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ABSTRACT 

The interaction of an anisotropic (in velocity space) ion beam with an isotropic background 

hydrogen plasma is theoretically investigated. The length and time scales are such that 

both the ions and electrons are magnetized. Using linear theory, the electrostatic 

dispersion relation is derived, and solved fully, using no approximations. It is shown that 

the anisotropy can significantly enhance the instability growth rates as compared to the 

isotropic case. The importance of ion magnetization is illustrated. Comparisons are made 

with unmagnetized plasma results. 

The modulational instability of an arbitrarily-large-amplitude electron cyclotron wave 

along the external magnetic field is investigated, taking into account the relativistic 

electron quiver velocity and the relativistic ponderomotive force. Three types of plasma 

slow responses, the forced-Raman, quasistatic and forced-quasistatic, are considered and a 

parameter study of the instability growth rates is carried out . 
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CHAPTER ONE 

INTRODUCTION 

Of the many fields of research associated with plasma phenomena, the quest for the idea) 
plasma conditions for the realization of a successful fusion reactor has recently received the 
most attention. This requires plasma densities n N 1015cm -3 and plasma temperatures 

T N 10 keV. Ohmic heating is not suitable for reaching such high temperatures since the 
plasma resistivity (ex T-3/ 2) decreases with temperature. Thus other heating mechanisms 
are essential. Of these, wave heating and heating by injection of particle beams are 
popular schemes. In the former case coupling between the incident wave and plasma 

particles is responsible for energy transport from the wave to the particles, while in the 
latter case this is achieved by collisional effects between the beam and plasma particles. 

However, it is well known that the above interactions are inherently accompanied by 

instabilities, both linear and nonlinear, excited by the available free energy. Such 

instabilities lead to anomalous particle and energy transfer across the confining magnetic 
field, thereby hindering plasma confinement. 

In this thesis we examine linear instabilities associated with (incident) particle-particle 

interactions, and a nonlinear instability associated with (incident) wave-particle 
interaction. The model for the former case considers the effect of the anisotropy in velocity 
distribution of an incident ion beam drifting through a background magnetized plasma of 
isotropic electrons and ions on low frequency electrostatic instabilities. Drift speeds 
perpendicular and parallel to the external magnetic field are separately considered. Such 

beams are not only possible in laboratory plasmas, but have also been observed in space 
plasmas, e.g in the foreshock region of the earth's bowshock interacting with the solar 
wind. 



After a survey of the relevant literature in chapter two, the kinetic dispersion relation for 

electrostatic instabilities associated with our ion beam-plasma system, with magnetized 

ions and electrons, is derived in chapter three. In chapter four we present detailed 

numerical solutions of the dispersion relation for low frequency modes. 
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The use of intense electromagnetic waves is important for plasma heating experiments as 

well as laser-plasma interactions, e.g inertial fusion and beat-wave particle accelerators. 

In addition, they are employed in modification experiments of the lower part of the earth's 

atmosphere. In chapter five we consider the modulational instability of a large amplitude 

electromagnetic wave arising from an interaction with the plasma slow response. Three 

types of slow responses, the forced-Raman, quasistatic and forced-quasistatic are 

modelled. The corresponding instability growth rates are analytically derived and 

graphically compared. 

Finally in chapter six we present a summary of all our results, conclusions are drawn and 

extensions discussed. 



CHAPTER TWO 

REVIEW OF LITERATURE 

Gresillon et al. [1] investigated the turbulence excited by an ion beam in an unmagnetized 

plasma. They used an argon plasma (mi/me = 40) with temperature Te = 5Ti . Using 

linear theory they showed that for small ion beam drift speeds (V o/Cs N 0.7), which 

corresponds to the ion-ion streaming instability with phase veloci~y close to Cs' the 

instability propagates essentially parallel to the beam direction. As V 0 was increased 

(Vo/Cs ~ 1.4) propagation was more oblique and for relatively high velocities (Vo/Cs N 

2.5) they identified both the ion-ion streaming and ion acoustic instabilities. They 

measured the spatial structure of the turbulence in an experiment and found that it 

displayed characteristics similar to that of the ion-ion streaming instability. 
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Lemons et al. [2] showed that the threshold velocity for the ion-ion streaming instability is 

much lower than that for the ion acoustic waves. Fuselier and Gurnett [3] have shown that 

ion acoustic-like waves in the foreshock generally propagate obliquely to the magnetic 

field. Similar obliquely propagating ion acoustic-like waves have been observed by 

Gallagher [4] in the magnetosheath. 

Akimoto and Winske [5] studied the general properties of the ion beam instability. They 

used this to account for the ion acoustic-like waves detected at the ramp of the earth's 

bow shock. They considered unmagnetized electrons and ions and obtained a necessary 

condition V 0 cosO ~ Cs for the instability to propagate. Here V 0 is the beam speed and 0 is 

the angle between the beam direction and wave-vector. They used the above condition to 

explain oblique propagation (to the beam) at large beam speeds. They also found the 

following: 



(1) Increasing the ion beam temperature (Tb/Te) causes the waves to propagate less 

obliquely (to the beam). 

(2) The effect of a temperature anisotropy in the beam (T .JT 11 > 1) is. to increase the 

total beam temperature Tb =. (2T.l +T II ) /3 and thus cause propagation to be less 

oblique . They kept T 11 = T i fixed and increased T.l and used typical anisotropies 

(T .JT II = 2.5)., 

Using a flat topped electron distribution (FTED) they showed that an anisotropy in the 

background ions enhances the instability for slow ion beams. 

Akimoto and Omidi [6] did a theoretical survey of the ion beam instability in order to 
, 

explain the generation of broadband electrostatic noise (BEN) in the earth)s magnetotail. 
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For their parameters they showed that electron magnetization had little effect on the ion 

beam instability. They showed for the first time that both the ion-ion streaming and ion 

acoustic instabilities could operate simultaneously in the magnetotail in the presence of one 

ion beam. They also found the following : 

(1) The ion-ion streaming instability can dominate the ion acoustic instability for beam 

densities satisfying 0.1 ~ nbo/ne ~ 0.9. 

(2) Increasing the ion beam temperature Tb / T. causes the ion acoustic instability to 
1 . 

damp and detracts the ion-ion streaming instability. 

(3) The ion acoustic instability propagates essentially parallel to the ion beam while the 

ion-ion streaming instability propagates obliquely for large beam speeds. 

They accounted for the broadband nature of the electrostatic noise by attributing it to 

both the ion acoustic and ion-ion streaming instabilities. 

Gary and Omidi [7] studied the ion-ion streaming instability in detail. They considered a 

homogeneous plasma with two counter-streaming ion components) a less dense beam and a 

more dense core with relative drift speed V . They considered both an o 



unmagnetized plasma and a plasma with a uniform magnetic field B z. In the latter case _ 0 

they considered electron magnetization but treated the ions as unmagnetized. They used 

typical plasma parameters Te = 10 T i' nbo = 0.1 ne and a hydrogen plasma with m)me = 

1836. Their results are summarized below. 

(1) The ion-ion streaming mode can be driven unstable by the ion beam in an 

unmagnetized plasma. 

(2) At relatively large drift speeds (V 0 > Cs) the instability grows only at angles 

strongly oblique to the beam. 
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(3) At Tb/T c < 1 (ratio of beam temperature to ion core temperature) the instability is 

_ fluid like but becomes a beam resonant kinetic instability as Tb/Tc -I 1. 

(4) At Tb/Tc ~ 1, increasing Tb/Tc reduces the growth rate. 

(5) The threshold drift speed for the ion- ion streaming instability lies well below that 

~yfor the ion acoustic instability for a wide range of plasma parameters. 

(6) A temperature anisotropy (T /TII > 1) in the background electrons enhances the .Le e 

growth rate at oblique propagation to the beam. 

(7) Electron magnetization can enhance or detract the instability at sufficiently large 

drift speeds . 

Fuselier et al. [8] considered the generation of enhanced ion acoustic waves by field aligned 

ion beams upstream from the earth's bow shock. They used the model of Gary and Omidi 

[7]. They showed that stability properties of the wave depended on details of the beam 

distribution, in particular that the growth of the ion-ion streaming instability is 

determined by the slope of the beam distribution function at angles oblique to the magnetic 

field . 

Papadopoulos et al. [9] considered the case of two equi-density counter-streaming ion 
~ ~ 

beams with velocity ± V ,perpendicular to a magnetic field B Their model was rather o 0 



restricted in that the modified two-stream instability was confined to perpendicular 

propagation (It .l B 0) ' In addition, the ions were unmagnetized. They found a zero 

frequency mode (iLlr = 0) and maximum growth rate 1max = iLl1h/212 . Here iLl1h = 

6 

iLl . / [1+ (iLl /n )2J 1/2 is the lower hybrid frequency and iLl . and iLl are the total ion and pI pe e pI pe 
. ~ 

electron plasma frequencies . At maximum growth they found that It. V 0 = IJ18 iLl1h is 

constant . 

McBride et al. [10] studied the modified two-stream instability using a crossfield 
~ 

(perpendicular to magnetic field B ) electron-ion streaming model. The ions were 
. 0 

unmagnetized. They considered the electrostatic as well as electromagnetic cases and used 

both linear and nonlinear theory. They considered the case kz/k ~ (me/m) 1/2 
~ 

corresponding to angles slightly off the perpendicular (to B 0) and showed that in the fluid 

limit maximum growth 1max = iLl1h/2 occurs at k = ./3 iLl1h/V 0 and iLlr = ./3/2 iLl1h · Here V 0 

is the electron::-ion relative drift speed. They found that the instability is an important 

turbulent heating mechanism, that heats both the ions and electrons comparably. 

Wu et al. [11] in their study of kinetic crossfield instabilities considered unmagnetized ions 
~ 

streaming through magnetized electrons, with relative drift V 0' perpendicular to a magnetic 
~ 

field B 0 • They showed the existence of an instability when V 0 > V A (Alfven speed) . The 

unstable waves contained both electrostatic and electromagnetic contributions. For the 

case of high beta (fJ) (ratio of plasma pressure to magnetic pressure) plasmas, say fJ = 1, 

they found the instability to be highly kinetic . In the limit 8 $ 90° (8 is the angle between 
~ 

Bo and the wave-vector) and fJ« 1, they identified the usual modified two-stream 

instability. In this limit they showed that the instability could be suppressed by 

electromagnetic effects when V 0 > V A' They concluded that electromagnetic effects are 

unimportant for low beta cases if V 0 < V A' 
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In their study of the modified two-stream instability, Bharuthram and Johnstone [12] 

considered counter-streaming, equi-density (50%), ion beams perpendicular to a magnetic 

field. They allowed for an anisotropic velocity distribution in the ion beams and considered 

magnetized ions. They also obtained itJr = 0 and found that the maximum growth rate was 

independent of the drift speed V . In particular they found that 'Y = 3/1/32 itJ1h and 
, 0 max 

... 
that It. V 0 = 3/2/8 itJ1h is constant at maximum growth. The effect of the anisotropy was 

to reduce the growth rate due to and increase in total beam temperature. 



8 

CHAPTER THREE 

DERIVATION OF THE KINETIC DISPERSION RELATION 

In deriving the linear dispersion relation we follow the method of Gary and Sanderson [13] 

and Bharuthram [14]. We consider a homogeneous collisionless plasma with stationary 

isotropic electrons and two ion components, an anisotropic beam and an isotropic 
-+ 

background ion population. A uniform magnetic field B 0 is present in the z - direction. 
-+ 

The electrostatic approximation is used. Thus the electric field El can be written as 
-+ 
El = - V~l where ~ 1 is a scalar potential . Therefore by Maxwell's equation 

-+ 
-+ aB 

Vx E =-7lf 

perturbations in the magnetic field are neglected. In our model both the ions and the 

electrons are assumed to be magnetized. This allows low wave frequencies IJJ with IIJJ I N fi ') 
1 

where fii is the ion gyrofrequency. 

3.1 ION BEAM TERM 

The ion beam is treated as an anisotropic drifting Maxwellian with temperature T.l (T
II
) 

perpendicular (parallel) to the magnetic field. The beam is allowed to have an externally 
-t .........-+ 

excited drift with velocity V perpendicular to B and V along B . The analysis is 
oy 0 oz 0 

carried out in the background electron \ion rest frame. The beam and background ions are 

assumed to have equal masses ffi i . The configuration is illustrated in fig 3.1.1. 
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FIG 3.1.1 

z 

.. 
Vozt tBo 

V 

0 
~ .y 

/ 
x 

The equilibrium beam-ion velocity distribution is chosen to be 

llbo 2 2 2 
fb = 2 2 1/2 exp{-[V + (V - V )] /2C } x 

o (21rC) (21rC
11

) x y oy .L 

2 2 
exp [-(V z - V oz) /2C II ] 3.1.1 

where C.L = (T )m) 1/2, CII = (TII/mi ) 1/2 are the perpendicular and parallel velocities of 

the beam ions and nbo is the beam density. We consider small perturbations about the 

equilibrium quantities: 

... ~ ... -+ 

E=E +E1' (E =0) o 0 

in the linearization of the Vlasov equation 

U sing the ion equations of motion 
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3.1.2 

the Vlasov equation for the ion beam becomes 

... ... ~ ... 
afbl • e [. VXBo] afbl e [. VXB1] afbo 
~+V.'i/fb +- E +-- .-.-=-- El +-- .-.-. 
ut 1 Ini 0 C av Ini c av 3.1.3 

• • • 
For the electrostatic approximation El = -'i/~1 (Bl = 0) and for Eo = 0, since there is no 

equilibrium electric field, (3.1.3) can be written as 

where the operator h- is defined as the rate of change following an unperturbed orbit in 

phase space [13]. Integrating along the unperturbed orbits we obtain 

3.1.4 

• dt' dV' e· 0 •• • [ V' xB ] 
w here V' = (ft' , (ft' = ID i Eo + -c- , r' (0) = r, V' (0) = V . 

In the above equation we have assumed that the plasma is undisturbed at t' = - (D. From 

(3 .1.1 ) 

af [ V' bo x 
av' = - C2 

J. 

V'-V Y oy 

C2 
J. 

V' -V 1 .. .. 
Z oz f (V') = - V f (V' ) 
C2 bo eq bo ' 

11 



w here we have defined 

[

VI V I -V V I -V 1 V - x y oy Z oz 
eq - C2' 2 ' 2 . 

ol Col CII 

Assuming the perturbed quantities to be harmonic in space and time, we may write 

-+ -+ 
f b 1 (r , V , t) = f b 1 (V) exp {i [IL r - lilt] } 

-+ 

~1 (r ,t) = ~lklll exp { i [ILr - lilt] } 

Then V ~ 1 (r I ,t I) = i It ~ 1 (r I ,t I) and (3.1. 4) becomes 

t 
-+ -+ ie J ...... ... f b1 (r,V,t) =-m:- It.Veq ~l(r/,t/) fbo(V/) dt/. 

1 ~ . 

Since the ions are magnetized their gyration about the field lines is significant. Upon 

solving the equations of motion (3.1.2) we obtain 

VI = V/cos(- n.t/+ 8) 
Xol 1 

V I - V = V I sin (- n . t I + 8) 
y oyol 1 

VI = constant 
Z 

11 

3.1.5 

3.1.6 

3.1.7 

where V~ = {V~2 + (V~ - VOy )2}1/2 is the speed along a circular orbit perpendicular to the 

magnetic field lines . The situation at t I = 0 is illustrated in fig 3.1.2 . 
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FIG 3 .1. 2 

z 

v -V 
y_oy 

x 
-> -> 
V/(O) = V = [V cosB V sinB V ] 

~ ,~ 'z 

The negative sign (coefficient of n. in 3.1.7) arises because the angle between VI and the x-
l ~ 

axis decreases as t I increases. This accounts for the different spin directions of the 
-> 

electrons and ions. The ions have spin vector antiparallel to Bo. Since motion along the 

field is unaffected by the field, V I = constant. z 

-> 
We resolve It into components parallel and perpendicular to Bo as shown in fig 3.1.3. Thus 

It = [k ,k ,k ] = [k cos~ , k sin~ , k ] 
x Y z ~ ~ z 3.1.8 

FIG 3 .1. 3 

z 

tk z 

x 

It can then be shown that 
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k VI k 
It.V = .l2.lcos(n.t/+W-B)+ z2(V / -V ). 

eq C 1 C Z OZ 

.l 11 

Using the above expression and (3 .1.5) in (3.1.6), we get 

Evaluating the right hand side of the above equation at t = 0 : 

fbi (V) = - ~: fbo(V) ~ikw [k ~~ L C cos(flit' + ,, - 0) exp { i [I. (t'-~) - wt ' J } dt ' 
.l 

+ kZ2 (V -V ) JD exp {i [It.(rl_t) -wt/] } dt/] 3.1.10 
C 

Z oz 
11 -aJ 

Solving the equations (3.1.7)withr / (D) = r= [xo' Yo ' zo] , we obtaintheapproxirnate 

orbit equations 

VI 
r I - r = ~ [ s inB - sin ( - n . t I + B) ] X 

11· 1 
1 

+ [it {-cosB + cos(-n.t/+ B)} + V t /]y + V' t l z. 3.1.11 
i 1 oy Z 

Using (3.1.8) and (3 .1.11), the second integral in (3.1.10) reduces to 
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o 
J exp[ i# sin(O -Il) 1 exp[ -i# sin(O -!>-nit') 1 • 
ID 

-+ 
exp [ i {It. V + k (V '- V ) - w}t' ] dt ' , o z z oz 3.1.12 

where J1. = k V Ifl . . The integration (3 .1.12) is manipulated with the aid of the identity 
.l.l 1 

[15] 

exp( i J1. sin,8) = ~i=---m exp( i 1,8) J1 (J1.) , 3.1.13 

where J 1 is the ordinary Bessel function of the first kind of order 1, to yield 

~ ~ exp[i(p-q~ (8-~)JJp(J1.)Jq(J1.) .' 

p=---m q=---m i[qfli+I.Vo+kz(Vz-Voz)-wJ 
3.1.14 

The first integral in (3 .1.10) is manipulated using the identity 

i,8 -i,8 
cos,8=e +~ . 

and separates into two parts, of which the first part, namely 

o 
~ J exp [ i (W - B + fl it I ) ] exp [ i {l{. (r I - r) - wt I} ] dt' 

ID 

is evaluated as before by using the orbit equations (3.1.11) and the identity (3.1.13). It 

reduces to 

1 Loo Loo exp[i(p-q-l)(B-~)JJ (J1.)J (J1.) 
- p q 
2 . -+ 

p=---m q=---m l[(q+l)fl.+I.V +k (V -V )-wJ 
1 0 Z Z oz 

3.1.15 
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Similarly the second part yields 

~ ~ ~ exp[i(p-il+1) ~O-~)]Jp(tt)Jq(tt) . 

p=~ q=~ i [( q-l)fi i +l{ 0 Va +kz(V z -V az)-UJ] 
3.1.16 

Using (3.1.14) - (3.1.16) in (3.1.10) we finally obtain 

{ 
exp [i (P-il-1) (O-~)J exp [i (P-il+ 1) (O-1ft)] } 

[(q+l)fi.+l{oY +k (V -V )-UJ] + [(q-l)fi.+l{oY +k (V -Va )-UJ] 
1 a z z az 1 a z z z 

3.1.17 

The perturbed ion beam density is given by 

3.1.18 

In performing the integration in (3.1.18) we transform to cylindrical coordinates in velocity 

space with 

d3y = V dV dV dB. 
1. 1. z 

We note that the triple integral in (3.1.18) can be separated into three parts corresponding 
... 

to the terms of fbl (V) in (3.1.17). Using the expression (3.1.1) for the equilibrium velocity 
... 

distribution fbo (V), the first part yields 



where we have used the result 

J
21f { 0 if p * q + 1 

exp [ i (p - q - 1) 8 ] d8 = 
o 21f if P = q + 1 

At this stage we introduce the plasma dispersion function, known as the Z-function, 

defined by [16] 

or alternatively as 

2 

Z (A) = ~ fro e -x dx 
Ii x=r for Imp) > 0 

2 fiA 2 
Z(A)=2ie-A e-t dt. 

-w 

Then the integral over dV in (3 .1.19) can be written in terms of the Z - function and z 

(3 .1.19) becomes 

- W.J. 0 v1f ~ J (p,) J (p,) Z 0 1 x 
1fe~lk k fib r.: ro fro [W-k. Y -po.] 

16 

T.J. (21fC:) (21fC~) 1/2 Kz P~lD 0 P p-1 PkzC
II 

exp [- Y:2] y2 dY . 3.1.20 
2C .J. .J. 

.J. 

Similarly the second part of the integral in (3.1.18) yields 
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The last part of the integral in (3.1.18) is shown (appendix A) to reduce to 

3.1.22 

-+ 

where zb = (w-ltoYo-pfii)/y2kzCII · Combining the results (3.1.20) - (3 .1.22) we obtain 

where we have used the identity [15] 

with Jl. = k Y In . in our analysis. The relation [15] 
.l.l 1 
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where I is the Modified Bessel function of the first kind of order p, is used to perform the 
p 

integration over dV and yields 
1. 

3.1.24 

-a 
Letting ab = k2C2 /n~ , f b = e b I (ab) and using the identity [15] ~p_ fpb = 1 1 we 

1. 1. 1 P P --ro 

can write (3.1.24) as 

3.2 CONTRlBUTION OF THE BACKGROUND SPECIES TO THE 

DISPERSION RELATION 

The background ion and electron distributions are assumed to be stationary isotropic 

Maxwellians given by 

3.1.25 

respectively. Charge neutrality requires n = n. + nb . Using an analysis similar to eo 10 0 
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that for the drifting ions we have obtained the perturbation in the background ion and 

electron densities nilkw and ne1kw· However these can easily be obtained from (3.1.25) by 
.. 

setting T = TII = T. (j = i, e) and V = 0, since the background distributions are isotropic 
.L J 0 

and stationary, and using the appropriate equilibrium densities (nio or neo). For the 

stationary ions we obtain 

3.2.1 

For the electrons we replace (in eqn 3.2.1) e by - e, m· by m , !l. by - n ,T. by T and 
1 e 1 e 1 e 

V i by Ve , where Ve = (Te/me) 1/2 is the electron thermal speed, to obtain 

e ~ k n [ CD [W-P!l 1 1 n - 1 w eo 1 + W Z e r 
e1kw - re y"2"k V ~-m Pk v pe' 

z e p z e 
3.2.2 

-a· 
where r . = r . (a.) = e J I (a.) and a· = k2.LVJ~ /!lJ~ (j = i, e) . In the electrostatic 

PJ PJ J P J J 
approximation Poisson's equation 

reduces to 

Using (3.1.25), (3 .2.1) and (3.2.2) we obtain the dispersion relation 



20 

(lJ 

, 1 + k2 A 2 
+ w L Z (z ) r 

de I2k V p=-m e pe 
z e 

for electrostatic waves in a uniform plasma with magnetized ions and electrons in which 

the electrons and a fraction of the ions form a stationary background, while the rest of the 

ions constitute an anisotropic beam drifting at an arbitrary direction to the magnetic field. 

Here 11 Ad2 . = 41fe2n. IT. (j =i, e) is the characteristic Debye length of the background 
J JO J 

ions and electrons, 11 A~b = 41fe2nbo/T.L is associated with the beam ions, 
.. 

z · = (w-p!l.) IJ2k V., z = (w-pn ) Il2k V ,zb = (w-lL V -pn.) IJ2k CII ' 6 = T ITII and 
1 1 Z 1 e e z e 0 1 Z .L 

/3=1-6. 

Setting T.L = TII in (3.2.3) we obtain the dispersion relation of Kindel and Kennel[17]. 

3.3 APPROXIMATE SOLUTIONS OF THE DISPERSION RELATION 

We consider low frequency waves (of which the ion acoustic is an example) in a plasma 

with hot electrons and relatively cold ions. Thus we assume 

(1) T »T., T ,TII (IV 0) , e 1 .L 
(2) Iwl «ne. 

Then the power series and asymptotic expansions for the Z-function [16], namely 



for I z I « 1, and 

for I z I » 1, where 

2 [ 22 4 4 1 Z (z) = i..ji e -z - 2z 1 - ~ + 1~ - "_"" 

2 [ 1 . -z 1 1 3 
Z(z) = l..jio .e - Z 1 +:2 + -:-4 + """ 

2z 4z 

o if Im( z) > 0 

0= 1 if Im(z)=0 

2 if Im( z) < 0 , 

are used to reduce the dispersion relation (3.2.3) to an approximate form . With our 

assumptions 

w-p{le -p{le 
z - '" for p f 0 " 
e-l2kY"'l2kY 

z e z e 

Then 
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3.3 .1 

3.3.2 

where z = w/l2k Y and we have used Z(A) + Z(-A) = 0, which can easily be proved from oe z e 

the definition of the Z-function (section 3.1). Further for large T
e

, we may assume that 

I zoe I « 1 . Then using expansion (3 .3.1) we may write 

CD 

\Z(z ) r ~ (i..ji-2z ) r . L. e pe oe oe 
--m . 

3.3.3 

Since for the cold background ions I a· I = I k2y2 / n~ I « 1 and r (x) « 1 for p f 0, 
1 1.1. 1 P 

3.3.4 
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we retain only the zero order term in the ion summation. Thus 

~ Z (Z .)· f . ~ Z (z . ) f . ~ [- _1 - ~3 1 f . , L 1 pI 01 01 Z. 2 01 
-w 01 Zoi 

3.3.5 

where Z . = fJJ//lk V. and we have used the expansion (3.3.2) since 1 Z · 1 » 1. Similarly, 
01 Z 1 01 

for the cold beam ions 

3.3.6 

CD 

where zob = (fJJ-l o Vo)//2kzC II . For the l p Z(zb) fpb term we retain the first order 
-w 

terms (p = ± 1) to obtain 

CD -2fl . 

j p Z(zb) fpb ~ w2-fl~ (J2kzC
11
f 1b) , 3.3.7 

1 

.. 
where W = fJJ -le 0 V 0 is a Doppler - shifted frequency. Using (3.3.3),(3.3.5)-(3.3.7) in the 

dispersion relation (3.2.3) we obtain 

3.3.8 

2 2 · 22 
where a = Ade/ Adi = (Te / T i)(nio/neo ) and b = Ade / Adb = (Te/ T J (nbo / neo)' and we 

recall 8 = T )TII ' (3 = 1 - 8 . From (3 .3.4) we can show that 
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Using the above results eqn (3.3.8) becomes 

3.3.9 

We solve eqn (3.3.9) by setting fJJ = fJJr + i 1 and assuming that 

With these assumptions the following approximations are made 

1 1 1 _ 2 2 1 [ 2 i 1 W r] 
~= 2 -2 2 ~-2(1+fJJ/fi)~-2 1+-2-. 
fJJ -n. -n . (1-fJJ / n . ) fi . n . n . 

1 1 1 1 1 1 
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Using the above approximations equation (3.3.9) becomes 

3.3.10 

Taking the real part of (3 .3.10), assuming that I')' IV ekz I « 1 and noting that 0 ~ r oe ~ 1 

for all ae, we obtain 

3.3.11 

We note that since we have assumed I ')' I « I w I, the assumption I ')' IV k I « 1 is satisfied r e z 
... 

if the wave phase speed (wr/kz) along Bo is less than the electron thermal speed. We 

consider special cases of the dispersion relation (3.3.11). 

(a) STATIONARY SINGLE ION SPECIES 

For nbo = 0 (b = 0), that is a two component plasma with stationary ions, eqn (3.3.11) 

reduces to 

3.3.12 

which is the dispersion relation for ion acoustic waves as found by Zakharov and 

Kuznetsov[18]. In the absence of perpendicular dispersion (k 1. = 0) eqn (3.3.12) reduces to 



the result of Kindel and Kennel [17]. 

(b) ISOTROPIC ION BEAM, STATIONARY ELECTRONS 

For T = TII and n . = 0 (a = 0) , that is for isotropic ions streaming through background 
.L 10 

electrons, eqn (3.3.11) yields the fast and slow beam modes . 

The imaginary part of eqn (3.3.10) yields 

from which we obtain an expression for the normalized growth rate "f / IIJ ,namely 
r 

25 

3.3.13 

(c) UNMAGNETIZED PLASMA 

For an unmagnetized plasma with isotropic ions we set n. = 0 (j = i, e) and fJ = 0 in the 
J 

dispersion relation (3 .2.3) . We obtain 

2 2 
O=kAd +l+z Z(z )+a[l+z .Z(z .)] 

e oe oe 01 01 

+ b[l + zobZ(zob)] , 3.3 .14 



where we have used the identities [15] 

~(D r =1 
p=-m p 

and 

~(D pr =0 
p=-m p 

The latter identity follows since r is an even function. Using the identity [16] 
p 

ZI (A) = -2[1 + U(A)] 

we can reduce eqn (3 .3.14) to 

2k2"\d2 
= ZI (Z ) + aZ/(z . ) + bZ ' (z b) ' e oe . 01 0 

which can be rewritten as 

The result (3 .3.15) has been derived by Akimoto and Omidi [6]. 

26 

3.3.15 
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CHAPTER FO UR 

ION BEAM - PLASMA INTERACTION 

4.1 INTRODUCTION 

In this chapter we present numerical solutions of the dispersion relation (3.2.3). 

IIUnfortunately the (numerical) investigation of this relation is one of that large class of 

tasks that is trivial in principle but not in practice, owing to the multiplicity of parameters 

and variables involved and to the unpleasant nature of the functions." [19] . Details of the 

Cauchy Rootfinder are presented in appendix C. Beam drifts perpendicular and parallel to 
.. 

the external magnetic field Bo are separately considered. The results are presented in 

normalized form. The beam and background ions are assumed to have equal mass. Time 

is normalized by the inverse ion gyrofrequency (n-:-1), speed by the ion sound speed 
1 

Cs = (Te/m) 1/2, distance by Ps = cs/n i (the ion gyro radius at the electron temperature), 

density by the electron density n and temperatures by the electron temperature T . eo e 

Standard values of parameters used are: nb = 0.1 ,Ill / n = 0.4 , k = 1.0 and 5.0 , 
o pe e 

me/mi = 1/1836 (corresponding to a hydrogen plasma). For simplicity, we restrict our 

analysis to the tw~imensional y-z plane. 

At the outset, it must be pointed out that very careful analysis is required to identify the 

low frequency modes observed. This is so because the ion acoustic wave and the 

two-stream like instabilities have overlapping phase speeds. In this regard, Winske et al. 

[20] have pointed out that the actual separation is somewhat artificial. 
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4.2 PERPENDICULAR DRIFT WITH k = 1 

We note that for k = 1 we have kAd = 0.06 and kp. = 0.32. Thus we consider extremely e 1 

long wavelengths. Figure 4.2.1 is a plot of the normalized growth rate 1 versus ky/k for 

normalized velocities V in the range 1.5 - 6 for an isotropic ion beam (T ITII = 1). Here oy ~ 

and in subsequent graphs k = 1 is held fixed and the angle of propagation 8 between Rand 

the beam direction (V ) is varied from 0° to 90°. We note that k Ik = cos8. oy y 

For V in the range 1.5 - 2.5 1 (maximum growth) decreases with V while for the oy max oy 

range 2.5 - 6 1max increases with V oy ' This seems to indicate the presence of two different 

plasma waves . This is clearly seen for V = 2.5 where two unstable modes exist . An oy 

examination of the corresponding real frequency plots depicted in fig 4.2 .2 indicate that the 

phase speeds of both the growing modes are entirely different . 

TABLE 4.2 .1 

Voy k Ik 
Y (at 1max) UJ r 

UJ • 
rla k.V - UJ 

o r 

1.5 0 .96 1.32 1.35 0.12 
2.0 0.85 1 .397 1. 53 0.30 
2.5 0 . 725 1.41 1.595 0 .40 

0 . 475 0 .86 0.91 0.327 
2 . 75 0.45 0 . 895 0 .955 0.343 
3 .0 0.425 0.918 0.989 0 .357 
4.0 0.35 0.989 1.104 0.411 
6 .0 0 .25 1.05 1.19 0 . 45 

Table 4.2 .1 is obtained in the following manner. For each of the velocities of fig 4.2.1 k Ik 
y 

at maximum growth (1max) is determined . The corresponding real frequency (UJ
r

) is 

obtained from fig 4.2.2. The ion acoustic slow beam mode frequency (UJ • ) is calculated 
na 

using [21] 
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4.2.1 

In the range V = 2.5 - 6, IJ) is close to the slow beam ion acoustic frequency and the oy r 

wave is thus associated with the ion acoustic mode. The maximum growth rate increases 

with V as more free energy is available to drive the instability. oy 

... 
Before we proceed further we explain the meaning of beam resonance. If V 0 is the velocity 

... 
of the beam, then the projection of V 0 in the direction of wave propagation is V 0 cos B, 

where B is the angle between the beam direction and the direction of wave propagation 

(fig 4.2.3) . 

FIG 4.2.3 

The wave can gain maximum energy from the beam when the phase speed V ~ of the wave 

satisfies 

4.2.2 

This can be written as 

4.2.3 

and is an exact beam resonant condition mentioned by Gary and Omidi [7] . The condition 

(4.2.3) is an ideal condition for growth. However growth can still occur if V cos B ~ V 
o ~' 

when the beam ions with velocity near V 0 cos B do not effectively see the rapidly varying 



electric field of the wave and exchange energy with the wave. The deviation from exact 

resonance is calculated in table 4.2.1 . 

32 

In view of the above discussion and the data presented in table 4.2.1, in the range V oy = 1.5 

- 2.5 we identify the instability as the ion-ion streaming instability, which is a beam 

driven mode. This correlates with the the decrease in '}'max with V oy' since as V oy increases 

so too does the deviation from exact resonance. This increase in deviation from exact 

resonance with increase in V accounts for the decrease in '}' a with V . In addition, we oy m x oy 

also note that since both the ions and electrons are magnetized (lVpe/fie = 0.4) ,both ion 
.. 

and electron Landau damping is reduced at perpendicular propagation (.1. B 0) . 

For a wave of fixed phase speed equation 4.2.2 implies that an increase in V 0 will decrease 

cos 0 and hence increase the angle of propagation. For a fixed phase speed in fig 4.2.2 (IV 
r 

fixed, since k = constant) this shift in propagation angle (k Ik decreasing for increasing V y oy 

in the range 1.5 - 2.5) is clearly noted. This increase in oblique propagation (to the beam) 

at higher beam speeds is characteristic of the ion-ion streaming instability and was found 

by Gary and Omidi [7], Akimoto and Omidi [6], Akimoto and Winske [5] and Gresill,on 

et al. [1] . If we set V ~ = Cs (since IVr ~ 1.0 in fig 4.2.2) in equation 4.2.2 we get the 

condition V ocosO = Cs for the propagation of the ion-ion streaming instability as found by 

Akimoto and Winske [5] . 

From equation 4.2.1 we see that for V le »k Ik the ion acoustic instability becomes a o s z y 

beam driven mode. The transition from the ion-ion streaming mode to the ion acoustic 

mode at high beam velocities was found by the above mentioned authors. It is interesting 

to note that although the work of Gresillon et al. [1] was performed in an argon plasma 

while our calculations are for a hydrogen plasma, they also found the transition velocity 

from the ion-ion streaming to the ion acoustic instability to be 2.5 . 
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In fig 4.2.4 we display the growth rates for an anisotropic ion beam with T )TII = 4. The 

corresponding real frequencies are plotted in fig 4.2 .5 . It must be noted that here the 

perpendicular temperature (T J is held fixed (T.1. = 0.1 Te), the same as for the isotropic 

case, while the parallel temperature is decreased (T II = 0.025 Te) to yield an ani sot ropy 

T )TII = 4 . 

In the range V= 0.75 - 8 we have the ion acoustic instability where as before the , oy 

35 

maximum growth increases with velocity. In the range V = 1.5 - 3 we have the ion-ion oy 
streaming instability where the maximum growth rate decreases with velocity. The 

distinction between these two modes is evident from fig 4.2.5 where for V = 1.5 we have oy 
two separate modes, the ion-ion streaming mode propagating essentially parallel to the 

beam and the ion acoustic mode propagating oblique to the beam. 

The left hand peak for V = 2 occurs at k jk ~ 0.52 and corresponds to a real frequency of 
oy y 

IJJ ~ 0.8, which agrees with the computed value IJJ • = 0.77 using the slow beam ion r rla 

acoustic dispersion relation (4.2.1) . For V = 2, k jk ~ 0.65 at the dip in the growth rate 
oy y 

curve (fig 4.2.4). The IJJ curve (fig 4.2.5) has an inflection point at k jk ~ 0.65 indicating r y 

a change in the nature of the instability. The growth rate curve (V = 2) thus represents oy 
an overlap of the two instabilities. 

For Vo = 4,6,8 the maximum growth rates occur at IJJ ~ n. and could be associated with a y r 1 

resonance between the slow beam ion acoustic mode and the background ion cyclotron 

motion. 

It is observed that the ion acoustic mode starts at a much lower threshold velocity (0.75) 

when the ion beam is anisotropic, surprisingly at a value less than Cs ' For the isotropic 

case V oy > Cs is always necessary to excite the instability. This lower threshold allows for 
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the overlap with the ion-ion streaming mode for V oy > 1.5 . 

It is seen from figs 4.2.4 and 4.2.5 that the ion-ion streaming instability propagates 

essentially parallel to the beam and shifts to oblique propagation as V oy is increased from 

1.5 to 2.5. It reverts to parallel propagation as V oy is increased to 3. This is unlike the 

isotropic case where larger beam velocities propagate obliquely. 

The anisotropy also serves to increase the angular range of propagation. This is responsible 

for the merging in fig 4.2.4 of the two modes for, V oy = 2.5 that appear separately in fig 

4.2.1 . 

A comparison of figs 4.2 .1 and 4.2.4 indicates an increase in the maximum growth rates 

with anisotropy. For V = 6 the ratio of the maximum growth rates 
oy 

(anisotropic/isotropic) ~ 2 while for V oy = 1.5 this ratio is approximately 1.67. The effect 

of the anisotropy on the growth is fully investigated in figs 4.2.6 and 4.2.7 . Figure 4.2.6 is 

a plot of growth rate versus k /k for beam speed V = 4 while fig 4.2.7 is a similar plot for y oy 

V = 2. We note from figs 4.2.4 and 4.2.5 that the former beam speed corresponds to a 
oy . 

purely ion acoustic mode while the latter (V = 2) an overlap between the ion acoustic 
oy 

and ion-ion streaming instabilities takes place. The parameter labelling the curves is the 

beam anisotropy T )T II . We note that the anisotropy has little or no effect on the dip in 

fig 4.2 .7 (which occurs at wr ~ {li and could be due to ion cyclotron damping) but shifts the 

peaks in fig 4.2 .6 (where ion cyclotron resonance with the background ions could enhance 

wave growth) and fig 4.2.7 slightly to the left. 

The effect of the anisotropy is to essentially increase the growth rates. This is easily 

explained. The total beam temperature is Tb = (2T.L +T
11

) /3. Since T.L is kept fixed 

(T 1. = 0 .1Te ), increasing T )TII corresponds to decreasing TII and hence the total beam 
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temperature Tb' This decrease in 'the total beam temperature increases the slope of the 

beam distribution and hence results in an increase in growth (, oc *). The enhancement 

of growth with decrease in Tb was also found by Akimoto and Omidi (fig3) [6] for an 
.. 

unmagnetized plasma. The enhancement of growth is essentially due to parallel (to Bo) 
.. 

motion, since decreasing TII effectively reduces ion Landau damping along Bo' 

The effective temperature of the beam (Teff ) in the direction of wave propagation is 

obtained with the aid of fig 4.2.8 . 

FIG 4.2.8 

1/2 1/2 . 
Here CII = (TII/rni ) and C J. = (T )rni ) are the thermal speeds III the parallel and 

perpendicular directions respectively. The projection of C in the direction of wave 
J. 

propagation is 

.. 
and the projection of CII in the direction of wave propagation is 

Taking the root mean square of these quantities, namely 

39 
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we obtain 
- 1/2 2 2 . 2 1/2 
V = Veff = (Teff/m) = (C.L cos 8 + CII Sln B) , 

which can be simplified to yield 

Teff = T.L cos
2

0 + TII sin
2

0 . 4.2.4 

For the curves in fig 4.2.6 we calculate Teff at maximum growth and present the results in 

table 4.2.2 . 

TABLE 4.2 .2 

T)TII ky/k (at'1max) Teff 

1 0.348 0 . 1 
4 0.326 0 .0329 
9 0.315 0 .0199 

16 0 .309 0 .0152 

The shift of the peaks towards the left is now easily explained. With an increase in beam 

anisotropy, at maximum growth the wave propagates in a direction such that the effective 

temperature Qf the beam as seen by the wave is decreased. This decrease in effective 

temperature reduces ion beam Landau damping. 

In fig 4.2.7 the overlap of the ion-ion streaming and ion acoustic instabilities is displayed. 

It is seen that as the anisotropy increases, '1 of the ion acoustic mode dominates over max 

that of the ion-ion streaming instability. One may argue that since the ion acoustic 

instability is kinetic in nature (due to a resonance in velocity space) while the two-stream 

instability is not, the former should be more sensitive to changes in velocity distribution. 

Thus the decrease in parallel (to Ba) ion Landau damping with decreasing TII (increasing 

T )T 11) enhances the growth rate of the ion acoustic instability more than that of the 

ion-ion streaming instability. 

1 8900 76 
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The curves in fig 4.2.9 represent the normalized growth rates versus ky/k for different 

values of the background ion to electron temperature ratio T)Te· A decrease in T)Te 

enhances both the ion-ion streaming and ion acoustic modes. As for the ion beam case, a 

decrease in T. IT decreases ion Landau damping of the wave. It is well known that a 
1 e 

necessary condition for the ion acoustic wave to propagate is that T i «Te. Although the 

source of free energy for the ion beam instability is the ion beam, high energy electrons also 

play an active role in driving the instability [22] as is ,evident in fig 4.2.9. It is seen from 

fig 4.~.9 that for T i/Te ~ 0.02 the overlap between the two types of instability is destroyed. 

They propagate in clearly defined angular regions. 

Figure 4.2.10 shows the normalized growth rates versus k Ik for different values of the ion y 

beam density. Initially an increase in ion beam density (0.1 - 0.3) enhances both modes as 

the free energy available increases. It is seen that the ion- acoustic mode is enhanced more 

than the ion-ion mode as nbo increases. In fact , the latter reaches a maximum for nbo ~ 

0.3 . 

-+ 

4.3 PARALLEL (to Bo) DRIFT WITH k = 1 

In fig 4.3.1 we plot a graph of the normalized growth rate 7 versus k Ik for an isotropic ion 
y 

beam, while fig 4.3 .2 shows the corresponding real frequencies . The parameter labelling the 

curves is the normalized beam speed V along B . For the threshold drift speed for oz 0 . 

instability V oz = 1.25, we identify the wave as the slow beam ion acoustic mode since this 

mode satisfies the ion acoustic dispersion relation 4.2.1 . This is evident from fig 4.3.3 

where we have plotted the theoretical real frequencies (4 .2.1) for the ion acoustic wave for 

V oz = 1.25 - 2 . We have further found that increasing the ion beam temperature 

completely damps this mode at a critical temperature of Tb = TII = T.l = 0.2, and is due to 

ion Landau damping. Further it is well known that for the ion acoustic mode the growth is 
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maximum at parallel propagation. 

In table 4.3.1 we present the critical beam temperatures (isotropic case) for growth as a 

function of the beam velocities V used in fig 4.3:1. For values larger than those shown 
oz 

the wave was completely damped. 

TABLE 4.3.1 

Voz critical Tb 
1. 25 0 .2 
1.5 0.45 
1. 75 0.62 
2.0 0.7 
2.5 0.12 
3.0 0.18 
4 . 0 0.3 
5 .0 0.17 
6 .0 0.37 
8.0 0.53 
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The ion-ion streaming instability can also have maximum growth for propagation parallel 
~ . 

to V 0 as found by other authors [5,6,7] . The growth curves for V oz = 1.5 - 2 display such a 

behaviour. In addition, for these drift speeds 'Y decreases with Vo . Such a behaviour max z 

has been observed for the ion-ion streaming instability by Akimoto and Omidi [6], 

Akimoto and Winske [5] and Gary and Omidi [7] . Furthermore the real frequency curves 

in fig 4.3.2 for V oz = 1.5 - 2.0 do not satisfy the ion acoustic dispersion relation (4.2.1), as 

can be seen by comparing with the corresponding curves in fig 4.3.3. Hence, we identify 

the instability corresponding to V = 1.5 - 2 as the ion-ion streaming instability. Added oz 

evidence is provided by the critical T.l = T 11 = Tb values in table 4.3 .1 . For V oz in the range 

1.5 - 2, the mode damps at a relatively large beam temperature value (compared to the ion 

acoustic mode for V oz = 1.25), thereby indicating its relative insensitivity to changes in ion 

velocity distribution functions, which is typical of two-stream instabilities. 
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The complete damping of the ion acoustic mode and a reduction in growth of the ion-ion 

streaming mode with increase in beam temperature was found by Akimoto and Omidi [6]. 

They also found that the critical beam temperature for complete damping is smaller for the 

ion acoustic mode than for the ion-ion streaming mode. Increasing the beam temperature 

increases ion Landau damping of the waves. This effect is discussed later. 

For V in the range 2.5 - 4 we obtain an ion acoustic-like mode with phase velocity less oz 

than the ion acoustic phase velocity. Such modes were shown to exist by Fried and Gould 

[23] and were also found by Gary and Omidi [7]. The wave is completely damped at a 

critical beam temperature Tb = 0.3 (V = 4) confirming the acoustic-like nature. The oz 

maximum growth increases with V oz since the free energy available to drive the instability 

increases. 

For velocities in the range 5 - 8, UJr at maximum growth satisfies 

-+ 

UJ :::lLV -fi . 
r 0 1 

4.3 .1 

with a definite shift in the associated k jk region of propagation as compared to V = 2.5 -
Y oz 

4. We call this instability the beam cyclotron instability since it is driven by the cyclotron 

motion of the beam ions. A similar mode was observed by Goldman and Newman in their 

study of electromagnetic instabilities driven by an anisotropic electron beam [24]. 

The maximum growth of the ion-ion streaming instability at parallel to V propagation is 
oz 

expected since the wave is then in total resonance with the beam. Gary and Omidi [7] in 

their fig 2 show that for b = 0° (wave propagation parallel to beam) the maximum growth 

decreases with velocity for V oz ~ 1.58. However, it must be remembered that their 

situation corresponds to an unmagnetized plasma. The phase speed for the ion-ion 



streaming mode is V ~ ~ 1 . When V 0 is close to V ~ the wave has maximum growth since 

more of the beam ions are in resonance with the instability. For larger beam speeds, say 

49 

V = 2 a smaller fraction of the beam ions have speed close to V)" hence a smaller fraction 
oz ' 'I' 

of the beam is in resonance with the wave, accounting for the decrease in growth. 

We see from fig 4.3.1 that not only does "1 increase with V for the beam cyclotron max oz 
... 

mode, but propagation gets closer to the perpendicular (to Bo) ' The latter point may be 

understood by rewriting equation 4.3.1 as 

IJ} +n.~kV 
r 1 z oz 

4.3.2 

For a mode of fixed phase speed or for IJ}r fixed (since k = 1 is fixed) equation 4.3.2 implies 

that kz V oz can be treated as a constant. Increasing V oz should decrease kz causing the 

mode to propagate more towards the perpendicular. 

Figure 4.3.4 shows the normalized growth rate versus k jk for the anisotropic situation y 

T )T 11 = 4 while fig 4.3.5 shows the corresponding real frequencies . Compared to the 

isotropic case the growth rates have increased noticeably. 

The maximum growth rate for the ion acoustic mode (V = 1.25) has increased by a factor oz 

of 2.6 . The growth is still maximum at parallel propagation but the angle of propagation 
. ... 

has Increased up to the perpendicular (to Bo) ' The ion acoustic dispersion relation (4.2.1) 

can be rewritten as 
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so that V < V . This is a negative energy mode. We recall that the beam anisotropy 
~z oz 

T )T 11 is increased by keeping T.l fixed and decreasing T 11· Reducing the parallel beam 

temperature (T
II
) narrows the beam distribution function fb(Vz) and increases the peak as 

depicted in fig 4.3.6 . 

FIG 4.3.6 

TII = 0.025 

Thus the wave sees a larger positive slope M at V ~z for the curve TU = 0.1 than for TII = 
z 

0.025. Being a negative energy mode, this addition of more positive energy from resonant 

particles results in wave damping. This accounts for the increase in growth with 

anisotropy (decrease in T 11). For the ion acoustic mode increasing T.l while T 11 is fixed is 

found to have little or no effect on the maximum growth. This is expected since this mode 

grows predominantly in the z - direction. 

In the presence of the anisotropy, it is seen from fig 4.3.4 that the maximum growth for 

V oz = 2 has shifted from ky/k = 0 to ky/k ::::: 0.55. This shift appears to indicate a change 

in the nature of the instability. The total beam temperature Tb = (2T.l +T II ) /3 was 

increased by increasing both T.l and TII while maintaining the anisotropy T )TII = 4 . The 
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critical temperature for the V = 2 mode was found to be T = 0.31, T" = 0.0775, oz .l 

corresponding to Tb = 0.23 . We note that this is much smaller than the isotropic case (Tb 

= 0.7) where the mode corresponded to an ion-ion streaming instability. For the sake of 

comparison we state the cut off temperatures for the V oz = 2.5 mode. This is TII = 0.1, T.l 

= 0.4, Tb = 0.3 . This shift in propagation angle is also seen in fig 4.3 .5 where the real 

frequency at maximum growth for V = 2 shifts to the acoustic-like regime (close to Vo = oz z 

2.5, 3, 4) as compared to fig 4.3.2' . Thus, the shift in 1 a from k /k = 0 to k /k ~ 0.55 
ID x y y 

coupled with a much lower cut off beam temperature (which is consistent with 

acoustic-like behaviour) allow us to conclude that for a drift speed V oz = 2, the associated 

mode is ion-ion streaming in nature for an isotropic plasma (T )T 11 = 1) and ion 

acoustic-like for an anisotropic plasma (T ) TII = 4) . From fig 4.3.5, because of its extended 

tail for low ky/k, we are led to believe that V oz = 2 is a velocity representing the transition 

from the ion-ion streaming to the ion acoustic-like mode. 

The peaks for Voz = 5,6,8 still satisfy the beam cyclotron mode condition (4.3.1), however 

they are shifted towards the right . We shall account for the shift later. 

In figure 4.3.7 we present a plot of the normalized growth rate versus k /k for V = 2, for 
y oz 

increasing anisotropy. The maximum growth rate is seen to saturate with anisotropy. 

This may be explained as follows. We recall that T )TII is increased by reducing TI\" Thus, 

beyond a TII value corresponding to T )TII ~ 16, the associated effective ion Landau 

damping is negligibly small . Hence any furt her decrease in T 11 (with T )T 11 increasing) does 

not affect the instability growth rate. 

The peaks are seen to shift towards the right with anisotropy. This is easy to understand 

since the effective temperature of the beam as seen by the wave is now 
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4.3.3 

where as before B is still the angle between t he beam direction and the ~rection of wave 

propagation. The relation (4.3.3) has also been obtained by Akimoto and Winske [5] . For 

the plots in fig 4.3.7 we calculate Teff at maximum growth and present the results in table 

4.3 .2 . 

TABLE 4.3.2 

T)TII k Ik (at, a ) y ID X Teff 

1 0 0.1 
2 0.488 0.0619 
4 0.545 0.0473 
9 0.584 0.0414 

16 0.589 0.0387 

We recall that for T )TII > 1, the mode corresponding to V oz = 2 becomes acoustic-like in 

nature. Thus for the angles corresponding to maximum growth, the wave sees a lower 

effective beam temperature as T )TII increases. Consequently, as discussed after fig 4.3.6, 

the effective ion Landau damping decreases, leading to increased growth rate. 

The effect of the beam density for the anisotropic case T ITII = 4 with V = 2 is illustrated 
.L oz 

in fig 4.3.8. For low beam densities (0.05 < nbo < 0.3) the acoustic-like mode dominates 

the ion-ion streaming mode, while for larger beam densities the ion-ion streaming mode, 
-. 

with maximum growth for propagation parallel to V ,is dominant. The fact that the oz 

acoustic-like mode dominates the ion-ion streaming mode at low beam densities (nbo = 

0.05) was also found by Akimoto and Omidi [6] . The increase in growth of the ion-ion 

streaming mode with density is due to the increase in beam energy. The transition from an 

acoustic-like mode (nbo = 0.05) to an ion-ion streaming mode (nbo = 0.5) is well 

illustrated. 
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In fig 4.3.9 we investigate the effect of the background ions by varying T)Te for the 

anisotropic case T )TII = 4 with beam speed V oz = 2. At a value of ky/k ~ 0.64 we have an 

increase of growth with decrease in background ion temperature. This is l?ecause Landau 

damping of the background ions is reduced . This is typical ion acoustic-like behaviour. 

For large T. IT (0.25,0 .35) this acoustic-like mode is damped and shifts to parallel 
1 e 

propagation indicating that conditions are ideal for the excitation of the ion-ion streaming 

instability which is less sensitive to ion Landau damping. Thus as T i/Te rises from 0.002 

to 0.35, the nature of the instability changes from ion acoustic-like to ion-ion streaming 

type. 

4.4 PERPENDICULAR DRIFT WITH k = 5 

Here, for k = 5 we have kAd = 0.292 and kp. = 1.6, which yields a typical wavelength for e 1 

electrostatic ion cyclotron waves. 

Figure 4.4.1 displays the normalized growth rate as a function of k Ik for the isotropic case y 

for different values of the beam velocity V ,while fig 4.4.2 is a plot of the corresponding oy 

real frequencies. Comparing fig 4.4.1 with fig 4.2.1 for the k = 1 case, we observe that the 

distinct separation between modes is no longer present. From fig 4.4.2 we note that IJ} 
r .. 

increases with It. V o' Hence the beam contributes to the dispersion of the mode. However, 

none of the modes satisfy the ion acoustic dispersion relation 4.2.1 . 

For V oy = 1.25, 1.5 we associate the instability with the ion-ion streaming mode which has 

maximum growth for propagation parallel to the beam, typically observed by Akimoto and 

Omidi [6]' Akimoto and Winske [5] and Gary and Omidi [7] . Maximum growth increases 

with velocity until V oy = 1.6. For speeds above this value, although the instability is 

two-stream like, it develops a few special characteristics. It is seen that at "( It. V is a 
max' 0 
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constant for each drift speed with k V ~ 7.9. In addition, Ui is constant at "1max' with , y oy r 

Ui ~ 5.4 . Such a behaviour is typical of the modified two-stream instability (MTS 
r 

instability) 

~ 

In their theoretical study with counter-streaming ion beams (.1 Bo) of equal density in a 

plasma with magnetized electrons and unmagnetized ions, Papadopoulos et al. [9] observed 

a zero-frequency MTS instability with 1(. V 0 =J3T8 Ui1h and "1 = Ui1h/211 constant at 

maximum growth. Here Ui1h is the lower hybrid frequency defined as 

Ui
1h 

= Ui • / [1+ ( Ui / fl ) 2J 1/ 2 , where Ui • and Ui are the total ion and electron plasma 
. pI pe e pI pe 

~ 

frequencies respectively. The wave propagation vector 1( was perpendicular to Ba · 
~ 

Allowing for oblique (to B ) propagation, McBride et al. [10] also obtained constant values o 

Ui
r 

= IJl2 Ui1h and kV 0 = IJ Ui1h at maximum growth. They however considered the case of 

k / k ~ (m Im. )1 / 2 which allows for propagation very near to the perpendicular (to B ). 
z e I 0 

Bharuthram and Johnstone [12] used the model of Papadopoulos et al. [9] but allowed for 

magnetization of the ions and anisotropy of the counter-streaming ion velocity 

distribut ions . At maximum growth they found that Ui and 1t. V were constant with Ui = 0 
r 0 r 

~ 

and 1(. V 0 = 3/2/ 8 Ui lh · Thus for beam speeds V oy ~ 1.6 we label the instability as a 

MTS-type of instability , in contrast to that for V < 1.6 which is typical of the ion-ion ay 

streaming instability in an unmagnetized plasma. 

We note that for our case Ui1h ~ 15.1. Since 3/2/8 Ui1h ~ 8.0 we have good agreement with 

the result of Bharuthram and Johnstone [12]. This is expected since their model is the one 

that closely resembles ours. In addition, for our results Uir at maximum growth satisfies 

4.4.1 
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where 1V1hb = IV 'bl [1+(1V In )2J 1/2. Here IV 'b is the plasma frequency of the beam pI pe e pI 

ions. 

Since k V is constant at maximum growth, increasing the velocity will result in k ma y oy y x 

(k at "( ) decreasing, causing propagation to shift closer to the direction of the magnetic y max 

field. This is clearly displayed in fig 4.4.1 . Since for low velocities propagation is much 
-t 

more oblique to the magnetic field B ,the effect of cyclotron damping is greater on these o 

modes as compared to higher velocity modes, hence the lower "( for smaller beam max 

speeds. 

In figs 4.4.3 and 4.4.4 we consider the anisotropic case (T )TII = 4). The anisotropy once 

again increases the growth rate. The reason for this has been explained in sections 4.2 and 

4.3 . We report that in their work Bharuthram and Johnstone [12] fixed TII and increased 

T.1. inorder to obtain an anisotropy T )TII > 1 . Hence their anisotropy corresponded to an 

increase of total beam temperature, resulting in a decrease in growth. We have done the 

opposite, namely kept T.1. fixed and decreased TII' Hence our anisotropy results in a 

decrease of total beam temperature, hence increase in growth. The shift of the peaks 

towards the left has been discussed in section 4.2. For the MTS-type instability (V oy ~ 
-t -t 

1.6) 1{. V 0 is still constant at maximum growth but because of the shift of the peaks 1{. V 0 :::: 

7.1 is lower than the isotropic case. The frequency IV :::: 5.15 is also constant at maximum 
r 

growth. For the ion-ion streaming mode corresponding to V = 1.5, we note that the dip oy 

in the growth rate (fig 4.4.3) at k Ik:::: 0.92 occurs at the fifth harmonic of the ion y 

cyclotron frequency, 5n i , indicating ion cyclotron damping. 

In fig 4.4.5 we illustrate the effect of the anisotropy on a typical MTS-type of instability 

(V oy = 4). The shift of the peaks towards the left and the increase in growth with 

a~sotropy is consistent with our earlier findings, and has been discussed, for example, for 
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fig 4.2.6. The effect of the beam density on the growth rates is investigated in figs 4.4.6 

and 4.4.7, for both the isotropic and anisotropic cases. In both figures the growth rates 

increase with beam density. It is interesting to note that for nbo = 0.5 we have 50% ion 

beam streaming through 50% background ions. The geometry is slightly different from 

that of Bharuthram and Johnstone [12] in that they had two counter-streaming ion beams 

of equal density (50%) . Ignoring the relative electron drift, our case for V oy = 4 correspond 

to theirs for V = 2. Our maximum growth for the isotropic case (fig 4.4.6) for nb = 0.5 oy 0 

is approximately n '. This agrees almost exactly with the maximum growth found by 
1 

Bharuthram and Johnstone [12] for their V oy = 2 case. 

It is interesting to note from the results presented in this section that although we are in a 

Doppler shifted frame, both the ion-ion streaming and MTS-type of instabilities satisfy 

iJJ ~ kC ,as found by Gary and Omidi [7] and Fuselier et al. [8]. r s 

... 
4.5 PARALLEL(to Bo)DRIFT WITH k = 5 

Figure 4.5 .1 is a plot of the growth rate versus k jk for the isotropic case. The parameter 
y 

labelling the curve is the beam speed V . We firstly identify the modes. oz 

For V oz = 1.25 - 1.5 the maximum growth rate increases with velocity and occurs at 

parallel propagation. From fig 4.5.2 which shows the real frequencies we observe that the 

beam contributes to the dispersion of the mode. However, we find that these modes do not 

satisfy the ion acoustic dispersion relation (4.2.1). For 0 = 0° a plot of the growth rate 

versus velocity shows a peak at V oz = 1.6. This is similar to the pattern obtained by Gary 

and Omidi [7] (fig 2), who found the peak to occur at V ~ 1.58, for their unmagnetized . oz 
... 

plasma results. We note that iJJr and lL V 0 are not constant at maximum growth. Thus for 

V oz = 1.25 - 1.5 we have the ion-ion streaming instability. 
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For V = 1.6 - 4 UJ ~ 5.45 is constant at maximum growth. In addition, at maximum 
oz ' r 

growth k V ~ 8 is also constant, and UJ also satisfies relation (4.4.1) as in the , z oz r 

perpendicular drift case for k = 5. These velocities therefore excite the MTS-type of 

instability. Since k V is constant at maximum growth, larger velocities propagate more 
z oz 

obliquely to Bo. The difference with the perpendicular drift case is that now 'max decreases 

with velocity. This is easily accounted for because of an increase in ion cyclotron damping 

with oblique propagation. In addition, the effect of electron magnetization increases with 
... 

the obliqueness (to Bo) of the propagation. In this regard, we point out that for an 

unmagnetized plasma, Gary and Omidi [7] found that 'max was independent of the drift 

speed V . But, as UJ In was lowered from 50 to 1, , decreased with Vo. This drop -o pe e max 

off was associated with the increase in the strength of electron magnetization (since the 

ions were unmagnetized) . Thus our findings are consistent with the results of Gary and 

Omidi [7] . 

We note that for beam speeds in the range 1.6 < V oz ~ 2 we have an overlap of the two 

types of instabilities, as can be seen from fig 4.5.1, in particular for the "extended tail" of 

V oz = 2. This then represents the transition regime from the ion-ion streaming instability 

(as found in an unmagnetized plasma) to the MTS-typeof instability. 

In fig 4.5.3 we investigate the anisotropic case (T )TII = 4). Figure 4.5.4 shows the 

corresponding real frequencies. The effect of the anisotropy is to increase the growth rate, 

consistent with our earlier findings. For V = 1.6 - 4 there is a slight shift of the peaks oz 

towards the right as compared to the isotropic case. This results in a slightly lower k V 
z Oz 

at maximum growth, namely k V ~ 7.95 is constant and UJ ~ 5.5 is also constant at z oz r 

maximum growth. 

By comparing with fig 4.5.1 we see that the anisotropy also lowers the threshold beam 



1 

1.
5 

0
.7

5
 

1
/f

li
 

0
.5

 F
-
-
-

0
.2

5
 o 

I 
\ 

I 
\ 

\U
 

o 

F
IG

 4
.5

.3
 

0
.2

5
 

0
.5

 
k 

/k
 

Y
 

0
.7

5
 

N
or

m
al

iz
ed

 g
ro

w
th

 r
at

e 
as

 a
 f

un
ct

io
n 

of
 k

 
/k

 f
or

 t
he

 a
ni

so
tr

op
ic

 c
as

e 
y 

T
 )T

II 
=

 4.
 T

he
 p

ar
am

et
er

 la
be

ll
in

g 
th

e 
cu

rv
es

 i
s 

th
e 

be
am

 s
pe

ed
 V

 O
Z

. 
H

er
e 

T
11· =

 0.
02

5 
T

 ,
T

 
=

 T.
 =

 0
.1

 T
 ,

w
h

il
e 

ot
he

r 
fi

xe
d 

pa
ra

m
et

er
s 

ha
ve

 t
he

 s
am

e 
e 

.1
 

1 
e 

va
lu

e 
as

 i
n 

fig
 4

,5
.1

 .
 

1 

--
-l

 
tV

 



_
~
"
"
-
"
'
"
"
"
"
~
'
,
"
"
"
"
"
"
f
,
 .• ,

~;
".
~"
,,
",
 

7 
r
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
 

6 

iL1
r
/ll

i 
5 4 
r 

1 
-

3
1
~
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
 

o 

F
IG

 4
.5

.4
 

0
.2

5
 

0
.5

 
k 

/k
 

y 

0
.7

5
 

N
or

m
al

iz
ed

 r
ea

l 
fr

eq
ue

nc
y 

ve
rs

us
 k

 /
k

 f
or

 t
he

 p
ar

am
et

er
s 

of
 fi

g 
4.

5.
3 

. 
T

he
 

y 
pa

ra
m

et
er

 la
be

ll
in

g 
th

e 
cu

rv
es

 is
 t

he
 b

ea
m

 s
pe

ed
 V

 
. 

oz
 

1 

~
 

c..
:> 



74 

velocity for the excitation for the ion-ion streaming instability. This is evident due to the 

appearance of the V = 1 mode, which is not present for the isotropic case. The anisotropy 
oz 

also destroys the tail of the of the V = 2 curve causing it to shIft into the purely oz 

MTS-type instability regime. This shift is evident by comparing the real frequencies for 

the isotropic and anisotropic cases (figs 4.5.2 and 4.5.4). 

The effect of further increasing the anisotropy is investigated in fig 4.5.5 for the V oz = 2 

mode. The effect of the anisotropy is to increase the maximum growth rate. For kylk ~ 

0.35 increasing the anisotropy decreases the growth. This results in the anisotropy 

"killing" the parallel tail. 

In figs 4.5 .6 and 4.5.7 we show the effect of the beam density on the V = 2 mode for the oz 

isotropic and anisotropic cases respectively. Increasing the beam density increases the 

growth rates . However, the growth is increased more in the z-direction since the relative 

streaming is in that direction. In fig 4.5.7 the increase in beam density and the associated 

energy available to excite an instability allows the ion-ion streaming instability to develop 

in the tail region of the MTS-type of instability for low k Ik values. y 

4.6 EFFECT OF ION MAGNETIZATION 

Figure 4.6 .1 is a plot of the normalized growth rate versus iJJ In for a fixed angle k Ik = pe e y 

0.4 and velocity V = 4 while fig 4. 6. 2 is a similar plot for V = 4 and k Ik = 0 9 Here oy oz y' . 

we set k = 5. The parameter labelling the curves is the beam anisotropy TjTW 

For iJJpe/ne ~ 1 the growth saturates with iJJ In . Increasing iJJ In while keeping all pe e pe e .. 
other plasma parameters fixed (B 0 fixed) corresponds to increasing the total plasma 

density. We note that iJJ In > 1 corresponds to iJJ . In. » 1. Hence the ion cyclotron pe e pI 1 
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period 2 7r / n. » 2 7r / IJJ • (the ion plasma period). This case thus corresponds to the ions 
I pI 

being effectively unmagnetized, hence ion cyclotron damping of the wave becomes weaker. 

In addition, the effect of electron magnetization decreases with increasing IJJpe/fie. These 

factors could account for the saturation in growth rate. 

For IJJ / n < 1 decreasing IJJ / n decreases growth. Decreasing IJJ / n corresponds to pe e pe e pe e 

increasing ion and electron magnetization, accompanied by cyclotron damping and hence a 

drop in growth rate. Our results are consistent with those of Gary and Omidi [7]. The 

growth for the anisotropic case usually dominates that of the isotropic case because of the 

decrease in total beam temperature due to the anisotropy. The latter effect, as explained 

earlier, enhances growth. However, for strongly magnetized electrons and ions (IJJ / n « pe e 

1), the effect of cyclotron damping is so great that the growths for both the isotropic and 

anisotropic cases are the same. 

The analysis carried out in the above four sections differs from most of the earlier work 

(Gary and Omidi [7], Akimoto and Omidi [6], Akimoto and Winske [5]) in that in our 

model both the ions and electrons are magnetized. In the above references, under the 

assumption I 'Y I » ni' the ions are assumed to be unmagnetized. Since in our results I 'Y I I\J 

fi i' the effect of ion magnetization cannot be ignored. 

We have thus extended a study of beam - driven low frequency electrostatic instabilities 

into the regime I 'Y INn i and find that two - stream type and ion acoustic -like modes 

display similar behaviour as compared to the case of unmagnetized ions. 
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CHAPTER FIVE 

ELECTROMAGNETIC WAVE - PLASMA INTERACTION 

5.1 INTRODUCTION 

The dispersion relation for linear electromagnetic wave propagation in an unmagnetized 

plasma is 1J}2 = 1J}2 + k2c2 , where IJ} = (4m e2/m ) 1/2 is the electron plasma frequency 
pe pe 0 e 

and c is the speed of light . From this it is clear that IJ} ) IJ} and hence classical linear - pe 

theory forbids the propagation of electromagnetic waves with IJ} < IJ}pe in the plasma. Since 

IJ} depends on the density, for a plasma with non-uniform density there exists a critical pe . 

cut off density beyond which propagation is prohibited. We consider nonlinear interactions 

which may reduce the local plasma frequency. When intense electromagnetic radiation is 

incident on a plasma, the electrons oscillate in the electric field of the radiation. The 

electron quiver velocity can be ~ o. 6c [25] and hence relativistic effects have to be taken 

into account. As a result the mass of the electron is modulated in the presence of the field. 

This nonlinear increase in the electron mass leads to a downshift of the local plasma 

frequency IJ}pe. 

The ponderomotive force, caused by self interaction of large amplitude waves, is a low 

frequency, nonlinear force which acts on electrons (ions are massive and therefore not 

affected) expelling them from a region of high field intensity. The ambipolar field thus 

created pulls away the ions. Thus it reduces the local plasma density and hence IJ} • 
pe 

The downshift of the local electron plasma frequency by these two nonlinearities has an 

important consequence in that it permits the propagation of electromagnetic waves into the 

"overdense" region (beyond the cut off density) and hence allows the heating of regions of 
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the plasma which are forbidden by classical linear theory. 

The study of nonlinear wave propagation is thus important to the work associated with 

laser pellet interaction, rf heating of magnetically confined fusion plasmas, wave driven 

particle accelerators and free electron lasers where intense electromagnetic waves are used. 

However, the nonlinearities mentioned above have been shown to give rise to plasma 

instabilities, in particular the modulational and filamentation instabilities. In addition, 

they are the source of nonlinear potential structures such as solitons [25]. 

Yu, Shukla and Spatschek [26] studied the nonlinear propagation of intense circularly 

polarized electromagnetic waves in an unmagnetized plasma. They were the first to 

consider both the relativistic electron mass variation and relativistic ponderomotive force 

nonlinearities simultaneously. Their results showed the existence of finite amplitude wave 

localization in the form of soliton structures. For sufficiently strong relativistic effects, the 

existence of supersonic solitary waves was demonstrated. 

The interaction of high power circularly polarized electromagnetic waves with an electron 

plasma was considered by Vu, Shukla and Tsintsadze [27]. In their model, the electron 

density was modulated by Langmuir (low frequency) oscillations while the ions formed a 

neutralizing background (Raman effect). They showed the existence of solitons of large 

amplitude. 

Rao, Shukla and Yu [28] studied the problem of solitary wave propagation in a magnetized 

plasma. They did not assume the quasineutrality condition and included ion dynamics 

exactly. They considered three types of ion responses giving rise to the forced-Raman 

(FR), quasistatic (QS) and forced-quasistatic (FQ) interactions. It was found that intense 



circularly polarized electromagnetic waves propagating along the external magnetic field 

could produce large amplitude solitary potential structures. 
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Shukla, Bharuthram and Tsintsadze. [29] investigated the filamentation instability of an 

intense electromagnetic wave in an unmagnetized plasma. They allowed for fully 

relativistic effects as well as for a large amplitude electron quiver velocity and large 

amplitude electron density variations . They studied the three well known plasma responses 

mentioned above and obtained the spatial growth rates analytically. They showed the 

existence of a new relativistic filamentation instability at high laser intensities, which they 

attributed to the fully relativistic electron quiver velocity and finite amplitude density 

fluctuations associated with the FR interaction. 

The modulational instability of an arbitrarily large amplitude electromagnetic wave in an 

unmagnetized plasma was examined by Shukla, Bharuthram and Tsintsadze [30]. They 

took into account the relativistic electron quiver velocity and the relativistic 

ponderomotive force. Three types of plasma slow responses, namely the FR, QS and FQ 

interactions were considered. The growth rates (temporal) associated with these 

interactions were analytically obtained. They showed that for Ve l c ~ 0.12, were Ve is the 

electron thermal speed, only the FR interaction participated in the modulational 

instability, while for larger plasma temperatures, all three interactions contributed to the 

instability. 

A comprehensive review of nonlinear effects associated with relativistic electron mass 

variation and the ponderomotive force in unmagnetized, as well as magnetized plasmas was 

compiled by Shukla et al. [25] . They also studied the nonlinear propagation of intense 

electromagnetic waves in an electron-positron plasma. 



Our investigation is an extension of the work in reference [30] to a magnetized plasma. 

The effect of cyclotron motion on the instability growth rate is clearly demonstrated. 

5.2 BASIC EQUATIONS 

84 

In deriving our basic equations we closely follow the approach of Rao, Shukla and Yu [28]. 

We consider the propagation of an intense circularly polarized electromagnetic wave of 

.. 
frequency Wo and wavenumber ko along an external magnetic field Bo = Boz in a two 

component electron-ion plasma. The plasma response is of two time scales: the high 

frequency motion of the electrons in the wave fields and the low frequency response of the 

ions and electrons due to the nonlinear ponderomotive force. 

We use the fluid approach. Hence we use the two fluid relativistic equations namely: 

the equation of continuity 

and the equation of motion 

..... .... ~ .... 

Bp . [ V . x B V . x B 1 T . 
~t + (V .. V)p . = e · E + --L-+ -..LJ2. -~V n· 
m J J J c c n· J' 

J 

together with Maxwell's equations 
.. 

.. 1 aB 
VxE=--""!lI" c ut ' .. 

.. 4?r L .. 1 BE 
VxB=- n.e.V. +-""!lI"t' 

C . J J J C UL 

J 
V • E = 4ITe (n. - n ) , 

1 e .. 
V·B = 0 , 

5.2.1 

5.2.2 

5.2 .3 

5.2.4 

5.2.5 

5.2.6 
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where n· V. and T. are the number density, the fluid velocity and the temperature of the 
J' J J 

j th species (j = i, e), respectively, 

5.2.7 

is the relativistic momentum and m. is the rest mass of the j th species. JO 

... ... 
The wave fields E and B can be written in terms of the a scalar potential ~ and a vector 

... 
potential A as 

... ... 
B=VxA, 5.2.8 

.. 
.. 1 BA 
E=--::r;:-V'" c ut 'I' , 5.2.9 

and satisfy the gauge condition 

5.2.10 

Here ~ is the low frequency potential perturbation induced by the strong electromagnetic 

wave. Substituting from equations (5.2.8) and (5.2.9) into the electron momentum 

equation (5.2.2) and using equation (5.2.7) we obtain 

Bp ... 
e + _1_ (1+ 2/m2 2)-1/2 (p . V)p = ~ 8A m meo Pe eo c e e c at 

e ( 2/ 2 2)-1/2 + eV~ - -- hp m c p 
meoc e eo e 

... 2 2 2 -1/2 A x (VxA)-n (l+p /m c) p xz-T V(lnn), 5.2.11 eo e eo e e e 

where n eo = eB o/meo c is the electron gyrofrequency. Since the plasma response is of two 

time scales, we separate the high and low frequency components of A and p and write for 
e 

left-hand circularly polarized waves: 
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A = A(z,t)(x - iy) exp[i(koz - lIIot)] + c.c 

Pe = p(z, t) (x - iy) exp[i(koz - lIIot)] + c.c 
5.2.12 

where c. c denotes complex conjugate and A and p are normalized with respect to meo c2 / e 

and m c, respectively. eo 

Here A (z , t) and p (z , t) are slowly varying complex functions of space and time. We have 

used the fact that the perpendicular momentum of the electrons is due to the high 

frequency response in the wave fields (transverse wave) whereas the parallel momentum 

due to the ponderomotive force, is a low frequency response. However, the effect of the 

parallel electron momentum on the low-frequency dynamics of the plasma is neglected . 

.. 
Equation (5.2.11) with A and Pe in normalized form becomes 

.. 
We note that Pe represents the perpendicular (to Bo) electron momentum. Since all terms 

that vary as exp[i(koz - lIIot)] behave independently of all terms that vary as 

exp [-i (koz - 1110 t) ] , it is necessary only to substitute the first half of equation (5.2.12) 

into equation (5.2.13), that is, ignore the complex conjugate part [31]. With this 

substitution 
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.. 
~ ~ . ] at = (at - 1iJ 0 A) (i - i y) exp [ i (k 0 Z - Wo t ) 5.2.14 

Pe x z = -ip (i - iy) exp[i(koz - wot)] 

and equation (5.2.13) is averaged over the fast time scale to yield (appendix B) 

~. 8A. A . n (1 2)-1/2 at - lWOP = at - lWO + IPlleo +p . 5.2.15 

Upon dividing by Wo and noting that 1~/wol « Ipl and 1#t-/wol « IAI since A and pare 

slowly varying quantities, equation (5.2.15) reduces to 

-ip=-iA+ipfl /w (1+p2)-1/2. 
eo 0 

Letting a = fleo/ wo' we solve for A in terms of p to obtain 

in agreement with Rao, Shukla and Yu [28]. Thus by (5.2.12) we have 

.. 
A = 7lPe ' 

where 71 = 1 + a(1+p2)-1/2. For the low frequency electron motion we can show 

(appendix B) from (5.2.11) that 

5.2.16 

5.2.17 
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meoc2(1+p2)-1/2 (PeoV)Pe = eV~ -meoc2 (1+p2)-1/2 Pe 
-+ 

x (V x A) - V(ln ne) 0 5.2.18 

Using (5.2.17) and the identity 

equation (5.2.18) becomes 

2 2 2 2 m c r(p oV)p =eV~-m c r(p VTJ+ 1/2 TJVp) eo e e eo 

+ m c2r[TJ(p oV)p + (p oVTJ)p ] -V(ln n ) , eo e e e e e 5.2.19 

where r = (1+p2r-:1/2. Taking the dot product of equation (5.2.19) with z and noting that 

PeoZ = 0, we obtain 

5.2.20 

where ~ is normalized with respect to Te/e and f3 = meoc2/Te' Since 

the second term in (5.2.20) can be written as 

Since 

( 2)-1 ( 2 -2 2 V 1 +p = - 1 +p) Vp , 

and 
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the right hand side of (5.2.21) simplifies to 

2 1/2 2 -1 V(1+p) - 0./2 V(1+p) . 

Hence (5.2.20) becomes 

.. 
which represents a low frequency electron momentum balance along Bo . 

In deriving the governing equation for the wave amplitude A we begin with the vector wave 

equation (5 .2.25) which is derived as follows: 

equation (5 .2.4) can be written as 

.. .. 
where J = ~ n· e · V. is the current density and we have used (5.2.8) and (5.2.9) to 

. J J J 
J 

.. .. 
substitute for Band E. Using the identity 

.. .. 2" 
V x (V x A) = V(V·A) -V A 

we can write (5.2 .23) as 

Using the gauge condition (5.2.10), (5.2.24) simplifies to 

5.2.23 

5.2.24 

5.2.25 
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Since the ions are massive we neglect their contribution to the high frequency current 

density and write 

5.2.26 

-+ -+ 
Substituting (5.2.26) into (5 .2.25) and using (5.2.7) for Ve , with A and Pe normalized and 

ne normalized with respect to the equilibrium density no' we obtain 

5.2.27 

where UI~eo = (41fnoe
2 

/meo) 1/2 is the plasma frequency associated with the electron rest 

mass. Using (5.2 .12) and (5.2.14) we can show that 

where we have used the approximation 

since A is a slowly varying quantity, and 

2-+ 2 
a A [a A 2' k aA k2A] ( ~ . ~ ) [ . ( ---n = -2 + 1 a- - x - ly exp 1 k z - UI t)] az £, az 0 zoo 0 

Substituting (5.2.28) and (5 .2.29) into (5 .2.27) and using (5.2.12) for p we obtain 
e 

5.2.28 

5.2.29 
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2 2 2 . 2 
2iwo 8A (w -k c ) c2 82A 21koc 8A neP 

o 0 A + - __ ~.,.....,.,., 
-2-at:+ 2 +2 ~ ~ Oi,- 2 1/2· 
w wpeo iJ} 8z iJ} 0 (1 +p ) peo peo pe 

5.2.30 

. . . h' 1 . d -1 ( / 4 - 2) 1/ 2 d th NormalIzmg t and Z wIth respect to, t e IOn p asma peno wpi::: ffii 7rlloe an e 

electron Debye length Ade::: (Te/41rnoe2) 1/2 respectively, and letting 

222 2 . ( ) !::, ::: (w -k c )/ w ,we can wnte 5.2.30 as 
o 0 peo 

5.2.32 

as found by Rao et al [28]. Integrating (5.2.22) with respect to z and using the boundary 

conditions ~ ::: p ::: 0, n ::: 1 when I z I -; 00 , we obtain for the ambipolar potential ~, e 

~:::f3 (l+p) -l+~ P 2 +lnn . 
[ 

2 1/2 2 1 
(hp ) e 

5.2.33 

The equations (5 .2.32) and (5.2.33) constitute the governing set for our study of the 

modulational instability of large amplitude cyclotron waves ; We consider three types of 

slow plasma responses-the forced Raman(FR), forced-quasistatic(FQ) and the 

quasistatic( QS) interactions. Associated with each is a unique slow electron density 

response ne ' 
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FORCED - RAMAN INTERACTION (FR) 

For intense laser beams the relativistic electron ponderomotive pressure (second term in 

5.2.22) dominates the electron thermal pressure (IX In ne) and (5.2.33) simplifies to 

[ 
2 1/2 2 1 ~ = {3 (1 +p) - 1 + ~ P 2 ' 

(hp) 
5.2.34 

which describes a balance of the ambipolar electric field by the ponderomotive force. 

For the FR interaction, on the electron time scale (IV -1), the ions do not respond and form 
pe 

a neutralizing background. Then n i = no and the normalized Poisson's equation yields 

. 2 
n =l+V~. e 

, 5.2.35 

Upon substituting (5.2.34) and (5 .2.35) into (5.2.32) and using the notation (\ = ~, az 
= 

%Z, we obtain 

( 2 i f at + i V a + (3 a2 + ~) A 

, [ {g z z 2 } 1 p 2 2 1/2 a p 
= 21/2 l+{3V (hp) +2 2 ' 

(l+p ) . (l+p ) 
5.2.36 

where we recall A = p[l + a(1+p2)-1/2] from (5.2.16). 

The modulational instability analysis is carried out following the method of Karpman[32]. 

We let 

p = (po + 8p) e-i8t , 

where Po is a real constant and represents the pump wave amplitude, bp is the perturbation 

term with Ibp I « I Po I and 15 represents a nonlinear frequency shift. It is then easy to 
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approximate the following quantities: 

- * (* l·) where 8p = 8p + 8p, denotes comp ex conjugate 

by (5 .2.16) 

Substituting the above approximations in (5 .2.36), the pump terms (corresponding to zero 

order in perturbation) yield for the nonlinear frequency shift 

5.2.37 

while the first order perturbation terms yield 
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We write 6p = X + iY in (5.2.38) and separate into real and imaginary parts to obtain (from 

the real component) 

5.2.39 

and (from the imaginary component) 

(2t6R+A + pa2) [1 + 2 172 ]Y + (2tat + V az ) [1 + 2 372 ]x 
z (l+p ) g (l+p ) o 0 

= ~ 172 Y • 5.2.40 
(l+po) 

We perform a Fourier analysis by letting 

[~] = [;] exp[i(Kz-Rtl] , 

where nand K are the frequency and wave number associated with the plasma slow motion. 

Equations (5.2.39) and (5.2.40) then yield, respectively 



and 

2 [ a]- [a]-(2EDR+Ll -(JK) 1 + 2 1/2 Y + i(KV -2dl) 1 + 2 3/2 X 
(l+po) g (l+po) 

1 -
= 2 1/2 Y • 

(l+po) 

Solving for Y from (5 .2.42) and substituting into (5 .2.41) we obtain 

(2EDR+Ll - ,BK2) [(1+P~)3/2 + a] + ~2 (KV g - 2dl)2 [(1+p~)3/2 + a] 

2 
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5.2.42 

=1-{JK2 P02 [(1+p2)3/2+ aJ 5.2.43 
(l+po) 0 

We set V I = V /2E and il = KV I + i 1R in (5.2.43) to obtain the growth rate for the FR g g g 

modulational instability 

5.2.44 

The threshold condition corresponding to 1R = 0 is given by 

2(1+ 2)3/2 
2 Po Po 

(JK = 2 1/2 2 3/2 
[(l+p) +aJ [(1+p) +aJ o 0 

5.2.45 

We recall that a = ileo / wo. Thus the limit a = 0 corresponds to an unmagnetized plasma 
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situation. In this case our results reduce to those of Shukla, Bharuthram and Tsintsadze 

[30] . It must be noted that our normalizations and definition of tare different from theirs" 

and must be taken into cognizance when comparing results . 

FORCED QUASISTATIC INTERACTION (EQ) 

Here the ions actively participate. When the phase velocity of the ion fluctuations is much 

smaller than the ion thermal velocity, the ion thermal pressure balances the slow electric 

field [28] . We may assume an isothermal equation of state for the ions, leading to an 

expression for the ion number density given by 

. n. = n exp ( - e ~ IT.) , 
1 0 1 

which in normalized form reads as 

where (J = T IT .. The normalized Poisson's equation yields e 1 

5.2.46 

Here, as for the forced - Raman interaction, the electron thermal pressure is neglected in 

comparison to the ponderomotive pressure. Hence ~ is given by (5.2 .34) with 

5.2.47 



Following the procedure outlined for the forced-Raman case, we use (5.2.32) and (5.2.47) 

to obtain for the nonlinear frequency shift and modulational instability growth rate, 

respectively 
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5.2.48 

5.2.49 

with the threshold condition 

5.2.50 

2 
_ _ [ ( 2 1/2 a Po ] where (Jb - (J(J and Q - (Jb 1 - 1 +p) -"2 2 · 

o (l+po) 

QUASISTATIC INTERACTION (~) 

For a plasma situation in which the ponderomotive force and thermal pressure exactly 

balance the ambipolar potential the electron density is represented by a modified 

Boltzmann distribution [25]. For Boltzmann ions we use the quasi-neutrality condition 

and substitute into (5.2.33) to obtain 

-(J'" n =n.=e 'I' 
e 1 

5.2.51 
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[ 
2 1/2 a p2 1 ~ =,8Q (1 +p) - 1 + 2 2 ' 

(hp) 
5.2.52 

where,8Q = ,8(J/(1+(J) . Substituting (5 .2.52) into (5.2.51) we obtain the modified form for 

- [ { 2 1/2 a p2 }] n -exp -,8Q (l+p) -1+ 2 2 . 
e (hp ) 

5.2 .53 

Following a similar analysis to that for the forced Raman effect we obtain for the nonlinear 

frequency shift 

1 [ e
S 

] b'Q = 2£ 2 1/2 - b. • 
(hp) +a o 

The growth rate for the associated modulational instability is given by 

2 2 1/2 S 2 S 
_ KJ1J [ Po (1+po) e ,8QPoe 2 ]1/2 

1 -2T 212 232 + 2 -K,8 
Q E [ (1 + p ) / + a] [( hp ) / + a] (1 + p ) 

000 

with 

It is easy to show that for the unmagnetized plasma (a = 0) our results, for the FQ and QS 

interactions, just as for the FR interaction, reduce to those of Shukla, Bharuthram and 

Tsintsadze [30] . 
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5.3 RESULTS 

The growth rates (1) associated with the three types of interactions have been numerically 

studied as a function of the perturbation wavenumber K, Po (related to the incident pump 

amplitude) and the ratio {J = c2 IV~e. Figure 5.3.1 shows the variation of 1 with K. It is 

seen that for the chosen values of {J and Po' the QS interaction has the strongest wave 

growth, also over a much wider range of K values than the FQ and FR interactions. In fig 

5.3.2 we show 1 against Po' It is seen that for large pump amplitudes only the FR 

interaction contributes to wave growth. On the other hand, for low pump amplitude, FQ 

and QS interactions dominate. The dependence of wave growth on {J is presented in fig 

5.3.3. It is observed that for {J > 50 (V te l c < 0.14) only the instability associated with 

FR grows, consistent with the findings in reference [30] for the unmagnetized case. As the 

plasma temperature is increased, {J decreases, accompanied by a significant increase in 

growth due to QS and FQ interactions and a decrease in growth due to the FR interaction. 

The variations of the growth rates associated with the FR, FQ and QS interactions with 

the parameters K, Po and {J are qualitatively similar to those for the an unmagnetized 

plasma [30]. However, for the chosen parameters of reference [30], the maximum growth 

rates are found to be an order of magnitude smaller when the ambient magnetic field is 

included. 

The above results have already been published in a summarized form [33]. 
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CHAPTER SIX , 

SUMMARY AND CONCLUSION 

Using linear theory we have derived the dispersion relation for electrostatic instabilities 

propagating in an ion-beam plasma system. We have considered both the electrons and 

the ions to be magnetized. The dispersion relation was solved fully using no 

approximations and analysis was restricted to low frequency waves. Both drifts 
~ 

perpendicular and parallel to the external magnetic field B 0 were considered. The effect of 

an anisotropic velocity distribution of the beam ions on the instability growth rates was 

examined. Calculations were performed for two typical wavelengths , corresponding to 

normalized wavenumber k = 1 (kp. = 0.32) and k = 5 (kp . = 1.6), were p. is the ion 
1 1 1 

gyroradius . 

For k = 1 at perpendicular beam drift, the instability spectrum is dominated by the ion 

acoustic and ion- ion streaming instabilities. The latter propagates for angles much more 
~ 

oblique to Bo and in a manner similar to its counterpart in an unmagnetized plasma which 

propagates in a cone about the beam direction. The transition from the one mode to the 

other is dependent on the beam velocity. Differentiation between the modes was made 

possible by comparing with the ion acoustic dispersion relation as well as their sensitivity 

to the ion beam temperature Tb ' The ion acoustic instability, being dependent on 

resonance in velocity space, reacts sharply to changes in Tb and damps for Tb N 0.3 . The 

ion-ion streaming instability, on the other hand, is less sensitive to temperature changes. 

These modes decay more slowly, damping around Tb N 0.7 . 

The effect of anisotropy (T.L * T 11) in ion beam velocity distribution was found to enhance 

the instability growth rates. Since T)T 11 of the beam was increased by keeping T.L fixed 



-+ 

and reducing T 11' this enhancement was associated with reduction in parallel (to B 0) ion 

Landau damping for the ion acoustic instability. While for the ion-ion streaming 

instability a reduction in overall beam temperature narrows the thermal spread. This 

could allow for a sharper beam resonance and consequent larger wave growth. This 

behaviour is consistent with earlier findings [5,6,7]. The anisotropy also lowers the 

threshold drift velocity for the excitation of the ion acoustic instability. 
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For the case k = 5 (perpendicular drift) the instability is purely two-stream in nature, as 

the modes do not satisfy the ion acoustic dispersion relation. In addition they exhibit 

growth for relatively large ion beam temperatures. However, the exact behaviour of the 

instability is found to change at a drift speed of V = 1.6. For speeds below this value, its oy 

behaviour is typical of its associated instability in an unmagnetized plasma. However, for 
-+ 

V > 1.6 it is found that at maximum growth IJ} and It. V assume constant values. This is oy r 0 

typical of the modified two-stream instability as found by Papadopoulos et al. [9], 

McBride et al. [10] and Bharuthram and Johnstone [12]. 

For parallel drift with k = 1 the isotropic situation gets more complex. For a beam speed 

V oz = 1.25 the wave satisfies the ion acoustic dispersion relation (4.2.1) and damps rapidly 

(due to increasing ion Landau damping) with increasing Tb. In the range 1.5 < V < 2 it is 
oz 

far less sensitive to changes in Tb and does not satisfy the ion acoustic dispersion relation. 
-+ -+ 

The modes have maximum growth for It 11 V 0 11 Bo' and are associated with the ion-ion 

streaming instability since its features are similar to the two-stream instability in an 

unmagnetized plasma. For speeds in the range 2.5 < V < 4 there is a dramatic shift in oz 

propagation angles of the waves, with 'lrnax moving away from parallel (to Bo) propagation. 

In addition, the modes react sharply to changes in Tb' damping rapidly. Although this 

behaviour is typical of the ion acoustic wave, the phase speeds are below that of the ion 

acoustic wave. We call these modes ion acoustic-like. They have been shown to exist by 



Fried and Gould [23] and were also obtained by Gary and Omidi [7]. 

For speeds in the range 5 < V < 8 there is yet another shift in propagation angles. At­oz ... 
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maximum growth the real frequencies satisfy the relation ltIr - R. V 0 ~ n i . The associated 

modes are thus called ion beam cyclotron waves. 

The effect of ion beam anisotropy once again is to enhance wave growth. The reason for 

increased growth with decreasing TII has been associated with a decrease in ion Landau 

damping of a negative energy mode for the ion acoustic instability and a narrowing of the 

beam thermal spread for the ion-ion streaming instability. 

The case k = 5 with parallel drift is very similar to perpendicular drift with the same k 

value. The unstable modes are purely two-stream in nature, changing from one similar to 

that in an unmagnetized plasma to a modified two-stream type at a drift speed V = 1.6 . oz 

In the previous chapter we have addressed an instability of a completely different nature, 

the nonlinear modulational instability of an intense electromagnetic wave (pump wave) 

arising from an interaction with the background plasma slow response. The density 

variations associated with the latter, coupled to the electron quiver velocity, produces a 

nonlinear electron current. Three types of slow responses, the forced-Raman (FR), 

quasistatic (QS) and forced-quasistatic (FQ) were considered. Nonlinearities arising from 

the relativistic electron mass variation have been included. Analytical expressions for the 

growth rate for each type of interaction has been derived. Their relative strengths for 

typical plasma parameters are compared. For low pump amplitudes the FQ and QS 

interactions are found to dominate, while for a stronger pump mode only the FR 

interaction contributes to the instability. 
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Finally, we briefly mention possible extensions to our work. In our work both the beam 

and background ions have equal mass. The above analysis could be extended to an unequal 

mass situation, thereby providing an additional variable plasma parameter (ion mass 

ratio) . We have kept the electrons as the hottest component in our work. The case of 

equal and hotter beam ions (Tb ~ Te) constitute a wide field of study. The kinetic study of 

an ion-beam plasma system could be extended to study high frequency waves associated 

with electron motion. In the low frequency regime, higher drift speeds would enable a 

broader study of ion cyclotron waves. 

The study of the modulational instability is restricted to field aligned modulations. An 

extension to oblique modulation will provide a more general result. 
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APPENDIX A 

The final integral in (3.1.18) after performing the integration over cP reduces to 

A.l 

Consider the integral with respect to dV : . Z 

2 2 

f
CD exp [-(V -V ) 12C IIJ 

. -. Z oz . (V - V ) dV . 
[pfi.+l{.V +k (V -V )-wJ Z oz Z 

1 0 Z Z OZ 
-rn 

We let x = (V -V )1/IC
11

, to obtain 
Z oz 

A.2 

-rn 

Since xl (x-zb) = 1 + zbl (x-zb), (A.2) may be written as 
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A.3 

where we have used the well known result e -x dx = fi and written the second part in I
(IJ 2 

terms of the Z - function. Then (A.1) reduces to 
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APPENDIX B 

Equation (5.2.13) can be written as 

where r = (1+p2)-1/2. Substituting for Pe and I from (5.2.12) and using (5.2.14), 

equation (B.1) becomes 

B.1 

ik z -iw t ik z 
m c (~tP-iW p) (i-iy) e 0 e 0 + m c2r [p (i-iy) e 0 ·V] p(i-iy)( 

eo UL 0 eo 
ik z -2iw t BA ik z -iw t 

eO e 0 =meoc(Of-iwoA) (i-iy)e 0 e 0 +eV~ 
2 ik z ik z -2iw t 

- m c r p (i - iy) e 0 )( [V )( A (i - iy) eO] e 0 
eo 

ik z -iw t 
- m cn r p(i - iy) e 0)( Z e 0 - T V(ln n ) . B.2 

eo eo e e 

iw t 
Equation (B.2) is multiplied by e 0 and integrated with respect to t over one period, 

that is from t = 0 to t = 21f/wo. Since in the interval At = 21f/wo' ~, p, A and ne do not 

change significantly (slowly varying), they can be kept constant and using 

J
21f / Wo ± i Wo t 
o e d t = 0 (real part) , 

we obtain 

B.3 

This process is called averaging over the fast time scale [31]. Substituting (B.3) into (B.2) 

we obtain 

B.4 



APPENDIX C 

CAUCHY ROOTFINDER 

To solve F (w) = 0, we proceed as follows. If F (w) has n roots w1' w2,···, wn within a 

contour n and is analytic within and on the contour, then we can write c . 

where H( w) is analytic on and within nc' Consider 

s =,J....1 W v~ ( ( r) d W . 
v 2n j W 

We note that 

F'(w) = (w-w2) ... (w-wn) H(w) + (w-w
1

) (w-w
3

) ... (w-w
n

) H(w) + 

•.. + (w-w1) (w-w2) ... (w-w
n

) H'(w). 

W v~ ( (r) = L + L + .•• + L + W v: ( (r) . 
W w-w1 w-w2 w-w

n 
W 
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C.l 

C.2 

Since the last term in (C.2) is analytic, its contribution to the integral in (C.l) is zero. By 

the Cauchy Integral Theorem 

1 l~d - f( ) 271'i j w-w W - wo' 
o 

So = n (the number of roots of F (w) within n c), The n x n system 
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n n n n S =IJJ +IJJ +IJJ +···+IJJ n 123 n 

can be transformed into the complex polynomial 

of degree n, with a = 1 [34] . The following descending recurrence relation yields a : 
n v 

n 

a = -- as. 1 2 v n-v p p-v 
v+l 

The solution of the polynomial equation yields all the roots of F(IJJ) within nc' These roots 

are refined by using the N ewton-Raphson method. 

The contour n c' chosen as rectangular, is depicted below. 

nc z3 ______ ---=-______ z2 

If the first integral So = n = 0, then we choose a different contour. If So < 0, then the 
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integrand in (C.1) cannot be analytic at all points besides the zeros of F (IU) . In this case 

we shrink the contour to exclude such points or choose a new contour. We can select the 

number of roots that are required by shrinking n c iteratively until n ~ no. of roots required. 

The integration in (C.l) is performed numerically using the extended Simpson's rule. 
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