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ABSTRACT

The interaction of an anisotropic (in velocity space) ion beam with an isotropic background
hydrogen plasma is theoretically investigated. The length and time scales are such that
both the ions and electrons are magnetized. Using linear theory, the electrostatic
dispersion relation is derived, and solved fully, using no approximations. It is shown that
the anisotropy can significantly enhance the instability growth rates as compared to the
isotropic case. The importance of ion magnetization is illustrated. Comparisons are made

with unmagnetized plasma results.

The modulational instability of an arbitrarily—large—amplitude electron cyclotron wave
along the external magnetic field is investigated, taking into account the relativistic
electron quiver velocity and the relativistic ponderomotive force. Three types of plasma
slow responses, the forced—Raman, quasistatic and forced—quasistatic, are considered and a

parameter study of the instability growth rates is carried out.
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LIST OF SYMBOLS

DESCRIPTION

vector potential
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wave propagation vector = [k_,k_,k_]
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1/2
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DESCRIPTION

plasma density

density of particles of type j

equilibrium density of particles of type )
relativistic momentum of particles of type j
pump wave amplitude

time co—ordinate

plasma temperature
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Boltzmann’s constant x ion temperature
beam ion temperature perpendicular to B o
beam ion temperature parallel to ﬁo
velocity vector

component of V in the x — y plane = (Vi +V

2,1/2
)t/
drift velocity
Alfven speed
_ 1/2
electron thermal speed = (T, /me)
ion thermal speed = (Ti/mi)l/2
wave phase speed
unit vector in x, y, z — directions respectively

plasma dispersion function with argument A

10y

neo/uo
k2¢% /02
1L 141
K2v2 /02
251

ratio of plasma pressure to magnetic pressure (chapter two)
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DESCRIPTION
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non—linear frequency shift (chapter five)
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X L
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SYMBOL DESCRIPTION

Upe electron plasma frequency = (4me Oe2 /me) 1/2
Ups ion plasma frequency = (41rni 0e2 /mi) 1/2

b, electron gyrofrequency = (eB /m 0C)

f, electron gyrofrequency = (eB o/MsC)

f, ion gyrofrequency = (eB0 /mic)

v differential operator = g}? X+ % y+ gE Z



CHAPTER ONE

INTRODUCTION

Of the many fields of research associated with plasma phenomena, the quest for the ideal
plasma conditions for the realization of a successful fusion reactor has recently received the
most attention. This requires plasma densities n ~ 1015cm—3 and plasma temperatures

T ~ 10 keV. Ohmic heating is not suitable for reaching such high temperatures since the
plasma resistivity (« 773/ 2) decreases with temperature. Thus other heating mechanisms
are essential. Of these, wave heating and heating by injection of particle beams are |
popular schemes. In the former case coupling between the incident wave and plasma
particles is responsible for energy transport from the wave to the particles, while in the
latter case this is achieved by collisional effects between the beam and plasma particles.
However, it is well known that the above interactions are inherently accompanied by
instabilities, both linear and nonlinear, excited by the available free energy. Such
instabilities lead to anomalous particle and energy transfer across the confining magnetic

field, thereby hindering plasma confinement.

In this thesis we examine linear instabilities associated with (incident) particle—particle
.interactions, and a nonlinear instability associated with (incident) wave—particle
interaction. The model for the former case considers the effect of the anisotropy in velocity
distribution of an incident ion beam drifting through a background magnetized plasma of
isotropic electrons and ions on low frequency electrostatic instabilities. Drift speeds
perpendicular and parallel to the external magnetic field are separately considered. Such
beams are not only possible in laboratory plasmas, but have also been observed in space

plasmas, e.g in the foreshock region of the earth’s bowshock interacting with the solar

wind.



After a survey of the relevant literature in chapter two, the kinetic dispersion relation for
electrostatic instabilities associated with our ion beam—plasma system, with magnetized
ions and electrons, is derived in chapter three. In chapter four we present detailed

numerical solutions of the dispersion relation for low frequency modes.

The use of intense electromagnetic waves is important for plasma heating experiments as
well as laser—plasma interactions, e.g inertial fusion and beat—wave particle accelerators.
In addition, they are employed in modification experiments of the lower part of the earth’s
atmosphere. In chapter five we consider the modulational instability of a large amplitude
electromagnetic wave arising from an interaction with the plasma slow response. Three
types of slow responses, the forced—Raman, quasistatic and forced—quasistatic are
modelled. The corresponding instability growth rates are analytically derived and

graphically compared.

Finally in chapter six we present a summary of all our results, conclusions are drawn and

extensions discussed.



CHAPTER TWO

REVIEW OF LITERATURE

Gresillon et al. [1] investigated the turbulence excited by an ion beam in an unmagnetized
plasma. They used an argon plasma (m:.L /m e~ 40) with temperature T o = 9T, . Using
linear theory they showed that for small ion beam drift speeds (V0 / CS ~ 0.7), which
corresponds to the ion—ion streaming instability with phase velocity close to C g the
instability propagates essentially parallel to the beam direction. As V0 was increased

(V0 / CS > 1.4) propagation was more oblique and for relatively high velocities (V0 /CS ~
2.5) they identified both the ion—ion streaming and ion acoustic instabilities. They
measured the spatial structure of the turbulence in an experiment and found that it

displayed characteristics similar to that of the ion—on streaming instability.

Lemons et al. [2] showed that the threshold velocity for the ion—ion streaming instability is
much lower than that for the ion acoustic waves. Fuselier and Gurnett [3] have shown that
ion acoustic—like waves in the foreshock generally propagate obliquely to the magnetic
field. Similar obliquely propagating ion acoustic—like waves have been observed by

Gallagher [4] in the magnetosheath.

Akimoto and Winske [5] studied the general properties of the ion beam instability. They
used this to account for the ion acoustic—like waves detected at the ramp of the earth’s
bow shock. They considered unmagnetized electrons and ions and obtained a necessary
condition V,cosf< CS for the instability to propagate. Here VO is the beam speed and 4 is
the angle between the beam direction and wave—vector. They used the above condition to

explain obliqﬁe propagation (to the beam) at large beam speeds. They also found the

following:



(1)  Increasing the ion beam temperature (Tb/Te) causes the waves to propagate less
obliquely (to the beam).

(2)  The effect of a temperature anisotropy in the beam (T.L/T“ > 1) is to increase the
total beam temperature Tb = (2TL+TIH)/3 and thus cause propagation to be less
oblique. They kept T“ =T, fixed and increased Tl and used typical anisotropies
(T.L/TH = 2.5).\

Using a flat topped electron distribution (FTED) they showed that an anisotropy in the

background ions enhances the instability for slow ion beams.

Akimoto and Omidi [6] did a theoretical survey of the ion beam instability in order to

- explain the generation of broadband electrostatic noise (BEN) in the earth’s magnetotail.

For their parameters they showed that electron magnetization had little effect on the ion

beam instability. They showed for the first time that both the ion—ion streaming and ion

acoustic instabilities could operate simultaneously in the magnetotail in the presence of one

ion beam. They also found the following:

(1)  The ion—ion streaming instability can dominate the ion acoustic instability for beam
densities satisfying 0.1 < nbo/ne <0.9.

(2)  Increasing the ion beam temperature Tb/Ti causes the ion acoustic instability to
damp and detracts the ion—ion streaming instability.

(3)  The ion acoustic instability propagates essentially parallel to the ion beam while the
lon—ion streaming instability propagates obliquely for large beam speeds.

They accounted for the broadband nature of the electrostatic noise by attributing it to

both the ion acoustic and ion—ion streaming instabilities.

Gary and Omidi [7] studied the ion—ion streaming instability in detail. They considered a
homogeneous plasma with two counter—streaming ion components, a less dense beam and a

“more dense core with relative drift speed Vo' They considered both an



unmagnetized plasma and a plasma with a uniform magnetic field Boi. In the latter case
they considered electron magnetization but treated the ions as unmagnetized. They used
typical plasma parameters Te =10T., mp = 0.1n, and a hydrogen plasma with mi/me =
1836. Their results are summarized below.
(1)  The ion—ion streaming mode can be driven unstable by the ion beam in an
unmagnetized plasma.
(2) At relatively large drift speeds (V> C ) the instability grows only at angles
strongly oblique to the beam.
(3) At T, /T, <1 (ratio of beam temperature to ion core temperature) the instability is
~fluid like but becomes a beam resonant kinetic instability as Tb/ T - 1.
(4) At Tb/Tc > 1, increasing Tb/Tc reduces the growth rate.
(5)  The threshold drift speed for the ion—ion streaming instability lies well below that
wior the ion acoustic instability for a wide range of plasma parameters.
(6) A temperature anisotropy (Tle / T” 0 1) in the background electrons enhances the
growth rate at oblique propagation to the beam.

(7)  Electron magnetization can enhance or detract the instability at sufficiently large

drift speeds.

Fuselier et al. [8] considered the generation of enhanced ion acoustic waves by field aligned
ion beams upstream from the earth’s bow shock. They used the model of Gary and Omidi
[7]. They showed that stability properties of the wave depended on details of the beam
distribution, in particular that the growth of the ion—ion streaming instability is

determined by the slope of the beam distribution function at angles 'oblique to the magnetic

field.

Papadopoulos et al. [9] considered the case of two equi—density counter—streaming ion

beams with velocity * V o perpendicular to a magnetic field ﬁo' Their model was rather



restricted in that the modified two—stream instability was confined to perpendicular

propagation (K » ﬁo). In addition, the ions were unmagnetized. They found a zero

frequency mode (v = 0) and maximum growth rate v, . = o7y /242 . Here uy, =
2.1/2 . : .

U [1+(a}pe /%)) 7" " is the lower hybrid frequency and Up and U BT the total ion and

electron plasma frequencies. At maximum growth they found that K.V 0~ V3/8 Ulp is

constant.

McBride et al. [10] studied the modified two—stream instability using a crossfield
(perpendicular to magnetic field B 0) electron—ion streaming model. The ions were
unmagnetized. They considered the electrostatic as well as electromagnetic cases and used
both linear and nonlinear theory. They considered the case k_/k = (m,/ mi)l/ 2
corresponding to angles slightly off the perpendicular (to ﬁo) and showed that in the fluid
limit maximum growth y . = wy; /2 occurs at k = V3 wlh/vo and o_ = V3/2 wyy- HereV,

is the electron—ion relative drift speed. They found that the instability is an important

turbulent heating mechanism, that heats both the ions and electrons comparably.

Wu et al. [11] in their study of kinetic crossfield instabilities considered unmagnetized ions
streaming through magnetized electrons, with relative drift v o perpendicular to a magnetic
field B o They showed the existence of an instability when VO >Vy (Alfven speed). The
unstable waves contained both electrostatic and electromagnetic contributions. For the
case of high beta (f) (ratio of plasma pressure to magnetic pressure) plasmas, say § = 1,
they found the instability to be highly kinetic. In the limit § < 90° (0 is the angle between
B 0 and the wave—vector) and f§ « 1, they identified the usual modified two—stream
instability. In this limit they showed that the instability could be suppressed by
electromagnetic effects when V 0 V,- They concluded that electromagnetic effects are

unimportant for low beta cases if V0 <V A



In their study of the modified two—stream instability, Bharuthram and Johnstone [12]
considered counter—streaming, equi—density (50%), ion beams perpendicular to a magnetic
field. They allowed for an anisotropic velocity distribution in the ion beams and considered
magnetized ions. They also obtained w_ =0 and found that the maximum growth rate was
independent of the drift speed VO. In particular they found that 7 nax 3v2/32 vy, 2nd
‘that R.\?O = 32/8 vy is constant at maximum growth. The effect of the anisotropy was

to reduce the growth rate due to and increase in total beam temperature.



CHAPTER THREE

DERIVATION OF THE KINETIC DISPERSION RELATION

In deriving the linear dispersion relation we follow the method of Gary and Sanderson [13]
and Bharuthram [14]. We consider a homogeneous collisionless plasma with stationary
isotropic electrons and two ion components, an anisotropic beam and an isotropic
background ion population. A uniform magnetic field ﬁo is present in the 2 — direction.
The electrostatic approximation is used. Thus the electric field El can be written as

El = — V¢1 where ¢1 is a scalar potential. Therefore by Maxwell’s equation

-]
X
=
1
|
Q>
SE

perturbations in the magnetic field are neglected. In our model both the ions and the
electrons are assumed to be magnetized. This allows low wave frequencies v with |u| ~ ﬂi,

where f; is the ion gyrofrequency.

3.1 ION BEAM TERM

The ion beam is treated as an anisotropic drifting Maxwellian with temperature T (T“)
perpendicular (parallel) to the magnetic field. The beam is allowed to have an externally
excited drift with velocity VOy perpendicular to B o and Voz along ﬁo' The analysis is
carried out in the background electron\ion rest frame. The beam and background ions are

assumed to have equal masses m,. The configuration is illustrated in fig 3.1.1.



FIG 3.1.1

The equilibrium beam—ion velocity distribution is chosen to be

_ ™o 2 v v 21 /902
fbo_(zxcf)(zﬂcﬁ)lfz Pxptlh (y =To 1726

2
exp[—~(V, ~V, )? /26)] 3.11

where ¢ = (T /m;) 1/2, C” = (T”/mi) 1/2 are the perpendicular and parallel velocities of
the beam ions and ny, 1 the beam density. We consider small perturbations about the
equilibrium quantities:

fp = fpo (V) + £

E:EO+E1, (E0=0)

in the linearization of the Vlasov equation

of
at——'ﬁ'V'Vfb"‘a?'a_v' :0-

Using the ion equations of motion
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M=

=l

3.1.2
the Vlasov equation for the ion beam becomes
of V<B 1 of V<B,] of
bl e | 0 bl e | 1 bo
H—+V-Vf += B+ ——|-——==—= |E, + —_—. 3.1.3

For the electrostatic approximation El = V4, (ﬁl = 0) and for E 0 =0 since there is no
equilibrium electric field, (3.1.3) can be written as

dfb1 e y .6fb0
dt "m'"1 2

i 6V’

where the operator ?If is defined as the rate of change following an unperturbed orbit in

phase space [13]. Integrating along the unperturbed orbits we obtain

- dt’ 3.1.4
-m av’
= V’xﬁ
v,o_der dV _e (3 0 p _a T _ 3

Wherev t/,w-ﬁi[EO+ C },f(O)—f,V(O)—V
In the above equation we have assumed that the plasma is undisturbed at t’ = — . From
(3.1.1)

of

bo _ _ v_)/c_ E‘Voy V2
g 2

0Z -D/ __—b -D/
C CZ ? CZ 1 fbo(V ) = Veq fbo(V )
L L (i
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where we have defined

vo_|x yoy 'z oz
- H
I R cﬁ

Assuming the perturbed quantities to be harmonic in space and time, we may write

£, (8,,8) = £ (V) exp { i [R.2- wt]}

3.1.5
gi(r t) = élkw exp {i[R.? —ut] }
Then V¢, (1’ ,8/) =1k 4, (r",t’) and (3.1.4) becomes
t
+ > e > >, , 2, ,
fbl(r,V,t) =—;—_-J R-Veq ¢1(r ,t7) be(V ) dt’ . 3.1.6
1Y .
Since the ions are magnetized their gyration about the field lines is significant. Upon
solving the equations of motion (3.1.2) we obtain
V. =Vicos(=0,t"+8) ]
V}’,—Voy=Visin(—ﬂit’+0) b 3.1.7
V. = constant

where V! = {V)’(2 + (Vgr -V )2}1/2 is the speed along a circular orbit perpendicular to the

oy
magnetic field lines. The situation at t/ = 0 is illustrated in fig 3.1.2 .
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FIG 3.1.2

V/(0) =V=[V cosb,V sinB , V]

The negative sign (coefficient of fl, in 3.1.7) arises because the angle between V! and the x—
axis decreases as t’ increases. This accounts for the different spin directions of the
electrons and ions. The ions have spin vector antiparallel to ﬁo' Since motion along the

field is unaffected by the field, V. = constant.

We resolve K into components parallel and perpendicular to ﬁo as shown in fig 3.1.3 . Thus

R= ke, kg, k] = [k cosy, k sing, k] . 3.1.8
FIG 3.1.3
tk,

It can then be shown that
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Using the above expression and (3.1.5) in (3.1.6), we get

. k ¥V
nd . nd le -
fbl(v) exp {1 [k-T—wt] }= fbl(i‘,V,t) = —ﬂbe(V){ E2l x
1
t K t
J gy cos(Rit’+y—0) dt’ +C—§(VZ—VOZ)J 4 dt’} . 3.1.9
Evaluating the right hand side of the above equationat t =0
e ie 3 k.Lv.L ’
£ (V) ===5 )y, | = cos(f.t'+¢—08) exp{1i (k- (2'—1) —wt’] } dt’
1 CJ_ —0
k 0
+ C—; (VZ —VOZ) J exp{i[R-(P'—1)—wt’]}dt’ 3.1.10

l —

Solving the equations (3.1.7) with 2/ (0) = = [x_, ¥, z,], we obtain the approximate

orbit equations
Vo . .
P—1= T [ sinB —sin(—0,t"+ 0) JX
V.L/ ~ -~
+ Tri{_COSB+C05(_ﬂit/+ﬂ)}+v0yt/ y+V 1 2. 3.1.11

Using (3.1.8) and (3.1.11), the second integral in (3.1.10) reduces to
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0
J exp[ ip sin(B —¢) ] exp[ ~ip sin(B -9y —0.t") ] =

—m

exp[ 1 {R.V + k (V.- Vog) = wit’ ] dt’, 3.1.12
where p = k¢v¢/ni . The integration (3.1.12) is manipulated with the aid of the identity
[15]

exp( 1 p sinfl) = E‘i’:_m exp(114) J;(k), 3.1.13

where J is the ordinary Bessel function of the first kind of order 1, to yield

o v expli(p-a) (8-9)1J (k)] (k)

o q=—w ifqf i+IE-VO+kZ(VZ—VOZ)-a/]

[ 3.1.14

The first integral in (3.1.10) is manipulated using the identity

and separates into two parts, of which the first part, namely

0
%J exp [1(§—8+0,t")] exp [1{k-(2'—1)—wt’} ] dt’

—m

is evaluated as before by using the orbit equations (3.1.11) and the identity (3.1.13). It

reduces to

1]

1 o expli(p—a-1) (0-4)]J (s)]

(1)
! q

pF—o = 1[(q+1)0;+R-V vk (V -V )-u]

3.1.15
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Similarly the second part yields

®© © exp[i(p—q+1)(9-¢)]Jp(ﬂ)3q(/ﬁ)

- . 3.1.16
pE—wg=wi [(q—l)ﬂi+R-VO+kZ(VZ—VOZ)—w]

L
2

Using (8.1.14) — (3.1.16) in (3.1.10) we finally obtain

kv 1} 1}

{ expli(pa-) (9], expli(pget) (04)] }
[(q+1)ﬂi+R-V0+kz(VZ—V0Z)—w] [(q-1)0+B-V +k (V, =V )-u]

3.1.17

k, e e exp[i(p—q)(9—¢)]Jp(u)Jq(u)}.

pFwq=w  [qf K-V +k (V -V  )-u]
The perturbed ion beam density is given by

3-»

pq = Mpgg, P {1 [ReT - wt] } = J (V) d7V. 3.1.18

In performing the integration in (3.1.18) we transform to cylindrical coordinates in velocity

space with

a3V =v dv dv_do.
L L Z

We note that the triple integral in (3.1.18) can be separated into three parts corresponding
to the terms of fbl(V) in (3.1.17). Using the expression (3.1.1) for the equilibrium velocity

distribution be(V), the first part yields
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) weaﬁlkw . z J [ J‘” exp{—[EVZ—VOZ)z/%ﬁ]} o] -
T (21C°) 27r02 172 o [plt+k-V sk (VY )-d]

2
v
2
exp|— —*2- Jp(u) Jp_l(u) Vidv 3.1.19
2C
1
where we have used the result

27 0 ifp#q+1
exp[i(p—q—1)8]d0= .
0 2r ifp=q+1

At this stage we introduce the plasma dispersion function, known as the Z—function,

defined by [16]

(01] —X
J =1 dx  for In(4) >0
or alternatively as

_1\2 1A —t2
Z(d)=21ie e = dt.

—m

Then the integral over dV _ in (3.1.19) can be written in terms of the Z — function and
(3.1.19) becomes

7re¢1ka; +"bo J [“_k'vo—pni}
— Y/ x

v
exp|— 5 v dv . 3.1.20
202

4

Similarly the second part of the integral in (3.1.18) yields
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__ hhthe gy J " Z[M} ,
TL(21rCL)(2 Cﬁ 1/2 —Ez o p+1 2k C”
v2
exp{— —} y dV . 3.1.21
2C

The last part of the integral in (3.1.18) is shown (appendix A) to reduce to

V2
;2] vV dv 3.1.22
R R

bobo o | |
_ P1kebo y J 12 (4) [1+ 2, B(z)] expl—%

2 L P
T”C.L P 0
where z, = (w—k-vo—pﬂi)/ﬁk20|| . Combining the results (3.1.20) — (3.1.22) we obtain

2
y
2
pf; J7 (1) L(zy) exp[—é—é?} Vv odv,

® ®
L ®4 1k bo 1
blkw

¢t [y ) P

® v2
+ ” pz J + 2y B(zy)] exp[— —lf} v, dvl} : 3.1.23

where we have used the identity [15]

2pJ
p p(u)
&

p—l () + ']p+1 () =

with 4 =k V /0. in our analysis. The relation [15]

B 2
JO Jg(ﬁx) exp(— ux2) x dx = %exp [—g—u} Ip[
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where Ip is the Modified Bessel function of the first kind of order p, is used to perform the

integration over dVL and yields

2.2 2.2
ed,, I ® k~C k°C
1ke bo 1 L1 11
n = — pf. Z(z,) exp| — I
blkw T [ z i"V 2 p 2
T, ® K% K%c?
| pP=—w i i «

Letting a; = kaf/ﬂ? , pr =e Ip(ab) and using the identity [15] Z;:_m pr =1, we

can write (3.1.24) as

T.L v pﬂi
sl z Z(z) Ty |- 3.1.25

3.2 CONTRIBUTION OF THE BACKGROUND SPECIES TO THE

DISPERSION RELATION

The background ion and electron distributions are assumed to be stationary isotropic

Maxwellians given by

Yo V2 W
Lo 23 |~ o7 |
(27rVi) 2vy )
n 2
f = €0 exp l: —_ L
eo 2,3/2 2
(27rVe) 2Ve )
respectively. Charge neutrality requires L Using an analysis similar to
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that for the drifting ions we have obtained the perturbation in the background ion and
electron densities n,,, ~andn,,, . However these can easily be obtained from (3.1.25) by
setting T = T” = Tj (j=1i,e) and \70 = 0, since the background distributions are isotropic
and stationary, and using the appropriate equilibrium densities (nio or n, 0). For the

stationary ions we obtain

ef, N.

1kw 10 W i

N, = — 1+ 7 r .. 3.2.1
Hko ' [ V2KV pEa [ﬁk V-] pl}

1

For the electrons we replace (in eqn 3.2.1) e by — e, m by m, ﬂi by — ﬂe, Ti by Te and

1/2

V. by V,, whereV_ = (T o/My) "/ 7 is the electron thermal speed, to obtain

ed,, n ® w—pi
Dogky = HTW €o {1+ LY 1 [ e} Fpe] , 3.2.2
e vk V. p=—o V2V,
- 2¢2 /02
herel . =T .(a.) = I (a. = kTVIY (j=1,e). i
where I . =T . (aJ) e p(aJ) and o | J/ﬂJ (j =1i,e). In the electrostatic

approximation Poisson’s equation

2 = —_ J—
Vi =dre [n,—n; —n, ]
reduces to

47e

ikw = 2 (P511y * Mhike ~ Telks ) -

Using (3.1.25), (3.2.1) and (3.2.2) we obtain the dispersion relation
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VZk Vo P
2 ® 2 ®
A v—R.¥Y
+—$ 1+ —Y Z(z;) Fpl}+%[5[l+ o Z(zb) pr]
Adl qukzvl p:_ﬂ) Adb ﬁkZC” p—_(IJ
1]
g _ _
+ pil. Z(zb) r bl = F(u) =0 3.2.3
2,0 pz“ 1 p

for electrostatic waves in a uniform plasma with magnetized ions and electrons in which
the electrons and a fraction of the ions form a stationary background, while the rest of the
ions constitute an anisotropic beam drifting at an arbitrary direction to the magnetic field.
Here 1/’\c21j = 47re2nj0/Tj (j=1i,e) is the characteristic Debye length of the background
ions and electrons, 1//\?1b = 47re2nbo/TL is associated with the beam ions,

2, = (0-p0;) V2K V., 2, = (0-p,) /v2K,V, ,2, = (u—k.vo—pni)/,/z‘kzc” wE T,/1) and
f=1-46.

Setting T = T” in (3.2.3) we obtain the dispersion relation of Kindel and Kennel[17].

3.3 APPROXIMATE SOLUTIONS OF THE DISPERSION RELATION

We consider low frequency waves (of which the ion acoustic is an example) in a plasma

with hot electrons and relatively cold ions. Thus we assume

(1) Tg> 15, T, Ty (~0)
(2) || «f .

Then the power series and asymptotic expansions for the Z—function [16], namely
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—22 222 424'
Z(Z):lﬁe —2Z 1—T+T"‘... 331
for |z| « 1, and
9 )
) - b —L |1 L 3o } 332
2z 4z

for |z| » 1, where

are used to reduce the dispersion relation (3.2.3) to an approximate form. With our

assumptions

w—pf) —pll
Z, = €x € for p#0.
‘/?kzve ‘/?kzve

Then

wherez = w/ﬂkzve and we have used Z(}) + Z(—A) = 0, which can easily be proved from
the definition of the Z—function (section 3.1). Further for large T,, we may assume that

lzoe' « 1. Then using expansion (3.3.1) we may write

®

) B(z,) Poe® (VA =220 ) T . 3.3.3

—

Since for the cold background ions |a.1| :|k3V%/ﬂ?| ¢ 1land Fp(x) €1lforp#0,

p

_ X R SYE T .
I‘p(x) = e Ip(x) * (g) ot (1 —x) for |x| « 1[15], 3.34
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we retain only the zero order term in the ion summation. Thus

@®
1 1
ZZ(Zi) I‘Pi #0(zg;) Ty l_z_._ 3 } Foi 3:3:5
—m 01 2z .
0i
where z ; = u/+2k V. and we have used the expansion (3.3.2) since |Zoi| » 1. Similarly,

for the cold beam ions

do s

o o1 1
Z(Zb) Ppb ~ Z(Zob) POb & Z_ 3 POb y 3.3.6
ob 2Z0b

o]

where z | = (w—K-VO)/ﬂkZC” . For the _Z; p 4(zp) I‘pb term we retain the first order

terms (p = + 1) to obtain

2 -2,
pZ(z) I, % ——= (vZk_Cylyp) 3.3.7
_Z b/ " pb 1712—11? z ||" 1b

where 4 = w — K.VO is a Doppler — shifted frequency. Using (3.3.3),(3.3.5)—(3.3.7) in the

dispersion relation (3.2.3) we obtain

2
. 20° 4T
2,2 o1 i”"1b
z" . o
oi i
I‘ob
+ 6 ——2Z2 —(1—I‘0b) -1 ”Zoeroe’ 3.3.8
ob

12 2 ' 2 5,2
where a = Ay /15 = (T,/T;) (nio/neo) and b = Ay /Aq, = (To/T) (n,,/n4,), and we
recall § = TL/T|| , =1~ 6. From (3.3.4) we can show that
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. DO

+

7

Using the above results eqn (3.3.8) becomes

2.2
1+k7A, =a| —-T_.
de [U2 o1 0

5 kicﬁr —kici i —2 7
* 5}2 ob

2,2 2,2 2
kpVi kﬂ’i} b [miﬂrlb

We solve eqn (3.3.9) by setting v = w_ + 17 and assuming that

(1) 15«1
r

(2) li’—l <1
UI’

(3) 1a]% <af .

With these assumptions the following approximations are made

23

3.3.9
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Using the above approximations equation (3.3.9) becomes

242 242 2117
kv kv iyw
2,2 z 1 219 11
= e — +
Lekidge=a| =5~ Toi |17 R I BT iy
W T 1 ;
T i i
P s N P2 | R ) B T/ S P PO 3.3.10
_2 “ob v 2 oer'’r
YUr T ﬂi zve

Taking the real part of (3.3.10), assuming that |7/V k | « 1 and noting that 0 <T | <1

for all a,, We obtain

TXAde T2 T2 Yoi 02
o .
T 1
k§c2 kfcf
+b | =200, + 6 r . — 3.3.11
1b Z’i ob n2i

We note that since we have assumed |7]| « |wr| , the assumption |7/ Vekz| « 11is satisfied
if the wave phase speed (v_/k,) along ﬁo is less than the electron thermal speed. We

consider special cases of the dispersion relation (3.3.11).

(a) STATIONARY SINGLE ION SPECIES

Forny =0 (b=0), that is a two component plasma with stationary ions, eqn (3.3.11)

reduces to
k ¢
u_ = Z S . 3.3.12
2.2 .2
\/1+k '\de+k¢ps

which is the dispersion relation for ion acoustic waves as found by Zakharov and

Kuznetsov([18]. In the absence of perpendicular dispersion (kl =0) eqn (3.3.12) reduces to
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the result of Kindel and Kennel [17].

(b) ISOTROPIC ION BEAM, STATIONARY ELECTRONS

ForT = T“ andn; =0 (a =0), that is for isotropic ions streaming through background

electrons, eqn (3.3.11) yields the fast and slow beam modes.

kc

-3

/1+k ’\de

The imaginary part of eqn (3.3.10) yields

K2y 7 k% JaT
a | Zir . |-22 Y/ OIS Sy i T g e T
2 "oi| w — a2 2 "ob | - T
) r w 1° v ] v
r r 1 r I Z €

from which we obtain an expression for the normalized growth rate 7/ v, namely

L 2y2 2 1
Jr T k°ve - [2hu, k2C
I-- oe’r aZpt T .+ bo[—oT 1b+5ﬂrob; . 3.3.13
T 2‘/_kzve W ﬂi v,

() UNMAGNETIZED PLASMA

For an unmagnetized plasma with isotropic ions we set ﬂj =0 (j=i,e) and # = 0 in the

dispersion relation (3.2.3). We obtain

2,2
0=k Ade Pl Zoez(zoe) rally Zoiz(zoi)]

+ b1+ Zobz(zob)] , 3.3.14
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where we have used the identities [15]

* 7
p=—o D
and

® _
Zp:_mpl‘p-o :

The latter identity follows since Fp is an even function. Using the identity [16)

3 () = =2[1+ AL(A)]

we can reduce eqn (3.3.14) to

2 2 / / /
2k ’\de =7 (Zoe) + al (Zoi) + bZ (Zob) ,

which can be rewritten as

w—K-{’
1— 1?22/[ v }— %22/[ v }— %22{ 0}:0 3.3.15
a0 vk V) 2 vy 2,

The result (3.3.15) has been derived by Akimoto and Omidi [6].
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CHAPTER FOUR

ION BEAM — PLASMA INTERACTION

41 INTRODUCTION

In this chapter we present numerical solutions of the dispersion relation (3.2.3).
"Unfortunately the (numerical) investigation of this relation is one of that large class of
tasks that is trivial in principle but not in practice, owing to the multiplicity of parameters
and variables involved and to the unpleasant nature of the functions." [19]. Details of the
Cauchy Rootfinder are presented in appendix C. Beam drifts perpendicular and parallel to
the external magnetic field B , are separately considered. The results are presented in
normalized form. The beam and background ions are assumed to have equal mass. Time
is normalized by the inverse ion gyrofrequency (ﬂ;l), speed by the ion sound speed

C . (T o / mi) 1/ 2, distance by p g = C s / ﬂi (the ion gyroradius at the electron temperature),

density by the electron density Ne and temperatures by the electron temperature Te'

Standard values of parameters used are: Ry = 0.1, “pe/ﬂe =0.4,k=1.0and 5.0,
m, / m, =1 /1836 (corresponding to a hydrogen plasma). For simplicity, we restrict our

analysis to the two—dimensional y—z plane.

At the outset, it must be pointed out that very careful analysis is required to identify the
low frequency modes observed. This is so because the ion acoustic wave and the
two—stream like instabilities have overlapping phase speeds. In this regard, Winske et al.

[20] have pointed out that the actual separation is somewhat artificial.
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4.2 PERPENDICULAR DRIFT WITHk =1

We note that for k = 1 we have kA = 0.06 and kp, = 0.32. Thus we consider extremely
long wavelengths. Figure 4.2.1 is a plot of the normalized growth rate 7 versus ky /k for

normalized velocities V oy in the range 1.5 — 6 for an isotropic ion beam (TL / T" =1). Here
and in subsequent graphs k = 1 is held fixed and the angle of propagation # between k and

the beam direction (Voy) is varied from 0° to 90°. We note that ky/k = cosd.

For V oy in the range 1.5 — 2.5 7, (maximum growth) decreases with V oy while for the
range 2.5 —6 1 ax increases with V oy’ This seems to indicate the presence of two different
plasma waves. This is clearly seen for V oy = 2.5 where two unstable modes exist. An
examination of the corresponding real frequency plots depicted in fig 4.2.2 indicate that the

phase speeds of both the growing modes are entirely different.

TABLE 4.2.1

Voy ky/k (at 750,) v Uoia k.oV) - w,
1.5 0.96 1.32 1.35 0.12
2.0 0.85 1.397 1.53 0.30
2.5 0.725 1.41 1.595 0.40

0.475 0.86 0.91 0.327
2.75 0.45 0.895 0.955 0.343
3.0 0.425 0.918 0.989 0.357
4.0 0.35 0.989 1.104 0.411
6.0 0.25 1.05 1.19 0.45

Table 4.2.1 is obtained in the following manner. For each of the velocities of fig 4.2.1 ky/k

at maximum growth (7m X) is determined. The corresponding real frequency (wr) is

a.

obtained from fig 4.2.2 . The ion acoustic slow beam mode frequency (wria) is calculated

using [21]
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The parameter labelling the curves is the beam speed Voy'

T.=0.1T ,kp_=1,w /8 =0.4,n, =0.1n_

ra)

HereT =T, =
T

6C



1.75
1.5 2.5
/ 2 |
P
o /0 1,25
6
. 4
1k 3
/ 2.75
| / 2.5
0.75 ' | !
O 0.25 0.5 0.75
ky/k

FIG 4.2.2 Normalized real frequency versus ky /k for the isotropic case T /Ty =1. The
parameter labelling the curves is the beam speed V oy’ Other ﬁxe(J
parameters have the same value as in fig 4.2.1 .

0€



31

nbo] 1/2 kZCS

2,2 .2 2.1/2"
(1+k Ade+klps) /

v . =R.V ~[ 4.9.1
ria 0 Ileo

In the range V oy = 25-6,0_ 15 close to the slow beam ion acoustic frequency and the
wave is thus associated with the ion acoustic mode. The maximum growth rate increases

with V oy as more free energy is available to drive the instability.

Before we proceed further we explain the meaning of beam resonance. If V o 18 the velocity
of the beam, then the projection of V o in the direction of wave propagation is V R g,

where 0 is the angle between the beam direction and the direction of wave propagation

(fig 4.2.3).

FIG 4.2.3

¢
V0c0s0

g

-3

The wave can gain maximum energy from the beam when the phase speed V y of the wave

satisfies

o
V¢:rrzvocosﬁ. 4.2.9

This can be written as

v =R.V 493

and is an exact beam resonant condition mentioned by Gary and Omidi [7]. The condition

(4.2.3) is an ideal condition for growth. However growth can still occur if VcosfxV "

when the beam ions with velocity near Vocos(} do not effectively see the rapidly varying
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electric field of the wave and exchange energy with the wave. The deviation from exact

resonance is calculated in table 4.2.1 .

In view of the above discussion and the data presented in table 4.2.1, in the range VOy =15
— 2.5 we identify the instability as the ion—ion streaming instability, which is a beam
driven mode. This correlates with the the decrease in Tnax with V oy’ since as VOy increases
so too does the deviation from exact resonance. This increase in deviation from exact
resonance with increase in VOy accounts for the decrease in Tnax with voy' In addition, we

also note that since both the ions and electrons are magnetized (wp o / o, = 0.4) ,both ion

and electron Landau damping is reduced at perpendicular propagation (. ﬁo).

For a wave of fixed phase speed equation 4.2.2 implies that an increase in V0 will decrease

cosf and hence increase the angle of propagation. For a fixed phase speed in fig 4.2.2 (wr

fixed, since k = constant) this shift in propagation angle (ky /k decreasing for increasing v,

in the range 1.5 — 2.5) is clearly noted. This increase in oblique propagation (to the beam)
at higher beam speeds is characteristic of the ion—ion streaming instability and was found

by Gary and Omidi [7], Akimoto and Omidi [6], Akimoto and Winske [5] and Gresillon

et al. [1]. If we set V¢ = G (since w_ # 1.0 in fig 4.2.2) in equation 4.2.2 we get the

condition V Oc030 = CS for the propagation of the ion—ion streaming instability as found by

Akimoto and Winske [5].

From equation 4.2.1 we see that for V o /C g k, /ky the ion acoustic instability becomes a
beam driven mode. The transition from the ion—ion streaming mode to the ion acoustic
mode at high beam velocities was found by the above mentioned authors. It is interesting
to note that although the work of Gresillon et al. [1] was performed in an argon plasma
while our calculations are for a hydrogen plasma, they also found the transition velocity

from the ion—ion streaming to the ion acoustic instability to be 2.5 .
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In fig 4.2.4 we display the growth rates for an anisotropic ion beam with TJ./T” =4 . The
corresponding real frequencies are plotted in fig 4.2.5 . It must be noted that here the
perpendicular temperature (TL) is held fixed (Tl =0.1 Te), the same as for the isotropic
case, while the parallel temperature is decreased (T” =0.025T e) to yield an anisotropy

TJ-/T“ = 4 .

In the range V oy = 0.75 — 8 we have the ion acoustic instability where as before the
maximum growth increases with velocity. In the range V oy = 1.5 — 3 we have the ion—ion
streaming instability where the maximum growth rate decreases with velocity. The
distinction between these two modes is evident from fig4.2.5 Where for Voy = 1.5 we have
two separate modes, the ion—ion streaming mode propagating essentially parallel to the

beam and the ion acoustic mode propagating oblique to the beam.

The left hand peak for V oy~ 2 occurs at ky /k % 0.52 and corresponds to a real frequency of
v, # 0.8, which agrees with the computed value Wi, = 0-77 using the slow beam ion

acoustic dispersion relation (4.2.1). For Voy =2, ky/k ~ 0.65 at the dip in the growth rate
curve (fig 4.2.4). The v curve (fig 4.2.5) has an inflection point at ky/k %~ 0.65 indicating

a change in the nature of the instability. The growth rate curve (V__ = 2) thus represents

oy
an overlap of the two instabilities.

For Voy = 4,6,8 the maximum growth rates occur at . ﬂi and could be associated with a
resonance between the slow beam ion acoustic mode and the background ion cyclotron

motion.

It is observed that the ion acoustic mode starts at a much lower threshold velocity (0.75)
when the ion beam is anisotropic, surprisingly at a value less than Cs' For the isotropic

case V oy >C g 18 always necessary to excite the instability. This lower threshold allows for
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the overlap with the ion—ion streaming mode for V oy >1.5.

It is seen from figs 4.2.4 and 4.2.5 that the jon—ion streaming instability propagates
essentially parallel to the beam and shifts to oblique propagation as Voy is increased from
1.5 to 2.5 . It reverts to parallel propagation as VOy is increased to 3. This is unlike the

isotropic case where larger beam velocities propagate obliquely.

The anisotropy also serves to increase the angular range of propagation. This is responsible
for the merging in fig 4.2.4 of the two modes for VOy = 2.5 that appear separately in fig
421 .

A comparison of figs 4.2.1 and 4.2.4 indicates an increase in the maximum growth rates
with anisotropy. For V oy - 6 the ratio of the maximum growth rates
(anisotropic/isotropic) » 2 while for VOy = 1.5 this ratio is approximately 1.67 . The effect
of the anisotropy on the growth is fully investigated in figs 4.2.6 and 4.2.7 . Figure 4.2.6 is
a plot of growth rate versus ky /k for beam speed V oy = 4 while fig 4.2.7 is a similar plot for
VOy = 2. We note from figs 4.2.4 and 4.2.5 that t.he former beam speed corresponds to a
purely ion acoustic mode while the latter (v oy 2) an overlap between the ion acoustic
and ion—ion streaming instabilities takes place. The parameter labelling the curves is the
beam anisotropy T;/ T“ . We note that the anisotropy has little or no effect on the dip in
fig 4.2.7 (which occurs at v # {; and could be due to ion cyclotron damping) but shifts the
peaks in fig 4.2.6 (where ion cyclotron resonance with the background ions could enhance

wave growth) and fig 4.2.7 slightly to the left.

The effect of the anisotropy is to essentially increase the growth rates. This is easily
explained. The total beam temperature is T, = (2TL+T”)/3 - Since T is kept fixed

(T; = 0. 1Te), increasing T;/T|| corresponds to decreasing T” and hence the total beam
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Normalized growth rate as a function of ky /k for beam speed V oy =4 Cy-
The parameter labelling the curves is the beam anisotropy ’l‘l /T” . Other
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temperature Tb. This decrease in the total beam temperature increases the slope of the
beam distribution and hence results in an increase in growth (7 « g{r) The enhancement
of growth with decrease in T, was also found by Akimoto and Omidi (fig3) [6] for an
unmagnetized plasma. The enhancement of growth is essentially due to ‘parallel (to B O)

motion, since decreasing T” effectively reduces ion Landau damping along ﬁo'

The effective temperature of the beam (Te P f) in the direction of wave propagation is

obtained with the aid of fig 4.2.8 .

FIG 4.2.8
B0 k
C
|

CJ. vO

Here C“ = (T||/mi)1/2 and € = (Tl/mi)l/2 are the thermal speeds in the parallel and
perpendicular directions respectively. The projection of é; in the direction of wave
propagation is

V, = CL cosf
and the projection of 6“ in the direction of wave propagation is

Taking the root mean square of these quantities, namely

v 2 y2,1/2
_V:(V1+V2)'/
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we obtain

" _ 1/2 02 . 2 . 9,1/2

which can be simplified to yield

2 .2
= . 424
Teff Tl cos“ g + T“ sin“d

For the curves in fig 4.2.6 we calculate T off 3 maximum growth and present the results in

table 4.2.2 .
TABLE 4.2.2
Tl/T” ky/k (atfymax) Teff
1 0.348 0.1
4 0.326 0.0329
9 0.315 0.0199
16 0.309 0.0152

The shift of the peaks towards the left is now easily explained. With an increase in beam
anisotropy, at maximum growth the wave propagates in a direction such that the effective
temperature of the beam as seen by the wave is decreased. This decrease in effective

temperature reduces ion beam Landau damping.

In fig 4.2.7 the overlap of the ion—ion streaming and ion acoustic instabilities is displayed.
It is seen that as the anisotropy increases, Tnax of the ion acoustic mode dominates over
that of the ion—ion streaming instability. One may argue that since the ion acoustic
instability is kinetic in nature (due to a resonance in velocity space) while the two—stream
instability is not, the former should be more sensitive to changes in velocity distribution.
Thus the decrease in parallel (to B O) ion Landau damping with dec;easing T” (increasing

Tl / T”) enhances the growth rate of the ion acoustic instability more than that of the

7" 850076

lon—ion streaming instability.
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The curves in fig 4.2.9 represent the normalized growth rates versus ky /k for different
values of the background ibn to electron temperature ratio T, /T . A decrease in T_ /T,
enhances both the ion—ion streaming and ion acoustic modes. As for the ion beam case, a
decrease in T, / T, decreases ion Landau damping of the wave. It is well known that a
necessary condition for the ion acoustic wave to propagate is that T < T,. Although the
source of free energy for the ion beam instability is the ion beam, high energy electrons also
play an active role in driving the instability [22] as is evident in fig 4.2.9 . Tt is seen from
fig 4.2.9 that for T, /Te < 0.02 the overlap between the two types of instability is destroyed.

They propagate in clearly defined angular regions.

Figure 4.2.10 shows the normalized growth rates versus ky /k for different values of the ion
beam density. Initially an increase in ion beam density (0.1 — 0.3) enhances both modes as
the free energy available increases. It is seen that the ion—acoustic mode is enhanced more
than the ion—ion mode as LI increases. In fact, the latter reaches a maximum for Ny #
0.3.

43  PARALLEL (to 8 ) DRIFT WITH k = 1

In fig 4.3.1 we plot a graph of the normalized growth rate 7 versus ky /k for an isotropic ion
beam, while fig 4.3.2 shows the corresponding real frequencies. The parameter labelling the
curves is the normalized beam speed V 0z along B o+ For the threshold drift speed for
instability V oz = 1-25, we identify the wave as the slow beam ion acoustic mode since this
mode satisfies the ion acoustic dispersion relation 4.2.1 . This is evident from fig 4.3.3
where we have plotted the theoretical real frequencies (4.2.1) for the ion acoustic wave for
Voy = 1.25 —2. We have further found that increasing the ion beam temperature
completely damps this mode at a critical temperature of Tb = T” =T =0.2, and is due to

ion Landau damping. Further it is well known that for the ion acoustic mode the growth is
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maximum at parallel propagation.

In table 4.3.1 we present the critical beam temperatures (isotropic case) for growth as a
function of the beam velocities V used in fig 4.3:1 . For values larger than those shown
the wave was completely damped.

TABLE 4.3.1

]

critical Tb
0.2
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The ion—ion streaming instability can also have maximum growth for propagation parallel
to Vo as found by other authors [5,6,7]. The growth curves for V., = 1.5 — 2 display such a
behaviour. In addition, for these drift speeds Tnax decreases with VOZ. Such a behaviour
has been observed for the ion—ion streaming instability by Akimoto and Omidi [6],
Akimoto and Winske [5] and Gary and Omidi [7]. Furthermore the real frequency curves
in fig4.32forV ~=15-2.0 do not satisfy the ion acoustic dispersion relation (4.2.1), as
can be seen by comparing with the corresponding curves in fig 4.3.3 . Hence, we identify
the instability corresponding to V 0z " 1.5 — 2 as the ion—ion streaming instability. Added
evidence is provided by the critical Tl = T|| = Tb values in table 4.3.1 . For VOZ in the range
1.5 — 2, the mode damps at a relatively large beam temperature value (compared to the ion
acoustic mode for V o0z " 1.25), thereby indicating its relative insensitivity to changes in ion

velocity distribution functions, which is typical of two—stream instabilities.
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The complete damping of the ion acoustic mode and a reduction in growth of the ion—ion
streaming mode with increase in beam temperature was found by Akimoto and Omidi [6].
They also found that the critical beam temperature for complete damping is smaller for the
ion acoustic mode than for the ion—ion streaming mode. Increasing the beam temperature

increases ion Landau damping of the waves. This effect is discussed later.

For VOZ in the range 2.5 — 4 we obtain an ion acoustic—like mode with phase velocity less
than the ion acoustic phase velocity. Such modes were shown to exist by Fried and Gould
[23] and were also found by Gary and Omidi [7]. The wave is completely damped at a

critical beam temperature Tb = 0.3 (V__ =4) confirming the acoustic—like nature. The

0z
maximum growth increases with V oz Since the free energy available to drive the instability

increases.
For velocities in the range 5 — 8, v, at maximum growth satisfies
v xRV D, - 4.3.1

with a definite shift in the associated ky /k region of propagation as compared to VOZ =25 —
4. We call this instability the beam cyclotron instability since it is driven by the cyclotron
motion of the beam ions. A similar mode was observed by Goldman and Newman in their

study of electromagnetic instabilities driven by an anisotropic electron beam [24].

The maximum growth of the ion—ion streaming instability at parallel to V oz PTOPagation is
expected since the wave is then in total resonance with the beam. Gary and Omidi [7] in
their fig 2 show that for § = 0° (wave propagation parallel to beam) the maximum growth
decreases with velocity for VOz > 1.58 . However, it must be remembered that their

situation corresponds to an unmagnetized plasma. The phase speed for the ion—ion
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streaming mode is V p 1. WhenV 0 is close to V p the wave has maximum growth since
more of the beam ions are in resonance with the instability. For larger beam speeds, say
VOZ = 2, a smaller fraction of the beam ions have speed close to V ¢, hence a smaller fraction
of the beam is in resonance with the wave, accounting for the decrease in growth.

We see from fig 4.3.1 that not only does Tnax 10CTease with VOZ for the beam cyclotron
mode, but propagation gets closer to the perpendicular (to B 0). The latter point may be

understood by rewriting equation 4.3.1 as
y_ + ﬂi ~k V 4.3.2

For a mode of fixed phase speed or for W fixed (since k = 1 is fixed) equation 4.3.2 implies
that k V oz 31 be treated as a constant. Increasing V 0z should decrease kZ causing the

mode to propagate more towards the perpendicular.

Figure 4.3.4 shows the normalized growth rate versus ky /X for the anisotropic situation
TL / T” = 4 while fig 4.3.5 shows the corresponding real frequencies. Compared to the

isotropic case the growth rates have increased noticeably.

The maximum growth rate for the ion acoustic mode (VOZ = 1.25) has increased by a factor
of 2.6 . The growth is still maximum at parallel propagation but the angle of propagation

has increased up to the perpendicular (to ﬁo). The ion acoustic dispersion relation (4.2.1)

can be rewritten as

;:—I:V Ly _[nb0}1/2 G
zZ 0z |n 2,2 2 2,172
z 9 eo (1+k ,\de+klps)T



Dm

2
1.5
1.25
1.5 F 1.75
7/ﬂi x 10 1
0.5 F
0
O
FIG 4.3.4

0.25 0.5 0.75
k_/k
y
Normalized growth rate as a function of ky/ k for the anisotropic case
TL/T = 4. The parameter labelling the curves is the beam speed V . Here
T, =0.025 Te’ T =T,=0.1 Te’ while other fixed parameters have the same

value as in fie 4.3.1 .



2
1.5
wr/ni 1 F
0.5
0 | | 1
0 0.25 0.5 0.75
k, [k

FIG 4.3.5 Normalized real frequency versus ky /k for the parameters of fig 4.3.4 . The
parameter labelling the curves is the beam speed Voz'

16



52

so that V 4z <y oz" This is a negative energy mode. We recall that the beam anisotropy
T / T” is increased by keeping T fixed and decreasing T”. Reducing the parallel beam
temperature (T”) narrows the beam distribution function fb(Vz) and increases the peak as
depicted in fig 4.3.6 .

FIG 4.3.6

Thus the wave sees a larger positive slope g{f at Vv . for the curve TH = 0.1 than for T" =
VA

0.025 . Being a negativé energy mode, this addition of more positive energy from resonant
particles results in wz;ve damping. This accounts for the increase in growth with
anisotropy (decrease in T”). For the ion acoustic mode increasing T while T“ is fixed is
found to have little or no effect on the maximum growth. This is expected since this mode

grows predominantly in the z — direction.

In the presence of the anisotropy, it is seen from fig 4.3.4 that the maximum growth for
Vogz = 2 has shifted from ky/k =0 to ky/k % 0.55 . This shift appears to indicate a change
in the nature of the instability. The total beam temperature T, = (2TL+T”) /3 was

increased by increasing both T and TH while maintaining the anisotropy T;/ T“ =4 . The
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critical temperature for the VOZ = 2 mode was found to be T; = 0.31, T” = 0.0775,
corresponding to T, = 0.23 . We note that this is much smaller than the isotropic case (Tb
= 0.7) where the mode corresponded to an ion—ion streaming instability. For the sake of
comparison we state the cut off temperatures for the VOZ = 2.5 mode. This is T” =0.1, TL
=04, Tb = 0.3 . This shift in propagation angle is also seen in fig 4.3.5 where the real
frequency at maximum growth for V oz = 2 shifts to the acoustic—like regime (close to V 0z "
2.5, 3, 4) as compared to fig 4.3.2°. Thus, the shift in Tnax from ky/k =0to ky/k x 0.55
coupled with a much lower cut off beam temperature (which is consistent with
acoustic—like behaviour) allow us to conclude that for a drift speed V 0z " 2, the associated
mode is ion—ion streaming in nature for an isotropic plasma (T / T” = 1) and ion
acoustic—like for an anisotropic plasma (T /T” = 4). From fig 4.3.5, because of its extended
tail for low ky /k, we are led to believe that VOZ = 21s a velocity representing the transition

from the ion—ion streaming to the ion acoustic—like mode.

The peaks for V 0z " 5,6,8 still satisfy the beam cyclotron mode condition (4.3.1), however

they are shifted towards the right. We shall account for the shift later.

In figure 4.3.7 we present a plot of the normalized growth rate versus ky /k for Voz = 2, for
increasing anisotropy. The maximum growth rate is seen to saturate with anisotropy.

This may be explained as follows. We recall that T / T“ is increased by reducing T”. Thus,
beyond a T“ value corresponding to T; / T” ~ 16, the associated effective ion Landau

damping is negligibly small. Hence any further decrease in T” (with T/ T” increasing) does

not affect the instability growth rate.

The peaks are seen to shift towards the right with anisotropy. This is easy to understand

since the effective temperature of the beam as seen by the wave is now
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2 . 2
—_— 4-3-3
Ieff-‘l“cos g+T sin“@,

where as before 4 is still the angle between the beam direction and the di’rection of wave
propagation. The relation (4.3.3) has also been obtained by Akimoto and Winske [5]. For
the plots in fig 4.3.7 we calculate Topg at maximum growth and present the results in table

439 .

TABLE 4.3.2

T | Kk (et Tt
1 0 0.1
2 0.488 0.0619
4 0.545 0.0473
9 0.584 0.0414
16 0.589 0.0387

We recall that for T / T” > 1, the mode corresponding to Voz = 2 becomes acoustic—like in
nature. Thus for the angles corresponding to maximum growth, the wave sees a lower
effective beam temperature as Tl / T” increases. Consequently, as discussed after fig 4.3.6,

the effective ion Landau damping decreases, leading to increased growth rate.

The effect of the beam density for the anisotropic case TL/T|| = 4 with Voz = 2 is illustrated
in fig 4.3.8. For low beam densities (0.05 < ny, < 0.3) the acoustic—like mode dominates
the ion—on streaming mode, while for larger beam densities the ion—ion streaming mode,
with maximum growth for.propagation parallel to Voz’ is dominant. The fact that the
acoustic—like mode dominates the ion—on streaming mode a'p low beam densities (nbo =
0.05) was also found by Akimoto and Omidi [6]. The increase in growth of the ion—ion

streaming mode with density is due to the increase in beam energy. The transition from an

acoustic—like mode (n,

o = 0.05) to an ion—ion streaming mode (ny, = 0.5) is well

illustrated.
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In fig 4.3.9 we investigate the effect of the background ions by varying Ti/Te for the
anisotropic case TL/T|| = 4 with beam speed V= 2. At a value of ky/k % 0.64 we have an
increase of growth with decrease in background ion temperature. This is because Landau
damping of the background ions is reduced. This is typical ion acoustic—like behaviour.
For large Ti/Te (0.25, 0.35) this acoustic—like mode is damped and shifts to parallel
propagation indicating that conditions are ideal for the excitation of the ion—ion streaming
instability which is less sensitive to ion Landau damping. Thus as Ti/Te rises from 0.002

to 0.35, the nature of the instability changes from ion acoustic—like to ion—ion streaming

type.

44  PERPENDICULAR DRIFT WITHk =5

Here, for k = 5 we have kAde = 0.292 and kpi = 1.6, which yields a typical wavelength for

electrostatic ion cyclotron waves.

Figure 4.4.1 displays the normalized growth rate as a function of ky/k for the isotropic case
for different values of the beam velocity Voy’ while fig 4.4.2 is a plot of the corresponding
real frequencies. Comparing fig 4.4.1 with fig 4.2.1 for the k = 1 case, we observe that the
distinct separation between modes is no longer present. From fig 4.4.2 we note that v,
increases with k.ﬁo. Hence the beam contributes to the dispersion of the mode. However,

none of the modes satisfy the ion acoustic dispersion relation 4.2.1 .

For VOy = 1.25, 1.5 we associate the instability with thé ion—ion streaming mode which has
maximum growth for propagation parallel to the beam, typically observed by Akimoto and
Omidi [6], Akimoto and Winske [5] and Gary and Omidi [7]. Maximum growth increases
with velocity until VOy = 1.6 . For speeds above this value, although the instability is

two—stream like, it develops a few special characteristics. It is seen that at Tmax’ R.VO is a
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constant for each drift speed, with kyVOy ~ 7.9 . In addition, v is constant at Tmax’ with

w54, Such a behaviour is typical of the modified two—stream instability (MTS

instability)

In their theoretical study with counter—streaming ion beams (1 ﬁo) of equal density in a
plasma with magnetized electrons and unmagnetized ions, Papadopoulos et al. [9] observed
a zero—frequency MTS instability with R.VO =/3/8 vy and 7= wlh/2ﬂ constant at
maximum growth. Here Yl is the lower hybrid frequency defined as

U1y = .wpi/ [1+(wpe/ﬂe)2} 1/2, where wpiand U BTE the total ion and electrog plasma
frequencies respectively. The wave propagation vector X was perpendicular to B o

Allowing for oblique (to ﬁo) propagation, McBride et al. [10] also obtained constant values
W= 372 YUl and kV0 =3 wyp at maximum.growth. They however considered the case of
'kZ/k N (me/mi) 1/2 which allows for propagation very near to the perpendicular (to ﬁo).
Bharuthram and Johnstone [12] used the model of Papadopoulos et al. [9] but allowed for
ma.gnetiza.tion of the ions and anisotropy of the counter—streaming ion velocity
distributions. At maximum growth they found that v, and R.VO were constant with v =0
and R.VO = 342/8 wyy- Thus for beam speeds VOy > 1.6 we label the instability as a
MTS—type of instability, in contrast to that for VOy < 1.6 which is typical of the ion—ion

streaming instability in an unmagnetized plasma.

We note that for our case ¢y} % 15.1 . Since 3y2/8 vy, # 8.0 we have good agreement with
the result of Bharuthram and Johnstone {12]. This is expected since their model is the one

that closely resembles ours. In addition, for our results v, at maximum growth satisfies

LRV - 4.4.1
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211/2
where vy, = Upib/ [1+(upe/ﬂe) ] /

ions.

. Here Ypib is the plasma frequency of the beam

Since kyV oy 18 const_ant at maximum growth, increasing the velocity will result in kymax
(ky at 7., ) decreasing, causing propagation to shift closer to the direction of the magnetic
field. This is clearly displayed in fig 4.4.1 . Since for low velocities propagation is much
more oblique to the magnetic field B o the effect of cyclotron damping is greater on these

modes as compared to higher velocity modes, hence the lower Tnax for smaller beam

speeds.

In figs 4.4.3 and 4.4.4 we consider the anisotropic case (TL/T“ = 4). The anisotropy once
again increases the growth rate. The reason for this has been explained in sections 4.2 and
4.3 . We report that in their work Bharuthram and Johnstone [12] fixed T” and increased
Tl inorder to obtain an am’sotr_opy TL /T” > 1. Hence their anisotropy corresponded to an
increase of total beam temperature, resulting in a decrease in growth. We have done the
opposite, namely kept Tl fixed and decreased T|| Hence our anisotropy results in a
decrease of total beam temperature, hence increase in growth. The shift of the peaks
towards the left has been discussed in section 4.2 . For the MTS~type instability (VOy >
1.6) R.VO is still constant at maximum growth but because of the shift of the peaks R.VO R
7.1 is lower than the isotropic case. The frequency u,. R 5.15 is also constant at maximum
growth. For the ion—ion streaming mode corresponding to VOy = 1.5, we note that the dip
in the growth rate (fig 4.4.3) at ky/k x 0.92 occurs at the fifth harmonic of the ion

cyclotron frequency, 591, indicating ion cyclotron damping.

In fig 4.4.5 we illustrate the effect of the anisotropy on a typical MTS—type of instability

(Voy = 4). The shift of the peaks towards the left and the increase in growth with

anisotropy is consistent with our earlier findings, and has been discussed, for example, for
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fig 4.2.6 . The effect of the beam density on the growth rates is investigated in figs 4.4.6
and 4.4.7, for both the isotropic and anisotropic cases. In both figures the growth rates
increase with beam density. It is iﬁteresting to note that for Ny, = 0.5 we have 50% ion
beam streaming through 50% background ions. The geometry is slightly different from
that of Bharuthram and Johnstone [12] in that they had two counter—streaming ion beams
of equal density (50%). Ignoring the relative electron drift, our case for VOy = 4 correspond
to theirs for VOy =2 . Our maximum growth for the isotropic case (fig 4.4.6) for Ny, = 0.5
is approximately Qi. This agrees almost exactly with the maximum growth found by

Bharuthram and Johnstone [12] for their VOy = 2 case.

It is interesting to note from the results presented in this section that although we are in a
Doppler shifted frame, both the ion—ion streaming and MTS—type of instabilities satisfy

v, ~ kC, as found by Gary and Omidi [7] and Fuselier et al. [8].

45 PARALLEL(toB )DRIFT WITHk = 5

Figure 4.5.1 is a plot of the growth rate versus ky/k for the isotropic case. The parameter

labelling the curve is the beam speed Voz' We firstly identify the modes.

For V,, = 1.25 — 1.5 the maximum growth rate increases with velocity and occurs at
parallel propagation. From fig 4.5.2 which shows the real frequencies we observe that the
beam contributes to the dispersion of the mode. However, we find that these modes do not
satisfy the ion acoustic dispersion relation (4.2.1). For § = 0° a plot of the growth rate
versus velocity shows a peak at VOZ = 1.6 . This is similar to the pattern obtained by Gary
and Omidi [7] (fig 2), who found the peak to occur at ¥ » 1.58, for their unmagnetized
plasma results. We note that v, and k.\?o are not constant at maximum growth. Thus for

voz = 1.25 — 1.5 we have the ion—on streaming instability.
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For VOZ = 1.6 —4, W 5.45 is constant at maximum growth. In a.dditionl, at maximum
growth, k V= 8is also constant, and v also satisfies relation (4.4.1) as in the
perpendicular drift case for k = 5. These velocities therefore excite the MTS—type of
instability. Since kZV o0z is constant at maximum growth, larger velocities propagate more
obliquely to B o The difference with the perpendicular drift case is that now Tnax decreases
with velocity. This is easily accounted for because of an increase in ion cyclotron damping
with oblique propagation. In addition, the effect of electron magnetization increases with
the obliqueness (to B O) of the propagation. In this regard, we point out that for an
unmagnetized plasma, Gary and Omidi [7] found that Tnax W3S independent of the drift
speed VO. But, as wpe/ne was lowered from 50 to 1, Tnax decreased with VO. This drop —
off was associated with the increase in the strength of electron magnetization (since the

ions were unmagnetized). Thus our findings are consistent with the results of Gary and

Omidi [7].

We note that for beam speeds in the range 1.6 < VOZ < 2 we have an overlap of the two
types of instabilities, as can be seen from fig 4.5.1, in particular for the "extended tail" of
V__=2. This then represents the transition regime from the ion—ion streaming instability

0z

(as found in an unmagnetized plasma) to the MTS—type of instability.

In fig 4.5.3 we investigate the anisotropic case (TL/T” = 4). Figure 4.5.4 shows the
corresponding real frequencies. ‘The effect of the anisotropy is to increase the growth rate,
consistent with our earlier findings. For V= 1.6 —4 there is a slight shift of the peaks
towards the right as compared to the isotropic case. This results in a slightly lower kZV o0z

at maximum growth, namely kZVOZ % 7.95 is constant and w. % 5.5 is also constant at

maximum growth.

By comparing with fig 4.5.1 we see that the anisotropy also lowers the threshold beam
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velocity for the excitation for the ion—ion streaming instability. This is evident due to the
appearance of the V 0z " 1 mode, which is not present for the isotropic case. The anisotropy
also destroys the tail of the of the V=2 curve causing it to shift into the purely
MTS—type instability regime. This shift is evident by comparing the real frequencies for

the isotropic and anisotropic cases (figs 4.5.2 and 4.5.4).

The effect of further increasing the anisotropy is investigated in fig 4.5.5 for the VOZ =2
mode. The effect of the anisotropy is to increase the maximum growth rate. For ky [k <
0.35 increasing the anisotropy decreases the growth. This results in the anisotropy

"killing" the parallel tail.

In figs 4.5.6 and 4.5.7 we show the effect of the beam density on the VOZ = 2 mode for the
isotropic and anisotropic cases respectively. Increasing the beam density increases the
growth rates. However, the growth is increased more in the z—direction since the relative
streaming is in that direction. In fig 4.5.7 the increase in beam density and the associated
energy available to excite an instability allows the ion—ion streaming instability to develop

in the tail region of the MTS—type of instability for low ky /k values.

46  EFFECT OF ION MAGNETIZATION

Figure 4.6.1 is a plot of the normalized growth rate versus Uhe / h, for a fixed angle ky/k =
0.4 and velocity VOy = 4 while fig 4.6.2 is a similar plot for Vo, = 4and ky/k = 0.9 . Here
we set k = 5. The parameter labelling the curves is the beam anisotropy T¢ /T”.
For “pe/ﬂe > 1 the growth saturates with wpe/ﬂe' Increasing "}pe/ﬂe while keeping all
other plasma parameters fixed (BO fixed) corresponds to increasing the total plasma

density. We note that wpe /ﬂe > 1 corresponds to wpi / ﬂi » 1. Hence the ion cyclotron
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while other fixed parameters have the same value as in fig 4.6.1 .
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period 27/0. » 27r/azpi (the ion plasma period). This case thus corresponds to the ions
being effectively unmagnetized, hence ion cyclotron damping of the wave becomes weaker.
In addition, the effect of electron magnetization decreases with increasing Uhe / ﬂe. These

factors could account for the saturation in growth rate.

For Upe /@ ! decreasing Yhe /8 o decreases growth. Decreasing Yhe /0 o corresponds to
increasing ion and electron magnetization, accompanied by cyclotron damping and hence a
drop in growth rate. Our results are consistent with those of Gary and Omidi [7]. The
growth for the anisotropic case usually dominates that of the isotropic case because of the
decrease in total beam temperature due to the anisotropy. The latter effect, as explained
earlier, enhances growth. However, for strongly magnetized electrons and ions (wp o /0 e €
1), the effect of cyclotron damping is so great that the growths for both the isotropic and

anisotropic cases are the same.

The analysis carried out in the above four sections differs from most of the earlier work
(Gary and Omidi [7], Akimoto and Omidi [6], Akimoto and Winske [5]) in that in our
model both the ions and electrons are magnetized. In the above references, under the
assumption | 7| » ., the ions are assumed to be unmagnetized. Since in our results | 7| ~

f;, the effect of ion magnetization cannot be ignored.

We have thus extended a study of beam — driven low frequency electrostatic instabilities
into the regime | 7| ~ fl; and find that two — stream type and ion acoustic — like modes

display similar behaviour as compared to the case of unmagnetized ions.
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CHAPTER FIVE

ELECTROMAGNETIC WAVE — PLASMA INTERACTION

51 INTRODUCTION

The dispersion relation for linear electromagnetic wave propagation in an unmagnetized
plasma is w2 = w;2)e + 1;2c2 , where Upe = (47rn0e2/me) 1/2 is the electron plasma frequency
and c is the speed of light. From this it is clear that v » Uhe and hence classical linear
theory forbids the propagation of electromagnetic waves with v < wpe in the plasma. Since
Uhe depends on the density, for a plasma with non—uniform density there exists a critical
cut off density beyond which propagation is prohibited. We consider nonlinear interactions
which may reduce the local plasma frequency. When intense electromagnetic radiation is
incident on a plasma, the electrons oscillate in the electric field of the radiation. The
electron quiver velocity can be » 0.6¢ [25] and hence relativistic effects have to be taken
into account. As a result the mass of the electron is modulated in the presence of the field.
This nonlinear increase in the electron mass leads to a downshift of the local plasma
frequency wpe'
The ponderomotive fofce, caused by self interaction of large amplitude waves, is a low
frequency, nonlinear force which acts on electrons (ions are massive and therefore not

affected) expelling them from a region of high field intensity. The ambipolar field thus

created pulls away the ions. Thus it reduces the local plasma density and hence v

The downshift of the local electron plasma frequency by these two nonlinearities has an
important consequence in that it permits the propagation of electromagnetic waves into the

"overdense" region (beyond the cut off density) and hence allows the heating of regions of
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the plasma which are forbidden by classical linear theory.

The study of nonlinear wave propagation is thus important to the work associated with

laser pellet interaction, rf heating of magnetically confined fusion plasmas, wave driven

particle accelerators and free electron lasers where intense electromagnetic waves are used.

However, the nonlinearities mentioned above have been shown to give rise to plasma
instabilities, in particular the modulational and filamentation instabilities. In addition,

they are the source of nonlinear potential structures such as solitons [25].

Yu, Shukla and Spatschek [26] studied the nonlinear propagation of intense circularly
polarized electromagnetic waves in an unmagnetized plasma. They were the first to
consider both the relativistic electron mass variation and relativistic ponderomotive force
nonlinearities simultaneously. Their results showed the existence of finite amplitude wave
localization in the form of soliton structures. For sufficiently strong relativistic effects, the

existence of supersonic solitary waves was demonstrated.

The interaction of high power circularly polarized electromagnetic waves with an electron
plasma was considered by Yu, Shukla and Tsintsadze [27]. In their model, the electron
density was modulated by Langmuir (low frequency) oscillations while the ions formed a

neutralizing background (Raman effect). They showed the existence of solitons of large

amplitude.

Rao, Shukla and Yu [28] studied the problem of solitary wave propagation in a magnetized
plasma. They did not assume the quasineutrality condition and included ion dynamics
exactly. They considered three types of ion responses giving rise to the forced—Raman

(FR), quasistatic (QS) and forced—quasistatic (FQ) interactions. It was found that intense
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circularly polarized electromagnetic waves propagating along the external magnetic field

could produce large amplitude solitary potential structures.

Shukla, Bharuthram and Tsintsadze [29] investigated the filamentation instability of an
intense electromagnetic wave in an unmagnetized plasma. They allowed for fully /
relativistic effects as well as for a large amplitude electron quiver velocity ahd large
amplitude electron density variations. They studied the three well known plasma responses
mentioned above and obtained the spatial growth rates analytically. They showed the
existence of a new relativistic filamentation instability at high laser intensities, which they

attributed to the fully relativistic electron quiver velocity and finite amplitude density

fluctuations associated with the FR interaction.

The modulational instability of an arbitrarily large amplitude electromagnetic wave in an
unmagnetized plasma was examined by Shukld, Bharuthram and Tsintsadze [30]. They
took into account the relativistic electron quiver velocity and the relativistic
ponderomotive force. Three types of plasma slow responses, namely the FR, QS and FQ
interactions were considered. The growth rates (temporal) associated with these
interactions were analytically obtained. They showed that for Ve/c <0.12, were Ve is the
electron thermal speed, only the FR interaction participated in the modulational

instability, while for larger plasma temperatures, all three interactions contributed to the

instability.

A comprehensive review of nonlinear effects associated with relativistic electron mass
variation and the ponderomotive force in unmagnetized, as well as magnetized plasmas was
compiled by Shukla et al. [25]. They also studied the nonlinear propagation of intense

electromagnetic waves in an electron—positron plasma.
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Our investigation is an extension of the work in reference [30] to a magnetized plasma.

The effect of cyclotron motion on the instability growth rate is clearly demonstrated.

5.2  BASIC EQUATIONS

In deriving our basic equations we closely follow the approach of Rao, Shukla and Yu [28].
We consider the propagation of an intense circularly polarized electromagnetic wave of
frequency w o and wavenumber k0 along an external magnetic field ﬁo = Boi in a two
component electron—ion plasma. The plasma response is of two time scales: the high
frequency motion of the electrons in the wave fields and the low frequency response of the

ions and electrons due to the nonlinear ponderomotive force.

We use the fluid approach. Hence we use the two fluid relativistic equations namely:

the equation of continuity

on. R
o V-(njVj) =0, 5.2.1
and the equation of motion
o R
ﬁh(v V)fSJ:eJ E+—l—c +J—C —njan, 5.2.2
together with Maxwell’s equations
2 14B
VxB=—c35, 5.2.3
BV o f L LOE
vV B—c anejvj+6—%, 5.2.4
J
V-E= 47re(ni — ne) , 5.2.5
V.-B=0, 5.2.6
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where n. , Vj and T. are the number density, the fluid velocity and the temperature of the

jth species (j=1i,e), respectively,

m. v 1/2

o 2,2 2
B = 10 =m. V. (1+p5/m c“) 5.2.7
] (1_y?/c2)1/2 jo'j v Fi o

is the relativistic momentum and mjo is the rest mass of the jth species.

The wave fields E and B can be written in terms of the a scalar potential ¢ and a vector

potential i as
B=Vxi, 5.2.8
2 10k
E=—25m -4, 5.2.9
and satisfy the gauge condition
1. 1304 _
DEEIN 5.2.10

Here ¢ is the low frequency potential perturbation induced by the strong electromagnetic

wave. Substituting from equations (5.2.8) and (5.2.9) into the electron momentum
equation (5.2.2) and using equation (5.2.7) we obtain

2,2 2,-1/2 e ok e 2,2 2,-1/2
(1p2/m2c®) 2 (8, ), = 208 + evp— S (1p2m2 )M 2,

? 2,2 2.—1/2 n
« (Ve k) =g (1 ep2/mZ A2 xz -1 7(1nny)

aise 1
F Tm

eo
5.2.11

where ﬂe . eB o / M, C is the electron gyrofrequency. Since the plasma response is of two

time scales, we separate the high and low frequency components of i and ;‘Se and write for

left—hand circularly polarized waves:
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k= A(z,t) (k- i) exp[i(k,z —w,t)] + c.c

: 5.2.12
Be = p(z,t) (x —1iy) exp[i(k z —wot)] +C.C

where ¢.c denotes complex conjugate and A and p are normalized with respect to m eOc2 /e

and Mo Cs respectively.

Here A(z,t) and p(z,t) are slowly varying complex functions of space and time. We have
used the fact that the perpendicular momentum of the electrons is due to the high
frequency response in the wave fields (transverse wave) whereas the parallel momentum
due to the ponderomotive force, is a low frequency response. However, the effect of the

parallel electron momentum on the low—frequency dynamics of the plasma is neglected.

Equation (5.2.11) with i and ﬁe in normalized form becomes

op ?
2 2,\—1/2 A -
Moo © Et_e T lgp® (1+p%) / (ﬁe'v)ﬁe = Mep® gf +eVy _meoc2(1+p2) 2 ise
< (Ve k) —m ety (19%) 2B x 2 T T(lnn) . 5.2.13

We note that p o Tepresents the perpendicular (to B 0) electron momentum. Since all terms
that vary as exp [i(koz - wot)j behave independently of all terms that vary as
exp[—i(k,z — w,t)], it is necessary only to substitute the first half of equation (5.2.12)

into equation (5.2.13), that is, ignore the complex conjugate part [31]. With this

substitution
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ap . .
.at_e: (g%— iwop) (x — iy) exp[l(koz —wot)] ]
g%_: (g%_ iu h) (% - if) exp[i(kz—ut)] | 5.2.14

Box z=-ip (% - 1i§) exp[i(kz — ¢ t)]

and equation (5.2.13) is averaged over the fast time scale to yield (appendix B)

dp

. oA . . 2\—1/2
%—1w0p:%—1wOA+1pﬂeO(1+p) /2

5.2.15

Upon dividing by v, and noting that |g%/w0| < |p| and |g%/w0| € |A| since A and p are

slowly varying quantities, equation (5.2.15) reduces to
—ip=—ik+ ip_ fu_ (1p2) /2.
Letting a =0 / v, We solve for A in terms of p to obtain
A=p[l+ a(1+p2)~1/2] , 5.2.16
in agreement with Rao, Shukla and Yu [28]. Thus by (5.2.12) we have

i= M, » 5.2.17

where =1 + a(1+p2)_1/2. For the low frequency electron motion we can show

(appendix B) from (5.2.11) that
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n c2(1+p2) "2 (3,7

2 2\—-1/2
o - g —ng (107 /2 p

(¢°]

e
~¥(Inn,) - 5.2.18

Using (5.2.17) and the identity

Box (Vx1B,) = p20n + 1/2 gWp° - N(Bg-V)B — (B-V1)B,

equation (5.2.18) becomes

meoczF(ﬁe-V)ﬁe =eVg — meoc2I‘(p2V7y +1/2 an2)
e M [n(B N)B, + (B T1)B,) —7(1nmy) 5.2.19

where T = (1+p2)_-1/ 2 Taking the dot product of equation (5.2.19) with z and noting that

ﬁe.i = 0, we obtain

(V¢ — ﬁI‘(p2V7] +1/2 an2) ~V(nn,)].2=0, 5.2.20
where ¢ is normalized with respect to ’l‘e/e and § = meoc2/Te. Since
Ty =001+ a(1ep?) 2] = —a/2 (149 2 02
the second term in (5.2.20) can be written as

I‘(p2V77 +1/29 Vp2) = a/2 (1+p2)_2 Vp2 +1/2 (1+p2)_1/2Vp2 : 5.2.21
Since
T(1ep?) ™ = ~(10p%) P07,

and

V(1+p2)1/2 =1/2 (1+p2)_1/2Vp2

)
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the right hand side of (5.2.21) simplifies to

V(1p) 2 —aj2 v (10pY) "

Hence (5.2.20) becomes
2,1/2
)1/

[Vg — AV (1+D —a/2 (1+p%) 1} = V(Inn )] 5= 0, 5.2.22

which represents a low frequency electron momentum balance along ﬁo'

In deriving the governing equation for the wave amplitude A we begin with the vector wave
equation (5.2.25) which is derived as follows:

equation (5.2.4) can be written as

Ve (k) =t 18 LA g 5.2.93

ol %
(3|b—k

where J = E_nj e Vj is the current density and we have used (5.2.8) and (5.2.9) to
J
substitute for B and E. Using the identity

we can write (5.2.23) as

AN O 1—2‘7—2 5.2.24
Using the gauge condition (5.2.10), (5.2.24) simplifies to

22
a—é—c y A 47ch 5.2.95
ot
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Since the ions are massive we neglect their contribution to the high frequency current
density and write

Jx—enV . 5.2.26

Substituting (5.2.26) into (5.2.25) and using (5.2.7) for Ve, with £ and B normalized and

n, normalized with respect to the equilibrium density n o e obtain

27 n_p
0°A  2:27 2 e'e
g S —c*Vh=—u , 5.2.27
at2 ' peo (1+p2)1;2
2 2 1/2. . .
where Uheo = (41rn0e /m eo) is the plasma frequency associated with the electron rest

mass. Using (5.2.12) and (5.2.14) we can show that

27 2
i} A . A 2,1 /s s .
P: 5?—21(;10%—(;101& (x —1y) exp[i(k z —u t)]
v 210, R — 24T (R 1) exp[i(k z — 0 t)] 5.2.28

where we have used the approximation

2
d0°A 0A
o2 Wogt) | <1
since A is a slowly varying quantity, and
27 2
0°A _ [0°A o 0A 2 A .
) = L’)—2 + 21k o — kOA] (x —iy) exp[i(k, z — u,t)] - 5.2.29
Z Z

Substituting (5.2.28) and (5.2.29) into (5.2.27) and using (5.2.12) for B, we obtain
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. 2,22 e 02

X% 2 .2, 2ikc n_p
200, oy (%) | i S R S 5.2.30
S 7t o P 0w Z 0 (1+p%)

peo peo peo peo

: C o1 - 2\1/2
Normalizing t and z with respect to the ion plasma period Uy = (m;/4mn e ) /2 and the

electron Debye length 4, = (T o / 47rn0e2) 1/2 respectively, and letting

2 ,22,,2

A = (w, kg c )/ajpeo , we can write (5.2.30) as

. o 2
Hoghpioh |y, 0 PGS o TP 5.2.31
2 0t 2 2 .2 2 7z 212
o A5 0z° Wl A (1+p”)
“peo peo”de peo”de

. 1/2 _ - ok c2/(s?
| Letting € = (meo/mi) / “’o/wpeo = (“pi/wpeo)wo/wpeo’ Vg - 2k0c /(wpeo’\de) and
2 2
A

noting that c2/(w ) = meoc2/Te = 4, (5.2.31) may be written as

p€o de
21 + 1V +—ﬂ;——-+AA = 5.2.32
1¢ Tt 1 Bz D) E————;—7§ ; d.

as found by Rao et al [28]. Integrating (5.2.22) with respect to z and using the boundary

conditions ¢ = p =0, n, =1 when |z| - », we obtain for the ambipolar potential ¢,

2

6=5 (121 82| 5.2.33
(1+p%)

The equations (5.2.32) and (5.2.33) constitute the governing set for our study of the

modulational instability of large amplitude cyclotron waves: We consider three types of

slow plasma responses—the forced Raman(FR), forced—quasistatic(FQ) and the

quasistatic(QS) interactions. Associated with each is a unique slow electron density

response n.
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FORCED — RAMAN INTERACTION (FR)

For intense laser beams the relativistic electron ponderomotive pressure (second term in

5.2.22) dominates the electron thermal pressure (« 1n ne) and (5.2.33) simplifies to

a 2

2)1/2
2 (14p%)

g=0|(1+p

which describes a balance of the ambipolar electric field by the ponderomotive force.
For the FR interaction, on the electron time scale (w;)é), the ions do not respond and form

a neutralizing background. Then n, =n, and the normalized Poisson’s equation yields
a2
ne:1+V o . - 5.2.35

Upon substituting (5.2.34) and (5.2.35) into (5.2.32) and using the notation d, = gf’ d, =
gi’ we obtaln
(2aedy + 1V, - 592 + 4)A

2

+p

where we recall A = p[1 + a(1+p2)_1/2] from (5.2.16).

The modulational instability analysis is carried out following the method of Karpman[32].
We let

p=(p, + bp) e 20"

b

where Py 1s a real constant and represents the pump wave amplitude, ép is the perturbation

term with |dp|«|p ol and § represents a nonlinear frequency shift. It is then easy to
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approximate the following quantities:
2 2 2 =
p” = |p"| # py + Py 0P,

where 5p = 6p + 6p", (* denotes complex conjugate)

1 . 1 P,0P
(") 2 ()P 2(10p) 2
2..
(p0+6p)a a poép —i6t
Ax [poﬂfp + (1+p2)1/2 -5 (1+p2)3/2 } e by (5.2.16)
0 0
2..
p0+§p poép it

I — e
(1+p%) /2 [(1+p§)1/2 2(1+p§)3/2}

(1+p2)1/2 N (1+p2)1/2 [1 . P, 0P }

0 2
2(1+p,)
2. 35
2 [po+poép_ P, P ]
N 2 2,2
(1+p%) (1+py)  (1+p,)

Substituting the above approximations in (5.2.36), the pump terms (corresponding to zero

order in perturbation) yield for the nonlinear frequency shift

1 1
6="06p=n —A 5.2.37
R 2¢ (1+p§)1/2+a ’

while the first order perturbation terms yield
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2
P,0P
{2¢8p+0 + 1(2¢e0, +V 6,) + b9 }[[ (1+p§)1; ]61)_%(121)0) ‘ ]

2
_|__6p PofP ] L8 o [ }V23p. 5.2.38
[ (192 201232 | 21 +p§) (1+p2)37§

We write p = X + iY in (5.2.38) and separate into real and imaginary parts to obtain (from

the real component)

€ + A+ 2 + a — 66 + 3 + 2 Y
s 48] 1= 1 - |

. ,
1 0 8 VX, 5.2.39
(1+p?)377 (1+p§)[1 (1 5)377}

and (from the imaginary component)

(2ep+A + ﬂﬁg) [ 1+ (1_+p§)T_2-]Y + (260, + vgaz) [ 1+ —(lﬁg)ﬂi}x
_ 1
—WY . 5.2.40

We perform a Fourier analysis by letting

[ oa——

< b

| S—
1

[ aam——

il by

] exp[i(Kz —0t)] ,

where ! and K are the frequency and wave number associated with the plasma slow motion.

Equations (5.2.39) and (5.2.40) then yield, respectively
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(266R+A——K2ﬂ){1-+EI——§—§7—}X {i(KV —-2eﬂ)}[ EE__%§T7§}?

+Dy) P,
2
{_K2g_0 |1, i 5.2.41
(1+p2>372 () | (19D

and

Y. 5.9.49
2.1/2
(1+p )

Solving for Y from (5.2.42) and substituting into (5.2.41) we obtain

(2680 - A [(1+01)3/2 4 ] + Ly (R = 26m)? [(1490)>/% + o)

=1 —ﬂK2 p02 [(1+p2)3/2 +al . 5.2.43

We set Vé = Vg/2e and { = KVé +17p in (5.2.43) to obtain the growth rate for the FR

modulational instability

2 1/2
- l{g;/ﬁ 211/2 - 213/2 : 5.244
oL (Mepg) T Tra (Lepg)  (1+py)

The threshold condition corresponding to 7 =0 is given by

2
P, (1+p;

[(1+p2) 2 ea] [(14p2) 3 %0a]

23/2
oK -

5.2.45

We recall that a = neo Jw o Thus the limit a = 0 corresponds to an unmagnetized plasma
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situation. In this case our results reduce to those of Shukla, Bharuthram and Tsintsadze
[30]. It must be noted that our normalizations and definition of ¢ are different from theirs,

and must be taken into cognizance when comparing results.

FORCED QUASISTATIC INTERACTION (FQ)

Here the ions actively participate. When the phase velocity of the ion fluctuations is much
smaller than the ion thermal velocity, the ion thermal pressure balances the slow electric
field [28]. We may assume an isothermal equation of state for the ions, leading to an

expression for the ion number density given by

n; =n exp(— ed/T.)

which in normalized form reads as

n; = exp(—of) ,
where ¢ = Te/Ti‘ The normalized Poisson’s equation yields
) 2
n, = exp(—of) + V4 . 5.2.46

Here, as for the forced — Raman interaction, the electron thermal pressure is neglected in

comparison to the ponderomotive pressure. Hence ¢ is given by (5.2.34) with

2
n, = eXP{ ﬁb—ﬂb{(1+p2)1/2 + % pp2)H

2
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Following the procedure outlined for the forced—Raman case, we use (5.2.32) and (5.2.47)

to obtain for the nonlinear frequency shift and modulational instability growth rate,

respectively
P e —A 5.2.48
FQ ™ 2¢ (1+p§)172+a ’
2 2
[ pﬁ(“pﬁ)lﬂ 3 ﬂbpoeq_K ﬂr/z 5.2.49
7 = + 2 ; L.
F26 [ faepd)2ea) [(102)  %0a] (14p,) |
with the threshold condition
2,3/2
2 ql (105)° ; } e
= p e + , L.
0 [(1+p§)1/2+a] [(1+p§)3/2+a] b

2
where ﬁb =¢fand { = ﬂb[l — (1+pg)1/2 —% (1p02)}
+p0

QUASISTATIC INTERACTION (QS)

For a plasma situation in which the ponderomotive force and thermal pressure exactly
balance the ambipolar potential the electron density is represented by a modified

Boltzmann distribution [25]. For Boltzmann ions we use the quasi—neutrality condition
no=n =e 7 5.2.51

and substitute into (5.2.33) to obtain
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' 2

2,1/2

6= by {(1+p )1/ —14+8 B } , 5.2.52
(1+p%)

where ﬂq = fo/(1+0). Substituting (5.2.52) into (5.2.51) we obtain the modified form for

n
€

2
n = exp| —f (1ep?)t/2 1. 2P H 5.2.53
¢ [ “{ 2 (1%

Following a similar analysis to that for the forced Raman effect we obtain for the nonlinear
frequency shift
5o = ot & Al
q 2¢ (1+p§)1/2+a

The growth rate for the associated modulational instability is given by

[ P§(1+P§)1/2 e ﬂqpies 2 }1/2
Tg = + —
U2 [(1+P§)1/2+a] [(1+p§)3/2+a:| (1+p§)
with
2,1/2
ﬁ2:p2es[ (1+p;) / Ay }
0 [(1+p§)1/2+a][(1+p§)37?+a] (1+p§)
p2
at threshold. Here S = ﬂu [1 — (1+pg)1/2 _% 02 }
(1+py)

It is easy to show that for the unmagnetized plasma (a = 0) our results, for the FQ and QS
interactions, just as for the FR interaction, reduce to those of Shukla, Bharuthram and

Tsintsadze [30].
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53  RESULTS

The growth rates (7) associated with the three types of interactions have been numerically
studied as a function of the perturbation wavenumber K, Py (related to the incident pump
amplitude) and the ratio f§ = C2/V%e' Figure 5.3.1 shows the variation of y with K. It is
seen that for the chosen values of f and p o the QS interaction has the strongest wave
growth, also over a much wider range of K values than the FQ and FR interactions. In fig
5.3.2 we show 7 against Py It is seen that for large pump amplitudes only the FR
interaction contributes to wave growth. On the other hand, for low pump amplitude, FQ
and QS interactions dominate. The dependence of wave growth on f is presented in fig
5.3.3 . It is observed that for 4 > 50 (Vte/c < 0.14) only the instability associated with
FR grows, consistent with the findings in reference [30] for the unmagnetized case. As the
plasma temperature is increased, f decreases, accompanied by a significant increase in

growth due to QS and FQ interactions and a decrease in growth due to the FR interaction.

The variations of the growth rates associated with the FR, FQ and QS interactions with
the parameters K, P, and f are qualitatively similar to those for the an unmagnetized
plasma [30]. However, for the chosen parameters of reference [30], the maximum growth

rates are found to be an order of magnitude smaller when the ambient magnetic field is

included. /

The above results have already been published in a summarized form [33].
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Normalized growth rate versus K\ de’ The parameter labelling the curves
indicate the type of interaction: FR—forced Raman, FQ—forced quasistatic
and QS—quasistatic. The graph has been produced for the 002 laser

(wavelength A = 10.06 ym) with intensity I » 1016 V/cmz, and the plasma

parameters n =4 x 10'8 cm_3, Te = Ti = 10 keV and B, =10 MG.
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Normalized growth rate versus Py The labelling of the curves is as in fig
5.3.1 . Here K’\de = 0.01 and other parameters are the same as in fig 5.3.1 .
Note that p 018 related with the ratio of the electron quiver velocity

vV, (= eEo/meowo) and the speed of light. For a given value of the laser
wavelength 1, a and p , the intensity I is computed using the formula [25]

V,/c=8.5x 10710 JI A= Py * apo/(1+p§ 1/2, where I is in \nl/cm2 and 1 in

microns.
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FIG 5.3.3
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Normalized growth rate versus f with I = 1.4 x 1016 v/ cn?. The labelling of
the curves is as in fig 5.3.1 . Other plasma parameters are the same as in fig
5.3.2 . For a given value of fj, the electron temperature is determined by

means of the formula T, (eV) = (c/4.19)2 10_14/ﬂ.
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CHAPTER SIX .

SUMMARY AND CONCLUSION

Using linear theory we have derived the dispersion relation for electrostatic instabilities
prbpagating in an ion—beam plasma system. We have considered both the electrons and
the ions to be magnetized. The dispersion relation was solved fully using no
approximations and analysis was restricted to low frequency waves. Both drifts
perpendicular and parallel to the external magnetic field ﬁo were considered. The effect of
an anisotropic velocity distribution of the beam ions on the instability growth rates was
examined. Calculations were performed for two typical wavelengths, corresponding to
normalized wavenumber k = 1 (k,oi =0.32)and k=5 (k,oi = 1.6), were ps s the ion

gyroradius.

For k = 1 at perpendicular beam drift, the instability spectrum is dominated by the ion
acoustic and ion—ion streaming instabilities. The latter propagates for angles much more
oblique to B 0 and in a manner similar to its counterpart in an unmagnetized plasma which
propagates in a cone about the beam direction. The transition from the one mode to the
other is dependent on the beam velocity. Differentiation between the modes was made
possible by comparing with the ion acoustic dispersion relation as well as their sensitivity
to the ion beam temperature Tb. The ion acoustic instability, being dependent on
resonance in velocity space, reacts sharply to changes in Tb and damps for Tb ~ 0.3 . The
ion—ion str_eaming instability, on the other hand, is less sensitive to temperature changes.

These modes decay more slowly, damping around Tb ~ 0.7 .

The effect of anisotropy (TL # T”) in ion beam velocity distribution was found to enhance

the instability growth rates. Since TL/ T” of the beam was increased by keeping T fixed
4
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and reducing T”, this enhancement was associated with reduction in parallel (to ﬁo) ion
Landau damping for the ion acoustic instability. While for the ion—ion streaming
instability a reduction in overall beam temperature narrows the thermal spread. This
could allow for a sharper beam resonance and consequent larger wave growth. This
behaviour is consistent with earlier findings [5,6,7]. The anisotropy also lowers the

threshold drift velocity for the excitation of the ion acoustic instability.

For the case k = 5 (perpendicular drift) the instability is purely two—stream in nature, as

the modes do not satisfy the ion acoustic dispersion relation. In addition they exhibit
growth for relatively large ion beam temperatures. However, the exact behaviour of the
instability is found to change at a drift speed of VOy = 1.6 . For speeds below this value, its
behaviour is typical of its associated instability in an unmagnetized plasma. However, for
VOy > 1.6 it is found that at maximum growth v, and R.VO assume constant values. This is

typical of the modified two—stream instability as found by Papadopoulos et al. [9],

~ McBride et al. [10] and Bharuthram and Johnstone [12].

For parallel drift with k = 1 the isotropic situation gets more complex. For a beam speed
V,z = 1.25 the wave satisfies the ion acoustic dispersion relation (4.2.1) and damps rapidly
(due to increasing ion Landau damping) with increasing T, In the range 1.5 < Vo, <2itis
far less sensitive to changes in Tb and does not satisfy the ion acoustic dispersion relation.
The modes have maximum growth for X || V ol B o» and are associated with the ion—ion
streaming instability since its features are similar to the two—stream instability in an
unmagnetized plasma. For speeds in the range 2.5 < VOZ < 4 there is a dramatic shift in
propagation angles of the waves, with Tnax moving away from parallel (to B O) propagation.
In addition, the modes react sharply to changes in Tb, damping rapidly. Although this
behaviour is typical of the ion acoustic wave, the phase speeds are below that of the ion

acoustic wave. We call these modes ion acoustic~like. They have been shown to exist by
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Fried and Gould [23] and were also obtained by Gary and Omidi [7].

For speeds in the range 5 < V 0z < 8 there is yet another shift in propagation angles. At-
maximum growth the real frequencies satisfy the relation W, — R.VO ~ ﬂi . The associated

modes are thus called ion beam cyclotron waves.

The effect of ion beam anisotropy once again is to enhance wave growth. The reason for
increased growth with decreasing T" has been associated with a decrease in ion Landau
damping of a negative energy mode for the ion acoustic instability and a narrowing of the

beam thermal spread for the ion—ion streaming instability.

The case k = 5 with parallel drift is very similar to perpendicular drift with the same k

value. The unstable modes are purely two—stream in nature, changing from one similar to

that in an unmagnetized plasma to a modified two—stream type at a drift speed V oz = 1-6-

In the previous chapter we have addressed an instability of a completely different nature,
the nonlinear modulational instability of an intense electromagnetic wave (pump wave)
arising from an interaction with the background plasma slow response. The density
variations associated with the latter, coupled to the electron quiver velocity, produces a
nonlinear electron current. Three types of slow responses, the forced—Raman (FR),
quasistatic (QS) and forced—quasistatic (FQ) were considered. Nonlinearities arising from
the relativistic electron mass variation have been included. Analytical expressions for the
growth rate for each type of interaction has been derived. Their relative strengths for
typical plasma parameters are compared. For low pump amplitudes the FQ and QS

interactions are found to dominate, while for a stronger pump mode only the FR

interaction contributes to the instability.
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Finally, we briefly mention possible extensions to our work. In our work both the beam
and background ions have equal mass. The above analysis could be extended to an unequal
mass situation, thereby providing an additional variable plasma parameter (ion mass
ratio). We have kept the electrons as the hottest component in our work. The case of
equal and hotter beam ions (T 2> T ) constitute a wide field of study. The kinetic study of
an ion—beam plasma system could be extended to study high frequency waves associated
with electron motion. In the low frequency regime, higher drift speeds would enable a

broader study of ion cyclotron waves.

The study of the modulational instability is restricted to field aligned modulations. An

extension to oblique modulation will provide a more general result.
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APPENDIX A

The final integral in (3.1.18) after performing the integration over ¢ reduces to

' 2 1ol
e¢1kw z"bo J [J exp ) /2CHJ (Vz _voz) dVz )

T (20 1/2 N
T”CJ-( “ p=—o 0 pn +k. V +k (Vz VOZ) U:|

v v
exp[ } (1) V dV : Al

Consider the integral with respect to dv,

2 1602

o exp[—(V -V )7/2C]

J ———_z ot Ly v yav
[pﬂi+R-VO+kz(VZ—VOZ)—w]

We let x = (VZ—VOZ)/JQ_C||, to obtain

dx .

\/?C” ] xe—x2
: J [—(W—R'VO—Pﬂi)/ﬁkZC”]

Z
—

Defining z, = (w—k-\?o—pﬂi)/ﬂsz”, this becomes

dx . : A2

Since x/(x—zb) =1+ zb/(x—zb), (A.2) may be written as



108

2C rro 2 ® V2€
TleU e XdX+ZbJ -(%); dx}:j(—zﬂ[ﬁ+ﬁzbZ(Zb)},

—0

A3

_ o 2
where we have used the well known result J e * dx = 7 and written the second part in

—

terms of the Z — function. Then (A.1) reduces to

e¢ n @ )

ikw 'bo Ll 12
-—tgte ) J [1+2,%(z) ] exp {— _2} 2wV, .
"+ p=w 0
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APPENDIX B
Equation (5.2.13) can be written as
m,.C gi—e + me0c21‘ (p'e.V)'p'e =m,,C -g% +eVg —me0c2I‘ ﬁex (V x K)
—m e, T ﬁe x-i—TeV(ln ne) , B.1
where T = (1+p2)_1/2. Substituting for p, and i from (5.2.12) and using (5.2.14),

equation (B.1) becomes
o o ikoz —-iwot 9 L ik z o
m,,C (ﬁ_wop) (x —1iy) e e + m T [p(x—iy)e V] p(x —1y) =
ik z —2iw t ik z —iw t
0 0 oA . A a 0 0
e e = mg,C (ﬁ— iu A) (x —1iy) e e + eV
ik z ik z 21w t
—m CTp(R—if)e O x[VxA(k—if)e °Je °
o ikoz X —iwot
— g, T p(x—1iy) e xZe —TeV(lnne) . B.2

iv t
Equation (B.2) is multiplied by e ° and integrated with respect to t over one period,
thatisfromt =0tot = 21r/w0. Since in the interval At = 27r/w0, ¢, p, A and n, do not

change significantly (slowly varying), they can be kept constant and using

21r/w0 gt
J e dt = 0 (real part),
0

we obtain

ap . 6A . . P
—iw p= - A | i i
at oP (73’6 10, )+ eo (1+p2)172 B.3

This process is called averaging over the fast time scale [31]. Substituting (B.3) into (B.2)

we obtain

2 2 7
M ¢ T (B,-V)B, = eVg —m, cT B x (Vx4A) —T,(1nn,) . B.4
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APPENDIX C

CAUCHY ROOTFINDER

To solve F(w) = 0, we proceed as follows. If F(v) has n roots v, wg,---, ¢ withina

contour ﬂc and is analytic within and on the contour, then we can write

where () is analytic on and within i .. Consider

1 [WF (w)
sv_2ﬂ§ rooldo. C.1

We note that

F(v) _w—w1+w—w2+”'+w—w T ) C2

Since the last term in (C.2) is analytic, its contribution to the integral in (C.1) is zero. By

the Cauchy Integral Theorem

1 1 F(w) _
—ri; oo, do=1(v,),

211

S, = 1 (the number of roots of F(w) within f.). Then x n system
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S1:”’1"%’2“‘}3+ Y
2 92 2 2
So=wytugtugt ety
_n, n_n._ n
Sn—w1+w2+w3+ + 0y

can be transformed into the complex polynomial

n
Zavwv:()
0

of degree n, with a =1 [34]. The following descending recurrence relation yields a,:

The solution of the polynomial equation yields all the roots of F(w) within ﬂc. These roots

are refined by using the Newton—Raphson method.
The contour # o chosen as rectangular, is depicted below.

Z3 C

20 24

If the first integral S0 =1 = 0, then we choose a different contour. If SO < 0, then the
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integrand in (C.1) cannot be analytic at all points besides the zeros of F(v). In this case
we shrink the contour to exclude such points or choose a new contour. We can select the
number of roots that are required by shrinking ﬂc iteratively until n < no. of roots required.

The integration in (C.1) is performed numerically using the extended Simpson’s rule.
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