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Abstract

The Baum-Welch algorithm for training hidden Markov models (HMMs) requires
model topology and initial parameters to be specified, and iteratively improves the
model parameters. Sometimes prior knowledge of the process being modeled al-
lows such specification, but often this knowledge is unavailable. Experimentation
and guessing are resorted to. Techniques for discovering the model structure from
observation data exist but their use is not commonplace. We propose a state split-
ting approach to structure discovery, where states are split based on two heuristics:
within-state autocorrelation and a measure of Markov violation in the state path.
Statistical hypothesis testing is used to decide which states to split, providing a
natural termination criterion and taking into account the number of observations
assigned to each state, splitting states only when the data demands it.
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Chapter 1

Introduction

1.1 Background

Hidden Markov models (HMMs) are tools for modeling time series. They are used
for classification, clustering and prediction, commonly in speech recognition [68],
biological sequence analysis [38] and stock market forecasting [96], and not so com-
monly in whale song analysis [16], forecasting turmoil in Indonesia [13], and in
neural signal processing [31, 37]. The ubiquity of HMMs is due to their expressive
power, and to the existence of tractable algorithms for HMM inference and param-
eter estimation. This short chapter will informally introduce HMMs, give a brief
description of the structure discovery problem that this thesis seeks to address, and
provide an outline of the rest of the thesis.

1.2 Hidden Markov Models - A Brief Informal

Overview

Consider a series of observations of some process, sampled at regular intervals. Here
are three examples:

1. The type of sandwiches in Johnny’s lunchbox, either toasted cheese, or peanut
butter.

2. The daily rainfall at Umzumbe in millimeters.

3. The (x, y, z) coordinates of someone’s hand as they sign to their friend.

Note the different types of observation variable. 1 is categorical, 2 is real, and 3 is
a vector of real values. In each case, there is some process underlying the production
of the observations, but for now we will assume that these noisy observations are
our only window to the state of the process behind their production.

1



Let’s embellish example 1 a little. Johnny’s mother is self employed. Some days
she is busy with work, and others she is free. Johnny is a strange child, and he
counts everything. Over the last year, Johnny noticed that the kind of sandwich
in his lunchbox depends on whether or not his mother is busy. If she is free, she
is more likely to spend the extra time making toasted cheese. Specifically, if she is
free, he gets peanut butter 30% of the time, and toasted cheese 70%. If she is busy,
he gets peanut butter 90% of the time, and toasted cheese 10%. As jobs tend to last
longer than just a day, if Johnny’s mother is busy the one day, the chances she will
be busy the next are 60%, and 40% that she will be free. Owing to the recession,
periods of unemployment last longer than periods of work, and if Johnny’s mother
was free on one day, she has a 90% chance of being free the next, and a 10% chance
of being busy. Lacking Johnny’s perfect numerical recall, we can benefit much from
figure 1.1, which represents all this information compactly.

Figure 1.1: Johnny’s sandwiches: A Hidden Markov Process. Squares represent the state of
Johnny’s mom, either ‘busy’ or ‘free’. Arrows between states are labeled with the probability of
transiting from one state to another (or to itself). Ellipses represent the output distributions of
their associated state, in this case, the probabilities of Johnny getting PB (Peanut Butter) or TC
(Toasted Cheese) when his mom is in that state.

This describes the process that determines Johnny’s sandwiches. It is a genera-
tive model. Assuming some state at time t = 1, we can use this model to generate
a sequence of states and observations from t = 1 onwards. Say we started at time
t = 1 in state ‘busy’. To generate the observation (the type of sandwich) at time
t = 1, we refer to the observation probabilities associated with that state. We pick
a random real number between 0 and 1. If it is less than 0.9 (look at the observa-
tion probabilities for state ‘busy’), then the observation produced is PB, else it is
TC. Then, to decide which state to move to, we generate another random number
between 0 and 1. If its less than 0.6 (look at the arrows starting at ‘busy’), the
state at time t = 2 will be ‘busy’, else it will be ‘free’. Proceeding in this fashion,
we could generate a sample sequence produced by this process.

A few things need to be noticed. Firstly, the state at time t+1 depends only on
the state at time t. The process governing the evolution of the state sequence is thus
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called a Markov process, of which there will be more later. Now in the case where
we don’t observe the states of the process (Johnny doesn’t know whether or not
his mom is actually busy), but only the observations they stochastically produce,
we say the Markov process is ‘hidden’. Apart from representing the probabilities
of the very first state, figure 1.1 represents a fully specified hidden Markov model.

There is a tension present above: HMMs deal with the case where the states
are not directly observable, but, in this example, we somehow knew the dynamics
governing how the system moved between states from one day to the next. How is
this possible? For now, we will spin the yarn that Johnny used to know on what
days his mother was busy but stopped paying attention after receiving a TV and
so he no longer knows. Before, when he could view the entire system, he could
simply count how often she changed from busy to free and vice versa, and how
often he got certain sandwiches in certain states, and use these counts to estimate
the frequencies represented by the HMM (called the HMM ‘parameters’). This,
however, is not typically the situation. In most applications of HMMs, we never get
to see the states directly. How then, might we construct HMMs to model anything?
A technique for constructing an HMM from the observations alone was presented
in [42] in 1970, and is still the most commonly used today. It is considerably
more involved than Johnny’s simple counting strategy, so unless Johnny’s surname
happened to be von Neumann, he would most likely never have figured it out. In
the canonical exposition [68], it is one of the three important problems associated
with HMMs, and will be discussed after the other two.

The three problems canonically associated with HMMs [68] are:

• How can we efficiently compute the probability of a particular sequence of
observations, given a particular model? This is the probability that a par-
ticular HMM, if used to generate an observation sequence of the appropriate
length, would output that particular sequence, as opposed to some other se-
quence. This has a fairly simple analytical expression which can be efficiently
computed with the Forward algorithm.

• Given a model and a sequence of observations, how can we compute the most
likely sequence of states that produced that observation sequence? This is
efficiently solved using the Viterbi algorithm.

• Given a model and a sequence of observations, how can we modify the model
parameters to create a new model, such that the probability of the obser-
vation sequence given the new model is greater than the probability of the
observation sequence given the old one? This is solved using the Baum-Welch
algorithm.

The algorithms that solve these three problems are crucial to most HMM ap-
plications. We can use them to build models for prediction, perform supervised
classification, and unsupervised clustering of sequences of observations. The formal
specification of HMMs and the solutions to these three problems will be the next

3



chapter’s goal. Before that, however, we will first informally state the structure
discovery problem that this thesis seeks to address.

1.3 The Structure Discovery Problem - An Infor-

mal Statement

Armed with algorithms to solve the three canonical HMM problems, a practitioner
proceeds by specifying an initial model, including all parameters, and iterating
the Baum-Welch algorithm to improve how the model fits the data. If one knows
much about the underlying process, one can use this to make informed decisions
about model structure, such as how many states to use. As Baum-Welch training
does not guarantee that globally optimal model parameters are found, specifying
good initial model parameters is important in practice to avoid getting trapped
in deleterious local optima. Without knowledge of the process, one is forced into
guessing both model structure and initial parameters: a situation which is clearly
not ideal. Structure discovery approaches to hidden Markov modeling attempt
to ameliorate this by providing strategies to construct HMMs without specifying
initial parameters and attempting to avoid local optima during training. This thesis
proposes and tests a novel structure approach.

1.4 Thesis Outline

Chapter 2 introduces probability theory, which is followed by a formal presentation
of HMMs. The rest of the chapter describes in detail the Viterbi algorithm for
state-path inference, the Forward algorithm for likelihood computation, and the
Baum-Welch algorithm for parameter learning.

Chapter 3 begins with a survey of HMM applications in a variety of domains:
gesture recognition, the analysis of behavior, neural signal processing, bioinformat-
ics, ecological modeling, medicine, weather, fault detection and music. After this,
the HMM structure discovery problem is introduced, and criteria for model selec-
tion are briefly discussed. Finally, previous HMM structure discovery approaches,
mostly based on state splitting or state merging, are surveyed.

Chapter 4 presents a novel HMM structure discovery approach. The notion
of within-state autocorrelation is introduced, and arguments are made for why
it is a useful heuristic for discovering the structure of an HMM. The problem of
overlapping densities is discussed, and a further heuristic is introduced to solve it.
A state splitting algorithm based on these heuristics is described, and it it tested
on a classification task using synthetic univariate data, as well as real multivariate
data, comparing classification accuracies with those from standard Baum-Welch
training.
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Chapter 5 begins with some reflections on the proposed algorithm and suggests
some potential avenues for future research. These include adapting the algorithm
to work for discrete observation data, extending the complexity of each state’s
observation distribution, and combining the algorithm with an already existing one
to improve its efficiency.

The optimal reading path through this thesis depends on a reader’s background.
Someone completely unfamiliar with HMMs should read it as is, although if amidst
the detail of chapter 2 they begin to wonder “What is it all for?” they might want
to take a brief detour through any interesting looking applications in section 3.1 to
help recruit motivation. A reader familiar with HMMs from a speech recognition
background, and thus comfortable with vectors of continuous observations, could
begin with section 3.2. One familiar with discrete-output HMMs, perhaps from a
bioinformatics background, could read section 2.5.8, using the summary in section
2.3.1 to reconcile any notational differences, and then read from section 3.2 onwards.

5



Chapter 2

Theoretical Background

This chapter introduces the probability theory necessary to understand HMMs,
which will form the analytical framework for the rest of this thesis. A formal
treatment of HMMs and their associated algorithms follows this.

2.1 Probability Theory

As might be gathered from the previous chapter, understanding the techniques be-
hind hidden Markov models requires familiarity with elementary probability theory,
which we introduce here. The exposition in this section closely follows [12].

Consider a number of trials of some experiment, where each trial has a number
of different outcomes. For our purposes, the probability of a particular outcome is
the fraction of the times that outcome occurs over the total number of trials, as the
number of trials approaches infinity. To clarify, and introduce some notation, we
once again recycle our Johnny example. Concerning ourselves, for now, only with
Johnny’s sandwiches, we want to denote the probability that, on a randomly se-
lected day, Johnny will get a particular kind of sandwich. We introduce the random
variable T , for the type of sandwich Johnny gets, and the individual outcomes t1,
for a peanut butter sandwich, and t2 for a toasted cheese sandwich. We denote the
probability that, on a randomly selected day, Johnny gets a peanut butter sandwich
p(T = t1), and that he gets toasted cheese p(T = t2). Notice Johnny can never get
a particular type of sandwich more times than the total number of trials, or less
than 0 times, and thus, by our definition, each probability must lie on the interval
[0, 1]. Also, if we assume that these outcomes are exhaustive (that Johnny has no
other lunch options), and mutually exclusive, the sum of these probabilities will be
1.

One can also consider combinations of variables. Let us denote the probability
that, on a given day, ants crawl on Johnny’s lunchbox p(A = a1), and p(A = a2) the
probability that they don’t. We can then denote the probability that Johnny has
peanut butter sandwiches and that ants crawl on his lunchbox p(T = t1, A = a1).
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Figure 2.1: Deriving the sum and product rules. See text for explanation.

Forgetting Johnny, and moving to a general example, consider sampling from
two random variables, X and Y , which can take the values X = xi for i = 1, ...,M
and Y = yj for j = 1, ..., L. Let N be the number of times we sample, and let
the number of samples where X = xi and Y = yj be nij. Furthermore, ci is the
number of times X = xi, regardless of the value of Y , and rj is number of times
Y = yi, regardless of X. Figure 2.1 represents this situation. p(X = xi, Y = yj) is
the number of times X takes the value xi and Y takes the value yj (called the joint
probability), and is simply the fraction nij/N , as N approaches infinity. Thus,

p(X = xi, Y = yj) =
nij

N
(2.1)

Similarly, the probability that X takes the value xi, regardless of the value of
Y (called the marginal probability) can be denoted

p(X = xi) =
ci
N

(2.2)

Examining figure 2.1, we see that the number of events in column i is simply
the sum of instances over every cell in the column, so ci =

∑
j nij. From equations

2.1 and 2.2, and moving the division by N inside the summation, we have the sum
rule:

p(X = xi) =
L∑

j=1

p(X = xi, Y = yj) (2.3)

The probability of Y = yj given X = xi, denoted p(Y = yj|X = xi) is the
number of times yj and xi jointly occur, over the total number of times xi occurs.

p(Y = yj|X = xi) =
nij

ci
(2.4)
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Figure 2.2: Distributions. Centre is the full joint distribution p(X,Y ). Here, X can take four
values and Y seven. Left is the marginal distribution p(X). Each xi is equal to

∑7
j=1 yj . The

marginal distribution p(Y ) can be calculated in the same fashion, mutatis mutandis. A conditional
distribution would be obtained by taking a particular row or column from the joint distribution,
and normalizing it to ensure that it sums to 1.

From equations 2.1, 2.2, and 2.4, we have the product rule:

p(Y = yj, X = xi) =
nij

N
=
nij

ci
· ci
N

= p(Y = yj|X = xi)p(X = xi) (2.5)

To avoid clumsy notation, we will sometimes use p(xi) to denote p(X = xi), and
p(X) to denote the entire distribution over the random variable X, where context
disambiguates. This allows for the compact expression of the sum and product rule:

p(X) =
∑
Y

p(X, Y ) (2.6)

p(X, Y ) = p(Y |X)p(X) (2.7)

Figure 2.2 serves as a further illustration of the notion of joint and marginal
distributions. It should be pointed out that these extend straightforwardly to more
than just 2 variables. We can also straightforwardly extend these rules to continuous
random variables, by replacing the summation signs with integrals. Conditional
distributions then correspond to a normalized horizontal or vertical slice through
the joint distribution.

2.1.1 Bayes’ Theorem

From the product rule (equation 2.7) and noticing that p(X, Y ) = p(Y,X), we get

p(Y |X) =
p(X|Y )p(Y )

p(X)
(2.8)
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This is called Bayes’ theorem. Applying the sum and product rules to the
denominator, we can express Bayes’ theorem in terms of the probabilities occurring
in the denominator:

p(Y |X) =
p(X|Y )p(Y )∑

Y

p(X|Y )p(Y )
(2.9)

These are the rules we will use in this chapter. If you are not well acquainted
with probability theory, having them ready to hand will almost certainly be helpful.

2.2 Sequential Data

This thesis will only be concerned with sequential data. This is where data points
can be arranged so that they are ordered in some meaningful sense. One point
follows another. Time series, where a series of measurements are taken at discrete
intervals, are good examples of this, but not the only ones. Nucleotide sequences
also qualify, as do horizontal rows of pixels on your screen. An important caveat is
that the intervals between successive measurements must be the same size, although
the formalism can be extended to handle irregular intervals. The observations can
be categorical, as with nucleotide sequences, univariate real valued, as with the
price of a single stock over time, or vectors of real values, as with the pixels on
your (colour) screen. The following exposition will initially deal only with discrete
observation symbols, but will later be extended to deal with real and vector valued
observations.

We will first deal with Markov chains of states, and then hide those states
behind observations, yielding HMMs. From now on, this exposition very closely
follows [68], with a slight twist in the order, and an attempt to fill in some of the
gaps in the derivations.

Consider a process which can be said to be in one of N discrete states, at
discrete moments in time. We denote the set of states S = {S1, ..., SN}. In our
Johnny example, N was 2 and the 2 states were ‘busy’ and ‘free’. qt denotes the
state the process was in at time t. For example, q31 = S2 says that the process was
in state 2 at the 31st time step. Without any assumptions about the dependence
of states on previous states,

p(q1, ..., qT ) =
T∏

t=1

p(qt|q1, ..., qt−1) (2.10)

where T is the last time step in the sequence. This is because, without restricting
assumptions, qt might depend on the whole history of states that have occurred
so far. Inference and learning with such complicated joint distributions is usu-
ally intractable, so we need to make some simplifying assumptions about how the
state sequence evolves from one time period to the next. The assumption present
throughout this thesis is called the first-order Markov assumption.
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2.2.1 The First-Order Markov Assumption

We assume qt is independent of all previous states except qt−1. This is equivalent
to saying that the conditional probability of the state at time t given the entire
history of states is equal to the conditional probability of the state at time t given
only the previous state. It is a credit to the power of notation that this can be
expressed as

p(qt|q1, ..., qt−1) = p(qt|qt−1) (2.11)

This means that the full joint distribution from equation 2.10 can be expressed
as

p(q1, ..., qT ) = p(q1)
T∏

t=2

p(qt|qt−1) (2.12)

If we further assume that p(qt|qt−1) does not depend on t, we can very com-
pactly describe the Markov process with a transition matrix and an initial state
distribution. We denote the transition probabilities with a matrix A, where aij is
the probability of moving to state j, after being in state i, or p(qt = Sj|qt−1 = Si).
Ignoring the sandwiches for the moment, consider just the states of Johnny’s mom
in figure 1.1, and how they shift from one to another over time. If we say ‘busy’ is
state 1, and ‘free’ is state 2, we have

A =

(
0.6 0.4
0.1 0.9

)
Notice that each row must obey stochastic constraints, having non-negative

elements and summing to 1. If we specify the initial state probability distribution,
π, where πi = p(q1 = Si), we have a fully described first-order Markov model.

π =

(
0.2
0.8

)
If we can observe a number of states sequences produced by some Markov pro-

cess, we can estimate the initial and transition probabilities, simply by counting
the starting states and transitions. Also, if we have a particular Markov model,
we can calculate the probability that a particular sequence will be produced, using
equation 2.12, π and A. For the state sequence Q = {2, 2, 1, 1, 2} with the above A
and π,

p(Q = {2, 2, 1, 1, 2}) = π2a2,2a2,1a1,1a1,2

= 0.8× 0.9× 0.1× 0.6× 0.4

= 0.01728
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We can use a simulation as a sanity check on our calculations. We set up a
Markov model with A and π as specified above, and use the sampling procedure
outlined in the introduction (MATLAB code in A.1). We generate one million state
sequences of length 5, and check for what proportion of them Q = {2, 2, 1, 1, 2}.
Happily, the result is 0.017316, which is close to our calculated value of 0.01728.
As the number of simulated trials increases, we would expect this proportion to
converge to the analytically calculated value. The most common sequence of length
5 is Q = {2, 2, 2, 2, 2}, which has a probability of 0.52488, appearing just over half
the time. Indeed, a simulation, also with one million trials, yields a value of 0.5252.
We will use such sanity checks throughout this chapter, wherever appropriate. The
MATLAB code for such sanity checks is in A.2.

2.3 Hidden Markov Models

The Markov process we could previously observe must now be hidden. To reca-
pitulate the big picture, a Markov model consists of a set of states, a matrix of
transition probabilities describing the evolution of the state sequence, and a vector
of initial state probabilities. To create an HMM, we take such a Markov model and
assign to each state a distribution of observations (also called outputs or emissions
in the literature). The Markov model produces a sequence of states and, for each
state, an observation is sampled from that state’s observation distribution. This
section will begin by introducing the notation used in the rest of the chapter. Some
of it has been defined before but, due to its importance, will be presented again.

2.3.1 Notation

• N is the number of states in the HMM.

• S = {S1, ..., SN} is the set of states.

• qt denotes the state the model was in at time t, with Q denoting the entire
state sequence.

• M is the number of distinct observation symbols produced by the HMM.

• V = {v1, ..., vM} denotes the set of observation symbols.

• Ot denotes the observation symbol at time t, with O denoting the entire
observation sequence.

• T is the total number of time steps.

• A = {aij} denotes the state transition probability distribution, with 1 ≤
i, j ≤ N and,
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aij = p(qt+1 = Sj|qt = Si) (2.13)

• B = {bj(k)} denotes the observation symbol probability distribution in state
j, where 1 ≤ j ≤ N and 1 ≤ k ≤M , and

bj(k) = p(Ot = vk|qt = Sj) (2.14)

• π = {πi} denotes the initial state distribution, where 1 ≤ i ≤ N , and

πi = p(q1 = Si) (2.15)

• λ = (A,B, π) is the compact notation denoting the full HMM.

Stated using this notation, an HMM generates a state sequence Q and an
observation sequence O. The state sequence evolves as a Markov chain, with
p(q1 = Si) = πi, and p(qt+1 = Sj|qt = Si) = aij, until T is reached. For each
t, p(Ot = vk|qt = Sj) = bj(k). Typically the observation sequence is visible but the
state sequence is hidden, and needs to be inferred.

2.3.2 The Three HMM Problems, Formally Restated

Armed with this notation, we can now restate the three canonical HMM problems,
and say why they are useful.

Problem 1 - Computing p(O|λ)

For this problem we are given a particular observation sequence O, and a model
λ. We want to compute in what proportion of trials λ would produce O, as the
number of trials tends to infinity. This is extremely useful, because when we are
trying to match models to observations sequences, as in a classification task, p(O|λ)
is exactly what we need. The Forward algorithm solves this problem.

Problem 2 - Finding the Most Likely State Sequence

Here, we are given a model λ and an observation sequence O, and we want to
find a state sequence Q that maximizes p(Q|O, λ). This is efficiently solved using
the Viterbi algorithm, and the corresponding Q is often referred to as the ‘Viterbi
path’. This is especially useful when the states of the model have some interesting
real-world interpretation.
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Problem 3 - Improving the HMM Parameters

Given a model λ and an observation sequence O, problem 3 involves modifying
the parameters of λ to produce a new model λ, such that p(O|λ) ≥ p(O|λ). The
Baum-Welch algorithm computes just such a λ. This procedure can be iterated
until p(O|λ) reaches a (local) maximum, which brings us to the most common
way HMMs are constructed for processes. First, obtain a collection of training
observation sequences. Then, guess a number of states and the initial architecture
and parameters for λ. Lastly, iterate the Baum-Welch algorithm until a local
maximum is reached. The final λ is taken to be the HMM for those observation
sequences. This procedure is problematic for reasons we will discuss in detail later,
but is nevertheless the standard technique for constructing HMMs.

2.3.3 The Forward Procedure

For an observation sequence of length T , O = {O1, ...OT}, the forward procedure
efficiently computes P (O|λ), using an inductive procedure. As a way of better
understanding the problem, we first present a very inefficient way to compute this.

Notice that if we were also given Q, a particular sequence of states, we could
easily compute

p(O|Q, λ) =
T∏

t=1

p(Ot|qt, λ) (2.16)

because the observations are conditionally independent given the state sequence.
Using the product rule,

p(O,Q|λ) = p(O|Q, λ)p(Q|λ) (2.17)

We already know how to calculate p(Q|λ) from equation 2.12. Finally, using
the sum rule,

p(O|λ) =
∑
∀Q

p(O|Q, λ)p(Q|λ) (2.18)

The problem with this calculation is that it requires summing over all possible
state sequences. This is usually intractable, as the number of possible state se-
quences is NT , and T is typically quite large. To mitigate this, we introduce the
‘Forward’ variable, α.

The Forward Variable

αt(i) = p(O1O2...Ot, qt = Si|λ) (2.19)

denotes the joint probability of the partial observation sequence O1O2...Ot from
time 1 to t, and the model being in state Si at time t, given the model λ.
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Solving for αt(i) inductively:

Initialization

Given a model λ, with 1 ≤ i ≤ N ,

α1(i) = p(O1, q1 = Si) (2.20)

Applying the product rule,

α1(i) = p(O1|q1 = Si)p(q1 = Si) (2.21)

Which, from equations 2.14 and 2.15, is simply

α1(i) = bi(O1)πi (2.22)

Induction

Given a model λ, applying the product rule we have

αt(i)aij = p(O1O2...Ot, qt = Si, qt+1 = Sj) (2.23)

Applying the sum rule,

N∑
i=1

αt(i)aij = p(O1O2...Ot, qt+1 = Sj) (2.24)

Extending the partial observation sequence to include Ot+1, relying on the fact
that p(Ot+1) is conditioned only on qt+1,

bj(Ot+1)
N∑

i=1

αt(i)aij = p(O1O2...Ot+1, qt+1 = Sj) (2.25)

Now the right hand side is simply αt+1(j), so

αt+1(j) = bj(Ot+1)
N∑

i=1

αt(i)aij (2.26)
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Termination

αT (i) = p(O1O2...OT , qT = Si|λ) (2.27)

using the sum rule,

p(O|λ) =
N∑

i=1

αT (i) (2.28)

Using equations 2.22, 2.26, and 2.28, we can thus compute p(O|λ).

An Example

We once again return to Johnny and his sandwiches for an example. Let’s encode
peanut butter as 1, and toasted cheese as 2. We are given the observation sequence
O = {1, 2, 2, 1, 1}. Table 2.1 shows the lattice of alpha values calculated for this
example.

Table 2.1: Recursing the forward variable.

t 1 2 3 4 5
αt(1) 0.180000 0.013200 0.002808 0.013280 0.010377
αt(2) 0.240000 0.201600 0.130700 0.035627 0.011213
Oi 1 2 2 1 1

We will refer to this structure as the α-lattice. It is an N × T array, where the
value of row i column t is αt(i). For calculating p(O|λ), we do not need to store the
entire α-lattice, as only αt(i) is needed to compute αt+1(i). We can obtain p(O|λ)
by adding up the final values in the α-lattice α5(1) and α5(2) in this example,
yielding 0.02159. As a sanity check, a simulation of one million trials estimates
p(O|λ) to be 0.02143, which is close enough. The MATLAB code for the Forward
algorithm is in A.3.

Computational Complexity

From equation 2.26, and the example above, we can see that, in each time step, for
every state we compute the sum of an O(1) computation for all the states. Thus,
for each time step, we have an O(N2), computation, implying that the entire com-
putation time is O(TN2). This is much better than the naive O(NT ) computation
from 2.18.
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Preventing Underflow

A serious problem for the forward algorithm in its present form is that the values
of α get exponentially closer to 0 with increasing T , producing underflow errors.
Intuitively, as the observation sequence length increases, the number of possible
observation sequences increases exponentially, which means that the probability of
any particular sequence must quickly approach 0.

One remedy is to re-scale the α values to keep them within some appropriate
dynamic range, and using these scaling coefficients to compute log[p(O|λ)]. This
has the disadvantage of requiring the use of logarithms, but such use is necessary,
as p(O|λ) itself would underflow, for any reasonable T .1

Scaling occurs during the induction step of the forward procedure. We let αt(i)
refer to the unscaled α values, as in the above description of the forward procedure.
We introduce α̂t(i) to refer to α values after scaling. We also require ˆ̂αi(t) to refer
to the α values that are computed from scaled alpha values at previous time steps,
but are not yet themselves scaled. So, to modify equation 2.26,

ˆ̂αt+1(j) = bj(Ot+1)
N∑

i=1

α̂t(i)aij (2.29)

For each time step 1 ≤ t ≤ T , we now introduce a scaling coefficient ct, with

ct =
1

N∑
i=1

ˆ̂αt(i)

(2.30)

giving

α̂t(i) = ct ˆ̂αt(i) (2.31)

The α-lattice must now consist of the scaled α̂ values. As we recurse through the
computation of α̂t(i), building the α-lattice, at every step we multiply each ˆ̂αt(i)
by ct. We thus scale the α values at t, ensuring

∑N
i=1 α̂t(i) = 1, before we compute

the values of the α-lattice for t + 1. This keeps the values in the α-lattice within
a sensible dynamic range. To obtain p(O|λ) we can no longer simply sum over the
last column in the α-lattice, as all the values have been scaled by multiplication
with ct. An inductive proof reveals that

(
T∏

t=1

ct

)
αT (i) = α̂T (i) (2.32)

1There is an error in the Rabiner tutorial paper [68], and whenever we discuss scaling proce-
dures we depart from that paper and refer to ‘Correction to: ‘A Tutorial on ...’ [67]
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Now, since
N∑

i=1

αT (i) = p(O|λ), and
N∑

i=1

α̂T (i) = 1,

p(O|λ) =
1

T∏
t=1

ct

(2.33)

Logging both sides, and using that log(ab) = log(a) + log(b),

log[p(O|λ)] = −
T∑

t=1

log ct (2.34)

Code for the Forward algorithm with the above scaling procedure is in A.4.

2.3.4 The Viterbi Algorithm

The Viterbi algorithm solves problem 2. With an observation sequence O =
{O1...OT} and a model λ, we seek to find a Q = {q1...qT} that maximizes p(Q|O, λ).
This is equivalent to maximizing p(Q,O|λ), which can be seen using the product
rule, noting that p(O|λ) is a constant. The form of the algorithm is very similar
to the Forward algorithm, and so we will focus only on the parts that differ. We
introduce two new variables, δ and ψ. δ plays a similar role to α, but instead of
denoting the cumulative sum of the probability of a partial observation sequence
over all states ending in some particular state, it denotes the maximum proba-
bility of such a partial observation sequence. ψ denotes the partial state sequence
that maximized that probability. The algorithm takes the form of a typical dynamic
programming algorithm, where the δ values propagate forward along a lattice struc-
ture, with ψ values stored accordingly, and then a path is backtracked along the ψ
lattice.

The Delta Variable

for 1 ≤ i ≤ N
δt(i) = max

q1,...,qt−1

p(q1...qt−1, qt = Si, O1...Ot|λ) (2.35)

δt(i) is the maximum joint probability of any sequence of states up until t ending
in Si, and the observation sequence up until t. Formally, ψt(i) denotes the state
that maximized δt(i), for a particular t and i.
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Initialization

As there is no prior state sequence to maximize over, δ1(i) is just the joint proba-
bility of the first state being si, and the first observation occurring whilst in that
state, so

δ1(i) = bi(O1)πi (2.36)

ψ1(i) is set to a null value, 0, as no maximization has yet occurred.

ψ1(i) = 0 (2.37)

Induction

The induction step for the delta variable is similar to equation 2.26. For 2 ≤ t ≤ T
and 1 ≤ j ≤ N ,

δt(j) = bj(Ot) max
1≤i≤N

δt−1(i)aij (2.38)

ψt(j) is then set to the argument that maximized δt(j),

ψt(j) = arg max
1≤i≤N

δt−1(i)aij (2.39)

Termination

We introduce P ∗ which represents the maximum of the final δ values,

P ∗ = max
1≤i≤N

δT (i) (2.40)

and q∗T which is the state that maximized the terminal δ values,

q∗T = arg max
1≤i≤N

δT (i) (2.41)

Backtracking

We now backtrack to find the path through the ψ-lattice that led to q∗t , so we begin
there and work backwards. For t = T − 1, T − 2, ..., 1

q∗t = ψt+1(q
∗
t+1) (2.42)

Q∗ is then the path {q∗1...q∗T} that maximized p(Q|O, λ), henceforth, the Viterbi
path.
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Preventing Underflow

The Viterbi algorithm as stated above also suffers from underflow errors when T gets
large enough, for the same reason the Forward algorithm does. We do not, however,
need to implement such a complicated scaling procedure. Instead, we can use the
fact that log(ab) = log(a) + log(b), and modify the initialization and recursion
steps of the algorithm so that we compute the maximum of log[p(q1...qt−1, qt =
Si, O1...Ot|λ)].

The Log-Viterbi Algorithm

We introduce φt(i),

φt(i) = max
q1,...,qt−1

log[p(q1...qt−1, qt = Si, O1...Ot|λ)] (2.43)

The initialization, induction, and termination steps thus become

φ1(i) = log bi(O1) + log πi (2.44)

φt(j) = log bj(Ot) + max
1≤i≤N

(φt−1(i) + log aij) (2.45)

logP ∗ = max
1≤i≤N

φT (i) (2.46)

The ψ variable is defined in terms of φ just as it was in terms of δ. This
works because log(x) increases monotonically with x, and thus the argument that
maximized δt(i) will also maximize φt(i). It should be pointed out that the values of
log aij, log πi, and log bj(k) can be pre-computed, so, besides some initial overheads,
the use of logarithms doesn’t slow down the Viterbi algorithm at all.2 Code for the
Log-Viterbi algorithm is found in A.5. From now on, when we refer to the Viterbi
algorithm, we will mean the Log-Viterbi algorithm.

2.4 Learning the Model Parameters

The solution to problem 3 is important, and will occupy the rest of this chapter.
We will depart from the pedagogy in [68], and first describe a way to learn HMM
parameters from the data that is conceptually simpler. After that, we will move
onto the industry standard, the Baum-Welch algorithm.

2log bj(k) can only be pre-computed in the case of discrete observations. When dealing with
continuous outputs, we need N × T logarithms. This is true even in the case of vector valued
observations. A version of the Viterbi algorithm with scaling similar to that used in the Forward
algorithm would bring the number of logarithms down to T if the (log) probability of the most
likely sequence is required, and 0 if just the sequence itself is required. This is at the expense of
some additional additions and multiplications for normalization. This is not described in [68].
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2.4.1 Overview

The problem is to find an HMM that ‘fits’ - in some sense of the word - one or
many sequences of data. Many ways of doing this have been proposed [7, 34, 43,
56, 70]. We will begin with the simplest, called ‘segmental k-means training’ [34],
and sometimes ‘Viterbi training’ [70].

2.4.2 Viterbi Training

Viterbi training fits an HMM to the data, O, by iteratively improving the param-
eters of some initial guess at a model, λG. Our initial guess, λG can be guided by
knowledge of the process we are trying to model, if available, or it can be random.
We then find the Viterbi path, Q, of λG through the data, maximizing p(Q,O|λG).
Q is used to recompute the parameters of the HMM, yielding a new HMM, λ, with
A = {aij}, B = {bj(k)}. In the case where the data is a single sequence, O, the
new probability of transiting to state j when in state i, aij, is estimated by simply
counting the number of times state j follows state i in the Viterbi path, and dividing
this by the number of times state i is followed by any state. The new probability
of symbol k occurring in state j, bj(k), is obtained in a similar fashion, by counting
the number of times state j occurs in the Viterbi path and observation k occurs
at the same time in the observation sequence. This must, of course, be divided by
the total number of times state j occurs. πi can only be reliably estimated in this
fashion when many training sequences are available, by simply dividing the number
of times state i occurs at t = 1 in the Viterbi path by the number of sequences.
Estimating aij and bj(k) for multiple observation sequences doesn’t change, except
to note that the Viterbi paths for all sequences are computed from the same model,
and new transition and emission probabilities are computed over the Viterbi paths
of all sequences. All of the above can be accomplished with a single pass through
each Viterbi path, as seen in the code in A.6, by keeping the various event counts
in their respective matrices and vectors, normalizing π and ensuring that A and B
obey stochastic constraints.

The procedure described above takes in a guess HMM, and finds an improved
HMM. ‘Improved’ means something precise here, namely

max
Q

p(O,Q|λG) ≤ max
Q

p(O,Q|λ) (2.47)

This is a particularly useful property. It can be exploited by iterating the
procedure with the output λ becoming the ‘guess’ λG for the following iteration.
maxQ p(O,Q|λ) will then increase monotonically with each new λ, until a local
maximum is reached. We will not prove property 2.47, but a proof can be found
in [34]. It is important to pay attention to what increases with every iteration -
the objective function - as this is what differs between training algorithms. Here,
it is the probability of the Viterbi path, maxQ p(O,Q|λ). This probability is also
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called the Viterbi approximation, as is sometimes used to approximate p(O|λ). In
practice, we often limit the number of iterations, or set some convergence threshold
and monitor maxQ p(O,Q|λ) between iterations, halting when the difference is less
than the threshold.

An overview is informative. We have a model for some process, and some data.
The model has hidden states, and we don’t know which states produced which
data points. What the Viterbi training procedure does is first estimate what the
hidden states were, using the Viterbi algorithm, and then use that estimate of the
state sequence to recalculate the model parameters. The similarity to the k-means
clustering algorithm is so striking that the authors who invented it considered it to
be an extension of k-means [34]. Clustering now occurs with each data point at each
time step being assigned to a state, instead of each data point being assigned to a
cluster. This similarity is made explicit in table 2.2, and is useful for understanding
Viterbi training if one already understands k-means clustering.

Table 2.2: Similarity between k-means and Viterbi training.

k-means Viterbi training

Initialization Guess cluster centres Guess HMM parameters
Expectation Assign data points to clus-

ters with closest centres
Assign data points to states
using the Viterbi algorithm

Maximization Re-estimate cluster centres
averaging over points as-
signed to each cluster

Re-estimate HMM parame-
ters by averaging state tran-
sitions and outputs

2.4.3 A Classification Test

Before we move on to the Baum-Welch algorithm, we would like to run a sanity
check on the Viterbi training method. For this purpose, we introduce the ‘classi-
fication task’, in which we try to decide which category a particular sequence of
observations belongs to. With time series classification, we are given a number of
category labels and some training sequences associated with each label. Our task
is to assign labels to test sequences we have not seen before.

Many techniques using HMMs for classification exist [4, 72]. Throughout this
thesis we will use a very simple one. First, train one HMM for each class using
all the available training sequences. Then to classify a test sequence, compare
each HMM to that test sequence, using a measure of how well the HMM ‘fits’ the
sequence. The test sequence is then assigned to the category of the HMM with the
best ‘fit’. The particular measure of ‘fitness’ depends on what was maximized in
the training procedure. In this section, we will use max

Q
p(O,Q|λ), as we are testing

Viterbi training.

We now encounter our first real set of data. Kudo et al. [52] recorded 9 na-
tive speakers of Japanese saying the /ae/ vowel sound a number of times each.
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Identical to [52], 30 sequences per speaker were reserved as training data, and the
rest (varying in number between speakers, but averaging about 41 sequences per
speaker) were used as test data. The task is to identify which speaker produced
each sequence of test data. Identifying a speaker from a single utterance of a single
vowel sound is a simplified version of the more general speaker identification task,
which seeks to tell speakers apart using samples of fluent speech.

Going from the continuous waveform of speech signals to a sequence of discrete
symbols is a complicated topic, and such detail would distract from the task at
hand, which is to test our Viterbi training procedure. Briefly, the data is supplied
as sequences of 12 real valued Linear Prediction Coefficients (LPCs) per time step,
with each sequence ranging from 7 to 29 time steps long. This is available at the
UCI Machine Learning Archive under the name ‘Japanese Vowels’. At each point
in time, we have a vector of 12 real values, and we need to convert each such vector
to a discrete symbol. An off-the-shelf Vector Quantization (VQ) MATLAB toolbox
was used for this purpose. The number of symbols can be chosen. More symbols
means less information lost during conversion, but more computation required, both
during VQ and subsequent classification. The MATLAB function we used for VQ
requires the number of symbols to be a power of 2.

training procedure. With very many symbols, and quite short sequences, there are
some symbols that will occur in the test sequences, but not the training sequences,
of a particular subject. With Viterbi training, because the way the symbol prob-
abilities are updated, any symbol u that doesn’t appear in the training sequences
will have all bj(u) for all states j set to 0, which means that the probability of any
path through a sequence containing u will be 0. To mitigate such pathological be-
haviour, we add a small positive constant to each bj(k), and then normalize over all
j. The unexpected appearance of u in a test sequence now reduces the probability
of any state path through it, but it remains positive and non-zero.
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Figure 2.3: Accuracy against the number of symbols. Both plots show the accuracy of an 8 state
HMM against the number of symbols. The y-axis shows the accuracy, while the x-axis shows n,
where 2n is the number of symbols. Thus 1 on the x-axis means there were just 2 symbols, and
10 means there were 1024 symbols. The left plot shows the results with the addition of a small
positive constant to each bj(k), while the right plot is the same procedure without such addition.
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For an objective measure of performance, we use classification accuracy, the
number of correct classifications divided by the number of test sequences. Exper-
imentation with different numbers of states showed an 8 state model provided the
best results. The number of symbols chosen during the VQ process heavily influ-
enced the accuracy. Figure 2.3 shows the performance of an 8 state HMM classifier
as the codebook size increases. Note the difference made by the addition of a small
positive constant to each bj(k). With such an addition, the accuracy increases
monotonically with the number of symbols. Without it, the accuracy increases
initially, closely matching the curve on the left, but begins to drop off as soon as
the number of symbols gets great enough to ensure that some novel symbols occur
in the test sequences.

For comparison, the original paper that the data is from [52] reports attaining
0.946 accuracy with their own classification technique, and 0.962 with a 5 state
continuous HMM (most likely trained with Baum-Welch training, although they
do not specify). Interestingly, we get 0.979 accuracy using more states and a dis-
crete HMM trained with Viterbi training. We have already mentioned that this is
averaged over 10 runs, and so it cannot be a result of lucky model initialization.
Almost 98% of the time, we can tell which of 9 speakers uttered the Japanese vowel
sound /ae/, from a single instance of that sound. Code for this classification test
can be found in A.7

2.5 The Baum-Welch Algorithm

The final part of this chapter will deal with the Baum-Welch algorithm. The
goal of the Baum-Welch algorithm is very similar to that of Viterbi training, but
instead of finding a λ that maximizes maxQ p(O,Q|λ), we instead want to find a
λ that maximizes p(O|λ), the probability of the observation sequence given the
model. The procedure has the same overall structure as Viterbi training. We first
guess a model, and then use that model and the data to iteratively re-estimate
the parameters of the model. The main difference between Viterbi training and
the Baum-Welch algorithm is that in Viterbi training, we treat the Viterbi path
as though it were the actual state path that produced the observations, and use
that state path to compute the new model parameters. The Baum-Welch algorithm
performs the same computation, but over all possible state paths, each weighted
by its own probability. This cannot be done naively, as the number of state paths
increases exponentially with T . This section describes the procedure for achieving
such a computation efficiently.

2.5.1 Overview

We begin with a summary of how the rest of this chapter will proceed. We first
define the ‘Backward’ variable β, and its recursive computation similar to α. We
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then define γt(i), the probability of state i occurring at time t, and show how this
can be expressed in terms of α and β. We go on to define ξt(i, j), the probability
of being in state i at t, and state j at t+ 1, and show how this can be expressed in
terms of α, β, and the parameters of the present HMM. We then show how γ and
ξ can be used to re-estimate the parameters of λ, creating λ. Discussions of scaling
to avoid underflow and the use of Gaussian distributions to model real and vector
valued observations will conclude the chapter.

2.5.2 The Backward Variable

βt(i) is the joint probability of the occurrence of the partial observation sequence
from t+ 1 until T , given that the model is in state i at t.

βt(i) = p(Ot+1...OT |qt = Si, λ) (2.48)

Similar to the Forward variable, we can derive inductive equations to compute
β by recursing backwards from T .

Initialization

For 1 ≤ i ≤ N ,
βT (i) = 1 (2.49)

Induction

For 1 ≤ i ≤ N and t = T − 1, T − 2, ...1

βt(i) =
N∑

j=1

aijbj(Ot+1)βt+1(j) (2.50)

We can thus begin at T , and recurse backwards to compute βt(i).

2.5.3 The Gamma Variable

γt(i) is the probability of being in state i at time t, given an observation sequence
and a model,

γt(i) = p(qt = Si|O, λ) (2.51)

Applying Bayes’ rule,

γt(i) =
p(O|qt = Si, λ)p(qt = Si|λ)

p(O|λ)
(2.52)
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Separating O and relying on the fact that Ot+1..OT is conditionally independent
of O1..Ot given qt [12], we have

γt(i) =
p(O1...Ot|qt = Si, λ)p(Ot+1...OT |qt = Si, λ)p(qt = Si|λ)

p(O|λ)
(2.53)

Using the product rule to combine the first and last terms in the numerator,

γt(i) =
p(O1...Ot, qt = Si|λ)p(Ot+1...OT |qt = Si, λ)

p(O|λ)
(2.54)

Which allows expression in terms of α and β,

γt(i) =
αt(i)βt(i)

p(O|λ)
(2.55)

This makes sense, as αt(i) accounts for the partial observation sequence up until
t, and βt(i) for the rest. Using the fact that γ is a correctly normalized distribution,

γt(i) =
αt(i)βt(i)

N∑
i=1

αt(i)βt(i)

(2.56)

2.5.4 The Xi Variable

ξt(i, j) is the probability of being in state i at time t, and state j at t+ 1, given an
observation sequence and a model,

ξt(i, j) = p(qt = Si, qt+1 = Sj|O, λ) (2.57)

Using the Bayes’ rule,

ξt(i, j) =
p(O|qt = Si, qt+1 = Sj, λ)p(qt = Si, qt+1 = Sj|λ)

p(O|λ)
(2.58)

Due to the conditional independence in HMMs, the first term in the numerator
factorizes such that

p(O|qt = Si, qt+1 = Sj, λ) = p(O1...Ot|qt = Si, λ)p(Ot+1|qt+1 = Sj, λ)p(Ot+2...OT |qt+1 = Sj, λ)
(2.59)

Using this property, applying the product rule to the last term, and replacing
some terms with their shorthand notation,
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ξt(i, j) =
p(O1...Ot|qt = Si, λ)bj(Ot+1)βt+1(j)p(qt+1 = Sj|qt = Si, λ)p(qt = Si|λ)

p(O|λ)
(2.60)

Combining the first and last terms in the numerator using the product rule,

ξt(i, j) =
p(O1...Ot, qt = Si|λ)bj(Ot+1)βt+1(j)p(qt+1 = Sj|qt = Si, λ)

p(O|λ)
(2.61)

This can be rewritten as

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

p(O|λ)
(2.62)

As ξt(i, j) is a probability distribution,

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

N∑
i=1

N∑
j=1

αt(i)aijbj(Ot+1)βt+1(j)

(2.63)

2.5.5 Re-estimation

As promised, γ and ξ can be used to re-estimate the parameters of the HMM, just
as the Viterbi paths were used in Viterbi training.

The Initial State Probabilities

The expected number of times in state Si at t = 1 is

πi = γ1(i) (2.64)

The State Transition Probability Matrix

The expected number of times transiting from state Si to Sj over the expected
number of times transiting from state Si to any state is

aij =

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

(2.65)
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The Emission Probabilities

First we define gt(k) =

{
1, if Ot = vk

0, otherwise

The expected number of times in state Sj observing vk over the expected num-
ber of times in state Sj gives us bj(k)

bj(k) =

T∑
t=1

γt(j)gt(k)

T∑
t=1

γt(j)

(2.66)

Convergence

λ is thus composed of π, A and B, each re-estimated from the old HMM λ and an
observation sequence O. Just as with Viterbi training, this leads to an improve-
ment in some objective function. For the Baum-Welch re-estimation formulae, the
objective function is the probability of the observation sequence given the model,
and

p(O|λ) ≥ p(O|λ) (2.67)

This classic result was proven by Baum and colleagues in [42], and clearly implies
that iterating this procedure will improve the quality of some model until conver-
gence on a local maximum. This forms the key step in the learning procedure of
most HMM applications.

2.5.6 Scaling

To prevent underflow, we rely on the scaling constants ct computed for each αt(i),

β̂t(i) = ctβt(i) (2.68)

This works because the recursive computations that diminish α are the same as
those that diminish β, and as ct normalizes α, so will it serve to keep β within
dynamic range. This scheme also has the useful property that, for all the re-
estimation computations, the constants cancel out, and thus α̂ and β̂ can be used
instead of α and β. This is shown in [68], along with the errata available on
Rabiner’s webpage [67], and I will not repeat the exposition here.

2.5.7 Multiple Sequences

As with Viterbi training, we may want to train HMMs from multiple sequences. We
call our collection of observations sequences O. Assuming we have K observation
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sequences, O = {O(1), O(2), ..., O(K)}, where O(k) = {O(k)
1 O

(k)
2 ...O

(k)
Tk
} is the kth

observation sequence containing Tk observations. The re-estimation formulae are
presented in the following subsections.

The Initial State Probabilities - Multiple Sequences

πi =
K∑

k=1

γk
1 (i) (2.69)

The State Transition Probabilities - Multiple Sequences

aij =

K∑
k=1

Tk−1∑
t=1

ξk
t (i, j)

K∑
k=1

Tk−1∑
t=1

γk
t (i)

(2.70)

The Emission Probabilities - Multiple Sequences

First defining gk
t (h) =

{
1, if Ok

t = vh

0, otherwise

bj(h) =

K∑
k=1

Tk∑
t=1

γk
t (j)gk

t (h)

K∑
k=1

Tk∑
t=1

γk
t (j)

(2.71)

To incorporate scaling to prevent underflow, simply use α̂ and β̂ when computing
γ and ξ, and all scaling factors cancel appropriately. For a discussion see [68].

2.5.8 Gaussian Emission Densities

Up until now we have dealt only with discrete probability symbols. We now seek
to extend this to the case where the observations from each state are vectors of real
values. It is important to note that we do not have to change very much. As long
as we can evaluate p(Ot|qt = Sj), we can compute α, β, γ, δ, φ, ψ and ξ. This
includes the Forward algorithm, the Backward algorithm, the Viterbi algorithm
(both standard and Log-Viterbi), and the re-estimation of π, A and B. The only
thing that need change is how to model and evaluate p(Ot|qt = Sj), and how to
re-estimate the parameters of such a model.
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We will use a multivariate Gaussian distribution as our probability density func-
tion for each state. If the observations Ot are vectors of length D, then we will
need a vector of D means µ and an D ×D covariance matrix σ for each state, in
order to model the observation densities.

With the mean vector for state j denoted µj and the covariance matrix for state
j denoted σj, we redefine bj(k) as

p(Ot = k|qt = Sj) =
1

(2π)D/2|σj|1/2
exp

{
−1

2
(Ot − µj)

′σ−1
j (Ot − µj)

}
(2.72)

All that is required are the re-estimation formulae for µj and σj, which are
computed in a similar fashion to their usual maximum likelihood solutions, but
with each observation weighted by γt(j), to accounts for the probability that a
particular state produced that observation.

Weighted Mean

µj =

T∑
t=1

γt(j) ·Ot

T∑
t=1

γt(j)

(2.73)

Weighted Covariance Matrix

σj =

T∑
t=1

γt(j) · (Ot − µj)(Ot − µj)
′

T∑
t=1

γt(j)

(2.74)

These re-estimation formulae straightforwardly extend to handle multiple se-
quences and scaling to prevent underflow. We can thus model observation sequences
where each observation is a vector of real values. More complicated observation
models have been used, such as mixtures of Gaussians. These are extensively dis-
cussed in [68].

2.5.9 Chapter summary

We have presented the probability theory and computational details of HMMs,
outlining solutions to the three canonical HMM problems. The Forward, Viterbi
and Baum-Welch algorithms allow likelihood computation, state path estimation,
and HMM training. The ability to choose observation distributions lets HMMs
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model both discrete and continuous data. These methods and techniques will form
the background to the discussion of numerous HMM applications, as well as the
HMM structure discovery problem.
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Chapter 3

Literature Survey

This chapter is divided into two sections. The first demonstrates the power and
flexibility of HMMs. Through surveying numerous HMM applications, it shows
both where and how they are applied to many different problems. The second
section deals with structure discovery in HMMs, the primary topic of this thesis.
It begins with a discussion of model selection criteria. After that, state merging
and state splitting techniques are discussed, ending off with a brief glimpse of some
other approaches.

3.1 Applications of Hidden Markov Models

The popularity of HMMs as pattern recognition tools grew through their success in
speech recognition, and they are often introduced in this context. They have since
been applied to many other domains, finding success almost wherever a process
produces data that varies with time. This survey of HMM applications is intended
to give the reader an idea of their scope of application, as well as the inventive
ways HMMs have been used to tackle problems. We will attempt to describe how
the model is applied to each domain, including a discussion of the feature vector,
HMM type, and what the various model components represent. Often, however,
the application being discussed requires specialized domain knowledge, and in such
cases brevity prohibits a detailed treatment.

The reader should note that the applications surveyed here are not intended to
be representative of the impact HMMs have made in each discipline, nor any factor
besides the author’s interest. Speech recognition should be conspicuous by its ab-
sence. This omission is intentional, as the literature abounds with such discussions.

3.1.1 Gesture Recognition

The domain of gesture recognition ranges from recognizing a few isolated hand
signs - possibly useful for device control - right through to continuous sign language
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recognition. The latter is a difficult task, involving thousands of words and sharing
the complexities of speech recognition, from modeling the syntactic structure of the
language through to handling co-articulation effects.

Gestures are mostly performed with the hands. Although facial expression does
play an important semantic role in sign language, we will ignore such complexities
here. With this restriction, gesture recognition requires learning a mapping from
hand movements to words. The first step in constructing such a mapping is finding
a good way to encode hand movements.

Encoding Hand Movement

Two main approaches to encoding hand movement appear in the literature. The
first uses computer vision techniques to track the hands, which are either bare, or
wearing gloves. This approach is exemplified in Starner et al. [79], who experiment
with both desk mounted cameras, and wearable hat mounted cameras to track the
hands. The hand blobs1 are identified in the scene, and their positions, various
moments and shape features are extracted, and the feature vector at each timestep
is just a list of such values. Starner et al., for example, use a 16 element feature
vector containing, for each hand, the x and y positions, the changes in x and y
positions between successive frames, the area in pixels, the angle and length of the
first eigenvector of the hand blob, and the eccentricity of the bounding ellipse.

The other way to track hands uses purpose built tracking hardware that directly
measures the position of different parts of the arms or hands. Vogler et al. [91]
use an Ascension Flock-of-Birds tracking device that uses body mounted sensors
to measure position and orientation relative to a fixed magnetic field. The feature
vector is just a list of these values. Kadous [35] uses a combination of Fifth Di-
mension Technologies data gloves to track individual finger movements, as well as
two Ascension Flock-of-Birds position trackers, yielding a 22 element feature vector
with, for each hand, x,y and z positions, pitch, roll and yaw orientations, as well as
finger curl measurements for all five fingers.

Modeling Hand Movement Over Time

Since the elements in the feature vector are real valued, HMMs with Gaussian
outputs are used. The most common strategy is to use left-to-right HMMs where
the transition matrix is upper triangular; no state can transit to any previous state.
Beyond this, there is much variation in how HMMs are used, including explicit
modeling of co-articulation, and attempts to model smaller units than whole signs;
the sign language equivalent of phoneme modeling.

1‘Blob’ is a term of art in computer vision.
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3.1.2 Analysis of Behaviour

HMMs have been employed to model the behaviour of both animals and humans in
many different domains. The motivation for such modeling varies, but it is usually
hoped that the parameters of the model as well as the inferred state paths will tell
us something interesting about the properties of the behaviour.

Animal Behaviour

HMMs have been used to automatically segment mouse activities from video data
[21]. Laboratory experiments involving mice are increasingly automated, with the
positions and orientations of the mice being tracked. This produces a large amount
of data, which is then typically manually segmented into a few discrete activities.
Vetrov et al. train HMMs on some manually segmented data, and use these to auto-
matically segment the rest of the data, yielding imperfect but promising agreement
with hand-segmented data.

HMMs have been used to model the effects of feeding on locomotory behaviour in
locusts [53]. Captive locusts were assigned to two groups, either fed or unfed. Their
behaviour was examined at discrete intervals, and recorded as either locomoting or
not. HMMs were used in different ways to model such observations. A single HMM
per group of locusts was used, with multivariate binary observations for each state
describing the group behaviour. An HMM with Poisson distributed outputs was
also used, and the total number of locomoting locusts at each timestep was treated
as count data.

There is a larger literature on HMMs applied to animal behaviour, but brevity
prohibits a detailed discussion. Briefly, HMMs have been applied to stride seg-
mentation from accelerometer data in thoroughbred racehorses [64], movements of
caribou [25], pecking behaviour in pigeons [63], the clustering of whale song [16],
and the prediction of wolf kill sites [26].

Human Behaviour - Eye Movement

Human eye movement patterns have been modeled with HMMs. In [75], partici-
pants performed three different reading related tasks: searching for words, finding
a sentence that answers a question, and choosing an interesting topic from a list.
Their saccades and fixations were recorded by an eye tracker, and were discretized
to create time series. A separate model was trained for each task type, and the abil-
ity of the models to distinguish between task type was experimented with, yielding
better results than logistic regression. The parameters were also examined to make
inferences about processing differences between tasks, and the HMM states turned
out to correspond to cognitive states discussed in the literature, such as ‘scanning’,
‘reading’ and ‘decision’ states.
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Eye movements have also been modeled with HMMs in other settings. Pilots
in flight simulators have had their eye movement behaviour modeled in an effort
to understand the differences in instrument scanning patterns between pilots of
different experience levels [29]. An eye tracker was used to identify which instrument
the pilot was looking at, and an HMM with discrete observations was used to
model the instrument sequences. HMMs were used in a similar study, this time
on crew members in a space shuttle simulation [30]. As an interesting addition, a
plot of the log probabilities of each observation was included, showing that these
drop drastically during critical events, such as side rocket booster separation, or
system malfunctions, indicating that the models fail during such events. This is not
surprising, but it does serve to validate the methodology. It also suggests that such
models of eye tracking might be useful for detecting pilot confusion and potential
catastrophe.

Understanding Intention

Kelley et al. [36] use HMMs to understand intentions. The domain is restricted
to the interaction between two agents, and the possible behaviours are limited to
meeting, passing by, following, dropping off an object, and picking up an object.
The goal is to accurately decide which activity will occur by monitoring the changes
in angle and distance between two agents, but from the perspective of one of those
agents. In an approach inspired by theory of mind work on intentions, a robot
that can perform these activities is used to train the HMMs. The robot records
changes in angle and distance between itself and another agent (a human) when
performing each of these different activities. The observations are discretized into
either increasing, decreasing, constant, or unknown angles and distances, and a
discrete HMM is trained for each of the activities, capturing the temporal struc-
ture in the observations. The robot is then placed to observe the activity of two
humans performing these same activities, and estimates the changes in angle and
distance from one person’s perspective through a geometric transformation. The
HMMs trained from the robot’s perspective while it was the actor are then used to
successfully classify the human behaviour, deciding, for example, whether or not
the two people will meet some time in advance of them actually meeting. This
work contributes to human-robot interaction research, shows that HMMs can be
used to model interactions between humans, and demonstrates the plausibility of
the theory of mind that inspired it.

HMMs have also been used to classify human trajectories in video footage from
a surveillance camera, detecting abnormal behaviour such as turnpike jumping or
fighting [57]. They have been used to model intersection driving behaviour, provid-
ing better prediction of vehicle trajectories than regular car following models [97].
They have been used for human gait analysis, modeling the patterns in accelerom-
eter and pressure sensor data, with the goal of detecting when someone walks with
an abnormal gait [17]. Finally, the actions of player types in massively multiplayer
online games have been modeled with HMMs in an attempt to classify players into
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different categories [54].

3.1.3 Neural Signal Processing

Neuroscience produces many different kinds of time series. Electroencephalography
(EEG) is the use of electrodes placed on the scalp to record electrical activity
generated by the spiking of large numbers of neurons. EEG is routinely used in
clinical settings to diagnose epilepsy type, but it is also a common tool in brain
related research. The recordings of many electrodes form a vector of real values for
each sampled time step. Electrocorticography (ECoG) is similar to an EEG, but

resolution as the electrical activity from the brain doesn’t have to pass through the
skull. At a much finer spacial resolution, electrodes can also be inserted into the
brain and the electrical activity of individual neurons can be recorded. Neurons have
a characteristic ‘spiking’ behaviour, where pulses of electrical activity propagate
from the soma along the axon. This property allows us to simply record the spike
times rather than the entire signal. After discretizing the time axis, this leads to
a time series of binary observations. Recordings of spike times from many neurons
lead to a vector of binary values at each time step. Both the continuous signals
from EEGs and ECoGs as well as the discrete signals from spiking neurons have
been modeled with HMMs.

Spiking Neurons

One of the ways neuroscience progresses is by understanding how particular neurons
in the brain relate to stimuli from the world [22]. These relationships are typically
established through repeated trials in experiments where an animal is exposed to
a particular stimulus whilst having some neurons in its brain recorded. There is
much between-trial variation, and so the recordings of neural spikes from different
trials are overlayed, using the stimulus onset as a reference, and the spiking activity
is averaged out across trials, treating this variation as noise. The result is called
a peristimulus time histogram (PSTH). The problem with this approach is that
some of this variation might not be noise at all, and certain temporal structure in
spike patterns can be lost in PSTHs. Jones et al. [33] show exactly this, using
HMMs to model the underlying state dynamics of a population of neurons in the
gustatory cortex of rats receiving taste stimuli in repeated trials. A multivariate
discrete HMM is used, with each state specifying a firing rate for each neuron in
the population. A separate HMM was used to model each taste stimulus: sucrose,
quinine, citric acid, and salt. The results show that the neural spiking activity in
the population switched between states, with the state sequence being conserved
across most trials. Much effort went into showing that such behaviour was not just
an artifact of applying HMMs to this kind of data. Furthermore, HMMs proved
better than other commonly used approaches at predicting which tastant had been
received by the rat. About 65% of the time, we can tell which of 4 substances the
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rat received just by monitoring the spiking activity of 10 neurons from that rat’s
gustatory cortex.

HMMs have also been used to solve the spike sorting problem [31]. Neural
activity is recorded with electrodes inserted into the brain. As neurons are close
together, these electrodes typically pick up electrical activity from more than one
neuron. This leads to the spike sorting problem: How can we tell which spikes
came from which neurons? This problem is further complicated by the use of
multi-electrode arrays, where many electrodes are used to record spikes from many
different neurons, but the electrical activity for each neuron ends up affecting more
than one of the electrodes. The good news is that each neuron has its own char-
acteristic spiking waveform. An HMM approach to spike sorting involves building
a generative model of the electrical activity from each neuron. A circular HMM is
used, where the model remains in a quiescent state 1, until a spiking event begins.
From then, the model progresses from state 2 to state K, with all transition prob-
abilities set to 1, until the model returns to the quiescent state again. The outputs
for each state are Gaussians. Figure 3.1 depicts this graphically. When modeling
multiple neurons, the activity on each electrode is simply the sum of the activity
from each neuron that affects that electrode, and this is captured by the use of a
model known as a factorial HMM. Numerous assumptions and approximations are
invoked to allow for tractable computation, and the results compare favorably to
other state of the art spike sorting algorithms.

HMMs have also been applied to EEG and ECoG Brain-Computer Interfaces
(BCIs). The goal is to allow the user to control a device without moving any parts
of their body, by modulating only mental signals. Typically, electrodes are placed
over the motor cortex and the user engages in ‘movement imagery’: imagining
moving a particular body part, which causes activation in the motor cortex. The
task is often set up much like an isolated word recognition task, with the participant
repeatedly performing movement imagery of a few different kinds (eg. tongue or
toe), while scalp electrodes record the electrical activity. The goal is to assign
unlabeled recordings to the correct class. A few papers have used HMMs for this
task [18, 44, 61], although the technique has not proven popular in the mainstream
literature.

3.1.4 Bioinformatics

HMMs have shown incredible popularity in bioinformatics, with varied applications
and success [11]. Krogh et al.[38] show how to use HMMs to model protein families.
A discrete HMM is used, where individual proteins are amino acid sequences, with
an alphabet of 20 possible amino acids. The model, called a profile HMM, has a
specific structure and is constructed in a left-to-right fashion, with start and end
states that produce no outputs. The rest of the model is made up of ‘match’,
‘insert’, and ‘delete’ states for each position in the amino acid sequence. A single
profile HMM is built for a family of proteins, using the Baum-Welch algorithm on a
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Figure 3.1: An HMM model of a neural spike. A) depicts the states of the generative model of
the neural spike. Note that all state transitions are set to 1, except the self transition of state 1,
and the transition from state 1 to state 2, which together must sum to 1. This means that the
entire transition matrix can be described with a single parameter, p, which corresponds to the
spike rate. B) shows the Gaussian outputs of each state. C) shows an example fit to the data.
(Picture from [31])

number of training proteins. Individual proteins can then be ‘aligned’ to the model
using the Viterbi algorithm, and the state path tells the details of the alignment.
A ‘match’ state at a particular position indicates that the protein corresponds well
with the model at that position. A ‘delete’ state (which is a state with no output)
indicates that the protein being aligned to the model is missing an amino acid at
that position, and an ‘insert’ state indicates that an extra amino acid is present in
the protein in that position. Figure 3.2 depicts a (shortened) profile HMM.

HMMs have also been applied to the gene prediction problem. In a phenomenon
known as pre-mRNA splicing, certain subsequences of RNA within a gene - called
introns - are removed, and the remaining subsequences (exons) are fused such that
their ordering is preserved. The gene prediction problem in bioinformatics is to
classify which segments of genetic material are introns, and which are exons. Birney
[11] briefly surveys the application of HMMs to this problem. Discrete HMMs are
used to capture the statistical properties of the nucleotide subsequences.

HMMs have also been applied to the analysis of gene expression time series.
Microarrays measure the expression levels of a particular gene, and time series of
such measurements have been constructed. Such time series allow the identification
of gene regulation relationships, where a gene’s expression affects the expression of
other genes. Multivariate Gaussian HMMs have been applied to this problem,
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Figure 3.2: A profile HMM. Insertion (I), match (M) and deletion (D) states of a profile HMM.
See text for details.

directly modeling the expression levels of pairs of genes over time [94].

3.1.5 Ecological Modeling

HMMs have found applications in ecological modeling. Viovy et al. [90] use HMMs
to capture vegetation dynamics, modeling the normalized differential vegetation in-
dex (NDVI), which can be extracted from radiometric satellite measurements and
is sensitive to changes in vegetation density. NDVI measurements have noise intro-
duced by atmospheric conditions and cloud cover. They are partially determined
by complicated underlying processes which govern vegetation growth. Lastly, these
processes change seasonally, so NDVI time series have important temporal struc-
ture, making them plausible candidates for HMM analysis. HMMs were applied
to NDVI data from the West African savannah collected weekly over 6 years, after
some preprocessing steps. Using domain knowledge, the authors decided to use a
3 state cyclic HMM to model dormant periods with almost no vegetation, growth
periods which usually occur during rainy seasons, and periods of senescence. Each
state was intended to model a rate of change in NDVI, rather than NDVI itself, so
the temporal derivative of NDVI was used as the observation sequence. State output
distributions were histograms of NDVI values, effectively discretizing a continuous
variable. Various model verification steps were performed, including demonstrat-
ing that the estimated state sequences correspond to realistic seasonal fluctuations.
When the same basic model was trained on data from different regions, parametric
variation in the model corresponded to known variation in savannah type.

Li et al. [49] use clustering and structure discovery techniques in a preliminary
analysis of the dynamics of various indices of plant growth gathered from a collection
of marsh sites. Given variation in the marsh sites, one might expect different models
to be appropriate for different sites, hence the clustering requirement. Indeed,
for some configurations of data, two clusters with quite different dynamics were
identified in the data. More recently, Tucker et al. [87] examine the difference
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between Markov chain and HMM approaches to modeling vegetation dynamics.
Using mostly synthetic data, they identify certain dynamics where Markov chains
are insufficient, but HMMs perform well.

3.1.6 Medicine

We will divide the use of HMMs in medicine into two branches. One uses so-called
‘structured’ HMMs as stochastic epidemiological models [55], and the other uses
regular HMMs for time series analysis. Structured HMMs usually require informa-
tion about the underlying process being modeled, and this is used to parameterize
the model. This can yield a drastic drop in the number of model parameters, al-
lowing a model with an arbitrarily large number of states to have, in some cases,
as few as 4 parameters. This cannot be achieved without extending the HMM
framework beyond what has been presented so far and we present an overview of
such an extension below.

Epidemiology

McBryde et al. [55] use structured HMMs to model outbreaks of vancomycin-
resistant enterococci (VRE). VRE can occur sporadically, but is typically con-
tracted through nosocomial transmission, which can lead to epidemic outbreaks. A
structured HMM was used to model VRE occurrence in a ward with 68 patients
at any given time, where the state the model was in, I, represented the number of
infected patients in that ward. The model thus had 68 states. Normally, estimat-
ing the parameters of a 68 state HMM requires large amounts of data. Instead,
structured HMMs use a well understood model of transmission to parameterize the
HMM. Consider a hospital ward with N patients. Assume that VRE can arise un-
der three circumstances, either through (a) an infected patient entering the ward,
(b) VRE originating in a patient already in the ward, or (c) VRE being transmit-
ted from one patient in the ward to another. We group (a) and (b) together and
assume they occur with a constant rate per unit time, proportional to the number
of uninfected patients in the ward, v(N − I). (c) occurs with a constant rate β
proportional to the number of infected patients, and proportional to the number of
uninfected patients, βI(N − I). We assume that the ward can only lose an infected
patient through discharging them and replacing them with an uninfected patient,
and that this occurs at a rate µ. These three parameters actually describe the
entire transition matrix of the HMM. From them, we can compute the probability
of I increasing, decreasing, or staying the same2. For a ward of 68 patients, instead
of 68×67 parameters to estimate for the transition matrix, we have just 3. Of these
3, the per unit time probability of patient discharge can be estimated directly from
the patient data, and does not require re-estimation. So far, we have described a
Markov model. To make it a full HMM, we allow for imperfect detection of VRE,

2[55] use a small positive ‘fudge factor’ to allow for jumps in infection numbers > 1.
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and the inclusion of a parameter D, the probability of being known to be infected
given that the patient is actually infected. We can thus take hospital infection data
and, through fitting the HMM, obtain estimates of different infection rate parame-
ters, even when we can only imperfectly detect the number of infected patients in a
ward. Other methods to calculate such parameters require expensive genotyping to
separate spontaneous infections from transmitted ones. McBryde et al. [55] show
that the HMM method returns exactly the same results as glycopeptide resistance
genotyping. Other examples of structured HMMs as epidemiological models also
occur in the literature [19, 77].

Other Medical Applications

HMMs are frequently used to model time-series data in medicine. Rasku et al.
[69] use HMMs to model the balance signals from subjects standing on a tilting
force platform, which measures x and y swaying, as well as mass. A group of 32
healthy controls and 32 patients with balance affecting disorders stood on the force
platform while it changed tilt angle, and the balance signals were recorded. HMMs
were used to model these signals, and the resulting models were used to successfully
discriminate between healthy subjects and patients. Al-Ani et al. [2] use HMMs to
model polysomnography data to diagnose sleep disordered breathing. Such diagno-
sis typically involves careful expert inspection of an entire polysomnogram, which
comes in 10 minute segments for up to 8 hours of recording. The observations used
by the HMM were upper airway flow, oesophageal pressure and gastric pressure.
HMMs trained on data from different classes of sleep disordered breathing were
reported to effectively discriminate between classes. Van den Hout et al. [88] use
HMMs to estimate life expectancy by modeling transitions between normal states,
impaired states, and death. Altman et al. [3] use a 2-state HMM to model multiple
sclerosis lesion counts, intended to capture the dynamics of chronic diseases which
transit between relapsing and remitting states. Finally, [5] use HMMs to model the
response of migraines to treatment.

3.1.7 Weather

Weather is another domain where noisy observations are generated by a complex
underlying process. Betro et al. [9] use HMMs to model rainfall in Central East
Sardinia. The area is affected by extratropical cyclones, and thus rainfall has large
variability. Weibull distributions are used to model the outputs of the HMM, as
these flexibly cater for extreme variation. Greene et al. [28] use HMMs to model
the daily monsoon rainfall in India. The observation model is a mixture of a dirac
delta function at 0, and two exponential distributions. This allows the proportion
of non-rainfall days to have a separate mixing parameter to the two exponential
models. A 4 state HMM was used, and the resulting states corresponded to distinct
periods in the seasonal progression of the monsoon.
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3.1.8 Fault Detection

HMMs have been used to detects faults in industrial processes; from nuclear power
plants [39] to pasteurization [85]. Typically one models a vector of measurements
from the process, training separate models corresponding to specific kinds of fault.
These models can then be used for online fault detection. Ge et al. [27] mount
a strain sensor on a particular part of a stamping press and monitor the strain
over time. The machine can undergo several different kinds of faults. Each fault a
specific problem with the material being fed into the stamping press (it has run out,
is misaligned, is too thick etc...). HMMs are trained to model signals from the strain
sensor during such failures, and they are shown to classify novel sequences with
accuracies between 80 and 90%. The HMMs were so-called auto-regressive HMMs,
which model serial dependence in the observations for each state. Much of the
literature on fault detection in machinery follows very similar lines [1, 39, 83, 85, 95].
Often simulations of the processes are used, rather than the processes themselves.
This is understandable. Any attempt to gather enough data to train an HMM
for identifying faults in nuclear power plants is probably ill advised. Whether the
HMMs trained on simulated data will succeed in the real world is an open question.

3.1.9 Music

HMMs have been applied to many different problems in music. They have been
used for pitch tracking; the identification of notes in acoustic data [6]. Flexer et al.
[24] use HMMs to measure the similarity between two pieces of music, a measure
required for content based retrieval and clustering systems. Noland et al. [60] use
HMMs to estimate the key of a piece of music. Pikrakis et al. [66] classify raw
audio recordings of monophonic instruments into 12 distinct ‘musical patterns’ in
traditional Greek music.

A very novel application is presented by Simon et al. [76]. They use HMMs
to automatically generate chord sequences for recorded vocal melodies. An HMM
is constructed where the states correspond to particular chords, and an abstracted
representation of melody constitutes the observations. Users record a vocal seg-
ment, and the Viterbi algorithm extracts the most likely chord path corresponding
to that melody. The way the HMM is trained is instructive, as it is trained from
a corpus of lead sheets consisting of chord lists and melody score, rather than raw
audio data. First, some simplifying assumptions are introduced. All music pieces
are transposed into the key of C, and all chords converted into their corresponding
3 note triads. This leaves 5 chords per pitch. All octave information is discarded,
leaving 12 distinct pitches, and thus 60 chords. The lead sheet training corpus is
then divided into 2 musical modes, major and minor. Within each mode, a chord
transition matrix is constructed by simply counting the number of times one partic-
ular chord is followed by another. This describes the Markov chain governing chord
evolution. The observations produced by each chord are simply histograms of the
frequencies of melody notes produced while that chord is played. This is also just
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counted off the lead sheet data. Note that this discards all temporal melody in-
formation during each chord, which is another simplifying assumption. The user’s
recorded vocal line is then broken into regular measures, and the frequency his-
togram of each measure is constructed. This will create the series of observations
to which the HMM must be fit. After some bookkeeping to account for key dif-
ferences, running the Viterbi algorithm over this sequence of observations using
the HMMs estimated directly from the lead sheet data produces audibly pleasing
chord sequences. The quality of such chord annotations were rated by listeners and
compared favorably to expert annotations. In addition, the user can select which
mode they want the chord sequence to come from, in a way that allows for blend-
ing, which is simply the averaging of the transition matrices for the two modes.
Finally, they included a parameter that weighted the importance of the observa-
tions over the transition matrices in the likelihood calculation. They call this the
‘jazz’ factor. One can adjust this to only take the observation for each measure
into account, producing chord sequences that disregard chord transition structure,
sounding more surprising, or one can adjust it to totally disregard the observations
and produce chords directly from the transition matrix, resulting in common chord
sequences that are not sensitive to the melody. Gradations between these extremes
produce the most musically interesting results.

3.1.10 Other

A few other applications do not fall into any of the above categories, but neverthe-
less deserve brief mention. HMMs have been used to model dynamic backgrounds
from video footage, in order to accurately segment foreground regions [80]. Srini-
vasan et al. [78] use HMMs to recognize behaviour of opposing agents in a game
of robot soccer, and another HMM to select appropriate actions. Beyreuther et
al. [10] use HMMs to automatically detect and classify earthquakes and other seis-
mographic activity into distinct classes from seismogram data. Wang et al. [92]
use HMMs to automate Chinese business card recognition, demonstrating superior
performance to commercial optical character recognition for this task. Toreyin et
al. [86] detect flames in video sequences using HMMs. Senior [71] uses HMMs
to classify fingerprints into different classes, an activity that should be useful for
indexing large fingerprint databases. Lee et al. [45] tackle the spam deobfuscation
problem with HMMs. To avoid spam filters, many spam messages involve corrupted
words which are interpretable to humans, but not recognized by some spam block-
ing software. Spam deobfuscation requires building word models to reconstruct
words from corrupted words. Finally, to conclude our survey of HMM applications,
Bond et al. [13] use HMMs to forecast political turmoil in Indonesia.
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3.2 Structure Discovery Techniques

We now come the structure discovery problem, the topic of this thesis. Baum-
Welch and Viterbi training both adjust the parameters of a model to improve
its fit to the data. An initial model is specified and, through iteration, a local
maximum in the appropriate objective function is reached. The quality of models
trained by these iterative training procedures is hostage to the vagaries of the initial
model specification, both because they only guarantee local maxima, and because
they can only change the model parameters, not the structure of the model itself.
Neither of these are trivial problems. Models in low likelihood local maxima degrade
classification and prediction performance. Simple models with too few states cannot
adequately capture the detail in the data, but too complex models can result in
over-fitting, capturing the idiosyncrasies of the training set and leading to poor
generalization to novel sequences.

Despite these difficulties, the creation of an initial model is usually left to the
skill of the individual researcher. Sometimes knowledge of the underlying process
can inform the design of the initial model. In speech recognition, the order of
phonemes and the dynamics of the sub-phonemic units are usually well understood,
so plausible initial models can be constructed. This is better than guessing but it
is time consuming, requires expert knowledge, and allows human preconception to
intrude on model creation. Most importantly, it is often not an option in domains
where there is little knowledge about the process generating the data. Solutions
to the structure discovery problem - as we use the phrase - both discover the
appropriate model size and tackle the problem of model initialization. This thesis
deals with automating the creation of HMMs from the data alone, removing the
need to specify an initial HMM. Previous research into HMM structure discovery
will be surveyed in this chapter.

Discovering HMM structure is an area of active research. The problem has
been approached with many different strategies, each with their own benefits and
restrictions. This chapter will give an overview of these attempts, without going
into too much detail. We will first discuss some criteria for model selection, and
then outline some algorithms for structure discovery in the literature.

3.3 Model Selection Criteria

Before discussing techniques for finding good models, we need to say what we mean
by ‘good’. We cannot just use the regular model likelihood, p(O|λ), as more complex
models typically fit the data better. We need a tradeoff between the fit of the model
to the data and the number of model parameters; a statistical Occam’s razor. We
also need to take the number of data points into account, as more fine grained
complexities in the data are only discovered as the amount of data grows [15]. In
this thesis, we will use two such criteria from the literature, Akaike’s Information
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Criterion (AIC) and the Bayesian Information Criterion (BIC). Both of these are
minimized by greater model likelihoods and fewer parameters.

3.3.1 AIC

AIC has its roots in information theory. It is an asymptotically unbiased estimator
of relative Kullback-Leibler divergence [15].

AIC = −2 lnL+ 2k (3.1)

where L is the maximized log-likelihood, and k is the number of free parameters
in the model. Because of stochastic constraints with some HMM parameters, not all
parameters are free. Rows in the transition matrix must sum to 1, for example, and
as such, each row has only N − 1 free parameters. A second order bias correction
improves AIC for smaller samples,

AICc = −2 lnL+ 2k +
2k(k + 1)

n− k − 1
(3.2)

where n is the number of data points. As n increases, the second order correction
term tends to 0, so AICc can replace AIC, no matter what the sample size. From
now on, when we say AIC, we will mean AICc, always including the correction for
small samples, as recommended by [15].

3.3.2 BIC

BIC is also a penalized model selection criterion, optimal under different assump-
tions to AIC.

BIC = −2 lnL+ k lnn (3.3)

There is a large and confusing discussion in the literature over which selection cri-
terion is appropriate to which situation [15]. BIC penalizes extra parameters more
heavily than AIC, so its use results in simpler models. We will circumvent this
discussion entirely, treating AIC and BIC as useful heuristics, both ultimately ac-
countable to test data classification accuracy. There are also computational reasons
why we might prefer simpler models in domains where speed is important, such as
real-time speech recognition.

3.4 A Naive Approach

As an introduction to the problem, a naive approach will first be discussed. We
simply choose a range of model sizes, train one model for each each possible model
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size, and use the model with the best AIC or BIC score. This is often done in
practice [50]. The main problem with this approach is that regular Baum-Welch
training is very sensitive to initial model parameters, and the model with the best
number of states will often not be found. Discovering the structure of an HMM
is not just about finding the correct number of states. It also requires avoiding
local maxima during parameter optimization. Structure discovery techniques often
achieve better likelihoods than Baum-Welch training even when the number of
states is decided in advance [74].

3.5 Structure Discovery

Discovering the structure of an HMM amounts to searching the structure topology
and parameter space for good models. For data of reasonable complexity, a full
enumerative search is intractable, so various heuristics, approximations and greedy
strategies are resorted to. A very important distinction to make in the HMM struc-
ture discovery literature is between state merging and state splitting approaches.
Briefly, state merging approaches begin with a very complex model and iteratively
merge states to reduce the model complexity, until a turning point in some model
selection criterion is reached. The details of when and how states are merged dis-
tinguish the approaches. We will begin our literature survey with one state merging
algorithm, from [82], and then move onto state splitting approaches. State splitting
approaches begin with a very simple model, and increase the model size by itera-
tively selecting a state, and splitting it into two distinct states. Again, there is large
variation in deciding which states to split, and how to adjust the model parameters
after the split. Splitting is typically stopped when extra splits no longer improve
model selection criteria. We will discuss many techniques of this kind, as they are
more akin to the technique we will propose in chapter 4. Lastly, some techniques
combine state splitting and state merging. We will treat these primarily as state
splitting techniques, as they begin with simple models and introduce complexity
through state splitting, while state merging only comes into play later.

3.6 State Merging

One early attempt at discovering the structure of HMMs from the data is due to
Stolcke and Omohundro [81] and [82]. Working in a Nondeterministic Finite Au-
tomata framework, their HMMs have some superficial differences to those typically
encountered in a Bayesian networks framework. They propose a state merging ap-
proach to HMM structure discovery, which works for discrete observation data only,
but could potentially be generalized to handle continuous observations. They begin
with an HMM that describes the data exactly. There is a separate state for each
data point. Each sequence is represented by a chain of states, with each state only
transiting to the very next state in the chain. πi for the first state in each chain
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Figure 1: Sequence of models obtained by merging samples fab, ababg. All transitions without
special annotations have probability 1; Output symbols appear above their respective states and also
carry an implicit probability of 1. For each model the log likelihood is given.

M2, …, along which we can search for the MAP model. To make the search for M efficient,
we use a greedy strategy: given Mi, choose a pair of states for merging that maximizes
P(Mi+1 |X).

Continuing with the previous example, we find that states 1 and 3 in M0 can be merged
without penalizing the likelihood. This is because they have identical outputs and the loss
due to merging the outgoing transitions is compensated by the merging of the incoming
transitions. The .5/.5 split is simply transferred to outgoing transitions of the merged state.
The same situation obtains for states 2 and 4 once 1 and 3 are merged. From these two
first merges we get model M1 in Figure 1. By convention we reuse the smaller of two state
indices to denote the merged state.

At this point the best merge turns out to be between states 2 and 6, giving model M2.
However, there is a penalty in likelihood, which decreases to about .59 of its previous
value. Under all the reasonable priors we considered (see below), the posterior model
probability still increases due to an increase in the prior. Note that the transition probability
ratio at state 2 is now 2/1, since two samples make use of the first transition, whereas only
one takes the second transition.

Finally, states 1 and 5 can be merged without penalty to give M3, the minimal model that
generates (ab)+. Further merging at this point would reduce the likelihood by three orders
of magnitude. The resulting decrease in the posterior probability tells the algorithm to stop

Figure 3.3: Model Merging. Mi is the ith iteration of the model merging procedure. The data
was just 2 sequences, ab and abab. The initial model produces these sequences exactly. The
subsequent iterations show how states are merged to discover the structure of the process. Note
that each state in each of the above models deterministically produces a specific output symbol.
This is a peculiarity of this data, rather than a feature of the procedure. The figure is taken from
[81].

is set to 1/S where S is the number of sequences. For all other states πi is set to
0. In addition, there is a terminal state, which the last state in each chain transits
to. We lack a terminal state in our HMM framework, but it can be thought of as
a state that outputs a null symbol with probability 1, and only transits to itself.
If allowed to run, this initial model is equivalent to randomly selecting one of the
training sequences, and generating it. This is represented in the M0 model in figure
3.3.

The idea is to iteratively merge states to reduce the complexity of the initial
model. To merge two states, a new state is created whose parameters are an average
of the parameters of the two states being merged, weighted by the expected number
of times each state occurs. Instead of asymptotic model selection criteria such as
AIC or BIC, a fully Bayesian approach is used, where priors are specified over
model structures and parameters, and the posterior probability of the model is
maximized. To select which states to merge at each step, they adopt a greedy ‘best-
first’ heuristic, each time selecting the two states whose merging will maximize the
posterior. Figure 3.3 shows the initial model, and three iterations of the merging
procedure for a toy data set with just two short sequences.

A number of approximations are adopted to keep the computation within rea-
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sonable limits, including the Viterbi approximation, treating the Viterbi path as
if it were the only path. Most importantly, it is infeasible to consider all possible
merges, as this would, for each step, be quadratic in the number of states, and the
initial model has the same number of states as observations. To circumvent this
an online version is adopted, where an initial model is built from a small number
of data points, usually around 20, and extra data points are merged into the new
model in small batches, between 1 and 5, until all the data has been exhausted. This
allows the procedure to run in time linear to the number of data points. Despite
the fact that all these greedy strategies, approximations, and online computation
schemes remove any guarantee of the optimality of the final model, the merging
procedure still outperforms Baum-Welch training, both in speed and model quality,
on the toy and real data presented in [82].

3.7 State Splitting

State splitting approaches typically begin with a single state. At each iteration,
states are selected, split, and the parameters are re-estimated. Splitting a state
involves adding two new states to the model, and removing the original one. We
will refer to the state to be split as the ‘split candidate’. Algorithms differ greatly
on how the split candidate is chosen at each iteration. We divide state splitting
algorithms into two classes: ‘exhaustive’ state splitting algorithms, and ‘heuristic’
state splitting algorithms. Exhaustive state splitting algorithms split every state
at each iteration, retraining the parameters each time. The split candidate is then
selected as the state whose splitting achieved the best improvement in some model
selection criterion. The number of splits that require consideration grows with
the model, and as each split requires iterative parameter re-estimation, various
approximations are used, including constraining re-estimation to a subset of the
parameters, and re-estimating the parameters from subsets of the data. Note that
‘exhaustive’ here does not mean that every architecture is considered. Rather all
possible splits are tried at each iteration. Heuristic approaches use other means for
selecting split candidates, such as properties of the output distribution. Only one
model re-estimation per split iteration is required. We will order the rest of this lit-
erature survey by conceptual simplicity, starting with two prominent heuristic state
splitting approaches, and moving on to two exhaustive state splitting approaches,
which are somewhat more complicated.

3.7.1 Heuristic State Splitting Approaches

Li and Biswas

Li and Biswas [48] discover the structure of HMMs using a combination of state
splitting and state merging. Their presentation of the algorithm does not go into
very much detail, as they are using HMMs for unsupervised clustering, and they
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spend more time describing their clustering approach than HMM structure discov-
ery. Briefly, they model continuous features with a single Gaussian observation
distribution per state. Each state thus has an associated mean and variance. With
each iteration, they split the state with the largest variance, creating two new
states, and retrain the whole model. In the same iteration, from the base model
before the split, they also merge the two states with the least distance between the
means, and re-estimate the model parameters. At each iteration, they have to de-
cide between two models, the larger model resulting from splitting, and the smaller
model resulting from merging. They choose the model that produced the largest
improvement in model selection criteria, specifically BIC and the Cheeseman-Stutz
approximation. Thus the model can grow and shrink, until no further improvement
can be found by either merging or splitting states according to the above rules. This
is clearly a heuristic structure discovery approach, as the splitting and merging is
guided by the properties of the observation distribution, with no attempt to ensure
that the selected split (or merge) is the best one.

Takami and Sayagama

Takami and Sayagama [84] propose the Successive State Splitting (SSS) algorithm
to discover the structure of an HMM with partially constrained topology, called
a Hidden Markov Network (HM-Net), used for speech recognition. They model
the output for each state with a mixture of 2 Gaussian distributions. The initial
model is a single state, and grows through state splitting. SSS uses a measure
of divergence between the two components of the Gaussian mixture model as the
criterion for state splitting. The state with the largest such divergence between
its two Gaussians is selected as the split candidate. Each new state after the split
takes one of the Gaussian mixture components as its output distribution. Due to
the constraints on the structure of an HM-Net, state splitting can be of two kinds,
either ‘temporal’, or ‘contextual’. A temporal split involves chaining the two states
in series, such that all inputs to the split candidate feed into one of the new states,
and all outputs from the split candidate feed out from the other. A contextual split
places the two states in parallel, as shown in Figure 3.4. From the base model with
the selected split candidate, two models are re-trained, one with a temporal split,
and the other with a contextual split. The split that yielded the largest increase
in likelihood is retained. The two new states in the model now each have a single
Gaussian output. These states are then re-trained with a mixture of two Gaussians,
allowing them to be split candidates in future iterations of the splitting process.
SSS does not employ model selection criteria, and the state splitting process is
terminated when the number of states reaches a predetermined maximum.
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Figure 3.4: Contextual and Temporal splits. Top depicts the a two state model, with the split
candidate shaded dark. The two curves above each states represent the mixture model with
two Gaussian components. Middle shows an example of a contextual split, and bottom shows
a temporal split. Note that each state newly created by the split has a single Gaussian output
distribution, as each inherits one of its parent’s two Gaussians.

3.7.2 Exhaustive State Splitting Approaches

Maximum Likelihood Successive State Splitting

Maximum Likelihood Successive State Splitting (ML-SSS) is proposed by Osten-
dorf and Singer in [62]. Like SSS, it is also restricted to HM-Net topologies. The
key idea behind ML-SSS is to try every possible split at each iteration, and retain
the split that yielded the best improvement. Under our categorization scheme, it
is thus an exhaustive state splitting technique. This ‘try each option’ approach
requires retraining the model for every possible split, which might seem computa-
tionally expensive. In fact, ML-SSS exploits a variety of restrictions of the HM-Net
topology and employs a constrained version of the Baum-Welch algorithm to make
it more efficient than SSS. Specifically, the parameters of a single state’s observa-
tion distribution can be optimized independently while still guaranteeing a global
likelihood increase. With contextual splits, only the observation distributions of the
new states are optimized. For temporal splits, all parameters require optimization,
but the number of these is limited by restrictions on HM-Net topology, amortizing
their cost. We will not entertain further details of such efficiency gains here as they
are not general enough to extend usefully beyond HM-Net topologies.
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Simultaneous Temporal and Contextual Splitting

Siddiqi et al. [74] propose Simultaneous Temporal and Contextual Splitting (STACS),
which does away with the idea of restricting splits to either temporal or contextual
kinds, allowing the algorithm to discover HMM structure without topological con-
straints. They adopt an exhaustive approach, trying each state as a split candidate
and retraining the model each time. Importantly, like ML-SSS, they adopt a con-
strained re-estimation procedure designed to train only the parameters of the newly
created states. Their constrained re-estimation procedure works by only consider-
ing observations for sections of the Viterbi path ‘belonging’ to the split candidate.
This dramatically increases the speed of re-estimation, and STACS can even find
the structure of a model and its parameters faster than Baum-Welch training finds
the parameters alone, with the model structure pre-specified. STACS employs BIC
as a model selection criterion, and splitting stops when no split yields any increase
in BIC.

3.8 Other Approaches

We conclude this survey of HMM structure discovery techniques with a brief dis-
cussion of approaches that are interesting enough to warrant mention, but differ
from the present work sufficiently to prohibit detailed discussion.

Shalizi et al. [73] describe a technique called Causal State Splitting and Re-
construction (CSSR) to infer the structure of HMMs from data. The algorithm is
based in a computational mechanics framework, exploiting a particular definition
of ‘causal state’. The properties of such states are derived from this definition, and
a state splitting algorithm is created that discovers these causal states.

Brand [14] proposes a structure discovery approach based on an entropic model
prior, and a maximum a posteriori HMM training approach. A more-complex-than-
necessary initial model is specified. Parameter re-estimation with the proposed
entropic prior drives parameters whose presence hardly affects the model likelihood
to 0, producing sparser models. Explicit parameter pruning is also incorporated, to
speed convergence. The result is sparse, easily interpretable models that perform
well when compared to Baum-Welch.

Krogh et al. [38] use HMMs for protein modeling and alignment. The topology
of the HMM has the form of a profile model, described above, intended to capture
matches, substitutions, insertions and deletions at particular positions in amino
acid sequences. A kind of structure discovery, called ‘model surgery’, is imple-
mented where if too many of the training sequences pass through a particular state
that represents a deletion at a particular position, all states corresponding to that
position are removed. Similarly, if too many sequences pass through a particular
insertion state, extra states are added, lengthening the model.

Kwong et al. [40] use a hybrid genetic algorithm to optimize the structure and
parameters of an HMM. The model structure is encoded in a chromosome, and a
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population of models is maintained. Model fitness is simply the log likelihood com-
puted with the forward algorithm. The fittest models are retained, interbred, and
mutated. The reason the algorithm is a ‘hybrid’ genetic algorithm is that Baum-
Welch training is applied every 10 generations to improve the speed of convergence.

Lee et al. [46] apply HMMs to handwritten character recognition. They de-
compose the characters into discrete line segments, and design the initial models
based on this decomposition, such that each line segment has its own state. The
model structure discovery process is thus driven by the data. They show improved
recognition results over regular HMMs.

Finally, an approach that attempts to circumvent the problem of structure dis-
covery entirely is the so-called ‘Infinite Hidden Markov Model’ (IHMM) [8, 89].
The number of states is countably infinite, and so sampling techniques must be
employed for inference in IHMMs. Both Gibbs sampling [8] and, more recently,
Beam sampling [89] have been explored. The IHMM is a non-parametric alterna-
tive to HMMs.
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Chapter 4

Structure Discovery -
Contributions

In this chapter1 we propose a state splitting approach to structure discovery, where
states are split based on two heuristics: 1) within-state autocorrelation and 2) tran-
sition dependence. Both rely on detecting violations of conditional independence
assumptions in the fit between the model and the data. Statistical hypothesis test-
ing provides a natural termination criterion, and takes into account the number of
observations assigned to each state, splitting states only when the data demands it.
With synthetic data, we demonstrate the algorithms ability to recover the struc-
ture of hidden Markov models from their observation samples. We also show how
it outperforms regular Baum-Welch training both in achieving lower training set
AIC and BIC scores, and in a classification task. This superior performance is
despite the fact that in both tasks, Baum-Welch training had the advantage of be-
ing initialized with the number of states of the HMM that actually generated the
data. We then generalize the approach to vector valued observations again showing
improvement over Baum-Welch with synthetic data, as well as data from an online
handwriting character recognition task. We also use our algorithm as a platform
for comparing the performance of the larger models favored by AIC against smaller
ones favored by BIC, showing that BIC tends to underfit. We postpone a discussion
of the computational complexity of the algorithm until chapter 5.

4.1 Rethinking the Reasons for State Splitting

The heuristics for state splitting discussed in section 3.7.1 are based on the obser-
vation distributions of states, paying no attention to the temporal structure of the
observations. This is problematic for two reasons. Firstly, it requires assumptions

1The primary contributions of this chapter, roughly up to the end of section 4.5.3, were pre-
sented at the Annual Symposium of the Pattern Recognition Association of South Africa [59] in
November 2008.
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about the observation distributions that preclude the use of more complex observa-
tion models. For speech recognition, for example, Rabiner [68] recommends using a
mixture of as many as 9 Gaussians. It is not clear how to generalize such approaches
to mixtures of many Gaussians. This is closely related to the second reason. When
it is possible to model state outputs with multi-modal distributions, it is not clear
why we should split states based on the shape of the distribution. Some states in the
underlying process might have genuinely multi-modal, high variance distributions,
and splitting such states would be a mistake. This would be like approximating
a multi-modal distribution with many states, imposing arbitrary temporal struc-
ture, rather than a single state with a multi-model observation distribution. This
effectively wastes many transition parameters. Rather than split states based on
the shape of their observation distributions, we propose two heuristics based on the
temporal structure of the observation and state sequences.

4.2 Autocorrelation as a Heuristic for State Split-

ting

We suggest that one good reason for splitting a state is if successive observations
produced by that state have temporal structure. If the output at t for state s is not
independent of previous outputs in a run of state s, then a better approximation
can often be found with more states. This is analogous to checking the residuals of
a regression for significant autocorrelation, and increasing the model complexity in
an attempt to remove it. We are concerned with continuous valued outputs, and we
use autocorrelation as an indicator of serial dependence. Before describing how this
can be used to find the structure of HMMs, we first briefly review autocorrelation,
giving a definition as well as some visualization to aid intuition.

4.2.1 Autocorrelation

The autocorrelation of a process is the correlation of that process with a time shifted
version of itself. The time shift is typically called the lag, and the autocorrelation
at lag k is defined as:

R(k) =
E[(Oi − µ)(Oi+k − µ)]

σ2
(4.1)

where σ2 is the variance of the process and µ its mean. For simplicity, we
only consider the autocorrelation at lag 1, although the technique could easily be
extended to a range of lags if such a thing proves useful. Restricting to lag 1, the
autocorrelation can be rewritten as:

R =
E[(Oi − µ)(Oi+1 − µ)]

σ2
(4.2)
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Figure 4.1: Autocorrelation. Left and right are time series (top), and lag 1 (bottom) plots for
two different observation sequences. Left is an observation sequence from a 2 state HMM with
one observation distribution mean at -2 and the other at 2. The positive relationship in the lag 1
plot below is evident. If these observations were being credited to a single state, significant auto-
correlation would suggest that state be split. Right is an independent and identically distributed
observation sequence with mean 0. Its lag 1 plot shows no correlation.

If µ and σ2 are unknown, then we will have to estimate them from the data.
Analogous to the standard definition of correlation, we will consider two subse-
quences of the observation sequence, Oa = (O1...OT−1) and Ob = (O2...OT ), and
use estimates of their means and variances. Oa is just the sequence minus the last
observation, and Ob the sequence minus the first. Autocorrelation then becomes

AC =
E[(Ot − E[Oa])(Ot+1 − E[Ob])]√

V ar[Oa]V ar[Ob]
(4.3)

Visualizing Autocorrelation

A lag plot can provide some insight into the behaviour of autocorrelation [20]. A
lag n plot displays an observation sequence O as a scatter plot, where each data
point has Ot as its x value and Ot+n as its y value. The lag n autocorrelation would
be the correlation coefficient associated with this bivariate data. Most of the plots
from this section use lag 1 autocorrelation.

Figure 4.1 demonstrates lag plots for two processes. Each is composed of the
observation sequence on top, and the corresponding lag 1 plot below. The observa-
tion sequence from the left plot is generated by a two state HMM, with Gaussian
observation distributions with means -2 and 2. There is clearly a positive relation-
ship in its associated lag plot, as the density of the points is mostly concentrated
in two clusters centered about (−2,−2) and (2, 2). The lag plot on the right for
independently and identically distributed (i.i.d.) data, on the other hand, shows
no such trend.
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What if the observation sequences aren’t produced by an HMM-like process?
The collection of lag plots in figure 4.2 on page 56 shows the autocorrelation for a
few different processes. As can be seen, any process where successive observations
are closer than distant ones exhibits positive autocorrelation. This includes the
noisy sin curve in the top left plot, the clean sin curve in the top right plot, and
the linear trend in the middle left plot. Generally, the less noise in such a process,
the more impressive the correlation.

Negative autocorrelation can also be produced. This occurs when successive
observations are further apart than distant ones. One example of this is the plot on
the middle right. The process produces observations that alternate between 1 and
−1, with added Gaussian noise. The lag plot shows the strong negative correlation.
It is possible for observation sequences that have serial dependence to exhibit no lag
1 autocorrelation. An example of this is the process on the bottom left. The lag 1
plot shows no correlation. A lag 2 plot, however, shows strong negative correlation
for the same process (bottom right).

4.2.2 Using Autocorrelation to Build HMMs

If the observations belonging to a single state exhibit serial dependence, then a
conditional independence property is being violated. In particular,

p(Ot|qt) = p(Ot|q1...qt−1, O1...Ot−1) (4.4)

implies that Ot is conditionally independent of Ot−1, given qt. In addition,
Ot is independent of t, and thus the observations produced by any state should
not exhibit any serial dependence. In fact, the observations produced by each
state should be independently and identically distributed according to that state’s
output distribution. The presence of autocorrelation shows that this i.i.d. property
is being violated. The major contribution of this thesis is the demonstration that we
can use this to iteratively grow HMMs, adding states wherever serial dependence
is detected. Autocorrelation is a just a simple yet powerful way to detect serial
dependence, and other approaches might prove equally successful.

The above discussion assumes that we know which states produced which ob-
servations, yet we cannot assign observations to states with certainty. Instead we
employ a frequently adopted useful fiction and associate each observation with the
corresponding state in the most likely state path, using the Viterbi algorithm2. We
thus have an observation sequence and its corresponding state sequence. We need
to be able to compute the autocorrelation of the observations for a particular state,
s. A number of runs3 of state s occur within our observation sequence O, and the
autocorrelation associated with state s must consider only successive observations
within a run. In other words, the last observation of the jth run of state s should

2This is discussed in more detail in chapter 5.
3A ‘run’ of state s is a maximal non-empty subsequence consisting of adjacent s elements.
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Figure 4.2: Time series and lag plots to visualize autocorrelation. Top left: A noisy sin curve.
Top right: A smooth sin curve. Middle left: A noisy linear trend. Middle right: Noisy alternating
points. Bottom left: A periodic process. Bottom right: A lag 2 plot of the same periodic process.
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not be paired with the first observation of the j + 1th run of state s, as these are
separated by some other state and must be omitted from the computation.

Let As be a subsequence of O where the observations of all runs of state s are
concatenated after dropping the last observation in each run. Similarly, let Bs be
a subsequence of O where the observations of all runs of state s are concatenated
after dropping the first observation in each run. After concatenation, the index of
these subsequences no longer refers to time, and as such we index each sequence
with i rather than t. As

i and Bs
i are, by this definition, both from the same run of

s, and if As
i is Ot then Bs

i is Ot+1. The within-state autocorrelation for state s is
then

ACs =
E[(As

i − E[As])(Bs
i − E[Bs])]√

V ar[As]V ar[Bs]
(4.5)

In a state splitting algorithm, we need to decide which state, if any, to split.
We need to convert an autocorrelation coefficient for each state to such a decision.
One approach would be to split the state with the greatest autocorrelation. This
is problematic, as very short sequences can produce very large autocorrelations by
chance. Splitting states that produce very few observations would be extremely
counterproductive.

Instead, the frequentist hypothesis testing paradigm provides a natural way to
make such a decision. To evaluate whether or not the observations for a particular
state exhibit significant autocorrelation, we use a statistical hypothesis test under
the null hypothesis that there is no autocorrelation, and reject that null hypothesis
if the p-value for the test is below a chosen ε4. We employ the standard test for
significant correlation using the Student’s T distribution5 If there is more than one
state that exhibits significant autocorrelation, we split the state with the lowest
p-value.

4.3 Transition Dependence as a Heuristic for State

Splitting

Before describing the state splitting algorithm in more detail, we introduce a second
heuristic. It is based on a different conditional independence violation, and is
designed to suggest splits where autocorrelation cannot. The final algorithm will
combine both heuristics. Before introducing this heuristic, we will introduce the
problem it seeks to address.

4Typically called α in the statistics literature, but we use ε to avoid confusion with the forward
variable

5The Ljung-Box test [51] for autocorrelation would probably be more appropriate here, and
would certainly be essential when testing a range of lags. We chose the simple test as it yields good
results. It also has a rank based non-parametric version which can be used if odd distributions
are skewing the significance.
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Figure 4.3: A process with overlapping densities. A 4 state HMM, with a single Gaussian output
per state. Labeled ellipses denote states that produced corresponding observations. Outputs for
states 1 and 3 have means -5 and 5 respectively, but outputs for both states 2 and 4 have mean 0.
We can tell states 2 and 4 apart, however, because 2 always transits to itself or 3, and 4 always
transits to itself or 1.

4.3.1 The Problem of Overlapping Densities

Siddiqi et al. [74] identify a particular situation where structure discovery tech-
niques have trouble correctly recovering the model. This occurs when two states
have indistinguishable observation distributions, but different transition parame-
ters. An example of such a process is in figure 4.3. States 2 and 4 have identical
distributions, but state 2 always transits to itself or 3, and 4 always transits to
itself or 1. Discovering such structure is challenging. Even when Baum-Welch is
given the correct number of states, it fails to identify the correct model structure.

No three state model can capture the dynamics exhibited by the process in
figure 4.3. A state splitting approach using significant autocorrelation to guide split
decisions results in a three state model, with states 1 and 3 correctly identified, but
only a single state where states 2 and 4 should be. This is because these observations
exhibit no autocorrelation. We thus need a way to tell such states apart. This is
the goal of our second heuristic.

4.3.2 Transition Dependence

Consider all runs of state s in a state sequence. We use ‘transition dependence’ to
refer to the case where knowing the state that preceded a run of s improves one’s
guess of the state that will follow that run. Put differently, where a state transits
to depends on where it came from. Formally, let pres be the state preceding a
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run of s and posts the state following it. Transition dependence describes the
situation where the conditional distribution p(posts|pres) differs from the marginal
distribution p(posts),

p(posts|pres) 6= p(posts) (4.6)

If this is the case, then the Markov property of the state sequence is being
violated. Recall that

p(qt|q1, ..., qt−1) = p(qt|qt−1) (4.7)

implies that qt, given qt−1, must be conditionally independent of any other state.
The dependence in 4.6 clearly violates this, indicating that there must be more than
a single state underlying s.

Once again we use the statistical hypothesis testing framework to detect such
dependence. Let s denote the state under consideration, and N the total number
of states. An N × N matrix T is constructed where each entry T (r, c) represents
the number of times a run of state s transitioned to state c, after being preceded by
state r. Note that the sth row and column are empty (as we are considering runs
of s, and by the definition of a run, s cannot precede or follow a run of s), and are
removed from the matrix leaving a (N−1)× (N−1) matrix. The differences in the
relative frequencies between these rows is a measure of how much a state’s successor
depends on its predecessor. If there is only one state producing the observations
we have attributed to s, then we should expect these frequencies to differ only by
chance. We use a 2 sample chi-square test and compare each row of frequencies
to the frequencies averaged over all the other rows, under the null hypothesis that
they come from the same distribution.

This is N − 1 different tests, and in order to control the false positive rate we
use Bonferroni correction [20] for multiple tests and scale our ε accordingly. If
any of these N − 1 tests reject the null hypothesis, then state q is a candidate for
splitting. This procedure is repeated for each state, and if more than one state
shows significant transition dependence, then the one with the lowest p-value is
selected as the split candidate.

4.4 The Algorithm

This section describes the computational flow of our heuristic state splitting algo-
rithm, which we name ‘Discover’. We adopt a standard heuristic state splitting
approach as described in section 3.7.1. We first give an overview of the algorithm,
then proceed to describe each step in more detail. We model each state’s output
with a single Gaussian, although the approach makes no assumptions about the
observation distributions, and could easily be extended to work with other observa-
tion models. We begin with a single state. If significant autocorrelation is detected,
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that state is replaced with two states, and the model is retrained. Within-state au-
tocorrelation is then calculated for each state, and the state with the lowest p-value
is split. This is continued until there is no significant autocorrelation in any state.
Transition dependence is then calculated, and if it is detected, the state with the
lowest p-value from the chi-square test is split, and the model is retrained. This
process in continued until neither heuristic detects any significant conditional in-
dependence violations. Rather than rely on our own (potentially buggy) HMM
algorithm implementations, all algorithms presented here use the basic HMM rou-
tines from Kevin Murphy’s Bayes Net ToolBox for MATLAB [58].

4.4.1 Initialization

The initial state has only two parameters: the mean and variance of its output
distribution. These are set to the maximum likelihood estimates for the data over
the entire sequence. As there is only a single state, the Viterbi path is trivially a
sequence of 1s.

4.4.2 Splitting Due to Autocorrelation

If significant autocorrelation has been detected within the observations attributed
to a single state, we need to split that state. This requires specifying how to
initialize a new model with an extra state. We cannot simply add an extra state to
the model with random parameters. Baum-Welch is being used for model retraining
and its sensitivity to initial parameters requires a good initial guess. Nor can we
just add an extra state with exactly the same parameters as the split candidate
(after normalizing to satisfy stochastic constraints), as Baum-Welch training is
deterministic, and if two states have identical parameters, Baum-Welch would never
separate them. To remedy this, we simply separate the observation distributions
slightly.

Let s denote the split candidate. Let s′ and s∗ denote the two new states. The
initial state probabilities for the two new states are set to half that of the split
candidate.

πs′

πs∗

}
← 1

2
πs

The transition probabilities between the two new states, as well as their self
transitions are set to half the self transition probabilities of the split candidate.

as′s∗

as∗s′

as′s′

as∗s∗

← 1
2
ass
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The transition probabilities from the two new states to every other state are set to
the corresponding transition probabilities from the split candidate.

as′j

as∗j

}
← asj

The transition probabilities from every other state to the two new states are set to
half the transition probabilities from every other state to the split candidate.

ais′

ais∗

}
← 1

2
ais

The variances for the new states are set to that of the split candidate.

σs′

σs∗

}
← σs

The only case where s′ and s∗ have different parameters are the means. They
are both shifted a single standard deviation either side of the mean for the split
candidate, forcing them to account for different observations.

µs′ ← µs +
√
σs

µs∗ ← µs −
√
σs

4.4.3 Splitting Due to Transition Dependence

We do not use the same procedure when splitting states due to transition depen-
dence. Perturbing the means makes no sense, as the observation distributions of
the underlying states are similar. Instead, we rely on the fact that our test for tran-
sition dependence identifies the particular way in which the underlying transition
distributions differ. The means and variances for s′ and s∗ are set to those of s.
As above, the initial state probabilities are set to half those of s. As the means,
variances, and initial state probabilities are identical, we use the transition matrix
to allow Baum-Welch to distinguish the two new states. Recall that the test for
transition dependence identifies not just the state to split, but which particular
row in the T matrix differed from the others. We initialize as′i with the normalized
transition counts from the row of the T matrix that differed most significantly from
the rest, and as∗i is initialized to the normalized sum of the other rows.

4.4.4 Termination

Using hypothesis testing to guide state splitting provides a natural stopping crite-
rion. We could use the minimum AIC or BIC model if our heuristic state splitting
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quite large models. If this is unfavorable for computational reasons then one could
use the minimum BIC model, which is typically much smaller. The frequentist sta-
tistical hypothesis testing framework is also useful when combining many different
heuristics, as a single ε parameter can be set for all of them.

Algorithm 1 :Discover

Initialize: Create a single state model.
repeat

Run Baum-Welch re-estimation until convergence. Compute p-values for au-
tocorrelation in each state(p-valAC)
if min(p-valAC) < ε then

Split state argmin(p-valAC)
else

Compute p-values for transition dependence in each state (p-valTD)
if min(p-valTD) < ε then

Split state argmin(p-valTD)
end if

end if
until (min(p-valAC) ≥ ε)) && (min(p-valTD)) ≥ ε)

4.5 Performance

In this section we first show how the algorithm behaves on some simple test cases,
and some real data. We then test the model on synthetic data in a classification
task. The use of synthetic data here is simply because we did not have access
to univariate continuous time series data for classification tasks. In the next sec-
tion, we generalize the technique to handle multivariate data and demonstrate its
performance on real data.

4.5.1 The Overlapping Observation Distribution Process

Discover can successfully recover the structure of the 4 state process in figure 4.3.
We use this process as a demonstration of the algorithm’s behaviour. First, we
must be precise about the parameters of the model that we are trying to recover.

The model only starts in state 1, so the initial parameters are

π =


1
0
0
0


The transition matrix is
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A =


0.95 0.05 0 0

0 0.95 0.05 0
0 0 0.95 0.05

0.05 0 0 0.95


The vector of means is

µ =


1
0
−1
0


All the variances are set to 0.05, so the vector of variances is

σ =


0.05
0.05
0.05
0.05


10 sequences of length 400 were generated by this model. Discover was run on

these sequences. This is a good time to introduce two kinds of plots used in this
section. The first we will call a ‘state sequence plot’. Each state sequence plot is
divided by a vertical black bar. To the right of the bar is a plot of the observation
sequence, with the colour of the data points determined by the Viterbi path of the
model through the data. To the left of the bar is a representation of the model
output distributions for each state, coloured and scaled to match the observation
sequence to the right. Overall, this plot allows one to visualize part of the model,
as well as how it fits to the data. Figure 4.4 shows the progression of the algorithm
using 4 different state sequence plots, from the initial single state model, to the
final 4 state model. At the bottom of figure 4.4 is the second kind of plot, which
we call the ‘score plot’. This is divided into two sections. The top plot shows a
plot of a candidate observation sequence, and the bottom shows the AIC and BIC
values over the course of Discover’s state splitting progression.

The model parameters discovered by the algorithm are listed below. It should
be pointed out that multiplying each of these parameter matrices and vectors by
some row exchange matrix (ie. relabeling the states) would produce a model with
parameters very close to the original model. The log-likelihood of the data for the
recovered model was -505.192259.

π =


0.0000
0.0000
1.0000
0.0000
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Figure 4.4: Discovering the 4 state process. Discover reconstructing the HMM for the 4 state
process from figure 4.3. 4 ‘state sequence plots’ (above) show the progression of the model over
the course of the discovery process. The ‘score plot’ (below) shows the progression of AIC and
BIC scores. See text for further details.

64



A =


0.9523 0.0477 0.0000 0.0000
0.0000 0.9457 0.0543 0.0000
0.0000 0.0000 0.9484 0.0516
0.0427 0.0000 0.0000 0.9573



µ =


−1.0059
−0.0027
0.9970
0.0069



σ =


0.0583
0.0581
0.0604
0.0659


Running Baum-Welch training until convergence on the same data sequence

does not recover the original model, even when you tell it the correct number of
states in advance. Baum-Welch achieved a much lower log-likelihood of -570.256613
with the following transition matrix:

A =


0.3087 0.0839 0.0000 0.6074
0.0158 0.9531 0.0225 0.0086
0.0000 0.0505 0.9495 0.0000
0.3927 0.0244 0.0000 0.5829


The model can be seen on the left of figure 4.5. The failure is evident. Another

run of Baum-Welch training on a sequence generated by the same original model
yielded a log likelihood of -589.236377, with the following transition matrix

A =


0.3525 0.0272 0.5964 0.0238
0.0365 0.9388 0.0247 0.0000
0.5408 0.0262 0.4113 0.0217
0.0247 0.0000 0.0266 0.9487


The state sequence plot for this attempt can be seen to the right of figure 4.5.

Even though the output distributions are roughly in the correct place, Baum-Welch
training fails to learn the correct transition probabilities. Neither transition matrix
can be row exchanged to produce anything near the original transition matrix.
Repeated runs revealed that Baum-Welch never finds the correct model, whereas
Discover always does.
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Figure 4.5: Baum-Welch on the 4 state process. Baum-Welch fails on two different runs on data
from the same 4 state process. See text for details.

4.5.2 Well Log Data

We also demonstrate Discover’s performance on real univariate data. The well log
data comes from lowering a device to measure the nuclear magnetic response of rock
strata down a bore hole [23]. This data set has 4050 measurements. The signal
appears piecewise constant, with some severe outliers. As we don’t have anything
corresponding to ground truth for this data, we will compare log likelihoods for
models from Discover with those from Baum-Welch initialized with the same num-
ber of states found by Discover. This is intended more as a demonstration of the
behaviour of the algorithm than of its superior performance.

We show the results of Discover with two different ε values in figure 4.6. With
a very sensitive ε of 10−2, Discover learns a 15 state model with a log likelihood
of −37559.84 from the well log data. With a less sensitive ε, Discover learns an 8
state model with a log likelihood of −37765.57. The models and their fit to the
data can be seen in figure 4.6, as well as the AIC and BIC curves. Interestingly, the
well log data actually exhibits more temporal structure than meets the eye. Even
where the segments appear constant Discover detects significant autocorrelation.
Also notice the difference between BIC and AIC as the state splitting progresses.
BIC penalizes extra parameters more stringently than AIC, biasing heavily against
large models, while AIC does not. When Baum-Welch is applied to the same data,
initialized with 15 and 8 states, not only are the log likelihoods lower (-37752.95 and
-38173.32), but the models just don’t seem to correspond well to the data, as can
be seen in figure 4.12. The striations from the 15 state Baum-Welch model show
pathologically poor performance, most likely due to sensitivity to initialization.

4.5.3 Synthetic Data

An objective test of Discover’s performance is a classification task. A 20 ‘word’
vocabulary was created, with each word corresponding to a randomly generated
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Figure 4.6: Well log data. Discover’s performance on the Well log data. Top ε = 10−12, middle
and bottom ε = 10−2. See text for further details.
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Figure 4.7: Baum-Welch on the well log data. Baum-Welch initialized with 8 states (top) and
15 states (bottom). See text for details.
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HMM. 30 observation sequences, each with 400 observations, were generated by
each word model; 15 for its training set and 15 for its test set. For both Baum-
Welch and Discover, one model was trained on the training sequences of each word,
with Baum-Welch training once again being initialized with the same number of
states as the model that generated the sequences. This yields 3 models per word,
one from Discover, one from Baum-Welch training, and the original model that
generated the sequences. The classification performance of the original model is
included as an upper-bound for the classification accuracy, which will change from
one iteration of the experiment to the next, as the similarity between the randomly
created models will determine the similarity of the sequences generated and thus
the difficulty of the classification task. Some experiment iterations will result in
more similarity between words than others, and we use the generating model to
obtain an estimate of the difficulty of the classification task.

Classification accuracies using Discover, Baum-Welch training, and the original
models are reported in Tables 4.1, 4.2, 4.3 and 4.4 for words with 4, 7, 10 and 20
states, with each classification experiment being performed 10 times. Remarkably,
the performance of Discover was extremely close to that of the upper bound set
by the original model for each iteration. Baum-Welch training performed much
worse6, even though it was initialized with the correct number of states. Besides
classification tasks, we also tested Discover’s ability to recover the actual structure
of the generating model. Discover very often found the true model structure, but
we postpone a discussion of this until the next section.

4.6 Multivariate Observation Data

This section extends Discover to multivariate observations, and demonstrates its
performance on synthetic and real data. The transition dependence heuristic relies
on the Viterbi path alone and needs no modification. The extension to multivariate
data thus requires detecting significant autocorrelation for multivariate time series.
We adopt a very simple strategy. Recall that selecting a split candidate using the
significant autocorrelation heuristic requires calculating a p-value for each state.
With multivariate observations, to compute a p-value for each state, we simply
compute individual p-values separately for every observation dimension, and the
smallest of these is taken to be the p-value for that state. We then scale these
p-values by multiplying them by the total number of observation dimensions, ef-
fectively implementing Bonferonni correction for multiple tests to control the false
discovery rate.

The only other difference made to the state splitting procedure is how the new
model is initialized after state splitting. Analogous to the univariate case, we
separate the means (which are now vectors) for each new state by some function of
the covariance matrix. We rely on the diagonal of the covariance matrix:

6Statistical analysis of such results is somewhat gratuitous, but for all 4 experiments, differences
between Discover and Baum-Welch were significant on paired samples t-tests (p < 0.00005).
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Table 4.1: Classification accuracies on 4 state HMMs.
iteration 1 2 3 4 5 6 7 8 9 10 mean

Generating
Model 0.86 0.93 0.93 0.81 0.82 0.82 0.84 0.87 0.93 0.94 0.87

Structure
Discovery 0.86 0.92 0.93 0.81 0.82 0.82 0.82 0.87 0.92 0.94 0.87

Baum-Welch
Training 0.70 0.68 0.71 0.68 0.53 0.69 0.75 0.69 0.80 0.66 0.69

Table 4.2: Classification accuracies on 7 state HMMs.
iteration 1 2 3 4 5 6 7 8 9 10 mean

Generating
Model 0.78 0.92 0.89 0.87 0.95 0.90 0.81 0.91 0.86 0.80 0.87

Structure
Discovery 0.78 0.90 0.90 0.87 0.96 0.89 0.82 0.90 0.85 0.79 0.87

Baum-Welch
Training 0.71 0.61 0.61 0.66 0.82 0.65 0.65 0.64 0.63 0.70 0.67

Table 4.3: Classification accuracies on 10 state HMMs.
iteration 1 2 3 4 5 6 7 8 9 10 mean

Generating
Model 0.92 0.88 0.87 0.75 0.94 0.73 0.93 0.95 0.80 0.85 0.86

Structure
Discovery 0.91 0.84 0.85 0.75 0.93 0.73 0.92 0.95 0.79 0.84 0.85

Baum-Welch
Training 0.75 0.64 0.69 0.66 0.68 0.62 0.75 0.80 0.59 0.65 0.68

Table 4.4: Classification accuracies on 20 state HMMs.

iteration 1 2 3 4 5 6 7 8 9 10 mean
Generating

Model 0.85 0.84 0.90 0.87 0.85 0.95 0.84 0.76 0.84 0.89 0.86
Structure
Discovery 0.77 0.80 0.87 0.82 0.80 0.85 0.79 0.71 0.82 0.88 0.81

Baum-Welch
Training 0.58 0.52 0.61 0.59 0.53 0.77 0.59 0.59 0.51 0.71 0.60
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µd
s′ ← µd

s +
√
σdd

s

µd
s∗ ← µd

s −
√
σdd

s

where µd refers to the dth element of the mean vector µ, and σdd refers to the
element at the dth row and dth column of the covariance matrix σ, which is simply
the dth element in the diagonal of σ. This is the variance along the dth observation
dimension for that state’s output distribution. The covariance matrices for the two
new states just take the values of the split candidate’s covariance matrix. The
multivariate state splitting procedure is otherwise identical to the univariate one.
The MATLAB code for Discover is in A.8 and below.

4.6.1 Synthetic Data

The multivariate extension of Discover can adequately recover model structure
when multivariate synthetic data is used. Qualitatively7, model recovery ability
increased with the number of dimensions. We hypothesize that this is because
most model recovery errors on univariate data occur when different states have
similar observation distributions. In the multivariate case, the probability of this
occurring gets exponentially lower as the number of dimensions increases. A high
dimensional space space requires a conspiracy of chance for two uniformly sampled
random points to be proximal 8 and since this is how our state’s output distribution
means are generated, there should be less overlap in higher dimensional spaces. This
property depends on the distribution of the randomly generated models, and might
not extend to real data.

Figure 4.8 shows the score plot for a set of multivariate sequences, synthetically
generated from a randomly constructed HMM with 7 states, and a 3 dimensional
observation vector. To evidence that the model has been accurately recovered, fig-
ure 4.8 includes a 3D scatter plot of the means of each state, for both the model
that generated the data and the model recovered by Discover. As can be seen,
there is very little difference between the means from the generating and discov-
ered models. While such performance is generally representative, Discover does
occasionally fail to identify the number of states in the generating model. This
could be a result of the generating model having statistically indistinguishable ob-
servation distributions, resulting in fewer states than the original model, or either
of the two heuristics returning false positives, leading to extra states. Besides such
errors, one genuine problem we identified involved occasionally poor initialization
of the two new states, but we postpone a discussion of this until chapter 5.

7We do not attempt to quantify this, as we don’t have measures of model distance that are
comparable across dimensions.

8Consider the average distance between two uniformly sampled points on a line, two points in
a square, a cube etc...
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Figure 4.8: Discovering the structure of a 7 state HMM with a 3D observation vector. Left
shows the score plot for Discover on a 7 state HMM with a 3D observation vector. The sample
output is shown in the top half of the score plot. Right shows a 3D scatter plot of the means
for each state. Blue depicts means from the HMM that generated the data, red from the HMM
found by Discover.

4.6.2 Character Trajectory Data

We conclude this chapter by discussing the performance of Discover in a classifi-
cation task on multivariate data. The data comes from the ‘character trajectories’
data set in the UCI machine learning archive [32]. The data comprise 2858 on-
line handwritten characters recorded on a WACOM tablet. The data set is sup-
plied after some preprocessing, which includes numerical differentiation, Gaussian
smoothing, and normalization. 20 character types are included in the data set, and
each character instance is a time series of x, y, and pen force measurements. In
most of the following analysis we discarded pen force, as it only marginally im-
proved performance. As a result of the differentiation, we do not not model the
pen position through time, but rather the pen velocity. Figure 4.9 shows the pen
velocity trajectories, as well as their numerical integrals which correspond to the
actual characters.

There were different numbers of characters in each class, and we randomly
selected 30 from each to comprise our training set. The rest formed the test set.
The training set was thus just over 20% of the data. As supplied, the data was
pathologically noiseless, probably due to the Gaussian smoothing. This presents
problems for HMM construction. A state’s output distribution can shrink to a
delta function as it tries to fit many data points with exactly the same value, which
makes the Baum-Welch re-estimation numerically unstable. We experimented with
a few solutions to this problem, including adding a prior to the covariance matrix
to discourage such shrinkage. The final best results for both Baum-Welch and
Discover were obtained by simply adding small amounts of Gaussian noise to the
training data.

We used Baum-Welch training as a comparison. Unlike with the synthetic data
above, we do not know the best number of states to use in advance. We thus tested
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Figure 4.9: The character ‘a’, as supplied by the UCI. A plot of the pen tip position (left)
and velocity (right), showing the paths through space (top) and time (bottom). Note that the
velocities, without the pressure dimension, are what is actually modeled.

Baum-Welch with a number of different states. The performance varied for each
iteration due to sensitivity to model initialization. Average results are plotted in
figure 4.11. Baum-Welch always hovered below the 0.8 accuracy mark.

Discover fared far better than Baum-Welch. Accuracies ranged from about 0.88
to 0.91, depending on the value of ε, the only parameter. The number of states
discovered decreases with the value of ε, as does the accuracy. This allows ε to
weigh computational efficiency against accuracy.

4.6.3 BIC vs AIC for Classification Tasks

AIC and BIC select models of different sizes. BIC selects smaller models, and
is more commonly used in the HMM structure discovery literature [47, 74]. As
our algorithm terminates naturally without the need for model selection criteria,
we can ask how it would behave if we did use model selection criteria. Recall
that, at each stage in the state splitting process, a fully trained HMM is produced.
This allows us to set our ε parameter to be sensitive enough to produce models
more complex than either AIC or BIC would recommend, store the models that
maximized AIC and BIC during the discovery process and use those to attempt
classification. This enables comparison between AIC and BIC as model selection
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Figure 4.10: The character ‘a’, after discarding pressure and adding noise. This is an example
of the data we use to build our HMMs.

criteria for HMMs used for classification tasks. On the characters dataset, models
selected by BIC tended to be small, with a mean of 11 states (standard deviation:
2.1764), while models selected by AIC averaged 17.85 states (standard deviation:
3.031). AIC outperformed BIC in classification accuracy, achieving 0.8897 against
BIC’s 0.8667.

This result should be considered in context. Burnham et al. [15] assert that
the performance of AIC and BIC depend on the kind of data, as well the set of
models from which selection occurs. Specifically, BIC performs better when there
are a few major effects, and AIC better when there are many tapering effects.
Now, as HMMs are only intended as an approximation - modeling smooth curves
with small piecewise constant segments - we believe the situation is analogous to
the case of tapering effects, where more data allows more model structure to be
found. Burnham et al. [15] claim that BIC tends to underfit in these cases, and
this is consistent with our results above. What is surprising is that the models
discovered with quite sensitive ε parameters are larger than - and outperform -
even the best AIC models. This could be taken as (a small piece of) evidence
that AIC also underfits, but we favor an alternative hypothesis. Speculatively, a
state splitting search through the model space might introduce a kind of implicit
parameter regularization. At each split iteration, the entire model is retrained.
This means that when two new states are introduced through splitting, all the
other states are already occupying very good locations in their parameter space,
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Figure 4.11: Baum-Welch on the character data. The performance of Baum-Welch varied
between 74% and 78%, and is plotted against the number of states for each experiment.
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Figure 4.12: Discover on the character data. Plots above show the effect of ε on accuracy (left)
and the mean number of states discovered (right).

effectively restricting the parameter space of the newly introduced states. While
this hypothesis is entirely speculative, it would explain why extremely large models
with more parameters than there are data points in the training set still produce
good classification accuracies. This is atypical; overly large models usually learn
the idiosyncracies in the training data and generalize very poorly.

Siddiqi et al. [74] also encountered the fact that extremely large models (around
55 states), discovered by a state splitting approach using BIC as a stopping criterion,
produced the best classification results. They ventured that the large state numbers
were a result of a coarse ‘hard-updates’ algorithm being less prone to local maxima.
This might explain their large state numbers, but it doesn’t explain why such large
models showed superior classification performance. Our results shed some light
on this, indicating that state splitting algorithms involved in classification tasks
using real world data might benefit from using a model selection criterion that
penalizes additional parameters less heavily than BIC. Additionally, if the implicit
regularization hypothesis holds, even AIC might be too restrictive. Discover, with
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its natural stopping point, can avoid such issues, continuing to split states wherever
temporal structure is detected.
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Chapter 5

Discussion and Future Research

This chapter reflects on the Discover’s behaviour and some of its current limitations,
and then describes potential directions for future research. We begin by discussing
the computational details of the algorithm. Following that, we describe how to
generalize the algorithm to handle discrete observations, trading the autocorrelation
heuristic for a discrete measure of serial dependence. We also discuss relaxing the
reliance on the Viterbi path when computing within-state autocorrelation, showing
how to compute a weighted autocorrelation that takes uncertainty in the estimated
state sequence into account. A hybridization of Discover with STACS, from [74], is
proposed in order to decrease the computation time. Finally, we describe how to
incorporate more complex observation distributions; Gaussian mixture models and
kernel density estimation.

5.1 Discussion

5.1.1 Why State Splitting Works

One can view a state splitting algorithm as a smart multi-stage initialization proce-
dure. With every split, we only attempt to re-estimate a small piece of the model.
While the rest of the model is not explicitly constrained, as it is in STACS, it
usually does not change much. This is one potential explanation for the fact that
state splitting performs better than Baum-Welch training, even when the model
size is known in advance. Perhaps adjusting fewer parameters at a time causes
the likelihood function to have fewer local maxima. Another explanation is that
state redundancy is usually avoided. When the number of states is specified in ad-
vance, regular initialization procedures are forced to commit output distributions
to locations in the output parameter space right at the beginning of parameter
optimization, from which they may not be able to escape. Adding structure incre-
mentally avoids this kind of problem. Further experimentation with different types
of incremental model training might be able to elucidate the mechanisms behind
the performance of state splitting procedures.
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5.1.2 Running Time

We have made almost no attempt to optimize Discover. Currently, the algorithm
requires running Baum-Welch training after every split. Thus each split takes
O(TN2), and N goes from 1 to the number of states finally discovered, which we
will call F . This is TF (F + 1)(2F + 1)/6, which is O(TF 3). This is slower than
Baum-Welch, and one direction for future research is working on speed increases.

Many HMM applications involve off-line learning, in which case the model train-
ing time is not a great concern. The final model size does affect online processing
time though, and Discover typically results in larger models than Baum-Welch
training. If there is such a computational limit on model size, this can easily be in-
corporated through early stopping. Discover trained with an upper limit on model
size returns better models, on average, than Baum-Welch training initialized with
models that size.

5.1.3 Initialization Failures

One of the ways Discover can go wrong is when an extra underlying state is de-
tected, but the two new states created as a result of the initialization procedure fail
to appropriately capture the extra structure. This can lead to redundant model
structure; states which account for almost no data, or many states accounting for
data where just one would do. This could be remedied by a state merging step
somewhere in the algorithm, or by coming up with better post-split initialization
procedures. Another option would be to include some threshold for model improve-
ment, and if the split, after training, does not improve the model fit beyond this
threshold, backtrack to the previous model and try the next best split candidate.

5.2 Extending Discover

Discover, in its present form, admits numerous extensions. We describe them below,
in no particular order.

5.2.1 Discrete Observations

The main idea behind Discover, using serial dependence within runs of a single
state as a heuristic for state splitting, can be extended to discrete observation
sequences. Autocorrelation would need to be abandoned, and some measure of serial
dependence for discrete observations employed. Perhaps most closely analogous to
first order autocorrelation, one could construct histograms for each observation
conditional on the preceding observation, and use a chi-square test to check if these
conditional distributions differ from the marginal distributions. This is similar to
our transition dependence heuristic, but applied to successive observations rather
than runs of states.
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5.2.2 Smooth AC Computation

Currently, the computation of within-state autocorrelation relies on treating the
Viterbi path as if it were the true path. This is a convenient fiction which clearly
serves quite well, but it neglects the probabilistic nature of the model. To fully
capture uncertainty about transitions between states, we would need to compute
something akin to a within-state autocorrelation over all possible paths, weighted by
the probability of each path. We outline a procedure for doing such a thing below.
We first define weighted autocorrelation in general, and then describe where the
weights come from.

Weighted Correlation and Autocorrelation

Weighted correlation requires a weighted mean and a weighted covariance. If x is
a vector of data, and w is a vector of weights of the same length as x, then the
weighted mean, m(x;w) is simply

m(x;w) =

∑
iwixi∑
iwi

(5.1)

With an additional vector y of the same length, the weighted covariance between
x and y is

cov(x, y;w) =

∑
iwi(xi −m(x;w))(yi −m(y;w))∑

iwi

(5.2)

Weighted correlation is

corr(x, y;w) =
cov(x, y;w)√

cov(x, x;w)cov(y, y;w)
(5.3)

Weighted autocorrelation is then just the weighted correlation of a signal with
a time shifted version of itself. We now describe a suitable choice of weights.

Weighting by ξ

Recall ξt(i, j), the probability of being in state i at t and j at t + 1, given an
observation sequence and a model:

ξt(i, j) = p(qt = Si, qt+1 = Sj|O, λ) (5.4)

We define ξi = {ξ1(i, i), ..., ξT−1(i, i)}. This is simply a vector of self transition
probabilities for a particular state. This will be our weight vector for state i. Our
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definition of weighted autocorrelation for state i is simply the weighted correlation
of the vectors Oa and Ob (defined in section 4.2.1), with ξi as the vector of weights:

ACi =
cov(Oa, Ob; ξi)√

cov(Oa, Oa; ξi)cov(Ob, Ob; ξi)
(5.5)

Computing the autocorrelation for state i thus weighs each pair of successive
observations (Ot, Ot+1) by the probability that the model was in state i for both.
Where there is a very low probability that the model was in both states at successive
times, the pair of observations will contribute very little to the autocorrelation, but
when that probability is very high, the pair will contribute a lot. It is also worth
pointing out that this definition reduces to the previous definition when the Viterbi
path is the only path, as the old definition is equivalent to ξi

t being 1 when the
Viterbi path at t is in state i, and 0 otherwise.

This procedure is asymptotically as efficient as using the most likely path to
approximate within-state autocorrelation for every state, as the entire ξt(i, j) lat-
tice can be computed in O(N2T ), which is asymptotically as efficient as the Viterbi
algorithm. We have not yet tested this weighted within-state autocorrelation, and
issues related to statistical tests for weighted autocorrelation still need to be re-
solved.

5.2.3 Incorporation of Other Heuristics

The two heuristics employed in this thesis are not exhaustive, and there are many
cases where they will fail to detect underlying structure. For example, if two states
have the same transition probabilities, and their distributions have the same mean
but different variances, our present algorithm would fail to tell them apart. To deal
with such a case one could introduce a heuristic, similar to within-state autocorre-
lation, that keeps track of the deviation of observations from the mean and tests for
temporal structure in this sequence. Such temporal structure would indicate differ-
ent variances hiding within the same state. The details of the particular statistical
test would need some thought though.

There are other cases where Discover would fail to detect underlying model
structure. The statistical hypothesis testing framework allows incorporation of
many different heuristics, without adding additional parameters. An algorithm
with a large number of heuristics begins to look inelegant, however, and, in the
next section we describe a way to combine Discover with a different algorithm to
produce an efficient hybrid structure discovery procedure.

5.2.4 Combining Discover with STACS

The exhaustive state splitting algorithm, STACS, described in [74] requires testing
a split for each state in the present model and retraining a new model once for
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each state at every split iteration. To improve the efficiency of such a procedure,
the retraining for each split test is constrained so that only the observations which
belong to that state on the Viterbi path are considered. This drastically improves
the training time. We propose a marriage of our heuristic procedure with STACS.
This has two benefits: computational efficiency and thoroughness. We first describe
the combination, and then describe the potential performance gains.

The Hybrid Algorithm

We propose to select split candidates initially using heuristics, until all heuristic
splits have been exhausted. To retrain the split candidate, we would use the STACS
constrained re-estimation procedure. Once heuristic splits can no longer be identi-
fied, we resort to the usual STACS training procedure, trying every possible split
to see which results in the greatest likelihood increase, with stopping dictated by a
model selection criterion.

To see why this might be a good idea, consider the course of the STACS al-
gorithm discovering a 10 state model. Assuming most of the work is done by the
split selection procedure, retraining new models for every candidate tested, the
STACS re-estimation procedure would have to be called 1 + 2 + ... + 10 times.
Fortunately, the STACS re-estimation procedure gets faster per state as the num-
ber of states increases, as each state is responsible for fewer data points. This
is precisely what keeps it efficient. Specifically, with N states, each STACS re-
estimation for a single split is proportional to T/N , causing the above sum to be
1T/1+2T/2+ ...+10T/10, or just 10T . With heuristic state splitting, we no longer
need to retrain every state, so, using STACS constrained re-estimation the above
sum becomes T/1+T/2+ ...+T/10. Adding an extra state is faster when there are
more states! The resulting efficiency gains should be very large, especially when
very complex models are discovered.

Running the regular STACS ‘try every state’ procedure after all heuristic splits
have been exhausted would serve to explore possible splits that might not otherwise
be identified by our heuristics. This would circumvent the need to add any new
heuristics to deal with cases where heuristic splitting might fail, instead relying
only on a few strong heuristics, and falling back on the general structure discovery
power of STACS when these heuristics fail.

5.2.5 Beyond Single Gaussian outputs

One potential issue for Discover, as well as other structure discovery techniques, is
the use of a single Gaussian to model state output distributions. It might be the
case that there is an underlying model with relatively little dynamical structure, say
2 hidden states, but with each state having quite complex observation distributions.
One could of course use a model with many states to approximate the complexity
of the output distributions, while the simplicity of the dynamic structure would

81



be reflected in the similarity of the state transitions. This is far from optimal,
as it wastes many transition parameters, and destroys the interpretability of the
resulting model. A better idea would be to use less restrictive output models,
such as mixtures of Gaussians or kernel density estimation. Creating a structure
discovery algorithm using such complex observation distributions would require
ironing out some nontrivial kinks. Two proposals for such algorithms, possible
problems, and potential solutions are described below.

Mixture of Gaussian Outputs

The use of Gaussian mixture models1 as observation distributions is common in
the speech recognition literature [68]. Unlike other heuristic structure discovery
algorithms, the principles behind state splitting in Discover are agnostic about
the observation models, and so allow for complex output distributions. Initial
experiments with mixture model outputs have highlighted post split initialization
as a problem for such an extension. In our experiments, we tried keeping our post-
split initialization procedure as is, and applying it to each Gaussian component
in the mixture. Interestingly, this causes the re-estimation procedure to become
unstable, as all the data points for certain mixture components migrate to one
of the two states, leaving that component in the other state with very little data
points. Smarter post-split initialization procedures are required if such techniques
are to be effective.

One possibility would be to dynamically add mixture components where the
data requires them. A goodness-of-fit test, or some other measure of distance from
the empirical distribution, could be used to grow output complexity for each state,
and mixtures could be pruned when their mixture weights become too small. A
naive post-split initialization procedure in this framework could simple ignore the
structure of the split candidate and regrow the observation distributions for each
new state. This might be too slow to be useful. Other options would be to take
all the mixture components used in the split candidate and, before introducing
transitional structure, probabilistically assign each data point to a component. A
transition matrix between all components could then be constructed, and compo-
nents with similar transition probabilities could then be iteratively merged. This
leaves open the option of splitting a single state into more than two states, if the
transitions between the components indicate such structure. One potential benefit
of such an initialization procedure is that it might also reduce the number of Baum-
Welch iterations required for convergence, as the transitional structure should be
near optimal. The constrained parameter optimization used by STACS should also
work with mixture models, speeding up the re-estimation after splitting.

1Brevity prevents us from reviewing Gaussian mixture models here, but see [68] for a full
introduction to their use in HMMs. The basic idea is to model each state’s output distribution
as a weighted sum of individual Gaussians, with weights summing to 1 to preserve stochastic
constraints.
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Kernel Density Estimation

Another option for more complex observation models would be to use an entirely
non-parametric kernel density estimation (KDE) output model. This would elim-
inate the need for adaptive mixture components, but it introduces a host of com-
putational issues. The Baum-Welch algorithm would need to be adapted for KDE
based HMMs. This has been attempted in [65], but is not widely used. It is unclear
how stable expectation maximization is for KDE based HMMs, and the following
set of ideas assumes good behaviour.

HMM structure discovery aims to approximate the structure of the underlying
process. Having a KDE based output distribution allows the entire focus of the
algorithm to be on finding the transitional structure between states, leaving KDE
to handle the output distributions. More concretely, this reduces to probabilistically
assigning data points to states, as the output for each state is implicitly created
with such an assignment2. The hope is that state splitting schemes need uncover
relatively fewer states when each state allows a complex observation distribution.

One of the most significant computational issues when using KDEs is that eval-
uating p(Ot|qt), the probability of a single observation given a state, is linear in
the number of observations, T . This means that the standard HMM algorithms
(forward, Viterbi etc.) become quadratic in T , which is prohibitive for long se-
quences. A number of options for coping with such computational explosions exist,
such as the fast Gauss transform [93] and KD-tree based methods [41]. The ease
with which these admit expectation maximization is an open question.

One option for handling such issues is to once again rely on Viterbi optimism, the
useful fiction that treats the Viterbi path as the only path. The cost of evaluating
p(Ot|qt) would decrease as the number of states increased. Re-estimation would be
like the Viterbi training procedure described in chapter 2, simply hard assigning
observations to states, and each observation distribution would just be a collection
of observations. The degree to which this would harm model performance is an
empirical question. We believe that incorporating heuristic structure discovery
into the fast Viterbi based state splitting re-estimation procedure, like V-STACS,
is a promising direction for research.

5.2.6 Encouraging Sparse Models Through Entropic Priors

Finally, sparse models could be encouraged through the use of an entropic prior,
as in [14]. Combining state splitting with such maximum a posteriori parameter
estimation could add structure while still encouraging sparse models. The pruning
schemes discussed in [14] would take care of any states that have become redundant
over the course of state splitting. Both state splitting and entropic priors have
proven useful for structure discovery, and there is no impediment to combining
them. The usefulness of such an endeavor remains to be seen.

2The global kernel variance also needs to be estimated, but see [65] for a discussion.
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5.3 Conclusion

This thesis introduced the theory of HMMs, surveyed a range of HMM applica-
tions and proposed a novel state splitting approach to discovering HMM structure.
The algorithm was first tested on univariate synthetic data, extended to multi-
variate observation vectors, and its performance was demonstrated with an online
handwriting recognition task, showing superiority over Baum-Welch training alone.
Some potential avenues for future research were suggested, including adapting the
algorithm to work for discrete observation data, extending the complexity of each
state’s observation distribution, and combining the algorithm with STACS to im-
prove its efficiency.
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Appendix A

Code

A.1 The Sequence Generator

%The Sequence Generator

%hmm.N is the number of states

%hmm.M is the number of observations

%hmm.pi is a row vector denoting the initial state distribution

%hmm.A is a matrix denoting the state transition probabilities, where a_ij

%= P(q_t = S_i,q_{t+1}=S_j)

%hmm.B is a row vector denoting the state output distribution, where b_jk

%denotes b_j(k) = P(O_t = v_k|q_t = S_j)

%returns a randomly generated sequence of observation symbols and the state

%sequence that generated them. Input an HMM and the length of the sequence

%required. Outputs: O - The vector of observations, Q - The state sequence

function [O,Q] = generator(hmm,seqLength)

%initialise outputs

O = zeros(1,seqLength);

Q = zeros(1,seqLength);

%sample from pi to get the starting state, Q_1

Q(1) = sample(hmm.pi);

%sample from the output distribution of the starting state to get the first

%observation, O_1

O(1) = sample(hmm.B(Q(1),:));

%iterate

for t = 2:seqLength

%sample from the state transition distribution of state Q_{t-1},

%A_{Q_{t-1},:} to get the state t.
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Q(t) = sample(hmm.A(Q(t-1),:));

%sample from Q_t to get O_t

O(t) = sample(hmm.B(Q(t),:));

end

A.2 The Sanity Checker

%The Sanity Checker

%This is useful for checking p(Q) and p(O) given some model. To check p(Q)

%for a Markov model, just set up a full HMM, but ignore the observation

%output.

%setting up the HMM from the Johnny example. See the text for details.

%For the states, 1 encodes ’busy’ and 2 encodes ’free’. For the

%observations, 1 encodes ’peanut butter’ and 2 encodes ’toasted cheese’

hmm.N = 2;

hmm.M = 2;

% busy free

hmm.pi= [0.2 0.8];

% busy free

hmm.A = [0.6 0.4; %busy

0.1 0.9];%free

% PB TC

hmm.B = [ 0.9 0.1; %busy

0.3 0.7];%free

%number of simulations

trials = 1000000;

%the sequence whose probability you are trying to estimate

testSeq = [2 2 1 1 2];

%count will store the number of times the sequence occurs

count = 0;

%run a number of simulations

for i=1:trials

%generate observation and state sequences

[O,Q] = generator(hmm,5);

%Compare Q to testSeq for p(Q), and O for p(O)

if Q == testSeq

%if the sequence in question appears, inc count

count = count + 1;
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end

end

%display the ratio, which should accord with the analytical calculation

count/trials

%Ben Murrell

A.3 The Forward Algorithm

%The Forward Algorithm

%returns p(O|model), and the lattice of alphas produced by that computation

%Inputs: an HMM and, and observation sequence O

function [prob,alpha] = forward(hmm,O)

%create alpha

alpha = zeros(hmm.N,length(O));

%initialise alpha

alpha(:,1) = hmm.pi’.*hmm.B(:,O(1));

%induction step

for t = 2:length(O)

for j = 1:hmm.N

alpha(j,t) =hmm.B(j,O(t)) * sum(alpha(:,t-1).*hmm.A(:,j));

end

end

%termination

prob = sum(alpha(:,length(O)));

A.4 The Forward Algorithm, with Scaling

%The Forward Algorithm, with Scaling

%returns log[p(O|model)], and the lattice of (normalized) alphas produced by that

%computation

%Inputs: an HMM and, and observation sequence O

function [logProb,alpha] = forward(hmm,O)

%create alpha and c

alpha = zeros(hmm.N,length(O));

c = ones(1,length(O));
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%initialise alpha and c

alpha(:,1) = hmm.pi’.*hmm.B(:,O(1));

%calculation the scaling coefficient c(1)

c(1) = 1/sum(alpha(:,1));

%multiplying alpha(:,1) by c to normalize

alpha(:,1) = alpha(:,1) * c(1);

%induction step

for t = 2:length(O)

for j = 1:hmm.N

alpha(j,t) =hmm.B(j,O(t)) * sum(alpha(:,t-1).*hmm.A(:,j));

end

%calculating the scaling coefficient c(t), and normalizing alpha(:,t)

c(t) = 1/sum(alpha(:,t));

alpha(:,t) = alpha(:,t) * c(t);

end

%termination

logProb = - sum(log(c));

A.5 The Log-Viterbi Algorithm

%The Log-Viterbi Algorithm

%Returns the most likely state sequence, and the log probability of that

%sequence, called the viterbi approximation. Inputs: an HMM and, and

%observation sequence O

function [Q,Pstar] = viterbi(hmm,O)

%precompute logs of distributions

logpi = log(hmm.pi);

logA = log(hmm.A);

logB = log(hmm.B);

%create Q, phi, and psi

Q = zeros(1,length(O));

phi = zeros(hmm.N,length(O));

psi = zeros(hmm.N,length(O));

%initialise phi

phi(:,1) = logpi’ + logB(:,O(1));

%induction step
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for t = 2:length(O)

for j = 1:hmm.N

[maxPhi,psi(j,t)] = max(phi(:,t-1)+logA(:,j));

phi(j,t) = logB(j,O(t)) + maxPhi;

end

end

%termination

[Pstar,Q(length(O))] = max(phi(:,length(O)));

%backtracking

for t = (length(O)-1):-1:1 %note decreasing loop var

Q(t) = psi(Q(t+1),t+1);

end

A.6 Viterbi Training

%Viterbi Training

%Takes in an initial HMM, and a list of observation sequences (An array of

%structures, where sequences(i).seq refers to the ith sequence. This allows

%sequences of various length) Returns the improved HMM, and the Viterbi

%approximation of the old HMM.

function [hmm2,viterbiApprox] = viterbiTrain(hmm,sequences)

numSeqs = length(sequences);

viterbiApprox = 0;

for i=1:numSeqs

[Q,pStar] = viterbi(hmm,sequences(i).seq);

stateSeq(i).Q = Q;

viterbiApprox = viterbiApprox + pStar;

end

hmm2 = hmm;

%initialise parameters

pi = zeros(1,hmm.N);

A = zeros(hmm.N,hmm.N);

B = zeros(hmm.N,hmm.M);

for i=1:numSeqs

pi(stateSeq(i).Q(1)) = pi(stateSeq(i).Q(1))+1;

%increments B for the first state-obs pair

B(stateSeq(i).Q(1),sequences(i).seq(1)) = B(stateSeq(i).Q(1), ...

sequences(i).seq(1)) + 1;
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for j=2:length(stateSeq(i).Q)

%increments the appropriate entry in the transition matrix

A(stateSeq(i).Q(j-1),stateSeq(i).Q(j)) = A(stateSeq(i).Q(j-1), ...

stateSeq(i).Q(j)) + 1;

%increments the appropriate entry in the observation matrix

B(stateSeq(i).Q(j),sequences(i).seq(j)) = B(stateSeq(i).Q(j), ...

sequences(i).seq(j)) + 1;

end

end

hmm2.pi = normalize(pi);

hmm2.A = mk_stochastic(A);

hmm2.B = mk_stochastic(B);

A.7 Viterbi Training - Classification Test

%Runs a classification test for the discrete HMM with vector quantization

%and Viterbi training, on the ’Japanese vowel’ data set

clear all

symbols = 128; %number of observation symbols

states = 5; %number of HMM states

numClasses = 9; %number of categories for classification

%read training data from file

trainData = multiLoad(’C:\Hidden Markov Models\Data\Japanese Vowels\...

As Downloaded\ae.train’,12);

%concatenating data for Vector Quantization(VQ)

dataCat = trainData(1).seq;

for i = 2:length(trainData)

dataCat = horzcat(dataCat,trainData(i).seq);

end

%train a VQ codebook on the training data, with symbols

[codeBook, P, DH]=vqsplit(dataCat,symbols);

%arrange training data by subjects, with 30 observation sequences per

%subject

sub = 1;

for i = 1:length(trainData)

if sub*30<i

sub = sub+1;

end

[subjectTrain(sub).sequences(i-(30*(sub-1))).seq, dst]= ...

VQIndex(trainData(i).seq,codeBook);
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end

%load the test data. Note that the vector quantization was learned from the

%training data only!

testData = multiLoad(’C:\Hidden Markov Models\Data\Japanese Vowels\As Downloaded\...

ae.test’,12);

%arrange test data by subjects, with subjects 1 to 9 having 31 35 88 44 29

%24 40 50 29 test sequences respectively

sequencesPerSubject = cumsum([31 35 88 44 29 24 40 50 29]);

seqsPerSubjectWithZero = horzcat([0],sequencesPerSubject);

sub = 1;

for i = 1:length(testData)

if i > sequencesPerSubject(sub)

sub = sub+1;

end

[subjectTest(sub).sequences(i-seqsPerSubjectWithZero(sub)).seq, dst]...

=VQIndex(testData(i).seq,codeBook);

end

%train the hmms for each class on the training data

maxRuns = 20;

thresh = 5;

for j=1:numClasses

[newHmms(j),vitApprox] = viterbiConverge(randomHMM(states,symbols),...

subjectTrain(j).sequences,maxRuns,thresh);

end

%Add a small positive quantity to stop some probabilities going to 0.

for j=1:numClasses

newHmms(j).B = mk_stochastic(newHmms(j).B + (1/symbols)*0.05);

end

%calculate the viterbi approximations for each hmm for each sequence

for i=1:numClasses

for j=1:length(subjectTest(i).sequences)

for k=1:numClasses

%vitApsSubject(i).vitAp(j,k) is the viterbi approximation for the kth

%model,

%tested on the jth test sequence from the ith subject

[Q,vitApsSubject(i).vitAp(j,k)] = viterbi(newHmms(k),...

subjectTest(i).sequences(j).seq);

end

end

end
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%construct confusion matrix

confMatrix = zeros(numClasses,numClasses);

for i=1:numClasses

for j=1:length(subjectTest(i).sequences)

[dontCare,I] = max(vitApsSubject(i).vitAp(j,:));

confMatrix(i,I) = confMatrix(i,I)+1;

end

end

%display results

confMatrix

confMatrix = mk_stochastic(confMatrix)

accuracy = sum(diag(confMatrix))/numClasses

A.8 Discover

%Discover takes a collection of sequences, a null hypothesis rejection

%threshold, and a maximum number of states and returns the resulting model.

%Also returned are: the array of AIC, BIC, and log probabilities, as well

%as the array of models explored over the course of splitting. This code

%relies on the basic functions in Kevin Murphy’s BNT.

function [model,AICArr,BICArr,logProb,modelArray] = discover(obs,alphaThresh,cap)

AICArr = zeros(1,cap);

BICArr = zeros(1,cap);

format(’short’)

Q = 1; %Number of states to begin with.

M = 1; %The number of mixtures. 1 for now!

model = init_L2R(obs,Q,M,’full’); %Creates a Q state model.

split = true; %A Flag

while split && (Q < cap) %Outer loop, with a cap on the number of states

numStates = Q %for display purposes

%Uses Baum-Welch to re-estimate model parameters

[LL, model.prior, model.transmat, model.mu, model.Sigma, model.mixmat] = ...

mhmm_em(obs, model.prior, model.transmat, model.mu, model.Sigma,...

model.mixmat, ’max_iter’, 20);

[O Q M] = size(model.mu); %Retrieves the appropriate model size

modelArray{Q} = model;

%Calculates number of parameters for AIC and BIC.

% mu sigma mixmat transmat prior

params = O*Q*M + ((O*O*Q*M)+(O*Q*M))/2 + Q*(M-1) + Q*(Q-1) + (Q-1);

logProb = mhmm_logprob(obs, model.prior, model.transmat, model.mu,...

model.Sigma, model.mixmat);

%Calculates the total number of observations
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numObs = 0;

for i = 1:length(obs)

numObs = numObs + length(obs{i});

end

%For display purposes

disp(’number of observations’)

disp(numObs)

disp(’number of parameters:’)

disp(params)

disp(’AIC penalty:’)

disp(2*params + (2*params*(params + 1))/(numObs-params-1))

disp(’BIC penalty:’)

disp(params*log(numObs))

AICArr(Q) = - 2*logProb(end) + 2*params + (2*params*(params + 1))/...

(numObs-params-1);

if (numObs-params-1)<0

AICArr(Q) = Inf;

end

BICArr(Q) = - 2*logProb(end)+params*log(numObs);

%Uses viterbi to gather the data by states, and then calculates their

%autocorralation p values.

ACpVals = autoCpVals(model,obs);

%If any alphas are below the thresh, returns the state with the smallest,

%and re-inits the model to have an extra state

if min(ACpVals) < alphaThresh

candidate = find(ACpVals == min(ACpVals),1) %returns the state to be split

Q = Q+1;

disp(’Split due to significant autocorrelation’)

%Adds a state to the model

model = newModelDueToAC(model,candidate);

else %only check for transitional structure if there is no significant AC

if Q > 2 %transitional structure only makes sense if there are more than 2

%states

[pVals,counts] = getTransitPVals(model,obs); %computes pVals for

%transition dependence

if min(min(pVals)) < (alphaThresh/(Q-1))

Q = Q+1;

disp(’Split due to transitional structure’)

candidate = find(min(pVals) == min(min(pVals)),1); %returns the

%state to be split

[fromStR,fromStC] = find(pVals == min(min(pVals)),1);

model = newModelDueToTransits(model,candidate,...

counts(:,:,candidate),fromStR); %adds a state

else

split = false; %Allows the main loop to exit, if there are no
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%further splits made

end

else split = false; %Allows the main loop to exit, if there are no further

%splits made

end

end

end

%A Final BW refinement, just to see if the last split update had sufficient

%training

[LL, model.prior, model.transmat, model.mu, model.Sigma, model.mixmat] = ...

mhmm_em(obs, model.prior, model.transmat, model.mu, model.Sigma, ...

model.mixmat, ’max_iter’, 20);

logProb = LL(end);

%Displays and plots after training

AICArr = AICArr(AICArr > 0);

BICArr = BICArr(BICArr > 0);

AICArr

BICArr

subplot(2,1,1)

hold off

for i = 1:O

plot(obs{1}(i,1:length(obs{1})),’Color’,[rand rand rand])

hold on

end

subplot(2,1,2)

hold off

plot(AICArr,’-.r*’)

hold on

plot(BICArr,’:bs’)

hold off

A.9 Auxiliary Routines - Splitting States from

Transition Dependence

%Takes a model, the state to be split, the counts from the transition

%dependence test, and the appropriate row identified during the transition

%dependence test and returns a new model with one extra state

function [model] = newModelDueToTransits(model,candidate,counts,fromStR)

transmat = model.transmat;

[O Q M] = size(model.mu);

peturb = 0.01;

new = zeros(Q+1);

new(1:Q,1:Q) = transmat;
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selfTransit = transmat(candidate,candidate);

newState = zeros(1,Q+1);

%Set self-transition to the value of the old states self-transition

newState(Q+1) = selfTransit;

%scales the new transition probabilities according to the space left by the

%state self transition prob

scaled = horzcat((counts(fromStR,:)/sum(counts(fromStR,:)))*(1-selfTransit),0);

%Combines the state self transition prob and the other (scaled) transition

%probs. The transition prob between the new and the old state is set to 0

new(Q+1,1:Q+1) = normalize((newState+scaled)+peturb);

%countsWithoutNewState

countsWNS = vertcat(counts(1:fromStR-1,:),counts(fromStR+1:Q,:));

oldState = zeros(1,Q+1);

%Set self-transition to the value of the old states self-transition

oldState(candidate) = selfTransit;

%scales the new transition probabilities according to the space left by

%the state self transition prob

oldScaled = horzcat((sum(countsWNS)/sum(sum(countsWNS)))*(1-selfTransit),0);

%Combines the state self transition prob and the other (scaled) transition

%probs. The transition prob between the new and the old state is set to 0 + peturb

new(candidate,1:Q+1) = normalize(oldState+oldScaled+peturb);

for i = 1:Q

for j = 1:Q

if ((j==candidate) && (i ~= candidate))

new(i,j) = transmat(i,j)/2;

new(i,Q+1) = transmat(i,j)/2;

end

end

end

%Normalizes rows in case of numerical error

model.transmat = mk_stochastic(new);

Q = Q+1;

oldMean = model.mu(:,candidate,1);

oldVar = model.Sigma(:,:,candidate,1);

model.mu(:,candidate,1) = oldMean;

model.mu = cat(2,model.mu,oldMean);

model.Sigma = cat(3,model.Sigma,oldVar);

model.mixmat = ones(Q,1);

model.prior(candidate) = model.prior(candidate)/2;

model.prior = normalise(vertcat(model.prior,model.prior(candidate)));
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A.10 Auxiliary Routines - Splitting States from

Autocorrelation

%Takes a model and a state to split, and returns a new model.

function [model] = newModelDueToAC(model,candidate)

[O Q M] = size(model.mu);

Q = Q+1;

%Adds a state to the model

model.transmat = newTransmat(model.transmat,candidate);

%Assigns appropriate distributions

oldMean = model.mu(:,candidate,1);

oldVar = model.Sigma(:,:,candidate,1);

oldStd = diag(sqrt(oldVar));

model.mu(:,candidate,1) = oldMean-(oldStd);

model.mu = cat(2,model.mu,oldMean+(oldStd));

model.Sigma = cat(3,model.Sigma,oldVar);

model.mixmat = ones(Q,1);

model.prior(candidate) = model.prior(candidate)/2;

model.prior = normalise(vertcat(model.prior,model.prior(candidate)));

%appends a new state at pos Q+1 of transmat, with transitions to the new

%and the candidate state = 1/2 the transitions to the candidate state

function [transmat] = newTransmat(transmat,state)

[Q Q] = size(transmat);

new = zeros(Q+1);

new(1:Q,1:Q) = transmat;

new(Q+1,1:Q) = transmat(state,:);

new(:,Q+1) = new(:,state)/2;

new(:,state) = new(:,Q+1);

transmat = mk_stochastic(new);

A.11 Auxiliary Routines - Computing p-Values

for Autocorrelation

%Takes a model and some data and returns a list of p-values for within

%state autocorrelation

function [ACpVals] = autoCpVals(model0,data)

[O Q M] = size(model0.mu);

numSeqs = length(data);

%Calculating the paths using the viterbi algorithm

paths = cell(numSeqs);

for i = 1:numSeqs
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B = mixgauss_prob(data{i}, model0.mu, model0.Sigma, model0.mixmat);

paths{i} = viterbi_path(model0.prior, model0.transmat, B);

end

%Initialising the data by state. We need 2, because the first is shifted

%one way, and the second the other

datByState = cell(Q,2);

for j = 1:Q

datByState{j,1} = [];

datByState{j,2} = [];

end

%Gathers the outputs by state, but removes one element from either side of

%each current run before concatenating it with the each accumulation. This

%is to produce the shift required for autocorrelation.

for i = 1:numSeqs

seqLength = length(paths{i});

pointer = 1;

%Iterates through the entire sequence

while pointer < seqLength + 1

%Stores the outputs for the current run of repeating states

currentRun = [];

state = paths{i}(pointer);

%paths{i}(t) is the estimated state of the model at timestep t, for

%sequence i

while (pointer < seqLength + 1) && (paths{i}(pointer) == state)

currentRun = horzcat(currentRun,data{i}(:,pointer));

pointer = pointer + 1;

end

datByState{state,1} = horzcat(datByState{state,1},currentRun(:,2:end));

datByState{state,2} = horzcat(datByState{state,2},currentRun(:,1:end-1));

end

end

%Extracts autocorrelations of data by state

ACpVals = ones(Q,O);

for i = 1:Q

for feat = 1:O

if ((not(isempty(datByState{i}))) && (length(datByState{i,1}(feat,:)) > 2))

[R,P] = corr(datByState{i,1}(feat,:)’,datByState{i,2}(feat,:)’);

if (~isnan(P))

ACpVals(i,feat) = P;

end

end

end

end

%Multiplied by the number of observations to correct for multiple tests

ACpVals = min(ACpVals,[],2)*O;
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A.12 Auxiliary Routines - Computing p-Values

for Transition Dependence

function [pVals,counts] = getTransitPVals(model0,data)

[O Q M] = size(model0.mu);

numSeqs = length(data);

%Calculating the paths using the viterbi algorithm

paths = cell(numSeqs);

for i = 1:numSeqs

B = mixgauss_prob(data{i}, model0.mu, model0.Sigma, model0.mixmat);

paths{i} = viterbi_path(model0.prior, model0.transmat, B);

end

%Create a paths with duplicate elements removed

for i = 1:numSeqs

noDupes{i}(1) = paths{i}(1);

for t = 2:length(paths{i})

if noDupes{i}(end)~= paths{i}(t)

noDupes{i} = horzcat(noDupes{i},paths{i}(t));

end

end

end

%Extract expected transitions

counts = zeros(Q,Q,Q); %[from Q, to Q, for each Q]

for i = 1:numSeqs

for t = 2:(length(noDupes{i})-1)

counts(noDupes{i}(t-1),noDupes{i}(t+1),noDupes{i}(t)) = ...

counts(noDupes{i}(t-1),noDupes{i}(t+1),noDupes{i}(t)) + 1;

end

end

%refSt is the state you are checking for splitting potential. fromSt is the

%histogram of toState counts to check against the transmat entry for refSt

pVals = ones(Q,Q); %[fromSt,refState]

for refSt = 1:Q

for fromSt = 1:Q

if refSt ~= fromSt

bins = 1:Q-1;

obsCountsWithSt = counts(fromSt,:,refSt);

obsCounts = horzcat(obsCountsWithSt(1:refSt-1),...

obsCountsWithSt(refSt+1:Q));

n = sum(obsCounts);

allOtherCounts = vertcat(counts(1:fromSt,:,refSt),...

counts(fromSt:Q,:,refSt));

sumOtherCounts = sum(allOtherCounts);

expCounts = normalise(horzcat(sumOtherCounts(1:refSt-1),...
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sumOtherCounts(refSt+1:Q)));

expCounts = n*expCounts;

[h,p] = chi2gof(bins,’ctrs’,bins,...

’frequency’,obsCounts, ...

’expected’,expCounts,...

’emin’,0);

pVals(fromSt,refSt) = p;

end

end

end
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