and readings were obtained

from a dual beam spectrophotometer (Varian, Cary IE).
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3.3. Superoxide Dismutase (SOD)

Superoxide Dismutase (SOD) was quantified using a commercially available kit from

Randox Chemicals (RANSOn - Cat No. SD125). The assay principle is based on the

fact that the role of SOD is to accelerate the dismutation of the toxic superoxide

radical (02- '), produced during oxidative energy processes, to hydrogen peroxide

(H202) and molecular oxygen (02), The method employs xanthine and xanthine

oxidase (XOD) to generate superoxide radicals, which react with 2-(4-iodophenyl)-3­

(4-nitrophenol)-5-phenyltetrazolium chloride (LN.T.) to form a red formazan dye.

The SOD activity is then measured by the degree of inhibition of this reaction. A

standard curve was plotted using the standards provided by the kit. During successive

assays, a standard was also assayed, to ensure that the standard fell into the same

range on the standard curve.

The assay was carried out on the lysate of the whole blood. The lysate was prepared

by centrifuging 0.5ml the aliquoted whole blood for lOminutes at 3000rpm at 4°C.

The buffy coat and plasma was aspirated off. The remaining erythrocytes were

thoroughly washed with cold saline solution (0.9% NaCl). The suspension was then

centrifuged for 10minutes at 3000rpm at 4°C. This washing process was repeated four

times to ensure thorough washing of cells.

The washed and centrifuged erythrocytes were then made up to 2.0ml with cold

redistilled water (Millipore), they were then mixed and left to stand on ice (4°C) for

15minutes. The resulting lysate was then diluted with a 0.01 mmol/l phosphate buffer

(pH 7.0), the dilution was done to ensure that the %inhibition fell between 30 - 60%,

as required by the supplier. The dilution of all groups fell into the following range: -
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(60 - 100 x). The reaction was carried out in matched glass cuvettes and readings

were obtained from a dual beam spectrophotometer (Varian, Cary IE).

The %inhibition was calculated from the equation supplied by the manufacturer and

the concentration of SOD was then extrapolated from the %inhibition on the standard

curve.

% inhibition = 100 - (6,A sample/min X 100) I (6 sample diluent/min)

t! -.',
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3.4. Lipid Peroxidation

3.4.1. Total Malonyldialdehyde (MDA)

MDA concentration was quantified in the following tissues kidney, liver and brain.

The modified method based on that of Buegue and Aust., 1976, was adopted for the

analysis of tissue. The method is based on the principle that MDA is formed from the

breakdown of polyunsaturated fatty acids, that serves as a convenient index for

determining the extent of the peroxidation reaction. MDA has been identified as the

product of lipid peroxidation that reacts with thiobarbituric acid (TBA), to give a red

species absorbing at 535nm.

Tissue for MDA analysis was stored in a bio freezer at -70°C, to prevent extrinsic

lipid peroxidation. Tissue was collected from the bio freezer and immediately placed

on ice C4°C), to thaw, the reason for using the ice was to lower the temperature

gradient that the tissue was exposed to during the thawing process. The tissue was

slow thawed and excess tissue was discarded, and no tissue was exposed to more than

one freeze-thaw cycle.

The thawed tissue was then weighed (~O.2 - O.4g) and washed in cold buffered saline

(pH 7.4), to remove any excess blood on the tissue, the tissue was then blotched dry

on filter paper. The weighed tissue was then cut with a dissection blade into smaller

portions. These portions were suspended in the cold-buffered saline (pH 7.4) and the

volume adjusted to 5% mass (m/v). The suspension was placed on ice. The buffered

saline (pH 7.4), contained 2mmolll Sodium Azide (NaN3). The NaN3 was found to

minimise the level of lipid peroxidation in vitro as the NaN3 inhibits lipid

peroxidation.
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The suspension was then transferred into a glass homogenising tube and homogenised

using a tissue homogeniser. The homogenising step was standardised for all samples,

all samples were subjected to the same number of homogenising pulses (50) and the

revolutions per minute (rpm), was kept at a constant 5000rpm. The homogenising

tube was held in a beaker containing ice during the entire homogenising process, to

minimise a drastic temperature increase of the suspension. The homogenate was then

transferred to a polypropylene tube and stored on ice.

In a glass test tube (Pyrex),1,5ml of the homogenate was added to 1,5ml of the TBA

cocktail. This reaction mixture was then lightly vortexed, and immediately transferred

to a boiling water bath (~95°C) and incubated for 15 minutes.

The test tubes were then removed and immediately placed into an in an ice slurry, for

rapid cooling, to stop the reaction and inhibit further formation of the red species. The

cooled tubes were then centrifuged at 3000rpm for 10 minutes at room temperature

(~21DC).

The supernatant was decantered into glass cuvettes and the absorbance was read at

535nm and 453nm against a blank containing all the reagents except the homogenate.

To improve the specificity of the test, 20% of the absorbance at 453nm was subtracted

from the corresponding optical density at 535nm. The concentration of MDA in the

sample was calculated by using an extinction coefficient of 1.56 x 105 M-1cm-l
• MDA

concentration was represented as per milligram tissue protein; therefore, homogenates
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were subjected to protein estimation by the Folin-Lowry Method described in Section

3.5.

3.4.1.1. Reagents

1. Buffered Saline:

- Saline (0.9%)

- Sodium Azide (NaN]) - 2mmolll

2. TBA Cocktail Stock:

- Trichloroacetic acid (TCA) - 15% "I;

- Thiobarbituric acid (TBA) - 0.375% w/v

- Hydrochloric acid (cone.) 0.25 N

A stock of 100ml was made up, with distilled water being used to bring the solution

up to 100ml. To assist with the dissolution of the TBA, the solution was mildly heated

and a magnetic bead stirrer was used. This stock solution was stored at room

temperature in a dark cupboard. A fresh stock was made on the morning of each

assay. The cocktail was found to be highly corrosive and latex gloves were used when

handling all reagents in the cocktail.
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3.4.2. Oxidative Challenge Test

The oxidative challenge test provided an index of assessing the ability of tissue

(kidney and liver), to buffer an oxidative onslaught, and assess the tissues antioxidant

buffering to limit lipid peroxidation. This was achieved by exposing the tissue

homogenate to known concentrations of a stable free radical species viz. hydrogen

peroxide (H202) and then quantifying the concentration of MDA produced by the

method of Buegue and Aust., 1976.

The tissue homogenate was prepared following the same protocol as for the Total

MDA quantification. The same meticulous precautions were also observed for the

challenge test, to minimise an increase in homogenate temperature, and thereby limit

extrinsic lipid peroxidation. (Section 3.4.1.)

A fresh working stock of H20Z (40 mM), verified at 30% w/v (Section3.6.), was

prepared on the morning of the assay. Serial dilutions of the working stock with '

distilled water, were made to achieve the following HZ0 2 concentrations: 15Mm,

10mM, 5mM and 2.5mM. A control concentration of 0mM was achieved by using

distilled water.

The reactions were carried out in sterilised plastic tablet holders (20ml). To each of

the five reaction vessels, 1,5ml of the known concentration of HzOz was added. To

each of these, 1.5ml of tissue homogenate was added. The reaction vessels were

placed into a modified test tube holder and the holder was placed into a heated

oscillating water bath. The samples were incubated at 37°C, for 60minutes and

subjected to 100 ossiscillations per minute.
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The test tube holder was then removed and 1,5ml of the incubated sample was then

immediately added to 1,5ml of the TBA cocktail. This reaction was carried out in

glass test tubes. The same assay protocol was followed as for the Total MDA analysis.

Optical densities were read and recorded as per the Total MDA protocol (Section

3.4.1.). The same calculations were made as in the Total MDA analysis. MDA

concentration was represented as per milligram tissue protein, therefore, homogenates

were subjected to protein estimation by the Folin-Lowry Method described in Section

3.5.

3.4.2.1. Reagents:

1. Hydrogen Peroxide (H202) - Working Standard (40mM)

The working standard was made up from a -30% H202 stock (Sigma. Co.). The

concentration of the stock was verified as described in Section 3.6. A 40mM working

stock was made up with distilled water, and successive serial dilutions were made

with distilled water to produce the experimental concentrations. The working stock

was wrapped in foil, placed on ice and stored in a dark cupboard. This was done to

prevent any break down of the free radical species. The serial dilutions were done just

before the addition of the homogenate.

2. Buffered Saline (pH 7.4):

- Saline (0.9%)

- Sodium Azide (NaN3) - 2mmol/l
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3. TBA Cocktail Stock:

- Trichloroacetic acid (TCA) -

- Thiobarbituric acid (TBA)-

- Hydrochloric acid (cone.)

0.375% -t;

0.25 N

The same protocol was followed as described in Section 3.4.1.1., for making up the

TBA cocktail.
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3.5. Hydrogen Peroxide (H202) Estimation

Hydrogen Peroxide (H202) concentration was estimated in the blood plasma of all

groups. The estimation was based on a modified method employed by Pick and

Keisari., 1980. The principle of the assay is based on the horseradish peroxidase

(HRPO) mediated oxidation of phenol red by H202, which results in the formation of

a compound demonstrating increased absorbance at 61Onm.

The aliquoted heparinised blood drawn from the animal was centrifuged at 3000rpm

for lOminutes at 4°C. The plasma was then aspirated off with sterile disposable

pipettes and placed into labelled capped tubes (2ml). The tube was then immediately

plunged into liquid nitrogen, and stored in a bio freezer (-70°C).

The plasma samples were removed from the bio freezer at the time of the assay and

immediately placed on ice and allowed to slow thaw. When fully thawed, the tube .

was inverted a few times. The reaction was carried out in 10ml polypropylene tubes.

To 2ml of Phenol Red Solution (PRS), 20ul of the plasma sample was added. This

reaction mixture was lightly vortexed, and allowed to incubate at room temperature

for 5minutes. Immediately after the incubation, 20ul of NaOH (IN) was added to the

test tube. The tube was then vigorously vortexed for ~3 - 4 seconds.

The samples were then transferred to matched glass cuvettes, and the absorbance was

read at 610nm against a blank containing all reagents except the plasma, which was

replaced with distilled water. The colour was found to be stable for ~15 - 20minutes.

The concentration of H202 was calculated from an extrapolation of the optical density

on the standard curve. (Section 3.5.1.)
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3.5.1. Standard Curve for H202

A standard curve of absorbance versus known concentration of H202 was plotted

according to the method described by Pick and Keisari., 1980. A working stock

solution ofH202, was made up by diluting 1.02ml of -30% H202 in 100ml ofdistilled

water. This resulted in a working stock solution concentration of 100 uM.

The working stock was then serial diluted with distilled water to give the following

concentrations of H202: 10um, Sum, 2.Sum, 1.25um, 1urn, 0.5um, O.2Sum, 0.125um

and 0.075um. For a H202 concentration of Oum distilled water was used. These

standards were then subjected to the same protocol as described in Section 3.5. All

standards were assayed in triplicate and the average optical densities were used to plot

the standard curve, which displayed a linear relationship.

3.5.2. Reagents

Working Stock Solutions:

I. Phenol Red (Sigma Chern.)

- Dissolved in distilled water

- (0.028 M)

2. Horseradish Peroxidase (Sigma Chern.) - (5mg/ml) (5000 units)

- Dissolved in 0.05 M Potassium Phosphate Buffer (pH 7.0)

- Stock was made up and aliquoted and plunged in liquid nitrogen, and stored

in a bio freezer (-70°C), until required.

3. NaCl (BDH Chern. - AR grade)

- Dissolved in distilled water.
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4. Dextrose (BDH Chem.)

- Dissolved in distilled water.

5. NaOH (BDH Chern.)

- Dissolved in distilled water.

Buffers:

- 0.055 M

-IN

1. 0.05 M Potassium Phosphate Buffer (pH 7.0)

2. 0.001 M Potassium Phosphate Buffer (pH 7.0)

Phenol Red Solution (PRS)

A stock solution of 100mi of PRS was made up as follows and consisted of:

1. NaCI - (140mM)

- 10mI of NaCI working stock was used to get the required concentration in

100mlofPRS

2. Dextrose - (5.5mM)

- (0.28mM)

- 10ml of Dextrose working stock was used to get the required concentration

in 100ml of PRS.

3. Phenol Red

- Iml of Phenol Red working stock was used to get the required concentration

in 100mi of PRS.
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4. Horseradish Peroxidase - (50ug/ml)

- The working stock was first slow thawed on ice, inverted and then dispensed

into the solution. The horseradish peroxidase was added just before the

commencement of the assay.

- lml of Horseradish peroxidase working stock was used to get the required

concentration in 100ml of PRS.

5. Potassium Phosphate Buffer (pH 7.0) - (O.OOIM)

- The solution was brought up to 100ml with the cold buffer.

The PRS solution was made up just prior to the assay, to prevent degradation of the

solution. The solution was wrapped in foil and stored on ice. Fresh PRS was made up

for successive assays and was never stored.

3.6. Hydrogen Peroxide (H202) - Verification

The concentration of the stock H20 2 - 30% (stabilised) (Sigma Chern.) was verified

using the following method. 0,1008g of stock was weighed out, this was diluted in

50ml of distilled water. lrnl of H2S04 (cone.) was then added to the solution. The

solution was titrated against 0.02M KMn04. The end point was taken as the first

stable pink colour change.

It is known that lrnl 0.02M KMn04 is equivalent to 0.0017007g H202. The following

equation was used to verify % concentration ofH202:

% H20 2 w/w = Reading of KMn04 x 0.0017007 x 100/ Mass ofH202

The verification was done in triplicate, to ensure stability of the H202 Stock.
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3.7. Protein Estimation

All tissue homogenates (kidney, liver and brain) that were analysed for MDA

concentration, were also subjected to a tissue protein estimation by the Folin-Lowry

Method. This was done, so as to represent the MDA concentration as per milligram

tissue protein.

The homogenate was diluted with saline solution 0.9% NaCI (10 -15x). The dilutions

differed amongst the range of tissue analysed. The dilution was done, so that the

concentration fell in the range of 1 - 2.5 mg protein/ml of substrate, as required by the

method used.

The reaction was carried out in 10ml polypropylene test tubes. 200ul of the diluted

sample was added to 800ul of saline. 5ml of Alkaline Copper Reagent was then added

to the test tube and the solution was lightly vortexed and left to stand at room

temperature for lOminutes. O.5ml of diluted Folin-Ciocalteu reagent was then added

to the solution, this was then vigorously vortexed for --4-5 seconds, and left to stand at

room temperature for 30minutes.

The spectrophotometer was zeroed with distilled water and the absorbance of the

samples was read at 660nm. A blank was made up with saline and subtracted from the

sample absorbance, the blank represented the background absorbance. The final

absorbance was extrapolated from a standard curve. The extrapolated values were

subjected to the dilution factors, with the result being the protein concentration of the

tissue.
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3.7.1. Protein Estimation - Standard Curve

A standard curve of known protein concentration versus absorbance was plotted

according to the method described by Lowry. A working stock solution of bovine

serum albumin (BSA) (200ug/ml) was used as the known concentration standard. A

subsequent serial dilution of the working standard was made with saline. These

standards were subjected to the same protocol, that was described for the unknown

samples. All standards were done in triplicate and the average absorbances were used

to plot the standard curve.

3.7.2. Reagents

1. Saline - 0.9% NaCI

2. Alkaline Copper Reagent

- 0.5ml of 1% w/y Copper Sulphate (CuS04.5H20)

- 0.5ml of2% w/y Sodium Potassium Tartrate (NaKC4H406)

- 50ml of2% w/y Na2C03 diluted in O.IM NaOH

Stock solutions that made up the reagent were stored in a fridge (4°C). Reagent was

made up prior to the assay and stored at room temperature.

3. Folin-Ciocalteu Reagent

- A stock reagent was obtained from BDH Chern.

- The stock was diluted 1:1 with distilled water.

- The stock was stored in a fridge (4°C).

4. Bovine Serum Albumin (BSA) Stock Protein
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• BSA stock was obtained from Merck Ltd.

• O.02g of stock was diluted with 100ml of saline to give a protein

concentration of (200uglml)

• A serial dilution of the stock was made with saline.
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4. RESULTS

All data is represented as the Mean ± Standard Error of the Mean (SEM). The

statistical analysis of all results was performed using Graphpad Instat Ver. 3.00. The

analysis performed used one-way Analysis of variance (ANOVA) and t-test. A p

value < 0.05 was considered to be statistically significant.

4.1. Food Consumption

The average weekly food consumption for each group was determined and is shown

in Table 5., and represented in Figure 2. The results show that there is a significant

increase in the food consumption of the DSS groups when compared to the control

DSR groups for the entire 7 weeks of the study.

Salt loading was initiated, in the 4th week of the study in the High Salt (HS) groups.

by supplementing the drinking water with 2% NaCl. Salt loading had a significant

decrease in food consumption after the 2nd week of salt loading in the DSS group and

after the Ist week of salt loading in the DSR group when compared to the respective

non-salt loaded controls. Salt loading also had a significant decrease in food

consumption in the DSR (BS) group when compared to the DSS (BS) group.

The ratio of mass gain to food intake (Food Efficiency Ratio - FER) is shown in

Table 6. This is a quotient of the Mass Gain per week and the food consumption per

week. Salt loading had a significant decrease in this ratio in both of the salt loaded

groups when compared to their respective controls. The DSR (BS) group however

showed a "normal" FER, relative to the DSR (NS) group, during the final week ofsalt

loading.

57



Table 5. Average Weekly Food Consumption

Strain / Week
DSS NS (12)
DSRNS (12)
DSS HS (12)
DSRHS (11)

Week 1
140 ± 2.96
118 ± 3.09
153 ± 3.73
131±6.21

Week 2
169 ± 4.08
145 ± 2.30
173 ± 4.27

141 ± 14.10

Food Consumption (grams/week
Week 3 Week 4

175 ± 2.85 197 ± 3.08
150 ± 2.79 158 ± 4.64
193±3.76 189±3.68 'J. '
154 ± 4.39 ,:;': .109 ± 5.86, '

Week 5 Week 6 Week 7
191±3.39 188±2.26 198±4.46
161 ± 3.18 157 ± 2.96 161 ± 2.98

Values shown as Mean ± SEM
Food Consumption expressed in grams
Numbers in brackets indicates n - value (sample number)
o . Salt loading with 2% NaCI

Table 6. Food Efficiency Ratio

Food Efficiency Ratio (FER) (Mass 2ain / Food Consumption)
Strain / Week Week 1 Week 2 Week 3 Week 4 WeekS Week 6 Week 7

DSS NS (12) - 0.357 + 0.010 0.247 + 0.010 0.213 ± 0.008 0.209 ± 0.004 0.142 ± 0.010 0.141 ±0.012

DSRNS (12) - 0.373 + 0.018 0.200 ± 0.008 0.203 ±0.011 0.189 ± 0.009 0.140 ± 0.007 0.115 ± 0.009
DSS HS (12) - 0.339 ±0.006 0.272 ± 0.007 ;0:236 ± O,O06 -~ oJ 89 ± 0;006 'i/ ~}0. 1 22 :E:.o ;'Otl~:~; ,±~'()::073'\\H=ljO'029\;;'"

.. , ,. ',,' " ,', " . ' ' ..t:, ,

DSR HS (11) - 0.373 + 0.026 0.394 + 0.020 : ' O .053?+ .0 .017~ , ~ , O .084 ,+ 0.032':..~ /';"iO ;088'±:O"030\~' t,giO":I22'+,'i'(j104 i1~1;l''' . ' _ ".. l ·~~l. . "

Numbers in brackets indicates n - value (sample number)
Ratio is a quotient of Mass Gain / Food consumption

0 : - Salt loading with 2% NaCI
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Figure 2. Average Weekly Food Consumption
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4.2. Water Intake

The average weekly water intake for each group was recorded and is shown in Table

7., and represented in Figure 3. The water was supplemented with 2% NaCI in the 4th

week of the study for the designated high salt (HS) groups. There was a significant

increase in water intake of the DSS group when compared to the control DSR group

during the 7-week study. Salt loading had a significant increase in water intake of the

HS groups when compared to the NS group, with the water intake being -3-4 times

that of the non-salt loaded controls. Salt loading also had a significant effect on the

water intake of both the salt loaded groups when compared to each other, after the 2nd

week of salt loading.

•
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Table 7. Average Weekly Water Consumption

Strain / Week Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7
DSS NS (12) 174 ± 5.32 197 ± 4.69 195 ± 5.74 214 ± 7.64 222 ± 8.79 247 ± 12.84 237 ± 10.10
DSRNS (12) 146 ± 2.95 164 ± 2.77 162 ±4.99 166 ± 3.60 180 ± 4.51 194 ± 8.87 185 ± 6.12
DSS HS (12) 178 ± 4.32 202 ± 4.03 220 ± 3.35 :r482± 34:43' ~' , .. r 4 89.±29.24'*::1 e. 591:,±':43 ;69}~ ' ; : '~~[435;±"36.75?4§E

DSRHS (11) 165 ± 4.41 180 ± 7.31 184 ± 4.53 ,'i: ,448,± 34;70 .'/r' .;j 626,& 70;53'ii@, :g~"l526'± 8:rOJ~~ > (~~:'535:" +~85~8-7~~~;, " ' . ~-1 '.~~h..,

Values shown Mean ± SEM
Numbers in brackets indicates n - value (sample number)
Water Intake represented in millilitres
o -Salt loading with 2% NaCl
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Figure 3. Average Weekly Water Consumption
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4.3. Urine Output

The average weekly urine output for each group is shown in Table 8., and represented

in Figure 4. There was a significant increase in the urine output of the DSS group

when compared to the control DSR group, during the entire 7-week study. Salt

loading had a significant increase in the urine output of both the salt loaded groups

when compared to the respective non-salt loaded controls. There was a significant

difference in urine output of the salt loaded groups when compared to each other in

the 2nd and 4th week of salt loading. The salt loaded DSS group had a significant

decrease in urine output in the final week of the study.
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Table 8. Average Weekly Urine Output

Strain / Week Week 1 Week 2 Week 3 Week 4 WeekS Week 6 Week 7
DSS NS (12) 73 ± 4.97 90 ± 5.91 93 ± 5.28 111 ± 5.99 118 ± 6.46 136 ± 10.35 128 ±9.40
DSR NS (12) 57 ±2.42 70 ±2.38 72 ±2.63 78 ± 4.06 87 ± 3.12 96 ± 4.60 97 ± 4.72
DSS HS (12) 55 ± 3.60 68 ± 1.88 88 ± 2.77 ">1<331£18 .95 :·i~.: / ' 318'?, ' 16 ,.c (~·i.~~420·±·tn~:96 ,!'f;;'~~~286:+\23 '55Wt~:: \J:j. ' 'i.±.23: , . ~: ' , ~"'; . .._~:" _. ._ .\ . '}',> I;

DSR HS (11) 52 ± 1.83 61 ±3.30 64 ± 4.55 ' ;'344 .±'26:16 :'::;: .'X463"±'43:;851&tfi ':ji,;,·4{)4':± 58;27ti~ If'~"409·£;:6(f25f:"~\!~" " ;' 0 . ' ~,..•,

Values shown Mean ± SEM
Numbers in brackets indicates n - value (sample number)
Urine output represented in millilitres
o -Salt loading with 2% NaCI
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Figure 4. Average Weekly Urine Output
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4.4. Body Mass

Body mass is expressed as a percentage mass gain per week, with the mass in the 1st

week being taken as the baseline (l 00%), with all subsequent increases in mass per

week being expressed as the percentage increase. This data is shown in Table 9., and

represented in Figure 5. There was a significant increase in percentage (%) mass gain

of the DSS group when compared to the control DSR group from the 4th week of the

study to the end of the study in the t h week. Salt loading had a significant decrease in

% mass gain from the 2nd week of salt loading of both the HS groups when compared

to the respective NS groups. The DSS groups, both salt loaded and non-salt loaded

had a higher end ofstudy body mass than their respective controls.
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Table 9. Weekly Percentage Mass Gain

Strain / Week Week 1 Week 2 Week 3 Week 4 WeekS Week 6 Week 7
DSS NS (12) 0 48.0 ± 1.62 88.5 ± 3.66 124.6 ± 4.16 181.5 ± 11.18 183.0 ± 6.36 208.7 ± 6.48
DSRNS (12) 0 47.5 ± 2.97 78.9 ± 4.63 111.6 ± 5.16 144.4 ± 6.86 168.9 ± 8.29 188.6 ± 9.19
DSS HS (12) 0 44.8± 1.38 85.5 ± 2.70 ... ·125.0 ± 4.10 "i 56 3 ± 5'56 ~:~ " J 176J:±170 '~\; ~< k~186 7.: ·~;7'f15~itt':, fl'.:~~~~ · ~ . ; . ' ,:' " ,~;!:!~< ,', . " 0 ~~ '~:': " ~ )~ ,/ .~.-~:i,c~ . '. , _ . ~ -,!,\ ~ ~.' . ', ~ t!

DSRHS (11) 0 52.6 ± 4.63 84.1 ± 5.49 l' 928 + 6 24 ' .> ,,:;;t·l 02:3 ± 7;42 ..'J, ', ;~l" ' l l'r 8~~{7 ' 86~;?~ 1\~~~lQ4':9 '£8:09 ~i~.., . - . ,','. ' ;''' ,' " . : l,. ... , ,"" ~{

Values shown ± SEM
Numbers in brackets indicates n - value (sample number)
Body Mass represented as % Mass gain per week, Week 1 taken as Baseline
o -Salt loading with 2% NaCI
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Figure 5. Weekly Percentage Mass Gain
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4.5. Blood Pressure and Heart Rate

The blood pressure and heart rate was monitored weekly. The systolic and diastolic

blood pressures are shown in Table 10 and Table 11 respectively and represented

diagrammatically in Figure 6 and Figure 7 respectively. There was a significant

increase in both systolic and diastolic blood pressures in the DSS group when

compared to the control DSR group from the 3rd week to the end of the study in the 7th

week. Salt loading had a significant increase in systolic blood pressure in the 2nd and

3rd week of salt loading, in the DSS (HS) group when compared to the DSS (NS)

group. There was no significant difference in the diastolic blood pressure during salt

loading.

The heart rate recorded in beats per minute (bpm) is shown in Table 12., and

represented in Figure 8. There was no significant difference in heart rate during the

first 4 weeks of the study. There was a significant increase in heart rate of the DSS

group when compared to the control DSR group from Week 5 to the end of the study

in the 7th week. Salt loading had a significant decrease in the heart rate of the DSS

group during the 6th week of the study. There was no significant difference in the

DSR groups during salt loading.

69



Table 10. Average Weekly Systolic Blood Pressure

Strain / Week Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7
DSS NS (12) 135.5 ± 2.49 138.3 ± 2.38 154.4 ± 3.83 154.9 ± 3.25 ' 164.1 ± 2.76 178.6 ±4.38 194.4 ± 4.77
DSRNS (12) 112.6 ± 5.60 134.0 ±2.82 132.8 ±2.75 134.3 ± 1.86 133.3 ± 2.93 136.0 ± 3.30 137.3 ± 3.10
DSS HS (12) 104.8 ± 9.51 155.3 ±3.50 156.2 ± 5.09 ", 168:1 :f 1.70 ',~, I; {;l 82.'2 '± 6~24 ; ,~ ,:ti\. ' . ' c ." " r,' 1~%;205~8'i£5 .8'l;~ ;S ~~; " 1 93 3,:± 4.96 I',

DSRHS (11) 116.5 ± 4.08 124.2 ± 2.37 120.0 ± 3.53 ~{ 13 8.4 ±~3~34c.., Ii '.1 13':4 ;± 6;08i ,~~ #;~TQ.8 .6 :ii~5:SOr.r'1; 1 :*,i132~2i~£:3:90'~~'

Values shown as Mean ± SEM
Numbers in brackets indicates n - value (sample number)
Blood pressure represented in millimetres Mercury (mmHg)
o -Salt loading with 2% NaCI

Table 11. Average Weekly Diastolic Blood Pressure

Strain / Week Week 1 Week 2 Week 3 Week 4 WeekS Week 6 Week 7
DSS NS (12) 72.9 + 1.92 89.1 + 1.99 97.8 + 2.15 111.3 ± 1.68 129.7 ± 0.91 139.7 ± 1.50 136.9 ± 11.50
DSRNS (12) 72.8 ± 1.32 79.3 ± 0.92 83.3 ± 1.13 80.9 ± 1.40 84.7 ± 1.20 89.8 ± 1.93 90.2 ± 1.91
DSS HS (12) 64.1 + 7.96 108.2 + 2.08 106.8 + 3.23 ' -' 116.3 ±'3.08 i( :,;126.8 ± 4.25-, : , ~ '::<',140.8,± 6A7:.,, 1 ~1:,~M a3 2":I'Yj i~4~1it" '~ ';It. < - .. ~- :! ~ • . r ~ i;j...;

DSR HS (11) 74.8 + 2.18 78.4 ± 1.07 67.4 ± 1.64 "," 80.9'£ 2.53'.' ~' , " 685'± 2.06 i~~ ):,~ : !'~- "' 78 9 +1~50' ;Ii ':,: r~,8~i:8 i:tlT-If.~ '"',' • _ . " ,J - "

Values shown as Mean ± SEM
Blood pressure represented in (mmHg)
Numbers in brackets indicates n - value (sample number)
o -Salt loading with 2% NaCI
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Figure 6. Average Weekly Systolic Blood Pressure
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Figure 7. Average Weekly Diastolic Blood Pressure
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Table 12. Average Weekly Heart Rate

Strain / Week Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7
DSS NS (12) 480.3 ± 13.52 452.8 ± 13.50 431.2 ± 7.91 429.9 ± 7.82 454.4 ± 4.65 466.1 ± 7.41 442.3 ± 13.03
DSRNS (12) 467.6 ± 6.65 447.9 ± 8.36 427.8 ± 6.11 418.6 ± 5.68 413.8 ± 5.52 414.6 ± 7.45 388.9 ±4.97
DSS HS (12) 492.1 ± 8.49 465.0 ± 11.91 439.3 ± 11.08 ',,..:429.5-± 10:04 '" ' ,. . /, " ..7;/,

~F429:8'-f~]H~i90;flt ~'44~f,.t:~+~1~3J57~Rji454'..5:± 16':97; ~ , " ",~, ,', .- ." , ~", :(

DSR HS (11) 451.5 ± 11.61 433.5 ± 8.74 432.4 ± 8.42 '}~.i'4 1 9 ; S' ;:f 8. S3i'~. · iiI41'6yg:'±6~62 ,IJ:\ ,~:~'~~;399 ;9 ':r-<5 ;:63 J'ii'i !th'38~r2jf~fO'31Z~':,"" " '_ ," 'i ~t':V , ., . , . "_ " • . 3~ :. ~

Values shown as Mean ± SEM
Heart Rate represented in Beats per Minute (bpm)
Numbers in brackets indicates n - value (sample number)
o -Salt loading with 2% NaCI
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Figure 8. Average Weekly Heart Rate
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4.6. Organ Weight

Organ weights of the right kidney, liver and brain are shown in Table 13., and

represented in Figure 9. There was a significant increase in the mass of the right

kidney of the DSS group when compared to the control DSR group. Salt loading

significantly increased the right kidney mass of the DSS HS group. There was no

significant difference in the right kidney mass of the salt loaded DSR group.

There was no significant difference in the mass of the liver in the DSS group when

compared to the control DSR group, however during salt loading there was a

significant increase in the liver mass in both the DSS and DSR salt loaded groups.

There was no significant difference in the brain mass of the DSS group when

compared to the control DSR group. Salt loading showed no significant difference in

the mass of the brain in both the DSS and DSR groups.
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Table 13. Average Right kidney, liver and brain weight

Organ / Strain DSS NS (12) DSRNS (12) DSS HS (12) DSRHS (11)
Right Kidney 1.28 ± 0.04 0.95 ± 0.03 1.53 ± 0.05 0.94 ± 0.02

Liver 10.51 ± 0.28 9.15±0.45 14.58 ± 0.50 12.16 ± 0.65
Brain 1.48 ± 0.05 1.57 ± 0.04 1.35 ± 0.03 1.43 ± 0.04

Values shown as Mean ± SEM
Numbers in brackets indicates n - value (sample number)
Organ mass represented in grams
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Figure 9. Average Right kidney, liver and brain weight
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4.7. Antioxidant Enzymes

4.7.1. Superoxide Dismutase (SOD)

The SOD levels evaluated in the red blood cell is shown in Table 14., and represented

in Figure 10. There is a significant increase in SOD levels in the DSS group when

compared to the control DSR group. Salt loading resulted in a significant decrease in

the SOD levels of the salt loaded groups when compared to the respective non-salt

loaded groups.

4.7.2. Gluthione Peroxidase (GPx)

The GPx levels evaluated in whole blood are shown in Table 14., and represented in

Figure 11. There was a significant decrease in GPx levels in the DSS group when

compared to the control DSR group. Salt loading resulted in no significant difference

in GPx levels in both the DSS and DSR salt loaded groups.

4.8. Hydrogen Peroxide (H202)

The hydrogen peroxide levels determined in the blood plasma are shown in Table 14.,

and represented in Figure 12. Statistically there was no significant difference (p >

0.05) in the hydrogen peroxide levels in all groups including the salt loaded groups

when compared to their respective control groups. The GPx : H202 ratio which is

shown in Table 14., is a quotient of the GPx and H202 concentration and is expressed

as GPx units per nanomol H202, and was used to determine the bioavailability of GPx

to neutralise H202.
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Table 14. SOD, GPx, Hydrogen Peroxide Concentration, GPx : HzOz Ratio and Total MDA concentration in the brain

Parameter I Strain DSS NS (12) DSR NS (12) DSS HS (12) DSRHS (11)
SOD 104.2 ± 2.7 71.2 ± 4.1 57.9 ± 3.2 34.4 ±0.9
GPx 60975.8 ± 1297.7 77738.8 ± 1557.0 65547.0 ±2510.1 77190 ± 1585.3
HzOz 0.0489 ± 0.0070 0.0541 ± 0.0058 0.0694 ± 0.0057 0.0697 ±0.0101

GPx : HzOz Ratio 1523.67 ± 257.83 1855.70 ± 450.27 1025.54 ± 106.30 1916.96 ± 629.54
Total MDA Brain 2837.6 ± 109.8 3183.5 ± 127.0 3217.7 ± 113.5 3165.1 ± 138.4

Values shown as Mean ± SEM
Total MDA expressed as nmol MDA I mg Tissue Protein
GPx expressed as GPx units / ml ofBlood
SOD expressed as SOD units I ml of Blood
HzOz expressed as uM HzOz I ml Plasma
GPx : HZ02 Ratio is expressed as GPx units per nanomol(nm) HzOz
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Figure 10. Superoxide Dismutase
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Figure 11. Glutathione Peroxidase

Glutathione Peroxidase (GPx)
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4.9. Lipid Peroxidation

4.9.1. Kidney

The kidney homogenates of all groups were exposed to increasing concentrations of

hydrogen peroxide (H202) viz. (2.5 mM, 5 mM, 10mM and 15 mM). The homogenate

was then subjected to the TBA test, and the concentrations of Malonyldialdehyde

(MDA), which is a product of lipid peroxidation are shown in Table 15., and

represented in Figure 13.

The level of lipid peroxidation in vivo (Total MDA) of the kidney was taken as the

concentration ofMDA generated after being exposed to 0 mM H20 2. The Total MDA

concentration was significantly higher in the DSS group when compared to the

control DSR group. Salt loading resulted in no significant difference in the Total

MDA concentration when compared to the respective non-salt loaded controls.

There was no significant difference in MDA concentration at the increasing

concentrations of H20 2, of each group when compared to their respective controls. In

all groups however, there was a significant increase in MDA concentration at the

increasing levels of H202 when compared to the MDA concentration at OmM H20 2•

The maximal MDA concentration, being reached at differing concentrations of H202

for each group.
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Table 15. Oxidative Challenge Test - Kidney

Strain / [ JH202 OmM 2.5mM 5mM 10mM 15mM
DSS NS (11) 1978.6 ± 113.9 4442.4 ± 278.3 5934.2 ± 362.8 5906.5 ± 338.7 5855.3 ± 282.0
DSRNS (12) 1576.3 ± 78.2 4116 .8 ± 301.9 5548.9 ± 391.7 6127.0 ± 296.3 6261.1 ±327.7
DSS HS (10) 1925.2 ± 99.3 4334.6 ±356.2 5376.8 ± 498.2 5044.9 ± 488.2 5012.6 ±559.7
DSRHS (10) 1581.4 ± 68.5 3623.6 ± 169.2 4708.6 ± 232.1 4863.1 ± 230.2 4781.9 ± 220.8

Numbers in brackets indicate n - value (Sample Size)
Values expressed as MDA(nmol)/mg Tissue Protein
Values shown as Mean ± SEM
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Figure 13. Oxidative Challenge Test - Kidney
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4.9.2. Liver

The liver homogenates of all groups were exposed to increasing concentrations of

hydrogen peroxide (H202) viz. (2.5 mM, 5 mM, 10mM and 15 mM). The homogenate

was then subjected to the TBA test, and the concentrations of Malonyldialdehyde

(MDA), which is a product of lipid peroxidation are shown in Table 16., and

represented in Figure 14.

The level of lipid peroxidation in vivo (Total MDA) of the liver was taken as the

concentration of MDA generated after being exposed to 0 mM H202. There was no

significant difference in the concentration of MDA of the DSS group when compared

to the control DSR group. Salt loading resulted in no significant difference in MDA

production at 0 mM H202, when compared to the non-salt loaded controls.

A significant increase in MDA production was evident at 5mM, 10mM and 15mM in

both the DSS groups when compared to respective control DSR groups. At a H202

concentration of 5mM, IOmM and 15mM, there was a significant difference in MDA

concentration of the salt loaded DSS group when compared to the non-salt loaded

DSS group.
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Table 16. Oxidative Challenge Test - Liver

Strain / r1H202 OmM 2.5mM 5mM 10mM 15mM
DSS NS (11) 846.4 ± 25.4 1514.4 ± 49.7 3042.6 ± 240.9 6505.1 ± 369.6 7506.5 ± 365.5
DSRNS (10) 789.4 ± 33.1 1402.2 ± 35.1 1973.4 ± 166.5 3893.7 ± 520.8 4538.6 ± 518.8
DSS HS (10) 740.4 ±47.7 1556.0 ± 158.4 3331.2 ± 208.5 5591.8 ± 215.0 5918.5 ± 223.6
DSRHS (11) 884.7 ± 26.4 1403.3 ± 84.7 1865.4 ± 59.9 3417.7 ± 214.9 3759.8 ± 230.3

Numbers in brackets indicate n - value (Sample Size)
Values expressed as MDA(nmol)/mg Tissue Protein
Values shown as Mean ± SEM

87



Figure 14. Oxidative Challenge Test - Liver
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4.9.3. Brain

The brain homogenates were subjected to a direct TBA test, which resulted in the

concentration of MDA present in vivo for the brain. This MDA concentration was

taken as the total MDA of the brain, the results are shown in Table 14. There was no

significant difference in MDA concentration in both the non-salt loaded and salt

loaded DSS groups when compared to their respective DSR controls.
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4.10. Standard Curves

The standard curves used In the study are shown in Figure 15., (Superoxide

Dismutase), Figure 16., (Hydrogen peroxide) and Figure 17., (Protein Estimation).

All plotted values on the standard curves, were done in triplicate, and the average of

these values were used to plot the standard curves. A best-fit line was plotted, using

these values. The equations used to extrapolate the unknown values are shown on the

respective plots.
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Figure 15. Standard Curve - Superoxide Oismutase (SOD)
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Figure 16. Standard Curve - Hydrogen Peroxide
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•

Figure 17. Standard Curve· Protein Estimation (Lowry)
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5. DISCUSSION

This study has shown that the Dahl Salt Sensitive (DSS) strain, which is a well­

established salt sensitive model of hypertension, demonstrates an evident link

. between salt sensitive hypertension and both the free radical and antioxidant status

with resulting increase in tissue oxidative stress.

This has been demonstrated by the following patho-physiological changes in the Dahl

Salt Sensitive (DSS) rat:

1. This strain has an increased vascular superoxide dismutase (SOD)

concentration, which could be a compensatory mechanism to counter an

increased in vivo level of free radicals.

2. Salt loading resulted in a decrease in vascular SOD concentration, indicating

that salt loading decreases the bioavailability of SOD, due to an increase in the

superoxide radical (02") found during salt loading.

3. The vascular glutathione peroxidase (GPx) levels are significantly decreased

in the both the salt-loaded and non-salt loaded DSS group, thereby reducing its

ability to neutralise an increased H202 concentration.

4. Salt loading increased the vascular GPx levels, but not sufficiently to counter

the increase in plasma H202 concentration evaluated, as assessed by the

GPx:H202ratio.

5. Salt loading resulted in an increased plasma H202concentration.
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6. This strain showed an increase in the, in vivo levels of lipid peroxidation in

specific target tissues viz. kidney, as a result of a suspected increase in tissue

oxidative stress.

7. This strain has shown that tissue VIZ. kidney and liver has a reduced

antioxidant buffering capacity in countering an induced free radical challenge,

resulting in increased in vitro tissue oxidative stress due to increased lipid

peroxidation.

8. It has also shown that tissue types adapt and react to increased free radicals, in

different ways, suggesting that, different tissue types undergo differing levels

of oxidative stress relative to their antioxidant buffering capacity.

From the results obtained thus far, it has been established that the DSS strain, has both

a compromised antioxidant and an elevated free radical status due to changes in

antioxidant enzyme concentrations and the related free radical concentrations. This

compromised status results in oxidative stress. The DSS strain has also demonstrated

that target tissue viz. kidney, has a higher level of in vivo tissue oxidative stress and it

has a lower tissue antioxidant buffering capacity to induced oxidative stress. The

study has thus shown that these parameters are linked to the genetic hypertensive state

that the DSS model displays via the mechanisms discussed below.
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5.1. Nutritional Parameters

The Dahl Salt Sensitive (DSS) strain on the normal salt (NS) diet showed an

increasing trend in food consumption during the first 4 weeks of the study, with a

plateau phase, in the successive weeks. The increasing trend corresponds with a

similar trend apparent in the percentage (%) mass gain, during the first 4 weeks. The

DSS strain had a higher food consumption per week than the control DSR animals,

and a proportionally higher % mass gain per week. This increase in food consumption

and subsequent increase in % mass gain could be due to a lower metabolism in the

DSS strain. It has been hypothesised that antioxidant enzymes and free radicals could

work in concert to alter metabolic activities of tissues (Yuan et al., 1998). The altered

status of both free radical and antioxidants found in the metabolically important tissue

such as the kidney and liver (discussed later), could affect the metabolic rate and

explain the increase in food consumption and %mass gain, apparent in the DSS strain.

Salt loading showed a significant drop in food consumption from the first week of salt

loading in the 4th week of the study in both the salt loaded DSS and DSR strains. The

decrease in food consumption was manifested as a decrease in the %mass gain and

seemed to stunt growth with respect to the % mass gain, in both the DSS and DSR

control animals. The salt loaded strains had a significantly lower, end of study body

mass when compared to their non-salt loaded controls, thus showing that metabolic

activities are disrupted in salt sensitive hypertension.

The water intake of the DSS animals was significantly higher in the successive weeks

of the study. The urine output of both the salt-loaded and non-salt loaded groups

showed a corresponding trend to the water intake. Salt loading showed a significant
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increase in water intake, in both the salt loaded groups when compared to the non-salt

loaded groups. The water intake was ~ 3-4 times higher in the salt loaded groups than

in the non-salt loaded controls. The increased water intake manifesting itself with a

corresponding increase in urine output. The increased water intake in both the DSS

salt loaded and non-salt loaded groups, is characteristic of salt sensitive models which

display a downward shift in the pressure-natriuresis curve (Rapp., 1982). This shift

results in salt retention with a corresponding expansion of fluid volume, resulting in

the elevation of blood pressure (Gross et al., 1997). This reported sodium retention

would result in an increase in water intake to maintain homeostatic balance. This

being evident in the DSS model which displays an increased water intake.

Salt loading was achieved by supplementing the water with 2% NaCl. The literature

suggests that 0.5 - 1% is considered normal and levels above 4% are considered high

(Tobian., 1997). The reason that 2% NaCI was chosen as a high salt intake was due to

results obtained in a pilot study performed on the DSS and DSR strains. The pilot

study used a 4% NaCI salt load, as a high salt load. This study showed abnormal

changes in the nutritional and metabolic parameters of both strains. To eliminate the

abnormal variations in these parameters, a 2% NaCI salt load was employed. This 2%

NaCI salt load showed no abnormal variations in nutritional and metabolic

parameters, but showed an incremental increase in blood pressure consistent with salt

loading and was therefore employed as a high salt load. .

The DSS strain in the last week of the study had a significant drop in urine output,

when compared to the previous 3 weeks of salt loading, with a similar water intake.

This significant drop in urine output could be due a decreased renal efficiency evident
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with gross renal damage. This renal damage could be caused by the increase in blood

pressure and increased lipid peroxidation in the kidney (discussed later) of this strain.

The decreased urine output is consistent with decreased natriuretic and diuretic

properties reported in the kidney during hypertension, which could result from renal

damage (Meng et al., 2003). This decrease in renal efficiency may result in water

retention with a resultant expansion in fluid volume and thereby contribute to the

increase in blood pressure.

~, ,'" ... "J':,; 1,.+. \ .\
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5.2. Blood Pressure and Heart Rate

Both the systolic and diastolic blood pressures of the DSS strain showed an increasing

trend through the successive weeks of the study. In contrast the DSR control strains

showed a steady systolic and diastolic blood pressure through the successive weeks of

the study. The slight increase in the systolic and diastolic blood pressure's when

comparing the 1st week of the study to the 7th week in the DSR strain can be attributed

to an age related increase in blood pressure. The steady state blood pressure of the salt

loaded DSR group further confirms the resistance of this strain to an increase in blood

pressure due to salt loading and emphasising the strains salt resistance. The changes in

blood pressure obtained in this study are consistent with previous results obtained

from this model in our laboratory (Somova et ai., 2001).

Salt loading had a significant increase in the blood pressure of the DSS strain, further

emphasising the strains susceptibility to salt loading. The salt loading exacerbated, the

increase in blood pressure, this being evident when comparing the salt loaded DSS

strain to the non-salt loaded controls from the 2nd week of salt loading. Thus

reinforcing the strains genetic susceptibility to an increase in salt intake. The resulting

increase in blood pressure which was due to an increase in salt intake, thus

demonstrates the salt sensitivity of this model as reported in other studies

(Weinberger., 1996).

One of the most significant primary factors that lead to hypertension in salt sensitive

humans and experimental models such as the Dahl rat is the shift seen in the pressure

natriuresis curve (Rapp., 1982) (Fig 1.). This shift results in salt retention with a

corresponding expansion of the fluid volume, resulting in an elevation in blood
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pressure. The increase in heart rate that is displayed by the DSS strain, could be

attributed to an increase in sympathetic activity that has been previously reported in

this genetic model of salt sensitive hypertension (Grassi et a1. , 1998).

The steady increase in blood pressure evident in the DSS strain, even without salt

loading further emphasises this models genetic susceptibility to an increase in blood

pressure associated with the hypertensive state. The salt loading merely exacerbates

the increase in both the systolic and diastolic blood pressure evident in this study

(Sustarsie et al., 1981).
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5.3. Antioxidants, Free radicals, Tissue Oxidative Stress and the link

with Hypertension

The antioxidant status of all groups were evaluated by assessing the levels of the

major antioxidants in the vascular compartment viz. Superoxide Dismutase (SOD)

and Glutathione Peroxidase (GPx). The results show that the DSS strain on a normal

salt diet had a significantly higher SOD concentration than the control Dahl Salt

Resistant (DSR) strain on the same diet. SOD is the antioxidant enzyme that

neutralises the deleterious reactive oxygen species (ROS), superoxide (02), to a more

stable and relatively less deleterious free radical, hydrogen peroxide (H202)

(Halliwell., 1996).

The increased SOD concentration observed in the DSS strain, is consistent with

studies done in Angiotensin H (Ang H)-induced hypertension in rats, that shows that

an increase in SOD concentration is probably an adaptive, negative feedback

mechanism, where Ang H increased the vascular expression of extracellular SOD

(SOD-3 / ecSOD) in vitro and in vivo (Fukai et al., 1999, Wassmann et al., 2004). The

hypertensive state displayed by the DSS strain has been linked to an increase in Ang

II by studies done on this model previously (Meng et aI., 2002, Rajagopalan., 1996).

The DSS strain may have an adaptive mechanism with respect to the levels of SOD,

that is due to an increase in O2- levels in vivo, this compensatory adaptation aiding in

the neutralisation of a free radical "onslaught" from the O2- species.

The mechanism ofrenin-angiotensin system-induced hypertension has generally been

attributed to the vasoconstrictor effects of Ang II and the mineralocorticoid effects of

aldosterone. Recent work has however revealed an additional potential mechanism.

101



...... ,>.~ ...

Ang II has been shown to stimulate 02- generation by increasing the activity of the

enzyme NAD(P)H cytochrome P-450 oxidoreductase, more commonly termed

NAD(P)H oxidase, in cultured rat vascular smooth muscle cells and in intact aortas of

rats made hypertensive by angiotensin II infusion. This appears to be a fairly specific

effect, as rats made hypertensive to a similar degree by infusion of noradrenalin

showed no increase in NAD(P)H oxidase activity. Blood pressure and vascular

reactivity could be restored by exogenous liposome-encapsulated SOD in the

angiotensin II hypertensive rats, but not the noradrenalin hypertensive rats. This

further implicates 02- in hypertension associated with high angiotensin II states. They

concluded that this was further evidence that angiotensin Il-induced hypertension

activates the NAD(P)H oxidase system and that this system is directly involved with

the pathology ofhypertension (Rajagopalan et al., 1996, McIntyre et al., 1999).

This study has shown that salt loading had a significant decrease in the vascular levels

of SOD in vivo, when compared to the non-salt loaded controls. This demonstrating

that in salt sensitive hypertension, there is a decrease in the ability to counter a free

radical "onslaught" by O2-. The decrease in SOD levels in the salt-loaded group may

also indicate an increase in O2- levels associated with salt loading, and this increase in

Oz-, thereby limiting the bioavailability of SOD. The H20Z levels evaluated in the

study showed that the salt-loaded DSS strain, had a non-significant increase in the

plasma concentration of H20Z. These increased levels are consistent with the

decreased levels of vascular SOD. The decreased SOD, which may be due to the

increased neutralisation of 02-, would result in increased HZ02 as an end product, this

increase has been shown in the plasma levels of HzOz established in this study. This

study therefore demonstrated results that are similar to a study, that showed the
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hypertensive high salt DSS strain has a significantly higher plasma H202 than the

non-salt loaded controls, which was determined via the Clarke electrode method

(Swei et al., 1997). The disparity in significance of the H202 levels that were found in

this study when compared to the above mentioned study could have resulted from the

reported non-specificity of the method employed in this study (Tarpey et al., 2004).

It has been established that SOD is the antioxidant enzyme that neutralises the

superoxide (02' ) radical. The role that 02' plays in hypertension per se is a well­

established and putative one. The most significant role is the effect that O£ has on

nitric oxide (NO). NO is a potent endogenous vasodilator (Palmer et al., 1987), it

regulates vascular tone in normal vessels, which includes resistance vessels, and it

causes renal vasodilatation with consequent diuresis and natriuresis. The actions of

NO would tend to lower blood pressure and therefore a reduction in this mechanism is

a means in which 02- contributes to hypertension (McIntyre et 01., 1999).

O2' reduces the bioavailability of NO, due to its high affinity to NO and thereby

forming peroxynitrite (ONOO") (Rubanyi and Vanhoutte., 1986). Therefore

circumstances that result in increased O2-, such as hypertension can be harmful in

several ways, firstly by halting the beneficial effects of NO by reducing its

bioavailability and secondly by the damaging effects of ONOO', which can be

protonated to peroxynitrous acid, the cleavage products of which are among the most

reactive oxygen species, in the biological system (Beckman et al., 1994, McIntyre et

al., 1999). In addition to this, studies have demonstrated that 02- can act directly as a

vasoconstrictor (Stocker and Keaney., 2004).
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The putative role that O£oplays during hypertension can be successfully assessed with

reference to studies that have administered synthetic SOD, to neutralise increased 0 2­

levels, in hypertensive rats and were successful in lowering the blood pressure

(Nakazono et al., 1991). Thus the mechanism by which 02- acts on NO to increase

blood pressure during hypertension is an important one. It can be further

demonstrated how the deleterious effects of 02' are successfully neutralised by SOD

and thereby lowering blood pressure, in studies linked with Down syndrome. The

human gene for CU/Zn SOD (SOD-I) has been localized to the 21q22.1 region of

chromosome 21. Therefore, patients with Down syndrome (trisomy 21) have an extra

copy of the gene and have been shown to have SOD-l activity 50% greater than the

normal diploid population, in keeping with the gene-dosage effect (De la Torre et al.,

1996). Transgenic rats containing an extra copy of the human SOD-l gene display

some of the neurological defects characteristic of Down syndrome, including

premature aging, suggesting that this gene is involved in the pathogenesis of Down

syndrome (Yarom et al., 1988). The increased SOD-l activity in Down syndrome

may further indicate a role for O2- in hypertension. With a higher SOD-l activity,

Down syndrome patients will have reduced 0 2- levels . If O2- excess is involved in the

pathogenesis ofhypertension, then one would expect Down syndrome patients to have

lower blood pressure. This was recently found to be the case in a well-controlled study

by Morrison et al., 1996 (McIntyre et al., 1999). This thereby confirming the positive

role that 02- plays in increasing blood pressure during hypertension by the effects

discussed earlier.

There are many factors both established and some still under investigation that seem

to be involved in increasing the production of 0 2- and thereby decreasing the
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bioavailability of NO, resulting in an increased blood pressure during the hypertensive

state. A major implicated source of Oz- is the oxidant enzyme NADPH oxidase. It is

known that phagocytes, adventitial fibroblasts, vascular smooth muscle cells (VSMC)

and endothelial cells (EC) contain a plasma-membrane bound multi-component

oxidase that utilises electrons derived from NADPH to reduce molecular Oz to Oz­

(Stocker and Keaney., 2004). An over expression of this enzyme due to Angiotensin

II (Ang II) infusion was found to result in an increase in the Oz-production, during the

hypertensive state (McIntyre et al., 1999). It has been previously reported that the

DSS strain has increased levels of Aug II, this would result in an increase in the r:

expression of NADPH oxidase and may therefore result in the increase in O2-,

apparent in this study (Rajagopalan et al., 1996).

The GPx levels in the vascular compartment showed a significant decrease in the DSS

strain when compared to the DSR control group. GPx is the antioxidant enzyme that

with catalase neutralises HzOz to HzO and molecular O2. The DSS strain showed a

significantly decreased level of GPx with no significant difference in plasma HzOz

levels. A similar study on the DSS strain by Swei et al., 1997, found a significant

increase in plasma Hz02 levels, which was measured using the Clarke electrode. The

evident disparity in results could be due to the reported, relative inaccuracy of the

method employed in this study (Tarpey et al., 2004). The GPx levels demonstrate that

the DSS animal has a compromised ability to neutralise H20Z in vivo, due to the lower

vascular GPx levels. This is consistent with other studies that found a decrease in the

in vivo GPx levels in the DSS strain (Too et al., 2003). Salt loading had a non­

significant increase in vascular GPx concentration in the DSS strain. This increase

may be due to the non-significant increase in H20 2 levels during salt loading, and may
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be an adaptive mechanism to this increased H202 concentration in vivo. The GPx :

H202 ratio which illustrates the relative "number" of GPx units available to neutralise

1nanomol H202, was used in this study as a theoretical measure of the bioavailability

of GPx to neutralise H202. This ratio clearly demonstrates, that although the salt­

loaded DSS strain demonstrated an increase in GPx concentration during salt loading,

the decrease in this ratio, illustrates a decrease in the ability of GPx to neutralise the

H202 free radical during salt loading.

It has been thus far demonstrated that SOD is a major defence against an increase in

blood pressure associated with hypertension, via the dismutation of 02-. However,

although the dismutation of O£, prevents the deleterious effects of this free radical as

discussed previously, hydrogen peroxide (H202) is an end product of this reaction.

GPx is the antioxidant enzyme that with catalase neutralises H202 to oxygen (02) and

water (H20). An increase in the dismutation of 02- by SOD would result in a relative

increase in H202 formation, with a resulting decrease in SOD~ as found in this study.

If the GPx levels are compromised as shown in this study, then this would result in an

accumulation of H202. An increase in the in vivo H202 concentration in the DSS

model has been shown in similar studies (Swei et a/., 1997) and has been linked to the

hypertensive state by the mechanisms discussed below.

Virtually all types of vascular cells produce 02- and HZ02. The endothelium plays a

crucial role in the regulation of vascular tone and vascular remodelling. Endothelial

injury or exposure to O2- and HZ02 induces apoptosis (programmed cell death) of

endothelial cells (EC), which leads to EC loss and results in atherogenesis and a

procoagulative state (McIntyre et a/., 1999). These reactive oxygen species (ROS)
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regulate apoptotic mechanisms induced by a variety of stimuli. Another type of

programmed cell death, termed anoikis, results from the detachment of EC's from the

extracellular matrix and this process is associated with increased intracellular ROS.

EC migration, proliferation and tube formation are essential events in the process of

apoptosis resulting in angiogenesis. ROS maybe directly involved in all these

mechanisms, as HzOz has been shown to induce proliferation and migration of Ee's

and to mediate lymphocyte-activated tubulogenesis. These ROS also act as mediators

of angiogenic growth factors, such as vascular endothelial growth factor (VEGF)

(Taniyama and Griendling., 2003) .

The production of ROS Oz- and HzOz is involved in many of the processes leading to

both hypertrophic and proliferative vascular smooth muscle cell (VSMC) growth.

These ROS also mediate the full proliferative response to agonists such as platelet

derived growth factor (PDGF) and thrombin. H202itself induces VSMC proliferation,

although this effect appears to be critically dependant on the concentration of H202,

which cells are exposed to. It has been found that endogenously produced H20 2 may

also be important in modulating survival and proliferation ofVSMC's (Taniyama and

Griendling., 2003).

It has been shown previously, that relatively high concentrations of HzOz induce

apoptosis, whereas a moderate concentration causes cell cycle arrest. This

demonstrating that concentrations of H20 Z from moderate to high, have deleterious

effects in the vasculature (Taniyama and Griendling., 2003). HZ0 2 does not function

as a mitogen for VSMC's, instead, it serves as a stimulus to trigger VSMC apoptosis

(Li et al., 1997) These factors suggest that H20Z contributes to hypertension by
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altering vascular remodelling. Structural vascular remodelling is a hallmark of chronic

hypertension, and an increased wall to lumen ratio of resistance arteries is the

predominant lesion. The increase in relative "thickness" of resistance arteries is

responsible for the "amplifier" property of the arterial circulation in hypertension,

which functionally manifests itself as a pressor or vasoconstrictor

hyperresponsiveness (Simon et al., 1998).

An accumulation of HzOz in vivo as reported , could have the following deleterious

effect if not neutralised by GPx and catalase. In the presence of the transition metals

Iron (Fe) and Copper (Cu) and Oz·, HzOz is broken down to the hydroxyl radical

(OR), which is considered to be potentially the most potent oxidant encountered in

biological systems (Yu., 1994). The OH- radical causes strand breaks and base

modification in DNA leading to changes in gene expression, mutation and apoptosis.

Protein side chains are oxidised which can result in enzyme, receptor and carrier

dysfunction. The resulting lipid peroxidation due to OH- alters functional properties of

membranes and delivery of lipids to tissues (Halliwell., 1996).

Thus an accumulation of HzOz results in the formation of OH-, which has been

reported to cause an increase in lipid peroxidation resulting in tissue damage

associated with the hypertensive state. Thus increased levels of HzOz contribute to the

hypertensive state via two main mechanisms, firstly via vascular remodelling and

secondly by the formation of OH-, leading to lipid peroxidation and eventual tissue

damage.
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Oxidative stress leading to tissue damage, appears to be a focal point in hypertension

research. The tissue damage associated with lipid peroxidation due to free radicals

could be a major factor in the pathogenesis of hypertension, since it is accompanied

by architectural changes in the kidney, heart and vessels that are often deleterious and

can eventually contribute to end organ diseases such as renal failure, heart failure and

coronary disease (Raij., 1998).

The level of oxidative stress was assessed in the kidney, liver and brain of the DSS

strain, by quantifying the in vivo concentration of malonyldialdehyde (MDA) in these

tissues. MDA is a byproduct of lipid peroxidation by free radicals and is regarded as a

reasonable indicator of oxidative stress in vivo (Buczynski et al., 1993). The above­

mentioned tissues were also subjected to an oxidative challenge, by exposing them to

increasing, known concentrations of H202. This was done to assess the antioxidant

buffering capacity of the tissue to an induced free radical challenge.

The oxidative challenge test in the kidney of the DSS strain showed a significantly

higher MDA concentration, and therefore a higher level of lipid peroxidation. Total

MDA concentration in vivo, was assessed as the MDA concentration, with no induced

free radical challenge i.e. (OmM H202). The total MDA concentration showed that the

kidney of the DSS strain had a significantly higher level of lipid peroxidation than the

DSR control group. This demonstrates that lipid peroxidation in the kidney of the

DSS strain could be due to a higher concentration of free radical in the kidney and/or

a lower tissue antioxidant concentration. The kidney of the DSS strain could therefore

be undergoing an increased level of oxidative stress relative to the DSR control strain.
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This therefore supports the hypothesis/theory that hypertension is a "free radical"

disease with a resultant increase in tissue oxidative stress.

Salt loading had a non-significant increase in the level of lipid peroxidation in the

kidney of the DSS strain, this could indicate that salt loading does not manifest itself

as an increased level of lipid peroxidation in the kidney and/or the kidney could have

a compensatory antioxidant buffering capacity to an increased free radical

concentration, established during salt loading. When the kidney was subjected to the

oxidative challenge test with increasing concentrations of H202, the level of lipid

peroxidation increased, demonstrating a curvilinear relationship with the increasing

levels of free radical. A H202 concentration of 5mM, proved to be the concentration at

which a maximal level of lipid peroxidation was reached. The curve was consistent up

to this concentration. The concentrations above 5mM H202 could have introduced

variables that, induced the inconsistency apparent at these concentrations. Analysing

these variables was beyond the scope of this study and therefore for the discussion of

the oxidative challenge, these higher H202 concentrations would be ignored.

Salt loading showed a non-significant decrease in the level of lipid peroxidation in the

kidney of the salt-loaded DSS strain. This could suggest a compensatory increase in

the antioxidant buffering capacity of the kidney to an increased free radical

concentration in the kidney during salt loading. This analysis being purely speculative

and a confirmation would lie in assessing the free radical and ant ioxidant levels in the

kidney. Unfortunately these parameters where beyond the scope of this study. The

study thus shows that during salt sensitive hypertension, the kidney of the DSS strain

demonstrates an increased level of lipid peroxidation and therefore an associated
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increase in tissue damage. This shows that the kidney has a relatively higher level of

oxidative stress and that it is a target organ for free radical induced oxidative stress

during the hypertensive state. These findings are consistent with other studies that

have been done to assess the level of damage in the kidney during salt sensitive

hypertension (Meng at a/., 2003).

This study has therefore shown that the kidney appears to be a target organ during the

hypertensive state, due to an increased level of lipid peroxidation products (MDA) in

vivo. MDA, the most abundant among the reactive aldehydes derived from lipid

peroxidation, has been found to be significantly increased in blood as well as in

peripheral mononuclear cells. These aldehydes are implicated causative agents in

cytotoxic processes, and when released from cell membranes they may diffuse,

interact and induce oxidative modifications in other cells and thus increasing the risk

of both cardiovascular and renal damage in hypertension (Steinberg et a/., 1989,

Redon et al., 2003).

Hypertension induces important functional and structural alterations in the kidney,

resulting in proteinuria, glomerular sclerosis, and other morphological changes,

eventually leading to end-stage renal disease. Reducing blood pressure in hypertensive

patients retards the progression of renal failure and reduces the morbidity and

mortality rates (Meng et a/., 2003). The kidney appears to be both cause and victim in

the hypertensive process. Renal hemodynamics are abnormal even in the early stages

of primary hypertension, and the changes become pronounced with the severity of the

disease (Ruilope at al., 1990).
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A variety of studies in humans and animals suggest a renal abnormality or multiple

alterations in renal function due to salt-sensitive hypertension (Weinberger., 1996).

ROS can act as signal transduction messengers for several transcription factors, which

play a critical role in the activation of multiple genes that contribute to the

inflammatory response and end organ damage (Schnackenberg., 2002).

It can thus be shown that the increased tissue oxidative stress seen in the kidney of the

DSS model, represented by a high level of in vivo lipid peroxidation would contribute

to the hypertensive state by impacting on the renal efficiency, and thereby contribute

to the hypertensive state, by decreasing the natriuretic and diuretic properties of the

kidney, which tends to lowers blood pressure (Meng et al., 2003).

The decreased antioxidant buffering capacity of both the kidney and liver

demonstrated in this study, shows that increased levels of free radical would result in

an increase in tissue oxidative stress. This would result in tissue damage due to lipid

peroxidation, and thereby decreasing the homeostatic roles of these organs. The

decreased homeostatic capacity of these organs would contribute to a number of

disease states associated with damage to these organs. This study has shown that the

kidney appears to be a target organ for increased oxidative stress and is consistent

with other studies demonstrating tissue oxidative stress in the hypertensive state

(Meng et al., 2003, Raij., 1998, Zhou et al., 2000).

The total MDA concentration which was taken as the level oflipid peroxidation ofthe

liver in vivo, showed a non-significant increase in the level of lipid peroxidation in the

DSS strain. This demonstrates the liver of the DSS strain has a "normal" level of lipid
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peroxidation relative to the control strain. However when the liver of the DSS strain

was exposed to the oxidative challenge test, with increasing concentrations of H202, a

significant increase in the level of lipid peroxidation was apparent from 5mM H202 to

15mM H202. This clearly demonstrating that the liver of the DSS strain has a

significant decrease in the antioxidant buffering capacity to counter a higher

concentration of free radical, and thus is susceptible to tissue damage due to lipid

peroxidation at a higher concentration of free radical than is present in vivo.

When comparing the total MDA concentration to the MDA concentration at the

increasing concentrations of induced free radical (2.5mM - 15mM H202) , a clear

picture arises that the liver of the DSS strain copes extremely efficiently in

neutralising an increased free radical concentration associated with the hypertensive

state. In contrast when the liver is exposed to higher levels of free radical (> 5mM),

the tissue is overcome by this free radical onslaught and loses the efficient antioxidant

buffering capacity evident at a lower in vivo free radical concentration.

Salt loading had a non-significant increase in the level of lipid peroxidation in the

liver, in the salt-loaded DSS group. The salt-loaded group displayed the same

curvilinear relationship as the non-salt loaded controls, when exposed to the oxidative

challenge test. Thus confirming that the liver has an efficient in vivo antioxidant

buffering capacity to an increased free radical concentration, that has been established

in the DSS strain, and that the liver of the DSS strain copes efficiently with the

increased free radical levels associated with salt loading and resulting salt sensitivity.

The liver of the DSS strain shows a limited, non-significant level of tissue oxidative

stress during the hypertensive state. This suggests that the liver may not be a target
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organ for free radicals in salt sensitive hypertension. Thus when comparing the level

of in vivo lipid peroxidation in the kidney and in the liver, it is apparent that the

kidney has a higher level of in vivo tissue oxidative stress than the liver during salt

sensitive hypertension. This difference in the level of lipid peroxidation, therefore

strongly suggests that the kidney is targeted by oxidative stress, with resultant free

radical mediated lipid peroxidation, during salt sensitive hypertension.

The total MDA concentration in the brain of the DSS strain showed no significant

difference in the MDA concentration. It can thus be established that the brain has a

normal level of lipid peroxidation relative to the control. Salt loading had a non­

significant increase in the MDA concentration in vivo, of the salt-loaded DSS group.

This non-significant increase may indicate that the brain is not isolated from the

increased free radical concentration, established during salt loading, but the brain

appears to have an efficient antioxidant buffering capacity during increased levels of

free radicals. The whole brain was analysed for this study, in retrospect, the isolated

brain stem would have been a more accurate indicator of increased oxidative stress

during the hypertensive state. The brain stem contains the major "control centres" for

cardiovascular regulation, and is suspected to be a target for free radicals during the

hypertensive state, and thus would have proved to be a more accurate measure of

tissue damage associated with tissue oxidative stress and the hypertensive state.

It has been shown that the kidney is a target organ during the hypertensive state due to

an increased level of lipid peroxidation. This increased level of in vivo lipid

peroxidation could be due to a compromised antioxidant and free radical status. The

... cz:..•
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study has also shown that these compromised states seem to have a non-significant

bearing on the level of lipid peroxidation due to free radicals, in the liver and brain.

This can be explained by a recent study that shows that lipid peroxidative damage

occurs in differing levels that are determined by organ type, age and subcellular

structure-linked differences (Popova and Popov., 2002). It has also been reported that

various tissues contain different levels and activities of antioxidants and enzymes

such as vitamin E, C, glutathione, GPx, SOD and catalase (Lew et al., 1985, Gohil et

al., 1986; Di Meo et al., 1996, Popova and Popov., 2002). This may also be so

because it has been shown that 02- is not membrane permeable and is therefore

restricted to reacting in the compartment in which it is generated (McIntyre et al.,

1999). This would therefore explain the "normal" levels of lipid peroxidation shown

in the liver and brain and that these tissues may not be target tissue, by oxidative

stress in the hypertensive state or that they are able to buffer the free radical "attack"

sufficiently to minimise lipid peroxidation. This being purely speculative and direct

measurements of in vivo tissue free radical and antioxidant levels would provide a

reliable definition of these tissues, antioxidant and free radical status during the

hypertensive state.
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6. CONCLUSION AND RECOMMENDATIONS

This study has provided further confirmation that the Dahl rat is an excellent model

for assessing the patho-physiological changes associated with salt sensitive

hypertension. It has shown that the Dahl Salt Sensitive strain (DSS), has a

compromised antioxidant status when both on normal and high salt diet in the

vascular compartment. This compromised status is due to the decreased levels of

superoxide dismutase (SOD) and the non-sufficient increase in the glutathione

peroxidase (GPx) concentrations during salt loading. This model also showed that it

may have developed a compensatory increase in SOD, due to an increase in the

formation of the superoxide (02-) free radical species. This being demonstrated by the

increase in SOD concentration, in the vascular compartment, which was independent

of salt loading.

The plasma hydrogen peroxide (H202) concentration, which was used as a measure of

the vascular free radical status, demonstrated that the DSS strain has a non-significant

increase in plasma H202 concentration during salt loading, which could be caused by

an increase in the dismutation of 02- by SOD. Thereby confirming that the model has

a compromised free radical status, with resultant oxidative stress. It has been

established that H202 induces vascular remodelling, and thereby contributing in part

to the hypertensive state. To substantiate these findings, a more specific method to

assess the H202 concentration would need to be employed, such as the Clarke

electrode, because this study found non-significant changes, which may be due to the

reported non-specificity of the method employed (Tarpey et al., 2004).
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With regard to H202, it is known that both GPx and catalase are responsible in

neutralising the species. This study only assessed the vascular GPx levels, it would be

more reliable to also assess whether catalase levels are also compromised. A measure

of both these enzymes, would provide a more accurate means of assessing the level of

the compromised antioxidant status. This would a provide a means of also assessing

the integrated nature of the antioxidant system with respect to neutralising an

increased level ofH202, found during the hypertensive state.

The important role that O£ plays during the hypertensive state with respect to

increasing blood pressure by decreasing the bioavailability of nitric oxide (NO), is an

important, established one. Many studies have shown that synthetic SOD infusion,

resulted in a significant decrease in blood pressure (Nakazono., 1991). Although the

decrease in blood pressure is an important factor in reducing the level of hypertensive

related damage, a coupled investigation with respect to the effect that SOD infusion

has on buffering the level oftissue oxidative stress, would prove a means of assessing

the exact role that 02- plays in lipid peroxidation resulting in end organ disease.

In this coupled study the H202 levels should also be assessed, as increased

dismutation of 02- would result in an increase in the production ofH202. The role that

H202 plays in vascular remodelling is a putative one. Therefore, although SOD

infusion appears to be a short-term measure in decreasing blood pressure, a long-term

histological study on the vasculature would prove a means of assessing the deleterious

effects of increased levels of H202 in the vasculature during long term SOD infusion.

This being due to vascular remodelling, and increased lipid peroxidation by the
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formation of the hydroxyl radical (OH"), both of which are suspected to occur during

H202 accumulation.

Angiotensin II (Aug II), has been found to contribute to the hypertensive state, not

only by the vasoconstrictor effect that has been established. Aug II infusion has been

found to increase the vascular expression of NADPH oxidase. NADPH oxidase is

known to increase O2- production via the conversion of molecular O2. Although there

are other sources of 02-, a study done to show an over expression ofNADPH oxidase,

would be a reliable indicator of an increased production of O2-. This would be a more

accurate means of assessing vascular 02- levels, since measuring 02- levels in vivo,

could be inaccurate due to the short half life and resultant high reactivity of this free

radical.

The Dahl rat has been established as an excellent model of genetic salt sensitive

hypertension. It should be further investigated the exact effects, if any, that free

radicals have in changing the genetic characteristics of this model, because this study

showed an increase in SOD production independent of salt loading. Free radicals have

been found to damage genetically critical material. These genetic changes could work

in concert with the established genetic mechanisms of this model to exacerbate the

hypertensive state that this model displays. A genetic vascular and tissue profile

would be an excellent measure of this models relevance to free radical and antioxidant

research. This profile will also expose the deleterious effect that free radicals have in

up regulation and/or down regulation of critical enzymes and factors, such as SOD,

NADPH and H202. This profile should include the effect, if any that salt loading has

on the expression ofthese enzymes and factors.
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This study showed that during the hypertensive state, organs critical in buffering the

hypertensive state viz. the kidney have an increased level of in vivo lipid peroxidation.

Increased lipid peroxidation would result in tissue damage and eventual end organ

disease. It has been shown in this study that the hypertensive state contributes to the

increased lipid peroxidation seen in the kidney. This tissue damage in the kidney .

would in turn contribute to the hypertensive state by decreasing the natriuretic and

diuretic properties of the kidney, and thereby resulting in an increase in blood

pressure. Thus by controlling the free radical levels in vivo, one would be able to

minimise the deleterious effects that free radicals have on the kidney by decreasing

lipid peroxidation and the resultant tissue damage. In this study the role of antioxidant

therapy should be investigated, so as to determine the buffering capacity of these

antioxidant supplements and therapies to reduce tissue damage and may provide a

means of therapeutic management in hypertension.

The kidney and liver also displayed a compromised antioxidant buffering capacity

during induced free radical mediated lipid peroxidation. This showed that both the

kidney and liver have a limited tolerance to free radicals. A sudden increase in free

radical levels would result in increased lipid peroxidation due to a decreased

antioxidant buffering capacity of the specific tissue. The lipid peroxidation estimation

showed that tissues have differing capacities to counter a free radical "attack".

Although this being evident from the level of induced lipid peroxidation from the

oxidative challenge test, this could be further substantiated, if the level of free radicals

and antioxidant were assessed in the specific tissue. It is known that 02- is not

membrane permeable and thus acts in the compartment where it is produced. A direct
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measure of the free radical and antioxidant levels in the tissue would demonstrate the

differing abilities of a tissues antioxidant buffering capacity. It would be interesting to

note the levels of free radicals and antioxidants in different tissues to assess 2

important parameters, firstly the levels of free radicals and antioxidants to assess

which one if not, both are compromised, leading to increased oxidative stress and

secondly to assess exactly which tissues are affected the most during the hypertensive

state. This would provide a means for targeted antioxidant therapy, which could

minimise the level of lipid peroxidation in tissue identified with a compromised

antioxidant status.

Although this study showed that the kidney has an increased level of in vivo lipid

peroxidation, through an increased level of oxidative stress, it would be interesting to

note the exact damage that lipid peroxidation induces. This would answer if lipid

peroxidatic damage is specific to certain areas of the kidney, or it targets the entire

organ. A histological study coupled with a free radical and antioxidant status

determination in specific organs such as the kidney would show the exact damage that

free radicals induce in the tissue. This study would assess the level of

glomerulosclerosis, nephrosclerosis and other histological parameters in the kidney.

This would provide a means of assessing the exact level of damage induced in the

kidney by a compromised free radical and antioxidant status, with resultant tissue

oxidative stress.

From the evidence in this study, it can be seen that a compromised antioxidant and

free radical status contributes to the hypertensive state in a multitude of ways. Free

radicals seem to be indiscriminate in their "attack" during the hypertensive state. This
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indiscriminate action "attacks" enzymes, expression factors, cells and a host of other

biologically critical molecules. These indiscriminate actions tend to lead to the

detriment of the effected organism. With this it would be appropriate to end by stating

that free radicals and oxidative stress may not be the primary cause of hypertension

but rather a mechanism by which the hypertensive state contributes to its own

deleterious cycle.
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Appendix 1 - Body Mass - Raw data

BodyMass - DSS NS
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

DSS 1 101 149 191 230 273 299 322
DSS2 127 175 202 242 281 308 333
DSS 3 118 166 203 235 276 303 318
DSS4 96 148 191 224 266 294 318
DSS 5 103 155 198 236 279 306 330
DSS6 94 140 179 214 256 285 304
DSS 7 III 161 217 260 305 324 345
DSS 8 103 162 215 240 281 319 345
DSS9 109 162 212 253 293 317 347

DSS 10 98 141 184 231 341 269 305
DSS 11 95 146 179 218 322 249 287
DSS12 100 148 185 223 329 265 302

Body Mass - DSR NS
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

DSR 1 94 139 176 219 252 283 308
DSR2 99 141 166 196 226 248 266
DSR3 96 138 164 195 230 251 272
DSR4 96 142 170 206 246 263 282
DSR5 79 120 151 183 225 253 277
DSR6 90 133 156 183 214 236 263
DSR 7 96 140 164 196 229 251 270
DSR8 117 145 173 203 226 246 266
DSR9 105 146 174 209 233 252 265
DSR 10 86 140 170 193 213 238 249
DSR 11 80 128 162 182 206 224 236
DSR 12 85 133 166 193 220 246 256
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Body Mass - DSS US
Week 1 Week 2 Week 3 Week 4 WeekS Week 6 Week 7

DSS 1 121 183 230 276 302 313 335
DSS 2 133 186 235 280 312 323 343
DSS 3 119 171 223 270 307 336 362
DSS 4 135 186 236 273 308 327 343
DSS 5 109 159 213 264 309 341 319
DSS 6 127 183 230 278 312 330 348
DSS 7 104 156 193 240 282 313 322
DSS 8 101 153 204 250 287 320 335
DSS 9 109 162 214 254 293 313 320

DSS 10 114 163 211 268 307 338 356
DSS 11 130 180 222 266 303 325 334
DSS 12 97 139 175 214 242 257 268

Body Mass - DSR US
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

DSRI - - - - - - -
DSR2 95 144 178 194 215 227 244
DSR3 97 146 175 164 167 183 194
DSR4 109 145 172 179 192 209 225
DSR5 97 156 185 190 210 221 229
DSR6 106 161 195 192 179 178 189
DSR7 106 142 169 180 193 202 208
DSR8 81 112 138 151 164 174 187
DSR9 91 170 200 209 220 219 205
DSR 10 89 132 159 177 194 208 219
DSR 11 81 131 156 167 179 195 214
DSR12 81 131 165 174 162 157 189
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Appendix 2 - Superoxide Dismutase (SOD) - % Inhibition

Normal Salt
DSS 1 56.61 DSR 1 40.07
DSS2 51.20 DSR2 45.33
DSS3 56.62 DSR3 38.26
DSS4 55.33 DSR4 42.34
DSS5 51.93 DSR5 43.34
DSS6 55.79 DSR6 44.06
DSS7 57.49 DSR 7 43.52 .
DSS8 57.31 DSR8 46.61
DSS9 57.40 DSR9 40.71
DSSI0 59.55 DSRI0 56.00
DSS 11 59.00 DSR 11 50.37
DSS12 60.96 DSR 12 52.42

Hi~h Salt
DSS 1 48.42 DSR 1 -
DSS 2 38.42 DSR2 32.00
DSS 3 35.79 DSR3 31.66
DSS4 36.84 DSR4 38.12
DSS 5 34.21 DSR5 43.23
DSS 6 38.68 DSR6 35.36
DSS 7 40.00 DSR 7 41.14
DSS 8 44.25 DSR8 40.16
DSS 9 37.89 DSR9 39.17

DSS 10 43.42 DSR 10 38.19
DSS 11 46.05 DSR 11 42.43
DSS 12 31.32 DSR 12 42.26
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Appendix 3 - Blood Pressure Recordings (Sample)
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