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ABSTRACT

With human society becoming increasingly computerised, the use of biometrics to auto-

matically establish the identity of an individual is of great interest in a wide variety of

applications. Facial appearance is an appealing biometric, on account of its relatively

non-intrusive nature. As such, automated face recognition systems have been the subject

of much research in recent years.

This dissertation describes the development of a fully automatic face recognition

system, and provides an analysis of its performance under various different operating

conditions, in comparison with results published in prior literature. In addition to giving

a detailed description of the mathematical underpinnings of the techniques used by the

system, we discuss the practical considerations involved in implementing the described

techniques.

The system presented here uses the eigenface approach to representing facial fea-

tures. A number of different recognition techniques have been implemented and evalu-

ated. These include a number of variants of the original eigenface technique proposed by

Turk and Pentland, as well as a related technique based on the probabilistic approach of

Moghaddam et al.

Due to the wide range of datasets used to evaluate face recognition systems in

the literature, it is difficult to reliably compare the performance of different systems. The

system described here has been tested with datasets encompassing a wide range of different

conditions, allowing us to draw conclusions about how the characteristics of the test data

affect the results that are obtained.

The performance of this system is comparable to other eigenface-based systems

documented in the literature, achieving success rates in the region of 85% for large datasets

under controlled conditions. However, performance was observed to degrade significantly

when testing with more free-form images; in particular, the effects of ageing on facial

appearance were noted to cause problems for the system. This suggests that the matter

of ageing is still a fruitful direction for further research.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Modern society has come to rely on computers for many essential services. As a result,

security concerns in computing are of great importance. Amongst such security concerns

is the question of how to determine the identity of an individual in an automated fashion.

Biometric identification techniques are the subject of much interest, having a wide range

of applications in this regard.

By making use of intrinsic traits of the individual in question, biometrics can be used

to replace or augment classical knowledge-based and token-based authentication schemes

to improve security and convenience. Applications to which this is relevant include phys-

ical access control, border control, and the prevention of identity fraud. Additionally,

biometrics enable the development of applications that are otherwise infeasible, such as

assisting law enforcement agencies in identifying criminals, and finding missing persons.

Facial appearance is a biometric modality that is the subject of a great deal of re-

search. While use of the face modality poses greater challenges than other commonly-used

modalities such as the fingerprint and iris, it has the advantage of being extremely non-

intrusive – ideally, a face recognition system can obtain sufficient data for identification

without any action on the part of the subject. This is in contrast to, for example, a finger-

print system, where the subject’s active participation is required to obtain fingerprints.

While much progress has been made in this field over the past two decades, the

development of a fully general automatic face recognition system is still some way away

from being a solved problem. In particular, current state-of-the-art recognition techniques

perform well when using inputs captured under controlled conditions, but their perfor-

mance tends to degrade dramatically when exposed to certain kinds of variations present

in more free-form environments. Thus, it is important that further research be done with

the aim of developing a robust, generally-applicable face recognition system.
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1.2 Problem Description

Face recognition is the problem of determining the identity of an individual from an image

of the subject’s face.

A technique for face recognition can generally be described in terms of the following

components:

• A representation of the facial features that are useful for recognition.

• A feature extraction algorithm, which extracts features (in this representation) from

a bitmap image of a subject’s face.

• A similarity measure, which quantifies the likelihood that two sets of features were

derived from images of the same individual.

Within this framework, the recognition process then consists of extracting features from

the input image, and comparing this output to the stored features for each individual

known to the system.

The problem of interest, then, is that of finding a suitable representation of facial

appearance, and a similarity measure for comparing these features.

While prior research has led to the development of a number of proposed solutions to

this problem (each with some degree of success), there still remains much space to improve

on the performance attained by current systems, particularly with regard to operating con-

ditions less strictly controlled than those typically used for evaluation. Improvements can

be made both by devising entirely new techniques, and by making incremental improve-

ments to existing ones.

1.3 Objectives

The aim of this study is to provide a detailed comparative analysis of several face recog-

nition techniques based on the widely-used eigenface representation.

The primary focus of the study is the implementation of a recognition system (based

on the techniques in question), and the evaluation of its performance in relation to other

results published in the literature. In addition to presenting a survey of the literature,

we discuss the challenges involved in accurately comparing the obtained results with the

findings of other studies. A significant concern in this regard is the choice of dataset used

for testing, and the impact of the various characteristics of the dataset on the results

obtained.

Additionally, we aim to present a comprehensive treatment of both the mathemat-

ical underpinnings of the evaluated techniques, and the practical considerations involved

in their implementation. It is intended that this part of the study should serve as an

implementer’s handbook, providing the necessary information for someone with minimal

prior knowledge of face recognition techniques to implement a recognition system from

scratch.
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1.4 Contributions

This study makes the following contributions to the body of knowledge in the field of face

recognition.

Firstly, it presents an in-depth experimental evaluation of eigenface-based face recog-

nition techniques, on a number of datasets with a variety of different characteristics. A

key aspect of the resulting analysis is the discussion of how various aspects of experiment

design affect the results for a given recognition system being evaluated. The focus here is

on the effects of factors such as dataset size, the presence/absence of a priori face loca-

tion data, and the characteristics of the images making up the dataset (illumination, age

differences, etc.). This provides a better basis for comparing results between studies in

which these factors differ significantly.

Secondly, it reviews various techniques that have been proposed for face recognition

in the literature, and discusses the associated experimental results in comparison with the

results of our own experiments. This comparison is informed by the previously-mentioned

analysis of experimental design considerations.

Finally, it provides a detailed, coherent treatment of the techniques that have been

implemented. This is presented in an accessible manner, requiring minimal prior famil-

iarity with face recognition techniques. In addition to describing the mathematical for-

mulation of the eigenface techniques, we include notes on the practical issues that were

encountered in the implementation of these techniques.

1.5 Document Outline

The rest of this document is organised as follows. Chapter 2 provides a survey of prior work

in the field of face recognition. Chapter 3 is a detailed presentation of the algorithms used

for face recognition in this study, as well as associated image preprocessing techniques.

Chapter 4 discusses the implementation of the face recognition system. Chapter 5 describes

the experiments performed, and discusses the results obtained. Finally, Chapter 6 draws

conclusions and outlines possible directions for future work.
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CHAPTER 2

LITERATURE REVIEW

This chapter provides a survey of prior research relevant to the topic of face recognition,

covering both the wide variety of techniques that have been investigated, and the perfor-

mance of systems based on these techniques. We first discuss the general field of biometric

research, to put the case of face recognition into context, and then move on to the dis-

cussion of specific techniques for face recognition. The family of techniques based on the

eigenface representation receives particular attention, being the subject of much research,

and the focus of this study.

2.1 Biometrics

In general, the subject of biometrics is concerned with the study of techniques for deter-

mining or verifying the identity of a human subject, based on some intrinsic traits of the

individual in question (Ross and Jain, 2007). This is in contrast with knowledge-based

identification schemes (such as passwords) and token-based schemes (such as ID cards),

where the basis for identification is not inherently tied to the subject.

Within the general context of biometrics, there are a wide range of traits that

can be used for identification. These can be divided into two categories: physiological

and behavioural (Jain, 2007). Physiological modalities make direct use of anatomical

characteristics of the subject, while behavioural modalities rely on recognising distinctive

patterns in the way the subject performs some action. Some of the more widely-used

physiological traits are the fingerprint, face and iris. Among behavioural biometrics, the

signature and voice are two popular modalities.

While accuracy of identification is the most obviously important criterion for judging

a biometric’s utility, there are other considerations that should also be taken into account.

One issue of particular significance is that of intrusiveness – a system that can operate

without any active participation from the subject has advantages over one that requires

action on the subject’s part. This is evident in that a non-intrusive system is more

convenient for users, but also in that such a system can be used in applications (e.g.

surveillance) where a more intrusive system simply would not be feasible.

Indeed, in some cases accuracy and non-intrusiveness are attributes that come into
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conflict, and in choosing a biometric one must make a trade-off between the two. For

instance, fingerprint recognition can easily yield extremely accurate results, but requires

the user to come into physical contact with a scanning device. In contrast, face recognition

at present achieves a considerably lower level of accuracy, but requires much less user

participation – the subject merely needs to face in the direction of a camera.

2.2 General Techniques for Face Recognition

Investigations into automated face recognition date back to the 1960s, with the semi-

automatic recognition system developed by Bledsoe (1966), which was extended to a fully-

automated system by Kanade (1977). These early systems attempted to characterise the

face solely in terms of the distances between various key points. However, the performance

of systems based on this simplistic approach was found to be lacking, even over the small

datasets that were common at the time.

Techniques for face recognition can generally be grouped into two classes: structural

and holistic (Zhao et al., 2003). Structural methods are based on the identification of

facial landmarks (for example, the tip of the nose), and the extraction of local features

pertaining to the appearance of these landmarks, and the distances between them. Holistic

methods, on the other hand, use the raw face image as a whole as their input, without first

identifying facial landmarks. In this scheme, the earliest approaches to face recognition

can be seen as simplistic structural techniques.

While little research on face recognition was done during the 1980s (Zhao et al.,

2003), the 1990s saw the development of a number of more successful techniques in both

classes. Motivated by the experiments of Sirovich and Kirby (1987) in using Principal

Component Analysis (PCA) for efficient representation of face images, Turk and Pentland

(1991) proposed the (holistic) PCA-based eigenfaces technique. Their system achieved

100% accuracy on a dataset of 16 individuals. The authoritative literature survey of

Zhao et al. (2003) cites this as the first truly successful automated recognition system.

Eigenface-based approaches have seen a high level of popularity, and have formed the

basis of numerous subsequent systems.

Another approach that has proven successful is the Dynamic Link Architecture

(DLA), presented by Lades et al. (1993). DLA is a feature-based (i.e. structural) method

based on elastic graph matching. While DLA is presented as a general-purpose object

recognition technique, Lades et al. have successfully applied it to the face recognition

problem, and it has been used as the basis for other face recognition systems. Lades et al.

(1993) report accuracies of between 80 and 90%, achieved on a dataset of 87 individuals.

In the DLA approach, a face is represented by a labelled graph, with nodes corre-

sponding to points on the face. Nodes are annotated with local Gabor features, and each

edge is labelled with the distance between the landmarks corresponding to its endpoints.

A cost function is defined to quantify how different two graphs are. The graph matching

process makes deformations to the shape of the graph and small changes to the positions
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of individual nodes, so as to minimise the cost between the input graph and the stored

graph. Recognition is carried out by performing graph matching on the input face graph

with respect to each of the stored graphs, and selecting the stored graph with the lowest

cost after matching.

It should be noted that the DLA technique’s recognition process is quite computa-

tionally intensive; Lades et al. (1993) report that it took between two and five seconds to

compare a 128× 128 pixel image to a single stored graph.

Elastic Bunch Graph Matching was proposed by Wiskott et al. (1997) as an extension

of DLA. In EBGM, rather than organising graph nodes in a rectangular grid, the nodes are

located at key facial landmarks such as the nose and eyes. Stored graphs are combined into

groups, called bunch graphs, allowing for more efficient graph extraction, and yielding a

better model of potential variations in facial appearance. The cost function used for graph

matching is refined to make use of the phase component of Gabor features, allowing for

more accurate localisation of facial landmarks.

This system was found to give similar results to the earlier DLA system, with im-

proved performance in the case of moderate pose variation (22◦). It should be noted,

though, that the EBGM system must be trained before it can construct face graphs auto-

matically, typically requiring 70 or so faces with landmark positions extracted manually.

In contrast, the DLA approach can extract graphs automatically with no training, since

the layout of graph nodes is not dependent on the input image.

Related to the previously-mentioned eigenfaces representation is the Independent

Component Analysis (ICA) technique (Bartlett and Sejnowski, 1997). ICA-based systems

are typically similar in structure to the eigenfaces system of Turk and Pentland (1991),

relying on a subspace projection followed by nearest-neighbour matching of the resulting

feature vectors. The key difference lies in the method used to construct the subspace onto

which the inputs are projected.

Draper et al. (2003) present two architectures for applying the ICA technique to

the problem of face recognition. Architecture I is structured to produce statistically in-

dependent basis images, yielding localised features (in contrast with the global features

produced by PCA). Architecture II, on the other hand, constructs basis images such that

the projection coefficients are independent (rather than the basis images themselves). This

results in global features conceptually similar to PCA-based systems, unlike architecture I.

Draper et al.’s study compares the performance of systems based on each of these

architectures to an eigenface-based system, using the various image sets found in the

FERET dataset (Phillips et al., 1998). ICA architecture II was found to consistently

give the best performance of the three systems, particularly on image sets containing

unfavourable lighting conditions, or significant time lapses between the capture of probe

and reference images. The eigenface-based system came in second place, with the ICA

architecture I system having the poorest recognition rate.

Also related to the eigenfaces representation is the Fisherfaces technique due to

Belhumeur et al. (1997). As with eigenface- and ICA-based techniques, the crux of the
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system is a subspace projection operation, which is followed by nearest-neighbour match-

ing. In this case, the subspace is constructed using Fisher’s Linear Discriminant (FLD;

also referred to as Linear Discriminant Analysis, or LDA), rather than PCA or ICA.

Belhumeur et al. observe that while the basis produced by PCA is statistically

optimal for image reconstruction, it is not optimal for recognition, since PCA acts to

maximise the variance of the training dataset in the subspace, even though not all of this

variance is relevant to the recognition problem. In contrast, the Fisherfaces technique

attempts to distinguish variations due to differences in identity from those due to other

factors such as variations in illumination and expression, and maximise the ratio of the

former to the latter in the resulting subspace. In order to achieve this, the dataset used

to train the system must contain multiple images of each subject, so that it can learn the

variations between same-subject images as well as those between different-subject images.

In their study, Belhumeur et al. compare the performance of the Fisherfaces tech-

nique to that of the eigenfaces method. Under optimal conditions, both systems were able

to achieve 100% accuracy (on a dataset of 30 images). However, on a dataset containing

significant expression and lighting variations (comprising 65 images), the Fisherfaces sys-

tem maintained an accuracy of 95%, while the eigenfaces system performed much more

poorly at 68% accuracy.

A more recently-developed technique is that of sparse representation-based classifi-

cation (SRC), due to Wright et al. (2009). The SRC technique represents the subspace

projection of an input image as a linear combination of the projections of the stored refer-

ence images. This linear combination can be computed efficiently through `1 minimisation,

using standard linear programming techniques.

Unlike most subspace-based techniques, SRC does not use a nearest-neighbour clas-

sifier. Instead, it considers all stored features for a given subject together, and computes

an aggregate residual for that subject (rather than doing a separate comparison against

each stored feature vector). For the technique to yield meaningful results, it is necessary

to store multiple reference images of each subject.

Wright et al. evaluate the SRC technique using a number of different feature extrac-

tion methods, including classical features such as eigenfaces and Fisherfaces, as well as two

types of unconventional features (down-sampling and “randomfaces”). They compare its

performance with a nearest-neighbour classifier, an SVM-based classifier, and the “nearest

subspace” technique of Ho et al. (2003).

The classifiers were evaluated on two datasets – one containing 38 individuals, and

the other 100 individuals. The SRC and SVM classifiers were found to give consistently

better results than the nearest-neighbour and nearest-subspace classifiers, with SRC giving

slightly better results on the first dataset, while SVM had a small advantage on the second

dataset. Additional experiments were conducted to study the effects of occlusion and

random noise on recognition performance. The SRC classifier was found to be substantially

more robust to such image corruption than the other systems.
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2.3 Ageing and Face Recognition

One particular challenge in the field of face recognition is the problem of ageing. Over time,

an individual’s face can change significantly in appearance. As a result, many recognition

techniques perform poorly when the reference image of the subject is of a substantially

different age from the image to be identified. While this matter has received relatively

little attention within the field, there has been some fruitful research done in recent years.

One such study is that of Ramanathan and Chellappa (2006), who present a face

verification system based on a probabilistic eigenface framework (refer to section 2.4 for

discussion).

Singh et al. (2007) propose a preprocessing transformation for improving the per-

formance of existing recognition techniques. The transformation is applied to each stored

reference image before it is compared to the probe image, in order to synthesise a version

of the reference image at the age that the subject is in the probe image.

The transformation works by identifying corner points in the reference and probe

images, correlating them, and then warping the reference image so that the two sets of

points occur at the same positions. This has the effect of transforming the general shape

of the face in the reference image to match the probe image more closely.

The age transformation was found to improve recognition accuracy dramatically,

with increases of between 10 and 30 percentage points on the different datasets used.

However, the overall performance of the system was still poor, failing to achieve more

than 50% accuracy on any of the datasets.

Another approach to the ageing problem is the 3D ageing model of Park et al.

(2010). In this technique, as in the previous system, ageing compensation is treated as

a preprocessing step, with images being age-normalised before recognition is performed.

Here, both the shape and texture of the face are taken into account, allowing for a more

accurate model of the ageing process (particularly for older subjects, where the changes

that occur are predominantly textural).

Changes in face shape are handled by constructing a three-dimensional model of each

image in the database. For a given probe, the shape model is expressed as a weighted sum

of models of other images of subjects at the same age. Then, an analogous weighted sum is

constructed using models of subjects at the desired age, resulting in an age-adjusted shape

model of the probe. Age-adjusted textural data is derived in a similar fashion, using a

PCA-based representation applied to a pose-normalised version of the probe image. From

these two components the system then synthesises an age-adjusted rendition of the probe

image for use by the underlying recognition mechanism.

The technique was evaluated using a commercial face recognition system. It was

found to improve recognition rates by around 10 percentage points on each of the three

datasets used (FG-NET, MORPH and BROWNS). Particularly noteworthy was the recog-

nition rate of approximately 66% that was achieved on the MORPH album 1 dataset

(containing 625 subjects).
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2.4 Face Recognition with Eigenfaces

The success of Turk and Pentland’s eigenface system has led to much interest and further

work on this approach to the recognition problem.

Flynn et al. (2003) analysed the effects of time variance on eigenface recognition

performance. The study found that while the system was able to achieve the high recogni-

tion rates observed in prior literature when all the images of a given individual are taken

in the same session (and thus, on the same day). However, it was found that when using

images from several different sessions for each individual, performance deteriorated signif-

icantly, even though the time between sessions was only on the order of weeks. While such

time scales are too short to observe significant ageing effects, this deterioration could be

attributed to cosmetic variations such as change in hairstyle.

Yambor et al. (2002) have evaluated several different distance metrics for identifying

the “nearest” matching gallery image in the eigenspace. The study found that the Maha-

lanobis metric performs better than the conventional L2 (Euclidean) metric and the angle

metric when a large fraction of the eigenvectors are used to construct the eigenspace, while

performance of the three metrics is equivalent when using a small number of eigenvectors.

Several techniques for eigenvector selection are also discussed, including Kirby’s

energy and stretch functions. In many earlier eigenface-based systems, the fraction of

eigenvectors used to construct the eigenspace was determined empirically. These tech-

niques provide systematic ways to decide how many eigenvectors to use, independent of

performance on a particular dataset.

Perlibakas (2004) investigates a large number of different distance metrics. As in

Yambor et al.’s study, the Mahalanobis metric was found to give best performance. Here,

however, the normalised L2 metric gave comparable results.

One significant modification to the basic eigenface technique is the Bayesian eigen-

face method developed by Moghaddam et al. (1996). In this approach, instead of using a

conventional distance metric, a probabilistic similarity measure is used to determine which

gallery image is most similar to the input image. This modification is presented using the

conventional intensity-difference representation, but also in conjunction with with an op-

tical flow-based representation, and with a deformable 3D surface representation. The

system was evaluated on a dataset of 76 individuals, using images taken from the FERET

database. The deformable 3D surface representation achieved a recognition rate of 92%,

while the intensity-difference representation reached an accuracy of 89%. The optical flow

representation was less performant at 87%.

The probabilistic eigenimage framework has also proven useful in the related field of

object detection. Moghaddam and Pentland (1997) present a method for detecting objects

of a particular class, based on the probabilistic recognition technique. The discussion

includes demonstrations of the method’s application to the problems of face detection and

hand detection.

While the probabilistic recognition technique has proven significantly more accurate
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than the classical eigenface approach, it has the disadvantage of being substantially more

computationally intensive, since the system must compute a difference image for every

(probe, gallery image) pair, rather than extracting features from each probe and gallery

image in isolation and then comparing just these lower-dimensional features.

Moghaddam et al. (2000) present an optimised formulation of the probabilistic recog-

nition technique that allows for independent calculation of the eigenface coefficients for

each input image, thereby greatly reducing the running time required for recognition. A

system using this formulation was found to give significantly improved performance over

those based on other techniques in the FERET evaluation (Phillips et al., 2000), where it

achieved a recognition rate of approximately 95% on a dataset of 1196 individuals.

The probabilistic approach has also been applied to the related problem of face

verification. Ramanathan and Chellappa (2006) present an identity verification system

based on the probabilistic eigenfaces technique, using the formulation of Moghaddam and

Pentland (1997). This system was found to achieve promising results, particularly in its

ability to handle age differences between the input and reference images. Also presented

are techniques for normalisation of pose and illumination.

2.5 Evaluation of Face Recognition Systems

In assessing the performance of a face recognition technique, it is important to be able to

reliably compare the results obtained with those for other techniques. However, in general

this is not a trivial matter, due to factors such as differences in the details of the evaluation

procedure, and in the size and composition of the dataset used.

To resolve this issue, the FERET program (Phillips et al., 2000) developed a stan-

dardised methodology for evaluating face recognition systems for purposes of comparison.

Key points in the design of the evaluation protocol are the use of a common dataset in

evaluating all techniques under consideration, and the requirement that training must be

completed prior to the test. The latter stipulation ensures that the system cannot tailor

its face representation to suit the specific dataset in use, instead requiring it to provide a

more general recognition mechanism.

Related to the matter of using a common dataset, the FERET program also compiled

and published a large body of face images known as the FERET database. This collection

of images has been widely used in subsequent studies evaluating the performance of face

recognition algorithms (including several of those previously mentioned), in addition to its

use in the tests undertaken as part of the FERET program itself. The database includes

a number of subsets containing images of different characteristics, such as same-session

alternate-expression image pairs, same-session pairs taken under different illumination

conditions, and pairs taken six months apart. This allows tests to analyse how such varied

conditions affect recognition accuracy.
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2.6 Conclusion

This chapter has presented a survey of the large body of prior research that has been

conducted in the field of face recognition. One particularly prominent class of recognition

techniques is that of subspace projection. This class encompasses the Fisherfaces and

ICA techniques, the more sophisticated SRC technique, as well the eigenfaces family of

techniques that are the focus of this study. Other noteworthy techniques include the DLA

and EBGM systems, which make use of local features. A significant challenge faced by

contemporary face recognition systems is that of ageing, which causes current techniques

to perform poorly. One approach to solving this problem is to apply a preprocessing step

before the actual recognition algorithm, in order to normalise the apparent age of the

input image.
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CHAPTER 3

METHODS AND TECHNIQUES

This chapter discusses the techniques used by the facial recognition system implemented

in this study, with a focus on the mathematical underpinnings of these techniques. We

begin by detailing the preprocessing techniques that are applied to improve the quality of

input images before they are received by the recognition system, and thereafter describe

the recognition algorithms themselves. This latter part of the chapter first describes the

basic structure of the recognition process, then introduces the basic eigenfaces technique,

and finally presents a related technique based on probabilistic similarity measures.

3.1 Image Preprocessing

3.1.1 Face Localisation

When considering an image containing a face, it is often the case that, in addition to the

actual face, the image contains a non-negligible amount of background detail. This can

introduce noise into the features extracted from the image, and consequently reduce the

accuracy of the recognition system. Additionally, the eigenface recognition technique is

known to perform poorly in the presence of variations in face size (Turk and Pentland,

1991).

To overcome these problems, it is necessary to extract the face itself from the image,

excluding as much of the surrounding background as possible. To this end, we have used

an object detector developed by Viola and Jones (2004).

The detector makes use of Haar-like rectangular features. An intermediate rep-

resentation called the “integral image” allows these features to be extracted extremely

efficiently. The features are used as input to a collection of classifiers, each consisting of a

network of simple perceptrons.

The classifiers are organised into a cascade, where each stage of the cascade rejects

those sub-windows for which it deems not to contain a face. Only those sub-windows giving

a positive result for the current stage are considered by the next stage of the cascade.

This approach is significantly more efficient than using a single monolithic classifier, as it

typically allows the majority of sub-windows to be rejected after evaluating only part of

the cascade.
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The classifiers are trained using a modified version of the AdaBoost learning algo-

rithm, which selects the features used as input to the classifier as well as the weight and

threshold making up the classifier itself.

3.1.2 Illumination Compensation

Variations in lighting level are known to decrease the effectiveness of face recognition

systems. Histogram equalisation is a simple technique that has been found to compensate

for moderate variations in lighting level (Bourlai et al., 2009).

Histogram equalisation is a transformation that can be performed on the intensity

levels of a greyscale image to enhance contrast in the image. This is achieved by mapping

each grey level in the source image onto a destination grey level which is determined by

the proportion of pixels in the source image whose grey levels are less than or equal to the

source grey level in question. This has the effect of spreading the grey levels in the image

over a wider range, thus enhancing contrast.

For an image of size R×C, with grey levels 0, 1, 2, . . . , L−1, the mapping for a grey

level k is given by:

T (k) =
(L− 1)

RC

k∑
j=0

nj (3.1)

where nj denotes the number of pixels in the source image that have grey level j

(Gonzalez and Woods, 2008).

3.2 Structure of the Recognition Process

The execution of the recognition system can be divided into two phases: training and

recognition. The training phase consists of preparatory calculations specific to the par-

ticular recognition technique being used. The recognition phase then involves actually

ascertaining the identity of an unknown image. The inputs to the recognition phase are:

• A set of reference images (one per individual known to the system), termed the

gallery

• An image of unknown identity, termed the probe

The recognition algorithm then estimates the likelihood of each possible identity

for the probe image. As its output, it produces a ranked list indicating the most likely

identity, second most likely identity, and so forth.

3.3 Classical Eigenface Recognition

The central idea underlying the eigenface technique is that it is possible to express any

given input image (of a fixed size) as a linear combination of a set of basis images chosen
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ahead of time. By using PCA, it is possible to construct a basis for which a small subset

of the basis images can capture most of the variance between face images. Such a sub-

set can still provide a good representation of facial features, while having a much lower

dimensionality than the full basis. This dimensionality reduction procedure then makes

the technique computationally feasible; computing a complete basis for the image space

would be quite impractical.

The feature space spanned by the chosen subset of basis images is dubbed “face

space”, since this subspace (ideally) corresponds to the subset of images that are of human

faces.

The technique described in this section is largely the same as the one presented by

Turk and Pentland (1991), with the following three differences.

Firstly, for simplicity, this treatment does not make provision for detecting if the

input image is of an individual not known to the system.

Secondly, in Turk and Pentland (1991), the dimensionality of the face space is cho-

sen based on unspecified heuristics. Our discussion includes a systematic method for

determining an appropriate size for the face space, as described in Yambor et al. (2002).

Finally, the Turk and Pentland study used the Euclidean distance metric as the

dissimilarity measure for comparing feature vectors. In addition to the Euclidean distance,

we discuss a number of alternative functions that have been proposed for this purpose in

later works on the matter such as Yambor et al. (2002) and Perlibakas (2004).

3.3.1 Training

During the training process, the system takes as input a set of N preprocessed face im-

ages, each of dimensions r × c. Each image is represented as a (column) vector ti of

dimensionality D = rc.

The PCA technique proceeds as follows:

Firstly, the mean and covariance of the training data are determined:

t̄ =
1

N

N∑
i=1

ti (3.2)

S =
1

N

N∑
i=1

(ti − t̄) (ti − t̄)T (3.3)

We then solve the eigenvector problem:

Sui = λiui (3.4)

yieldingN solutions (ui, λi). The solutions are sorted such that λ1 is the largest eigenvalue,

and λN is the smallest. The vectors ui are also referred to as eigenfaces, since (for low

values of i) they appear face-like when considered as images. Figure 3.1 shows some

example eigenfaces.
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(a) i = 1 (b) i = 5 (c) i = 13 (d) i = 22 (e) i = 272

Figure 3.1: Example eigenfaces (N = 272)

It can be shown that the vectors {ui} define a N -dimensional subspace of the original

D-dimensional image space, such that each vector ui is in the direction of largest variance

in the training set (while being orthogonal to the preceding vectors u1 . . . ui−1), and the

variance in this direction is equal to λi. For proof of this result, see Bishop (2006).

While the above procedure allows for a substantial dimensionality reduction, it is

possible to further reduce the size of the basis without adversely affecting its power to dis-

tinguish between the faces of different individuals. Since the eigenvectors corresponding to

the lowest eigenvalues typically encode very little variance between facial images (Sirovich

and Kirby, 1987), one might surmise that the data encoded by these eigenvectors is of

marginal utility in distinguishing between individuals. This hypothesis is supported by

the findings of Yambor et al. (2002), in which only the first 100 or so (out of 500) eigenvec-

tors were observed to be significant to recognition, with the remaining eigenvectors having

a marginal (or even negative) impact on accuracy.

To accomplish this additional reduction, we define a parameter v ∈ [0, 1] indicating

what fraction of variance (in the training data) the truncated basis should be capable of

representing. The truncated basis then consists of the eigenvectors {ui}Mi=1 where M is

defined as:

M = min

j
∣∣∣∣∣∣
j∑
i=1

λi ≥ v
N∑
i=1

λi

 (3.5)

The value of v is chosen empirically, with 0.95 and 0.99 being typical values.

The M -dimensional feature space spanned by the selected eigenvectors is the face

space, into which input images are projected during feature extraction.

The final output of the training process consists of two components: the average

face vector t̄, the eigenvectors {ui}Mi=1 (the truncated basis), and the eigenvalues {λi}Mi=1.

Algorithm 1 summarises the training process in pseudocode.

3.3.2 Feature Extraction

For the basic eigenface technique, feature extraction is simply a matter of projecting the

input image into face space, using the basis computed during training.
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Algorithm 1 Training algorithm for classical eigenface system

Input: Training images {ti}, variance fraction v
Output: Mean image t̄, eigenvectors {ui}, eigenvalues {λi}

1: t̄← mean(t1, t2, . . . , tN )
2: S ← covar(t1, t2, . . . , tN )
3: {(ui, λi)}Ni=1 ← solve(Su = λu)
4: M ← truncate basis(v;λ1, λ2, . . . , λN )

5: return
(
t̄, {(ui, λi)}Mi=1

)

The feature vector y for an image x is computed as:

y = U(x− t̄) (3.6)

where U is the M ×D matrix whose rows are the eigenvectors
{
uT
i

}
.

3.3.3 Identification

Given a probe image xP and a gallery of reference images {xk}, we estimate the like-

lihood of each candidate identity by comparing yP (its projection into face space) with

each gallery image’s projection yk. This is done using a distance function d(a,b), which

quantifies the degree of difference between two feature vectors a and b.

The most likely identity k is taken to be that for which the quantity d(yk,y
P ) is

the minimum. The second most likely identity is that for which this quantity has the

second-smallest value, and so on.

Algorithm 2 provides pseudocode summarising the recognition process.

Algorithm 2 Recognition algorithm for classical eigenface system

Input: Probe xP , gallery {xk}, mean image t̄, eigenvectors {ui}, eigenvalues {λi}
Output: Most likely identity k for xP

1: yP ← project(xP )
2: for each image xk in gallery do
3: yk ← project(xk)
4: ranked[k].dist← d(yk, y

P )
5: ranked[k].id← k
6: end for
7: sort ranked in ascending order of dist
8: return ranked[1].id

There are a number of different functions that can be used as distance measures.

The remainder of this section presents those used in this study.

In the discussion that follows, a and b are column vectors (each of dimensional-

ity M), with ai denoting the ith entry of a and bi denoting the ith entry of b.
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The simplest distance functions are the Manhattan (L1) and Euclidean (L2) dis-

tances, defined in (3.7) and (3.8) respectively (Duda et al., 2001).

d1(a,b) =
M∑
i=1

|ai − bi| (3.7)

d2(a,b) =

√√√√ M∑
i=1

(ai − bi)2 (3.8)

A more sophisticated distance measure is the Mahalanobis distance (Bishop, 2006),

which normalises the contribution of each dimension to the total distance by taking into

account the covariance of the distribution from which the input vectors are drawn. The

Mahalanobis distance is defined as follows:

dM (a,b) =
√

(a− b)TΣ−1(a− b) (3.9)

where Σ is the aforementioned covariance matrix.

In the specific case where a and b are eigenface feature vectors, it is possible to

obtain a simpler formulation that can be computed more efficiently. Since the eigenvectors

constituting the face space are orthogonal, the covariance matrix Σ will be diagonal. As

stated earlier, the variance in each dimension is equal to the corresponding eigenvalue λi,

giving us the values on the diagonal. From this, we can express the distance as:

dM (a,b) =

√√√√ M∑
i=1

(ai − bi)2

λi
(3.10)

In addition to these three well-known distance metrics, the study evaluates two dis-

tance functions put forward specifically for the purpose of eigenface-based face recognition.

First, there is an alternative formulation of the Mahalanobis distance proposed by

Yambor et al. (2002):

dY (a,b) = −
M∑
i=1

aibi√
λi

(3.11)

It should be noted that the function defined in (3.11) is not equivalent to the canon-

ical Mahalanobis distance defined by (3.9), as can be seen by examining each function’s

behaviour when one of the parameters is the zero vector.

Additionally, it lacks certain properties conventionally associated with distance met-

rics. For example, it admits negative distances, and does not satisfy the property:

dY (a,b) = 0 ⇐⇒ a = b (3.12)

However, this does not necessarily mean that it is unsuitable as a distance function for

the purpose of comparing eigenface feature vectors.
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The other function is the “modified SSE-based distance” proposed by Perlibakas

(2004):

dP (a,b) =

M∑
i=1

(ai − bi)2

(
M∑
i=1

a2
i

)(
M∑
i=1

b2i

) =
‖a− b‖2

‖a‖2 ‖b‖2
(3.13)

It should be noted that this function is undefined when either a or b is the zero

vector (which would occur if an input image matched the average face t̄ exactly). While

this is not a case that one can expect to arise frequently, it is a possibility that would need

to be taken into account in the development of a robust face recognition system for use in

real-world applications.

3.4 Probabilistic Eigenface Recognition

This section details how the eigenfaces representation can be adapted to make use of

probabilistic similarity measures. Here, instead of extracting features from each image in

isolation, the system considers the differences between pairs of images. Such a difference

can belong to one of two classes – the intrapersonal class (for a difference between two

images of the same individual), or the extrapersonal class (for a difference between images

of two different individuals). The system operates by estimating the probability that a

given difference belongs to the intrapersonal class.

Rather than making use of a single face space, the probabilistic scheme considers

two “face difference spaces” – one for the intrapersonal class, and another for the extraper-

sonal class. Figure 3.2 shows the mean differences for the intrapersonal and extrapersonal

classes, for the training data used in experiment 3 of chapter 5.

The technique detailed in this section is based on the one presented by Moghaddam

et al. (1996), with the following three differences.

Firstly, it makes direct use of image intensity differences, rather than employing the

deformable 3D mesh representation used by Moghaddam et al.

Secondly, as an alternative to the “maximum a posteriori” classification rule, we

incorporate the “maximum likelihood” rule used by Moghaddam and Pentland (1997).

(a) (b)

Figure 3.2: Mean image differences for the (a) intrapersonal and (b) extrapersonal classes.
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Finally, as with the non-probabilistic technique, this treatment includes a systematic

method for determining appropriate dimensionalities for the face difference spaces (Yambor

et al., 2002).

3.4.1 Training

The input for the training process consists of two sets of image pairs: the intrapersonal set

TI (of size NI), and the extrapersonal set TE (of size NE). Each pair in TI is composed of

two distinct images t
(I)
i1 and t

(I)
i2 of the same individual, while each pair in TE is composed

of two images t
(E)
i1 and t

(E)
i2 of different individuals. As before, each t

(?)
ij is a vector of

dimensionality D.

The training process begins with the construction of a set of image differences
{
τ

(I)
i

}
from the pairs in TI . Each τ

(I)
i is calculated as:

τ
(I)
i = t

(I)
i1 − t

(I)
i2 (3.14)

We then apply the PCA technique described in section 3.3 to these differences. The

first step is to calculate the mean intrapersonal difference vector and associated covariance

matrix:

τ̄ (I) =
1

NI

NI∑
i=1

τ
(I)
i (3.15)

S(I) =
1

NI

NI∑
i=1

(
τ

(I)
i − τ̄ (I)

) (
τ

(I)
i − τ̄ (I)

)T
(3.16)

Then, proceeding in a similar manner as in section 3.3, we solve the following eigen-

vector problem:

S(I)u
(I)
i = λ

(I)
i u

(I)
i (3.17)

yielding NI solutions
(
u

(I)
i , λ

(I)
i

)
.

Finally, we compute a truncated basis by retaining the MI eigenvectors correspond-

ing to the largest eigenvalues, where MI is defined as:

MI = min

j
∣∣∣∣∣∣
j∑
i=1

λ
(I)
i ≥ v

NI∑
i=1

λ
(I)
i

 (3.18)

In this equation (as in the non-probabilistic technique), v is an empirically-chosen

value in the range [0, 1]. This value specifies what fraction of the variance in the training

data the truncated basis will be capable of representing.

The end result of this process is the mean intrapersonal difference τ̄ (I), the eigen-

vectors
{
u

(I)
i

}MI

i=1
spanning the intrapersonal face difference space, and the eigenvalues{

λ
(I)
i

}MI

i=1
.



20

The process is then repeated with the pairs from TE , yielding the mean extrapersonal

difference τ̄ (E), eigenvectors
{
u

(E)
i

}ME

i=1
, and eigenvalues

{
λ

(E)
i

}ME

i=1
.

Algorithms 3 and 4 provide pseudocode summarising the training process.

Algorithm 3 Training algorithm for probabilistic eigenface system (intrapersonal half)

Input: Training images
{(

t
(I)
i1 , t

(I)
i2

)}
, variance fraction v

Output: Mean delta τ̄ (I), eigenvectors
{
u

(I)
i

}
, eigenvalues

{
λ

(I)
i

}
, mean eigenvalue ρI

1: for i = 1 to NI do
2: τ

(I)
i ← t

(I)
i1 − t

(I)
i2

3: end for
4: τ̄ (I) ← mean

(
τ

(I)
1 , τ

(I)
2 , . . . , τ

(I)
NI

)
5: S(I) ← covar

(
τ

(I)
1 , τ

(I)
2 , . . . , τ

(I)
NI

)
6:

{(
u

(I)
i , λ

(I)
i

)}NI

i=1
← solve

(
S(I)u = λu

)
7: MI ← truncate basis

(
v;λ

(I)
1 , λ

(I)
2 , . . . , λ

(I)
NI

)
8:

{
λ

(I)
i

}D
i=NI+1

← extrapolate
(
λ

(I)
1 , λ

(I)
2 , . . . , λ

(I)
NI

)
9: ρI ← mean

(
λ

(I)
MI+1, λ

(I)
MI+2, . . . , λ

(I)
D

)
10: return

(
τ̄ (I),

{(
u

(I)
i , λ

(I)
i

)}MI

i=1
, ρI

)

Algorithm 4 Training algorithm for probabilistic eigenface system (extrapersonal half)

Input: Training images
{(

t
(E)
i1 , t

(E)
i2

)}
, variance fraction v

Output: Mean delta τ̄ (E), eigenvectors
{
u

(E)
i

}
, eigenvalues

{
λ

(E)
i

}
, mean eigenvalue ρE

1: for i = 1 to NE do
2: τ

(E)
i ← t

(E)
i1 − t

(E)
i2

3: end for
4: τ̄ (E) ← mean

(
τ

(E)
1 , τ

(E)
2 , . . . , τ

(E)
NE

)
5: S(E) ← covar

(
τ

(E)
1 , τ

(E)
2 , . . . , τ

(E)
NE

)
6:

{(
u

(E)
i , λ

(E)
i

)}NE

i=1
← solve

(
S(E)u = λu

)
7: ME ← truncate basis

(
v;λ

(E)
1 , λ

(E)
2 , . . . , λ

(E)
NE

)
8:

{
λ

(E)
i

}D
i=NE+1

← extrapolate
(
λ

(E)
1 , λ

(E)
2 , . . . , λ

(E)
NE

)
9: ρE ← mean

(
λ

(E)
ME+1, λ

(E)
ME+2, . . . , λ

(E)
D

)
10: return

(
τ̄ (E),

{(
u

(E)
i , λ

(E)
i

)}ME

i=1
, ρE

)

3.4.2 Probability Estimation

Given two face images f and g, we seek to estimate the probability that the images

depict the same individual, or equivalently that the difference δ = f − g belongs to the
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intrapersonal face difference space.

This a posteriori probability can be calculated using Bayes’ theorem (Bishop, 2006):

P (ΩI |δ) =
P (δ|ΩI)P (ΩI)

P (δ|ΩI)P (ΩI) + P (δ|ΩE)P (ΩE)
(3.19)

where ΩI denotes the intrapersonal face difference space, and ΩE correspondingly denotes

the extrapersonal space.

The probabilities P (ΩI) and P (ΩE) must be chosen a priori. Choosing to set

P (ΩI) = P (ΩE) = 0.5 allows the computation to be simplified to the following:

P (ΩI |δ) =
P (δ|ΩI)

P (δ|ΩI) + P (δ|ΩE)
(3.20)

Under the assumption that ΩI follows a Gaussian distribution, the likelihood of

encountering a given image difference is

P (δ|ΩI) =
exp

(
−1

2

(
δ − δ̄I

)T
ΣI
−1 (δ − δ̄I))

(2π)
D
2 |ΣI |

1
2

(3.21)

where δ̄I is the mean of ΩI , and ΣI is the associated covariance matrix.

Assuming that ΣI is not singular, it can be diagonalised using the D-dimensional

orthonormal basis formed by its eigenvectors:

ΣI = ΦI ΛI ΦI
T (3.22)

where ΦI is the (orthogonal) matrix whose rows are the eigenvectors of ΣI , and ΛI is the

diagonal matrix composed of the corresponding eigenvalues.

Adopting the shorthand δ̃I = δ− δ̄I , the product in the numerator of (3.21) can be

simplified as follows:

δ̃I
T
ΣI
−1δ̃I = δ̃I

T
(
ΦI ΛI ΦI

T
)−1

δ̃I

= δ̃I
T
(
ΦI

T ΛI
−1 ΦI

)
δ̃I

=
(
δ̃I

T
ΦI

T
)

ΛI
−1
(
ΦI δ̃I

)
= vTΛI

−1v (3.23)

where v = ΦI δ̃I is the projection of δ onto the eigenvector basis. Since ΛI is diagonal,

the above expression can be simplified further:

vTΛI
−1v =

D∑
i=1

vi
2

λ
(I)
i

(3.24)
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The fact that ΛI is diagonal also allows the denominator of (3.21) to be simplified:

|ΣI | = |ΛI | =
D∏
i=1

λ
(I)
i (3.25)

Thus (3.21) can be reformulated as:

P (δ|ΩI) =

exp

(
−1

2

D∑
i=1

vi
2

λ
(I)
i

)

(2π)
D
2

D∏
i=1

(
λ

(I)
i

) 1
2

(3.26)

It must be noted that the discussion thus far implicitly assumes the presence of a full

D-dimensional basis for the face difference space. However, in practice it is computation-

ally infeasible to construct such a basis, so it is necessary to develop an approximation that

can be evaluated using only the truncated MI -dimensional basis. We begin by observing

that P (δ|ΩI) can be expressed as the product of two independent Gaussian densities:

P (δ|ΩI) = PF (δ|ΩI)PF̄ (δ|ΩI)

=


exp

−1
2

MI∑
i=1

vi
2

λ
(I)
i


(2π)

MI
2

MI∏
i=1

(
λ

(I)
i

) 1
2




exp

−1
2

D∑
i=MI+1

vi
2

λ
(I)
i


(2π)

D−MI
2

D∏
i=MI+1

(
λ

(I)
i

) 1
2

 (3.27)

Here, PF (δ|ΩI) is the marginal density for the subspace spanned by the highest-

ranked eigenvectors {ui}MI
i=1, and PF̄ (δ|ΩI) is the marginal density for the complementary

subspace spanned by the remaining eigenvectors.

PF (δ|ΩI) can be calculated directly, but an approximation for PF̄ (δ|ΩI) is required.

To this end, we substitute a single value ρI in place of the unknown eigenvalues:

P̂F̄ (δ|ΩI) =

exp

−1
2

D∑
i=MI+1

vi
2

ρI


(2πρI)

D−MI
2

(3.28)

The optimal value for ρI is the mean of the unknown eigenvalues (Moghaddam and

Pentland, 1997):

ρI =

D∑
i=MI+1

λ
(I)
i

D −MI
(3.29)

Since the eigenvalues in question are unknown, it is not possible to evaluate this

mean exactly. However, the unknown eigenvalues can be estimated by fitting a function
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to the known eigenvalues, and then extrapolating the fitted function.

Prior literature proposes various types of functions for this purpose. Moghaddam

and Pentland (1997) suggest the use of a function of the form 1
f(i) , while the formulation

presented by Ramanathan and Chellappa (2006) makes use of a cubic spline.

In the experiments conducted in this study (see chapter 5), it was found that a good

fit for the observed eigenvalues was obtained by using a function of the form

λ(i) =
a

i
(3.30)

While (3.28) provides a simpler expression for P̂F̄ (δ|ΩI), it still depends on the lower-

rank eigenvectors for calculating the PCA coefficients {vi}i>MI
. This can be remedied by

making use of the fact that ΦI is an orthogonal matrix, and therefore acts as an isometry:

‖δ̃I‖2 = ‖v‖2 =
D∑
i=1

vi
2 (3.31)

From this, we can calculate a quantity known as the residual reconstruction error :

ε2I(δ) =
D∑

i=MI+1

vi
2 = ‖δ̃I‖2 −

MI∑
i=1

vi
2 (3.32)

Equation (3.28) can then be reformulated as follows:

P̂F̄ (δ|ΩI) =
exp

(
− ε2I(δ)

2ρI

)
(2πρI)

D−MI
2

(3.33)

Note that this formulation depends only on the first MI eigenvalues and eigenvectors,

so it can be evaluated using the truncated basis constructed during training. We can thus

express the estimated overall probability in a form that can be computed efficiently:

P̂ (δ|ΩI) = PF (δ|ΩI)P̂F̄ (δ|ΩI) =

exp

−1
2

MI∑
i=1

vi
2

λ
(I)
i

+
ε2I(δ)
ρI


(2π)

D
2 ρI

D−MI
2

MI∏
i=1

(
λ

(I)
i

) 1
2

(3.34)

The extrapersonal likelihood estimate P̂ (δ|ΩE) can then be calculated similarly:

P̂ (δ|ΩE) =

exp

−1
2

ME∑
i=1

wi
2

λ
(E)
i

+
ε2E(δ)
ρE


(2π)

D
2 ρE

D−ME
2

ME∏
i=1

(
λ

(E)
i

) 1
2

(3.35)

using w = ΦE δ̃E in place of v = ΦI δ̃I .
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Finally, the intra- and extrapersonal likelihoods can be combined to yield an estimate

for the a posteriori probability P (ΩI |δ) using (3.20).

3.4.3 Identification

Based on the mathematical framework laid out in the preceding subsections, this sub-

section describes two identification schemes: the maximum a posteriori (MAP) scheme,

which makes use of the a posteriori probability P (ΩI |δ), and the maximum likelihood

(ML) scheme, which relies on the image difference likelihood P (δ|ΩI).

The MAP scheme proceeds in a similar manner to the classical eigenfaces scheme.

Given a probe image xP and a gallery of reference images {xk}, we compute the difference

δk = xP −xk for each xk, and rank the candidate identities by their estimated a posteriori

probability, P̂ (ΩI |δk). The most likely identity k is then taken to be that for which the

probability is highest, the second most likely identity being that with the second-highest

probability, and so forth.

For each image difference δk, the a posteriori probability is calculated as follows.

First, the difference is projected into the intrapersonal difference space:

δ̃I = δk − τ̄ (I) (3.36)

v = ΦI δ̃I (3.37)

Here, ΦI is the MI×D matrix whose rows are the (transposed) eigenvectors
{
u

(I)
i

}
.

The results of this calculation are then used to determine the intrapersonal likelihood

P̂ (δ|ΩI) using (3.34).

Then, a similar process is followed for the extrapersonal difference space:

δ̃E = δk − τ̄ (E) (3.38)

w = ΦE δ̃E (3.39)

after which the extrapersonal likelihood P̂ (δ|ΩE) is determined, using (3.35).

Finally, the a posteriori probability estimate P̂ (ΩI |δk) is calculated, as described in

(3.20).

The ML scheme is largely identical to the MAP scheme. The sole difference is that

candidate identities are ranked using the estimated image difference likelihood P̂ (δk|ΩI),

rather than the a posteriori probability. This provides a coarser approximation of the

actual probability that a given image pair belongs to the intrapersonal class ΩI . However,

it has the advantage of being less computationally intensive than the MAP scheme, since

it is not necessary to evaluate P̂ (δk|ΩE).

Algorithm 5 summarises the identification process in pseudocode.
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Algorithm 5 Recognition algorithm for probabilistic eigenface system

Input: Probe xP , gallery {xk}, mean deltas τ̄ (I) and τ̄ (E), eigenvectors
{
u

(I)
i

}
and{

u
(E)
i

}
, eigenvalues

{
λ

(I)
i

}
and

{
λ

(E)
i

}
, mean eigenvalue estimates ρI and ρE

Output: Most likely identity k for xP

1: for each image xk in gallery do
2: δk ← xP − xk
3: PI ← likelihood

(
δk; τ̄

(I),
{
u

(I)
i

}MI

i=1
,
{
λ

(I)
i

}MI

i=1
, ρI

)
// eq. (3.34)

4: PE ← likelihood

(
δk; τ̄

(E),
{
u

(E)
i

}ME

i=1
,
{
λ

(E)
i

}ME

i=1
, ρE

)
// eq. (3.35)

5: if using MAP scheme then
6: ranked[k].probability ← PI/(PI + PE)
7: else
8: ranked[k].probability ← PI
9: end if

10: ranked[k].id← k
11: end for
12: sort ranked in descending order of probability
13: return ranked[1].id

3.5 Conclusion

This chapter has outlined the general structure of the recognition system used in this study,

and presented detailed mathematical and algorithmic descriptions of the techniques used

– classical eigenface recognition (Turk and Pentland, 1991) and probabilistic eigenface

recognition (Moghaddam et al., 1996). Also included are descriptions of various ancillary

preprocessing techniques used by the system.
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CHAPTER 4

IMPLEMENTATION NOTES

This chapter provides a brief discussion of various matters concerning the implementation

of the algorithms described in chapter 3.

4.1 Library Use

The face recognition system implemented in this study makes extensive use of the OpenCV

computer vision library (website http://opencv.willowgarage.com/). This library is

used most significantly for the efficient computation of PCA eigenvectors and eigenvalues

(using the technique described in Bishop (2006)), but also for face localisation, as well as

less complex tasks such as image resizing and histogram equalisation.

Concerning face localisation, the library provides an implementation of the Viola-

Jones face detector (discussed in section 3.1.1), including data describing the features for

a pre-trained classifier. For this reason, the system does not need a facility for training its

own face detector.

4.2 Preprocessing Pipeline

As noted earlier, each input image presented to the system undergoes a series of preprocess-

ing transformations to enhance image quality, before it is used for training or recognition.

The details of these transformations are described in Figure 4.1. Figure 4.2 illustrates the

process, showing an example image after each stage of the pipeline.

http://opencv.willowgarage.com/
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Histogram Equalisation

Compensate for illumination variations

Face Detection

Extract extent of face using Viola-Jones face detector 
– crop image to contain just the face, excluding 

background details

Histogram Equalisation

Account for possibility that background of image and 
face itself have very different levels of illumination

Resize Image

Scale to a fixed size of 64 by 64 pixels,
using bilinear interpolation

Apply Circular Mask

Exclude non-face details in corners of image

Final preprocessed image

Raw input image

Figure 4.1: The preprocessing pipeline
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(a) Original image (b) Histogram equalisation 1

(c) Face localisation (d) Hist. equalisation 2

(e) Resizing (f) Masking

Figure 4.2: Operation of the preprocessing pipeline on an example image
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4.3 Numerical Precision Concerns

In the implementation of the probabilistic technique described in section 3.4, it was found

that for certain inputs, the probabilities P̂ (δ|ΩI) and P̂ (δ|ΩE) are too small to be accu-

rately represented using an IEEE-754 64-bit binary floating point data type.

In order to resolve this problem, it is necessary to employ a modified formulation of

the identification schemes discussed in subsection 3.4.3.

Rather than ranking the candidate identities for an image using the relevant proba-

bility directly, we employ a quantity which will give the same ordering of identities in the

absence of precision limitations, and is more amenable to accurate computation.

4.3.1 Maximum Likelihood Formulation

For the maximum likelihood scheme, we can simply use the logarithm of the likelihood:

LI = log P̂ (δ|ΩI) (4.1)

Since the logarithm function is strictly increasing, ranking candidate identities using

this quantity will produce the same ordering as using the likelihood itself.

From (3.34), the calculation can be simplified as follows:

LI = log


exp

−1
2

MI∑
i=1

vi
2

λ
(I)
i

+
ε2I(δ)
ρI


(2π)

D
2 ρI

D−MI
2

MI∏
i=1

(
λ

(I)
i

) 1
2


= −1

2

MI∑
i=1

vi
2

λ
(I)
i

+
ε2I(δ)

ρI

− log

[2π]
D
2 ρI

D−MI
2

MI∏
i=1

[
λ

(I)
i

] 1
2


= −1

2

MI∑
i=1

vi
2

λ
(I)
i

+
ε2I(δ)

ρI
+D log 2π + [D −MI ] log ρI +

MI∑
i=1

log
[
λ

(I)
i

] (4.2)

By avoiding exponentiation altogether, this formulation avoids producing problem-

atically small quantities (either in the final output, or in any intermediate results), thereby

allowing for improved accuracy.

4.3.2 Maximum A Posteriori Formulation

With the maximum a posteriori scheme, the approach required is somewhat more subtle.

Based on (3.20), we can derive the following:
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P̂ (ΩI |δ) =
1

1 + P̂ (δ|ΩE)

P̂ (δ|ΩI)

=
1

1 + exp
(
log P̂ (δ|ΩE)− log P̂ (δ|ΩI)

)
=

1

1 + exp (LE − LI)
(4.3)

with LI as in (4.1), and LE defined analogously.

From this, it can be shown that (LI−LE) is a suitable alternative ranking criterion,

guaranteed to produce the same ordering of candidate identities as using the a posteriori

probability. This follows from the fact that the function

f(x) =
1

1 + exp (−x)

is strictly increasing. Proof of this fact is given below.

Lemma 1. The following function is strictly increasing:

f(x) =
1

1 + exp (−x)

Proof.

x1 > x2 ⇒ −x1 < −x2

⇒ exp (−x1) < exp (−x2)

⇒ 1 + exp (−x1) < 1 + exp (−x2)

⇒ 1

1 + exp (−x1)
>

1

1 + exp (−x2)

⇒ f(x1) > f(x2)
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CHAPTER 5

EXPERIMENTAL RESULTS

This chapter presents the experimental results that have been obtained using systems

implementing the techniques described in chapter 3. We begin with a description of the

datasets used in the experiments, followed by the results of each experiment and an analysis

of these results. Finally, our results are compared with those reported elsewhere in the

literature.

In this chapter, the following terminology will be used: “Classical” refers to the

classical eigenface technique described in section 3.3, whereas “Probabilistic” refers to

the probabilistic technique detailed in section 3.4. “Probabilistic (MAP)” indicates the

variant using the maximum a posteriori identification scheme, and “Probabilistic (ML)”

indicates the variant using the maximum likelihood scheme (see section 3.4.3).

5.1 Datasets

The experiments described in this section make use of images taken from the FERET

database (Phillips et al., 1998) and the MORPH database (Ricanek and Tesafaye, 2006).

The FERET database was chosen to facilitate comparison of results with other studies

in the literature, since it has been used in a number of such prior studies. The MORPH

database was chosen as a more challenging dataset containing significant ageing effects (in

contrast with the shorter timespan and controlled conditions of the FERET images).

5.1.1 FERET

For the FERET database, four subsets were used: a training subset, the gallery subset,

and two probe subsets. The training subset was constructed from the “Training CD”

image set, by filtering out non-frontal images and images that are also present in any of

the other three subsets. This resulted in a set of 272 frontal images. While the remaining

three subsets are from the original greyscale version of the FERET database, the training

subset was assembled using the larger colour images from the Color FERET database.

The gallery subset is the same gallery set used in the FERET tests. It is a collection

of 1196 neutral-expression frontal images, each depicting a different subject. All of the

images in the two probe sets are of subjects present in the gallery.
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The first probe subset is the FERET “fafb” probe set, comprising 1195 frontal

alternative-expression images. For each subject, the image(s) in this set were taken seconds

after the corresponding image in the gallery. This probe subset (along with the FERET

gallery) is used in experiments 1 through 4.

The other probe subset is the FERET “Duplicate I” probe set, comprising 722

frontal images. Here, for each subject, each image was captured between 0 and 1031 days

after the corresponding gallery image. This probe subset (along with the FERET gallery)

is used in experiment 5(a).

5.1.2 MORPH

The primary purpose of the MORPH database, as noted above, is to capture ageing effects.

To this end, it contains images of individuals over an extended period of time. The time

differences for same-subject image pairs range from less than a year to 69 years.

The MORPH database has less inherent structure than the FERET database. Rather

than being divided into specific training, gallery and probe subsets, it is split into two “al-

bums”, containing images of two disjoint sets of subjects. Album 1 consists of 631 subjects

with a total of 1690 images, while the much larger album 2 contains 13 673 subjects with

a total of 55 608 images.

Before the database could be used for testing, it was necessary to remove a number

of problematic images. These consisted largely of non-face images and duplicate faces.

Others were face images where a significant portion of the face is obscured by bandages,

and images framed in such a way that only part of the face is visible, as well as images taken

from a profile or half-profile (rather than frontal) view, and images containing invasive

compression artefacts or colour distortion. The duplicate faces were cases where one or

more image(s) of a subject appear to have been replaced by exact copies of some image of a

different subject. The non-face images were primarily images consisting of the text “Photo

Unavailable”, with the remainder being images of tattoos (typically on the subject’s arm),

and blank images. A total of 406 such images were removed (1 from album 1, and 405

from album 2), of which 252 were non-face images, and 83 were duplicate faces.

For the purposes of these experiments, the remainder of the dataset was divided into

a training subset, and nine pairs of gallery/probe subsets.

The training subset consists of the 335 images of the first1 100 individuals in album 2.

The rest of album 2 was used to construct eight pairs of gallery/probe subsets

for testing. Each such pair is made up of the next 1000 subjects, with the first image

of each subject going to the gallery subset, and the second image going to the probe

subset. Subjects with only one image in the database were discarded. Each probe and

gallery subset thus contains exactly 1000 images. These album 2 subsets are used in

experiment 5(b).

1References made to ordering of images assume lexicographic ordering based on file name, and not
numerical ordering based on subject ID. However, since each file name begins with the (zero-padded)
subject ID, images are still grouped by subject.
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The final pair of testing subsets was constructed from album 1. The gallery again

consists of the first image of each subject, while the second image of each subject serves

as a probe. The resulting gallery contains 631 images, while the probe subset is of size

624. The album 1 testing data is used in experiment 5(c).

5.1.3 Training Data Organisation

In the preceding discussion, data for training is treated as a monolithic, unstructured

collection of face images. However, while this is sufficient for use with the classical system,

the probabilistic eigenfaces technique requires its training input to consist of two distinct

sets, one made up of same-subject image pairs, and the other of different-subject image

pairs.

To generate appropriately-organised training data from a raw training subset, the

following procedure is used.

Intrapersonal pairs: For each subject S with multiple images, select two different im-

ages of S at random.

Extrapersonal pairs: For each subject S1, randomly select a different subject S2, and

then pair a randomly-selected image of S1 with a randomly selected image of S2.

For the FERET training subset (used in experiments 1 through 5(a)), this yields 135

intrapersonal pairs and 135 extrapersonal pairs. For the MORPH training subset (used

in experiments 5(b) and 5(c)), it results in 100 intrapersonal pairs and 100 extrapersonal

pairs.

5.2 Experiment 1 – Face Localisation and Masking

Preprocessing of input images can have a substantial impact on the quality of the input

seen by the recognition system. In this experiment, we consider the effect of two prepro-

cessing steps on system performance: face localisation, and masking. The classical system

used the Euclidean distance measure, and all three systems used a fractional variance

threshold of v = 0.99. The results are shown in Table 5.1.

From the results, it can be seen that the face localisation step improves accuracy

dramatically in all cases. This is as expected, since it removes a substantial amount of

extraneous (non-facial) detail present in the raw images, allowing the algorithms to operate

specifically on facial features.

For the masking filter, the situation is less clear-cut. In the cases where localisation

is used, masking appears to have an insignificant effect on accuracy – increasing it very

slightly in two cases, but decreasing it slightly in the other. This can be explained by the

observation that the face localisation procedure removes the vast majority of background

details, typically leaving only a small amount of these details in the corner of the cropped

image. Additionally, most images in the dataset have a monochrome background, so the
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Table 5.1: Impact of face localisation and masking (experiment 1)

System Localisation? Masking? Accuracy (%)

Classical no no 62.18
no yes 56.65
yes no 77.24
yes yes 77.49

Probabilistic (MAP) no no 59.92
no yes 54.23
yes no 84.27
yes yes 84.02

Probabilistic (ML) no no 59.50
no yes 53.64
yes no 83.60
yes yes 83.77

mask will in some cases cause the non-facial area of the image to become less uniform. Of

course, this analysis does not apply to real-world applications in which the system has no

control over the image backdrop; in such cases masking may still be advantageous.

In the degenerate case where masking is used in the absence of face localisation,

accuracy is observed to decrease markedly. This is likely due to the fact that, depending

on the positioning of the face within the larger image, the mask will occlude different

portions of the subject, including parts of the face in some cases.

Based on these results, all subsequent experiments use face localisation, but not

masking.

5.3 Experiment 2 – Different Distance Functions

The classical eigenface system uses a distance function to evaluate the similarity of a pair

of feature vectors. This experiment assesses the effectiveness of various different distance

functions. As in experiment 1, a fractional variance threshold of v = 0.99 was used. The

results are shown in Table 5.2.

Here we see that the Manhattan distance gives the best accuracy, followed by the

Euclidean distance, with the Mahalanobis distance giving the poorest performance.

Table 5.2: Performance of different distance functions (experiment 2)

Distance Function Accuracy (%)

Manhattan 78.49
Euclidean 77.24
Mahalanobis 72.22
Yambor pseudo-Mahalanobis 75.48
Perlibakas modified SSE 73.97
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The weaker performance of the Mahalanobis distance (and its variant) may be ex-

plained by the following observation: In the Manhattan and Euclidean metrics, the coef-

ficient of each principal component in the feature vector has an equally-weighted contri-

bution to the distance, while in the Mahalanobis distance, the contribution is weighted in

inverse proportion to the corresponding eigenvalue. This means that principal components

with larger eigenvalues are penalised, while those with smaller eigenvalues are emphasised.

However, the principal components associated with larger eigenvalues account for a greater

fraction of the variance between face images, and can therefore be expected to be of greater

relevance in distinguishing between images of different individuals. As a result, the Ma-

halanobis distance favours irrelevant inputs over useful ones.

Based on these results, the classical system uses the Manhattan distance in all

subsequent experiments.

5.4 Experiment 3 – Subspace Dimensionality

This experiment investigates the effect of varying the dimensionalities of the subspaces

used in representing facial features. In our system, subspace dimensionality is determined

by a parameter v specifying a fraction of the variance seen in the training dataset, as

detailed in sections 3.3.1 and 3.4.1.

The results are shown in Table 5.3 and Figure 5.1. Additionally, Figure 5.2 gives

the Cumulative Match Characteristic (CMC) curves for the three systems for v = 0.99.

Eigenvector counts in Table 5.3 are given as follows: M for the classical system, MI +ME

for the MAP probabilistic system, and MI for the ML probabilistic system.

One would expect the use of a larger number of eigenvectors to improve accuracy,

since the system should then be better able to represent the differences between images.

In the case of the classical system, this expectation is correct, with performance increasing

alongside the number of eigenvectors up to v = 0.99. Accuracy levels off for v = 1.00,

suggesting that the last 46 eigenvectors do not encode information that is useful for recog-

nition.

However, the results for the two probabilistic systems do not follow the same pattern.

Here, accuracy increases by a small margin from v = 0.50 up to v = 0.75, and fluctuates

within a very narrow range from 0.75 up to 1.00. This indicates that the probabilistic

techniques require a substantially smaller number of eigenvectors to be effective (compared

to the classical technique), with a larger fraction of the eigenvectors encoding irrelevant

information in these cases.

In comparing the overall performance of the three systems, we see that the two prob-

abilistic systems give similar performance, with the MAP variant generally outperforming

the ML variant by a small margin (on the order of 1% or less). The classical system is

uniformly less accurate, generally by a margin of 5–10%. These patterns are consistent

with expectations – the probabilistic classifiers are trained in such a way as to learn the

characteristics of the intrapersonal class (and extrapersonal class in the MAP case), while
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Table 5.3: Effect of eigenvector selection threshold on accuracy (experiment 3)

System Threshold Eigenvectors Accuracy (%)

Classical 0.50 6 45.69
0.75 28 71.05
0.90 88 76.90
0.95 141 77.66
0.99 226 78.49
1.00 272 78.49

Probabilistic (MAP) 0.50 23 + 5 82.59
0.75 56 + 20 84.02
0.90 91 + 49 84.35
0.95 108 + 70 84.18
0.99 127 + 106 84.27
1.00 134 + 134 83.93

Probabilistic (ML) 0.50 23 82.59
0.75 56 83.68
0.90 91 83.18
0.95 108 83.35
0.99 127 83.60
1.00 134 83.51
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Figure 5.1: Effect of eigenvector selection threshold on accuracy (experiment 3)
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Figure 5.2: CMC curves for experiment 3 where v = 0.99

the classical technique operates as a more näıve image similarity measure.

5.5 Experiment 4 – Dataset Size

Experiments in prior literature have used a numerous different datasets, of a wide range

of sizes. This experiment examines the relationship between dataset size and recognition

accuracy. To this end, the probe and gallery datasets were split up into subsets – first, 2

subsets of 500 individuals each, then 4 subsets of 250 individuals, 7 subsets of 150 indi-

viduals, and finally 15 subsets of 75 individuals. For each size, recognition was performed

independently on each subset of that size. As in experiments 1 and 2, a fractional vari-

ance threshold of v = 0.99 was used. Table 5.4 shows the average accuracy for each size of

subset, along with the relevant full-dataset results from experiment 3. Figure 5.3 presents

this data graphically.

For all three algorithms, the results show a clear trend of accuracy decreasing as

Table 5.4: Effect of dataset size on accuracy (experiment 4)

System Dataset Size
1196 500 250 150 75

Classical 78.49 83.18 84.28 85.12 86.12
Probabilistic (MAP) 84.27 87.98 88.88 89.41 89.50
Probabilistic (ML) 83.60 87.59 88.69 89.32 89.23
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Figure 5.3: Effect of dataset size on accuracy (experiment 4)

dataset size increases. This supports the unsurprising conclusion that it is easier to identify

an individual from a small set of candidates than from a larger set.

5.6 Experiment 5 – Alternate Datasets

Experiments 1 through 4 have made use of the “fafb” probe subset of the FERET database,

which (along with the FERET gallery subset) was taken under controlled conditions, with

the majority of variation between images of a subject being due to changes in facial

expression. However, in real-world applications, facial recognition systems are exposed

to many other types of intrapersonal variations, so these tests alone are not sufficient to

judge the performance of the techniques under consideration.

To gain a better understanding of how these techniques perform under a wider

range of conditions, this experiment evaluates them using more challenging datasets. Ex-

periment 5(a) uses an alternate probe subset from the FERET database, while experi-

ments 5(b) and 5(c) make use of the MORPH database.

The parameters used here are the same as those for experiment 4. The eigenvector

selection threshold is v = 0.99, the classical system uses the Manhattan distance, and the

preprocessing pipeline performs face localisation but not circular masking.
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Table 5.5: Results for FERET “Duplicate I” subset (experiment 5(a))

System Accuracy (%)

Classical 26.45
Probabilistic (MAP) 29.50
Probabilistic (ML) 29.50
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Figure 5.4: CMC curves for FERET “Duplicate I” subset (experiment 5(a))

5.6.1 Experiment 5(a) – FERET “Duplicate I” subset

This experiment uses the “Duplicate I” probe subset from the FERET database, along

with the same gallery and training subsets used in the preceding experiments. In addi-

tion to the facial expression variations present in the fafb probes, the Duplicate I probes

exhibit significant differences in lighting conditions and hairstyle when compared to the

corresponding gallery image. Also present are differences in presence of facial hair, glasses

and jewellery.

The results of the experiment are shown in Table 5.5. In addition to the rank-1

recognition rates given in the table, Figure 5.4 shows the Cumulative Match Characteristic

(CMC) curves for the three systems.

Here we observe a dramatic decrease in performance compared to the preceding

experiments, for all three systems. As in previous experiments, the probabilistic systems

outperform the classical system, with the two probabilistic variants having similar perfor-

mance.

The primary cause of this performance drop is most likely the large differences in il-
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lumination present in the Duplicate I probe set. Neither the classical nor the probabilistic

eigenface techniques have any explicitly-designed provision to compensate for such differ-

ences, and the preprocessing step used for this purpose is rather primitive. Additionally,

it is worth noting that the training dataset lacks such illumination variations. It is rea-

sonable to anticipate that the use of a more diverse training dataset could yield somewhat

improved results (though presumably still significantly poorer than those in exp. 1–4).

5.6.2 Experiment 5(b) – MORPH Album 2

While the FERET Duplicate I subset contains a wider variety of conditions than the fafb

subset, it contains only a very limited degree of age variation. For any given subject,

the oldest and newest images were captured less than three years apart; as a result, the

dataset is of little use in studying the changes in facial appearance that are caused by the

ageing process.

In contrast, the MORPH database provides a much wider range of ages, with some

subjects having been photographed over a range of as much as 69 years. This experiment

makes use of the MORPH training subset, and the eight probe and gallery subsets derived

from MORPH album 2. In the images making up these subsets, the effects of ageing are

the primary source of variation in each subject’s appearance. The images are generally

well-illuminated, and show little variation in pose. In contrast with the two FERET

subsets, the MORPH data exhibits a smaller variety of facial expressions; most images

show the subject with a neutral expression.

For this experiment, eight separate tests were run on the eight probe and gallery

subsets. Average rank-1 recognition rates are given in Table 5.6, and Figure 5.5 shows the

associated CMC curves.

As expected, we see another large drop in accuracy. This is consistent with reports in

the literature that face recognition systems typically perform more poorly in the presence

of ageing effects.

It is interesting to note that while the ML probabilistic system outperforms the

classical system (as in the FERET-based experiments), the MAP probabilistic system is

the weakest performer in this test.

This could be explained by the possibility that a single Gaussian distribution pro-

vides an inadequate model of the extrapersonal class ΩE for the degree of variation seen in

this dataset. Indeed, Moghaddam and Pentland (1997) and Ramanathan and Chellappa

(2006) both propose more sophisticated probabilistic recognisers that model the extrap-

Table 5.6: Results for MORPH album 2 (experiment 5(b))

System Average Accuracy (%)

Classical 17.82
Probabilistic (MAP) 16.62
Probabilistic (ML) 18.04
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Figure 5.5: CMC curves for MORPH album 2 (experiment 5(b))

ersonal class (or its equivalent) as a mixture of Gaussians. Such a technique may yield

better performance in this case.

5.6.3 Experiment 5(c) – MORPH Album 1

This experiment evaluates the three recognition systems on album 1 of the MORPH

database. As with album 2, the images in album 1 show a wide range of intrapersonal

age variations. While album 1 is smaller than the subsets of album 2 used in experi-

ment 5(b) (containing 631 individuals as opposed to 1000), it still poses a challenge for

recognition due to the generally lower quality of the images. The album 1 images appear

to largely consist of analogue photographs that have been digitised long after being cap-

tured; in many cases the images show signs of physical degradation such as fading and

crease marks. In other cases, the subjects are over- or under-illuminated.

The results of this experiment are shown in Table 5.7 (rank-1 recognition rates) and

Figure 5.6 (CMC curves).

Here we see a further drop in accuracy (compared to experiment 5(b)). While the

Table 5.7: Results for MORPH album 1 (experiment 5(c))

System Accuracy (%)

Classical 8.17
Probabilistic (MAP) 8.01
Probabilistic (ML) 8.81
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Figure 5.6: CMC curves for MORPH album 1 (experiment 5(c))

poor performance in this case can again largely be attributed to ageing effects, the fact

that accuracy is lower than in 5(b) indicates that the image quality concerns discussed

above also pose a significant challenge. This could possibly be counteracted by making

use of more sophisticated preprocessing techniques. Additionally, it is worth noting that

the training subset used in this experiment is derived from MORPH album 2, which has

much less in the way of lighting variation. It should be possible to improve performance

by training the recognition systems on a dataset that is more diverse in this regard.

In this experiment, as in 5(b), the ML probabilistic system achieves the highest

accuracy, with the MAP system again having the poorest performance, and the classical

system falling in the middle.

5.7 Comparison With Other Studies

In this section, we compare the results obtained in the experiments described above with

those reported elsewhere in the literature. We begin by focusing on techniques that make

use of eigenface-based representations, and then move on to other techniques.

5.7.1 Eigenfaces

In the study that first proposed the classical eigenfaces technique, Turk and Pentland

(1991) evaluated the technique on a dataset containing images of 16 individuals under

a wide range of controlled conditions. In the case of lighting variations between gallery
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and probe images, the system achieved a recognition rate of 96%. This would seem to

contradict the results of experiment 5(a), but it should be noted that the size of the

dataset used here was almost two orders of magnitude larger (containing 1196 individuals

rather than 16). Based on the results of experiment 4, it is reasonable to conclude that

the difference between these results is due to the different sizes of the datasets used.

In their study proposing the MAP probabilistic eigenfaces technique, Moghaddam

et al. (1996) evaluated the technique (along with two variants not tested here) on a 76-

individual subset of the FERET database. The MAP technique achieved a recognition rate

of 89.5% on this dataset, in comparison with the 84% accuracy attained by the baseline

system using the classical eigenfaces technique. These results are consistent with those

seen in experiment 4; the probabilistic technique achieved the same 89.5% accuracy, while

our classical system gave 86.12% accuracy. The difference in performance for the classical

technique can be attributed to the different distances used – Moghaddam et al.’s imple-

mentation used the Euclidean distance, which has been shown to give poorer performance

than the Manhattan distance.

The FERET test (Phillips et al., 2000) evaluated various face recognition systems

on the FERET database using a standardised testing protocol. Included among the tested

systems were three eigenface-based systems: a classical eigenface system using the Manhat-

tan distance (“baseline EF”), a classical system using the Euclidean distance (“MIT ’95”),

and a MAP probabilistic system (“MIT ’96”). The majority of the tests were conducted

in the “partially automatic” mode, wherein the recognition system is provided with face

location data for each input image, rather than requiring the system to perform automatic

face localisation (as is the case in the “fully automatic” mode).

In the fully automatic testing, the MIT ’96 system achieved an accuracy of 87%

on the “fafb” probe set, and an accuracy of 50% on the Duplicate I probe set. For

the fafb case, the accuracy is close to our system’s performance (84% in experiment 3).

Here, the difference can be attributed to differences in the size and composition in the

training dataset. For the Duplicate I case, however, our system gives substantially worse

performance (30% in experiment 5(a)). This may be due to differences between the face

localisation techniques used. The MIT system uses an eigenimage-based object detector

(Moghaddam and Pentland, 1997), which may have different performance characteristics

from the Haar-based cascaded classifier used in our system. In particular, the illumination

variations present in the Duplicate I images may be responsible for this drop in accuracy,

since such variations are not present in the fafb images.

In the partially automatic tests, the MIT ’96 system achieved accuracies of 95%

and 57% on the fafb and Duplicate I subsets, respectively. The MIT ’95 system achieved

accuracies of 83% and 34%, while the baseline EF system’s results were 79% and 41%. The

baseline EF system’s fafb result matches the accuracy of our Manhattan-based classical

recogniser in experiment 2, but the corresponding Duplicate I result is significantly higher

than the 26% seen in experiment 5(a). Based on the difference between the fully- and

partially-automatic results for the MIT ’96 system, we can conclude that this discrepancy
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is due to the partially automatic nature of the FERET test, with our face detection

subsystem not giving perfect results. A similar observation applies to the MIT ’95 system,

which yielded better results in both cases.

Distance Functions

The relative performance of different distance functions for the classical eigenfaces tech-

nique has been investigated in several studies, with various outcomes.

Yambor et al. (2002) have used the FERET database to test the Manhattan and

Euclidean distances as well as an alternative formulation of the Mahalanobis distance (de-

scribed in section 3.3.3). With the Duplicate I subset, this pseudo-Mahalanobis function

provides the best performance by a significant margin, while the Manhattan distance per-

forms best on the “fafb” subset. In both cases, the Euclidean distance performs relatively

poorly.

For the fafb subset, the results for the Manhattan distance (77%) and pseudo-

Mahalanobis distance (74%) are reasonably close to the corresponding numbers in our

experiment 2, while the Euclidean distance gives weaker performance at 72%. On the Du-

plicate I subset, the Manhattan distance achieves 35% accuracy, compared to the 26.45%

accuracy obtained by our system in experiment 5(a). This discrepancy can be attributed

to two factors.

Firstly, Yambor et al.’s system was trained on a set of 500 images taken from the

gallery set, rather than a completely distinct set of images (as per the FERET protocol).

Having overlap between the training and gallery sets may result in a subspace more suited

to the recognition of those specific images in the training set. Additionally, having a larger

set of training images is likely to improve system performance, given that the classical

system in experiment 3 was consistently observed to perform better with the use of larger

subspaces.

Secondly, as noted earlier, the automatic face localisation part of our system may

perform poorly on the Duplicate I images. Assuming that Yambor et al.’s study used

a partially-automatic system (like the bulk of the FERET tests), this would explain the

performance difference.

In addition to this comparison of distances, the effect of subspace size on accuracy

(for the Manhattan distance) was investigated. For values of the threshold v from 0.43

to 0.92, larger subspaces were found to correspond to increase performance substantially,

while performance decreased slightly for values of v from 0.92 to 1.00. This is generally

consistent with the results of experiment 3, except in that our experiment found accuracy

to level off more slowly, increasing up to v = 0.99. This is again probably due to the

difference in training dataset size – with a smaller dataset, there will be less total variance,

so a basis with an equal fraction of variance will contain a smaller number of eigenvectors

which may limit the system’s ability to distinguish between similar-looking individuals.

Draper et al. (2003) have evaluated various distances for the classical eigenface sys-
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tem and compared their performance to that of an ICA-based system. Results on the

FERET fafb dataset were generally similar to those of Yambor et al. (2002) – the Man-

hattan distance was found to perform best, with the Mahalanobis distance outperforming

the Euclidean distance. Compared to our experiment 2, the results for the Manhattan

and Mahalanobis distances were 2–3% higher, while the Euclidean distance again gave 5%

lower accuracy. For the FERET Duplicate I dataset, the Manhattan distance achieved a

recognition rate of 40%, again significantly higher than that seen in our experiment 5(a).

Since the test conditions of Draper et al.’s study were very similar to those used by

Yambor et al., the similarity of the two sets of results is expected. Likewise, in considering

the differences between these results and our own, the same explanations are applicable.

A larger training dataset (which is also a subset of the gallery) can be expected to yield su-

perior performance, while the partially automatic nature of the system may be responsible

for the larger difference in accuracy on the Duplicate I dataset.

As with Yambor et al. (2002), experiments were also performed to examine the

relationship between subspace size (number of basis vectors) and recognition accuracy.

For the Manhattan and Euclidean distances, accuracy was found to increase for larger

subspaces, uniformly across the range of sizes tested. This is consistent with the results

of experiment 3. However, it is interesting to note that for the Mahalanobis distance,

performance stayed relatively constant over this range on the Duplicate I dataset, and

saw a substantial decrease on the fafb dataset. This may be related to the observation in

section 5.3 that the Mahalanobis distance emphasises dimensions corresponding to lower-

ranked eigenvalues at the expense of those associated with higher-ranked eigenvalues.

Perlibakas (2004) conducted a study on the effectiveness of a large number of distance

functions, using a non-standard dataset of 423 subjects. Each distance function was

evaluated with various subspace sizes. The distances evaluated include the Manhattan

and Euclidean distances, as well as Yambor et al.’s pseudo-Mahalanobis formulation and

a novel function referred to as the “modified SSE-based distance”.

For all subspace sizes, the Euclidean and Manhattan distances gave very similar

accuracies, with the Manhattan outperforming the Euclidean by a small margin (less

than 1%) in each case. The modified SSE-based distance consistently performed more

poorly than either of the conventional metrics, by a margin of less than 2%. The pseudo-

Mahalanobis function was found to perform significantly better than any of the other three

distances, in some cases by as much as 5%.

The general pattern of performance between these distances is generally consistent

with our experiment 2, with the exception of the pseudo-Mahalanobis case. However, the

individual results differ noticeably even in the case of similarly-sized subspaces (254, com-

pared to 226 in experiment 2), being around 5% higher for the Manhattan distance, 10%

higher for the modified SSE-based distance, and 13% higher for the pseudo-Mahalanobis.

This appears to be due to the large difference in dataset size between the two exper-

iments. The results of our experiment 4 support this hypothesis, with the Manhattan

distance achieving an average accuracy within 1% of Perlibakas’s corresponding result
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when using a database size of 500 subjects.

Returning to the discrepancy in the results for the pseudo-Mahalanobis distance, it

is possible that it is due to differences in dataset composition. This is uncertain, however,

since the dataset in question is composed of an unspecified mixture of images drawn from

nine different databases, with different degrees of variation in illumination, pose, etc. As

such, the characteristics of the actual images used is not at all evident. However, this

hypothesis is supported by the fact that, as noted previously, our results for the pseudo-

Mahalanobis distance agree well with those of Yambor et al. (2002).

5.7.2 Other Techniques

As mentioned in section 5.7.1, Draper et al. (2003) have evaluated ICA-based recognition

techniques in comparison with the classical eigenface approach. Two ICA-based system

architectures were tested, each using two different distance measures. Architecture II

with the cosine distance was found to give the best results of the four configurations,

outperforming the best eigenface system on all datasets used.

In comparison with the results from our experiments, this system outperformed all

three systems on the FERET Duplicate I subset (experiment 5(a)), with an accuracy of

48.48%. On the fafb subset (experiment 3), performance was superior to the classical

eigenface system, but slightly weaker than the two probabilistic systems, at 82.26%.

Lades et al. (1993) proposed the DLA approach to object recognition, and evaluated

it on a dataset containing 88 individuals. The results obtained were 88% for a dataset

containing small (15◦) pose variation, and 84% for a dataset containing expression varia-

tion. It should be noted, though, that these datasets include non-face images, and much

of the error is due to faces being incorrectly discarded as non-faces. If the non-facial cases

are discarded, these results improve to 98% and 97%, respectively. These results are much

higher than those for similarly-sized datasets in our experiment 4, the best being 89.50%

for the MAP probabilistic system. However, it must be noted that the use of different

datasets may be responsible for a part of this large different in accuracies.

Wiskott et al. (1997) proposed EBGM, a refinement of the DLA technique. On a

250-subject subset of the FERET fafb dataset, the system achieved 98% accuracy, a large

improvement over the 85-90% accuracies seen for equal-sized datasets in our experiment 4.

The FERET evaluation included a system based on the EBGM technique. The

USC system gave very strong performance in the partially-automatic tests, achieving 95%

accuracy on the fafb subset, and 59% accuracy on the Duplicate I subset. For the fully-

automatic tests, the USC system achieved similarly high performance, attaining 94% ac-

curacy in the fafb case, and 58% accuracy in the Duplicate I case. These results are

dramatically higher than the results for the best-performing system in our experiments 3

and 5(a) – the MAP probabilistic system’s results being 84% and 30% respectively.

Another approach that was found to perform well in the FERET evaluation was that

of Linear Discriminant Analysis (LDA), a family of techniques including the Fisherfaces
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technique of Belhumeur et al. (1997). Three partially-automatic LDA-based systems were

evaluated. The MSU system’s accuracies on the fafb and Duplicate I subsets were 89% and

33%, respectively. The UMD ’96 system achieved accuracies of 84% and 31% respectively,

while the results for the UMD ’97 system were 96% and 47% respectively. For the fafb

subset, these results are all substantially better than those for the baseline eigenface system

(79%), while for the Duplicate I subset, only UMD ’97 outperforms the baseline system.

For the MSU and UMD ’97 systems, these results are significantly higher than those seen

in our own experiments. However, it is worth noting that the partially-automatic nature

of these systems will have contributed to their higher performance.

Wright et al. (2009) proposed the SRC technique, and evaluated it in comparison

with a number of other subspace-based approaches to recognition. Each system was eval-

uated on the 38-subject Extended Yale B database, and a 100-subject subset of the AR

database. The best configuration of the SRC approach achieved 98% accuracy on the

Extended Yale B dataset, and 95% on the AR dataset. In comparison, a classical eigen-

face recognition system using the Euclidean distance gave accuracies of 88% and 81%

respectively. This suggests that the SRC approach is superior to the classical eigenface

technique, but meaningful comparison with the probabilistic eigenface technique is difficult

in the absence of results on a common dataset.

Park et al. (2010) proposed an ageing modelling technique to compensate for age

variations between images. This technique was tested in conjunction with the commercial

FaceVACS face recognition software. Tests were conducted using album 1 of the MORPH

database, along with the FG-NET database, and the novel “BROWNS” dataset. On

MORPH album 1, an accuracy of 77% was achieved when using the ageing simulation

technique, compared to 66% for the FaceVACS system without ageing simulation. These

results compare favourably with the accuracies of 8–9% obtained by our eigenface systems

in experiment 5(c).
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CHAPTER 6

CONCLUSION

In this study, we have implemented and evaluated face recognition systems using the

classical and probabilistic eigenface techniques. These techniques have been evaluated on

a variety of different datasets. The results obtained were found to be broadly consistent

with those presented elsewhere in the literature.

In general, the eigenface-based techniques were found to perform reasonably well

when dealing with images captured under carefully-controlled conditions. In this context,

the probabilistic technique was found to consistently outperform the classical technique,

generally by a margin of around 5%. However, both techniques’ accuracies were found

to decrease markedly when operating on a dataset containing a range of different lighting

conditions. Similarly, very poor performance was observed in the case where subjects had

aged significantly between image capture sessions. In this case, the ML formulation of

the probabilistic technique continued to give higher accuracy than the classical technique,

while the MAP formulation performed worse.

The use of face localisation to eliminate background details was found to dramat-

ically improve the performance of both systems. However, the technique used for face

localisation is not perfect, and improvements in this area can be expected to further en-

hance system accuracy.

In evaluating the classical technique, various different distance metrics were consid-

ered. Of these, the Manhattan distance was found to give the best performance, outper-

forming the Euclidean and Mahalanobis distances, as well as the unconventional distance

functions of Yambor et al. (2002) and Perlibakas (2004). This finding is in agreement with

other results in the literature that make use of the same dataset, but may not generalise

to other datasets.

Another parameter that was investigated is the dimensionality of the subspace(s)

used for feature representation. For the classical technique, the use of a larger subspace

was found to improve performance significantly, up to a size sufficient to express 99% of

the variance seen in the training data. However, the probabilistic system appears to be

much less sensitive to this parameter – even when using very small subspaces (with a

variance fraction of only 50%), the resulting accuracy was within 1.5% of the overall best

result obtained in that experiment.
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Tests were also conducted to investigate the influence of dataset size on system

accuracy. It was found that, for a given recognition system, using a gallery containing a

larger number of subjects caused performance to decrease. This information proved useful

in comparing our results with those presented elsewhere in the literature, due to the wide

variety of datasets that have been used for evaluating face recognition systems.

6.1 Directions for Future Work

One possible direction for future work is to remedy the implementation shortcomings of

the systems used in this study. At present, the techniques used for preprocessing are rather

rudimentary, so performance can be expected to improve if more sophisticated methods

of face localisation and illumination normalisation are incorporated. Additionally, the

datasets used for training are currently small, and each is rather homogeneous in terms of

image conditions. It is expected that the use of a larger, more diverse dataset will improve

system accuracy (particularly on more challenging test datasets).

Another more challenging matter for further research is that of ageing. Clearly, an

unaugmented eigenface recognition system is not able to handle the challenge of recognising

individuals across age differences of multiple years. To deal with this problem, ageing

models such as that of Park et al. (2010) merit investigation. Such a mechanism can

be incorporated into an existing system, preprocessing an input image before comparison

with each gallery image.

Finally, it is worth investigating other face recognition techniques for purposes of

comparison, as there are a number of non-eigenface-based approaches that have shown

promising results. In the context of subspace-based recognition techniques, the SRC ap-

proach of Wright et al. (2009) is of particular interest. It would be interesting to observe

the results obtained with this technique on larger and more challenging datasets.
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