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ABSTRACT 

The aim of this study was to investigate the role of spatial and categorical resolution of 

satellite images in landcover classification. Three images namely, SPOT 5, Landsat TM, 

and MODIS were used, each of varying spatial resolution. Landcover classes were 

chosen for each of the classifications, were placed into groups of 11, and then merged to 

8. This was to evaluate the effect that the categorical resolution plays on the final 

classification algorithm. Three traditional classifiers were used to create landcover maps. 

It was found that the higher resolution imagery produced higher accuracies at the 11 class 

level and these accuracies were improved by reducing the number of classes to 8. The 

coarser resolution imagery was able to classify larger features more accurately than the 

smaller features. This allowed the conclusion to be drawn that, before classifications are 

to be done, the size of the features to be detected should be considered when deciding 

which imagery to use. To improve upon the accuracy of the maximum likelihood 

classifier, an Artificial Neural Network was trained using ancillary data and the SPOT 5 

image. Results showed an increase of over 30% in the classification accuracy of the 

ANN. Specific classes were easily identified, showing the ability of the ANN to classify 

imagery from a complex savanna environment. Experiments with various parameters of 

the neural network confirmed that there are no general guidelines that can be applied to a 

neural network to obtain high classification accuracy. 
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Chapter 1. INTRODUCTION 

1.1 BACKGROUND 

Satellite remote sensing has been widely used in landuse and landcover studies 

(Shoshany, 2000, Franklin and Wulder, 2002, Omasa et al, 2003, Potter et al, 2003, 

Rwetabula and De Smedt, 2005, Song et al, 2005, Yuan et al, 2005), since the data in 

many cases is very cost effective (Song et al., 2005). It has been estimated that a third of 

the earth's surface has in some way been changed due to the actions of mankind (Brovkin 

et al., 2004). Remote sensing allows for large-scale derivation of landcover types and 

with a temporal sequence of images, changes within the system can be calculated 

(Nabuurs et al., 2000, Brovkin et al., 2004). 

Satellite remote sensing can be seen as being an important tool in the quantification of 

many landscape elements, due to the scales at which the system can operate. There have 

been many studies on the application of remotely sensed images for use at varying scales. 

One such study was conducted for the monitoring of estuarine environments and the 

effects of landuse change around these estuaries. Such a study was aimed at improving 

the management of the estuary system (Yang and Liu, 2005). Landcover mapping can 

also be used in the study of heterogeneous environments such as savannas, where many 

different landcover types may exist (Korontzia et al., 2004, Stuart et ai, 2006). These 

landcover maps can also be used in the formulation and implementation of policies and 

management plans. Examples can be found in some urban environments, where the 

growth of cities has been monitored for a number of years, allowing for the quantification 

of changes to the landscape. These quantifications can be used in the estimation of 

pollution, traffic, and housing policy problems (Yang and Lo, 2002, Sunar Erbek et al., 

2004, Yuan et ai, 2005). 

Satellite remote sensing allows for the monitoring of large expanses of spatial areas 

making it an invaluable tool for the monitoring of large-scale problems. An example of 
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this is the use of satellite remote sensing in the quantification of carbon sinks and sources, 

and examining the effects of the large-scale burning of certain land cover classes. 

, RADAR remote sensing techniques have been used within the forest environments for 

the quantification of carbon sinks (le Toan et al, 2004). 

Although many studies have characterised landcover and landuse mapping using 

remotely sensed data, very little is known about optimal resolution for specific 

environments. There are various scales and resolutions at work within the realm of 

remotely sensed data, each with its own advantages and disadvantages depending on the 

types of data needed for the particular study (Franklin and Wulder, 2002). Resolution can 

be divided into three classes, namely Temporal Resolution, Spectral Resolution, and 

Spatial Resolution. Temporal resolution is the time period in which a sensor re-visits a 

given area i.e. one week, 24 hours, (Lillesand et al, 2004). Spectral resolution refers to 

the ability of a sensor to define different wavelength intervals (Ju et al, 2005). Spatial 

Resolution refers to the smallest object that is possible to detect with the sensor i.e. 

Landsat - 30 m (Lillesand et al, 2004). 

Spatial resolution can be divided into a further three groups. These groups describe the 

size of the resolution and can aid in determining the optimal sensor to use for a specific 

use. These are High, Low, and Medium Resolution imagery. Low spatial resolution can 

be used to describe imagery that has a resolution greater than 100 m. Medium spatial 

resolution refers to imagery of between 10 m and 100 m. High spatial resolution refers to 

imagery with resolutions of less than 10 m (Franklin and Wulder, 2002). 

The issues of spatial, spectral and categorical scales play an important role in the 

accuracies of landcover classification (Ju et al, 2005). It has been seen in some studies 

done in the past (Markham and Townshend, 1981, Irons et al, 1985 cited in Ju et al, 

2005) that attempts to define a single optimal scale for a remote sensing application, can 

leave many classes not represented in the final classification (Ju et al, 2005). One of the 

most often used methods of altering the categorical scale is the aggregation of classes. 

This can be done through the application of a roving window over the image, aggregating 
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spectral classes. The other and more popular method (and the one used within this study) 

is that of aggregating classes using the labels of those classes (Ju et ai, 2005). 

An issue within the remote sensing school of thought is determining the correct scales or 

resolutions for each study. Reasons for this are features greater than 30 m in area are 

likely to be detected by a sensor with a resolution of 30 m, however, features smaller than 

30 m in area may not be detected. Depending on what size the feature that is to be studied 

is, the correct resolution must be used (Cao and Lam, 1997). For the present study the 

SPOT 5, Landsat TM and the MODIS sensors were used to evaluate the effect that spatial 

and categorical resolutions play in relation to the accuracy of the final landcover 

classification. 

As remote sensing technology increases in its complexity, it becomes more difficult to 

acquire the desired information from the data. As more bands become available and the 

spatial resolutions become higher, the user of the images has difficulty in processing the 

imagery (Qiu and Jensen, 2004). Current techniques of image classification can fail to 

detect potential overlaps within the data and so inaccuracies in the classifications can 

become a problem (Linderman et al, 2004, Qiu and Jensen, 2004). Linderman et al., 

(2004) found that the understorey of a forest environment can have a detrimental effect 

on the reflectance properties of the canopy and so can cause problems in the classification 

of forest canopies (Linderman et al, 2004). Examples of this may be found in the way in 

which statistical classifiers will classify an image: 

A minimum distance to means classifier will calculate the distance that a pixel is from 

the closest class mean and will classify that pixel accordingly (Lillesand et al, 2004). 

A parallel piped classifier uses a set of digital number ranges to define 'boxes' that 

define the classes of the classification and so will classify those pixels accordingly 

(Lillesand et al, 2004). 

The maximum likelihood classifier evaluates the probability of a pixel occurring within 

a class. If the probability is high, the pixel is classified accordingly, if it is low, the 

classification process continues until it is classified (Lillesand et al, 2004). 

7 



Problems with these traditional classifiers occur when pixels fall out of the system 

defined parameters, especially in areas of high spectral variability - heterogeneous 

savanna environments - and thus the classification accuracy may be reduced (Lillesand et 

al, 2004). Other problems occur with the detection of features within a complex 

environment with different linear and non-linear contributions to the reflectance. An 

example of this can be seen in the detection of understorey vegetation where some of the 

reflectance is able to be detected through gaps in the canopy. However, due to scattering 

of light at the canopy, the understorey vegetation is not detected when using traditional 

classification techniques (Linderman et al, 2004). Because of this, other methods of 

landcover classification can be explored. 

In order to overcome the limitations of the statistical classifiers that focus on the spectral 

properties of classes, Artificial Neural Networks (ANNs) have been shown to greatly 

improve the accuracy of image classifications (Linderman et al, 2004, Qiu and Jensen, 

2004, Sunar Erbek et al, 2004). ANNs do not require a priori knowledge about the 

class' statistical properties. ANNs have the ability to 'learn' with the use of external 

sources of data which allows for better classifications (Linderman et al, 2004, Qiu and 

Jensen, 2004, Sunar Erbek et al, 2004). Various data sources (ancillary data) can be used 

in the classification, focusing more on spatial elements within the image, whereas 

classical statistical classifiers focus on the spectral information within the image (Qiu and 

Jensen, 2004, Sunar Erbek et al, 2004). 

This study will look at the various aspects of landuse classification and some of the 

problems associated with the generalisation of the various features in the landscape. In 

light of the problems, this study aims to investigate the effect of spatial resolution as well 

as the classification algorithms in landcover mapping accuracy. 

1.2 LOCATION OF THE STUDY AREA 

Figure 1.1 displays a map of the study site. The image itself is the SPOT 5 image and its 

boundaries formed the boundaries of the study. The study area is around the city of 

Pietermaritzburg, KwaZulu-Natal. Pietermaritzburg (29°35'54"S 30°22'53"E) is the main 
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urban centre in the study area. However, other smaller towns include Camperdown to the 

south-west, Richmond to the south-east and Howick to the north. The average annual 

temperature varies between 16.3° C and 17.9° C. There are, however, areas in the study 

area that have mean annual temperatures slightly higher. The mean average rainfall for 

the region is between 747 mm and 1389 mm, however, for the specific study area it is 

roughly between 748 mm and 1017 mm. The topography in the study area is generally 

hilly, with an increase in altitude from the south-west to the north-east of the city of 

Pietermaritzburg. Agriculturally, the area is diverse, with sugar cane being cultivated to 

the north and north-east of the city, and with cattle farming on grasslands being found to 

the north-west beyond the Midmar Dam. Subsistence farming is practised in the tribal 

areas surrounding Camperdown. Plantations can be found extensively in the high rainfall 

areas which are near the Albert Falls dam around Pietermaritzburg and Richmond. 

Natural vegetation can be found extensively in some areas. Around Richmond, natural 

forests are found primarily on the south facing slopes. Near Camperdown and west of 

Pietermaritzburg, the vegetation is primarily thicket and bushland (GAEA Projects, 

2002). 
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Figure 1.1: Location of the study area in relation to the rest of the KwaZulu-Natal province, an insert of a 
SPOT 5 image is provided. 
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1.3 AIM AND OBJECTIVES OF THE PRESENT STUDY 

1.3.1 Aim 

The aim of this study is to examine the effect of spatial resolution on landcover mapping 

using various techniques available for research. Attempts were made to study the effect 

that the varying scales and resolutions of different remote sensing sensors can have on the 

final classification accuracies. The role played by scale and classification methods used 

was studied to determine the technique best suited for each sensor. An artificial neural 

network (ANN) was tested to evaluate its potential in improving classification mapping 

accuracy. 

1.3.2 Objectives 

In order to reach the aims of this study, various objectives must be met. These objectives 

are as follows: 

1. To test the accuracy of Landcover Classification at three different spatial 

resolutions, each resolution being taken from three remotely sensed 

images (SPOT 5, Landsat TM, and MODIS). 

2. To evaluate the effect of the number of classes on the final classification 

accuracies. 

3. To evaluate the differences between the classification accuracy of an 

image using fine class definitions and traditional algorithms; and then to 

compare this to a neural network. 

4. To test the ability of a more computationally intensive Artificial Neural 

Network to improve the accuracy of the classification. 

11 



1.4 RESEARCH QUESTIONS 

During the study, various questions needed to be answered to aid in the completion of the 

main aim and objectives. 

These questions can be grouped into those concerning Broad Landcover Classifications 

and Specific Landcover Classifications. Broad landcover classifications refer to the 

overall classification of the images, focusing on the overall accuracies of the 

classifications. Specific landcover classifications refer to the focused investigation of the 

ability of specific features to be classified accurately. 

1.4.1 Broad Landcover Classification 

1. Of the various traditional statistical classifiers (Maximum Likelihood, Minimum 

Distance to Mean, and Parallel Piped) which will produce the most accurate 

classification at each of the different scales? 

2. Of the three images (SPOT 5, Landsat TM, and MODIS) at the various 

resolutions, which image produces the most accurate classification? 

3. Are the differences in the classifications so distinct that a high cost, high 

resolution image is best? 

1.4.2 Specific Landcover Classification 

1. Is it possible to discern differences between the various target classes using the 

basic classifiers such as Maximum Likelihood and Parallel Piped techniques? 

2. What effect does the number of available classes have with regard to the overall 

accuracy of the classification? 

3. Can an ANN technique be implemented using ancillary data to provide an 

accurate distinction between the various target classes? 
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4. What properties of the neural network play the most important role in determining 

the accuracy of the neural network? 

1.5 OUTLINE OF CHAPTERS 

In the following chapter, Chapter 2, the concepts of landcover classification will be 

outlined, as well as the basic theory behind the traditional classifiers. The influence of 

resolution on classification accuracy will be explored. The final concept introduced is the 

expansion on the theory behind artificial neural networks. Examples are given of the use 

of a neural network for landcover classifications. 

In chapter 3 the methods used within this study to achieve the defined aims and 

objectives are presented. The chapter is divided into the preparation of the data for 

classification, the classification of the images with the traditional classifiers, and the 

training and final classification of the SPOT 5 image using the trained artificial neural 

network. 

In chapters 4 and 5 the results obtained through the study are presented and discussed. 

Where possible, data are displayed in graphical format, and the error matrices are 

contained within the appendices. 

Chapter 6 contains the conclusion to the study. The aims and objectives are re-examined 

to assess how successful or unsuccessful the study was. Limitations of the study and 

recommendations for future studies are made. 
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Chapter 2. LITERATURE REVIEW 

As has been stated in the first chapter, the effect of different resolutions and classification 

algorithms on the accuracy of landcover mapping will be studied. For best results, the 

subject should be viewed within its theoretical context, hence in this section the 

background to landcover mapping will be looked at. 

2.1 LANDCOVER MAPPING 

The mapping of landcover using remotely sensed imagery has been practised since the 

1940s, with aerial photography being used as the source data (Lillesand et al, 2004). 

With the increase in availability of satellite remotely sensed imagery, the extraction of 

landcover features from these sources has increased (Cihlar, 2000, Lillesand et al, 2004) 

Landcover can be defined as the type of feature(s) that cover the surface of the earth. This 

can be man-made or natural (Cihlar, 2000, Foody, 2002, Lillesand et al, 2004). 

Due to the high amount of information contained within a remotely sensed image and the 

speeds at which this data can be processed, the efficiency of landcover mapping has 

increased with time (Franklin and Wulder, 2002, Yang and Liu, 2005). Due to this, the 

use of remote sensing for landcover classification by government organisations has 

increased. Many governments have started landcover and landuse mapping on a large 

scale for the management and planning of the use of natural resources as well as the 

monitoring of environmental degradation (Franklin and Wulder, 2002, Yang and Liu, 

2005). 
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2.1.1 Application of Landcover Mapping 

Cihlar (2000: 1094) outlines seven important considerations for the characteristics of a 

good landcover classification. These are Purpose, Thematic Content, Scale, Data and 

Processing and analysis algorithms. 

1. J Purpose: this refers to what the final product will be used for. Generally 

landcover maps can be used for management, policy planning and scientific 

research; each of these has in turn its own requirements for completion. An 

example would be a vegetation model that may require certain landcover 

types and so would need to be included within the final landcover 

classification (Cihlar, 2000). 

2. Thematic Content: this refers to how many classes of features need to be 

identified within the final map (Cihlar, 2000). 

3. ^Scale (Resolution): this refers to how large an area will be mapped during the 

landcover mapping process. Scale can be divided into three categories: Low, 

Medium and High. Low spatial scales refer to mapping at the small scales 

(large features). Medium spatial scales refer to mapping where the features 

being mapped can be relatively small (areas of 10s to 100s of metres squared). 

High spatial scales refer to the smallest features which can be at the 

centimetre level (Cihlar, 2000, Franklin and Wulder, 2002). In the present 

study, scale refers to the resolution of the image being classified. 

4. Data: refers to the type of data obtained from the sensor, and how the 

accuracy of the data might affect the accuracy of the final map produced 

(Cihlar, 2000). 

5. Processing and analysis algorithms: refers to the types of algorithms used 

within the classification process. Each algorithm has its own positive and 

negative aspects for the final accuracy of the map (Cihlar, 2000). 
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Factors in points three and five are critical for obtaining high classification accuracies 

and thus these factors will be focused on in the present study. 

Changes to the natural environment can vary in how long they take to happen. Changes 

due to major catastrophes can take a few hours to alter the landscape, whereas changes 

due to climate can take many decades.^As has been stated, satellite remote sensing allows 

for quick and easy access to data and because most sensors pass a point of the earth's 

surface in a given timeframe, changes can be detected and quantified (Foody, 2002, 

Lillesand et al, 2004, Stefanov and Netzband, 2005, Yuan et al, 2005). 

2.1.2 Examples of Landcover mapping 

A few examples of the uses for landcover mapping will be discussed and, where possible, 

examples will be described. 

2.1.2.1 Urban Environmental Mapping ^ 

The use of satellite imagery has been used extensively to study the expansion of man-

made settlements into the surrounding areas of cities and towns. Due to increases in 

economic growth in some cities, people are being drawn into the city seeking economic 

opportunities. This increase in the number of people can put strain on a city's 

infrastructure: overcrowding and lack of access to services can cause people to move 

onto the fringe of a city and so expand the boundary of the city. This can create problems 

for the city planners (Sunar Erbek et al, 2004, Yuan et al, 2005). 

City planners need to understand trends in city growth to allow for better policy planning 

and management plans. Satellite remote sensing allows for accurate, cost-effective, and 

timely data to be obtained, thus allowing for plans to be made to avoid problems (Yuan et 

al, 2005). A study completed by Yuan et al, (2005) looked at three different images 

from three time periods. The aim of Yuan's study was to display the growth of a city 

(Twin Cities, Minnesota). Results from this study showed extensive expansion along the 

fringes of the city into the rural areas, and thus the loss of agricultural land. City planners 
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can therefore use data like this to attempt to slow the loss of important agricultural land 

(Yuan et al, 2005). 

A similar study was undertaken in Istanbul, Europe, in an attempt to monitor the 

considerable growth of the city after major increases in economic activity. Problems 

arose from this growth in the form of increased congestion and pollution. In order for city 

planners to gain a greater understanding of the problem, a classification and time series 

analysis was performed to display the growth of the urban environment. From the final 

classification, planners were able to make adjustments to policies and management plans 

for the city (Sunar Erbek et al, 2004). 

With an increase of population within a city, the impacts of the growth can alter the 

natural environment in and around the city for the worse. A study in Atlanta, Georgia, 

USA, attempted to evaluate the effect of the city's growth on increases in temperature 

and on air quality within the city. The researchers used a model to accurately model the 

air temperature and quality. Satellite remote sensing techniques were used to produce an 

accurate landcover map, and this formed the base from which the model would run. The 

final images produced were used and illustrated how remote sensing can provide a cost-

effective and efficient process from which a base for other studies may use (Yang and Lo, 

2002). 

2.1.2.2 Vegetation Environmental Mapping 

In areas of little water supply, the need to calculate the amount of water for specific 

landuse types becomes paramount. A study undertaken within Iran attempted to classify 

agricultural land or areas that were under irrigation for agricultural purposes. The 

outcome of this produced a classification using multi-temporal images and a minimum 

distance classifier to produce a classified image with accuracy of between 60% and 70% 

(Akbariefa/,,2006). 

Because satellite remote sensors follow set paths, this means an area can be re-visited, 

which allows a researcher to expand on the body of knowledge for a set subject 
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(Lillesand et al, 2004). An example of this can be seen in the mapping of savanna in 

Belize, Central America by Plane et al (2006), where many coarse landcover maps have 

been produced over the years. Plane's study increased the resolution of the landcover 

maps using Landsat images. Results from the study showed that the use of the Landsat 

images provides managers of these savannas with an affordable and reliable way to 

monitor changes over time (Plane et al, 2006) 

2.1.2.3 Landcover mapping in the southern African Context 

Southern Africa is an area full of differing demands on the natural environment and it has 

many different features on its surface, thus creating many research opportunities to study 

these various landforms with remotely sensed imagery. 

In areas of low rainfall, the need for water amongst the local communities can pose 

problems for the management of water resources. In Zambia, satellite remote sensing 

using the Landsat MSS platform was used to detect the changes within a wetland as a 

result of the construction of a dam upstream. This, in conjunction with water extraction 

from the wetland, put pressure on the wetland system. Remote sensing allows for the 

monitoring of the area which would otherwise be difficult to reach and so monitor. 

Lessons learnt from this study could be applied to the study of other wetlands within 

southern Africa (Munyati, 2000). 

Changes to the global climate have sparked the formation of policies to monitor, and to 

enforce regulations regarding the emission of greenhouse gases (Robertson, 1998, Pearce, 

2005). Due to these policies it is now becoming necessary to report on emissions 

produced by a country, and therefore reliable information on the emissions from the 

burning of biomes in needed. A study, the SAFARI 2000 study, attempted to use 

remotely sensed data in conjunction with emission factors from the International Panel on 

Climate Change (IPCC) to estimate the emissions from the burning of grasslands and 

woodlands in southern Africa. Satellite remote sensing using coarse imagery enabled 

estimates over large areas to be made for emissions from the burning of vegetation. It was 

seen, however, that the smaller countries in the study area were usually not mapped 
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correctly and so the estimates were not accurate enough to be considered reliable 

(Korontzia et al, 2004). 

Landuse and landcover mapping can be used not only to estimate the effect of human 

population growth and how it affects the distribution of animal species, but also to 

evaluate the landcover and landuse types within an area. A study conducted in KwaZulu-

Natal, South Africa, evaluated the species richness of the province using the database 

from a landcover map. Using indicators in conjunction with statistical methods, it was 

found that during the time of the study species richness increased. Reasons for this 

increase in species richness could be attributed to better management of change in 

landcover types or species of birds taking advantage of the changed landcover types 

(Fairbanks, 2004). The Fairbanks study shows the possible use for a landcover map after 

it has been made and distributed. 

From the above examples, it was seen that there was no comparison of results at differing 

spectral and spatial resolutions. There was a study undertaken by Atkinson (1997) in 

which the optimal resolutions for specific mapping needs were explored. In this context, 

however, mapping was undertaken using Airborne MSS for determining the optimal 

resolution for remotely sensed images from airborne sensors (Atkinson, 1997). Another 

study, undertaken by McCabe and Wood in 2006, discovered that coarse resolution 

imagery cannot compete with medium resolution imagery when mapping at a local 

spatial scale. Thus it can be said that coarse imagery is best for regional mapping 

(McCabe and Wood, 2006). 

2.2 IMAGE CLASSIFICATION 

Landcover is often seen as the dominant feature within an area, for example vegetation 

type, rock, and water (Franklin and Wulder, 2002). 
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Franklin and Wulder (2002) outline a set of nine tasks or procedures that should be 

followed during the process of image classification. These will be listed and discussed in 

the following sections. 

Table 2.1: List of procedures to complete for the undertaking of multiple image land cover classification 
(after Franklin and Wulder, 2002) 

Tasks to be completed: 

1. Selection of landcover classification classes. 

2. Acquiring of the imagery. 

3. Geometric processing. 

4. Radiometric correction, calibration, and standardisation of the imagery. 

5. Choosing mapping variables. 

6. Choosing the classification approach 

7. Completion of pre-classification procedures. 

8. Selection of the decision rule. 

9. Validation - Accuracy assessment. 

2.2.1 Selection of land cover classes 

As has been stated by Franklin and Wulder (2002:185) "land cover is almost always used 

in the sense of the dominant physiographic attribute for a given parcel of land..." In other 

words, the landcover feature for a given piece of land should be the dominant feature 

within the parcel of land. When choosing the classes to be used within the landcover 

classification, this should be kept in mind. At smaller spatial scales, the classes can be 

broad and offer very little spatial detail, and this is usually the case when looking at the 

continental or global scales. As the spatial scale increases, more detail is required to 

differentiate the classes. The fundamental approach to choosing classes is to keep class 

consistency over large areas, by choosing classes that can be easily distinguishable in the 

coarsest resolution, e.g. MODIS (Franklin and Wulder, 2002). 
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Problems arise in the landuse and landcover classifications when specific covers are used 

for two purposes. For example, a forest may be classed as a natural forest but may be 

used by external entities as recreational or conservation. This is where it becomes 

important to clearly define what classes and definitions are to be used in the classification 

(Anderson et al., 1976). Another problem is that of areas of transition between one class 

and another. For example, at the boundary of land and water there is generally not a 

single definitive line dividing the two. There may be a wetland, or in the case of ocean or 

tidal estuaries the land/water boundary changes hourly (Anderson et al, 1976). 

Anderson et al. (1976) define a set of criteria that should be met when creating the 

landuse and landcover classes for satellite imagery (Table 2.2). 

For the present study it was felt that the definition given by Anderson et al. of the criteria 

was too detailed. Consequently, the criteria used in this study were derived from the 

National Land Cover project (NLC 2000) (CSIR, 2002). 

2.2.2 Acquiring Imagery 

When obtaining the image, it is necessary to note the time at which the image was taken. 

Some features will be different depending on the time of year and season. This is 

especially true when looking at time series and change detection because features may be 

detectable at a given season (Franklin and Wulder, 2002). 
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Table 2.2: List of criteria for the formation of a landuse and landcover classification (after Anderson et ah, 
1976) 

Classification Criteria 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

The minimum level of classification accuracy of classes should be 85% 

The level of accuracy of the classification classes should be equal for several of 

the classes. 

Results should be repeatable from one interpreter to another, at different times. 

The classification system should be applicable over large areas. 

Categorisation should allow for vegetation and other types of landcover to be 

used as substitutes for other activities. 

The classification system should be able to function within different seasons 

within the year. 

Formation of sub-classes from other data sets should be obtainable. 

Some classes should be able to be aggregated. 

Comparison of future images with present images should be possible. 

When possible, multiple uses of land should be recognisable. 

Other parameters to consider when acquiring the imagery are the selection of which 

classes or features are to be mapped. Franklin and Wulder (2002) neglect an important 

issue. The size of the features to be studied may be viewable only at specific resolutions, 

or may be detectable only at specific spectral resolutions (Atkinson, 1997, McCabe and 

Wood, 2006). McCabe and Wood (2006) showed that certain processes may be detected 

only at or below a certain resolution. Thus the choosing of the correct imagery plays an 

important role in landcover classification. 

22 



2.2.3 Geometric Processing 

Geometric correction refers to the processes by which errors within an image are 

removed. These errors can arise from many different factors, including elevation of the 

senor, motion of the sensor, and the curvature of the earth (Lillesand et al, 2004). Errors 

obtained through the collection of reflectance by the sensor can be divided into two 

categories. The first is one of random errors that cannot be predicted and are corrected 

using ground control points. The second is one of errors that are systematic, that are 

generally known, and can be predicted and corrected using mathematical methods 

(Lillesand et al, 2004). 

The image has to be projected. This is the process by which the image is placed into a 

geographic location on the earth's surface by means of mathematical algorithms 

(Lillesand etal., 2004). 

2.2.4 Radiometric Processing 

Within a raw, remotely sensed, image there are errors and distortions that occur due Jo. „. 

either the sensor or the atmosphere. Some of these errors can be removed with the use of 

mathematical algorithms. An example of radiometric corrections would be found in the 

case of the angle of the sun during different seasons. A satellite sensor measures the 

amount of solar reflection from the earth's surface. It is well known that the angle that the 

sun makes with the earth's surface varies, depending on the season. It is because of this 

that standardisation of the pixel brightness of images must be achieved using 

mathematical equations, thus allowing for the comparison or mosaicing of scenes from 

different temporal sequences (Lillesand et al, 2004). 

There are other corrections that need to be looked at and corrected including distortions 

created by the atmosphere which interferes with the reflectance of the sun's light on the 

surface of the earth or scatters the reflectance of light. A way to correct for haze is to take 

reflectance values from a known source and subtracting them from the entire image. 

Lillesand et al. (2004) use the example of reflectance over deep water and estimate the 
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reflectance to be essentially zero in the Near-Infrared band. Thus any value recorded here 

represents interference and so can be subtracted from the rest of the image to remove this 

interference (Lillesand et al, 2004). 

2.2.5 Choosing Mapping Variables 

When looking at the mapping variables to use within a land cover classification one can 

divide the variables into two categories, namely: Spectral and Ancillary. 

Spectral variables primarily refer to using the reflectance values within the image to 

accomplish the classification (Franklin and Wulder, 2002). 

Ancillary variables refer to the use of external data sources with the spectral information. 

This allows for a more accurate classification (Franklin and Wulder, 2002). Work done 

by Bolstad and Lillesand in Wisconsin shows that by including external data sources such 

as soil types and elevation, the quality of the classification is improved by 16% over 

previous classifications in that area (Bolstad and Lillesand, 1992). The present study used 

a DTM to create a slope and aspect map for the study area. The ancillary data was 

therefore the DTM, the aspect and slope maps, and an Normalised Differential 

Vegetation Index (NDVI) created from the red and NIR bands from the image used. 

2.2.6 Choosing a Classification Approach 

Due to the inherent errors and differences within an image, there is no single 

classification technique that can perform the best classification. Each technique must find 

a common ground among the desired classes, spectral and other information available, 

and the ability for the technique to derive the desired classes. The different pieces of 

information are rarely able to overlap each other exactly and so ambiguity within classes 

exists (Franklin and Wulder, 2002). 
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2.2.7 Selection of Decision Rule 

Decision rules refer to the approaches used to identify the structures within the data 

usually by employing clustering methods. These clustering methods use measures of 

distance and statistical rules to identify trends within the data (Franklin and Wulder, 

2002). 

One of the most powerful classifiers available is the maximum likelihood algorithm 

(Franklin and Wulder, 2002). Examples of other classifiers include the discriminant 

function, minimum distance to means, and parallel piped classifier. These classifiers are 

widely used and provide predictable results and are easy to use (Franklin and Wulder, 

2002). 

2.2.8 Accuracy Assessment 

Accuracy assessment is the assessment of how accurate the final created product is 

compared to reality (Foody, 2002). Error can therefore be seen as the inability of the final 

product to represent reality (Foody, 2002). 

Accuracy assessment has its inherent problems such as: the overestimation of chance 

agreement between pixels which will underestimate the final accuracy; and problems 

with the sample size used for the classification (Foody, 2002). Accuracy assessment 

seems to be constrained by what resources are available to undertake the assessment. 

There have been suggestions as to how to overcome constraints, such as the use of other 

imagery, but in the end the assessment methods are a result of the compromise between 

the statistically sound and the practical (Cihlar, 2000). 
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2.2.9 Summary 

Examining the relevant literature, one can conclude that specific important factors need 

to be addressed in this study. The selection of the appropriate classes is vital. The reason 

for this is due partly to the type of resolutions of the imagery being used. The classes 

being selected need to be broad enough so that even the coarsest imagery is able to detect 

these classes. It must, however, be noted that the selection of the classes must not be so 

broad that the ability to detect specific classes is removed. 

The mapping variables are important to the classification. These will be the inputs into 

the classification algorithms from which the classification will be completed. It is best to 

choose variables that therefore allow for the best detection and so classification of the 

classes chosen. Where necessary, some variables may have to be created. For this study 

an NDVI image was used in many of the classifications in an attempt to improve the 

performance of the classification algorithms. 

The classification of an image is governed by the classifier used. It is therefore important 

to decide which of the different classification techniques are best for the specific 

situation. Each of the classifiers has its own set of rules which it applies to an image, thus 

the output from these classifications can be very different. This study will look at the 

performance of three of the traditional classifiers as well as the performance of a trained 

neural network. 
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2.3 NEURAL NETWORKS 

2.3.1 Introduction to Neural Networks 

As technology within the sector of remote sensing increases, so does the amount of data a 

single image can hold. More bands and higher resolutions mean that there can be an 

increase in the amount of data that are repeated within the image, increasing the chances 

for classes within an image to overlap (Qiu and Jensen, 2004). This in turn increases the 

complexity of the classification of an image and creates problems within the current 

statistical classification techniques (Qiu and Jensen, 2004). 

Most statistical classifiers rely on assumptions about the data and so are limited in their 

applicability in complex scenes (Linderman et al, 2004). Limitation of these types of 

classifiers, namely the minimum distance to means, and maximum likelihood classifiers, 

are due to the assumptions and restrictions on the input data types (Kavzoglu and Mather, 

2003). Examples of this limitation have been seen in the classification of understorey 

vegetation cover within a forest environment. The complex understorey vegetation 

affects the reflectance properties and scattering of light and so it can be difficult to obtain 

accurate and repeatable results from statistical classifiers (Linderman et al, 2004). 

Neural networks have proven that, in the study of complex and variable features, they are 

invaluable in their accuracy in classification over other statistical classification 

techniques (Kavzoglu and Mather, 2003, Linderman et al, 2004, Qiu and Jensen, 2004, 

Sunar Erbek et al, 2004). A neural network is defined as being a mathematical model of 

brain activity, featuring corresponding characteristics of a working brain represented 

mathematically (Sunar Erbek et al, 2004). A neural network is made up of many 

components called neurons; each of these neurons performs a simple computational 

procedure (Qiu and Jensen, 2004). 
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Neural networks work by creating neurons that act as simulators of multivariant linear 

regression models that make no assumptions about the distribution of the data. Neural 

networks are able to 'learn' from set parameters for the classification, making it possible 

for the classification of complex datasets (Linderman et al, 2004, Qiu and Jensen, 2004). 

There are two ways for neural networks to 'learn', these are, as with classifications, 

supervised and unsupervised. Supervised 'learning' occurs when the final desired values 

for output are known and used in the network during its training. Unsupervised learning 

occurs when the final output values are not known and so are not used in the network 

during training (Sunar Erbek et al, 2004). 

A neural network will usually have an input layer and an output layer. There are also 

nodes and connectors that play a role in the development of the network. Information is 

distributed and encoded through the neurons by nodes that act as connectors within the 

system. The connection methods within a neural network can either be unidirectional or 

multidirectional. Networks with a single direction of information movement, inter-nodal 

or intra-nodal flows are known as a Feedforward neural networks (Figure 2.2) and a 

network with multiple directions of information flow is known as a Recurrent Neural 

Network (Figure 2.1) (Murphy et al, 2003, Mutanga and Skidmore, 2004). 
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Figure 2.1: Example of a recurrent neural network (after Murphy et al, 2003: 4886). 

Figure 2.2: Example of a feedforward neural network (After Murphy et al, 2003: 4886 
andKazoglu and Mather, 2003). 
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2.3.2 Feedforward Neural Networks and Backpropagation 

One of the most common neural networks used is that of the Multilayer Perceptron 

(MLP) model. This is a feedforwad artificial neural network model (Kavzoglu and 

Mather, 2003, Foody, 2004). Another type of feedforward neural network is that of the 

Radial Basis Function (RBF) (Foody, 2004). 

A MLP model comprises different layers: these layers can be classed as the input, hidden, 

and output layers. Each layer consists of nodes and each node is connected by a user 

defined weighted function. Nodes from the same layer cannot be connected to another 

node within the same layer. The function of the node is to perform a simplified 

mathematical algorithm (Foody, 2004). Information from spectral bands and ancillary 

data are fed into the model through the one input layer into the hidden layers. The hidden 

layers perform the mathematical analysis on the input data to create the output layer or 

the specific classes for the classification. The flow of information is in one direction, 

hence the feedforward model (Kavzoglu and Mather, 2003). 

MLP models have been described in literature as a supervised type of model (Kavzoglu 

and Mather, 2003, Foody, 2004). Because that information is already known about the 

classes and other information involved within the model and, the model is 'taught' to the 

network (Kavzoglu and Mather, 2003). One of the most popular teaching methods is 

known as the 'backpropogation learning algorithm' (Kavzoglu and Mather, 2003). 

Backpropogation is a learning technique that aids in the accuracy of the final result of 

running the model. (Kavzoglu and Mather, 2003, Foody, 2004). Backpropogation works 

in two stages. 

Stage 1: Initially, network weights are put through the network and estimates of 

the output values are made for each set of data input into the network (Kavzoglu 

and Mather, 2003, Foody, 2004). 
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Stage 2: Once the values have been estimated, they are compared to known values 

and the errors between these values are calculated and sent backwards through the 

network. The weights between the nodes are adjusted to create minimal error. The 

whole process is repeated until the error reaches a designated value or a value as 

close to zero as possible (Kavzoglu and Mather, 2003, Foody, 2004). 

The Radial Basis Function (RBF) is another type of feedforward neural network. It is 

similar to the MLP model in that it contains specific layers connected by weighted 

functions and nodes. However, whereas the MLP model has an infinite number of hidden 

layers, the RBF has only one. Within the single hidden layer of the RBF is a statistical 

function; this function 'looks' at a specific small area within a defined input layer. This 

layer will calculate the location of a specific point from the input layer and calculate the 

deviation of an input layer vector from the designated centre for the RBF. The points 

closest to the centre of the designated radial point have a maximum value of 1.0, whilst 

those furthest will be 0.0, the layer is thus divided into zones (Foody, 2004). 

A problem that is contained within the neural network algorithms is that the actual 

algorithms used are very complex. This means that the relationship between inputs and 

outputs are very difficult to obtain. It is noted by Qiu and Jensen (2004:1750) that "a 

neural network is often accused of being a black box", due to these relationships being 

complex and hidden. The number of designated hidden layers within the network is vital 

to the accurate classification of an image (Kavzoglu and Mather, 2003). Problems with 

the MLP neural network can be caused by the use of the weighted connections between 

nodes. These weights affect the rates of error calculations and thus the learning properties 

of the network. It has often been seen that the derivation of many of the values used in a 

successful classification stems from trial and error. Another problem stems from the 

correct use of the best number of training samples (Kavzoglu and Mather, 2003), and this 

will be discussed further. 

It is thus difficult to gain an understanding of the characteristics of a given dataset and so 

simplification of and improvement of the efficiency of a classification is near impossible. 
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Essentially, every neural network created has to learn from the beginning of every 

problem (Qiu and Jensen, 2004). 

2.3.3 Factors Affecting the Accuracy of Neural Networks 

The overall accuracy of neural networks when compared to that of conventional 

statistical classifiers is generally greater. There have been many studies undertaken that 

confirm this (Foody and Arora, 1997, Yool, 1998, Kavzoglu and Mather, 2003, Qiu and 

Jensen, 2004, Sunar Erbek et al, 2004). There are, however, difficulties with the use of 

neural networks. 

The complexity of the network is a factor which affects the accuracy of the network's 

classification. The more connections and layers within the network the more these will 

govern the overall accuracy of the classification. The number of connections and layers 

will also govern the effective generalisation and classification of pixels not incorporated 

in the supervised data set. The more connections there are, the more accurate the 

classification of these 'seen' pixels, but there is a reduction in the ability of the network 

to generalise and so classify the 'unseen' pixels or the pixels not within the supervised 

data set (Foody and Arora, 1997). 

A study by Foody and Arora in 1997 identified four possible factors that could affect the 

classification accuracy and thus the accuracy of a neural network. The following section 

will attempt to briefly evaluate the factors which affect the accuracy of image 

classifications. 

The first factor identified is that of the structure of the network. This refers to the 

structures of the layers within the network, and how many hidden layers and nodes are 

contained within that network. It is generally seen that the more complex the network, the 

more accurate the output classes are, when compared to smaller and less complex 

networks. The structure alone cannot be viewed as the deciding factor when assessing the 
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accuracy of a network, because the structure combined with the other factors bears a 

greater influence on the accuracy (Foody and Arora, 1997). 

The second factor identified is that of the training set size. It is accepted by advocates of 

remote sensing that for an accurate classification to occur, a representative sample of the 

required classes be obtained. "To yield acceptable classification results, training data 

must be both representative and complete" (Lillesand et al, 2004). In other words, the 

reference data obtained, in order to train the classifier (Statistical or Neural Network), 

should represent all the classes that are to be created in the output. It has, however, been 

seen that because a neural network makes no assumptions about the distribution of the 

samples, a neural network can still be accurate without requiring as many training 

datasets as a statistical classifier does (Foody and Arora, 1997). It has been shown that 

the greater the number of samples are used, the more accurate the classification. 

However, as the sample set is increased so too is the amount of time needed to perform 

the classification. In their study Foody and Arora (1997) showed that the number of 

training samples can increase the accuracy of the output classification. 

The third factor identified is that of discriminating among variables. This is the ability 

of the system to distinguish between classes based on the characteristics of the data for 

those classes. Traditionally, for statistical classifiers the main discriminating variable has 

been that of spectral separability or the ability to discriminate among classes based upon 

the spectral bands within an image (Foody and Arora, 1997, Lillesand et al, 2004). 

Within a neural network, the discriminating variables are not limited to just the spectral 

bands of an image. The bands can not only be used to aid in the classification but also 

used for ancillary or extra. These data can be in the form of aspect, slope, soil types, and 

rainfall to name a few variables. (Foody and Arora, 1997, Foody, 2004, Lillesand et al, 

2004, Mutanga and Skidmore, 2004). Caution must be exercised regarding the use of too 

many spectral bands within the classification. A phenomenon known as the Hughes 

phenomenon is known to occur when too many bands are used. Adding bands to a 

classification aids in identifying different classes up to a point, but thereafter the addition 
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of more bands has no effect on increasing the accuracy of the classification and in some 

cases can reduce the accuracy of the final classification (Foody and Arora, 1997). 

The fourth factor identified is that of testing data characteristics. The final output of the 

classification must be tested for its accuracy compared to real-life situations. This is 

usually done by means of an error matrix, also known as a confusion matrix. Within this 

matrix, values from the classification are compared with known values from reality and 

are plotted in the matrix comparing what was classified correctly against what was not. 

An ideal determination of accuracy is the inclusion of samples representing the statistical 

representation of all the classes and so classified pixels (Foody and Arora, 1997, 

Lillesandefa/.,2004). 

Neural networks allow for the identification of complex spectral and spatial patterns 

(Paola and Schowengerdt, 1995). Studies have shown the ability of a neural network to 

detect different wheat crops at various stages of their growth cycles (Murphy et al, 

2003). Studies comparing the performance traditional classifiers with that of a neural 

network have shown that the neural network performs better with the complex scenes 

when compared with the traditional classifier. This is primarily due to the ability of the 

neural network to model non-linear features (Murphy et al, 2003, Sunar Erbek et al, 

2004). The present study will add to the studies of the performance of traditional 

classifiers in heterogeneous environments and to the improvement of these classifications 

using a supervised neural network. 

2.3.4 The Importance of Resolution in Classification Accuracy 

For the present study, the term 'resolution' can refer to the spatial resolution of an image, 

the spectral resolution of an image, and the categorical or number of classes in the image. 

The term 'scale', in this study, is often used in the context of spatial resolution, or the 

minimum spatial extent of a pixel. 'Spectral resolution' refers to the number of spectral 

ranges or the number of different wavelengths that the image may have. 'Categorical 

resolution' refers to the number of classes and how much descriptive detail those classes 

may have. Examples would be a fine categorical resolution which may have hardwood 
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and softwood trees, and a coarse resolution which may combine the two to create a forest 

class (Lillesand et al., 2004, Johnson, 2005) 

2.3.4.1 Spatial Resolution 

Features at different spatial resolutions take on different properties, depending on the 

scale at which these features are analysed. Scale can determine how much generalisation 

can occur within and around the feature: some features may be very detailed at one scale, 

but at another they may be generalised. In cartographic scale, a large scale means that the 

images are smaller and portrayed in more detail and the smaller scales will have larger 

extents and show less detail. An example of this can be seen within remote sensing. Scale 

(resolution) in remote sensing is often seen as the smallest pixel size within the image; 

the size of this pixel on the earth's surface can determine how much of a feature is shown 

(Quattrochi and Goodchild, 1997, Lillesand et al, 2004). 

One of the most concerning factors within remote sensing is the determination of which 

spatial resolution is best to be used in a study. Resolution of an image is important, for 

example an image with a resolution of 30 m can identify features larger than 30 m, 

however, the number of pixels within that feature will determine whether that feature can 

be correctly identified/ A higher resolution is needed to identify more of these features 

and how they may relate to each other (Cao and Lam, 1997). 

Scale plays an important role in the extrapolation of results. Differences in scales within 

the extrapolation can have a detrimental effect on the results obtained. An example of this 

occurs within landcover classification. Data are lost between classes as the resolution of 

the image becomes coarser. Landcover types gradually disappear as the resolution of the 

image increases (Cao and Lam, 1997). 

2.3.4.2 Categorical Resolution 

As has been stated, categorical resolution refers to the amount of detail an image may 

portray post-classification. This generally refers to the labels of the classes (Ju et al., 

2005) 
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It has been seen that as the spatial resolution of an image becomes coarser, so the amount 

of spectral mixing increases, necessitating more broad categorical labels. Generally, to 

allow for the changes in spatial resolution, classes are joined together to form more 

generalised classes. This can create problems in that areas where one class is dominant 

there can be a large loss of categorical information (Ju et al, 2005) 

2.3.4.3 Spectral Resolution 

Spectral resolution refers to the number of spectral bands or ranges that an image may 

have. Using the Landsat TM sensor as an example, it has 6 bands and detects 3 bands 

within the visible spectrum and 4 bands in the Near InfraRed (NIR), Shortwave InfraRed 

(SIR), Thermal Spectrum, and Mid InfraRed (Akbari et al.) bands (Lillesand et al, 2004) 

The spectral resolution of an image can aid in the detection of specific features. Some 

images with high spectral resolutions, as in hyperspectral images, allow for the detection 

of specific types of chemicals within vegetative matter. This can then allow for the 

detection of specific species of vegetation (Dungan et al, 1996). Other uses for specific 

spectral bands include the detection of crop residues for agricultural land management 

(Bannari et al, 2006), the monitoring and estimation of water content within vegetation 

(Claudio et al, 2006) and the mapping of vegetation in highly complex areas such as salt 

marshes (Belluco et al, 2006). 

2.3.5 Selection of Resolution 

During previous studies of different scales within remote sensing, an ideal resolution 

(spatial and categorical) was sought for landcover mapping. It must, however, be noted 

that there is not any one set or defined optimal resolution for the study of a specific 

situation. The reason for this is that at different spatial resolutions it is difficult to 

accurately portray all of the features that need to be studied, due to the heterogeneity of 

the different features (Ju et al, 2005). 
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When undertaking a landcover classification, deciding on of the correct resolution 

therefore becomes a very important factor in determining the accuracy of the final output 

of the classification. A study conducted by Markham and Townshend (1981) determined 

that the accuracy of a classification is governed by two factors, namely the amount of 

pixels falling on the boundary of features and the spectral variation of classes. 'Boundary 

pixel' refers to the proportion of pixels that fall on the boundary of the classes. Mixed 

pixels, or the number of pixels that contain more than one class, increase as the spatial 

resolution of the image increases and thus decreases as the resolution of an image 

becomes finer. The spectral variation within a class increases with the increase in the 

resolution of an image. Thus the spectral separability of the classes is reduced, creating 

problems in determining the nature of the class (Cao and Lam, 1997). 

There have been studies comparing the accuracy of landcover classification at various 

resolutions. One such study took an image of 1 m x 1 m resolution and aggregated and 

resampled the image to various resolutions from 4 m x 4 m to 24 m x 24 m. It was found 

that as the resolution of the image became coarser so the standard deviation between 

pixel values decreased; also the spatial autocorrelation between adjacent pixels 

decreased. It was found that the rates of decrease were related to the type of feature 

within the classes (Chen et al, 2004). 

Modern remote sensing offers many opportunities for the expansion of knowledge about 

the earth's surface. These opportunities also add problems to the researchers' studies. The 

problems of scale can become evident with regard to the resolution at which the study is 

being conducted. Some features can be studied only at the finer resolutions; whilst others 

will not show any major changes in the finer resolutions, but as the resolution becomes 

coarser so the amount of change becomes more apparent (Franklin and Wulder, 2002, Ju 

et al, 2005). 

2.4 CONCLUSION 

The literature has shown the extent to which a neural network is able to operate and the 

improvements that a neural network can make, especially in spectrally complex areas. 
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Foody and Arora (1997) identified the various factors that may affect the classification 

accuracy of a neural network. The present study will investigate these factors to evaluate 

the specific neural network used within the study and identify which variables are 

important. 

The performance of the neural network has been studied by various authors (Foody and 

Arora, 1997, Kavzoglu and Mather, 2003, Foody, 2004, and Qiu and Jensen, 2004), 

although the performance of these networks compared with traditional classifiers has not 

been studied as much. This study aims to determine if the neural network can 

substantially improve on a traditional classifier. 

Resolution plays a large role in this study. The two resolutions investigated are the spatial 

and categorical resolutions. The effect these resolutions have on the classification 

accuracy will be examined. To test the conclusions reached by researchers in the 

reviewed literature, these resolutions and the affect they have on the landcover accuracy 

will be investigated. 

This chapter has outlined some of the major themes for the study. Chapter three will 

outline the techniques used in the study. 
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Chapter 3. METHODS 

The information in the chapter follows the order in which the study was undertaken: 

starting with the creation of the random points from which the spectral signatures were 

created, followed by the classification of the images, and finally the use of the neural 

network. 

3.1 BASELINE DATA COLLECTION 

The base for all the data in this study relies on the GPS points collected from the field. In 

order for these points to be collected, it was decided to use randomly generated points. 

For this study, 11 classes were used to classify the image; these 11 classes were derived 

from the National Landcover classification definitions of South Africa (CSIR, 2002). The 

first step in the study was to collect the GPS points to be used for training of imagery. A 

random sample list had to be created to ensure a random sampling strategy for collecting 

the GPS points. In order to generate the random sample listings, it was decided that 15 

random samples would be taken from each of the classes. The decision to use 15 random 

samples was made to ensure a wide spread of samples across the spatial extent of the 

class. It was known that not all of the sample points would be reached, and thus the 

higher the number of sample points the greater the chance of acquiring those points in the 

field. 

To decide on the classes, an unsupervised classification was performed using ERDAS 

Imagine 8.4 (Geosystems, 2003). A simple ISODATA unsupervised classification 

technique was used. Figure 3.1 outlines the process used. Franklin and Wulder (2002) 

identified this technique as a method to increase the efficiency with which data is 

collected in the field. In the present study, however, the unsupervised classification was 

undertaken to attempt to acquire an idea of the class separation for the collection of 

randomly generated training site data. 
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It was decided that, due to the large spatial area of some of the classes e.g. Grassland, it 

was best to fragment these classes by increasing the number of classes in the 

unsupervised classification; hence, the number of classes chosen was 13. Once the 13 

classes were created, the created image was imported into ESRI's ArcGIS 9.1. For the 

generation of the random points, the program Hawth's Analysis Tools, was used. 

Hawth's Analysis Tools can create a set number random of points per polygon defined by 

the user (Beyer, 2004). Initial testing with the generation of these points revealed that the 

generation of the random points on the first created image would create 15 points for 

each polygon on the image. Not only was this highly computationally intensive, but also 

it was too extensive for the study. In order to counteract the creation of too many points, 

it was decided that each class would be dealt with individually. 

Using ArcGIS 9.1, each class from the unsupervised classified image was extracted into a 

separate feature; in total 13 new features were created. Hawth's Analysis Tools program 

was run on each of the separate classes. A total of 15 points were then generated for each 

class. Each of these separated classes was merged to create a single file containing 195 

points. These points were overlaid onto a 1:50 000 topographical map of the study area. 

These points formed the foundation from which the GPS points for the training sites were 

collected. Due to the small size of the study area, and the best dispersion of the sampling 

points, 60 points were chosen randomly for the collection of the training site information. 

The CSIR has defined, for the National Land Cover 2000 (NLC 2000) project, a set of 

class definitions. It was decided that for the present study the definitions used for the 

NLC 2000 study would be modified and used when collecting data for the training sites. 

Initially, 11 classes were identified, in order to determine what effect the reduction in the 

categorical scale would have on the final accuracies of the classification process; these 11 

classes were susequently merged. 
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Figure 3.1: The process by which random points were generated for identification of the training sites. 
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Table 3.1 The definitions used for each of the classes (after CSIR, 2002 and Anderson et ah, 1976) 

Class 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Class Name 

Agriculture 

Bush 

Cane 

Gum 

Plantations 

Urban 

Wattle 

Plantations 

Wetland 

Woodland 

Grassland 

Pine 

Plantation 

Water 

Class Description 

All land under any type of agricultural activity that is not used for sugar cane 

and grazing 

Dense natural vegetation, consisting of shrubbery and natural forest communities 

Sugar cane plantations 

Any area under Eucalypt Plantation 

Areas that are inhabited by man. Combining the classes defined by the CSIR" 

residential, commercial, and industrial areas. 

Any area under Acacia Plantation 

Areas in and around water bodies. The CSIR defined wetlands as areas where 

water is either at or close to the surface. Cover usually woody or herbaceous. 

Examples being papyrus type vegetation (CSIR 2002) 

Natural areas where the cover of tree is between 10% and 70% of the total cover 

(CSIR, 2002) 

By combining the CSIR's definitions, a broad definition of grassland was 

created. Defined as an area with less than 10% tree or shrub cover, containing 

grass as the dominant species, this included planted grass types 

Any area under pine plantation 

All open bodies of water, including streams and rivers. 

In total, 45 points were collected from the field. Attempts were made to ensure that all 

classes were correctly represented in the collection process. Owing to the location of 
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some of the points and their inaccessibility, some that were initially decided upon were 

not collected. To counteract this, using 1:50 000 map data and SPOT 5 Panchromatic 

image interpretation, more training points were added to the initial 45. In total, 76 points 

were collected for use in the classification process, and 22 were put aside for use in the 

final accuracy assessment. 

Using ArcGIS 9.1, shapefiles were made according to the class of the point collected. 

Using attribute data collected (Table 3.2), such as the class type and class description, 11 

classes were created to follow the initially decided upon classes. These individual class 

shapefiles were the base from which all classifications and accuracy assessments were 

made. Merging of classes to create broader classes was done once the creation of the 

signature files was completed. 

Table 3.2: Example of database created 

FID 

1 

2 

GPS_Point 

PI 

P2 

X Coords 

29.001 

29.65 

Y Coords 

-30.25 

-30.65 

Class 

Urban 

Cane 

Descript 

Pmb CBD 

Sugar Cane 

The merging of classes occurred during the classification stage of the study. The 11 

classes were reduced to 8 by merging classes that were seen to be similar. The classes 

that were merged were the Gum, Pine and Wattle classes, which became the Plantation 

class. The Wetland and Grassland classes were merged to form the new Grassland class. 

Classes were merged to evaluate the effect that different resolutions - Categorical and 

Spatial, would have on the final classifications using various classification algorithms. 

The procedure used for the classification was kept the same for all images used. 

Alterations were, however, made to the actual images used, based upon the spectral bands 

available for use in the classification. The broad approach is outlined below, followed by 

an in depth look at each image separately. 

43 



3.2 IMAGES USED 

During the study, three images were used. These were the Satellite Pour l'Observation de 

la Terre (SPOT 5), Landsat TM and the Moderate Resolution Image Spectroradiometer 

(MODIS). These images were chosen due to the different characteristics of the images. 

The SPOT 5 image had the highest resolution of all the images acquired for use in this 

study, this presented for an opportunity to determine the extent of accuracy differences 

between the higher resolution image and other lower resolution images/Landsat TM is 

widely used for landcover classification, and so was a necessity for the study. The 

MODIS images are readily available to the public and if the results from the image are 

satisfactory, costs of landcover classification may be reduced. Attempts were made to 

keep the images from the same periods in an effort to reduce the effects that changes in 

the season may have on certain features. It was however difficult to acquire the imagery 

from the same periods and images were chosen from 2001 and 2004. These images were 

received pre-processed. This section will briefly outline what steps were taken for the 

pre-processing of the images. 

Figures 3.2 and 3.3 displays some landcover classes from two periods, namely 2000 and 

2004, close to the periods from which the satellite images were acquired. An exercise was 

undertaken to determine what possible changes, if any, happened to the landcover classes 

during that time period. 

It can be seen in Figure 3.2 that the plantation class does go through some minor changes, 

however, the changes are not changes in the landcover type, namely the amount of cover. 

Once a plantation lot is cleared, it is quickly replaced with more plantation type 

vegetation. During the GCP collection stage of the study, it was seen that a plantation had 

recently been cleared, it was still recorded as a plantation. It can be seen in Figure 3.3 that 

the agricultural lands identified did not change over the 4 year period. It is possible that 

land may have been harvested, but the land remained as agricultural. 
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Using these small samples of the study area, it was assumed that over the entire study 

area, the amount of change between the landcover classes for imagery from different time 

periods was minimal, and thus could be used for the study. 

While efforts were made to keep the dates of the acquisition of the imagery close 

together, it was also important to keep the seasons of the acquisition similar. It was seen 

that the Landsat TM and MODIS imagery were both acquired during winter, the SPOT 

image was acquired during summer. Although it is possible for some landcover classes to 

become less prominent during the winter months, it was assumed that this decrease in 

prominence occurred for all landcover classes of the same period. Thus it was assumed 

that the ability of the classifier to classify imagers from different seasons was considered 

to remain consistent. 

3.2.1 SPOT 5 

The SPOT 5 image was acquired in January 2004. It consists of 4 bands (1 to 4) at 

different spectral ranges. Table 3.3 displays the spectral ranges for each of the bands 

used. These bands are at 10 m resolution, band 4 was 20 m, but resampled to 10 m. The 

image was geometrically and spectrally pre-processed at level 2B in WGS 84 (Pasquilini, 

2005). 

3.2.2 Landsat TM 

The Landsat TM was acquired in July 2001. Although there is a difference in years 

between the MODIS and the SPOT image, it was felt that the classes used within the 

classification would not have significantly changed during that period. The image was 

received pre-processed, with geometric and spectral corrections completed. The image 

was projected using the UTM and WGS84 datum. The image consists of 7 bands, each at 

30 m resolution. Table 3.3, page 50, displays the spectral ranges of the Landsat TM 

image (Xiao et at, 2002). 
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3.2.3 MODIS 

The MODIS image was recorded during the early part of July 2004. The image is a 

composite of the best images from an eight-day collection period of a gridded level 2 

surface reflectance. The final product is a level 3 reflectance product known as MOD09 

Al (Mutanga and Rugege, 2006). Atmospheric correction was undertaken using the 

Bidirectional Reflectance Distribution Function (BRDF)/Albedo Product, which is a 

MODIS-specific input. Profiles for ozone, aerosols, and clouds were also completed. The 

image was reprojected into the Universal Transverse Mercator (UTM) Zone 36 

projection, using the WGS 84 datum (Mutanga and Rugege, 2006). 

Figure 3.4 displays all three of the images that were used in the study. It is seen that the 

MODIS image is less clear than the other two images, primarily because of the spatial 

resolution differences between the images. 

Figure 3.2: Comparison of a plantation stand from 2000 and 2004. 
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Figure 3.3: Comparison of an agricultural field from 2000 and 2004 

3.2.4 Impacts of using different resolutions for image classification 

One of the critical factors involved in the classification of remotely sensed images, is the 

factor of image resolution (Markham and Townshend, 1981 and Chen et al, 2004). This 

is partly due to the concentration of pixels along the boundaries of the classes being 

classified and the finer the imagery the more spectral variation can occur over the study 

area, because of the increased number of pixels per given area (Chen et al, 2004). 

Studies have shown that changes in the spatial resolution of an image affect the 

classification accuracy more than changes in the number of classes (Chen et al, 2004). 

Studies have been conducted evaluating the effect of changing spatial resolution of a 

single fine resolution image to coarser resolutions using aggregating averaging windows 

(Bian, 1997 and Chen et al, 2004). By applying the roving window to the image it is 

possible to average the surrounding pixels values to create coarser grids and thus coarser 

resolutions (Bian, 1997). The study conducted by Chen et al, (2004, showed that using 

the Maximum Likelihood Classification algorithm on an image that had been 

progressively made coarser, the accuracies were not significantly changed, although some 
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classes were classified with different accuracies. It must however be noted that a study 

conducted by Bian, 1997, showed that by slowly increasing the coarseness of an image, 

the actual values of the pixels are altered and in some cases, lost. It is for this reason that 

the present study used 3 separate images to evaluate the effect of image resolution on 

image classification accuracy. It was decided that the native pixel reflectance values 

would be used and thus evaluated and not the altered values that occur when an image is 

aggregated. 

3.2.5 Impacts of using Images from different seasons for comparing 

classification accuracies 

Depending on the season and so the time of the year, the physical environment will be 

different. This poses problems for remotely sensed image acquisition due the variations 

in the conditions, thus changing the spectral reflectance properties of the image. This can 

create accuracy issues when looking at features across different times over a given 

period, as there is no guarantee that the spectral properties of the image will be the same 

when the site is revisited (Lillesand and Kieffer, 2000). 

Changes in the soil moisture content and evapotranspiration demands of a season can 

place stress on a plant that may not usually occur during other seasons. The increased 

stress can alter the reflectance properties of a plant to the point where it may not be 

recognised during a classification as to belong to a particular class type (Sabins, 1997 and 

Lillesand and Kieffer, 2000). 

For the present study, the three images used were taken from summer and winter seasons. 

Although they are potentially different with regards to the reflectance properties of the 

images, these differences occur across the entire image and thus will not affect the overall 

classification of the image. One of the objectives of the study is to determine the accuracy 

of the classifications using different classification algorithms, not the actual reflectance 

values themselves. Thus any reflectance differences there may be due to seasonal 

variations are not taken into account and thus negated. 
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Figure 3.4: Displays the three images used in this study. 
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Table 3.3: The bands and resolutions of the images used for classification (after Lillesand et al., 2004, 
Pasquilini, 2005, Mutanga and Rugege, 2006) 

Sensor 

SPOT 5 

Landsat TM 

MODIS 

Bands 

1 - Green 

2 -Red 

3-NIR 

4-MIR 

1 - Blue 

2 - Green 

3-Red 

4-NIR 

5-MIR 

6 - Thermal 

7-MIR 

1-

2 -

3 -

4 -

5-

6-

Spectral Ranges 

(nm) 

500 - 590 

610-680 

780 - 890 

1 580-1 750 

450-515 

525 - 605 

630 - 690 

760 - 900 

1 550-1750 

10 400-12 500 

2 080 - 2 350 

620 - 670 

841-876 

459 - 479 

545 - 565 

1230-1 250 

1 620-2 155 

Resolution 

10 m 

10m 

10m 

20 m (resample to 

10 m) 

30 m 

30 m 

30 m 

30 m 

30m 

60 m 

30 m 

250 m 

250 m 

500 m 

500 m 

500 m 

500 m 
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3.3 SIGNATURE CREATION 

The process by which signature creation was completed was kept uniform for all three of 

the images. Each image did, however, present problems, and each problem was unique 

due to both the resolution and spectral qualities of the image. These problems will be 

outlined later within this chapter. 

Each of the class vector files was imported into ERDAS Imagine 8.4. These vector files 

were the base from which the rest of the classification was made. 

Using the vector files overlaid on the image, polygons were created around the point for 

the creation of signatures from which the classification would be made. The procedures 

for signature creation have been laid out by Leica Geosystems (2003). The procedures set 

out within the tour guide were followed in order to produce the signatures for the 

classification (Geosystems, 2003). 

3.4 IMAGE CLASSIFICATION 

As the objectives of this study were to determine which resolution could produce the best 

classifications, and which of the traditional statistical classifiers creates the most accurate 

classifications, the same signatures were used for each image and in turn the type of 

classifier was changed accordingly. The spectral ranges used within the classification 

focused on having some bands within the visible range and the invisible range, so the 

Red, Green, Blue or NDVI bands were used in conjunction with the NIR bands where 

possible. In order to allow for the comparison of the effect of spatial resolution on the 

accuracy of the image classifications, the NIR and visible bands were used for the image 

classifications, since they were common to the three images used. Thus the MIR, bands 

were not used in the classifications. By changing the images used, the resolution of the 

classification would change; and by changing the signatures only after each classification 

was completed, consistency was kept for each image. 
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In some cases, to improve upon the classification accuracy, it was necessary to create a 

NDVI to add to the images. Equation 3.1 displays the equation used to create the NDVI. 

The NDVI uses the NIR and Red bands to apply an index to the image showing the 

concentration of vegetative matter. The NIR reflects higher electromagnetic radiation due 

to the multiple scattering effects of vegetation whereas the red is absorbed by chlorophyll 

in vegetation. These bands are used because of the reflective reactions of vegetation 

matter to these bands. The index ranges from 1.0 to -1.0, the higher the values the greater 

the amount of vegetation (Lillesand and Keifer, 1994). 

3.4.1 Challenges with Image Classification: Landsat TM 

It has been reported that Landsat TM has a spatial resolution of 30 m (Lillesand et al, 

2004). The classification of the Landsat TM image has been well documented (Shoshany, 

2000, Price, 2003, Powell et al, 2004, Small, 2004, Sunar Erbek et al, 2004, Yuan et al, 

2005). The procedure for the classification was therefore already set out and so was 

followed. 

Initially, bands 4, 3, and 2 (NIR, R, and G) were used for the first classifications. The 

outputs for these classifications were, however, not acceptable. Problems occurred with 

the identification and confusion was experienced by the system with regards to the 

Urban and Water classes. Bands 4, 3, and 1 (NIR, R, and B) were used in an attempt to 

counteract the confusion. The ability of the system to distinguish between certain classes 

was still insufficient for what was needed. It was therefore decided that an additional 

band to the 7 bands within the Landsat image was to be created. An NDVI (Normalised 

Differential Vegetation Index) was created. Table 3.4 displays the spectral ranges for the 

bands used in the NDVI equation. 

XTTM„ NIR-Red r . . , 
NDVI = Equation 3.1 

NIR + Red 
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The NDVI image was rescaled using the 'Rescale' function within ERDAS Image. The 

image was rescaled to an unsigned 8-bit data format. This new image was added to the 

Landsat TM image to create an additional band. This was done through the process of a 

'Layer stack', and this new band easily identified the vegetation of the image. A 

classification was undertaken using the new NDVI band, Red, and Blue bands. 

3.4.2 Challenges with Image Classification: SPOT 5 

The SPOT 5 image was acquired during January 2005, and consists of 4 bands and 1 

panchromatic band. Bands 1-4 (Green, Red, Near Infrared, and Short Wave Infrared) are 

10 m resolution and the panchromatic image is 5 m resolution (Pasqaulini et at, 2005). 

Because of the high resolution of the image, it is possible to discriminate between 

different patterns and therefore different features on the surface. This made identification 

of training site easier. 

The initial classification was done using bands 1,3, and 4; the results obtained during the 

classification were satisfactory. In order to be consistent, an NDVI image was created 

using Equation 3.1. Table 3.4 displays the spectral ranges for the bands used in the NDVI 

equation. This NDVI image was rescaled to an unsigned 8-bit data format and added to 

the original SPOT 5 image. The classification process was repeated using the new NDVI 

band, Green, and Red bands. 

The time period during which the image was recorded was after a period of very little 

rainfall. This posed a problem with regard to the identification of the water class. Because 

the level of water bodies was very low, exposing the underlying features, thus confusing 

the spectral reflectance response for that class. 

An example can be seen in Figure 4.2, page 69, where a comparison of the classifications 

reveals that the water level in the Landsat TM image is higher than that in the SPOT 5 

image. It can be seen that a large area of bedrock has been exposed and was thus 

confused during the classification process with the Urban class. 
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Table 3.4 : The spectral ranges for the bands used to create the NDVI images 

Sensor 

SPOT 5 

Landsat TM 

MODIS 

NIR Band (nm) 

780 - 890 

760 - 900 

841-876 

Red Band (nm) 

610-680 

630 - 690 

620 - 670 

3.4.3 Challenges with Image Classification: MODIS 

The MODIS image used consists of 6 bands, each of different resolutions, thus causing 

problems during the creation of the signature development phase of the classification. 

The 6 bands can be seen in Table 3.3, page 50. 

The differing resolutions of the image increased the difficulty in creating the signatures 

for the image. Due to Bands 1 and 2 having the same resolution (250 m), these bands 

were used to create the signatures. The MODIS NDVI can be created using bands 1 and 

2, however the NDVI band was not used in the classification due to the poor performance 

of the SPOT 5 image when the NDVI band was added. 

When one uses Franklin and Wulder's (2002) definition of coarse, medium, and fine 

resolutions, MODIS can be defined as a coarse resolution image. This creates problems 

in the creation of signatures for the image in the amount of spectral mixing within the 

pixel. Large classes such as the plantations and grassland can be detected due to the large 

spatial area that these classes occupy; the smaller classes such as wetlands and some 

urban classes make the detection of these spectral signatures very difficult to accomplish. 

3.5 ACCURACY ASSESSMENT 

Once the classifications were completed, it was necessary to determine the accuracy of 

the final image. This was done using the 22 GPS points set aside during the data 
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collection. These 22 points are a collection of the various classes used in the 

classification. 

The system compares the classified image with these known points to determine the 

accuracy of the user and producer classification. With the lower resolution imagery, 

classes were merged and the number of classes was reduced to create broader classes in 

an attempt to increase the accuracy of the final classifications. 

3.6 NEURAL NETWORKS 

Neural networks differ from traditional statistical classifiers in that ancillary data 

(additional data) can be incorporated into the classification process (Linderman et al, 

2004, Qiu and Jensen, 2004). This section will discuss the techniques used for the testing 

and training of the neural network for this study. An outline of the process can be seen in 

Figure 3.5, page 59. 

3.6.1 Pre-Signature creation 

The processing and creation of signature data was different for the classification when 

using neural networks. This next section will document the steps and procedures used in 

the classification of an image. 

The ancillary data used with the neural network was derived from a Digital Terrain 

Model (DTM) of the study site. From this DTM, the aspect and percentage slope 

(hereafter slope) of the study site was mapped. These new images were added to existing 

images as additional bands. Additional data was created by creating an NDVI image 

from the initial image, (Equation 3.1). The NDVI was added with the slope, aspect and 

DTM as additional bands. 

Before these new images could be added, it was necessary to standardise the image that 

would be used and the new bands that would be added. This was done in three steps, 

namely reprojecting, resampling and normalising. 
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3.6.1.1 Reprojecting 

In order for the ancillary data and the satellite image to fit exactly when overlaid, it was 

necessary to ensure that the two images were at the same geographical projection. The 

projection of the satellite image is according to ArcGIS at the WGS_1984_Zone 36S 

using the WGS 1984 Datum. The DTM projection is the ArcGIS GCS_WGS_1984. 

Using ArcGIS, the projection of the ancillary data was matched. 

3.7.3.5 Resampling 

While reprojecting of the images was occurring, the images were resampled and the pixel 

areas changed to fit the SPOT image. The original ancillary data had a pixel area of 

0.000204 x 0.000204 decimal degrees, which is approximately 22 m x 22 m. The new 

pixel resolutions were changed to 10 m. 'Resampling' refers to the process by which a 

pixel grid is altered to fit another pixel grid; these techniques are applied to all the pixels 

within the image (Clark Labs, 2000). There are three resampling techniques available in 

the software packages used for the analysis, namely the nearest neighbour, the bilinear 

interpolation, and cubic convolution techniques. To alter the position of a given pixel, the 

neighbouring pixels are taken into account. The final altered pixel can be offset from its 

original position by half a pixel. This technique is computationally very simplistic and 

avoids changing the original pixel values. The bilinear interpolation technique uses the 

surrounding pixel values and the inverse distance weighted averages of the closest four 

pixels to create a new pixel value for the pixel that is to be altered. The final output image 

tends to be smoother; however, the grey levels of the pixels within the image will be 

changed, and thus spectral pattern recognition problems can be experienced. The cubic 

convolution technique uses 16 pixels around the pixel that is to be altered to determine 

the pixel value for that pixel. The final output for the image tends to be smoother and 

more defined than the other two techniques, but the original pixel values are altered 

(Lillesandefa/.,2004). 

For this study the nearest neighbour resampling technique was used, for two main 

reasons. The first is that the technique is computationally simplistic and therefore 
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quicker, the second and the most important reason is that the pixel values within the 

image are not altered and thus allows the neural network to classify the original pixel 

values for the image. 

Reprojected 

Start of NN 

Training 

Resampled Normalised 

Imported into 

Software 

1 - Number of Hidden Layers 

2 - Number of Nodes per Layer 

3 - Learning Rates 

4 - Momentum Factor 

5 - Number of Iterations 

Final NN 

Display 

End of NN 

Training 

Figure 3.5: An outline of the creation of the neural network. 

3.7.3.5 Normalising 

For the new bands to be added to the required satellite image, the datasets used must be 

of the same data type. The satellite data is an unsigned 8-bit image, thus the DTM, aspect, 
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slope, and NDVI image, all of which are continuous data, needed to be converted to the 

unsigned 8-bit data type. By normalising, or getting the data to within the same range, the 

speed of convergence to a small error point of the network can thus be increased 

(Skidmore et al, 1997). 

This was accomplished using ERDAS Imagine 8.4. The continuous data were converted 

to the unsigned 8-bit data type. An 8-bit image contains 256 classes or a numerical range 

of between 0 and 255 within which the digital numbers of the image can fall. 

By standardising the format in which all the data occurs, it was possible to merge the 

satellite image with the ancillary data together to create an image that contained 8 

different bands. This stacked image was used for the creation of signatures within the 

neural network. 

3.6.2 Signature Creation within the Neural Network Software. 

The neural network software used for this aspect of the study was IDRISI Andes edition. 

The creation of signatures within this software is slightly different from the techniques 

used within ERDAS Imagine 8.4. The principles of creating the signatures to allow the 

system to discriminate between different spectral classes remains the same, the 

techniques to create the signature, however, are different. 

Using the software, a vector file was created, into which polygons were added. These 

polygons were created around the defined class vector files that were used during the 

initial statistical classifications. Each of the classes used within the classification was 

assigned a code by the user. This code was then used to define a set of polygons, and thus 

was used in the creation of signatures for the classes. Table 3.5 depicts the classes and 

codes for the classification within the neural network. 
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Table 3.5: Tthe user defined codes used for creating the signatures in IDRISI Andes 

Signature 

Code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Class 

Name 

Agric 

Bush 

Cane 

Grassland 

Gum 

Pine 

Urban 

Wattle 

Wetland 

Woodland 

Water 

3.7 NEURAL NETWORK DESIGN 

The following section will deal with the design of the final neural network to accomplish 

the creation of an accurate landcover classification which was stated by the objectives. 

3.7.1 Structure of the Neural Network in IDRISI Andes 

The neural network used within IDRISI Andes, is a Multi-Layered Perception Neural 

Network that uses a back propagation algorithm (Clark Labs, 2000). The classification 

has two steps: initially, there is the forward movement of the input data through the nodes 

within the hidden layers of the network that are connected by weightings. Then secondly 

there is the backward propagation of the network in order to learn the characteristics of 

59 



the data (Clark Labs, 2000). The diagram of a neural network can be seen in Chapter two, 

Figure 2.2, page 29. 

An example of the forward movement of a pixel through three layers (i, j , and o) is 

governed by Equation 3.2 where w# is the weighting between given nodes i and j , and o; 

is the output from node i (Skidmore et ai, 1997 and Clark Labs, 2000). 

net.= /w..o. T T * • - } < • , 
j L-i v t Equation 3.2 

;-l 

From Equation 3.2 the output for a given node j can be calculated using Equation 3.3. 

°j=f(neij) Equation 3.3 

Using Equation 3.2 a sigmoidal function/is applied to the sum of the weighted inputs 

before passing to the next layer. After the forward passes are completed, the expected 

values for the pixels and thus classes are compared to the actual values. Using this study 

as an example, there are 11 classes, thus there are 11 output nodes, and the output for 

class 1 would be 1,0,0,0,0,0,0,0,0,0,0. The output for class 2 would be 

0,1,0,0,0,0,0,0,0,0,0; and thus this pattern will continue (Skidmore et ai, 1997, Clark 

Labs, 2000). The network generates a pattern for each of the classes. If the final pattern 

does not correspond to the input, there is an error in the network. This error is corrected 

through back propagation through the network and changing of the weightings between 

the nodes using the delta rule, Equation 3.4, where rj is the learning rate and a is the 

momentum rate with S as the computed error (Clark Labs, 2000). 

Awi,v=D = n5ii°i+aAwvu ij(t=l) ' I ij i ij{t) Equation 3.4 
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3.7.2 Basic Options with the MLP 

Before any methods can be described within this section of the study, it is best to 

understand what options are available for the design of a neural network. 

1) Band Selection: the number of bands are chosen and selected. This stage of the 

network design allows for the selection of the number of inputs for the network. 

The ancillary data are thus added during this stage of the design. 

2) Signature Selection: the initial signature files created by the user are inserted into 

the network. 

3) Pixels for testing and training input: this is a user defined selection of how many 

pixels can be set aside for the testing and training of the neural network. The 

pixels used are a subset of the number of pixels used in the user created signature 

file (Clark Labs, 2000). In the present study, the number of pixels used for all of 

the neural networks created was 40 pixels. 

4) Learning Rate Decision: the learning rate is seen to be the most important factor 

in the design of a neural network. This governs how big and how frequently are 

the adjustments made, and governs the weighting between nodes within the neural 

network (Carling, 1992). If the rate is set too small, the network can become 

overwhelmed and therefore slow; if the rate set too high, the adjustments can 

become too frequent and too large and thus can create large fluctuations in the 

accuracy of the network (Skidmore et al, 1997). As has been recommended 

within the software, the best learning rates are between 0.01 and 0.2 (Clark Labs, 

2000). 

5) Momentum Factor Decision: is aimed at removing the changes to the RMSE of 

the surface classification during the training of the network (Clark Labs, 2000). 
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6) Hidden Layer Selection: allows for a user to define how many hidden layers the 

neural network can have. 

7) Nodes per layer: allows for the user to define how many nodes each layer within 

the neural network may have. 

8) Number of Iterations: allows the user to define how many times the neural 

network will run until complete. This is one of the 'stopping factors' for the 

neural network. A 'stopping factor' is the condition under which the network will 

stop; other factors include accuracy and RMSE, both of which may be defined by 

the user. 

3.7.3 Testing the neural network 

In order to ensure the highest accuracy and efficiency for the neural network, it was 

decided that the parameters would be altered one at a time in order for the establishment 

of an effective neural network. The next section will describe how each run was 

conducted. For each of the runs (see Table 3.6, page 64), the testing accuracy and testing 

Root Mean Square Error (RMSE) was recorded and plotted on a Cartesian plane to allow 

for graphical interpretation of the changes being made. 

An assumption for the design of the neural network was that each increase of the 

accuracy of classification was a result of the previous changes and thus could be carried 

forward for the next run and so set of changes. 

3.7.3.1 Runs 1 and 2: Testing of Hidden Layers and Nodes per Layer 

For Runs 1 and 2, the changes made were very similar. Run 1: the numbers of nodes per 

layer were changed at a set interval. Run 2: the number of hidden layers was changed to 

2, as well as the numbers of nodes per hidden layer. For Run 2, the number of layers was 

kept constant for each of the hidden layers. Thus, the intervals of change followed 
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numerically from 1 until 10, after which the increments of change were 5 until 50 nodes 

per layer were reached. So the sequence of change was therefore 1,2,3...10, 15,20...50. 

3.7.3.2 Run 3: Testing the Learning Rate 

With Run 3, the assumption used for the design of the neural network was used and the 

best result from Run 2 was used to continue the design. The learning rate of the neural 

network was to be altered for this run. The number of increment changes per test was 

0.001 units. Within the IDRISI Andes training manual, the Learning Rate was identified 

as being the most important factor for the training of the neural network and therefore, 

this run was more detailed than the previous runs (Clark Labs, 2000). In total, 31 

networks were created to allow for the best accuracy to be calculated. 

3.7.3.3 Run 4: Testing the Momentum Factor 

Run 4 required the changes within the momentum factors. The rate of increment change 

was 0.1. 

3.7.3.4 Run 5: Testing the Number of Iterations 

In run 5, the number of iterations per test was changed. This was an attempt to discover 

whether or not the process of testing could be more efficiently completed and to discover 

if a higher accuracy could be attained by letting the processes continue for longer. The 

increments of change for this run were 1000 until 10 000 iterations were reached. After 

10 000 iterations, the amount of increase was changed to 5000, until 50 000 iterations 

were completed. 

3.7.3.5 Run 6: Testing of the Ancillary Data 

As stated within the objectives, it is necessary to decide which of the ancillary data 

incorporated within the image is more important for the accuracy of the classification. 

Thus, after the highest accuracy had been calculated, the design for the neural network 

was tested by removing certain bands from the image per test. 
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Table 3.6 The changes made per run 

Runl 

Run 2 

Run 3 

Run 4 

Run 5 

Run 6 

Hidden 

Layers 

1 

2 

2 

2 

2 

2 

Nodes 

Per Layer 

a 

a 

20 

20 

20 

20 

Learning 

Rate 

0.001 

0.001 

b 

0.16 

0.16 

0.16 

Momentum 

Factor 

0.5 

0.5 

0.5 

c 

Iterations 

10 000 

10 000 

10 000 

10 000 

d 

Number of 

Bands 

8 

8 

8 

8 

8 

e 

a - 18 changes made: 1,2,3... 9, 10, 15, 20...50 

b - 31 changes made: 0.001, 0.002, 0.003...0.31 

c - 10 changes made: 0.1, 0.2, 0.3... 1 

d - 18 changes made: 1000,2000,3000, ...10 000, 15 000, 20 000...50 000 

e - certain bands removed for each test 

3.7.3.6 Run 7: Final Classification 

Using the best results from the runs 1 to 6, the parameters for the neural network were set 

and the network was run. The final output can be found in Chapter 4. It will display the 

results obtained during the study. 
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Chapter 4. RESULTS 

This chapter will present the results that were acquired during this study. The structure of 

this chapter will follow the objective outlined in Chapter 1. The effect of scale on the 

accuracy of the maximum likelihood classification algorithms was studied, as well as the 

effect that the number of classes available for classification had on the classification 

accuracy. Different sensors were used to establish which classes were best identified at 

different spatial resolutions. Finally, a neural network was designed to increase the total 

accuracy of the land-cover classification including increasing the differentiation between 

some of the classes. 

4.1 MAXIMUM LIKELIHOOD AND RESOLUTION CHANGES 

In order to test the role that the spatial resolution of an image plays in the accuracy of a 

landcover classification, the maximum likelihood classifier was used. Chapter 3 outlined 

the steps taken to test the effect that spatial resolution has on the accuracy of a 

classification algorithm. This section will present the results obtained during the process 

of the testing of spatial scale. The first error matrix shown is used as an example; the rest 

of the error matrices may be viewed in Appendix I. Table 4.2 displays all of the 

accuracies and the Kappa Statistics for this section. Figure 4.1 depicts a broad overview 

of the classification of the SPOT 5 image. Figure 4.2 focuses on a specific area of the 

landcover classification to display the classification in more detail. 

4.1.1 SPOT 5 

The first image tested was that of the SPOT 5 sensor with a resolution of 10 m. A total of 

11 classes was used and signatures were created. Table 4.1 shows the error matrix for the 

final classification. 
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Table 4.1: Accuracy assessment of the SPOT 5 sensor, classified using the Maximum Likelihood algorithm 

Classified Data 

Agric 

Bush 

Cane 

Grass 

Gum 

Pine 

Urban 

Wattle 

Woodland 

Water 

Wetland 

Column Total 

Producer's Accuracy 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

2 

0 

Agric 

0 

2 

0 

0 

1 

0 

0 

0 

1 

0 

0 

4 

50 

Bush 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

IOC 

Cane 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

2 

50 

Grass 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

0 

2 

100 

Gum 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

2 

50 

Pine Urban 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

100 

Wattle 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

1 

100 

Woodland 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

4 

0 

5 

80 

Overall Classification Accuracy = 63.64% 

Overall Kappa Statistics = 0.5935 
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Table 4.1 shows the error matrix for the SPOT sensor with 11 classes. The final accuracy 

for the image is 63.64%, with a Kappa Statistic of 0.5926. Of all the sensors used during 

this test, 63.64% was the highest accuracy obtained. In order to attempt to improve the 

accuracy above, the NDVI band was included to replace the NIR band. The accuracy for 

this classification was reduced to 54.55%, with a Kappa statistic of 0.4787. 

4.1.2 Landsat TM 

The error matrix for the Landsat TM image, with a resolution of 30 m, can be seen in 

Appendix I. The overall accuracy for the Landsat TM test with 11 classes and using the 

maximum likelihood classifier was 36.36%, and a Kappa Statistic of 0.2837 was 

obtained. By including the calculated NDVI band in the image, the accuracy was 

increased by 18.19% to 54.55%, with a Kappa Statistic of 0.4931. 

4.1.3 MODIS 

The error matrix for the MODIS image, with a resolution of 250 m, can be seen in 

Appendix I. The overall accuracy for the MODIS test with 11 classes and using the 

maximum likelihood classifier was 31.82%, with a Kappa Statistic of 0.23058. This was 

the worst classification accuracy and could be explained by the increased spectral mixing 

within the pixels of the image. 

Table 4.2: Accuracies and Kappa Statistics of the varying sensors using the maximum likelihood classifier 

Sensor 

SPOT 5 (10 m) 

SPOT 5 with NDVI (10 m) 

Landsat TM (30 m) 

Landsat TM with NDVI (30 m) 

MODIS with NDVI (250 m) 

Accuracy 

63.64% 

54.55% 

36.36% 

54.55% 

31.82% 

Kappa Statistic 

0.5926 

0.4787 

0.2837 

0.4931 

0.2308 
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Figure 4.1: The overall classification for the SPOT 5 image, using the maximum likelihood classification 
algorithm and 11 classes. 
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Figure 4.2: Albert Falls dam classified with the maximum likelihood classifier at 3 resolutions with 8 
classes, A is SPOT 5, B is Landsat TM, C isMODIS. 
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Figure 4.1 shows the overall classification of the SPOT image using the maximum 

likelihood classification algorithm. The classification accuracy for this image was 

63.64%. Some of the inaccuracies can be seen around the edge of the Albert Falls dam in 

Figure 4.2. Which shows more detail of the Albert Falls dam classified using the 

maximum likelihood classifier. This figure is taken from the overall classifications of the 

various images used. Figure 4.2 A is the SPOT image and was classified with 63.64% 

accuracy. Figure 4.2 B is the Landsat TM image with the NDVI band and was classified 

with 54.55% accuracy. Figure 4.2 C is the MODIS image and was classified with 36.36% 

accuracy. 

4.2 THE EFFECT OF THE NUMBER OF CLASSES ON CLASSIFICATION 

ACCURACY 

Chapter 3 outlined the methods used for testing the effect that changing the number of 

classes within the classification would have on the final classified accuracy for each of 

the images used. For each test, the number of classes was reduced to 8 classes and the 

maximum likelihood algorithm was used. The classes to be merged were chosen 

according to the similarities of those classes. The Pine, Gum and Wattle classes were 

merged to form the Plantation class. The Grass and Wetland classes were merged to 

create the Grassland class. Although containing different diversities of plant species, it 

was decided that the Wetland and Grassland classes were similar enough for merging. 

Figure 4.3 shows the spectral profiles for the wetland and grassland classes. As can be 

seen, the profiles are similar and thus allowed for the merging of these two classes. Table 

4.3 is presented as an example of the error matrices used. Table 4.4, page 75, shows the 

results for all of the sensors. Table 4.5 shows the results of the effect that merging has on 

each of the specific classes used within the SPOT 5 image. 
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Figure 4.3: Shows the spectral profiles for pixels in the Grassland and Wetland classes 

4.2.1 SPOT 5 

Initially, the maximum likelihood classification was used on the SPOT 5 image with 11 

classes; the number of classes was reduced to 8. The classification with 11 classes 

produced an accuracy of 63.64%, and a Kappa Statistic of 0.5926. This was the highest 

accuracy across all the sensors at the 11 class level. The maximum likelihood produced 

an accuracy of 72.73%, with a Kappa Statistic of 0.6765. Table 4.3, page 74, shows the 

error matrix for the maximum likelihood classification with 8 classes. In order to attempt 

to improve upon the accuracy of the broader classes, an NDVI band was added to replace 

the NIR band. The accuracy obtained from removing the NIR band decreased to 54.55%, 

with a Kappa statistic of 0.4608, showing that the NIR band is important for the 

classification. 
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It can be seen that with 11 classes there was confusion between the Wetland and 

Grassland classes, the user's accuracy for the Grassland class was 25% and the Wetland 

class was 50%. Some of the pixels in the Wetland class were incorrectly classified as 

Grassland. Table 4.5 dis[;ays the results of reducing the number of classes and merging 

the Grassland and Wetland classes. By reducing the number of classes to 8, and merging 

the Grassland and Wetland classes, the user's accuracy for the new Grassland class 

increased to 42.86%. 

4.2.2 Landsat TM 

The maximum likelihood algorithm was applied to the Landsat TM images, initially with 

11 classes and with no NDVI band added, then with the NDVI band used. The Landsat 

image with no NDVI band at 11 classes produced an accuracy of 36.36%, with a Kappa 

Statistic of 0.2837. On adding the NDVI band, the accuracy increased to 54.55% and the 

Kappa Statistic to 0.4931. Using 11 classes the Wetland class was unable to be correctly 

classified and the Grassland class was classified with a User's accuracy of 33.33%. 

On decreasing the number of classes, the accuracies of the maximum likelihood 

classification increased in the NDVI free and NDVI images. In the NDVI free image, 

accuracy increased from 36.36% to 59.09%. The NDVI image accuracy increased from 

54.55% to 63.64%. By merging the Wetland and Grassland classes the accuracy of the 

classification of the new grassland class decreased to 30% from 33%. Confusion was 

created between the new Grassland class and the Woodland and Bush classes. 

4.2.3 MODIS 

The accuracy of the classifiers for the MODIS image was generally very low. For the fine 

(11) classes, an accuracy of 31.82% was produced. The Kappa Statistics for the classifier 

at the fine classes remained steady, with the classifiers producing statistics of a low 0.2. 

Looking at individual classes, the Grassland class was classified with a user's accuracy of 

11.26% and the Wetland class was classified with a user's accuracy of 0%. When the 

number of classes was decreased to 8, the accuracy increased. The maximum likelihood 
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classifier produced an accuracy of 45.44%. Merging the Wetland and the Grassland 

classes to create a new Grass class, the user's accuracy increased to 28.57%. 
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Table 4.3: Error matrix for the SPOT 5 image, with 8 classes and the maximum likelihood classification algorithm applied during the classification process 

Classified Data 

Agric 

Bush 

Cane 

Plantation 

Urban 

Grass 

Woodland 

Water 

Column Total 

Producer Accuracy 

0 

0 

0 

0 

0 

2 

0 

0 

2 

0 

Agric 

0 

Bush 

3 

0 

1 

0 

0 

0 

0 

4 

75.00% 

0 

0 

Cane 

1 

0 

0 

0 

0 

0 

1 

100.00% 

Plantation 

0 

0 

0 

4 

0 

0 

0 

0 

4 

100.00% 

0 

0 

0 

0 

1 

Urban 

0 

0 

0 

1 

100.00% 

0 

0 

0 

0 

0 

3 

Grass 

m 
0 

0 

3 

100.00% 

Woodland 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0.00% 

0 

0 

0 

0 

0 

1 

0 

4 

Water 

5 

80.00% 

Row Total 

0 

3 

1 

5 

1 

7 

0 

4 

21 

0 

100.00% 

100.00% 

80.00% 

100.00% 

42.86% 

0.00% 

100.00% 

Overall Classification Accuracy = 72.73% 

Overall Kappa Statistics = 0.6765 
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Table 4.4: The total accuracies and Kappa Statistics for different numbers of classes and classification 
algorithms 

Sensor Fine Broad 

SPOT 5 Classifier Accuracy Kappa Accuracy Kappa 

NoNDVI 

NDVI 

Max 

Max 

0.5926 72.73 

0.4787 54.55 

0.6765 

0.4608 

LandsatTM 

NoNDVI Max 36.36 0.2837 u- 0.5075 

NDVI Max I 0.4931 63.64 0.5676 

MODIS 

Max 0.3383 

75 



• '••.' '^fffiS^SfJ^frg!^ ?̂ -- ' ^ ^ ^ ^ ^ H 

^^^^^^^^^^^fe^^B ^̂^̂^̂^̂ 9̂ 
•Pgp?***?^ P*®ii|M^^H I^S^^^SI 
0 4.5 9 

>• 

18 
• kilometers 

+ 
Legend 

| Unclassified 

L 1 ^y"c 

.Bush 

^jCane 

| Plantation 

| | Urban 

| Grass 

j Woodland 

m i v*ter 

Figure 4.4: The classification of the SPOT 5 image, using the maximum likelihood classification 
algorithm and 8 classes. 
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Figure 4.5: Albert Falls dam classified with the maximum likelihood classifier at 3 resolutions with 8 
classes. A is SPOT 5, B is Landsat TM, C isMODIS 



Figure 4.4 shows an overview of the classification of the SPOT 5 image after the number 

of classes was reduced to 8. It is now easier to define the plantation stands around the 

Albert Falls dam. Figure 4.5 shows these results in more detail. Figure 4.5 A shows the 

SPOT 5 image classified with 8 classes and an accuracy of 72.73%. Figure 4.5 B shows 

the Landsat image classified with an accuracy of 63.64%, and Figure 4.5 C shows the 

MODIS image classified with an accuracy of 50%. 

Table 4.5: Accuracies of the classes before and after merging 

Class 

Pine 

Gum 

Wattle 

Grassland 

Wetland 

Before Merge 

100.00% 

67.67% 

100.00% 

33.33% 

50.00% 

Plantation 

Grass 

After Merge 

80.00% 

42.86% 

4.3 TESTING THE PERFORMANCE OF NEURAL NETWORKS COMPARED 

WITH OTHER CLASSIFICATION ALGORITHMS 

As stated in Chapter three, a neural network was designed by testing different parameters 

and the effect that these changes would have on the final classification accuracy. This 

section will cover the results obtained through each of the different runs of the neural 

network to obtain the final product. The final neural network was designed to have both a 

high accuracy and efficiency and then compared to the other classifiers used on the three 

images. 

As can be seen from the results above, the image that produced the most consistent 

accuracies is the SPOT 5 image. It was therefore selected to test the effectiveness of the 

neural network algorithm compared with the other classification algorithms. 
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4.3.1 Run 1 - Number of Hidden Layers and Nodes per Layer vs. 

Classification Accuracy 

Run 1 tested the effect of one hidden layer being used at 10 000 iterations. Each time the 

learning rate for the neural network was kept constant at 0.01 and the momentum factor 

was a constant 0.5. The number of nodes per layer was changed for each test. Table 4.6 

and Figure 4.6 present the accuracies and RMSE for each test. 

Table 4.6: Number of Nodes per Layer vs. the accuracies and RMSEs of the neural network after testing 
during Run 1 

Hidden Layer(s) 

Learning Rate 

Momentum Factor 

Iterations 

1 

0.01 

0.5 

10 000 

Number of Nodes 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

15 

20 

25 

30 

35 

40 

45 

50 

Accuracy 

7.7 

32.45 

49.24 

59.09 

88.26 

63.76 

64.14 

66.92 

66.29 

66.67 

66.29 

66.54 

43.56 

43.81 

26.14 

12.21 

7.7 

16.79 

RMSE 

0.002629 

0.00229 

0.001868 

0.001521 

0.001388 

0.001165 

0.001095 

0.000997 

0.000921 

0.000913 

0.000939 

0.000905 

0.001796 

0.001822 

0.002238 

0.002406 

0.002743 

0.002415 
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Figure 4.6: The changes in accuracies andRMSEs as the number of nodes changes. 

As can be seen, the accuracies for this initial run are higher than the accuracies for the 

traditional algorithms. It can be seen, however, that the accuracy reaches a critical point 

from which the accuracies decrease, thus more testing was done. 

4.3.2 Run 2 - Number of Hidden Layers and Nodes per Layer vs. 

Classification Accuracy 

Run 2 is very similar to Run 1 in that the change to the testing parameters was a change 

in the number of nodes per layer; the only change is the change in the number of hidden 

layers. For this run, the number of hidden layers was increased to 2. Figure 4.7 presents 

the accuracies and RMSEs for the testing done in this run. 
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Figure 4.7: The changes in accuracies as the number of nodes per layer is increased. 

From Figure 4.7 it can be seen that the highest accuracy is 97.22% at 20 and 30 nodes per 

layer. At 6 nodes per layer, it can be seen from Figure 4.7 that the accuracy is 92.93% 

with an RMSE of 0.00109. As has been stated, the objective for the design of this neural 

network is to create a classification that is both accurate and efficient. It was decided that 

6 nodes would be used for the rest of the testing of the neural network for two reasons. 

Firstly the lower the number of nodes, the more concise the network, and therefore the 

more efficiently the network will run. Secondly the structure of the network reveals that, 

there are 8 input nodes and 40 training pixels. By having too many nodes in the hidden 

layers of the values from the input nodes, are split into many smaller values. This makes 

the network become less efficient. By choosing 6 nodes per layer as opposed to 20 nodes, 

the input values are more evenly split up. 
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4.3.3 Run 3 - Testing for the Learning Rates 

Run 3 is identified within the literature (Clarke Labs, 2000), as being the most important 

factor in creating an accurate classification using neural networks. Therefore more 

emphasis was placed upon this test, than on the rest of the testing. Using the information 

from Run 2, the number of nodes was set at 2 and only the learning rate was altered. 

Figure 4.8 presents the results obtained through the testing. 

The learning rate is the rate at which the neural network will change the weightings of the 

data within the network. The smaller the learning rate, the fewer the changes, and 

conversely, the greater the learning rate the greater the number of changes within the 

network. Figure 4.8 shows this: as the learning rate passes 0.2, fluctuations of the RMSE 

and the accuracy, increase and become erratic. The best rate was seen to be 0.16, which 

yielded an accuracy of 97.85%, and an RMSE of 0.00623. Literature states (Clarke Labs, 

2006) that the best results are obtained between 0.1 and 0.2. This result substantiates 

what can be seen in Figure 4.8, where once the learning rate exceeds 0.2, the accuracy 

and RMSE become very erratic. 
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Figure 4.8: The changes in accuracies as the Learning Rate is changed. 

4.3.4 Run 4 - Testing the Momentum 

The momentum factor is aimed at reducing the RMSE at the surface of the classification 

and so for Run 4 the momentum factor was changed per test to attempt to attain the 

highest accuracy and the lowest RMSE. Figure 4.9 presents the results obtained from the 

tests. 

The momentum factor cannot reach 1, hence, when 1 was entered into the neural 

network, a null error was encountered and so could not be used. The highest accuracy and 

lowest RMSE can be seen with a momentum factor of 0.3 and so would be used for the 

rest of the tests. 
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Figure 4.9: The changes in accuracies and RMSEs of the neural network as the momentum factor 
increases. 

4.3.5 Run 5 - Testing the Number of Iterations 

This run was aimed at increasing the final efficiency of the neural network. The number 

of iterations would be altered in an attempt to streamline the classification. By changing 

the number of times the neural network runs through the processes of classification, it is 

possible to identify the critical point at which the accuracy is highest and beyond which 

the neural network becomes redundant in the classifying process. Figure 4.10 shows the 

accuracies and RMSEs of the neural network as the number of iterations is changed. 
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Figure 4.10: The changes in accuracies andRMSEs of the neural network as the number of iterations 
increases. 

The total number of iterations can play a large role in the accuracy of the neural network. 

However, at a critical point, the accuracy of the classification does not change by any 

large degree. For this design of the neural network, 9000 iterations allowed for an 

accuracy of 97.73%, and a RMSE of 0.00706. Hence, the number of iterations to be used 

in the final classification would be 9000. 

4.3.6 Run 6: Testing the number and type of input layers 

Run 6 was the final run and for this test, the number of bands and so the number of 

ancillary layers would be changed in an attempt to allow the neural network to run 

efficiently. This would be done so that the neural network would not have to use too 

many input layers and thus would not require as much processing time. Once the network 

is running, if the accuracy drops after removing a band, then that band is important for 

the accuracy of the classification. Table 4.7 and Figure 4.11 depict the accuracies and 

RMSEs for each of the tests. 
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Figure 4.11: The changes in accuracies andRMSEs of the neural network when certain bands are 
removed. 

As can be seen the accuracies of the classifications with set bands missing are roughly the 

same. There are some minor differences, and these will be discussed in Chapter Five. It 

must be noted that the accuracy of the SPOT 5 image using the maximum likelihood 

algorithm with 11 classes was 63.64%. With the use of the neural network using the same 

bands (from Figure 4.11, bands 5,6,7) the accuracy was 80.81%. It can therefore already 

be seen that the neural network has outperformed the traditional algorithm. 

4.3.7 Final Output 

Using the tests devised from Runs 1 to 6, and the assumption described in Chapter 3, it 

was possible to create the final classification for the SPOT 5 image. The calculated 

parameters are shown in Table 4.8. 
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Table 4.8: The final settings for the neural network design 

Bands Used: 

Training Pixels: 

Testing Pixels: 

Hidden Layers: 

Nodes per Layer: 

Learning rate: 

Momentum Factor: 

Iterations: 

Overall Accuracy: 

Overall RMSE: 

8 

40 

40 

2 

6 

0.016 

0.3 

9 000 

95.230% 

0.000546 

Figure 4.12 displays the process of testing and training of the neural network for this 

study. The final accuracy obtained was 95.22%, with an RMSE of 0.001226. The figure 

shows the number of input layers, the number of output nodes, hidden layers, learning 

rates, and momentum factors. The figure shows that the network became unstable 

between points A and B, but the curve flattens out after B, meaning that the neural 

network has completed its runs. After this point the neural network may start to overtrain 

and thus become redundant. 

As can be seen, the final product has a very high accuracy. This is in turn substantiated 

by the final Kappa Statistic that has been calculated at 0.9544: the high Kappa Statistic 

shows that the classes have a high probability of being correctly classified. 
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Figure 4.12: The training and testing of the final neural network. 
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Figure 4.13: The classification of the SPOT 5 image, using the ANN algorithm with 11 classes. 
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Figure 4.13: The classification of the SPOT 5 image, using the ANN algorithm with 11 classes. 
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Figure 4.13 shows the classification of the final neural network algorithm. The 

classification accuracy for this image is 95.23%. Figure 4.14, page 96, shows the 

comparison between the ANN and the maximum likelihood classification algorithm. 

4.4 TRADITIONAL CLASSIFIERS VS. NEURAL NETWORKS 

This section will focus on the accuracies of the traditional classifiers compared to those 

of the neural network. In order for this to be done, the traditional classifiers were run with 

11 classes. The accuracies for these classifications were run. If the classifications were 

not accurate, by using the results from Section 4.2, the number of classes was decreased 

to improve on accuracies. Table 4.8, page 88, shows all of the results obtained from all of 

the traditional classifiers. 

4.4.1 SPOT 5 

Initially, the maximum likelihood classification was used on the SPOT 5 image with 11 

classes and then the number of classes was reduced to 8. Overall, the parallel piped 

algorithm produced the most accurate classification with 11 classes. The accuracy was 

68.18%, with Kappa Statistic of 0.6402. The maximum likelihood and the parallel piped 

classifiers performed identically, each producing an accuracy of 72.73%, with a Kappa 

Statistic of 0.6765. Table 4.3, page 74, shows the error matrix for the maximum 

likelihood classification with 8 classes. The minimum distance algorithm produced the 

least accurate classifications namely, 54.55% and 63.64% for the 11 classes and 8 classes 

respectively. 

In an attempt to increase the accuracy of the various classifiers, an NDVI band was added 

to the SPOT 5 Image. The three classifiers were run on the images at the different 

categorical scales. The maximum likelihood classification with 11 classes produced an 

accuracy of 54.55%, with a Kappa Statistic of 0.4787. By reducing the number of classes 

to 8, the accuracy of the maximum likelihood classification was 54.55%, and a Kappa 

Statistic of 0.4608 was obtained. The minimum distance to means produced an accuracy 
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of 59.09%, with a Kappa Statistic of 0.5319. On reducing the numbers of classes to 8 the 

accuracy was reduced to 54.55%, with a Kappa Statistic of 0.4554. The parallel piped 

classifier produced an accuracy of 50%, with a Kappa Statistic of 0.4306. On reducing 

the number of classes to 8, the accuracy was increased to 54.55%, with a Kappa Statistic 

of 0.4608. 

By adding the NDVI band and replacing the NIR band, the accuracies of the image 

classifications were reduced for all of the classifiers. This proves the importance of the 

NIR band with the SPOT 5 sensor for landcover classification. 

4.4.2 Landsat TM 

Three classification algorithms were applied to the Landsat TM images, initially with 11 

classes and with no NDVI band added, and secondly with the NDVI band used. The 

increase in the accuracies of the maximum likelihood and parallel piped classifications 

were large, up to 18% of an increase. The minimum distance classification image 

performed better without the NDVI band added to the image. The accuracy dropped from 

50% accuracy and 0.4346 Kappa Statistic to 40.91% and a 0.3349 Kappa Statistic. 

On decreasing the number of classes, the accuracies of the maximum likelihood and 

parallel piped classification increased with the NDVI free and NDVI images. The 

accuracy of the NDVI free image increased from 36.36% to 59.09%. The accuracy of the 

NDVI image increased from 54.55% to 63.64%. The minimum distance classified image 

for the NDVI free image decreased from 50% to 36.36%. With the NDVI image, the 

minimum distance classified image increased from 40.91% to 54.55%. 

4.4.3 MODIS 

The accuracy of the classifiers for the MODIS image was generally very low. For the fine 

(11) classes all three classifiers produced an accuracy of 31.82%. The Kappa Statistics 

for the three classifiers at the fine classes remained steady with the classifiers producing 

Kappa values of 0.2. When the numbers of classes were decreased to 8, the accuracy 
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increased. The maximum likelihood classifier produced an accuracy of 45.44%. The 

minimum distance classifier produced the most accurate classification of 59.09%, which 

was the same as the classification of the Landsat TM image with no NDVI band. The 

parallel piped classifier produced an accuracy of 50%, which is equal to the classification 

accuracy of the minimum distance classifier using the Landsat TM image with no NDVI. 

The closest that the traditional classifier approaches the accuracy of the neural network 

with 11 classes, is the parallel piped classifier applied to the SPOT 5 image, with 68.18%. 

By dropping the number of classes, the accuracy is able to be increased to 72.73%. This 

is still 27% lower than the results obtained by the neural network. The other images are 

able to have their accuracies increased to obtain accuracies which are relatively close to 

that of the neural network only by decreasing the classes available to classify. 
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Table 4.9: The total accuracies and Kappa statistics for different numbers of classes and classification 
algorithms 

Sensor 

SPOT 5 

No NDVI 

No NDVI 

No NDVI 

Classifier 

Max 

Min 

Parallel 

Fine 

Accuracy 

54.55 

68.18 

Kappa 

Broad 

Accuracy Kappa 

0 S926 1171 0 676S 

0.4836 

0.6402 

63.64 

72.73 

0.5758 

0.6765 

SPOT 5 NDVI 

NDVI 

NDVI 

NDVI 

Max 

Min 

Para 

54.55 

59.09 

50.00 

0.4785 

0.5319 

0.4306 

54.55 

54.55 

54.55 

0.4608 

0.4554 

0.4608 

LandsatTM 

No NDVI 

No NDVI 

No NDVI 

NDVI 

NDVI 

NDVI 

Max 

Min 

Parallel 

50.00 

36.36 

0.4346 

0.2837 

36.36 

59.09 

0.2667 

0.5050 

Max 

Min 

Parallel 

54.55 

40.91 

54.55 

0.4931 

0.3349 

0.4640 

63.64 

54.55 

63.64 

0.5676 

0.4724 

0.5665 

MODIS 

SPOT 5 

Max 

Min 

Parallel 

Neural Net 

31.82 

31.82 

95.23 

0.2431 

0.2343 

0.9544 

45.44 

59.09 

50.00 

Not Done 

0.3383 

0.5229 

0.9950 

Not Done 
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4.5 ARTIFICIAL NEURAL NETWORK VS. MAXIMUM LIKELIHOOD 

In order to fully comprehend the differences between a traditional classifier and the 

ANN, it is best to compare specific classes from each of the classifications. This section 

will take 5 classes from each of the classified images and compare how accurate the two 

algorithms are at identifying the class. 

The maximum likelihood algorithm was chosen because it is a popular classifier, yet it 

performed poorly at identifying specific classes within the classification. The classes used 

were the Cane, Grass, Gum, Wetland and Woodland classes. These classes were chosen 

due to the inability for these classes to be correctly identified during the classification 

using the maximum likelihood algorithm. Table 4.10 shows the comparative accuracies 

between the neural network and maximum likelihood algorithm. 

Table 4.10: The comparative accuracies between the ANN and maximum likelihood algorithms in 
classifying specific classes 

Class 

Cane 

Grass 

Gum 

Woodland 

Wetland 

ANN (Users Accuracy %) 

98.65 

97.64 

98.73 

85.86 

62.5 

Maximum Likelihood 

(Users Accuracy %) 

50.00 

33.33 

66.67 

0.00 

50.00 

It can be seen from the table that the ANN outperformed the maximum likelihood 

classifier by an average of 53% for these classes. Where the maximum likelihood 

classifier was unable to detect the woodland class, the ANN was able to detect the class 

with an accuracy 85.86%. 

95 



Legend 

| Unclassified 

_J Agric 

U Bush 

| Cane 

1 Grass 

~| Gum 

| Pine 

~| Urban 

~1 Wattle 

1 Woodland 

| Water 

| Wetland 

Figure 4.14: A comparison between the Neural Network (A) and the maximum likelihood (B) classification 
algorithm, for the Albert Falls dam area. 
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Figure 4.14 shows Albert Falls classified using the Neural Network (A) and the 

maximum likelihood (B) classification algorithms. It can be seen that the identification of 

the woodland class around the dam is more pronounced in the neural network 

classification when compared to the classification of the dam using the maximum 

likelihood classification. 

Chapter 5 will discuss the results obtained within Chapter 4. 
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C h a p t e r 5. DISCUSSION 

This chapter will discuss the results obtained in Chapter 4, focusing on the primary 

themes described in Chapter 1. These themes are: the effect of resolution, both spatial and 

categorical, on the accuracy of the landcover classification, the effect of the algorithms 

used for the landcover classification, and the comparisons between the traditional 

classifiers and an Artificial Neural Network. 

5.1 THE EFFECT OF SPATIAL AND CATEGORICAL RESOLUTIONS ON 

CLASSIFICATION ACCURACY 

The questions asked in this section are aimed at evaluating what role resolution played in 

the accuracies of the various classification algorithms used. The results presented in 

Chapter 4 can help in addressing these questions. 

In Section 4.4 the different traditional classifiers namely maximum likelihood, minimum 

distance, and parallel piped were compared with each other as well as a neural network. 

The neural network will be discussed in another section. The classifiers were run at 

different resolutions and with different numbers of classes available for classification. 

Overall, the SPOT 5 images at 10 m resolution produced the most accurate 

classifications. The MODIS image at 250 m performed the worst classifications with the 

fine class numbers, but did outperform some of the Landsat TM images at 30 m, in the 

broad (8 class) class classifications. 

5.1.1 The effect of spatial resolution on classification accuracy 

In order to test the effect of spatial resolution on the final accuracies of the landcover 

classifications, three images of differing resolutions were used. This section outlines and 

discusses the results obtained from the differing resolutions. Each image was classified 

using different categorical scales of fine classes (11 classes) and broad classes (8 classes). 
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The algorithms used for these classifications will be discussed in following sections. This 

Section 5.1.1 focuses primarily on the results obtained at the various spatial resolutions. 

Highest Resolution Image: SPOT 5 Image 

The SPOT 5 image produced the highest accuracies overall for all of the 

algorithms used. Using the best statistical algorithm, the best accuracy obtained at 

the fine class level was 68.18%, and at the broad class level it was 72.73%. 

Possible reasons for this include the high concentrations of pixels at the 

boundaries of the different classes due to the resolution of the image. By reducing 

the spectral mixing at these boundaries the ability of the classifier to discriminate 

between the various classes is much better than if the spectral mixing were higher. 

Moderate Resolution Image: Landsat TM Image 

The Landsat TM image with the NDVI band produced the second highest 

classification accuracies at the fine and broad class levels. Reasons for this 

include reduction of spectral mixing at the boundaries of the classes. Because of 

the sizes of some classes (Grassland), these are more easily picked up at the 

coarser resolutions and so can be classified correctly. 

The Landsat TM image without the NDVI band produced low classification 

accuracies at the fine class level but at the broader class level, managed a final 

accuracy higher than the accuracies of the Landsat TM image with the NDVI 

band at the finer class level. This, however, is not relevant because the NDVI 

band can be created for the image and used thus producing the higher accuracies 

needed. The NDVI image produced higher accuracies because it enabled there to 

be more discrimination between the vegetative classes and the non-vegetative 

classes based upon the amount of reflection at the Red and NIR bands. An 

example of this can be seen when looking at certain classes within the 

classification. The Landsat TM with no NDVI band classification error matrix 

(Appendix II) shows that the Urban and Grassland classes are not correctly 
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classified having a user's accuracy of 0%. In the Landsat TM with the NDVI band 

classification error matrix (Appendix II), the Urban classes were classified having 

a user's accuracy which had increased to 100%; and the Grassland class was 

classified having a user's accuracy which increased to 28.47%. 

Lowest Resolution Image: MODIS 

The MODIS image performed poorly with all of the classifications at the finer 

resolutions. The MODIS image has a resolution of 250 m, which results in the 

boundaries of many of the classes falling within the extent of a single pixel. This 

is especially true with the smaller classes such as the Bush and Agriculture 

classes. Thus the ability for the classifier to discriminate between these smaller 

classes is reduced, resulting in the reduction of the classification accuracy. 

By increasing the sizes of the classes being detected, the boundaries between 

classes can become broader thus increasing the effectiveness of the classifiers to 

discriminate between those classes. An example of this can be seen in the error 

matrix of the Fine and Broad error matrices (Appendix I) respectively. The Wattle 

class is classified having a 20% accuracy, whilst the Gum and Pine classes are not 

classified correctly having an accuracy of 0%. When these three classes are 

merged to create one class, namely Plantation, the accuracy increases to 66.67%: 

as the class areas become larger, so the accuracy of the classification of that class 

gets larger. 

Overall, it can be seen that the higher the spatial resolution of the imagery, the higher the 

accuracy of the classification produced, regardless of the classification method used. 

There are exceptions, where a lower resolution of an image can produce classification 

accuracies very close to the higher resolution of the imagery. Previous research 

undertaken has shown that the higher the resolution, the more accurate the classification 

can be (Chen et a!., 2004). This is especially true with regards to the classes which 

occupy a smaller spatial area; an example can be seen when comparing an urban area on 

a Landsat TM image compared to the same urban area on a SPOT 5 image. The urban 

100 



area on the Landsat image may look homogenous, whereas in the SPOT image it can be 

seen that it is in fact made up potentially of vegetation and urban elements (Chen et al., 

2004). 

Choosing the image to use for the classification depends on what features are needed to 

be classified. It is evident that the larger the feature that is to be classified the coarser the 

image can be before the accuracy becomes too low. Features such as large grasslands or 

plantations areas can be accurately mapped using the coarser imagery; however, areas of 

smaller features such as small-scale farming or isolated plantation stands will need higher 

resolution imagery to be accurately mapped. This substantiates opinion in the literature 

(Franklin and Wulder, 2002) stating that before imagery is chosen for landcover 

classifications the feature needed to be identified should be known, thus enabling for the 

correct imagery to be chosen. 

5.2 EFFECT OF CATEGORICAL RESOLUTION ON THE FINAL LAND 

COVER CLASSIFICATION 

The questions asked in this section focused on the ability of the classifiers to accurately 

determine which classes easily differentiates from the others and how the number of 

classes can play a role in the accurate classification of the imagery. The actual classifiers 

used will be ignored, because as the primary objective is to discover how the reduction in 

the number of classes can aid in the final classification accuracy of a) the overall 

classified image and b) specific classes within the classified image. 

The Effect of the number of classes on the overall accuracy of the classification 

Overall, it can be said that the fewer the number of classes available for classification, the 

higher the overall accuracy of the landcover classification map produced. For the SPOT 

image the highest accuracy obtained for the fine class landcover map was 68.18%. On 

101 



reducing the number of classes, the accuracy increased to 72.73%. With all of the images 

this was the trend: when the number of classes was decreased, the accuracy increased. 

Which of the classes are easily detected? 

One problem with trying to identify features on the earth's surface is detecting classes 

that are similar in nature. An example of this is the distinction between wetland, 

grassland (see Figure 4.3 page 71) and cane field area. Although to the naked eye these 

features can be easily differentiated, each of these classes is very similar spectrally, thus 

increasing the difficulty for the classifier to detect the spectral difference between these 

classes. Other issues arise from the resolution of the imagery being used. A wetland can 

be very large, but most are very small, whereas grassland and cane fields tend to have 

large spatial areas. If an image has a high resolution, the chances of a wetland falling 

within the pixels increases. However, with lower resolution imagery the chances of a 

wetland's signatures mixing in with other larger classes increases. 

Taking examples of the highest accuracies for each of the images and the best performing 

classifiers, problems with resolution and sizes of classes will be discussed. Using the fine 

and broad classes as an example with the SPOT, Landsat TM with NDVI, and the 

MODIS images, the Wetland, Grassland and the Cane classes will be compared. As was 

stated in Chapter 3, the Grassland and Wetland classes were merged due to the problems 

associated with the inability of the classifier to distinguish between the two. 

5.2.1 Classification of the higher resolution image: performance of the 

SPOT 5 image using 11 and 8 classes 

11 Classes 

Using the SPOT 5 image, in the classification using the parallel piped classifier with 11 

classes, there was confusion between the Wetland and Grassland classes. The user's 

accuracy for the Grassland class was 25%, with the Woodland and Agric classes being 

incorrectly classified as the Grassland class. This could be because the Woodland class 
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does have some Grassland type vegetation within the class, thus creating confusion 

between the two classes. The Wetland class was classified with a user's accuracy of 50%, 

and confusion being created between it and the Grassland class. Possible reasons could be 

the similarity between the species of vegetation found within both the Wetland and 

Grassland classes. The Cane class was classified with an accuracy of 100%. 

8 Classes 

As was stated in Chapter 3 classes were merged into 8 classes, using the SPOT 5 image 

and the parallel piped classifier, the classification will be evaluated within this section. 

The new Grassland class produced a user's accuracy of 42.86%. This is a decrease in the 

accuracy from the fine class classification. Confusion occurred among the Agric, 

Woodland and Water classes. Reasons for this could be attributed to some spectral 

similarities between the Wetland, Grass classes and the Woodland, Agric. and Water 

classes. These similarities may be caused by the low rainfall period from which this 

image is taken. Due to the low moisture water levels, it is possible that the spectral 

reflectances of these water areas may be similar to woodland and agriculture areas. By 

decreasing the number of classes through merging, some new discrepancies or inabilities 

to discriminate some classes is increased, this possibly being caused through the 

compounding of the similarity between the spectral signatures of the Grassland and 

Woodland classes. There was no confusion between the Cane class and any other class, 

and the Cane class was classified with 100% accuracy. 

5.2.2 Classification of the medium resolution image: performance of the 

Landsat TM image using 11 and 8 classes 

11 Classes 

The image that produced the highest accuracy was the Landsat TM image with the NDVI 

band, using the maximum likelihood classifier. Using 11 classes, the Landsat TM image 

was unable to correctly classify the Wetland class. The confusion occurred between the 

Bush and Agriculture classes. This could be the result of the pixel size and errors caused 

during the training stages of the classification process, whereby pixels from any one of 
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those classes were incorrectly captured as being the Wetland class. Otherwise, the 

problem may arise from spectral mixing at the borders of the Wetland class, resulting in 

spectral values equal or similar to those of the Bush and Agric. classes. 

The Grass class was classified with a user's accuracy of 33.33%. Confusion between the 

Bush and Woodland classes reduced the accuracy of the classifier. This may be the result 

of the pixel size being too large for the detection of breaks within the woodland class, 

where grass may occur within the woodland class, thus resulting in the mixing of the 

spectral signatures of these classes. Grasslands can contain woody vegetation. During the 

training stages of the classification process, it is possible and probable that the woody 

vegetation was included during the training site delineation. This result could be purely 

based on the resolution of the image, where i n a 3 0 m x 3 0 m area the boundary between 

a woodland and grassland environment can be found. The Cane class was classified with 

100%o user's accuracy. 

8 Classes 

The Landsat TM image's classes were merged to create 8 classes. The maximum 

likelihood created the highest accuracy for the classification. The merged Grassland class 

had a user's accuracy of 30% which is a decrease of 3% from the unmerged classes. The 

Bush class was confused with the Grassland class; this could be due to the similarity of 

the vegetation within the two classes and the inability of the Landsat image's resolution 

to discriminate between the two classes. The particular Wetland whose class was merged, 

was very close to a woodland thicket. This proximity could result in the mixing of pixels 

due to the resolution of the image. The Cane class was correctly classified with 100% 

user's accuracy 
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5.2.3 Classification of the medium resolution image: performance of the 

MODIS image using 11 and 8 classes 

11 Classes 

The classifier that produced the highest accuracy with the MODIS image was the parallel 

piped classifier, as it produced the highest kappa statistic of 0.2343. Using 11 classes, the 

MODIS image was unable to correctly classify the Wetland class. One of the Wetland 

training pixels was confused with a Grassland class. A probable cause for the confusion 

between the classes could be the size of the wetland compared to the pixel size of the 

image. The MODIS sensor has a resolution of 250 m in the visible section of the 

electromagnetic spectrum. This enables more spectral mixing to occur in the smaller 

classes and thus can cause problems with the identification of the smaller classes 

The Grassland class obtained a user's accuracy of 13.33%. The most confusion between 

this class and the others occurred with the Bush class. There were, however, other 

confusions between almost all of the other classes. Possible reasons for the confusion 

could be that the Grassland class is the largest class within this study, and thus has its 

boundary alongside many of the other classes. The resolution of 250 m can thus result in 

the mixing of the Grassland class with the other classes at the boundaries between the 

classes. Conversely, the error could arise during the training for the creation of the 

signatures. Due to the size of the pixels within the image, some of the training sites 

created may have inadvertently included pixels from other classes. An example could be 

the Wattle class, which is relatively small and has been seen to contain some of the 

grassland type vegetation near its boundary. Therefore, the chances of some Grassland 

pixels being included in the Wattle class during the training process is high. The Cane 

class was not correctly classified in the MODIS image, and was confused with the 

Grassland class, most likely the result of errors during the training stage of the 

classification. 

105 



8 Classes 

The MODIS image's classes were merged to create 8 classes, and the minimum distance 

to means classifier created the highest accuracy for the classification. The new Grassland 

class achieved a user's accuracy which increased to 75%, with the Bush class being 

confused with the Grassland class. This could be due to the Wetland and Grassland 

classes containing some bush-type vegetation and so confusing the classifier. The Cane 

class was not correctly classified by the system. Pixels from the Urban class and the 

Agriculture class were incorrectly classified as part of the cane class. 

The MODIS image is an example of how important it is to elect the correct imagery for a 

specific landcover classification. The smaller classes such as the Cane and Wetland 

classes could be too small to be correctly detected within the MODIS image, which in 

turn could lead to the confusion of these classes with other larger classes. Higher 

resolutions, such as the SPOT 5 image of 10 m can represent the Wetland and Cane 

classes. It should therefore be noted that the cost of the imagery should be taken into 

account in conjunction with what will need to be mapped. It can be said, that for the 

coarser landcover classes, the MODIS image which is freely available, could be used to 

classify these broader classes in the southern African environment. It has been shown that 

the choice of the number of classes is vital to the accuracy of the image classification. It 

must however be noted that the choice of the categorical resolution is dependant on both 

the spatial scale of the study in question and type of imagery used (Ju et a!., 2005). 

5.2.4 Lessons learnt from the Analysis of changing the resolutions 

From the analysis of the classification accuracy when the spatial and categorical 

resolutions are changed, it can be seen that these play a role in the accuracy of the final 

classification. 
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Firstly, spatial resolution plays a large role in the detection of the smaller classes. It can 

be seen that the detection of the Wetland class decreases rapidly as the spatial resolution 

of the image decreases. The large classes, such as the Grassland class, are not drastically 

affected by the higher and medium resolution images. Within the SPOT 5 image the 

Grassland class is classified at roughly 43% accuracy but there is a decrease to 33% 

accuracy using the lower resolution of 30 m from the Landsat TM image. 

Secondly, the categorical resolution can also play a role in the overall accuracy of the 

images. Although a decrease in the resolution does not necessarily mean a better 

classification of a specific class type, it was seen that decreasing the categorical scale can 

reduce the accuracy of specific classes. An example can be seen in the accuracy of the 

Wetland class: on merging with the Grassland class in the SPOT 5 image, the initial 

accuracy of 50% for the Wetland class decreased to 42.86%. This is, however, not the 

norm; it is seen as being a general trend, that with the overall classification accuracy for 

all of the algorithms used, increased with the decrease in the categorical resolution. 

Therefore, before a landcover classification is to be done, it is important to decide on the 

size of the specific landcover types to be determined. This enables the correct resolutions 

to be determined, resulting in the best possible detection of these classes. It could be 

stated that determining the resolutions to be worked at should take precedence over the 

type of classifier that is to be used. (Bian, 1997 and Chen et al, 2004) 

5.3 T H E PERFORMANCE OF THE TRADITIONAL CLASSIFIERS 

Before the comparison of the traditional classifiers with the Artificial Neural Network 

can be made, it is best to determine how each of the traditional classifiers performed and 

which of the classifiers performed the best. The neural network was run using 11 classes, 

thus for this section the classification algorithm accuracies will be looked at with 

performance using the fine classes. 
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5.3.1 Maximum Likelihood Classifications 

Using the figures from Table 4.9, page 94, it can be seen using the maximum 

likelihood classification algorithm and fine classes, an accuracy of 63.64% was 

obtained. After adding the NDVI band to the SPOT 5 image, the accuracy 

obtained was 54.55%. The Landsat TM image, with the NDVI band was 

classified with an accuracy of 54.55%. Removing the NDVI band decreased the 

accuracy of the classification to 36.36%. The MODIS image produced an 

accuracy of 31.82%. 

5.3.2 Minimum Distance Classifications 

From table 4.8 the fine classifications for the SPOT 5 image without the NDVI 

band, produced an accuracy of 54.55%, adding the NDVI band the accuracy 

increased to 59.09%. The Landsat TM image with the NDVI band produced an 

accuracy of 40.91% and by removing the NDVI band, the accuracy increased to 

50%. The MODIS image produced an accuracy of 31.82%. 

5.3.3 Parallel Piped Classifications 

As can be seen from Table 4.9, the fine classifications for the SPOT 5 image 

without the NDVI band, produced an accuracy of 68.18%; by adding the NDVI 

band decreased the accuracy to 50%. The Landsat TM image with the NDVI band 

produced an accuracy of 54.55% and by removing the NDVI band, the accuracy 

decreased to 36.36%. The MODIS image produced an accuracy of 31.82%. 

Possible reasons for the decrease in accuracy in the SPOT 5 classifications when the 

NDVI band was added could be due to the dryness of the area when the image was 

obtained. It has been stated that the levels of the Albert Falls dam were low when the 

image was obtained. The Landsat image shows the water level of dam to be much higher 

than what is shown in the SPOT image. Thus the NDVI values for the SPOT image are 

lower than those of the Landsat image, due to dryness. This then lends to the spectral 

confusion of some of the classes and so decreases the overall accuracy of the 
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classification. Whereas the Landsat image is less dry and so the NDVI values are higher 

allowing for a better spectral separation of the classes allowing for a more accurate image 

classification. 

From the results it can be seen that the parallel piped classifier performed the best using 

the higher resolution imagery. The parallel piped classifier produced an accuracy of 

68.18% with 11 classes. The most probable reason for this is that the boundaries of the 

different classes are more defined because of how many pixels are able to represent the 

edge of the classes, thus reducing the spectral mixing of the pixels at these boundaries. 

With regards to the other images, the parallel piped classifier performed identically to the 

maximum likelihood classifier. 

The maximum likelihood classifier performed well using the other images, producing 

accuracies higher than the minimum distance classifier did. The minimum distance 

classifier did, however, outperform both the maximum likelihood and the parallel piped 

classifiers with the Landsat TM image without the NDVI band. The final accuracy for 

this classification was 50.00%, whilst for the maximum likelihood and the parallel piped 

classifiers classified the image at 36.36% accuracy. Although the parallel piped classifier 

did outperform the maximum likelihood classifier, the latter will be used for the 

comparison between the traditional classifiers and the ANN, as it is the most widely used 

classifier. 

5.4 PERFORMANCE OF AN ARTIFICIAL NEURAL NETWORK 

COMPARED WITH THE MAXIMUM LIKELIHOOD CLASSIFIER 

Within the specific landcover research questions, the need to increase the accuracy of the 

classifications is investigated as well as the determining of which neural network 

properties are the most important in deciding the accuracy of the network. 
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When compared with the traditional classifiers, the neural network is more complex in 

nature. This is due to its ability to include ancillary data and its ability to change variables 

within the network itself. These variables change how specific data within the image 

relate to themselves and the other data in the network (Qiu and Jensen, 2004). Overall, 

the neural network with 11 classes performed better when compared to the best 

traditional classifier with just 8 classes. Studies done in the past follow this trend 

(Skidmore et al, 1997, Sunar Erbek et al, 2004 and Qui and Jensons, 2004). By using 

ancillary data (in this case slope, DTM, aspect, and NDVI all of which were added to the 

4 bands of the SPOT 5 image) the classification of 11 classes was increased from 68.18% 

of the parallel piped to 99.80% using the neural network. 

It is best to determine which of the parameters within the neural network are the most 

important to the overall accuracy of the image. The parameters that are possible to alter 

are: the number of hidden layers, the number of nodes per layers, the learning rate, the 

momentum factor, the number of iterations, and the number of bands used. It is important 

to note that there are no set guidelines to follow for setting up a neural network (Qiu and 

Jensen, 2002). Therefore this section will outline each of these discussing how they 

affected the final outcome of the classification accuracies. 

5.4.1 Hidden Layers and Nodes per Layers 

The number of hidden layers and the number of nodes per layers related because they are 

connected in how they behave. The number of hidden layers refers to the number of 

layers the input data is put through. The number of nodes per layer refers to the number 

of smaller nodes that the input data is fed through per hidden layer (Clarke Labs, 2000). 

When one layer was used and the number of nodes per layer was increased, the overall 

accuracy of the image increased to a point (20 nodes). However, the final accuracy was 

66.54%, which was lower than that of the highest accuracy of the traditional classifier. 

After 20 nodes per layer, the overall accuracy of the image decreases and so is ineffective 

in increasing the accuracy of the final classification. 
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By using only two layers and increasing the number of nodes per layer, the results 

obtained were improved. Initially, the accuracy of the image peaked at 6 nodes per layer 

and the accuracy obtained was 92.93%. The process continued and, at 20 nodes, the two 

hidden layers peaked at 97.22% accuracy. The accuracy peaked again at 30 nodes per 

layer. However, the aim is to design a neural network that is both accurate and efficient 

and so 6 nodes per layer were deemed to be the point at which accuracy peaked. After 30 

nodes per layer, the accuracy of the classification dropped sharply. Results obtained by 

Paola and Schowengerdt, (1997) authenticate this pattern. They found that if the number 

of nodes per layer is too small, the accuracy of the classification is low; however, if the 

number is too high, the network takes too long to run and so becomes overfitted and 

inefficient (Paola and Schowengerdt, 1997). 

Examining how quickly the accuracy can rise and fall with the changing of the number of 

hidden layers and number of nodes per layer, it can be deduced that these factors play a 

very important role in deciding how efficient and accurate the final classification will be. 

5.4.2 Learning Rate 

The learning rate of the neural network governs what the weightings for each of the input 

layers is and how these layers will move through the hidden layers of the network. It is 

stated in literature (Clarke Labs, 2000) that the learning rate is the most important factor 

in evaluating the accuracy and the efficiency of the neural network and hence the learning 

rate was tested the most. Literature states that the best values are between 0.01 and 0.02 

(Clarke Labs, 2000). 

The accuracy of the neural network, as the learning rate was changed, showed very little 

change. The overall accuracy of the classification gradually increased, by 2-3% to a point 

at which the accuracy jumped by 4%, where it became stable. The highest accuracy was 

recorded at 0.016, where the accuracy was 97.85%. After 0.02, the accuracy became very 

unstable, which corroborated the literature. Accuracy would change from 96.59% to 
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9.09% then to 95.96%. The state of the neural network during this portion of the test 

meant that the values gained would not be useful in the final classification. 

On running the neural network; and changing the learning rate it can be seen that the 

learning rate plays a very large role in final accuracy of the neural network. If the values 

are too small, the changes in the weighting of the variables will be too small to make any 

significant changes to the final accuracy. If the learning rate is too large, the changes 

made to the weighting will become too erratic and large to produce any meaningful 

classification, as can be seen in the neural network after the learning rate was increased 

beyond 0.02. After 0.028, the accuracy of the neural network declined steadily to 6.57%. 

5.4.3 Momentum Factor 

The momentum factor is aimed at decreasing the Root Mean Square Error (RJVISE) at the 

surface of the classification and thus was tested in order to decrease the RMSE whilst 

increasing the overall accuracy of the image (Clarke Labs, 2000). 

The overall change to the accuracy of the image as the momentum factor was changed 

was minimal. During the initial changes, the accuracy changed by 4% with the highest 

accuracy being 97.47%, at a momentum factor of 0.3. After 0.3, the accuracy of the 

classification declined slowly until 0.7, when the accuracy dropped sharply to 8.84%. 

From running the tests, it was found that the effect of the momentum factor on the overall 

accuracy is minimal. Accuracy variations are small as the momentum factor changes. 

Thus it can be deduced that the momentum factor does play a role in the accuracy of a 

classification, although it is not the most important factor affecting the neural network. 
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5.4.4 Number of Iterations 

The number of iterations refers to the number of times the neural network will run before 

it is terminated (Clarke Labs, 2000). This has its advantages because it allows the 

deciding factors that can increase the accuracy more time to run and so it increases the 

overall accuracy of the network. This, however, is detrimental to the efficiency of the 

neural network. The numbers of iterations were increased slowly from 100 to 1000 

iterations, at which point the numbers of iterations were increased by 1000. 

The accuracy of the neural network remained low during the low iteration tests, but the 

accuracy sharply increased after 2000 iterations. After 5000 iterations, the accuracy of the 

neural network stayed in the low 90% accuracy range. The highest accuracies were 

recorded at 9000 - 97.73% and 30 000 - 97.85%. Due to the very small difference in the 

accuracy between the two, 9000 iterations were chosen for efficiency. 

The numbers of iterations play an important role in the efficiency of the neural network. 

With too many iterations, the neural network becomes redundant or overtrained: the 

accuracies will be close to the highest possible but will sacrifice time. This follows the 

pattern identified by Skidmore et ai, (1997), where the network was seen to reach a point 

where the accuracy of the trained network remained constant, but past a certain point, the 

network became ovetrained (Skidmore et ai, 1997). If the number of iterations is too 

small, the accuracy of the network will suffer, but it will run quicker. The ideal number 

of iterations is therefore the number that provides the highest accuracy but in the most 

efficient manner. 

5.4.5 Input Layers 

These are the bands that will be used as the input layers that will run through the network. 

It is possible that some of the bands used might be useless to the overall accuracy of the 

classification. This is because they may be able to detect some of the classes, although 

there may be another band that will detect that same class more efficiently. 
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The base accuracy, to which all other classifications would be compared, was taken using 

the parameters that had already been chosen. These parameters were obtained from Runs 

1 to 5. The initial classification was made using all 8 bands. The accuracy used as the 

base was therefore 97.73%. The larger the drop was in the accuracy as the band was 

removed, the more important was the role that band played in the accuracy of the image. 

The largest drop in accuracy occurred when the 4th band (MIR) was removed: then the 

accuracy dropped to 92.55%. There was no single band that made a significant impact on 

the accuracy of the classification; therefore groups of bands were removed. 

The classification accuracies were as follows: 

• The first group to be removed was that of the bands that are part of the satellite 

image (Green, Red, NIR and MIR bands). The accuracy fell to 84.47%. 

• The second group to be removed consisted of the ancillary data added to the 

image (Aspect, Slope, NDVI and DTM). The accuracy fell to 83.84%. 

• The third group to be removed was that not used in the traditional classification 

tests done before. Thus the bands used were the Green, Red and NIR. The 

accuracy for this test was 80.81%. 

• The last group to be removed consisted of the bands not traditionally used for 

landcover mapping, these being the NDVI, Green, Red and NIR bands. The 

accuracy for this classification was 84.34%. 

Conclusions reached regarding this test show the higher are the number of bands or 

ancillary data the higher is the accuracy of the final classification. By removing the new 

bands to the image, the accuracy dropped by over 10%. This test showed that the neural 

network can increase its accuracy even if the bands used are identical to those used by the 

traditional classification algorithms. 

The overall classification using the changes decided upon through testing the neural 

network produced an accuracy of 95.23%. It was decided that the learning rate is the 

most important factor within the neural network, followed by the number of hidden 

layers, then the number of nodes per layer. The number of iterations and bands are also 
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important. The momentum factor plays a role but when compared to the other factors it 

can be left at the default values of the system. 

5.5 COMPARISON BETWEEN THE TRADITIONAL CLASSIFIER AND THE 

ANN 

The comparison of the neural network against that of the traditional maximum likelihood 

shows that the identification of individual classes is better in the neural network. Table 

4.10 presents the identification of specific classes within both the maximum likelihood 

classification and the neural network with 11 classes. The Grassland class user's accuracy 

was detected with 33.33% accuracy; the neural network was able to correctly classify 

97.64% of the Grassland class. The Cane class had a user's accuracy of 50.00% with the 

maximum likelihood classifier; the neural network was able to classify 98.65% of the 

Cane class correctly. The Wetland class had a user's accuracy of 50.00% with the 

maximum likelihood classification; the neural network detected the Wetland class the 

worst from all the classes identified, having a users accuracy of 62.5%. This slight 

improvement in the accuracy of the Wetland class can aid in the understanding of the 

complex nature of wetland features. Confusion could have arisen from the proximity of 

the class to some water bodies as well as the abundance of different types of vegetation 

within the class, thus creating many different spectral reflectances. 

The next chapter will contain discussion on how the objectives to this study have been 

approached and how the results obtained have met the objectives. 

115 



Chapter 6. CONCLUSION 

In this chapter, the aims and objectives stated in Chapter 1 will be reviewed, examining 

how close this study came to reaching the goals set. Some recommendations will be made 

for future studies within this area of remote sensing. 

6.1 AIMS AND OBJECTIVES REVIEWED 

6.1.1 Aims 

The aim of this study was to evaluate the effect of spatial resolution on the effectiveness 

or accuracy of a landcover map. A neural network was implemented in an attempt to 

increase the accuracy of the final classification. 

This study has shown that spatial resolution of an image can play a vital role in the 

process of mapping landcover. By determining the spatial size of the class that is needed 

to be detected the appropriate resolution can be selected from the appropriate sensor. 

The higher the resolution of the imagery is, the higher the concentration of pixels per 

feature that can be classified will be: this can decrease the amount of spectral mixing both 

within the feature and at the boundaries between two classes. The lower the resolution is, 

the more chance there is of features not being detected because of spectral mixing at the 

boundaries between two classes. 

The best algorithm used for a classification is based upon the signatures created for each 

of the classes as well as the imagery itself. For this study, it was shown that with more 

classes and at the highest resolution the parallel piped classifier outperformed the 

maximum likelihood classifier by almost 5%; at the lower resolution, the parallel piped 

classifier outperformed the maximum likelihood classifier but was surpassed by the 
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minimum distance classifier. The maximum likelihood performed identically with the 

parallel piped classifier for all of the imagery at each of the fine and broad class levels. 

The maximum likelihood did perform identically to the parallel piped classifier at the 

broad class level. The minimum distance classifier performed the best at the lower spatial 

resolutions. With the Landsat TM with no NDVI band, minimum distance classifier 

outperformed the other classifiers by almost 14%, and with the MODIS image it 

outperformed the other classifiers by almost 10%. 

6.1.2 Objectives 

Four objectives were set in order to meet the aims stated above; in this section, how close 

the study came to meeting the said objectives will be reviewed. 

1. To test the accuracy of Landcover Classification at three different spatial 

resolutions, each resolution being taken from three remotely sensed images 

(SPOT 5, Landsat TM and MODIS). 

The maximum likelihood classification algorithm was applied to the three images (SPOT 

5, Landsat TM and MODIS images) of differing resolutions. The maximum likelihood 

although used extensively in the literature (Franklin and Wulder, 2002) it however 

performed on par with the parallel piped classifier. 

The results obtained showed a definitive pattern with regards to the performance of the 

classifier and the spatial resolution of the images. The higher resolution of the SPOT 5 

image gave accuracies of 63.64% with the use of 11 classes, and 72.73% with the use of 

8 classes. As the resolution of the images became coarser, the accuracies of the 

classification became lower. The Landsat TM images of 30 m resolution gave an 

accuracy of 54.55% with 11 classes, and the MODIS image of 250 m resolution gave an 

accuracy of 31.82% with 11 classes. 
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Possible reasons for the decrease in the accuracy as the spatial resolution becomes 

coarser, have been discussed previously and possible causes have been identified as the 

number of pixels within each of the classes. As the number of pixels decreases within a 

class, the probability of a specific pixel falling within its specific class decreases. An 

example can be identified with regards to the Wetland class. The wetland class is a small 

class, with many small features. Thus the finer the resolution is, the more chance there is 

that the pixels from a wetland feature will fall within the Wetland class. The coarser the 

imagery or the coarser the resolution, the more chance that the feature will fall 

completely within the pixel and so not be classified due to the mixing of other classes in 

that pixel. 

2. To evaluate the effect of the number of classes on the final classification 

accuracies. 

The trend for all the images showed that the accuracy of the image was increased by 

decreasing the number of classes used. 

As has been stated before, this is likely due to the increase in the spatial area of the class 

and thus the probability of the class falling within the spatial extent of the pixel increases. 

This, therefore, reduces the proportion of spectral mixing within the class. The most 

effect was seen on the MODIS image, and this supports the statement made earlier. Some 

of the classes within the finer class category would be too small to be detected within the 

250 m resolution image of the MODIS sensor. By amalgamating these classes into larger 

classes they can be detected. An example of this can be seen in the detection by the 

MODIS image of the different plantation type in the study area. The MODIS image did 

not differentiate among the different trees species accurately. However, by merging the 

tree species to form a single broad Plantation class, the accuracy was increased. 
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3. To evaluate the differences between the classification accuracy of an image using 

fine class definitions and traditional algorithms; and then to compare this to a 

neural network 

This objective was aimed at determining the relative accuracies of a neural network and 

traditional classifiers. Overall, the traditional classifiers performed poorly when 

classifying the finer classes. Using the fine definition classifications as a base, the 

maximum likelihood classified the SPOT 5 image with an accuracy of 63.64%, the 

minimum distance to means classifier classified the same image with an accuracy of 

54.55%, and the parallel piped classifier performed the best and classified the image with 

an accuracy of 68.18%. 

The neural network performed well with the finer classes: even when it was not trained 

correctly, the average classification was higher than the traditional classifiers. 

4. To test the ability of a more computationally intensive Artificial Neural Network 

to improve the accuracy of the classification. 

As has been stated: the traditional classifiers performed poorly and in an attempt to 

increase the accuracy of the SPOT 5 image with finer classes, a neural network was 

trained and tested. For the training stages, set parameters were defined and testing was 

done to streamline the neural network for optimum efficiency and accuracy. The final 

product outperformed the parallel piped classifier by roughly 28% and the maximum 

likelihood classifier by 30%. 

Generally, the neural network classified specific classes in the image to a higher accuracy 

than the traditional classifiers were able to. An example is the identification of the Cane 

class with the maximum likelihood classification: the maximum likelihood was able to 

produce a user's accuracy of 50% for the classification of the Cane class and the neural 

network improved upon this classification producing an accuracy of 98.65%. For the 

same image using the training parameters, the neural network was able to increase the 
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accuracy of the maximum likelihood accuracy to roughly 90.00%, a 40% increase. This 

shows the ability of the neural network to efficiently classify specific classes on an 

image. It should be noted that the Wetland class was not classified as accurately as the 

other classes. The user's accuracy of the Wetland class for the neural network was 

roughly 62%, this was an improvement by 10% on the maximum likelihood 

classification, although when compared to the other classes from the neural network this 

accuracy is the lowest. This points to how complex a wetland system is: the proximity to 

water allows there to be more diverse vegetation than in other areas and so can result in a 

complex reflectance pattern, creating difficulties in the classification of the image. 

6.2 LIMITATIONS AND RECOMMENDATIONS OF THIS STUDY. 

This section will outline a few of the limitations of certain aspects of this study. Where 

necessary, some recommendations have been made in order to correct these identified 

problem areas. 

6.2.1 Limitations 

This study was undertaken as close to accepted practice as possible. However, it must be 

noted that some improvements can be made to the methodology. 

IMAGES 

1. Resolutions 

In order to evaluate the true potential of the effect of resolution on the 

accuracy of the classifications, more images of varying resolutions are 

needed. The differences between 10 m, 30 m and 250 m can be seen as being 

too great to show to what extent resolution plays a part in determining the 

accuracy of the classification of specific landuse types. Some researchers have 

suggested using techniques of resampling of a higher resolution to a coarser 
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resolution by using roving windows (Chen et ah, 2004). These techniques 

were considered for this study but were not used. Because this study aimed at 

focusing on the original image resolution for each of the images; by 

resampling, a pseudo-resolution is created and may not accurately portray the 

actual reflectance values for the specific classes. 

2. Temporal 

In order to allow for correct comparison of the classification techniques, it is best to 

obtain images from similar time periods. The SPOT 5 image, for example, was 

acquired during a very long dry period and so the Water class was not correctly 

represented. Albert Falls as an example was at its lowest levels in recent history, thus 

it exposed the river bed of the dam to the elements. This confused the classification as 

the bed had a similar spectral signature to the Urban class. Nevertheless, the SPOT 5 

image did accurately classify other classes used within the study and so accomplished 

what was needed to be done to achieve the aims and objectives. 

TECHNIQUES 

1. Ground Truthing 

Although 60 ground control points were collected, more points were needed to be 

used for the accuracy evaluation. For creating an error matrix that correctly represents 

the final classification accuracy, 22 points do not seem sufficient. 

For the coarser imagery more ground control points could increase the accuracy of 

the image classification. There were occasions during the training site selection when 

the landcover class was unclear due to the pixel sizes being too large for accurate 

representations of the classes. 
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Regardless of the number of ground truthing points used, adequate results were 

obtained for the various classifications completed. The results portrayed the effect of 

the number of classes on the accuracy of the classified image, as well as the effect of 

resolution on these classifications. 

2. Neural Network 

The neural network performed extremely well, although it may have suffered the 

limitation of too few points from which it could evaluate its own performance. As 

with the limitations stated with the ground truthing, more ground control points could 

be used to create more training sites from which classifications can be made. The 

study does, however, show that the neural network does outperform the traditional 

classifier and thus can be used to improve on the accuracies obtained from the 

traditional classifiers by including ancillary data for the classification. Care was also 

taken through experiments to select the optimal neural network parameters, therefore 

also to increase the efficiency or alternatively to avoid overfitting in the model. 

6.2.2 Recommendations 

As has been stated, there were limitations to this study, both in the imagery and in the 

techniques adopted for the study. Some recommendations are discussed to aid in 

progressing this study to a more scientifically sound conclusion. 

1. Images 

The differences between the spatial and spectral resolutions of the imagery used can be 

seen as being too large. Thus, more images need to be used to help make these 

differences smaller. The ASTER sensor has a resolution of 15 m (Stefanov and Netzband, 

2005) and this image can be used between the Landsat TM and the SPOT 5 image. The 
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Landsat MSS has a resolution of 60 m / 80 m and thus can be used between the Landsat 

TM and the MODIS images. 

2. Techniques 

More ground control points are needed to allow for more training sites and points for the 

error calculations. The coarser the image is the more ground truthing and ground control 

points are needed to allow features that are not easily identified to be correctly identified. 

6.3 CONCLUDING REMARKS 

Researchers whose work has been reviewed in the literature rarely advocate the use of the 

the maximum likelihood classifier alone. There are usually different techniques applied in 

conjunction with these techniques to improve the accuracy of the images (Yang and Liu, 

2005). The present study aimed not to improve the techniques themselves but to evaluate 

to what extent the resolutions of the different available imagery and the class numbers of 

the classification play a role in effecting the final out comes of the classification. 

This aim was achieved, and the study showed that the lower the resolution of the image is 

the less accurate the classification algorithm is at detecting differences between the 

classes required. In itself, the number of classes within the classification can affect the 

outcome of the classification: by having too many small classes within the classification 

and too large a pixel size within the imagery, the less accurate the final classification will 

be. 

If improvements to a classification are needed, a neural network is most likely going to 

provide a more accurate classification when compared to the traditional classifiers. This 

study demonstrates the power of a neural network to increase the classification accuracy 

of an image by almost 18%. 
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In conclusion, this study demonstrates the importance of determining what is needed to 

be identified in the final product of the classification when choosing an image to use for 

the classification. Smaller features require high spatial resolutions, whilst the larger 

features can be identified with lower resolution images. By choosing the correct 

resolutions, it is possible to avoid costly mistakes of using images that may cost more 

than those that would give similar results but cost less or are even free. 

Neural networks provide a method to increase the accuracy of an image, provided the 

correct parameters are used and the network is designed correctly. This can be a time-

consuming process, and a traditional classifier may be better if time constraints are a 

problem. Otherwise based on finding of this study, neural networks produce more 

accurate results. 
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Chapter 8. APPENDIX 

Appendix 1 

The following pages will display some of error matrices used for the study. 

Tables: 

1. SPOT 5 Error Matrix - Minimum Distance to Means with Fine Classes 
2. SPOT with NDVI Error Matrix - Maximum Likelihood, with Broad Classes 
3. Landsat TM with NDVI Error Matrix - Maximum Likelihood, with Fine Classes 
4. Landsat TM without NDVI Error Matrix - Minimum Distance to Means, with 

Fine Classes 
5. Landsat TM with NDVI - Maximum Likelihood, with Broad Classes 
6. MODIS - Maximum Likelihood, with Fine Classes 
7. MODIS - Maximum Likelihood, with Broad Classes 
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Table 1: SPOT 5 Error Matrix - Minimum Distance to Means with Fine Classes 

Classified 
Data 

Unclass. 
Agric 
Bush 
Cane 
Grass 
Gum 
Pine 

Urban 
Wattle 

Woodland 
Water 

Wetland 
Column 

Total 
Producer's 
Accuracy 

Unclass 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 

0.00% 

Agric 

0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

2 

50.00% 

Bush 

0 
0 

2 
0 
0 
0 
1 
0 
0 
1 
0 
0 

4 

50.00% 

Cane 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1 

100.00% 

Grass 

0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 

0.00% 

Gum 

0 
0 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 

2 

50.00% 

Pine 

0 
0 
0 
0 
0 
0 

1 
0 
0 
1 
0 
0 

2 

50.00°/ 

Urban 

0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

1 

» 100.00% 

Wattle 

0 
0 
0 
0 
0 
0 
0 
0 

1 
o 
0 
0 

1 

100.00% 

Woodland 

0 
0 
0 
1 
0 
0 
0 
0 

o 
o 
0 
0 

1 

0.00% 

Water 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
4 
0 

5 

80.00% 

Wetland 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

o 
1 

0.00% 

Row 
Total 

0 
2 
4 
3 
1 
1 
3 
1 
1 
2 
4 
0 

22 

User's 
Accuracy 

0.00% 
50.00% 
50.00% 
33.33% 
0.00% 

100.00% 
33.33% 
100.00% 
100.00% 
0.00% 

100.00% 
0.00% 

Overall Classification Accuracy = 54.55% 
Overall Kappa Statistics = 0.4848 
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Table 2: SPOT with NDVI Band5 Error Matrix - Maximum Likelihood, with Broad Classes 

Classified 
Data 

Unclass 
Grass 
Agric 

Plantation 
Bush 
Cane 
Urban 
Water 

Woodland 
Column Total 

Producer's 
Accuracy 

Unclass 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.00% 

Grass 

0 
1 
0 
0 
2 
0 
0 
0 
0 
3 

33.33% 

Agric 

0 
0 

o 
0 
1 
0 
1 
0 
0 
2 

0.00°/ 

Pla ntation 

0 
0 
0 
4 
0 
0 
0 
0 
0 
4 

> 100.00% 

Bush ( 

0 
0 
0 
2 
1 

o 

^ane 

0 
0 
0 
0 
0 
1 

0 0 
0 0 
2 0 
5 1 

20.00% 100.00% 

Urban 

0 
0 
0 
0 
0 
0 
1 
0 
0 
1 

100.00% 

Water 

0 
0 
0 
0 
0 
1 
0 
4 
0 
5 

80.00% 

Woodland 

0 
1 
0 
0 
0 
0 
0 
0 
0 
1 

0.00% 

Row 
Total 

0 
2 
0 
6 
4 
2 
2 
4 
2 

22 

User's 
Accuracy 

0.00% 
50.00% 
0.00% 

66.67% 
25.00% 
50.00% 
50.00% 
100.00% 
0.00% 

Overall Classification Accuracy = 
Overall Kappa Statistics = 0.4608 

54.55% 
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Table 3: Landsat TM with NDVI Error Matrix - Maximum Likelihood, with Fine Classes 

Classified 
Data 

Unclass 
Agric 

Wetland 
Cane 
Bush 
Pine 

Wattle 
Urban 
Gum 

Water 
Woodland 

Grass 
Column Total 

Producer's 
Accuracy 

Unclass 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

0.00% 

Agric 

0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 

2 

0.00% 

Wetland 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 

0.00% 

Cane 

0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
1 

100.00% ( 

Bush 

0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
2 
4 

D.00% 

Pine 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 

100.00% 

Wattle 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 

100.00% 

Urban 

0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 

100.00% 

Gurr 

0 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
2 

50.00 

I Water 

0 
0 
0 
0 
0 
0 
0 
0 

o 

0 
0 
5 

% 100.00°/ 

V 

'o 

Voodland 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 

0.00% 

Grass 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
2 

100.00% 

Row 
Total 

0 
0 
3 
1 
0 
1 
2 
1 
2 
5 
1 
6 

22 

User's 
Accuracy 

0.00% 
0.00% 
0.00% 

100.00% 
0.00% 

100.00% 
50.00% 
100.00% 
50.00% 
100.00% 
0.00% 
33.33% 

Overall Classification Accuracy = 54.55% 
Overall Kappa Statistics = 0.4931 
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Table 4: Landsat TM without NDVI Error Matrix - Minimum Distance to Means, with Fine Classes 

Classified 
Data 

Unclass 
Agric 
Bush 
Cane 
Gum 

Urban 
Wattle 

Wetland 
Woodland 

Grass 
Pine 

Water 
Column Total 

Unclass 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Agric 

0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
2 

Bush 

0 
3 

1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
5 

Cane Gum Urban Wattle Wetland 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 

0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
2 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 

0.00% 20.00% 0.00% 50.00% 100.00% 0.00% 0.00% 

Overall Classification Accuracy = 50.00% 
Overall Kappa Statistics = 0.4346 
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Table 5: Landsat TM with NDVI - Maximum Likelihood, with Broad Classes 

Classified 
Data 

Unclass 
Grassland 
Plantation 

Agric 
Cane 
Bush 
Urban 
Water 

Woodland 
Column Total 

Unclass 

0 

o
o

o
o

o
o

o
o

o
 

Grassland 

0 
3 o

o
o

o
o

o
o

c
o
 

Plantation 

0 
0 
4 
0 
0 
0 
0 
0 
0 
4 

Agric Cane 

0 0 
2 0 
0 0 
0 0 
0 1 
0 0 
0 0 
0 0 
0 0 
2 1 

Bush 

0 
4 
1 
0 
0 

o 
0 
0 
0 
5 

Urban 

0 
0 
0 
0 
0 
0 
1 
0 
0 
1 

Water 

0 
0 
0 
0 
0 
0 
0 
5 
0 
5 

Woodland 

0 
1 
0 
0 
0 
0 
0 
0 
0 
1 

Row Total 

0 
10 
5 
0 
1 
0 
1 
5 
0 

22 

User's 
Accuracy 

30.00% 
80.00% 
0.00% 

100.00% 
0.00% 

100.00% 
100.00% 
0.00% 

Producer's Accuracy 0.00% 100.00% 100.00% 0.00% 100.00% 0.00% 100.00% 100.00% 0.00% 

Overall Classification Accuracy = 63.64% 
Overall Kappa Statistics = 0.5676 
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Table 6: MODIS - Maximum Likelihood, with Fine Classes 

classified Data 

Unclass 
Wattle 
Agric 
Bush 
Pine 
Cane 
Gum 

Urban 
Wetland 

Grass 
Woodland 

Water 
2olumn Total 
Producer's 
Accuracy 

Unclass 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.00% 

Wattle 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 

0.00% 

Agric 

0 
0 

o 
0 
0 
0 
0 
0 
0 
2 
0 
0 
2 

0.00% 

Bush 

0 
0 
0 
0 
0 
0 
0 
0 
0 
5 
0 
0 
5 

0.00% 

Pine 

0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
1 

100.00% 

Cane 

0 
0 
0 
0 

o 
0 
0 
0 
1 
0 
0 
1 

0.00% 

Gum 

0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
2 

0.00% 

Overall Classification Accuracy = 31.82% 
Overall Kappa Statistics = 0.2308 
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rban 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 

00% 

Wetland 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 

0.00% 

Grass 

0 
0 
0 
0 
0 
0 
0 
0 
0 
2 
0 
0 
2 

100.00% 

Woodland 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 

0.00% 

Water 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
4 
5 

80.00% 

Row 
Total 

0 
0 
0 
0 
1 
0 
0 
0 
0 
17 
0 
4 

22 

User's 
Accuracy 

0.00% 
0.00% 
0.00% 
0.00% 

100.00% 
0.00% 
0.00% 
0.00% 
0.00% 
11.76% 
0.00% 

100.00% 



Table 7: MODIS - Maximum Likelihood, with Broad Classes 

Classified 
Data 

Unclass 
Grass 
Agric 

Plantation 
Bush 
Cane 
Urban 

Woodland 
Water 

Column Total 
Producer's 
Accuracy 

Unclass 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Grass 

0 
2 
0 
1 
0 
0 
0 
0 
0 
3 

Agric 

0 
1 
0 
1 
0 
0 
0 
0 
0 
2 

Plantation 

0 
0 
0 

4 
0 
0 
0 
0 
0 
4 

Bush 

0 
2 
0 
3 

o 
0 
0 
0 
0 
5 

Cane 

0 
1 
0 
0 

jj 
0 
0 
0 
1 

u rban 

0 
1 
0 
0 
0 
0 
0 
0 
0 
1 

Woodland 

0 
0 
0 
1 
0 
0 
0 
0 
0 
1 

Wate 

0 
0 
0 
1 
0 
0 
0 
0 

m 4 
5 

Row Total 

0 
7 
0 
11 
0 
0 
0 
0 
4 

22 

User's 
Accuracy 

0.00% 
28.57% 
0.00% 
36.36% 
0.00% 
0.00% 
0.00% 
0.00% 

100.00% 

0.00% 66.67% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 80.00% 

Overall Classification Accuracy = 
Overall Kappa Statistics = 0.3383 

45.45% 
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Appendix II 

The following section will display some of the classified maps created for the study. 

Figures: 

1. SPOT 5 11 classes vs. 8 classes classification - Parallel Piped Classifier 
2. Landsat TM NDVI vs. No NDVI classification - Parallel Piped Classifier 
3. MODIS 11 classes vs. 8 classes classification - Parallel Piped Classifier 



4. 

Comparison of the SPOT Imaqe with Parallel Piped Classifier 
with the 11 Classes and 8 Classes 
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Figure 1: SPOT 5 Parallel Piped, (A) 11 Classes vs. (B) 8 Classes 
Classification 



Comparison of the Landsat TM Image with Parallel Piped Classifier 
with the NDVI Band and no NDVI and 
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Figure 2: Landsat Parallel Piped, (A) NDVI vs. (B) No NDVI Band 
Classification 
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Comparison of the MODIS Image with Parallel Piped Classifier 
with the 11 Classes and 8 Classes 
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Figure 3: MODIS Parallel Piped, (A) 11 Classes vs. (B) 8 Classes 
Classification 


