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GENERAL ABSTRACT 

 

Cowpea (Vigna unguiculata L.) is an important legume, especially in the hot, dry tropics 

and subtropics of sub-Saharan Africa. It has been widely reported to be drought tolerant. 

Cowpea is a highly nutritious, multi-purpose crop, used as a leafy vegetable and grain 

legume with potential to contribute to food security in marginal areas. However, the crop is 

still classified as a neglected underutilised species; legume research focus has been mainly 

devoted to established legumes such as common bean and soybeans. There is a need to 

collect empirical information on cowpea which could be used to advise farmers on 

management strategies. This study evaluated cowpea responses to water stress under 

controlled and field conditions. Initially, two cowpea varieties (Brown and White birch) 

were evaluated for seed quality using the standard germination that was laid out in a 

completely randomised design and each variety was replicated for times. Electrolyte 

conductivity test was also performed under laboratory conditions. Thereafter, a pot trial 

was conducted to evaluate cowpea response to water stress imposed at different growth 

stages under varying growth temperatures. The pot trial comprised three factors: 

temperature [High (33/27ºC), Optimum (27/21ºC) and Low (21/15ºC)], water regimes (no 

stress, terminal stress, intermittent stress – vegetative and intermittent stress - flowering) 

and cowpea varieties. Lastly, a field trial was conducted to evaluate cowpea production as 

well as the effect of sequential leaf harvesting on yield under irrigated and rainfed 

conditions. The field trial was laid out as a split-plot design, with water regime (irrigation 

vs. rainfed) as main factors, cowpea varieties as sub-factor and sequential harvesting (no 

harvest, harvested once and harvested twice), replicated three times. All treatments were 

arranged in a randomised complete block design. Results of the initial study showed that 

germination capacity and vigour of cowpea varieties were significantly different (P < 

0.001). White birch had higher electrolyte leakage than Brown birch. Pot trial results 

showed that cowpea growth (leaf area, leaf number and plant height) was vigorous in the 

high temperature regime compared with optimum and low temperature regimes. 

Chlorophyll content index was higher under high temperature relative to optimum and low 

temperature regimes, respectively. Under low and optimum temperature regimes, cowpea 

growth was stunted; cowpea failed to flower and form yield. Whereas, under high 

temperature regime, cowpea growth was vigorous hence flowered and formed yield. 

Vegetative growth was more sensitive to water stress than flowering stage. Terminal stress 

and stress imposed during flowering resulted in increased proline accumulation relative to 

no stress and stress imposed during vegetative growth. Harvest index was lower when 

water stress was imposed during vegetative relative to flowering stage. Field trial results 

showed that cowpea growth was sensitive to water stress. Plant height, leaf number, 

chlorophyll content index and stomatal conductance were lower under rainfed relative to 

irrigated conditions. Sequential harvesting of leaves had no significant effect on cowpea 

yield. It is concluded that tropical temperature conditions are most suitable for cowpea 

production; the controlled environment study showed best crop performance under 

33/27ºC. In the context of varieties used for the present study, vegetative growth was the 

most sensitive stage to water stress. Cowpea performed better under rainfed relative to 

irrigated conditions with respect to yield formation. Low temperature was found to be 

more limiting to cowpea growth, development and productivity compared with water 

stress. Whereas, under high temperature conditions, water stress was more limiting to plant 

growth and productivity. White birch may be used as a dual purpose crop due to its ability 

to produce reasonable grain yield regardless of defoliation. 
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CHAPTER 1 

1.0 GENERAL INTRODUCTION  

Cowpea (Vigna unguiculata) is one of the most ancient crops known to man and is grown 

across various climatic zones, most commonly in the dry savanna regions of sub-Saharan 

Africa (Singh et al., 1997). Its centre of origin is still uncertain, Ng and Marechal (1985) 

initially thought it to be India, with secondary centres in China and Ethiopia, but later it 

was believed to have originated and domesticated in Africa, especially Ethiopia. Recent 

studies, on the other hand, suggest that it might be of central African origin (Ogunkamni et 

al., 2006).  

 

Cowpea is treated as an important food legume in tropical and sub-tropical regions of the 

world, especially where drought is prominent due to low and uneven rainfall patterns thus 

causing major limitation to crop production (Singh et al., 1997). It is widely grown in east 

Africa and south-east Asia, primarily as a leafy vegetable (Hallensleben et al., 2009) due to 

its high protein content. Cowpea leaves and seeds are low in fat, high in carbohydrates and 

proteins and low in anti-nutritive factors (Ohler et al., 1996). As such, consumption in 

Africa and Asia corresponded to 5 million tonnes of dry cowpea seeds and this represented 

30% of total food legume production in lowland tropics (Steele et al. (1985). 

 

The total area harvested with cowpea worldwide is about 10 979 841 ha. As a result, 

annual world cowpea seed production is 364 817 tonnes (FAO, 2010). West and central 

Africa are the leading cowpea producing regions in the world, accountable for 64% of the 

annual estimation of 3 million tonnes of cowpea seed (IITA, 2009). Nigeria is the leading 

cowpea producer in Africa responsible for 68% (Figure 1.1), followed by Ghana, Niger, 

Senegal and Cameroon (IITA, 2009).  Other major producers of cowpea outside Africa are 

Asia and Central and South America (Figure 1.1).  
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Figure 1.1: World cowpea production.  

(FAO, 2004. http://www.fao.org/inpho/content/compend/text/ch32/ch32.htm). 

 

Subsistence farmers in the semi-arid and sub-humid regions of Africa are the major 

producers and consumers of cowpeas. These farmers not only grow cowpeas for dry seed, 

but also utilize the leaves and pods as vegetables (IITA, 2009). The other plant parts, 

besides dry seeds, are commonly consumed as young leaves, immature pods and immature 

seeds (IITA, 2009). Basically, all components of the plant can be consumed since they are 

rich in nutrients and fibre.  

 

The world population is increasing and so is the demand for food to meet population 

growth. Although food production has improved in the past few years, water scarcity still 

remains a challenge. In the last century, water use has increased worldwide at more than 

double the rate of population growth (FAO, 2007). On average, agriculture uses about 66% 

of the total withdrawals; this can be as high as 90% in arid regions (Shiklomanov, 1999). 

The other 34% is left for domestic households (10%), industry (20%), and/or evaporated 

from reservoirs (4%) (Shiklomanov, 1999). It is therefore apparent that agriculture is the 

largest consumer of water and yet it is expected to meet the rising demand for food and 

industrial goods. However, drought in particular, causes a serious threat to sustainability of 

agricultural production.  Drought is regarded as a major limitation to crop production in 

most developing countries and it occasionally causes agricultural losses in developed 

countries (Ceccarelli and Grando, 1996). Since South Africa is a water-stressed country 

(Bennie and Hensley, 2001), production of crops that are drought-tolerant is a priority in 

68%

17%

2%

3%

10%

Africa

Brazil

United States
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order to meet the growing demand for food and nutrition. Cowpea has a potential to meet 

both needs – the crop has been reported to be drought tolerant as well as being nutritious 

(Table 1.1). 

 

Information on cowpea’s agronomy and water use is lacking in South Africa, thus, its 

production is very low. The lack of information may be attributed to the fact that limited 

research has been conducted on the crop. Most of traditional research has favoured more 

established legumes such as dry bean (Phaseolus vulgaris) and peas (Pisum sativum), 

while cowpea has been left neglected and underutilised. A renewed interest to revisit these 

neglected and underutilised crops has recently been launched, where these crops need to be 

evaluated for possible drought tolerance in order to generate information that may be used 

to promote and encourage their re-introduction. 

 

 

The aim of the current study was to evaluate two cowpea varieties for their ability to 

tolerate drought stress. To a limited extent, the two cultivars were also evaluated within the 

context of their alternative use as a leafy vegetable. Given that South Africa is a water-

stressed country where rainfall is poorly distributed (Bennie and Hensley, 2001), it is 

hypothesized that there are no significant differences between the two varieties in terms of 

drought tolerance characteristics during plant growth, and drought tolerance is not 

associated with crop leaf yield and nutritional value at different stages of development. 

 

The specific objectives of the study, over two growing seasons, were to: 

(i) compare irrigated production with rainfed production in terms of crop stand 

establishment, 

(ii) compare irrigated production with rainfed production in terms of crop growth as 

determined by plant height, leaf number and leaf area index, 

(iii) compare irrigated production with rainfed production in terms of crop response to 

water stress as indicated by stomatal conductance and leaf chlorophyll content 

[these data will be correlated to (i) and (ii) above], 

(iv)  compare irrigated production with rainfed production in terms of leaf sequential 

harvesting, crop harvest index and economic yield, and 
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(v)  determine changes in soil water content during each growing season and correlate 

them with crop growth responses. 

In addition to field studies described above, controlled environment studies were 

undertaken to determine crop growth and yield responses to water stress under different 

temperature conditions. 

 



5 

 

1.1 LITERATURE REVIEW 

1.1.1 Cowpea origin and diversity  

Vigna unguiculata is known by different names throughout the world. In the United States, 

the crop is called black-eye peas or southern peas (Vorster et al., 2002). In South Africa 

the crop is known  as “swartbekboon” (Afrikaans), “dinawe” (Ndebele), “dinaba” 

(Shangaan), “imbumba” (Zulu), “intlumayo” (Xhosa), “dinawa” (Tswana and Sotho), 

“monawa” (Pedi) and “nawa”(Venda) (van Rensburg et al., 2007). The English speaking 

people in Africa refer to it as cowpea while in other African regions; the name “niebe” is 

mostly used. In Senegal it is called “sueb” and “niao”, “wake” in Nigeria and “luba hilu” in 

Sudan. The predominant name used in the literature though is “cowpea” (Van Wyk and 

Gericke, 2000). Cowpea is a legume crop that belongs to the Fabacea earlier known as 

Leguminosae family and is also a member of the genus Vigna, which belongs to the family 

Phaseolinae and section Catiang (Verdcourt, 1970). The family consists of other legumes, 

namely mungbean (V. radiata), blackgram (V. mugo), adzuki bean (V. angularis) and 

bambara groundnut (V. subterranea) (van Rensburg et al., 2007). 

 

Cowpea is one of the oldest crops known to man with its centre of origin and 

domestication being closely related to pearl millet and sorghum in Africa. The exact centre 

of origin remains unknown. However, botanical and cytological evidence have been used 

to trace the origins of the crop. Information on its geographical distribution, cultural 

practices and historical records has also been used to speculate on its origin (Ng and 

Marechal, 1985). Duke (1981) concluded that cowpea originated and was domesticated in 

the African savanna. The author based his conclusion on the fact that wild V. unguiculata 

and V. unguiculata sub-species were found in southern and south-eastern Africa, whereas 

the centre and diversity of the cultivated V. unguiculata is in West Africa (Ng, 1995).  
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1.1.2 Crop description 

Cowpea is a warm season, annual, herbaceous legume characterized as erect, semi-erect 

(trailing) and climbing plant. It follows an epigeal emergence pattern which makes it prone 

to seedling injury especially when the seed bed is not firm (Shiringani, 2007). There is 

high variability within species, in terms of growth habits. The growth habits range from 

indeterminate to moderately determinate and non-vining types are more determinate. It has 

a long taproot, reaching a maximum effective rooting depth of about 2.4 m within eight 

weeks after planting, especially if drought conditions prevail. The leaves are trifoliate with 

a smooth surface, dull to shiny and develop alternately (Davis et al., 1991). Cowpea has a 

vigorous growth and can reach a height of about 48 - 61 cm when growing conditions are 

suitable. Early or late planting may lead to the crop having elongated internodes, more 

vegetative growth and lower yield than those planted at optimum time (Davis et al., 1991) 

 

Cowpea seeds differ in size, and a single pod can contain about 10 - 20 seeds. Seed shape 

is used as the major characteristic associated with seed development in the pod. Initially, 

the seed develops into a kidney shape; when the pod is not restrictive, the seed maintains 

that shape until maturity (Gomez, 2004). But the pod has the tendency of restricting seed 

shape to a more globular shape. The seed coat can be smooth or wrinkled. Seed colour 

varies from white, cream, brown, red and black and it is not restricted to uniform colours, 

they can be speckled, mottled, and blotchy or eyed (black eye, pink eye, purple eye) 

(Aeling, 1999). 

 

Like most other legumes, cowpea is self-pollinated and is a typical day neutral plant; it 

may flower within 30 days after sowing when temperatures are around 30°C. Whereas, 

other photosensitive varieties would flower at approximately 100 days after planting as 

influenced by time and location. Flowers are borne in alternate pairs at the tip of the 

branches, and two or more flowers can be found per inflorescence (Gomez, 2004). Flowers 

are borne on short pedicels with corollas that are either white, dirty yellow, pink, pale blue 

or purple and are displayed above the foliage such that they can attract insects for 

pollination. The plant produces smooth, cylindrical and curved pods. As the seeds 

approach the green-mature stage for use as a vegetable, pod colour may change, most 

commonly green, yellow or purple. As the seeds dry up, pod colour of the green and 

yellow types becomes tan or brown (Aeling, 1999). 
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1.1.3 Agronomic requirements 

Cowpea is adapted to different soil types; it has been observed to grow well in sandy soils 

where root growth is not restricted (DAFF, 2011). It can survive under infertile acid soils 

but it is reported to be less tolerant to cold soils (DAFF, 2011). The crop requires well-

drained soils with a pH of 5.6 - 6.0, but can still produce reasonable yield in waterlogged 

and heavy soils (Smith, 2006). The optimum rainfall conditions for cowpea range from 400 

to 700 mm per annum (Smith, 2006). It is important that the rainfall is well–distributed for 

normal growth and development. Since South Africa is faced with a problem of uneven 

rainfall, this may have negative consequences on cowpea growth and yield.  

 

1.2 Importance of cowpea for food security 

Food security is defined by Parnell and Smith (2008) as the ability of an individual to 

access enough food that is nutritious, safe, and personally acceptable in a socially 

acceptable way. According to Schönfeldt and Pretorius (2011), food insecurity is one of 

the main causes of malnutrition in South Africa, and statistics shows that one out of two 

households is experiencing hunger. Since South Africa has the ability to import food, if 

necessary, to meet basic nutritional requirements of its population (DAFF, 2011), it has 

been considered as a food secure nation. However, this may not be particularly true since 

food imports are often expensive and therefore unaffordable to the general populace 

(Laker, 2007). In 2005, it was reported that one third of South Africans were at risk of 

hunger and that one out of every five people was food insecure (NFCS-FB-1, 2008; 

Schonfeldt et al., 2010) and these results give us a clear picture of the situation on the 

ground.  

 

According to El-Jasser (2011), South Africa is not the only country facing food insecurity, 

about sixty percent of the world population suffers from food insecurity and this 

consequently leads to protein malnutrition. Current trends also suggest an increasing gap 

between human population and protein supply (El-Jasser, 2011). Research studies have 

been devoted to finding the potential of legumes to curb this problem since they are still 

not widely used in diets of many populations. Legumes form an essential part of daily diets 

in many countries. They are a rich source of proteins and carbohydrates that are essential to 

man. Legumes are becoming popular nowadays because they have been found to be ideal 

crops that can be consumed and achieve three developmental goals for the targeted 
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population These goals are; reducing poverty, improving human health and nutrition and 

enhancing ecosystem resilience (Akibode and Maredia, 2011). Of all the domesticated 

legumes, soybean had a competitive advantage over other legume seeds since it has been 

given more attention as a protein crop. It is only recent that researchers decided to explore 

other underutilised legumes such as cowpea (El-Jasser, 2011). 

 

Cowpea is treated as a staple food crop in many regions of Africa (Keller, 2004). It is the 

most important food legume grown in the tropical savanna zones of Africa. Cowpea is 

considered as a neglected crop due to limited research and improvement on its potential 

use as a leafy vegetable. Neglected as it may be, the crop is still one of the highly 

appreciated crops in several African countries (Keller, 2004; Weinberger and Msuya, 

2004). Farmers in drought-prone areas, with less rainfall, and less developed irrigation 

systems are becoming more interested in cowpea cultivation due to its multipurpose uses. 

The short life cycle of some varieties are priced for their ability to mature early thus 

provide food during periods of food scarcity.  

 

Cowpea plays a very important subsistence role in diets of many households in Africa 

(Kebe and Sembene, 2011). It provides nutrients that are deficient in cereal crops, e.g. iron, 

calcium and zinc. The seeds contain proteins that are rich in amino acids, lysine and 

tryptophan, but they lack methionine and cystine when compared with animal protein 

(Table 1.1). Cowpea seed is therefore, valued as a nutritional supplement to cereals. 

Combining cowpea with a cereal crop, e.g. rice or maize meal, one can make food with a 

near-complete or a balanced set of nutrients (Davis et al., 1991).  
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Table 1.1: Chemical composition of cowpea (%). Sources: Kay (1979); Tindall (1983); 

Quass (1995); FAO (2004). 

 Seeds Hay Leaves 

Carbohydrates 56-66 - 8 

Proteins 22-24 - 4.7 

Water 11 18 85 

Crude fibre 5.9-7.3 9.6 2 

Ash 3.4-3.9 23.3 - 

Fat 1.3-1.5 11.3 0.3 

Phosphorus 0.146 2.6 0.063 

Calcium 0.104-0.076 - 0.256 

Iron 0.005 - 0.005 

 

In Senegal, people harvest near-mature green pods of early traditional cowpea varieties at 

the end of the wet season, and this provides them with food during the time of the year 

when food becomes extremely scarce (Kebe and Sembene, 2011). With these green pods, 

subsistence farmers and street vendors even get an opportunity to sell and get cash 

allowing them to buy other staple food crops such as pearl millet or imported rice. The 

above mentioned cowpea attributes makes it to be an attractive crop in areas where 

infrastructure, food security, and diminishing malnutrition are major challenges 

(Hallensleben et al., 2009).  

 

1.3 Drought  

Drought is a meteorological term used to define the period in which there is no 

considerable rainfall. In the context of crop production, drought refers to a lack of 

sufficient water in the soil to support normal plant growth (Jaleel et al., 2009). It occurs 

when available water in the soil is reduced and the atmospheric conditions cause 

continuous loss of water through transpiration and evaporation. This may be as a result of 

meteorological drought, uneven rainfall distribution or even inefficient irrigation systems. 

Plants are able to adapt and survive under drought stress through morphological, 
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biochemical and physiological responses. Mitra (2001) suggested three categories of 

drought tolerance mechanisms in plants based on earlier descriptions by Levitt (1972), 

namely: escape, avoidance and tolerance. 

 

1.3.1 Drought escape 

Drought escape is when the plant grows rapidly to shorten its life cycle and reproduce 

before drought stress becomes terminal. This mechanism is closely linked with time to 

flowering as it allows the plant to escape drought through a short life cycle (Araus et al., 

2002). Drought escape makes time to flowering a major trait for crop adaptation to drought 

stress. It has been proven that early maturing cowpea varieties are very useful in some dry 

environments due to their ability to escape drought (Singh, 1994). Mortimore (1997) 

reported that there has been a shift towards growing early maturing cowpea varieties 

especially in drought prone areas. In a study by Suliman and Ahmed (2010), cowpea 

varieties grown under water stressed conditions flowered 1-15 days earlier than those 

grown under well watered conditions. Water stress had a similar effect even on days to 

maturity, whereby water stressed cowpea matured faster than the control treatment. 

However, not all cowpea genotypes responded the same way to water stress with respect to 

maturity. Dadson et al. (2005) found that water stress delayed the maturity of certain 

cowpea genotypes.  

 

1.3.2 Drought avoidance 

Drought avoidance is made up of mechanisms that reduce water loss from plants. These 

mechanisms consist of stomatal control and enhanced water uptake through a broad and 

prolific root system (Turner et al., 2001; Kavar et al., 2007). The major drought avoidance 

traits include the root characteristics such as biomass, length, density and depth. In addition 

to enhanced soil water capture, plants also avoid stress by reducing the size of their 

canopy. For example, reduced plant size, leaf area and leaf area index are major 

mechanisms controlling water use and reducing injury under drought stress (Mitchell et al., 

1998). These traits allow plants to reduce water use in order to avoid drought stress. 

According to Lawan (1983), cowpea is a dehydration avoider with strong stomatal 

sensitivity and reduced growth rate. Separate studies by Lawan (1983) and Boyer (1996) 

both suggested that possible mechanisms of drought tolerance in cowpea include stomatal 
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closure to minimize water loss through transpiration, cessation of growth and osmotic 

adjustment and continued slow growth. Mai-Kodomi et al. (1999) studied drought 

tolerance of different cowpea lines which revealed that susceptible lines had a mechanism 

whereby plants closed stomata to minimize water loss and stopped growing in response to 

water deficit, whereas tolerant lines had a mechanism that allowed them to have stomatal 

regulation (partial opening), osmotic regulation and selective mobilization of water to the 

growing tips and upper leaves.  

 

1.3.3 Drought tolerance 

Drought tolerance is the capacity of the plant to maintain or conserve plant function under 

water deficit conditions. This mechanism is rarely found in crop plants; it usually exists in 

seed embryo but is eventually lost after germination (Turner et al., 2001; Kavar et al., 

2007). Cowpea has not been reported to posses this drought resistant mechanism. 

 

1.4 Effects of water stress on crop growth and development  

1.4.1 Crop establishment and growth 

Impaired germination and poor stand establishment are the first and foremost effects of 

drought (Harris et al., 2002). Cell growth is one of the most drought sensitive 

physiological processes caused by reduction in turgor pressure. When water deficit is high, 

cell elongation is inhibited due to disturbance of water flow from xylem to surrounding 

elongating cells (Nonami, 1998). Observations on soybean plants revealed that stem length 

decreased significantly under water deficit conditions (Specht et al., 2001). In other plants, 

including potato (Heuer and Nadler, 1995), Abelmoschus esculentus (Sankar et al., 2007), 

soybean (Zhang et al., 2004) and parsley (Petropoulos et al., 2008), it was reported that 

stem length was significantly reduced by water stress. Other growth parameters affected by 

water deficit include leaf area expansion which depends mostly on leaf turgor, temperature 

and assimilate supply. Development of optimum leaf area is important for photosynthesis 

and dry matter yield. It is common that water stress causes a reduction in fresh and dry 

biomass production (Zhao et al., 2006). Studies on many plants like populous 

(Wullschleger et al., 2005), soybean (Zhang et al., 2004), and several others (Farooq et al., 

2009), showed that water stress reduced leaf growth and consequently reduce leaf area. 
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Khan et al. (2001) conducted a study with six irrigation levels in maize where it was 

reported that plant height; stem diameter and leaf area decreased significantly with 

increasing water deficit. 

 

1.4.2 Photosynthesis 

Photosynthesis is highly affected by drought due to a decrease in leaf expansion, impaired 

photosynthetic machinery, premature leaf senescence and reduction in dry matter 

production (Wahid and Rasul, 2005). Drought stress reduces gaseous exchange due to 

stomatal closure hence limiting the amount of CO2 entering the leaves, which reduces 

photosynthesis. Anjum et al. (2011) observed a significant decline in net photosynthesis 

(33%), transpiration rate (38%), stomatal conductance (25%), water use efficiency (51%) 

and intracellular CO2 (6%) in water stressed maize compared with well-watered plants. A 

combination of stomatal and non-stomatal limitations was shown to decrease 

photosynthetic activity under drought stress (Ahmadi, 1998; Del Blanco et al., 2000; 

Samarah et al., 2009). Farooq et al. (2008) however, reported small limitations to 

photosynthesis due to stomatal mechanisms as compared with non-stomatal mechanisms. 

Stomatal limitations refer to closure of stomata in response to water stress and is one of the 

first responses to drought stress often resulting in a decreased rate of photosynthesis. Non-

stomatal limitations on the other hand include changes in chlorophyll synthesis, functional 

and structural changes in chloroplast, and interruption in processes of accumulation, 

transport, and distribution of assimilates (Farooq et al., 2008).  

 

Important photosynthetic pigments such as Chlorophyll a and b and carotenoids are 

affected by drought stress (Anjum et al., 2003). Fu and Huangi (2001) reported that water 

stress damaged photosynthetic apparatus, decreased activities of Calvin cycle enzymes, 

and reduced crop yield (Monakhova and Chernyadev, 2002). The ratio of the 

photosynthetic pigments was also changed by drought stress (Anjum et al., 2003; Farooq et 

al., 2009). Sunflower plants recorded a significantly decreased chlorophyll content at high 

water deficit in (Kiani et al., 2008). Similar results were reported by Manivannan et al. 

(2007) where chlorophylls a and b, and total chlorophyll content of sunflower declined 

significantly in response to water stress. According to Anjum et al. (2011) loss of 

chlorophyll content under water stress is considered as the main cause of inactivation of 

photosynthesis Photosynthetic ability is also affected by the loss of balance between the 
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production of reactive oxygen species and antioxidant defence (Reddy et al., 2004). This 

results in accumulation of reactive oxygen species which encourages oxidative stress in 

proteins, membrane lipids and other cellular components. 

 

1.4.3 Physiological responses 

In addition to morphological aspects, water stress also affects the physiology of plants. At 

the physiological level, plants respond to water stress through osmoregulation and osmotic 

adjustment, by accumulating metabolites, increasing protein synthesis as well as 

accumulating both enzymatic and non-enzymatic antioxidants (Blokhina et al., 2003). 

Osmoregulation is whereby the salt concentration in the cell is monitored in such a way 

that when there is low or high water potential within the cell, the cell allows for addition or 

removal of salts from the cell sap until the intracellular osmotic potential is nearly equal to 

the potential of the surrounding cells. Plants adapt to water stress through osmotic 

adjustment - by reduction of water potential through increased accumulation of solutes in 

the cell in response to water deficit or salinity (Anjum et al., 2011).  

 

Osmotic adjustment involves accumulation of one or more low molecular weight organic 

solutes known as compatible osmolytes (Naidu et al., 1992). Osmolytes play a vital role in 

counteracting effects of water deficit. Proline is one such compatible osmolyte mainly 

found in water stressed plants (Yoshiba et al., 1997). Proline accumulation is believed to 

be a universal plant response to environmental stresses such as water stress, salt stress, 

extreme temperatures, and high light intensity. It has been speculated that proline 

accumulation could be a possible mechanism for plant survival during drought stress 

(Nojaphy et al., 2010). However, questions have been raised on the role of proline as an 

osmotic regulator (Aspinall and Paleg, 1981). It has been suggested that proline function as 

an osmotic regulator, a protector of enzyme denaturation, a reservoir of nitrogen and 

carbon as well as a stabiliser of protein synthesis machinery (Ibarra-Caballero et al., 1988). 

 

Studies in higher plants have demonstrated that proline accumulates when plants are 

exposed to environmental stresses. Proline content increased in maize varieties in response 

to water deficit (Mohammadkhani and Heidari, 2008). Decreasing soil water potential to -

1.76 MPa, resulted to increased root proline content. In maize primary roots, proline levels 

can increase by a hundred fold when the crop is subjected to low water potential (Voetberg 
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and Sharp 1991). Verslues and Sharp (1999) also reported evidence of proline transport to 

the root tips while the plant was water stressed. Two pathways were observed to account 

for accumulation of proline in plants under stress: increased expression of proline synthesis 

enzymes and suppressed activity of proline degradation (Delauney and Verma, 1993; Peng 

et al., 1996). Continuous water deficit caused a significant increase in proline content in 

leaves during post-anthesis stage. Despite the differences ascribed to the role of proline 

accumulation in plants, proline has emerged as a suitable index in drought selection 

studies. 

 

1.4.4 Oxidative damage 

Plants respond to biotic and abiotic stresses through generation of reactive oxygen species 

(ROS) namely: superoxide anion radicals (O2
-
) hydroxyl radicals (OH), hydrogen peroxide 

(H2O2), alkoxy radicals (RO) and singlet oxygen (O2
1
) (Munne-Bosch and Penuelas, 2003). 

Reactive oxygen species are normally produced as by-products of normal oxygen 

metabolism and have an important role in cell signalling. When plants are water stressed, 

the level of ROS increase considerably resulting in oxidative damage to proteins, DNA and 

lipids (Apel and Hirth, 2004). 

 

Reactive oxygen species are highly reactive and cause serious damage to plants by 

increasing lipid peroxidation, protein degradation, fragmentation and ultimately, cell death. 

Over-production of ROS is associated with accumulation of malondialdehyde (MDA); as 

such, MDA content has been considered as an indicator of oxidative damage (Moller et al., 

2007). Blokhina et al. (2003) reported that reactive oxygen species caused deleterious 

effects and their production was stimulated under drought stress. Generally, there is a 

linear relationship between ROS production and severity of drought stress; this leads to 

enhanced peroxidation of membrane lipids and degradation of nucleic acids and both 

structural and functional proteins. Literature was num in terms of research done on cowpea 

with respect to these physiological responses to water stress. 
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1.4.5 Antioxidants 

Reactive oxygen species are always produced by higher plants in organelles such as 

mitochondria, chloroplast and peroxisomes. The equilibrium between production and 

scavenging of ROS is highly affected by environmental stresses such as drought, UV 

radiation, heavy metals, temperature extremes, and nutrient deficiencies. When the 

environmental conditions are favourable, ROS molecules are scavenged by different 

antioxidant mechanisms (Foyer and Noctor, 2005) (Figure 1.2). 

 

 

Figure 1.2. The equilibrium between Reactive Oxygen Species and Antioxidants. (Foyer 

and Noctor, 2005). 

 

Plants prevent the severity of damage caused by environmental stresses through activation 

of complex antioxidant system which aid to detoxify ROS. These systems include low 

molecular mass antioxidants and antioxidant enzymes such as superoxide dismutase 

(SOD), catalase (CAT), and enzymes involved in ascorbate glutathione cycle (Foyer and 

Helliwell, 1976).  
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In the context of drought stress, the production of reactive oxygen species is directly 

proportional to the severity of drought stress (Farooq et al., 2009). This then enhance the 

peroxidation of membrane lipids and degradation of nucleic acids, and both structural and 

functional proteins. This also affects the various organelles found in the plant cells such as 

chloroplasts, mitochondria and peroxomes (Farooq et al., 2009).  

 

1.5 Effect of drought on yield 

The main purpose of growing crops is to obtain high harvestable yield. Under water stress, 

crops show great differences in harvestable yield (Jaleel et al., 2009). Water stress is one of 

the most common environmental stresses known to affect plant growth and development 

(Aslam et al., 2006). A lot of research has been done concerning drought; however, it still 

remains a challenge to agricultural scientists, in general, and to plant breeders in particular. 

Drought can be regarded as a permanent constraint to agricultural production especially in 

developing countries and occasionally causes losses to agricultural production in 

developed countries (Ceccarelli and Grando, 1996).   

 

The severe effect of drought stress on grain yield occurs when water stress coincides with 

the reproductive stage (Thomas, 1997). Cell division, expansion and enlargement facilitate 

growth, at the same time they are very sensitive to drought stress. Drought stress reduces 

leaf production and expansion this consequently leads to leaf senescence and abscission 

(Karamonos, 1980). As a result of limited leaf production, leaf area is reduced and thus, 

reduced biomass accumulation. Since seed production is positively correlated with leaf 

area, it becomes imperative that reduction in leaf area would result in reduced seed 

production (Rawson and Turner, 1982). 

 

Yield is obtained through an interaction of many processes that occur during plant growth 

and development (Anjum et al., 2011). Exposure of plants to water stress compromises the 

ability of the plant to express yield traits. This occurs primarily due to the disruption of leaf 

gas exchange which results in loss of harvestable yield. Impaired leaf gas exchange limits 

the size of the source and sink tissue, phloem loading, assimilate translocation and dry 

matter partitioning (Farooq et al., 2009). Water stress also inhibits dry matter production 

through its inhibitory effect on leaf expansion and consequently reduced light interception 

(Nam et al., 1998).  



17 

 

 

Great differences occur in different plant species in relation to yield reduction under 

drought stress (Figure 1.3). If drought stress is imposed during reproductive phase, it 

becomes very critical because it affects the partitioning of dry matter to the sinks. Anjum et 

al. (2011) observed a substantial reduction in yield and yield components such as kernel 

rows/cob, kernel number/ row, 100 kernel mass, kernels/cob, grain yield/plant, biological 

yield/plant and harvest index, when stress was imposed at the tasseling stage of maize 

growth. Grain yield of maize was found to be greatly reduced by drought stress and this 

was related to the level of defoliation that occurred in response to water stress at 

reproductive stage (Kamara et al., 2003; Monneveux et al., 2006).  

 

 

 

Figure 1.3: Loss of harvestable yield in different crop species when water stress is 

imposed at reproductive stage. (Jaleel et al., 2009). 

 

Qasem and Biftu, (2010) studied the yield response of cowpea under low water potential 

and they reported that yield was reduced through decreased pod size and number of seeds 

per plant .Another study by Suliman and Ahmed (2010) indicated that cowpea seed yield 

was significantly reduced by water stress. These authors also confirmed the findings of 
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Qasem and Bift (2010) above that loss in seed yield was due to significant reduction in 

yield components such as number of pods/plant, number of seed/pod and seed mass.  
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1.6 Vegetative harvesting 

Cowpea can be consumed at various stages of its development, either as green leaves, 

green pods, green peas or dry grain (Ibrahim et al., 2010). In many parts of Africa, cowpea 

leaves and shoots are consumed as leafy vegetables and as an alternative for spinach 

(Onwueme and Sinha, 1991). The leaves can be harvested as an alternative to conventional 

seed harvest and could increase productivity while minimizing waste (Maeda, 1985). 

Cowpea plants allow for harvesting of leaves and seeds from the same plant but this may 

reduce harvest index (Ohler et al., 1996). Advantages of cowpea vegetative harvesting also 

extend to improving dietary nutrition since cowpea leaf protein can complement that of 

cereal grains (Maeda, 1985).  

 

Cowpea leaves have a significant amount of nutritional value, however, this has been 

ignored due to high water content in leaves and it has been hard to document their 

production and consumption (Ahenkora et al., 1998). Cowpea leaves provide a good 

source of amino acids, vitamins, minerals and proteins with a higher nitrogen content in the 

younger leaves (Ahenkora et al., 1998). The leaves contain much higher protein content 

than the seeds. It was reported that protein content found in leaves is about 15 times than 

that found on mature dry seeds and this is because leaves are produced earlier and in much 

greater quantity than seeds. Protein content in cowpea leaf ranges from 29% to 43%, 

however these amounts decrease with increasing leaf age (Nielson et al., 1993). 

 

Timing of commencement of leaf harvesting is very important for final yield determination 

(Matikiti et al., 2009) as it affects the plants’ ability to recover from defoliation (Berrett, 

1987). Bubenhein et al. (1990) initially suggested that cowpea should be strictly grown for 

either leaves or seeds but not both. However, recent research has shown that by using 

systematic approaches, both leaves and seeds can be harvested from the same crop. 

Matikiti et al. (2009) concluded that in order to obtain maximum grain yield, leaf 

harvesting should not be done from two weeks after crop emergence (WACE) up to 8 

WACE. They also found that 75% of potential grain yield can be obtained if leaf 

harvesting is performed from 2 to 3 WACE or from 7 to 8 WACE. Conflicting results 

regarding the effect of leaf harvesting on seed yield were reported by Bittenbender et al., 

(1984) and they can be attributed to cultivar differences. It was reported that some cultivars 

are adversely affected by leaf harvesting while others are not. According to Wien and Tays 
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(1978), determinate types suffer more reduction in seed yield than indeterminate cowpea 

types following defoliation. 

 

There was a paucity of information in literature describing the effect of water stress on leaf 

harvesting and seed yield of cowpea. Most literature describes leaf harvesting and seed 

yield under optimum conditions. However, since cowpea has been touted as a drought 

tolerant crop with potential for production in marginal areas; it is imperative that 

information relating to leaf harvesting and seed yield be generated. Therefore, one 

objective of this study was to determine the effect of water stress, under field conditions, 

on leaf harvesting and seed yield of two cowpea varieties.  

 

Conclusions 

Availability of water is a major limiting factor to crop production and ensuring food 

security in Africa as a whole. South Africa is a water stressed country characterised by 

high temperatures and low relative humidity which often result in uneven rainfall 

distribution as well as very high potential evapo-transpiration (Bennie and Hensley, 2001). 

This creates a big challenge for crop production and feeding the ever-growing population. 

Therefore, in order to address this issue it is important that researchers seek to explore 

ideal crops that can help in achieving the three developmental goals which are; reducing 

poverty, improving human health and nutrition and enhancing ecosystem resilience. 

Cowpea is one of the ideal crops that can be exploited in order to achieve these goals since 

it has been reported to be drought tolerant.  

 

The challenges of an ever-growing human population and climate change have aroused 

interest in researchers to seek more information about neglected underutilised crops. 

Cowpea is an underutilised crop with potential drought tolerance. In addition to drought 

tolerance, cowpea has proven to have a great potential for multiple uses: human food and 

livestock feed. As a result, cowpea can play a vital role in improving food security, 

especially in dry arid areas. The crop can be grown to feed people while they are waiting 

for their staple crops to mature. Cowpeas can also be used as a rotation crop due to 

beneficial roles of nitrogen fixation associated with legumes.  
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CHAPTER 2 

EVALUATING SEED QUALITY OF COWPEA  

2.1 Introduction 

Cowpea (Vigna unguiculata) is considered as one of the most important legumes, 

especially in hot, dry tropics and subtropics in Sub-Saharan Africa (Ogunkamni, 2006). It 

is commonly cultivated in areas where water stress is the major constraint to crop 

production (Santos, 2000). It is used mainly as grain (immature or dried), green leaves and 

for animal feed (Uarrota, 2010). Cowpea is rich in proteins that are readily available and of 

high biological value due to high levels of lysine and tryptophan (Santos, 2000). As such, 

the crop has potential to contribute towards food security and improve diets of people 

living in marginal areas of agricultural production. Unfortunately, there is limited 

information describing aspects of cowpea growth, seed quality in particular and the crop 

receives a small fraction of research attention in comparison with other established 

legumes such as common beans and soybeans. Due to this and despite its potential, the 

crop is classified as a neglected and underutilised crop.  

 

Seeds are very important in crop production for both commercial and subsistence farmers 

as they are the first input in crop production. However, seeds encounter different 

environmental conditions in the field such as temperature, water stress, photoperiod and 

soil fertility that may affect their ability to germinate successfully (Mbatha, 2010). 

Therefore, it is important that seeds be of high quality in order to establish successfully 

under often hostile seedbed conditions. As a result, seed quality can be described as the 

most important parameter in crop production (Salisbury & Ross, 1991; Bewley & Black, 

1994).  

 

High quality seeds are characterised by genetic stability, uniform and rapid germination, 

high seed vigour and freedom from pests and diseases (Balkaya et al., 2004).  Germination 

capacity and physiological vigour are the two most important factors required for high seed 

quality (Odindo, 2007). According to Association of Official Seed Scientists (AOSA) 

(1983), germination capacity is the ability to germinate and produce a normal seedling. On 

the other hand, seed vigour is an indication of a seed’s ability to emerge and form a 

uniform stand under a wide range of environmental conditions. It provides a clear 



32 

 

understanding of the seed’s physiological quality, which is defined as genetic purity and 

constitution of the seed (Odindo, 2007). Seed quality is affected by several external 

(environmental) and internal (physiological and genetic) factors which occur during seed 

development on the mother plant, harvest operations and storage (Tekrony, 2003; Powell et 

al., 2005). Seed quality has been shown to be affected by drought stress (Pervez et al., 

2009).  

 

South Africa is water limited and frequent droughts that occur can potentially affect seed 

quality of cowpea. However, plant response to drought stress, in terms of seed quality, is 

variable; this can be attributed to different physiological mechanisms that plants posses. 

Sorghum seeds exposed to mild water stress showed significantly higher germination than 

those grown under normal conditions (Benech-Arnold et al., 1991). Similarly, water stress 

imposed during seed development in soybean resulted in reduced seed yield; however, 

germination and vigour were not affected (Vieira et al., 1992). Drought stress has been 

shown to affect seedling establishment (Pervez et al., 2009). It was reported that water 

stress delayed the onset and reduced the rate and uniformity of germination, leading to 

poor crop performance and yield (Demir et al., 2006). On the other hand, inherent seed 

traits such as seed colour have also been shown to affect seed quality. 

 

Seed coat colour has been reported as one of several factors affecting seed quality 

(Pederson and Toy, 2001; Odindo, 2007; Mabhaudhi, 2009; Mbatha, 2010; Zulu, 2010; 

Sinefu, 2011). Work done by Powell (1986) and Ouveira and Matthews (1986a) showed 

that light coloured bean seeds succumbed to imbibitional injury as a result of rapid 

imbibition. This often led to high electrolyte leakage and tissue death and this could 

explain why they also observed poor emergence in light coloured seeds under field 

condition. On the other hand, dark coloured seeds were observed to imbibe water relatively 

slower and had higher emergence under field conditions relative to the light coloured seeds 

(Powell, 1989). Similar effects of seed colour on seed quality have been reported in several 

legumes such as cowpea (Asiedu & Powell, 1998), long bean (Abdullah et al., 1993), 

soybean (Mugnisjah et al., 1987) and radicchio (Cichorium intybus, L.) (Pimpini et al., 

2002). There have also been cases whereby findings were contrary to this. Pederson and 

Toy (2001), after conducting warm germination and vigour tests on sorghum, concluded 
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that seed quality could not be attributed to seed coat colour. However, there were few 

studies concurring with their findings in the literature. 

 

Seed quality has beneficial effects on field performance of many crops including cowpea. 

It has been hypothesised that seed coat colour is not associated with seed quality of 

cowpea. Therefore, this research aimed at determining seed quality of two cowpea varieties 

with different seed coat colour (Brown and White) before they were used in further 

experiments in the study. 
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2.2 Materials and Methods 

2.2.1 Plant material 

Seeds of two cowpea varieties – White birch and Brown birch were sourced from a local 

seed supplier and used in the studies. The cultivar names were indicative of seed colour. 

Seeds were of medium size and seed size was uniform across both varieties.  

 

 

Figure 2.1: Cowpea seed varieties used in the study (A = White birch variety and B = 

Brown birch variety). 

2.2.2 Standard germination (SG) test 

Germination capacity of the two cowpea varieties was assessed using the standard 

germination test (ISTA, 1996). The experiment was laid out in a completely randomised 

design were forty seeds of each variety were arranged between moistened double-layered 

paper towels, replicated four times. Thereafter, the paper towels were rolled and tied on 

other end with rubber bands and placed in zip-lock bags to prevent moisture loss. 

Following this, seeds were placed in a germination chamber set at 25°C and incubated for 

8 days. Germination counts were taken daily until the eighth day to determine germination 

percentage. Germination was defined as radicle protrusion of 2 mm. After 8 days, seeds 

were taken out of the chamber, at which point seed vigour parameters of shoot length, root 

length, root:shoot ratio, fresh and dry mass were determined. Seedling dry mass was 

determined by oven drying seedlings at 80°C for 72 hours. 
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Carvalho and Nakagawa (1980) described Gemination Velocity Index (GVI) as the 

strength of the seed lot. Germination velocity index was calculated according to Maguire’s 

(1962) formula:  

 

GVI = G1/N1 + G2/N2 +… + Gn/Nn    Equation 2.1 

where: 

GVI = germination velocity index 

G1, G2…Gn = number of germinated seeds in first, second… last count. 

N1, N2…Nn = number of sowing days at the first, second… last count. 

 

Mean time to germination (MGT) was calculated according to the formula by Ellis and 

Roberts (1981): 

     Equation 2.2 

where: 

MGT= mean germination time, 

n= the number of seed which were germinated on day D, and 

D= number of days counted from the beginning of germination. 

 

2.2.3 Electrolyte conductivity 

The electrolyte conductivity (EC) of seeds was measured using the CM100-2 EC Meter 

(Reid & Associates, South Africa) to determine the amount of solute leakage. Briefly, 50 

seeds of each variety (Brown and White birch) were initially weighed and put into wells. 

Thereafter, the wells were each filled with 2 ml of distilled water. Electrolyte conductivity 

of the seed was read over at hourly intervals over a period of 24 hours.  

 

2.2.4 Data analysis 

Data were analysed using analysis of variance (ANOVA) in GenStat
®

 14
th

 Edition (VSN 

International, UK). Treatment means were separated using Duncan’s Multiple Range Test 

in GenStat at the 5% level of significance. 
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2.3 Results 

The ANOVA tables for the seed quality experiments are presented in Appendix 2.1. There 

were no significant differences (P > 0.05) between the two cowpea cultivars, with respect 

to germination (Figure 2.2). However, there were highly significant differences (P < 0.001) 

with regards to overall daily germination (Figure 2.2). Germination percentage increased 

rapidly with time, from day 1 to day 2, until maximum germination was reached on day 

three (3). Results showed that both cultivars were fast to germinate and attained maximum 

germination within the first three days. 

 

 

Figure 2.2: Daily germination percentage of two cowpea cultivars (Brown and White 

birch). 
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Results of parameters measured on the final day of the standard germination test (Table 

2.1) showed no significant differences (P > 0.05) between the two cowpea varieties for 

fresh mass and root:shoot ratio (Table 2.1). However, dry mass, root length and shoot 

length showed highly significant differences (P < 0.001) between the two cowpea varieties 

(Table 2.1). The White birch variety had longer root and shoot; however, this did not 

translate to greater dry mass. Although Brown birch variety had shorter root and shoot, 

than the White birch variety, it had higher fresh and dry mass than White birch (Table 2.1). 

Although GVI and MGT were not statistically different (P > 0.05) across the varieties, 

White birch variety was shown to germinate faster (low MGT and high GVI) but had low 

fresh and dry mass.  

 

Table 2.1: Seed performance of two varieties with respect to germination indices. 

Variety 
x
GVI 

y
MGT 

(Days) 

Root 

length 

(cm) 

Shoot 

length 

(cm) 

Root:shoot 

Ratio 

Fresh mass 

(g) 

Dry 

mass 

(g) 

White 72.6a
z 

4.22a 7.33a 12.62a 1.73a 1.21a 0.56a 

Brown 59.2a
 

4.34a 5.31b 8.87b 1.67a 1.25a 0.76b 

LSD(P=0.05) 16.950 0.516 1.347 0.546 0.223 0.119 0.094 

Note: 
X
GVI = Germination velocity index; 

y
MGT = Mean germination time; 

z
Means 

followed by the same letter indicate that they were not significantly different (p < 0.05) 

from each other.  
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There were significant differences (P < 0.05) between cultivars with respect to EC (Figure 

2.3). White birch had the highest EC relative to Brown birch; indicating that there was 

more solute leakage in white seeds than in brown seeds.  

 

 

 

 

Figure 2.3: Electrical conductivity (uS/g) of the two cowpea varieties – Brown birch and 

White birch. 
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2.4 Discussion  

 

The standard germination test is a common test used to measure seed viability. The 

observed results of this study showed no differences in seed viability between white and 

Brown birch. This could have been because seeds used were commercial varieties with 

similar seed characteristics, excluding seed coat colour. However, similar viability between 

the cultivars cannot be used to assume similar emergence rate (Heydecker, 1972; Perry, 

1981). Germination vigour index of White birch was higher than that of Brown birch while 

the mean germination time was lower. This could have been attributed to differences in 

genetic make-up between the varieties. Therefore, within the context of this study, White 

birch had more strength and thus germinated faster.  

  

The observed differences in root and shoot lengths would suggest that White birch seeds 

were more vigorous than brown seeds. However this did not translate to high fresh and dry 

mass. The brown seeds germinated slower but accumulated more dry mass which is an 

advantage in terms of seed vigour because the seed will have more assimilates required for 

further growth. These results concur with those of Mavi (2010) who reported that the 

seedling fresh and dry mass of brown water melon seeds was higher than that of light 

coloured water melon seeds. Dry mass production during germination can also be used as 

an indicator of high seedling vigour. Accumulation of dry mass indicates that there will be 

enough reserves for good seedling establishment. As such, the results indicated that the 

Brown birch was more vigorous than the White birch. 

 

The observed differences in EC showed that seed coat colour is strongly linked with seed 

quality. The White birch germinated faster meaning that there was rapid water uptake 

which had a positive impact on germination rate. However, it was not good for seed 

quality. Rapid water uptake damages membrane cells as a result membranes lose their 

selective permeability thus permitting leaching of cytoplasmic metabolites into 

intercellular spaces (Mavi, 2010). Rapid water uptake also result in swelling damage; 

unpigmented seeds have been found to deteriorate faster and more susceptible to swelling 

damage than are pigmented seeds (Abdullah et al., 1993; Asiedu and Powell, 1998). 
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Previous research has shown that differences in seed coat colour can be used as a quality 

indicator in seeds (Odindo, 2007; Mavi, 2010; Mbatha, 2010; Zulu, 2010; Sinefu, 2011). 

Mavi (2010) reported a correlation between seed coat colour and properties used to 

identify seed quality. Seed colour was found to influence germination capacity, emergence 

rate and seedling elongation in Trifolium alexandruim seeds (Daliania, 1980). Sinefu 

(2011) concluded that seed colour can be used for germplasm selection to grow under 

various conditions. Findings from the current study are in line with what has been reported 

by other researchers.   
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2.5 Conclusion 

Results from this study allow us to conclude that seed coat colour in cowpea is associated 

with seed quality. Based on germination indices (GVI and MGT), it can be concluded that 

Brown birch had better seed quality than White birch. In addition, results of EC confirmed 

that light coloured seeds had lower seed quality as compared to dark coloured seed. As 

such, it may be expected that under field conditions, Brown birch may perform better than 

White birch, especially at the early establishment stage where seed quality plays a major 

role. However, more research is required to determine if superior seed quality (viability 

and vigour) of Brown birch would translate to yield advantages under field conditions. 

Furthermore, future research should also evaluate the physiological basis for the 

association between seed coat colour and seed quality.    

 



42 

 

References 

Abdullah WD, Powell AA, Mathews S. 1993. Association of differences in seed vigourin 

long bean (Vigna sesquipedalis) with testa colour and imbibition damage. J. Agric 

sci. 116: 259-264. 

AOSA. 1983. Association of Official Seed Analysts: Seed vigor testing handbook. 

Contribution no. 32. USA. 

Asiedu EA, Powell AA. 1998. Comparison of storage potential of cultivars of cowpea 

(Vigna unguiculata L.) Differing in seed coat pigmentation. Seed Sci. & Tech. 26: 

211-221. 

Balkaya A, Yanmaz R, Demir E, Ergun A. 2004. Characterization of kale (Brassica 

oleracea var.acephala L.) germplasm of the Black Sea Region. Catalog, 137 pp. 

Basu RN. 1995. Seed viability. In: Basra AS (Ed), Seed Quality: Basic Mechanisms and 

Agriculture Implications, NY, USA: The Haworth Press, Inc. pp 1-44 

Benech-Arnold RL, Fenner M, Edwards PJ. 1991. Changes in germinability ABA content 

and ABA embryonic sensitivity in developing seeds of Sorghum bicolor (L) 

Moench induced by water stress during grain filling. New Phytol. 118: 339-348. 

Bewley JD, Black M. 1994. Seed physiology of development and germination. New York 

and London: Plenum press. 

Carvalho NM; Nakagawa J. 1980. Sementes: Ciência, tecnologia e produção. Campinas: 

Fundação Cargil. pp 100-111. 

Dalianis CD. 1980. Effect of seed colour on germination, seedling elongation and 

emergence rates of berseem and Persian clovers (Trifolium alexandrium and T. 

resupinatum). Seed Sci. and Tech. 8: 333-340. 

Demir AO, Goksoy AT, Buyukcangaz H, Turan ZM, Koksal ES. 2006. Deficit irrigation of 

sunflower (Helianthus annuus L.) in a sub-humid climate. Irrigation Sci. 24: 279-

289. 

Harris D. 1996. The effects of manure, genotype, seed priming, depth and date of sowing 

on the emergence and early growth of Sorghum bicolor (L.) Moench in semi-arid 

Botswana. Soil Till. Res. 40: 73–88. 

Hartmann HT, Kester DE. 1983. Plant propagation, Principles and Practices (4th edition). 

Prentice Hall Inc., Engle Wood Cliffs, New Jersey. 

Heydecker W. 1972. Seed Ecology. London: Butterworths. 



43 

 

ISTA (International Seed Testing Association). 1996. International Rules for Seed Testing. 

Seed Sci. Tech. 2: 1-335. 

Mabhaudhi T. 2009. Responses of maize (Zea mays L.) landraces to water stress compared 

with commercial hybrids. MSc thesis, University of KwaZulu-Natal, 

Pietermaritzburg, South Africa. 

Mavi K. 2010. The relationship between seed coat colour and seed quality in watermelon 

Crimson sweet. Hort. Sci. 37: 62–69. 

Mbatha TP. 2010. Response of local wild mustard (Brassica species) landraces to water 

stress, MSc thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa. 

Mugnisjah WQ, Shimanoh I, Matsumoto S. 1987. Studies on the vigour of soybean seeds. I 

Varietal differences in seed vigour. J Faculty of Agric, Kyushu University 31: 213-

226. 

Odindo AO. 2007. Cowpea seed quality in response to production site and water stress, 

PhD thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa. 

Ogunkanmi LA. 2006. Genetic diversity of cowpea and its wild relatives. PhD thesis 

University of Lagos, Akoka Lagos. 

Ouveira M, De A, Matthews S. 1986a. Seed vigour in cultivars of dwarf French bean 

(Phaseolus vulgaris) in relation to the colour of the testa. J Agric Sci. 106: 419-25. 

Ouveira M, De A, Matthews S.1986b. The role of imbibition damage in determining the 

vigour of white and coloured seed lots of dwarf French bean (Phaseolus vulgaris). 

J.  Exper. Bot. 57: 716-22. 

Pederson JF, Toy JJ. 2001. Seed physiology, production and technology. Germination, 

emergence and yield of 20 plant colour, seed colour near isogenic lines of grain 

sorghum. J. Crop Sci. 41: 107-110. 

Perry, D.A. 1981. Introduction. In: Handbook of Vigour test Methods. International Seed 

Testing Association, Zurich, Switzerland. pp. 3-7. 

Pervez MA, Ayub CM, Khan HA, Shahid MA, Ashraf I. 2009. Effect of drought stress on 

growth, yield and seed quality of tomato (Lycopersicon esculentum L.). Pak. J. 

Agri. Sci. 46: 174-178. 

Pimpini F, Filipini MF, Sambo P, Gianquinto G. 2002. The effect of seed quality (seed 

colour variation) on storage, germination temperature and field performance of 

radicchio. Seed Sci & Tech. 30: 393-402. 



44 

 

Powell AA, Corbineau F, Franca-Neto J, Lechappe J, Mesterhazy A, Pritchard HW, Tarp 

G. 2005. Towards the future in seed production, evaluation and improvement. Seed 

Sci & Tech. 33: 265-281. 

Powell AA. 1986. The role of imbibition damage in determining the vigour of white and 

coloured seed lots of dwarf French bean (Phaseolus vulgaris). J. Exper. Bot. 57: 

716-22. 

Powell AA. 1989. The importance of genetically determined seed coat characteristics to 

seed quality in grain legumes. Ann Bot. 63: 169-175. 

Salisbury FB, Ross CW. 1991. Osmotic stress-induced changes in germination, Growth 

and soluble sugar content of Sorghum bicolor (L.) Moench seeds. Plant Physiology 

Belmont, California, Wadsworth Publishing Company. 

Santos AL. 2000. Some biotic and abiotic factors affecting the production of cowpea 

(Vigna unguiculata (L.) Walp) in Mozambique. Undergraduate Thesis. College of 

Agriculture and Forestry, Maputo. 

Sinefu F. 2011. Bambara groundnut response to controlled environment and planting date 

associated water stress, MSc thesis, University of KwaZulu-Natal, 

Pietermaritzburg, South Africa. 

Tekrony DM. 2003. Precision is an essential component in seed vigour testing. Seed Sci & 

Tech.  31: 435-447. 

Uarrota VG. 2010 Response of cowpea (Vigna unguiculata (L.) Walp) to water stress and 

phosphorus fertilisation. J. Agron. 9: 87-91. 

Vieira RD, Tekrony DM, Egli DB. 1992. Effect of drought and defoliation stress in the 

field on soybean seed germination and vigour. Crop Sci. 32: 471-475. 

Zulu S. 2010. Water stress of wild melon (Cucumis melo). MSc thesis, University of 

KwaZulu-Natal, Pietermaritzburg, South Africa. 



45 

 

CHAPTER 3 

COWPEA RESPONSE TO DIFFERENT WATER AND 

TEMPERATURE REGIMES UNDER CONTROLLED 

ENVIRONMENTAL CONDITION 

3.1 Introduction 

Water stress and high temperatures are the major growth limiting factors that plants 

encounter in semi-arid and arid environments. Although these factors usually occur 

concurrently, their effects on plant growth and development have often been studied as 

separate effects (Machado and Paulsen, 2001). Limited information exists in the literature 

relating to the combined effect of these environmental factors (Rizhsky et al., 2004). 

Climate change, which will eventually increase global temperatures, has a potential to alter 

rainfall distribution and intensify drought in arid and semi-arid areas (Wigley and Raper, 

2001; Chaves et al., 2003). Temperature or heat stress, is regarded as the increase in 

temperature beyond a threshold level for a period of time, enough to cause severe and 

irreversible damage to plant growth and development (Wahid et al., 2007). Generally, a 

sudden increase in temperature (e.g. 10 -15°C) above ambient, is considered heat shock or 

heat stress (Wahid et al., 2007). Heat stress has a significant negative effect on plant 

growth (Xu and Zhou, 2006) and poses a serious threat to crop production worldwide 

(Hall, 2001). Visible symptoms on plants under heat stress include overall leaf chlorosis, 

necrotic lesions and tip burning (Wahid et al., 2007). Heat stress greatly affects both 

qualitative and quantitative characteristics of plants; thereby affecting both primary and 

secondary metabolic pathways (Wahid, 2007). These morphological changes result in a 

decline in net photosynthesis and consequently reduced photoassimilates; and out of the 

limited assimilates, a significant portion is used for stress acclimation mechanisms (Taiz 

and Zeiger, 2006; Wahid et al., 2007). In order for plants to cope with heat stress, they 

undergo physiological changes and accumulate osmolytes like proline, soluble sugars, 

glycinebetaine and proteins (Wahid and Close, 2007). 

 

Water stress affects plant growth starting from the cellular level where it inhibits cell 

division and enlargement (Jaleel et al., 2009). It disturbs the normal functioning of the 

plant with respect to physiological and biochemical processes which are responsible for 
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plant survival and effective plant growth (Farooq et al., 2008; Jaleel et al., 2008). 

Experiments done on several crops have revealed that drought reduces plant growth 

parameters such as plant height (Heuer and Nadler, 1995; Spetch et al., 2001; Wu et al., 

2008), leaf area, leaf number (Wullschleger et al., 2005) and biomass production (Farooq 

et al., 2009). It has been established that the initial growth stage is more sensitive to water 

stress than the subsequent growth stages (Anjum et al., 2003). Due to this reason it is 

important to recognize critical growth stages. Previous reports suggest that there are 

genotypic differences in the ability of cowpea [Vigna unguiculata (L.) Walp] to withstand 

drought at the vegetative stage (Watanabe et al., 1997) and at flowering stage (Babalola, 

1980). Ahmed and Suliman (2010) reported that the reproductive stage is the most 

sensitive to water deficit and concluded that cowpea can be subjected to water stress at 

vegetative growth and this would not significantly affect final seed yield.  

 

Cowpea is an important legume known for its uses as a grain and fodder crop (Singh et al., 

2003). There is limited information describing the combined effect of water and heat stress 

on cowpea. Moreover, the crop is grown in areas where water stress is often accompanied 

by high temperatures. As such, that should justify a study of this nature – an assessment of 

water stress is incomplete without an assessment of temperature stress. It is hypothesised 

that there is no interactive effect of water and heat stress on cowpea growth and 

productivity. As a result the objective of this study was to determine the combined effects 

of high temperatures and water stress imposed at different growth stages on growth and 

development of cowpea.  
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3.2 Materials and Methods 

3.2.1 Plant material 

Two cowpea varieties differing in terms of seed colour (Brown birch and White birch) 

were purchased from a local seed supplier, Capstone Seeds, in 2011, and used for the 

experiment. The varieties were classified as annual determinant legume types. 

 

 

Figure 3.1: Cowpea seed varieties used in the study (A = White birch and B = Brown 

birch). 

3.2.2 Glasshouse environment  

A pot trial experiment was conducted in three controlled environment facilities at the 

University of KwaZulu-Natal’s Phytotron Unit, Pietermaritzburg. Three environmental 

conditions were created in the glasshouse: (i) High temperature environment (33/27
o
C 

day/night; natural daylength; 65% relative humidity), (ii) low temperature environment 

(21/15°C day/night; natural daylength; 65% relative humidity) and optimum environment 

(27/21°C day/night; natural daylength; 65% relative humidity). The optimum environment 

was selected to represent a typical warm sub-tropical climate to grow cowpea (Modi, 

2007). 
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3.2.3 Experimental design, water stress treatments and potting procedure 

The experiment was designed as a factorial experiment consisting of three factors: 

temperature, water regimes and cowpea varieties. There were three temperature 

environments (High, Optimum and Low) (Section 3.2.2). There were four water regimes: 

no stress (NS), terminal stress (TS), intermittent stress – vegetative (ISV) and intermittent 

stress - flowering (ISF). The no stress (NS) treatment involved watering the crop to 100% 

of crop water requirement. The vegetative intermittent stress (ISV) treatment involved 

establishing (seedling establishment) the crop at 100% of crop water requirement and then 

stressing the crop down to 30% of crop water requirement during the vegetative stage 

before watering it back up to 100% of crop water requirement at the onset of flowering. 

Flowering intermittent stress (ISF) involved establishing the crop at 100% of crop water 

requirement and maintaining it throughout the vegetative stage; the crop was only stressed 

down to 30% of crop water requirement at the onset of flowering. Terminal stress (TS) 

involved establishing the crop at 100% of crop water requirement; thereafter the crop was 

stressed down to 30% of crop water requirement for the entire duration of the crop cycle. 

The two cowpea varieties (Brown and White) were as described in Section 3.2.1. 

Therefore, the experimental layout was a split-split-plot with a treatment structure of 

3*4*2, replicated three times. Whereby temperature was regarded as the main plot; water 

regimes was the sub-plot and variety sub-sub-plots. 

 

The soil used for this study was collected from the same site where the field trial (Chapter 

4) was conducted (Appendix 5). Seventy two (5 L) undrained pots were each filled with 

3.5 kg of soil whose field capacity had previously been determined. Two seeds were 

planted per pot and later thinned to one plant per pot after seedling establishment. At 

planting, all pots were watered up to field capacity. Soil water content was monitored 

periodically using an ML-2x Theta probe connected to an HH2 handheld moisture meter 

(Delta-T Devices, UK). Irrigation scheduling in the pot trial was based on crop water 

requirement as described by Allen et al. (1998). Crop water requirement was calculated as 

follows: 
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ETc = ETo*Kc      Equation 3. 1 

 

Where: ETc = crop water requirement, 

 ETo = reference evoptranspiration obtained using the FAO-Penman Monteith 

method, and 

 Kc = crop factor obtained from Allen et al. (1998). 

 

The irrigation was applied twice daily to meet daily crop water requirement. 

 

3.2.4 Proline determination 

Leaf material for determination of free proline content was sampled destructively from the 

plants in the high temperature (33/27°C) only. This was because at this stage the plants 

were not comparable, since the plants in other temperature environments stopped growing 

due to low temperatures. Proline content was then determined according to the method of 

Bates et al. (1973), with minor modifications. Leaf material was ground to a fine powder 

under nitrogen, mortar and pestle. Thereafter, 0.5 g leaf material was homogenised in 10 

ml of 3% aqueous sulphosalicyclic acid. The homogenate was filtered through Whatman
®

 

No. 2 filter paper. About 2 ml of the filtrate was then put into a test tube to which 2 ml of 

glacial acetic acid and acid ninhydrin were added, respectively. The solution was heated in 

a boiling (100°C) water bath for 1 hour. Following this, the reaction mixture was placed in 

a cool water bath to terminate the reaction. The reaction mixture was extracted with 4 ml 

toluene and vortexed for 15 – 20 sec. The chromophere containing toluene was aspirated 

from the aqueous phase, warmed to room temperature and the absorbance read at 520 nm 

using toluene as a blank. Proline concentration was calculated from the standard curve 

(Appendix 6) on a dry weight basis as follows:  

[(µg proline/ml x ml toluene)/ (115 µg/µmole)]/ [(g sample)/5] = µmoles proline/g of dry 

weight material. 

 

3.2.5 Data collection 

Seedling emergence counts were performed daily after planting. Length and width of the 

first true leaf were measured during the establishment phase 21 DAP (days after planting). 

These measurements were then used to calculate leaf area non-destructively according to 

Lu et al. (2004). Leaf number and plant height were recorded weekly from 21 DAP. Leaf 

number was counted for leaves with at least 50% green area and height was measured from 
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the base of the plant to the base of the upper most leaf. Plant growth parameters were 

measured until flowering. Chlorophyll content index and was determined weekly using a 

CCM-200 Plus (Optisciences, USA). It was measured from the abaxial and adaxial leaf 

surfaces, of the new leaf for the entire duration of the experiment. The plants growing at 

33/27°C were the only plants to produce yield. As a result, when they reached maturity, the 

whole trial was harvested. Yield parameters (total biomass, pod number/plant, pod 

mass/plant, see number/pod, seed mass/plant and harvest index) at 33/27°C were measured 

at time of harvest and only total biomass was measured at 27/21°C and 21/15°C. 

 

3.2.6 Data analysis 

Data were analysed using analysis of variance (ANOVA) in GenStat® Version 14 (VSN 

International, UK). Means of significantly different variables were separated using least 

significant differences (LSD) at a probability level of 0.05. 
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3.3 Results 

The ANOVA tables for the glasshouse experiment are presented in Appendix 3.1 

3.3.1 Soil water content  

There were highly significant (P<0.001) differences between temperature regimes with 

respect to soil water content (SWC). Soil water content in the high temperature (33/27°C) 

environment was 55.5% lower than in the optimum (27/21°C) and low (21/15°C) 

temperature environments (Figure 3.2). At 33/27°C, SWC was within the range of plant 

wilting point (PWP) and field capacity or even below the PWP for some water treatments 

(Figure 3.2); whereas at 27/21°C and 21/15°C, SWC was above field capacity. Differences 

between water treatments were found to be highly significant (P<0.001). The terminal 

stress treatment had the lowest (29.44%) followed by 32.35% (ISV), 34.59% (NS) and 

35.77% (ISF). There were significant (P<0.05) differences between varieties: pots planted 

with Brown birch had high SWC than those planted with White birch. The interaction 

between temperature and water regimes was highly significant (P<0.001). Although water 

treatments were uniform across all temperature environments, the rate of water loss in the 

soil differed significantly. At 33/27°C, the rate of water loss was high compared to 

27/21°C and 21/15°C where water loss was very minimal (Figure 3.2). 

 

Figure 3.2: Soil water content measured from pots subjected to different water regimes 

(NS, ISV, ISF & TS) under three temperature conditions[High (33/27°C), Optimum 

(27/21°C) and Low (21/15°C)]. 
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3.3.2 Establishment and plant growth  

Temperature differences between growth environments were found to have a highly 

significant (P<0.001) effect on percentage emergence (Figure 3.3). 

 

Figure 3.3: Percentage emergence of cowpea varieties (Brown and White birch) grown 

under different temperature environments [High (33/27°C), Optimum (27/21°C) and Low 

(21/15°C)]. 

 

Differences in percentage emergence and initial leaf area were due to temperature, since 

initially all the pots were watered up to field capacity. Emergence of plants at 33/27°C was 

found to be 18% and 67% higher than that of plants at 27/21°C and 21/15°C, respectively. 

There were highly significant (P<0.001) differences between varieties with respect to 

emergence (Figure 3.3). Based on mean values of varieties, emergence of Brown birch was 

14.6% more than that of White birch. There was a significant (P<0.05) variation in 

emergence rate over time (Figure 3.3) and there was also a significant interaction (P<0.05) 

between temperature and variety in emergence over time. At 21/15°C, emergence started 8 

DAP while at 33/27°C and 27/21°C emergence started at 4 DAP (Figure 3.3). At 33/27°C 

and 27/21°C, plants attained full emergence (100%) by 7 and 8 DAP, respectively, whereas 

at 21/15°C, plants only attained full emergence 11 DAP (Figure 3.3). Temperature regimes 

had a significant effect (P<0.05) on initial leaf area measured from the first true leaf 

(Figure 3.4). 

 



53 

 

 

Figure 3.4: Effect of temperature regimes [High (33/27°C), Optimum (27/21°C) and Low 

(21/15°C)] on initial leaf area measured on the first true leaf of cowpea varieties (Brown 

and White birch).  

 

Leaf area of plants growing at 21/15°C was respectively 46% and 43% lower than leaf area 

at 33/27 °C and 27/21 °C (Figure 3.4). The cowpea varieties differed significantly 

(P<0.001) with respect to leaf area. Leaf area of Brown birch was 42% higher than that of 

White birch (Figure 3.4). 

 

Temperature regimes had a highly significant (P<0.001) effect on plant height. Plant height 

was 61% and 77% lower under 27/21°C and 21/15°C, respectively in relation to 33/27°C 

(Figure 3.5). The water regimes had a highly significant (P<0.001) effect on plant height. 

The TS water regime had the lowest plant height followed by ISV and ISF (Figure 3.5).  

Brown birch was 19% taller than White birch. The interaction between temperature and 

water regimes was shown to be highly significant (P<0.001) with respect to plant height. 

Results showed that, on average, plant height increased with increasing temperature; 

however, water regimes showed no observable trend for plant height with respect to 

growth stages (Figure 3.5). Therefore, this shows that cowpea was more affected by 

temperature than water availability.  
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Figure 3.5: Effect of water treatments (NS, ISV, ISF & TS) and temperature regimes 

[High (33/27°C), Optimum (27/21°C) and Low (21/15°C)] on plant height of cowpea 

varieties (Brown & White). 

 

Figure 3.6: Effect of water treatments (NS, ISV, ISF & TS) and temperature regimes 

[High (33/27°C), Optimum (27/21°C) and Low (21/15°C)] on leaf number of cowpea 

varieties (Brown & White). 

 

Leaf number was significantly (P<0.001) affected by temperature regimes (Figure 3.6). 

Plants growing at 21/15°C had the lowest number of leaves (with 1 leaf on average) 

followed by 27/21°C (2 leaves) and 33/27°C (6 leaves), respectively (Figure 3.6). Leaf 

number was respectively 63% and 78% lower at 27/21°C and 21/15°C relative to 33/27°C. 

Water regimes had no significant (P>0.05) effect on leaf number (Figure 3.6). Cowpea 



55 

 

varieties showed highly significant differences (P<0.001) with respect to leaf number, with 

White birch having 22% more leaves than Brown birch (Figure 3.6). The interaction 

between water and temperature regimes was significant (P<0.05). The pattern observed for 

leaf number was similar to that observed for plant height. This further suggests that 

cowpea growth was more likely affected by temperature than water availability.  

 

Temperature regimes had a highly significant (P<0.001) effect on chlorophyll content 

index (CCI) (Figure 3.7). 

 

 

Figure 3.7: Effect of water treatments (NS, ISV, ISF & TS) and temperature regimes 

[High (33/27°C), Optimum (27/21°C) and Low (21/15°C)] on chlorophyll content index of 

cowpea varieties (Brown & White) over time (DAP). 

 

The plants at 33/27°C showed ≈ 59.5% higher CCI than plants at 27/21°C and 21/15°C. 

Mean separation showed that 27/21°C and 21/15°C environments were statistically similar 

with respect to CCI. There were no significant differences (P>0.05) between water regimes 

with respect to CCI (Figure 3.7). Temperature and water regimes did not have a significant 

interactive effect (P>0.05) on CCI. Cowpea varieties differed significantly (P<0.001) with 

respect to CCI; Brown birch had a 14% higher CCI relative to White birch (Figure 3.7). 
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There was a significant (P<0.05) interaction between temperature regimes and varieties 

(Figure 3.7).  

 

3.3.3 Proline  

Results of proline showed that there were highly significant (P<0.001) differences of 

proline concentration (Figure 3.8) across the water treatments. 

 

 

Figure 3.8: Proline concentration of cowpea varieties (Brown & White birch) subjected to 

different water treatments (NS, ISV, ISF, TS). 

 

Terminal stress (TS) and stress imposed at flowering (ISF) resulted in more proline 

accumulation relative to NS and ISV (Figure 3.8). Cowpea varieties differed significantly 

(P<0.001) with respect to proline accumulation under water stress, where Brown birch 

accumulated more proline in relation to White birch. The interaction between water 

regimes and varieties was found to be highly significant (P<0.001). Visible differences 

between varieties were observed under ISF, were Brown birch accumulated about 3.6% 

more proline than White birch (Figure 3.8). 

 

 



57 

 

The plants at the lower temperatures (27/21ºC and 21/15ºC) showed stunted growth and 

failed to yield. As a result, yield parameters were evaluated for the plants at high 

temperatures (33/27ºC). With the exception of seed number per pod, water regimes had a 

significant (P<0.05) effect on most yield components (Table 3.1). For all yield 

components, the interaction between water regimes and varieties was not significant 

(P>0.05). Imposing water stress at different stages of plant growth had a highly significant 

(P<0.001) effect on total biomass (Table 3.1). Total biomass was observed to be 24% 

(ISV), 38% (ISF) and 69% (TS) lower relative to the NS water regime. Cowpea varieties 

showed no significant differences (P>0.05) for yield components. The interaction between 

water regimes and varieties was not significant (P>0.05); however, the trend of results 

showed that, with the exception of the NS treatment, Brown birch generally performed 

better than White birch, with respect to total biomass (Table 3.1). 

 

Imposing water stress  during vegetative (ISV) and flowering (ISF) stages resulted in 

similar pod mass for both varieties compared with the NS water regime; whereas TS 

resulted in 76% and 63% lower pod mass for brown and White birch, respectively, relative 

to the NS water regime. Imposing water stress during vegetative stage (ISV) was found to 

decrease pod mass more than imposing water stress at flowering (Table 3.1); the pattern 

was similar for both varieties. Brown birch was shown to have 3% higher pod mass than 

White birch (Table 3.1). However, Brown birch had 39% less pods per plant compared 

with White birch (Table 3.1). This is because Brown birch produced bigger pods that 

contained bigger and fewer seeds. Imposing water stress during vegetative (ISV) and 

flowering (ISF) stages resulted in similar pod number per plant relative to the NS water 

regime. On the other hand, TS resulted in 77% and 50% less pod number per plant in 

brown and White birch, respectively, relative to the NS water regime (Table 3.1). Brown 

birch performed better than White birch with respect to seed number per pod, pod length 

and seed mass per plant; however, this did not translate to better harvest index for Brown 

birch.  

 

Cowpea varieties were not significantly (P>0.05) different with respect to harvest index 

(HI); however, it was notable that White birch performed better than Brown birch (Table 

3.1). Interesting results were observed with respect to the response of varieties towards 

ISV and ISF, with respect to total biomass and harvest index when compared with the NS 
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water regime. For Brown birch, imposing water stress during vegetative stage did not 

affect biomass but it was observed to decrease harvest index by 24% when compared with 

the NS water regime. ISF decreased biomass significantly (P<0.05), by 33%, while harvest 

index was increased by 26% relative to NS water regime. With the White birch, there was 

a 48% decrease in biomass in response to ISV however harvest index was kept constant 

when compared with the NS water regime. There was a 42% decrease in biomass in 

response to ISF, and the harvest index increased by 43% when compared with the NS 

water regime. The trend with response to terminal stress for both varieties was constant, 

whereby biomass was significantly decreased and there was a significant increase in 

harvest index.  
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Table 3.1: Yield components of cowpea varieties (Brown and White birch) subjected to different water regimes (NS, ISV, ISF, TS) under high 

temperature regime (33/27°C). 

Variety 

Water 

treatment 

Total 

Biomass (g) 

Pod 

mass (g) 

Pod No. 

Plant
-1

 

Seed No. 

Pod
-1

 

Pod length 

(cm) Seed mass plant
-1

 

Harvest Index 

(%) 

B
R

O
W

N
 

NS 18.19a 7.63a 4.33a 9.50a 14.52a 6.05a 32.60b 

ISV 18.47a 5.43a 3.67ab 8.33a 12.50b 4.29ab 24.70b 

ISF 12.02b 6.12a 3.33a 10.44a 19.36a 5.12a 41.40a 

TS 7.44c 1.50b 1.00b 7.33a 12.08b 1.29b 18.60a 

Mean 14.03
a
 5.17

a
 3.08

a
 8.90

a
 13.87

a
 4.19

a
 29.30

a
 

W
H

IT
E

 

NS 19.54a 7.09a 6.67a 8.03a 12.00a 5.53a 27.70b 

ISV 10.14b 3.78a 4.67ab 5.70a 9.96b 2.90ab 27.40b 

ISF 11.32b 6.97a 5.67a 9.00a 13.54a 5.61a 49.00a 

TS 4.25c 2.20b 3.33b 6.08a 9.60b 1.76b 43.30 b 

Mean 11.31
a
 5.01

a
 5.08

a
 7.20

a
 11.27

b
 3.95

a
 36.80

a
 

LSD(P=0.05) (Water*Var) 6.388 3.811 1.407 4.154 2.668 1.493 18.74 
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3.4 Discussion 

The objective of this study was to evaluate crop growth and yield responses of cowpea 

varieties to water stress under different temperature environments. Furthermore, a 

secondary objective was also to evaluate the interactive effect of water and temperature on 

cowpea growth and yield. Water stress and high temperature present an excellent example 

of two environmental stresses that often occur simultaneously under field conditions (Xu 

and Zhou, 2006). The amount of water applied for all treatments (NS, ISV, ISF and TS) 

and frequency of irrigation was the same across all temperature environments (33/27°C, 

27/21°C and 21/15°C); however, the rate of water loss was different. Water loss in pots 

increased with increasing temperatures, this is usually the case under field conditions. 

Plants tend to compete for water with the evaporative demand caused by high temperatures 

and this competition becomes worse when there is limited water supply. 

 

The trend in emergence showed that it was affected by temperature differences between 

the growing environments. At lower temperatures (21/15°C), seeds took longer to emerge, 

while emergence proceeded relatively faster in the warmer environments (33/27°C and 

27/21°C). Since water was not a factor during establishment, this suggests that temperature 

was the main factor affecting emergence rate of cowpea varieties. Low temperatures 

resulted in slow and uneven emergence, which means that cowpeas emergence is sensitive 

to low temperatures. This may impose a challenge to the farmers since uniform emergence 

and hence good stand establishment is of economic importance to the farmers. Therefore, 

cowpea varieties used for the current study requires high temperatures for optimum, fast, 

uniform emergence and stand establishment. Ismail et al. (1997) also reported that the rate 

of emergence was slower and erratic under 15ºC when compared to more favourable 

(28ºC) temperatures. 

 

The effect of temperature on cowpea growth was observed initially from the development 

of the first true leaf. Consistent with observations of emergence, low temperatures resulted 

in slow establishment as evidenced by the low initial leaf area relative to the warmer 

environments (33/27°C and 27/21°C); leaf area of the first true leaf increased with 

increasing temperature. Leaf area of the first true leaf was measured with the assumption 

that it would indicate possible growth rate of the plants. As such, based on these 

observations, it could be suggested that plants growing at 33/27ºC and 27/21ºC were 
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expected to grow faster than plants at 21/15ºC. Similar observations were reported in the 

study by Xiong et al. (2000) where higher temperatures increased leaf area 3.4-5.5 times 

compared with plants at lower temperatures.  

  

Cowpea has been reported to be adapted to drought, high temperatures and other biotic 

stresses compared with other crops (Ehlers and Hall, 1997). Cowpea growth, in terms of 

plant height and leaf number, was observed to improve with increasing temperatures. In 

this study, it was expected that cowpeas would perform better at 27/21ºC as these were 

depicted as optimum temperatures; however, it was found that 33/27ºC favoured cowpea 

growth. The trend of results observed from this study showed that plant height and leaf 

number were more affected by water stress imposed during the vegetative than during 

flowering stage. These results are in tandem with reports by Vurayai et al. (2011) that plant 

height and leaf number were reduced following imposition of water stress at vegetative, 

flowering and pod filling stages, respectively, in bambara groundnut. In the current study, 

a possible explanation for growth not being interrupted in response to water stress imposed 

at flowering (ISF) could be the fact that vegetative growth had already ceased at this stage.  

 

Cowpea varieties used for this study showed that they grow optimally at high temperatures 

(33/27ºC). These findings were also confirmed by chlorophyll content index (CCI) results 

which showed low CCI at lower growth temperatures (27/21ºC; 21/15ºC) compared with 

high temperatures (33/27ºC). This was contrary to reports in the literature that high 

temperatures reduced chlorophyll content in pea (Pisum sativum) and faba bean (Vicia 

faba) (MacDonald and Paulsen, 1997). Within the context of the current study, high 

chlorophyll content index could be related to rapid growth (MacDonald and Paulsen, 1997) 

which was observed at high temperatures (33/27ºC). Plants from 33/27ºC had high CCI 

and demonstrated vigorous growth whereas plants at 27/21ºC and 21/15ºC had low CCI 

and showed stunted growth.   

 

Since growth was more vigorous at 33/27ºC relative to the other temperature regimes, 

proline accumulation was only evaluated in the 33/27ºC environment. As such, differences 

in proline accumulation reported in the current study can only be related to water stress 

imposed at different growth stages rather than temperature. Terminal stress and stress 

imposed at flowering stage (ISF) resulted in higher levels of proline for both cowpea 
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varieties. Notable differences between cowpea varieties were observed when water stress 

was imposed at flowering stage (ISF); Brown birch accumulated more proline than White 

birch (Figure 3.8). This observation suggests a possible stress tolerance mechanism for 

Brown birch. Chickpea varieties were also reported to accumulate proline in response to 

water stress imposed during vegetative stage and anthesis (Mafakheri et al., 2010). 

Mafakheri et al. (2010) also reported that proline accumulation was higher when stress was 

imposed at flowering than at vegetative growth in chickpea.  

 

In this study, there was no yield in the 27/21ºC and 21/15ºC environments. Plants in these 

environments showed stunted growth and therefore failed to form yield. Hence, the yield 

components presented in this study were obtained from the 33/27ºC environment. Total 

biomass for both varieties was significantly lower under water stress relative to no stress. It 

was also reported with other cowpea varieties that water stress also reduced dry mass 

production (Ahmed et al., 2010). Imposing water stress at different stages of growth 

resulted in reduction of most yield components. Imposing water stress at different growth 

stages (SIV and ISF) and terminal stress reduced pod number, pod mass and consequently 

seed mass per plant in relation to the NS water regime. In cowpea, harvest index is 

determined by the number of pods per plant, seed number per pod and the extent to which 

grains are filled (Ahmed et al., 2010). Supporting evidences were also reported by many 

other researchers (Turk and Hall, 1980; Ziska and Hall, 1983).  

 

Response of cowpea varieties to water stress imposed during vegetative (ISV) and 

flowering stage (ISF) showed that, the plants favoured assimilate translocation towards 

yield formation to maintain or increase yield while compromising biomass accumulation. 

Reduction in harvest index in response to ISV when compared with ISF imply that farmers 

using deficit irrigation can briefly impose water stress at flowering stage without affecting 

the target yield. Water stress during vegetative growth also reduced yield components in 

bambara and this was attributed to reduced plant growth in response to water stress 

(Vurayai et al., 2011). It has been reported that the reproductive stage is the most sensitive 

stage in cowpea (Ahmed et al., 2010). However, this cannot be generalised, there are 

genotypic differences with respect to responses of cowpea varieties towards water stress 

imposed at different growth stages. This is because varieties used for the present study 

showed more sensitivity towards ISV than ISF. Therefore it cannot be assumed that 
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cowpea in general is mostly sensitive to water stress imposed during reproductive stage. 

Cowpea varieties used for this study showed an interesting response towards terminal 

stress (TS); whereby they strived in order to reproduce. White birch managed to obtain a 

harvest index of 43.3% under TS and this suggests that White birch grows best under water 

limiting environments.  

 

3.5 Conclusions  

High temperatures improved cowpea growth and productivity. It can be concluded that 

cowpea grows best under high temperatures. In the context of this study, 33/27ºC was 

found to be the optimum temperature environment for cowpea growth and productivity. 

Imposing water stress at vegetative growth stage reduced growth and productivity of 

cowpea. Water stress imposed during flowering stage had a positive effect on growth 

parameters and yield of cowpea. Terminal stress reduced growth parameters, however, the 

plants managed to produce reasonable yield. Based on these results it can be concluded 

that the vegetative growth stage is the most sensitive stage to water stress. Farmers 

growing cowpea in water scarce areas could save irrigation water by deficit irrigation, 

since water stress can be imposed briefly during the flowering stage and still obtain 

reasonable economic yield. However, it must be stressed that this hypothesis requires 

further data to confirm. White birch is well adapted to water stress and it is able to produce 

satisfactory harvest index compared with Brown birch. Based on the results obtained from 

this study it can be concluded that temperature is more influential to growth, development 

and productivity compared to water stress when temperature conditions are low. Whereas 

under high temperatures; water stress is more influential to plant growth and productivity.  
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CHAPTER 4 

EFFECT OF WATER STRESS AND DEFOLIATION ON GROWTH, 

DEVELOPMENT AND YIELD OF COWPEA VARIETIES 

4.1 Introduction 

Cowpea [Vigna unguiculata (L.) Walp] is an important legume known for its uses as a 

grain and fodder crop (Singh et al., 2003). It is cultivated worldwide in tropical and 

subtropical regions (Ogunkamni et al., 2006). Cowpea has a potential to contribute 

significantly towards food security. It is also a potential cash crop and animal feed in rural 

areas of Africa (Inaizumi et al., 1999). Since the crop is grown mainly by small scale 

farmers, it could provide dietary support as a relatively cheap protein source for rural 

households (Sebetha et al., 2010); it is also a rich source of vitamins and minerals 

(Bressani, 1985). The crop can be consumed in several ways - for its grain (22 - 23% 

protein content) or as a leafy vegetable during vegetative growth. Cowpea is reported to be 

a drought tolerant, and hot weather crop due to its adaptation to semi-arid regions where 

other food legume crops do not perform well (Singh et al., 2003). Although both cowpea 

leaves and grain contain significant amounts of nutrients, the crop still remains neglected 

in terms of research and crop improvement (Barrett, 1990; Schippers, 2002). As such, 

many cowpea varieties are still damaged by drought, especially during reproductive 

development. 

 

Water scarcity is the single most critical threat to crop production in the arid regions of 

sub-Saharan Africa (Chaves and Oliveira, 2002). Sufficient water supply is required in the 

root zone to facilitate processes of germination, transpiration, nutrient absorption, root 

growth, organic matter decomposition and nutrient mineralisation (Rashidi and Seyfi, 

2007). All these processes are required to sustain crop growth (Fitter, 1981). Water stress 

affects all aspects of plant growth (Rahman et al., 2004) from emergence (Harris et al., 

2002; Mabhaudhi, 2009), plant growth (Manivannan et al., 2007), phenology (Blum, 2005) 

leading up to yield (Anjum et al., 2011). Plants exposed to water stress undergo 

physiological and morphological changes in response to limited water availability; 

physiological changes include decreased photosynthesis and respiration (Hall et al., 1990).  
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Limitations to photosynthesis have primarily been attributed to stomatal closure (Chaves, 

1991). Stomatal closure is the plant’s primary response to water stress and results in 

decreased CO2 assimilation and availability (Anjum et al., 2011). Consequently, there is a 

decline in the rate of photosynthesis due to low intracellular CO2 while favouring 

photorespiration (Anjum et al., 2011). A series of field experiments conducted on field 

crops such as maize (Tardieu et al., 1991), grapevine (Correira et al., 1995; Stoll et al., 

2000) and clover (Socias et al., 1997) all confirmed that, under water stress, stomatal 

closure was the major limitation to photosynthesis. In addition, metabolic impairment of 

photosynthesis also occurs when photosynthetic pigments such as chlorophylls a and b and 

carotenoids are altered under conditions of limited water availability. These pigments are 

very important for light harvesting and production of reducing powers; however, they are 

sensitive to soil dehydration (Farooq et al., 2009). There was an increase in chlorophyll b 

content while chlorophyll a content remained unaffected hence the Chl a: b ratio was 

significantly reduced under water stress (Estill et al., 1991; Ashraf et al., 1994). Total 

chlorophyll content declined in a number of sunflower varieties under water stress. Loss of 

chlorophyll is a drought avoidance mechanism also associated with energy dissipation 

(Manivannan et al., 2007). 

 

Drought stress negatively affects growth parameters such as leaf number and size, stem 

extension, plant height and root proliferation (Anjum et al., 2011). Mabhaudhi and Modi, 

(2010) reported that water stress reduced plant height and leaf number of maize landraces 

and hybrid varieties, while Mbatha and Modi (2010) reported similar response in wild 

mustard landraces. Kirnak et al. (2001) had earlier found that water stress reduced plant 

height, stem diameter, leaf expansion rate and dry matter production in egg plant (Solanum 

melongena L.). A similar pattern with leaf number and area were reported in several crops, 

including soybean (Zhang et al., 2004), cowpea (Manivanna et al., 2007), wheat and maize 

(Sacks et al., 2007). Furthermore, water stress imposed during vegetative growth hinders 

the accumulation of biomass required for reproductive growth and yield (Kamara et al., 

2003).    

 

Reduction of yield components and yield under water stress conditions is attributed to 

stomatal closure (Chaves, 1991; Conic, 2000; Flexas et al., 2004). Long periods of drought 

reduce plant growth and affect phenological development, leading to reduced flower 
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production and grain filling, translating to smaller and fewer grains. Drought stress disturbs 

the normal assimilate partitioning and activities of sucrose and starch synthesis enzymes 

hence reduced grain filling (Anjum et al., 2011). Yield components of cantaloupe 

(Cucumis melo) such as number of fruit per plant, fruit mass and fruit thickness were 

significantly reduced by drought stress (Rashidi and Seyfi, 2007). Grain number and size 

were reduced under pre-anthesis drought stress treatments in wheat (Edward and Write, 

2008). Specht et al. (2001) also reported a reduction in pod formation and consequently 

reduced seeds per unit area in soybean. Drought stress occurring at flowering caused 

bareness in pear millet [Pennisetum glausam (L.)] and the major cause of this was the 

reduction in assimilate flux to the developing grain (Yadav et al., 2004). 

 

In many parts of Africa, it is a common practice to remove young cowpea leaves for use as 

a vegetable (Barret et al., 1997). Previous research on cowpea has revealed that cowpea 

leaves contain carbohydrates and protein content comparable to that in cowpea grain 

(Bubenheim et al., 1990). The use of cowpeas as a leafy vegetable may provide nutritional 

and harvest versatility that is not available with other vegetable crops like cabbage and 

lettuce (Bubenheim et al., 1990). However, sequential leaf harvesting may have a negative 

impact on grain yield if the crop is grown for both purposes. It has been reported that grain 

yield is reduced by leaf harvesting (Bittenbender, 1992). Several studies have been 

conducted on cowpea to improve the methods of sequential leaf harvesting without 

imposing a significant damage on grain yield. These include suitable plant growth stage for 

leaf harvesting (Matikiti et al., 2009; Ibrahim et al., 2010) and intensity of harvesting 

(Nielsen et al., 1997; Ibrahim et al., 2010).  

 

While the effect of leaf harvesting on grain yield of cowpea has been studied, few studies 

have evaluated the combined effect of water stress and leaf harvesting on grain yield of 

cowpea. Since cowpea is known to be drought tolerant, these two factors: sequential 

harvesting and drought stress need to be well understood so as to maximise their combined 

effect on total grain yield. Such information would be useful in advising farmers who grow 

cowpea; such that they understand the potential of the crop to produce both green leafy 

vegetables and grain yield because most of them cultivate the crop in marginal areas. 

Therefore, the objective of this study was to evaluate the effect of water stress and 

sequential leaf harvesting on plant growth and grain yield of two cowpea varieties. 
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4.2 Materials and Methods 

4.2.1 Plant material 

Two cowpea varieties differing in seed colour (Brown birch variety and White birch 

variety) were purchased from a local seed supplier, Capstone Seeds in 2011 and used for 

the experiment. The varieties were classified as annual determinant legume types. 

 

 

Figure 4.1: Cowpea seed varieties used in the study (A = White birch variety and B = 

Brown birch variety). 

 

4.2.2 Field description and experimental design 

A field trial was conducted at the University of KwaZulu-Natal’s Ukulinga Research Farm 

in Pietermaritzburg (29
o
37’S; 30

o
16’E; 775 masl). Ukulinga soils are characterised as clay 

loam. Ukulinga has a warm subtropical climate with an average annual rainfall of about 

694 mm received mainly during the summer months (mid-October to mid-February). The 

long term weather data showing growing seasons, potential evapotranspiration (PET) as 

well as rainfall distribution for Ukulinga is presented in Figure 4.2. 

 



71 

 

 

 

Figure 4.2: Ukulinga growing season, potential evapotranspiration (PET) and precipitation 

(mm/day). 

 

The experimental design was a factorial experiment (three factors) laid out in a split-plot 

design, replicated three times. Water treatment [full irrigation (IRR) vs rainfed (RF)] was 

the main factor, with cultivar (white and Brown birch variety) as sub-factors. The third 

factor, sequential harvesting, had three levels: no harvest (HO), harvested once (H1) and 

harvested twice (H2), during plant growth. All treatments were arranged in a randomised 

complete block design. Therefore, the treatment structure was (2*2*3). The total size of the 

field trial was 868 m
2
. Main plots (IRR and RF) measured 356.5 m

2
 each, with 10 m 

spacing between them to prevent water sprays from reaching RF plots. Sprinklers were 

designed to have a maximum range of 6 m radius. Sub-plot size was 13.5 m
2
 with an inter-

plot spacing of 1 m, and plant spacing of 0.45 m x 0.35 m, translating to 122 plants per 

plot. Irrigation scheduling for the IRR treatment was scheduled to meet 100% of crop 

water requirement (ETc) based on reference evapotranspiration (ETo) and a crop factor (Kc) 

(Allen et al., 1998). During the growing season (December to March) 373.3 mm of rainfall 

were received and supplementary irrigation in the IRR treatment amounted to 260 mm. 

Both trials were established under full irrigation until the seedlings were fully established, 

and then irrigation was withdrawn in the rainfed treatment. 

4.2.3 Data collection 

Emergence counts were taken weekly starting from seven (7) days after planting (DAP) 

until full emergence. Full emergence was defined as when crops had achieved at least 90% 

emergence. Thereafter, measurements of plant height and leaf number were taken weekly 

until 50% of the plants had flowered. Leaf area index (LAI), stomatal conductance (SC) 
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and chlorophyll content index (CCI) were measured weekly. Leaf area index was measured 

using the LAI2200 canopy analyser (Li-Cor, USA & Canada). Stomatal conductance and 

chlorophyll content index were measured using a steady state leaf porometer (Model SC-1, 

Decagon Devices, USA) and the CCM-200 Plus (Optisciences, USA), respectively. 

Sequential harvesting of leaves for the H1 treatment was performed at 55 DAP and the 

second harvest (H2) was done at 69 DAP. Sequential harvesting was done by carefully 

removing all the leaves from the plants whilst leaving the nodes intact to allow for new 

leaves to form. Yield components (total biomass, pod number/plant, pod mass/plant, seed 

number/pod, seed mass/plant and harvest index) were measured at harvest. Harvest index 

was calculated using the following formula: HI = (Pod mass/Total biomass)*100 

 

4.2.4 Crop management  

Prior to planting, soil samples were taken and submitted for soil textural and fertility 

analyses. Results of soil fertility analysis revealed that there was no need for fertiliser 

application to meet cowpea requirements for macro and micro-nutrients. Therefore no 

fertiliser was applied. Plants were sprayed with Kemprin (Cyphermethrin) at 20 ml/10L 

against cutworm and weeding was performed manually.  

 

4.3.5 Weather and soil water content  

Weather data for the duration of the experiment were obtained from an automatic weather 

station (AWS) located within a 50 m from the experimental site. Soil water content (SWC) 

was measured using a PR2/6 profile probe connected to an HH-2 moisture meter (Delta-T 

Devices, UK) at depths of 10, 20, 30, 40, 60 and 100 cm. Access tubes were inserted in 

each plot for the purpose of measuring soil water content. Rain gauges were installed in the 

irrigated trial for the purpose of quantifying amount of water applied at each irrigation 

event.  

 

4.2.6 Data analysis 

Data were subjected to analysis of variance (ANOVA) using GenStat (Version 14, VSN 

International, UK). Means were separated using least significant differences (LSD) at a 

probability level of 0.05. 
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4.3 Results 

4.3.1 Weather data and soil water content 

Daily minimum and maximum air temperatures and rainfall were measured during the 

course of the study from an automatic weather station (Figure 4.3). The minimum 

temperature for cowpea germination is 9
o
C and the optimum temperature for vegetative 

growth is 21-33
o
C. When the crop was planted minimum temperature was above the base 

temperature (10
o
C), therefore providing favourable conditions for successful germination 

and emergence. Maximum temperatures were within the range of optimum temperature for 

cowpea growth. The overall rainfall received during the growing season was 373.3 mm. 

 

 

Figure 4.3: Changes in daily water patterns measured during the cowpea growing period.  
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Figure 4.4: Shows the changes in soil water content over time. 

 

Water regimes showed a highly significant (P<0.001) effect on soil water content (SWC). 

First measurement of soil water content took place on the 59
th

 day after the crop was 

planted. Differences between irrigated and rainfed experiment were very high, with 

irrigated experiment had the highest SWC than rainfed experiment (Figure 4.4). An 

increase in SWC with time was observed under rainfed conditions (Figure 4.4) from 59 to 

73 DAP; thereafter, a decrease was observed as time progressed. While under irrigated 

conditions, SWC was initially very high, but it decreased gradually with time (Figure 4.4).  

 

4.3.2 Emergence 

As stated in Section 4.3.1, plants in both water regimes (Irrigated and Rainfed) were 

established with full irrigation until 90% emergence was attained. Therefore, results of 

emergence reported here only show differences between varieties and not between water 

treatments (Figure 4.5). Results showed that there were no significant differences (P>0.05) 

in the emergence of two cowpea varieties (Figure 4.5). The crop established very fast, at 7 

DAP about 80% of plants had emerged (Figure 4.5); by 21 DAP 100% emergence was 

reached. 
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Figure 4.5: Percentage emergence of cowpea varieties (Brown & White) over time. 

 

4.3.3 Plant growth 

Response of plant height to water regimes showed highly significant (P<0.001) differences 

(Figure 4.6). Plants grown under irrigated conditions performed better than those under 

rainfed conditions (Figure 4.6). Cowpea varieties also differed significantly (P<0.001) in 

response to plant growth. While results of emergence showed no differences between 

varieties, withdrawal of supplementary irrigation in the rainfed treatment resulted in 

decreased plant growth in terms of plant height compared with the fully irrigated treatment. 

It was observed that, on average, Brown birch variety performed better than White birch 

variety. This shows an interesting trend since the emergence results showed no differences 

between varieties (Figure 4.6). The interaction between water regimes and varieties was 

also significant (P<0.05) (Figure 4.6). Plant height of brown and White birch variety 

decreased by 23% and 20%, respectively, under rainfed conditions relative to irrigated 

conditions.  
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Figure 4.6: Effect of water regimes (Irrigation & Rainfed) on plant height of two cowpea 

varieties (Brown & White). 

 

There were no significant differences (P>0.05) between water regimes with respect to leaf 

number (Figure 4.7). However, highly significant (P<0.001) differences in terms of leaf 

number were observed between cowpea varieties (Figure 4.7). Although the interaction 

between water regimes and variety was not significant (P>0.05), Brown birch variety had 

fewer leaves than White birch variety under both irrigated and rainfed conditions (Figure 

4.7). Over-all, leaf number of Brown birch variety decreased by 22% whereas leaves of 

white variety increased by 21% under rainfed conditions relative to irrigated conditions. 

The performance pattern of both varieties in terms of leaf number was uniform under the 

rainfed and irrigated conditions. 

 

 

Figure 4.7: Effect of water regimes (Irrigated & Rainfed) on leaf number of two cowpea 

varieties (Brown & White). 
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Figure 4.8: Effect of sequential harvesting (HO, H1 & H2) and water regimes on the 

overall leaf number over time (DAP). 

 

Before performing sequential harvesting it was observed that leaf number increased as 

growth progressed. However, it was apparent that sequential harvesting caused highly 

significant (P<0.001) differences on the overall leaf number under both water regimes 

(Figure 4.8). There was a sharp decrease in leaf number 7 days after harvesting the leaves 

(62 DAP); however an exponential growth was observed 14 days after (83 DAP). Leaf 

growth in the HO treatment continued to increase until 62 DAP when a decrease was 

observed. Second harvest (H2) was performed at 69 DAP and the plants were allowed to 

regenerate for 14 days and leaf number increased exponentially (Figure 4.8).  
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Figure 4.9: Effect of water regimes on chlorophyll content index (CCI) of cowpea 

varieties over time (DAP). 

 

Differences between water regimes were not significant (P>0.05) (Figure 4.9) with respect 

to chlorophyll content index (CCI). However, the overall pattern showed that irrigated 

conditions had higher CCI than rainfed conditions (Figure 4.9). Highly significant 

(P<0.001) differences in CCI of white and Brown birch varieties was observed. Where the 

Brown birch variety was superior to White birch variety (Figure 4.9). It was also observed 

that time had a significant (P<0.05) effect on CCI. Chlorophyll content index increased 

with time up to a certain point (77 DAP) and then decreased (Figure 4.9). The decrease in 

CCI was observed during the reproductive phase; as such this decrease can be associated 

with plant maturity. The interaction between water regimes, variety and DAP was shown e 

not to be statistically significant (P>0.05). 
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Figure 4.10: Effect of water regimes on stomatal conductance different days after planting 

(DAP: 69, 77 and 89). 

 

Water regimes had a highly significant (P<0.001) effect on stomatal conductance (SC). 

Stomatal conductance was higher under irrigated conditions than in rainfed conditions 

(Figure 4.10). Both varieties showed highly significant differences (P<0.001) in SC; 

however, there was no clear trend with respect to their SC response to water regimes. 

Highly significant differences (P<0.001) were also observed for SC over time. These 

observations can be related to weather conditions at which SC measurements were made. 

The first record was done at 69 DAP and it coincided with a period where there was no 

rainfall received for few days. Irrigated trial showed higher SC (Figure 4.10) because of 

the supplementary water received from irrigation, whereas rainfed trial showed lower SC. 

At 77 DAP, SC slightly increased under both water regimes and this increase can be 

justified by the amount of rainfall (1.18 mm) received at 69 DAP. At 77 DAP, an average 

of 2.38 mm of rainfall was recorded; this then explains the increase in SC observed under 

rainfed conditions. The interaction between the factors (water regimes x variety x DAP) 

presented in Figure 4.10 was highly significant (P<0.001) with respect to SC. 
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Figure 4.11: Effect of water regimes on leaf area index (LAI) of cowpea varieties over 

time (DAP: 59, 66 and 73).  

 

Results of leaf area index (LAI) showed that water regimes had a significant (P<0.05) 

effect on LAI. Plants grown under irrigated conditions had higher LAI compared with 

those grown under rainfed conditions (Figure. 4.11). There were no significant differences 

(P>0.05) between varieties with respect to LAI. Under irrigated conditions, White birch 

variety had the highest LAI (6.6) followed by the Brown birch variety (5.61); whereas 

under rainfed conditions Brown birch variety had slightly higher (2.77) LAI than White 

birch variety birch variety (2.51). The leaf area index of brown and White birch varieties 

decreased by 50% and 62% respectively, under rainfed conditions relative to irrigated 

conditions. Leaf area index also varied significantly (P<0.05) over time (Figure 4.11). The 

lower LAI at 66 DAP observed under both water regimes corresponded with the time when 

leaf number decreased (Figure 4.8) due to sequential leaf harvesting (Figure 4.11).  
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4.3.4 Yield components  

 

The interaction between water regimes, variety and sequential harvesting showed no 

significant (P>0.05) differences. With the exception of total biomass and pod mass, 

sequential harvesting had no significant effect on yield components of cowpea (Table 4.1). 

Sequential harvesting only had a significant (P<0.05) effect on total biomass. The no 

harvest treatment (HO) showed the highest total biomass followed by harvested once (H1) 

and harvested twice (H2) treatments, respectively (Table 4.1). There were no significant 

differences (P>0.05) between water regimes with respect to total biomass (Table 4.1). The 

differences between cowpea varieties were highly significant (P<0.001) with respect to 

total biomass. Brown birch variety accumulated more biomass than White birch variety 

(Table 4.1).  

 

Water regimes had a highly significant (P<0.001) effect on harvest index. Harvest index 

was observed to be higher under rainfed conditions than irrigated conditions (Table 4.1). 

The differences between varieties with respect to harvest index were also highly significant 

(P<0.001). There was also a significant interaction (P<0.05) between water regimes and 

variety with respect to harvest index (Table 4.1). Under irrigated conditions, Brown birch 

variety had zero harvest index while White birch variety did not produce satisfactory yield 

but it had harvest index of 19.1% (Table 4.1). Interesting results were observed under 

rainfed conditions whereby both varieties performed better than in irrigated conditions. 

Although there was no supplementary irrigation, Brown birch variety had a harvest index 

of 7% (compared with 0% under irrigated conditions) whilst White birch variety had a 

harvest index of about 30% under rainfed conditions compared with 19.1% under irrigated 

conditions (Table 4.1).  

 

Results of pod mass showed significant (P<0.05) differences in response to water regimes 

(Table 4.1). Lower pod mass was recorded in irrigated plants than rainfed plants (Table 

4.1). Varieties also showed significant differences (P<0.05) in terms of pod mass, with 

White birch variety showing higher pod mass than Brown birch variety. Although the 

interaction between water regimes and variety was not significantly (P>0.05) different, the 

varieties showed better pod mass under rainfed than under irrigated conditions. Pod 

number per plant was significantly (P<0.05) affected by water regimes; the rainfed plants 
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continued to perform better than irrigated plants (Table 4.1). The trend of the effect of 

water regimes and varieties was similar for all yield components (Table 4.1), whereby 

rainfed plants gave better yield than irrigated plants and White birch variety performed 

better than Brown birch variety. Other yield components such as grain number per pod and 

total grain mass per plant also followed the above mentioned trend, in terms of their 

response to water regimes and varietal differences (Table 4.1). 
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Table 4. 1: Yield components of cowpea varieties (Brown & White birch variety) grown under Irrigated and Rainfed conditions at 

Ukulinga Research Farm and subjected to different levels of sequential harvesting (HO, H1 & H2). 

 

Water 

regime  

Variety Harvest Total 

biomass (g) 

HI (%) Pod  

 

mass (g) 

Pod 

no./Plant 

Grain 

no./Pod 

Total grain 

mass/Plant 

Irrigated Brown HO 61.5a 0.04a 2.17a 0.33a 3.67a 0.56a 

  H1 38.2a 0.0a 0.0a 0.00a 0.00a 0.00a 

  H2 33.8a 0.0a 0.0a 0.00a 0.00a 0.00a 

  Mean 44.5
a
 0.013

a
 0.72

a
 0.11

a
 1.22

a
 0.19

a
 

 White HO 28.0a 23.6a 6.88a 5.42a 3.67a 3.35a 

  H1 25.4a 27.8a 6.39a 5.35a 5.00a 2.07a 

  H2 19.2a 5.9a 1.09a 1.33a 6.50a 0.43a 

  Mean 24.2
b
 19.1

b
 4.79

b
 4.03

b
 5.06

b
 1.95

b
 

Rainfed Brown HO 50.9a 5.7a 6.65a 3.17a 3.00a 2.94a 

  H1 36.1a 12.4a 2.27a 3.67a 6.33a 4.30a 

  H2 37.5a 5.0a 2.70a 1.89a 1.67a 1.88a 

  Mean 41.5
a
 7.70

a
 3.87

a
 2.91

a
 3.67a 3.04

a
 

 White HO 30.6a 53.3a 17.04a 8.75a 9.54a 12.41a 

  H1 28.4a 23.8a 8.25a 4.30a 8.02a 6.15a 

  H2 23.5a 43.8a 10.07a 5.90a 8.48a 7.33a 

  Mean 27.50
b
 30.30

b
 11.79

b
 6.32

b
 8.68

b
 8.63

b
 

LSD (Water*Var)(P=0.05) 

LSD (Water*Var*Harvest)(P=0.05) 

8.26 

14.93 

10.35 

17.92 

4.494 

2.654 

2.252 

3.900 

0.853 

4.331 

2.909 

5.039 



84 

 

4.5 Discussion  

 

The objective of this study was to compare irrigated and rainfed production of cowpeas in 

relation to crop stand establishment, crop growth, crop response to water stress as indicated 

by stomatal conductance and chlorophyll content while monitoring soil water content in 

order to correlate it with growth responses. Furthermore, a secondary objective was to 

determine the interaction between water regimes and sequential leaf harvesting on harvest 

index and economic yield of cowpea varieties. Rainfed production is usually faced with 

drought stress which plays an important role in determining emergence and seedling 

development (Aboutalebian et al., 2012). Emergence is an important stage in plant growth 

and is a pre-requisite to obtaining optimal crop stand. Optimal crop stands are critical to 

yield attainment (Aboutalebian et al., 2012). Therefore, an optimum seedbed with optimal 

water availability is crucial to successful crop establishment (Mabhaudhi, 2009). In this 

study, seedbed conditions and water were made optimum. Therefore, emergence results 

were only affected by varietal differences. It was observed that the varieties performed 

similarly with respect to emergence, given that growing conditions were homogenous.  

 

Previous research (Odindo, 2007; Mabhaudhi & Modi, 2010; Mbatha & Modi, 2010; Zulu 

& Modi, 2010; Sinefu, 2011) suggested that seed colour may be associated with seed 

quality. Preliminary lab experiments (Chapter 2) to assess seed quality of the two varieties 

showed that Brown birch variety had higher vigour than White birch variety. As a result, 

Brown birch variety was expected to perform better than White birch variety under field 

conditions. The results showed no differences in performance of the two varieties with 

respect to emergence rate. Based on these observations, it can be extrapolated that; given 

optimum growing conditions cowpea varieties performed the same irrespective of 

differences in seed colour. 

 

Rainfed conditions are usually associated with water stress, mainly due to unevenness of 

rainfall distribution; as such, results obtained from this study can be related to other water 

stress studies done previously. Cowpea requires 550-775 mm and 550-850 mm of rainfall 

for seed and hay production, respectively (Smith, 2006). Therefore, rainfall received 

during this study (373.3 mm) was 32 % lower than the minimum requirement; as such the 

rainfed treatment was representative of drought. Results from the study agree with 
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previous reports (Mabhaudhi and Modi, 2010) that water stress reduced plant height. 

Rainfed conditions were found to have a negative effect on plant height of cowpea 

varieties. These results concurred with the findings of Specht et al. (2001) who reported 

similar results where stem length of soybean decreased significantly due to water deficit. In 

other plants such as potato [Solanum tuberosum L.] (Heuer and Nadler, 1995), 

Abelmoschus esculentus (Sonkar et al., 2007), soybean [Glycine max] (Zhang et al., 2004) 

and parsley [Petroselinum hortense] (Petropoulos et al., 2008), stem length was also 

significantly reduced by water stress. Reduction in plant height is a stress avoidance 

mechanism associated with reduced water use (Blum, 2005). 

 

Leaf number has been reported to also decrease in response to water stress (Mabhaudhi and 

Modi, 2010; Mbatha and Modi, 2010). Contrary to this expectation, results of the study 

showed that leaf number was not negatively affected by reduced water availability under 

rainfed conditions. However, despite leaf number being unaffected, a trend was observed 

for leaf area index (LAI) showing lower LAI under rainfed conditions compared to 

irrigated conditions. This trend could mean that while cowpea varieties were able to 

produce a similar number of leaves under both water regimes, the ability of these leaves to 

expand was affected by limited water availability under rainfed conditions. Water stress 

has been reported to affect cell division and expansion (Nonami, 1998). Similar 

observations were reported by Hossain et al. (2010) on sunflower with respect to LAI, 

plants which received full irrigation produced significantly higher LAI than plants 

subjected to drought stress. 

 

Cowpea varieties differed significantly (P<0.05) with respect to leaf number and plant 

height with White birch variety being superior to Brown birch variety. These differences 

can be related to their growth habits, the two varieties possessed different growth habits; 

White birch variety being a runner type and Brown birch variety being a bushy and upright 

type. Consequently, White birch variety was shorter but with more leaves since it grew 

sideways. Whereas Brown birch variety, on the other hand, was taller but with fewer 

leaves relative to White birch variety. However, despite differences in growth habits, both 

varieties were able to attain full canopy cover, as a result there were no differences in leaf 

area index between them.  
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Although the effect of water regimes on chlorophyll content index was not statistically 

significant, the over-all pattern showed that chlorophyll content index was lower for  

rainfed plants compared with irrigated plants. This trend was in line with reports in the 

literature of decreasing chlorophyll content in response to water stress in crops such as 

cotton (Massacci et al., 2008), sunflower (Kiani et al., 2008) and Vaccinium myrtillus 

(Tahkokorpi et al., 2007). Cowpea varieties showed highly significant differences in 

chlorophyll content index; Brown birch variety had higher chlorophyll content index than 

White birch variety. Chlorophyll content index increased with time, reaching a maximum 

of 78 and 65 at 77 DAP for Brown birch variety under irrigated and rainfed conditions, 

respectively; a similar trend was observed for White birch variety. However, at 89 DAP 

chlorophyll content index decreased for both varieties and this decrease can be associated 

with plant growth stage. From such results it can be hypothesised that chlorophyll content 

increased during vegetative growth, reaching a peak before decreasing as the crop started 

to mature. Therefore, chlorophyll content index may be a useful indicator for crop maturity 

in cowpea. 

 

Results of stomatal conductance (SC) were consistent with reports in the literature. 

Irrigated conditions had higher SC than rainfed conditions; these observations suggest 

stomatal regulation as a drought tolerance mechanism in cowpeas. Reduction of SC under 

rainfed conditions implies that plants were able to close their stomata in order to minimise 

water losses. Hamidou et al. (2007) reported that five cowpea varieties possessed a drought 

avoidance mechanism which involved decreasing stomatal conductance in response to 

water deficit conditions. Genotypic differences with respect to SC were observed in this 

study and since the varieties differ in seed colour, these differences can be associated with 

seed colour. However, despite varietal differences, the overall pattern showed that stomata 

closed in response to water stress which is consistent with previous studies. Cowpea is 

known to have good stomatal regulation (Hall et al., 1997; Scotti et al., 1999; Cruz de 

Carvalho, 2000; Sarr et al.; 2001; Ogbonnaya et al., 2003).  

 

Stomatal conductance was found to vary significantly over time; these variations can be 

explained with the aid of the weather data. The first measurement of SC was done at 69 

DAP which coincided with a period where there had been no rainfall received during the 

past few days. As such, SC was low under rainfed conditions meaning that stomata were 
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closed in order to avoid water loss. Stomatal conductance was high under irrigated 

conditions owing to supplementary irrigation and high soil water content. At 77 DAP, SC 

slightly increased in both water regimes; this increase can be justified by rainfall (1.18 

mm) received at 69 DAP. At 77 DAP, an average of 2.38 mm of rainfall was recorded; this 

then explains the increase in SC observed in rainfed cowpeas. 

 

One of the objectives of this experiment was to determine the interactive effect of water 

regimes and sequential leaf harvesting on growth and yield of cowpea varieties. Results of 

the study showed that there was no interaction between these factors with respect to leaf 

number and yield. However, leaf harvesting was found to have a highly significant 

(P<0.001) effect on leaf number. As expected, sequential harvesting of leaves resulted in 

lower leaf number relative to crops where there was no leaf harvesting. The capacity of the 

crop to recover from leaf harvesting suggested that the two varieties used in this study may 

be suitable for cultivation as leafy vegetables although sequential leaf harvesting was 

found to decrease pod yield. These observations were expected since leaf harvesting is a 

form of plant manipulation which alters the source-sink relationship (Shibles et al., 1981). 

Within the context of this study, sequential harvesting of leaves slowed down and reduced 

vegetative growth which accounts for biomass accumulation and assimilate reserves. As a 

result, photosynthates were used to replenish the lost vegetation as opposed to pod 

formation and filling; thus, the canopy was a stronger sink than the pods. It was also 

reported that leaf removal alters hormone balance, starch, sugar, protein and chlorophyll 

content of the source leaves as well as stomatal resistance and senescence rate (Mondel et 

al., 1978; Selter et al., 1980). 
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4.6 Conclusions 

The varieties used in this study are mainly used for pastures and fodder; however, we were 

seeking to explore the possibility of using the varieties as dual purpose crops. The results 

obtained from the study showed that Brown birch variety cannot be used as a dual purpose 

crop, especially under irrigated conditions. This variety favoured vegetative growth more 

than pod formation. White birch variety, on the other hand, can be used as a dual purpose 

crop since the crop was able to form pods despite having its leaves harvested. White birch 

variety also performed well under rainfed conditions. These were interesting observations 

since it was expected that plants would perform and yield better under irrigated than 

rainfed conditions. Contrary to these expectations, Brown birch variety produced 

satisfactory yield under rainfed with White birch variety yielding better under rainfed 

compared with irrigated conditions. It can be concluded therefore, that rainfed conditions 

are favourable for cowpea growth and yield formation. 
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CHAPTER 5 

GENERAL DISCUSSION AND CONCLUSIONS 

 

The findings of the present study revealed that cowpea is a potential crop that can be used 

to deal with and possibly overcome the challenges faced by farmers in marginal areas of 

agricultural production. These challenges include water scarcity, food insecurity and 

malnutrition. Cowpea shows great potential since the crop is drought tolerant, nutritious 

and has multi-purpose uses. Despite such potential, the crop still remains a neglected and 

underutilised crop. The general aim of the current study was to evaluate two cowpea 

(Brown birch and White birch) varieties for their ability to withstand drought stress. The 

two cultivars were also evaluated within the context of their alternative use as leafy 

vegetables. Water stress and high temperature stress have always been studied as separate 

entities, although they often occur simultaneously under field conditions, especially in 

areas where cowpea is mostly cultivated (Machado and Paulsen, 2001). As a result, this 

study also undertook to evaluate crop growth and yield responses of cowpea to water stress 

under different temperature regimes. 

 

The overall objectives of the study were:  

� to compare the quality of cowpea varieties that differed in terms of their seed coat 

colour, 

� to evaluate the response of the crop to water stresses imposed at different stages of 

growth and high temperatures; and therefore find the interactive effect of 

temperature and water stress on growth productivity of the crop, and 

� to compare the dry land and irrigated production of cowpea and further determine 

the effect of sequential harvesting on plant growth and grain yield of cowpeas. 

 

Aspects of seed quality consist of basic information required when studying aspects of any 

crop. This is because growth parameters such as emergence and good stand establishment 

depend on the quality of a seed lot. Therefore, it was imperative for the current study to 

determine the quality of cowpea seeds; this was done on a comparative basis with respect 

to seed coat colour (Chapter 2). The two cowpea varieties (Brown and White birch) were 

not significantly different with respect to germination capacity. Although not statistically 
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significant, observations of mean germination time (MGT) and germination velocity index 

(GVI) showed that Brown birch had higher seed vigour compared with White birch. White 

birch had a high electrolyte conductivity compared with Brown birch. These results 

suggested that light coloured seeds of cowpea had lower seed quality compared with dark 

coloured seeds.  

 

A water stress study is incomplete without temperature evaluation. This is because water 

stress is often associated with high temperatures. Therefore, the effect of water stress 

imposed at different growth stages and varying growth temperatures was evaluated in 

Chapter 3. The objective of this study was to determine the combined effects of high 

temperatures and water stress on growth and development of cowpea. It has been reported 

that the vegetative stage is the most sensitive to water stress (Turk et al, 1980; Ahmed and 

Suliman, 2010). However, Watanabe et al. (1997) reported that some cowpea varieties 

were not able to survive drought imposed at the vegetative stage. In the current study, 

imposing water stress during vegetative growth stage reduced growth and productivity of 

cowpea. Interestingly, water stress imposed during the flowering stage had a positive effect 

on growth and yield of cowpea. Terminal stress was found to reduce growth and yield of 

cowpeas; however, the plants were still able to produce reasonable yields. Results of this 

study revealed that cowpeas perform well in terms of growth and productivity under high 

temperatures (33/27ºC). Ehlers and Hall (1997) also reported that cowpea is adapted to 

high temperatures. Results obtained from this study suggested that temperature was more 

limiting to growth, development and productivity compared with water stress when 

temperatures are low. Whereas under high temperatures; water stress was more limiting to 

plant growth and productivity. The latter scenario is more typical of the conditions that 

prevail in most marginal areas of agricultural production. As such, the fact that cowpea 

performed well under high temperatures and still produced reasonable yield under water 

stress suggests that it may be a suitable crop for production in these areas. 

 

Cowpea possesses two major attributes that make it a potentially suitable crop to fight 

against poverty and food insecurity. The crop is drought tolerant and has nutritious leaf 

material and grain. There have been several studies investigating drought tolerance in 

cowpea (Dadson et al., 2005; Lisokwe and Lawn, 2008). There have also been studies 

investigating uses of cowpea as a leafy vegetable (Inaizumi et al., 1999; Ibrahim et al., 
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2010; Matikiti et al., 2009). However, research has seldom investigated the effect of water 

stress and sequential leaf harvesting on plant growth and grain yield, as such a study of this 

nature was undertaken (Chapter 4). Results obtained from Chapter 2 suggested that Brown 

birch had higher vigour than White birch. As a result, it was expected that Brown birch 

would perform better than White birch under field conditions. However, results of the field 

study were contrary to expectation; White birch was observed to perform better with 

respect to yield under both water regimes (Table 4.1). Therefore, based on these 

observations, seed quality results alone cannot be used to extrapolate yield potential of the 

crop.  

 

Results for growth parameters (plant height and leaf number) obtained from the pot trial 

(Chapter 3) verified results obtained from the field trial (Chapter 4) with respect to 

differences in growth pattern of cowpea varieties. Brown birch was observed to be taller 

and had few leaves and White was shorter with many leaves. Therefore, it can be 

concluded that differences in varieties were due to differences in growth pattern.  

 

One of the aims of this study was to explore the possibility of using cowpea varieties 

(Brown and White birch) as dual purpose crops. The results showed that Brown birch is 

not suitable for use as a leafy vegetable and for grain, especially under irrigated conditions. 

Brown birch favours vegetative growth more than pod formation, and this becomes 

prominent when water is not limiting. On the other hand, White birch showed a potential 

for use as a dual purpose crop. Cowpea grows well under water limited conditions because 

even Brown birch produced satisfactory yield under rainfed conditions, with White birch 

yielding better under rainfed compared with irrigated conditions. 

 

High temperatures improved cowpea growth and productivity. For the varieties used in the 

current study, the vegetative growth stage was found to be the most sensitive to water 

stress. The interaction between temperature and water stress showed that temperature is 

more influential to growth, development and productivity compared to water stress when 

temperature conditions are low. However, under high temperatures water stress is more 

influential on plant growth and productivity. Brown birch variety cannot be used as a dual 

purpose crop, especially under irrigated conditions. White birch has a potential for use as 
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both leafy vegetable and grain crop. Rainfed conditions are favourable for cowpea growth 

and yield formation. 
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Recommendations  

• Brown birch variety was found to be better than white birch with respect to vigour. 

However, more research is required to determine if superior seed quality (viability 

and vigour) of brown birch would translate to yield advantages under field 

conditions.  

• Furthermore, future research should also evaluate the physiological basis for the 

association between seed coat colour and seed quality. 

• More research is required to evaluate the physiological basis of cowpea response to 

water and temperature stress interaction. 

• 33/27ºC tends to become an optimum temperature for cowpea growth and 

productivity. Further research to evaluate response of cowpea to temperatures 

higher than 33/27ºC is recommended. 

• Data obtained from this study may be very useful to people who are interested in 

cultivating cowpea. 
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APPENDICES  

Appendix 2.1: List of ANOVAs for seed quality experiments (Chapter 2) 

  
Variate: Germ% 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 3  258.04  86.01  1.39   
Rep.*Units* stratum 
Variety 1  0.45  0.45  0.01  0.933 
Day 6  24552.90  4092.15  66.03 <.001 
Variety.Day 6  94.87  15.81  0.26  0.954 
Residual 39  2416.96  61.97     
 Total 55  27323.21       
  
 
Variate: Dry_mass (g) 
Source of variation                     d.f.          s.s.        m.s. v.r. F pr. 
Rep stratum 3  0.04554  0.01518  0.72   
Rep._units_ stratum 
Variety 1  0.40240  0.40240  18.97 <.001 
Residual 35  0.74241  0.02121     
Total 39  1.19036       
  
 
Variate: Fresh_mass (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 3  0.23779  0.07926  2.30   
  
Rep._units_ stratum 
Variety 1  0.01222  0.01222  0.35  0.556 
Residual 35  1.20837  0.03452     
Total 39  1.45837       
  
 
Variate: Root:Shoot ratio 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 3  0.7543  0.2514  2.08   
Rep._units_ stratum 
Variety 1  0.0363  0.0363  0.30  0.588 
Residual 35  4.2389  0.1211     
Total 39  5.0295       
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Variate: Root_length (mm) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 3  43.086  14.362  3.26   
  
Rep._units_ stratum 
Variety 1  140.625  140.625  31.93 <.001 
Residual 35  154.149  4.404     
 Total 39  337.860       
  
    
 
Variate: Shoot_length (mm) 
Source of variation                    d.f.           s.s.        m.s. v.r. F pr. 
Rep stratum 3  1.9827  0.6609  0.91   
Rep._units_ stratum 
Variety 1  41.0063  41.0063  56.73 <.001 
Residual 35  25.3007  0.7229     
Total 39  68.2898       
  
  
 
 
Variate: EC_(uS_g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Variety 1  2872514.  2872514.  8.25  0.005 
Residual 98  34142204.  348390.     
Total 99  37014719.       
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Appendix 3.1: List of ANOVAs for the controlled environment trial (Chapter 3) 

Variate: SWC 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    92.55  46.27  1.67   
  
Rep.*Units* stratum 
Temp 2    90062.48  45031.24  1623.07 <.001 
Treatment 3    4608.62  1536.21  55.37 <.001 
Variety 1    130.09  130.09  4.69  0.031 
DAS 10    6868.73  686.87  24.76 <.001 
Temp.Treatment 6    3849.25  641.54  23.12 <.001 
Temp.Variety 2    148.72  74.36  2.68  0.070 
Treatment.Variety 3    387.67  129.22  4.66  0.003 
Temp.DAS 20    8170.05  408.50  14.72 <.001 
Treatment.DAS 30    2236.93  74.56  2.69 <.001 
Variety.DAS 10    152.11  15.21  0.55  0.856 
Temp.Treatment.Variety 6    231.72  38.62  1.39  0.216 
Temp.Treatment.DAS 60    4668.25  77.80  2.80 <.001 
Temp.Variety.DAS 20    420.30  21.01  0.76  0.765 
Treatment.Variety.DAS 30    517.50  17.25  0.62  0.944 
Temp.Treatment.Variety.DAS  
 60    1555.41  25.92  0.93  0.617 
Residual 483 (43)  13400.55  27.74     
  
Total                                        748 (43)     134088.08  

 
 

Variate: Emegernce 
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  3134.9  1567.5  9.29   
Rep.Temp stratum 
Temp 2  282182.5  141091.3  836.59 <.001 
Residual 4  674.6  168.7  0.07   
Rep.Temp.Vareity stratum 
Vareity 1  11428.6  11428.6  4.72  0.073 
Temp.Vareity 2  119.0  59.5  0.02  0.976 
Residual 6  14523.8  2420.6  3.13   
Rep.Temp.Vareity.*Units* stratum 
DAP 6  397182.5  66197.1  85.52 <.001 
Temp.DAP 12  118650.8  9887.6  12.77 <.001 
Vareity.DAP 6  4404.8  734.1  0.95  0.460 
Temp.Vareity.DAP 12  25714.3  2142.9  2.77  0.001 
Residual 450  348333.3  774.1     
  
Total 503  1206349.2       
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Variate: Leaf Area 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  143399.  71700.  5.83   
Rep.Temp stratum 
Temp 2  643474.  321737.  26.15  0.005 
Residual 4  49215.  12304.  0.65   
Rep.Temp.Variety stratum 
Variety 1  763760.  763760.  40.17 <.001 
Temp.Variety 2  52507.  26253.  1.38  0.321 
Residual 6  114080.  19013.  0.40   
Rep.Temp.Variety.*Units* stratum    54  2573933.  47665 
 .     
Total 71  4340368. 

 
Variate: Plant_height 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  188.26  94.13  0.36   
  
Rep.Temp stratum 
Temp 2  70701.44  35350.72  135.14 <.001 
Residual 4  1046.37  261.59  1.80   
 Rep.Temp.Treatment stratum 
Treatment 3  4882.60  1627.53  11.22 <.001 
Temp.Treatment 6  9038.92  1506.49  10.38 <.001 
Residual 18  2611.51  145.08  1.90   
 Rep.Temp.Treatment.*Units* stratum 
Variety 1  2029.62  2029.62  26.60 <.001 
DAS 6  19712.45  3285.41  43.05 <.001 
Temp.Variety 2  616.79  308.39  4.04  0.019 
Treatment.Variety 3  1386.50  462.17  6.06 <.001 
Temp.DAS 12  6037.30  503.11  6.59 <.001 
Treatment.DAS 18  2901.07  161.17  2.11  0.006 
Variety.DAS 6  295.17  49.20  0.64  0.694 
Temp.Treatment.Variety 6  1349.98  225.00  2.95  0.008 
Temp.Treatment.DAS 36  5793.42  160.93  2.11 <.001 
Temp.Variety.DAS 12  211.30  17.61  0.23  0.997 
Treatment.Variety.DAS 18  1008.78  56.04  0.73  0.775 
Temp.Treatment.Variety.DAS 36  1429.04  39.70  0.52  0.990 
Residual 312  23809.19  76.31     
  
Total                                        503     155049.72 
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VARIATE: LEAF_NUMBER 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  0.1706  0.0853  0.02   
  
Rep.Temp stratum 
Temp 2  2043.1111  1021.5556  219.23 <.001 
Residual 4  18.6389  4.6597  0.71   
Rep.Temp.Treatment stratum 
Treatment 3  48.9266  16.3089  2.47  0.095 
Temp.Treatment 6  163.4603  27.2434  4.13  0.009 
Residual 18  118.8095  6.6005  8.38   
 Rep.Temp.Treatment.*Units* stratum 
Variety 1  77.0020  77.0020  97.77 <.001 
DAS 6  684.5476  114.0913  144.87 <.001 
Temp.Variety 2  27.4921  13.7460  17.45 <.001 
Treatment.Variety 3  41.8631  13.9544  17.72 <.001 
Temp.DAS 12  84.0000  7.0000  8.89 <.001 
Treatment.DAS 18  32.3095  1.7950  2.28  0.002 
Variety.DAS 6  15.1508  2.5251  3.21  0.005 
Temp.Treatment.Variety 6  18.0952  3.0159  3.83  0.001 
Temp.Treatment.DAS 36  66.7619  1.8545  2.35 <.001 
Temp.Variety.DAS 12  4.0635  0.3386  0.43  0.951 
Treatment.Variety.DAS 18  17.2619  0.9590  1.22  0.245 
Temp.Treatment.Variety.DAS 36  17.2381  0.4788  0.61  0.964 
Residual 312  245.7143  0.7875     
  
Total 503    3724.6171       
 
 
 
VARIATE: CHLOROPHYLL CONTENT INDEX 

  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
  
Rep stratum 2    57.87  28.93  0.64   
  
Rep.Temp stratum 
Temp 2    19920.75  9960.38  219.75 <.001 
Residual 4    181.30  45.33  0.86   
 Rep.Temp.Treatment stratum 
Treatment 3    257.18  85.73  1.64  0.216 
Temp.Treatment 6    710.95  118.49  2.26  0.084 
Residual 18    943.41  52.41  1.21   
 Rep.Temp.Treatment.*Units* stratum 
Variety 1    508.87  508.87  11.74 <.001 
Temp.Variety 2    263.40  131.70  3.04  0.049 
Treatment.Variety 3    118.05  39.35  0.91  0.437 
Temp.Treatment.Variety 6    386.84  64.47  1.49  0.182 
Residual 303 (9)  13128.04  43.33     
 Total 350 (9)  35880.32       
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Variate: %4m_gDW 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  1.185E-08  5.927E-09  2.39   
  
Rep.*Units* stratum 
Water_treatment 3  1.414E-05  4.715E-06  1897.84 <.001 
Variety 1  8.624E-07  8.624E-07  347.16 <.001 
Water_treatment.Variety 3  2.705E-06  9.018E-07  363.00 <.001 
Residual 14  3.478E-08  2.484E-09     
Total 23  1.776E-05       
  
 
 
VARIATE: TOTAL_BIOMASS_(g) 

  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  46.12  23.06  1.73   
 Rep.*Units* stratum 
Water_treatments 3  531.50  177.17  13.31 <.001 
Variety 1  44.34  44.34  3.33  0.089 
Water_treatments.Variety 3  78.46  26.15  1.97  0.166 
Residual 14  186.29  13.31     
Total 23  886.71       
    
  
VARIATE: SEED # per POD 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  6.050  3.025  0.54   
Rep.*Units* stratum 
Water_treatments 3  37.099  12.366  2.20  0.134 
Variety 1  17.300  17.300  3.07  0.101 
Water_treatments.Variety 3  1.792  0.597  0.11  0.955 
Residual 14  78.766  5.626     
  
Total 23  141.007       
  
 
 
VARIATE: SEED_MASS/PLANT 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  1.570  0.785  0.23   
Rep.*Units* stratum 
Water_treatments 3  67.917  22.639  6.77  0.005 
Variety 1  0.341  0.341  0.10  0.754 
Water_treatments.Variety 3  3.659  1.220  0.37  0.779 
Residual 14  46.783  3.342     
Total 23  120.270       
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VARIATE: POD # /PLANT 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  1.083  0.542  0.18   
Rep.*Units* stratum 
Water_treatments 3  35.167  11.722  3.95  0.031 
Variety 1  24.000  24.000  8.08  0.013 
Water_treatments.Variety 3  2.000  0.667  0.22  0.878 
Residual 14  41.583  2.970     
Total 23  103.833       
  
 
 
VARIATE: POD_MASS_ 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  1.351  0.675  0.14   
Rep.*Units* stratum 
Water_treatments 3  107.961  35.987  7.60  0.003 
Variety 1  0.150  0.150  0.03  0.861 
Water_treatments.Variety 3  6.208  2.069  0.44  0.730 
Residual 14  66.308  4.736     
Total 23  181.978       
  
 
VARIATE: HI_% 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
  
Rep stratum 2  116.6  58.3  0.51   
Rep.*Units* stratum 
Water_treatments 3  1263.7  421.2  3.68  0.038 
Variety 1  340.9  340.9  2.98  0.106 
Water_treatments.Variety 3  709.0  236.3  2.06  0.151 
Residual 14  1603.2  114.5     
Total 23  4033.4       
  
  
VARIATE: POD_LENGTH_CM 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  7.392  3.696  1.59   
Rep.*Units* stratum 
Water_treatments 3  65.542  21.847  9.42  0.001 
Variety 1  40.289  40.289  17.36 <.001 
Water_treatments.Variety 3  0.109  0.036  0.02  0.997 
Residual 14  32.483  2.320     
Total 23  145.815       
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Appendix 4.1: List of ANOVAs for the field trial (Chapter 4) 

 
VARIATE: PLANT_HEIGHT_(CM) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  268.839  134.420  14.19   
 Rep.*Units* stratum 
Treatment 1  1616.822  1616.822  170.71 <.001 
Variety 5  754.801  150.960  15.94 <.001 
DAP 4  16645.278  4161.319  439.36 <.001 
Treatment.Variety 5  113.256  22.651  2.39  0.042 
Treatment.DAP 4  599.903  149.976  15.83 <.001 
Variety.DAP 20  229.088  11.454  1.21  0.259 
Treatment.Variety.DAP 20  80.093  4.005  0.42  0.985 
Residual 118  1117.627  9.471     
Total 179  21425.707       
  

 

 

VARIATE: LEAF_NUMBER 
  
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr. 
Rep stratum 2    74.835  37.418  6.67   
Rep.*Units* stratum 
Treatment 1    0.005  0.005  0.00  0.977 
Variety 1    600.292  600.292  106.95 <.001 
Harvest 2    213.841  106.920  19.05 <.001 
DAP 6    10349.984  1724.997  307.33 <.001 
Treatment.Variety 1    8.881  8.881  1.58  0.211 
Treatment.Harvest 2    5.017  2.508  0.45  0.640 
Variety.Harvest 2    12.779  6.389  1.14  0.323 
Treatment.DAP 6    158.919  26.486  4.72 <.001 
Variety.DAP 6    352.539  58.757  10.47 <.001 
Harvest.DAP 9 (3)  712.163  79.129  14.10 <.001 
Treatment.Variety.Harvest 2    2.948  1.474  0.26  0.769 
Treatment.Variety.DAP 6    49.095  8.182  1.46  0.197 
Treatment.Harvest.DAP 9 (3)  18.014  2.002  0.36  0.953 
Variety.Harvest.DAP 9 (3)  11.378  1.264  0.23  0.990 
Treatment.Variety.Harvest.DAP  
 9 (3)  35.578  3.953  0.70  0.704 
Residual 142 (24)  797.024  5.613     
Total                                        215    (36)       9840.762 
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VARIATE: CCI 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
 Rep stratum 2  707.7  353.9  3.53   
 Rep.*Units* stratum 
Treatment 1  257.8  257.8  2.57  0.123 
Variety 1  3599.9  3599.9  35.87 <.001 
DAP 2  1711.4  855.7  8.53  0.002 
Treatment.Variety 1  25.0  25.0  0.25  0.622 
Treatment.DAP 2  444.6  222.3  2.22  0.133 
Variety.DAP 2  186.2  93.1  0.93  0.410 
Treatment.Variety.DAP 2  42.5  21.2  0.21  0.811 
Residual 22  2207.8  100.4     
Total 35  9183.0      
 

 

Variate: SC 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  801.2  400.6  1.35   
Rep.*Units* stratum 
Treatment 1  78227.1  78227.1  263.50 <.001 
Variety 1  4862.6  4862.6  16.38 <.001 
DAP 2  41144.7  20572.4  69.30 <.001 
Treatment.Variety 1  298.2  298.2  1.00  0.327 
Treatment.DAP 2  16951.4  8475.7  28.55 <.001 
Variety.DAP 2  3917.7  1958.8  6.60  0.006 
Treatment.Variety.DAP 2  5449.8  2724.9  9.18  0.001 
Residual 22  6531.3  296.9     
Total                                          35        158183.9  
 

 
 
Variate: LAI 

 
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  2.132  1.066  0.16   
Rep.Treatment stratum 
Treatment 1  323.995  323.995  49.46  0.020 
Residual 2  13.100  6.550  4.29   
  
Rep.Treatment.Variety stratum 
Variety 1  3.659  3.659  2.40  0.197 
Treatment.Variety 1  10.666  10.666  6.98  0.057 
Residual 4  6.110  1.528  0.86   
  
Rep.Treatment.Variety.*Units* stratum 
DAP 2  18.246  9.123  5.11  0.008 
Treatment.DAP 2  34.729  17.365  9.72 <.001 
Variety.DAP 2  1.229  0.615  0.34  0.710 
Treatment.Variety.DAP 2  5.128  2.564  1.44  0.244 
Residual 88  157.181  1.786     
Total 107  576.177       
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Variate: TOTAL_BIOMASS_ (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  547.82  273.91  3.52   
Rep.*Units* stratum 
Treatment 1  0.20  0.20  0.00  0.960 
Harvest 2  1320.49  660.24  8.49  0.002 
Variety 1  2642.65  2642.65  33.98 <.001 
Treatment.Harvest 2  93.90  46.95  0.60  0.556 
Treatment.Variety 1  91.20  91.20  1.17  0.291 
Harvest.Variety 2  451.77  225.88  2.90  0.076 
Treatment.Harvest.Variety 2  61.40  30.70  0.39  0.679 
Residual 22  1711.15  77.78     
Total 35  6920.58       
  
  
VARIATE: HARVEST_INDEX (%) 
  
Source of variation                     d.f.  s.s.           m.s. v.r. F pr. 
Rep stratum 2  97.8  48.9  0.44   
Rep.*Units* stratum 
Treatment 1  2080.2  2080.2  18.57 <.001 
Harvest 2  292.5  146.3  1.31  0.291 
Variety 1  6364.2  6364.2  56.80 <.001 
Treatment.Harvest 2  366.7  183.4  1.64  0.217 
Treatment.Variety 1  508.4  508.4  4.54  0.045 
Harvest.Variety 2  363.5  181.7  1.62  0.220 
Treatment.Harvest.Variety 2  840.4  420.2  3.75  0.040 
Residual 22  2464.8  112.0     
Total 35  13378.5       
  
  

 

 
 
 
 
VARIATE: SEED_MASS PER PLANT (g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  18.398  9.199  1.04   
Rep.*Units* stratum 
Treatment 1  204.347  204.347  23.08 <.001 
Harvest 2  36.642  18.321  2.07  0.150 
Variety 1  121.698  121.698  13.74  0.001 
Treatment.Harvest 2  4.165  2.083  0.24  0.792 
Treatment.Variety 1  32.967  32.967  3.72  0.067 
Harvest.Variety 2  28.435  14.217  1.61  0.223 
Treatment.Harvest.Variety 2  19.462  9.731  1.10  0.351 
Residual 22  194.821  8.855     
Total 35  660.934       
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VARIATE: SEED NUMBER PER POD  
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  16.359  8.180  1.25   
Rep.*Units* stratum 
Treatment 1  194.277  194.277  29.70 <.001 
Harvest 2  4.522  2.261  0.35  0.712 
Variety 1  71.205  71.205  10.88  0.003 
Treatment.Harvest 2  24.608  12.304  1.88  0.176 
Treatment.Variety 1  3.139  3.139  0.48  0.496 
Harvest.Variety 2  4.428  2.214  0.34  0.717 
Treatment.Harvest.Variety 2  37.262  18.631  2.85  0.079 
Residual 22  143.918  6.542     
Total 35  499.719       
  
  
VARIATE: POD NUMBER PER PLANT 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  13.113  6.556  1.24   
Rep.*Units* stratum 
Treatment 1  58.039  58.039  10.94  0.003 
Harvest 2  27.439  13.719  2.59  0.098 
Variety 1  120.890  120.890  22.79 <.001 
Treatment.Harvest 2  6.851  3.426  0.65  0.534 
Treatment.Variety 1  0.595  0.595  0.11  0.741 
Harvest.Variety 2  12.727  6.364  1.20  0.320 
Treatment.Harvest.Variety 2  21.637  10.819  2.04  0.154 
Residual 22  116.704  5.305     
Total 35  377.995       
  
   
 
 
 
VARIATE: POD_MASS_(g) 
  
Source of variation d.f. s.s. m.s. v.r. F pr. 
Rep stratum 2  58.80  29.40  1.39   
Rep.*Units* stratum 
Treatment 1  296.76  296.76  14.05  0.001 
Variety 1  254.93  254.93  12.07  0.002 
Harvest 2  136.53  68.27  3.23  0.059 
Treatment.Variety 1  14.29  14.29  0.68  0.420 
Treatment.Harvest 2  15.95  7.97  0.38  0.690 
Variety.Harvest 2  22.34  11.17  0.53  0.597 
Treatment.Variety.Harvest 2  54.11  27.05  1.28  0.298 
Residual 22  464.79  21.13     
Total 35  1318.50       
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Appendix 5: Physical characteristics of the soil used for the pot trial experiment 

Textural class 

v
PWP 

w
FC Clay Sand Silt 

––––– vol % –––– –––––%–––– 

Clay Loam 28.3 40.6 43.5 24 32.5 

*SA Taxonomic system; 
v
PWP – permanent wilting point; 

w
FC – field capacity. 

 

Appendix 6: Proline standard curve 
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Appendix 7: Field trial layout of cowpea  
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