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ABSTRACT

A stratigraphic and structural study of the Archaean Pongola Sequence on the southeastern

Kaapvaal Craton centred on the area around the Klipwal Gold Mine is described. The

lower predominantly volcanic Nsuze Group is overlain with a gradational transition by the

upper clastic Mozaan Group in which six formations are recognized. The Sinqeni,

Ntombe, Thalu, Hlashana, Odwaleni and the Kulphiso Formations. The Sinqeni and

Hlashana Formations are predominantly arenaceous while the Ntombe and Kulphiso

Formations are mainly argillaceous. The Odwaleni Formation contains a diamictite which

is interpreted as a tillite, and is therefore the oldest glacial rock on record. The

stratigraphic position of the Kulphiso Formation is problematic. The Mozaan Group was

deposited in a deepening epeiric sea which was invaded periodically by storm generated

deposits. Dolerite and ultramafic dykes and sills of various ages are represented.

Three phases of deformation are recognized in the Klipwal area. Early compression from

the south-southeast initiated a major zone of bedding-parallel shear, the Izermijn shear

zone, along the Nsuze-Mozaan contact and an oblique ramp, the Klipwal shear zone, at

a higher stratigraphic level. An extensional phase caused reactivation of the Klipwal shear

zone and the development of a major low-angle normal fault, the Gu'nsteling fault, above

the Sinqeni Formation. The main phase of deformation, related to northeast-southwest

compression is the most complex and most widely developed. Early northwest-trending

subhorizontal upright folds were disrupted by contemporaneous north-striking dextral or

dextral reverse shearing and northwest-striking sinistral or sinistral normal shearing. The

obtuse relationship of these shear zones to the compression direction is probably the result

of reactivation of basement structures with similar orientations. Northwest-trending

folding continued during and after the shearing.

The structural styles and orientations observed in the Klipwal area are recognized

regionally in the main Pongola basin, highlighting the need for further detailed studies

before basin-wide correlations are made.
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CHAPTER 1: INTRODUCTION

OVERVIEW OF THE PONGOLA BASIN

The Pongola Sequence l constitutes an Archaean supracrustal succeSSIOn on the

southeastern Kaapvaal Craton and is exposed in northern Natal, southeastern Transvaal and

in southern Swaziland (Figure 1.1). It is of considerable scientific interest because it is

one of the earliest known cover sequences to have developed on a stabilized craton

(Beukes, 1973). It contains the oldest recognized examples of tidalites (Von Brunn, 1974;

Von Brunn and Mason, 1977), Superior type banded iron-formation (Beukes, 1973),

palaeosols (Matthews and Scharrer, 1967; Watchorn and Armstrong, 1980) and diamictite

(Von Brunn and Gold, 1993; this study). The sequence is subdivided into a lower

volcano-sedimentary Nsuze Group and an upper sedimentary Mozaan Group. The Nsuze -

Mozaan contact within the study area is gradational and is defined by the first appearance

of orthoquartzite.

Nsuze Group

The Nsuze Group consists of extensive mafic to felsic volcanic rocks with subordinate

sedimentary beds. The sedimentary component is largely restricted to a basal quartzite and

to the uppermost beds, comprising mostly reworked tuffaceous volcanic rocks.

Certain authors refer to the Pongola Sequence as a supergroup (e.g. Von Brunn and Hobday,
1976; Von Brunn and Mason, 1977; Watchom, 1978, 1980: Laskowsld and Kroner, 1985; Wronkiewicz and
Condie, 1989; Matthews, 1990; Beukes and Caimcross, 1991a) whereas others assign group status to it (e.g.
Button and Tyler, 1979; Button, 1981). Following the work ofHullter and Wilson (1988), Linstrom (1987) and
Hatfteld (1990) and in accordance with the recommendation ofSACS (1980), the tenn sequence is adopted here.
This tenn embraces major stratigraphic units of greater rank than group or supergroup traceable over large
areas of a colltinellt and bounded by unconfonllities of wide extellt (SACS, op. cit.).
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Figure 1.1: Simplified map showing the distribution of the Pongola Sequence (after Geol. Surv.

Swaziland. 1982; Wolmarans. 1988).
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An 8 m thick basal saprolite indicates that initial subaerial exposure and weathering of an

extensive area resulted in the formation of a palaeoregolith (Watchom and Armstrong,

1980). Braided streams draining to the south and southeast deposited immature clastic

sediments to form the - 500 m thick basal Nsuze quartzite (Hunter and Wilson, 1988).

Minor lava flows contemporaneous with this sedimentation preceded a major period of

volcanism, characterized by a complex interdigitation of lavas of variable composition

(ranging from basalt and andesite to rhyolite: Armstrong, 1980; Hunter and Wilson,

op.cit.; Hatfield, 1990). The absence of pillowed lavas negates a marine environment.

Magmatism associated with rifting is commonly alkaline, but the Nsuze rocks are

uniformly tholeiitic (Hunter and Wilson, op. cit.). No modem day analogue for the

environment of eruption is known (Armstrong et aI., 1986). The final stages of Nsuze

volcanism is characterized by a decrease in volcanic rocks (including pyroclastics) and a

concomitant increase in sedimentary rocks. The measured thickness of the Nsuze Group

east of Paulpietersburg is nearly 10 000 m (Armstrong, 1980).

The lower rart of the Nsuze Group in the Piet Retief area and in Swaziland (Figure 1.1),

comprises mainly felsic volcanic rocks (Hatfield, 1990). The upper part is dominated by

volcanic rocks of intermediate composition. These two volcanic rock types are separated

by a thin, but laterally persistent volcaniclastic unit.

In the White Mfolozi inlier, southeast of Vryheid, the Nsuze Group is only 2000 m thick

and is mostly made up of quartzitic sandstone. The southernmost Nsuze exposures are

found near Nkandla (south and west of Melmoth) where they attain a maximum thickness

of about 4000 m (Groenewald, 1984). The arenaceous and argillaceous sediments account

for approximately 3000 m here.
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Mozaan Group

The Mozaan Group is made up predominantly of arenaceous and argillaceous sedimentary

rocks. In the White Mfolozi inlier, there is a marked unconformity at the contact between

the Nsuze and Mozaan groups, where progressive overstep has eliminated approximately

1200 m of Nsuze stratigraphy.

The basal contact is gradational in the area east of Paulpietersburg. The transition is

marked by an upward decrease in pyroclastics and development of sandstones (Watchorn,

1978, 1980; Armstrong, 1980). The contact with the Mozaan Group is defined by the

first dominantly sedimentary horizon.

Initial deposition appears to have been the result of sedimentation on a braided alluvial

plain resembling the modem Platte River (Miall, 1977; Watchorn, 1979a). The overlying

sediments resemble progradational shelf sediments in a gently subsiding basin in which

some chemical precipitation was occurring (Watchorn, op. cit.). They are in turn overlain

by black massive or laminated mudstones with occasional intercalated sandstone interpreted

as high-tidal-flat deposits and storm deposits respectively. Sedimentation was terminated

by an episode of intermediate to felsic volcanism (Watchorn, 1980).

Structural Evolution

Two regional folding phases have been recognized in the main P~ngola basin (Watchorn,

1978; Matthews, 1991). The earlier northwesterly trending phase was followed by a

northeasterly oriented phase. The resulting fold interference led to the development of

perisynclinal fold structures. The structure in the eastern part of the main Pongola basin

has been influenced by several phases of granite intrusions (Matthews, 1985). Matthews

(1991) interpreted the western margin to be undeformed, except for a major fault system
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(his "Mahamba fault-belt" ; Matthews , 1990). Hatfield (1 990) studied its apparent 

northwestern extension to the east of Piet Retief. 

In the Nkandla area, the Nsuze beds are deformed by east-west trending folds and thrust 

faults (Matthews, 1990; Weilers, 1990). The southern margin of the Kaapvaal Craton is 

deformed by the ca 1000 Ma Namaqua-Natal tectonothermal event, which may have 

affected these beds (Groenewald , 1984; Figure 1.1). 

Geochronology 

The Nsuze Group rests nonconformably on the Lochiel granite (Visser et al ., 1947; 

Hunter , 1974) , dated at 3028 ± 14 Ma (Rb-Sr; Barton et al ., 1983) and 3 107 ± 6 Ma 

(U-Pb ; Kamo et aI. , 1990). The Nsuze lavas have yielded ages of 3090 ± 90 Ma (207 Pb-

206Pb ; Burger and Coertze, 1973) and 2940 + 22 Ma (U-Pb ; Hegner et al. , 1984). The 

minimum age of the Pongola Sequence is defined by the intrusive Usushwana Igneous 

Suite, dated at 287 1 ± 30 Ma (Sm-Nd; Hegner et al . • op. cit. ) and 281 3 ± 30 Ma (Rb­

Sr; Davies et al .• 1970). The age of the Pongola Sequence is therefore bracketed between 

28 13 and 3107 Ma. 

PREVIOUS WORK 

Previous work on the Pongola rocks south of Swaziland has concentrated chiefly on the 

depositional environments of the sedimentary rocks and on the geochemistry of the 

volcanic rocks (e.g . Von Brunn, 1974; Von Brunn and Hobday , 1976; Watchorn , 1978, 

1979a, 1980; Watchorn and Armstrong. 1980; Armstrong et aI., 1982, 1986; McLennan 

and Taylor, 1983 ; Eriksson and Soegaard, 1985 ; Laskowski and Kroner, 1985 ; 

Grandstaff et al. , 1986; Hunter and Wilson , 1988; Wronkiewiecz and Condie. 1987, 

1989; Dia et al., 1990). Attempts at establishing the structural evolution of the basin 
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have been made (Humphrey and Krige, 1931 ; Carter, 1964; Matthews, 1985, 1987,

1990; Hatfield, 1990).

Studies in the vicinity of the present investigation have included a geochemical analysis of

the Nsuze Group east of Paulpietersburg (Armstrong, 1980), a general geological study

of the area between the Pongola and Mozaan Rivers (Carter, 1964), a sedimentological

analysis of the Mozaan Group (Watchorn, 1978), a study of the gold mineralization

associated with the Klipwal shear zone (Russell, 1985), mapping projects (Mendonidis,

1979; Isherwood , 1979) and an economic investigation of the banded iron-formation

(Carney, 1984).

PRESENT STUDY

The present study was initiated to address a number of aspects of the geology of the

Pongola basin. The subdivisions of the Nsuze and Mozaan Groups are still contentious

with a number of formation schemes being described by various authors. The

establishment of detailed stratotype sections with palaeoenvironmental interpretations in

well-exposed areas is essential in order to characterize the regional variations more

precisely and to allow for intrabasinal correlations. A contribution towards the

achievement of this objective is aimed at in this study. Little consideration has been given

in the past to the effects of structural complications on observed stratigraphic sequences

as evidenced by the paucity of detailed structural studies. The recognition of extensive

low-angle thrusts and normal faults has considerable implications for the repetition and

elimination of stratigraphy.

The study area, which is situated in the vicinity of the Klipwal Gold Mine in the

southeastern Transvaal (Figure 1.1), lends itself to this type of study because of the good

exposure and the presence of a number of shear zones passing through it. The study area
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IS - 250 km2 and has a triangular shape with the southern boundary defined by the

Pongola River, the western side by the Nsuze - Mozaan contact and the northeast by the

access road to the Klipwal Gold Mine. The area is underlain mainly by the Mozaan Group

with small outliers of tillite of the Carboniferous Dwyka Group of the Karoo Sequence.

The study area is topographically rugged. Deep gorges are common, the most spectacular

of which is along the Pongola River. The Sinqeni Mountain rises -700 m above it to an

elevation of - 1200 m a.m.s.l. The extreme topography coupled with the underground

workings in the Klipwal Gold Mine offer good three-dimensional control on the structural

geometry.

This study forms part of an on-going research programme at the University of Natal,

Pietermaritzburg, into the Precambrian rocks of northern Natal, southeastern Transvaal and

Swaziland. A detailed stratigraphi.c and structural study of the area was made through the

compilation of lithological and structural maps (Maps 1 to 3 in the annexure) and

stratigraphic columns, the collection and analysis of structural orientation data, the

analyses of small- and large-scale structures in shear zones and the correlation of

stratigraphy across shear zones.

The area was mapped USing aerial photographs at a scale of 1:30 000. An aero­

sketchmaster was used to convert the field data to a scale of 1:50000 and to correct for

radial distortions. The more structurally complex areas were mapped using aerial

photographs at a scale of 1: 10 000. The various rock types were sampled for purposes

of microscopic identification of minerals and lithologies (Appendix I), and for geochemical

analyses of some of the intrusions as well as the mudstone and diamictite (Appendix 2).

Primary and secondary planar and linear structural elements were measured with a Brunton

compass and processed by computer to obtain vector statistics and stereographic

projections, which are presented as equal area lower hemisphere projections. Contouring

is at 5 % intervals, unless otherwise stated.
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CHAPTER 2: STRATIGRAPHY AND

SEDlMENTOLOGY

REGIONAL STRATIGRAPHY

A two-fold subdivision of the Pongola basin into northern and southern sub-basins has been

recognized (Groenewald, 1984). In the southern sub-basin, immediately north of the Natal

Mobile Belt, only the Nsuze Group is pre erved. It is lithologica11y somewhat different

from the Nsuze strata in the northern sub-basin. The southern inliers are characterized by

interbedded sedimentary and andesitic volcanic rocks, whereas the Nsuze Group to the

north comprises predominantly volcanic rocks with sedimentary rocks being developed

only at the base and at the top of the succession (Armstrong, 1980).

The malJ1 distribution of the Pongola Sequence in the northern sub-basin in the

southeastern Transvaal, northern Natal and southern Swaziland is found in the following

areas (Figure 2.1):

I. the main Pongola basin,

2. Mfolozi Area in northern Natal,

3. the Kubuta area in southern Swaziland,

4. Mahlangatsha area in outhem Swaziland, and

5. the vicinity of Amsterdam in the southeastern Transvaal.

The stratigraphic sequences in each of the e five areas is briefly summarized below.
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Main Pongola Basin

In the main basin, the Nsuze Group is made up of a - 10 000 m thick sequence of

andesitic and basaltic lavas (Armstrong, 1980). The uppermost unit in the Nsuze consists

of a banded siltstone which characteristically weathers to a reddish/pink colour. The

overlying basal Mozaan succession, the Sinqeni Formation, is widely distributed along the

western limits of the main basin. It consists of a very thick lower sandstone ( - 400 m),

a marker iron-formation, which is in turn overlain by a second upper sandstone unit. The

basal sandstone contains a polymict, matrix-supported conglomerate of variable thickness

up to 20 m near its base.

A - 900 m thick sequence of mudstone interbedded with subordinate sandstone, referred

to as the Ntombe Formation (SACS, 1980), overlies the Sinqeni Formation in the western

parts of the main basin. The succ~ing Thalu Formation comprises sandstone, mudstone

and ferruginous mudstone including a banded iron-formation. It is overlain by the

arenaceous Hlashana Formation.

In the central part of the main basin on both flanks of the intrusive Spekboom granite

(Figure 2.1) a sequence of thick sandstone, including conglomerate and an internal iron­

formation, may be correlated with the Sinqeni Formation (columns B and D in Figure

2.2). The underlying andalusite-bearing banded siltstone on the eastern side of the granite

has been referred to as the Mkuzane Formation while the overlying sandstone has been

called the Mkaya Formation (SACS, 1980; Beukes and Cairncross, 1991). On the west

side of the granite, in the Itala Game Reserve, the equivalent units were designated as the

Langfontein Formation. These three formations have been placed nearly two-thirds of the

way up the Mozaan stratigraphic column with the sandstone package being correlated with

the Hlashana Formation (SACS, 1980; Beukes and Cairncross, op. cil.). The Mkaya

Formation has a closer affinity with the Sinqeni Formation while the Mkuzane and

Langfontein Formations resemble the upper Nsuze Group.
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The uppermost formation in the study area is the Odwaleni Formation comprising

alternating sandstone and mudstone (some of which is ferruginous) and interbedded

diamictite.

The uppermost units within the mam Pongola basin comprise a senes of lavas and

volcaniclastics interbedded with sedimentary rocks. These volcanic rocks are found in the

closure of the Tobolsk syncline as well as to the east in inliers near Magudu (Figure 2.2)

and have been assigned to the upper parts of the Odwaleni Formation and the Nkoneni

Formation (SACS, 1980).

Mfolozi Area

The Mozaan Group rests unconf9rmably on the Nsuze Group here (Matthews, 1967).

SACS (1980) divided the Mozaan stratigraphy of the White Mfolozi inlier into the

Mandeva, Mpunga and Qwasha formations. Beukes and Cairncross (1991) considered the

Mandeva Formation to be the lateral equivalent of the SinEJeni Formation.

The volcanic rocks in the Mpongoza inlier probably represent the terminal volcanic event

of the Nsuze Group (Preston, 1987). A sandstone remnant 1 km west of the main inlier

was correlated with the Mozaan Group.

A lithological sequence identical to the Sinqeni Formation is preserved on the farm

Bevenson, west of the Mpongoza inlier (Figure 2.1). Because of the westerly dips, this

supports the correlation of the Mpongoza volcanic rocks with the Nsuze Group.

Correlation of lithologies in the other small inliers is constrained by lack of continuity of

exposure and marker beds.
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Kubuta Area

Beukes and Cairncross (1991) considered the basal sandstone from this area to belong to

the Sinqeni Formation, although no marker iron-formation is present (column F in Figure

2.2) nor is there any Nsuze Group present. A well developed conglomerate occurs in the

northernmost exposure to the northeast of the Siyalo shear zone (Figure 2.1). The only

similarity that the basal sandstone in the Kubuta area has with the Sinqeni Formation of

the type_area is its -500 m thickness (Hunter, 1961, 1963). It is 1ithologically more

similar to the Ntombe Formation. A thick argillaceous succession which is interlayered

with a number of relatively thin sandstone units overlies this basal sandstone. The

sequence is capped by an amygdaloidal basaltic lava (Hunter, 1963), which may correlate

with the Tobolsk lavas described by Beukes and Cairncross (op. cit.).

A basal sandstone overlain by mudstone and thick iron-formation crops out east of the

Siyalo shear zone in its southeastern extension. Although originally correlated with the

succession west of the shear zone (Hunter, 1961, 1963), the validity of this correlation is

questionable due to the greater abundance of sandstone in the eastern exposures. Neither

of the successions on either side of the Siyalo shear zone are comparable to the Sinqeni

Formation (columns E and F, Figure 2.2). The stratigraphy to the northeast of the Siyalo

shear zone is lithologically similar to Ntombe Formation.

Basaltic lavas with interbedded sandstone and andalusite schist occur to the southeast of

the Mooihoek pluton (Figure 2.1). The dominance of volcanic rocks led Hunter (1963)

to correlate this sequence with the Nsuze Group, but an upper Mozaan correlation on the

basis of their geochemical signatures which distinguish them from the basalt-andesite­

rhyolite assemblage of the Nsuze Group in the west is more likely.
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Mahlangatsba Area

The Mozaan succession in the Mahlangatsha area differs from the Kubuta area in that the

Mozaan Group comprises dominantly sandstone and conglomerate with only minor

intercalations of mudstone (Figure 2.2). Hunter (1963) mapped seven sandstone beds and

six thin interbedded mudstone units. The basal sequence comprises a thick sandstone with

thin interbeds of sandy mudstone, in which andalusite is locally present.

The southernmost Mahlangatsha exposures, east of Piet Retief, are separated from the

main Mahlangatsha exposure by two northwest-trending faults (Figure 2.2). The Mozaan

Group southwest of the southwestern fault resembles the stratigraphy described by Hatfield

(1990) in the area west of the Mahamba fault (column I, Figure 2.2). In both areas a - 10

.m thick basal arenite is overlain by andalusite schists which might be correlatives of the

banded siltstone unit of the upper Nsuze Group. Humphrey and Krige (1931) placed these

lithologies at the base of the Mozaan Group as did Hunter (1963). in Swaziland. The

andalusite schists are overlain by a thicker sandstone unit which does not contain an

interbedded iron-formation (Hatfield, op. elt.).

Amsterdam Area

The upper Nsuze Group units in the Amsterdam area are reported by Van Vuuren (1965,

cited in Weilers, 1990) to consist of andesitic and tholeiitic lavas. The Mozaan Group

consists of a thick sandstone unit with an interbedded iron-for~ation (the Madola Shale

Member (Humphrey and Krige, 1931». This succession resembles the Sinqeni Formation

of the type area, although banded siltstones are absent from the underlying Nsuze Group.
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STRATIGRAPHY OF THE STUDY AREA

Upper Nsuze Group

The Nsuze Group lithologies were not studied in detail as the contact between the Nsuze

and Mozaan Groups constituted the approximate western boundary of the study area. They

are however duplicated by shearing within the study area. Detailed work on this group

to the west was carried out by Armstrong (1980).

The uppermost - 400 m are mainly reworked volcanic tuffs marking a transition from the

dominantly volcanic nature of the lower Nsuze Group to the sedimentary character of the

Mozaan Group.

.The lowest Nsuze unit in the area is an andesitic lava containing amygdaloidal layers

(Figure 2.3). It is overlain with a sharp contact by a very dark, fine grained, 40 m thick

sandstone unit characterized by planar cross-bedding and plane bedding. Individual beds

are up to 40 cm thick. Within this sandstone unit are two polymict clast-supported

conglomerates consisting largely of volcanic clasts (Figure 2.4). Clasts are elongated and

2-20 cm in length. The upper contact of the lower conglomerate is irregular due to

loading. The upper conglomerate is more mature in character and is mainly clast

supported. These two conglomerates are best developed south of the Pongola River

becoming less well developed further northwards on the farms Vergenoegheid and Altona.

The overlying sandstone contains rare clasts similar to those in the conglomerates.

The uppermost Nsuze lithology is a - 40 m thick banded siltstone made up of laterally

continuous 1-3 cm thick alternating light and dark laminations.' Micro-cross laminations

are locally observed. The coarser-grained lighter bands have a sharp basal contact but

grade up into the darker ones. The siltstone consists mostly of very fine-grained quartz,

with the larger quartz grains displaying a high degree of rounding and sphericity. A

greenschist facies metamorphism is indicated by the presence of biotite, 'muscovite and

chlorite.
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16



Sedimentological Interpretation

The andesitic lavas near the top of the Nsuze Group represent the penultimate stage of

Nsuze volcanism. Lavas were extruded subaerially (Armstrong, 1980) and covered vast

areas. Thin, impersistent, amygdaloidal lava flows indicate that only minor amounts of

gas-charged magma were extruded during the waning phases of volcanism.

The overlying volcano-sedimentary facies represent deposition during the terminal phase.

The dark Nsuze sandstone possibly represents the reworking of eroded iron-rich volcanics.

This sediment was then reworked by wave action in a shoreface setting resulting in the

development of cross-bedded and evenly laminated fine-grained sandstone.

The conglomerates were interpreted by Armstrong (1980) as laharic breccias (i.e. water­

laid volcanic breccias and volcanic breccias). Lapidus (1990, page 316) defines a lahar

as "a destructive landslide or mudflow of hot volcaniclastic material on the flanks of a

volcano, formed when water from any source combines with the hot volcanic debris and

slides downward, under its own weight, resulting in poorly stratified volcaniclastic beds".

The source of the water may have been from torrential downpours of rain, rapidly melted

ice or snow from subglacial eruptions, or from the ejection of water from a crater lake.

The poor sorting of the conglomerate, along with the large variation in clast size, suggests

a debris flow rather than a fluvial origin. However, the high degree of rounding of the

clasts implies that the debris was transported over a great distance. The lack of bedding

suggests that it was dumped rapidly in an aqueous environment (Figure 2.5). Given the

appropriate submarine topography, volcaniclastic gravity-flows may move over very long

distances without much admixture of extraneous sediment. A modem example of the

above is given by the Roseau ash debris-flow which crossed the Grenada Basin over a

distance in excess of 250 km (Carey and Sigurdsson, 1980; cited in Heinrichs, 1984).
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Figure 2.5: Diagrammatic model of volcanic1astic gravity-flows generated by a high-discharge

phreatomagmatic eruption (modified after Heinrichs, 1984). Den ity is abbreviated as d.

Armstrong (1980) reported accretionary lapilli tuffs on Roodewal, some 15 km south of

the Pongola River, which provide valuable clues as to the depositional environment during

accumulation of the uppermost Nsuze units;

L they are related to explosive volcanism and deposited from the aIr

(Heinrichs, 1984);

2. the lapilli may be carried in suspension by an aerosol, which is defined by

Lapidus (1990, page 10) as a colloidal system in which the dispersion

medium is a gas, and the dispersed phase consists of liquid droplets or solid

particles. An extremely low aerosol viscosity allows this suspension to be

spread very far from the eruptive vent. However, any aerosol should tend

towards an isotropic expansion (i.e. horizontally as well as vertically) and
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this would result in a rapid deposition of the suspended particles (Tazieff,

1970);

3. they are believed to form through the accretion of ash and dust by

condensed water in a moisture-rich eruption column. The nucleus may be

a solid particle or a condensing water droplet. Accretionary lapilli may be

produced by rain flushing through the eruption column or the ash cloud

accompanying a pyroclastic flow, or result from a phreatomagmatic

eruption (Lapidus, 1990);

4. according to Moore and Peck (1962), it is likely that such deposits

accumulate within a few kilometres of the vent, and that the vent was above

water or in very shallow water during eruption.

The model proposed by Armstrong (1980, based on Moore and Peck, 1962) ties in with

the envisaged environment of deposition for the banded siltstone in the study area. These

fine-grained deposits may have been generated by explosive volcanic activity as evidenced

by the lapilli. Accumulation took place some distance from the vent (inferred from the

lack of accretionary lapilli). Collinson and Thompson (1989) suggested that volcanic ash

and dust can be transported great distances by air currents, and that bed thickness is

controlled by rainfall and wind patterns rather than distance from the volcanic vent. Each

layer may thus represent a renewed episode of vOlcanism, resulting from extrusion of ash

from the vent, transport by wind currents, and deposition within a shallow aquatic

environment.

The sharp base and clear definition of the coarser-grained layers suggest that they

represent relatively sudden events superimposed upon the background of quieter, more

constant sedimentation of the finer grained, lighter layers. The internal grading and

gradational tops of the coarser-grained layers indicates settling of the suspended load. The

bases of the coarser layers are sometimes slightly irregular with a relief of a few

millimetres.
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In summary, the upper units of the Nsuze Group mark the termination of Nsuze

volcanism. This late stage was characterized by explosive volcanic activity accompanied

by the deposition of abundant air-fall and pyroclastic material (Figure 2.6). Subsidence,

in response to the accumulation of great volumes of lava, resulted in the formation of

depressions within the Pongola depository which accumulated sediments from pyroclastic

ejecta and erosion of the surrounding volcanic terrane (Armstrong, 1980).

v

v
vv

v
v

v

v V
Clast

supported

Andesitlc lavas
Amygdaloldal

lavas

Figure 2.6: Diagrammatic model showing the accumulation of the upper Nsuze volcano-sediments.

Coarse, pyroclastic debris and talus breccia and rubble accumulated on the unstable slopes

of the volcanoes. Movement of these deposits was initiated by tremors aided by the

addition of water, loss of cohesion and gravity (Armstrong, 1980). The coarse-grained

pyroclastic flows moved downslope and were dumped rapidly in shallow aquatic

environments which were continually undergoing subsidence.
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When the magma chambers were exhausted, volcanic activity ceased, but wind blown ash

and dust continued to accumulate in the shallow depressions, where it formed graded,

laterally persistent beds which were reworked locally by weak, possibly wind generated,

currents. A period of quiescence followed the major episode of Nsuze voicanism during

which time the depository deepened due to continued subsidence. A large, shallow basin,

possibly an epeiric sea, developed. It was fed by fluvial systems which brought in vast

amounts of clastic material, initiating the accumulation of the Mozaan Group sediments.

Mozaan Group

The stratigraphic subdivisions that have been applied to the Mozaan Group are confusing

with different terminology being adopted for the various packages identified in the field.

According to SACS (1980), there are seven subdivisions of the Mozaan Group in the main

Pongola basin while Beukes and Caimcross (1991) propose nine different formations in

the same area (Figure 2.7). An attempt is made in this work to correlate the stratigraphic

units of the study area with the formations described in the literature. Unfortunately recent

previous attempts to establish stratigraphic sequences (Watchom, 1978; SACS, op. cit.;

Beukes and Caimcross, op. cit.) have paid little attention to the structure of the Pongola

Sequence regarding it as relatively undeformed. The presence of a number of major inter­

and intraformational shear zones eliminating or duplicating stratigraphy is demonstrated

in this study.

The stratigraphy of the Mozaan Group in the study area has been divided into six

Formations; these are the Sinqeni, Ntombe, Thalu, Hlashana, Odwaleni and Kulphiso

Formations (Map lA and Figure 2.7). All these names were coined by SACS (1980) with

the exception of the Kulphiso Formation which gets its name from a prominent mountain

where the formation is located.
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Pongola basin.

Comparative stratigraphic columns between this study and previous workers for the main

Stratigraphic correlations within the Pongola basin are constrained by structural

complications. Only two stratigraphic units can be used for correlation over long

distances, namely the sediments comprising banded siltstones at the top of the Nsuze

Group along with the succeeding 650 m thick Sinqeni Formation which includes a basal

conglomerate and an interbedded marker iron-formation, and the basaltic lavas of the

Nkoneni Formation (SACS, 1980) at or near the preserved top of the Mozaan Group

(Figure 2.2). The latter formation is not exposed in the study area.
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No major unconformities are recognized in the area, although the complete succession is

not preserved. Loss of ground across several bedding-parallel shear zones may have

occurred.

The Mozaan Group in the study area is made up entirely of sedimentary lithologies,

comprising predominantly mudstone and sandstone with lesser amounts of conglomerate,

iron-formation and diamictite. They are discussed below in order of decreasing

abundance. Basaltic lavas occur at the top of the succession beyond the limits of the study

area (Figure 2.2).

Mudstone - The mudstone is extremely fine-grained and consists mostly of quartz

with lesser amounts of biotite, muscovite and carbonate. Some samples contain a high

percentage (40-50%) of opaque minerals.

Sandstone - There is a considerable variation in the types of sandstone from

quartz-arenite to arkosic sandstone. Grain sizes vary from very fine-grained to very

coarse-grained.

The basal quart:z;-arenite, which is also the thickest one, displays a high degree of

recrystallization. In particular the lowest parts are locally totally recrystallized to the

extent that the rock here consists almost entirely of quartz. The original grain shapes are

destroyed with the exception of chert grains where the original, well-rounded shape can

still be observed. The texture within this sandstone is isogranular and triple junctions are

common. Locally muscovite, biotite and chlorite are present and the matrix may be

extensively sericitized.

Iron-formation - The iron-formation is associated with mudstone with the

exception of the lower marker iron-formation which is situated within the Sinqeni

Formation. The iron-formation is fine-grained and the units are largely magnetite-rich and
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can be banded, with individual bands being made up of chert, jaspilite and iron-oxides

(predominantly magnetite). Only minor amounts of quartz can be discerned (in thin

section), while the major constituents are opaque minerals.

Diamictite - The diamictite is a black, homogeneous, massive rock containing

sparsely dispersed clasts « 5 % by volume). Clast sizes range from 2 mm granules to

boulders up to 75 cm in diameter. Clast shapes are angular to sub-rounded and the clasts

are randomly oriented.

The matrix is extremely fine-grained and dark and contains minute opaque ferruginous

grains. The results of X-ray diffraction analysis of two samples are given below:

DMSI DMS8

Magnetite 15 20

Grossular 4 2

Plagioclase 6 3

K-feldspar 0 8

Quartz 34 28

Chlorite 22 27

Illite 11 6

2.91A 0 6

12.11A --.8... ~

100% 100%

Quartz, unaltered feldspar and lithic fragments in the matrix are sub-angular to rounded.

Sand-sized grains display high sphericity, whereas the finer-grained particles are angular.

Conglomerate - The clasts within the conglomerates consist mostly of vein-quartz

and chert, the latter consisting of black, white and banded varieties. The rock is polymict

and typically matrix-supported but locally clast-supported. The clasts comprise from 20
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to 50% of the rock but sometimes up to 80%. The matrix is poorly sorted and immature.

The thickest (5-10 m) and best developed conglomerate is found several metres above the

base of the Mozaan Group and is made up predominantly of vein-quartz clasts. The

conglomerates higher up in the succession are much thinner and consist largely of chert

clasts which are more angular than the quartz-vein clasts in the basal unit.

Sinqeni Fonnation

The transition between the Nsuze and Mozaan Groups is defined by an upward decrease

in pyroclastics and reworked volcanic material and an increase in sandstone. Evidence for

a regional unconformity between the Nsuze and Mozaan Groups as reported by Beukes and

Caimcross (1991) could not be confirmed. The - 650 m thick Sinqeni Formation is

characterized by two major sand~tone units separated by an 80 m thick iron-formation

(Figure 2.8A) and gets its name from the prominent Sinqeni mountain in the study area.

The basal orthoquartzite is upward fining, although subordinate arkoses are present

towards its top. It is about 400 m thick and is typically medium- to coarse-grained but

locally very" coarse-grained to granular. The original well-rounded grain-shapes are

sometimes preserved.

Prominent conglomerate lenses are developed between 5 and 30 m above its base. They

vary in thickness from a few centimetres to 20 m (as for example on the farm.

Nooitverwacht). As many as five or six thin conglomerate units may be developed over

a total thickness of about 25 to 30 m as can be seen at Altona. The conglomerates are not

persistent as they tend to lens out laterally. The long-axes of clasts are typically aligned

north-south in the plane of bedding. Imbrication is locally developed. The conglomerate

lenses contain erosive bases and are commonly upward fining.
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Internal bedding structures in the orthoquartzite consist of planar cross-beds, herringbone

cross-stratification (Figure 2.9), and less often trough cross-beds. Planar cross-bedding,

which may be bidirectional, is usually graded and is associated with coarse-grained

sediments. The orthoquartzite becomes very coarse-grained towards its top.

Figure 2.9: Herringbone cross bedding in the basal Sinqeni Formation sandstone (Sinqeni mountain).

The marker iron-formation (MIF; equated with the Izermijn Member of Beukes and

Cairncross (1991)), has a thickness of 60 to 80 m. It lies with an abrupt contact on the

basal orthoquartzite, but gradational where arkose is developed. Gradation involves an

upward fining (over a thickness of no more than 5 m) from arkose through siltstone and

mudstone to ferruginous mudstone and finally into iron-formation.

The marker iron-formation may grade along strike into a banded iron-formation containing

soft-sediment deformational structures. The banded iron-formation is made up of

laminated jaspi1ite and iron-oxides; the latter predominantly comprising magnetite. The
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magnetite-rich layers have a sharp lower contact, but grade upward into jaspilite.

Individual bands are 0.5 to 3 cm thick. Locally, the unit is non-magnetic, indicating a

higher content of haematite.

The overlying sandstone unit, which is 170 m thick, is a medium- to coarse-grained

quartz-wacke. It is poorly sorted and granular with all grains being less than 5 mm in

diameter. Oligomictic conglomerates consisting almost entirely of white vein quartz with

subordinate white and black chert pebbles are common. The pebbles are angular to sub­

rounded and vary in size from 10 to 25 mm. They are typically concentrated in layers up

to 5 cm in thickness. Randomly dispersed clasts are often found in the enclosing quartz­

wacke sometimes on the avalanche faces of planar foresets. Coarse-grained conglomerates

up to 50 cm thick and containing of well rounded quartz pebbles up to 8 mm in diameter,

are locally developed.

Sedimentary structures include planar and trough cross-bedding typically with pebble lag

deposits. Ripples marks are uncommon, but where present, are usually symmetrical.

Locally coarser-grained sediments are preserved in the troughs. Evidence for current

reversals is suggested by herringbone cross-stratification. Prominent reactivation surfaces

cut across bedding.

Palaeocurrent indicators within the Sinqeni Formation display a prominent southerly trend

with a less well developed trend towards the north-northeast (Figure 2.10).
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Associated mineralization

Basal Conglomerates

Prospecting of the conglomerates for gold has occurred sporadically since the end of the

last century as evidenced by prospecting pits on the farms Altona, Gunsteling and

Vergenoegheid and sample sites on the farm Nooitverwacht. Since the mid-1960's, and

particularly in the last few years, several mining companies have analysed the

conglomerates for gold. These conglomerates resemble the Witwatersrand banket, but no

economic concentrations of gold have been located to date.

Marker Iron-Formation

Gold mineralization occurs in the marker iron-formation together with disseminated pyrite

and is commonly associated with brittle fault zones (Figure 2.11). An attempt at mining

this gold between the Sinqeni and Delft shear zones was made in the early-1980's by the

Lonrho Corporation. The mine (Altona mine), was abandoned due to the structural

complexities and the fractured nature of the iron-formation in the hanging wall (J .C.

McKay, pers. comm., 1991).
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Figure 2.11A: Pyrite in small-scale listric faults in the marker iron-formation. Sample collected from the

ore dump at the Altona Mine.

Figure 2.118: Disseminated pynte in the marker iron-formation. Sample colb:ted from the ore dump

at the Altona Mine.
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Ntombe Fonnation

The - 900 m thick Ntombe Formation overlies the Sinqeni Formation and is named after

the Ntombe stream to the south of the Pongola River. This formation is composed of

ferruginous and non-ferruginous mudstone and siltstone (Figure 2.8A).

The lower mudstone is medium- to fine-grained and ferruginous, and has a banded

appearance due to the presence of alternating ferruginous and non-ferruginous beds which

have a maximum thickness of 30 cm. Small symmetrical ripple marks, with a wavelength

less than 1 cm are developed in the mudstone (Figure 2.12). Interbedded with the

ferruginous mudstone are graded lenses of siltstone. Locally lensoid pebble lag deposits

(1-3 cm thick), consisting of well rounded vein quartz and chert pebbles up to I cm in

diameter, are associated with the siltstone.

Figure 2.12: Small-scale symmetrical ripple marks in the Ntombe Formation (Duduka valley).
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The ferruginous mudstone is gradationally overlain by a 15 m thick siltstone exhibiting

delicate plane-lamination and planar cross-lamination which grades upwards into a finely

laminated 140 m thick mudstone. This siltstone-mudstone cycle is repeated. The siltstone

is also about 15 m thick but differs from the lower one in that it is characterized by

contorted bedding. An overlying ferruginous mudstone is - 50 m thick and locally

displays well-developed banding. The iron content diminishes as the unit grades into

another overlying mudstone. This mudstone is relatively thick (500 m) and is generally

very fine-grained and finely laminated. A number of fine- to medium-grained sandstone

lenses, 10 to 15 cm thick, and two ferruginous mudstone interbeds are present in the lower

portion. The latter are similar in character to the lower ferruginous mudstone.

The combined Sinqeni and Ntombe Formations make up an upward fining succession, with

arenites dominating the lower third and argillaceous sediments the upper portion.

Thalu Fonnation

The Thalu formation is some 600 m thick and is characterized by alternating mudstone,

ferruginous mudstone and sandstone with a near basal banded iron-formation. It

commences with a moderately mature 50 m thick sandstone characterized by 20 to 30 cm

thick beds that are plane-bedded and planar cross-bedded. The sandstone grades up into

a fine-grained laminated mudstone, which in turn grades into a very fine-grained banded

iron-formation (BIF; Figure 2.8A). The BIF comprises rhythmically interlaminated iron­

oxide (magnetite and haematite) and grey chert or jasper. Pods of replacement chert

commonly occur in the silica-rich laminae. Micro-laminations in this chert continue across

the pods. Individual beds range in thickness from 2 mm to 3 cm. Irregular contortions

of bedding are attributed to soft sediment slumping (Figure 2.13). This BIF can be

correlated with the Scots Hill Member of Beukes and Cairncross (1991; Figure 2.7).
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A bedding-parallel strike-slip shear zone, the Nkolotsheni shear zone, is situated above the

BIF. The upper part of the Thalu Formation and a thick basal sandstone of the overlying

Hlashana Formation appear to be tectonically duplicated by the Bumbeni shear zone, a

splay of the Nkolotsheni shear zone.

Figure 2.13:

farm).

Contorted bedding within the banded iron-formation of the Thalu Formation (Ycrgenoegheid

The two units above the Nkolotsheni shear zone are both upward coarsening cycles with

a mudstone grading upward through a black iron-rich mudstone into a poorly sorted

sandstone. The mudstone is horizontally bedded and commonly contains lenses of

sandstone 1-20 cm thick. Flat topped ripple marks frequently occur within the mudstone.

Within the lower iron-rich mudstone is an approximately 1 m thick iron-poor mudstone

which locally contains sandstone and mudstone clasts up to 5 cm in size. The two

sandstones are generally fine-grained and commonly contain angular clasts of black chert

with their long axes lying in the bedding plane. Where the original sedimentary structures

are not obscured, planar cross-bedding, graded plane-bedding, flat topped ripple marks and

poor sorting are observed.
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Associated iron ore deposits

The largest concentration of iron ore in the study area is located within the SIF of the

Thalu Formation. In a viability study carried out by ISCOR (Carney, 1984) the iron

content was quoted as being 38 wt% and therefore not of economic grade. Other

ferruginous shales are not as iron-rich as the SIF and were not considered as potential

economic deposits.

Hlashana Fonnation

The - 400 m thick Hlashana Formation is dominated by sandstone and siltstone and is an

upward coarsening succession (Figure 2.8B). A structureless mudstone at its base grades

up into a fine grained sandstone. In this transitional zone lenses of sandstone 5-20 cm

thick commonly occur as drapes (Figure 2.14). Occasionally clast-supported conglomerate

beds are present. The constituent pebbles are 5-10 mm in size, well-rounded and well­

sorted, and consist of black and white chert. These conglomerates comprise laterally

extensive lensoid beds that can be traced for hundreds of metres.

The sandstone is overlain by a 70 m thick medium-grained orthoquartzite that does not

contain any internal conglomerate beds. This unit is in turn overlain by a sequence

consisting of a 30 m thick siltstone, a 40 m thick sandstone, a 100 m thick siltstone and

a 150 m thick sandstone. The latter sandstone is fine- to medium-grained, well-sorted,

very mature and is characterized by plane-bedding and angular and asymptotically-based

planar cross-bedding (Figure 2.15). The planar cross-bedding is often graded (Figure

2.16), and in some cases, recumbent foresets are developed (Figure 2.17). Trough cross­

bedding is rare (Figure 2.18). Ripples, including interference and flat topped bedforms,

are common and range in amplitude from about 5 mm to 4 cm. Although palaeocurrent

direction is predominantly southward, there is abundant evidence for variable flow
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direction and current reversals (Figures 2.10 and 2.15). Dewatering structures become

common towards the top of the sequence.

Figure 2.14: Sandstone drapes at a mudstone/sandstone contact in the Hlashana Formation.

Figure 2.15: Plane bedding and asymptotically-based planar cross-bedding showing current reversals in

the Hlashana Formation (Madaga stream).
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Figure 2.16:

Figure 2.17:

Graded fore ets in sandstone of the Hlashana Formation (Madaga valley).

Recumbent foresets in sandstone of the Hlashana Formation (Bumbeni valley).
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Figure 2.18:

valley).

Plan view of well-developed trough cross-bedding in the Hlashana Formation (Bumbeni

Conglomerates (up to 20 cm in thickness) and pebble sheets (Figure 2.19) are developed

throughout the sandstone facies. Clasts are angular, composed of black and white chert

and sometimes banded chert and vein quartz as well, and are up to 5 cm in diameter. The

matrix is usually poorly sorted and consists predominantly of sub-rounded quartz grains.

Imbrication of clasts supports a southward transport direction.

The siltstone in the Hlashana Formation is immature, poorly sorted and contains sandstone,

conglomerate and mudstone interbeds. The conglomerates are commonly made up of

angular rip-up clasts of mudstone. Sedimentary structures are similar to those in the

sandstone. Asymmetric ripples are common and locally develop into mega-ripples with

amplitudes of 20 cm and wavelengths of 45 cm.
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Figure 2.19:

intersection.

Pebble sheet in the Hlashana Formation near the Pongola River - Bumbeni Stream

Odwaleni Fonnation

The Odwaleni Formation is some 900 m thick (Figure 2.8B) and is distinguished from the

underlying Hlashana Formation by interbedding of mudstone, ferruginous mudstone and

diamictite with sandstone. There is an abrupt upward transition from the underlying

Hlashana Formation into the Odwaleni Formation, the base of which is marked by a 40

m thick structureless ferruginous mudstone. This grades upwards into a feldspathic quartz­

wacke overlain in turn by a finely laminated siltstone and a second quartz-wacke. Five

to 8 cm thick pebble lag deposits occur within the quartz-wacke. A 10 to 12 m thick

diamictite bed rests disconformably on the second 9uartz-wacke. It is massive and

contains only small clasts no larger than 2 cm in diameter. The overlying 20 m thick
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mudstone is overlain with a sharp contact by a quartz-wacke which contains an

intraformational iron-formation approximately two-thirds of the way up. This 30 m

sandstone - iron-formation assemblage constitutes a useful marker in that it is easily

recognised, and can be mapped along strike for several kilometres in the footwall as well

as in the hanging wall of the Klipwal shear zone. The sandstone is characterized by plane­

bedding and planar cross-bedding with beds up to 75 cm in thickness. Soft sediment

deformation is common and is manifested by dewatering, dish, and ball and pillow

structures (Figure 2.20).

The overlying 50 m thick stratified mudstone displaying flame and ball and pillow

structures underlies an 80 m thick indurated, black diamictite. Clast rock types are very

diverse being made up of quartzite, vein quartz, chert, banded iron-formation, mudstone,

gneiss (Figure 2.21), granite and volcanic rock. The clasts range in size from less than

1 cm to about 75 cm in diameter. They are randomly dispersed and show little preferred

orientation, except for a weakly developed parallelism with faint horizontal stratification.

Some faceted and striated clasts were observed (Figure 2.22). The diamictite differs from

all rudites in the Pongola basin in that they display an exceptional diversity in clast size

and composition.

The diamictite is overlain by a 30 m thick sandstone, which in turn is overlain by a 40 m

thick mudstone and another 15 m thick sandstone. The lower sandstone displays soft

sedimentation dewatering features and load structures that extend into the subjacent

diamictite (Figure 2.23).
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Figure 2.21: Gneiss clast in diamictite of the Odwaleni Fonnation (Madaga Stream).

Figure 2.22: Striated clast set in diamictite within the Odwaleni Fonnation (Mageza stream).
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Figure 2.23:

Stream).

Load casting of sandsto~e into subjacent diamictite of the Odwaleni Formation (Mageza

The upper sandstone is medium-grained and plane-bedded. It is finely "laminated and

contains rip-up clasts (up to 5 cm long) near its base. Double crested ripples are

occasionally developed (Figure 2.24). At higher levels it becomes fine-grained, locally

structureless and grades up into a mudstone which becomes ferruginous upwards. This

is overlain by two massive diamictites, with clasts up to 2 cm, that both grade up into

laminated mudstone. The top of the formation is defined by two quartz-arenites, each

overlain by mudstone. The lower sandstone has planar cross-beds, ranging in thickness

from 1-40 cm, which indicate southward palaeocurrent directions. Symmetrical ripple

marks with wavelengths less than 1 cm are developed. Immediately above the lower

sandstone-mudstone contact are lensoid beds of sandstone less than 10 cm thick that

become progressively thinner and less well-defined upwards.
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Figure 2.24: Double crested ripples in sandstone of the Odwaleni Formation (Namkhuzwa valley).

An upward fining quartz-arenite overlies the mudstone with a sharply defined contact.

Near its base, the sandstone contains pebble sheets with grains 0.5 to 1 cm in size. Higher

up in the sequence symmetrical ripples become common. The sandstone grades upwards

into a mudstone, locally containing iron-rich units. The latter constitute the topmost

lithology of in the formation.

Kulphiso Fonnation

The Kulphiso Formation is located in the hanging wall of the Gunsteling normal fault and

is best exposed on Prudentie (Map lA). It consists of alternating sandstone, mudstone,

ferruginous mudstone and a banded iron-formation near its base. The stratigraphic

position of this - 800 m thick succession (Figure 2.25) is uncertain. Its constituent units
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cannot be matched with those of the Ntombe Formation. It does however have similarities

with the upper parts of the Ntombe Formation and the lower units within the Thalu

Formation.
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The Kulphiso Formation is regarded here as a separate entity of uncertain stratigraphic

position, either above the Odwaleni Formation if the displacement on the Gunsteling fault

is large, or equivalent to the Ntombe Formation if small. The Kulphiso Formation is

unlike the other Mozaan formations in that it comprises a higher proportion of argillaceous

sedimentary rocks.

The lowest mappable unit is a horizontally laminated mudstone that is at least 140 m thick.

Interlayered siltstone marks the gradational contact with an overlying sandstone. The

sandstone varies in thickness between 30 and 70 m. Discontinuous sandstone beds about

1 m thick are developed near the base of the overlying 110 m thick mudstone. The

mudstone is characterized by fine laminations, graded bedding, micro-cross-lamination,

water escape structures (Figure 2.26), rip-up clasts and clastic dykes (Figure 2.27). It is

locally magnetic and banded iron-formation is found near the top.

Figure 2.26: Laminated mudstone which locally displays dewatering structures found in the Kulphiso

Formation (Mkhuzwa valley).
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Figure 2.27: Micro-cross laminated mudstone intruded by a clastic dyke in the Kulphiso Formation

(Mvumangwe stream).

A 35 m thick horizontally laminated siltstone separates this mudstone from a 160 m thick

overlying one. Locally flame structures disrupt the alternating arenaceous and argillaceous

laminations in the siltstone, and on a small scale, reactivation surfaces are developed. The

upper mudstone is partly ferruginous.

The overlying sandstone varies in thickness from 20 to 40 m. Individual beds are - 30

cm in thickness and contain bimodal planar cross-beds and plane-beds. The medium­

grained quartz-wacke passes unconformably up into a quartz-arenite locally containing

coarse-grained beds with well rounded clasts. Overlying the sandstone is a mudstone.

Classic mega-ripples, with amplitudes of 20 cm and wav~lengths of 100 cm, are developed

at the top of the overlying sandstone (Figure 2.28).
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Figure 2.28A: Mega-ripples in the Kulphiso Formation to the west of Sinqeni mountain alongside the

Pongola river.

Figure 2.28B: Oblique view of mega-ripples in the Kulphiso Formation.
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The formation is capped by a 150 m thick mudstone succession, containing sandstone

interbeds up to 10 cm thick and two iron-rich units. This grades up into a 15 m thick

siltstone with thin (5-20 cm) beds of quartz-wacke.

Sedimentological Interpretation

Following the final phases of Nsuze volcanism, the Pongola depository is believed to have

undergone substantial subsidence with the development of a broad, relatively shallow,

epeiric sea which covered an extensive area (Figure 2.29).

EPICONTlNENTAL.
IEPEIRICI

SEA

o km

m~OO
300

Figure 2.29:

Boggs, 1987).

Diagrammatic model distinguishing between epicontinental and pericontinental seas (after

There are no truly representative modern analogues for an epeiric sea, although the Baltic

Sea, Yellow Sea, Bering Sea and Hudson Bay have been proposed as possible modern

counterparts (Klein, 1982; Nio and Nelson, 1982; Fraser, 1989). Shallow marine models

are based on pericontinental sea environments (Heckel, 1972; Fraser, op. cit.). It is

assumed that similar sedimentological processes operate on continental shelves as they did

in epeiric seas (Boggs, 1987), but the similarities of, and the differences between these two

environments are not yet completely understood.
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Epeiric seas differ from their modem counterparts chiefly in their broad lateral extent with

a corresponding low gradient, and partial or complete isolation from deep oceanic basins.

These factors, in turn, probably imposed major constraints on the processes which

operated in the shallow waters of such epeiric seas, in that the introduction of wave-, tide­

or climatically-induced currents from any deep marine basins into the shallow marine

environment must have, -to a degree at least, been prevented (Fraser, 1989).

The shallow depths and gradients in epeiric seas could extend the friction-dominated zone

much farther offshore than present-day marginal seas. As a result of the dominance of

these frictional forces, it is likely that the energy of most waves would be dissipated over

broad areas of the basin and would have little effect on the substrate. The nearly flat

gradients in epeiric seas meant that initial rates of progradation were faster than those

occurring in marginal seas, and the volumes of sediment needed to maintain a constant rate

of progradation did not need to iJ:lcrease geometrically. The r.esult of low gradients,

therefore, is that depositional systems can cover significantly wider areas than those on

modem shelves. This effect is enhanced by the reduced ability of marine processes in

epeiric seas to redistribute incoming sediment (Fraser, 1989).

According to Swift et al. (1971), the shelf is subjected mainly to such currents as tidal and

storm-generated currents which rework and transport sediment. The currents resulting

from tidal action on shelves are bidirectional, and usually asymmetric with respect to

velocity. Symmetrical waves give rise to the development of comparatively small,

intricately related, herringbone cross-bedding, while asymmetric currents shape sand waves

with one side so steep that large-scale separation is inevitable. The asymmetric currents

may result in sediment transport in one direction only if tidal velocity is near the threshold

needed for erosion and transport (Boggs, 1987).

Unidirectional currents are generated by wind shear stress, usually during severe storms,

as wind blows across the water surface, gradually entraining progressively deeper layers
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of water, until, if wind velocity and duration are great enough, the moving column of

water may extend to the seabed with enough velocity to transport sediment (Boggs, 1987).

Where the wind forces water on shore, it creates an elevation of the water column and

hence a seaward pressure gradient. Water particles experience the pressure gradient, as

well as the Coriolis force, causing the initial seaward flow to be deflected to the left (in

the southern hemisphere). This seaward flow will evolve into a geostrophic flow moving

sub-parallel to the isobaths (AlIen, 1984; Walker, 1984; Boggs, op. cif.; and Figure

2.30). During such storms sand may accumulate deeper within the basin as a response to

transportation of sediment from the basin margins by geostrophic flow, which is induced

by wind forcing, barotropic gradients and tide forcing. As a consequence the dominant

transport directions are nearly parallel to the coastline. However, due to the shelf

gradient, a small offshore component of transport may be present, and down-welling

currents produced during storms may be particularly effective in transporting sediment

away from the shoreface and depositing it deeper into the basin (Fraser, 1989).
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Figure 2.30: Model showing the evolution of geostrophic flows (after Boggs, 1987).
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The storms may generate flows which result in the formation of current ripples and mega­

ripples. Such currents with high velocities (in the order of 2 m/sec) may result in the

development of plane-bedding if the water is not too deep (Winn, 1991), but if the water

is too shallow, these plane-beds will be destroyed with the formation of dunes which are

subsequently reworked into current ripples. The net result may therefore be an increment

of sand transport, but no preservation of sedimentary structures other than ripple cross­

lamination.

Two features characteristic of storm deposits are graded storm deposits and hummocky

cross-stratification (Gadow and Reineck, 1969; Duke er al., 1991; Monaco, 1992).

Graded storm layers are found in somewhat deeper waters than hummocky cross­

stratification and occur where the mean flow component is greater than the wave orbital

component (Reineck and Singh, 1980; Aigner, 1982). Graded storm layers have long

been recognised on modem shelve~, but have been interpreted as turbidites, as they are

similar to Bouma sequences (Fraser, 1989). It is more probable that graded layers

represent the deposits of strong bottom flows generated by barotropic gradients set up by

storms that transport sediments put into suspension by cyclic storm wave loading of the

substrate (Nelson, 1982).

Hummocky cross-stratification (HCS) develops as flow transverse bedforms with no

avalanche faces and represents sharp-crested mega-ripples that have been modified by

complex storm currents where the wave orbital current component is greater than or equal

to the mean flow component. They are best preserved on the inner shelf where fair

weather wave and current activity is normally insufficient to remould the substrate (Fraser,

1989; Duke er al., 1991).

Studies of modem shelves suggest that they may receive relatively small amounts of

extrabasinal sediment during a transgressive phase (Fraser, 1989). Sediments are derived

primarily fro~ within the basin itself through shoreface bypassing, and these are spread

53



as a blanket of sands over the shelf as the sea level rises and the shoreface retreats. In

shelf bypassing, the sediments eroded from the retreating shoreface are shifted down

current by littoral drift, and by inner shelf storm currents during periods of strong onshore

winds, and tend to be deposited just seaward of the shoreface, to form the leading edge

of the shelf surficial sand sheet (Swift, 1975).

There is an enormous range in the size and geometry of sand bodies. First order features

make up a sand sheet, or massif, comprising linear bodies of sand in the order of 100 km

in length, lO's km in width, and trend perpendicular to depositional strike. Second order

sand ridges which develop on the linear sand ridges may be up to 40 m high and lO's km

long. These constructional features formed on the shelf by the interaction of tide- and

storm-generated currents (Fraser, 1989) and are capable of being reworked by processes

incipient on the shelf (Swift, 1976). Such ridges may migrate at a rate of 120 m/year

(Swift and Field, 1981). Transport of sediment on the ridges may occur in the form of

smaller scale bed forms as they migrated up 'and out of swales and onto the flanks of the

sand ridges, commonly at an oblique angle to the ridge crests. The resulting internal

structures consist of smaller scale cross-beds within larger scale, gently inclined beds. The

migration of these second order features result in the formation of reactivation structures.

Third order features which may be superimposed on the linear sand ridges are sand waves

as much as 10 m high and 500 m long (Fraser, op. cit.). These form mainly in response

to tide- and wind-driven currents and developed with their crests perpendicular to the

resultant flow and are evidenced by reactivation surfaces. The internal structure of the

sand wave is a result of the strength and degree of asymmetry of the governing currents

(AlIen, 1980). Reactivation surfaces as the result of migration of smaller bedforms over

the larger ones.

Considerable information concerning the origin and dynamics of sand ridges and sand

waves is available, but relatively little is known about their evolution (Fraser, 1989).

Anderton (1976) proposed a model where sands are deposited in large sand waves under
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fair-weather conditions at the upstream end of flow paths, producing thick, tabular sets of

cross-beds. During moderate storms, however, sand wave crests are eroded, and sand is

transported farther down the transport path, where it is deposited on small dunes,

producing trough crosssets. At the same time, fine-grained sediments are carried to the

distal ends of the transport paths, where they are deposited in storm layers.

The physical conditions of deposition of muds is more difficult to interpret than those of

coarser grained deposits (Collinson and Thompson, 1989). There are two main reasons

for this:

1. The range of different physical processes which operate during deposition

of muds is much more restricted than for coarser grained sediments in that

muds are mostly deposited by suspension settling processes.

2. Fine-grained sediments, particularly those rich in clay minerals, have a

much higher initial porosity than most coarse-grained sediments, which

makes them more susceptible to compaction on burial.. This has the effect

of distorting and compressing any structures (and initial thickness) to the

point where they are completely obliterated. It is also not understood why

fine-grained muddy sediments accumulate in high energy areas, such as the

coastal zone (Hill and Nadeau, 1989).

The mud accumulates in areas of the basin which are not subjected to large shear stress,

e.g. in deep water and at the end of tidal transport paths, or where rates of influx are so

large that episodic shelf transport processes are unable to redistribute all the incoming

sediment (Fraser, 1989). The presence of muds implies relati~ely weak tidal currents

(Stride et al., 1982). Density stratification may be intense in the basin as a result of warm

river water flowing over cool ocean water. When combined with offshore wind-forced

surface waters, cold, nutrient-rich waters may intrude on to the shelf until flocculation

causes mixing (Boggs, 1987; Fraser, op. eit.).
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It is common for mud substrates to lack bedforms other than ripples (Fraser, 1989), and

the most common type of stratification present is caused by rhythmic alternations of coarse

and fine layers produced in response to episodic transport induced by passing storms

(Reineck and Singh, 1972).

Sinqeni Fonnation

An upward fining succession, such as the one observed in the Sinqeni Formation, is

characteristic of a transgressive depositional cycle in a progressively deepening basin (e.g.

Fraser, 1989) as is apparent from its great thickness (650 m). The amount of sediment

delivered was large and apparently large enough to overcome the tendency of sediments

to be trapped in the shore zone (as described by Fraser, op. cit., page 3(0) during periods

of rising water level.

The basal sandstone is interpreted to have resulted from the development of a broad sand

sheet as a response to the accumulation of coarse-grained sediments in a rapidly subsiding

basin. The abundance of both delicate herringbone cross-bedding and larger scale

bidirectional cross-bedding within the sandstone implies that there was a variation in the

symmetry of the currents operating within the basin. Shallow depths are characterized by

large sand waves (Walker, 1984), which would have resulted in the formation of the large­

scale cross-bedded units observed in the sandstone.

The polymict conglomerates near to the base of the Sinqeni Formation are the result of

high current velocities. Two different, interacting mechanisms can be postulated for their

formation. Initially high-density turbidity flows, representing a reworking of coarse

material that was deposited at mountain flanks in fan-delta or beach environments, was

transported and then redeposited in the deeper, more distal parts of the epeiric sea by

debris flows. Alexander et at. (1990) maintain that such conglomerates are frequently
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associated with sandstone packages, and this association, along with the sandy matrix and

local clast imbrication, is suggestive of a turbidity flow (Lowe, 1982). Later, the turbidity

flow deposits were winnowed by strong tidal-currents which removed much of the finer

sand fraction to leave a lag of gravel. The sand would have been transported away in the

form of sand-ribbons and asymmetrical sand waves (Stride et al., 1982). Similar modern

gravel sheets from around the British Isles have been reported by Stride et al. (op. cit.)

and seem to be aerially extensive and, like the conglomerates of the Sinqeni Formation are

very thin. The plane-bedded units associated with the conglomerates are possibly the

result of deposition arising from storm-generated, pressure-gradient flows (Winn, 1991),

which could have initiated the turbidity flows.

Deposition of the sand sheet (i.e. the basal sandstone) was abruptly terminated either by

a rapid increase in water depth (due to a tectonic subsidence or a rise in sea level), or to

a dramatic climatic change whereby river run-off abated resulting in clastic input into the

basin being vastly reduced. It appears that deposition of the very fine-grained marker

iron-formation (MIF) took place under essentially quiescent sedimentary conditions. The

absence of sedimentary structures in the iron-formation, with the exception of bedding 2-25

cm thick, suggests that suspension settling of the fine ferruginous particles along with clay

minerals occurred in waters removed from any current activity. Chemical precipitation

accompanied suspension settling resulting in the formation of banded iron-formation.

Depositional conditions were not consistent throughout the depository during deposition

of the MIF which resulted in lateral variations in the iron content and nature of the facies,

as well as its variation in thickness. Its lateral persistenc~ militates against Watchorn' s

(1978, 1979a, 1980) interpretation of the MIF representing abandoned channel deposits.

Following this period of qUIescence, the Mozaan basin was agam subjected to

transgression, where clastic sediment was contributed in vast amounts probably by

inflowing fluvial systems. This resulted in the accumulation of the 170 m thick quartz­

wacke. It appears that these sands were not reworked to the same degree as those seen
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in the basal sandstone as is indicated by the upward decrease in maturity of the sandstone

from the first to the second sandstone units, although similar depositional mechanisms for

the two units are inferred.

Ntombe Fonnation

The initiation of the Ntombe Formation deposition indicates the onset of a brief respite in

the subsidence rate of the basin as well as a decrease in sediment input into the Mozaan

basin. These muds were the products of chemical weathering of unstable rock sources

(e.g. basic igneous rocks) within the provenance area and extreme physical attrition. The

fine-grained debris which was produced by chemical weathering comprised mainly clay

minerals and chlorite. The physically derived sediment component had a mineral content

dependent upon the rocks of the source area (Collinson and Thompson, 1989). The mud

fraction of epeiric sea deposits was probably extrabasinal. Unlike shelf sands muddy shelf

deposits represent slow settling of suspended sediments, and would be moulded by tides

and storms (Galloway and Hobday, 1983). These siliciclastic muds and sands were

contributed to the shelf by river outflow, and shoreline erosion, together with fine dust

blown into the epeiric sea from a vegetation-free source area.

It is possible that the coarser fraction of incoming sediment was trapped in the foreshore

zone in river mouths and distributaries as they become transformed into estuaries with the

rapid rise in sea level. These areas then acted as sediment sinks, trapping riverine

sediments on fringing tidal flats and bayhead deltas as described by Fraser (1989). The

finer mud fraction bypassed the areas where sands were being trapped and, continued in

suspension into the central parts of the basin.

A considerable thickness (some 900 m) of mudstone and ferruginous mudstone makes up

the Ntombe Formation. This succession represents a facies association indicative of a
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prolonged quiet period during which time clastic sedimentation was not occurring on any

significant scale. The only coarse-grained sedimentation led to the development of pebble

and silt lenses within the mudstone and the two relatively thin siltstone units. It is

apparent from the poor sorting of the coarser-grained beds, their immaturity and the

evidence for soft sediment deformation, that they accumulated rapidly in an environment

which was atypical of Mozaan sedimentation at the time. They may be related to

deposition under storm induced conditions which initiated slope failure and movement into

the basin under gravity.

Following the deposition of the silty units, a prolonged period of quiescence prevailed

during which time some 500 m of argillaceous sediments accumulated. This interval was

marked only by variations in the iron content of the accumulating muds, possibly related

to a change in climatic conditions and different weathering processes of the provenance

area.

ThaIu Fonnation

The quiet conditions experienced during the deposition of the Ntombe Formation were

terminated by the laying down of the basal plane-bedded and planar cross-bedded

sandstone of the Thalu Formation. This sandstone is interpreted to have developed as a

sand patch or a broad expanse of sand lacking large-scale surface morphology within the

basin related to storm surge retention flow. Sand patches occur in areas where turbulence

is sufficient to keep mud in suspension or to resuspend it episodically after it has been

deposited, and where the amount of available sand is small or where current velocities are

insufficient to maintain large bedforms (Fraser, 1989).

Deposition of sand within the sandpatch ceased following a gradual decrease in the input

of coarse clastic sediment into the basin, until only deposition of muds from suspension
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took place. When most of the mud particles had settled out from suspension, deposition

of chemical precipitates in the form of banded iron-formation took place. This iron­

formation closely resembles those of the Lake Superior-type (Eichler, 1976; Mel'nik,

1982; Cloud, 1983; Beukes, 1983), in that it is associated with clastic sedimentary rocks

of shelf, epicontinental or eugeosynclinal environments, and does not have any direct

spatial relationship to volcanic activity. Many of the Lake Superior-type deposits occur

in basins lacking contemporaneous volcanism and which reflected conditions prevailing in

restricted basins. Deposition of the iron-formation occurred in shallow and quiet water

environments at depths of between 50 and 200 m (Eichler, op. cit.). The chert pods that

are observed in the iron-formation, suggest that there was an early diagenetic compaction

of the original sediment, while the prelithification slump structures indicate that both the

chert and the iron-formation were deposited originally as a colloidal mass.

Deposition of the mudstone and jron-rich mudstone in the upper parts of the Thalu

Formation must have occurred under quiescent conditions in relatively deep waters.

Occasional storm deposits resulted in the accumulation of winnowed residual lag

conglomerates. The gradational upper contact with the overlying sandstone is possibly the

result of a transgression of a sandpatch in a gradually shallowing basin. Watchom (l979a)

attributed this facies change to a progradational shelf. The sandstone is not well sorted

indicating relatively rapid deposition, typical of storm deposits. The black chert fragments

in the sandstone facies possibly represent rip-up clasts eroded from tidal flat and beach

environments. This transition from mudstone, through black mudstone to sandstone, is

repeated indicating a facies sequence.

Hlashana Fonnation

During the deposition of the Hlashana Formation, the Pongola epeiric sea was probably

relatively shallow and subjected to a transgressive phase again as indicated by the
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accumulation of a vast thickness of arenaceous sediments.

There is much evidence within these sandstones and siltstones to suggest that they are the

result of storm-induced conditions, such as pebble lag sheets, mega-ripples and poor

sorting. Sand and silt may be transported from tidal flats and sand bars towards the centre

of the basin by ebb currents during storm surges (Gadow and Reineck, 1969; Walker,

1984; Fraser, 1989). Deposition associated with large volumes of water would have

resulted in the formation of soft sediment deformation structures as a result of slumping

which are characteristic of this succession. Silts are also particularly susceptible to

liquefaction during storms due to their low permeability (Cluckey et al., 1985; cited in

Hill and Nadeau, 1989).

In contrast to the poorly sorted siltstones, the sandstones are well-sorted and mature.

Progressive sorting of sediments was not a continuous process, but instead occurred during

short periods of intense current flow, interspersed with long periods of storage. Sorting

can work to completion only where the influx of sediment does not overwhelm the ability

of transport processes to redistribute and sort it (Fraser, 1989). The pebble sheets within

the Hlashana Formation are probably the result of winnowing of sand waves and dunes

during severe storms. Pebble beds occur at the upstream ends of flow paths, and the

eroded sand is carried downflow , where it is deposited as storm layers (Fraser, op. cit.).

The lateral variability of cross-bedding within the arenaceous deposits is attributed to the

onset and passage of storm waves and currents, and to near-bed flow variations related to

the existence and migration of sand waves and dunes as well as to the multidirectionality

of such currents (Allen, 1973). This results in highly variable wave energy conditions,

dependent on the intensity and duration of the storm (Hill and Nadeau, 1989). It is

possible that this effect was enhanced by asymmetric tidal currents, with the dominant

direction aligned north-south. Furthermore, the development of plane-bedding and planar

cross-bedding can also be attributed to episodic deposition from storm-generated, pressure-
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gradient flows (Winn, 1991). The structureless topmost bed of the Hlashana Formation

appears to have been the result of rapid deposition and can be attributed to storms eroding

sands from the shoreface and redepositing them farther within the basin.

OdwaJeni Fonnation

The sharp vertical transition from the predominantly arenaceous Hlashana Formation into

the succeeding mudstone-diamictite assemblage of the Odwaleni Formation reflects a rapid

transformation from a shallow-water environment to deeper water conditions in which

current or wave activity and arenaceous sediment input was restricted. Such subsidence

could be related to tectonic elevation along marginal faults associated with rifting of the

depositional basin. Such synsedimentary tectonism may have contributed to the occurrence

of diamictite. The diamictite may have originated as mudflows derived from a clay-rich

deeply-weathered source area, similar to that envisaged by Stanistreet et al., (1988) and

Martin et al." (1989) for a diamictite in the Archaean Witwatersrand Supergroup. The

structureless nature of the Mozaan diamictite, and its predominantly argillaceous

constitution, suggest that this lithotype was emplaced in a analogous manner, as

subaqueous clast-bearing mudflows (Von Brunn and Gold, 1993). The occurrence of more

than one diamictite can be attributed to an intermittent supply of debris, delivered to the

basin by down-slope mass flows from a topographic high. Tectonic activity and associated

gravitational instability also resulted in liquefaction of sand as indicated by the deformed

sandstone above the main diamictite and related load structures that protrude into the

Mozaan diamictite.

Whereas tectonically induced mudflows could have been a major factor in the emplacement

of the diamictite, a contributory glacial influence cannot be ruled out. Under the

appropriate climatic conditions, highland ice masses would have developed and expanded

on tectonically-elevated ground (Von Brunn and Gold, 1993). Snow could have been
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precipitated when humid air cooled adiabatically as it rose from the adjacent marine basin.

Thus local mountain glaciation, envisaged as being a side effect of uplift and related

erosion, could have contributed to a supply of detritus (cf. Schermerhom, 1974, 1975) that

was subjected to down-slope gravity flow. Clasts of the transported debris would have

been ab~ded, rounded and comminuted in the tractional zone of the active glaciers

(Boulton, 1978), and possibly during sediment gravity flow as well. Subaqueous

emplacement would account for the sharp contact between the diamictite and the subjacent

mudstone. An absence of dropstones in the associated argillites indicates that deposition

of glaciogenic sediment by rain-out from floating ice is unlikely (Von Brunn and Gold,

1992, 1993).

Persuasive evidence pointing to a glacial association relates to the presence of striations

C!Jld facets on some of the clast surfaces, as well as the varied composition of the clasts.

An important aspect in this regard is the distinct difference of the diamictite from all other

rudaceous units in the Pongola basin. Pebble conglomerates, consisting of only quartz and

chert, are widespread in the sequence, but they never show the same diversity of clast size

and composition as the diamictite. Furthermore, the Mozaan diamictite is lithologically

similar to other diamictites of known glacial affinity, including the Late Palaeozoic

diamictite of the Dwyka Group of southern Africa (e.g. Von Brunn, 1981, 1987; Visser,

1983, 1989; Gravenor et al., 1984). A conspicuous feature of the Mozaan diamictite,

which distinguishes it from the Dwyka diamictite, is the .presence of well-rounded sand

grains some of which display a high sphericity. The grains may have been of aeolian

origin and were blown onto the glaciers (from a vegetatien-free hinterland), such as those

described by Squyres er al. (1991). Alternatively the rounded grai,ns could reflect abrasion

within the basal till during subglacial transport (Anderson and Molnia, 1989), or

incorporation into the basal debris of the glacier as it passed over tidal deposits at the

margins of the depository.

The remainder of the Odwaleni Formation is characterised by argillaceous mudstone and
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ferruginous mudstone (indicative of a tranquil depository) with interlayers of sandstones

typical of storm induced deposits.

Kulphiso Fol71Ultion

It is evident from the fine grained lithologies within this formation that deposition took

place in a deep, tranquil environment lacking the input of large amounts of clastic material

and removed from any significant current activity. These stable conditions must have

prevailed for a considerable length of time which enabled the accumulation of at least 140

m of mudstone. Initially deposition occurred in the form of suspension settling of fine­

grained material. The horizontal laminations are probably the result of seasonal

tluctuations of conditions such as water temperature. The quiet conditions were terminated

by the influx of coarser grained material, probably as a consequence of storm-induced

activity.

A return to quiescent conditions is marked by the accumulation of a thick argillaceous

sequence. Sandstone lenses representing probable storm deposits and chemical

precipitation of the banded iron-formation interrupted the dominant process of suspension

settling.

The remainder of the Kulphiso Formation is characterised by thick mudstone units

interrupted by storm deposits in the form of poorly sortoo sandstone and siltstone, which

typically include such structures as water escape structures and c~astic dykes indicative of

a rapid deposition rates.
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Geochemistry

The results discussed in this section represent major and trace element analyses of 12

samples of mudstone and diamictite from the Mozaan Group. The analytical data are

given in Appendix 2 and localities in Appendix 3. The purpose of the analyses is to

provide geochemical data for typical examples of the various rock-types.

The geochemical analyses of mudstone, iron-formation and diamictite from the Mozaan

Group allow a comparison to be made with other more extensive studies (e.g. McLennan

and Taylor, 1983; Laskowski and Kroner, 1985; Wronkiewicz and Condie, 1989). Fine­

grained terrigenous clastic sediments provide an important source of information on the

composition, tectonic setting and evolutionary growth of the early continental crust

(Wronkiewicz and Condie, op. cit.).

An interesting feature of the analyses is their very high Cr/Ni ratios (particularly for the

diamictite) which distinguishes them from other Archaean sediments (e.g. McLennan and

Taylor, 1983; Wronkiewicz and Condie, 1989). High Cr concentrations indicate sources

with substantial mafic or komatiitic components (Laskowski and Kroner; 1985).

Chromium can be enriched in weathering profiles (Wronkiewicz and Condie, op. cit.) such

as in the deeply weathered Archaean profiles of the pre-Pongola basement (Matthews and

Scharrer, 1967; Armstrong et al., 1982). Studies of Cenozoic laterites indicate that Cr

is retained in upper soil layers in Cr-rich chlorite (penninite), chromite and magnetite,

whereas Ni is liberated during the breakdown of olivine·and pyroxene or is leached from

secondary clay minerals (Zeissink, 1971). Downward migration of Ni in these laterites

causes increased Cr/Ni ratios in the upper levels. Thu.s erosion of the upper portions of

Archaean laterites possibly accounts for the high concentration of Cr in these sediments.

An alternative explanation is that the Archaean oceans may have been enriched in Cr,

relative to modem oceans, due to ocean-ridge or back-arc hydrothermal leaching of
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komatiitic oceanic crust. Clay-particle scavenging of Cr in enriched Archaean seawater

could thus explain the high Cr concentrations in the Mozaan mudstone (Wronkiewicz and

Condie, 1989).

Two samples of mudstone (MS8 and MSll) collected from the Klipwal Mine are also

enriched in Cr, probably associated with mineralizing fluids.

Results presented by Wronkiewicz and Condie (1989) suggest that the Pongola mudstone

was derived from a source enriched in granite by a factor of 100 to 300% relative to other

Archaean mudstone in southern Africa. Homogenous hood granites are favoured for the

Pongola granite source component as their trace element and K20 contents (Hunter, 1963)

match the granite composition calculated in mixing models (Laskowski and Kroner, 1985;

Wronkiewicz and Condie, op. cil.). These granites, the most extensive of which is the

Locheil batholith, occur adjacent to and may underlie much of the Pongola basin.

According to Wronkiewicz and Condie (op. cil.) the Pongola mudstone reflects derivation

from the most fractionated and evolved sources.

The Chemical Index of Alteration (CIA of Nesbitt and Young, 1982) for Pongola

mudstones generally falls near 78 (Wronkiewicz and Condie, 1989). These CIA values

are transitional between those of the Moodies (CIA = 59, McLennan and Taylor, 1983)

and Witwatersrand mudstones (CIA = 83, Wronkiewicz and Condie, op. cil.). The CIA

data appears to record moderate to intense chemical weathering during the deposition of

the Pongola Sequence. The CIA value of 68 calculated for the Mozaan diamictite is

somewhat lower than that calculated for the mudstone indicating a lower degree of

chemical weathering. This could be interpreted to be consistent with a glacial origin for

the diamictite.

The geochemistry of the diamictite is remarkably consistent for the three samples (which

were collected from sites some 8 km apart along strike). This points to homogenisation
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of the parent rocks transported by the ice-sheets, as well as to a stable depository allowing

the discharge from the ice-melt to accumulate under quiet conditions.

INTRUSIVE ROCKS

The only intrusive rocks in the study area are post Pongola dolerites and minor ultramafic

bodies, most of which were sills intruded sub-parallel to the regional bedding. Several

dyke-like intrusions cut across bedding but it was not possible to determine whether they

are contemporaneous with the sills. Only one east-west striking dyke intrudes into Karoo

Supergroup rocks between the Duduka and Bumbeni streams. Some of the intrusions are

pre- to syn-tectonic, such as in the Klipwal, Altona, Sinqeni and Bumbeni shear zones.

The phyllonitic dykes host the gold mineralization in the Klipwal shear zone.

The dolerites are generally recrystallized. Quartz, carbonate, chlorite and amphiboles

(actinolite and tremolite) are common (see Appendix 1 for mineralogy). The undeformed

dolerites are generally highly altered and display evidence of greenschist metamorphism.

Ultramafic intrusions made up primarily of cumulus olivine and to a lesser extent

orthopyroxene and post-cumulus clinopyroxene are uncommon, but are found to the south

and west of the Klipwal Gold Mine as isolated bodies (samples DB 5, DB 9, DB 13 and

DB 14: Appendices 1 and 2).

Geochemistry

The geochemical characteristics of 30 dolerite and ultramafic samples were ascertained in

an attempt to gain an insight as to their origin and to differentiate between Archaean and

Karoo dolerites.
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Interpretation of the analytical results is however tentative due to uncertainty concerning

the age of the dolerite samples. All samples were analyzed for 10 major and 15 trace

elements (presented in Appendix 2 with localities given in Appendix 3) by X-Ray

fluorescence spectrometry. Details of the sample preparation are given in Appendix 4.

Total-Fe is given as the ratio of ferric to ferrous iron changes with oxidation state and

alteration, and is likely to be different in each sample.

Most dolerites have MgO contents ranging from 5 to 9 wt%, and Si02 content between 47

and 56 wt%. Sample DB 5 is unusual in this respect as its Si~ content (56.12 wt%)

contrasts with its high MgO (17.22 wt%). Average values of major elements for these

dolerites is comparable to the average compositions of dolerites reported by Maitre (1976).

The dolerites and ultramafics occupy distinct fields on a Jensen diagram (Figure 2.31).

The dolerites lie in the tholeiitic field whereas the ultramafic intrusions are confined to the

peridotitic komatiite field as defined by Jensen (1976). Similar geochemical subdivisions

• Dolerltes

• Ultromoflcs

Peridotlllc Komatiitic

Basaltic
Komatlltlc

•. ­•

•••

-. .. ......- .
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1984).

are observed for dykes in the southernmost outcrop of the Nsuze Group (Groenewald,
FeO.Fe °3 • TIOz

A1z03 MgO

Figure 2.31: Jensen cation diagram for the intrusions into the Mozaan Group within the study area.
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Inter-element correlations are generally highly significant in the study of mafic rocks

(Armstrong et aI., 1984). The Mg-number (Mg/Mg + Fe) is used as a reference

parameter for the discussion of general geochemical features. The Mg-number of the

analysed sample ranges widely from 40 to 86 (Figure 2.32) reflecting a range from

ultramafic to tholeiitic. Most of the variation diagrams do not display well-defined trends.

Datum points are more or less widely scattered, but tend to cluster in a single field,

indicating an overall similarity in the geochemistry of the dolerites. However, NazO, TizO

and PZ0 5 become relatively depleted with increasing Mg-number. A marked increase in

TiOz at Mg-numbers less than 55 is observed and could be related to the presence of Ti­

bearing mineral phases (eg Ti-magnetite and ilmenite). Alz03 has a linear trend at Mg­

number < 70 but thereafter there is a relative decrease in AI. A possible explanation is

that early fractionation of olivine resulted in the enrichment in aluminium in the residual

liquid.

Samples DB 13 and DB 14 from two ultramafic intrusions to the south of the Klipwal mine

are distinguished by their high MgO (29.73 and 36.52 wt% respectively) and low SiOz

contents (46.85 and 44.28 respectively), reflecting the presence of olivine. The two bodies

have similar element ratios to those of the other dolerites, however their absolute ratios

are much lower (Figure 2.33). These samples may possibly reflect cumulates in a

differentiated layered intrusion.

Samples from sheared dolerites show a greater variability with respect to the analytical

data, which is probably related to "secondary" (silicification and sericitization) processes.

The dolerites sampled from the KJipwal Mine do not show any marked variation with

respect to their chemistry in comparison with undeformed dolerites, except for their

relative depletion in NazO, MgO and MnO and enrichment in KzO (Figures 2.31 and

2.32). Alteration of the dolerites does not seem to have been characterized by a significant

mobilization of major elements.
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Figure 2.32: Mg-number variation with major elements for the intrusions.
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Figure 2.33: Incompatible element plots for the intrusions.

Plots of Zr and Y against Ti appear to define two distinct populations. One group has

(Zr/Ti and YITi) ratios greater than primordial mantle and the other lower ratios (Figure

2.33). The intrusive rocks having lower ratios than primordial mantle must either been

derived from a Zr enriched source or alternatively the enrichment is the result of crusta!

contamination. Niobium and Y are both depleted relative to Zr having Nb/Zr and YIZr

ratios less than in primordial mantle. This implies that the magmas were derived from a

Zr-enriched source or that significant contamination occurred as the magma rose to higher

crusta! levels.

Spidergrams of four representative samples have similar patterns (Figure 2.34), but the

sheared dolerites from the Klipwal Mine display enrichment in both K and Rb. This
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presumably results from migration of mineralizing fluids accompanying gold

mineralization.

It is clear from the evidence provided above that these intrusions have a diverse and

complex geochemistry and the Karoo dolerites cannot be distinguished from older

counterparts on the basis of geochemistry.
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Normalized rock/primordial mantle spidergram plot for representative samples of the

intrusions. DL I and DB 2 are typical dolerites, DB·8L was sampled from 8-Level in the KJipwal mine and

DB 14 is an ultramafic sill.
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CHAPTER 3: STRUCTURE

REGIONAL OVERVIEW

An overview of the major structures in the northern parts of the Pongola basin is provided

in order to place the structures in the study area into the regional context. The dominance

of northwest and northerly trends in the southeast Kaapvaal Craton is clearly observed on

Landsat satellite imagery (Figure 3.1). This is also apparent from the structures observed

in the northern parts of the Pongola basin.

•••• Ob.erved IIneomenl.
within Koroo Sequence

W Karoo Sequence

o Po.t-Pongolo ~onIte.

o U.u.hwono Comple.

[;] Mozoon Group
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27·S

Figure 3.1: Lineaments in southeast Kaapvaal Craton observed from Landsat images. The inset is a

rose diagram showing the dominant structural trends.
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Main Pongola Basin

In the main Pongola basin (Figure 3.2) Watchorn (1978) recognized two major northwest­

trending peri-synclinal sub-basins, a southwestern "Piensrand basin" and a northeastern

"Hartland basin". The latter name is inappropriate as the geographical locality of Hartland

is situated several tens of kilometres south of this sub-basin and has led to some confusion

(e.g. Weilers (1990) who called the southwestern sub-basin the "Hartland basin"). The

two sub-basins are referred to here as the Piensrand and Tobolsk synclines (Figure 3.2).

Both Watchorn (1978) and Matthews (1990) postulated that these peri-synclines were the

result of interference folding of northwest-trending F. and east-northeast-trending F2 folds.

The intensity of the latter phase of folding is considered to decrease away from the

intrusive contact of the extensive Spekboom granite (Matthews, 1985).

The Piensrand and Tobolsk synclines are separated by a shear zone, the northwest striking

Delft shear zone which truncates the northerly trending Altona and Sinqeni shear zones to

the south. The Delft shear zone appears to be the southeasterly extension of the Mahamba

shear zone mapped by Hatfield (1990) to the east of Piet Retief (Figure 3.2). The

Mahamba shear zone is interpreted by Hatfield (op. cit.) as a transpressional structure.

In the Swaziland area sinistral transpression seems to be partitioned into an easterly

dipping thrust and an adjacent sinistral shear zone. Hatfield postulated that the two

structures were generated during the same D) deformational event. The - 15 km long

Mahamba shear zone is associated with a - 40 km sinistral displacement, accompanying

large-scale drag and attenuation of the Pongola strata, particularly the Nsuze Group

(Hunter and Wilson, 1988). The regional shallow southeast to east-southeast dips change

abruptly to steep ( - 60°) northeast dips northwards.
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STRUCTURES
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Figure 302: Simplified map showing the geology of the southeastern Kaapvaal Crat?n. International

boundaries omitted for clarity. Map compiled from Hunter, 1968; Geol. Surv. Swaziland, 1968, 1980,

1982; Hammerbeck, 1977; Annstrong, 1980; Smith, 1987; Sleigh, 1988; Wolmarans, 1988; Hunter and

Wilson, 1988; Hatfield, 1990; Verbeek, 1991 and this study.
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It seems probable that pull-apart grabens formed during late stage transtension into which

the Usushwana mafic suite intruded (Hunter and Wilson, 1988). The Usushwana suite has

been dated at 2813 ± 30 Ma (Rb-Sr whole rock; Davies et aI., 1970) and 2871 ± 30 Ma

(Sm-Nd; Hegner et al., 1984). The intrusion is late syn-tectonic as it is itself deformed

by northwest and north-trending shear zones.

Northerly trending structures have been described from both the Mahamba shear zone

(Geol. Surv., Swaziland, 1968, 1980; Hatfield, 1990), and the pre-Pongola basement

(Hunter, 1970a; Hepworth, 1973; Smith, 1987; Talbot et al., 1987; Sleigh, 1988;

Verbeek, 1991).

A major northward trending fault, the Koppie Alleen fault (Linstrom, 1987), marks the

eastern margin of the main Pongola basin (Figure 3.2). Late movement on this fault has

led to the downthrow of the Mozaan and Karoo rocks by - 130 m (Linstrom, 1987) so

that the upper basaltic units of the Mozaan Group are preserved in a series of inliers

(Wolmarans, 1988).

The Spekboom granite intrudes the Pongola basin post-tectonically, but has unfortunately

not yet been dated (Linstrom, 1987). The intrusion is elongate in plan view with its long

axis trending north-northeast. Updoming of the Pongola Sequence associated with the

intrusion has resulted in the exposure of the Nsuze volcanics and andalusite-bearing

siltstone on the eastern and western flanks of the batholith (Figure 3.3). Only a thin

slither of the Nsuze Group is preserved in the west.

Mfolozi Area

Only a limited number of structural studies of the inliers between Bevenson and the White

Mfolozi (Figure 3.2) have been undertaken. Matthews (1990) reported that they have been
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rotated into a series of tilted fault blocks. Unmapped northerly and northwesterly oriented

shear zones are present in the Bevenson, Thaka, Schoonspruit, Onverwacht inliers and

those along the Black Mfolozi River. The Mpongoza inlier is elongated in a northwest

direction (preston, 1987), possibly reflecting a structural control.
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and Magudu.

Kubuta Area

Schematic east-west cross-section through the main Pongola basin between Paulpietersburg

Although structures trending northwest are most commonly developed in Swaziland

(Figures 3.1 and 3.2), the most intense deformation is displayed by northerly striking shear

zones. Most of these shear zones display dextral senses of movement and have a very

steep dip towards the east. The best developed example is the north-northeast striking

Sibowe shear zone, which truncates the Mozaan strata in the Kubuta area (Hunter, 1953,

1991; Hepworth, 1973; Geol. Surv., Swaziland, 1968, 1980; Figure 3.4), the pre­

Pongola gneiss basement, and the Sinceni pluton (which has yielded a Rb-Sr whole-rock

isochron age of 2992 ± 44 Ma; Trumball, 1990). It is a broad mylonitized zone with
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lineations and fold axes typically plunging towards the southeast (Hepworth, 1973). Large

amplitude folds with axes also plunging towards the southeast deform the Mozaan Group

to the east. According to Hepworth (op. cit.), early lineations plunging towards the

northeast were re-oriented by progressive deformation into a southeasterly alignment.
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Figure 3.4: Geological map of the Kubuta area. Modified after Hunter, 1968; Geol. Surv., Swaziland,

1968, 1980, 1982.
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The Mozaan Group sandstone to the east of the Sibowe shear zone is preserved within a

broad synclinorium, the northeastern limb of which is truncated by the northwest-trending

Siyalo shear zone. The Siyalo shear zone contains sinistral movement indicators and sub­

horizontallineations. The synclinorium has a sub-vertical northeastern limb, which Hunter

(1961) attributed to the forceful emplacement of a granite plug on the northeastern flank.

The intrusion of both the Mooihoek and the Mhlosheni granites appear to have been

structurally controlled, as the former pluton is aligned northwest and the latter has a

northerly orientation (Figure 3.4) reflecting the two dominant structural trends.

A number of other megacrystic granite plutons (e.g. Kwetta batholith) intrude the Pongola

strata in southern Swaziland.

Mahlangatsha Area

Several phases of deformation have been recognized in the northern Mahlangatsha plateau

(Roering, 1968). A large northeast-trending synclinal structure resulted from two coaxial

phases of folding. Later northeast-trending cross-folding produced a number of subsidiary

basins (Roering, op. cit.). A final phase of deformation involved westward overthrusting.

The post-tectonic Ngwempisi pluton provides a minimum age for the deformation,

although no precise radiometric dates have been obtained.

An intense northwest dipping foliation is largely confined to a belt approximately 2 km

wide overlapping the contact of the Nsuze and Mozaan Groups in the northwestern flank

of the regional synclinorium (Roering, 1968; Hunter, 1991). The contact between the

Nsuze and Mozaan Groups appears to be tectonic because Mozaan beds are truncated at

the contact.
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The regional strike of the Pongola Sequence swings southeast in the southernmost part of

the Mahlangatsha area, where it is truncated by the Mahamba shear zone.

Whereas a substantial thickness of Nsuze strata is preserved to the west of the

Mahlangatsha plateau, it is not found on the eastern side of the regional syncline, where

the Mozaan Group sandstone is intruded by the Hlatikulu granite batholith (Figure 3.2).

Amsterdam Area

The Pongola Sequence is preserved in a northwest-trending syncline in the Amsterdam

district (Figure 3.2), the northeastern limb of which is sub-vertical. The pre-Pongola

granitoid basement on this flank is extensively sheared. The southwestern dips gently

northeast and shows no evidence of deformation.

THE STUDY AREA

Three episodes of folding, shearing and faulting can be recognized within the study area

based on structural relationships. The first event resulted from compression from the

south-southeast and is evidenced by transpressional shear zones (lzermijn and Klipwal) and

a northeast-trending fold (Ngwenya syncline). An episode of normal faulting with

extension to the south-southeast preceded or followed this event (Gunsteling fault). Finally

a major deformation event produced early north-northwest folding and late conjugate north

and northwest striking shearing (Gold, 1991).

The shear zones tend to be zones of ductile-brittle deformation so that the distinction

between "shear zones" and "faults" is often blurred.
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The original names given to the tectonic discontinuities that had been mapped by previous

workers have been retained as far as possible, although some of them have been redefined,

or new names have had to be introduced for various reasons (Table 3. 1):

1. The Altona and Sinqeni shear zones were previously described as a single

structure (the Keerom fault, Humphrey and Krige, 1931) or as part of the

Mahamba fault belt (Matthews; 1987, 1990).

2. The Qumeni shear zone was originally called the Bethu fault by Carter

(1964), but it was felt that the name Bethu should be reserved for the

anticline situated in the Bethu hill.

3. The Bethu and Nombela anticlines were called the Altona anticline by

Watchom (1978), but they are separate folds. The original name of

Humphrey and Krige (op. clt.) is retained here. The name Altona is

reserved for the Altona shear zone (Carter op. cit.).

4. The Delft shear zone (Humphrey and Krige, op. cl!.) was called the

Oranjedal fault by Carter (op. cl!.) and also forms part of Matthews' (1987;

1990) Mahamba fault belt. The original name has again been retained here.

5. The Duduka fault named after the nearby stream was originally called the

Klipwal fault by Carter (op. clt.). The name Klipwal shear zone is

however now associated with the shear zone containing the gold ore body

at the Klipwal Mine, thus the term Duduka fault is preferred to Carter's

original description.
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Table 3.1: Names and brief descriptions of the various major shear zones, faults and folds, including the

source of the names used. See Maps IB, le, 2 and 3 for localities.

Name used in this thesis Description Source of name(s) and
previous names

Klipwal shear zone N-S striking sinistral transpression unknown

lzermijn shear zone NNE striking sinistral transpression This study

Gunsteling fault NNE striking dextral transtension (Humphrey and Krige, 1931)

Altona shear zone N-S striking dextral strike-slip (Carter, 1964)

Sinqeni shear zone N-S striking dextral strike-slip This study

Mhlope shear zone NNE striking dextral N-S strike-slip This study

Mkhuzwa shear zone N-S trending dextral strike-slip This study

Qumeni shear zone NW-SE and N-S striking dextral This study (previously Bethu
strike-slip shear zone; Carter, 1964)

Enyabisa shear zone N-S striking dextral strike-slip This study

Dwaleni fault N-S striking dextral strike-slip This study

Nkolotsheni shear zone N-S striking dextral strike-slip This study

Bumbeni sh~r zone N-S striking dextral strike-slip This study

Khuphulangwenya fault N-S striking dextral strike-slip This study

Delft shear zone NW-SE striking sinistral strike-slip (Humphrey and Krige, 1931),
Oranjedal shear .zone (Carter,
1964) and Mahamba fault belt
(Matthews, 1987; 1990).

Vergenoegheid shear zone NW-SE striking sinistral strike-slip (Carter, 1964)

Duduka fault NW-SE striking sinistral strike-slip Klipwal tilUlt (Carter, 1964)

Nkosetsha shear zone NW-SE striking sinistral strike-slip This study

Mzamba shear zone NW-SE striking sinistral strike-slip This study

Meander shear zone NE-SW striking transpression This study

Bethu anticline NW-SE trending axial trace Altona anticline (Watchom,
1978)

Mfeno syncline and NW-SE trending axial trace This study
anticline

Nombela anticline NNW-SSE trending axial trace Altona anticline (Watchom,
1978)

Prudentie syncline NW-SE trending axial trace Watchom (1978, 1979b)
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North-northeasterly trending sinistral compressional shear zones and folds

lzennijn Shear Zone

This previously unrecognized northeast-trending shear zone is located at the western edge

of the study area (Map 18) and is best exposed on the Izermijn farm after which it is

named.

Shearing occurs over a broad zone at least 400 m wide and involves both upper Nsuze and

lower Mozaan Group stratigraphy. This shearing predates the northwest-trending shear

zones to the northeast. A moderately well-developed southeast-dipping cleavage axial

planar to tight folds occurs within amygdaloidal Nsuze lavas some 400 m below the basal

Mozaan contact. The degree of deformation increases as the basal quartz arenite of the

Mozaan Group is approached. A north-northwest vergence direction is indicated by

slickenside striations and the long axes of elongated c1asts and amygdales in the matrix­

supported conglomerate and lavas (Map 18). If this compression occurred before the

regional folding which affected the Pongola basin, then it is probable that the Izermijn

shear zone was a sub-horizontal structure.

Higher in the stratigraphy, flat-lying shear zones are developed with the hanging wall

being displaced towards the north-northwest relative to the footwall. Furthermore, small­

scale ramps (Figure 3.5) and folds are indicative of compression from the south-southeast.

The competency contrast between the Nsuze volcanics and the 650 m thick basal Mozaan

sandstone resulted in the ductile deformation of the former, but little internal deformation

of the latter, except for bedding-parallel slip along the basal contact. Recrystallization of

the basal sandstone occurred during this deformation, further increasing its competency.
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Figure 3.5: Footwall ramp in Mozaan Group sandstone at Prudentie. View toward the southwest.

Ngwenya Syncline

This south-southwest-trending syncline occurs in the footwall of the Klipwal shear zone

(Maps le and 2). It developed prior to the shearing as the Klipwal shear zone cuts across

its eastern limb. The fold is interpreted as initially forming at a high angle to the

compression from the south-southeast, and then rotating into parallelism with the Klipwal

shear zone because of the transpressional deformation along the shear zone. A number

of east-west-trending open upright folds with half-wavelengths of - 150 m in the eastern

limb of the Tobolsk syncline may have formed at this time (Map 2). Alternatively the

buttressing effect of a large (kilometre scale) north-south trending pre-tectonic dolerite may

have localized the deformation and influenced the fold axis orientation producing a major

north-south overfold (Figure 3.6). As deformation continued, the upper limb of the

developing fold became sheared out and a zone of north-south convergent wrenching was
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ini tiated . The bedding in the hanging wall became overturned and tightl y fo lded while the 

eastern li mb of the Ngwenya syncl ine in the footwall steepened . 
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Figure 3.6: Schematic model showing the development of the Klipwal shear zone and the assoc iated 

Ngwenya syncl ine. 
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Klipwal Shear Zone

Early ductile-brittle shearing

The Klipwal shear zone can be traced within the study area from the Nkwazane stream in

the north where it is cut by the Nkosetsha shear zone to the Pongola River in the south

(Map 2). It can be followed further south within the ltala Game Reserve for another 6 km

before it disappears beneath the Karoo Sequence (Wolmarans, 1988). The strike changes

from northeast north of the Klipwal Mine to south-southeast in the south and the dip is to

the east or southeast. It cuts through the eastern limb of a pre-existing fold, the Ngwenya

syncline. As the shear zone is approached from the west, the bedding steepens from a

relatively shallow dip becoming overturned and parallel to the shear zone adjacent to it.

The displacement along the shear zone, including later deformational events is - 3.3 km.

This shear zone has a poor surface expression (its relief is not apparent in Landsat images

generally). Lithologies that are sheared include sandstone, mudstone and diamictite as

well as pre- and, possibly, syn-tectonic dolerite intrusions.

The zone of deformation is about 100 m in width, with most of the movement being

restricted to a zone which is between 0.5 and 2 m wide. This narrow zone can be

mylonitic where the shear zone has deformed competent lithologies, but is predominantly

represented by a fault gouge where mudstone or dolerite are deformed. The foliation

within the shear zone in the Klipwal area dips 45 0 to the east and quartz fibre lineations

plunge obliquely towards the southeast (average 140/38; Figure 3.7). The partial girdle

on the stereoplot (Map IB) is due to the presentation of late extensional lineations related

to transtensional movements.

A sinistral reverse sense of movement is inferred in the southern part from shear sense

indicators and reverse drag of bedding in the footwall (Figure 3.8). The pattern of the

secondary shear zones also support a sinistral reverse movement. The rejoining splays

commonly define hindward dipping duplexes.
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Figure 3.8:

Lineations associated with transpression measured within the IUipwal shear zone.

Drag folding in the footwall of the IUipwal shear zone. View looking north.
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The Klipwal shear zone assumes a reverse sense of movement where it strikes northeast.

The transpression in the south thus defines an oblique ramp to a northeast-trending ramp.

Locally, late small-scale, non-cylindrical chevron folds and kink bands deform the shear­

related foliation. Their axes are at high angles to the stretching lineation (Figure 3.9).

Figure 3.9: Fold axes in the Klipwal 'hear zone.

Bedding in the hanging wall dips shallowly northwards or northwestwards while the

footwall bedding has been overturned and has an orientation sub-parallel to that of the

Klipwal shear zone (Figure 3.10 and Map le). In the Itala Game Reserve to the south

of the Pongola River the shearing has overturned the hanging wall strata.
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Figure 3. 10: Cross-section through the Klipwal and adjacent sh""r zones. The topography in the area 

where tbe section was constructed is rugged and provides ~xcd lent thr~c-dimensiona l contro l. See Map 2 

for locality . 

A signi ficant amount of deformation occurred in both the footwall and hanging wall strata 

away from the shear zone in the form of discrete low angle thrust faults (Figures 3 . 11 and 

3. 12A). A thrust fault with a footwall ramp can be seen on the banks of the Pongola 

River (Figure 3. 13) . A system of fau lt splays is exposed in the underground workjngs of 

the Klipwal mine between levels 8-11 (Figure 3. 14). The deformation here has exploited 

the lithological contact between sandstone and dolerite. Slickenside striations and tension­

gash geometry show that movement along these faults was to the northwestward (Figure 

3.12B). 
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Figure 3.11: Bedding-parallel faulting in the hanging wall of the Klipwal shear zone. Fault cuts

upsection northwards to the right of the photograph. Note the outhward dipping cleavage to the left of the

photograph. View looking southwest.
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Figure 3.12A: Poles to fault planes in the hanging

wall and footwall of the Klipwal shear zone.

Figure 3.128: Lineations 10 footwall and

hanging-wall faults.
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Figure 3.13: Footwall splay to the Klipwal shear zone along the Pongola River with cut-off of footwall

stratigraphy. View looking north.

Late brittle deformation

The compressional phase which generated the Klipwal shear zone was followed by a

transtensional phase, during which time its hanging wall moved down towards the

northeast relative to the footwall. The relative timing of these events can be established

from overprinting relationships. In contrast to the lineations which plunge to the

southeast, the striations and quartz fibre lineations associated with this event plunge

moderately to the northeast at 45 0 and partly obliterate the early lineations (Figures 3.15

and 3.16).

This phase is characterized by the development of steeply dipping normal sinistral faults

(Figure 3.17), which dip towards the east and northeast, as well as fault drag in the

hanging wall of the shear zone. The intensity of the faulting diminishes away from the

shear zone, but is high in the dolerite.
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Figure 3.15:

Figure 3.16:

N
N:I03

. .
e. :.~.. -- ......~..: .
!. . -':\.\-.•.- ..- , .

. .:. .. .r· .., ..+ . ..~

Stereoplot of lineations associated with transtension.

Two generations of striations in a fault plane in the Klipwal Mine. The pencil is parallel

to the early southeast plunging striations. View is upwards towards the northeast.
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Figure 3.17: Steeply dipping late fault. Photograph taken on 9-3 sub-level looking north.

Associated gold mineralization

The Klipwal Gold Mine is located within the Klipwal shear zone. The mine operated

sporadically from 1898 until 1974 when Lonrho South Africa Ltd. acquired the property.

Mining on a small scale has since then been undertaken continuously.

The largest concentration of gold is associated with the malO shear zone2 where it is

associated with syntectonic quartz and carbonate veins. Gold and sulphide mineralization

is also found within the altered (silicified and sericitized) wall-rocks.

2 No zones of mineralization are shown as this data is conjidemial.
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Minor ore bodies occur in secondary fractures and faults in the hanging wall, the

orientations of which vary considerably. The pattern of veining is complicated by the

sequential development and distortion of the veins during progressive deformation.

Ore mineralogy of the Klipwal deposit

A detailed mineralogical study of the gold mineralization by Russell (1985) on levels 4 to

6 (prior to the development of any of the lower levels) showed that 7 vol % of the gold

occurs as free gold, 12 vol % is associated with the gangue and an unidentified sulphide,

52 vol % is associated with pyrite, 22 vol % is associated with arsenopyrite, and 7 vol %

is associated with cracks in pyrite or arsenopyrite grains. She concluded that the ore was

deposited from hydrothermal solutions introduced into the shear zone as suggested by. (i)

an association with quartz-veining, (ii) wall-rock alteration, and (iii) the decrease in the

ore grade away from the shear zone and from the association of arsenopyrite-pyrite­

pyrrhotite that the temperature of formation of the gold mineralization was in the order of

350°C to 400°C (i.e. mesothermal).

Both disseminated- and vein-type mineralization are found (Figure 3.18). Broad, generally

barren, pyrite veins cross-cut the shear fabric of the host rock whereas narrower veins of

pyrite are concordant with it. Due to the intimate textural relationship of gold

mineralization and sulphides, it is clear that they were deposited contemporaneously.

Possible models for the gold mineralization

The source of the gold still remaIns unresolved. Neall (1987) an,d Romberg (1990)

propose epigenetic models for the formation of Archaean hydrothermal gold in which gold

can be leached from source rocks during metamorphic devolatization reactions. The gold
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is then transported in a low salinity, near to slightly alkaline fluid, as a reduced-sulphur

complex of the form Au(HS)2' Interaction of this fluid with Fe-rich rocks (high total Fe

and/or high Fe/(Fe+ Mg», such as dolerite and banded iron-formation, in the temperature

range 300°C to 400°C, is believed to cause sulphidation of the wallrocks and

destabilization of the thiocomplexes due to the loss of sulphur from solution. This reaction

results in precipitation of gold simultaneously with pyrite (and/or pyrrhotite), thus

accounting for their common association of gold, particularly within pyrite-rich wallrock­

altered zones in the Archaean gold deposits.

Figure 3.18: Vein- and disseminated-pyrite within a mudstone from level 4 in the Klipwal Gold Mine.

96



Sericite, quartz and pyrite (all present in the Klipwal gold deposit) are characteristic of

sericitic alteration in hydrothermal deposits (Stanton, 1972; cited in Russell, 1985). The

breakdown of orthoclase and chlorite to sericite is induced by reactions with H+, whereas

the sulphur combines with iron from iron-bearing silicates to form pyrite. It would appear

that the style of mineralization found in the hanging wall of the Klipwal deposit is the

result of such a process with the dolerite providing the iron necessary to induce the

precipitation of sulphides from a solution migrating along the tectonic contact between the

dolerite and the sedimentary rocks.

The Klipwal gold deposit also fits Boyle's (1979) classification of "auriferous veins, lodes,

fractures, shear and crushed zones, essentially occurring in sedimentary terranes". These

deposits range in age from Precambrian to Tertiary. The most favourable rocks for this

.type of deposit are slate, phyllite, sandstone and greywacke predominantly of marine

ongm. Boyle (op. cit.) proposed that wall rock alteration ·can be minimal, but

silicification, sericitization and pyritization are commonly found. The gold is commonly

reported as being found in the native state, or as a disseminated form in pyrite and

arsenopyrite.

Major regional structures, such as deep-seated faults or ductile shear zones are required

to enable the circulation of large volumes of hydrothermal fluids. Efficient valve-action,

causing significant hydrothermal precipitation involves massive fluid discharge with a large

accompanying drop in fluid pressure. High-angle reverse or reverse-oblique faults

represent optimal structures for valve action, capable of giving rise to the greatest fluid

pressure fluctuations. Accumulation of fluid pressure is a necess~y prelude to failure and

causes arrays of subhorizontal hydraulic extension fractures to open up adjacent to rupture

nucleation sites on reverse faults, the whole fracture array serving as an overpressure fluid

reservoir for rapid postfailure discharge. Such locally induced permeability is a significant

aspect of gold mineralization (Harris, 1987). However, such a fault-valve may later be

resealed by hydrostatic precipitation (Sibson, 1990).
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Whereas lithological controls played a role in the precipitation of gold at Klipwal,

economic concentrations could be related to zones of higher permeability in the shear zone.

Irregularities in the shear geometry would be ideal loci for rePeated slip events and

represent zones of enhanced transient permeability which would focus fluid migration.

Furthermore, fluid migration would take place only along the active fault segments at the

time of fluid production (Robert, 1991). Thus the timing of the active slip relative to fluid

production could explain why some segments of the shear zone are m.ineralized and others

not.

In similar J\rchaean gold deposits in the Lawlers district of Western Australia, Partington

(1987) found that a factor common to most of the gold deposits, is their location in

structures formed in a wrench tectonic environment at the brittle-ductile interface.

Furthermore, in all cases the gold mineralization is locat~ in small-scale structures which

were active toward the end of deformation, when vertical movement was dominant. These

later extensional movements caused the shear plane to "open" (such as the late

transtensional event in the Klipwal shear zone), resulting in zones of intense pressure

reduction. Any fluids in the system at this time would migrate towards this zone.

Russell's (1985) investigation of the Klipwal deposit showed that gold mineralization

occurred during a number of phases in the shear zone as hydrothermal fluids were

introduced at different times. This is confirmed by the presence of sheared and faulted

mineralized quartz and carbonate veins on the deeper levels not examined by Russell (i.e.

levels 8 to 11, and Figure 3.19).
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Figure 3.19: Carbonate veins cross-cut by later quartz and carbonate veins. The earlier set extend from

the bottom left to top right of the photograph. 9-1 sub level, the earlier carbonate veins dip towards the left

of the photograph.

Meander Shear Zone

The northeasterly striking Meander shear zone exposed immediately to the north of the

Pongola River is sub-vertical with lineations plunging towards the south-southwest (Map

IB). The shear zone is very poorly exposed within the study area and can be traced for

- 1 km. To the northwest of the shear zone, the eastern limb of the Ngwenya syncline

is overturned (Map 2).

The relationship of this shear zone to the Klipwal shear zone in uncertain, but maybe a

footwall splay.
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South-southeast directed nonnal faulting and associated folding

Gunsteling Fault

The Gunsteling fault was originally identified by Humphrey and Krige (1931) as a steep

normal fault with a displacement towards the southeast. It runs above the Sinqeni

Formation sandstone parallel to the Izermijn shear zone. The age relationship between the

Izermijn shear zone and this fault is thus uncertain. The fault has an arcuate northeast

trace swinging eastwards towards the east, and possibly southeastwards joining up with the

Qumeni shear zone (Map 18). It is cut by the northwest-trending set of faults and shear

zones in this area. The fault has a moderate southeast dip along most of its length.

On the Gunsteling farm (Figure 3.20 northeastern corner) the fault cuts down through the

650 m thick Sinqeni Formation and the stratigraphically highest beds of the hanging wall

abut against Nsuze volcanics. As the observed hanging-wall stratigraphy of the Kulphiso

Formation has a thickness of 800 m and the Sinqeni Formation is not represented, a

minimum displacement of 1450 m is inferred.

The fault varies from a discrete discontinuity 40 cm in width to a wide fault zone of - 200

m just north of the Ntombe river where it incorporates a large fault-bounded sandstone

sliver (Figure 3.20). Broad breccia zones, up to 40 m wide, made up of fragments of

sandstone, conglomerate, dolerite and subordinate shale are present. Fault drag and s-c

relationships indicate a normal sense of movement.

Synthetic listric and planar faults are present in the footwall Sinqeni sandstone immediately

below the fault zone (Figure 3.21). These floor faults cut back towards the undeformed

footwall and may develop as a result of unloading of the footwall (Gibbs, 1984).
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Figure 3.20:

in Figure 3.26.

Map of the Gunsteling fault. A and 8 mark the end points of the cross-section line shown
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The sandstone in the footwall is highly fractured. The orientations of these fractures are

relatively scattered although a large proportion of them appear to be extensional fractures

that formed at a high angle to the fault and the direction of slip (Figure 3.22).

Most of the subsidiary faulting in the hanging wall and footwall is bedding-parallel. The

lineations measured in the hanging wall have a shallower plunge than those in the footwall

due to the attitude of the bedding in the hanging wall being towards the west (Figure

3.23). The orientation of the lineations indicate oblique net slip with transport of the

hanging wall to the south-southeast.

Figure 3.21: Annotated photograph showing faulting in the footwall of the Gunsteling fault. View

looking south across the tombe Ri ver valley.
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• FOOTWALL LINEATIONS

• HANGINGWALL LINEATION

Figure 3.22: Pi plot of fractures in the Gunsteling

fault footwall.

Figure 3.23: Lineations on bOOding-parallel

faults in the footwall and hanging wall of the

Gunsteling fault.

Northeast striking synthetic faults formed in the hanging wall to accommodate space

problems caused the by movement of the hanging wall beds down the curved trajectory or

over ramps of the fault.

The geometry of the poorly exposed northeastward extension of the Gunsteling fault is

problematical. In view of the large displacements associated with the fault to the

southwest it is unlikely that it dies out before the Qumeni shear zone is reached. The fault

is thus either displaced by the QumenilAltonalSinqeni shear zone system and now

continues above the basal sandstone to the east of the Sinqeni mountain, or it swings into

a southeast strike to become a sinistral lateral ramp or tear fault that was reactivated as the

dextral Qumeni shear zone. Due to the apparent absence of any normal faulting to the east

of the Sinqeni mountain, the latter interpretation is favoured. Normal faulting above the

Sinqeni Formation does however occur further north. A schematic representation of the

possible sequence of deformation events is shown in Figure 3.24.
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Gunsteling anticline and syncline

The arcuate trace of the fault in plan view (Map 18) implies a listric shape in profile. A

roll-over anticline (the Gunsteling anticline) is clearly developed in the hanging wall

(Figures 3.25 and 3.26). A peculiarity of the fold is its monoclinal character with the

hanging-wall bedding being sub-horizontal adjacent to the fault while the footwall bedding

dips toward the southeast (Map le). This is due to a southeastward tilt of the strata in

the hanging wall of the lzermijn shear zone prior to the faulting or due to the later regional

folding. A synclinal structure is developed in the hanging wall of the Gunsteling fault to

the south of the Pongola River. This fold is possibly the result accommodation of hanging

wall extension associated with a ramplflat detachment fault geometry (Figure 3.27; Ellis

and McClay, 1988). It is possible, if the Izermijn compression preceded the Gunsteling

extension, that early ramp structures were utilized by the later extension giving rise to both

anticlines and synclines as the hanging wall was transported south-southeastwards relative

to the footwall.

North-northwesterly trending folds

Upright folds with south-southeasterly plunging axes appear to have formed both prior to

and contemporaneous with north-south dextral and northwest sinistral shearing. They fold

the Izermijn shear zone and Gunsteling fault. These folds occur on all scales (e.g. Bethu

anticline, Mfeno syncline and anticline, Nombela anticline and Prudentie syncline; see

Maps le, 2 and 3).
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Ramp

Roll-over
anticline

Hanglngwall
syncllne
1.----

Figure 3.27: Necessary folds in the hanging wall above the footwall ramps and flats explaining the

development of hanging-wall synforms in relation to fault geometry (after Gibbs, 1984).

Bethu Anticline

The Bethu anticline which is situated between the Sinqeni and Qumeni shear zones (Figure

3.28 and Map le) plunges shallowly towards the southeast and has a steep axial plane

which dips steeply towards the northeast. The fold predates the shearing as the fold

closure is extensively disrupted by the Altona-Sinqeni shear zone system.

M/eno Syncline and Anticline

A close overturned fold, the Mfeno syncline, occurs in a fault-bounded block between the

Duduka fault, the Sinqeni shear zone and the Dwaleni fault (Figure 3.29 and Map le).

The northeastern limb dips steeply towards the northeast and the southwestern one towards

the southwest. The fold axis plunges shallowly to the southeast and the axial plane dips

at - 30° towards the northeast.

On the northern side of the Duduka fault the beds have been folded into an open

northwest-southeast oriented anticline, the Mfeno anticline (Map 3).
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These folds are interpreted as being the result of dextral movement along the Sinqeni shear

zone before the initiation of the Duduka fault. A restraining bend in the Sinqeni shear

zone may have induced folding and overturning of the Mfeno syncline prior to southward

displacement of the block containing this fold.

Figure 3.29: View of the Mfeno syncline looking southeastward showing the told-closure and its

southwestern limb. The fold is bounded by the Duduka fault (A) and the Sinqeni shear zone (B). Bedding

is indicated by the line with shorter dashes. The sandstone displays an intense vertical jointing.

Nombela Anticline

The northwest-trending Nombela anticline developed late during the shearing event as it

folds the Sinqeni shear zone (Map 3). The fold axis plunges towards the southeast

(157/12; Figure 3.30).
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Figure 3.30: Stereoplot of poles to bedding in the Nombela anticline.

Prudentie Syncline

The Prudentie syncline is located between the Gunsteling fault and the Altona shear zone

(Map le). The fold axis plunges towards the south within the study area. Watchom

(1978, 1979b) states that the fold is a periclinal structure with the axis plunging towards

the north further south. The footwall to the Gunsteling fault has also been folded and has

an axis which plunges towards the south-southeast (160/19; Map le). The arcuate shape

of the Gunsteling fault is related to this folding.

Northerly trending dextral shear zones and faults

Eight of these shear zones and faults are exposed within the study area namely the

Mkhuzwa, Altona, Sinqeni, Qumeni, Enyabisa, Nkolotsheni and Bumbeni shear zones as

well as the Khuphulangwenya fault (Map 18). Many of them are developed in

incompetent mudstone and phyllite units and have bedding-parallel strikes. The Mkhuzwa,

Altona, Sinqeni and Enyabisa shear zones splay southwards but appear to join again south

of the Pongola River, thus defining a large-scale strike-slip duplex.
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Mkhuzwa Shear Zone

This north-south oriented shear zone is very poorly exposed, except in a banded iron­

formation unit in the Mkhuzwa stream (Map 3). A series of sub-vertical north-south

trending shear zones up to 10 m in width and mesoscopic tight folds are developed here.

A dextral sense of movement is inferred inter alia from en echelon tension gashes (Figure

3.31).

Figure 3.31: Complex quartz-filled en echelon tension gashes in a mudstone in the Mkhuzwa shear zone

indicating a dextral sense of shear. North is at the top of the photo (coin diameter is 20 mm).

Horizontal stretching lineations are present on quartz veins which are parallel to bedding.

The fold axes lie in the plane of the shear zone with plunges varying from sub-horizontal,

parallel to the stretching lineations to sub-vertical. This variation in plunge is probably

the result of progressive deformation with fold axes initially developing at a high angle to

the shear direction but then rotating into parallelism with the stretching direction.
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Northwards the Mkhuzwa shear zone swings in strike and joins the northwest striking

Qumeni shear zone.

Qumeni Shear Zone

The Qumeni shear zone, which is very poorly exposed, is interpreted as initially forming

part of the arcuate Gunsteling fault possibly developing into a strike-slip shear zone further

south. After the Bethu anticline was formed, it was reactivated as the Qumeni shear zone

which it propagated in a dextral sense northwards into the Gunsteling fault footwall (Figure

3.32). The Enyabisa shear zone cuts and displaces the Qumeni shear zone southwards to

the south (Map 3).

Altona Shear Zone

The Altona shear zone is well exposed in the Mkhuzwa stream where typical shear-related

small scale structures indicating right lateral strike-slip displacement can be seen within

the banded siltstone of the Nsuze Group. The shear zone is terminated in the north by the

northwest-trending Delft shear zone. Strike-slip movement along this northern part was

accompanied by a component of normal displacement as the Sinqeni Formation sandstone

to the east is downthrown against the Nsuze siltstone to the west. Further south the Altona

shear zone displays a reverse component of movement as the Nsuze siltstone overlies the

Sinqeni Formation sandstone implying a rotational movement.

A - 2200 m dextral strike separation can be determined from the offset of the marker

iron-formation. Phyllitic siltstone interpreted as belonging to the Nsuze Group (Chapter

2) are found within the shear zone. The siltstone displays a well-developed foliation,

which is also present to a lesser extent within dolerite in the zone of shearing. The
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foliation is sub-vertical and varies in strike from north-northeast to northwest (Map IB).

A well defined s-c fabric confirming the dextral displacement is often developed and drag

folding (Figure 3.33) and rotation of fault blocks (Figure 3.34) is also observed. Quartz­

fibre lineations and striated slickensides have a sub-horizontal attitude and typically plunge

gently north-northwest and south-southeast (Map IB).

Figure 3.33: Sectional view looking obliquely down towards the south through a drag fold developed in

the Altona shear zone. The axis plunges southwards.
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Figure 3.34:

to the left.

Northwest-trending rotational faults adjacent to the Altona shear zone. Plan view with north

The dip and youngmg direction of bedding changes from westwards in the west to

eastwards in the east across the shear zone so that the shear zone marks an early sheared

out fold closure (Figure 3.35). The sandstone along the shear zone is deformed by brittle

faulting and fracturing and has subsequently been extensively recrystallized. The lack of

ductile deformation in the sandstone is evident where the basal conglomerate is present,

as the clasts have not undergone any apparent change in shape.

In the field strike orientations, namely north-south and northwest strike directions, are

found in close association with the north-south set being better developed. These can

clearly be seen in the detailed plan view of an outcrop of the shear zone in the Mkhuzwa

stream (Figures 3.36 and 3.37) despite their anastomosing character. The north-trending

faults and shear zones generally truncate the northwest-trending ones but locally the latter

displace the former, indicating contemporaneous development.
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Figure 3.37: Intersecting dextral and sinistral faults in the AJtona shear zone. Note the conflicting ag~

relationships of cut-offs. North is to the left.

In the Nsuze siltstone, the folds associated with the shearing show thickening in the hinge

zone (class 2 and 3 folds; Ramsay's 1967 classification). The hinges often occur in the

zone bounding the acute angle between conjugate faults or shear zones with the axial

planes bisecting the faults (Figure 3.38).

\1 % Strlko·sllp sh_ zono
........ Fold oxl. trace
/' Boddlng Iroco

Figure 3.38: Plan view sketch of a fold in the Altona shear zone.
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Sinqeni Shear Zone

The Sinqeni shear zone is the most prominent of the north-south striking dextral shear

zones, and has a strike length of -7500 m across the study area. It displaces Nsuze

siltstone as is the case with the Altona and Enyabisa shear zones. Unlike the'Altona shear

zone, the throw of the Sinqeni shear zone does not change along strike and it displays only

right-lateral reverse oblique slip. The result is that Nsuze siltstone now overlies the

Sinqeni sandstone. In the north, the strike of the shear zone swings around to the

northwest, but Nsuze rocks are still present to the east. The Sinqeni shear zone is not as

well exposed as the Altona and the sheared Nsuze rocks along it weather easily. The shear

zone forms a well defined valley between prominent ridges of the bounding Sinqeni

Formation sandstone.

The Sinqeni shear zone was originally described by Humphrey and Krige (1931, pages 27­

30) as being situated within the core of a "sharp anticlinal fold". They postulated that a

thrust fault could be present between the two prominent sandstones. They also mentioned

that shales, which are "white and light-grey in colour. .. and which weather to a bright red

colour" are found in the Itala and Bivane River valleys along strike from the Sinqeni shear

zone to the south of the present study area. This suggests that the Nsuze Group siltstone

is still preserved within the shear zone some 9 km farther southwards. This would give

the shear zone a total strike length of at least 16 km.

The shear zone has tectonically duplicated the Sinqeni Formation. It is parallel to east­

dipping bedding to the east, but oblique to it on the western side. This is demonstrated by

the truncation of the marker iron-formation in the fault-bounded block between the Altona

and Sinqeni shear zones. The beddi'ng within this block is gently deformed by an anticlinal

fold, the axis of which plunges gently towards the south-southeast (71" axis 172/13; Map

le). The iron-formation V's upstream in the valley in this block because the stream

gradient .is greater than the fold plunge. South of the Duduka fault is a fault bounded
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block of sandstone which includes the marker iron-formation. This block IS displaced

- 1200 m southwards by the Sinqeni shear zone.

A small Nsuze siltstone exposure in the shear zone south of the Duduka· fault provides a

good example of the contemporaneity of the two sets of shear zones even though it is

surrounded by dolerite and may not be in situ. On the western side of Figure 3.39 three

small-scale sinistral shear zones with a northwesterly trend are seen to be terminated by

a broader, better developed northeast-trending dextral shear zone. In contrast the most

southwesterly of the three sinistral faults truncates a northeast-trending dextral fault.
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Figure 3.39: Detailed plan view of an exposure within the Sinqeni shear zone to the south of its

intersection with the Duduka fault.
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The shear zone is very poorly exposed on the western side of Sinqeni mountain in the

Pongola River valley. Where it crosses the river, it becomes folded by the north­

northwesterly trending Nombela anticline so that its dip shallows and it swings into an

east-west strike. It resumes its north-south strike again further to the south.

The total lateral displacement along the Sinqeni shear zone is in the order of 5000 m (C

to D'; Figure 3.32) and the cumulative dextral displacement along the north-south

trending Sinqeni-Altona-Enyabisa shear zone system is at least 8800 m (A-D').

Mhlope Shear Zone

The Mhlope shear zone is developed within the fault bounded block between the Altona

and Sinqeni shear zones (Map IB). The shear zone dips at -25 0 to the southeast and

strikes northeast and is truncated to the east by the north-south oriented Sinqeni shear

zone. It does not appear to continue in the marker iron-formation outside of this block and

is thus probably related to the dextral shearing along the Sinqeni shear zone. The shear

zone is developed sub-parallel to bedding stratigraphically below the marker iron­

formation, but eliminates this hanging-wall unit to the southwest, indicating a normal fault

relationship. It was subsequently folded together with the bounding sedimentary rocks.

Poles to the shear foliation plot along a partial girdle, the 7r pole of which has a trend and

plunge of 172\13 (Map IB), and conforms roughly with the axis of the Bethu anticline,

confirming a pre-folding age for the shearing. Lineations measured on north-south

trending part of the shear are sub-horizontal and are oriented north-south (Map 1B). A

right-lateral sense of movement is given by small-scale structures (Figure 3.40).
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Figure 3.40: Small- cale folds of bedding in the Mhlope shear zone showing a dextral asymmetry. Note

the minor faults with dextral offsets to the right, view looking obliquely down toward outheast.

Dwaleni Fault

The Dwaleni fault, which is mostly bedding-parallel, splays southwards off the Sinqeni

shear zone into its hanging wall. It is situated near the base of the Sinqeni cliff and dips

towards the east (Figure 3.41 and Map 3). The fault is transpressional with hanging wall

transport to the south. A reverse sense of movement is indicated by poorly developed s-c

fabrics and detachment folding in the hanging wall (Figure 3.42). The folds plunge

shallowly southeastwards. The fault has duplicated the lower parts of the Sinqeni

Formation including the basal conglomerate so that it has a greater thickness at Sinqeni

mountain.
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Figure 3.42: Schematic plan view of the Dwaleni fault showing associated folding.

Nkolotsheni-Bumbeni Shear Zone System

The previously unrecognized Nkolotsheni-Bumbeni shear zone system is situated about 2,5

km east of the Altona and Sinqeni shear zones in higher stratigraphic units. Due to their

bedding-parallel nature the displacements along them are indeterminable.

Nkolotsheni Shear Zone

The Nkolotsheni shear zone is up to 50 m wide and is generally situated within poorly

exposed mudstone of the Thalu Formation. Northwards, it is located between two

competent sandstone units, adjacent to a sheared banded iron-formation. The shear zone
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strikes north-northwest and contains a steep east-northeast dipping foliation and stretching

lineations that plunge very gently towards the north-northwest (Map IB). The northern

extension of the shear zone is poorly exposed and may terminate before the northwest­

striking Delft shear zone is reached or it may be displaced by it (Map 3). It continues

southwards across the Pongola River into the Itala Game Reserve. The best exposure is

to the west of the Bumbeni stream, where the Bumbeni shear zone branches off to the

southeast. Immediately south of this splay, the Nkolotsheni shear zone widens

significantly to about 100 m. The sandstone units to the east have been attenuated and

boudinaged with large-scale boudins up to 100 m in length being represented here.

The banded iron-formation to the west has been subjected to both brittle and ductile

deformation particularly towards the south. The unit is displaced in a right-lateral sense

by a minor splay. Asymmetric z-shaped shear folds have axial planes sub-parallel to the

shear zone. The axes typically plunge very gently towards the southeast.

Bumbeni Shear Zone

The Bumbeni shear zone, which is also very poorly exposed, is developed in the Bumbeni

stream valley. Shearing has occurred predominantly within dolerite as well as mudstone

which has behaved in a ductile manner. It dips steeply to the east-northeast or northeast

(Map IB). Locally the shear zone is intruded by several phases of dolerite, the earlier

ones of which are syn-tectonic.

Subhorizontal slickenside striations and quartz-fibre lineations trending north-northwest are

commonly developed on bedding surfaces adjacent to the zone of shearing. Tension

gashes indicate a dextral sense of movement. An 80 m thick sandstone unit to the west

of the shear zone may be a tectonic correlative of the thick Hlashana Formation sandstone

to the east.

126



The shear zone continues southwards into the ltala Game Reserve where it appears to host

the mineralization at the defunct Wonder Gold Mine.

Khuphulangwenya Fault

The Khuphulangwenya fault (Map 2) is the most easterly of the northerly-trending dextral

shear zones and faults in the study area. It is not as well developed as the other shear

zones and has a more north-northeasterly trend. A dextral displacement is apparent from

the - I km offset of stratigraphic units and the sense of drag of a-50 m thick sandstone

on the western side of the fault immediately northeast of the Khuphulangwenya stream.

The faulted zone is discrete, particularly where both. the footwall and hanging wall consist

of sandstone, but it widens up to 50 m where it passes through mudstone, as for example

in a road-cutting west of the Klipwal Gold Mine. The fault cuts a thick dolerite intrusion

at its northern extremity although most of the displacement on the fault appears to predate

the intrusion (Map 2).

The foliation in the fault plane dips steeply towards the east or east-southeast. Lineations

are oriented north-south and typically plunge towards the south, although there is

significant variation in the plunge (Map IB).

Several major northeast-striking sub-vertical faults with orientations similar to the

Khuphulangwenya fault occur in the hanging wall of the Klipwal shear zone. The

displacement of lithological units indicates downthrow to the southeast with a local

component of dextral movement. The variation in plunge of lineations along these faults

indicate that their movement history is complex.
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Northwesterly trending sinistral shear zones and faults

The set of northwest-southeast shear zones are not as well developed as the north-south

trending ones and data from them is limited due to their poor exposure. They differ in

style from the north-south set because of their general obliquity to bedding. The most

prominent of these structures are the Delft, Mzamba and Nkosetsha shear zones and the

Duduka fault.

Delft Shear Zone

The Delft shear zone is situated in the northwestern portion of the study area (Map 3) and

is very poorly exposed. As the Delft shear zone approaches the hinge zone of the Bethu

anticline it swings into a north-no~hwest azimuth parallel tE> its axial trace. The marker

iron-formation is displaced sinistrally by about 1 km. Sinistral drag of east-dipping

bedding adjacent to the shear zone has produced drag folds plunging at about 55 0 towards

the east-northeast (Figure 3.43). The shear zone is not exposed east of the Duduka

stream. The Nkosetsha shear zone to the southeast lies along strike from and is probably

a continuation of the Delft shear zone.

N

Figure 3.43:

rotation).

Rotation of pole:' to ~ding adjacc:nt to the Delft shear zone: (arrow indicates sense of
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A prominent northeast-dipping and a local north-striking cleavage occur within the shear

zone, particularly in the Nsuze siltstone. Corresponding to these two foliation orientations

are two sets of lineations that plunge shallowly towards the southeast and the north

respectively (Map IB).

Northeast of the Bethu anticline, it assumes an attitude parallel to the Sinqeni shear zone.

The two zones do not join and the Delft shear zone is located in the Nsuze siltstone to the

northeast of the Sinqeni shear zone.

Nkosetsha Shear Zone

This - 60 m wide shear zone (Map IB and Map 2) in the northeastern part of the study

area is very poorly exposed and can only be followed over a distance of about 200 m. It

dips steeply towards the northeast and truncates the Klipwal shear zone. A sinistral sense

of movement is inferr~ from drag folding of footwall lithologies.

Vergenoegheid Shear Zone

On the farm Vergenoegheid (Map lA), the Sinqeni Formation is confined as a fault-bound

block between the Delft and Vergenoegheid shear zones. The latter shear zone, which is

very poorly exposed, strikes northwest-southeast, is sub-parallel to bedding, and typically

dips towards the northeast. The Vergenoegheid shear zone is truncated by the Delft shear

zone in the northwest and in the southeast where it is displaced by about 1 km. The shear

zone continues south of the Delft shear zone but cuts down through the upper part of the

Sinqeni Formation in the vicinity of Sinqeni Mountain. This shear zone, like the Altona

shear zone, has a rotational component. Northeast of the Bethu anticline, there is loss of

ground across the shear zone while in the south the marker iron-formation has been

duplicated .(Map 3).
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Mmmba Shear Zone

The Mzamba shear zone adjacent to the Piet Retief-Klipwal Mine road is the most poorly

exposed of the northwest-trending shear zones (Maps 18 and 3). The sense of movement

is difficult to determine but a sinistral sense seems likely from its northwest orientation.

Duduka Fault

The northwest-trending Duduka fault appears to have negligible sinistral strike-slip

displacement where it crosses the Nsuze-Mozaan contact, increasing to a few hundred

metres further to the southeast. It is cut by the Altona shear zone in the northwest. A

parallel fault to the south has offset the marker iron-formation sinistrally by 300 m.

Quartz-fibre lineations and slickenside striations are oriented sub-horizontally (Map 18).

The Duduka fault cannot be followed along strike towards the northwest, but small-scale

northwest-striking faults are exposed in the Mkhuzwa stream. They have displacements

in the order of several centimetres and cross-cut the north-trending Mkhuzwa shear zone.

Enigma of the conjugate shear zones

It is apparent from the relationships described above that the north-south dextral and

northwest sinistral shearing occurred contemporaneously and that folding occurred prior

to, during and after the shearing.

The relative senses of movement along the respective shear zones and the orientations of

the large-scale fold axes indicates that the maximum principal compressive stress axis, <Tt,

bisects the obtuse angle between the shear zones and trends east-northeast ( - 067°).
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The (13 axis appears to plunge shallowly northwest to give rise to a normal component of

movement of sinistral northwest shear zones and a reverse component of the north-south

ones.

The relationship of the shear zones to (1, contrasts with the orientations predicted by the

Mohr-Coulomb theory (Jaeger and Cook, 1979; Thatcher and Hill, 1991) which states that

(1, will bisect the acute angle between conjugate faults whereas the obtuse angle is bisected

by (13 (Figure 3.44)' As this relationship holds for synthetic and antithetic faults in a simple

shear regime (Figure 3.45), the north-south and northwest shear zones cannot be

interpreted simply as Riedel and conjugate Riedel shears.

­O'~ -Oi

Figure 3.44:

Mohr-Coulomb Optimum

Conjugate fault planes generated under tri-axial tre condition (al > a2 > a). Arrows

how orientations of maximum and minimum principal stresses (after Thatcher and Hill, 1991).

Conjugate shear zones in which the obtuse angle (generally between 90° and 130°)

between shear zones reflects the greatest shortening direction h~lVe been reported from

some weak or semi-ductile rocks (Becker, 1893; Wellman, 1954; Ramsay 1980; Ramsay

and Huber, 1987; Sylvester, 1988; Price and Cosgrove, 1990). Becker (op. cif.)

pioneered attempts to explain the development of obtuse conjugate relationships on the

basis of the strain ellipse concept. These shear zones described as "ductile sh~s" were

reported to occur in rocks which exhibit considerable strain. According to Price and
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Cosgrove (up. eil.) this "ductile shear" concept was widely used for almost half a century,

but that it contains many fundamental errors although they did not elaborate. Becker's

(op. eil.) "erroneous" concept was gradually abandoned. As a consequence, observations

regarding such structures have almost completely disappeared from the literature, although,

as Price and Cosgrove (op. ell.) mention, these structures have not disappeared from the

outcrop.
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shear

c e
'/

--- Conjugate
~ ~ Reidel (R') Y

shear shear

=:..=~:oc:::==-.-~-~~-

......

Reidel (R)
shear

Master
, fault

Extension
fracture

......Antithetic
shear

En echelon
folds

Secondary
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Figun: 3.45: The angular relationships ht:lwt:t:n structures that form in an idealized right-lateral simple

shear (after Wilcox Cl al., 1973; Christie-Blick and Biddle, 1985; Alien and AHen, 1990). c is the vector

of compression and e is the vector of t:xh::nsion.

(A) Fractures and folds superimposed on a strdin ellipse for overall deformation.

(B) Riood shear terminology.
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Models for the conjugate relationship

Four alternative models to account for the obtuse relationship of the shear zones can be

considered:

Separate deformation events

Although the small-scale structures in the Altona and Sinqeni shear zones suggest that they

are contemporaneous (e.g. Figures 3.36 and 3.39) the prevalence of northwest-southeast

shear zones truncating north-south shear zones within the study area (e.g. the Delft shear

zone terminates the Altona and the Duduka cuts the Sinqeni shear zone; Hunter, 1968)

suggest that the northwest strike-slip shearing event may have been later. A similar

relationship mapped by Leedal and Walker (1954) in northwestern Ireland was attributed

to two different tectonic events since their orientations did not agree with Coulomb fracture

angles. On a regional scale, however, the north-south shear zones tend to truncate the

northwest-southeast shear zones (Hatfield, 1990; Verbeek, 1991).

It is also of relevance that the post-Pongola Usushwana Complex is displaced by a north­

south right-lateral shear zone (Sleigh, 1988; Hatfield, 1990; Verbeek, 1991). The

complex is believed to have intruded into a northwest-southeast striking rift-like structure

(Hunter, 1970b; Hammerbeck, 1977; Hunter and Wilson, 1988; Riganti, 1991). This

suggests that at least some of the northwest-southeast structures predate the north-south

shear zones and supports the suggestion that the present displacement pattern is best

explained by deformation along a conjugate set of shear zones.

133



Rotation ofshear zones

Conjugate strike-slip shear zones formed in clay model experiments are not fixed in

orientation through time, but rotate as deformation proceeds (Freund, 1970; Davis, 1984).

There are two possible types of rotation:

1. With simple shear deformation, external rotation of the conjugate faults

accompanies rotation of the axes of the strain ellipse (Figure 3.46A). There

is no effect on the conjugate angle.

2. For both simple and pure shear deformation, an internal rotation of the

conjugate faults with a consequent change in conjugate angle may occur

(Figure 3.468).

Figure 3.46

A

A:

Change in Orientation of
Long Axis of Ellipse
("External" Rotation)

e

f;B

Progressive Increase in Conjugate
Angle ("Internal" Rotation)

Progressive external rotation of conjugate faults during simple shear deformation.

B: Internal rotation increases the conjugate angle facing the bulk shortening direction

(c). After Davis (1984), e is the vector of extension.
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To achieve the present orientations, they would have had to be rotated through - 45 °

(Figure 3.47), the sinistral shear zones moving clockwise and the dextral shear zones anti­

clockwise. The maximum obtuse angle after rotation given by Davis (1984) is 120° from

an initial angle of 60° (Le. a rotation of 60°), while Nur et al. (1986) report that large

rotations leading to angles between shear zones of 100° can occur in crustal blocks. These

values are less than the 135° (or a rotation of 90°) observed for the strike-slip shear zones

in this study.

\'

/
/

. ~ /
0', /

/
/

Figure 3.47: Required rotation of conjugate shear zones in the study area.

A rotation of this magnitude would cause considerable shortening. The strain ratio or

ellipticity (Rs) can be calculated using Wettstein's equation (Ramsay and Huber, 1983,

page 294):

R = tanS
S tanSd
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where e is the original angle between the shear zone and a line which becomes the

principal extension in the undeformed state, and 8d is the angle in the deformed state

(Figure 3.48).

Substituting the values given in Figure 3.47 into the equation gives a value for Rs =

5.550, corresponding to an extension e=0.18 and therefore a percentage shortening of

82 %. Wood (1974) showed that cleavages in slates commonly develop from shortening

values above 40%. No cleavage fabric is identified beyond the limits of the shear zones,

and furthermore, the original sedimentary structures are commonly very well preserved.

It would also be reasonable to expect that compressional structures, such as reverse faults

and isoclinal folds, would accompany shortening of such magnitude. In addition, during

rotation the old strike-slip faults would lock and new conjugate faults could form at the

expected Coulomb angles. This would result in a large spread of orientations of strike-slip

faults in the field (Freund, 1970). The lack of these features militates against rotation

accounting for the observed shear zone geometry.

A

t---~-..-Ix

I Unit

Cloy Coke. Top View

a

c

-e X
e

c

Distorted Cloy Coke

Figure 3.48: Deformation of a hypothetical clay cake that is forced to distort in an ideally homogeneous

way showing the rotation of planar structures.

(A) Undeformed state.

(B) Deformed state.
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Reactivation of zones of weakness in the cover

This model assumes that the north-south-trending dextral shear zones were initiated as

sinistral shear zones, while the northwest-southeast ones originally had a dextral sense of

displacement (Le. the opposite sense to what is now observed in the field). These

orientations would be consistent with Coulomb fractures that occurred during an earlier

phase of compression in which 0'\ was oriented north-northwest. The subsequent reversal

of 0'\ and 0'3 would have resulted in a reactivation of pre-existing zones of weakness with

movement along shears now being in the opposite direction.

No evidence was found to suggest that the strike-slip shear zones had an opposite sense

of movement origif}ally. It can be argued that this pre-existing shearing is not well

developed and that the structures had only just been initiated when this deformational

episode terminated or that the earlier structures were overprinted during subsequent re­

activation.

Reactivation of zones of weakness in the basement

A further possibility is that the orientations of the shear zones reflect structural trends that

formed in the Archaean basement rocks prior to or during the deposition of the Pongola

Sequence and were subsequently reactivated. Northwest-trending structures in the

granitoid-greenstone terrain to the west of the study area have been reported by Smith

(1987), Sleigh (1988), and Verbeek (1991). Both Smith and Sleigh found evidence for the

existence of pre-Pongola northwest oriented strike-slip shear zones (Smith's D4 , and

Sleigh's D3). Some of these structures are however described as being of post-Usushwana

and thus also post-Pongola age (Smith, op. cit.; Sleigh,op. cit.; and Verbeek, op. cit.).
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Hunter (l970a) reported north-south wrench-faults which dip steeply towards the east

within the Ancient Gneiss Complex in Swaziland north of the study area. He also

described discontinuities which are oriented northwest-southeast.

It is therefore possible that north-south and northwest-trending conjugate shear zone sets

existed in the basement rocks prior to the development of the conjugate shear system in

the Pongola basin. Following the Pongola deposition compression from the east-northeast

could have led to reactivation of these shear zones which then cut up through the overlying

Pongola rocks. Pre-existing structures with appropriate orientations in the cover may also

have been were reactivated.
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CHAPTER 4: SUMMARY AND CONCLUSIONS

GEODYNAMIC SYNTHESIS

The Pongola Sequence represents the earliest known supracrustal succession on the

Kaapvaal Craton. Burke et al. (1985) and Matthews (1990) proposed that it accumulated

in a rift environment. The Nsuze Group was seen to represent a initial phase of

subsidence and filling of a rift as a result of uplift and crustal extension caused by

lithospheric heating. This assumption was based on the recognition of characteristics

similar to those of more recent initial phase rift deposits including large variations in

lateral thickness of sedimentary facies, syndepositional basement faulting and irregular

basement topography, thick sequences of shallow water facies deposits, immature basement

derived deposits and (at least locally) faulted margins and bimodal volcanic rocks. The

considerable variation in thickness of the Nsuze Group (10 000 m west of the present study

area, and 1800 m in the White Mfolozi inlier) is attributed to differential subsidence during

deposition. The immature nature of the fluvial deposits at the base of the Nsuze Group

indicates that they were derived, at least in part, from a local, rapidly uplifted, source

terrane. Hobday and Von Brunn (1976) have demonstrated a dominantly granitic source

for the arenites and argillites interbedded with the Nsuze lavas. In places the arenites

wedge out against palaeotopographic basement highs (Matthews, 1967) that may have been

induced by syndepositional basement faulting (Button, 1981). Normal faulting of pre­

Mozaan age has locally been demonstrated in the Nkandla area (Matthews, 1967).

The accumulation of the nearly 5000 m of sedimentary rocks with only a minor component

of volcanic rocks during Mozaan deposition was attributed by Burke et al. (1985) and

Matthews (1990) to a thermal subsidence phase. Broad crustal downwarping resulted from

thermal cooling and contraction of the subcrustal lithosphere.
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A subsequent resurgence of crustal extension and thermal activity in the northern parts of

the basin is evidenced by several volcanic events. A late Mozaan episode of volcanism

is represented by the amygdaloidal basalts of the Nkoneni Formation, the emplacement of

the mafic to ultramafic Usushwana intrusive complex and the intrusion of several extensive

granitoid plutons which deformed and disrupted the northern and eastern part of the main

Pongola basin. Hunter (1970b) suggested that the Usushwana complex was preferentially

emplaced along faults that were initiated during an episode of rifting.

Following these events the basin was subjected to several phases of deformation, of which
•

three are recognized in the present study area. The first involved compression from the

southeast, the second was the development of extensional faults to the southeast (the

Gunsteling fault) and to the northeast (along the Klipwal shear zone). The third, and most

~ntensely developed, resulted in the formation of northwest oriented folds, north-trending

dextral and northwest-striking sinistral shear zones. The cause of these events is unknown.

The latest event was the development of northeasterly aligned upright folds which are

related to the emplacement of large-scale post Pongola granites (Matthews, 1990).

The northeasterly orientation of the principal stress direction during the development of

the conjugate strike-slip shear zones which disrupt the Pongola Sequence may be related

to the same event that caused the Nsuze nappe immediately north of the Natal Mobile Belt.

The structural trends swing northwestwards to the west along the rim of the basin. This

nappe was probably transported by gravitational gliding from an up-arChed region situated

to the south (Matthews, 1990). Plate tectonics involving a continent-continent or a

continent-island arc collision are discounted by Matthews (op. cif.) because of the absence

of rocks older than - 1500 Ma within the adjacent sector of the Natal Mobile Belt. He

instead envisages that the geological evolution of the Pongola Sequence took place along

the southern margin of the Kaapvaal Craton while this margin was situated along part a

transform plate boundary with a major ocean basin.
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The deformation of the main Pongola basin could also be related to the Limpopo Orogeny

along the northern boundary of the Kaapvaal Craton. The Limpopo Belt, which has a

minimum age of 2.6 Ma (McCourt and Van Reenen, 1992), extensively reworked the

craton which was still made up of a relatively thin and unstable crust. McCourt and

Vearncombe (1987, 1992) suggested that the Limpopo belt was emplaced from the

northeast. The corresponding axis of maximum compression would thus coincide with that

required for the formation of the major northwest-trending folds and the conjugate shear

zones in the Pongola basin. The late syn-tectonic Usushwana Igneous Suite intruded the

Pongola Sequence at - 2870 Ma (Hegner et. at., 1984), making the deformation histories

of the two areas roughly contemporaneous.

SUMMARY

Stratigraphy

The Stlldy Area

The study area, straddling the Prudentie and Tobolsk synclines of the main Pongola basin,

is underlain predominantly by sediments of the Mozaan Group. The upper Nsuze Group

stratigraphy is present in the northwest and is marked by an upward transition from

pyroclastic volcanics to reworked tuffaceous sediments. The transition to the clastic

sediments of the overlying the Mozaan Group is gradational and the contact is defined here

to occur at the lower contact of the first thick sandstone. The Mozaan stratigraphy is

subdivided into six formations. The lowermost Sinqeni Formation, comprising a - 650

m thick sandstone, and the overlying Ntombe Formation, a - 900 m thick unit made up

predominantly of mudstone together constitute an upward fining succession. The Thalu

Formation is made up of alternating mudstone and sandstone, the upper parts which is

characterized by a series of upward coarsening cycles. The overlying 500 m thick
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Hlashana Formation is composed almost entirely of siltstone and sandstone. The topmost

Odwaleni Formation is composed of sandstone, mudstone and ferruginous mudstone and

includes four distinctive diamictite horizons.

The stratigraphic position of the Kulphiso Formation in the Prudentie pericline is unclear

as it overlies a major normal fault and cannot be equated with confidence with any of the

other formations. It may correlate with the upper Ntombe and lower Thalu Formations.

A lower stratigraphic position than the Mozaan sediment in the adjacent Tobolsk pericline

(e.g. Matthews, 1990) is however discounted.

Regional correlations

Due to the complexity of the structures, in particular the evidence presented in this study

for normal and reverse fault displacements affecting the Pongola basin, correlations of

stratigraphic units on a regional basis should be made with great caution. Only two

stratigraphic packages in the Mozaan Group can be used as markers with any degree of

confidence, namely the basal Sinqeni Formation, comprising a prominent'sandstone with

an interbedded marker iron-formation and the uppermost Nkoneni Formation containing

basaltic lavas.

Apart from the study area, the Sinqeni Formation is found in the main Pongola basin, on

the eastern and western flanks of the Spekboom granite, to the south in the White Mfolozi

inlier and in the Amsterdam area to the northwest. The Sinqeni Formation does not

appear to be developed in Swaziland.

The uppermost basaltic units occur in the central parts of the main Pongola basin in the

core of the Tobolsk syncline, in the Magudu area to the east of the main basin, and in the

Kubuta ar~, to the east of the Mooihoek pluton.
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Depositional seUing

Following the final phases of Nsuze volcanism, the Pongola depository underwent

substantial subsidence with the development of a broad, relatively shallow, epeiric sea.

The accumulation of the Mozaan Group sediments was initiated by the deposition of the

sandstone of the Sinqeni Formation as a response to transgression into the basin. The

thick succession of overlying mudstone of the Ntombe Formation indicates continued

deepening of the basin and/or a decrease in sediment input into the Mozaan basin. During

the accumulation of the Thalu and Hlashana Formations, the Pongola epeiric sea must have

been relatively shallow again as implied by the increased accumulation of sandstone.

Evidence for storm-induced conditions is abundant in these arenites.

The basin was then subjected to rapid subsidence or decrease in sediment input when the

predominantly argillaceous sediments of the Odwaleni Formation were deposited in deep

relatively quiet water. Intermittent influx of coarser grained material resulted from storm­

induced activity. The interlayered diamictite units are interpreted as having a glacial

origin, and thus representing the earliest known glacial event on earth.

Structure

The Study Area

The structures within the study area have resulted from three deformational events. An

early compressional phase resulted in the formation of zones of north-northwest-directed

bedding-parallel slip (the Izermijn shear zone) and oblique ramping (the Klipwal shear

zone). The latter structure curves into a frontal ramp northwards.
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An extensional phase followed during which time the Klipwal shear zone was reactivated

in a normal sinistral sense. The Gunsteling fault, a major normal listric fault, with

downthrow towards the south-southeast, probably formed during this time. It cannot be

traced eastwards and may die out or develop into a lateral ramp or tear fault.

The main phase of deformation produced early shallow north-northwest oriented

subhorizontal upright folds (e.g. Prudentie syncline, Bethu anticline, Tobolsk syncline),

followed by conjugate shear zones. A north-trending set of shear zones display a sinistral

or sinistral reverse sense of movement. The most important of these is the Altona-Sinqeni

shear zone system which defines a duplex structure and has a strike-slip displacement of

- 5 km. It follows and disrupts the hinge zone of the Bethu anticline. A

contemporaneous northwest-trending set has dextral or dextral normal displacements.

Four models are considered to account for the obtuse relationship of the conjugate shear

zones to the principal compression direction: the shear zones formed during two separate

events; shear zones with acute relationships were rotated into obtuse orientations; the

shear zones were initiated as Coulomb fractures in an earlier phase of northwest-trending

compression; and pre-existing north- and northwest-trending shear zones structures were

reactivated and then cut up into the cover sequence.

Regional structure

Similar structural trends to those associated with the main phase of deformation in the

study area occur on a regional scale within the Pongola Sequence as well as within the

basement granites and gneisses. The largest and most intensely developed of these shear

zones is the northwest-striking zone which extends from east of Piet Retief to the present

study area. A later phase of upright folding (F2 of Matthews, 1990) related to granite

intrusions. refolded the early northwest trending F, folds into basins and domes. This
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phase is not represented in the study area which is well removed from the granite

intrusions.

Concluding Statement

The present study, representing detailed work on a small area in the main Pongola basin,

has demonstrated the complexity of structures within it and has highlighted the need for

many more studies of this nature before the stratigraphy and structural evolution can be

satisfactorily resolved.
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APPENDIX 2: GEOCHEMISTRY ANALYSES

Major element analyses for the sedimentary rocks in weight percent.

Si02 Al20 3 FeO MnO MgO CaO Na20 K20 Ti02 P20S TOTAL

MSl 50.56 11.54 29.64 0.38 3.3 0.08 0.11 0 0.45 0.07 99.78
MS2 40.81 2.39 45.53 0.92 2.61 0.19 0.11 0.47 0.05 0.11 98.81
MS3 64.32 1.62 28.5 0.42 1.08 0.50 0.04 0.03 0.02 0.04 100.17
MS7 56.30 7.06 27.74 0.11 3.41 0.31 0.44 0.81 0.23 0.05 99.88
MS8 64.95 14.08 12.59 0.03 3.89 0.59 0.01 2.82 0.55 0.04 99.56
MS9 60.50 2.05 29.77 3.27 0.24 0.04 0 0.32 0.05 0.07 99.98
MSI0 57.89 17.11 0.04 3.98 0.53 0.9 0.90 2.03 0.65 0.08 99.41
MS11 74.28 10.82 0.01 2.74 0.78 0.02 0 2.38 0.37 0.02 99.55
DMSl 63.48 8.71 19.02 0.10 2.95 0.73 1.07 1.39 0.34 0.04 100.17
DMS5 63.40 8.60 18.99 0.11 2.88 0.62 1.02 1.48 0.34 0.04 99.83
DMS8 60.54 9.07 20.65 0.14 3.15 1.25 0.75 1.76 0.36 0.04 100.27
BIFl 45.60 1.26 46.19 0.09 0.11 0.02 0 0.01 0.02 0.05 99.05

-_._.__._----_.__._._._--_._.__._._._._.__._----_.__._.__._._-

Trace element analyses for the sedimentary rocks in ppm.

Sample Nb Y Rb Zr Sr U Tb Zn Cu Ni Cr V La Ba Se L.O.I.

MSl 4 21 1 89 3 2 8 70 3 95 338 114 26 0 21 4
MS2 0 15 31 12 5 0 5 6 0 0 70 20 I 400 4 3
MS3 0 6 2 10 10 0 0 6 0 4 41 8 5 62 2 2
MS7 I 10 22 48 29 0 0 31 15 88 273 73 7 122 10 2
MS8 5 17 95 167 26 1 7 35 5 199 682 135 22 450 23
MS9 I 6 23 13 111 0 2 4 1 20 112 18 2 323 4 I
MSlO 9 24 77 136 58 3 13 65 43 168 547 181 35 337 29
MSll 5 11 72 98 34 I 3 24 5 95 378 79 21 298 15
DMSI 3 11 86 86 117 I 3 37 20 107 353 84 20 150 12 2
DMS5 3 10 91 88 114 I 3 37 24 III 350 82 20 169 11 2
DMS8 3 11 42 82 137 2 4 38 20 114 363 92 11 300 16 3
BIFl 0 11 4 12 5 0 0 0 0 0 48 14 0 31 2 I
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Major element analyses for the intrusive rocks in weight percent.

Si02 AI2O) FeD MoO MgO CaO N~O K20 Ti02 P20j TOTAL M&/M&+Fc

OBl 54.35 14.17 7.74 0.16 9.08 10.78 1.93 0.01 0.41 0.08 99.66 67.64
OB2 56.56 14.39 8.95 0.18 5.17 8.95 3.03 0.67 0.63 0.13 99.77 50.72
OB5 56.12 7.06 9.66 0.25 17.22 5.57 1.3 0.51 0.45 0.08 99.41 76.06
OB7 54.67 13.75 9.59 0.17 5.88 9.79 2.57 1.02 0.95 0.2 99.77 52.21
OB8 55.34 13.10 8.60 0.17 8.61 9.76 2.02 0.52 0.47 0.09 99.74 64.08
OBI0 55.18 13.17 10.81 0.18 4.80 8.80 2.75 1.19 1.18 0.26 99.66 44.17
OB 11 54.95 13.89 8.45 0.17 7.33 11.12 1.54 0.87 0.31 0.05 99.72 60.72
OB15 55.07 13.81 10.53 0.17 6.98 10.41 1.88 0.34 0.38 0.05 99.61 56.87
OB16 52.53 12.40 12.93 0.18 7.77 9.31 2.63 0.61 0.85 0.13 99.64 54.46
OB17 56.70 13.82 11.69 0.16 4.94 5.97 4.84 0.16 0.80 0.15 99.22 45.70
OB18 53.65 14.97 10.47 0.19 6.76 9.80 1.77 1.31 0.48 0.09 99.49 56.24
OU 47.81 12.92 14.64 0.22 5.91 9.44 2.69 0.60 3.47 0.36 99.89 41.84
OL2 52.03 13.97 10.95 0.19 6.02 10.11 2.83 0.48 1.48 0.18 99.58 49.49
OL3 52.03 13.78 10.95 0.19 6.24 10.15 2.54 0.47 1.48 0.16 99.35 50.38
OU 52.08 13.99 10.84 0.18 6.03 10.08 2.56 0.52 1.46 0.17 99.27 49.78
OLS 47.04 13.61 13.24 0.19 9.57 9.05 2.38 0.27 1.96 0.20 99.95 56.29
0L6 47.03 13.42 13.27 0.19 9.29 9.06 2.42 0.27 2.11 0.21 99.46 55.51
OL7 48.41 13.62 12.05 0.18 7.40 11.00 2.50 0.30 2.28 0.22 99.57 52.52
OB3 51.75 13.72 12.00 0.21 5.59 10.39 2.67 0.47 1.38 0.19 99.85 45.36
OB-8L 49.26 15.11 12.96 0.19 5.05 9.76 1.78 2.86 1.04 0.14 98.15 43.69
OB-9.1 53.36 15.64 12.28 0.18 4.96 7.87 0.04 3.88 1.06 0.17 99.44 44.56
OB-9.2 41.97 26.4 15.25 0.04 6.11 1.24 0.05 6.86 0.85 0.07 98.85 44.38
OB-9A 69.04 12.43 10.64 0.01 3.51 0.57 0.03 2.53 0.45 0.03 99.59 39.62
OB13 46.85 5.65 11.31 0.2029.73 3.94 0.12 0.78 0.14 0.04 99.11 82.41
OB14 44.28 3.36 10.17 0.17 36.52 2.51 0.23 0.13 0.20 0.05 98.87 86.49
OB4 56.68 11.38 9.73 0.16 6.09 8.78 2.71 1.19 0.86 0.16 99.76 55.82
OB6 56.00 11.08 9.66 0.14 6.03 7.47 4.14 1.14 0.91 0.16 99.10 52.66
OB9 46.89 9.45 9.03 0.1723.84 7.35 0.80 0.22 0.25 0.05 99.47 82.04
OB12 53.99 13.10 9.06 0.16 8.99 9.16 3.19 0.29 0.52 0.09 99.68 63.88
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Trace element analyses for the intrusive rocks in ppm.

Nb y Rb Zr Sr U Tb Zn Cu Ni Cr V La Ba Se L.O.I
DBl 2 16 0 61 341 0 o 65 35 229 629 181 8 16 31 3
DB2 4 25 21 102 262 1 5 81 46 83 57 195 12 232 29 2
DB3 4 32 12 105 170 2 3 101 171 47 65 306 6 144 36 1
DB5 1 14 21 56 116 0 o 79 45 476 1725 152 12 115 27 2
DB7 4 33 38 144 263 0 o 85 59 124 185 227 11 243 31 2
DB8 2 18 17 68 180 0 o 70 36 187 380 171 15 254 27 2
DBI0 5 43 40 183 250 0 o 96 71 87 25 285 10 233 27 1
DB11 1 14 51 39 200 0 o 61 50 121 198 194 13 119 42 1
DB15 0 17 13 44 121 0 1 66 43 111 138 196 5 65 40
DB16 3 31 17 125 229 0 4 93 432 258 195 245 92 289 35
DB17 5 33 5 127 205 0 5 59 57 77 12 242 26 74 32
DB18 2 19 43 74 225 1 2 66 46 138 128 181 16 239 30
DU 8 50 18 212 227 0 1 119 452 102 177 412 16 142 30 0
DL2 3 27 13 111 305 2 4 88 159 76 158 306 4 161 30 0
DU 4 26 13 105 315 0 o 87 140 74 133 302 10 167 32 0
DU 4 26 11 108 312 0 o 90 151 77 161 306 8 174 29 0
DLS 4 30 7 III 219 0 o 104 272 224 503 279 15 80 26 1
DL6 3 31 8 116 221 0 5 106 290 218 499 283 6 81 26 0
DL7 4 33 8 123 223 0 o 96 286 129 359 357 1 85 37 0
DB-8L 5 34 84 151 231 0 4 102 161 65 19 202 17 273 31
DB-9.1 5 34 112 151 132 2 4 86 74 80 33 221 18 365 31
DB-9.2 10 23 218 209 35 3 13 62 19 234 880 205 34 652 30

. DB-9A 4 11 75 139 20 2 6 41 3 136 525 110 18 317 17
DB13 0 8 32 32 123 0 1 67 16 11923418 75 3 79 22 6
DB14 2 6 6 22 48 2 3 57 1924356765 70 4 9 13 6
DB4 6 36 45 146 350 0 5 94 87 267 618 197 7 234 32 2
DB6 7 36 37 155 423 0 3 94 96 204 422 201 20 293 28 1
DB9 1 15 10 31 48 0 3 54 30 1470 2865 115 1 40 27 4
DB12 1 20 8 70 845 0 o 74 13 318 1126 196 8 317 33 2
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LOCALITY SITES

APPENDIX 3

Sedimentary rocks Igneous rocks

MS1 27 0 22' 37"S 31 0 11' 05"E DBI 27 0 22' 36"S 31 0 10' 28"E
MS2 27 0 23' 02"S 31 0 13' 53"E DB2 27 0 23' 08"S 31 0 10' oo"E
MS3 27 0 23' 26"S 31 0 09' 42"E DB3 27 0 23' 05"S 31 0 10' oo"E
MS7 27 0 24' 52"S 31 0 13' 28"E DB4 2r 25' OO"S 31 0 12' 30"E
MS9 27 0 18' 19"S 31 0 09' 18"E DB5 27 0 25' 37"S 31 0 12' 42"E
MS10 2r 26' 02"S 31 0 16' 23"E DB6 27 0 25' 37"S 31 0 12' 37"E
DMS1 27 0 24' 36"S 31 0 13' 12"E DB7 27 0 24' 47"S 31 0 13' 18"E
DMS5 27 0 24' 41"S 31 0 13' 19"E DB8 2r 25' 05"S 31 0 13' 39"E
DMS8 27 0 25' 16"S 31 0 12' 26"E DB9 27 0 25' 14"S 31 0 13' 44"E
BIF1 27 0 22' 44"S 31 0 12' oo"E DBIO 27 0 25' OO"S 31 0 13' 51"E
MS8 Klipwal Mine, level 8 DBll 27 0 25' l1"S 31 0 14' oo"E
MS 11 Klipwal Mine, level 9 DBI2 27 0 23' 52"S 31 0 15' oo"E

DBI3 27 0 26' 44"S 31 0 16' 27"E
DBI4 27 0 27' 57"S 31 0 16' 48"E
DBI5 2r 26' 08"S 31 0 16' 32"E
DBI6 27 0 26' OO"S 31 0 16' 26"E
DBI7 27 0 26' 15"S . 31 0 16' 26"E
DBI8 27 0 26' 24"S 31 0 16' 34"E
DU 27 0 24' 52"S 31 0 09' 42"E
DL2 27 0 24' 13"S 31 0 10' 34"E
DL3 2r 24' 31"S 31 0 12' 18"E
DU 2r 24' 18"S 31 0 12' 18"E
DLS 27 0 25' 42"S 31 0 14' O9"E
DL6 2r 25' 14"S 31 0 14' 14"E
DL7 2r 24' l1"S 31 0 16' 32"E
DB-8L Klipwal Mine, level 8
D8-9A Klipwal Mine, level 9
D8-9.1 Klipwal Mine, level 9.1
D8-9.2 Klipwal Mine, level 9.2
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APPENDIX 4

SAMPLE PREPARATION AND ANALYTICAL TECHNIQUES

Sixty-two samples from within the study area were collected for analysis by X-ray Fluorescence. For

the suite of samples used to chemically constrain the different lithologies an effort was made in the field

to collect only fresh material. This was, however, not always possible because of the intensely altered·

state of the rock types. The sample mass of these samples varied from 2 kg to 10 kg depending on grain­

size and the intensity of alteration of the sample. The mass of the samples used to constrain the effects

of mineralization and alteration varied between 500 g and 2 kg depending on the thickness of the unit

being sampled.

The samples were reduced to fragments of 2 cm to 10 cm in diameter by means of a hydraulic sample

splitter. Any weathered or altered portions of the samples were removed as was vein- or joint-plane

filling material. The fragments were then scrubbed under running water and cleaned for 2 minutes in

an ultrasonic cleaner. They were then rinsed with distilled water and dried in an oven at 100°C for I

hour. Samples were crushed in a jaw-crusher with hardened steel jaws to fragments smaller than 1 cm

in diameter. The jaw-crusher was stripped, scrubbed with a wire brush, vacuumed and washed with

acetone between samples. The samples were then reduced to 100 g by the cone-and-quartering technique,

and milled to a fme powder in a swing-mill. The swing-mill was cleaned with quartz chips, scrubbed

and washed with acetone before each run. This eliminated any form of contamination.

Approximately 8 g of each of the finely milled samples was then mixed with -0.6 ml Mowiol binding

agent and homogenised with an agate mortar and pestle. The samples were pressed into pellets - 5 mm

thick under a pressure of 10 tons for -10 seconds. The pellets were then hardened at 120°C for 4

hours. The milled powders were also fluxed in a platinum crucible at lOOO°C for 4 hours to make fusion

discs. Approximately 0.4 g of the samples was mixed with -0.9 g of Spectroflux. The discs were then

cast in a brass die and allowed to anneal for - 3 hours at 250°C. The discs were cooled in a desiccation

jar.

Major and trace element analyses were undertaken using the Phillips PW 1404 X-Ray Fluorescence

Spectrometer in the Department of Geology, University of Natal - Pietermaritzburg. The instrument was

calibrated using internationally accepted standards. The detection limits and analytical accuracy of the

analyses is as follows;
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