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Abstract

Waterborne diseases are among the major health problems threatening the life of individuals

globally. This thesis investigates the dynamics of waterborne disease under different conditions

and consequently determines possible intervention strategies to minimize the spread of the

disease. The following problems are addressed:

The effects of seasonal variations on the dynamics of waterborne disease together with the

possible benefits of control intervention strategies such as vaccination, treatment and provision

of clean water under the assumption of a homogeneous population are investigated. Specifically,

we determine the optimal use of the intervention strategies to mitigate the spread of the disease.

The dynamics of waterborne disease in a multiple socioeconomic class community is explored.

Particularly, we investigate the effects of migration of individuals due to socioeconomic rea-

sons on the dynamics of waterborne disease under the assumption of heterogeneous mixing

population.

We examine the effects of multiple contaminated water sources on the dynamics of waterborne

disease under the assumption of homogeneous population. We also consider the problem of

minimizing cost and determine the optimal use of vaccination to reduce the spread of infections.

The effects of heterogeneity on the transmission dynamics of waterborne disease is explored.

Furthermore, we scrutinize use of the control intervention strategies to mitigate the spread of

the infections under a heterogeneous population setting.
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Chapter 1

Introduction

In this chapter we discuss the motivation for the thesis, review some literature, present the

definitions of terms and theorems used throughout the thesis and give a brief outline of the

thesis.

1.1 Motivation

Even though waterborne diseases have been in existence for ages, there is still some ambiguity as

to what constitutes the diseases [6, 84]. For the purposes of this thesis, we consider a definition

by Tien and Earn [84] which says that a waterborne disease is any disease for which transmission

through water is a concern. Some examples of waterborne diseases include Cholera, Hepatitis

A and E, Giardia, Cryptosporidium and Rotavirus. The primary means of transmission of

these diseases is through environment-to-human contact [19, 80, 64, 65, 36, 101, 73]. However,

a secondary, less important route exists, in the form of human-to-human transmission [84, 62].

The most important and common routes of waterborne disease transmission are water and

food (especially seafood) contaminated with the bacterium [36, 80, 24]. This explains why

these diseases are predominant in water environments such as fresh water, lakes, seas and

rivers. Therefore, we consider only environment-to-human transmission in this thesis.

Poor sanitation and limited access to clean water are the major causes of waterborne diseases.

More work needs to be done to remedy the situation in many parts of the world. Statistics
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from the World Health Organization (WHO) [92] reveals that approximately 1.1 billion people

globally do not have access to improved water supply sources whereas around 700,000 children

die every year from diarrhoea caused by unsafe water and poor sanitation [89]. In addition to

this, about 768 million people still relied on unimproved drinking water sources while 2.5 billion

people still lacked access to improved sanitation facilities in 2011 [94]. All these contribute

greatly to the current statistics of waterborne diseases globally.

The tremendous outbreaks of waterborne diseases remain a great challenge as the number of

cases reported worldwide continues to rise. For instance, cholera outbreak was confirmed in

Haiti on October 21, 2010, and according to Ministry of Public Health and Population (MSPP)

of Haiti, a total of 669,396 cases and 8,217 deaths had been reported by August 4, 2013 [15].

Many more cases of cholera were confirmed in countries like Zimbabwe (2008-2009), India

(2007), Congo (2008), Iraq (2008), Nigeria (2010) and Northern Viet Nam (2009)[83]. The

cholera outbreak of Zimbabwe lasted for about one year and by July 2009, more than 98,000

cases and 4,000 deaths had been reported [62]. According to the WHO, cholera affects 3–5

million people worldwide, and causes 100,000–130,000 deaths yearly as of 2010 [83].

Limited resources is one of the major problems facing most developing countries where water-

borne diseases are endemic. It is stated that developing countries need to spend up to US$58

billion more each year to meet the Millennium Development Goal (MDG) targets on water and

sanitation [95]. Achieving this universal access to safe water and sanitation would save about

2.5 million lives every year [95]. Therefore, there is a need to determine the optimal control

intervention strategies that minimize cost.

1.2 Literature review

Mathematical models can provide key insights into the cause of an outbreak and help the

management in allocating health care resources by investigating the impact of alternative in-

terventions [74]. A number of different mathematical models have been used to study the

dynamics of waterborne diseases and we give a brief overview of some approaches.

The earliest mathematical waterborne disease model was proposed by Capasso and Paveri-
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Fontana [12] to study the 1973 cholera epidemic in the Mediterranean region. The model is made

up of two components, the population of the infected individuals and the concentration of the

pathogens in water reservoir. They assumed that transmission is only through interaction with

contaminated water. In 2001 Codeco [19] extended the work of Capasso and Paveri-Fontana

[12] by including an additional compartment (the susceptible population) into the model. She

used her model to study the role of the aquatic reservoir in cholera dynamics as well as to

investigate the long-term dynamics of the disease. She assumed a non-linear (in this case, a

logistic function) incidence. Similar to the work of Capasso and Paveri-Fontana [12], Codeco’s

model assumed that ingestion of contaminated water is the only transmission route. Merrell

and Butler [58] published a finding that freshly shed cholera bacteria from human intestines

are 700 times more infectious than bacteria shed only hours previously. Based on this finding,

Hartley et al. [36] formulated a model which is an extension of Codeco’s model but took into

account the role of a hyper-infective stage of V. cholerae (i.e., freshly shed vibrios) introduced

into the water reservoir by the infected people in the population. This model explained the

explosive nature of the disease as based on the laboratory measurements that freshly shed V.

cholerae from human intestines outcompeted other V. cholerae by as much as 700-fold for the

first few hours in the environment [83, 3]. The model also used a similar non-linear incidence

as Codeco’s model and assumed that ingestion of contaminated water is the only transmission

route.

Tien and Earn [84] in 2010 developed a waterborne disease model which includes dual transmis-

sion pathways, with bilinear incidence rates employed for both the environment-to-human and

human-to-human infection routes. They used the model to investigate the distinction between

the different transmission routes in the dynamics of waterborne diseases. In 2011, Mukandavire

et al. [62] proposed a model to estimate the basic reproduction number for the 2008-2009 cholera

outbreak in Zimbabwe. Their model also included both environment-to-human and human-to-

human transmission pathways. However, the incidence consists of two parts: one is due to

the environment-to-human transmission which is again similar to the non-linear incidence in

Codeco’s model; the other which represents the human-to-human interaction is modelled by

a linear function. Eisenberg et al. [28] considered the Tien and Earn [84] model to examine
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whether parameters of waterborne disease transmission dynamics can be identified, both in the

ideal setting of noise-free data (structural identifiability) and in the more realistic setting in the

presence of noise (practical identifiability). Robertson et al. [76] extended the Tien and Earn

[84] model to an n-patch waterborne disease model in networks with a common water source

to investigate the effect of heterogeneity in dual transmission pathways on the spread of the

disease. Miller Neilan et al. [59] formulated a mathematical model that includes essential com-

ponents such as a hyperinfectious, short-lived bacterial state, a separate class for mild human

infections, and waning disease immunity. Using the model, they investigated optimal control

of three strategies for slowing the spread of the disease for two endemic populations. Mwasa

and Tchuenche [65] formulated a cholera model with public health interventions to study the

impact of public health educational campaigns, vaccination and treatment as control strate-

gies in curtailing the disease. Alexanderian et al. [4] formulated an age-structured model for

the spread of epidemic cholera by using a system of hyperbolic (first-order) partial differential

equations in combination with ordinary differential equations. Sanches et al. [80] proposed a

mathematical model for cholera epidemics which comprises seasonality, loss of host immunity,

and control mechanisms acting to reduce cholera transmission. Hove-Musekwa et al. [39] devel-

oped a deterministic model for cholera in a community and applied it to determine the effects

of malnutrition in the spread of the disease.

Tian and Wang [83] in 2011 used three different techniques: the methods of monotone dynam-

ical systems, geometric approach and Lyapunov functions to investigate the global asymptotic

stability of the endemic equilibria for several deterministic cholera models. Wang and Liao [91]

presented a unified deterministic model for cholera that incorporates a general incidence rate

and a general formulation of the pathogen concentration in water reservoir. The model enabled

them to study the complex epidemic and endemic behaviour of the disease. Rinaldo et al. [74]

proposed a model for Haitian epidemic cholera and applied it to the year-long dataset of re-

ported cases. Their model allowed them to make predictions on longer-term epidemic cholera in

Haiti. Other studies on the dynamics of waterborne diseases include [72, 33, 42, 29, 52, 64, 88].

Although the results presented here focus on cholera, the theoretical results for the models

are more broadly applicable to other waterborne diseases, such as Giardia, Cryptosporid-
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ium, Campylobacter, hepatitis A and E, norovirus, rotavirus, and Escherichia coli O157:H7

[6, 78, 28].

There is no doubt that the above studies have contributed immensely towards understanding

the dynamics of waterborne diseases. However, theoretical studies for waterborne diseases are

not complete. The objectives of this thesis are as follows: to develop mathematical models in

order to improve the understanding of the transmission dynamics of water borne disease in a

community, to investigate the optimal use of control intervention strategies to reduce the spread

of the disease with minimum cost and to use these models to inform healthcare practitioners of

the likely impact of the different intervention strategies and their optimal use with minimum

cost. Rinaldo et al. [74] says that, despite differences in methods that can be tested through

model-guided field validation, mathematical modelling of large-scale outbreaks emerges as an

essential component of future cholera epidemic control. To make sure that our result is an

improvement of the existing results in the literature, we critically studied the factors affecting

the dynamics of waterborne diseases and take them into consideration while developing our

models.

1.3 Factors affecting the spread of waterborne diseases

The dynamics of a waterborne disease is as a result of interaction between human and pathogen.

Some of the several different factors that must be considered in attempting to understand the

dynamics of waterborne diseases include: sanitation, different transmission pathways, water

treatment efforts, pathogen ecology outside of human hosts, climatological factors or rainfall

[7, 25, 6, 27, 40, 84, 31, 77, 69]. Understanding how these factors interact to determine the

dynamics of waterborne diseases is challenging. In addition to the above mention factors, any

good mathematical model that can explain the dynamics must also incorporate the factors

explained below.
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1.3.1 Socioeconomic classes

Socioeconomic classes influence the dynamics of most infectious diseases including waterborne

disease [79]. Moreover, waterborne diseases have been associated with poverty and malnutrition

[39]. Most individuals that are suffering from poverty and malnutrition belong to a low socioe-

conomic class in the society. Therefore, it is necessary to consider individuals socioeconomic

status in formulating waterborne disease models.

1.3.2 Migration

Migration of individuals is one of the means whereby infections are spread across a population,

meta-population or communities or even countries. So, it is necessary to consider migration of

individuals in studying the dynamics of waterborne diseases.

1.3.3 Pathogen concentration

Contamination of drinking water source can lead to waterborne disease outbreaks. To estimate a

potential risk for waterborne disease caused by drinking contamination water source, knowledge

of the pathogen concentrations in the water source is required. We also know that pathogen

concentration is not constant but varies with time within and across the environment. To

address this, we will define a measure of pathogen concentration which can be used to estimate

the pathogen in water source at an point in time. For variability in pathogen concentration

across the environment, we consider a multiple contaminated water sources and define a measure

of pathogen concentration for each water source.

1.3.4 Multiple contaminated water sources

Some of the communities where waterborne diseases are endemic are exposed to multiple con-

taminated water sources such as lakes, ponds, wells, rivers, etc., with different levels of pathogen

concentration. Therefore, considering multiple contaminated water sources is reasonable in
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studying the dynamics of waterborne disease for a community where individuals have access to

multiple contaminated water sources.

1.3.5 Heterogeneity in disease transmission

Many waterborne disease models assume homogeneity in disease transmission, but in reality

most factors influencing the spread of the disease (such as contact rates, shedding rates, suscep-

tibility or infectivity) vary both within and across populations even in the absence of external

influences such as seasonality [76]. Therefore, incorporating heterogeneity will make the model

more realistic even though the mathematics might be more difficult to handle [10, 76].

1.3.6 Seasonal variations

Waterborne diseases such as cholera are characterised by repeated seasonal outbreaks which

occur mainly during the rainy season [79, 80]. Hence, it is necessary to consider seasonal

variation to study the dynamics of waterborne diseases.

1.3.7 Control intervention strategies

Whenever a waterborne disease outbreak occurs in a community, most infected individuals will

start taking some treatment while the susceptible individuals are prompted to get vaccinated.

Thus, we need to take this into account in order to get a better understanding of the dynamics

of waterborne disease as well as determine the impact of the control interventions.

1.3.8 Limited resources

One of the reasons why individuals in poor rural areas are mostly the victims of waterborne

disease is due to limited resources. Waterborne diseases have been associated with poverty and

malnutrition [39]. Even when an effective control is available, most of the victims of the disease

cannot afford it. Therefore, it is necessary to take this into consideration while studying the
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dynamics of waterborne disease.

Incorporating all these into a single waterborne disease model will improve the understanding

of the dynamics of waterborne disease in a community. However, a single model incorporating

all these factors will be too complex and difficult to analyze. In this thesis, we shall develop

mathematical models for waterborne disease that include some of these factors.

1.4 Definition of terms

In this section, we present some definitions that will aid our explanation in subsequent chapters.

The definitions and theorems in this section are standard in the literatures and can be found

in most text on dynamical systems and ordinary differential equations [48, 47, 53, 46, 26].

1.4.1 Dynamical system

A dynamical system may be regarded as a process which is changing (or evolving) in time [46].

Examples include but are not limited to the mathematical models that describe the spread of

an epidemic, population growth and decline, variations in the stock market, chemical reactions

etc. From a mathematical viewpoint, a dynamical system can be seen as a system that has a

state vector which describes the state of the system at a given time and a function which

maps the state at one instant of time to the state at a later time. A more precise definition of

a dynamical system is given as follows:

Definition 1.4.1. [46] Let X represent some state space and let T ⊆ R. A function ψ :

X × T −→ X that has the two properties

(i) ψ(x0, 0) = x0

(ii) ψ(ψ(x0, t), s) = ψ(x0, t+ s)

is called a dynamical system on X. If T = R+ (the set of non-negative real numbers), we

have a continuous dynamical system (CDS) or flow.
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Mathematical models of evolutionary processes often take the form of differential equations

such as  ẋ(t) = F (x(t)); x(t) ∈ Rn

x(t0) = x0
(1.1)

where F is a given vector-valued function. For existence and uniqueness of solutions, we require

that F is Lipschitz continuous. Note that F does not depend explicitly on t, so equation

(1.1) is an autonomous differential equation and such differential equations lead to continuous

time dynamical systems. In most cases, the exact solutions of the models which will help in

determining the long-term behaviour of the models are difficult to obtain. In what follows,

we will describing the techniques that can be used to obtain information on the long-term

behaviour of solutions to the models even when we do not know what these solutions are.

1.4.2 Stability of equilibrium point of dynamical systems

Definition 1.4.2. Consider the initial value problem (IVP) (1.1). A point x∗ ∈ Rn is said to

be a steady state, stationary point, critical point or equilibrium point of the IVP (1.1) if

F (x∗) = 0. (1.2)

Definition 1.4.3. [53, 26]

An equilibrium point x∗ ∈ Rn of (1.1) is said to be:

(i) stable if for every ε > 0 there exists a δ > 0 (which depends on ε) such that

‖x0 − x∗‖ < δ =⇒ ‖ψ(x0, t)− x∗‖ < ε ∀t ≥ 0, (1.3)

for any solution ψ(x0, t) of the IVP (1.1),

(ii) unstable if it is not stable,

(iii) locally asymptotically stable if it is stable and in addition, there exists an r > 0 such

that

‖x0 − x∗‖ < r =⇒ ‖ψ(x0, t)− x∗‖ −→ 0 as t −→∞ (1.4)

for any solution ψ(x0, t) of the IVP (1.1),
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(iv) globally asymptotically stable if (iii) holds for all r > 0.

In other words, x∗ is stable if all solutions starting near x∗ stay nearby; if, in addition, nearby

solutions converge to x∗ as t −→∞, we say that x∗ is locally asymptotically stable. When

there is no restriction on the size of r, we say that x∗ is globally asymptotically stable

[46].

1.4.3 Lyapunov stability theory

Here, we seek sufficient conditions that ensure the stability of system (1.1) based on the above

definitions and these conditions will be presented as the Lyapunov stability theorem. It should

be noted that a large part of the theory that follows in this study will focus on the theorems,

rather than the above definitions of stability. Hence, it is necessary that we state them.

Remark 1.4.4. Without loss of generality, we will assume that equilibrium point x∗ = 0 to

simplify the notation. However, by performing a transformation of the form

x∗(t) −→ x∗(t) + y(t), the theory can be applied to any solution y(t) of (1.1) [26]. We will

present the theorem for different forms of F .

Firstly, when F is linear autonomous i.e. F = Ax. Consider the linear autonomous system

ẋ = Ax, (1.5)

where x ∈ Rn and A is an n× n matrix.

Theorem 1.4.5. [53, 46, 26]

Let λi be the eigenvalues of A and Re(λi) be the real part of the eigenvalues of A. The

• equilibrium point x∗ = 0 of system (1.5) is said to be stable if and only if Re(λi) ≤ 0 for

all λi,

• equilibrium point x∗ = 0 of system (1.5) is globally asymptotically stable if and only if

Re(λi) < 0 for all λi.

Secondly, when F is a non-linear autonomous system. We will discuss two methods of investi-

gating the stability of the equilibrium point x∗ = 0 of system (1.1):
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Lyapunov’s Indirect Method

Theorem 1.4.6. [53, 46, 26]

Suppose F : D −→ Rn is continuously differentiable where D is the domain of F . Let

A =
∂F

∂x
(0). (1.6)

Then:

• the equilibrium point x∗ = 0 of system (1.1) is said to be locally asymptotically stable if

and only if Re(λi) < 0 for all eigenvalues λi of A,

• equilibrium point x∗ = 0 of system (1.1) is unstable if Re(λi) > 0 for some eigenvalues λi

of A.

Lyapunov’s Direct Method

This Direct Method has to do with analysis of stability of equilibrium point using Lyapunov

function.

Theorem 1.4.7. (Lyapunov Stability [53, 26])

Let x∗ = 0 be the equilibrium point of system (1.1) and S ⊂ D be a domain containing x∗ = 0.

Assume there exists continuous function V : S −→ R for some open region S ⊆ Rn containing

the origin such that V satisfies the following:

• V (0) = 0,

• V (x) ≥ 0, ∀x ∈ S,

• V̇ (x) ≤ 0, ∀x ∈ S.

Then x∗ = 0 is stable.

V̇ denotes the derivative of V along the solution trajectory of (1.1). This V is sometimes

referred as a Lyapunov function.
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Theorem 1.4.8. (Lyapunov Asymptotic Stability [53, 26])

Assume there exists a differential function V : S −→ R defined on some open region S ⊆ Rn

containing the origin such that V satisfies the following:

• V (0) = 0,

• V (x) > 0, ∀x ∈ S with x 6= 0,

• V̇ (x) < 0, ∀x ∈ S with x 6= 0.

Then x∗ = 0 is locally asymptotically stable. If in addition ‖V ‖ −→ ∞ as ‖x‖ −→ ∞, then

x∗ = 0 is globally asymptotically stable.

Another stability theorem which we will consider in this thesis is the global stability result by

Castillo-Chavez et al. [13] which is stated in Theorem 1.4.9 below.

Theorem 1.4.9. Consider a model system written in the form [13]

dX1

dt
= F (X1, X2),

dX2

dt
= G(X1, X2), G(X1, 0) = 0, (1.7)

where X1 ∈ Rm denotes the number of uninfected individuals and X2 ∈ Rn denotes the number

of infected individuals including latent, infectious, etc. X0 = (X∗1 , 0) denotes the disease-free

equilibrium (DFE) of the system. Assume that

(H1) For dX1

dt
= F (X1, 0), X∗1 is globally asymptotically stable;

(H2) G(X1, X2) = AX2 − Ĝ(X1, X2), Ĝ(X1, X2) ≥ 0 for (X1, X2) ∈ Ω, where the Jacobian

A = ∂G
∂X2

(X1, 0) is an M–matrix (the off diagonal elements of A are non-negative) and Ω

is the region where the model makes biological sense.

Then the DFE X0 is globally asymptotically stable provided that R0 < 1.
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1.4.4 Invariant sets

Definition 1.4.10. [48, 53]

A set S ⊆ Rn is said to be invariant of (1.1) if for every x0 ∈ S and for all t ∈ R, x ∈ S.

Equilibria are special class of invariant sets.

Definition 1.4.11. A set S ⊆ Rn is said to be positively invariant of (1.1) if for every

x0 ∈ S and for all t ≥ 0, x ∈ S.

Definition 1.4.12. A set S ⊆ Rn is said to be negatively invariant of (1.1) if for every

x0 ∈ S and for all t ≤ 0, x ∈ S.

Theorem 1.4.13. (LaSalle’s Invariance Principle [47, 53])

Let S ⊆ Rn be compact (i.e., closed and bounded). Assume there exists a differential function

V : S −→ R such that

V̇ (x) ≤ 0, ∀x ∈ S. (1.8)

Let M be the largest invariant set contained in {x ∈ S : V̇ (x) = 0}. Then all trajectories

starting from S approaches M as t −→ ∞. In particular, if {x ∈ S : V̇ (x) = 0} contains no

trajectory other than the equilibrium x∗ = 0, then all trajectories starting from S converge to

x∗ = 0 as t −→∞ (i.e., x∗ = 0 is asymptotically stable).

Theorem 1.4.14. (Local invariant set theorem [11])

Suppose there exists a continuously differential function V (x) such that the level set

Ω = {x : V (x) ≤ V0} is bounded for some V0 and V̇ (x) ≤ 0 whenever x ∈ Ω, then:

(i) Ω is an invariant set.

(ii) x(0) ∈ Ω =⇒ V̇ (x) −→ 0 as t −→∞.

(iii) x(t) −→M = largest invariant set contained in {x : V̇ (x) = 0}.

Theorem 1.4.15. (Global invariant set theorem [11])

Suppose there exists a continuously differential function V (x) such that V (x) is positive definite,

V (x) ≤ V0, V (x) −→∞ as ‖x‖ −→ ∞, then:
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(i) V̇ (x) −→ 0 as t −→∞.

(ii) x(t) −→M = largest invariant set contained in {x : V̇ (x) = 0}.

1.4.5 Spectral radius of a matrix

Definition 1.4.16. Let A be an n× n matrix and λi(1 ≤ i ≤ n) be the eigenvalues of A. The

spectral radius of the matrix A is the eigenvalue with the largest absolute value given by

ρ(A) = max {|λi| : 1 ≤ i ≤ n} . (1.9)

1.4.6 Pontryagin’s maximum principle

Pontryagin’s Maximum Principle is a classical result in the optimal control theory that provides

a necessary condition an optimal solution must satisfy [35, 71]. There are different versions of

the Pontryagin’s maximum principle depending on the problem statements. We present here

a version that is most suitable for the problems discussed in this thesis (see [8, 32] for more

general versions). Before presenting the Principle, we first review some terminology.

Let [t0, tf ] ⊂ R, U be a bounded subset of Rm and u : [t0, tf ] −→ U be a measurable function.

The function u(t) is called the control applied at time t and x : [t0, tf ] −→ Rn is the system

trajectory corresponding to control u and initial condition x0.

Definition 1.4.17. Let T0, Tf ⊂ R denote the sets of possible values for the initial time t0

and the final time tf , respectively. Let X0, Xf ⊂ Rn denote the sets of possible values for the

initial state x0 and final state xf , respectively. Then the set of allowable boundary values for

a trajectory is defined by B = {(t0, x0, tf , xf ) : t0 ∈ T0, x0 ∈ X0, tf ∈ Tf and xf ∈ Xf} [35].

We assume that there exist functions Ψ0,Ψf ∈ C1(Rn,R) such that X0 = Ψ−10 and Xf = Ψ−1f

and DΨ0(z) and DΨf (y) are surjective for all z ∈ X0 and y ∈ Xf , where DΨi(z) denotes the

Jacobian of Ψi [35].

Given a continuous function Υ : Rn −→ R and a function f 0 : Rn×U −→ R that is continuous
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on U and continuously differentiable on Rn, define the cost function

J(x, u) =

∫ tf

t0

(f 0(x(t), u(t))dt+ Υ(x(tf )). (1.10)

The aim is to find a control u : [t0, tf ] −→ U and corresponding trajectory x : [t0, tf ] −→ Rn

such that J is minimized.

Problem statement

Assume U is a bounded set in Rm, f is continuous in U and continuously differentiable in

Rn+1. Let A be non-empty denote the set of all admissible pairs (x, u). Find an admissible

pair (x∗, u∗) ∈ A such that J(x∗, u∗) ≤ J(x, u) for every (x, u) ∈ A [35].

Theorem 1.4.18. (Pontryagin’s maximum principle)[35, 71]

If (x∗, u∗) is a solution to the above problem statement then there exists an absolutely continuous

function λ : [t0, tf ] −→ Rn+1 such that

(i) λ̇(t) = ∂H(λ,x,u)
∂x

, a.e on [t0, tf ], where H is the Hamiltonian,

(ii) λ(t) 6= 0, for all t ∈ [t0, tf ],

(iii) λ0 ∈ {0,−1},

(iv) H(λ(t), x∗(t), u∗(t)) = supu∈U H(λ(t), x∗(t), u(t)), a.e on [t0, tf ],

(v) there exists c ∈ R such that H(λ(t), x∗(t), u(t)) = c, a.e on [t0, tf ],

(vi) if the end time tf is free then c can be taken to be zero, and

(vii) λ(t0) is orthogonal to ker(DΨ0(x
∗(t0))) and λ(tf ) is orthogonal to ker(DΨ1(x

∗(t0))).

1.5 Outline of thesis

A brief outline of this thesis is given below.
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• In Chapter 2, we formulate a basic SIWR waterborne disease mathematical epidemiolog-

ical model. We start by using the model to study the dynamics of waterborne disease

under the assumption of a homogeneous population setting. We also use the model to

investigate the effects of seasonal variation in the dynamics of waterborne disease. Next,

we extend the model by introducing three different control intervention strategies such as

vaccination, treatment and provision of clean water. The analyses of these control models

enable us to determine the benefits of these control interventions. Finally, we use optimal

control theory to determine the best control intervention that can reduce the spread of

waterborne disease with minimum cost.

• In Chapter 3, we propose an n-patch waterborne disease model by extending the basic

SIWR model to account for different socioeconomic classes in a population. This socioe-

conomic class model allows us to investigate the effects of socioeconomic status in the

dynamics of the disease.

• In Chapter 4, we develop another model by extending the basic SIWR model to account

for a situation where individuals are exposed to multiple contaminated water sources.

We explore the effect of considering multiple contaminated water sources. Next, we

consider this model to study the recent cholera outbreak in Haiti. Furthermore, we

include vaccination as a control intervention strategy in our multiple contaminated water

source model to assess the optimal use of vaccine to reduce the spread of the disease with

minimum cost.

• In Chapter 5, we formulate a more general n-patch waterborne disease model which

is an extension of all the previous models. We consider this model to investigate the

effects of heterogeneity in the dynamics of waterborne disease. Furthermore, we use the

model to study the dynamics of cholera outbreak in each of the Departments in Haiti

as well as for the total population. Since heterogeneity is more realistic, we examine

the benefits of control intervention strategies in a heterogeneous population setting using

simple extensions of this model.

• Finally, in Chapter 6, we summarise our results and conclude the thesis.
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Chapter 2

Analysis and control intervention

strategies of a basic waterborne disease

model

We formulate a simple mathematical model that captures the essential dynamics of waterborne

disease transmission in a homogeneous mixing population setting. The important mathemat-

ical features of the model are determined and analysed accordingly. We extend the model

by introducing control intervention strategies such as vaccination, treatment and water purifi-

cation. The mathematical analyses of the vaccination, treatment, water purification and the

multiple control strategy models are carried out to determine the possible benefits of these

control intervention strategies. Sensitivity analysis is performed to determine the relative im-

portance of each of the control parameters to disease transmission. An appropriate optimal

control problem is analysed to determine the optimal use of the multiple control strategy to

mitigate the spread of the disease with minimum cost. Numerical simulations are carried out

using published data to support the analytical results. The contents of this chapter have been

submitted for publication [20].
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2.1 Introduction

Waterborne diseases which include Cholera, Hepatitis A and E, Giardia, Cryptosporidium and

Rotavirus are some of the serious health problems threatening the life of individuals globally.

This is especially so in developing countries where there is limited access to clean water. Un-

safe water supply, poor sanitation and poor hygiene are major causes of waterborne diseases

[93]. According to WHO [92], approximately 1.1 billion people globally do not have access to

improved water supply sources. In addition, around 700,000 children die every year from diar-

rhoea caused by unsafe water and poor sanitation [89]. The prevalence of waterborne diseases

could be controlled especially in developing countries through access to safe water supply, pro-

vision of adequate sanitation facilities and better hygiene practices [93]. Control intervention

strategies such as water purification, vaccination and effective treatment of infected individuals

are among the most important ways of reducing the spread of the disease [59, 65, 80]. Even

though these control strategies are available, affordability has remain the greatest obstacle for

most communities where the disease is endemic. This is due to the fact that the spread of

waterborne diseases has been associated with poverty, limited resources and low socioeconomic

status [21]. Optimal control theory can give insight into the best strategy to control the spread

of the disease with minimum cost [49, 59].

Some of the essential factors that must be taken into consideration in attempting to under-

stand the dynamics of waterborne diseases include: sanitation, transmission pathways, water

treatment efforts, pathogen ecology outside of human hosts, climatological factors or rainfall

[77, 69, 25, 27, 40, 6, 7, 31, 84]. Understanding how these factors interact to determine the

dynamics of waterborne diseases is challenging. As a result, a variety of approaches has been

used for modelling the dynamics of waterborne diseases [12, 72, 19, 29, 33, 36, 42, 84, 62]. To

the best of our knowledge, none of those studies has considered a situation where secondary

infections are generated only through linear interactions between humans and pathogens in

water reservoir. Our purpose is to fill this gap in the analysis.

The remaining part of this chapter is organized as follows. We present a control-free model in

Section 2.2 and analyse it in Section 2.3. The analyses of the vaccination, treatment and water
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purification models are presented in Sections 2.4, 2.5 and 2.6 respectively. The multiple control

model (with all controls imposed simultaneously) is presented and analysed in Section 2.7. We

conclude the chapter by discussing our results in Section 2.8.

2.2 Control free model formulation

We consider an extension of the standard SIR model under the assumption of constant human

population size N(t) by adding a compartment W (t) that measures pathogen concentration

in the water reservoir [5, 84]. As usual, we assume that the total human population N(t)

is partitioned into susceptible S(t), infected I(t) and recovered individuals R(t) such that

N(t) = S(t) + I(t) + R(t). Individuals enter the susceptible class S(t) through birth at a rate

µ. Susceptible individuals S(t) become infected with the waterborne disease through contact

with contaminated water reservoir at rate β. We do not consider direct person-to-person

transmission because water-to-person transmission has been shown to be the most important

and common route of waterborne disease transmission [24, 36, 80]. Infected individuals I(t)

shed pathogens into water reservoir at rate ν and recover naturally at rate γ. Pathogens are

generated naturally in the water reservoir at rate α and decay at rate ξ. Natural death occurs

in all human compartments at rate µ. Putting these assumptions and formulations together,

we obtain

Ṡ(t) = µN(t)− βS(t)W (t)− µS(t),

İ(t) = βS(t)W (t)− (µ+ γ)I(t), (2.1)

Ẇ (t) = νI(t)− σW (t),

Ṙ(t) = γI(t)− µR(t),

where σ = ξ−α > 0, is the natural decay rate of pathogens in the water reservoir. Note that our

model (2.1) is in the form of the model considered by Tien and Earn [84] to study the multiple

transmission pathways for waterborne disease. The difference between the two models is that

they considered infections to be generated through both direct person-to-person and indirect

water-to-person contact but we consider infections to be generated only through indirect water-
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to-person contact. Therefore, the analysis of our model will help us understand the dynamics of

waterborne disease for the case of single transmission pathway as well as determine the optimal

use of the multiple control strategy to reduce the spread of the infections with minimum cost

thus complementing the work of Tien and Earn [84].

We assume that all the parameters are positive and the initial conditions are assumed as follows:

S(0) > 0, I(0) ≥ 0, W (0) ≥ 0, R(0) ≥ 0. (2.2)

All the solutions of model (2.1) will enter the feasible region

Φ =
{

(S, I,W,R) ∈ R4
+ : S + I +R = N, S, I ≤ N, R ≤ γN/µ, W ≤ νN/σ

}
. (2.3)

By considering a continuously differentiable function V (x) = (Va, Vb) = (S + I + R,W ) and

applying the local invariant set theorem 1.4.14, we have that the region Φ is positively invariant.

Thus model (2.1) is well posed mathematically and epidemiologically in Φ.

2.3 Analysis of the control-free model

The control-free model (2.1) represents dynamics of waterborne disease in a homogeneous pop-

ulation without any control intervention measures. The analysis of this model is necessary

in understanding the effects of control intervention strategies in subsequent models. All the

results below are consistently with [84] if we set their bI to zero.

2.3.1 Basic reproduction number

The control-free model (2.1) has a unique disease-free equilibrium (DFE) given by

(S0, I0,W 0) = (N, 0, 0). (2.4)

The basic reproduction number [90], defined as the expected number of secondary infections that

result from introducing a single infected individual into an otherwise susceptible population, is

determined to be

R0 =
νβN

σ(γ + µ)
. (2.5)
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2.3.2 Stability analysis of the DFE

The stability at the DFE determines the short-term dynamics of a disease [52]. Therefore to

determine the short-term dynamics of waterborne disease, it is necessary to investigate the

stability of the DFE. From Theorem 2 of van den Driessche and Watmough [90], the following

result holds.

Theorem 2.3.1. The DFE of the control-free model (2.1) is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1.

Theorem 2.3.1 implies that waterborne disease can be eliminated from the entire population

(when R0 < 1) if the initial size of the infected population is in the basin of attraction of the

DFE (2.4). On the other hand, the disease will be established in the population if R0 > 1.

To ensure disease elimination is independent of the initial size of the infected individuals, it is

necessary to show that the DFE is globally-asymptotically stable. This is established using a

global stability result by Castillo-Chavez et al. [13].

Theorem 2.3.2. The DFE of the control-free model (2.1) is globally asymptotically stable

provided that R0 < 1.

Proof. We only need to show that the conditions (H1) and (H2) of the global stability result

by Castillo-Chavez et al. [13] stated in Theorem 1.4.9 hold when R0 < 1. In our model (2.1),

we have X1 = S,X2 = (I,W ) and X∗1 = N . The system

dX1

dt
= F (X1, 0) = µN − µS

is linear and its solution can be easily found as

S(t) = N − (N − S(0))e−µt.

Clearly S(t) −→ N as t −→∞, regardless of the value of S(0). Thus X∗1 is globally asymptot-

ically stable. Next, we have that

G(X1, X2) =

βWS − (γ + µ)I

νI − σW

 .
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We obtain

A =

−(γ + µ) βN

ν −σ


which is clearly an M–matrix with non-negative off diagonal elements. Hence, we find

Ĝ(X1, X2) =

βW (N − S)

0

 .

Since 0 ≤ S ≤ N , it is obvious that Ĝ(X1, X2) ≥ 0. This completes the proof.

2.3.3 Outbreak growth rate

We have seen that introducing any number of infected individuals into a community cannot

lead to an outbreak whenever R0 < 1. At this stage, the disease can be completely eradicated

from the community since DFE is globally asymptotically stable. However, if R0 > 1, then the

DFE (2.4) becomes unstable and a disease outbreak occurs in the community. The positive

(dominant) eigenvalue of the Jacobian at the DFE is typically referred to as the initial outbreak

growth rate [84]. The Jacobian matrix J0 of model (2.1) evaluated at the DFE (2.4) is

J0 =


−µ 0 −βN

0 −(µ+ γ) βN

0 ν −σ

 . (2.6)

The Jacobian matrix J0 has 3 distinct eigenvalues given by

λ1 = −µ,

λ2 =
1

2

[
−(µ+ γ + σ)−

√
(µ+ γ − σ)2 + 4σ(µ+ γ)R0

]
,

λ3 =
1

2

[
−(µ+ γ + σ) +

√
(µ+ γ − σ)2 + 4σ(µ+ γ)R0

]
.

We can see that λ1, λ2 < 0. Thus, the positive (dominant) eigenvalue is given by

λ+ = λ3. (2.7)

Graphically, the value of λ+ > 0 represents the steepness of the ascending infection curve (with

respect to time). Thus, a higher λ+ implies a more severe disease outbreak. Note that ifR0 < 1,
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then all the three eigenvalues become negative confirming Theorem 2.3.1. The epidemiological

implications of this is that when there is no control measure to reduce the spread of the infection

such that R0 > 1, then an outbreak will occur in the entire community and will grow at a rate

λ+. To obtain the expected magnitude of this outbreak, it is necessary to determine the final

epidemic size relation of the model.

2.3.4 Final outbreak size

Our analyses have shown that when R0 > 1 a waterborne disease outbreak occurs and grows

at the rate λ+. The likely magnitude of this outbreak is often called the expected final size of

the outbreak [57]. The final outbreak size of the SIR epidemiological models and some similar

models are given by the relation

Z = 1− exp(−R0Z), (2.8)

where Z denotes the proportion of the population who becomes infected at some point during

the outbreak. This also applies to our model (2.1) [84]. This result implies that if there is

no control intervention to reduce the spread of the disease such that R0 > 1 and an outbreak

occurs, then the final outbreak size of the epidemic can be determined by the relation (2.8).

2.3.5 Stability analysis of the endemic equilibrium

The long-term dynamics of a disease is characterized by the stability at the endemic equilibrium

[52]. In order to determine the long-term dynamics of the waterborne disease, we investigate

the stability of model (2.1) at the endemic equilibrium (EE). When R0 > 1, a unique EE occurs

in the model and is given by

(Se, Ie,W e) = (N/R0, µσ(R0 − 1)/(νβ), νIe/σ) . (2.9)

Obviously, Ie will vanish if R0 ≤ 1. This confirms that the disease cannot be endemic when

R0 ≤ 1. The stability analyses of the EE (2.9) are summarized as follows [51, 43, 44, 84, 83]:

Theorem 2.3.3. The unique EE (2.9) is locally asymptotically stable whenever R0 > 1.
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(a) Plot of S(t) vs. time. (b) Plot of I(t) vs. time.

Figure 2.1: Numerical solution of the model (2.1) for R0 = 1.1455.

Theorem 2.3.4. The unique EE (2.9) is globally asymptotically stable whenever R0 > 1.

A simple illustration of the long-term dynamics of model (2.1) forR0 > 1 is presented in Figures

2.1(a) and 2.1(b). The Figures are obtained by solving model (2.1) numerically using parameter

values from published data and a realistic range as shown in Table 2.1. This demonstrates the

dynamics of model (2.1) in the absence of any control intervention strategy or external influences

like seasonal variation over a long period of 2000 days.

2.3.6 Effects of seasonal variation

Waterborne disease outbreaks such as cholera have been associated with seasonal variations of

weather, rainfall, humidity, water temperature, floods, drought and temperature [19, 65]. Here,

we numerically investigate the effects of seasonal variations on the dynamics of our model. In

the simulations, we consider a sine function with period of 365 days to model the seasonal

oscillations. Using a similar approach in [19, 65, 80], we replace the contact rate β in model

(2.1) by the sine function

β(t) = β(1 + δ sin(2πt/365)), (2.10)

where β is the mean contact rate and δ describes the relative amplitude of seasonal variations.

The numerical solutions of model (2.1) using the sine function are given in Figures 2.2(a) and
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(a) Plot of S(t) vs. time. (b) Plot of I(t) vs. time.

Figure 2.2: Numerical solution of the model (2.1) considering seasonal variation.

2.2(b). The figures describe the oscillations generated by our model due to seasonal variations.

From the numerical solutions of model (2.1) in the presence and absence of seasonal variations,

we observe some differences in their solutions. Particularly, in the absence of seasonal variations,

we observe from the Figures 2.1(a) and 2.1(b) that there are no oscillations in the solutions

of model (2.1). Thus seasonal variations have some influence on the dynamics of waterborne

disease.

We have shown that in the absence of any control intervention strategy such that R0 > 1 an

outbreak which grows at a rate λ+ with the expected final size Z occurs in the population.

This outbreak persists in the population whenever R0 > 1. To minimize the chances of such

outbreak, we need the intervention of control strategies that can keep the basic reproduction

number below unity.

2.4 Vaccination model

Vaccination is one of the control strategies for reducing the spread of waterborne diseases such

as cholera. There are two types of effective oral cholera vaccines currently available and each

can offer about 50-90% protection against the disease [99]. According to WHO [99], the vaccine

(Dukoral) has been shown to provide short-term protection of 85-90% against V. cholerae O1
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among all age groups at 4-6 months following immunization. The other vaccine (Shanchol)

provides longer-term protection against V. cholerae O1 and O139 in children under five years

of age. To determine the effects of vaccination in reducing the spread of waterborne diseases,

we extend model (2.1) by assuming that susceptible individuals are vaccinated at rate φ with

a vaccine whose efficacy is ε to obtain the model

Ṡ(t) = µN(t)− βS(t)W (t)− (µ+ φ)S(t),

V̇ (t) = φS(t)− (1− ε)βVW − µV,

İ(t) = βS(t)W (t) + (1− ε)βVW − (µ+ γ)I(t), (2.11)

Ẇ (t) = νI(t)− σW (t),

Ṙ(t) = γI(t)− µR(t),

where V (t) is vaccinated individuals at time t. The feasible region of model (2.11) is given by

Φv =
{

(S, V, I,W,R) ∈ R5
+ : S ≤ S0

v , V ≤ V 0
v , I ≤ N, R ≤ γN/µ, W ≤ νN/σ

}
, (2.12)

where S0
v = µN

µ+φ
, V 0

v = φN
µ+φ

and N = S + V + I + R. The region Φv is positively invariant,

thus model (2.11) is mathematically and epidemiologically well posed in Φv.

2.4.1 Analysis of the vaccination model

The DFE of the vaccination model (2.11) is given by

(S0
v , V

0
v , I

0
v ,W

0
v ) =

(
µN

µ+ φ
,
φN

µ+ φ
, 0, 0

)
(2.13)

and the vaccination reproduction number is

Rv
0 =

µ+ (1− ε)φ
µ+ φ

R0. (2.14)

This threshold quantity Rv
0 represents the expected number of secondary infections that result

from introducing a single infected individual into an otherwise susceptible population in the

presence of vaccination [84, 85]. We can rewrite equation (2.14) as

Rv
0 = EvR0, Ev =

µ+ (1− ε)φ
µ+ φ

. (2.15)
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The following equations

Ev < 1⇐⇒ Rv
0 < R0, ∀ 0 < ε, φ ≤ 1, (2.16)

Ev = 1⇐⇒ Rv
0 = R0, for ε = 0 or φ = 0, (2.17)

hold. These equations can be verified by elementary algebraic manipulation. Equation (2.16)

implies that vaccination decreases the number of secondary infected individuals by a factor Ev

or alternatively, vaccination decreases R0 by a factor Ev [65]. The parameter ε = 0, means

that vaccine has no effect or is useless [85] while φ = 0, means that no susceptible individual

is vaccinated. Therefore, the above discussion suggests that vaccination has some influence in

reducing the number of secondary infections across the population provided 0 < ε, φ ≤ 1.

The quantity Ev measures the effectiveness of vaccination as a control intervention strategy in

reducing the spread of waterborne diseases. Since R0 − Rv
0 = R0(1 − Ev) and 0 < Ev ≤ 1,

then Ev −→ 1 means that vaccination has no effect while Ev −→ 0 means that vaccination has

great effect. Therefore, the effectiveness of vaccination Ev can be express in percentages as

E0
v = (1− Ev)× 100. (2.18)

This means that vaccination reduces the number of secondary infections by E0
v percent. To

determine the short-term dynamics of waterborne diseases in the presence of vaccination, we

investigate the stability of the vaccination model at DFE.

Theorem 2.4.1. The DFE of the vaccination model (2.11) is both locally and globally asymp-

totically stable provided that Rv
0 < 1.

Theorem 2.4.1 can be proved using a similar approach in the proof of Theorem 2.3.2 and a

stability result from Theorem 2 of van den Driessche and Watmough [90]. The epidemiological

implication of Theorem 2.4.1 is that waterborne disease will be eradicated from the entire pop-

ulation using vaccination, provided Rv
0 < 1. We have shown that infections can be eradicated

in the absence of control measures provided R0 < 1. Since Rv
0 < R0 < 1, we can deduce from

the above that introducing vaccination will lead to faster eradication of the outbreak. On the

other hand, if vaccination is not strong enough such that Rv
0 > 1, then a waterborne disease
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outbreak occurs in the population. The vaccination-induced outbreak growth rate is given by

λ+v =
1

2

[
−(µ+ γ + σ) +

√
(µ+ γ − σ)2 + 4σ(µ+ γ)Rv

0

]
. (2.19)

Since Rv
0 ≤ R0, we obtain

λ+v ≤ λ+. (2.20)

This shows that vaccination reduces the outbreak growth rate. Epidemiologically, this result

demonstrates that even when vaccination is not strong enough such that an outbreak occurs in

the population, the outbreak will be less severe compared to when no control was introduced.

Equation (2.19) can be rewritten as

λ+v =
1

2

[
−(µ+ γ + σ) +

√
(µ+ γ + σ)2 − 4σ(µ+ γ)(1−Rv

0)
]
.

From this, it is easy to see that when Rv
0 = 1, the outbreak growth rate vanishes. Therefore,

to have any chance of outbreak in the community, the vaccination reproduction number must

be greater than unity.

2.5 Treatment model

Effective treatment of waterborne disease is very important in reducing the spread of the disease.

Some waterborne diseases like cholera can kill within hours of contacting the disease if there

is no proper treatment. If people infected with cholera are treated quickly and properly, the

mortality rate is less than 1% but if they are left untreated, the mortality rate rises to 50 - 60%

[78, 87]. Hence, it is necessary to investigate how to reduce the spread of waterborne disease

using treatment as a control intervention strategy. We introduce treatment in the control-free

model (2.1) by assuming that infected individuals are treated at rate τ (where 0 ≤ τ ≤ 1)

and treated individuals T (t) recover due to treatment at rate γτ to obtain the treatment model
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given by

Ṡ(t) = µN(t)− βS(t)W (t)− µS(t),

İ(t) = βS(t)W (t)− (µ+ γ + τ)I(t),

Ṫ (t) = τI(t)− (µ+ γτ )T, (2.21)

Ẇ (t) = νI(t)− σW (t),

Ṙ(t) = γI(t) + γτT (t)− µR(t).

The solutions of model (2.21) enter the feasible region

Φτ =
{

(S, I, T,W,R) ∈ R5
+ : S ≤ N, I ≤ N, T ≤ T o, R ≤ Ro, W ≤ νN/σ

}
, (2.22)

where T o = τN/(µ+γτ ), Ro = γN/µ+τN/(µ(µ+γτ )) and N = S+I+T +R. The region Φτ

is positively invariant, thus model (2.21) is mathematically and epidemiologically well posed in

Φτ .

2.5.1 Analysis of the treatment model

The DFE of the treatment model (2.21) is given by

(S0
τ , I

0
τ , T

0
τ ,W

0
τ ) = (N, 0, 0, 0) (2.23)

and the treatment reproduction number is

Rτ
0 = R0Eτ , (2.24)

where

Eτ =
µ+ γ

µ+ γ + τ
. (2.25)

The threshold quantity Rτ
0 represents the expected number of secondary infections that results

from introducing a single infected individual into an otherwise susceptible population in the

presence of treatment. Clearly, the following equations

Eτ < 1⇐⇒ Rτ
0 < R0 ∀ τ 6= 0, (2.26)

Eτ
i = 1⇐⇒ Rτ

0 = R0, for τ = 0, (2.27)
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hold. Epidemiologically, this suggests that treatment of infected individual has some influence

in reducing the number of secondary infections in the population provided that 0 < τ ≤ 1.

To determine the short-term dynamics of waterborne diseases in the presence of treatment, we

investigate the stability of the treatment model at DFE.

Theorem 2.5.1. The DFE of the treatment model (2.21) is both locally and globally asymptot-

ically stable, provided Rτ
0 < 1.

Biologically speaking, Theorem 2.5.1 implies that waterborne disease can be eradicated from

the population through treatment of infected individuals whenever Rτ
0 < 1. However, if in-

fected individuals are not properly treated such that Rτ
0 > 1, then an outbreak occurs in the

population. The treatment-induced outbreak growth rate is given by

λ+τ =
1

2

[
−(µ+ γ + τ + σ) +

√
(µ+ γ + τ − σ)2 + 4σ(µ+ γ + τ)Rτ

0

]
. (2.28)

To determine the strength of this outbreak, we compare it with the outbreak growth rate in

the absence of control intervention.

Theorem 2.5.2. Suppose that τ ≥ 0, then λ+τ ≤ λ+. Furthermore, λ+τ = λ+ if and only if

τ = 0.

Proof. Given that

λ+ = 1
2

[
−(µ+ γ + σ) +

√
(µ+ γ − σ)2 + 4σ(µ+ γ)R0

]
. (2.29)

Let M = γ + µ+ σ, P = γ + µ− σ, then M − P = 2σ > 0. We rewrite equation (2.29) as

(2λ+ +M)2 = P 2 + 4σ(µ+ γ)R0 (2.30)

and equation (2.28) as

(2λ+τ +M + τ)2 = (P + τ)2 + 4σ(µ+ γ + τ)Rτ
0. (2.31)

Subtracting equation (2.31) from (2.30) and simplifying gives

(2λ+ +M)2 − (2λ+τ +M)2 = 2τ(M − P ) + 4τλ+τ ≥ 0.

Hence, λ+τ ≤ λ+ if τ ≥ 0.
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The above result can be summarized as follows:

Theorem 2.5.3. When Rτ
0 > 1, the DFE of the treatment model (2.21) is unstable with a

lower outbreak growth rate than that of the control-free model (2.1).

This illustrates that treatment of infected individuals reduces outbreak growth rate.

2.6 Water purification model

According to the World Health Organization [93], unsafe water supply, poor sanitation and

poor hygiene are the major causes of waterborne diseases. A significant number of cases of the

disease could be reduced through access to clean water supply, provision of adequate sanitation

facilities and better hygiene practices. To determine the effects of water purification as a

control intervention strategy, we extend model (2.1) by assuming that water purification reduces

pathogen concentration at a rate d to obtain

Ṡ(t) = µN(t)− βS(t)W (t)− µS(t),

İ(t) = βS(t)W (t)− (µ+ γ)I(t), (2.32)

Ẇ (t) = νI(t)− (d+ σ)W (t),

Ṙ(t) = γI(t)− µR(t),

where 0 ≤ d ≤ 1. The solutions of model (2.32) enter the feasible region

Φw =
{

(S, I,W,R) ∈ R4
+ : S ≤ N, I ≤ N, R ≤ γN/µ, W ≤ νN/(σ + d)

}
, (2.33)

where N = S+I+R. The region Φw is positively invariant, thus model (2.32) is mathematically

and epidemiologically well posed in it.

2.6.1 Analysis of the water purification model

The DFE of the water purification model (2.32) is given by

(S0
w, I

0
w,W

0
w) = (N, 0, 0) (2.34)
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and the water purification reproduction number is

Rw
0 = R0Ew, (2.35)

where

Ew =
σ

σ + d
. (2.36)

The threshold quantity Rw
0 represents the expected number of secondary infections that results

from introducing a single infected individual into an otherwise susceptible population in the

presence of water purification. Similarly, we obtain that

Ew < 1⇐⇒ Rw
0 < R0, ∀ d 6= 0, (2.37)

Ew = 1⇐⇒ Rw
0 = R0, if d = 0. (2.38)

This suggests that water purification has some influence in reducing the number of secondary

infections in the population provided that 0 < d ≤ 1. To determine the short-term dynamics

of waterborne in the presence of water purification, it is necessary to investigate the stability

of the water purification model at the DFE.

Theorem 2.6.1. The DFE of the water purification model (2.32) is both locally and globally

asymptotically stable, whenever Rw
0 < 1.

Epidemiologically, Theorem 2.6.1 means that waterborne disease can be eliminated from the

entire population through water purification whenever Rw
0 < 1. On the contrary, if water

purification is not effective enough such that Rw
0 > 1, then a waterborne disease outbreak

occurs in the population. The water purification-induced outbreak growth rate is given by

λ+w =
1

2

[
−(µ+ γ + d+ σ) +

√
(µ+ γ − d− σ)2 + 4(σ + d)(µ+ γ)Rw

0

]
. (2.39)

Using the same approach in the proof of Theorem 2.5.2, we can show that if d ≥ 0, then

λ+w ≤ λ+. (2.40)

This shows that water purification also reduces the outbreak growth rate.
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2.7 Multiple control intervention strategy model

We have seen that each of the single control intervention strategy have some influence in

reducing the number of secondary infections in the population. Furthermore, we discovered

that even when the single control is not effective enough and an outbreak occurs, the outbreak

growth rate of each of the single control is lower than that of the control-free model. In this

section, we consider the multiple control intervention strategy, a situation whereby all the three

control intervention strategies are introduced into the model (2.1) simultaneously to obtain

Ṡ(t) = µN(t)− βS(t)W (t)− (µ+ φ)S(t),

V̇ (t) = φS(t)− (1− ε)βVW − µV,

İ(t) = βS(t)W (t) + (1− ε)βVW − (µ+ γ + τ)I(t), (2.41)

Ṫ (t) = τI(t)− (µ+ γτ )T,

Ẇ (t) = νI(t)− (d+ σ)W (t),

Ṙ(t) = γI(t) + γτT (t)− µR(t).

All the solutions of model (2.41) enter the feasible region

Φc =
{

(S, V, I, T,W,R) ∈ R6
+ : S ≤ S0

v , V ≤ V 0
v , I ≤ N, T ≤ T oc , R ≤ Ro

c ,W ≤ W o
c

}
, (2.42)

where N = S + V + I + T + R, T oc = τN/(µ + γτ ), Ro
c = γN/µ + τN/(µ(µ + γτ )) and

W o
c = νN/(σ + d). The region Φc is positively invariant, thus it is sufficient to consider the

solutions of model (2.41) in Φc.

2.7.1 Analysis of the multiple control intervention strategy model

The multiple control intervention strategy model (2.41) has DFE given by

(S0
c , V

0
c , I

0
c , T

0
c ,W

0
c ) =

(
µN

µ+ φ
,
φN

µ+ φ
, 0, 0, 0

)
, (2.43)

and a basic reproduction number given by

Rc
0 = R0Ec, (2.44)
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where

Ec =
σ(γ + µ)(µ+ (1− ε)φ)

(d+ σ)(γ + µ+ τ)(µ+ φ)
= EwEτEv. (2.45)

The threshold quantity Rc
0 represents the expected number of secondary infections that results

from introducing a single infected individual into an otherwise susceptible population in the

presence of vaccination, treatment and clean water. From equations (2.45) and (2.44), we have

that

Ec < 1⇐⇒ Rc
0 < R0. (2.46)

This implies that the multiple control intervention strategy reduces the number of secondary

infections by a factor Ec. Equations (2.16), (2.26), (2.37) and (2.46) can be written in compact

form as

Rc
0,Rv

0,Rw
0 ,Rτ

0 < R0. (2.47)

To determine the short-term dynamics of waterborne in the presence of the multiple control

intervention strategy, we investigate the stability of the multiple control intervention strategy

model at the DFE.

Theorem 2.7.1. If Rc
0 < 1, the DFE (2.43) of model (2.41) is globally asymptotically stable

and unstable if Rc
0 > 1.

The epidemiological implication of this is that waterborne diseases will be eradicated from the

entire population using the multiple control intervention strategy whenever Rc
0 < 1.

2.7.2 Multiple control strategy vs. single control strategy

Whenever an outbreak occurs in an unprepared population, the population will consider the

most available and accessible control intervention strategy (First Aid/ First Control) at that

point in time while making plans for other controls if they are not satisfied with the first control.

Here, we consider a situation where the multiple control intervention strategy is being intro-

duced to facilitate reducing the spread of waterborne disease across a population in the presence
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of the single control intervention strategy. To understand the effects of the multiple control

intervention in the presence of one of the single control intervention strategies, it is desirable

to determine the relationship between their various reproduction numbers. For vaccination, we

rewrite equation (2.44) as

Rc
0 = Rv

0Kv, Kv =
σ(γ + µ)

(d+ σ)(γ + µ+ τ)
,

and have that

Kv < 1⇐⇒ Rc
0 < Rv

0. (2.48)

Equation (2.48) means that the multiple control strategy reduces the number of secondary

infections in the presence of vaccination by a factor Kv. Similarly, for the treatment model we

have

Rc
0 = Rτ

0Kτ , Kτ =
σ(µ+ (1− ε)φ)

(d+ σ)(µ+ φ)
.

It is easy to observe that

Kτ < 1⇐⇒ Rc
0 < Rτ

0. (2.49)

Equation (2.49) implies that the multiple control intervention strategy reduces the number of

secondary infections in the presence of treatment by a factor Kτ
i . Finally, for water purification

we have

Rc
0 = Rw

0Kw, Kw =
(γ + µ)(µ+ (1− ε)φ)

(γ + µ+ τ)(µ+ φ)
.

Obviously,

Kw < 1⇐⇒ Rc
0 < Rw

0 . (2.50)

This implies that the multiple control intervention strategy reduces the number of secondary

infections in the presence of water purification by a factor Kw. Combining equations (2.47),

(2.48), (2.49) and (2.50) we obtain

Rc
0 ≤ Rw

0 ,Rτ
0,Rv

0 ≤ R0, (2.51)
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which is equivalent to

Ec
0 ≤ Ew

0 , E
τ
0 , E

v
0 ≤ 1. (2.52)

This also reveals the importance of the multiple control intervention strategy. Consequently,

this scenario for an endemic community settings will imply that they should focus more on

exploring the multiple control intervention strategy as it has the greatest positive impact on

reducing the spread of waterborne disease than each of the single control intervention strategy.

Suppose that the multiple control strategy is not effective enough such that Rc
0 > 1. Then the

DFE (2.43) becomes unstable and a disease outbreak occurs. The outbreak growth rate of the

multiple control strategy model is given by

λ+c =
1

2

[
−(µ+ γ + τ + σ + d) +

√
(µ+ γ + τ − σ − d)2 + 4(σ + d)(µ+ γ + τ)Rc

0

]
. (2.53)

Similar to each of the single control strategy, we can show that the multiple control reduces

the outbreak growth rate.

Theorem 2.7.2. Suppose that d ≥ 0, φ ≥ 0, τ ≥ 0 and ε ≥ 0, then λ+c ≤ λ+. Furthermore,

λ+c = λ+ if and only if d = φ = τ = ε = 0.

The proof can be established by the same approach used in the proof of Theorem 2.5.2. We have

shown that each of the single control intervention strategy and the multiple control intervention

strategy reduces the outbreak growth rate. Next, we show that the multiple control intervention

strategy reduces the outbreak growth rate more than each of the single control intervention

strategy. The details are given in Theorem (2.7.3) below.

Theorem 2.7.3. Suppose that d ≥ 0, φ ≥ 0, τ ≥ 0 and ε ≥ 0, then

λ+c ≤ λ+v , λ+c ≤ λ+τ , λ+c ≤ λ+w . (2.54)

Furthermore,

λ+c = λ+v = λ+τ = λ+w ⇐⇒ d = φ = τ = ε = 0. (2.55)

The procedure for the proof is the same as in Theorem 2.5.2.

36



Table 2.1: Parameter values for numerical simulations with reference

Parameter Symbol Value Reference

Contact rate β 0.214 day−1 [19, 36]

Shedding rate ν 0.50 day−1 [50, 41]

Birth/death rate µ 0.0001 day−1 [19]

Natural recovery rate γ 0.0592 day−1 [42]

Recovery rate due to treatment γτ 0.1184 day−1 [70]

Net decay rate of pathogen in water σ 0.333 day−1 [19]

Efficacy of vaccine ε 0.85 day−1 [65]

Rate of reduction of W due to water purification d 0.0667 day−1 assumed

Rate of vaccination φ 0.07 day−1 [65]

Treatment rate τ 0.005 day−1 [65]

(a) Plot of R0,Rv0,Rτ0 ,Rw0 ,Rc0 vs. β. (b) Plot of I(t) vs. time for the various models.

Figure 2.3: Graphical representation of the basic reproduction numbers and infected individuals

of the models.
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2.7.3 Sensitivity analysis of the multiple control strategy model

We have seen that the multiple control intervention strategy is the best control strategy for

reducing the spread of waterborne disease. In order to determine the impact of each of the

control parameters in the presence of the multiple control intervention strategy, it is necessary to

carry out sensitivity analysis. Sensitivity analysis is used to determine the relative importance

of model parameters to disease transmission and prevalence [17, 39]. We perform the analysis

by calculating the sensitivity index of the basic reproduction number Rc
0 (2.44) with respect to

the control parameters d, ε, τ and φ using the normalized forward sensitivity approach defined

below.

Definition[17]. The normalized forward sensitivity index of a variable u, that depends differ-

entiably on a parameter ρ, is defined as:

Υu
ρ =

∂u

∂ρ
× ρ

u
. (2.56)

Note that when Υu
ρ > 0, we say that ρ increases the value of u as it value increases. On the

other hand, if Υu
ρ < 0 we say that ρ decreases the value of u as it value increases. Using

this definition, we compute the sensitivity index of each of the control parameters as follows.

The sensitivity index of Rc
0 with respect to d, ε, τ and φ denoted by Υ

Rc
0

d ,Υ
Rc

0
ε ,Υ

Rc
0

τ and Υ
Rc

0
φ

respectively, are given by

Υ
Rc

0
d =

−d
d+ σ

, ΥR
c
0

ε =
−φε

µ+ (1− ε)φ
, ΥR

c
0

τ =
−τ

γ + µ+ τ
, Υ

Rc
0

φ =
−φεµ

(µ+ (1− ε)φ)(µ+ φ)
.

This shows that each of the control parameters decreases Rc
0 as the parameter increases. How-

ever, it is difficult to determine the exact magnitude of the sensitivity index since all the

sensitivity indices are parameter dependent. Therefore, to estimate the magnitude of these

indices, we resort to parameter values from published data as shown in Table 2.1. Using these

parameter values, we calculate the estimate magnitude of the indices as

Υ
Rc

0
d = −0.1668, ΥR

c
0

ε = −5.6132, ΥR
c
0

τ = −0.0778, Υ
Rc

0
φ = −0.0081.

The above results show that vaccine efficacy ε is the most sensitive control parameter with

sensitivity index of −5.6132 followed by reduction in pathogen concentration d, then treatment
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rate τ and vaccination rate φ. Therefore, decreasing (or increasing) vaccine efficacy by 10%

increases (or decreases) the basic reproduction number by 56.132%. Note that these results are

consistent with intuitive expectation.

We note that an alternative approach which has been used by some authors is to simply consider

parameter values in the literature [59, 64, 65, 85]. By considering the values in Table 2.1, one can

conclude that vaccination is the best single control intervention, followed by water purification

and then treatment. Numerical illustrations of this can be found in Figures 2.3(a) and 2.3(b).

From Figure 2.3(a), we can see that the inequality

Rc
0 ≤ Rv

0 ≤ Rw
0 ≤ Rτ

0 ≤ R0 (2.57)

holds. This is consistent with the results in [59, 65, 85] even though the models are not the

same. Similarly, we can show that

λ+c ≤ λ+v ≤ λ+w ≤ λ+τ ≤ λ+. (2.58)

2.7.4 Optimal control problem

Even though the multiple control intervention strategy has been shown to be the best control

measure for reducing the spread of water borne disease, some communities where this disease

is endemic cannot afford it due to limited resources. A successful multiple control intervention

scheme is one which reduces disease related deaths with minimum cost [59]. To minimize the

cost of implementing the multiple controls (vaccination, treatment and water purification), we

assume that the control parameters φ, τ, d in the multiple control model (2.41) are measurable

functions of time t and then formulate an appropriate optimal control functional that minimizes

the cost of implementing the controls subject to the model. For simplicity, we let φ = u1(t), τ =

u2(t), d = u3(t). Therefore, the multiple control scheme is said to be optimal if it minimizes

the objective functional

J(u1, u2, u3) =

∫ tf

0

[
A1S(t) + A2I(t) + A3W (t) + C1u

2
1(t) + C2u

2
2(t) + C3u

2
3(t)
]
dt (2.59)

subject to the multiple control model (2.41), where tf is the final time and the coefficients,

A1, A2, A3, C1, C2, C3 are balancing cost coefficients. The performance specification involves
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minimizing the number of susceptible, infected individuals and pathogens in water reservoir, as

well as the costs for applying the controls. We consider quadratic functions for measuring the

control cost [100, 2, 59, 85].

The existence of the optimal control triple (u∗(t), u∗2(t), u
∗
3(t)) = u∗(t) that minimizes our

objectives functional (2.59) subject to the state system which is the multiple control model

(2.41) comes from Fleming and Rishel [32], i.e.,

J(u∗(t)) = min {J : u(t) ∈ U, t ∈ [0, tf ]} , (2.60)

where u(t) = (u1(t), u2(t), u3(t)) and U = {u(t) : u(t) are measurable, 0 ≤ u(t) ≤ 1} is the

control set. The Pontryagin’s Maximum Principle [71] introduces adjoint functions that enable

us to combine the state system (2.41) to the objective functional (2.59). This principle converts

the problem of minimizing the objective functional subject to the state system into a problem of

pointwise minimizing a Hamiltonian H, with respect to u1(t), u2(t) and u3(t). The Hamiltonian

for the objective functional (2.59) and the state system is given by

H = A1S(t) + A2I(t) + A3W (t) + C1u
2
1(t) + C2u

2
2(t) + C3u

2
3(t)

+λS (µN(t)− βS(t)W (t)− (µ+ u1)S(t)) + λV (u1S(t)− (1− ε)βVW − µV )

+ λI (βS(t)W (t) + (1− ε)βVW − (µ+ γ + u2)I(t)) + λT (u2I(t)− (µ+ γτ )T )

+ λW (νI(t)− (u3 + σ)W (t)) + λR (γI(t) + γτT (t)− µR(t)) , (2.61)

where λS, λV , λI , λT , λW and λR are the associated adjoints for the states S, V, I, T,W and R

respectively.

Given an optimal control triple (u∗(t), u∗2(t), u
∗
3(t)) together with corresponding states

(S∗, V ∗, I∗, T ∗,W ∗, R∗) that minimizes J(u1, u2, u3) over U , there exists adjoint variables
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λS, λV , λI , λT , λW and λR satisfying

dλS
dt

= −A1 + λS(βW + u1)− λV u1 − λIβW,

dλV
dt

= λV ((1− ε)βW + µ)− λI(1− ε)βW,

dλI
dt

= −A2 + λI(µ+ γ + u2)− λIu2 − λWν − λRγ, (2.62)

dλT
dt

= λT (µ+ γτ )− λRγτ ,

dλW
dt

= −A3 + λSSβ + λV (1− ε)V β − λI(βS + (1− ε)βV ) + λW (σ + u2),

dλR
dt

= −λRµ,

together with transversality conditions

λk(tf ) = 0, for k = S, V, I, T,W and R.

Note that the differential equations (2.62) governing the adjoint variables were obtained by

differentiating the Hamiltonian function (2.61) with respect to the corresponding states as

follows:

−dλk
dt

=
dH

dk
.

Consider now the optimality conditions

0 =
∂H

∂u1
, 0 =

∂H

∂u2
and 0 =

∂H

∂u3
. (2.63)

By solving for u1 in the optimality conditions and subsequently taking bounds into account,

we obtain

u∗1 = min {1, S(λS − λV )/(2C1)} . (2.64)

Similarly, we obtain that

u∗2 = min {1, I(λI − λT )/(2C2)} , u∗3 = min {1,WλW/(2C3)} . (2.65)

These results demonstrate that there exist an optimal control triple (u∗1, u
∗
2, u
∗
3) that can reduce

the spread of waterborne disease using multiple control intervention with minimum cost. Since
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(a) Plot of u1(t) vs. time. (b) Plot of u2(t) vs. time.

(c) Plot of u3(t) vs. time.

Figure 2.4:

the optimal control triple is parameter dependent, to determine their magnitudes for the period

of the outbreak we resort to numerical simulations using published data. The numerical solution

of the optimal control triple are obtained using the parameter values in Table 2.1 together with

the following cost factors : A1 = 6.00, A2 = 2.00, A3 = 100.00, C1 = 10.00, C2 = 10.00,

C3 = 10.00 which are taken from [59]. We used the forward-backward algorithm of [49, 59]

to obtain the optimal control triple that minimize the cost functional, and they are shown in

Figures 2.4(a) – 2.4(c). Figures 2.4(a) and 2.4(c) suggest that it is optimal to begin vaccinating

and providing clean water from the onset of the outbreak (or as soon as possible) and to

continue vaccinating and purifying contaminated water with maximal effort until the outbreak

ends. This is realistic since vaccination and water purification are preventive strategies and
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they are highly recommended from the onset of the outbreak (even before the outbreak). On

the other hand, Figure 2.4(b) suggests that it is optimal to treat individuals immediately as

they get infected. The optimal treatment is also reasonable since treatment can only take place

when someone is already infected and prompt treatment is highly recommended [78, 87].

A simple demonstration of the impact of the optimal control triple on the dynamics of wa-

terborne disease is given in Figures 2.5(a)–2.5(d). The Figures are obtained by solving the

multiple control model numerically for two different sets of control parameters values: (i) us-

ing the optimal control triple, and (ii) using the control parameter values given in Table 2.1.

From the Figures, we observe a big difference between the solutions of the model for the two

cases. This reveals the impact of the optimal control triple on the dynamics of the disease.

For instance, Figure 2.5(c) reveals that the maximum number of infected individuals when the

optimal control triple is implemented is about one hundred, while the maximum number of

infected individuals when the multiple control is considered is about nine hundred. This shows

that the optimal control triple does not only minimize the cost of implementing the control, but

also keeps the number of infected individual very low throughout the duration of the outbreak.

A similar huge impact can be seen in the number of susceptible, vaccinated and treated indi-

viduals. Note that the reason for this huge impact can be traced back to our parameter values

of the control parameters and optimal control triple. For example, the multiple control takes a

vaccination rate φ = 0.070, while the optimal control triple suggests that φ = u∗1 = 1.000 from

the onset of the outbreak. Similar results can also be seen for treatment and water purification.

Finally, Figure 2.5(d) show that at most 30 people can be treated at each point in time during

the outbreak under multiple control whereas more than 90 people can be treated when optimal

control is considered.
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(a) Plot of S(t) vs. time. (b) Plot of V (t) vs. time.

(c) Plot of I(t) vs. time. (d) Plot of T (t) vs. time.

Figure 2.5: Graphical representation of S(t), V (t), I(t) and T (t) vs. time (t) in the presence of

the multiple control intervention strategy and optimal control strategy.

2.8 Discussion

Dynamics and control intervention strategies for waterborne disease in a homogeneous mixing

population/community have been explored. Our analyses have shown that significant informa-

tion concerning the dynamics of waterborne disease can be obtained by analysing an appropriate

mathematical epidemiological model.

In the absence of any control intervention strategy, we have shown that it is possible for the

waterborne disease to be eradicated from the entire population provided the basic reproduction

number R0 is less than unity. This can happen if the infected individuals begin to practice
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healthy living like staying away from contaminated water, boiling water before drinking, proper

sewage disposal etc. On the other hand, if R0 > 1, an outbreak which grows at a rate λ+ might

occur with a final outbreak size Z. This outbreak will persist in the entire population, since

the endemic equilibrium is globally asymptotically stable. Furthermore, we discovered that

seasonal variations have influence on the dynamics of the disease.

We investigated the benefits of introducing control intervention strategies such as vaccination,

treatment, water purification and the multiple control intervention strategy by extending the

control-free model accordingly. We computed the basic reproduction numbers for vaccination,

treatment, water purification and the multiple control intervention strategy models given re-

spectively, as Rv
0, Rτ

0, Rw
0 and Rc

0. Analyses of our models have shown that vaccination,

treatment, water purification and multiple control intervention strategy reduce the number of

secondary infections by factors Ev, Eτ , Ew and Ec respectively. Further analysis revealed that

the multiple control intervention strategy has the greatest effects on reducing the number of

secondary infections, followed by vaccination, water purification and then treatment. We fur-

ther showed that the disease can be quickly eradicated by any of these control intervention

strategies provided that the corresponding basic reproduction number is less than one. How-

ever, if the control is not effective enough such that Rv
0 > 1, Rτ

0 > 1, Rw
0 > 1 or Rc

0 > 1, then

an outbreak occurs. We discovered that each of the control intervention strategies reduces the

outbreak growth rates. Further analysis revealed that the multiple control intervention strategy

has the greatest impact on reducing the outbreak growth rate, followed by vaccination, water

purification and then treatment.

We focused on analysing the multiple control model since it is the best among the single control

and control-free models. Firstly, we investigated the effects of the control parameters d, ε, τ

and φ in reducing the number of secondary infections in the presence of the multiple control

intervention strategy by calculating the sensitivity index of Rc
0 with respect to the parameters.

The results of the analysis revealed that each of the control parameters decreases the number

of secondary infections in the presence of the multiple control intervention strategy. Further-

more, we discovered that vaccine efficacy is the most important control parameter followed by

reduction in pathogen concentration, treatment rate and then vaccination rate. Secondly, we
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investigated the best strategy to minimize the spread of waterborne disease using the multiple

control with a minimum cost. By analysing an appropriate optimal control cost functional

subject to the multiple control model, we obtained an optimal control triple (u∗1, u
∗
2, u
∗
3) that

reduces the spread of infections with a minimizes cost. The results of our optimal control anal-

ysis revealed that it is optimal to treat individuals immediately as they get infected and begin

to vaccinate and provide clean water as soon as the outbreak starts and continue with maximal

effort until the outbreak ends.

The dynamical behaviour of our models agree with the intuitive expectation of waterborne

disease dynamics in real life. Thus, the models can be used to predict future evolution of

waterborne disease in communities where the disease is endemic. It can also be used to study

how to control waterborne disease with minimum cost using control intervention strategies such

as vaccination, treatment and/or water purification.

Even though this study has provides new insights into the dynamics and control intervention

strategies for waterborne disease in a homogeneous population setting, we acknowledge that it

has some limitations. Firstly, we assumed that the total population is constant. This is not

always true in real life especially for an outbreak that last for a long period of time. We also

assumed homogeneity in disease transmission, but is not always true since heterogeneity is an

essential part of epidemiology and has been shown to have influence on disease transmission

[76, 23]. In reality, individuals in any society belong to different socio economic classes and can

migrate from one locality to another, thus affecting the spread of the disease. All these aspects

will be considered in our future work.
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Chapter 3

Analysis of a waterborne disease model

with socioeconomic classes

Waterborne diseases continues to pose serious public health problems in the world today. We

formulate a 2-patch waterborne disease model such that each patch represents a particular

socioeconomic class. Important mathematical features of the model such as the basic repro-

duction number, outbreak growth rate etc are obtained and analysed accordingly. The effects of

considering socioeconomic classes on the transmission dynamics of the disease are determined.

The disease free equilibrium and endemic equilibrium are derived and their stabilities investi-

gated. Sensitivity analyses are carried out to determine the importance of model parameters

to the disease transmission and prevalence. The analytical results are supported by numerical

illustrations. We conclude by extending some of the results of the 2-patch model to the general

n-patch model. The contents of this Chapter have been drafted for publication [21].

3.1 Introduction

Waterborne diseases such as cholera has remained a major public health problem in developing

countries, where outbreaks continue to occur and are intensely interconnected with poverty,

malnutrition and poor sanitation [39, 15, 18]. Approximately 700,000 children die due to dehy-

dration every year from diarrhoea caused by unsafe water and poor sanitation [89]. According
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to the World Health Organization [96], the cholera incidence has increased steadily since 2005.

In 2011, 58 nations reported 589,854 cholera cases and 7728 deaths [98, 97]. Due to poor

surveillance and under-reporting, the above statistics is likely less than the actual cases and

deaths globally [65].

The position of an individual or group within a hierarchical social structure depends on occu-

pation, education and income. This position is refereed to as socioeconomic status (SES)[81].

Individuals in low socio-economic class (SEC) are characterized by poverty, malnutrition, poor

sanitation and low standard of living whereas individuals in high SEC are known for high stan-

dard of living, quality education, good job with better income, clean environment and access

to clean water. Apart from impoverished countries, low SEC individuals can also be found

in places such as refugee camps, areas devastated by war, famine or natural disasters. While

everyone is susceptible to waterborne disease, individuals in low SEC are likely to be more vul-

nerable to the disease [39]. As a result, the transmission dynamics of waterborne disease will

vary across the SEC. Each society or community is made up of different socioeconomic classes.

One of the methods of studying the dynamics of a disease is by formulating and analysing an

appropriate mathematical epidemiological model of the disease. A mathematical epidemiolog-

ical model for waterborne disease incorporating socioeconomic classes is expected to improve

the understanding of the dynamics of the disease. Understanding this dynamics is necessary

for defining control intervention strategy for the disease.

A number of mathematical models such as those by [12, 72, 19, 33, 36, 42, 84, 62, 64, 80, 39, 76]

have explored the dynamics of waterborne disease. These works have contributed immensely to

the understanding of the dynamics and control intervention strategy for waterborne diseases.

To the best of our knowledge, the effects of socioeconomic classes on waterborne disease has

not yet been explored. The aim of this study is to improve the understanding of the dynamics

of waterborne disease by formulating an appropriate mathematical epidemiological model that

incorporates socioeconomic classes.

This chapter is comprised of 5 sections. We start by presenting the general n-socioeconomic

class model in Section 3.2. Next, we consider a special case of the model when n = 2 in Section

3.3. In Section 3.4, some of the results of the 2-socioeconomic class model are extended to the
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Figure 3.1: Schematic representation of n-socioeconomic classes in a population. Each of the

yellow boxes represents human population in a SEC and each blue circle below it represents

the water source for the corresponding class. The horizontal arrows indicate migration of

individuals across socioeconomic classes as their socioeconomic status changes.

general n-socioeconomic class model. Finally, the discussion of the results are given in Section

3.5.

3.2 Model formulation

Let N be the total human population of a community at risk for waterborne disease infections.

We partition N into n socioeconomic classes (SECs) or homogeneous subpopulations of size

Nj. Each SEC is made up of susceptible Sj, infected Ij and recovered individuals Rj together

with a compartment Wj that measures pathogen concentration in water reservoir. According

to [84], waterborne disease can be transmitted through direct (person-to-person) transmission

and indirect (water-to-person) transmission. Both direct and indirect transmissions have been

shown to contribute to the spread of waterborne disease, but the relative importance of each

type of transmission varies among outbreaks [62, 29]. Here we assume no person-to-person

transmission and only consider transmission through contact with contaminated water, as it is

often considered to be the main driver of waterborne disease outbreaks [64, 80]. As a result,

secondary infections are generated when an infected individual sheds pathogens into the water

source, which susceptible individuals subsequently come in contact with. Susceptible individ-
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Table 3.1: Variables and parameters of the model (3.2) and their meanings

N(t) total human population

Sj(t) susceptible individuals in the jth SEC

Ij(t) infected individuals in the jth SEC

Rj(t) recovered individuals in the jth SEC

Wj(t) measure of pathogen concentration in water reservoir of the jth SEC

bj contact rate between Sj(t) and Wj(t)

βj scaled contact rate between Sj(t) and Wj(t)

δjk rate at which individuals migrate from Sj(t) to Sk(t)

γj recovery rate of Ij(t)

αj growth rate of pathogens in water source j

νj shedding rate of pathogens by Ij(t)

ξj decay rate of pathogens in water source j

µ natural death rate

uals Sj become infected through contact with the contaminated water source Wj at rate bj.

Infected individuals Ij can contaminate the water source by shedding pathogens into it at rate

νi and recover naturally at rate γj. Pathogens in the contaminated water source grow at rate

αj and decay at rate ξj. Natural death occurs in all the SECs at rate µ. The lower SECs have

fewer resources to treat water, or to prevent shedding (such as rainwater washing feces into

drinking water) than the higher SECs, who have in addition more access to clean water sources

along with the ability to treat the water before drinking. Furthermore, recovery rates of the

higher SECs would likely be greater than that of the lower SECs due to their ability to reach

medical treatment in a timely manner. We assume that SEC 1 is the lowest class followed

by SEC 2 in this order until SEC n, for n > 2. Based on these, we obtain the inequalities:

β1 > β2 > · · · > βn, ν1 > ν2 > · · · > νn and γ1 < γ2 < · · · < γn. Note that individuals

can migrate from lower to higher SEC as they acquire more education or get a better paying

job. On the other hand, some individuals may lose their jobs leaving them with lower income.

In this case such individuals will come down to a lower SEC. As a result of these, we assume
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that Sj(t) migrate to Sk(t) at the rate δjk. In particular, we assume that Sj(t) can migrate to

the next lower SEC Sj−1(t) or to the next higher SEC Sj+1(t). We are excluding jump in the

system to ensure a smooth migration. However, the policy makers and society may encourage

more individuals to migrate from lower to higher SEC through provision of bursary for educa-

tion, job creation and some welfare packages. We do not consider change in SEC of Ij(t) and

Rj(t). This is because Ij(t) will concentrate on getting well first before thinking of education,

job or income while migration of Rj(t) will not affect the spread of infection. Putting these

formulations and assumptions together, we obtain the model

Ṡ1(t) = µN1(t)− β1S1(t)W1(t)− µS1(t)− δ12S1(t) + δ21S2(t),

İ1(t) = β1S1(t)W1(t)− (µ+ γ1)I1(t),

Ẇ1(t) = ν1I1(t)− σ1W1(t),

Ṙ1(t) = γ1I1(t)− µR1(t),

Ṡ2(t) = µN2(t)− β2S2(t)W2(t)− µS2(t)−
3∑
j=1

δ2jS2(t) +
3∑
j=1

δj2Sj(t),

İ2(t) = β2S2(t)W2(t)− (µ+ γ2)I2(t),

Ẇ2(t) = ν2I2(t)− σ2W2(t), (3.1)

Ṙ2(t) = γ2I2(t)− µR2(t),

... =
...

Ṡn(t) = µNn(t)− βnSn(t)Wn(t)− µSn(t)−
n∑

j=n−1

δnjSn(t) +
n∑

j=n−1

δinSj(t),

İn(t) = βnSn(t)Wn(t)− (µ+ γn)In(t),

Ẇn(t) = νnIn(t)− σnWn(t),

Ṙn(t) = γnIn(t)− µRn(t).

where σj = ξj − αj > 0, j = 1, 2, . . . , n and δjj = δkk = 0 ∀ j, k. By rescaling model (3.1)

as follows: ij = Ij/Nj, sj = Sj/Nj, rj = Rj/Nj, wj = σjWj/(νjNj) and βj = bjνjNj/σj, we
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obtain a non-dimensionless version of it given by

ṡ1(t) = µ− β1s1w1 − µs1 − δ12s1 + δ21s2,

i̇1(t) = β1s1w1 − (µ+ γ1)i1,

ẇ1(t) = σ1(i1 − w1),

ṙ1(t) = γ1i1 − µr1,

ṡ2(t) = µ− β2s2w2 − µs2 −
3∑
j=1

δ2js2 +
3∑
j=1

δj2sj,

i̇2(t) = β2s2w2 − (µ+ γ2)i2,

ẇ2(t) = σ2(i2 − w2), (3.2)

ṙ2(t) = γ2i2 − µr2,
... =

...

ṡn(t) = µ− βnsnwn − µsn −
n∑

j=n−1

δnjsn +
n∑

j=n−1

δjnSj,

i̇n(t) = βnsnwn − (µ+ γn)in,

ẇn(t) = σn(in −Wn),

ṙn(t) = γnin − µrn.

All parameters are assumed positive and can be found in Table (3.1). The initial conditions

are assumed as follows:

sj(0) > 0, ij(0) ≥ 0, wj(0) ≥ 0, rj(0) ≥ 0. (3.3)

Based on the inequalities β1 > β2 > . . . > βn, ν1 > ν2 > . . . > νn and γ1 < γ2 < . . . < γn,

we assume that moving from jth SEC to a higher (j + 1)th SEC decreases contact rate βj and

shedding rate νj by a factor p < 1 and q < 1 respectively, and increases the recovery rate γj by

a factor c > 1. Thus, we can rewrite βj, νj and γj as follows:

βj = pj−1β1, νj = qj−1ν1, γj = cj−1γ1, (3.4)

where 0 < p, q < 1 and c > 1.

Let s̄ = (s1(t), s2(t), . . . , sn(t)), ī = (i1(t), i2(t), . . . , in(t)), w̄ = (w1(t), w2(t), . . . , wn(t)) and
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r̄ = (r1(t), r2(t), . . . , rn(t)). The feasible region of model (3.2) is given by

Ω = ΩH × ΩP ⊂ R3n
+ × Rn

+, (3.5)

where

ΩP =
{
w̄ ∈ Rn

+ : wj ≤ 1
}
,

is the feasible region of the pathogen components and

ΩH = {(s̄, ī, r̄) ∈ R3n
+ :

n∑
j=1

(sj + ij + rj) = n},

is the feasible region of the human components. Therefore, model (3.2) is well-posed mathe-

matically and epidemiologically. Hence, it is sufficient to study the dynamics of (3.2) in Ω.

3.3 SIWR model with two socioeconomic classes

In this section, we consider the case where there are only two SECs in the community. The

analysis of this special case gives insight into the dynamics of the general n-SECs model (3.2)

which is our aim in this paper. Setting n = 2 in (3.2) gives

ṡ1 = µ− β1s1w1 − µs1 − δ12s1 + δ21s2,

i̇1 = β1s1w1 − (µ+ γ1)i1,

ẇ1 = σ1(i1 − w1),

ṙ1 = γ1i1 − µr1, (3.6)

ṡ2 = µ− pβ1s2w2 − µs2 − δ21s2 + δ12s1,

i̇2 = pβ1s2w2 − (µ+ cγ1)i2,

ẇ2 = σ2(i2 − w2),

ṙ2 = cγ1i2 − µr2.

The subscript 1 is used to emphasis SEC 1 while the subscript 2 is used to emphasis SEC 2.

53



3.3.1 The basic reproduction number

Model (3.6) has a unique disease free equilibrium (DFE) given by

(s01, i
0
1, w

0
1, w

0
2, i

0
2, w

0
2) = (2δ21/(δ12 + δ21), 0, 0, 2δ12/(δ12 + δ21), 0, 0) . (3.7)

The s01 and s02 can also be rewritten as s01 = /2(1+ δ12/δ21) and s02 = 2/(1+ δ21/δ12). Obviously,

the DFE depends on the migration rates across the SECs in such a way that s01 = s02 ⇐⇒ δ21 =

δ12, s01 > s02 ⇐⇒ δ21 > δ12 and s01 < s02 ⇐⇒ δ21 < δ12. If δ12 = δ21, then the DFE becomes

(s01, i
0
1, w

0
1, s

0
2, i

0
2, w

0
2) = (1, 0, 0, 1, 0, 0) . (3.8)

The basic reproduction number measures the expected number of secondary infections that

result from introducing a single infected individual into a completely susceptible population.

We compute the basic reproduction number of model (3.6) using the next generation matrix

approach of van den Driessche and Watmough [90]. The next generation matrices of model

(3.6) are

F =


0 0 β1s

0
1 0

0 0 0 0

0 0 0 pβ1s
0
2

0 0 0 0

 , V =


µ+ γ1 0 0 0

−σ1 σ1 0 0

0 0 µ+ cγ1 0

0 0 −σ2 σ2

 .

Then

FV−1 =


R1 β1s

0
1/σ1 0 0

0 0 0 0

0 0 R2 pβ1s
0
2/σ2

0 0 0 0

 , (3.9)

where

R1 = 2β1δ21/((µ+ γ1)(δ21 + δ12)), R2 = 2pβ1δ12/((µ+ cγ1)(δ21 + δ12)). (3.10)

The matrix FV−1 has two positive eigenvalues given by

λ = R1, λ = R2. (3.11)
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Thus, the basic reproduction number R∗ of the entire population in the presence of the two

SECs is the largest of these two eigenvalues which can be written as

R∗ = max {R1,R2} . (3.12)

These threshold quantities R1 and R2 are the basic reproduction number/type reproduction

number for SEC 1 and SEC 2 respectively [75, 37]. Since R∗ = max{R1,R2}, it implies that

one of the SECs is driving the outbreak. Therefore, we need to identify the SEC that is driving

the outbreak so that control interventions can be properly implemented to reduce the chances

of outbreak.

3.3.2 The dominant SEC

To determine the SEC that is driving the outbreak (i.e., the dominant SEC), it is necessary to

investigate the relationship between R1 and R2. We investigate the relationship between R1

and R2 for the following cases: (i) δ21 = δ12 (ii) δ21 > δ12 (iii) δ21 < δ12.

We begin with the case (i) δ21 = δ12, a situation where individuals migrate across the two SECs

at equal rate. For this case, R1 and R2 become

R1 = β1/(µ+ γ1), R2 = pβ1/(µ+ cγ1). (3.13)

From equation (3.13), we have that

R2 < R1, (3.14)

since 0 < p < 1 and c > 1. This implies that R∗ = R1 under the assumption of uniform

migration rates, suggesting that the outbreak is been driven by the lower SEC 1. Therefore, for

this case, the SEC 1 should be the target of control intervention strategies in order to effectively

reduce the spread of the disease.

Case (ii), δ12 < δ21, a situation where more individuals are migrating from high to low SEC.

For this second case, R1 and R2 become

R1 =
2β1δ21

(µ+ γ1)(δ12 + δ21)
, R2 =

2pβ1δ12
(µ+ cγ1)(δ12 + δ21)

. (3.15)
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We can show that

R2 < R1.

This implies that the same results that hold under the assumption of uniform migration rates

also hold for this case when more individuals are migrating from high to low SEC.

Case (iii), δ12 > δ21, a situation where more individuals are migrating from low to high SEC.

Unlike in the previous cases, the analysis of this case will be carried out under the assumption

for the two extreme ends: when there is a very small difference between the two SECs (i.e.,

(p, c) −→ 1) and when there is a very big difference between the two SECs (i.e., p −→ 0, c −→

∞). This is because the basic reproduction numbers are parameter dependent, making it

difficult to compute. From the analysis, we obtain

R1 < R2 as (p, c) −→ 1, (3.16)

R2 < R1 as p −→ 0, c −→∞. (3.17)

From these results, we observe that when there is a very small difference between the two SECs,

there will be more secondary infections in SEC 2. On the other hand, when there is a very big

difference between the two SECs, there will be more secondary infections in SEC 1.

3.3.3 Homogeneous version of model (3.6)

In order to determine the effects of SECs, we compare the dynamics of the SECs model (3.6)

with the homogeneous version of the model. The homogeneous version of the model (3.6) is

obtained by considering the entire population as a homogeneous mixing population without

recognizing different SECs. When we consider homogeneity, model (3.6) reduces to

ṡ = µ− βsw − µs,

i̇ = βsw − (µ+ γ)i,

ẇ = σ(i− w), (3.18)

ṙ = γi− µr,
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where

β =
2∑
j=1

β1p
j−1Nj/N, γ =

2∑
j=1

γ1c
j−1Nj/N, σ =

2∑
j=1

σjNj/N.

The DFE and the basic reproduction number of the homogeneous model (3.18) are given by

(s0, i0, w0) = (1, 0, 0) , (3.19)

and

R0 = β/(µ+ γ), (3.20)

respectively.

3.3.4 Relationship between R1,R2 and R0

Here, we investigate the relationship between R1,R2 and R0 in order to determine the effects

of considering SECs in the transmission dynamics of waterborne disease. Using a similar

reasoning as in the previous section, we investigate the relationship between R1,R2 and R0 for

the following cases: (i) δ21 = δ12 (ii) δ21 > δ12 (iii) δ21 < δ12.

For the first case δ21 = δ12, we need to compare R0 with R1 and R2. Comparing R0 and R2,

we obtain

R0 −R2 =
β1N1

(µN + γ1N1 + cγ1N2)(µ+ cγ1)
[(µ+ cγ1)− p(µ+ γ1)] > 0,

so,

R2 < R0. (3.21)

Next, comparing R0 and R1 gives

R0 −R1 =
β1N2

(Nµ+ γ1N1 + cγ1N2)(µ+ γ1)
[p(µ+ γ1)− (µ+ cγ1)] < 0.

This implies that

R0 < R1. (3.22)

Thus, from equations (3.21) and (3.22), we have that

R2 < R0 < R1. (3.23)
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The inequality (3.23) shows that if individuals migrate across the SECs at equal rate, then

secondary infections will be dominated in the lower SEC followed by the homogeneous mixing

population case and finally the higher SEC.

For the remaining two cases i.e., δ12 < δ21 and δ12 > δ21, we compare R0 and R1 to obtain

R0 −R1 = β1

[
N1 + pN2

Nµ+ γ1N1 + cγ1N2

− 2δ21
(µ+ γ1)(δ12 + δ21)

]
. (3.24)

Taking limits of (3.24) gives

lim
p,c−→1

(R0 −R1) < 0, if, δ12 < δ21,

lim
p,c−→1

(R0 −R1) > 0, if, δ12 > δ21.

Similarly, by comparing R0 and R2 we have

lim
p,c−→1

(R0 −R2) < 0, if, δ12 < δ21,

lim
p,c−→1

(R0 −R2) > 0, if, δ12 > δ21.

These results suggest that migration rates (δ12, δ21) have some influence on the dynamics of

waterborne disease.

3.3.5 Stability analysis

The stability at the DFE determines the short-term dynamics of a disease, whereas its long-term

dynamics are characterized by the stability at the endemic equilibrium [52]. In this section,

we investigate the stability at the DFE and the endemic equilibrium (EE) of model (3.6) in

order to determine both the short-term and long-term dynamics of waterborne disease in the

presence of different SECs.

Stability of the disease free equilibrium

Theorem 3.3.1. The DFE (3.7) of model (3.6) is both locally and globally asymptotically stable

provided R∗ < 1.
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The proof of the theorem for the general case is given in Appendix ??. Theorem 3.3.1 implies

that waterborne disease will be eradicated from the entire population in the presence of different

SECs provided R∗ < 1.

Theorem 3.3.2. The DFE (3.19) of the homogeneous model (3.18) is both locally and globally

asymptotically stable provided R0 < 1.

The proof of Theorem 3.3.2 can be established using a similar approach given in Appendix ??.

Stability of the Endemic equilibrium

When R∗ > 1, a unique endemic equilibrium (EE) given by

(s∗1, s
∗
1, w

∗
1, s
∗
2, i
∗
2, w

∗
2) = (1/R1, µ(1− s∗1)/(µ+ γ1), i

∗
1, 1/R2, µ(1− s∗2)/(µ+ cγ1), i

∗
2) ,(3.25)

exists for model (3.6). Note that at the EE (3.25), δ12s1 = δ21s2. Therefore, we investigate the

global stability of the EE when δ12s1 = δ21s2.

Theorem 3.3.3. The unique EE (3.25) is globally asymptotically stable if δ12s1 = δ21s2.

The proof of Theorem 3.3.3 for the general case is given in Appendix 3.6.1. This implies that

the disease can persist when different SECs are considered provided δ12s1 = δ21s2. Biologically,

δ12s1 = δ21s2 means that equal number of individuals migrate in and out of the two SECs. Thus,

migration of individuals across the SECs is at equilibrium and we have shown that both DFE

and EE occur when this happen. However, when δ12s1 6= δ21s2, it means more individuals will

be migrating into either of the two SECs. Furthermore, we will see later that migration have

significant influence on the dynamics of waterborne disease. Therefore, it will be interesting to

know the extent migration will affect the long-term dynamics of the system by investigating

the stability at the EE when δ12s1 6= δ21s2. This will be part of our future work.

Similarly, when R0 > 1, a unique EE exists in the homogeneous model (3.18) and is given by

(s∗, i∗, w∗) = (1/R0, µ(1− s∗)/(γ + µ), i∗) . (3.26)

Theorem 3.3.4. The unique EE (3.26) is globally asymptotically stable.
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We do not present the proof of Theorem 3.3.4 since the global stability of a similar model with

multiple transmission pathways has been done in [84] by constructing an appropriate Lyapunov

function. Alternatively, the proof of Theorem 3.3.4 can be established using a method based

on monotone dynamical systems, as developed in [51, 83].

3.3.6 Outbreak growth rate

If R∗ > 1, the DFE (3.7) becomes unstable and a waterborne disease outbreak occurs. De-

termining the rate at which this outbreak grows is necessary for understanding the dynamics

of the disease as well as informing the public health for proper management of the outbreak.

The positive (dominant) eigenvalue of the Jacobian at the DFE is typically referred to as the

outbreak growth rate [84]. The Jacobian matrix of (3.6) evaluated at the DFE is given by

J0 =



−δ12 µ −β1s01 δ21 0 0

0 −(µ+ γ1) β1s
0
1 0 0 0

0 σ1 −σ1 0 0 0

δ12 0 0 −δ21 µ −pβ1s02
0 0 0 0 −(µ+ cγ1) pβ1s

0
2

0 0 0 0 σ2 −σ2


. (3.27)

The Jacobian matrix (3.27) has five distinct eigenvalues given by

λ(i) = −(δ12 + δ21), (3.28)

λ−1 =
1

2

[
−(µ+ γ1 + σ1)−

√
(µ+ γ1 + σ1)2 − 4σ1(µ+ γ1)(1−R1)

]
, (3.29)

λ+1 =
1

2

[
−(µ+ γ1 + σ1) +

√
(µ+ γ1 + σ1)2 − 4σ1(µ+ γ1)(1−R1)

]
, (3.30)

λ−2 =
1

2

[
−(µ+ cγ1 + σ2)−

√
(µ+ cγ1 + σ2)2 − 4σ2(µ+ cγ1)(1−R2)

]
, (3.31)

λ+2 =
1

2

[
−(µ+ cγ1 + σ2) +

√
(µ+ cγ1 + σ2)2 − 4σ2(µ+ cγ1)(1−R2)

]
. (3.32)

We can easily observe that λ(i), λ−1 , λ
−
2 are negative, while λ+1 and λ+2 are positive whenever

R∗ > 1. Thus, the outbreak growth rate of the entire population when the two SECs are

considered is given by

λ∗ = max
{
λ+1 , λ

+
2

}
. (3.33)
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The quantities λ+1 and λ+2 represent the outbreak growth rate of SEC 1 and SEC 2 respectively.

We observe from the above equations that if R1 = 1 and R2 = 1, then the outbreak growth

rate vanishes. On the other hand, if R1 < 1 and R2 < 1, the all the eigenvalues have negative

real part. This implies that the model is locally asymptotically stable if R1 < 1 and R2 < 1.

Thus waterborne disease can be eliminated from the entire population if the initial size of the

infected population is in the basin of attraction of the DFE. This confirms that to have any

chances of outbreak, the basic reproduction number must be greater than unity. The value of

λ∗ > 0 represents the steepness of the ascending infection curve (with respect to time). Hence,

a higher λ∗ implies a more severe disease outbreak. Equation (3.33) suggests that one of the

SECs is still driving the outbreak at this endemic stage (i.e., when the basic reproduction

numbers are greater than unity). Analyses of basic reproduction numbers R1, R2 and R0 have

shed light on the dynamics of waterborne disease in the presence of SECs. Therefore, at the

endemic stage of the outbreak, there is a need to determine the SEC where the outbreak will

be more severe as well as investigate the effects of considering SECs.

Using a similar argument as in the case of the basic reproduction numbers, we determine the

SEC that is driving the outbreak at this endemic stage for the following cases: (i) δ21 = δ12

(ii) δ21 > δ12 (iii) δ21 < δ12.

Next, we obtain the relationship between λ+1 and λ+2 . Since pathogen in water can decay

naturally, we assume that σj = σ. Let M = µ+ γ1 +σ. We rewrite equations (3.30) and (3.32)

as

(2λ+1 +M)2 = M2 − 4σ(µ+ γ1)(1−R1), (3.34)

(2λ+2 +M)2 = M2 − 4γ1λ
+
2 (c− 1)− 4σ(µ+ cγ1)(1−R2), (3.35)

respectively. Subtracting equation (3.35) from (3.34) and simplifying gives

(2λ+1 +M)2 − (2λ+2 +M)2 = 4γ1(c− 1)(λ+2 + σ) + 8σβ1(δ21 − pδ12)/(δ21 + δ12). (3.36)

When δ12 = δ21, we have

λ+2 < λ+1 .
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This shows that under the assumption of equal migration rates between the SECs, the outbreak

will grow faster (i.e., a more severe disease outbreak) in the SEC 1. For the remaining cases

when δ12 6= δ21, taking limits of (3.36) gives

λ+1 < λ+2 as (p, c) −→ 1, if δ12 > δ21,

λ+1 > λ+2 as (p, c) −→ 1, if δ12 < δ21.

These results show that it is possible to have a greater outbreak growth rate in SEC 2 when

more individuals migrates from SEC 2 to SEC 1, otherwise outbreak will be dominated in the

SEC 1.

We determine the effects of SECs at the endemic stage of the outbreak by comparing λ+1 and

λ+2 with the outbreak growth rate of the homogeneous model (5.16). The outbreak growth rate

of the homogeneous model (3.18) is given by

λ+ =
1

2

[
−(µ+ γ + σ) +

√
(µ+ γ + σ)2 − 4σ(µ+ γ)(1−R0)

]
. (3.37)

Comparing λ+1 and λ+, we have that

(2λ+1 +M)2 − (2λ+ +M)2 = 4(γ − γ1)(λ+ + σ) + 4σ(2δ21β1 − (δ21 + δ12)β)/(δ21 + δ12).

Thus, we obtain

λ+ < λ+1 , if δ12 ≤ δ21.

By a similar reasoning, comparing λ+2 and λ+ gives

(2λ+2 +M)2 − (2λ+ +M)2 = 4(cγ1 − γ)(λ+ + σ) + 4σ(2pδ21β1 − (δ21 + δ12)β)/(δ21 + δ12).

Hence, we obtain

λ+2 < λ+, if δ21 ≤ δ12.

These show that considering SECs also has impact on the dynamics of waterborne disease at

the endemic stage of the outbreaks.

62



Table 3.2: Parameter values for numerical simulations with reference

Parameter Symbol Value Reference

Total contact rate β1 + β2 0.30 day−1 [76]

Birth/death rate µ 0.02 day−1 [76]

Recovery rate in SEC 1 γ1 0.0793 day−1 [84]

Net decay rate of pathogen in water σj 0.0333 day−1 [84]

Rate of migration from SEC 1 to SEC 2 δ12 0.022 [30]

Rate of migration from SEC 2 to SEC 1 δ21 0.015 [30]

3.3.7 Model simulations

Analytical results for the SEC model (3.6) gives an insight into the dynamics of waterborne

disease in the presence of SECs. In particular, we determine the relationship between the

basic reproduction numbers (R0,R1,R2 ) and outbreak growth rates (λ+, λ+1 , λ
+
2 ) for the two

extreme cases: when there is a very small difference between the SECs (i.e., p, c −→ 1) and

when there is a very big difference between the SECs (i.e., p −→ 0, c −→∞). It is not enough

to draw conclusions based on these two extreme cases because they are not the only cases in

real life. Other cases where p, c are between these two extreme cases are difficult to calculate

analytically as the mathematical features involve are parameter dependent.

To quantitatively represent the dynamics of waterborne disease in the presence of SECs, we

resort to the use of parameter values that can best represent possible real life scenarios em-

anating from our analytical results to carry out the numerical simulations. Such results will

improve the understanding of the dynamics of the disease, hence, we can draw conclusions from

it. Parameter values used are chosen from published data. These parameter values are given in

Table 3.2. The constants p and c are estimated such that β1 ∼ β2 and γ1 ∼ γ2. Particularity,

we take p = 0.8657 and c = 1.050.
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(a) (b)

Figure 3.2: Numerical illustrations of the effects of δ12 and δ21 on the basic reproduction numbers

using the parameter values in table 3.2 (a) plot of R0,R1,R2 vs β1 for δ12 = 0.015, δ21 = 0.022

(b) plot of R0,R1,R2 vs β1 for δ12 = 0.022, δ21 = 0.015.

Effects of migration of individuals across SECs

Here, we investigate the effects of migration of individuals across SECs on the dynamics of the

disease. We can achieve this by either solving the SEC model (3.6) numerically or by comparing

the mathematical features of SEC model (3.6) with that of the homogeneous model (3.18). Nu-

merical simulations of the basic reproduction numbers (R1,R2,R0) are given in Figures 3.2(a)

and 3.2(b). We perform the numerical simulation by fixing every other parameter and varying

only δ12 or δ21 as shown in the Figures. These Figures reveal the effects of considering SECs.

From the Figures, we discover that considering SECs can lead to more secondary infections

if greater number of individuals migrate from SEC 2 to SEC 1 or less secondary infections if

greater number of individuals migrate from SEC 1 to SEC 2. This shows that it is possible

for secondary infections to be dominated by either of the SECs as migration rate changes even

when the differences in transmission of the disease between the two SECs are neither too small

nor too big. We also notice that considering SECs can lead to more or less secondary infections

when the differences in transmission of the disease between the two SECs are neither too small

nor too big.
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(a) (b)

Figure 3.3: Numerical illustrations of the effects of δ12 and δ21 on the outbreak growth rates

(a) plot of λ+, λ+1 , λ
+
2 vs β1 for δ12 = 0.015, δ21 = 0.022 (b) plot of λ+, λ+1 , λ

+
2 vs β1 for

δ12 = 0.022, δ21 = 0.015.

Next, we perform numerical illustrations of the outbreak growth rates using the same parameter

values used for the basic reproduction numbers. The numerical illustrations of the outbreak

growth rates given in Figures 3.3(a) and 3.3(b) reveal the effects of considering SECs at the

endemic stage of the outbreak. Similar to our analytical results, we notice that considering

SECs can lead to a more severe outbreaks (greater outbreak growth rate) which will be driven

by SEC 1 if more individuals migrate from SEC 2 to SEC 1 or a less severe outbreaks which

will be driven by SEC 2 if more individuals migrate from SEC 1 to SEC.

To investigate the effects of migration rate on the number of susceptible and infected individuals,

we solve the SEC model (3.6) numerically for the same parameter values used above. We notice

from the results shown in Figures 3.4 and 3.5 that the dynamics of the SEC model (3.6) also

depends on the migration rate across the SECs. Specifically, we observe that the number of

infected and susceptible individuals in SEC 1 are greater when more individuals migrate from

SEC 2 to SEC 1, while the number of infected and susceptible individuals in SEC 2 are greater

when more individuals migrate from SEC 1 to SEC 2.
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(a) (b)

Figure 3.4: Plot of proportion of susceptible individuals vs. time for (a) δ12 = 0.022, δ21 =

0.015 (b) δ12 = 0.015, δ21 = 0.022.

(a) (b)

Figure 3.5: Plot of proportion of infected individuals vs. time for (a) δ12 = 0.022, δ21 = 0.015

(b) δ12 = 0.015, δ21 = 0.022.
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3.3.8 Sensitivity analysis

To understand the relative importance of the different parameters (factors) responsible for

disease transmission as well as its prevalence, it is necessary to carry out sensitivity analysis of

the basic reproduction number and endemic equilibrium. According to [17], the initial disease

transmission is directly related to basic reproduction number whereas disease prevalence is

directly related to endemic equilibrium point, specifically to the magnitudes of the infected

classes. We calculate the sensitivity indices of the basic reproduction numbers (R0, R1, R2),

and the endemic equilibrium points, (s∗, i∗, w∗) and (s∗1, s
∗
2, i
∗
1, i
∗
2, w

∗
1, w

∗
2), with respect to the

parameters in the model. These indices reveal to us the importance of each parameter to disease

transmission and prevalence. They are the parameters that should be taken into consideration

while defining control strategy.

Definition[17]. The normalized forward sensitivity index of a variable, u, that depends dif-

ferentiably on a parameter, ρ, is defined as:

Υu
ρ =

∂u

∂ρ
× ρ

u
. (3.38)

When Υu
ρ > 0, we say that ρ increases the value of u as its value increases, while if Υu

ρ < 0 we

say that ρ decreases the value of u as its value increases.

Sensitivity indices of the basic reproduction numbers

Since we have an explicit formula for the basic reproduction numbers (R0, R1, R2), we can

derive an analytical expression for the sensitivity indices of these basic reproduction numbers

with respect to each of the parameters of the model. For example, the sensitivity index of R1

with respect to β1 is given by,

ΥR1
β1

=
∂R1

∂β1
× β1
R1

= 1.000, (3.39)

and is independent of any parameter. We notice that some of the sensitivity indices are in-

dependent of parameters while others are parameter dependent. Those that are parameter

dependent are calculated using the parameter values in Table 3.2. The remaining sensitivity

indices of the basic reproduction numbers are given in Table 3.3.
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For the R0, we observe from Table 3.3, that the most sensitive parameter is β1, followed by β2,

γ2, γ1 and then µ. Hence one of the most important parameters for R0 is the contact rate in

SEC2 with sensitivity index of 0.5360. Since ΥR0
β1

= 0.5360, decreasing (or increasing) the β1

by 10% also decreases (or increases) R0 by 5.36%.

For the SEC 1, we observe that the most sensitive parameters for the sensitivity index of R1

is also β1 with each having a sensitivity index of magnitude 1, followed by γ1, δ12 and δ21 and

then µ. We can see that the sensitivity index of R1 with respect to δ12 has a positive sign

while the sensitivity index of R1 with respect to δ21 has a negative sign. This implies that the

rate at which individuals migrate from SEC 1 decreases R1 while the rate at which individuals

migrate into SEC 1 increases R1.

Similarly, for the SEC 2, the most sensitive parameters for the sensitivity index of R2 is β2with

each having a sensitivity index of magnitude 1. Other important parameters are γ2 followed

by δ12 and then δ21 and then µ. We also discover that the rate at which individuals migrate

from SEC 2 (δ21) decreases R2 while the the rate at which individuals migrate into SEC 2 (δ12)

increases it. The sign of the sensitivity indices of R0,R1 and R2 with respect to each of the

parameters agrees with intuitive expectation.

We also observe that

ΥR0
β1

+ ΥR0
β2

= ΥR1
β1

= ΥR2
β2

= 1. (3.40)

From the above results, we notice that the most important parameters for the basic reproduc-

tion numbers are β1 and β2 having sensitivity indices of magnitude 1.000. This implies that

decreasing (or increasing) any of these two parameters by 10% increases (or decreases) the

corresponding basic reproduction number by 10%.

The magnitude of sensitivity index of R1 and R2 with respect to the rates of migration (δ12, δ21)

across SECs is always less than that of R1 and R2 with respect to the parameters (β1 and

beta2). From

ΥR1
δ12

=
δ12
R1

∂R1

∂δ12
=
−δ12

δ21 + δ12
, ΥR2

δ21
=
δ21
R2

∂R2

∂δ21
=
−δ21

δ21 + δ12
(3.41)

ΥR1
δ21

=
δ21
R1

∂R1

∂δ21
=

δ12
δ21 + δ12

, ΥR2
δ12

=
δ12
R2

∂R2

∂δ12
=

δ21
δ21 + δ12

(3.42)
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Table 3.3: Sensitivity index of R0, R1 and R2

Parameter R0 R1 R2

β1 0.5360 1.000 0.000

β2 0.4640 0.000 1.000

γ1 -0.3915 -0.7986 0.000

γ2 -0.4111 0.000 -0.8063

µ -0.1975 -0.2014 -0.1937

δ12 0.000 -0.5946 0.4054

δ21 0.000 0.5946 -0.4054

it is clear that the magnitudes of ΥR1
δ12
,ΥR1

δ21
,ΥR2

δ12
and ΥR2

δ21
are less than 1. Even though migration

rates (δ21, δ12) across the SECs have some influence on the spread of infection, this result shows

that their influence on R1 and R2 is less than that of contact rates (β1, β2). Therefore, for

effective control of the disease in each of the SECs, we should control the contact rates first

before controlling the migration rates. From equations (3.41) and (3.42), we observe that

ΥR1
δ21

= −ΥR1
δ12
, ΥR2

δ21
= −ΥR2

δ12
. (3.43)

This shows that δ21 and δ12 have equal but opposite impact on R1 and R2. Another important

parameter for the basic reproduction number is µ having sensitivity indices as follows: ΥR0
µ =

−0.1975, ΥR1
µ = −0.2014 and ΥR2

µ = −0.1937.

Sensitivity indices of the endemic equilibrium

Since we have an explicit formula for the endemic equilibrium, we can also derive an analytical

expression for its sensitivity indices with respect to each of the parameters described in Table

3.2. For example, the sensitivity index of s∗1 with respect to β1 is given by,

Υ
s∗1
β1

=
∂s∗1
∂β1
× β1
s∗1

= −1.000. (3.44)
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The remaining sensitivity indices of the EE (3.26) and EE (3.25) with respect to the parameters

of the models are given in Table 3.4.

From Table 3.3 and 3.4 we notice some interesting relationships among the sensitivity indices.

We observe that the sensitivity index of s∗ with respect to any of the parameter ρ of the model

(3.18) is the negative of the sensitivity index of R0 with respect to the same parameter ρ, i.e.,

Υs∗

ρ = −ΥR0
ρ , (3.45)

irrespective of parameter value or population size. This shows that any parameter ρ will have

an equal but opposite influence on s∗ and R0. Similarly, the sensitivity index of s∗1 and R1, s
∗
2

and R2 also have the same relations:

Υs∗1
ρ = −ΥR1

ρ , Υs∗2
ρ = −ΥR2

ρ , (3.46)

where ρ is any of the parameters described in Table 3.2 except δ12 and δ21 which are independent

of the EE. Next, we observe that

Υi∗

ρ = Υw∗

ρ , Υi∗1
ρ = Υw∗

1
ρ , Υi∗2

ρ = Υw∗
2

ρ , (3.47)

for all parameters. This is obvious, since i∗ = w∗, i∗1 = w∗1, i
∗
2 = w∗2. Note that equation (3.43)

also holds for i∗1, i
∗
2, w

∗
1 and w∗2 i.e.,

Υ
i∗1
δ21

= −Υ
i∗1
δ12
, Υ

i∗2
δ21

= −Υ
i∗2
δ12
, Υ

w∗
1

δ21
= −Υ

w∗
1

δ12
, Υ

w∗
2

δ21
= −Υ

w∗
2

δ12
, (3.48)

showing that δ21 and δ12 have equal but opposite impact on i∗1, i
∗
2, w

∗
1 and w∗2. Having established

the above relationships, we proceed to interpret the results of the sensitivity indices of the EE

(3.25) and EE (3.26) described in Table 3.4.

The most sensitive parameter for i∗ is µ with sensitivity index of -2.0411. Since Υi∗
µ = −2.0411,

decreasing (or increasing) µ by 10% will increase (or decrease) i∗ by 20.411%. Other important

parameters are β1, β2 followed by γ2 and then γ1. Similar results also holds for w∗, since

i∗ = w∗.

We examine the sensitivity indices of i∗1, w
∗
1, i
∗
2 and w∗2 to assess the effects of SECs in the

prevalence of the disease. The most sensitive parameters for i∗1 is γ1 with sensitivity index of
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Table 3.4: Sensitivity index of the endemic equilibrium

Parameter S∗ I∗ W ∗ S∗1 S∗2 I∗1 I∗2 W ∗
1 W ∗

2

β1 -0.5360 -1.1143 -1.1143 -1.000 0.000 -0.0826 0.000 -0.0826 0.000

β2 -0.4640 -0.9646 -0.9646 0.000 -1.000 0.000 -0.0321 0.000 -0.0321

γ1 0.3915 0.0124 0.0124 0.7986 0.000 -3.3502 0.000 -3.3502 0.000

γ2 0.4111 0.0130 0.0130 0.000 0.8063 0.000 -2.1434 0.000 -2.1434

µ 0.1975 -2.0411 -2.041 0.2014 0.1937 0.1551 0.4852 0.1551 0.4852

δ12 0.000 0.000 0.000 0.000 0.000 -1.8998 0.6722 -1.8998 0.6722

δ21 0.000 0.000 0.000 0.000 0.000 1.8998 -0.6722 1.8998 -0.6722

magnitude 3.3502 followed by δ12 and δ21, µ and then β1. For i∗2, we discover that the most

important parameters for i∗2 is γ2 with sensitivity index of magnitude 2.1434 followed by δ12 and

δ21, µ and then β2. The same result in i∗1, i
∗
2 also hold for w∗1, w

∗
2 since Υ

i∗1
ρ = Υ

w∗
1

ρ and Υ
i∗2
ρ = Υ

w∗
2

ρ

for any parameter ρ of the model. This suggests that to effectively reduce the prevalence of

infection in the entire community at endemic stage of the outbreak, equal attention should be

given to treatment of infected individual and water purification.

3.4 The n-socioeconomic class model

In this section, we shall extend several results obtained in the 2-SEC model (3.6) to the more

general n-SEC model (3.2).

3.4.1 Disease free equilibrium for the n-SEC model

The unique DFE for the n-SEC model (3.2) is given by

E0
n = (s01, i

0
1, w

0
1, s

0
2, i

0
2, w

0
2, . . . , s

0
n, i

0
n, w

0
n), (3.49)
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where s01 = n/(1 + δ12
δ21

+ δ12
δ21

δ23
δ32

+ δ12
δ21

δ23
δ32

δ34
δ43

+ . . . + δ12
δ21

δ23
δ32

δ34
δ43
. . . δn−1 n

δn n−1
), s02 = δ12

δ21
s01, s03 =

δ12
δ21

δ23
δ32
s01, s04 = δ12

δ21

δ23
δ32

δ34
δ43
s01, . . ., s

0
n = δ12

δ21

δ23
δ32

δ34
δ43
. . . δn−1 n

δn n−1
s01, (i01, i

0
2, . . . , i

0
n) = (0, 0, 0, . . . , 0), and

(w0
1, w

0
2, . . . , w

0
n) = (0, 0, 0, . . . , 0). If δjk = δkj (i.e., rates of migration in and out of any SEC

are equal), then the DFE (3.49) becomes

(s01, i
0
1, w

0
1, s

0
2, i

0
2, w

0
2, . . . , s

0
n, i

0
n, w

0
n, ) = (1, 0, 0, 1, 0, 0, . . . , 1, 0, 0, ) . (3.50)

As we have seen earlier in the case n = 2, this special case will also be important for our

analysis in this general case. Note that the homogeneous version of model (3.2) is still (3.18)

except that

β = β1

n∑
j=1

pj−1Nj/N, γ = γ1

n∑
j=1

cj−1Nj/N, σ =
n∑
j=1

σjNj/N. (3.51)

3.4.2 The basic reproduction number for the n-SEC model

Since we have an explicit expression for the DFE of the n-SEC model, we can also derive the

basic reproduction number of the model using similar approach in the case n = 2. Using the

approach, the basic reproduction number of model (3.2) becomes

R∗ = max{Rj}, j = 1, 2, 3, . . . , n, (3.52)

where

Rj =
pj−1β1

(µ+ cj−1γ1)

δ12
δ21

δ23
δ32

δ34
δ43
· · · δj−1 j

δj j−1
s01. (3.53)

Note that the threshold quantity Rj is the basic reproduction number of the SEC j of model

(3.2).

Remark: Rj −→ 0 as j −→ ∞. Therefore, n should be chosen appropriately. The subscript j

is used to emphasize the SEC j.

To determine which of the SECs is driving the outbreaks for this general n-SEC model, we

consider the following cases:

Case i: δjk = δkj. For this case, the basic reproduction number (3.53) becomes

Rj = pj−1β1/(µ+ cj−1γ1). (3.54)

72



We can easily show that

Rj+1 < Rj, j = 1, 2, 3, . . . , n. (3.55)

This result demonstrates that under equal migration rate across the SECs, secondary infections

will be dominated by the lowest SEC. Therefore, the lower the SEC is driving the outbreak for

this case.

Case ii: δjk < δkj for j < k, i.e., a situation where more individuals migrate from higher to

lower SECs. For this case, similar analysis shows that (3.55) also hold.

Case iii: δjk > δkj for j < k, i.e., when more individuals migrate from lower to higher SECs.

For this case, similar augment reveals that

Rj < Rj+1, as (p, c) −→ 1 (3.56)

holds. These show that infections can be dominated in any SEC (lower or higher) if more

individuals migrate into it. Individuals in such SEC will therefore be more vulnerable to the

disease. Hence, such SEC will be the major target of control interventions to minimize the

spread of the disease. These results are also consistent with the 2-SEC model.

Next we investigate the effects of migration rate δjk on the dynamics of model (3.2) by con-

sidering the same cases presented above. Note that the basic reproduction number of the

homogeneous model (3.18) remains

R0 = β/(µ+ γ),

except that β and γ are now given by (3.51).

Case i: δjk = δkj. Comparing R0 and Ri, we have

R0 −Ri = β1

(
(
∑n

j=1 p
j−1Nj)(µ+ γ1c

j−1)− pj−1(µN + γ1
∑n

j=1 c
j−1Nj)

(µN + γ1
∑n

j=1 c
j−1Nj)(µ+ γ1cj−1)

)
. (3.57)

Taking limits of equation (3.57) gives

R0 = Rj, as (p, c) −→ 1. (3.58)
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However, from equation (3.57), we observe that

R0 > Rj,⇐⇒ (
n∑
j=1

pj−1Nj)(µ+ γ1c
j−1) > pj−1(µN + γ1

n∑
j=1

cj−1Nj), (3.59)

R0 < Rj,⇐⇒ (
n∑
j=1

pj−1Nj)(µ+ γ1c
j−1) < pj−1(µN + γ1

n∑
j=1

cj−1Nj), (3.60)

R0 = Rj,⇐⇒ (
n∑
j=1

pj−1Nj)(µ+ γ1c
j−1) = pj−1(µN + γ1

n∑
j=1

cj−1Nj). (3.61)

For the case δjk 6= δkj for j < k, similar inequalities as above can also be derived.

3.4.3 Outbreak growth rate for the n-SEC model

If Rj > 1, a disease outbreak occurs in each of the SECs. The outbreak growth rate of the

general SEC model (3.2) is given by

λ∗ = max{λ+j } (3.62)

where

λ+j =
1

2

[
−(µ+ cj−1γ1 + σj) +

√
(µ+ cj−1γ1 − σj)2 + 4σ(µ+ cj−1γ1)Rj

]
(3.63)

is the outbreak growth rate for the jth SEC of the general model (3.2). We need to determine

the SEC which is the main cause of the outbreak at this stage. SinceRj+1 < Rj when δjk ≤ δkj,

then it follows that

λ+j+1 < λ+j . (3.64)

On the other hand, when δjk > δkj, we obtain

λ+j < λ+j+1, as (p, c) −→ 1. (3.65)

Next, to determine the effects of considering SECs, we investigate the relationship between λ+

and λ+j . Note that the outbreak growth rate λ+ for the homogeneous model (3.18) remains

λ+ =
1

2

[
−(µ+ γ + σ) +

√
(µ+ γ − σ)2 + 4σ(µ+ γ)R0

]
, (3.66)
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where β and γ are given in equation (3.51). Let B = µ+γ1c
j−1+σj and σj = σ, from equations

(3.63) and (3.66), we get

(2λ+ +B)2 − (2λ+j +B)2 = 4λ+(γ − γj) + 4σ(µ+ γ)(R0 − 1)− 4σ(µ+ γj)(1−Rj).(3.67)

From this we obtain the following inequalities:

λ+ > λ+j ⇐⇒ 4λ+(γ − γj) + 4σ(µ+ γ)(R0 − 1) > 4σ(µ+ γj)(1−Rj),

λ+ < λ+j ⇐⇒ 4λ+(γ − γj) + 4σ(µ+ γ)(R0 − 1) < 4σ(µ+ γj)(1−Rj),

λ+ = λ+j ⇐⇒ 4λ+(γ − γj) + 4σ(µ+ γ)(R0 − 1) = 4σ(µ+ γj)(1−Rj).

The above inequalities gives the conditions under which outbreak growth rate will dominated

when SECs are considered or not.

3.5 Discussion

It is believed that the socioeconomic status of individuals in any community does affect the

spread of infection in the community. We investigated the effects of socioeconomic classes in

the spread of waterborne disease in a community by formulating an n-patch waterborne disease

model where each patch represents a SEC. From the n-patch model, we derived a homogeneous

version of the model when SECs are not considered and compared the results with that of

n-patch model.

We began our analyses with that of n-patch model for a special case when there are only two

SECs in the community and determined the important epidemiological threshold quantities

known as the basic reproduction numbers R1, R2 and R0 for SEC 1, SEC 2 and the homo-

geneous model respectively. We showed that the infections can be completely eradicated from

the population when SECs are considered provided the basic reproduction number is less than

unity. However, when the basic reproduction number is greater than unity, we discovered that

an outbreak will occur and determine the rate at which the outbreak will be spreading in the
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community. We showed that the long-term dynamics of the outbreak can be described by stabil-

ity arguments. Specifically, we proved that the endemic equilibrium is globally asymptotically

stable by finding an appropriate Lyapunov function.

We discovered that under the assumption of equal migration rates, the number of secondary

infections generated by an infected individual in SEC 1 will always dominate that of SEC 2.

Similarly, under the same assumption, we proved that there will be greater outbreak growth

rate in the SEC 1. Therefore, we conclude that under this assumption, the SEC 1 will be the

the main cause of outbreak in the population when SECs are considered irrespective of the

magnitude of the outbreak. To effectively minimize the chances of outbreak in this case, we

recommended that the SEC 1 should be the target of control interventions.

However, if more individuals migrate from SEC 1 to SEC 2, we discovered that the number of

secondary infections generated by an infected individual in SEC 2 will dominate that of SEC 1.

On the contrary, we observed that the number of secondary infections generated by an infected

individual in SEC 1 will dominate that of SEC 2 when more individuals migrate from SEC

2 to SEC 1. At the endemic stage of the outbreak when the basic reproduction number is

greater than unity, we discovered that considering SECs can lead to a greater outbreak growth

rate if more individuals migrate from SEC 2 to SEC 1 or a less outbreak growth rate if more

individuals migrate from SEC 1 to SEC 2. Therefore, any of the SECs where majority of the

individuals is moving into is will be in a higher risk of contacting the infection. Thus, we

recommended that such SEC will be the target of control interventions to effectively minimize

the chances of outbreak.

The important parameters relative to initial disease transmission and prevalence were deter-

mined by calculating the sensitivity indices of the basic reproduction numbers and endemic

equilibria. We discovered that rate of immigration and emmigration into any SEC has equal

but opposite impact on the initial disease transmission and prevalence. When SECs are con-

sidered, we discovered that contact rates (β1, β2), shedding rates (ν1, ν2) and net decay rate

of pathogen concentration in water reservoirs σ have greatest influence on the initial disease

transmission in each of the SEC 1 and SEC 2. However, when SECs are not considered, we

showed that the net decay rate σ has the greatest influence on the initial disease transmission
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in the entire community. Thus, these parameters should be put into consideration in order to

effectively define better control intervention strategies.

We identify important parameters relative to prevalence of the disease in the presence or ab-

sence of SECs. We discovered that recovery rate γ1 is the most important parameter relative to

prevalence of the disease in SEC 1, while the most important parameters relative to prevalence

of the disease in SEC 2 is recovery rate γ2. In the absence of migration due to socioeconomic

reasons, we found out that birth/death rate is the most important parameter relative to preva-

lence of the disease. These suggested that it is more effective to reduce the prevalence of the

disease in the entire community by controlling these parameters.

Finally, we extended the results of the 2-SEC model to the general n-SEC model. The dynamical

behaviour of our model agrees with the intuitive expectation of waterborne disease dynamics

in real life. As a result, the model can be used to study the dynamics of waterborne diseases as

well as predict future waterborne disease outbreak in communities where the disease is endemic.

Based on this study we conclude that socioeconomic status of individuals plays a very significant

role in improving the understanding of transmission of waterborne disease in order to define

appropriate control intervention strategies that reduce the spread of the infection.

3.6 Appendix to Chapter 3

Theorem 3.6.1. The DFE of model (3.2) is globally asymptotically stable if R∗ < 1.

Proof. We only need to show that (3.2) satisfies conditions (H1) and (H2) of Theorem 1.4.9

whenR∗ < 1. In model (2.41), letX1 = (s1, r1, s2, r2, . . . , sn, rn), X2 = (i1, w1, i2, w2, . . . , in, wn)

and X∗1 = (s01, 0, s
0
2, 0, . . . , s

0
n, 0) as described in equation (3.49). The infected compartments
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G(X1, X2) are given by

G(X1, X2) =



β1s1w1 − (µ+ γ1)i1

σ1(i1 − w1)

pβ1s2w2 − (µ+ cγ1)i2

σ2(i2 − w2)

. . .

pn−1β1snwn − (µ+ cn−1γ1)in

σn(in − wn)


.

The G(X1, X2) can be rewritten in the form of

G(X1, X2) = AX2 − Ĝ(X1, X2)

where

A =



−(µ+ γ1) β1s
0
1 0 0 0 0 · · · 0 0

σ1 −σ1 0 0 0 0 · · · 0 0

0 0 −(µ+ cγ1) pβ1s
0
2 0 0 · · · 0 0

0 0 σ2 −σ2 0 0 · · · 0 0
...

...
. . .

0 0 0 0 0 0 · · · −(µ+ cn−1γ1) pn−1β1s
0
n

0 0 0 0 0 0 · · · σn −σn


and

Ĝ(X1, X2) =



β1w1(s
0
1 − s1)

0

pβ1w2(s
0
2 − s2)

0
...

pn−1β1wn(s0n − sn)

0


.

It is obvious that Ĝ(X1, X2) ≥ 0, since sj ≤ s0j for j = 1, 2, . . . , n. The global stability of the
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system

dX1

dt
= F (X1, 0) =



µ+ δ21s2(t)− (δ12 + µ)s1(t)

−µr1(t)

µ+ δ12s1(t) + δ32s3(t)− (δ21 + δ23 + µ)s2(t)

−µr2(t)
...

µ+ δn−1 nsn−1(t)− (δn n−1 − µ)sn(t)

−µrn(t)


(3.68)

can be easily verified as follows: F (X1, 0) is linear ordinary differential equations and solving

it gives

s1(t) =
(µr1(0)− δ21r2(0))e−µt

δ12 − µ
+ δ21/δ12 + A1e

−δ12t,

r1(t) = r1(0)e−µt,

s2(t) =
(µr2(0)− δ21r1(0)− δ32r3(0))e−µt

δ21 + δ32 − µ
+
δ12 + δ32
δ21 + δ23

+ A2e
−(δ21+δ23)t,

r2(t) = r2(0)e−µt,

...

sn(t) =
(µrn(0)− δn−1 nrn−1(0))e−µt

δn n−1 − µ
+
δn−1 n

δn n−1
+ Ane

−δn n−1t,

rn(t) = rn(0)e−µt,

where A1, A2, . . . , An are constants. Clearly,

(s1(t), r1(t), s2(t), r2(t), . . . , sn(t), rn(t)) −→ (s01, 0, s
0
2, 0, . . . , s

0
n, 0).

Therefore, X∗1 is is globally asymptotically stable. Hence, the DFE (3.49) of the n-SEC model

is globally asymptotically stable provided R∗ < 1.

This shows that the disease can be eradicated from the entire population irrespective of the

migration rates when SECs are considered providedR∗ < 1. This does not mean that migration

rates do not affect global stability of the DFE/short-term dynamics of the disease. Note that

if our target is to eradicate the disease from only the SEC j, we require Rj < 1, not necessary

R∗ < 1.
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3.6.1 Stability of the endemic equilibrium

When Rj > 1, a unique endemic equilibrium (EE) given by

(s∗1, i
∗
1, w

∗
1, · · · , s∗n, i∗n, w∗n) =

(
1

R1

,
µ(1− s∗1)
µ+ γ1

, i∗1, · · · ,
1

Rn

,
µ(1− s∗n)

µ+ cn−1γ1
, i∗n

)
, (3.69)

exists for model (2.41). Note that at the EE (3.69), there is a uniform migration rates such

that each of the SECs has a constant population size Nj. Therefore, we investigate the global

stability of the EE when Nj(t) is constant.

Theorem 3.6.2. The unique EE of the n-SEC model is globally asymptotically stable if Nj(t)

is constant.

Proof. Let Ω be the feasible region of model (3.2). Let x(t) = (s1(t), i1(t), w1(t), . . . , sn(t), in(t), wn(t))

be any solution of (3.2) in Ω such that (i1(t), w1(t), . . . , in(t), wn(t)) 6= (0, 0, . . . , 0, 0) and

x∗ = (s∗1, i
∗
1, w

∗
1, . . . , s

∗
n, i
∗
n, w

∗
n). We show that as t −→ ∞, x(t) −→ x∗. Consider the Lya-

punov function

V =
n∑
k=1

[
(sk − s∗k log sk) + (ik − i∗k log ik) +

(µ+ ck−1γ1)

σ
(wk − w∗k logwk)

]
, (3.70)

which is similar to the type considered in [44, 43, 84]. Note that V is continuous and has a

global minimum at the EE. The time derivative of V is

V̇ =
n∑
k=1

[(
1− s∗k

sk

)
ṡk +

(
1− i∗k

ik

)
i̇k +

(µ+ ck−1γ1)

σ

(
1− w∗k

wk

)
ẇk

]
,

=
n∑
k=1

[
µ

(
2− sk −

s∗k
sk

)
+ βoks

∗
ki
∗
k

(
1− skwk

s∗kik
− ik
wk

)]
,

=
n∑
k=1

[
−µ
(
ik
wk

+
skwk
s∗kik

+
s∗k
sk
− 3

)
− µs∗k

(
ik
wk
− 1 +

sk
s∗k

(
wk
ik
− 1

))]
,

=
n∑
k=1

[
−µ(1− s∗k)

(
ik
wk

+
skwk
s∗kik

+
s∗k
sk
− 3

)
− µs∗k

(
s∗k
sk

+
sk
s∗k
− 2

)]
,

≤ 0.

The last inequality follows from the fact that the geometric mean is less than or equal to the

arithmetic mean. Thus, we have 1 =
√

s∗k
sk

sk
s∗k
≤ 1

2

(
s∗k
sk

+ sk
s∗k

)
=⇒ s∗k

sk
+ sk

s∗k
− 2 ≥ 0. Similarly,
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we can show that ik
wk

+ skwk

s∗kik
+

s∗k
sk
− 3 ≥ 0. Let L denote the set of points where V̇ is zero. As

t −→∞, x(t) approaches the largest invariant set in L [47]. Meanwhile the fixed point {x∗} is

the only invariant set in L. This completes the proof.

This implies that the disease can persist in the population when migration rate of individuals

across the SECs are at equilibrium provided that Rj > 1.
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Chapter 4

On the mathematical analysis and

application of a waterborne disease

model with multiple water sources

Waterborne disease is one of the major health problems facing the world today especially in

developing countries where there is limited access to clean water. We formulate a waterborne

disease model for a community where individuals are exposed to multiple contaminated water

sources. The fundamental mathematical features of the model such as the basic reproduction

number R0, outbreak growth rate and final epidemic size are obtained and analysed accord-

ingly. The global stability analysis of the disease free equilibrium and endemic equilibrium are

performed. We verify our analytical predictions by investigating the recent cholera outbreak in

Haiti. The model is later extended by considering vaccination as a possible control intervention

strategy. Sensitivity analysis is carried out to determine how important each parameter is in

relation to disease transmission. An optimal control problem is constructed to investigate the

existence of an optimal control function that controls the spread of the disease with minimum

cost. The contents of this Chapter have been submitted for publication [22].
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4.1 Introduction

Current statistics from WHO [92] reveals that approximately 1.1 billion people globally do not

have access to improved water supply sources whereas around 700,000 children die every year

from diarrhoea caused by unsafe water and poor sanitation [89]. A number of waterborne dis-

ease outbreaks occur in rural communities where there is limited access to clean water. Most

of these rural communities are exposed to multiple contaminated water sources like streams,

rivers, dams, wells, lakes, and ponds etc as their major sources of water. Each of these con-

taminated water sources contains different percentages of pathogen concentration. Considering

multiple contaminated water sources to study the dynamics of waterborne disease for such a

community becomes apparent. This will certainly make the model complex and difficult to

analyse mathematically unlike when single water source is considered. Note that the basic

mathematical analysis involving computation of basic reproduction number, outbreak growth

rate, final outbreak size, stability of disease free equilibrium and endemic equilibrium depend

on the measures of pathogens in water sources available. Furthermore, determining the ap-

propriate contact rate, shedding rate and evaluating the effectiveness of control intervention

strategy also depend on the water sources the individuals are exposed to. Therefore, it is our

intention to seek to understand the dynamics of waterborne disease in the presence of multiple

water sources by analysing these important mathematical epidemiological features of the model

for the case of multiple water sources. By rigorously analysing some of these important math-

ematical epidemiological features of the model, we will determine the impact of considering

multiple water sources. This will also deepen our understanding of the dynamics of the disease.

For a simple demonstration of the applicability of the multiple water sources model, we consider

the model to investigate the cholera outbreak in Haiti. Using the parameter values from the

literature and by adjusting the two main key parameters in the model, we are able to fit the

model to the number of reported cases of hospitalization in Haiti from 30 October 2010 to 24

December 2012.

To define better control measures that will reduce the spread of the disease, it is necessary to

extend the model by introducing control intervention strategies such as vaccination. Sensitivity
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analysis is also necessary to determine how important each of the model parameters is for

disease transmission and prevalence. Even though vaccination is one the most effective control

intervention strategies for reducing the spread of waterborne disease, most of the communities

where this disease is endemic could not afford effective vaccination due to limited resources

[59, 65]. It is necessary to understand how to reduce the spread of waterborne disease using

vaccination with minimum cost. To effect this analysis we invoke optimal control theory which

has been a useful mathematical tool in determining the appropriate control intervention strategy

tol reduce the spread of an infection with minimum cost [49, 2, 59, 85]. We also utilise numerical

simulations which is a very useful tool which can be use to support analytical predictions.

Dynamics of waterborne disease is made up of two subsystems: human and pathogens in

water. The nature of interaction that exists between human and pathogens in water and the

transmission pathways that lead to waterborne disease have been an issue of concern over the

years. Some authors [84, 62] have considered multiple transmission pathways with linear or

non-linear interactions. For the purpose of this study, we will consider a single interaction

whereby infections are generated only through person-water contact. We pursue this approach

as contact with contaminated water has been shown to be the major driving force of some

waterborne disease outbreaks [19, 36, 64, 80, 65]. While these and many other studies [12, 72,

29, 33, 42] on waterborne disease have contributed immensely to understanding their dynamics,

to the best of our knowledge, none of those studies considered a homogeneous population where

individuals are exposed to multiple contaminated water sources. The aim of this study is to

use a mathematical epidemiological model to deepen our understanding on the dynamics of

waterborne disease for a community where individuals are exposed to multiple contaminated

water sources and furthermore determine appropriate vaccination measures that will reduce the

spread of the disease with minimum cost.

4.2 Model formulation

Figure 4.1 represents the flow diagram for the model we will analyse in this paper. The model

consists of the standard SIR model under the assumption of constant population size [5, 84],
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together with compartments W1,W2, . . . ,Wn that measure pathogen concentration in water

sources 1, 2, . . . , n respectively. As usual, we consider a total human population N and par-

tition it into susceptible S(t), infected I(t) and recovered individuals R(t). We assume that

individuals are exposed to the n distinct water reservoirs (sources). Even though individuals are

exposed to multiple contaminated water sources, they are not likely to have equal access to each

of the water sources. As a result, we assume that susceptible individuals S(t) become infected

through contact with any of the contaminated water sources 1, 2, . . . , n at rate β1, β2, . . . , βn

respectively. Infected individuals I(t) can in turn contaminate the water sources 1, 2, . . . , n by

shedding pathogens into them at rate ν1, ν2, . . . , νn respectively. An infected individual gener-

ates secondary infections by first shedding pathogens into the water sources, which susceptible

individuals subsequently come in contact with. Infected individuals I(t) recover naturally at

rate γ. We assume that recovered individuals R(t) have immunity against reinfection through-

out the duration of the outbreak. Natural death occurs in all the above human compartments

at rate µ. Pathogens in water reservoirs can decay as well as grow naturally. As a result, we

assume that each of the concentration of pathogens in each of the compartments Wi(t) increases

through natural generation of pathogens in the water reservoirs at rate α and decreases through

natural decay of pathogens at rate ξ. Putting all these assumptions and formulations together,

we obtain

Ṡ(t) = µN(t)− S(t)
n∑
i=1

βiWi(t)− µS(t),

İ(t) = S(t)
n∑
i=1

βiWi(t)− (µ+ γ)I(t),

Ẇ1(t) = ν1I(t)− σW1(t),

Ẇ2(t) = ν2I(t)− σW2(t),

...
... (4.1)

Ẇn(t) = νnI(t)− σWn(t),

Ṙ(t) = γI(t)− µR(t),

where σ = ξ − α > 0. Note that β =
∑n

i=1 βi is the effective contact rate with all the

contaminated water sources, ν =
∑n

i=1 νi is the effective shedding rate into all the contaminated
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Figure 4.1: Flow chart of the waterborne disease model (4.1) .

water sources and the force of infection is given by
∑n

i=1 βiWi(t) [54]. The initial conditions

are assumed as follows:

S(0) > 0, I(0) ≥ 0, W (0) ≥ 0, R(0) ≥ 0, (4.2)

where W = (W1,W2, . . . ,Wn).

4.3 Model analysis

4.3.1 Existence of solutions

Theorem 4.3.1. All solutions (S(t), I(t),W (t), R(t)) of the model (4.1) are positive and bounded

for all t > 0 with the initial conditions (4.2). Furthermore, all the solutions will enter the fea-

sible region

Φ = ΦH × ΦP , (4.3)

where

ΦH =
{

(S, I, R) ∈ R3
+ : S + I +R = N, 0 ≤ S, I ≤ N, 0 ≤ R ≤ γN/µ)

}
,

is the feasible region of human components and

ΦP =

{
(W1,W2, . . . ,Wn) ∈ Rn

+ : 0 ≤ Wi ≤ Nνi/σ, 0 ≤
n∑
i=1

Wi ≤ N
n∑
i=1

νi/σ

}
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is the feasible region of pathogen components.

Theorem 4.3.1 can be established using a similar approach as in [101]. The feasible region

Φ is a positively invariant region, hence model (4.1) will be considered mathematically and

epidemiologically well posed in Φ.

4.3.2 The basic reproduction number

Model (4.1) has a disease free equilibrium (DFE) given by

(S0, I0,W 0) = (N, 0, 0̄), (4.4)

where 0̄ = (0, 0, . . . , 0) (n time). The basic reproduction number R0 is defined as the expected

number of secondary infections that result from introducing a single infected individual into an

otherwise susceptible population. We determine the basic reproduction number of (4.1) using

the next generation matrix approach of van den driessche and watmough [90]. The associated

next generation matrices are

F =


0 β1N β2N . . . βnN

0 0 0 . . . 0
...

...

0 0 . . . 0

 , V =



µ+ γ 0 0 . . . 0

−ν1 σ 0 0

−ν2 0 σ 0
...

. . .

−νn 0 . . . 0 σ


. (4.5)

The basic reproduction number is the spectral radius of FV−1, which is given by

R0 = N

n∑
i=1

νiβi/(σ(γ + µ)). (4.6)

The basic reproduction number (4.6) for the case of multiple contaminated water sources can

be re-written as

R0 =
n∑
i=1

Ri (4.7)

where Ri = Nνiβi/(σ(γ + µ)) is the basic reproduction number of model (4.1) due to the ith

contaminated water source only. This result implies that the basic reproduction number R0 in
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(a) (b)

(c) (d)

Figure 4.2: Numerical illustrations showing the contributions of contaminated water sources

to the number of infected individuals (a) R0 > 1,R2 < 1 < R1 (b) R0 < 1,R2 < R1 < 1 (c)

R0 > 1, 1 < R2 < R1. (d) R0 > 1,R2 < R1 < 1 .
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the presence of multiple contaminated water sources is the sum of basic reproduction numbers

Ri due to each contaminated water source in the community. This suggests that the higher the

number of water sources available to the population, the greater the basic reproduction number.

This results in an increase in the number of infected individuals. Figures 4.2(a), 4.2(b), 4.2(c)

and 4.2(d) reveal that each Ri (whether Ri < 1 or Ri > 1) has some influence on the dynamics

of waterborne disease (increasing the number of infected individuals). Also from the Figures, it

seems that when R0 < 1, infected individuals I(t) −→ 0 (disease free equilibrium) as t −→∞.

We confirm this by showing that the disease free equilibrium is globally asymptotically stable

when R0 < 1. On the contrary, when R0 > 1, we cannot make a general conclusion about the

behaviour of the infected individuals I.

To determine the effects of considering multiple water sources, it is necessary to obtain the

single water source version of model (4.1) and consequently compare some of its mathematical

features with that of the multiple water sources model. The single water source version of

model (4.1) is given by

Ṡ(t) = µN(t)− βS(t)W̄ (t)− µS(t),

İ(t) = βS(t)W̄ (t)− (µ+ γ)I(t),

˙̄W (t) = νI(t)− σW̄ (t), (4.8)

Ṙ(t) = γI(t)− µR(t),

where W̄ =
∑n

i=1Wi/n. This single water source model can also be regarded as a special case

(n = 1) of the multiple water source model (4.1). Thus any result that holds in (4.1) will also

hold in (4.8), but not vice versa. Therefore, we shall also be exploring how to extend the results

that hold in the single water source model (4.8) to the multiple water source model (4.1).

The basic reproduction number for the model (4.8) is

Rs
0 = Nνβ/(σ(γ + µ)). (4.9)

We can show that

R0 < Rs
0. (4.10)

This implies that the number of secondary infections generated by an individual in the presence

of single water source is more than that generated in the presence of multiple water sources.
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Since a multiple water sources model is more realistic, we can say that the basic reproduction

number will be over estimated when the single water source is considered.

4.3.3 Stability of the disease free equilibrium

The stability at the DFE determines the short-term dynamics of a disease [52]. Therefore,

to determine the short-term dynamics of the multiple water sources model, it is necessary to

investigate the stability of the DFE.

Theorem 4.3.2. The DFE of the model (4.1) is locally asymptotically stable, when R0 < 1. �

The proof of Theorem 4.3.2 follows from Theorem 2 of van den Driessche and Watmough [90].

Epidemiologically, Theorem 4.3.2 implies that waterborne disease can be eliminated from the

community where there are multiple contaminated water sources (when R0 < 1) if the initial

size of the subpopulation is in the basin of attraction of the DFE (4.4). On the contrary, the

disease will be established in the population when R0 > 1. To ensure that eradication of the

disease is independent of the initial size of the subpopulation, we prove that the DFE is globally

asymptotically stable. This is established using a global stability result by Castillo-Chavez et

al. [13] which is stated in Theorem 1.4.9.

Theorem 4.3.3. The DFE of the model (4.1) is globally asymptotically stable, provided R0 < 1.

Proof. We need to show that model (4.1) satisfies conditions (H1) and (H2) in Theorem 1.4.9.

From (4.1), X1 = S, X2 = (I,W ) and X∗1 = N . The system

dX1

dt
= F (X1, 0) = µN − µS

is linear and solving this linear ordinary differential equation gives

S(t) = N − (N − S(0))e−µt.

Clearly, S(t) −→ N as t −→ ∞, provided µ > 0. Thus, X∗1 is globally asymptotically stable.
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Next, applying Theorem 1.4.9 to model (4.1) gives

G(X1, X2) =



S
∑n

i=1 βiWi − (µ+ γ)I

ν1I − σW1

ν2I − σW2

...

νnI − σWn


,

and

A =



−(µ+ γ) β1N β2N β3N . . . βnN

ν1 −σ 0 0 . . . 0

ν2 0 −σ 0 . . . 0
...

νn 0 0 0 . . . −σ


is clearly an M - matrix with non negative off diagonal elements. Meanwhile, we have that

Ĝ(X1, X2) =

∑n
i=1 βiWi(N − S)

0̄

 ≥ 0,

since N ≥ S. Hence, the DFE (4.1) is globally asymptotically stable provided R0 < 1.

The epidemiological implication of this is that waterborne disease can be eradicated from

the entire community where individuals are exposed to multiple contaminated water sources

irrespective of the initial sizes of the subpopulation provided R0 < 1. Similarly, we can show

that the DFE of the single water source model (4.8) is globally asymptotically stable provided

Rs
0 < 1. This shows that the disease can also be eradicated from the entire community where

individuals are exposed to a single water source when Rs
0 < 1.

4.3.4 Outbreak growth rate

If R0 > 1, then the DFE (4.4) becomes unstable and a disease outbreak occurs. The positive

(dominant) eigenvalue of the Jacobian at the DFE is referred to as the outbreak growth rate
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[84]. The Jacobian matrix J0 of model (4.1) evaluated at the DFE (4.4) is given by

J0 =



−µ 0 −β1N −β2N −β3N . . . −βnN

0 −(µ+ γ) β1N β2N β3N . . . βnN

0 ν1 −σ 0 0 . . . 0

0 ν2 0 −σ 0 . . . 0
...

...

0 νn 0 0 0 . . . −σ


. (4.11)

The Jacobian J0 has n+2 negative eigenvalues and one positive eigenvalue which automatically

becomes the outbreak growth rate and is given by

λ+ =
1

2

(
−(γ + µ+ σ) +

√
[(γ + µ− σ)2 + 4σ(γ + µ)R0]

)
. (4.12)

Note that the value of λ+ > 0 represents the steepness of the ascending infection curve (with

respect to time). Therefore, a higher λ+ implies a more severe disease outbreak.

Similarly, when Rs
0 > 1, the outbreak growth rate of single water source model (4.8) is

λ+s =
1

2

(
−(γ + µ+ σ) +

√
[(γ + µ− σ)2 + 4σ(γ + µ)Rs

0]
)
. (4.13)

Since R0 < Rs
0, it is easy to observe that

λ+ < λ+s . (4.14)

This shows that the outbreak growth rate will also be over estimated when a single water source

is considered. Note that if R0 < 1, then the real part of λ+ < 0. This implies that outbreaks

will not occur whenever R0 < 1. However, we have that all the eigenvalues of the Jacobian

matrix of model (4.1) evaluated at the DFE are negative or have negative real parts when

R0 < 1. Thus, the DFE of model (4.1) is locally asymptotically stable when R0 < 1 confirming

Theorem 4.3.2.

4.3.5 Final outbreak size

Whenever an infectious disease outbreak emerges in any human population, the likely mag-

nitude of the outbreak, often called the expected final outbreak size of the epidemic, is very
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important in understanding the dynamics of the disease [57]. The final outbreak size denoted

by Z of the SIR models together with some other related models is given by the relation

Z = 1− exp(−R0Z). (4.15)

We show that the final outbreak size relation (4.15) also holds for model (4.1). We consider

the same approach used in [57, 84].

Proposition 4.3.4. Let µ = 0 and R0 > 1. Let S(0) denote the initial susceptible population

and Wi(0) the initial pathogen level in the water reservoir i. As S(0) −→ N and Wi(0) −→ 0,

the final outbreak size Z of system (4.1) satisfies the relation (4.15).

Proof. Consider a function

F (t) = log S(t) +R(t)
n∑
i=i

νiβi/(σγ)−
n∑
i=i

βiWi(t)/σ. (4.16)

The derivative of F with respect to time t along the solution trajectories of model (4.1) gives

Ḟ (t) = −
n∑
i=i

βiWi(t) + I(t)
n∑
i=i

νiβi/σ −
n∑
i=i

βi(νiI(t)− σWi(t))/σ,

= 0.

Thus, F is constant along solution trajectories of model (4.1). Since µ = 0, then S(t) decreases

monotonically to a limit S̄ and R(t) increases monotonically to a limit R̄. By lemma 2 of [84],

I(t) −→ 0 and Wi(t) −→ 0. Since N = S(t) + I(t) + R(t), we have that S̄ = N − R̄. Taking

limits of (4.16) gives

lim
t−→∞

F (t) = log(N − R̄) + R̄
n∑
i=i

νiβi/(σγ).

At t = 0, we obtain

F (0) = logS(0) +R(0)
n∑
i=i

νiβi/(σγ)−
n∑
i=i

βiWi(0)/σ.

Since F is constant along solution trajectories, limt−→∞ F (t) = F (0) = 0, so

log

(
N − R̄
S(0)

)
+ (R̄−R(0))

n∑
i=i

νiβi/(σγ) +
n∑
i=i

βiWi(0)/σ = 0. (4.17)
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Next, let S(0) −→ N and Wi(0) −→ 0. Note that I(0) −→ 0 and R(0) −→ 0 whenever

S(0) −→ N , thus equation (4.17) becomes

log

(
1− R̄

N

)
+
R̄

N

N

σγ

n∑
i=i

νiβi/(σγ) = 0. (4.18)

Finally, letting R̄/N = Z and noting that R0 = N
∑n

i=i νiβi/(σγ) when µ = 0, gives the desired

result.

By assuming µ = 0, it means that there is no recruitment nor birth/death in the population.

Biologically, this assumption will lead to the disease outbreaks to die off in time. The case

when µ 6= 0 will be part of our future work.

Similarly, the final outbreak size relation

Zs = 1− exp(−Rs
0Zs) (4.19)

also holds for the single water source model (4.8) where Zs is the final outbreak size of the

model. Comparing the two relations, we can see that

Z < Zs. (4.20)

This demonstrates that the final outbreak size will also be over estimated when the single water

source is considered.

4.3.6 Stability of the endemic equilibrium

The stability at the DFE determines the short-term dynamics of a disease, whereas its long-

term dynamics are characterized by the stability at the endemic equilibrium (EE) [52]. Thus,

to determine the long-term dynamics of the multiple water sources model, it is necessary to

investigate the stability at the EE. When R0 > 1, a unique EE exists in the model (4.1) and is

given by

(Se, Ie,W e
1 , . . . ,W

e
n) = (N/R0, µN(R0 − 1)/ [(γ + µ)R0] , ν1I

e/σ, . . . , νnI
e/σ) . (4.21)

Also, when Rs
0 > 1, a unique EE exists in the single water source model (4.8) and its global

stability can be established using the Lyapunov function of the type considered in [84].
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Figure 4.3: The bifurcation diagram of I(t) vs. R0 for the DFE and the positive EE.

4.3.7 Bifurcation diagram

We summarize our stability analysis results by sketching a bifurcation diagram of I(t) vs. R0

for model (4.1). The diagram is presented in Figure 4.3. The bifurcation diagram illustrates

the stability exchange at R0 = 1 for the two biologically feasible equilibria: the DFE and the

positive EE. Note that the biologically non-feasible equilibria are not shown on the diagram

[52].

4.4 A case study: the Haiti cholera outbreak

We have seen that multiple water sources have a significant influence on the dynamics of

waterborne disease. To demonstrate how realistic the multiple water sources model (4.1) is, we

use the model to investigate the recent cholera outbreak in Haiti. According to the Ministry

of Public Health and Population (MSPP), the cholera outbreak in Haiti started on October

21, 2010 [63, 60]. By August 4, 2013, 669,396 cases and 8,217 deaths have been reported since

the beginning of the outbreak [15]. In this section, we will use our model to fit the data for
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Figure 4.4: Bar chart representing the number of reported hospitalized cholera cases in Haiti

from October 30, 2010, to December 24, 2012 [60].

the number of reported hospitalized cholera cases in Haiti from October 30, 2010, to December

24, 2012 [60]. The number of reported hospitalized cholera cases in Haiti for each month from

October 30, 2010, to December 24, 2012 is given in Figure 4.4. From the onset of the epidemic

in October, 2010, there was a steady increase in the number of cases (at least for the first

three months). This was expected as most of the individuals in Haiti have not been previously

exposed to the infection, considering that Cholera had not been reported in the country for

decades [63].

To obtain reasonable results, we choose the parameter values as follows: We take n = 2 and

assume that W1 measures the pathogen concentration of the unimproved water source in the

rural area in Haiti and W2 measures the pathogen concentration of the unimproved water

source in the urban area in Haiti. This is because approximately 49% and 90% of Haiti’s

population in rural areas do not have access to improved drinking water sources and sanitation

facilities respectively while, 15% and 76% of Haiti’s population living in urban areas also do not

have access to improved drinking water sources and sanitation facilities respectively [16]. The
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Figure 4.5: Model fitting for the number of reported hospitalized cholera cases in Haiti from

October 30, 2010 to December 24, 2012.

population of Haiti is taken from 2009 Haiti population data before the outbreak started [14]

while the birth rate is estimated from [16]. The remaining parameter values are chosen from

published data and realistic ranges and can be found in Table 4.2. The results of incorporating

these parameter values for our model to fit the number of reported hospitalized cholera cases

in Haiti from October 30, 2010 to December 24, 2012 is shown in Figure 4.5.

Repeated seasonal outbreak is one of the characteristics of cholera [80]. We can see from Figure

4.5 that, following the initial epidemic wave, the number of reported hospitalized cholera cases

seems to be affected by the seasonal variation. To improve the prediction capability of our

model, we must take these seasonal variations into consideration. We can do this by substituting

the contact rate βi in our model (4.1) by a sine function:

βi(t) = βi (1 + δ sin (2πt/(365ρ))) , (4.22)

where βi is the mean contact rate, δ describes the relative amplitude of seasonal variations and

ρ is a scaling factor. The result of considering seasonal variations in our model to fit the number

of reported hospitalized cholera cases in Haiti from October 30, 2010 to December 24, 2012 is
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Figure 4.6: Model fitting for the number of reported hospitalized cholera cases in Haiti from

October 30, 2010 to December 24, 2012 putting seasonality into consideration.

given in Figure 4.6. Obviously, Figure 4.6 gives a better fit to the data for cholera outbreak in

Haiti. This shows that our model can be used as an accurate analytical prediction for cholera

dynamics in Haiti. We expect that model (4.1) can also be used to carry out similar studies in

other cholera-endemic countries (using different parameter values).

4.5 Vaccination model

We have seen that a waterborne disease model that takes multiple water sources into consider-

ation is an accurate model for investigating the dynamics of the disease and making predictions

of future outbreak. We now consider modifying the model to study how to reduce the spread

of the disease using vaccination as a control intervention strategy.

In this section, we formulate a vaccination model by extending the multiple water sources model

(4.1) to study the effects of vaccination in curtailing the epidemic. According to Brauer [9],

vaccination may mean either an inoculation which decreases susceptibility to infection or an
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education program such as encouragement of better hygiene practices or social distancing from

contaminated water reservoirs. However, it only reaches a fraction of the susceptible population

and so is imperfect in nature. For vaccination as a control intervention strategy, we consider

the following equations

Ṡ(t) = µN(t) + (1− u1)ωV − S(t)
n∑
i=1

βiWi(t)− (µ+ u2)S(t),

V̇ (t) = u2S(t)− (1− u1)ωV − (1− ε)V
n∑
i=1

βiWi(t)− µV (t),

İ(t) = S(t)
n∑
i=1

βiWi(t) + (1− ε)V
n∑
i=1

βiWi(t)− (µ+ γ)I(t),

Ẇ1(t) = ν1I(t)− σW1(t), (4.23)

Ẇ2(t) = ν2I(t)− σW2(t),

...
...

Ẇn(t) = νnI(t)− σWn(t),

Ṙ(t) = γI(t)− µR(t),

where V is vaccinated individuals, ω is rate at which the vaccine wanes and ε is vaccine efficacy.

Note that ε ∈ [0, 1]; if ε = 0, then the vaccine is useless, if ε = 1, the vaccine is 100% effective,

and if 0 < ε < 1, the vaccine is imperfect or leaky [85, 61]. We use the following control

variables: u1(t) to account for controlling the rate at which vaccine wanes and u2(t) measures

the rate of vaccination [85]. Causes of vaccine waning are associated with: nutritional status,

concurrent infection, immune status, seasonal influence, food/water access, age, exposure level,

improper storage of vaccine, use of vaccine after expiration, improper dosage, improper timing

etc. Therefore, to effectively control vaccine wane, it is necessary and sufficient to control the

causes. Proper administration of vaccination so that it reaches all the susceptible individuals

at the proper time is also crucial. These are the motivations for introducing controls on vaccine

waning and the vaccination rate.
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4.5.1 Analysis of the vaccination model

The DFE and the basic reproduction number of the vaccination model (4.23) are given by

(S0
v , V

0
v , I

0
v ,W

0
v ) =

(
((1− u1)ω + µ)N

(1− u1)ω + u2 + µ
,

u2N

(1− u1)ω + u2 + µ
, 0, 0̄

)
, (4.24)

and

Rv
0 = Ev

0R0, (4.25)

respectively, where

Ev
0 =

(1− u1)ω + µ+ (1− ε)u2
(1− u1)ω + µ+ u2

. (4.26)

The threshold quantity Rv
0 represents the number of secondary infections that results from

introducing a single infected individual into an otherwise susceptible population in the presence

of vaccination [85, 84]. By elementary algebraic calculations, we can easily show that the

following equations

Ev
0 < 1⇐⇒ Rv

0 < R0, ∀ 0 < u2, ε ≤ 1, (4.27)

Ev
0 = 1⇐⇒ Rv

0 = R0, for ε = 0 or u2 = 0, (4.28)

hold. From the definition of the basic reproduction number, we deduce that equation (4.27)

implies that vaccination decreases the number of secondary infections by a factor Ev
0 . Noting

that u2 = 0 implies that no individual is vaccinated and ε = 0 means that vaccine is useless

[61, 85], then (4.28) implies that vaccination has no effect on or vaccination imparts no immunity

to the population. However, from the above discussion, we can see that Rv
0 ≤ R0. This implies

that vaccination will always have a positive effect on the number of secondary infections in the

community.

We have shown in Theorem 4.3.3 that if R0 < 1, then disease can be eradicated from the

entire population. Since the disease may not develop into an epidemic if R0 < 1, therefore

vaccination may not be necessary to eradicate the disease. However, we should note that

introducing vaccination would lead to eradication of the disease faster. To determine the short-

term dynamics of waterborne disease in the presence of vaccination, it is necessary to investigate
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the stability of the vaccination model at the DFE (4.24). We consider a similar approach used

in the proof of Theorem 4.3.3 and conclude as follows:

Theorem 4.5.1. The DFE (4.24) of the vaccination model is globally asymptotically stable,

provided Rv
0 < 1. �

Epidemiologically, Theorem 4.5.1 implies that waterborne disease can be eradicated from the

entire population using vaccination as a control intervention strategy provided thatRv
0 < 1. On

the other hand, if R0 > 1, we determine the necessary conditions for slowing down the spread

of a waterborne disease outbreak. We show later that each of the control parameters ω, u1, u2

and φ has some influence in decreasing the vaccination-induced basic reproduction number Rv
0.

Thus, a necessary condition for slowing down the spread of a waterborne disease outbreak is

Ev
0 < 1 which occurs when 0 < ω, u1, u2, ε < 1.

Since waterborne disease vaccines have different efficacies [63], it is necessary to determine the

optimal vaccine efficacy and vaccination rate for controlling the epidemic. By setting Rv
0 = 1

and solving for ε and u2, we obtain the threshold proportion for optimal intervention, as

εc =
((1− u1)ω + µ)(R0 − 1) + u2(1 +R0)

u2R0

, uc2 =
((1− u1)ω + µ)(R0 − 1)

1− (1− ε)R0

. (4.29)

The threshold value uc2 exists if 1 < R0 <
1

1−ε . Hence, vaccination can effectively control the

outbreak if εc < ε or uc2 < u2 (Rv
0 < 1). In contrast, the disease can persist when εc > ε or

uc2 > u2 (Rv
0 > 1).

Suppose that vaccination is not strong enough such that Rv
0 > 1, and an outbreak can occur.

The outbreak growth rate of the vaccination model (4.23) is given by

λ+v =
1

2

(
−(γ + µ+ σ) +

√
[(γ + µ− σ)2 + 4σ(γ + µ)Rv

0]
)
. (4.30)

Clearly,

λ+v ≤ λ+. (4.31)

This shows that vaccination reduces the outbreak growth rate. The above results suggest

that vaccination has some influence in reducing the spread of infections provided that 0 <
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ω, u1, u2, ε < 1. Practically, the strength and the success of vaccination would be limited

by social, political and economic factors as well as available resources. Therefore, proper

management is a necessity to achieve the best result.

4.5.2 Sensitivity analysis

To determine the relative importance of the different factors responsible for disease transmission

and prevalence, it is necessary to carry out sensitivity analysis. Sensitivity analysis is used

mainly to determine the robustness of model predictions to parameter values [17]. This analysis

is crucial since there are usually errors in data collection and assumed parameter values. We

utilise it to determine the parameters that have a high impact on the basic reproduction numbers

(R0,Rs
0,Rv

0). Such parameters should be the target of control intervention strategies in order

to minimize the spread of infections. We determine the sensitivity indices of R0,Rs
0 and Rv

0

with respect to the parameters in the model using the normalized forward sensitivity index

[17]. These indices demonstrate how important each parameter is to disease transmission and

prevalence. For instance, the sensitivity index of R0 with respect to β1 denoted by ΥR0
β1

is given

by

ΥR0
β1

=
β1
R0

∂R0

∂β1
=

ν1β1
ν1β1 + ν1β1

. (4.32)

Since ΥR0
β1

is parameter dependent, to determine its magnitude we resort to parameter values

as shown in Table 4.2.

The parameter values in Table 4.2 are estimated as follows: Since the effective contact rate

β =
∑n

i=1 βi, we choose βi such that β is an approximation of the parameter values in the

literature [84]. Similar reasoning also holds for shedding rate since the effective shedding rate

ν =
∑n

i=1 νi. The remaining parameter values i.e., birth/death rate µ, recovery rate γ, net

decay of pathogen in water sources ν, vaccine efficacy ε and wane rate of vaccine ω are taken

from published data as shown in Table 4.2.

The sensitivity indices of R0,Rs
0 and Rv

0 for the remaining parameters are given in Table

4.1. From the table we notice that the most sensitive parameter to the basic reproduction

numbers is the net decay rate of pathogens in water reservoir σ with sensitivity index of -1.000
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Table 4.1: Sensitivity index of R0, Rs
0 and Rv

0

Parameter R0 Rs
0 Rv

0

β1 0.6964 0.6737 0.6737

β2 0.3036 0.3263 0.3263

ν1 0.6964 0.5263 0.5263

ν2 0.3036 0.4737 0.4737

σ -1.0000 -1.0000 -1.0000

µ -0.000666 -0.000666 0.0068

γ -0.9993 -0.9993 -0.9993

followed by recovery rate γ, then partial contact and shedding rates (β1, β2, ν1, ν2) and finally

the birth/death rate µ. This illustrates that decreasing (or increasing) σ by 10% decreases

(or increases) the corresponding basic reproduction number by 10%. This also reveals the

importance of considering multiple water sources in the dynamics of the disease.

Next, we determine the effects of each of the control parameters u1, ω, ε and u2 in reducing

the spread of the disease, by computing the sensitivity index of Rv
0 with respect to each of the

parameters. The sensitivity index of Rv
0 with respect to the parameters u1, ω, ε and u2 denoted

by Υ
Rv

0
ω ,Υ

Rv
0

u1 ,Υ
Rv

0
ε and Υ

Rv
0

u2 respectively, are given by

ΥR
v
0

ε =
ε

Rv
0

∂Rv
0

∂ε
=

−u2ε
((1− u1)ω + µ+ u2)Ev

0

< 0, (4.33)

ΥR
v
0

ω =
ω

Rv
0

∂Rv
0

∂ω
=

(1− u1)ω
((1− u1)ω + µ+ u2)

ΥR
v
0

ε > 0, (4.34)

ΥR
v
0

u1
=

u1
Rv

0

∂Rv
0

∂u1
=

−ωu1
((1− u1)ω + µ+ u2)

ΥR
v
0

ε < 0, (4.35)

ΥR
v
0

u2
=

u2
Rv

0

∂Rv
0

∂u2
=
−((1− u1)ω + µ)

((1− u1)ω + µ+ u2)
ΥR

v
0

ε < 0. (4.36)

From the above equations, we discover that the magnitude of Υ
Rv

0
ε is greater than the magnitude

of each of Υ
Rv

0
ω ,Υ

Rv
0

u1 and Υ
Rv

0
u2 irrespective of the parameter values. Therefore, vaccine efficacy

is the most sensitive control parameter. This shows that vaccine efficacy has the greatest

impact in reducing the spread of the infections, thus it must be taken into consideration while
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Table 4.2: Parameter values for numerical simulations with reference

Parameter Symbol Value Reference

Contact rate with W1 β1 0.002172 day−1 assumed

Contact rate with W2 β2 0.001052 day−1 assumed

Shedding rate into W1 ν1 0.015 cells ml−3 day−1 assumed

Shedding rate into W2 ν2 0.0135 cells ml−3 day−1 assumed

Birth/death rate µ 0.0001 day−1 [19]

Recovery rate of I γ 0.015 day−1 [38]

Net decay rate of pathogen in water σ 0.333 day−1 [19]

Efficacy of vaccine ε 0.85 [65]

Wane rate of vaccine ω 0.0019 day−1 [55, 42]

defining control intervention strategy for maximum result. To determine the magnitude of the

sensitivity index, we also use the parameter values in Table 4.2 to obtain

ΥR
v
0

ω = 0.7882, ΥR
v
0

u1
= −0.1436, ΥR

v
0

ε = −5.2970, ΥR
v
0

u2
= −0.0549. (4.37)

Equation (4.37) reveals that ε is the most sensitive parameter followed by ω then u1 and u2.

SinceRv
0 = Ev

0R0 and the parameters u1, ω, ε and u2 are independent ofR0, we can demonstrate

that

ΥR
v
0

ω = ΥEv
0

ω , ΥR
v
0

u1
= ΥEv

0
u1
, ΥR

v
0

ε = ΥEv
0

ε , ΥR
v
0

u2
= ΥEv

0
u2
, (4.38)

for parameters 0 ≤ u1, u2, ε, ω,≤ 1 where Υ
Ev

0
ω ,Υ

Ev
0

u1 ,Υ
Ev

0
ε and Υ

Ev
0

u2 denote the sensitivity index

of Ev
0 with respect to the parameters ω, u1, ε and u2 respectively. For example, the sensitivity

index of Rv
0 with respect to ω is given by

ΥR
v
0

ω =
ω

Rv
0

∂Rv
0

∂ω
=

ω

R0Ev
0

R0∂E
v
0

∂ω
=

ω

Ev
0

∂Ev
0

∂ω
= ΥEv

0
ω . (4.39)

Similarly, we can show that Υ
Rv

0
u1 = Υ

Ev
0

u1 , Υ
Rv

0
ε = Υ

Ev
0

ε and Υ
Rv

0
u2 = Υ

Ev
0

u2 . This testifies that the

efficacy of the control parameters can also be determined by calculating the sensitivity index

Ev
0 with respect to the control parameters.
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4.5.3 Optimal control problem

We have seen that it is possible to reduce the spread of waterborne disease using vaccination

for a community where individuals are exposed to multiple contaminated water sources. Here,

we formulate an optimal control problem subject to the vaccination model (4.23) in order to

determine appropriate vaccination that will reduce the epidemic with minimum cost for such

communities. Some waterborne diseases such as cholera have vaccines that can offer 85–90 %

protection for a period of six months [65]. Even though such high quality vaccines are available,

affordability remains the greatest challenge to most communities where the disease is endemic.

Since the vaccine can guarantee protection for only six months, it means that after six months

the vaccinated individuals become susceptible to the disease. Therefore controlling the rate at

which the vaccine wanes becomes necessary, but it also requires money. The cost of effective

vaccination also includes funds needed for hiring qualified health workers, transportations,

public awareness and fund for other logistics. As as result, there is need for vaccination that

will reduce the spread of waterborne disease with minimum cost. Optimal control theory can

help us obtain such an appropriate vaccination that can give protection for quite a reasonable

longer duration with a minimum cost.

The optimal control problem is to minimize the cost functional

J(u1, u2) =

∫ tf

0

[
A1I(t) +B1S(t) + C1u

2
1(t) + C2u

2
2(t)
]
dt (4.40)

subject to the vaccination model (4.23), where the coefficients, A1, B1, C1, C2, are balancing cost

factors that transform the integral into money expended over a finite time tf . This performance

specification involves minimizing the number of susceptible and infected individuals, as well

as the costs for implementing the controls. We consider non-linear quadratic expressions for

measuring the control cost. Similar approaches for measuring control cost can also be found in

[100, 2, 59, 85]. The existence of an optimal control pair (u∗1, u
∗
2) such that

J(u∗1(t), u
∗
2(t)) = min {J(u1(t), u2(t)) : (u1(t), u2(t)) ∈ U} , (4.41)

where U = {(u1(t), u2(t)) : (u1(t), u2(t)) are measurable, 0 ≤ (u1(t), u2(t)) ≤ 1, t ∈ [0, tf ]}, is

the control set follows from [32, 56]. The Pontryagins Maximum Principle [71] gives the nec-

essary conditions that an optimal control must satisfy. This principle converts (4.40) into
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a problem of pointwise minimizing a Hamiltonian H, with respect to u1(t) and u2(t). The

Hamiltonian obtained from the objective functional (4.40) and the governing dynamics of the

vaccination model (4.23) is given by

H = A1I(t) +B1S(t) + C1u
2
1 + C2u

2
2

+λS

(
µN(t) + (1− u1)ωV − S(t)

n∑
i=1

βiWi(t)− (µ+ u2)S(t)

)

+ λV

(
u2S(t)− (1− u1)ωV − (1− ε)V

n∑
i=1

βiWi(t)− µV (t)

)
(4.42)

+ λI

(
S(t)

n∑
i=1

βiWi(t) + (1− ε)V
n∑
i=1

βiWi(t)− (µ+ γ)I(t)

)

+
n∑
i=1

[λWi
(νiI(t)− σWi(t))] + λR (γI(t)− µR(t)) ,

where λS, λV , λI , λW1 , λW2 , . . . , λWn and λR are the associated adjoints for the states

S, V, I,W1,W2, . . . ,Wn and R respectively.

Given the optimal control pair (u∗1(t), u
∗
2(t)) and solutions S∗, V ∗, I∗,W ∗ and R∗ of the cor-

responding state system (4.23) that minimizes J(u1, u2) over U , there exists adjoint variables

λS, λV , λI , λW1 , λW2 , . . . , λWn and λR satisfying

dλS
dt

= −B1 + λS

[
n∑
i=1

βiWi + (µ+ u2)

]
− λV u2 − λI

n∑
i=1

β1Wi,

dλV
dt

= −λS(1− u1)ω + λV

[
(1− u1)ω + (1− ε)

n∑
i=1

βiWi + µ

]
− λI(1− ε)

n∑
i=1

βiWi,

dλI
dt

= −A1 + λI(µ+ γ)−
n∑
i=1

λWi
νi − λRγ,

dλW1

dt
= λSSβ1 + λV (1− ε)V β1 − λI [Sβ1 + (1− ε)V β1] + λW1σ,

dλW2

dt
= λSSβ2 + λV (1− ε)V β2 − λI [Sβ2 + (1− ε)V β2] + λW2σ,

...
...

dλWn

dt
= λSSβn + λV (1− ε)V βn − λI [Sβn + (1− ε)V βn] + λWnσ,

dλR
dt

= −λRµ.
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together with transversality conditions

λk(tf ) = 0, where k = S, V, I,W1,W2, . . . ,Wn and R. (4.43)

These differential equations governing the adjoint variables were obtained by differentiating the

Hamiltonian function (4.42) with respect to the corresponding states as follows:

−dλk
dt

=
dH

dk
.

We now consider the optimality conditions

0 =
∂H

∂u1
and 0 =

∂H

∂u2
. (4.44)

By solving for u1 and u2 in (4.44) and subsequently applying standard control arguments and

bounds on the controls, we obtain

u∗1 = min {1, ωV (λS − λV )/(2C1)} , u∗2 = min {1, S(λS − λV )/(2C2)} . (4.45)

The above results show that there exist optimal control functions u∗1 and u∗2 that minimize

the spread of waterborne disease using vaccination with minimum cost. To understand the

behaviour of u∗1 and u∗2, we carry out numerical simulations of the optimality system.

The numerical results of the optimality system are obtained for different values of ω, while

keeping the other parameters fixed in each of the simulations. The values of the cost factors:

A1 = 6.00, B1 = 6.00, C1 = 10.00, C2 = 10.00 are taken from [49] while the remaining

parameter values with references can be found in Table 4.2. The numerical results are obtained

for two water sources i.e., n = 2. Numerical solutions of the optimal system which are made up

of the state equations and adjoint equations are carried out using MatLab [86]. The algorithm

is the forward-backward scheme described in [49, 59]. We obtain the two optimal control

functions u∗1 and u∗2 that minimize the cost functional subject to the state equations as shown

in Figures 4.7(a) and 4.7(b). To reduce the spread of infections with minimum cost, the results

of our simulations in the Figures indicate the following: Firstly, the results suggest 100%

vaccination rate (i.e., everybody to be vaccinated) from the onset of the outbreak irrespective of

the wane rate ω. Since vaccination is a preventive control measure, the idea of vaccinating every

individuals from the onset of the outbreak is reasonable and agrees with intuitive expectation.
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(a) Plot of u1(t) and u2(t) vs t for ω = 0.03. (b) Plot of u1(t) and u2(t) vs t for ω = 0.003.

Figure 4.7: Graphical representation of the control functions u1(t) and u2(t) for two different

values of vaccine wane rate ω.

Secondly, Figure 4.7(a) suggests 100% control of vaccine wane from the onset of the outbreak

when ω = 0.03. On the other hand, when ω = 0.003 [65] Figure 4.7(b) suggests at most 30%

control over wane rate throughout the period of the outbreak. This means that more resources

will be channelled toward controlling the vaccine wane rate as it is very big, but if the vaccine

wane rate is very small, then less resources will be directed to control it. This suggestion is

also reasonable and agrees with intuitive expectation.

We investigate the effects of this optimal vaccination on the S(t), V (t) and I(t). By solving

our models numerically, we were able to determine the impact of vaccination as well as optimal

vaccination. From Figures 4.8(a) and 4.8(b), we observe that the number of susceptible and

infected individuals in the absence of vaccination is always greater the number of susceptible and

infected individuals in the presence of vaccination. This agrees with intuitive expectation since

vaccination tends to reduce the number of susceptible individuals and hence leading to decrease

in the number of infected individuals. However, we notice from Figure 4.8(a) that the number

of susceptible individuals in the presence of optimal vaccination is greater than the number of

susceptible individuals in the presence or absence vaccination at least for the first 50 days. This

seems to be unusual, but we should realize that optimal vaccination is not necessarily the best

vaccination but rather a good vaccination with minimum cost of implementation. Furthermore,
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in Figure 4.8(c), we observe that the number of infected individuals in the presence or absence

vaccination grow very fast for the first 5 days and then drop very fast as well while the number of

infected individuals in the presence of optimal vaccination grows very slowly. This fast increase

and decrease of the number of infected individuals in the presence or absence vaccination is

regarded as the first epidemic wave. This is always the case whenever a waterborne disease

outbreak occurs in an unprepared community. The first epidemic wave normally lead to many

deaths/infections but after it, the number of deaths/infections will decrease as the remaining

individual will start a healthy life style like purifying water before drinking, staying away from

contaminated water sources and so on. This explain why the number of infected and susceptible

individuals in the presence or absence vaccination decreases faster than the number of infected

and susceptible individuals in the presence of optimal vaccination. Since we are optimizing

the vaccination rate and control over vaccine wane rate, Figure 4.8(b) demonstrates that after

the first 15 days of the outbreak, vaccinated individuals in the presence of optimal vaccination

grows faster and becomes greater than the vaccinated individuals in the presence of vaccination

only. From Figure 4.8(c) we also notice that the maximum number of infected individuals in

the presence of optimal vaccination is less than the maximum number infected individuals in

the presence or absence of vaccination at least for the period of the outbreak. This confirms the

result in [20] that optimal control intervention tends to keep the number of infected individuals

low to a certain level throughout the duration of the outbreak. As a result, one can better

manage the outbreak in the presence of optimal vaccination. In other words, the health system

will not suffer a shock as in the case of no vaccination or vaccination only.
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(a) Plot of S(t) vs. time. (b) Plot of V (t) vs. time.

(c) Plot of I(t) vs. time.

Figure 4.8: Graphical representation of S(t), V (t) and I(t) against time (t) in the presence or

absence of vaccination or optimal vaccination.

4.6 Discussion

We formulated a mathematical epidemiological model for waterborne disease for a community

where individuals are exposed to multiple contaminated water sources and showed that it is

possible to control the spread of waterborne disease using vaccination with minimum cost. We

considered the waterborne disease model (4.1) with multiple contaminated water sources and

qualitatively determined some of its essential mathematical epidemiological features such as:

the basic reproduction number R0, the outbreak growth rate, stability of the DFE and EE. By

analysing these mathematical features and comparing them with that of the single water source
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model, we discovered some interesting relationships between the two models. For example, the

basic reproduction number R0, outbreak growth rate λ+ and final outbreak size Z of the

multiple water sources model were shown to be always less than that of the single water source

model. Since the multiple water sources are more realistic, epidemiologically, this implies that

these important features of the model will be under estimated, thus leading to poor prediction of

an outbreak if the single water source model is considered for a community where there is more

than one water source. These analyses also revealed that it is possible to extend some results of

the single water source model to the multiple water source model. Furthermore, we discovered

that it is possible for the disease to be eradicated from such community whenever R0 < 1 by

proving that the disease free equilibrium of the multiple contaminated water source model (4.1)

is globally asymptotic stable whenever R0 < 1. On the other hand, if R0 > 1, we determined

a unique endemic equilibrium for the model and investigated its global asymptotically stability

by constructing a suitable Lypunov function. We summarized the stability results of the model

(4.1) with a bifurcation diagram that illustrates the stability exchange at R0 = 1.

Next, we verified how realistic our results are by using the multiple water source model (4.1) to

investigate the recent cholera outbreak in Haiti. We fitted the model to the number of reported

hospitalized cholera cases in Haiti from October 30, 2010 to December 24, 2012. Our analysis

revealed that the analytical results are consistent with the cholera dynamics in Haiti. Thus, the

multiple water source model (4.1) is applicable to the Haiti cholera outbreak. It can therefore

be considered to provide insight into the future evolution of cholera dynamics in Haiti.

The analysis and results obtained from the multiple water source model (4.1) also enable

us to study a control intervention strategy for waterborne disease. As a simple illustration,

we considered the use of vaccination to control the disease by extending model (4.1). The

vaccination-induced basic reproduction number Rv
0 was obtained. We discovered that the dis-

ease can be eradicated using vaccination if Rv
0 < 1. By proving that Rv

0 < R0, we discovered

that vaccination reduces the number of secondary infections by a factor Ev
0 . The quantity Ev

0

is regarded as a measure of effectiveness of vaccination. We also discovered that the sensi-

tivity indices of Rv
0 and Ev

0 with respect to the control parameters ω, u1, ε and u2 are equal,

suggesting that each of the parameters has the same effects on Rv
0 and Ev

0 . Furthermore, we
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discovered that each of the control parameters have some impact in decreasing the number

of secondary infections. Further analysis revealed that vaccine efficacy ε is the most sensitive

control parameter irrespective of parameter values. Through these analyses, we conclude that

vaccination has influence in reducing the spread of waterborne disease in a community where

individuals are exposed to multiple contaminated water sources such that an outbreak will not

occur. Note that other types of control intervention strategies such as treatment of infected

individuals, sanitation, sewage treatment, and provision of clean water/water sanitation, can

be also incorporated into the model and similar analyses can be performed. Such information

would provide useful guidelines for the public health administrations to effectively design better

control intervention strategies.

Finally, we considered the cost of administering effective vaccination in such communities by

constructing a suitable optimal control functional subject to the vaccination model. We deter-

mined the optimal control functions u∗1 and u∗2 that control the spread of waterborne disease in

the community with minimum cost. The numerical illustration of the optimal control functions

reveals that infection can be reduced with minimum cost through effective vaccination given at

the onset of the outbreak.

This study explored the dynamics of waterborne disease in a community where individuals

are exposed to multiple contaminated water sources as well as predicting some strategies to

reduce the spread of the disease using vaccination with minimum cost. It is important to

know that it still has some limitations. First, we assumed that the total human population is

constant (i.e., the natural birth and death rates are always equal). This is not always true in

the real world, especially when the outbreak lasted for a long period of time. Thus, considering

a variable population will certainly affect our results especially the long-term dynamics of

the disease. Moreover, we will expect to have a higher number of susceptible and infected

individuals since waterborne disease affect mostly children, unlike when a constant population

is considered. Next, as we mentioned earlier, vaccination is not the only control intervention

strategy, so we may also consider some other control intervention strategies like treatment,

provision of clean water, public health campaigns, quarantine etc. Finally, we note that one of

the methods of controlling the rate at which a vaccine wanes is by considering pulse vaccination,
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i.e., the repeated application of a vaccine over a defined age range [1, 82, 68]. As this has been

successfully used to eliminate infections such as measles and polio, it can also be considered for

waterborne diseases. All these are the subjects of future work.
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Chapter 5

Heterogeneity and control intervention

strategies of an n-patch waterborne

disease model

We formulate an n-patch model that captures the essential dynamics of waterborne disease

transmission in a meta-population setting to study the effects of heterogeneity on the spread

of the disease. The effects of heterogeneity on some important mathematical features of the

model such as the basic reproduction number, type reproduction number and final outbreak

size are analysed accordingly. We conduct a real-world application of this model by using it to

investigate the recent cholera outbreak in Haiti. The model is extended by introducing control

intervention strategies such as vaccination, treatment and water purification, and analysed to

determine the possible benefits of these intervention strategies. The contents of this Chapter

have been submitted for publication [23].

5.1 Introduction

Waterborne diseases can be transmitted via person-water-person contact. This means that an

infected individual will first shed pathogens into the water source and susceptible individuals

can then contact the disease when they come in contact with the water source. In reality,
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the transmission rate and shedding rate vary from one individual to another, hence leading to

heterogeneity in transmission of waterborne diseases. Even though, in some of the theoretical

studies on the dynamics and control intervention strategies [12, 72, 19, 29, 33, 36, 42, 84, 65, 52,

62, 64, 101] this is not taken into account, heterogeneity is crucial to understand the dynamics

of the waterborne disease and how best to reduce the spread of the infection. Since most of

the factors affecting the spread of waterborne diseases vary within and across a population, it

is expected that most of the important mathematical features of waterborne disease models

such as the basic reproduction number, the type reproduction number and the final outbreak

size will also vary. Understanding the behaviour of each of these mathematical features is

very important in defining better control intervention strategies that will reduce the spread of

the disease. It is our interest in this study to explore the effects of heterogeneity on each of

the mathematical feature of waterborne disease model and consequently define better control

strategies that will reduce the spread of the disease.

To the best of our knowledge, the heterogeneity and control of waterborne disease for a meta-

population have not yet been explored. A meta-population approach is one of the methods

of considering heterogeneity to study the dynamics of waterborne diseases [76]. We consider

this approach to study the dynamics of waterborne disease for a meta-population setting where

individuals are exposed to multiple contaminated water sources. The remaining part of this

chapter is organized as follows: The model we are going to discuss is formulated in Section 5.2

and its qualitative analyses is carried out in Section 5.3. In Section 5.4, we apply our model to

investigate the recent cholera outbreak in Haiti. Analyses of the multiple control model which

we obtain by introducing three controls simultaneously are presented in Section 5.5. The effects

of each of the control intervention strategy are investigated in Section 5.6. We conclude the

chapter by discussing our results in Section 5.7.

5.2 Model formulation

Consider a community where all the individuals are exposed to multiple contaminated water

sources. Despite the fact that all the individuals are exposed to contaminated water sources,
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studies have shown that some groups of individuals (especially children) are more vulnerable

to infection. Some of the reasons for these differences might be due to hygienic practices of the

individuals (like boiling water before drinking, washing hands after going to the toilet, proper

washing of dishes and food before eating) and the level of the immune system of the individuals.

Understanding the dynamics of waterborne diseases for such a community is complicated as

homogeneous models cannot explain such situations. As a result, we resort to a multi-group

model where individuals with the same activity level (hygiene practices, immune systems, etc.,)

form a group or a patch.

To formulate the model, we consider a total human population N where individuals are exposed

to m multiple water sources. We partition the population into n distinct subpopulations or

patches based on the activity level. These populations are combined to form a meta-population

model in which secondary infections are generated both within a given patch and between

patches. The secondary infections within a patch occur when an individual from a patch

sheds pathogens into water sources with which susceptible individuals from the same patch

subsequently come into contact. However, if the susceptible individuals that come in contact

with the pathogens shed from an individual are from different patches, we say that secondary

infections between patches have occurred.

We partition N , the total human population of a community at risk for waterborne disease

infections, into n patches or homogeneous sub-populations of size Nj such that each patch is

made up of susceptible Sj(t), infected Ij(t) and recovered Rj(t), individuals. The compartment

Wk measures pathogen concentration in water reservoir k. In this study, we assume that

there is no person to person transmission and only consider transmission through contact with

contaminated water, as it is often considered to be the main driver of waterborne disease

outbreaks [64, 80]. Susceptible individuals Sj(t) become infected through contact with the

contaminated water sources Wk at rate βjk. Infected individuals Ij(t) can contaminate the

water sources by shedding pathogen into them at rate νjk and recover naturally at rate γj.

Pathogens in the contaminated water source k grow naturally at rate αk and decay at rate

ξk. We assume that σk = −(αk − ξk) < 0 is the net decay rate of pathogens in the kth water

reservoir. Natural death occurs in all the patches at rate µ. Note that j = 1, 2, · · · , n and
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k = 1, 2, · · · ,m. Putting these assumptions together, we obtain the model

Ṡ1(t) = µN1(t)− S1(t)
m∑
k=1

β1jWk(t)− µS1(t),

İ1(t) = S1(t)
m∑
k=1

β1kWk(t)− (µ+ γ1)I1(t),

Ṙ1(t) = γ1I1(t)− µR1(t).

Ṡ2(t) = µN2(t)− S2(t)
m∑
k=1

β2jWk(t)− µS2(t),

İ2(t) = S2(t)
m∑
k=1

β2kWk(t)− (µ+ γ1)I2(t),

Ṙ2(t) = γ2I2(t)− µR2(t).

... =
...

Ṡn(t) = µNn(t)− Sn(t)
m∑
k=1

βnkWk(t)− µSn(t),

İn(t) = Sn(t)
m∑
k=1

βnkWk(t)− (µ+ γn)In(t), (5.1)

Ṙn(t) = γnIn(t)− µRn(t).

Ẇ1(t) =
n∑
j=1

νj1Ij(t)− σ1W1(t),

Ẇ2(t) =
n∑
j=1

νj2Ij(t)− σ2W2(t),

... =
...

Ẇm(t) =
n∑
j=1

νjmIj(t)− σmWm(t),
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The model (5.1) can be written in compact form as

Ṡj(t) = µNj(t)− Sj(t)
m∑
k=1

bjkWk(t)− µSj(t),

İj(t) = Sj(t)
m∑
k=1

bjkWk(t)− (µ+ γj)Ij(t), (5.2)

Ẇk(t) =
n∑
j=1

θjkIj(t)− σkWk(t),

Ṙj(t) = γjIj(t)− µRj(t).

Variables and parameters of the model (5.2) with their meaning are given in Table 5.1. The

force of infection in patch j is given by the linear term
∑m

k=1 bjkWk [34, 54]. Note that model

(5.2) is an extension of the model considered by Collins and Govinder [22] to study the dynamics

of waterborne disease with multiple water sources.

A dimensionless version of model (5.2) is given by

ṡj = µ− sj
m∑
k=1

βjkwk − µsj,

i̇j = sj

m∑
k=1

βjkwk − (µ+ γj)ij, (5.3)

ẇk = σk

(
n∑
j=1

νjkij − wk

)
,

ṙj = γjij − µrj,

where sj = Sj/Nj, ij = Ij/Nj, rj = Rj/Nj, wk = σkWk/
∑n

j=1 θjkNj, βjk = bjk
∑n

p=1 θpkNp/σk,

νjk = θjkNj/
∑n

p=1 θpkNp. Note that
∑n

j=1 νjk = 1. Thus the parameter νjk can be interpreted

as the proportion of total shedding from Ij into Wk while βjk is the scaled contact rate of Sj

with the water source Wk. Note that βj =
∑m

k=1 βjk is the scaled effective contact rate of Sj

with all the water sources and νj =
∑m

k=1 νjk is the scaled effective proportion of total shedding

from Ij into all the water sources.
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Table 5.1: Variables and parameters for model (5.3)

Variables Meaning

N(t) total human population

Sj(t) susceptible individuals in patch j

Ij(t) infected individuals in patch j

Rj(t) recovered individuals in patch j

Wk(t) measure of pathogen concentration in water reservoir k

bjk partial contact rate of Sj(t) with Wk(t)

bj effective contact rate of Sj(t) with all the water sources

θjk partial shedding rate of Ij(t) into Wk(t)

θj effective shedding rate of Ij(t) into all the water sources

γj recovery rate of Ij

σk net decay rate of pathogen in water source k

µ natural death rate of individuals

5.3 Model analysis

In this section, we carry out a qualitative analysis of model (5.3). The initial conditions are

assumed as follows:

sj(0) > 0, ij(0) ≥ 0, wk(0) ≥ 0, rj(0) ≥ 0. (5.4)

It is straightforward to show that all solutions (s̄, ī, w̄, r̄) of model (5.3) are positive and

bounded for all t > 0, where s̄ = (s1(t), s2(t), . . . , sn(t)), ī = (i1(t), i2(t), . . . , in(t)), w̄ =

(w1(t), w2(t), . . . , wm(t)) and r̄ = (r1(t), r2(t), . . . , rn(t)). Thus, the feasible region of model

(5.3) is given by

Ω = Ωn
H × Ωm

P ⊂ Rn×n
+ × Rm

+ , (5.5)

where

Ωm
P =

{
w̄ ∈ Rm

+ : 0 ≤ wk ≤ 1
}
,

and

Ωn
H =

{
(s̄, ī, r̄) ∈ R3n

+ : sj + ij + rj = 1
}
,
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are the feasible region of the pathogen and human components respectively of model (5.3).

The feasible region Ω is positively-invariant under the flow induced by (5.3), thus it is sufficient

to study the dynamics of (5.3) in Ω. Note that the superscript m is use to emphasis on the

number of water sources and n is the number of patches. In order to understand the dynamics

of model (5.3), we start with a qualitative analysis of the model with special case n = 2.

5.3.1 Quantifying heterogeneity

Here, we investigate the heterogeneity in the transmission dynamics of the model (5.3). Since

secondary infections are generated in two different ways: within each patch and between the

patches, it is expected that heterogeneity could also arise in the same manner.

Heterogeneity within each patch only

Heterogeneity in disease transmission can be measured as the variance in transmission rates or

contact rates among patches [76]. For heterogeneity within patch 1, we propose the following

measure of heterogeneity:

H1 =

(
m∑
j=1

wj(ν1j − ν̄1)2 +
m∑
j=1

wj(β1j − β̄1)2
)/ m∑

j=1

wj,

where ν̄1 =
∑m

j=1wjν1j/
∑m

j=1wj and β̄1 =
∑m

j=1wjβ1j/
∑m

j=1wj. By considering the following

transformation

w′k = wk

/ m∑
j=1

wj, k = 1, 2, · · · ,m, (5.6)

the measure of heterogeneity H1 can be normalized to

H1 =
m∑
j=1

w′j(ν1j − ν̄1)2 +
m∑
j=1

w′j(β1j − β̄1)2, (5.7)

with ν̄1 =
∑m

j=1w
′
jν1j and β̄1 =

∑m
j=1w

′
jβ1j, since

∑m
j=1w

′
j = 1.

Similarly, the measure of heterogeneity H2 within patch 2 is given by

H2 =
m∑
j=1

w′j(ν2j − ν̄2)2 +
m∑
j=1

w′j(β2j − β̄2)2, (5.8)
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where ν̄2 =
∑m

j=1w
′
jν2j and β̄2 =

∑m
j=1w

′
jβ2j.

The total heterogeneity within the two patches can be defined as

H = H1 +H2. (5.9)

Heterogeneity between two patches only

The contact rate and shedding rate of individuals in patch 1 is certainly not the same as that

of patch 2. To estimate this variation in transmission dynamics between the patch 1 and 2, we

proposed the following measure of heterogeneity:

H12 =
m∑
j=1

w′j(ν1j − ν2j)2 +
m∑
j=1

w′j(β1j − β2j)2. (5.10)

Noting that H21 = H12, the total variation in transmission between the two patches can be

written as

H = H12. (5.11)

If we have a single water source, i.e., m = 1, the measure of heterogeneity H becomes

H = (ν11 − ν21)2 + (β11 − β21)2. (5.12)

Geometrically, equation (5.12) represents a circle with center (ν11, β11) and radius
√
H when

(ν11, β11) is fixed and (ν21, β21) is allow to vary. Since our interest is in the dynamics of water-

borne disease for multiple water sources, to have a geometric view of measure of heterogeneity

H between the two patches, we can also define H as

H = (ν̄1 − ν̄2)2 + (β̄1 − β̄2)2. (5.13)

If we fix (ν̄1, β̄1) and H and allow (ν̄2, β̄2) to vary, geometrically, equation (5.13) will represent

a circle with center (ν̄1, β̄1) and radius
√
H while if we fix (ν̄1, β̄1) only and allow H and

(ν̄2, β̄2) to vary, equation (5.13) becomes a paraboloid. The numerical illustrations of these are

given in Figure 5.1. In Figure 5.1(a), (ν1, β1) = (ν̄1, β̄1) is fixed as the center of the circles

while (ν2, β2) = (ν̄2, β̄2) and H varies. The radius of each circle represents the magnitude of

heterogeneity between the two patches. Thus the bigger the radius of the circle, the greater

the heterogeneity between the two patches.
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(a) (b)

Figure 5.1: Numerical illustration of heterogeneity between patch 1 and 2 assuming hetero-

geneity within the patches: (a) for (ν̄1, β̄1), H fixed (b) for (ν̄1, β̄1) fixed

Total heterogeneity

We have seen that there are two sources of heterogeneity in the system (5.3) namely: hetero-

geneity due to variation in transmission within a patch and heterogeneity due to variation in

transmission between the patches. Therefore, the total heterogeneity H in the system (5.3)

can be defined as the sum of all the heterogeneity H within the patches and heterogeneity H

between the patches and is given by

H = H +H. (5.14)

5.3.2 Homogeneous version of model (5.3)

To determine the effects of heterogeneity, it is necessary to obtain some of the mathematical

features of the homogeneous version of model (5.3) and thereafter compare them with that

of the heterogeneous model (5.3). The homogeneous version of the model (5.3) is obtained by

considering the entire population as a homogeneous mixing population where all the individuals
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have access to a single water source. The homogeneous version of model (5.3) is given by

Ṡ(t) = µN(t)− bS(t)W (t)− µS(t),

İ(t) = bS(t)W (t)− (µ+ γ)I(t),

Ẇ (t) = θI(t)− σW (t), (5.15)

Ṙ(t) = γI(t)− µR(t).

Note that (5.15) is simply obtained from the original model (5.2) by taking n = m = 1 and

ignoring the subscripts. By rescaling (5.15) as follows: s = S/N, i = I/N, r = R/N,

w = σW/θN, β = bθN/σ, we obtain a non-dimensional version of it:

ṡ = µ− βsw − µs,

i̇ = βsw − (µ+ γ)i,

ẇ = σ(i− w), (5.16)

ṙ = γi− µr.

The disease free equilibrium (DFE) and the basic reproduction number of the homogeneous

model (5.16) are given by

(s0, i0, w0) = (1, 0, 0) , (5.17)

and

R0 = β/(µ+ γ), (5.18)

respectively. To establish a relationship between the heterogeneous model (5.3) and the homo-

geneous model (5.16), we define the contact rate, recovery rate and decay rate as follows:

β =
2∑
j=1

βjNj/N =
2∑
j=1

m∑
k=1

βjkNj/N, σ =
m∑
k=1

w′kσk, γ =
2∑
j=1

Njγj/N.

Based on this definition, we will see later that in the absent of heterogeneity (both within and

between the patches), most of the mathematical features of the heterogeneous model (5.3) such

as the basic reproduction number will reduce to that of the homogeneous model (5.16).
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5.3.3 The basic reproduction number

The basic reproduction number is a useful epidemiological quantity that determines whether

a disease will persist or not in a population. We determine the basic reproduction number of

(5.3) using the next generation matrix approach of van den Driessche and Watmough [90]. The

associated next generation matrices are given by

F =



0 0 β11 β12 β13 . . . β1m

0 0 β21 β22 β23 . . . β2m

0 0 0 0 0 . . . 0
...

... . . .

0 0 0 0 0 . . . 0


, V =



µ+ γ1 0 0 0 0 0 . . . 0

0 µ+ γ2 0 0 0 0 . . . 0

−σ1ν11 −σ1ν21 σ1 0 0 0 . . . 0

−σ2ν12 −σ2ν22 0 σ2 0 0 . . . 0
...

...

−σmν1m −σmν2m 0 0 0 . . . 0 σm


,

with

FV−1 =



Rm
11 Rm

12 β11/σ1 β12/σ2 . . . β1m/σm

Rm
21 Rm

22 β21/σ1 β22/σ2 . . . β2m/σm

0 0 0 0 . . . 0
...

... . . .

0 0 0 0 . . . 0


, (5.19)

where

Rm
11 =

m∑
j=1

ν1jβ1j/(µ+ γ1), Rm
12 =

m∑
j=1

ν2jβ1j/(µ+ γ2), (5.20)

Rm
21 =

m∑
j=1

ν1jβ2j/(µ+ γ1), Rm
22 =

m∑
j=1

ν2jβ2j/(µ+ γ2). (5.21)

The basic reproduction number is the dominant eigenvalue of the matrix FV−1 and is given by

Rm
0 =

(
Rm

11 +Rm
22 +

√
(Rm

11 −Rm
22)

2 + 4Rm
12Rm

21

)/
2. (5.22)

From this equation (5.22), we notice that to have any chance of controlling the spread of

infection (i.e., Rm
0 < 1), then it is necessary that Rm

11 < 1 and Rm
22 < 1 hold.
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Suppose the entire population share a common water sources (i.e., m = 1), then the basic

reproduction number Rm
0 becomes

R1
0 =

(
R1

11 +R1
22 +

√
(R1

11 −R1
22)

2 + 4R1
12R1

21

)/
2,

= R1
11 +R1

22, (5.23)

where

R1
11 = ν11β11/(µ+ γ1), R1

12 = ν21β11/(µ+ γ2), R1
21 = ν11β21/(µ+ γ1), R1

22 = ν21β21/(µ+ γ2).

Using a global stability result by Castillo-Chavez et al. [13] we establish the following theorem:

Theorem 5.3.1. The DFE of model (5.3) is globally asymptotically stable if Rm
0 < 1.

Next, we investigate the effects of heterogeneity by comparing the basic reproduction numbers

of our models. Noting that the basic reproduction numbers are parameter dependent, we modify

the contact rates, shedding rates and recovery rates as follows:

Since individuals do not have equal access to each of the contaminated water sources, we can

rewrite νij and βij as

νij = νi1a
j−1, βij = βi1b

j−1, (5.24)

where 0 < a, b < 1. If, in addition, we assume that individuals in patch 1 are more exposed to

infections than those in patch 2, those in patch 2 are more exposed than those in patch 3, in

this order till patch n, then we have that

νij = ν11q
i−1aj−1, βij = β11p

i−1bj−1, γi = γ1c
i−1, (5.25)

where 0 < p, q < 1 and c > 1. Note that we also assumed that individuals in patch n recover

faster than those in patch n − 1 while those in patch n − 1 recover faster than those in n − 2

in this other till patch 1 which account for having c > 1. By considering equation (5.25), Rm
0

simplifies to

Rm
0 = Rm

11 +Rm
22. (5.26)

With these modifications, we can now go ahead and carry out the analysis as follows:
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Firstly, we compare the basic reproduction number Rm
0 of model (5.3) with that of R0 homoge-

neous model (5.16). Taking limits of Rm
0 and R0 as a, b, c, p, q −→ 1 or as a, b, p, q −→ 0, c −→

∞ we obtain that

R0 < Rm
0 (5.27)

for both cases. This suggests that heterogeneity increases the basic reproduction number. Thus

considering heterogeneity might lead to an increase in the number of secondary infections in

the entire community.

Note that a, b, c, p, q −→ 1 means a situation when the difference in transmission between

the patches becomes very small, while a, b, p, q −→ 0, c −→ ∞ implies that the difference in

transmission between the patches becomes very large.

Secondly, we compare the basic reproduction number of our models for the case when there is

heterogeneity only within the patches i.e., H 6= 0 and H = 0. In this case, ν1j = ν2j, β1j = β2j

and the basic reproduction number Rm
0 becomes

RH
0 = Rm

11 +Rm
22. (5.28)

Taking limits as a, b, c, p, q −→ 1 or as a, b, p, q −→ 0, c −→∞, we obtain that

R0 < RH
0 . (5.29)

Thirdly, for the case when there is heterogeneity only between the patches i.e., H = 0 and

H 6= 0. Here we have ν̄1 = ν1j, ν̄2 = ν2j, β̄1 = β1j and β̄2 = β2j and Rm
0 becomes

RH0 = Rm
11 +Rm

22. (5.30)

Taking limits as a, b, c, p, q −→ 1 or as a, b, p, q −→ 0, c −→∞, we obtain that

R0 < RH0 . (5.31)

The above results show that an increase in heterogeneity increases the basic reproduction

number. These are also consistent with the results of [76] that says that the basic reproduction

number is an increasing function of heterogeneity.
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Suppose the patches are isolated such that there is no sharing of water sources, then Rm
0

becomes

Rs
0 = max{Rm

11,Rm
22}, (5.32)

where R11 = ν11β11/(µ+ γ1) and R22 = ν22β22/(µ+ γ2). It is obvious that

Rs
0 < Rm

0 . (5.33)

This shows that sharing of water sources increases the basic reproduction number compared

to when patches are isolated. Notice that if there is no sharing of water sources, heterogene-

ity within the patches vanishes i.e., H = 0. Therefore, sharing of water sources increases

heterogeneity in transmission of waterborne diseases.

Furthermore, we have from equation (5.23) that when the entire population share a common

water sources, thatRm
0 becomesR1

0 = R1
11+R1

22. For this case, we also notice that heterogeneity

within the patches vanishes i.e., H = 0. This implies that reducing the number of water sources

that the population shared deceases heterogeneity in transmission. Moreover,

R1
0 < Rm

0 , (5.34)

showing that the greater the number of water sources shared by the population, the greater

the basic reproduction number. Therefore, an increase in the number of water sources shared

by the population leads to increases heterogeneity in transmission of waterborne diseases. This

support our earlier results that say that heterogeneity increases the reproduction number of

the disease. Thus, heterogeneity has some influence on the dynamics of waterborne disease.

Therefore, to effectively reduce the spread of waterborne disease in a meta-population set-

ting, heterogeneity within the patches should be put into consideration while designing control

intervention strategies.

5.3.4 Type reproduction numbers

The type reproduction number Ti represents the expected number of secondary infections pro-

duced by an infected individual in a susceptible patch i over his/her lifetime. To determine the
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proper control effort needed to eradicate the spread of the infection while targeting control at

one particular patch, and having no control over reducing the spread of the disease in other

patches, it is necessary that we consider the type reproduction number rather than the basic

reproduction number [75, 37]. We compute T1 for patch 1 to be

T1 = Rm
11 +Rm

12Rm
21/(1−Rm

22), (5.35)

provided that Rm
22 6= 1. Similarly, the type reproduction number T2 for patch 2 is given by

T2 = Rm
22 +Rm

12Rm
21/(1−Rm

11), (5.36)

provided that Rm
11 6= 1.

Equations (5.35) can be re-written as

(T1 −Rm
11)(1−Rm

22) = Rm
12Rm

21. (5.37)

Since Rm
12 > 0 and Rm

21 > 0, then we must have that T1 > Rm
11 and 1 > Rm

22 or T1 < Rm
11 and

1 < Rm
22. Similarly, from (5.36) we obtain T2 > Rm

22 and 1 > Rm
11 or T2 < Rm

22 and 1 < Rm
11.

Given that a necessary condition to control the spread of infection is that Rm
11 < 1 and Rm

22 < 1,

we must have that

Rm
11 < T1, Rm

22 < T2. (5.38)

On the other hand, if Rm
11 > 1 and Rm

22 > 1, then

Rm
11 > T1, Rm

22 > T2. (5.39)

In this case, there is no chance of controlling the spread of infection.

To determine the effect of heterogeneity on the type reproduction numbers of model (5.3), we

consider the following cases: Suppose there is heterogeneity only within the patches i.e., H 6= 0

and H = 0, then the type reproduction numbers T1 and T2 becomes

T H1 = Rm
11/(1−Rm

22), T H2 = Rm
22/(1−Rm

11). (5.40)

Similarly, if there is heterogeneity only between the patches i.e., H = 0 and H 6= 0, the type

reproduction numbers T1 and T2 become

T H1 = Rm
11/(1−Rm

22), T H2 = Rm
22/(1−Rm

11). (5.41)
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Suppose there is no sharing of water sources, then the type reproduction numbers T1 and T2
become

T s1 = Rm
11, T s2 = Rm

22. (5.42)

We can easily see

T s1 < T1, T s2 < T2. (5.43)

This implies that sharing of water sources increases the type reproduction numbers. Based on

our earlier results, we can say that heterogeneity increases the type reproduction numbers.

5.3.5 Final outbreak size

The basic reproduction number/type reproduction number is very important for determining

whether or not an outbreak will occur. To determine the magnitude of an outbreak, it is

necessary to compute the final outbreak size. The final outbreak size denoted by z of the SIR

models together with some other related models is given by the relation [57]

z = 1− exp(−R0z). (5.44)

This relation does not hold for model (5.3). However, when µ = 0, Rm
0 > 1 and wj(0) = 0,

then the final outbreak size in patch 1 and patch 2 denoted by z1 and z2 respectively are given

by the following equations:

zm1 = 1− exp (−Rm
11z

m
1 −Rm

12z
m
2 ) , (5.45)

zm2 = 1− exp (−Rm
22z

m
2 −Rm

21z
m
1 ) . (5.46)

Proof. We consider the same approach used in [84, 57]. Let

F1(t) = log s1(t) + r1(t)
m∑
j=1

ν1jβ1j/γ1 + r2(t)
m∑
j=1

ν2jβ1j/γ2 −
m∑
j=1

β1jwj(t)/σj, (5.47)

F2(t) = log s2(t) + r2(t)
m∑
j=1

ν2jβ2j/γ2 + r1(t)
m∑
j=1

ν1jβ2j/γ1 −
m∑
j=1

β2jwj(t)/σj. (5.48)

129



Differentiating F1 with respect to time t gives

Ḟ1 = ṡ1/s1 + ṙ1(t)
m∑
j=1

ν1jβ1j/γ1 + ṙ2(t)
m∑
j=1

ν2jβ1j/γ2 −
m∑
j=1

β1jẇj(t)/σj,

= −
m∑
j=1

β1jwj(t) + i1(t)
m∑
j=1

ν1jβ1j + i2(t)
m∑
j=1

ν2jβ1j −
m∑
j=1

β1j(ν1ji1(t) + ν2ji2(t)− wj(t)),

= 0.

Hence, F1 is constant function along solution trajectories of model (5.3). Similarly, F2 is also

constant function along the solution trajectories. Since µ = 0, then susceptible individuals

s1(t) and s2(t) decrease monotonically to limits s̄1 and s̄2 respectively while the recovered

individuals r1(t) and r2(t) increase monotonically to limits r̄1 and r̄2 respectively. By lemma

2 of [84], (i1(t), i2(t)) −→ (0, 0) and wj(t) −→ 0. Consequently, s̄1 = 1 − r̄1 and s̄2 = 1 − r̄2.

Taking limits of (5.47) and (5.48), we obtain

lim
t−→∞

F1(t) = log(1− r̄1) + r̄1

m∑
j=1

ν1jβ1j/γ1 + r̄2

m∑
j=1

ν2jβ1j/γ2,

lim
t−→∞

F2(t) = log(1− r̄2) + r̄2

m∑
j=1

ν2jβ2j/γ2 + r̄1

m∑
j=1

ν1jβ2j/γ1.

At t = 0,

F1(0) = log s1(0) + r1(0)
m∑
j=1

ν1jβ1j/γ1 + r2(0)
m∑
j=1

ν2jβ1j/γ2 −
m∑
j=1

β1jwj(0)/σj,

F2(0) = log s2(0) + r2(0)
m∑
j=1

ν2jβ2j/γ2 + r1(0)
m∑
j=1

ν1jβ2j/γ1 −
m∑
j=1

β2jwj(0)/σj.

Letting s1(0) −→ 1, s2(0) −→ 1 then (r1(0), r2(0)) −→ (0, 0) and wj(0) −→ 0. Since

F1(t) and F2(t) are constant along solution trajectories, then limt−→∞ F1(t) = F1(0) = 0 and

limt−→∞ F2(t) = F2(0) = 0, so

log (1− r̄1) + r̄1

m∑
j=1

ν1jβ1j/γ1 + r̄2

m∑
j=1

ν2jβ1j/γ2 = 0, (5.49)

log (1− r̄2) + r̄2

m∑
j=1

ν2jβ2j/γ2 + r̄1

m∑
j=1

ν1jβ2j/γ1 = 0. (5.50)

Letting r̄1 −→ zm1 , r̄2 −→ zm2 and noting that Rm
11 =

∑m
j=1 ν1jβ1j/γ1, Rm

12 =
∑m

j=1 ν2jβ1j/γ2,

Rm
22 =

∑m
j=1 ν2jβ2j/γ2 and Rm

21 =
∑m

j=1 ν2jβ1j/γ1 when µ = 0, gives the desired result.
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The final outbreak size zm in the entire population is therefore given by [57]

zm =
2∑
i=1

zmi Ni/N. (5.51)

Taking limits as a, b, c, p, q −→ 1 or as a, b, p, q −→ 0, c −→∞, we obtain that

z ≤ zm, (5.52)

where z is the final outbreak size of the homogeneous model (5.16).

We observe that the final outbreak size zm1 in patch 1 is affected by the shedding from patch

2 and vice versa. This could be due to heterogeneity in transmission between the two patches.

Hence, it is necessary to determine the effects of heterogeneity in the final outbreak size. Sup-

pose there is heterogeneity only within the patches i.e., H 6= 0 and H = 0, the final outbreak

size zm1 in patch 1 and zm2 in patch 2 become

zH1 = 1− exp
(
−Rm

11z
H
1 −Rm

12z
H
2

)
, (5.53)

zH2 = 1− exp
(
−Rm

22z
H
2 −Rm

21z
H
1

)
, (5.54)

and final outbreak size zm in the entire population is

zH =
2∑
i=1

zHi Ni/N. (5.55)

Taking limits as a, b, c, p, q −→ 1 or as a, b, p, q −→ 0, c −→∞, we obtain that

z ≤ zH . (5.56)

On the other hand, if there is heterogeneity only between the patches i.e., H = 0 and H 6= 0,

the final out break size zm1 in patch 1 and zm2 in patch 2 become

zH1 = 1− exp
(
−Rm

11z
H
1 −Rm

12z
H
2

)
, (5.57)

zH2 = 1− exp
(
−Rm

22z
H
2 −Rm

21z
H
1

)
, (5.58)

and final outbreak size zm in the entire population is

zH =
2∑
i=1

Niz
H
i /N. (5.59)
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Taking limits as a, b, c, p, q −→ 1 or as a, b, p, q −→ 0, c −→∞, we obtain that

z ≤ zH. (5.60)

These results suggest that an increase in heterogeneity increases the final outbreak size.

In addition to this, if the patches are isolated such that there is no sharing of water sources,

then the final out break size relation in patch 1 and patch 2 becomes

zs1 = 1− exp (−R11z
s
1) , (5.61)

zs2 = 1− exp (−R22z
s
2) , (5.62)

respectively, where R11 = ν11β11/γ1 and R22 = ν22β22/γ2. Clearly

zs1 < zm1 , zs2 < zm2 . (5.63)

This shows that sharing of water sources increases the final outbreak size compared to when

patches are isolated.

5.3.6 The general n-patch model with shared multiple water sources

In this section, we extend some of the results obtained in the 2-patch model to the general

n-patch model (5.3). The next generation matrix FV−1 of the general n-patch model is given

by

FV−1 =



Rm
11 Rm

12 . . . Rm
1n β11/σ1 β12/σ2 . . . β1m/σm

Rm
21 Rm

22 . . . Rm
2n β21/σ1 β22/σ2 . . . β2m/σm

...
... . . . . . .

Rm
n1 Rm

n2 . . . Rm
nn βn1/σ1 βn2/σ2 . . . βnm/σm

0 0 . . . 0 0 0 . . . 0
...

... . . .

0 0 . . . 0 0 0 . . . 0


, (5.64)

where Rm
jk =

∑m
p=1 νkpβjp/(µ+ γk). Similar to the case of two patches, the basic reproduction

number Rm
0 is the dominant eigenvalue of the matrix FV−1. In this case, Rm

0 is the largest
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positive root of the polynomial

an+mλ
n+m + an+m−1λ

n+m−1 + an+m−2λ
n+m−2 + · · ·+ a1λ+ a0 = 0, (5.65)

where a0, a1, · · · , an+m are constants functions of Rm
jk and Njβjk/σk.

If the patches are isolated such that there is no sharing of water sources, then Rm
0 for the

general case becomes

Rs
0 = max{Rm

jj}, j = 1, 2, · · · , n, (5.66)

where Rjj = νjjβjj/(µ+ γj).

For heterogeneity within any patch i of the general n-patch model (5.3), we propose the following

measure of heterogeneity:

Hi =
m∑
j=1

w′j(νij − ν̄i)2 +
m∑
j=1

w′j(βij − β̄i)2, (5.67)

where ν̄i =
∑m

j=1w
′
jνij and β̄i =

∑m
j=1w

′
jβij.

The total heterogeneity within all the patches can be defined as

H =
n∑
i=1

Hi. (5.68)

The variation in transmission dynamics between any two patches p and q, can be estimated by

the following measure of heterogeneity:

Hpq =
m∑
j=1

w′j(νpj − νqj)2 +
m∑
j=1

w′j(βpj − βqj)2. (5.69)

Note that Hpq = Hqp and Hpp = Hqq = 0. The total heterogeneity between all the patches

in the system can be estimated as follows: the heterogeneity between patch 1 and each of

the remaining n − 1 patches starting from patch 2 to patch n are H12, H13, H14, . . ., H1n.

Similarly, the heterogeneity between patch 2 and each of the remaining n− 2 patches starting

from patch 3 to patch n are H23, H24, H25, . . ., H2n. Notice that at each stage the number of

measures of heterogeneity decreases by 1. We can continue in this order to the last term which

is Hn−1 n. There are a total of n(n− 1)/2 distinct measure of heterogeneities Hpq between any
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two patches. Hence the total heterogeneity between each of the patches in the system can be

calculated explicitly as

H =
n∑
i=2

H1i +
n∑
i=3

H2i +
n∑
i=4

H3i + · · ·+
n∑

i=n−1

Hn−2 i +
n∑
i=n

Hn−1 i, (5.70)

where
∑n

i=nHn−1 i = Hn−1 n.

The total heterogeneity H in the general n-patch system (5.3) can be defined as the sum of all

the heterogeneity H within the patches and heterogeneity H between the patches and is given

by

H = H +H. (5.71)

The final outbreak size relation can also be derived for each of the patches of the general model

(5.3). Consider the function

Fj(t) = log sj(t) + r1(t)
m∑
k=1

ν1kβjk/γ1 + r2(t)
m∑
k=1

ν2kβjk/γ2 + . . .+ rn(t)
m∑
k=1

νnkβjk/γn

−
m∑
k=1

βjkwk(t)/σk.

Derivative of Fj with respect to time gives

Ḟj = ṡj/sj + ṙ1

m∑
k=1

ν1kβjk/γ1 + ṙ2

m∑
k=1

ν2kβjk/γ2 + . . .+ ṙn

m∑
k=1

νnkβjk/γn −
m∑
k=1

βjkẇk/σk,

= −
m∑
k=1

βjkwk + i1

m∑
k=1

ν1kβjk + i2

m∑
k=1

ν2kβjk + . . .+ in

m∑
k=1

νnkβjk −
m∑
k=1

βjk

(
n∑
j=1

νjkij − wk

)
,

= 0.

Thus Fj is a constant function along solution trajectories of model (5.3). Since µ = 0, then

susceptible individuals sj(t) decreases monotonically to limits s̄j while the recovered individuals

rj(t) increases monotonically to limits r̄j for each j = 1, 2, · · · , n. By lemma 2 of [84], ij(t) −→ 0

and wk(t) −→ 0 for each k = 1, 2, · · · ,m. This implies that, s̄j = 1− r̄j. Since Fj is constant,

setting Fj(0) = limt−→∞ Fj(t) gives

log sj(0) + r1(0)
m∑
k=1

ν1kβjk/γ1 + r2(0)
m∑
k=1

ν2kβjk/γ2 + . . .+ rn(0)
m∑
k=1

νnkβjk/γn −
m∑
k=1

βjkwk(0)/σk

= log(1− r̄j) + r̄1

m∑
k=1

ν1kβjk/γ1 + r̄2

m∑
k=1

ν2kβjk/γ2 + . . .+ r̄n

m∑
k=1

νnkβjk/γn. (5.72)
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Let sj(0) −→ 1 and wk(0) −→ 0 in (5.72) and note that sj(0) −→ 1 will force rj(0) −→ 0, we

have

log(1− r̄j) = −

(
r̄1

m∑
k=1

ν1kβjk/γ1 + r̄2

m∑
k=1

ν2kβjk/γ2 + . . .+ r̄n

m∑
k=1

νnkβjk/γn

)
. (5.73)

By letting r̄j = zmj and simplifying (5.73) gives the final outbreak size relation

zmj = 1− exp

(
−

m∑
k=1

Rm
jkz

m
k

)
, (5.74)

which is the desired result with Rm
jk =

∑m
p=1 νkpβjp/γk. Therefore, the final outbreak size in

patch j of the general model (5.3) is given by zmj . Thus, the final outbreak size zm in the entire

population is

zm =
n∑
j=1

zmj Nj/N. (5.75)

If there is no sharing of water sources, then the final out break size relation in patch j becomes

zsj = 1− exp
(
−Rjjz

s
j

)
, (5.76)

where Rjj = νjjβjj/γj. Moreover,

zs =
n∑
j=1

zsjNj/N. (5.77)

By a similar reasoning as in the case of 2-patches, we can show that

zsj < zmj . (5.78)

This implies that sharing of water sources increases the final outbreak size compared to when

patches are isolated for the general case.

5.4 Application of model (5.1) to cholera outbreak in

Haiti

In order to deepen our understanding on the dynamics of this serious cholera outbreak, as well

as to control and possibly predict future epidemics, we apply our model (5.3) to investigate the
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Figure 5.2: Bar chart representing the number of reported hospitalized cholera cases in each

Department in Haiti from October 30, 2010, to December 24, 2012, [60].

Haiti cholera outbreak [52]. The cholera outbreak in Haiti was confirmed on October 21, 2010

by the National Laboratory of Public Health of the Ministry of Public Health and Population

(MSPP) [63]. By August 4, 2013, 669,396 cases and 8,217 deaths have been reported since the

beginning of the epidemic [15]. The outbreak started in Artibonite region, a rural area north of

Port-au-Prince, but spread to all the administrative Departments in the country. This shows

that there are connections between all the water sources or individuals across the Departments

in Haiti. This is taken care of in our model since we assume that an infected individual from

any patch can shed pathogen into any of the water sources across the patches and consequently

susceptible individuals can contact the disease through drinking from any of the contaminated

water sources.

In order to validate model, we fit it to data from Haiti. To get reasonable results, we modify the

parameters as follows: First, we take n = 11 such that each patch Ni in our model represents

a Department in Haiti while the total population N becomes the total population in Haiti.

According to the CIA [16], 49% and 90% of Haiti population in rural areas do not have access

to improved drinking water sources and sanitation facilities respectively. Furthermore, 15%
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and 76% of Haiti population living in urban areas also do not have access to improved drinking

water source and sanitation facilities respectively. We take m = 2 and assume that W1 measures

the pathogen concentration of unimproved water source in the rural area while W2 measures

the pathogen concentration of unimproved water source in the urban area. The population of

each Department in Haiti is taken from 2009 Haiti population data before the outbreak started

[14] while the birth rate is estimated from [16].

We notice from Figure 5.2 that, following the initial epidemic wave, the number of reported

hospitalized cholera cases seems to increase during the rainy season. Recurrent seasonal epi-

demics is one of the characteristics of the disease [80]. To take the seasonal variations of the

outbreak into account, we replace the contact rate βij in our model by the sine function

βij(t) = βij (1 + δi sin (2πt/(365ρ))) , (5.79)

where βij is the mean contact rate, δi describes the relative amplitude of seasonal variations

in patch i and ρ is a scaling factor. We also take σ = 0.333 [19, 84]. The mean contact rates,

shedding rates and recovery rates are chosen from a realistic range. The comparison of the

results of incorporating these parameter values for our model and the data for Haiti are shown

in Figures 5.3 (a)–(f) and Figures 5.4 (a)–(f). The Figures reveal that our model is applicable

to the Haiti cholera outbreak at both departmental level and national level to some extent.

However, we should notice from the Figures that the outbreak does not have a predictable

recurrent seasonal epidemic waves in some departments like Nippe and Centre, as a result, our

assumption of seasonality could not determine the best fit for these departments.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Model fitting for the number of reported hospitalized cholera cases in Haiti.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Model fitting for the number of reported hospitalized cholera cases in Haiti.
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5.5 The multiple control strategy model

In this section, we extend model (5.3) by considering three types of control intervention strate-

gies: vaccination, treatment and water purification. We assume that individuals in patch j are

vaccinated at rate φj with a vaccine whose efficacy is εj and wane rate ωj. Individuals in this

patch receive treatment at rate τj. Treated individual Tj(t) recover at rate ηj. Individuals in

this patch can also be provided with clean water by purifying contaminated water sources. This

water purification reduces pathogen concentration by a rate dk. Both the vaccinated individuals

Vj(t) and the treated individuals in patch j die a natural death at rate µ. The new model is

given by

ṡj = µ+ ωjvj − sj
m∑
k=1

βjkwk − (µ+ φj)sj,

v̇j = φjsj − (1− εj)vj
m∑
k=1

βjkwk − (µ+ ωj)vj,

i̇j = (sj + (1− εj)vj)
m∑
k=1

βjkwk − (µ+ γj + τj)ij, (5.80)

Γ̇j = τjij − (µ+ ηj)Γj,

ẇk = σk

(
n∑
j=1

νjkij − (1 + dk/σk)wk

)
,

ṙj = γjij + ηjΓj − µrj,

where vj = Vj/Nj, Γj = Tj/Nj. The initial conditions are assumed as follows:

sj(0) > 0, vj(0) ≥ 0, ij(0) ≥ 0, Γj(0) ≥ 0, wk(0) ≥ 0, rj(0) ≥ 0. (5.81)

5.5.1 Analysis of the multiple control strategy model

A unique DFE exists in model (5.80) and is given by

(s0j , v
0
j , i

0
j ,Γ

0
j , w

0
k, r

0
j ) = ((µ+ ωj)/(µ+ ωj + φj), φj/(µ+ ωj + φj), 0, 0, 0, 0). (5.82)

The basic reproduction number of multiple control strategy model (5.80) is given by

Rc
0 =

(
Rc

11 +Rc
22 +

√
(Rc

11 −Rc
22)

2 + 4Rc
12Rc

21

)/
2, (5.83)
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where

Rc
11 =

µ+ ω1 + (1− ε1)φ1

(µ+ γ1 + τ1)(µ+ ω1 + φ1)

m∑
j=1

ν1jβ1jσj/(σj + dj),

Rc
12 =

µ+ ω1 + (1− ε1)φ1

(µ+ γ2 + τ2)(µ+ ω1 + φ1)

m∑
j=1

ν2jβ1jσj/(σj + dj),

Rc
21 =

µ+ ω2 + (1− ε2)φ2

(µ+ γ1 + τ1)(µ+ ω2 + φ2)

m∑
j=1

ν1jβ2jσj/(σj + dj),

Rc
22 =

µ+ ω2 + (1− ε2)φ2

(µ+ γ2 + τ2)(µ+ ω2 + φ2)

m∑
j=1

ν2jβ2jσj/(σj + dj).

Clearly,

Rc
11 < Rm

11, Rc
12 < Rm

12, Rc
21 < Rm

21, Rc
22 < Rm

22. (5.84)

The threshold quantity Rc
0 above represents the expected number of secondary infections that

result from introducing a single infected individual into an otherwise susceptible population in

the presence of vaccination, treatment and water purification.

The type reproduction number T c1 for patch 1 of the multiple control model is given by

T c1 = Rc
11 +Rc

12Rc
21/(1−Rc

22), (5.85)

provided that Rc
22 6= 1. Similarly, the type reproduction number T c2 for patch 2 is given by

T c2 = Rc
22 +Rc

12Rc
21/(1−Rc

11), (5.86)

provided that Rc
11 6= 1. Obviously

T c1 < T1, T c2 < T2. (5.87)

This shows that the multiple control intervention strategy has the capacity of reducing the

number of secondary infections in each of the subpopulations in the community to a certain

level. Due to limited resources, only some of the communities can afford the multiple control

strategy. As a result, it is necessary to investigate the effect of considering single control

intervention strategies to reduce the spread of the disease.
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5.6 The single control intervention strategy

In this section, we shall focus on the effects of each of the controls individually.

5.6.1 Effects of vaccination

In the absence of treatment, τi = 0, ηi = 0, and water purification, di = 0, we have that the

vaccination-induced basic reproduction number is given by

Rv
0 =

(
Rv

11 +Rv
22 +

√
(Rv

11 −Rv
22)

2 + 4Rv
12Rv

21

)/
2, (5.88)

where

Rv
11 = Rm

11(µ+ ω1 + (1− ε1)φ1)/(µ+ ω1 + φ1),

Rv
12 = Rm

12(µ+ ω1 + (1− ε1)φ1)/(µ+ ω1 + φ1),

Rv
21 = Rm

21(µ+ ω2 + (1− ε2)φ2)/(µ+ ω2 + φ2),

Rv
22 = Rm

22(µ+ ω2 + (1− ε2)φ2)/(µ+ ω2 + φ2).

We observe that

Rv
11 < Rm

11, Rv
12 < Rm

12, Rv
21 < Rm

21, Rv
22 < Rm

22, (5.89)

provided 0 < φ1, φ2 < 1 and 0 < ε1, ε2 < 1.

Furthermore, the vaccination-induced type reproduction numbers for patch 1 and patch 2 are

given by

T v1 = Rv
11 +Rv

12Rv
21/(1−Rv

22), T v2 = Rv
22 +Rv

12Rv
21/(1−Rv

11), (5.90)

respectively, provided that Rv
11 6= 1 and Rv

22 6= 1. Truly

T v1 < T1, T v2 < T2. (5.91)

This reveals that effective vaccination only can reduce the number of secondary infections in

each the subpopulations in the community. Next, comparing this with that of the multiple

control model, we obtain

Rc
11 < Rv

11, Rc
12 < Rv

12, Rc
21 < Rv

21, Rc
22 < Rv

22, (5.92)
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and

T c1 < T v1 , T c2 < T v2 , (5.93)

showing that even though vaccination can reduce the spread of infections, the multiple control

intervention strategy will yield a better result. This result agrees with intuitive expectations.

5.6.2 Effects of treatment

In the absence of vaccination, φi = 0, ωi = 1, εi = 0, and water purification, di = 0, we have

the treatment-induced basic reproduction number as

Rτ
0 =

(
Rτ

11 +Rτ
22 +

√
(Rτ

11 −Rτ
22)

2 + 4Rτ
12Rτ

21

)/
2, (5.94)

respectively, where

Rτ
11 = Rm

11(µ+ γ1)/(µ+ γ1 + τ1), Rτ
12 = Rm

12(µ+ γ2)/(µ+ γ2 + τ2),

Rτ
21 = Rm

21(µ+ γ1)/(µ+ γ1 + τ1), Rτ
22 = Rm

22(µ+ γ2)/(µ+ γ2 + τ2).

Similar to the case of vaccination, we can show that

Rc
11 < Rτ

11 < Rm
11, Rc

12 < Rτ
12 < Rm

12, Rc
21 < Rτ

21 < Rm
21, Rc

22 < Rτ
22 < Rm

22. (5.95)

Furthermore, the treatment-induced type-reproduction numbers for patch 1 and patch 2 are

given by

T τ1 = Rτ
11 +Rτ

12Rτ
21/(1−Rτ

22), T τ2 = Rτ
22 +Rτ

12Rτ
21/(1−Rτ

11), (5.96)

respectively, provided that Rτ
11 6= 1 and Rτ

22 6= 1.

T c1 < T τ1 < T1, T c2 < T τ2 < T2. (5.97)

This result demonstrates that proper treatment of infected individuals only can reduce the

number of secondary infections in each of the subpopulations in the community. In addition,

we discover that the multiple control will be more effective in reducing the spread of disease if

applied concurrently.
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5.6.3 Effects of water purification

In the absence of treatment, τi = 0, ηi = 0, and vaccination, φi = 0, the water purification-

induced basic reproduction number is given by

Rw
0 =

(
Rw

11 +Rw
22 +

√
(Rw

11 −Rw
22)

2 + 4Rw
12Rw

21

)/
2, (5.98)

respectively, where

Rw
11 =

1

µ+ γ2

m∑
j=1

ν2jβ1jσj/(σj + dj),

Rw
12 =

1

µ+ γ1

m∑
j=1

ν1jβ1jσj/(σj + dj),

Rw
21 =

1

µ+ γ1

m∑
j=1

ν1jβ2jσj/(σj + dj),

Rw
22 =

1

µ+ γ2

m∑
j=1

ν2jβ2jσj/(σj + dj).

We can see that

Rc
11 < Rw

11 < Rm
11, Rc

12 < Rw
12 < Rm

12, Rc
21 < Rw

21 < Rm
21, Rc

22 < Rw
22 < Rm

22. (5.99)

The water purification-induced type reproduction numbers for patch 1 and patch 2 are given

by

T w1 = Rw
11 +Rw

12Rw
21/(1−Rw

22), T w2 = Rw
22 +Rw

12Rw
21/(1−Rw

11), (5.100)

respectively, provided that Rw
11 6= 1 and Rw

22 6= 1. Obviously,

T c1 < T w1 < T1, T c2 < T w2 < T2. (5.101)

This result also shows that provision of clean water to the same number of individuals who

would have been vaccinated will also reduce the number of secondary infections. However, the

multiple control is still more effective in reducing the spread of the disease.
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5.7 Discussion

Most of the factors affecting waterborne disease transmission are not constant, hence lead-

ing to heterogeneity in disease transmission. To improve our understanding of the effects of

heterogeneity on the dynamics of waterborne disease, we formulated an n-patch model where

disease can spread both within a patch and between patches and noted that heterogeneity can

arise both within a patch and between patches. To understand the magnitude of differences

in transmission within a patch, we define a measure of heterogeneity within a patch. Simi-

larly, the magnitude of differences in transmission between any two patches is also determined

by defining a measure of heterogeneity between patches. The total variation in transmission

existing in the whole meta-population automatically becomes the total sum of measures of het-

erogeneity. A homogeneous version of the n-patch model was formulated to help understand

whether heterogeneity has a positive or negative impact on dynamics of the disease.

By carrying out qualitative analyses of these models, we discovered that considering hetero-

geneity leads to an increase in the number of secondary infections in each of the subpopulations

as well as the entire community. We also showed that heterogeneity within the patches has

a tendency to generate greater number of secondary infections and severe outbreak than het-

erogeneity between the patches. Based on this, we suggested that to effectively reduce the

spread of waterborne disease in a heterogeneous population setting, heterogeneity within the

patches should be put into consideration while defining control intervention strategies. Since

heterogeneity is more realistic, it means that not considering heterogeneity implies an under

estimation of an outbreak and this is very hazardous to the population. Furthermore, we dis-

covered that considering heterogeneity leads to a greater outbreak in each of the subpopulations

as well as the entire community at the endemic stage of the outbreak. More so, we discovered

that sharing of water sources increases the final outbreak size compared to when patches are

isolated.

We verified the analytical predictions by considering the most recent Haiti cholera outbreak

as a realistic case study. Our results are consistent with the analytical predictions, thus the

model (5.3) is applicable to the cholera dynamics in Haiti. It should be noted that our model
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(5.3), accurately describes the evolution of the disease in Haiti and thus can provide insight

into the future evolution of cholera dynamics in the place. Since our model is a more general

heterogeneous model, we expect that it can be used to carry out similar studies to other cholera-

endemic countries (with different parameter values).

Having shown that model (5.3) is applicable to a real-world situation, we extended the n-

patch model by introducing three different types of control intervention strategies: vaccination,

treatment and water purification separately. Our analysis revealed that each of the control

strategies has some influence in reducing the spread of the disease to a certain level such that

an outbreak do not occur when the control is implemented appropriately. The case whereby

the three controls are introduced simultaneously was shown to be more effective in reducing

the spread of infection across the meta-population.
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Chapter 6

Summary

In this thesis, mathematical epidemiological models which comprise of systems of non-linear

ordinary differential equations were used to investigate the dynamics of waterborne diseases

under various conditions. By extending the models, the possible benefits of control intervention

strategies such as vaccination, treatment and provision of clean water were also determined.

Furthermore, the optimal control theory (i.e., Pontryagin’s Maximum principle) was used to

determine the optimal intervention strategies that mitigate the spread of waterborne diseases.

We began by discussing a very simple SIWR waterborne disease model and showed that both

the short-term and long-term dynamics of the model can be described using stability arguments.

Elaborating on this model we considered the effects of seasonal variations on the dynamics of

the disease. Extensions of the model were used to investigate the possible benefits of control

intervention strategies such as vaccination, provision of clean water and treatment. We discov-

ered that the multiple control strategy is the best intervention strategy, followed by vaccination,

provision of clean water and then treatment, in this order. We also showed that it is optimal

to treat individuals immediately as they get infected and begin to vaccinate and provide clean

water as soon as the outbreak starts and continue with maximal effort until the outbreak ends.

In Chapter 3 we discussed the impact of socioeconomic classes on the dynamics of waterborne

disease in a community by formulating an n-patch waterborne disease model where each patch

represents a socioeconomic class. The conditions under which the disease can either terminate

or persist in the community were determined. We discovered that under the assumption of
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uniform migration rates due to socioeconomic reasons, the outbreak growth rates and the

number of secondary infections generated by an infected individual in the lower socioeconomic

classes always dominate that of higher socioeconomic classes. However, if the migration rates

are not uniform, we proved that outbreaks/secondary infections dominate in either the lower

socioeconomic class or higher socioeconomic class depending on the rate at which individuals

migrate due to socioeconomic reasons. The important parameters relative to initial disease

transmission and prevalence of the disease in the community were also identified.

In Chapter 4 we addressed the issue of minimizing outbreak in a community where there are

multiple contaminated water sources. By considering a waterborne disease model under the as-

sumption that individuals are exposed to multiple contaminated water sources, we investigated

the long-term dynamics of the disease across the community. Using the model, we showed that

outbreaks are under estimated whenever a single water source is considered for the study of

the dynamics of waterborne disease for a community where individuals are exposed to more

than one contaminated water source. Particularly, we examined outbreak growth rates, the

expected final size of the outbreak and the rate at which secondary infections are generated.

We proved that this model is realistic by showing that it is applicable to the recent cholera

outbreak in Haiti. We further investigated the effects of introducing vaccination in such an

area by introducing vaccination in the model. For the vaccination model, we showed that it

is optimal to start vaccinating as soon as possible and to continue vaccinating with maximal

effort until the outbreak ends and also to maximally control vaccine wane if wane rate is large

and minimally control vaccine wane if wane rate is small.

In Chapter 5 we addressed the problem of mitigating the spread of waterborne disease under

the assumption of heterogeneous mixing population. We started by considering a more general

n-patch waterborne disease model that takes heterogeneity in transmission into account. We

proved that heterogeneity in transmission increases the number of secondary infections and

leads to a greater outbreak in each of the subpopulations as well as the entire community.

Furthermore, we showed that heterogeneity within the patches leads to a more severe outbreak

than heterogeneity between the patches at both the epidemic and endemic stage of the outbreak.

Based on this, we concluded that heterogeneity within the patches should be put into account
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while designing control intervention strategies to effectively reduce the spread of waterborne

disease in a heterogeneous population setting. Extensions of the model by introducing control

intervention strategies such as vaccination, treatment and provision of clean water were used

to determined the possible benefits of the control intervention strategies in reducing the spread

of the infections in a heterogeneous population setting. Finally, we discovered that the model

is applicable to the recent cholera outbreak in Haiti up to the State/Departmental level.
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