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Abstract

For investors and policy makers such as governments, the uncertainty of returns on invest-
ments is a major problem. The aim of this paper is to study volatility models for financial
data for both univariate and multivariate case. The data to be used is monthly and daily
asset returns of three different companies. For the univariate case, the main focus is on
GARCH models and their subsequent derivatives. ARCH and GARCH models of differ-
ent orders are fit. For the monthly data, the GARCH(1,1)outperformed the ARCH and
higher order GARCH models. For the daily data, the GARCH(1,1) preceded by an ap-
propriate AR model was the best fit. For the Multivariate volatility models, models such
as the DCC-GARCH, EMWA and Go-GARCH were used. All three gave similar results.
Various distributional assumptions such as the normal and Student t distributions were
assumed for the innovations. Student t and Skewed Student t distributions were more
effective because of their ability to capture fat tails of the distributions. Fundamental
finance terms and concepts are also discussed.

KEYWORDS :volatility, returns, ARCH models, GARCH models
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Chapter 1

Introduction

As technological advancement continues, the world is also, becoming more and more
interconnected. Markets have become so interdependent giving rise to one global market.
As much as the global market has come as a blessing to investors by allowing them to invest
globally, it has, however, also come with its own shortfalls. Because the global market
is made up of many different economies which are affected by uncertain geopolitical and
macroeconomic policies and developments, it means at a point in time, the behaviour of
one market is likely to differ to the next. These changes can be spontaneous and damaging
in the sense that, a failure in one market, especially the bigger economies, can quickly
spread across other markets (there is a correlation in market movements) leading to a
global crisis. A good example is the 2008 global recession (Imbs 2010) where all economies
took a downturn despite being from different areas around the globe. As such, interest
in the behavior of financial markets has grown exponentially, with investors and portfolio
managers being keener on knowing how the market is and how it will likely behave in the
future. Armed with this information they can, thus, make informed decisions on where
and when to invest.
Whilst investors are concerned with maximising the returns on their investment, they
recognise the trade-off that occurs between the higher returns and risk. Hence, they
have a certain level of risk that they are willing to bear. A good forecast of volatility is
an ideal tool for assessing investment risk. Our common traditional time series models
such as the (Autoregressive Moving Average) ARMA models are based on stationarity
assumptions, that is, there are used to model the conditional expectation of a process
given the past; in this case the conditional variance given the past is constant. This is not
the case with financial data which tend to be more volatile than constant. Such effects
cannot be captured by the ARMA model. The ARMA models work on data that has a
constant variance of error terms. This data is said to have homoscedasticity. On the other
hand, for financial data the variances of the error terms are not equal, that is it has non-
constant volatility. Data with the non-constant volatility/variance is said to suffer from
heteroskedasticity. In the presence of heteroskedasticity, the regression coefficients for an
ordinary least squares regression are still unbiased, but, the standard errors and confidence
intervals estimated by conventional procedures will be too narrow, hence, giving a false
sense of precision. ARCH and GARCH models treat heteroskedasticity as a variance to
be modelled. As a result, not only are the deficiencies of least squares corrected, but
a prediction is computed for the variance of each error term. This prediction turns out
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often to be of interest, particularly in applications in finance (Engle 1982). Ruppert
(2010) gives an example by considering recent daily stock returns which say, have been
unusually volatile, one might then expect that tomorrow’s return to be also more variable
than usual. In such cases, ARMA models cannot capture this type of behavior because
for ARMA models conditional variance is constant. (Francq and Zakoian 2011) states
that modelling financial time series is a complex problem and this complexity is not only
due to the variety of the series in use (stocks, exchange rates, interest rates, etc.), to
the importance of the frequency of observation (second, minute, hour, day, etc) or to
the availability of very large data sets. It is mainly due to the existence of statistical
regularities (stylized facts) which are common to a large number of financial series and
are difficult to reproduce artificially using stochastic models. Francq and Zakoian (2011)
further points out the many difficulties that arise from financial data modelling and these
include:

• Non-stationarity of the price series, that is the series of prices of a certain commodity
is not stationary, but it tends to fluctuate over time due to factors such as inflation,
supply and demand amongst others.

• Absence of autocorrelation for the price variations. The series of price variations
generally. displays small autocorrelations, making it close to white noise.

• Autocorrelations of the squared price returns. Squared returns or absolute returns
are generally strongly autocorrelated. This property is not incompatible. with the
white noise assumption for the returns, but shows that the white noise is not strong.

• Volatility clustering whereby large absolute returns tend to appear in clusters. This
property is generally visible on the sample paths. High volatility subperiods are
followed by quiet (low-volatility) periods. These subperiods are recurrent but do not
appear in a periodic way (which might contradict the stationarity assumption). In
other words, volatility clustering is not incompatible with a homoscedastic marginal
distribution for the returns.

• There exist fat tails in the data (Fat-Tailed Distribution). These fat tails can be
understood by looking at the empirical distribution of daily returns, one can gen-
erally observe that it does not resemble a typical Gaussian distribution. It rather
has more data at the ends, that is it has higher tail probabilities as compared to
the normal distribution hence, the term fat tail distribution. Classical tests for nor-
mality such as the kurtosis typically lead to rejection of the normality assumption
at any reasonable level for such data. In such cases, it is thus, more reasonable to
use fat-tailed distributions such as the studentized t distribution for your models.

• Leverage effects were first noted by Black (1976) and they relate to the asymmetry
of the impact of past positive and negative values on the current volatility. Negative
returns tend to increase volatility by a larger amount than positive returns of the
same magnitude.

• Seasonality calendar effects are also worth mentioning. The day of the week, the
proximity of holidays, among other seasonalities may have significant effects on
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returns. Following a period of market closure, volatility tends to increase, reflecting
the information cumulated during this break.

Bearing the above-mentioned complexities in mind, a new model for financial data called
the Autoregressive Conditional Heteroscedastic (ARCH) model was proposed by Engle
(1982) and later generalized by Bollerslev (1986) and Taylor (1986) to give the Generalized
Autoregressive Conditional Heteroscedastic (GARCH) models. These models have been
proven to sufficiently capture the properties of financial data. This research seeks to
apply the ARCH and the various GARCH models to different data sets so as to explore
the suitability of the models for the data sets.

1.1 Literature Review

The unique characteristics of financial data were first noted early in the 20th century
when various scholars such as Mitchell (1965) and Mills (1927) noticed that financial data
did not adhere to the normality assumptions. Fat tails were first discovered by Mitchell
(1965), Mitchell (1921), Mills (1927) and other scholars such as Alexander (1961). Kendall
and Hill (1953) and Houthakker (1961) were among the first to give empirical evidence
that prices were non stationary. Malkiel and Fama (1970) found that 22 out of the 30
stocks in the Dow Jones Industrial Average (DJIA) exhibited positive daily serial correla-
tions. With all these characteristics it was, thus, clear that traditional time series models
were inadequate to describe financial data. New type of models had to be developed.

Engle (1982) developed the ARCH model to capture the unusual behaviour of financial
data. He derived the ARCH model for capturing what he termed the ARCH process. He
describes ARCH processes as those with mean zero and serially uncorrelated processes
with nonconstant variances conditional on the past but constant unconditional variances.
The main effect of the model is that it allows the conditional variance to change over
time as a function of past errors leaving the unconditional variance constant. The paper
cements the importance of testing for ARCH effects. To establish the reliability of the
model by conventional criteria, it must be tested for serial correlation and for coefficient
restrictions. After much comparison, it was seen that the ARCH models fared better in
modelling data with ARCH effects. It was also, seen that the ARCH model was better
with maximum likelihood estimates rather than ordinary least square estimates.

To overcome some of the weakness of the ARCH model Bollerslev (1986) introduced the
Generalized Autoregressive Conditional Heteroscedastic (GARCH) model. This model
allows a more flexible lag structure whilst, also, allowing in many cases from an ARCH
model a significant decrease in number of parameters hence, giving a more parsimonious
model. Like the ARCH model, the standard GARCH has limitations, for example, like
the ARCH model it captures aspects of financial data such as volatility clustering and
leptokurtosis but fails to capture the leverage effect. Also, for instance, the requirements
of conditional variance to be positive can be violated upon estimating it, hence, the need
for constraints to be put in place. To cater for these limitations variations of the GARCH
model were introduced.
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Engle and Bollerslev (1986) developed a new version of the GARCH model which they
called the I-GARCH model. This model was made to cater for data whose multi-step
forecast do not approach unconditional variance. Another extension of GARCH was the
GARCH-M. This model is further discussed under the ARCH GARCH section of the
thesis. Nelson (1991) identifies 3 problems with ARCH/GARCH in price applications.
These are:

• Researchers such as Black (1976) amongst many others found a negative correlation
between current returns and future returns volatility. GARCH models rule this out
by assumption.

• GARCH models impose parameter restrictions that are often violated by estimated
coefficients and that may unduly restrict the dynamics of the conditional variance
process.

• Interpreting whether shocks to conditional variance “persist” or not is difficult in
GARCH models because the usual norms measuring persistence often do not agree.

Black (1976) then developed the Exponential GARCH model EGARCH which helped
to capture the asymmetries of the positive and negative returns. Other models such as
the GJR-GARCH model by (Glosten et al. 1993) and the Asymmetric Power ARCH
(APARCH) model by (Ding et al. 1993) were developed to cater for different data be-
haviour.

Ding and Granger (1996) gives new evidence of long-term dependence that exists in spec-
ulative returns series. In their paper, five speculative returns series from different places
and different markets were examined. They found out that the absolute returns and their
power transformations all have long and positive autocorrelations with the property being
strongest for absolute returns. An exception, however, is the exchange return which has
the strongest property when taken to power 1/4. They found that theoretical autocor-
relation functions for various GARCH(1,1) models are exponentially decreasing, which is
rather different from the sample autocorrelation function for the real data. They proposed
a general class of long memory models that has no memory in returns themselves, but
long memory in absolute returns and their power transformations. With this model, the
estimated results showed that this model gives a much better description of the real data.

Bollerslev and Ole Mikkelsen (1996) proposed a new class of more flexible fractionally
integrated EGARCH models for characterizing the long-run dependencies in U.S. stock
market volatility. Strong evidence was discovered that the conditional variance for the
Standard and Poor’s 500 composite index is best modelled as a mean-reverting fraction-
ally integrated process.

Baillie and Bollerslev (2002) found out that the daily spot rate is well represented by a
GARCH(1,1) process with near unit roots. Also, they found out that ARCH effects are
still strong in weekly data less so on fortnightly data and minimal to monthly data. It
was, also, seen that after accounting for ARCH effects, the data fitted the assumption
of conditional normality more reasonable on monthly and fortnightly data. With daily
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data, however, normality was found to be inappropriate but replacing with conditional t
distribution was appropriate.

In a study by Corhay and Rad (1994) where they looked at five European stock markets
they found out that conditional heteroskedasticity is a prime feature of daily returns be-
haviour of the five European equity indices. They exhibited non-linear dependence that
could not be captured by the random walk model. However, the ARCH/GARCH models
were consistent in modelling the behaviour with the GARCH-T(1,1), i.e. a GARCH model
with conditional errors that are t-distributed, fitted their data best. They concluded that
GARCH models can indeed provide better forecasts of volatility than the usual historical
estimates and lead to improved valuation models.

Poon and Granger (2003) reviewed scientific papers on ARCH/GARCH models, amongst
the 93 scientific papers they looked at, they found out that 17 studies compared al-
ternative versions of GARCH. It was clear that GARCH dominates ARCH. In general,
models that incorporate volatility asymmetry such as EGARCH and GJR-GARCH per-
form better than GARCH, a finding that is supported by most research papers. Also,
certain specialized specifications, such as fractionally integrated GARCH (FIGARCH)
and regime switching GARCH (RSGARCH) do better in some studies. They, also, note
that papers compared used different data sets, many kinds of assets, various intervals
between readings and for different purposes. Although a suggestion can be made that a
particular method of forecasting volatility is the best, no statement is available about the
cost-benefit from using it rather than something simpler or how far ahead the benefits
will occur. Another debate that remains revolves on how far ahead one could accurately
forecast and to what extent could volatility changes be predicted.

Wilhelmsson (2006) explored forecasting the GARCH model under different distribution
assumptions. He found that allowing for leptokurtic error distributions improved the
model variance estimates. The model estimated with Students t distribution were the
best performing model rather than those models with normal assumption. Allowing for
non-time-varying kurtosis improved the forecasts. However, allowing non-time-varying
skewness or time-varying kurtosis did not improve the forecasts further.

Poon and Granger (2005) interrogates an important issue as to how volatility is measured.
They state that it is known that volatility refers to the spread of all likely outcomes of
an uncertain variable. Statistically, volatility is often measured as the sample standard
deviation. Sometimes, variance, σ2 is used as a volatility measure. Since variance is sim-
ply the square of standard deviation, it makes no difference whichever measure we use
when we compare the volatility of two assets. However, variance is much less stable and
less desirable than standard deviation as an object for computer estimation and volatility
forecast evaluation. Moreover standard deviation has the same unit of measure as the
mean, i.e. if the mean is in dollars, then standard deviation is also expressed in dollars
whereas variance will be expressed in dollars square.

Poon (2005) studied the practical issues surrounding volatility forecasting. The results
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showed that option implied volatility dominates time-series models because the market
option price fully incorporates current information and future volatility expectations.
There was no clear winner between historical volatility and ARCH models, but both were
better than the stochastic volatility model. Despite the added flexibility and complexity
of stochastic volatility models, there was no clear evidence that they provide superior
volatility forecasts. Also, high-frequency data clearly provided more information and
produced better volatility forecasts, particularly over short horizons. He also gave a
potentially useful area for future research and this area focuses on whether forecasting
power can be enhanced by using exogenous variables.

1.2 Financial Data

Finance basically revolves around buying and selling. Those providing the goods and
services need capital so as make their product available. The products have prices that
will generally differ at each point in time. A plot of the prices against time gives us a price
series. The price series, in general, is not stationary as it tends to rise in the long run. A
different measure is, thus, needed in this case, we employ returns which are discussed in
detail below.

1.2.1 Returns

Campbell et al. (1997) gives two main reasons for using returns. Firstly, for average in-
vestors, the return of an asset is a complete and scale-free summary of the investment
opportunity, that is, the investor has an idea of how much he will gain or lose per each
dollar. Secondly, for theoretical and empirical reasons that will become apparent as we
discuss returns below, returns have more attractive statistical properties than prices, such
as stationarity and ergodicity.

The return on an investment is its revenue expressed as a fraction of the initial investment.
If one invests at time t in an asset with price Pt and the price later at time t-1 is Pt−1,
then the net return for the holding period from t to t-1 is given by

Rt =
Pt

Pt−1

− 1 =
Pt − Pt−1

Pt−1

(1.1)

By holding the asset for k periods we get k period simple returns these are known as
multi-period simple returns.

1 +Rt =
Pt

Pt−k

=
Pt

Pt−1

× Pt−1

Pt−2

× ...× Pt−k+1

Pt−k

(1.2)

= (1 +Rt)(1 +Rt−1)....(1 +Rt−k+1) (1.3)

=
k−1∏
j=0

(1 +Rt−j) (1.4)

The k-period simple gross return is just the product of the k one-period simple gross
returns involved. This is called a compound return. The k-period simple net return is
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Rt[k] = (Pt − Pt−k)/Pt−k.

In general, however, the log of the returns is used more in application than the return.
Log returns are also known as continuously compounded returns. Denoting them by rt

then

rt = ln(1 +Rt) = ln
Pt

Pt−1

= ln pt − ln pt−1 (1.5)

For multi-periods returns we have

rt[k] = ln(1 +Rt[k])

= ln(1 +Rt)(1 +Rt−1)......(1 +Rt−k+1)

= ln(1 +Rt) + ln(1 +Rt−1) + .....+ ln(1 +Rt−k+1)

(1.6)

As can be seen above, log returns have an advantage on multiple periods as they are just
simple summations and not multiples. It follows, as such, that log returns have statisti-
cal properties that are more tractable. This is explained by Quigley and Ramsey (2008)
where they state that major benefit is in normalisation. It allows measuring all variables
in a comparable metric and thus, enabling evaluation of analytic relationships amongst
two or more variables despite originating from price series of unequal values. It is com-
monly assumed that the simple returns are log-normally distributed. If simple returns
are independent and identically distributed (i.i.d.) as log-normal then it follows that the
log-returns are i.i.d. normally distributed and this allows great statistical freedom. This
is handy given much of classic statistics presumes normality. Another advantage is for
additivity as probability theory shows that the product of normally-distributed variables
is not normal. Instead, the sum of normally-distributed variables is normal. As seen
above, log returns are additive while simple returns are multiplicative.

1.3 Properties of Returns

The most important property of returns is that they are random, the return a week later
for an investment is not known. Campbell et al. (1997) elaborate that “it is largely the
explicit modelling of the sources and nature of this uncertainty that distinguishes financial
economics from other social sciences.” This uncertainty is, hence, the backbone of the
studies in finance as such studies would not matter much if everything was certain.
A prominent feature of returns is that extreme values are more common with the extreme
negative returns being more common than the extreme positive. This feature on its own
gives an insight on the kind of distribution returns data follow. The data clearly does not
follow the classical normal distribution model that is commonly used in many models.
To describe the relation of financial data with regards to the normal distribution we
look at the moments. Consider a continuous random variable X(log returns say) and the
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cumulative distribution (CDF)

FX(x) =

∫ x

−∞
fx(u)du (1.7)

Where fx is the probability distribution function (pdf). The ` th moment (non-central)
of a continuous random variable X is defined as

m′
` = E(X`) =

∫ ∞

∞
x`f(x)dx (1.8)

The first moment is called the mean or expectation of X i.e µ. If we subtract the mean
from X we have the central moment i.e

m` = E(X − µx)
` =

∫ ∞

∞
(x− µx)

`f(x)dx (1.9)

The second central moment is the variance denoted σ2
x and measures variability. The

third and fourth central moments measure tail behaviour. They are known as kurtosis
and skewness.

S(x) = E

[
(X − µx)

3

σ3
x

]
K(x) = E

[
(X − µx)

4

σ4
x

]
(1.10)

Where S(x ) is the skewness and K(x ) is kurtosis. Skewness describes the asymmetry of
the distribution. For normal distribution, skewness is always zero, that is, it has perfect
symmetry. A negative skewness value indicates that the data has a distribution skewed
to the left. This means that the left tail is heavier than the right tail in the distribution.
Respectively, a positive skewness value indicates a right skewed distribution with a right
tail heavier than its left tail.

Kurtosis is a measure of the extent to which observed data fall near the centre of a dis-
tribution or the tails thereof. It is a measure of peakedness. If a curve is placed higher
relative to the normal distribution it has more kurtosis. This means that the curves tails
at both sides are fatter as a result of it being higher (Karlsson 2002). The quantity K(x )
- 3 is called the excess kurtosis since K(x ) = 3 for a normal distribution. Thus, the excess
kurtosis of a normal random variable is 0. A distribution with positive excess kurtosis
is said to have heavy tails, implying that the distribution puts more mass on the tails of
its support than a normal distribution does (Tsay 2005). This is usually the case with
returns. In finance applications, one is especially concerned when the return distribution
has heavy tails because of the possibility of an extremely large negative return, which
could, for example, entirely deplete the capital reserves of a firm. Such a distribution is
said to be leptokurtic. On the other hand, a distribution with negative excess kurtosis
has short tails. Such a distribution is said to be platykurtic. Most financial asset returns
will have kurtosis greater than 3 whilst stock market return is in particular featured by
negative skewness. Other financial series as interest rates and returns may have positive
skewness.
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Figure 1.1: General Forms Of Kurtosis

Figure 1.2: Illustrations Of Skewness

1.3.1 Volatility

For most assets, future returns cannot be known exactly and, therefore, are random vari-
ables. Risk means uncertainty in future returns from an investment, in particular, that
the investment could earn less than the expected return and even result in a loss, that is,
a negative return. Risk is often measured by the standard deviation of the return, i.e the
volatility (Ruppert 2010).

Sheppard (2013) defines volatility simply as the standard deviation. It is used as a mea-
sure of uncertainty of the returns, that is to say, volatility represents that range in which
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your returns are likely to fall within. Thus, in essence, volatility quantifies the riski-
ness of an asset. The higher the volatility the more variable and uncertain the returns
are. Characteristics of volatility entail that it is not directly observable. For example,
daily volatility can not be seen from return data because there is one observation at the
end of a trading day but by subdividing, say, into 10-minute intervals you can estimate
daily volatility. It is this ungovernability which makes it difficult to evaluate the fore-
cast of conditional heteroscedastic models. Although volatility is not directly observable,
there are characteristics of it that are commonly seen in asset returns. First, the issue
of volatility clustering where volatility may be high for certain time periods and low in
other periods. Secondly, volatility evolves over time in a continuous manner, meaning
that, volatility jumps are rare. Thirdly, volatility does not diverge to infinity but varies
within a fixed range. Lastly, volatility reacts differently to a big price increase or drop i.e.
leverage effects. With these properties in mind, developed models will seek to capture
their effects.
The study of volatility has many advantages comprising of:

• It provides a simple approach to calculating value at risk of a financial position in
risk management.

• It plays an important role in asset allocation under the mean-variance framework.

• It improves the efficiency in parameter estimation and the accuracy of interval fore-
cast

• The volatility index of a market has recently become a financial instrument which
can be traded.

• Predictability of volatility is important in designing optimal dynamic hedging strate-
gies for options and futures.

• Volatility is often preferred to variance as it is measured in the same units as the
original data, unlike variance which is units squared (Engle and Ng 1993).

Another important issue surrounding volatility is serial correlations. Jondeau et al. (2007)
states that to test for time dependency in volatility, we need a time varying measure
of volatility. Two ways to approach this are to use the mean adjusted square returns
and secondly, using the absolute returns. The test for serial dependence is done using
the Ljung-Box Q statistic. Non-zero serial correlation in squared or absolute returns is
evidence of volatility time dependence.

1.4 Problem Statement

Volatility has became an important part of investment to such an extent that it has become
a tradable instrument. As such, we are faced with need to develop or find suitable models
that can capture volatility patterns. The aim of this thesis is to run, compare and contrast
various ARCH and GARCH models for daily and monthly data in order to capture and
predict volatility for both univariate and multivariate case.
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1.5 Objectives Of The Study

The objectives of this study are to find the best fitting models and to model volatility of
asset returns for both monthly and daily data for both univariate and multivariate case.

1.6 Summary

Studying volatility in the markets is of importance as these market fluctuations, when
ungoverned, can affect financial stability of an economy.

This chapter introduced us to the study of volatility. It explains various terms that will
be used in this study such as returns and volatility. It, specifically, elaborates on the
different types of returns and shows that the best form of return data is the log returns.
A detailed study of the properties of returns is done and it is clear that return data has
properties that differ from the normal distribution. Specifically, the data possesses fat
tails and has excess skewness and hence, does not adhere to the usual normal distribu-
tion. It also gave us a brief discussion on past studies on the same topics that have been
done hence, giving us an overview of what to look at and expect as this research progresses.
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Chapter 2

Data Description: Exploratory Data
Analysis

The data to be used is from financial companies that are registered on the Johannes-
burg Stock Exchange (J.S.E). We consider the following companies: Old Mutual, Liberty
Holdings and Standard Bank. We look at daily and monthly returns of each company,
this we do, so as to see if different time periods will affect the type of model to be se-
lected. This data was obtained from http://research.mcgregorbfa.com/Default.aspx via
the University Of Kwazulu Natal website on the price data section where we retrieved the
historical prices for the above-listed companies. Returns are then calculated from these
prices using Excel before importing the data into R.

2.1 Daily Data

The first step to analyse any time series data is to have a plot of the data as to gain an
insight on the data its trends and patterns. The data here is the stock closing prices from
January 2003 to December 2013.

Figure 2.1 below shows the plot of the asset closing prices. For all assets, a clear upward
trend of closing prices is observed. A more pronounced decline is visible around 2009
which coincided with the global recession after which it resumes to the upward trend. A
notable occurrence is that Liberty Holdings prices did not rise as much as other two and
also did not get affected by the global recession decline as the other two. This can be
seen as an indication that the asset is less risky.
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Figure 2.1: Closing Prices For The 3 Companies

Figure 2.2 shows the plots of the return series. These have 1 observation less because one
observation is lost during differencing. Unlike the price series which was non-stationary,
the return series are stationary, thus, further justifying the use of the return series over
the price series. Another distinctive feature in the return series is volatility clustering.
We can see that periods of high returns are clustered together and there are followed by
small return periods which are also clustered together, this is another feature of financial
data. A closer look at the series shows that around 2008 and 2009 there is a cluster of
positive and negative returns which is justified because it was a period of uncertainty with
most people losing confidence in the markets but, also, others trying to take advantage
to purchase stocks, hence, series fluctuations in asset returns.
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Figure 2.2: Returns Plots For The 3 Companies

Below Figure 2.3 shows the squared return plots for all assets. High squared returns are
clustered together and low squared returns are also clustered together. This shows that
volatility clustering is present as expected.
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Figure 2.3: Old Mutual Squared Returns

Figure 2.4 shows the ACF and PACF of the Old Mutual return series. The ACF shows
small autocorrelations at lags 1, 3, 6 and 10. These low order correlations are expected
for daily data. The LjungBox statistics give Q(1) = 4.7 Q(3)=17.1 Q(6)=25.5 and Q(10)
= 40.7 with all having p-values <0.05. The p values of these four test statistics are all
less than 0.05, suggesting that returns are serially correlated. The squared returns are as
expected strongly autocorrelated. The squared return shows slow decay of the lag plots,
this indicates there is correlation between the magnitude of change in the return. This
means there is serial dependence in the variance of the data. Also, the spikes in PACF
are a sign of presence of ARCH effects.
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Figure 2.4: Old Mutual ACF and PACF plots

The ACF and PACF of the Standard Bank returns and squared returns are shown in
Figure 2.5. For the first few lags, the returns ACF shows the presence of autocorrela-
tions, albeit rather small. LjungBox statistics show that these autocorrelations are not
significant. The squared returns are as expected strongly autocorrelated. Together the
ACF and PACF suggest the series to be random. The squared return shows slow decay of
the lag plots, this indicates there is correlation between the magnitude of change in the
return. This means there is serial dependence in the variance of the data. The PACF of
the log returns suggests us fitting an AR(3) model.
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Figure 2.5: Standard Bank ACF and PACF plots

Figure 2.6 below shows the ACF and PACF’s of the Liberty Holding returns. The returns
ACF has a few significant low order lags meaning there is some correlation in the series.
The PACF has significant lags also. The PACF of the squared returns has significant
spikes hence, showing the presence of ARCH effects.
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Figure 2.6: Liberty Holdings ACF and PACF plots

Descriptive Statistics of the Daily Data

Table 2.1: Descriptive statistics for daily data of the 3 companies

Stat Old Mutual Standard Bank Liberty Holdings
nobs 2750 2750 2750

Minimum -0.1731 -0.1047 -0.1336
Maximum 0.1458 0.1042 0.2243

Mean 0.0003 0.0005 0.00032
median 0.0000 0.00015 0.0000
Variance 0.0005 0.00034 0.00029
Stdev 0.0220 0.0185 0.0170

Skewness -0.2993 0.0967 0.7927
Kurtosis 7.7725 2.5289 20.3092

Table 2.1 above shows basic statistics of the log returns as processed from R. These stats
clearly show that the data is not normally distributed as expected. For Standard Bank
and Liberty Holdings data is positively skewed but negative for Old Mutual. All, however,
have very high excess kurtosis especially the Liberty were it is 20.3 which is almost thrice
of Old Mutual and 8 times that of Standard Bank. This shows that the data has heavy
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tails. It is also, important to note that R gives the excess kurtosis and not the simple
kurtosis, hence, results shown in Table 2.1 are thus, excess kurtosis. Non-zero skewness
shows that the distribution is skewed, unlike the normal distribution. To justify further
the test for normality Jarque-Bera test is used and it gives p values < 0.05, hence, the
normality for log-return is rejected.

2.2 Monthly Data
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Figure 2.7: Monthly Closing Prices For The 3 Companies

The monthly closing prices are shown above in Figure 2.7. It can be seen that the prices
for all assets are generally rising in the long run. A major decline is noted around 2008
which corresponds to the global recession. These sharp distinctive upward and downwards
trends show that all series are not stationary. Old Mutual closing prices have two peri-
ods of slumping that is the 2008 one which is common across all assets and another one
around 2003 a period which decline might have been because of own company policies.
Standard Bank monthly closing prices from Jan 1990 to Dec 2013 have a more consistent
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upward trend. Liberty Holdings monthly closing prices have a clearly defined increase
from 1990 to 1998 then the prices take a very sharp fall. From then they start to rise
slowly with the common decline in 2008 then gets back on an upward trend. Altogether
for all Companies there is a general upward trend. A slight fall in prices is noted around
2008 which coincides with the global recession.

The return series is given in Figure 2.8 this series is stationary as expected from a return
series. Volatility clustering can also be seen in the return series. The squared log return
series follows in Figure 2.9 and it also shows volatility clustering.
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Figure 2.8: Monthly Return Series For The 3 Companies
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Figure 2.9: Monthly Squared Return Series For The 3 Companies

The ACF and PACF of Old Mutual monthly returns are shown in Figure 2.10 below. The
ACF has no significant lags as are all within their two standard error limits, indicating
that they are not significantly different from zero at the 5% level. This feature is common
in monthly returns. An explanation may be that after one month a large enough period
will have passed hence effects of previous return is not as great on the current. ACF of
the squared returns has lags that are significant this shows dependence in series. The
sample PACF of the squared series shows some big spikes, especially at lags 4 and 5 this
suggests presence of ARCH effects.
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Figure 2.10: ACF and PACF of Old Mutual

The ACF and PACF plots for Standard Bank log returns are shown below in Figure 2.11.
The ACF has non-significant lags except only one on lag 5 which is slightly significant
otherwise more or less a white noise series.The PACF however, has significant autocorre-
lations. The PACF of squared returns has lags that are significant this shows dependence
in series. Also, the PACF of all the squared returns shows significant lags this suggests
presence of ARCH effects. As expected from the ACF and PACF plots we see that the
returns are serial uncorrelated but dependent.
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Figure 2.11: ACF and PACF of Standard Bank

Figure 2.12 below shows plots of the ACF and PACF of Liberty Holdings monthly log
return and squared log return series. The ACF of the log returns has no correlations as
all lags fall within bounds. The PACF however, has significant correlations which justify
presence of volatility clustering. The ACF of the squared return series is correlated this
shows there is dependence in series. The squared log returns PACF has significant lags
which shows that ARCH effects are present.
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Figure 2.12: ACF and PACF of Liberty Holdings

Descriptive Statistics of the Monthly data

Table 2.2: Descriptive Statistics for Daily data of the 3 Companies

Stat Old Mutual Standard Bank Liberty Holdings
nobs 173 287 287

Minimum -0.3035 -0.5543 -0.3820
Maximum 0.1955 0.3341 0.1837

Mean 0.00476 0.0131 0.0067
median 0.0085 0.0117 0.0098
Variance 0.00625 0.00686 0.00556
Stdev 0.0790 0.0828 0.0745

Skewness -0.5807 -0.7918 -1.0414
Kurtosis 1.5669 7.6758 4.0125

Table 2.2 shows the basic statistics of the monthly log returns. Old Mutual has 173 obser-
vations unlike others with 287 because for Old Mutual the historical data available starts

24



only from the year 1999. From the table, it is clear the data is not normal Distributed as
seen by the negative skewness and positive excess kurtosis for all assets.

2.3 Summary

Throughout this chapter, we were exploring the properties of our different data sets which
were taken from a similar time period. It was clear that all data were non-normal, with all
data having positive excess kurtosis thus, showing that the distribution is heavy tailed.
This is consistent with the well-known theory of distribution of financial data that we
discussed earlier. We made use of the sample ACF to capture the linear dynamic of the
data. It was evident that the ACF of monthly data is white noise i.e uncorrelated but that
of daily returns were correlated. The PACF of all the squared returns showed significant
lags and this suggested presence of ARCH effects.
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Chapter 3

ARCH and GARCH Models

In perhaps, one of his most seminar papers Engle (1982) begins by saying“The great
workhorse of applied econometrics is the least squares model. This is a natural choice
because applied econometricians are typically called upon to determine how much one
variable will change in response to a change in some other variable. Increasingly, however,
econometricians are being asked to forecast and analyze the size of the errors of the model.
In this case, the questions are about volatility and the standard tools have become the
ARCH/ GARCH models”. Campbell et al. (1997) cement this by arguing that: “it is both
logically inconsistent and statistically inefficient to use volatility measures that are based
on the assumption of constant volatility over some period when the resulting series moves
through time.” Decades later these statements still hold true as not only econometricians
but, also, finance people are more interested in the study of volatility. For this, they still
use the traditional ARCH and GARCH models by Engle (1982). This section introduces
the ARCH and GARCH model and its variants.

3.1 Model Structure

Following the procedure given by Tsay (2005) for model structure. Let rt be the log of
the return of an asset at time t. The basic idea behind volatility study is that the series
rt is either serially uncorrelated or with minor lower order serial correlations but, it is a
dependent series. The volatility models attempt to capture such dependence in the return
series. To study these models we consider the conditional mean and variance of rt given
Ft−1 that is,
µt = E(rt|Ft−1), σ

2= Var(rt|Ft−1)= E[(rt-µt)
2|Ft−1] where Ft−1 denotes the information

set available at time t − 1. Typically, Ft−1 consists of all linear functions of the past
returns. The volatility models we are looking at are concerned with the evolution of σ2,
with the manner under which σ2 evolves distinguishes one model from another.

3.1.1 Model Building

Tsay (2005) gives the following four steps for ARCH and GARCH model building :

• Specify a mean equation by testing for serial dependence in the data and, if neces-
sary, building an econometric model (e.g., an ARMA model) for the return series
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to remove any linear dependence.

• Use the residuals of the mean equation to test for ARCH effects.

• Specify a volatility model if ARCH effects are statistically significant, and perform
a joint estimation of the mean and volatility equations.

• Check the fitted model carefully and refine it, if necessary, that is change the pa-
rameters in the model either by removing the non-significant ones or try another
model.

3.1.2 Testing for ARCH effects

For ease in notation, let at = rt − µt be the residuals of the mean equation. The squared
series a2

t is then used to check for conditional heteroscedasticity, which is also, known as
the ARCH effects. Two tests are available that is the LjungBox test and the Lagrange
multiplier test of Engle (1982).

LjungBox test

Box and Pierce (1970) developed the Portmanteau statistic given by

Q ∗ (m) = T
m∑
`

ρ̂2
` (3.1)

as a test statistic for the null hypothesis H0 : ρ1 = ... = ρn = 0 against the alternative
hypothesis Ha : ρi = 0 for some i ε {1, ...,m}.
Ljung and Box (1978) modify the Q*(m) statistic to increase the power of the test in
finite samples. This gives what is known as the LjungBox statistic Q(m)

Q(m) = T (T + 2)
m∑

`=1

ρ̂2
`

T − `
(3.2)

The decision rule is to reject H0 if Q(m) χ2
α where α denotes the 100(1 -α)th percentile

of a χ2 distribution with m degrees of freedom.

Lagrange Multiplier Test

Lagrange Multiplier test was developed by Engle (1982) and is equivalent to the usual F
statistic for testing αi = 0 (i = 1, . . .m) in the linear regression
a2

t = α0 + α1a
2
t−1 + α2a

2
t−2 + ....+ αma

2
t−m + εt, t= m + 1, . . . , T,

where εt denotes the error term, m is a prespecified positive integer and T is the sample
size. Specifically, the null hypothesis is H0: α0 = .... = αm = 0.

Let SSR0 =
∑T

t=m+1(a
2
t − ω̄), where ω̄ is the sample mean of a2

t and SSR1 =
∑T

t=m+1 ε̂
2
t

where ε̂2t is the least squares residual of the prior linear regression. Then we have

F =
(SSR0 − SSR1)/m

SSR1/(T − 2m− 1)
(3.3)
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which is asymptotically distributed as a χ2 distribution with m degrees of freedom under
the null hypothesis. The decision rule is to reject the null hypothesis if F > χ2

m(α) where
χ2

m(α) denotes the upper 100(1 -α)th percentile of χ2
m, or the p-value of F is less than α

(Tsay 2005).

3.2 ARCH Model

A basic feature of asset return data is that large returns tend to be followed by similarly
large returns and small ones followed by small ones in both cases, all of either sign. This
tells us that volatility is serially correlated. However, for most conventional econometric
models the conditional variance does not depend upon the past at−1. This means there is a
general loss of information in the realised forecasts. Engle (1982) proposed the first model
with a systematic framework to deal with the serial correlations. He called this model
the Auto Regressive Conditional Heteroscedastic Model (ARCH). The variance of this
one-period forecast is given by V (at|at−1). In this model, such an expression recognizes
that the conditional forecast variance depends upon past information and may, therefore,
be a random variable. The basic idea of ARCH models is as follows, by letting at be
the mean correlated return or shock of an asset return which is serially uncorrelated but
dependent. The dependence of at can then be described by a simple quadratic function
of its lagged values. An ARCH(m) model assumes that

at = σtεt (3.4)

σ2 = α0 + α1a
2
t + .....+ αma

2
t−m (3.5)

where εt is a sequence of independent and identically distributed (i.i.d) random variables
with mean zero and variance 1, α0 > 0, and αi > 0 for i > 0. The coefficients αi must
satisfy some regularity conditions to ensure that the unconditional variance of at is finite.
Under the ARCH framework, large shocks tend to be followed by another large shock this
can be seen by the model were we see that shock at has σt which has past squared shocks
a2

t−1 from the conditional variance σ2
t . Consequently, at tends to assume a large value in

modulus (Tsay 2005).

3.2.1 Properties of ARCH Models

Tsay (2005) explains that ARCH(m) model properties are best demonstrated through the
ARCH(1,1) model as follows:

at = σtεt (3.6)

σ2 = α0 + α1a
2
t−1 (3.7)

where α0 and α1 are unknown parameters.
Let At−1 be the information available at time t-1 then the unconditional mean is given
by E(at) = E(E(at|At−1)) = E(σtE(εt)) = 0 since E(at|At−1) = 0 Cov(at+h, at) =
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E(at+h, at) = 0 it is therefore a martingale difference which immediately means at has
zero mean and is an uncorrelated sequence. The series is however, not independent with
dependance relating to the dependance of the conditional variance on past observations
Talke (2003).

The unconditional variance of at is obtained as follows

V ar(at) = E(a2
t ) = E(E(a2|At−1))

= E(α0 + α1a
2
t ) = α0 + α1E(a2

t−1)
(3.8)

But, at is a stationary process with E(at) = 0, implying V ar(at) = V ar(at−1) = E(a2
t−1).

Therefore, we have V ar(at) = α0 + α1V ar(at) and V ar(at) =
α0

1− α1

. Since variance is

positive then we require 0 ≤ α1 < 1. Higher order moments are also required to exist
here α1 must satisfy other conditions. It follows from εt ∼ N(0, 1) that all odd moments
are zero. Hence, for third moment which defines skewness it follows that

E[(at − E(at))
3] = E[a3

t ] = E[σ3
t ε

3
t ]

= E[σ3
tE(ε3t |At−1)]

= 0

(3.9)

The skewness coefficient for at, defined as

E[(at − E(at)
3]

V ar(a
3
2
t )

(3.10)

automatically being zero and, therefore, the unconditional distribution of at is symmetric
(Talke 2003). Also, of interest is the fat tail distribution where we look at the fourth
moment of at which must be finite. Under normality assumption of εt we have

E(a4
t |At−1) = 3[E(at|At−1)]

2 = 3(α0 + α1a
2
t−1)

2 (3.11)

Therefore,
E(a4

t ) = E[E(a4
t |At−1)] = 3(α0 + α1a

2
t−1)

2 = 3E(α2
0 + 2α0α1a

2
t−1 + α2

1a
4
t−1)

Since at is fourth order stationary letting m4 = E(a4
t ) then we have

m4 = 3E[α2
0 + 2α0α1V ar(at) + α2

1m4] = 3α2
0(1 + 2 α1

1−α1
) + 3α2

1m4

Hence

m4 =
3α2

0(1 + α1)

(1− α1)(1− 3α2
1)

(3.12)

Since the fourth order moment should be positive α1 must satisfy the condition that
1− 3α2

1 > 0 that is 0 ≤ α2
1 <

1
3
.

The unconditional kurtosis denoted k of at is
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k =
E(a4

t )

[V ar(at)]

2

=
3α2

0(1 + α1)

(1− α1)(1− 3α2
1)
× (1− α1)

2

α2
0

= 3
1− α2

1

1− 3α2
1

> 3

(3.13)

The excess kurtosis k -3 is thus, positive and the tail distribution of at is heavier than that
of a normal distribution showing that the model is more likely to produce outliers than
Gaussian white noise. This is in agreement with the distribution of asset returns were
outliers appear more often than implied by an i.i.d sequence of normal random variates
(Tsay 2005).
The properties hold for even higher ARCH models with formulas getting complicated for
higher order models. We need a condition that conditional variance σ2

t is positive for all
t. A natural way to achieve this rewrite model as

at = σtεt, σ2
t = α0 + A′m,t−1ΩAm,t−1 (3.14)

Where Am,t−1 = (at−1, ..., at−m) and Ω is an m × m non-negative matrix. The ARCH(m)
requires Ω to be diagonal.

3.2.2 Weaknesses of the ARCH Model

The ARCH model has the following disadvantages:

• The model assumes that both positive and negative shocks have same effects on
volatility as it depends on the square of previous shocks but in reality, it is known
that financial asset response is different to both shocks.

• ARCH model is restrictive in the sense that the α0 must be in the interval [0,1
3
]

if series has a finite fourth moment. These constraints limit the ability of ARCH
model with Gaussian innovations ability to capture excess kurtosis.

• ARCH model provides no insight into the source of variation in the financial time
series all it does is provide a way to describe the behaviour of variance but not what
causes it.

• ARCH models likely to over-predict volatility because they respond slowly to large
isolated shocks to return series.

3.2.3 Parameter Estimation

Under normality assumption, the likelihood function of an ARCH(m) model is
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f(a1, ...., at|α) = f(aT |AT−1)f(aT−1|AT−2....f(am+1|Am)f(a1, ....., am|α)

=
T∏

t=m+1

1√
2Πσ2

t

exp

(
− a2

t

2σ2
t

× f(a1, ....., am|α)

)
(3.15)

Where α = (α0, α1.....αm)′ andf(a1, ....., am|α) is joint probability density function of
a1, ...., am whose exact form is complicated especially when sample size is large. For this
it is dropped from prior likelihood function when sample size is sufficiently large. This
gives

f(am+1, ....., aT |α, a1, ....., am) =
T∏

t=m+1

1√
2Πσ2

t

exp(− a2
t

2σ2
t

) (3.16)

The conditional log likelihood ignoring terms with no parameters i.e 2Π is thus

`(am+1, ....., aT |α, a1, ....., am = −
T∑

t=m+1

[
1

2
ln(σ2

t ) +
1

2

a2
t

σ2
t

] (3.17)

3.2.4 Non Normal Errors

At other times we might assume that error terms do not follow normal distribution but
a heavy tailed distribution that captures all outliers standardized students t distribution.
Let X be a student distribution with v degrees of freedom. Then Var(X)=v/(v-2) for
v > 2 and εt = X/

√
v/(v − 2). The probability distribution function of εt is

f(εt|v) =
Γ((v + 1)/2)

Γ(v/2)
√

(v − 2)Π

(
1 +

ε2t
v − 2

)−(v+1)/2

(3.18)

Where Γ(x) is gamma distribution. Using at = σtεt we get likelihood function of at as

f(am+1, ....., aT |α,Am) =
T∏

t=m+1)

Γ((v + 1)/2)

Γ(v/2)
√

(v − 2)Π

1

σt

(
1 +

a2
t

(v − 2)σ2
t

)−(v+1)/2

(3.19)

Where v > 2 and Am = (a1, ......, am) estimates that maximize the prior likelihood func-
tion as the conditional MLE’s under t-distribution. The degrees of freedom of the t-
distribution can be specified a priori or estimated jointly with other parameters. A value
between 3 and 6 is often used if it is pre-specified. If the degrees of freedom v of the
Student-t distribution is pre-specified, then the conditional log likelihood function is

`(am+1, ....., aT |α,Am) = −
T∑

t=m+1

[
v + 1

2
ln

(
1 +

a2
t

(v − 2)σ2
t

)
+

1

2
ln(σ2

t )

]
(3.20)

To estimate v together with other parameters then log likelihood changes to

`(am+1, .., aT |α,Am) = (T −m)[ln(Γ((v + 1)/2))− ln(Γ(v/2))− 0.5ln((v − 2)Π)]+

`(am+1, ., aT |α,Am) (3.21)
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3.2.5 Data Checking

First step is to find a way to specify the ARCH model. If the ARCH effect is found to be
significant, Tsay (2005) states that one can use the PACF of a2

t to determine the ARCH
order. For a given sample, a2

t is an unbiased estimate of σ2
t . Therefore, a2

t is expected
to be linearly related to a2

t−1, ..., a
2
t−m in a manner similar to that of an autoregressive

process.

3.2.6 Model Checking

For a properly specified ARCH model, the standardized residuals ãt =
at

σt

must form a

sequence of i.i.d random variables. Hence, one can check the adequacy of fitted ARCH
model by examining the series of ãt. In particular the Ljung-Box statistics of ãt can be
used to check adequacy of mean equation with that of ã2

t to test validity of the volatility
equation. The skewness, kurtosis and quantile plots used to check distribution assumption
validity.

3.2.7 Forecasting

Forecast values are found recursively as those of an AR model. Consider ARCH(m) model
a forecast origin h, the one step ahead forecast of σ2

h+1 is

σ2
h(1) = α0 + α1a

2
h + ......+ αma

2
h+1−m (3.22)

with the two step
σ2

h(1) = α0 + α1a
2
h(1) + ......+ αma

2
h+2−m (3.23)

In general the ` step forecast of σ2
h+` is

σ2
h(`) = α0 +

m∑
i=1

αiσ
2
h(`− i) (3.24)

where σ2
h(`− i) = a2

h+`−i if `− i ≤ 0

3.3 GARCH Model

The ARCH model often requires many parameters to adequately describe the volatility
process of an asset return. As a way to model persistent movements in volatility without
estimating a very large number of coefficients in a high-order polynomial a(L), Boller-
slev (1986) suggested the Generalized Autoregressive Conditionally Heteroskedastic, or
GARCH model

σ2
t = α0 + α(L)a2

t−1 + β(L)σ2
t−1 (3.25)

Campbell et al. (1997)
where β(L) is a polynomial in the lag operator. This is called a GARCH(p,q) model when
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the order of the polynomial β(L) is p and the order of the polynomial α(L) is q.

Simplified we say at follows the GARCH model if

at = σtεt where σ2
t = α0 +

∑m
i=1 αia

2
t−i +

∑s
j=1 βjσ

2
t−j

Where εt is sequence of Gaussian white noise with mean 0 and variance 1.
α0 > 0, αi ≥ 0, βj ≥ 0, and

∑max(m,s)
i=1 (αi + βi) < 1. Also αi = 0 for i > m and βj = 0 for

j > s. The constraint of αi + βi implies unconditional variance of at is finite whilst the
conditional variance σ2

t evolves over time. αi for i = 1,2,3... determines the reaction to
market shocks, the parameter βi determines the persistence in volatility after a shock and
these, together with the parameter α0 determine the speed of mean reversion and the long
run GARCH volatility Alexander (2008). This further simplified by Hillebrand (2003) as

follows: by letting
∑max(m,s)

i=1 (αi+βi) =λ, then, the closer λ is to unity the more persistent
the volatility is. λ represents the fraction of information that is carried forward per unit
time. So based on this 1-λ is the fraction that is washed out per unit time. Hence, 1

1−λ

is the average time required to revert back to mean when time increments equals to 1. εt
can be Standard Normal or Standardized Student T or General Error Distribution. If s=0
the equation reduces to ARCH(m) model. αi and βi are ARCH and GARCH parameters
respectively.

The intuition of this model is that current volatility is modelled using previous variance
that is the β(L)σ2

t−1 part and also the previously observed error α(L)a2
t−1. To easily

understand the model consider ηt = a2
t − σ2

t so that σ2
t = a2

t − ηt. Plugging σ2
t−1 =

a2
t−1 − ηt−1(i = 0, ......, s) into equation we have

a2
t = α0 +

max(m,s)∑
i=1

(αi + βi)a
2
t−1 + ηt −

s∑
j=1

βjηt − j

η is a martingale difference series but it is not i.i.d in general. It is an ARMA form but
squared thus ARMA can be seen as an ARMA application on squared series a2− t. Using
unconditional mean of ARMA model we have

E(a2
t ) =

α0

1−
∑max(m,s)

i=1 (αi+ βi)

provided the denominator is positive Tsay (2005).

3.3.1 GARCH(1,1)

To demonstrate the properties of the GARCH model, we use the simpler GARCH(1,1)
model which is defined as follows

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t (3.26)

0 ≤ α1, β1 ≤ 1, (α1 + β1) < 1 (Bollerslev 1986).
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From the equation we see that a large a2
t−1 or σ2

t−1 gives rise to large σ2
t . Thus it means

large a2
t−1 tends to be followed by large a2

t hence, generating the behaviour of volatility
clustering. The conditional mean of at is E(at|At−1) = 0 and at is a martingale differ-
ence. This means E(at) = 0 and at is an uncorrelated series. Information set is now
at, σ

2
t , ....at−1, σ

2
t−1.

Properties easily derived by introducing the squared returns a2
t which is expressed as

a2
t = σ2

t + vt = α0 + α1a
2
t−1 + β1(a

2
t−1 + vt − β1vt−1) (3.27)

Where vt = a2
t −σ2

t . Conditional mean of vt is 0 and it is a martingale difference therefore
E(vt) = 0 and cov(vt, vt−k) = 0 for k ≥ 1 so that vt is serially uncorrelated.

E(a2
t ) = α0 + (α1 + β1)E(a2

t ) =
α0

1− (α1 + β1)

since εt is Gaussian white noise and E(a2
t ) = E(a2

t−1) = E(σ2
t ε

2
t ) = E(σ2

t ) for variance to
be finite α1 + β1 < 1 should hold Talke (2003). For kurtosis assuming 4th order station-
arity i.e E(ε4) = 3 then
E(a4

t ) = E[E[σ4
t εt|At−1]] = E[σ4

tE[ε4|At−1]] = 3[E[σ4
t ]]

Now E(σ4
t ) = α2

0+α
2
1E(a4

t−1) +β2
1E(σ4

t−1)+2α0α1E(a2
t−1)+2α0β1E(σ2

t−1)+2α1β1E(σ2
t−1a

2
t−1)

but

E(σ2
t−1a

2
t−1) = E[E(σ2

t−1a
2
t−1|At−2)]

= E[σ4
t−1Eε

2
t−1)|At−2)]

= E(σ4
t−1)

(3.28)

Rearranging and noting that E(a2
t−1) = E(σ2

t−1)) =
α0

1− (α1 + β1)
and

E(σ4[(1− β2
1 − 2α1β1 − 3α2

1)]) = α2
0 +

2α2
0α1

1− (α1 + β1)
+

2α2
0β1

1− (α1 + β1)

Thus E(σ4) =
α2

0(1 + α1 + β1)

(1− (α1 + β1))[(1− 2α2
1)− (α1 + β1)2]

But, we know E(a4
t ) = 3E(σ4

t ) hence, we have E(a4
t ) =

3α2
0(1 + α1 + β1)

(1− (α1 + β1))[(1− 2α2
1)− (α1 + β1)2]

The kurtosis is then obtained as

k =
E(a4

t )

[var(at)]2
=

3(1− α1 + β1)
2

1− 2α2
1 − (α1 + β1)2

> 3 (3.29)

given that 1− 2α2
1 − (α1 + β1)

2 > 0
Thus, the GARCH(1,1) has a heavy tail compared to the normal distribution. Also, the
model provides a simple parametric function that can be used to describe the volatility
evolution.
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3.4 Forecasting in the GARCH(1,1) Model

Considering the GARCH(1,1) model and that the origin is at h then 1 step ahead forecast
is given by

σ2
h+1 = α0 + α1a

2
h + β1σ

2
h (3.30)

Where ah and σ2
h are known at time index h hence, we have

σ2
1 = α0 + α1a

2
h + β1σ

2
h (3.31)

Multi-step ahead forecast are given using the from that a2
t = σ2

t ε
2
t and rewriting the

volatility equation as

σ2
t+1 = α0 + (α1 + β1)σ

2
t + α1σ

2
t (ε

2
t − 1) (3.32)

With t=h+1 then we have

σ2
h+2 = α0 + (α1 + β1)σ

2
h+1 + α1σ

2
h+1(ε

2
h+1 − 1) (3.33)

Since E(ε2h+1 − 1|Ah) = 0 the 2 step ahead volatility forecast at origin h satisfies

σ2
h(2) = α0 + (α1 + β1)σ

2
h(1) (3.34)

In general we have
σ2

h(`) = α0 + (α1 + β1)σ
2
h(`− 1) (3.35)

` > 1

3.4.1 Persistence and Stationarity

As seen earlier that when α + β < 1, the unconditional variance of a2
t+1, or equivalently

the unconditional expectation of σ2, is α0

1−(α1+β1)
Campbell et al. (1997) shows that by Re-

cursively substituting in (3.31), and using the law of iterated expectations, the conditional
expectation of volatility j periods ahead is

E(σ2
t+j) = (α+ β < 1)j

(
σ2 − α0

1− (α1 + β1)

)
+

α0

1− (α1 + β1)
(3.36)

The multiperiod volatility forecast reverts to its unconditional mean at rate α + β.

3.5 IGARCH

When α + β =1, the conditional expectation of volatility j periods ahead is instead

E(σ2
t+j) = σ2

t + jα0 (3.37)

This implies that today’s volatility affects forecasts of volatility into the indefinite future,
this feature is termed persistence. Engle and Bollerslev (1986) called this model the
Integrated GARCH (IGARCH) model.
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Campbell et al. (1997) points out the fact the IGARCH(1,l) process for σ2
t looks very much

like a linear random walk with drift for α0 > 0 and that without drift for α0 = 0. But,
Nelson (1990) is quick to warn that despite such a close appearance the behaviour of the
two differs. The structure of the higher moments of σ2

t when α + β =1 and α0 = 0 implies
that the distribution of σ2

t becomes more and more concentrated around zero with fatter
and fatter tails, which is not the case with a random walk. This special IGARCH(1,1)
model is the volatility model used in JP Morgan (1995), which is an approach for calcu-
lating the value at risk. In the IGARCH(1,1) model with α0 > 0 , σ2

t is strictly stationary
and ergodic. The innovation at+1 then has a stationary distribution with a zero mean,
but with tails that are so thick that no second or higher-order moments exist.

The IGARCH model for the simple IGARCH(1,1) is as shown by Tsay (2005)

at = σtεt σ2
t = α0 + β1σ

2
t−1 + (1− βt)a

2
t−1

Where at is white noise 1 > β1 > 0. The difference between the GARCH(1,1) and the
IGARCH is that the unconditional variance of at hence, that of rt is undefined under
the IGARCH(1,1) model. This phenomenon is hard to justify on return series but from
theoretical viewpoint it may be caused by occasional level shifts in volatility Tsay (2005).

3.6 Forecasting IGARCH Models

Given that α1 + β1 = 1 then by repeated substitution into general ` step ahead forecast
of GARCH(1,1) model i.e σ2

h(`) = α0 + (α1 + β1)σ
2
h(`− 1), `.1 then we get

σ2
h(`) = σ2

h(1) + (`− 1)α0 (3.38)

` > 1
Where h is the forecast origin JP Morgan (1995). From above we can see that the effect
of σ2

h(1) is persistent on all future volatilities hence, the volatility forecast form a straight
line with slope α0. Under certain conditions the volatility process is strictly stationary
but not weakly stationary as it lacks the first two moments. For α0 = 0 a special IGARCH
arises the volatility forecast are just σ2

h(1) for all forecast horizons. This is the volatility
model used in RiskMetrics an approach to calculate value at risk.

Francq and Zakoian (2011) for IGARCH(p,q) when
∑
αi +

∑
βi = 1.

Then the ` step ahead forecast is

σ2
h+` = σ2

h + (`− 1)α0 (3.39)

3.7 GARCH-M

Engle et al. (1987) suggest adding a time-varying intercept to the basic univariate model.
This resulted in the ARCH-M which was developed into GARCH-M. In finance, the return
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of a security can depend on its volatility. (Johnston and Scot, 1999) mention that, one
way to account for this is to write the return as a function of the conditional variance. To
model this one may consider the GARCH-M model where M is mean. GARCH-M model
allows for the conditional variance to have a mean effect. The model is expressed like any
GARCH(p,q) but the mean equation changes to

rt = µ+ cσ2
t + at (3.40)

Hence, for GARCH(1,1)-M we add at = σtεt and σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

Where rt is the logarithm of the ratio of the closing exchange rate prices at time t and
t-1 µ and c are constants, parameter c is the risk premium parameter, with a positive
c indicating a return that is positively related to its volatility. The formulation of the
model implies there exist serial correlations in the return series rt. These are introduced
by those in the volatility process σ2

t , hence, existence of risk premiums are another reason
that some historical stock prices have serial correlations (Tsay 2005).

3.8 Exponential GARCH Model

The exponential GARCH model was Developed by Nelson (1991) to overcome some of
the weaknesses of the GARCH model in handling financial time series. The GARCH
model deals with the magnitude of the residuals but does not allow for asymmetric ef-
fects between positive and negative asset returns. Statistically, this effect occurs when
an unexpected drop in price (bad news) increases predictable volatility more than an
unexpected increase in price (good news) of similar magnitude. Nelson (1991) proposed
the exponential GARCH model(EGARCH) in which the main focus on volatility depends
not only on magnitude but also, the sign of the residuals. The model as given by Nelson
(1991) is

g(εt) = θεt + γ[|εt| − E|εt|] (3.41)

where θ and λ are real constants.
Both εt and |εt| - E|εt| are zero-mean i.i.d sequences with continuous distributions.
The asymmetry of g(εt) can easily be seen by rewriting it as

g(εt) = (θ + γ)εt if εt > 0

= (θ + γ)εt if εt > 0
(3.42)

An EGARCH(m,s) model can be written as

at = σtεt (3.43)

ln(σ2
t ) = α0 +

1 + β1B + + βs−1B
s−1

1− α1B − ...− αmBm
g(εt−1) (3.44)

where α0 is a constant, B is the back-shift (or lag) operator. (Tsay 2005) explains that it
uses logged conditional variance to relax the positiveness constraint of model coefficients.
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Secondly, the use of g(εt) enables the model to respond asymmetrically to positive and
negative lagged values of at. Campbell et al. (1997) further points out that this model
is appealing because it does not require any parameter restrictions to ensure that the
conditional variance of the return is always positive. Also, it becomes both strictly non-
stationary and covariance non-stationary when α1 + β1 = 1, so it does not share the
unusual statistical properties of the IGARCH (1,l) model. On the other hand, multi-
period forecasts of future variances are harder to calculate in the EGARCH model and
no closed-form expressions are available.

ln(σ2
t ) = α0 +

s∑
i=1

αig(εt−1) +

p∑
j=1

βjln(σ2
t−j) (3.45)

3.9 Model section using Information Criteria

Several information criterion have been developed to help with model selection. Here we
discuss the Akaike information criterion (AIC) and SchwarzBayesian information criterion
(BIC). The (AIC) is the most common information criteria it is defined as

AIC =
−2

T
ln(likelihood) +

2

T
(numberofparameters) (3.46)

where the likelihood function is evaluated at the maximum-likelihood estimates and T is
the sample size. The equation reduces for an a Gaussian AR(`) to

AIC(`) = ln(σ2
` ) +

2`

T
(3.47)

The first term measures the goodness of fit whilst the second term is the penalty function
of the criterion. It is called so because it penalizes a candidate model by the number of
parameters used. Therefore the more parameters the higher the penalty.
The BIC is given as

BIC(`) = ln(σ2
` ) +

2`ln(T )

T
(3.48)

From the 2 equation we can see that the difference in the information criteria is their
penalty functions.

Given 2 or more models the best model is the one with the lowest AIC or BIC value.

3.10 News Impact Curve

With many different volatility models, another way to differentiate their performance
is by looking at how they react to shock i.e news. Engle and Ng (1993) introduce the
news impact curve. This measures the effect of a shock in the current period on the
conditional variance (volatility) in the subsequent period to facilitate comparison between
models. By holding constant the information dated t− 2 and earlier, we can examine the
implied relation between εt−1 and ht. In the GARCH model, this curve is a quadratic
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function centered on εt−1 = 0. For the EGARCH, it has its minimum at εt−1 = 0 and is
exponentially increasing in both directions but with different parameters. This means for
the GARCH it treats all news bad or good similarly but EGARCH treats them differently.

Diagnostics Using News Impact Curve

The standard GARCH model has a news impact curve which is symmetric and centered
at εt−1 = 0. That is, positive and negative return shocks of the same magnitude produce
the same amount of volatility. If a negative return shock causes more volatility than a
positive return shock of the same size, the GARCH model underpredicts the amount of
volatility following bad news and overpredicts the amount of volatility following good
news. Furthermore, if large return shocks cause more volatility than a quadratic function
allows, then the standard GARCH model underpredicts volatility after a large return
shock and overpredicts volatility after a small return shock (Engle and Ng 1993). With
these observations Engle and Ng (1993) introduce the Sign Bias Test, the Negative Size
Bias Test, and the Positive Size Bias Test. These tests examine whether we can predict
the squared normalized residual by some variables observed in the past which are not
included in the volatility model being used. If these variables can predict the squared
normalized residual, then the variance model is misspecified.

3.11 Summary

This chapter introduces the models to be used for univariate modelling of the data. The
model structure and how they capture volatility is discussed. Model selection using AIC
and BIC is also discussed. These models will be used in the next section.
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Chapter 4

Model Application

The data presented in the previous chapter had the characteristics of financial data as
expected. The daily log returns had low order correlations. Monthly data had very low or
no correlations hence, their ACF resembled that of a white noise one. The first step before
modelling is to perform standard tests to confirm presence of ARCH effects as indicated by
the PACF’s under data analysis section. Here autocorrelation structure of the residuals
and the squared residuals can be inspected. An indication of ARCH presence is that
the residuals will be uncorrelated but the squared residuals will show autocorrelation. A
variety of software can be used to fit these models for example R, SAS and EVIEWS.
For our case we made use of R and EVIEWS with ultimate choice being R as opposed to
EVIEWS because

• It comes with many optional packages to use for a variety of models whilst EVIEWS
runs only a selected few models, for example, it can not run GJRGARCH, IGARCH
to name a few.

• R is free hence, it’s a good practice to have it as you can use it anywhere at anytime

• R graphics are simple and precise unlike those from EVIEWS which do not clearly
show detail.

• EVIEWS does not have provision for studentized t and skewed t options yet R has
many options such as student t and skewed t.

For those models that could be run with EVIEWS it was clear that the estimates and
p-values were consistent with the estimates from R with a .00 difference which is not
significant. This difference can be brought about by rounding errors and also number
of iterations in the calculation procedures used by the particular software in question.
Note that omega ω in this section is the constant α0 of the previous section. R gives the
constant using the notation ω.

4.1 Old Mutual Data

The data analysis of the Old Mutual data showed evidence of volatility clustering as
witnessed through looking at the plots of the returns. The plots of ACF of squared returns
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also suggested presence of ARCH effects. However, to be more certain we perform the
ARCH test. The ARCH test here is done using R.

4.1.1 Monthly Data

The ACF of the monthly data showed no autocorrelation, this was backed up by Ljung-
Box test on at which gave χ2 = 5.9197, df = 12, p-value = 0.9201 hence, therefore we could
easily proceed to ARCH effect test. The ACF and PACF of the squared series confirms
the presence of conditional heteroscedasticity. The Ljung-Box test on the a2

t series gives
a chi-square value = 62.7616, df = 12, p-value =7.049e-09. Therefore we conclude that
ARCH effects are present. Using the package FGARCH various models are ran and the
results are shown in Table 4.1 below.

Table 4.1: Summary of fitted models:cond distribution=norm

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
GARCH(1,0) -2.2252 -2.1705 195.4793 µ α1

GARCH(2,0) -2.2200 -2.1473 196.034 µ α1 α2

GARCH(3,0) -2.22776 -2.21366 197.2008 µ α1 α2 α3

GARCH(1,1) -2.2894 -2.2165 202.0358 µ ω
GARCH(2,1) -2.290 -2.199 203.14 µ α1 α2

GARCH(1,2) -2-278 -2.187 202.06 GARCH parameters NA
GARCH(2,2) -2.279 -2.1698 203.14 α1 α2 β1 β2

1 NA means value could not be evaluated

Based on the AIC the GARCH(1,1) model is the best model. Although its AIC is not
lower than that of the GARCH(2,1) the difference is small and also the GARCH(2,1)
parameters are not all significant. We then run the models with t distributed errors and
skewed t distributed errors. The results are shown in Table 4.2 and Table 4.3 respectively.

Table 4.2: Summary of fitted models:cond distribution=std

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
GARCH(1,0) -2.2641 -2.1912 199.848 µ α1

GARCH(2,0) -2.2657 -2.1746 200.9823 µ α1 α2

GARCH(3,0) -2.2690 -2.1600 202.2667 µ α1 α2 α3

GARCH(1,1) -2.3022 -2.2110 204.138 µ ω α1 shape
GARCH(2,1) -2.301 -2.1914 205.0168 µ α1 α2

GARCH(1,2) -2.2902 -2.1809 204.1062 µ β2 shape
GARCH(2,2) -2.2892 -2.1616 205.0168 µ α1 α2 β2
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Table 4.3: Summary of fitted models:cond distribution=sstd

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
GARCH(1,0) -2.2549 -2.1638 200.0482 µ α1

GARCH(2,0) -2.2560 -2.1466 201.1401 µ α1 α2

GARCH(3,0) -2.2586 -2.1310 202.3672 α1 α2 α3

GARCH(1,1) -2.2914 -2.1821 204.2097 µ ω α1 skew
GARCH(2,1) -2.2901 -2.1625 205.0937 µ α1 α2

GARCH(1,2) -2.2796 -2.1520 204.1874 µ ω α1 β2 shape
GARCH(2,2) -2.2785 -2.1327 205.0937 µ α1 α2 β2

After looking at all models under normal, studentized t and skewed studentized t distri-
bution, it was clear that the GARCH(1,1) was the better model as evident by the lower
AIC BIC values. The parameters of the GARCH(1,1) models from the all the error distri-
bution assumption were not all significant at 5%. A detailed output all the GARCH(1,1)
estimates as obtained from R are shown in tables 4.4, 4.5 and 4.6 for normal, t and skewed
t error distribution respectively.

Table 4.4: Estimates from distribution=norm

R Estimate EVIEWS estimate Pr(> t )in R Pr(>z)in EVIEWS
mu 0.0097514 0.009761 0.0758 0.1068

omega 0.0006974 0.000697 0.0749 0.2052
alpha1 0.1199413 0.119951 0.0437 0.0891
beta1 0.7632629 0.763274 6.66e-15 0.0000

Table 4.5: Estimates from distribution=std

R Estimate EVIEWS estimate Pr(>t)in R Pr(>z)in EVIEWS
mu 0.0096322 0.009656 0.0652 0.0851

omega 0.0006760 0.000675 0.1537 0.3548
alpha1 0.1127324 0.112616 0.0856 0.2181
beta1 0.7778690 0.778203 4.18e-12 0.0000
shape 7.2973920 7.295195 0.0794 0.1748

Below we fit model with skewed t which, however, is not provided for in EVIEWS.
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Table 4.6: Estimates from distribution=sstd

Estimate Std. Error t value Pr(>t) significance code
mu 0.0089068 0.0055846 1.595 0.111

omega 0.0006597 0.0004710 1.401 0.161
alpha1 0.1035591 0.0645348 1.605 0.109
beta1 0.7864759 0.1129801 6.961 3.37e-12 ***
skew 0.9536481 0.1183671 8.057 8.88e-16 ***
shape 7.8352421 4.9740517 1.575 0.115
1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

Based on the above output we can see that despite the GARCH(1,1) models from the
t and skewed t distributed errors having better AIC values their parameters are highly
insignificant. The normal has estimates which are more significant. All persistence is high
in all models. The obtained (α+ β) values are (0.120+0.763=0.883),(0.13+0.778=0.908)
and (0.104+0.786=0.89) for the normal, t and skewed t distributed errors respectively.

Figure 4.1 shows the Q-Q plots of the GARCH(1,1). A comparison of the Q-Q plot shows
t and skewed t distribution to be slightly better fit. The tails are much narrower showing
that the t and skewed t dealt better with the heavy-tailed data. However, as seen before
the parameter estimates of the t and skewed t models were not as significant as those of
one fit using normal assumption. Also, by considering that parameter estimates are not
very different we conclude that the GARCH(1,1) is acceptable in this case.
NB* Note the use of the phrase “in this case” as in the next section, extensions of the
GARCH model will be tried which may fit the data. But for the sake of progress, we
select the GARCH(1,1) from this section.
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Figure 4.1: Q-Q plots

As a way of model diagnosis R also gives standardized residuals tests which are used to
determine if model residuals follow the model assumptions. The output is shown in Table
4.7 below. To assess if the standardized residuals are white noise the Ljung-Box tests
up to order 10; 15; 20 are reported both for standardized residuals and their squared
values. As can be seen from the p-values < 0.05 nor 0.01 for all these lags. Hence, there is
no evidence of autocorrelation nor of conditional heteroscedasticity presence as required.
The Jarque-Bera statistic and the Shapiro-Wilk test are reported these test the normality
assumption. Both tests do not reject the null hypothesis of normality at 99%. However,
the values here are not highly significant hence, we expect the Q-Q plot to have minor
deviations from the straight plot.
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Table 4.7: Summary of Standard Residuals

Test Test Statistic Test Statistic Value P-value
Jarque-Bera Test R Chi2 6.9312 0.0313
Shapiro-Wilk Test R W 0.9865 0.0957
Ljung-Box Test R Q(10) 4.9478 0.8946
Ljung-Box Test R Q(15) 6.5231 0.9696
Ljung-Box Test R Q(20) 8.7699 0.9854
Ljung-Box Test R2 Q(10) 16.6458 0.0826
Ljung-Box Test R2 Q(15) 20.9747 0.1376
Ljung-Box Test R2 Q(20) 27.2018 0.1297
LM ARCH Test R TR2 17.5389 0.1304

Figure 4.2 below shows the graphical representation of the conditional standard deviations
and the ACF of the standardized residual. The standardized residuals have no significant
lags hence, showing that no autocorrelations are left. The squared residuals also show
that there are no ARCH effects left although a minor significant lag can be seen at 9,
which, however, does not affect our conclusion as it as a higher order lag.
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Figure 4.2: Residual Diagnosis plots
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4.1.2 GARCH Extensions For Old Mutual Monthly Data

Table 4.8: GARCH Extensions

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
iGARCH(1,1) -2.2701 -2.2155 199.3675 β1 is NA, ω
iGARCH(1,2) -2.2635 -2.1906 199.7903 ω α1 β1 β2

iGARCH(2,1) -2.2706 -2.1977 200.4042 ω α1 α2 β1

EGARCH(1,1) -2.3362 -2.2451 207.0853 γ1 µ
EGARCH(1,2) -2.3251 -2.2157 207.1222 µ
EGARCH(2,1) -2.3185 -2.1909 207.5519 µ α1 α2 γ1 γ2

TGARCH(1,1) 2.251161 -2.160026 199.7254 µ
gjrGARCH(1,1) -2.314307 -2.223171 205.1875 µ α1 γ1

The EGARCH, IGARCH models were fit using the rugarch package in R (see (Gha-
lanos 2015) whilst the TGARCH and gjrGARCH were fit using the Aparch command in
FGARCH. None of the fitted models had all of its parameters significant as each model
had, at least, one insignificant parameter. However, based on the AIC and BIC the
EGARCH model, was the best model. Q-Q plots of the EGARCH(1,1) and the Pearson
goodness of fit reject the normal distribution for the error terms. Hence, we fit the model
with t distributed errors and obtain an improved Q-Q plot and AIC value. The obtained
estimates are shown in Table 4.9 below.

Table 4.9: EGARCH(1,1) estimates from distribution=std

Estimate Std. Error t value Pr(>t) QLME p-values
mu 0.007037 0.004467 1.5755 0.115147 0.068923

omega -0.398103 0.015235 -26.1302 0.000000 0.000000
alpha1 -0.201214 0.050983 -3.9467 0.000079 0.000019
beta1 0.925150 0.000016 57868.7797 0.000000 0.000000

gamma1 -0.065571 0.032941 -1.9905 0.046532 0.019838
shape 8.374201 5.411876 1.5474 0.121773 0.046877

Table 4.9 reveals that µ and the shape parameter are insignificant hence, these can be re-
moved from the model. Noting that the method for fitting is the ML method, if however,
we fit using QLME which allows for possible misspecification of the likelihood function
(see White (1982)) µ becomes significant at 10% and the shape parameter at 5% whilst
estimates remaining more or less the same. These QLME p-values are shown on tab
QLME p-values.

Output for Tests for ARCH/GARCH behaviour in standardized residuals is shown below.
There is no evidence of serial correlation in squared residuals.
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Table 4.10: Weighted Ljung-Box Test on Standardized Squared Residuals: d.o.f=2

statistic p-value
Lag[1] 0.4712 0.4924

Lag[2*(p+q)+(p+q)-1][5] 1.4400 0.7547
Lag[4*(p+q)+(p+q)-1][9] 3.2599 0.7154

Below are the Nymblom stability tests. All parameters are not significant at 5% hence
no evidence of non-stable parameters.

Table 4.11: Nyblom stability test

Joint Statistic: 1.2792
mu 0.30109

omega 0.15571
alpha1 0.17947
beta1 0.14497

gamma1 0.13770
shape 0.08147

The sign bias test has all entries not significant at 5% hence showing no evidence of
leverage effect.

Table 4.12: Sign Bias Test

t-value prob sig
Sign Bias 0.82410 0.4111

Negative Sign Bias 0.05441 0.9567
Positive Sign Bias 0.76796 0.4436

Joint Effect 0.88663 0.8287

Below are the fit model diagnostics plots. The ACF plot of the residuals shows no presence
of autocorrelation. The plot of squared residuals also shows no significant lags except
minor higher order ones at lag 14 and 21 which do not affect the conclusion that the
ARCH effects have been removed. The plot of the conditional standard deviations vs
returns shows that the returns and the conditional standard deviations take up similar
fluctuation as expected.
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Figure 4.3: Residual Diagnosis plots

4.1.3 Old Mutual Daily Data

From the data analysis section, it was noted that the daily data was autocorrelated as
compared to the monthly data. This means that we can not go straight to modelling
without removing the autocorrelation. Tsay (2005) suggest the use of AR model to first
capture the correlation. This can be done by modelling the AR model than using the
residuals to run the GARCH models. This also is the same as jointly modelling an ARMA-
GARCH model. This method is also used by Cantaluppi (2013).

The daily data ACF showed the presence of autocorrelations. We proceed to ARCH effect
test, The Ljung-Box test on the a2

t series gives a χ2= 1683.85, df = 10, p-value <2.2e-16.
ARCH LM-test from lag 1 to 20 also had p-values of zero showing strong ARCH effects
presence.

We proceed to fit models and using package fGARCH in R. The PACF of the squared
returns suggests an AR(6) model which seems to be of rather high order we then proceed
to look at the PACF of squared residuals which are those after removing the series mean.
The result, however, also, suggest an AR(6) hence, we model our ARMA-GARCH model
with the ARMA part being an AR(6) initially.

After running various ARMA-GARCH models all with ARMA part as an AR6 it emerged
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that in all either none, one or two parameters of the AR component would be significant.
Hence, we tried models with AR3, AR2 and AR1 parts. The AR3 and AR2 also showed
one parameter being significant which was the AR1 part hence, we settled for the AR1 to
take care of the correlations.

Table 4.13: Summary of fitted models:cond distribution=norm

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
AR1+GARCH(1, 0) -4.9664 -4.9577 6832.739 ω
AR1+GARCH(2,0 ) -5.0215 -5.0107 6909.516 All significant
AR1+GARCH(3, 0) -5.0822 -5.0693 6994.012 AR1
AR1+GARCH(1, 1) -5.1488 -5.1380 7084.591 AR1
AR1+GARCH(1, 2) -5.1512 -5.1383 7088.931 AR1 not significant
AR1+GARCH(2, 1) -5.1480 -5.1351 7084.525 µ α2

AR1+GARCH(2, 2) -5.1505 -5.1354 7088.931 AR1 β1 α2

Looking at Table 4.13 AR1+GARCH(1,1), AR1+GARCH(1,1) and AR1+GARCH(2,2)
have the 3 best AIC values. We disregard AR1+GARCH(2,2) because it has many in-
significant parameters. We also, drop the AR1+GARCH(1,2) despite a lower AIC be-
cause the difference in AIC compared to that of AR1+GARCH(1,1) is negligible given
that AR1+GARCH(1,1) has 1 less parameter.

Table 4.14 shows that all parameters of the AR1+GARCH(1,1) are significant based on
the given codes with the GARCH parameters highly significant.

Table 4.14: GARCH(1,1) model estimates from distribution=norm

Parameter Estimate Std. Error t value Pr(>t) sig code
mu 7.649e-04 3.187e-04 2.400 0.0164 *
AR1 -3.499e-02 2.049e-02 -1.708 0.0876 .

omega 7.920e-06 1.961e-06 4.038 5.38e-05 ***
alpha1 6.594e-02 1.110e-02 5.942 2.82e-09 ***
beta1 9.141e-01 1.434e-02 63.751 < 2e-16 ***

1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

Diagnosis is performed on residuals in R. We assess if the standardized residuals are white
noise. The Ljung-Box tests up to order 10; 15; 20 are reported both for standardized resid-
uals and their squared values. There is no evidence of autocorrelation nor of conditional
heteroscedasticity presence as Ljung box statistics are all not significant. The Shapiro
and Jarque-Bera test all reject the normality.
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Table 4.15: Standardized Residuals Tests:

Test Test Statistic Test Statistic Value P-value
Jarque-Bera Test R Chi2 9623.095 0.000
Shapiro-Wilk Test R W 0.9618 0.000
Ljung-Box Test R Q(10) 6.8342 0.7410
Ljung-Box Test R Q(15) 9.9387 0.8236
Ljung-Box Test R Q(20) 13.8387 0.8386
Ljung-Box Test R2 Q(10) 1.8763 0.9972
Ljung-Box Test R2 Q(15) 3.0772 0.9995
Ljung-Box Test R2 Q(20) 3.6572 0.9999

hline LM ARCH Test R TR2 2.9446 0.9959

With normality rejected we try the models with t and skewed t distributed errors. Tables
4.16 and 4.17 below show the t and skewed t distributed error models respectively. The
AIC values for both models are lower as compared to those of normally distributed error
model indicating an improvement in the model. The t distribution AR1+GARCH(1,1) is
the best of all the models as indicated by the lowest AIC and also, all its parameters are
significant at 5%.

Table 4.16: Summary of fitted models:cond distribution=std

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
AR1+GARCH(1,0) -5.1083 -5.0975 7028.917 AR1
AR1+GARCH(2,0) -5.1413 -5.1283 7075.222 AR1
AR1+GARCH(3,0) -5.1684 -5.1533 7113.54 AR1
AR1+GARCH(1,1) -5.2263 -5.2134 7192.213 All significant
AR1+GARCH(2,1) -5.2256 -5.2106 7192.23 α2

AR1+GARCH(1,2) -5.2277 -5.2126 7195.109 AR1 β1

AR1+GARCH(2,2) -5.2270 -5.2100 7195.109 AR1 α2 β1

Table 4.17: Summary of fitted models:cond distribution=sstd

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
AR1+GARCH(1,0) -5.1076 -5.0947 7028.940 µ AR1
AR1+GARCH(2,0) -5.1405 -5.1255 7075.227 AR1
AR1+GARCH(3,0) -5.1677 -5.1504 7113.543 AR1
AR1+GARCH(1,1) -5.2256 -5.2105 7192.22 all significant
AR1+GARCH(2,1) -5.2249 -5.2077 7192.236 α2

AR1+GARCH(1,2) -5.2270 -5.2098 7195.117 AR1 β1

AR1+GARCH(2,2) -5.2263 -5.2069 7195.117 AR1 α2 β1

Estimates of the t error distributed model AR1+GARCH(1,1) are given in Table 4.18
below. The parameters are more significant than those given by normal errors. Hence,
the AR1+GARCH(1,1) with t distributed errors is the best model fit. The persistence is
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(0.0543+0.935)=0.98930 which is high.

Table 4.18: AR1+GARCH(1,1) model estimates from distribu-
tion=std

Estimate Std. Error t value Pr(>t) sig code
mu 7.642e-04 2.931e-04 2.607 0.00913 **
AR1 -3.837e-02 1.915e-02 -2.003 0.04513 *

omega 3.768e-06 1.284e-06 2.935 0.00333 **
alpha1 5.434e-02 1.005e-02 5.410 6.30e-08 ***
beta1 9.353e-01 1.162e-02 80.460 < 2e-16 ***
shape 7.198e+00 8.795e-01 8.184 2.22e-16 ***
1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

Table 4.19 shows the diagnosis of the residuals under t distributed error assumption. It
shows that the Ljung-Box tests at lags 10,15, up to 20 of residuals and their squared
values show no evidence of autocorrelation nor of conditional heteroscedasticity presence
i.e there are all >0.05. The Jarque-Bera and Shapiro-Wilk test are as expected zero
showing that the residuals do not follow the normal distribution.

Table 4.19: Standardized Residuals Tests:

Test Test Statistic Test Statistic Value P-value
Jarque-Bera Test R Chi2 12265.64 0
Shapiro-Wilk Test R W 0.9589 0
Ljung-Box Test R Q(10) 7.3600 0.6911
Ljung-Box Test R Q(15) 10.4938 0.7876
Ljung-Box Test R Q(20) 14.3862 0.81039
Ljung-Box Test R2 Q(10) 1.8590 0.9973
Ljung-Box Test R2 Q(15) 2.9214 0.9997
Ljung-Box Test R2 Q(20) 3.4064 0.9999

hline LM ARCH Test R TR2 2.7730 0.9969

Plots of the Q-Q plots for all 3 error distributions are shown in Figure 4.4 below. It can
be seen that the t and skewed t distributions assumptions handle the heavy tails better as
compared to the normal distribution. This justifies use of the t over the normal especially
with estimates varying significantly for the models.
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Figure 4.4: Q-Q plots

Below figure 4.5 shows the diagnostic plots obtained from R. The conditional standard de-
viations plot confirms to pattern of the returns. The ACF of the standardized returns has
no autocorrelations left as required and also, the squared returns ACF has no significant
lags showing the ARCH effects have been removed.
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Figure 4.5: Residual Diagnosis plots

4.1.4 GARCH Extensions For Old Mutual Daily Data

Table 4.20: GARCH Extensions

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
iGARCH(1,1) -5.1424 -5.1360 7073.828 β1 na ω α1

iGARCH(2,1) -5.1417 -5.1331 7074.00 β1 α1

iGARCH(1,2) -5.1466 -5.1379 7081.00 β1 na ω
EGARCH(1,1) -5.16090 -5.1502 7101.272 all highly significant
EGARCH(1,2) -5.1630 -5.1501 7105.084 all significant
EGARCH(2,1) -5.1621 -5.1470 7104.844 γ2

AR1+iGARCH(1,1) –5.1426 -5.1340 7075.105 AR1
AR1+iGARCH(1,2) -5.1461 -5.1353 7080.894 AR1 β2 na
AR1+EGARCH(1,2) -5.1630 -5.1480 7106.186 AR1
AR1+EGARCH(1,1) -5.1612 -5.1483 7102.612 AR1

TGARCH(1,1) -4.8882 -4.8775 6726.27 all significant
gjrGARCH(1,1) -5.1325 -5.1417 7089.687 µ

From the models ran above the EGARCH(1,1) was the best model although the EGARCH(1,2)
had better AIC its BIC was not better and also, its parameter were not highly significant
as those of EGARCH(1,1). The estimates under the normal and t distribution where all
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significant. However, from fit diagnostics, the t distributed errors outperform the normal
errors. This is confirmed by the Q-Q plots in Figure 4.6 below.
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Figure 4.6: Q-Q plots

Table 4.21 shows the model fits from R and also, those for EVIEWS for comparison. Both
models had student t distributed error assumption. Clearly both software estimate the
model constantly the only difference is the value for omega. The AIC values were -5.2335
for R and -5.233472 for EVIEWS which when round to 4dp is the same as the one from
R.

Table 4.21: Summary of fitted model

Estimate R Estimate EVIEWS Pr(>t)in R Pr(>z)in EVIEWS
mu 0.000604 0.000604 0.040665 0.0368

omega -0.054424 -0.12347 0.000000 0.000000
alpha1 -0.038703 -0.038710 0.000025 0.0002
beta1 0.993389 0.993386 0.000000 0.0000

gamma1 0.090513 0.090520 0.000000 0.000000
shape 7.485963 7.487485 0.000000 0.000000

We proceed to diagnose our model. The diagnostics are taken from R. The Nymblom
Stability test below shows that parameters are stable with µ slightly off.
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Table 4.22: Nyblom Stability Test

Joint Statistic 1.1184
mu 0.03304

omega 0.12219
alpha1 0.22642
beta1 0.10565

gamma1 0.19792
shape 0.39563

Output for Tests for ARCH/GARCH behaviour in standardized residuals is shown below.
There is no evidence of serial correlation in squared residuals.

Table 4.23: Weighted Ljung-Box Test on Standardized Squared Residuals d.o.f=2

Statistic P-Value
Lag[1] 0.1574 0.6916

Lag[2*(p+q)+(p+q)-1][5] 0.8999 0.8819
Lag[4*(p+q)+(p+q)-1][9] 1.1373 0.9798

Figure 4.7 shows the diagnosis plots show that the ACF of standardized residuals are
not correlated hence, shows that model is a good fit. The squared standardized residuals
show the absence of correlation hence, means that ARCH effects have been removed. The
conditional variance and return plot shows the two plots going hand in hand. Periods
with extreme returns show higher volatility.
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Figure 4.7: Residual Diagnosis plots

4.2 Standard Bank Data

4.2.1 Monthly Data

From the data analysis section, graphical evidence suggested the presence of ARCH effects.
Before running models we proceed to test through a statistical test.
The ACF of the log returns had no significant correlations except one at lag 5. Based
on statistical tests confirm the series has no significant serial correlations as Ljung box
test of the log returns gave χ2 = 16.4438, df = 12, p-value = 0.1717. The Ljung-Box test
on the a2

t series gives χ2 = 33.1193, df = 12, p-value = 0.0009274. Hence, evidence that
there are ARCH effects.

A series of ARCH/GARCH models were run including one with AR2 component as sug-
gested by the PACF of squared returns. All the AR+GARCH models had the AR parts
insignificant, therefore, we proceeded to simple ARCH/GARCH.
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Table 4.24: Fitted Models

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
ARCH(1) -2.197 -2.159 318.3205 all significant
ARCH(2) -2.2398 -2.1888 325.421 α1

ARCH(3) -2.2622 -2.1984 329.629 α1

GARCH(1,1) -2.2528 -2.2018 327.2788 All significant
GARCH(1,2) -2.2473 -2.1835 327.4874 β1 β2 NA
GARCH(2,1) -2.2576 -2.1938 328.9626 α1 α2

GARCH(2,2) -2.2506 -2.1741 328.9626 α1 α2 β1 β2

AR1+GARCH(1,0) -2.2098 -2.1588 321.106 All significant

From Table 4.24 above we see that the ARCH(3) model has he best AIC value but we
realise that it has an insignificant parameter hence, we opt for the GARCH(1,1) which
has a slightly higher AIC but lowest BIC. It not only has all parameters significant but
there are more significant and also, the model is parsimonious compared to the ARCH(3).

With GARCH(1,1) as our model of choice. Its parameters output is shown below

Table 4.25: GARCH(1,1) Model estimates:cond distribu-
tion=norm

Estimate Std. Error t value Pr(>t) sig code
mu 0.0180618 0.0039673 4.553 5.30e-06 ***

omega 0.0012268 0.0005148 2.383 0.01716 *
alpha1 0.2778337 0.0996606 2.788 0.00531 **
beta1 0.5712725 0.1215650 4.699 2.61e-06 ***
1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

Diagnosis is performed on the residuals in R. We assess if the standardized residuals are
white noise. The Ljung-Box tests up to order 10; 15; 20 are reported both for stan-
dardized residuals and their squared values. There is no evidence of autocorrelation nor
of conditional heteroscedasticity presence as Ljung box statistics are all not significant.
The Shapiro and Jarque-Bera test all reject the normality hence, we must change the
distribution assumption of the residuals from the normal assumption to a studentized t
distribution.

The estimates from the GARCH(1,1) model with t distributed errors are shown below.
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Table 4.26: GARCH(1,1) Model estimates:cond distribution=std

Estimate Std. Error t value Pr(>t) sig code
mu 0.0153015 0.0040335 3.794 0.000148 ***

omega 0.0011855 0.0007009 1.691 0.090787 .
alpha1 0.1732002 0.0839409 2.063 0.039078 *
beta1 0.6352300 0.1574486 4.035 5.47e-05 ***
skew 1.0393163 0.0873311 11.901 < 2e-16 ***
shape 6.3808254 2.0177405 3.162 0.001565 **
1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

The model estimates show that persistence is high as α + β=0.173+0.635=0.808. As
a way of diagnosis, the ACF plots of the residuals and squared residual are shown in
Figure 4.8 below. The residual plot shows no autocorrelation except a minor one at lag
5 which is not that significant. Hence, we can conclude the white noise assumption is
met. The squared residual ACF shows no presence of ARCH effects. Formal tests for the
autocorrelation of standardized residuals through Ljung-Box concur with the graphical
evidence and do not reject the null of white noise, and tests for autocorrelation of squared
residuals do not give evidence of the presence of conditional heteroscedasticity.
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Figure 4.8: ACF plots
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Table 4.27: Standardized Residuals Tests:

Test Test Statistic Test Statistic Value P-value
Jarque-Bera Test R Chi2 473.2515 0.00
Shapiro-Wilk Test R W 0.9483 1.637e-08
Ljung-Box Test R Q(10) 10.7157 0.3801
Ljung-Box Test R Q(15) 16.9546 0.3216
Ljung-Box Test R Q(20) 18.6856 0.5423
Ljung-Box Test R2 Q(10) 1.5929 0.9986
Ljung-Box Test R2 Q(15) 2.8857 0.9997
Ljung-Box Test R2 Q(20) 7.0826 0.9964
LM ARCH Test R TR2 1.6171 0.9998

The Jarque-Bera and Shapiro-Wilk statistics reject the null hypothesis of a normal dis-
tribution for the standardized residuals.

Q-Q plots are shown in figure 4.9. They show that the t distribution can better capture
the behaviour on the tails of standardized residuals. The normal one has its tails drifting
further apart from the line whilst the same can be seen with t distributed one, it is,
however, to a lesser extent and with fewer observations to have been outliers.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
6

−
4

−
2

0
2

4

qnorm − QQ Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

−2 0 2 4

−
6

−
4

−
2

0
2

4

qsstd − QQ Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 4.9: Q-Q plots

Figure 4.10 below shows that the ACF standardized residuals have no autocorrelation and
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that of squared standardized residuals also has no autocorrelations hence, the model re-
moves the correlations and ARCH effects as expected. The conditional standard deviation
plots confirm to the pattern suggested by the return plots.
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Figure 4.10: Residual Diagnosis plots

4.2.2 GARCH Extensions For Standard Bank Monthly Data

Table 4.28: Fitted Models

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
iGARCH(1,1) -2.2755 -2.2155 199.3675 beta1 na ω
iGARCH(1,2) -2.2635 -2.1906 199.7903 ω α1 β1 β2

iGARCH(2,1) -2.2706 -2.1977 200.4042 ω α1 α2 β1

EGARCH(1,1) -2.2755 -2.2117 331.5335 all significant
EGARCH(1,2) -2.2790 -2.2025 333.0432 β2

EGARCH(2,1) -2.2776 -2.1883 333.8313 α1 α2 γ1

TGARCH(1,1) -2.2820 -2.2183 332.4722 all significant
gjrGARCH(1,1) -2.2708 -2.2071 330.8633 all significant

The fitted models show that the TGARCH(1,1) is the best fit. However, the Q-Q plots
below show that the student t distribution is a good fit than the normal distribution.
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Figure 4.11: Diagnosis plots

The model fitted with student t however, has eta11 parameter to be insignificant, this is
the asymmetry parameter in this model. This means on reporting parameters this can be
ignored. The estimates are shown in Table 4.29 below.

Table 4.29: TGARCH(1,1) Model estimates:cond distribution=std

Estimate Std. Error t value Pr(>t)
mu 0.012503 0.004003 3.1229 0.001791

omega 0.017042 0.009111 1.8705 0.061417
alpha1 0.175733 0.068338 2.5715 0.010125
beta1 0.642934 0.147045 4.3723 0.000012
eta11 0.366092 0.295664 1.2382 0.215640
shape 7.061093 2.483225 2.8435 0.004462

The Nymblom test shows that all parameters are stable in the model.
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Table 4.30: Nyblom stability test

Joint Statistic: 1.5539
mu 0.29920

omega 0.60762
alpha1 0.34822
beta1 0.46363
eta11 0.08143
shape 0.05193

The sign bias test show no evidence of leverage effect.

Table 4.31: Sign Bias Test

Sign Bias 0.2352 0.8142
Negative Sign Bias 0.3698 0.7118
Positive Sign Bias 0.4080 0.6836

Joint Effect 0.3567 0.9490

The Weighted Ljung-Box Test on Standardized Residuals shows no presence of serial
correlation hence, showing our model has no correlations as required.

Table 4.32: Weighted Ljung-Box Test on Standardized Residuals d.o.f=2

statistic p-value
Lag[1] 0.05467 0.8151

Lag[2*(p+q)+(p+q)-1][2] 0.71827 0.5994
Lag[4*(p+q)+(p+q)-1][5] 3.59497 0.3091

The Weighted Ljung-Box Test on Standardized Squared Residuals shows no presence of
ARCH effects hence, showing our model removed all conditional heteroscedasticity as
required.

Table 4.33: Weighted Ljung-Box Test on Standardized Squared Residuals d.o.f=2

statistic p-value
Lag[1] 0.05165 0.8202

Lag[2*(p+q)+(p+q)-1][5] 0.57461 0.9456
Lag[4*(p+q)+(p+q)-1][9] 1.14444 0.9795

Figure 4.12 below shows more Diagnosis plots. The Conditional SD (vs —returns—) plot
shows that the conditional standard deviation pattern and that of returns are confirming.
The ACF of Standardized Residuals has no significant lags except one at lag 5 but as seen
from the Ljung Box test above this is insignificant. The Standardized Squared Residuals
ACF also has one higher lag which is significant but likewise, the Ljung Box test above
showed that this is insignificant.
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Figure 4.12: Residual Diagnosis plots

4.2.3 Standard Bank Daily Data

Graphical analysis of the ACF in the data analysis section showed that the Standard Bank
daily data was strongly correlated. The PACF of the squared returns was also strongly
correlated showing the presence of ARCH effects. Below we show results of statistical
tests that confirm this.

Ljung box test on the log returns gives χ2 = 57.694, df = 10, p-value = 9.871e-09. This
rejects the null of white noise and we conclude that the series is correlated. Now using
the mean corrected equation at we have χ2 = 57.694, df = 10, p-value = 9.871e-09 which
also, rejects the white noise hence, series is correlated. A test for the ARCH effects on a2

t

gives χ2 = 866.7372, df = 10, p-value < 2.2e-16. Hence, we conclude that ARCH effects
are present.

Before fitting models, we rid the data of correlations. This we do by applying an AR
model first before the GARCH which is the same as modelling with an AR+GARCH
model as seen in the Old Mutual case. The PACF of the squared returns has many
significant lags but looking at the lower order significant lags we see that the appropriate
model is an AR4. Quite a number of models were deemed adequate for this data. The
following table gives the best models and their respective AIC, BIC values.
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Table 4.34: Fitted Models

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
AR4+GARCH(1,1) -5.3358 -5.3185 7344.674 all significant
AR4+GARCH(1,0) -5.2006 -5.1855 7157.803 all significant
AR3+GARCH(1,0) -5.1978 -5.1849 7152.982 all significant
AR3+GARCH(1,1) -5.3331 -5.3181 7340.053 all significant
AR2+GARCH(1,1) -5.3322 -5.3193 7337.779 all significant
AR2+GARCH(1,0) -5.196971 -5.186209 7150.836 all significant
AR1+GARCH(1,0) -5.1916 -5.1830 7142.402 µ
AR1+GARCH(1,0) -5.3285 -5.3178 7331.707 all significant

The ARMA+GARCH(1,1) models are the best models judging by their lower AIC BIC
values. They have very similar AIC and BIC values. Despite the ARMA4+GARCH(1,1)
having the lowest AIC among our ARMA+GARCH(1,1). But, we require a parsimonious
model. If the decrement in AIC is not significantly different from that of a similar model
with fewer parameters then a lower higher AIC can be taken. The first step is to diagnose
these models to see if all of them remove ARCH effects and correlations. We will take 3
models ARMA4, ARMA3 and ARMA2 and do diagnosis on residuals.

ACF plots of residuals of ARMA(2,0)+GARCH(1,1), ARMA(3,0)+GARCH(1,1) and
ARMA(3,0)+GARCH(1,1) are shown figures 4.13-4.15 below. From the ACF plots of
ARMA 2, it can be seen that correlations are still present. The ARMA 3 still has corre-
lations on lag and it, however, the squared residuals show that no ARCH effects remain.
The ARMA 4 is the best as it has neither correlations or conditional heteroscedasticity
remaining. Further analysis show that the correlations in ARMA 3 are not significant
although in this case model of choice is ARMA4.

64



0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lags

A
C

F

ACF of Standardized Residuals

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lags

A
C

F

ACF of Squared Standardized Residuals

Figure 4.13: ACF of ARMA(2)+GARCH(1,1)
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Figure 4.14: ACF of ARMA(3)+GARCH(1,1)
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Figure 4.15: ACF of ARMA(4)+GARCH(1,1)

From the diagnosis, we see that we have to keep the ARMA4 model as the best fit. The
estimates of the ARMA(4)+GARCH(1,1) as given in R are given below.

Table 4.35: AR(4)+GARCH(1,1) Model estimates:cond distribu-
tion=norm

Estimate Std. Error t value Pr(>t) sig code
mu 7.454e-04 2.937e-04 2.538 0.011156 *
AR1 -5.719e-02 2.008e-02 -2.848 0.004405 **
AR2 -7.394e-02 1.989e-02 -3.717 0.000202 ***
AR3 -4.042e-02 1.989e-02 -2.032 0.042158 *
AR4 -5.964e-02 1.968e-02 -3.030 0.002446 **

omega 7.639e-06 1.918e-06 3.983 6.80e-05 ***
alpha1 7.963e-02 1.079e-02 7.380 1.58e-13 ***
beta1 8.965e-01 1.423e-02 63.004 < 2e-16 ***
1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

All parameter estimates are significant as to given codes.
A look at the residuals shows that the Jarque-Bera and Shapiro-Wilk Test reject normal
assumption as expected for this data. The Ljung box, however, shows that correlations
are removed as well as ARCH effects.
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Table 4.36: Standardized Residuals Tests:

Test Test Statistic Test Statistic Value P-value
Jarque-Bera Test R Chi2 61.7870 3.8302e-14
Shapiro-Wilk Test R W 0.9955 2.234e-07
Ljung-Box Test R Q(10) 8.828 0.5485
Ljung-Box Test R Q(15) 10.2422 0.8043
Ljung-Box Test R Q(20) 13.1061 0.8728
Ljung-Box Test R2 Q(10) 11.0148 0.3564
Ljung-Box Test R2 Q(15) 15.5217 0.4145
Ljung-Box Test R2 Q(20) 15.9026 0.7226
LM ARCH Test R TR2 14.0394 0.2982

For certainty, we run the model with t and skewed t distributed errors. The models have
better AIC BIC values.

Table 4.37: Estimates for model with t then skewed t

Model AIC BIC Log Likelihood Non Sig parameters at 5%
AR4+GARCH(1,1) -5.3498 -5.3304 7364.944 all significant
AR4+GARCH(1,1) -5.3492 -5.3277 7365.198 all significant

Q-Q plots of the 3 are shown in Figure 4.16 below. The normal distribution clearly did
not model the heavy tails well as can be seen by the ends of the plots deviating from the
line. On the other hand, the t and skewed t distribution modelled the heavy tails better.
The t and skewed t distribution are similar in Q-Q plots and also, AIC BIC values. We
choose the t distribution for simplicity.
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Figure 4.16: Q-Q plots

Estimates from the t are shown in Table 4.38 below. They are all highly significant. The
persistence α+ β=0.975 which is very high.

Table 4.38: AR4+GARCH(1,1) Model estimates:cond distribu-
tion=std

Estimate Std. Error t-value Pr(>t) Sig code
mu 6.684e-04 2.888e-04 2.314 0.020643 *
AR1 -5.970e-02 1.979e-02 -3.017 0.002555 **
AR2 -7.309e-02 1.965e-02 -3.720 0.000199 ***
AR3 -4.194e-02 1.953e-02 -2.147 0.031775 *
AR4 -5.664e-02 1.943e-02 -2.915 0.003560 **

omega 8.216e-06 2.335e-06 3.519 0.000434 ***
alpha1 8.298e-02 1.311e-02 6.328 2.49e-10 ***
beta1 8.918e-01 1.732e-02 51.477 < 2e-16 ***
shape 9.989e+00 1.828e+00 5.465 4.64e-08 ***
1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

Based on the Jarque-Bera Test and Shapiro-Wilk Test below the normality assumption
is rejected. The Ljung-Box tests up to order 10; 15; 20 are reported both for standard-
ized residuals and their squared values. There is no evidence of autocorrelation nor of
conditional heteroscedasticity presence as Ljung box statistics are all not significant.
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Table 4.39: Standardized Residuals Tests:

Test Test Statistic Test Statistic Value P-value
Jarque-Bera Test R Chi2 62.3117 2.942e-14
Shapiro-Wilk Test R W 0.9955 1.905e-07
Ljung-Box Test R Q(10) 9.1069 0.5220
Ljung-Box Test R Q(15) 10.5256 0.7854
Ljung-Box Test R Q(20) 13.3909 0.860
Ljung-Box Test R2 Q(10) 10.7014 0.3813
Ljung-Box Test R2 Q(15) 15.2130 0.4362
Ljung-Box Test R2 Q(20) 15.5471 0.7443
LM ARCH Test R TR2 13.6531 0.3234

Below in Figure 4.17 are diagnosis plots for residuals. The conditional standard deviation
plots confirm to the pattern suggested by the returns plot. The ACF of residuals and
squared residuals showing no autocorrelation hence, showing absence of correlation and
ARCH effects respectively.
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Figure 4.17: Residual Diagnosis plots

4.2.4 GARCH Extensions For Standard Bank Daily Data

Below are the GARCH extension models fitted for the data. All results are for models
with student t distributed errors.
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Table 4.40: Fitted Models

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
iGARCH(1,1) -5.3364 -5.3278 7341.499 β1 is NA
iGARCH(2,1) -5.3356 -5.3249 7341.499 β1 is NA, α2

iGARCH(1,2) -5.3359 -5.3252 7341.905 β2

EGARCH(1,1) -5.3365 -5.3236 7343.691 µ
EGARCH(1,2) -5.3359 -5.3209 7343.902 µ ω
EGARCH(2,1) -5.3358 -5.3185 7344.667 µ α1 α2 γ2

AR1+iGARCH(1,1) -5.3383 -5.3275 7345.172 β1 is NA
AR1+iGARCH(1,2) -5.3378 -5.32490 7345.473 β2 is NA
AR1+EGARCH(1,2) -5.3376 -5.3204 7347.168 µ ω
AR1+EGARCH(1,1) -5.3382 -5.3231 7347.037 µ
AR2+EGARCH(1,1) -5.3420 -5.3248 7353.298 µ
AR4+EGARCH(1,1) -5.3448 -5.3232 7359.038 AR3

TGARCH(1,1) -5.3368 -5.3239 7344.161 µ
gjrGARCH(1,1) -5.3410 -5.3281 7349.934 µ

The AIC BIC values suggest that the AR4+EGARCH(1,1) is the best model. But, we
have to remember that our data had correlations so before we conclude that this model is
the best we have to look at the residuals. Also, the best model here has many parameters
which is not ideal as we seek a parsimonious model. We thus start by trying out the
AR1 and AR2 EGARCH models. After that, we compare both their residuals and see if
they fit the data. The plots shown in Figure 4.18 below are for the AR1+EGARCH(1,1)
and AR2+EGARCH(1,1), the left-hand plots are for AR1+EGARCH(1,1). Clearly the
Q-Q plots show that the t distribution fits the data well. However, the residuals ACF
show presence of correlation hence, our model did not completely remove correlation. The
squared residual ACF also shows lags that are significant hence, there still remain ARCH
effects in the model.
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Figure 4.18: Residual Diagnosis plots

We thus, proceed to the suggested AR4+EGARCH(1,1). Estimates of the model are
shown below. All parameters are significant at 5% level of significance except the AR3
which is significant at 7%.

Table 4.41: Estimates

Estimate Std. Error t value Pr(>—t—)
mu 0.000481 0.000230 2.0920 0.036436
AR1 -0.060957 0.025921 -2.3516 0.018692
AR2 -0.075556 0.020875 -3.6195 0.000295
AR3 -0.037446 0.019407 -1.9296 0.053661
AR4 -0.054638 0.019392 -2.8175 0.004840

omega -0.170079 0.014270 -11.9190 0.000000
alpha1 -0.027208 0.012416 -2.1914 0.028423
beta1 0.979165 0.001733 564.9714 0.000000

gamma1 0.164110 0.022632 7.2513 0.000000
shape 9.588761 1.807683 5.3044 0.000000

Below are the results of the nyblom stability test. The results show that all parameters
are significantly stable.
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Table 4.42: Nyblom stability test

Joint Statistic: 3.8467
mu 0.1494
AR1 1.1742
AR2 0.0941
AR3 0.8888
AR4 0.2111

omega 0.5547
alpha1 0.3146
beta1 0.5660

gamma1 0.0688
shape 0.1012

The sign bias test below shows that there are no leverage effects.

Table 4.43: Sign Bias Test

t-value prob sig
Sign Bias 0.7599 0.4474

Negative Sign Bias 0.3405 0.7335
Positive Sign Bias 1.5868 0.1127

Joint Effect 2.7585 0.4304

Figure 4.19 below shows the diagnosis plots from the AR4+EGARCH(1,1) model. The
conditional standard deviation plot confirms to expected series plot. The standardized
residual plots have a few high order significant lags suggesting that not all correlation were
removed. The squared standardized residual plot also has a few significant lags showing
that our model did not completely remove ARCH effects.
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Figure 4.19: Residual Diagnosis plots

In conclusion, we see that our final model of choice gave us mixed outcomes. It gave us a
nice Q-Q plot and took care of bias test but we realise it did not complete remove ARCH
effects hence, in this data the previous direct AR4+GARCH(1,1) is a better model.

4.3 Liberty Holdings

4.3.1 Daily Data

From the data analysis chapter, the ACF of the returns showed the presence of correla-
tions. The ACF of squared returns also showed the presence of ARCH effects. We look at
statistical tests to justify the graphical evidence. Looking at the at series, χ2 = 54.7628,
df = 10, p-value = 3.497e-08 thus, rejecting the null hypothesis of no correlations and we
conclude that the data is indeed correlated. For ARCH effects a2

t we have χ2 = 131.3941,
df = 10, p-value < 2.2e-16. Hence, there are ARCH effects present. The PACF of the
squared returns suggest an AR3 plot to remove the correlations hence, we will try models
with such amongst simpler others.
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Table 4.44: Summary of fitted models:cond distribution=norm

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
GARCH(3,0) -5.4689 -5.4581 7524.689 All significant
GARCH(4,0) -5.4683 -5.4554 7524.88 α4 is NA
GARCH(1,1) -5.5162 -5.5076 7588.754 All significant
GARCH(1,2) -5.5245 -5.5138 7601.251 All significant
GARCH(2,1) -5.5155 -5.5045 7588.753 α2

AR3+GARCH(3,0) -5.4730 -5.4558 7533.349 AR2 AR3
AR3+GARCH(1,1) -5.5259 -5.5108 7605.093 AR2 AR3
AR2+GARCH(1,1) -5.5243 -5.5113 7601.857 AR2
AR1+GARCH(1,1) -5.5237 5.5130 7600.15 all significant
AR2+GARCH(1,2) -5.5312 -5.5161 7612.423 AR2
AR1+GARCH(1,2) -5.5305 -5.5176 7610.46 All significant
AR2+GARCH(2,1) -5.5235 -5.5085 7601.859 α2

AR1+GARCH(2,1) -5.5230 -5.5101 7600.152 α2

Based on the AIC BIC and parameter we select the AR1+GARCH(1,2) and AR1+GARCH(1,1)
the values for thee models are close with that of AR1+GARCH(1,2). The AIC values of
the AR1+GARCH(1,2) is lower than the AR1+GARCH(1,1) but bearing in mind that
it has more parameters such a small difference in AIC values can not offer much gain in
model precision. An ideal choice would be the AR1+GARCH(1,1) which is more parsi-
monious but we compare the two models further to justify our choice.

Table 4.45: GARCH(1,1) model estimates from distribution=norm

Parameter Estimate Std. Error t value Pr(>t) sig code
mu 6.867e-04 2.663e-04 2.579 0.0099 **
AR1 -9.512e-02 1.988e-02 -4.786 1.70e-06 ***

omega 7.570e-07 3.023e-07 2.504 0.0123 *
alpha1 2.595e-02 3.352e-03 7.740 9.99e-15 ***
beta1 9.720e-01 3.240e-03 300.026 < 2e-16 ***

1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

Estimates shown in Table 4.45 above are for the AR1+GARCH(1,1) with normally dis-
tributed errors. All parameters are highly significant. The same applies to AR1+GARCH(1,2)
(estimates not shown). Q-Q plots obtained from the two models are shown in Figure 4.20
below. The data points are way off from the axis giving a clear indication that the normal
distribution assumption is inappropriate for the data at hand. Hence, no need to further
write down AR1+GARCH(1,2) estimates. We hence, rerun the models with t distributed
errors.
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Figure 4.20: Q-Q plots

Table 4.46: Summary of fitted models:cond distribution=std

AIC BIC Log likelihood Non Sig. parameters at 5%
AR1+GARCH(1,1) -5.6760 -5.6631 7810.504 µ AR1 sig. at 10%
AR1+GARCH(1,2) -5.6756 -5.6605 7810.891 β2 whilst µ AR1 β1 sig. at 10%

After using student t distribution the AIC BIC values improved for both models. However,
some of the parameters significance were sacrificed especially for the AR1+GARCH(1,2)
were some parameters became insignificant even at 10%. For the AR1+GARCH(1,1)
model, however, all parameters remained highly significant with only µ and the AR1
parameter dropping to significance at 10%. We, therefore, opt for the AR1+GARCH(1,1)
as the model of choice. The estimates from the model are shown in Table 4.47 below.
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Table 4.47: AR1+GARCH(1,1) Model estimates:cond distribu-
tion=std

Estimate Std. Error t value Pr(>—t—) sig code
mu 3.852e-04 2.231e-04 1.727 0.08420 .
AR1 -3.379e-02 1.986e-02 -1.701 0.08887 .

omega 4.090e-05 1.355e-05 3.018 0.00254 **
alpha1 2.437e-01 6.251e-02 3.899 9.67e-05 ***
beta1 6.567e-01 8.071e-02 8.136 4.44e-16 ***
shape 3.529e+00 2.909e-01 12.133 < 2e-16 ***
1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

The α + β=0.9741 is high and it goes hand in hand with that exhibited by the Old
Mutual and Standard Bank returns. Table 4.48 below shows the results of the residual
analysis.

Table 4.48: Standardized Residuals Tests:

Test Test Statistic Test Statistic Value P-value
Jarque-Bera Test R Chi2 64460.31 0
Shapiro-Wilk Test R W 0.9000 0
Ljung-Box Test R Q(10) 11.3105 0.3334
Ljung-Box Test R Q(15) 21.9989 0.1078
Ljung-Box Test R Q(20) 23.8511 0.2490
Ljung-Box Test R2 Q(10) 1.7057 0.9981
Ljung-Box Test R2 Q(15) 2.2628 0.9999
Ljung-Box Test R2 Q(20) 6.4907 0.9980
LM ARCH Test R TR2 1.9260 0.9995

The Jarque-Bera Test and the Shapiro-Wilk Test reject the normality assumption on
residuals hence, justifies our leaving of the normality assumption. We will check the Q-Q
plot of the student t distribution to see if the t distribution can model the residual better.
The Ljung-Box Test on residuals up to lag 20 show that there is no correlation left in
the series and the Ljung-Box Test on squared residuals also shows that the ARCH effects
have been removed. This shows that our model is a good fit.

The Q-Q plots in Figure 4.21 below are for the model fitted with t distributed errors.
Here the data is more confirmed to the axis except a few points at the extremes. Overall
being an improvement to the normally distributed errors.
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Figure 4.21: Q-Q plots for t distributed errors

Figure 4.22 shows the residual analysis plots. The ACF of residuals is not correlated as
expected. The squared residual ACF also has no significant lags which show that the
ARCH effects have been removed. The conditional standard deviation plots also, confirm
to pattern suggested by the returns. Hence, all these justify our fit model.
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Figure 4.22: Residual Diagnosis plots

4.3.2 GARCH Extensions For Liberty Holdings Daily Data

Table 4.49: Fitted Models

Model AIC BIC Log Likelihood Non Significant parameters at 5%
iGARCH(1,1) -5.5164 -5.5100 7588.11 ω β1 NA
iGARCH(1,2) -5.5246 -5.5160 7600.291 β2 is NA
iGARCH(2,1) -5.5157 -5.5071 7588.104 β1 is NA α2

iGARCH(1,1) -5.4850 -5.4742 7546.82 all significant
EGARCH(1,2) -5.4990 -5.4861 7567.085 all significant
EGARCH(2,1) -5.5074 -5.4923 7579.62 α1 α2

AR1+iGARCH(1,1) -5.5239 -5.5153 7599.429 β1 is NA
AR1+EGARCH(1,1) -5.4976 -5.4847 7565.153 all significant
AR2+EGARCH(1,1) -5.4990 -5.4839 7568.087 all significant

gjrGARCH(1,1)) -5.5248 -5.5140 7601.546 µ
TGARCH(1,1) -5.4742 -5.4635 7532.062 all significant

The best model from he models above is the AR2+EGARCH(1,1). IGARCH(1,2) had
better AIC values but its parameters were not significant. We proceed to diagnose our
model. The Q-Q plot in Figure 4.23 below shows that the tails are not well modelled by
the normal assumption.
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Figure 4.23: QQ plots

With the tails not well modelled, we then try the t distribution. Results gave the
AR2 component to be insignificant so we dropped the AR2 component and modelled
an AR1+EGARCH(1,1) model. The following diagnostics are for the AR1 model.

Table 4.50: AR1+EGARCH(1,1): model estimates from distribution=std

Estimate Std. Error t value Pr(>—t—)
mu 0.000379 0.000216 1.7569 0.078929
AR1 -0.034349 0.017477 -1.9653 0.049374

omega -0.169312 0.007242 -23.3798 0.000000
alpha1 -0.038807 0.014347 -2.7049 0.006832
beta1 0.979338 0.000845 1159.6148 0.000000

gamma1 0.127384 0.019276 6.6084 0.000000
shape 3.480252 0.274296 12.6879 0.000000

The nyblom stability test shown below gives no evidence of unstable parameters hence,
justifying all parameters in the model.
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Table 4.51: Nyblom stability test

Joint Statistic 2.6154
mu 0.34844
AR1 0.33677

omega 0.09120
alpha1 0.45518
beta1 0.08489

gamma1 0.19228
shape 0.46269

Sign Bias Test below shows little evidence of leverage effect. Only the negative bias test
is significant at 10%.

Table 4.52: Sign Bias Test

t-value prob sig
Sign Bias 0.4144 0.67860

Negative Sign Bias 1.7841 0.07452
Positive Sign Bias 1.2583 0.20839

Joint Effect 5.3317 0.14906

Below are the adjusted Pearson Goodness of fit test results. The normal assumption as
expected rejected. This justifies the t distribution as shown also by the Q-Q plots.

Table 4.53: Adjusted Pearson Goodness-of-Fit Test:

group statistic p-value(g-1)
20 371.5 3.679e-67
30 494.2 4.541e-86
40 506.7 1.073e-82
50 535.0 6.370e-83

Figure 4.24 shows the diagnosis plots. The QQ plots show improvements when compared
to the QQ plots of normal error assumption. The ACF of the residuals shows that
correlations have been removed for all lags except a minor one at lag 1. ACF of squared
residuals shows no significant lags hence, showing that ARCH effects have been removed.
Only one higher order lag 22 is significant but this does not matter as we focus only
on lower lags. The news impact curve shows that the model treats negative and positive
shocks differently as expected. Negative shocks have a greater impact than positive shocks.
The effect also increases with the magnitude of the shock which is good as in reality
investor reaction changes with the magnitude of the bad or good news.
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Figure 4.24: Residual Diagnosis plots

The conditional volatility plot is shown below. Here σt is typical around 0.01-0.025. Large
volatility swings corresponding with the global crises can be seen with σt getting as high
as 0.045.
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Figure 4.25: Conditional volatility plot

4.3.3 Monthly Data

The ACF for the log return series showed no correlations. Statistical test on return series
confirm absence of serial correlations were at is χ2 = 9.1622, df = 12, p-value = 0.689. For
ARCH effects a2

t we have χ2= 23.6574, df = 12, p-value = 0.02264. Hence, we conclude
that ARCH effects are present. We can proceed to fit our ARCH/GARCH models.
The PACF of the squared log returns suggests ARCH(3) model hence, we start with
ARCH(3) model then keep modifying till we find the best fit. The table below shows the
various models ran.

Table 4.54: Summary of fitted models:cond distribution=norm

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
GARCH(1,0) -2.3506 -2.3124 340.3176 α1 µ
GARCH(2,0) -2.3724 -2.3214 344.4464 α1

GARCH(3,0) -2.4357 -2.3720 354.5239 α1 α2

GARCH(1,1) -2.4546 -2.4036 356.2373 ω
GARCH(2,1) -2.4533 -2.3895 -2.3895 ω α1 α2

GARCH(1,2) -2.4625 -2.3988 358.3754 ω β1

GARCH(2,2) -2.4463 -2.3698 357.0424 α1 α2 β1 β2

The GARCH(1,2) has the lowest AIC followed by the GARCH(1,1). However, the
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GARCH(1,1) has a better BIC and also, in addition, has only one insignificant parameter.
The table below shows the obtained estimates under normal error assumption.

Table 4.55: GARCH(1,1) model estimates from distribu-
tion=norm

mu 0.0097910 0.0038228 2.561 0.01043 *
omega 0.0001062 0.0000873 1.217 0.22353
alpha1 0.0677737 0.0209588 3.234 0.00122 **
beta1 0.9113585 0.0256979 35.464 ¡ 2e-16 ***
1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

Table 4.55 shows that all parameters are significant except for the parameter omega which
is not significant at 5%. Figure 4.26 below shows the QQ plots under the normal error
assumption. Clearly the tails are not well captured by this assumption. Hence, the model
is re-fit with t and skewed t distributed errors.
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Figure 4.26: QQ plots

Table 4.56 below shows the GARCH(1,1) for the t and skewed t respectively.
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Table 4.56: GARCH(1,1) with t and with skewed t

Model AIC BIC Log Likelihood Non Sig. parameters at 5%
GARCH(1,1) -2.5139 -2.4502 365.7482 ω
GARCH(1,1) -2.5085 -2.4320 365.9642 ω

The t and skewed t GARCH(1,1) also, have a non-significant omega but show an improve-
ment in the AIC and BIC values. The t distributed model is the best model.

Figure 4.27 shows the QQ plots of the t and skewed t distributed error assumption models.
The plots show an improvement in model fit. The heavy tails are better capture than
there were under the normal assumption.
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Figure 4.27: QQ plots

Table 4.57 below shows the estimates obtained from the GARCH(1,1) with t distributed
errors. Omega is clearly insignificant. We can thus exclude it when reporting model. The
persistence is α + β=0.6814 which is lower than the one exhibited by Old Mutual and
Standard Bank. This means that the Liberty Holdings volatility will take less time to
revert back to its mean whenever it diverts away from it.

84



Table 4.57: GARCH(1,1) model estimates from distribution=std

Estimate Std. Error t value Pr(>| t |) sig. code
mu 0.0111197 0.0035579 3.125 0.001776 **

omega 0.0001273 0.0001198 1.062 0.288144
alpha1 0.0531257 0.0252567 2.103 0.035428 *
beta1 0.9213554 0.0350057 26.320 < 2e-16 ***
shape 5.0903915 1.4591863 3.489 0.000486 ***
1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

The residual tests below show that the Jarque-Bera Test and Shapiro-Wilk Test all reject
the normality assumption hence, justifies the use of a t distribution. Ljung-Box tests for
residual and residuals up to lags 10, 15 and 20 confirm that there is no correlation left
and also, ARCH effects have been removed.

Table 4.58: Standardized Residuals Tests:

Test Test Statistic Test Statistic Value P-value
Jarque-Bera Test R Chi2 52.075 4.92e-12
Shapiro-Wilk Test R W 0.9667 3.75e-06
Ljung-Box Test R Q(10) 10.0720 0.4342
Ljung-Box Test R Q(15) 17.3010 0.3007
Ljung-Box Test R Q(20) 19.1571 0.5116
Ljung-Box Test R2 Q(10) 9.9773 0.4425
Ljung-Box Test R2 Q(15) 22.1848 0.1030
Ljung-Box Test R2 Q(20) 30.3922 0.0640
LM ARCH Test R TR2 10.377 0.5829

The residual plots in Figure 4.28 show the ACF has no significant correlations as expected.
The squared residual ACF also shows the removal of ARCH effects. The conditional
standard deviation plots also conform to the pattern suggested by the returns. Hence, all
these justify our fit model.
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Figure 4.28: Residual Diagnosis plots

4.3.4 GARCH Extensions For Liberty Holdings Monthly Data

Model AIC BIC Log Likelihood Non Significant parameters at 5%
iGARCH(1,1) -2.4568 -2.4185 355.5481 ω β1 NA
iGARCH(1,2) -2.4638 -2.4128 357.558 ω β1 β2 NA
iGARCH(2,1) -2.4571 -2.4061 356.5931 α1 α2 ω β1 NA
EGARCH(1,1) -2.4528 -2.3890 356.9729 ω α1

EGARCH(1,2) -2.5362 -2.4597 369.9446 µ α1 α2 β1

EGARCH(2,1) -2.4572 -2.3680 359.6137 µ α1 α2 γ1

TGARCH(1,1) -2.4432 -2.3795 355.606 ω η1

gjrGARCH(1,1) -2.4538 -2.3901 357.1241 ω η1

Like other company data, the best model when considering AIC values and significance of
parameters was the EGARCH(1,1). The EGARCH(1,2) had the best AIC values but it
had too many insignificant parameters as compared to the EGARCH(1,1) which also, is
better because of parsimony. The Q-Q plot shown in Figure 4.29 below and the Pearson
goodness of fit rejected the normal distribution for the error terms. Hence, we fit the
model with t distributed errors.
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Figure 4.29: Q-Q plots

Table 4.59 shows the resulting model with t distributed errors, clearly the parameters
remained as non-significant.

Table 4.59: Estimates from distribution=std

Estimate Std. Error t value Pr(>t)
mu 0.011707 0.003552 3.29582 0.000981

omega -0.062621 0.054076 -1.15801 0.246860
alpha1 0.019416 0.050989 0.38078 0.703366
beta1 0.988824 0.010061 98.28175 0.000000

gamma1 0.131017 0.103505 1.26580 0.205584
shape 5.231721 1.554805 3.36487 0.000766

There is no evidence of serial correlation in squared residuals as seen by the non-significant
of Weighted Ljung-Box Test on Standardized Squared Residuals below.

Table 4.60: Weighted Ljung-Box Test on Standardized Squared Residuals: d.o.f=2

statistic p-value
Lag[1] 0.07733 0.7809

Lag[2*(p+q)+(p+q)-1][5] 2.54860 0.4956
Lag[4*(p+q)+(p+q)-1][9] 3.75588 0.6304
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Below are the Nymblom stability tests show that all parameters are stable except for the
shape parameter.

Table 4.61: Nyblom stability test

Joint Statistic: 1.2792
mu 0.14853

omega 0.20388
alpha1 0.29453
beta1 0.21972

gamma1 0.12637
shape 0.02897

The sign bias test show no evidence of leverage effect.

Table 4.62: Sign Bias Test

t-value prob sig
Sign Bias 0.6111 0.5417

Negative Sign Bias 0.4122 0.6805
Positive Sign Bias 1.2227 0.2225

Joint Effect 1.8605 0.6019

Figure 4.30 shows the model diagnostics plots. The ACF plot of the residuals shows no
presence of autocorrelation on most lags except lag 13 and 21 which is not worrying as they
are fairly upper lags. The plot of squared residuals also shows no significant lags except,
minor higher order ones at lag 13 and 21 which do not affect the conclusion that the
ARCH effects have been removed. The significant lags are almost identical with ones for
Old Mutual monthly lags of EGARCH(1,1) model. The plot of the conditional standard
deviations vs returns shows that the returns and the conditional standard deviations
take up similar fluctuation as expected. The Q-Q plot shows failing tail distribution
which shows that even the t distribution failed to capture the heavy tails. However, it
outperformed the normal distribution assumption.
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Figure 4.30: Diagnostics plots

4.4 Summary

This section dealt with the actual modelling of the data. For each data series, the first
thing was to check for the presence of conditional heteroscedasticity. All of the series above
had conditional heteroscedasticity hence, we proceeded to fit the ARCH and GARCH
models. The daily data had some significant correlations as seen from the ACF plots
hence, the need for autoregressive model (AR) to remove the autocorrelation before ap-
plying the GARCH model.

Initial models were ran assuming that εt are iid standard normal, however, model diag-
nosis rejected the normal error assumption which came as no surprise as from Chapter 3
we saw that the data is not normal distributed. Past studies have also shown that the
financial data has heavy tails which require heavy-tailed distribution such as the student-t
and the skew student-t distributions for error modelling. For all data, the GARCH model
outperformed the ARCH models. For the GARCH models, the higher order GARCH
models did not significantly improve the modelling ability. The additional parameters for
the higher order GARCH models were in most cases insignificant. This observation of the
GARCH(1,1) outperforming higher order GARCH is consistent with results of previous
studies such as that of Ijumba (2013) and Talke (2003) amongst others. The GARCH
model showed that the daily data volatility was more persistent than the monthly data
volatility for Old Mutual and Standard Bank. For all data sets the α parameter which
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determines reaction to shocks ranged between 0.02-0.08 for daily data and 0.05-0.1 for
monthly data. For the GARCH extensions, the exponential GARCH was the best fit with
cases of the Tgarch going hand to hand with the EGARCH.

The table below summarises the best ARMA-GARCH fit models for each specific data.

Table 4.63: Fitted GARCH models

Company Model for monthly data Model for daily data
Old Mutual GARCH(1,1) AR1+GARCH(1,1)

Standard Bank GARCH(1,1) AR4+GARCH(1,1)
Liberty Holdings GARCH(1,1) AR1+GARCH(1,1)

The table below shows the extension of the GARCH models that were fit for each data
set. It can be seen that for the daily data we required an AR model to remove correlations
before fitting the models as was done for the ARMA-GARCH models. These results show
that the GARCH(1,1) and EGARCH are the best models.

Table 4.64: Fitted GARCH extension models

Company Model for monthly data Model for daily data
Old Mutual EGARCH(1,1) AR1+GARCH(1,1)

Standard Bank TGARCH(1,1) AR4+EGARCH(1,1)
Liberty Holdings EGARCH(1,1) AR1+EGARCH(1,1)

90



Chapter 5

Multivariate Volatility Models

Multivariate time series analysis considers the analysis of two or more time series simul-
taneously that is, two variables collected in time simultaneously. It is used when one
wants to model and explain the interactions and co-movements among a group of time
series variables. This is very important in the financial world where the world markets are
becoming more and more integrated i.e formation of one global market. It is such that a
sudden change in one market (especially the big markets) easily spreads and affects other
markets. With this in mind, the study of multivariate time series to model the global
markets has grown exponentially. (Caporin and McAleer 2010) attributes this increased
attention to multivariate modelling due to increased availability of financial data, the
increased computational powers of computers and the fact that the financial industry has
begun to realize the possible advantages of these models.
The main focus of this chapter and those following is the modelling of the volatility of the
multivariate time series. Here we look at time series that has conditional heteroscedastic-
ity a phenomenon that is concurrent with financial data. We seek to be able to use these
models to model the volatility across markets and hence, gain an understanding on how
market factors push together market volatility.

Let zt be the N × 1 multivariate time series defined as

zt = µt + at (5.1)

where µt = E(zt|Ft−1) is the conditional expectation of zt given Ft−1. Then µt can follow
one of the multivariate models such as the VAR model with nonlinear models also an
option where necessary. The innovation component at (the shock) is the unpredictable
component and it is given as

at = Σ
1
2
t εt (5.2)

where εt is a sequence of independent and identically distributed random vectors such

that E(εt) = 0 and Cov(εt) = Ik and Σ
1
2
t denotes the positive-definite square-root matrix

of Σt Tsay (2014).
For series with conditional heteroscedasticity the Σt = cov(at|Ft−1) which is the condi-
tional covariance matrix is time dependent. This time dependence is the subject matter
of the multivariate volatility models. For a three series case the Σt is:
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Σt =

∣∣∣∣∣∣
σt,11 σt,12 σt,13

σt,12 σt,22 σt,23

σt,13 σt,23 σt,33

∣∣∣∣∣∣ .
Clearly, all variances are collected on the main diagonal, while all covariances are col-
lected off the main diagonal. Moreover, because Cov(x,y) = Cov(y,x) then from simple
properties of expectations, Σt is by construction a symmetric matrix. This Σt is very
important in finance, for example, any portfolio choice the methodology is clearly based
on knowledge or estimation of Σt as it is well known that optimal portfolio shares will
also depend on the covariance of asset returns considered in pairs.

Tsay (2014) explains the difficulty of multivariate modelling as being in two ways. First
he mentions the curse of dimensionality whereby he explains that as the dimension of the
multivariate series increases then the more variance and covariance elements are required
i.e the number of elements increases quadratically. The second being the difficulty of
maintaining the positive definite assumption on the volatility matrix Σt as k increases.
This assumption is important as it ensures that the portfolio variance is always positive
regardless of the underlying portfolio. Therefore, there is a need for special attention as
k increases.

In short volatility modelling typically consists of two sets of equations, with, the first
set of equations governing the time evolution of the conditional mean µt, whereas the
second set describes the dynamic dependence of the volatility matrix Σt. These two sets
of equations are referred to as the mean and volatility equations respectively. In practice,
the volatility matrix plays a crucial role in asset allocation and risk management.

5.0.1 Portmanteau Test

Just like the univariate case the portmanteau test exists for the multivariate time series
case. If at has no conditional heteroscedasticity i.e linear dynamic dependence in the data,
then its conditional covariance matrix Σt is time-invariant. This implies that Σt, hence,
a2

t , does not depend on the a2
t−i for i>0. Hence, we test the hypothesis

H0 : ρ1 = ... = ρn = 0

against the alternative hypothesis
Ha : ρi 6= 0

for some i (1 ≤ i ≤ m), where ρi is the lag-i cross-correlation matrix of a2
t .

Q ∗ (m) = T 2

m∑
i=1

1

T − i
b′i(

ˆρ−1
0

⊗
ˆρ−1
0 )bi (5.3)

where T denotes the sample size, k is the dimension of at, and bi = vec(ρ̂i),
⊗

is the
kronecker product. Q ∗ k(m) is asymptotically distributed as χ2 df.

92



5.0.2 Rank Based Test

The heavy tails shown by asset returns may in some cases affect the power of the Port-
manteau test hence, the need for another test to compare with. Dufour and Roy (1985)
developed a rank based test to overcome this. It considers the rank series of the stan-
dardized series εt. Let Rt be the rank of εt. The lag ` rank autocorrelation of εt can be
defined as

ρ̃` =

∑T
t=`+1(Rt − R̄)(Rt−` − R̄)∑T

t=1(Rt − R̄)2

where `=1,2,.... R̄t =
∑T

t=1Rt/T = (T + 1)/2
The test static being

QR(m) =
m∑

i=1

[ρ̃i − E(ρ̃i)]
2

V ar(ρ̃i)
(5.4)

This is distributed χ2
m asymptotically if εt has no serially dependance.

5.1 Diagnostic Checks Of Volatility Models

Diagnostics are done on the residuals ât = zt − µ̂t so as to check the adequacy of the
model. Where µ̂t is the fitted conditional mean of zt.

5.1.1 Ling and Li Statistics

Ling and Li (1997) developed a method of diagnosis of multivariate time series which
unlike other approaches such as (Box and Pierce) and (Mcleod and Li) they did not use
residuals autocorrelations but rather used the sum of the squared residual autocorrelations
to develop several new portmanteau statistics.
Assume that the innovation εt also satisfies
(a) E(ε3it) = 0 and E(ε4it) = c1 <∞ for i=1, . . . , k, and
(b) εit and εjt are mutually uncorrelated up to the fourth order for i = j. Ling and Li
(1997) employed ât to propose a model checking statistic for volatility models. Let

ε̂t = â′tΣ̂t

−1
ât (5.5)

be a transformed quadratic residual series. If the fitted model is correctly specified, then,
by the ergodic theorem,

1

T

T∑
t=1

ε̂t =
1

T

T∑
t=1

â′tΣ̂t

−1
ât → a.sE(a′tΣ

−1
t at = E(ε′tεt) = k (5.6)

where → a.s denotes almost sure convergence or convergence with probability 1.
The lag-l sample autocorrelation of εt, therefore, can be defined as

ρ̂` =

∑T
t=`+1(ε̂t − k)( ˆεt−1 − k)∑T

t=1(ε̂t − k)2
(5.7)
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If the model is correctly specified

1
T

∑T
t=1(ε̂t − k)2 → a.s E(a′tΣ

−1
t at − k)2 as n →∞

and

E(a′tΣ
−1
t at − k)2 = E(ε′tεt)

2 − k2 = E(ε4it − 1)k = ck

where c = E(ε4it)−1 Since the denominator of ρ̂` in Equation (5.6) converges to a constant,
it suffices to consider the numerator in studying the limiting properties of ρ̂`. By letting

Ĉ` =
1

T

T∑
t=`+1

(ε̂t − k)( ˆεt−1 − k) (5.8)

be the lag ` sample autocovariance of the transformed residual ε̂t and C` be its theoretical
counterpart with ε̂t replaced by εt = a′tΣ

−1
t at. To investigate the properties of ρ̂` as a

function of the estimate θ̂, Taylor series of expansion is used on Ĉ` ≈ C` + ∂C`

θ̂
as seen in

Ling and Li (1997) and Tsay (2014).
Finally the test static is given as

Qll(m) = T ˆρ′mΩ−1ρ̂m (5.9)

5.2 Volatility Models

Various models for modelling multiple time series exist we discuss the most common
models which are :

• Exponentially Weighted Moving Average (EWMA).

• Dynamic Conditional Correlation Models (DCC-GARCH).

• Go-GARCH Model.

5.2.1 Exponentially Weighted Moving Average (EWMA)

Another way to capture the dynamic features of volatility is to use an exponential moving
average of historical observations where the latest observations carry the highest weight
in the volatility estimate. This approach has two important advantages over the equally
weighted model. Firstly, volatility reacts faster to shocks in the market as recent data
carry more weight than data in the distant past. Secondly, following a shock (a large
abnormal return that stands out from the rest), the volatility declines exponentially as
the weight of the shock observation falls (JP Morgan 1995).
The EWMA covariance is defined recursively by Sheppard (2013) as

Σt = (1− λ) ˆat−1
ˆa′t−1 + λ ˆΣt−1 (5.10)
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Correlations of the EWMA are given as

ρt,ij =
λσt−1,ij + (1− λ)rt−1,irt−1,j√

[λσ2
t−1,i + (1− λ)r2

t−1,i][λσ
2
t−1,j + (1− λ)r2

t−1,j]
(5.11)

where 0 < λ < 1 denotes the decaying rate or the persistence parameter, where σ2
t,i and

σ2
t,j are the variances for the individual series rt,i and rt,j respectively.

If one starts the recursion with a positive-definite matrix Σ0, then the volatility matrix
Σt is positive-definite for all t (Tsay 2014). A suitable choice is to set to the average
covariance over the first m days for some m > k or could be set to the full sample
covariance (Sheppard 2013). The single parameter, λ is usually set to .94 for daily data
and .97 for monthly data based on recommendations from Risk Metrics (JP Morgan 1995).
(Tsay 2014) states that this model is parsimonious and the resulting volatility matrices
are easy to update, but, it tends to be rejected by diagnostic checks in an application.
This he says is not surprising since it relies on a single decaying parameter to adequately
govern the time decay of all conditional variances and covariances. Ijumba (2013) further
states that the limitation of the EWMA model is its restrictiveness due to the simplicity
of its structure and the assumption of non-estimated λ. Moreover, the fact that λ is
identical to all assets and time periods is not realistic.

5.2.2 Dynamic Conditional Correlation Models (DCC-GARCH)

Considering the fact that constant conditional correlations over time is not realistic, re-
searchers seek to generalize Bollerslevs Constant Conditional Correlation (CCC) model.
Engle (2002) proposed a new class of estimator that both preserves the ease of estimation
of Bollerslev's constant correlation model yet allows for correlations to change over time.
Let Σt =[σij,t] be the volatility matrix of at given Ft.1, which denotes the information
available at time t − 1. Engle's dynamic conditional correlation structure is defined as
follows:

rt = µt + at (5.12)

at = Σ
1
2
t εt (5.13)

Σt = DtRtDt (5.14)

where :

rt : n × 1 vector of log returns of n assets at time t.

at : n × 1 vector of mean-corrected returns of n assets at time t, i.e. E[at]=0. Cov[at]
= Ht.

µt: n × 1 vector of the expected value of the conditional rt.

Σt : n × n matrix of conditional variances of at at time t.
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Dt: n × n, diagonal matrix of time varying standard deviations from univariate GARCH
models with

√
σi,t on the on the ith diagonal

Rt: n × n conditional correlation matrix of at at time t.

εt: n × 1 vector of iid errors such that E[εt]=0 and E[εtε
T
t ] = I.

Dt =

∣∣∣∣∣∣
σ1t 0 0
0 σ2t 0
0 0 σ3t

∣∣∣∣∣∣
where

σ2
it = α0 +

m∑
i=1

αia
2
t−1 +

s∑
j=1

βjσ
2
t−j (5.15)

Note that the univariate GARCH models can have different orders. Often the simplest
model, GARCH(1,1), is adequate. The specification of the univariate GARCH models is
not limited to the standard univariate GARCH(p,q) in Chapter 3, but can include any
GARCH process with Gaussian-distributed errors that satisfies appropriate stationarity
conditions that ensure the unconditional variance to exist.

Let γt = (γ1, . . . , γk)’ be the marginally standardized innovation vector, where γit =
ait
√
σii,t. Then, Rt is the conditional correlation matrix of the standardized disturbances

γt, i.e: γt= D−1
t at ∼ N(0,Rt).

Since Rt is a correlation matrix it is symmetric.

Rt =

∣∣∣∣∣∣
1 ρ12,t ρ13,t

ρ21,t 1 ρ23,t

ρ13,t ρ23,t 1

∣∣∣∣∣∣ = σitI

Hence, elements of Σt = DtRtDt are as follows : Σt =
√
σitσjtρij where ρii = 1.

Orskaug (2009) explains that, since Rt exists in different forms hence, when specifying a
form of Rt two requirements have to be considered:

1. Σt has to be positive definite because it is a covariance matrix. To ensure Σt to be
positive definite, Rt has to be positive definite (Dt is positive definite since all the
diagonal elements are positive).

2. All the elements in the correlation matrix Rt have to be equal to or less than one
by definition.

To ensure both of these requirements in the DCC-GARCH model, Rt is decomposed into:

Rt = Q∗
tQtQ

∗
t (5.16)

Qt = (1− θ1 − θ2)Q̄+ θ1Qt−1 + θ2γt−1 − γT
t−1 (5.17)
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where Q = Cov[γtγ
T
t−1] = E[γt−1γ

T
t−1] is the unconditional covariance matrix of the stan-

dardized errors γt−1. Q can be estimated as :

Q =
1

T

T∑
t=1

γt−1γ
T
t−1 (5.18)

The parameters a and b are scalars, and Q∗
t is a diagonal matrix with the square root of

the diagonal elements of Qt at the diagonal. Q∗
t rescales the elements in Qt to ensure the

second requirement |ρij| = | qijt√
qiitqjjt

| ≤ 1

In addition to the conditions for the univariate GARCH model to ensure positive uncon-
ditional variances, given earlier, the scalars a and b must satisfy: θ1 ≥ 0 , θ2 ≥ 0 and
θ1 + θ2 < 1.

Tse and Tsui (2002) proposed a second type of DCC models which are given as:

Rt = (1− θ1 − θ2)R̄t + θ1Rt−1 + θ2ψt− 1 (5.19)

where ρ̄t is the unconditional correlation matrix of ηt. θi are non-negative real numbers
satisfying additional constraint 0 < θ1 + θ2 < 1, and ψt− 1 is a n × n matrix whose
elements are functions of the lagged observations of yt.

Tsay (2014) explains that both models start with the unconditional covariance matrix
of γt. However, they differ in the way local information at time t-1 is used. The DCC
model of Engle (2002) uses γt only so that Qt must be re-normalized at each time index
t. On the other hand, the DCC model of Tse and Tsui (2002) uses local correlations to
update the conditional correlation matrices. Tsay (2014) further points out that DCC
models are extremely parsimonious as they only use two parameters θ1 and θ2 to govern
the time evolution of all conditional correlations regardless of the number of assets k. This
simplicity is both an advantage and a weakness of the DCC models. It is an advantage
because the resulting models are relatively easy to estimate. It is a weakness of the model
because it is hard to justify that all correlations evolve in the same manner regardless of
the assets involved. Tsay (2014) goes on to say “experience albeit limited, indicates that
a fitted DCC model is often rejected by diagnostic checking”.

Estimation of DCC-GARCH

Orskaug (2009) gives the estimation procedure for DCC models. When the standardized
errors, zt, are multivariate Gaussian distributed, the joint distribution of z1, ..., zT is

f(zt) =
T∏

T=1

1

(2Π)
1
2

exp{−1

2
ztz

T
t } (5.20)

Here t = 1, ..., T is the time period used to estimate the model.

Using the rule for linear transformation of variables , the likelihood function for at = Σ
1
2
t zt

is

L(θ) =
T∏

T=1

1

(2Π)
1
2

|Σ
1
2
t |exp{−

1

2
aT

t Σ−1
t at} (5.21)
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where θ denotes the parameters of the model. Let the parameters, θ, be divided in two
groups; (φ, ψ) = (φ1, ...,φn,ψ ), where φi= (α0i, α1i, ..., αqi, β1i, ..., βpi) are the parameters
of the univariate GARCH model for the ith asset series, i = 1, ..., n. ψ = (a, b) are the
parameters of the correlation structure in 5.17.
By taking the logarithm of (5.21) and substituting Σt = DtRtDt we get the log-likelihood:

ln(L(θ)) = −1

2

T∑
t=1

(nln(2Π) + ln(|Σt|+ aT
t Σ−1

t at))

= −1

2

T∑
t=1

(nln(2Π) + ln(|DtRtDt|) + aT
t D

−1
t R−1

t D−1
t at

= −1

2

T∑
t=1

(nln(2Π) + 2ln(|Dt|) + ln(Rt) + aT
t D

−1
t R−1

t D−1
t at

(5.22)

This method of exact estimation is difficult, and hence, the DCC model was designed
to allow for two-stage estimation. In the first stage the parameter φ of the univariate
GARCH models are estimated for each asset series. The likelihood used in the first stage
results in replacing Rt with the identity matrix In. In the second stage, the parameter
ψ are estimated using the correctly specified log-likelihood in (5.22), given the parameter
φ. Further details of the estimation are presented in Orskaug (2009). Estimation with
Multivariate Students t-distributed errors and Multivariate skew Students t-distributed
errors are also presented.

5.2.3 Go-GARCH Model

This model employs the concept of orthogonal transformation. This concept seeks to
reduce the curse of dimensionality since it is usually very hard to estimate multivari-
ate GARCH models. In practice, alternative methodologies for obtaining the covariance
matrix are needed. The orthogonal approach addresses this problem by linearly trans-
forming the observed returns matrix into a set of portfolios with the key property that
they are uncorrelated, implying that, we can forecast their volatilities separately. The
most commonly used orthogonal transformation in statistics is the principal component
analysis (PCA) and for non-Gaussian data, the independent component analysis (ICA) is
available to perform the transformation.

Van der Weide (2002) adopts the concept of ICA to propose a class of generalized or-
thogonal GARCH (Go-GARCH) models for volatility modelling. An important aspect of
the model is that the transformation matrix M is time invariant. Hence, the volatility of
innovations becomes

Σt = MVtM
′ (5.23)

where Vt is the volatility matrix of bt, that is, Vt = Cov(bt|Ft−1) with Ft−1 denoting the
information available at t-1. Second assumption of the Go-GARCH model is that Vt is a
diagonal matrix for all t.
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The unconditional covariance of bt is Cov(bt)= Ik hence, by transformation equation
cov(at) becomes Cov(at)=MM’. Van der Weide (2002) uses these results and 2 other
lemmas (see Van der Weide (2002),Tsay (2014)) to uniquely determine M. Tsay (2014)
highlights that in theory the orthogonal transformation above assumes that {at} forms a
random sample but in practice, asset returns, the innovation {at} is serially uncorrelated,
but dependent. This gap between theory and practice raises the issue of applicability
of Go-GARCH models in analyzing asset returns. However, Go-GARCH models are
relatively simple and conceptually appealing nonetheless.

5.3 Summary

This chapter introduced the multivariate time series. It focused on the theory of three
specific models that are going to be employed in this thesis. The models are the EMWA,
DCC, and the Go-GARCH models. For the DCC model, there are two types and both
were discussed in detail. These models will be applied to our data in the next section
using R software.
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Chapter 6

Multivariate Volatility Models
Application

In this section, we combine all our data to have a multivariate return series. We then
analyse the data and then run different models described in the previous section. The
data analysis is carried out in R as follows

• First use the concatenate command to join the vectors (individual time series) to
form the matrix(multiple time series).

• The next step is to then calculate the returns from the closing prices and the have
a multiple time series of returns which we will then plot.

• Using the Multi Time Series package (MTS) we then test for the presence of het-
eroscedasticity.

• Having checked for conditional heteroscedasticity and if found, we then proceed to
fit the models described in the previous chapter as shall be discussed in the following
sections.

6.1 Multivariate Daily Data

The first step is to do a preliminary analysis of the data so as to understand its properties.
Individual plots of the data sets are the same as those seen in chapter 3. These are used
to give the multivariate series. A plot of the individual assets now together is given in
Figure 6.1 below.
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Figure 6.1: Time Series Plot Of The Portfolio Returns

From the returns plots, we can see that in general periods of high positive returns and
periods of high negative returns are similar across assets. This makes sense as these assets
are taken from the same market. Old Mutual returns, however, have periods where their
loss or gains are way above others.

Next we test for volatility presence. This is done through the use of the MarchTest com-
mand of the MTS package. The test is carried out on the mean corrected series.

The results obtained were as follows:

Table 6.1: Diagnosis Of Mean Corrected Series

Test Test statistic P-value
Q(m) of squared series(LM test) 1817.814 0

Rank-based Test 1411.621 0
Qk(m) of squared series 3718.072 0

Robust Test(5%) 1102.466 0

As seen from the results all form of tests of presence of conditional heteroscedasticity were
able to reject the null hypothesis and accept the presence of conditional heteroscedasticity
in the mean corrected series. The same conclusion can be drawn by looking at the cross
correlation matrices (CCM) plots shown below in Figure 6.2.
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Figure 6.2: Cross Correlation Matrices Plots

The above CCM plots suggest that the returns have 1 lag dependence, hence, when fitting
models this dependence must be taken care of through the use of Vector Auto-Regressive
(VAR) models.

6.1.1 EMWA Model Fitting

Before fitting the EMWA model the VAR(1) model is used to take care of the lag one
correlations as was suggested by the CCM plots. The residuals of the VAR(1) model are
then used on the EMWA model.
The results obtained after fitting the EMWA model are shown in Table 6.2 below

Table 6.2: Fitted EMWA model

Coefficient(s) Estimate Std. Error t value Pr(>—t—)
lambda 0.9774 0.0013 776.7 <2e-16 ***

1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.

The results gave an estimate of λ, λ̂ = 0.977. This value lies in the expected range as
suggested by results of previous studies. Clearly our model uses most recent data more
than data that has been there for long which is good (the closer λ is to 1 the more weights
are put to the most recent data). It is known that one can choose a value for λ before
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running the model since λ is a constant, but here we ran the model with a negative λ
so that the λ can be estimated from the data. Model diagnostics on the residual are as
follows.

Table 6.3: Diagnosis Of Fitted EMWA model

Test Test Statistic P-Value
Q(m) of et 11.43888 0.324362

Rank-based test 135.3322 0
Qk(m) of et 87.95407 0.5413576

Robust Qk(m) 204.1437 7.544609e-11

From the results we see that the Qk(m)and Q(m) accept the null hypothesis but the
stronger tests which are the rank based and robust test fail to accept suggesting remaining
conditional heteroscedasticity. The robust test rejection is, however, expected from the
EMWA model (see (Tsay 2014)).
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Figure 6.3: Plots From The Volatility Matrix

The volatility plots are shown in Figure 6.3 all have a similar trend but vary in intensity.
All volatility plots exhibit persistence which in itself is a stylized fact of financial data. It
can be seen that from around the year 2008 to end of 2009 the volatility is very high for
all assets, this is explained by the global crisis which affected all assets performance. The
Old mutual series is the most volatile of the 3 followed by Liberty Holdings although in a
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few select points in time order may be different. The covariance of the assets is greatest
between Old Mutual and Liberty Holdings.

6.1.2 DCC Model Fitting

Like the previous sections we use the VAR(1) residuals to model our data. The procedure
here is to first fit univariate GARCH(1,1) models to the component series and obtain
the marginally standardized series for DCC estimation. This is done using the command
dccPre of the MTS package. We then use the dccFit (also from MTS package) command
which estimates the specified DCC model using the marginally standardized series. Since
our data has heavy tails we use the default students t innovations in our model. Output
from the dccPre is skipped and only the important information is given. The resulting
univariate GARCH(1,1) are given as follows:

σ11,t = 8e− 06 + 0.065a2
1,t−1 + 0.915σ11,t−1

σ22,t = 1e− 06 + 0.025a2
2,t−1 + 0.973σ22,t−1

σ33,t = 8e− 06 + 0.081a2
3,t−1 + 0.895σ33,t−1

We proceed to model the 2 DCC models using the resulting univariate GARCH models.

Table 6.4: Fitted Tse and Tsui model with Student-t innovations

Parameter Estimate st.errors t-values
θ1 0.92 NaN NaN
θ2 0.0248933 0.001145087 21.73922

Degrees Of Freedom 7.221554 0.4355408 16.58066

Table 6.4 above shows the fitted the Tsei and Tsui model. The coefficient estimate for θ1

standard error could not be solved as the resulting hessian gave NaN which means not a
number, this occurs when the hessian fails to converge or when taking square root and
the number is negative. θ2 estimate had a t-ratio of 21.74 hence, it was highly significant.
The estimated degrees of freedom for the multivariate Student-t innovations is 7.22 and
it is significant.
The resulting DCC model is as follows:

ρt = (1− 0.92− 0.0249)ρ̄+ 0.92ρt−1 + 0.0249ψt−1 (6.1)

Table 6.5: Diagnosis Of Fitted Tse and Tsui DCC model

Test test statistic P-Value
Q(m) of εt 5.319914 0.8688089

Rank-based test 28.78021 0.001352299
Qk(m) of εt 60.24456 0.9932952

Robust Qk(m) 130.0516 0.003694302
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Table 6.5 gives the results of the diagnosis of the model. We can see that the stronger
rank based test and the robust test all confirm the presence of remaining conditional
heteroscedasticity which as discussed earlier is not surprising for a DCC model.

Table 6.6: Fitted Engle DCC model with Student-t innovations

Parameter Estimate St.errors t-values
θ1 0.92 NaN NaN
θ2 0.03237957 NaN NaN

Degrees Of Freedom 7.402539 0.4544672 16.28839

The Engle model is shown above in Table 6.6, here again, NaNs were produced upon
evaluating the hessian. This may be because of negative numbers resulting and hence,
square root can’t be taken on calculation. However, since we have the coefficients we can
write down the model and proceed to diagnosis.
The resulting equation for Engle model is as follows:

Qt = (1− 0.92− 0.0324)ρ̄+ 0.92Qt−1 + 0.0324ηt−1η
′
t−1 (6.2)

Table 6.7: Diagnosis Of Fitted DCC model

Test Test statistic P-value
Q(m) of εt 31.27671 0.0005280545

Rank-based test 31.27671 0.0005280545
Qk(m) of εt 55.03853 0.9986402

Robust Qk(m) 130.6981 0.003298202

The model diagnosis where as expected similar to those of the Tse and Tsui model. The
robust and rank based tests confirm that there is still some conditional heteroscedastic
in the model. The two models have same coefficients for θ1 whilst others were not that
different. The coefficients of the equations suggest that the DCC of Engle appears to have
stronger persistence in the time varying correlations.
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Figure 6.4: Plots of Correlations

Above is the plots of the correlations of the three portfolio assets from the Tse and Tsui
model. The correlations are highest between Old Mutual and Liberty Holdings whilst
being lowest between Liberty Holdings and Standard Bank. The package does not give
the volatility matrix with the volatility component hence, we just have the time-varying
correlation plot for the Tse and Tsui model.
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Figure 6.5: Plots of Correlations

Above we have the Engle volatility and time-varying correlation plots. All assets have a
similar plot and also, they exhibit persistence and volatility clustering. The time varying
correlation plots are similar to those of the Tse and Tsui model hence, these two models
are qualitatively similar according to these results.

6.1.3 Go-GARCH Model Fitting

Like all models in this section we fit model on the VAR(1) residuals of the data.
We apply the goGARCH(1,1) using the fast ICA estimation method by the gogarch com-
mand of the gogarch package. Most of the less relevant estimation section of the results
is skipped.

The estimated transformation matrix is as follows:

M̂ =

∣∣∣∣∣∣
0.015767707 −0.007959807 −0.01301738
−0.007752288 −0.005916669 −0.01370323
0.004744601 0.010886237 −0.01408516

∣∣∣∣∣∣ .
The fitted GARCH(1,1) models for the latent variables bit from the resulting GARCH
coefficient estimates section are as follows:

σ2
1,t = 0.00526 + 0.0287b21,t−1 + 0.962σ2

1,t−1
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σ2
2,t = 0.0415 + 0.0747b22,t−1 + 0.906σ2

2,t−1

σ2
3,t = 0.00213 + 0.0210b23,t−1 + 0.977σ2

3,t−1

Table 6.8: Diagnosis Of Fitted Go-GARCH model

Test Test statistic P-value
Q(m) of εt 8.758543 0.5551619

Rank-based test 75.39031 3.994027e-12
Qk(m) of εt 173.802 2.811786e-07

Robust Test(5%) 164.906 2.507871e-06

Model diagnosis is done through the test for conditional heteroscedasticity on the stan-
dardized innovations of the fitted Go-GARCH model and based on the above results they
still have strong conditional heteroscedasticity. This is not surprising as explained by
Tsay (2014) because the squares of the transformed latent variables bit still have signif-
icant cross-dependence. This can be seen on the correlation matrix below where the off
diagonal elements are non zero. These non zero correlations between the squares of fitted
latent variables remain an issue in all other Go-GARCH estimation methods.

cor(bt2) =

∣∣∣∣∣∣
1.0000000 0.3957759 0.5582137
0.3957759 1.0000000 0.2980521
0.5582137 0.2980521 1.0000000

∣∣∣∣∣∣ .
The resulting volatility plots are as shown in Figure 6.6. Here series 1, series 2 and series
3 are Old Mutual, Liberty Holdings and Standard Bank return series respectively.
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Figure 6.6: Volatility Plots

From Figure 6.6 above we can see that the general volatility pattern is the same for all
assets. The similar pattern is due to market factors as these assets all come from the same
market. The intensity of the volatilities is different as can be seen by the y-axis values
of the plots volatility from series is two is higher than the rest, hence, is a very volatile
asset in the portfolio. All 3 Plots have a very high volatility period this corresponds
to the global recession of 2008 as markets became very volatile in that period. A drop
follows that period. This is a period were economies recovered and the market became
less volatile. We deduce that for a risk averse investor Old Mutual will not be a good
choice but those who are willing to take more risk can invest in the volatile Old Mutual.
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Figure 6.7: Cross Correlation Matrices Plots

The correlation series is shown above. Clearly we can tell that the correlation between
Old Mutual and Liberty Holdings is very high as compared to the other two which are
quite similar. This result is similar to the one obtained from the EMWA model.

6.2 Multivariate Monthly Data

The monthly data is derived from the individual monthly data of our 3 companies. The
data has been trimmed to 173 observations each so that we can have an equal length data
frame.
Exploration of the resultant multivariate series is carried out in R. The results are given
below.
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Figure 6.8: Portfolio Returns

The plots of the individual returns are shown in Figure 6.8 above. It can be seen that Old
Mutual and Liberty Holdings had a few periods of huge negative returns whilst Standard
Bank loss boundary did not fluctuate much. Standard Bank however, had also, huge
positive returns in 2008 during which other assets returns fell because of the recession.
This shows that Standard Bank performed well amid the crisis.

111



0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag

cc
f

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag

cc
f

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag

cc
f

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag

cc
f

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag

cc
f

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag

cc
f

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag

cc
f

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag

cc
f

0 2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

lag
cc

f

Figure 6.9: Cross Correlation Matrices Plots

The CCM plots in Figure 6.9 above show that the data is not correlated. This is as
expected in theory for monthly data. This means that we can easily proceed to fit our
multivariate model volatility models with µt= µ rather than estimate a VAR(p) model
to remove correlations. Figure 6.10 shows Significance of CCM Plots, here p-values are
greater than 0.05 confirming that the series has no zero CCMs.
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Figure 6.10: Significance of CCM Plots

We apply the four tests for conditional heteroscedasticity in the mean corrected series and
the obtained results are as follows:

Table 6.9: Diagnosis tests for data

test test statistic p-value
Q(m) of squared series(LM test) 50.84501 1.865268e-07

Rank-based Test 24.5122 0.006350934
Qk(m) of squared series 184.1865 1.906998e-08

Robust Test(5%) 146.1551 0.0001681621

All tests have very small p-values < 0.05 hence, confirm the presence of conditional
heteroscedasticity in the monthly log return series. We then proceed to fit our models to
the data.

6.2.1 EMWA Model

Table 6.10: Fitted EMWA model

Coefficient(s) Estimate Std. Error t value Pr(>—t—)
lambda 0.95695 0.01193 80.22 <2e-16 ***

1 Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1.
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The above Table gives results of the EMWA model. The model was ran with a negative
initial value of lambda. This allows the model to estimate its own λ as λ must be positive.
The obtained estimate of λ, λ̂ = 0.957 lies in the expected range. The closer λ is to 1 the
more weight is emphasized on the most recent returns. A λ closer to 0 will have emphasis
on older information hence, poor predictions results Ijumba (2013).
Model diagnostics on the residuals are as follows:

Table 6.11: Diagnosis Of Fitted EMWA model

Test Test Statistic P-Value
Q(m) of et 28.88411 0.001301018

Rank-based test 10.12224 0.4298353
Qk(m) of epsilont 148.1921 0.0001096714

Robust Qk(m) 79.70564 0.7729107

The diagnosis shows that the trimmed 5% test says that the conditional heteroscedastic
still remains whilst the robust and rank based tests reject the presence of conditional
heteroscedasticity. This is not shocking as in practice the diagnosis tests on EMWA
model residuals usually show remaining heteroscedasticity.
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Figure 6.11: Plots From The Volatility Matrix
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Figure 6.11 shows that the volatility pattern is the same for Old Mutual and Standard
Bank. It is seen that volatility is high during 2008 period up to just after 2009 this is so
because of the global recession which occurred then. However, the Liberty Holding seems
to be way different from others this can be because of model failure or because the data
represented such as monthly data fails to capture all intermediate dependencies during
the month. The covariance plots show that the covariance is large for Old Mutual and
Standard Bank. For all plots the covariance is stronger during the recession period as the
market factor pulled all individual assets together.

6.2.2 Go-GARCH Model Fitting

We apply the Go-GARCH(1,1) using the fast ICA estimation method by the gogarch
command of the gogarch package. Most of the less relevant estimation output is skipped.
The estimated transformation matrix is given as follows:

M̂ =

∣∣∣∣∣∣
−0.04871390 −0.06188057 −0.002655813
−0.06275217 0.02101321 0.018332736
−0.01345811 −0.03397808 0.054792084

∣∣∣∣∣∣ .
The fitted GARCH(1,1) models for the latent variables bit from the resulting GARCH
coefficient estimates section are as follows:

σ2
1,t = 0.0638 + 0.0665b21,t−1 + 0.891σ2

1,t−1

σ2
2,t = 0.119 + 0.305b22,t−1 + 0.565σ2

2,t−1

σ2
3,t = 0.114 + 0.134b23,t−1 + 0.785σ2

3,t−1

Table 6.12: Diagnosis Of Fitted Go-GARCH model

Test Test statistic P-value
Q(m) of εt 2.875849 0.9841965

Rank-based test 3.078824 0.9795077
Qk(m) of εt 67.71094 0.9617756

Robust Test(5%) 79.64782 0.774317

Table 6.12 shows the model diagnosis. The standardized innovations of the fitted Go-
GARCH model no longer have conditional heteroscedasticity. However, the squares of
the transformed latent variables bit still have significant cross-dependence hence, the in-
novations may still have conditional heteroscedasticity which the test failed to pick. This
can be seen in the correlation matrix below as the off-diagonal elements are non-zero.
These non-zero correlations between the squares of fitted latent variables remain an issue
in all other Go-GARCH estimation methods.

cor(bt2) =

∣∣∣∣∣∣
1.0000000 0.33192773 0.06567796
0.33192773 1.0000000 0.02611284
0.06567796 0.02611284 1.0000000

∣∣∣∣∣∣ .
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The resulting volatility plots are as follows:
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Figure 6.12: Plots from Volatility Matrix

Figure 6.12 shows the volatility series plot and the time-varying correlations plots. We
can see that the general volatility pattern is the same for all assets, that is, they rose and
dropped at similar periods but with varying intensity. The similar pattern is because of
market factors as these assets all come from the same market. Persistence of volatility is
clearly visible on all plots hence, this stylized fact is incorporated into the model. Old
Mutual and Liberty Holdings have a more similar plot, this is different from EMWA where
the Old Mutual was more similar to Standard Bank. Like all other models the Old Mutual
asset is more volatile. All 3 Plots have a very high volatility period this corresponds to the
global recession of 2008 as markets became very volatile in that period. A drop follows
that period as the economies recovered and the market became less volatile. The time
varying correlation series is also shown. Clearly we can tell that the correlation between
Old Mutual and Liberty Holdings is very high as compared to the other two which are
quite similar. This result is similar to the one obtained from the EMWA model.

6.2.3 DCC Model Fitting

Different packages exist to model the DCC model and for our case dccpre and dccFit com-
mand of the MTS package are employed. The dccPre resulting univariate GARCH(1,1)
are given as follows:
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σ11,t = 7e− 04 + 0.111a2
1,t−1 + 0.771σ11,t−1

σ22,t = 0 + 0.009a2
2,t−1 + 0.984σ22,t−1

σ33,t = 0.000374 + 0.102a2
3,t−1 + 0.8061σ33,t−1

The next step is to take the volatility series of the 3 estimated models and carry on the
DCC model estimation. Recalling that we can either fit Tse and Tsui (2002) kind of
model or the Engle model we will, in this case, fit both models and compare. We assume
student t distribution for our data so as to capture the heavy tails.

Table 6.13: Fitted Tse and Tsui model with Student-t innovations

Parameter Estimate St.errors t-values
θ1 0.4 0.5632 0.7102
θ2 0.0705 0.0949 0.7435

Degrees Of Freedom 11.6698 4.7645 2.4493

The above is the resulting output for the DCC model of Tse and Tsui. The t-ratios
however are small hence, the θ’s are not that significant. The resulting model is given as

ρt = (1− 0.4− 0.0705)ρ̄+ 0.4ρt−1 + 0.0705ψt−1 (6.3)

For diagnosis of the model the following results where found:

Table 6.14: Diagnosis Of Fitted DCC model

Test Test Statistic P-Value
Q(m) of et 7.007968 0.7246925

Rank-based test 3.084196 0.9793726
Qk(m) of epsilont 87.54274 0.5537008

Robust Qk(m) 80.65202 0.7493024

The diagnosis rejects the presence of conditional heteroscedasticity hence, our model was
a good fit. In general, though it has been seen that diagnosis tests usually reject DCC
models. In our case, however, it happens that the model fit the data well.

For the DCC of Engle the results are as follows:

Table 6.15: Fitted Engle DCC model with Student-t innovations

Parameter Estimate St.errors t-values
θ1 0.4 0.4158 0.9620
θ2 0.0799 0.0595 1.3441

Degrees Of Freedom 9.5361 2.7282 3.4953

The t-ratios are better than of that of Tse and Tsui model but are still not significant.
The resulting model from the above results is thus:
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Qt = (1− 0.4− 0.08)ρ̄+ 0.4Qt−1 + 0.08ηt−1η
′
t−1 (6.4)

Table 6.16: Diagnosis Of Fitted DCC model

Test Test Statistic P-Value
Q(m) of et 6.954551 0.7297286

Rank-based test 3.39329 0.970598
Qk(m) of epsilont 88.00226 0.5399113

Robust Qk(m) 99.00904 0.2420799

Like the Tse and Tsui DCC model, the diagnosis tests reject conditional heteroscedastic-
ity and hence, our model fits the data well. A comparison of the models shows that the
estimates of the two models are almost similar. The DCC of Engle, however, has stronger
persistence than the Tse and Tsui model.

The MTS package only gives the time-varying correlation matrices. Each row contains
elements of a cross-correlation matrix which has no variance component, so to obtain the
variance plots for the Engle the dcc.estimation command from the ccgarch package and
fitted the same DCC model.
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Figure 6.13: Plots of Correlations
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Figure 6.13 above shows the plots of the correlations of the three portfolio assets from
the Tse and Tsui model. The correlations are highest between Old Mutual and Liberty
Holdings whilst being lowest between Liberty Holdings and Standard Bank.
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Figure 6.14: Plots from Volatility Matrix

The plots above are for the DCC of Engle as given by R. The volatility series of Old Mutual
and that of Standard Bank are very similar but the Liberty Holdings plots seem to be
off this may be a sign of a fault in the model or data. The volatility exhibits persistence
and volatility clustering as expected. The correlation plots, however, are similar to those
obtained from the Tse and Tsui model. Hence, showing as seen in the daily data section
that the two models are qualitatively similar.

6.3 Chapter Summary

This chapter we ran 3 types of multivariate models on both monthly and daily data.
Like the univariate case the daily data first needed to have correlations removed. The
results showed that volatility was similarly high during the global crisis across assets.
The Old Mutual was the most volatile asset but in general, all assets volatility followed
a similar trend. The similar patterns across assets are explained by market factors as
the companies are from the same market. The DCC Liberty plot for monthly data was
not convincing as it strayed from the pattern exhibited by other assets and also, by it on
other models. This is unusual, the reason may be a failure of the model to incorporate
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or capture its variances. However, it may be so as each company can have a different
reaction to similar market occurrences. For all other models, however, there was a clear
co-movement pattern amongst assets showing that these assets do move together in the
same pattern as expected under similar conditions. The differences are the magnitudes
of the effects.
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Chapter 7

Discussion and Conclusion

The focus of the study was to model asset volatility from returns on investment using
volatility models for both the univariate and multivariate case. The first section of the
study dealt with the application of ARCH and GARCH models for the univariate case.
It also, dealt with the subsequent derivatives of the GARCH models. The second section
explored the use of multivariate volatility models to compare the volatility trends of all
assets. This was helpful in determining if there was a similar trend in the assets volatility
which would have been caused by exposure to similar market factors. In data analysis,
the daily data showed that it had serial correlations which had to be taken care of using
the Autoregressive models before fitting any models. The monthly data was, however,
uncorrelated and hence, we could easily proceed to modelling.

On fitting our univariate models the ARCH models required many parameters to give an
acceptable fit for the data unlike for the GARCH model were the simple GARCH(1,1)
model with t distribute errors gave the best fit. Not only was the GARCH(1,1) model
parsimonious but it also had lower AIC values which further justified it as a model of
choice. The t distributed errors were used instead of the Gaussian errors because our
data had heavy tails, therefore the normal assumption would easily distort our results.
This is coherent with other studies, for example, those by (Talke 2003) and Ijumba (2013)
were they also discovered that t or skewed t distributed errors were a better fit. For daily
data, the GARCH model was precedented by an AR part so as to remove the correlations.
Under the GARCH extensions, it was seen that the EGARCH with t distributed errors
was the best fit. All volatility plots for our 3 assets revealed that they were extremely
volatile during the 2008-2009 Global recession. The fact that all companies were affected
shows that the cause was a market factor.

Another important aspect in volatility is its mean reverting tendency Poterba and Sum-
mers (1988), that is, volatility after swinging wildly high or low it will always come back
to a certain mean or average value. High volatility periods offer a wide possibility of
mispriced stocks because during this period there is investor fear and overreaction in the
markets. This results in others following the crowd, that is, they will be making deci-
sions based on what others are doing. Armed with this, wise investors can decide to buy
stock when prices start to fall in anticipation of a reversion upwards back to the mean
or beyond. Once the prices start to fall again they sell the stocks at a higher price than
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they would have purchased with. As an example, an investor who bought the stocks just
during the financial crisis and sold them after recovery would have got a high return on
his investment. This mean reverting tendency is thus, the backbone of volatility trading
for volatility traders i.e they follow the general concept ”buy low sell high” but they are
armed with forecasts. However, this aspect must be dealt with whilst bearing the knowl-
edge of the stock you are investing in. For example, a change in returns could be a sign
that the company no longer has the same prospects it once did, in which case, it is less
likely that mean reversion will occur. Also, care must be taken on considering the general
persistence of the market or company. That is, some persist on high or low volatility
longer than others before reverting back to the average volatility. The upside of this is
that persistence and reversion are two sides of the same coin. This is so because high
persistence simply means the volatility will take more time to revert back to its mean.
In our case for the monthly data, Liberty Holdings was the most persistent with α and
β adding up to 0.9778 followed by Old Mutual and Standard Bank with 0.908 and 0.809
respectively. For the daily data however, Liberty Holdings had the least persistence of
0.6814 as compared to Old Mutual and Standard Bank with 0.9799 and 0.976 respectively.
This low persistence of Liberty Holdings is very rare. The α + β for the GARCH(1,1)
models are supposed to be typically close to 1 for all GARCH(1,1) models. Other than
that one result, all other values were close to 1 a phenomenon which is supported by other
studies such as one by Hillebrand (2003).

For an investor, it is often wise to consider many stocks at once as this helps in pooling
risk. This entails spreading the risk of loss from stocks by investing in a portfolio of
stock such that in the event of a less fortunate return the fortunate returns can cover
up for them. Hence, with a thorough understanding of multivariate volatility the best
combination for one’s portfolio can be made. The multivariate section introduced mod-
els for multivariate volatility. In this section, the major concern was in analysing the
co-movements of the volatility of the assets. We wanted to check if the assets followed
a similar trend along the given time frame. The first thing to do was to check for de-
pendence in the multivariate series. The daily data had 1 lag correlations hence, VAR
models were run first before modelling using the residuals. The results of all multivariate
plots showed that all assets were extremely volatile during the 2008-2009 Global crisis, a
result that was also confirmed in the univariate case. A previous study by Ijumba (2013)
where she used countries in the BRICS also showed that the volatility was high during
the Global crisis. Old mutual was the most volatile of the three companies. This suggests
that for risk-averse investors for that period had to shy away from investing in Old Mu-
tual. Standard Bank was the least volatile for the period in question. All three models
confirmed that correlations were highest between Old Mutual and Liberty Holdings and
lowest between Liberty and Standard Bank. For monthly data, just like the univariate
case, the multivariate series did not show evidence of correlations. The plots, however,
did not clearly exhibit the persistence behaviour of volatility and this was likely because
we had only 173 observations.

Lastly, the models covered in this thesis do not cover all models that are available for
modelling volatility. For the univariate case, we have models such as the asymmetric
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power GARCH (APARCH), conditional heteroscedastic ARMA (CHARMA), whilst for
the multivariate case we have models such as the VEC model and the BEKK amongst
others. These models have their own strengths and weaknesses. A good study area would
be to try and create a single model that encompasses most if not all the strengths of
the various models. Also, new ways for diagnosis of multivariate models would be ideal,
especially the EMWA and DCC which are usually rejected by diagnosis tests. This a fact
supported by Tsay (2014). Other than that, new models are the best way forward for
multivariate volatility modelling.
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Appendix

***NB rtn represents the data (in this case the return series )

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

R codes for the univariate GARCH(1,1) model

#####################################

GARCH(1,1) model

library(fgarch)

#####################################

t2=garchFit(formula = ~arma(0,0 ) + garch(1,1),data = rtn,trace = FALSE,

cond.dist="norm")

summary(t2) #get model estimates

plot(t2) #extract various plots from model

#Replace norm with std and sstd for students t and skewed students t respectively

#arma(0,0) represents the mean equation if one wants for

example an AR1+GARCH(1,1) arma(1,0) is used for the AR1 part

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

R codes for the univariate eGARCH(1,1) model

#####################################

eGARCH(1,1) model

library(rugarch)

#####################################

spec2<-ugarchspec(variance.model = list(model = "eGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0, 0), include.mean = TRUE, arfima = FALSE),

distribution.model = "norm")

mod.fit.rugarch2<-ugarchfit(spec = spec2, data = as.numeric(rtn))

show(mod.fit.rugarch2) #get model estimates

plot(mod.fit.rugarch2) #extract various plots from model

#Replace norm with std and sstd for students t and skewed students t respectively

#arma(0,0) represents the mean equation if one wants for example an

AR1+GARCH(1,1) arma(1,0) is used for the AR1 part

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
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R codes for the univariate IGARCH(1,1) model

#####################################

IGARCH(1,1) model

library(rugarch)

#####################################

spec2<-ugarchspec(variance.model = list(model = "iGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0, 0), include.mean = TRUE, arfima = FALSE),

distribution.model = "norm")

mod.fit.rugarch2<-ugarchfit(spec = spec2, data = as.numeric(rt))

show(mod.fit.rugarch2) #get model estimates

plot(mod.fit.rugarch2) #extract various plots from model

#Replace norm with std and sstd for students t and skewed students t respectively

#arma(0,0) represents the mean equation if one wants for example an

AR1+GARCH(1,1) arma(1,0) is used for the AR1 part

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

R codes for the univariate TGARCH and GJR GARCH model

library(fgarch)

#####################################

#TGARCH(1,1) and GJR GARCH(1,1) model

#####################################

#fgarch package estimates APARCH model for which TGARCH is a special case

#An APARCH model with delta=1 is TGARCH and delta=2 is GJR GARCH mode

g1= garchFit(formula = ~aparch(1, 1), data = rtn, delta = 1, include.delta = F,

cond.dist="std",trace = F)

summary(g1) #get model estimates

plot(g1) #extract various plots from model

#Replace norm with std and sstd for students t and skewed students t respectively

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

#########################################################

#########################################################

MULTIVARIATE CODES

#########################################################

#########################################################

#############################
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Multivariate volatility test

library(MTS)

############################

MarchTest(zt) #Where zt is the data

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

R codes for the EWMA model

#####################################

library(MTS)

#####################################

m1=VAR(rtn,1) #first run VAR model to remove correlations

at=m1$residuals #Obtain residuals from model

m2=EWMAvol(at,lambda=-0.1)

#Run EMWA model with negative lamda so that lamda is estimated from data

Sigma.t=m2$Sigma.t

m3=MCHdiag(at,Sigma.t) ## Model checking

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

R codes for the DCC model

#####################################

DCC ENGLE and DCC TSE and TSUI

library(MTS)

#####################################

m1=dccPre(rtn,include.mean=T,p=0)

#fits univariate GARCH(1,1) models to the component series and obtains the

marginally standardized series for DCC estimation

m3=dccFit(rtn,type="Engle")

#fit DCC Engle not specifying type gives DCC tse and tsui

###################################

DCC models using ccgarch

library(ccgarch)

###################################

f1 = garchFit(~ garch(1,1), data=rtn[,1],include.mean=FALSE,trace=F)
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#fit univariate GARCH models for each series

f1 = f1@fit$coef

f2 = garchFit(~ garch(1,1), data=rtn[,2],include.mean=FALSE,trace=F)

f2 = f2@fit$coef

f3 = garchFit(~ garch(1,1), data=rtn[,3],include.mean=FALSE,trace=F)

f3 = f3@fit$coef

# create vectors and matrices of starting values

a = c(f1[1], f2[1],f3[1])

A = diag(c(f1[2],f2[2],f3[2]))

B = diag(c(f1[3], f2[3],f3[3]))

dccpara = c(0.2,0.6)

dccresults = dcc.estimation(inia=a, iniA=A, iniB=B,ini.dcc=dccpara,dvar=at, model="diagonal")

dccresults$out

DCCrho = dccresults$DCC

dcv=dccresults$h #get volatilities and correlations

MTSplot(dcv)

MTSplot(DCCrho)

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

R codes for the goGarch model

#####################################

library(gogarch)

#####################################

crtn=scale(rtn,center=T,scale=F) #if using scaled data

require(gogarch)

help(gogarch)

m1=gogarch(crtn,~garch(1,1),estby="ica") #estimating via ica

m1

sigma.t=NULL #model diagnostics

for (i in 1:2750){

sigma.t=rbind(sigma.t,c(m1@H[[i]])) }

M=m1@Z

Minv=solve(M)

bt=at%*%t(Minv) #Latent variables

cor(bt^2) #obtain matrix of correlations

MCHdiag(crtn,sigma.t) #for diagnostics

OOrho = ccor(m1)

plot(OOrho) #obtain correlation plots

vol=cvar(m1)

plot(vol) #obtain volatility plots
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