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ABSTRACT The viral genotype has been shown to play an important role in HIV
pathogenesis following transmission. However, the viral phenotypic properties that
contribute to disease progression remain unclear. Most studies have been limited to
the evaluation of Gag function in the context of a recombinant virus backbone. Us-
ing this approach, important biological information may be lost, making the evalua-
tion of viruses obtained during acute infection, representing the transmitted virus, a
more biologically relevant model. Here, we evaluate the roles of viral infectivity and
the replication capacity of viruses from acute infection in disease progression in
women who seroconverted in the CAPRISA 004 tenofovir microbicide trial. We show
that viral replication capacity, but not viral infectivity, correlates with the set point
viral load (Spearman r = 0.346; P = 0.045) and that replication capacity (hazard ratio
[HR] = 4.52; P = 0.01) can predict CD4 decline independently of the viral load
(HR = 2.9; P = 0.004) or protective HLA alleles (HR = 0.61; P = 0.36). We further
demonstrate that Gag-Pro is not the main driver of this association, suggesting that
additional properties of the transmitted virus play a role in disease progression. Fi-
nally, we find that although viruses from the tenofovir arm were 2-fold less infec-
tious, they replicated at rates similar to those of viruses from the placebo arm. This
indicates that the use of tenofovir gel did not select for viral variants with higher
replication capacity. Overall, this study supports a strong influence of the replication
capacity in acute infection on disease progression, potentially driven by interaction
of multiple genes rather than a dominant role of the major structural gene gag.

IMPORTANCE HIV disease progression is known to differ between individuals, and
defining which fraction of this variation can be attributed to the virus is important
both clinically and epidemiologically. In this study, we show that the replication ca-
pacity of viruses isolated during acute infection predicts subsequent disease pro-
gression and drives CD4 decline independently of the viral load. This provides fur-
ther support for the hypothesis that the replication capacity of the transmitted virus
determines the initial damage to the immune system, setting the pace for later dis-
ease progression. However, we did not find evidence that the major structural gene
gag drives this correlation, highlighting the importance of other genes in determin-
ing disease progression.
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IV disease progression is well known to differ between individuals and populations

(1). If left untreated, 70 to 80% of patients develop AIDS within 3 to 10 years.
However, some succumb earlier (rapid progressors) while others progress more slowly
or control their disease (1, 2). Defining which fraction of this variation can be attributed
to the host as opposed to viral characteristics is important both clinically and epide-
miologically.

Several host mechanisms have been identified that correlate with disease progres-
sion, the most important of which is the HLA background of individuals. Protective HLA
| alleles, such as B*57, B*58:01, and B*81 (3, 4), are associated with strong CD8* T-cell
responses that target vulnerable regions of the HIV genome, thereby influencing the
viral load (VL) and slowing down CD4* T-cell decline. The stabilized VL reached after
acute infection, referred to as the VL set point, is often used as a marker of disease
progression, as it is associated with time to AIDS (5). However, genome-wide associa-
tion studies estimate that host factors account for only 15 to 25% of the variation in set
point VL (6, 7), and several studies have implied a role for viral factors. In transmission
pairs, a strong correlation has been observed between the VLs of the donor and the
recipient (8-12), demonstrating that the VL set point is at least partially heritable.
Furthermore, there is evidence that transmission of viruses harboring cytotoxic
T-lymphocyte escape or drug resistance mutations is associated with lower VL and
higher CD4* counts in the recipient (13-16). Overall, the viral genotype is estimated to
account for 20 to 46% of the variation in the VL set point (17).

Exactly how viral factors contribute to disease progression remains unclear but is
likely to involve the intrinsic replication capacity (RC) of a virus and/or its ability to
induce persistent immune activation. In chronically infected individuals, it is well
established that the in vitro HIV RC correlates with the concomitant plasma VL (18-21).
However, less is known about how characteristics of acute and early viruses impact HIV
pathogenesis, with some evidence suggesting that HIV transmission selects for viruses
with high viral infectivity and RC (22, 23). It is plausible that during these early stages
of infection, prior to adaptive immune responses, the infectivity and/or the RC of a virus
contributes to the initial damage to the immune system, influencing later stages of
infection. Recent studies on acutely subtype C-infected individuals from the Zambia
Emory HIV Research Project (ZEHRP) revealed associations between the in vitro RC of
Gag-MJ4 recombinant viruses and set point VL and CD4 decline (24, 25). However,
using a similar approach, we and others did not find convincing associations between
the in vitro RC of early Gag-Pro-NL4-3 recombinant viruses and disease progression
(26, 27).

We therefore propose that additional properties of the transmitted virus drive
clinical progression. Although in chronic infection Gag is a proven major determinant
of viral fitness, other genes, such as env (28-30) and nef (31-33), are known to
significantly impact HIV replication and pathogenesis. Moreover, the construction of
recombinant viruses may artificially change the phenotype of interest. This was shown
for env recombinants, whose neutralization sensitivity is impacted by the backbone
subtype (34) or the cells used to generate the virus (35). Finally, the use of cloned
viruses often implies the selection of one or a few variants as opposed to evaluating
quasispecies (36). This can be confounding, especially in cases of multivariant or
high-diversity transmission.

Therefore, in the current study, we took a different, more in vivo-relevant approach
by isolating viruses from acutely infected individuals, which has been shown to
preserve the phenotypic features of the circulating quasispecies in vivo (37). We then
investigated whether viral infectivity and/or the RC impacted VL and CD4 decline in
women who seroconverted in the CAPRISA 004 microbicide trial, which evaluated the
use of 1% tenofovir (TFV) gel for the prevention of HIV infection. In this cohort, there
was a high percentage (38.6%) of rapid progressors (38). We show that viral RC, but not
viral infectivity, correlates with set point VL and CD4 decline and further demonstrate
that the viral RC can drive CD4 decline independently of the VL or protective HLA
alleles. Finally, we found that viruses from the TFV arm were less infectious and
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TABLE 1 Characteristics of primary isolates?

Particinant ys post- HLA-B alleles VL set point 12 mo CD4+ Time to 350 Infectivity RC
P infection (copies/ml) count (cells/pl) | cells/ul (days) | (TCID50/ng Gag p24) | (x RC of MJ4)
52 218 59

CAP283 TRV 4403 or 4437 5703 or 5707 74445 159 2.04
58 1510 4201 9174 263 108 35.1 1.94
TRV 79 1401 4201 2507 473 04 139
38 1503 or 9503 4403 256085 296 150 156 220
25 4403 8101 0r 8102 399 863 5.7 1.63
29 0801 5802 152538 310 379 6.7 171
54 5801 8101 0r 8102 19530 739 279 145
37 4201 or 4208 5301 0r 5315 147459 336 231 444 152
66 0801 5802 7686 384 102 86 135
a2 4201 or 4208 5301 0r 5315 855 461 7.9 163
TRV 87 0801 4507 188365 330 156 108 2.36
22 1401 5801 793 412 736 372 261
51 4501 0r 4418 4901 or 5001 682000 229 66 120 ND
TRV 37 0702 0r 0761 1516 46632 368 51 230 1.81
TRV 34 1510 4201 1607 619 254 1.46
35 1510 4501 ND ND 50 59 ND
TRV 2 4403 or 4437 5703 or 5707 3044 681 46 273
TRV 20 1510 4201 10261 524 2310 6.9 176
23 5802 5802 4329 436 1003 29 1.00
20 1510 4201 224579 391 337 138 1.80
43 0702 or 0761 5802 8574 850 161 093
TRV 42 0801 4403 8077 533 5.0 172
71 1510 5703 62194 380 268 243 1.86
Y 51 1510 4201 35748 310 52 58 224
43 4201 4201 222000 156 57 107 2.58
TFV 57 1503 or 9503 or 9551 5802 or 5806 21581 280 57 56 164
77 1503 or 9503 or 9531 or 9556 4403 or 4437 or 4445 429247 340 182 7.2 251
1Y 50 5801 5802 35198 432 127 92 2,03
32 0801 0801 18200 400 242 96 2.01
TRV 32 0702 or 0761 or 0726 1402 or 1403 2997 529 7.7 184
47 1510 0r 1537 1801 or 1817N or 1811 22588 365 54 55.6 247
TRV 24 0801 5801 8628 458 736 102 164
TRV 36 1801 or 1817N or 1807 or 1815 or 1826 5101 or 5107 or 5109 or 5137 4617 358 388 35 ND
63 4403 8101 or 8102 20744 422 106 191
TRV 22 4901 5802 142970 382 225 47 119
TFV 31 0702 or 0761 1401 7881 736 59 ND
TRV 33 1503 or 1529 or 1564 or 9503 5101 or 5201 or 5206 12237 439 579 23 132
TRV 2 1510 4501 7837 515 39 ND
TRV 36 0801 5802 20117 300 59 28 2,08

a** multivariant transmission (53); red, detrimental HLA-B allele; green, protective HLA-B allele (3); AD, A/D recombinant in Gag and Nef; X4, CXCR4 tropic; ND, not
determined; TCIDs,, 50% tissue culture infectious dose.

replicated at rates similar to those of viruses from the placebo (PLB) arm. This is
important, as women assigned to the TFV gel arm had higher VL set points than those
in the PLB arm, which raised concern that the drug might have selected for fitter viral
variants (39).

RESULTS

Primary isolates. To evaluate the roles of viral infectivity and the RC of acute
infection viruses on disease progression, we isolated plasma virus from women who
became HIV-1 infected while participating in the 1% TFV microbicide gel trial (40).
Samples (n = 48) were obtained within 3 months of infection as a proxy for the
transmitted virus. A total of 24 plasma samples from the TFV arm and 24 samples from
the PLB arm were matched for time postinfection and the presence of protective HLA
alleles (B*57, B*58:01, and B*81:01). Virus was successfully isolated from 39 plasma
samples (20 PLB arm and 19 TFV arm samples) collected a median of 37 (range, 20 to
87) days postinfection (Table 1). All primary isolates were subtype C in their Gag and
Nef sequences, with the exception of one A/D recombinant (CAP353) (27). Interestingly,
one virus (CAP337) was phenotypically confirmed to be CXCR4 tropic (X4), while the
remaining viruses were identified as CCR5 tropic (data not shown).
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FIG 1 Associations between viral infectivity or replication capacity of viruses from acute infection and
clinical markers of disease progression. Viral infectivity, calculated as the TCID, per nanogram of Gag p24,
did not correlate with the viral load set point (A) or the CD4+ T-cell count, calculated as the geometric mean
of three consecutive visits over 12 months postinfection (B). (C and D) The same markers of disease
progression were compared to viral replication capacity relative to the subtype C reference strain MJ4,
revealing statistically significant correlations. Trend lines with 95% confidence intervals were generated
using linear regression in order to visualize correlations. Blue dots, viruses derived from participants
harboring protective HLA-B alleles (B*57, B*58:01, and B*81:01); red, CXCR4 tropic; green, subtype A/D

recombinant in Gag and Nef.

To evaluate whether the isolated viruses were representative of the in vivo plasma
virus at the time of sampling, for 24 participants, we sequenced the Env V3V5 regions
of multiple variants in the isolate and plasma samples and measured the genetic
distance to the plasma consensus sequence (assumed to represent the transmitted/
founder virus). The maximum DNA distance from the consensus (plasma, median =
0.2%, range = 0.0 to 1.7%; isolate, median = 0.2%, range = 0.0 to 1.5%) did not differ
between plasma and isolate sequences (P = 0.1765; Wilcoxon signed-rank test). This
was further confirmed by phylogenetic analysis showing that isolate sequences were
dispersed within plasma-derived sequences (data not shown). Typical of early infection,
most participants (21/24) exhibited a low-diversity quasispecies in plasma, with mean
intrapatient DNA distances of 0.0 to 0.6% (median, 0.17%). For the three participants
with higher diversity in vivo (CAP348, CAP360, and CAP375), virus isolation was able to
capture multiple variants in at least two of the three participants (data not shown).
Together, these data imply that the viral isolates are a good representation of the
plasma virus in vivo.

Viral infectivity does not correlate with clinical markers of disease progression.
Particle infectivity was measured using the established cervical cell line TZM-bl and
calculated as the infectious titer (50% tissue culture infectious dose [TCIDg,]) per
nanogram normalized for the amount of input virus. This reporter cell line is Tat
inducible and expresses high levels of both CD4 and CCR5/CXCR4 cellular receptors.
Infectivity on TZM-bl cells did not correlate with the concomitant VL or with the VL or
CD4™ count at 3 months postinfection (data not shown). At 12 months postinfection,
a weak but insignificant correlation (Spearman r = 0.299; P = 0.068) was observed
between viral infectivity and the VL set point, but no correlation was observed with the
12-month CD4* count (Fig. 1A and B). Comparable results were obtained when
infectivity was normalized per million viral RNA copies (with VL, Spearman r = 0.276,
P = 0.094; with CD4, Spearman r = —0.228, P = 0.169). As expected, the X4 virus
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FIG 2 Viral RC drives CD4 decline. Kaplan-Meier survival analysis was performed to evaluate the effect of
the viral RC on disease progression, defined as the time to a CD4* T-cell count below 350 cells/ul. The
curves represent the lowest, middle, and highest terciles of RCs and are compared with the log-rank test.

(Fig. 1A, red dot) had a higher-than-median infectivity (Fig. TA and B and Table 1). Of
note, a positive correlation (Spearman r = 0.436; P = 0.010) was observed between viral
infectivity and the RC (data not shown), measured as described below.

The viral RC is associated with the 12-month VL set point and CD4* count. The
viral RC was measured using the Tat-inducible green fluorescent protein (GFP) reporter
T-cell line CEM-GXR (41) and ranged from 0.93 to 2.73 (median, 1.8) times the RC of the
subtype C reference strain MJ4 (Table 1) (42). This is in line with previously reported
MJ4-normalized RC data ranging from 0.01 to 3.5 times (24). The A/D recombinant
CAP353 and the X4 CAP337 did not display a higher-than-median RC and were not
associated with faster disease progression (Table 1).

As expected, due to the large fluctuations in the VL during acute infection, we found
no correlations between the RC and the concomitant VL measured in the sample used
for virus isolation. At 3 months postinfection, however, we observed a negative
correlation of the RC with the CD4* count (Spearman r = —0.452; P = 0.007) but no
correlation with the VL (Spearman r = 0.267; P = 0.127). More importantly, at 12
months postinfection, an elevated RC was consistently associated with higher VLs and
lower CD4* counts (with VL, Spearman r = 0.346, P = 0.045; with CD4, Spearman r =
—0.461, P = 0.006) (Fig. 1C and D).

As class | HLA-B alleles B*57, B*58:01, B*81:01, and B*39:10 were shown to be
protective in this population (38, 43), we then excluded participants who harbored
these alleles (Fig. 1, blue dots) and found an even stronger association between the RC
and the VL or CD4* count (Spearman r = 0.552, P = 0.003, and r = —0.562, P = 0.003,
respectively), indicating that this association was not driven by the presence of these
alleles. When only participants with protective HLA-B alleles were considered for
analysis (n = 9), the correlation with the CD4* count could still be observed, although
it lost significance (Spearman r = —0.483; P = 0.194).

To evaluate the effect of the RC on disease progression rather than on a mean CD4+
count value over 12 months, a Kaplan-Meier survival analysis was performed with the
endpoint defined as a CD4* count below 350 cells/ul. In this analysis, the RC, expressed
categorically as high (RC 2.04 to 2.73 times that of MJ4), middle (RC 1.64 to 2.01 times
that of MJ4), or low (RC 0.93 to 1.64 times that of MJ4), was consistently associated with
faster CD4 decline (Fig. 2).

The viral RC drives CD4 decline independently of the VL. As the VL is a
well-known driver of CD4 decline, we evaluated the individual effects of the VL and the
RC in a multivariable Cox proportional-hazard model (Table 2). To adjust for the
presence of detrimental (B*58:02 and B*18) and protective (B*57, B*58:01, and B*81:01)
HLA-B alleles, as well as potential differences between trial arms, we included these
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TABLE 2 Host and viral characteristics independently predict CD4* T cell decline

Factor Hazard ratio? 95% Clb P value
Tenofovir arm 1.65 0.65-4.18 0.291
Protective HLAs 0.61 0.21-1.75 0.355
Detrimental HLAs 3.00 1.22-7.39 0.017
Replication capacity 452 1.43-14.3 0.010
Viral load set point 2.90 1.40-5.99 0.004

aA multivariable Cox proportional-hazards model was used to evaluate the individual effects of the trial arm,
host’s HLA alleles, viral replication capacity (continuous variable), and viral load set point (log;q
transformed) on disease progression using a single CD4* T-cell count below 350 cells/ul as the endpoint.
bCl, confidence interval.

variables in our model. Although, as expected, the VL set point had a significant impact
on CD4 decline (hazard ratio [HR] = 2.9), the viral RC remained a strong and indepen-
dent predictor of CD4 decline (HR = 4.5) (Table 2). This independent effect is further
illustrated by CAP287 and CAP308 who, despite early viral control (<10,000 copies/ml
at set point), progressed to a CD4* count below 350 cells/ul within just 4 months of
infection (Table 1).

When the RC was included as a categorical rather than a continuous variable,
comparable hazard ratios were observed for both the lowest and middle RC terciles
(HRs of 0.15 and 0.29, respectively, with overlapping confidence intervals), suggesting
that the highest RC tercile largely drives CD4 decline (data not shown). This is illustrated
by the fact that of the 11 participants infected with a high-RC virus, 9 progressed to a
CD4™* count below 350 cells/ul within 1 year (Table 1). The remaining 2 individuals,
CAP315 and CAP323, had protective HLAs and controlled VL, suggesting they mounted
an effective immune response to the high-RC virus. CAP315, however, lost control of
the VL after 12 months, possibly due to the presence of multiple B*57/58-linked
polymorphisms associated with cytotoxic T-lymphocyte escape (T242N, A146P, and
1147L) and compensation (1223V), which were not seen to revert by 12 months
postinfection (data not shown). As this virus was isolated only 22 days after transmis-
sion, these mutations could have been transmitted (Table 1).

The presence of detrimental HLA-B alleles (B*58:02 and B*18) was significantly
associated with increased risk (HR = 3.0) (Table 2). Interestingly, the presence of
favorable alleles did not significantly impact disease progression in our sample set (25).
Finally, as shown previously (39), being assigned to the TFV arm did not impact disease
progression.

Gag-Pro does not drive the association between viral RC and disease progres-
sion. Previously, we evaluated the RC of Gag-Pro-NL4-3 recombinant viruses derived
from 75 participants (27). In the current study, we isolated HIV from 32 of these
participants, allowing us to compare the RC of the full-genome virus to the Gag-Pro-
mediated RC. Interestingly, the Gag-Pro-mediated RC did not correlate with the viral RC
(Spearman r = —0.020; P = 0.91) (Fig. 3A), suggesting that the overall replicative fitness
of the cognate viruses was driven by factors other than, or in addition to, the Gag-Pro
function.

We then analyzed the contemporary Gag sequences generated from these partici-
pants, since the number of HLA-l-associated amino acid polymorphisms (occurring in or
within five amino acids of well-defined, optimal epitopes [13]) was previously shown to
negatively impact the RC (21, 26). While the number of HLA-l-associated polymor-
phisms did indeed correlate negatively with the Gag-Pro-mediated RC in our partici-
pant set (Spearman r = —0.253; P = 0.038; n = 68) (Fig. 4), the same was not seen with
the virus RC (Spearman r = 0.196; P = 0.274; n = 33) (Fig. 3B). This suggests that
although the accumulation of these polymorphisms reduced fitness, they did not
impact the overall RC of the cognate viruses, further supporting a driving role for
factors other than Gag-Pro influencing the viral RC.

Finally, in the Zambian ZEHRP cohort, Prince et al. and Claiborne et al. showed
associations between the RCs of Gag-MJ4 recombinants and markers of disease pro-
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gression (24, 25), as well as a negative association between the number of HLA-I-
associated polymorphisms in Gag and the VL set point (13, 24). However, when we
performed a similar analysis on our cohort for 71 to 73 participants (Fig. 5), we found
that neither the Gag-Pro-mediated RC nor the number of HLA-l-associated polymor-
phisms correlated with the VL set point or 12-month CD4™* count (Fig. 5A, B, and D). We
did, however, find a moderate but statistically insignificant correlation between Gag-
Pro-mediated RC and the VL set point (Spearman r = 0.214; P = 0.073; n = 71) (Fig. 5C).
When evaluated in a Cox proportional-hazard model, the Gag-Pro-mediated RC also did
not impact disease progression (HR = 0.51; P = 0.651) (data not shown).

Viruses isolated from TFV arm participants were less infectious but did not
differ in RC. Since viruses in this study were isolated from individuals who participated
in the 1% TFV microbicide trial, we were interested in evaluating whether viral
infectivity and/or the RC differed between trial arms. For this analysis, we considered
either all viruses or the 16 TFV-PLB pairs that were matched for time postinfection and
the presence of protective HLA-B alleles. Regardless of the sample set used, we found
that the median viral RCs were similar between trial arms (Fig. 6). However, viruses from
the TFV arm were found to be approximately 2-fold less infectious than viruses isolated
from the PLB arm (Fig. 7A). Similar results were obtained when infectivity was normal-
ized per million viral RNA copies (TCIDso/million copies, 1.7-fold; Mann-Whitney P =
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FIG 5 Gag-Pro does not drive the association between viral replication capacity and disease progression.
The number of HLA-I-associated amino acid polymorphisms in Gag (A and B), as well as the replication
capacity of Gag-Pro-NL4-3 recombinants (C and D), did not correlate with the viral load set point or CD4*
T-cell count, calculated as the geometric mean of three consecutive visits over 12 months postinfection
(reanalysis from reference 27).

0.035) (data not shown) or when only the matched samples were considered (TCID,/
nanogram p24, 2.26-fold; Mann-Whitney P = 0.0039) (data not shown). To evaluate
whether the decreased infectivity in the TFV arm was due to lower viral entry efficiency,
we mitigated this rate-limiting step by adding DEAE-dextran or by using spinoculation.
As expected, viral infectivity increased by orders of magnitude, yet the difference
between the trial arms disappeared (Fig. 7B and C), suggesting a role for viral entry.

DISCUSSION
To date, most research has focused on host factors to explain the variation in HIV
pathogenesis between individuals. However, new data and analyses have shown that
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FIG 6 Viruses isolated from TFV arm participants did not differ in replication capacity. Viral replication
capacity was expressed relative to the subtype C reference strain MJ4 and compared between the two arms
of the 1% TFV microbicide trial. Medians are displayed both as lines and as numbers. Considered for analysis
were either all 39 viruses (A) or only 16 TFV-PLB pairs that were matched for time postinfection and the
presence of protective HLA-B alleles (B). Statistics were generated using the nonparametric Mann-Whitney
U test.
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FIG 7 Viruses isolated from the TFV arm participants were 2-fold less infectious than those from the PLB arm participants. Viral infectivity, calculated as the
TCID,, per nanogram of Gag p24, was measured using TZM-bl cells and compared between the two arms of the 1% TFV microbicide trial. Medians are displayed
both as lines and as numbers. Infectivity was measured in standard cell culture medium (A), after spinoculation to enhance infectivity (B), or in the presence
of the chemical enhancer DEAE-dextran (C). Statistics were generated using the nonparametric Mann-Whitney U test. W/O, without; W/, with.

the VL set point is partially heritable (33%) (8, 11, 12), suggesting that transmitted viral
factors also play an important role in disease progression and that they are potentially
underestimated (17). As HIV rapidly evolves following transmission, it is crucial for
pathogenesis studies to elucidate the properties of viruses collected soon after trans-
mission, prior to extensive adaptation in the new host. Recent studies have suggested
that HIV transmission selects for viruses with high infectivity and replication capacity
(22). In this study, using viruses isolated from acutely infected women, we investigated
how these early viral characteristics impact subsequent VL and CD4 decline.

Our results demonstrate that the presence of a virus with high RC during early
infection contributes significantly to disease progression, both by increasing the VL set
point and by accelerating CD4 decline. Interestingly, this effect on disease progression
was strong (HR = 4.5) and independent of host protective HLA-B alleles and the set
point VL. This supports the hypothesis that the RC of the transmitted virus determines
the extent of damage to the gut-associated lymphoid tissue in the newly infected
individual before the onset of an adaptive immune response and viral escape. Gut
damage would then drive long-term immune activation and enhance CD4 decline (25).

Using viruses that are biologically representative of circulating virus in vivo, our
results augment observations in a Zambian cohort study that used Gag-MJ4 recombi-
nant viruses to investigate the relationship between the RC and disease progression
(24, 25). Similarly, the Zambian studies showed that the RC correlates with the VL set
point and is an independent predictor of CD4 decline. However, our study also
identified some key differences. Although the presence of protective HLA-B alleles had
a favorable effect on CD4 decline, as shown by Claiborne et al. (25), this was not
significant in our sample set, potentially due to the much smaller sample size and/or
the presence of transmitted escape and/or compensatory mutations. Second, in our
cohort, the viral RC was more strongly associated with disease progression, explaining,
respectively, up to 12% and 21% of the VL set point and the 12-month CD4™" count as
opposed to the correlation coefficients reported by Prince et al. (24). This might be
related to the fact that we evaluated full viruses as opposed to single-gene recombi-
nant viruses.

Using comparisons with Gag-Pro-NL4-3 recombinant viruses, we found that Gag-
Pro alone was not the main driver of this correlation with disease progression. Neither
the RC of Gag-Pro-NL4-3 recombinant viruses nor the underlying number of HLA-I-
associated polymorphisms in Gag correlated with the RC of viruses isolated from the
same participants. Furthermore, in contrast to Prince et al., we did not find statistically
significant correlations between Gag-Pro-mediated RC and the VL set point or 12-
month CD4* count. For the correlation with the VL set point, this might be due to a
smaller sample size. However, for the association with the CD4* count, sample sizes
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between the cohorts were very similar (CAPRISA, n = 71 versus ZEHRP, n = 63) (24).
Since we observed strong correlations between the viral RC and disease progression,
this implies that in our sample set, Gag-Pro-mediated RC cannot strongly correlate with
viral RC. Hence, other genes are likely to be important contributors to the viral RC and
as such might mask Gag-Pro influence on disease progression. This is further supported
by the fact that, in contrast to the Zambian cohort, the number of HLA-I-associated
polymorphisms in Gag did not correlate with the VL set point, indicating that the
negative impact of these polymorphisms on the Gag-Pro-mediated RC was further
compensated for outside of gag-pro.

The lack of a correlation between the Gag-Pro-mediated RC and the viral RC or
disease progression could be due to a lack of compatibility of the subtype C Gag-Pro
with the subtype B NL4-3 backbone, an important difference in methodology with the
Zambian studies, which used a subtype C backbone (MJ4). However, observations from
previous studies do not support this. Using the same NL4-3-based assay, the RC of
subtype C/B recombinants from chronic infection was shown to correlate with viral
loads and CD4 counts (20), as did the RC of subtype B/B recombinants (21). This
indicates that our assay is clinically relevant despite the mismatched subtypes. More-
over, similar to what was reported for subtype B/B recombinants (21), we found a
negative correlation between the number of HLA-I-associated polymorphisms in Gag
and the Gag-Pro-mediated RC, suggesting that this number is meaningful and is not
impacted by the subtype mismatch between the backbone and the Gag-Pro insert.

Since no association was found with disease progression, we did not expect the
Gag-Pro-mediated RC to strongly correlate with the viral RC. However, the lack of even
a weak association was surprising, given Gag-Pro’s role in particle assembly and
structure. Methodological differences in generating recombinant viruses as opposed to
plasma isolates, including the introduction of genetic changes, might have increased
variability, decreasing our power to detect weak correlations with our limited sample
size (n = 32). Second, it remains possible that, despite being clinically and biologically
relevant, the Gag-Pro-NL4-3 assay used in our cohort is less sensitive than the Gag-MJ4
assay used in the Zambian studies. This would further explain why we did not pick up
strong correlations in the smaller studies on acute infection viruses between Gag-Pro
function and markers of disease progression (21, 26). However, the latter might also be
influenced by demographic differences between the two cohorts. Although certain Gag
polymorphisms are known to carry substantial fitness costs, the effect of the transmit-
ted Gag on disease progression ultimately depends on the degree of preadaptation to
the recipient’s HLA molecules (44-46). Hence, factors such as the cohort’s HLA profile
and the age of the epidemic can influence this correlation. Furthermore, since inflam-
mation at the genital mucosa may affect the phenotype of the transmitted virus (47)
and since both inflammatory profiles (48, 49) and the fitness of the transmitted virus
(50) have been shown to differ between men and women, the fact that our cohort was
exclusively female may have influenced differences in study findings.

Because previously we did not find a relationship between baseline Nef-mediated
CD4™* HLA downregulation and the 12-month VL or CD4* count (27), we are currently
investigating the role of the viral envelope. Indeed, several studies have shown that Env
can impact disease progression. Previous studies showed that viruses from elite con-
trollers exhibit reduced entry efficiency (51) and that intraindividual envelope diversity
correlates with in vitro RC (28). Although we did not evaluate entry efficiency directly,
viral infectivity was measured in a single-cycle assay and hence could be considered an
approximate measure of early Env characteristics. As expected, viral infectivity corre-
lated with viral RC. This was previously shown for full-length infectious molecular clones
generated from transmitted and nontransmitted viruses (52). However, the lack of a
strong association between viral infectivity and disease progression suggests that the
viral RC and its subsequent impact on disease progression are determined by the
contributions of multiple structural viral genes rather than one major gene.

Finally, of the viruses in this study, 49% were derived from women infected while
using a vaginal gel containing 1% TFV. We previously reported that TFV use did not
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alter the number of transmitted/founder variants identified in these women (53), nor
did it select for transmitted drug resistance (54). However, higher VLs were observed in
women who became infected in the TFV arm, raising concerns that TFV might have
selected for the transmission of fitter variants (39), but our results provide no evidence
to support this hypothesis, as viral infectivity was 2-fold lower in the TFV arm and the
RCs did not differ between the trial arms. The reduced viral infectivity could be a
consequence of genital inflammation. Although TFV gel itself does not cause inflam-
mation (55), it has been reported to prolong preexisting inflammation (56). This would
allow transmission of less infectious HIV (47). The difference in infectivity between the
trial arms disappeared when viral entry was facilitated chemically or physically, sug-
gesting that TFV arm viruses may have reduced entry efficiency. We are currently
constructing pseudoviruses containing the viral isolates’ env genes to evaluate entry
efficiency in a more direct way.

Overall, this study supports a strong influence of acute viral RC on disease progres-
sion, potentially driven by the interaction of multiple genes rather than a dominant role
of major structural genes, such as gag. This highlights the importance of evaluating
more biologically relevant, full viruses as opposed to single-gene recombinants.

MATERIALS AND METHODS

Study subjects and samples. Women participating in the CAPRISA 004 study, a randomized,
controlled, double-blinded trial to assess the safety and effectiveness of the vaginal microbicide 1% TFV
gel (40), underwent monthly HIV testing using 2 rapid HIV antibody tests (Abbott Determine and
Unigold). The date of infection was estimated as the midpoint between the last negative and first
positive antibody tests or as 14 days before the first positive PCR result if a woman had tested negative
on rapid antibody tests but positive on retrospective PCR testing. After diagnosis, participants had VL
(Roche Cobas AmpliPrep/TagMan HIV-1 test, v2) and CD4+ T-cell (TruCount method; BD Biosciences, San
Jose, CA) counts performed at each visit. Plasma samples collected within 3 months postinfection were
selected for virus isolation from 24 TFV/PLB participant pairs and matched for time postinfection
(maximum, 7 days difference) and the presence of protective HLA alleles (B*57, B*58:01, B*81:01, or
B*39:10) (38, 43). The University of KwaZulu-Natal and University of Cape Town Research Ethics Com-
mittees approved this study, and all participants provided written informed consent.

Cells. Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats of healthy blood
donors (kindly provided by the Western Province Blood Transfusion Service, Cape Town, South Africa)
through Lymphoprep density gradient centrifugation. CEM-GXR25 (41) and TZM-bl cells were maintained
in R10 medium (RPMI 1640 medium or Dulbecco’s modified Eagle’s medium [DMEM] [Lonza, Belgium]
containing 10% fetal bovine serum [FBS] [Biochrom], 2 mM glutamine [Lonzal, 50 ng gentamicin/ml
[Lonza], respectively).

Acute virus isolation. Virus stocks were isolated from cryopreserved patient plasma using the
MCAS VitalVirus HIV isolation kit (Miltenyi Biotec, Germany) and 3 X 3 stimulation of PBMCs according
to the manufacturer’s protocol. Briefly, cryopreserved PBMCs from three HIV-seronegative donors were
thawed, CD8 depleted using MACS CD8 MicroBeads (Miltenyi Biotec), pooled to 4 X 10%/ml in R10
medium, and finally stimulated for 72 h with either 0.5 ug/ml phytohemagglutinin (PHA) (Remel, Thermo
Fisher, USA), 5 ng/ml PHA, or the surface-immobilized anti-CD3 monoclonal antibody (MAb) OKT3 (Leaf;
Biolegend, USA), i.e,, 3 X 3 stimulation. Of note, the use of cryopreserved PBMCs allowed us to passage
all the viruses through the same sets of donor PBMCs. Next, virus was purified from 1 ml patient plasma
by incubation at room temperature for 30 min with 250 ul anti-CD44 magnetic beads and subsequent
binding to wMACS columns (Miltenyi Biotec). Beads with bound virus were washed, eluted in R10
medium supplemented with 200 U/ml interleukin 2 (IL-2) (Gentaur, Belgium), and added to the 3 X
3-stimulated CD8-depleted PBMCs to a final concentration of 2 X 10/ml. The cells were infected by
spinoculation for 1 h (1,200 X g; 25°C) and subsequently maintained at a concentration of 1 X 10° to 2 X
106/ml with expansion over 2 to 3 weeks to 30 to 40 ml by weekly addition of fresh 3 X 3-stimulated
cells. The culture supernatants were monitored for p24 production using an Allianz HIV-1 p24 antigen
enzyme-linked immunosorbent assay (ELISA) kit (PerkinElmer, USA) and were harvested and stored at
—80°C on day 25.

Determination of coreceptor usage. The coreceptor usage of the isolated viruses was determined
by preincubating TZM-bl cells with a serial dilution of two CCR5 inhibitors, i.e., maraviroc (NIH Reagent
Program) and PSC-RANTES (kindly provided by Oliver Hartley), and one CXCR4 inhibitor, i.e., JM-2987 (NIH
Reagent Program). Subsequently, the cells were infected with 200 TCID, of each virus in the presence
of 20 ug/ml DEAE-dextran. After 48 h, luciferase activity was quantified, and nonlinear regression analysis
was used to calculate the 50% inhibitory concentration. Viruses were considered R5 tropic if they were
inhibited >98% by 5,000 nM maraviroc or 40 nM PSC-RANTES and <5% by 10,000 nM JM-2987.

Single-genome env amplification and sequencing. Viral RNA was extracted from the isolate stocks
and plasma samples using the Roche MagNA Pure Compact System and RNA isolation kit and reverse
transcribed using Superscript lll RT (Invitrogen, USA) with oligo(dT),,. Env amplicons were generated by
limiting dilution of the cDNA template prior to nested PCR using primers that were previously described
(57). PCR amplicons were confirmed on gel and sent for Sanger sequencing by the Central Analytical

April 2017 Volume 91 Issue 8 e01806-16

Journal of Virology

jviasm.org 11


http://jvi.asm.org

Selhorst et al.

Facilities at the University of Stellenbosch. Sequences were excluded if they contained >3 double peaks
in the chromatogram or deletions >30 nucleotides long. To include plasma-derived Env V3V5 sequences
that were already available for comparison (53), all other sequences were truncated to the V3V5 region.
Sequences were aligned in BioEdit to a subtype C acute (<3-month) consensus sequence, which
was generated from available CAPRISA 002 plasma Env sequences (n = 592). MEGA6 (http://www
.megasoftware.net/) was used to calculate pairwise DNA distances and to generate a maximum-
likelihood tree.

Single-cycle infectivity. Viral isolates were serially diluted and added in triplicate to 10,000 TZM-bl
cells (NIH AIDS Reagent Program) in the presence or absence of 20 ug/ml DEAE-dextran (Sigma) or
followed by spinoculation for 1 h (1,200 X g; 25°C). Luciferase activity was quantified after 48 h by adding
Steadylite HTS (PerkinElmer) and measuring luminescence with a Promega Glomax 96 luminometer. The
relative light units (RLU) generated per volume of virus stock were calculated using all virus dilutions in
the linear range of the assay (2,000 to 600,000 RLU). The TCID,, was calculated using the method of Reed
and Muench (58), and viral titers were expressed as infectious units per milliliter. Viral infectivity was
calculated as TCID, per nanogram of Gag p24 or per million viral RNA copies in each stock (Roche Cobas
AmpliPrep/TagMan HIV-1 test, v2).

Virus replication assay. The in vitro RCs of the primary isolates were evaluated using the GFP
reporter T-cell line CEM-GXR25. Briefly, 1 X 10¢ cells were infected in duplicate at a constant multiplicity
of infection of 0.06% (on day 2) in a total volume of 1.5 ml. The percentage of GFP-positive (GFP*) cells
was measured using flow cytometry (FACSCalibur; BD Biosciences) at days 2 through 10 postinfec-
tion by harvesting and refreshing 0.5 ml of the culture. For each virus, the background value
measured in mock-treated controls was subtracted, and the natural-log slope of the percentage of
GFP~ cells was calculated from day 3 during the exponential phase of viral spread (GFP* cells <
11%). For ease of interpretation, replication capacities were normalized to the RC of the subtype C
reference strain MJ4.

Gag-Pro-mediated RC and sequence analysis. HIV-1 gag-protease regions were previously ampli-
fied from bulk plasma RNA by Chopera et al. (27) (GenBank accession numbers KF208740 to KF208816)
and used to construct Gag—Pro-NL4-3 recombinant viruses whose RC was measured by flow cytometry
using the CEM-GXR25 cell line (27). For the sequence analysis, HLA-I-associated polymorphisms were
defined as occurring in or within 5 amino acids of well-defined, optimal epitopes in chronically clade
C-infected individuals (Goepfert et al. [13]). The A/D recombinant CAP353 was excluded from this
analysis.

Statistical methods. Statistical analyses were conducted using GraphPad Prism 5 (GraphPad, USA)
and STATA (StataCorp, USA). VL and CD4* counts were determined as the geometric mean of 3
consecutive visits over 3 or 12 months postinfection, with the exception of CAP317 and CAP375, who
started highly active antiretroviral therapy (HAART) at 25 and 34 weeks, respectively, and for whom the
last known stable values were used. Correlations were performed using the Spearman rank test, and
trend lines and 95% confidence intervals were generated using linear regression. Survival analysis was
used to investigate the relationship between the RC and CD4 decline. The endpoint was defined as the
time for a single CD4* count to fall below 350 cells/ul. The first 7 weeks postinfection were excluded to
allow CD4+ recovery after acute infection. A Cox proportional-hazards model was used to assess the risk
associated with high viral RC with or without adjustment for potential confounding factors. The trial arm
and the number of protective and detrimental HLA alleles (B*58:02 or B*18) were included in the model
as explanatory variables.
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